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Abstract

The ever-increasing improvement in computer storage and network perfor-
mance means that disk I/O and network communication are often no longer bottle-
necks in database management systems (DBMSs). Instead, the overheads associated
with operating system (OS) services (e.g., system calls, thread scheduling, and data
movement from kernel-space) limit query processing responsiveness. User-space
applications like DBMSs can elide these overheads with a kernel-bypass design.
However, extracting benefits from kernel-bypass frameworks is challenging, and
the libraries are incompatible with standard deployment and debugging tools.

This dissertation presents an alternative implementation strategy for systems
called user-bypass—a design that extends OS behavior for DBMS-specific features,
including observability, networking, and query execution. Historically, DBMS de-
velopers avoid kernel extensions for safety and security reasons, but recent im-
provements in OS extensibility present new opportunities. Developers write safe,
event-driven programs with user-bypass to push DBMS logic into the kernel and
avoid user-space overheads. When a DBMS in user-space invokes these programs,
user-bypass provides behavior similar to a new OS system call, albeit without ker-
nel modifications. Alternatively, when an OS thread or interrupt triggers these
programs in kernel-space, user-bypass inserts DBMS logic into the kernel stack.

In this dissertation, we will introduce three systems that use the user-bypass
method in DBMSs. First, we present an observability framework that employs user-
bypass to collect training data for self-driving DBMSs that reduces the number of
round trips to kernel-space to retrieve performance counters and other system met-
rics. Next, we present a database proxy that applies user-bypass to support features
like connection pooling and workload replication while reducing data copying and
user-space thread scheduling. Lastly, we present an embedded that provides ACID
transactions over multi-versioned data in kernel-space.

The techniques in this dissertation show user-bypass benefits across multiple
DBMS design disciplines and provide a template for future DBMS and OS co-design.
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Chapter 1

Introduction

Database management systems (DBMSs) form the foundation of modern applications. For ex-
ample, machine learning (ML) infrastructure uses DBMSs at every stage of their pipeline [77].
Data warehouses accumulate records that originated in transactional databases [68, 92, 122,
162]. Then, analysts query the data warehouse to train a model and store the resulting model
in a separate database. Querying these models accesses a feature store, the previously men-
tioned model database, and a vector database to generate a meaningful answer. Each DBMS’s
performance, reliability, and resource costs are critical to deploying robust applications.

On a multitasking operating system (OS), DBMSs run as processes with memory contents
isolated from other applications through virtual memory [79]. In this scenario, the OS kernel
runs as a privileged process that manages the system’s memory address space and hardware
devices (e.g., CPU, I/O). We refer to this privileged execution mode more generally as kernel-
space. In contrast, application processes like DBMSs run in user-space where the OS provides
abstractions to share system resources and maintain system stability. For example, the OS
allocates CPU time between applications using processes, threads, and a preemptive scheduler.
Virtual memory provides safety and security from one application accessing another’s memory
contents and avoids the development burden of a fixed memory address space. File descriptors
provide a unified abstraction for reading and writing data to I/O devices like disks and network
sockets.

The OS’s application programming interface (API) for user-space applications are system
calls—function calls that invoke kernel frameworks. DBMSs use system calls to request re-
sources from the OS and then apply application-specific logic to access those resources op-
timally. Depending on their performance requirements, DBMSs may attempt to manage a re-
source from user-space completely, cede control entirely to the OS, or take a balanced approach
between the two.

1.1 User-Space Methods

DBMS:s rely on operating system services (e.g., file systems, network sockets, threads) to man-
age hardware resources like CPU, memory, and I/O (e.g., network, disk). Researchers dis-
cussed the shortcomings of using OS services to support DBMSs for decades. For example,
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Figure 1.1: User-Space DBMS — DBMS running in user-space, accessing system hardware
resources managed by OS services via system calls. For brevity, we omit some layers from each
resource stack.

OS-level memory management and I/O interfaces make it difficult to reason about durabil-
ity [90, 164, 185, 186], while thread scheduling and file system abstractions are deemed too
slow [123, 142, 192]. With a monolithic OS kernel (e.g., Linux, Unix), services are general-
purpose frameworks that applications interface with via system calls. Due to the large number
of features they must support, kernel developers do not optimize these system calls for any one
use case [28].

Figure 1.1 shows an example of a DBMS running in user-space and relying on OS system
calls to access hardware resources. For each operation, the DBMS invokes a system call, en-
ters a privileged execution mode, executes the kernel code, and then returns to user-space to
continue its execution. For example, the DBMS uses the send() system call to send data over
the network. The OS shepherds the data through multiple layers of its networking stack (i.e.,
socket mapping, TCP, IP, Ethernet) before issuing a write to the network adapter. Similarly, the
DBMS writes storage devices with the write() system call, which then passes data through its
file system, virtual file system, and block translation layers before sending data to the disk. The
DBMS acquires CPU resources by creating processes with fork(), which the OS manages by
scheduling fairly. Lastly, the OS abstracts system memory through the heap abstraction. DBMSs
can acquire memory by extending their heap space with brk() or mapping anonymous pages
with mmap ().

These systems calls and their associated layers of frameworks introduce overheads in multi-
ple ways. For example, when saturating the Linux kernel’s network stack with traffic, over 50%
of the CPU cycles can be attributed to data movement (i.e., memcpy()) between kernel-space
and user-space [83]. Linux’s storage stack contains buffering layers that make it difficult for
DBMSs to ensure durability while remaining performant. Due to the overhead of these software
layers, a naive blocking I/O implementation using system calls would require 86 CPU cores at
3 GHz to saturate a 3 GB/s solid-state drive (SSD) [124]. New system calls for asynchronous
I/O and using direct I/O to bypass kernel buffers reduce the overheads, but these approaches
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Figure 1.2: Kernel-Bypass DBMS - DBMS running in user-space, accessing system resources
(e.g., network, disk) via kernel-bypass to send and receive data.

push additional complexity into the DBMS. Lastly, the virtual memory abstraction struggles
to scale in modern multi-core CPUs, with a microbenchmark of memory allocations spending
79% of its CPU time in translation lookaside buffer (TLB) shootdowns (i.e., cache coherency
operations) [144].

DBMSs employ domain-specific knowledge to manage system resources in user-space to
improve performance. For example, coroutines are a cooperative multithreading technique
that elides the preemptive multitasking interface of the OS. This design reduces the over-
head associated with CPU scheduling, freeing resources for the DBMS to process queries more
efficiently [126]. DBMSs manage the memory for database pages via buffer pools with cus-
tom eviction algorithms to maximize inter-query parallelism concurrency and minimize cache
misses [101, 107]. These algorithms adapt to DBMS operations to prevent degenerate cases like
sequential flooding, and research continues on new designs that reflect modern storage devices
like SSDs and non-volatile memory [64, 143].

In addition to managing disk pages in memory with buffer pools, DBMSs apply complex
user-space techniques to other memory allocations. For example, PostgreSQL defines mem-
ory contexts built on top of glibc’s malloc() to provide memory accounting and limits across
system components [198]. DBMS researchers have also demonstrated the benefits of apply-
ing custom memory allocators (e.g., jemalloc[26], TCMalloc [55]) to DBMS workloads [100].
These user-space methods improve DBMS performance, particularly for resources whose OS
abstractions cannot be avoided (e.g., processes with CPU, virtual memory with RAM).

1.2 Kernel-Bypass Methods

The OS does not allow DBMSs to completely control CPU and memory allocation. However,
for supported devices, the OS allows a DBMS to manage I/O resources (e.g., disk, network) with
an approach called kernel-bypass.

Figure 1.2 shows an example of a DBMS running in user-space, using kernel-bypass to send
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Figure 1.3: User-Bypass DBMS — DBMS running in user-space, accessing system hardware
resources managed by OS services via system calls. However, user-bypass augments the kernel
processing stacks with DBMS-specific logic.

and receive data between I/O devices. In this scenario, a DBMS communicates directly with the
device driver to send and receive data—not using system calls and bypassing the kernel’s stack.
Thus, the application manages device and communication protocols and their associated state
machines. For network sockets, this includes protocols like TCP and UDP, while for storage
devices this includes file systems and block translation.

Despite this added user-space logic, kernel-bypass aims to improve system performance by
hoisting data to user-space as quickly as possible. Once in user-space, developers can reduce
their network processing stack to include only the relevant subset for their application. For
example, if the target application only uses the TCP protocol to communicate, researchers have
shown more efficient TCP stacks that omit logic for processing other protocols (e.g., UDP) [130].

However, achieving good performance from kernel-bypass frameworks is challenging for
several reasons. First, they require a CPU dedicated to polling a ring buffer from user-space,
potentially wasting CPU cycles [214]. Second, network drivers that enable kernel-bypass fre-
quently break their application programming interface (API), requiring applications to either
bundle an old driver or release updates at the same cadence as hardware vendors [161]. Lastly,
kernel-bypass puts devices into an exclusive mode, making them incompatible with standard
deployment and debugging tools [200].

The complexity of developing, debugging, and deploying kernel-bypass techniques in pro-
duction has limited its adoption in the database community. To our knowledge, the only DBMS
making significant use of kernel-bypass is Yellowbrick, which wrote its own network and stor-
age device drivers [120]. Although ScyllaDB promotes kernel-bypass support in their Seastar
framework for building high-performance data processing applications, they do not enable
kernel-bypass in their production deployments [119].

4



1.3 User-Bypass Methods

Kernel-bypass is an all-or-nothing approach whereby the DBMS wrests complete control of
a resource from the OS. As an alternative between complete reliance on the OS and kernel-
bypass, we present a technique called user-bypass, whereby developers push DBMS logic into
the kernel’s stack to avoid copying data between user-space and kernel-space. Figure 1.3 shows
a DBMS running in user-space that has extended the behavior of the OS stacks with its logic.
User-bypass maintains the automatic resource management and compatibility of user-space
system calls while providing many customization and performance benefits that kernel-bypass
affords. With user-bypass, DBMSs can perform valuable work in the kernel stack without mov-
ing data to user-space, scheduling user-space threads, or calling more system calls.

The research community has proposed several methods to extend OS behavior to better suit
user-space applications (i.e., OS extensibility). First introduced in 1994, SPIN [72, 73] is an exten-
sible microkernel that interfaces with applications through a custom programming language.
Through this interface, applications define their custom resource management semantics. That
same year, researchers at MIT introduced the Exokernel [103, 104, 112, 132] architecture as a
distinct approach to OS extensibility. With Exokernel, untrusted applications implement ab-
stractions like virtual memory entirely in user-space.

However, these OS extensibility efforts lacked a universal API like POSIX, which made it
challenging to develop cross-platform applications. Developing a DBMS for one of these early
extensible OSes created vendor lock-in, imposing the compatibility limitations of a unikernel
without all of the associated performance benefits.

OS developers have provided few avenues to extend kernel behavior in commonly deployed
operating systems (e.g., Linux, Windows) for system reliability and safety reasons. Until re-
cently, if a developer wanted to embed DBMS logic into the kernel, they would have to either
load a kernel module or modify and recompile it. Researchers explored the challenges of safely
implementing such approaches [182]. On modern systems, changing the OS requires disabling
Secure Boot unless a developer can have their software signed by Microsoft—even when boot-
ing Linux [50, 51]. Secure Boot remains a valid mitigation for firmware-based “bootkit” attacks,
leaving enterprises reluctant to turn it off [6].

The technology that enables user-bypass and addresses the shortcomings of past OS exten-
sibility efforts is extended Berkeley Packet Filter (eBPF). This modern Linux subsystem enables
developers to write safe, event-driven programs running in kernel-space [190]. However, these
eBPF programs have restrictions on their execution time, kernel API, and memory safety. For
this reason, it is not possible to implement every DBMS feature (e.g., SQL parsing) with user-
bypass.

For developers to apply user-bypass to a DBMS, they must consider several questions. First,
what DBMS operations most benefit from executing in kernel-space instead of user-space? Sec-
ond, can the desired DBMS logic be expressed within eBPF’s constraints? Third, what software
architecture is necessary to support a user-bypass design where some DBMS logic resides in
kernel-space and the rest in user-space? This dissertation explores these questions and the
ramifications of their answers.



1.4 Summary of Contributions

Thesis Statement: Embedding database management system logic in the operating system via
modern kernel extension mechanisms to bypass user-space for frequently performed operations is
a safe and maintainable way to improve system performance and lower deployment costs.

This dissertation explores the different ways that DBMSs can adopt user-bypass and its
benefits. Our work revisits the idea of OS extensibility for DBMSs with modern techniques,
and applies user-bypass to applications that are feasible in production environments.

This dissertation makes the following contributions:

User-Bypass Observability for Self-Driving DBMSs (Chapter 3) We present a frame-
work to collect training data for self-driving DBMSs efficiently. Collecting DBMS state and
resource consumption in an online setting incurs high overhead, but user-bypass reduces the
round-trips between kernel-space and user-space [80].

User-Bypass DBMS Proxy (Chapter 4) We present a DBMS proxy that uses user-bypass
for the most frequently performed operations (i.e., queries and their results). This design out-
performs other proxy designs, and enables low-cost deployment of a DBMS proxy [81].

User-Bypass DBMS Architecture (Chapter 5) We present a DBMS that runs entirely in
kernel-space for user-bypass applications. We explore the design decisions, limitations, and
example applications enabled by a user-bypass DBMS.

Chapter 6 discusses related work, and Chapter 7 overviews possible future research direc-
tions. We conclude with our final remarks in Chapter 8.



Chapter 2

Background

This chapter presents an overview of high-performance techniques for DBMSs to manage re-
sources with the OS. We first define our user-bypass method in the context of Linux networking
and existing kernel-bypass techniques. We then discuss the kernel feature that enables user-
bypass and its limitations.

2.1 Kernel-Bypass

We first provide an overview of the relevant OS services for I/O to understand the differences
and trade-offs between kernel-bypass and user-bypass. We provide our analysis in the context
of the OS networking stack, but the storage stack contains similar software layers (e.g., block
layer, virtual file system). A complete overview of Linux’s networking stack is beyond the scope
of this thesis; we will focus on the portion relevant to DBMSs.

Linux contains multiple layers for processing network traffic. These layers handle transport
(e.g., TCP), network (e.g., IP), and link layer (e.g., Ethernet) protocols. The stack exposes a socket
interface [52] for applications to copy data between user-space and kernel-space, along with
traffic control [54] interfaces to configure queuing disciplines and network filters.

Using kernel-bypass methods, user-space applications prioritizing performance over sim-
plicity can elide these software layers. In this scenario, a user-space application receives bytes
directly from the device driver—bypassing the kernel’s network stack. Thus, the application
manages communication protocols and their associated state machines. The most common
kernel-bypass pattern for network applications is to use Intel’s Data Plane Development Kit
(DPDK) [16] software library with user-space TCP implementations like mTCP [130]. Intel
provides the similarly named Storage Performance Development Kit (SPDK) [60] for storage
devices. Other kernel-bypass libraries (e.g., F-Stack [21] and ScyllaDB’s Seastar [48]) attempt
to simplify development by bundling DPDK with bespoke TCP logic.

In 2018, Linux added native kernel-bypass support with AF_XDP [127], removing the de-
pendency on kernel modules such as DPDK. AF_XDP introduces a new socket type for user-
space applications that can receive data from low levels in the kernel networking stack before
the kernel allocates socket buffers or applies TCP/IP logic. This form of kernel-bypass has not
yet received widespread adoption. Still, it presents a more standardized interface for future
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kernel-bypass efforts compared to vendor-specific kernel modules like DPDK.

Historically, kernel-bypass was the preferred way to implement high-performance Linux
networking applications [21, 130, 200]. There are several reasons for this view: (1) the Linux
networking stack was perceived as slow and inefficient, (2) applications performed encryption
in user-space using a software library (e.g., GnuTLS, LibreSSL, OpenSSL), and (3) a lack of
programmability in the networking stack. The interfaces to program the network stack were
limited to filtering and routing decisions based on L2/L3 rules (e.g., iptables, nftables, tc).
This lack of extensibility in the kernel prevented L7 DPI necessary for a DBMS proxy. Thus,
kernel-bypass remained viable for network applications with complex user-space logic.

To our knowledge, the only database vendor making significant use of kernel-bypass is
Yellowbrick, which built a reliable transport protocol on top of UDP using DPDK [120]. Yel-
lowbrick’s kernel bypass efforts extend to a custom memory manager to group allocations
by lifetime and a task scheduler optimized to keep query data in CPU’s L3 cache. Their ef-
forts with DPDK for node-to-node improve their query execution performance by 20% [91].
Although ScyllaDB promotes DPDK compatibility in their Seastar framework for low-latency
and high-performance networking [49], they do not deploy DPDK in production [119]. In gen-
eral, deploying DPDK applications into production is difficult due to API/ABI instability, which
forces developers to choose between features and fixes of new releases and code stability of
LTS releases [161].

Kernel-bypass aims to improve performance by transferring buffers between devices and
user-space applications instead of the kernel processing them. User-bypass is the opposite ap-
proach: the developer pushes application logic into the kernel’s network stack as low as possible
to avoid copying data between user-space and kernel-space, while benefiting from the kernel
handling L1-L4 networking. Until recently, if a developer wanted to embed application logic
into the kernel, they would have to either (1) load a kernel module or (2) modify and recompile
it. Such approaches are difficult to implement and sacrifice system reliability and safety. How-
ever, updates to Linux make user-bypass a viable alternative to kernel-bypass. The efficiency
of the Linux networking stack is also fast enough for most DBMS deployments. For example,
recent papers showed that a single CPU core can process 42 Gbps [83], and dedicated servers
can process 670 Gbps of data [63]. Next, kernel TLS (kTLS) allows developers to move encryp-
tion into kernel-space and hardware [183]. But the key reason that user-bypass is now possible
is the increased programmability via eBPF, which is composable with kTLS [76].

2.2 eBPF

To understand user-bypass, we now provide an overview of how the technique embeds DBMS
logic in the OS kernel. Extended Berkeley Packet Filter (eBPF) is the key technology that en-
ables this functionality. This modern OS subsystem enables developers to write safe, event-
driven programs running in kernel-space [190]. Application developers and cloud vendors have
adopted eBPF due to its safety guarantees and features [7, 9, 12]. For example, Meta loads over
40 eBPF programs on every server, with hundreds more loaded on demand [191].

McCanne and Jacobson introduced the original Berkeley Packet Filter (BPF) library [158] in
1993. BPF enabled the execution of user-written code in the OS kernel without the complexity
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or safety concerns of writing kernel modules. Its developers designed BPF for high-performance
network packet handling using a virtual machine (VM) with a limited instruction set. These BPF
programs did not support function calls or memory allocation. They were a customizable way to
express whether to allow or drop a packet to the networking stack. With only 22 instructions
and minimal capabilities, developers wrote BPF programs as bytecode rather than compiling
from a higher-level language.

Two decades later, the Linux kernel team introduced the “extended” BPF (eBPF) variant
in 2013, which expanded its semantics and capabilities [190]. eBPF provides a more robust
VM than the original BPF VM with three key features: (1) kernel-embedded data structures
(referred to as eBPF maps), (2) direct access to kernel functions (via eBPF helpers), and (3)
enhanced tracing features. Open-source developers also maintain a clean room implementation
of eBPF for Microsoft Windows [12], but it does not support all of the features of Linux. Due
to the deprecation of classic BPF, and the increasing capabilities of eBPF, we refer to these
technologies as eBPF for the rest of this dissertation.

eBPF programs still use a limited instruction set, though their capabilities have increased
to include function calls, loops, and the ability to tail call from one eBPF program to others.
Developers typically write eBPF programs in higher-level languages like C or Rust that compile
to eBPF bytecode via LLVM or GCC. Upon loading the eBPF program, modern kernels just-in-
time (JIT) compile the bytecode to native machine code rather than interpreting it in a VM.
eBPF program capabilities vary based on their type and attachment point, but they attach to
predetermined functions in the OS stack for network processing.

Developers load eBPF programs into kernel-space and then associate them with events (e.g.,
functions, static tracepoints) to trigger their execution. When a running thread hits the attach-
ment point, the execution of the eBPF program starts in privileged mode. Depending on their
behavior and attachment location, developers use eBPF programs for software debugging, pro-
filing, or modifying data flow (e.g., network buffers) through kernel-space.

2.2.1 eBPF Maps

The execution state of eBPF programs is ephemeral, meaning that its decision-making is limited
to the data available during a single handler invocation. However, with eBPF maps, the program
can maintain state across events, enabling user-bypass to support more complex application
behavior. These data structures reside in kernel-space and are the primary mechanism for
creating stateful user-bypass programs.

eBPF maps expose a key-value interface, though their underlying behavior, supported data
types, and storage structures vary. Some maps support custom key types (e.g., hash table),
and others only expect numeric indexes for their keys (e.g., array). Linux supports concurrent
access to eBPF maps through internal synchronization methods, detailed in Section 5.1.2. For
performance reasons, the hash table and array variants of eBPF maps provide per-CPU imple-
mentations that trade off eliminating synchronization overheads for development complexity.

Some eBPF maps provide more features than just key-value lookup, enabling more robust
eBPF applications. For example, there are stacks (i.e., last-in, first-out) and queues (i.e., first-in,
first-out) with peek and pop capabilities and hash tables that apply least-recently-used (LRU)
semantics. Recent Linux kernel releases (i.e., v5.16 in 2022) support bloom filters, which DBMSs
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use to accelerate query processing [217] and optimize index storage [95].

2.2.2 eBPF Verifier

Because the CPU is in privileged mode when eBPF programs run, the kernel requires them to
pass a verification step before it loads them. The eBPF verifier enforces kernel API compliance,
memory access safety, execution bounds, and instruction count. The verifier generates a control
flow graph for all possible branches of the eBPF program and enforces limits like 512 B max-
imum stack size and 1 M total instructions. Although these restrictions limit the complexity
of application logic with user-bypass, DBMS network protocols for the most common message
types (i.e., queries, results) are expressible in eBPF. Despite the verifier’s guarantees, developers
should consider security and safety practices with eBPF deployment due to its close interaction
with kernel functions, especially in multi-tenant environments.

eBPF’s verifier terminates after processing 1 M instructions and rejects loading the program
if verification is incomplete. Although this creates a de facto limit of 1 M instructions for an
eBPF program, the limit is much lower in practice due to how the verifier processes programs’
conditional logic. The verifier explores all branch and loop states, exponentially increasing ver-
ifier work with nested branches or loops. For example, if a loop examines eight elements of an
array, the verifier simulates the program state through all loop iterations. Any eBPF code inside
the loop will count eight times toward the verifier’s 1 M instruction limit. A new bpf_loop()
helper function expresses loops as a callback function with a compile-time iteration count to
reduce loops’ verifier burden [10], but it is only available on newer Linux kernel releases (i.e.,
v5.17 in 2022).

To overcome this limit, eBPF supports tail calls between eBPF programs. Unlike calling a
function, tail calling jumps to the new program location, overwrites the call stack, and does
not return to the caller upon completion. For example, one eBPF program could parse a socket
buffer and then tail call into one of many eBPF programs depending on the buffer’s contents.
If developers decompose their application logic into separate eBPF programs and chain them
with tail calls, they can overcome the verifier’s instruction limits. eBPF developers must rely
on eBPF maps to carry state between tail calls. However, the verifier restricts developers to a
maximum of 31 tail calls in a sequence, imposing a total verification complexity limit of 32 M
eBPF instructions across 32 programs.

2.2.3 eBPF Applications

The need for eBPF grew out of high-performance network packet processing, but its applica-
tions now extend to container coordination, performance engineering, security enforcement,
and more. Cilium [7] is a container networking interface (CNI) encompassing all of these as-
pects, allowing developers to customize their Kubernetes container environment in kernel-
space. Meta drives a significant amount of Linux kernel enhancement for eBPF, and their Ka-
tran [9] load balancer manages traffic in all their data centers.

Observability has been a significant driver for eBPF adoption due to its flexibility and native
integration with the Linux kernel [118]. Off-the-shelf tools like BCC [25] bundle eBPF programs
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to measure resources like I/O activity, CPU time, and file system behavior. For application-
specific tracing, bpftrace [14] provides a high-level scripting language that generates eBPF
programs at runtime, allowing developers to analyze system performance without downtime.
Combining these approaches offers developers new ways to debug, test, and optimize system
software [167].

Due to its safe integration with the Linux kernel, eBPF presents new ways for DBMSs to tune
OS-specific knobs. In 2023, Oracle introduced bpftune [153] to automatically adjust network
stack parameters with the eventual goal of extending its behavior to other knobs. Researchers
recently explored dynamically adjusting OS mutex policies at runtime using eBPF [171, 172].
We discuss other research works in detail in Chapter 6.
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Chapter 3

User-Bypass Observability for
Self-Driving DBMSs

Self-driving DBMSs seek to automate the arduous tuning and optimization tasks for databases [38,
173, 174]. Given a target objective function (e.g., throughput, latency), a self-driving DBMS au-
tomatically deploys actions that it deems will help the application’s future workload for that
objective. These actions control three aspects of the system: (1) physical design, (2) knob con-
figuration, and (3) hardware resources. Although there are existing advisory tools that support
individual actions (e.g., index recommendation [93], knob tuning [202]), a self-driving DBMS
takes a holistic approach to optimization to include when and how to deploy such actions.

The functionality that enables this is a self-driving DBMS’s ability to estimate the cost/benefit
of an action using behavior models [152]. For example, if an action adds an index, the DBMS’s
behavior models predict how much CPU and memory the system will consume to execute fu-
ture queries if the database includes that index. The behavior models also predict the cost of the
action’s deployment. Using the same index action example, the models predict how much CPU
and memory that DBMS will use to create that index and how that will affect queries running
simultaneously.

Building these behavior models as the foundation of a self-driving DBMS requires ample
training data. Such training data comes from the DBMS executing queries and actions and
observing the outcome. Training data comprises both high-level observations specific to the
DBMS’s operations, such as the number of tuples that a query plan operator consumes, and
hardware metrics (e.g., CPU instructions, memory allocations).

One problem with existing approaches for training data collection in autonomous DBMSs is
that they rely on offline DBMS instances. The most common method is to clone the database and
simulate the application via a workload trace [99, 155, 202]. To avoid copying the database, an-
other method uses hand-written “runners” that execute queries in an offline environment [152].
Although these offline methods are useful for bootstrapping a DBMS’s models, they require sig-
nificant time and computational resources to train. They can also not try all combinations of
physical designs and knob configurations in a DBMS.

It is clear that the solution to this problem is to perform online training data collection while
the DBMS executes the application’s workload and then augment offline data with this new
“fresh” data. Incorporating such online data as soon as possible means that the DBMS’s behav-
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ior models better reflect the system’s current workload and configuration. But current online
training data collection methods are bespoke and impose unacceptable runtime overhead.

This chapter presents the TScout (TScout) framework for efficient and accurate training
data generation in self-driving DBMSs. Our framework collects metrics using a combina-
tion of hardware-level performance counters, kernel-level observations (via eBPF [118]), and
application-level counters. TScout combines these metrics with descriptors of DBMS behav-
ior during query execution and internal maintenance tasks to create training data for machine
learning models. TScout uses code generation to create a kernel-level program that collects
metrics tailored to the DBMS.

We integrated TScout with the NoisePage DBMS [36] and measured its overhead and ac-
curacy. We also compare with existing approaches from other observation tools for training
data collection in NoisePage. Our results show that TScout increases the DBMS’s collection
rate by ~300% with only a 7% runtime performance overhead. For behavior models that are
heavily influenced by the workload, we also find that generating training data while deployed
with TScout reduces the error for NoisePage by 98% over existing approaches.

This chapter is organized as follows. We first discuss in Section 3.1 training data collec-
tion challenges. Section 3.2 presents the TScout framework, followed by how to collect metrics
in Section 3.3 and engineering issues in Section 3.4. Lastly, we present our evaluation in Sec-
tion 3.5.

3.1 Background

We begin with an overview of self-driving DBMS architectures. Next, we describe the two
data sources needed to train models that guide the decision-making processes in a self-driving
DBMS. This will motivate the need for non-intrusive methods to generate and collect online
training data.

3.1.1 Self-Driving DBMS

A self-driving DBMS’s architecture is comprised of three components: (1) forecasting system,
(2) behavior models, and (3) planning system [174]. The forecasting system is how the DBMS
observes and predicts the application’s future workload [151]. The DBMS then uses these fore-
casts with its behavior models to predict its runtime behavior relative to the target objective (e.g.,
latency, throughput) [152]. The planning system selects actions that improve this objective.

A behavior model represents a discrete component in the DBMS. For a set of input features,
the model emits metrics that estimate the component’s work for those inputs. For example,
a DBMS could build a model for a sequential scan where the input is the table name and the
number of tuples that the operator will scan, and the output is the expected execution time.

The models’ output is comprised of one or more metrics. A metric is a low-level measure-
ment of how the DBMS interacts with its underlying hardware: (1) CPU, (2) memory, (3) disk,
and (4) network. The DBMS can easily measure some metrics with user-level code (e.g., mem-
ory allocated). Other metrics are only observable via methods that are external to the DBMS in
either the OS or hardware (e.g., CPU counters), and thus are more challenging to collect. The
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self-driving components require accurate models. For example, the planning system uses mod-
els and the workload forecast to predict future DBMS resource consumption. If those models
are inaccurate, the planning components will not optimize the DBMS.

The scope of a model depends on the implementation. In the case of the sequential scan ex-
ample, the DBMS could use a single model to represent the entire query plan scan operator [155]
or multiple models with internal features that represent smaller operating units (OUs). OU-level
models are less complex and thus require less training data than monolithic models [152].

To build OU models, a DBMS needs training data of previous examples of the system’s
operations (e.g., executing queries). Each data point in a training corpus contains input features
and its corresponding output metrics that the models will predict. We now describe ways in
which a DBMS can generate such training data.

3.1.2 Input Features Collection

The inputs to an OU behavior model describe the DBMS’s task when executing that OU. For
example, the features for an index lookup OU contain its schema, data structure type, and the
number of index entries. Since workloads, statistics, and configurations fluctuate, such features
must reflect DBMS state at the time of execution. One can collect these features from the DBMS
either (1) externally via SQL commands or (2) internally within the DBMS.

External: Previous work on modeling query latency extracts features by executing EXPLAIN
for every query [155]. This provides the optimizer’s physical plan and cost estimates, which
can be decomposed into individual operator features.

However, this approach is not feasible in high-performance scenarios. EXPLAIN is meant to
be an infrequent operation that regenerates the query plan. Furthermore, it presents human-
readable information about query execution, and cannot capture a query’s interactions with
DBMS background tasks, like garbage collection and write-ahead logging (WAL). Lastly ex-
tracting the DBMS’s configuration and environment requires executing even more SQL queries.
This additional work slows down query execution, making it challenging to collect training data
in an online setting.

Internal: An alternative approach is to embed feature collection logic inside the DBMS. Since
the DBMS already maintains information about query execution, configuration, and environ-
ment, it can use its internal APIs to read this data. In addition, the system can tag background
operations with identifiers to describe what queries initiated them. This approach is similar to
previous network tracing methods that determine causality in opaque systems [106].

Internal methods solve many problems associated with external training data features at the
expense of higher software engineering costs. Foremost is that since the DBMS already needs
the results of EXPLAIN for query execution—explicitly invoking it is not necessary. Second,
internal collection accurately represents temporal features that fluctuate, like CPU frequency
and the number of concurrent workers. Lastly, internal feature collection enables modeling
DBMS subsystems beyond the query execution to express causality in background tasks like
write-ahead logging. As such, an internal collection method is better suited for self-driving
DBMSs.
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Figure 3.1: User-space vs. Kernel-space Metrics Collection — Transaction latency of TPC-
C with (1) DBMS metrics collection disabled, (2) metrics collected in user-space, and (3) metrics
collected in kernel-space using eBPF.

3.1.3 Output Metrics Collection

The output of an OU behavior model is the DBMS’s estimated metrics, so the training data for
these models must come from runtime operations. Therefore, the challenge is how to efficiently
measure a DBMS’s metrics without altering its observed behavior.

Previous work on modeling query latency collected metrics using EXPLAIN ANALYZE [155].
In addition to EXPLAIN’s limitations that we describe in Section 3.1.2, EXPLAIN ANALYZE does
not return query results on the client, and the instrumentation imposes runtime overhead to
query execution [42]. It can also not collect metrics for other parts of the system not related to
query execution (e.g., maintenance operations). Such issues make EXPLAIN ANALYZE unsuitable
for generating the output metrics for training data.

Given this, there are two approaches for capturing metrics in an internal training data col-
lection framework for a self-driving DBMS: (1) user-space or (2) kernel-space.

User-space: To collect system metrics from user-space, the DBMS manually invokes the nec-
essary functions in its source code to enable and disable recording metrics. It then manually
retrieves the metrics with a final set of function calls.

The problem with this approach is that for some metrics, such as CPU counters, the func-
tions to enable/disable their collection are syscalls to the OS; syscalls are expensive because
execution switches into a privileged kernel mode. In some cases, collecting metrics for a single
OU requires multiple syscalls per hardware type. Another problem is that the OS may not ex-
pose all the metrics via syscalls. Instead, the DBMS developer has to scrape procfs (/proc) or
other tools, which are slower and less robust than syscalls.

Kernel-space: With kernel-space collection, the DBMS relies on an ancillary program run-
ning inside the OS kernel to retrieve metrics for it. This approach means that the program
requires only one transition to kernel mode to extract multiple system metrics. Once in kernel
mode, the program can read CPU performance counters, network statistics, and any additional
system metrics.
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Although kernel-space collection is faster than user-space methods, traditional OS kernel
modules are notoriously difficult to write and could potentially pose several safety issues. In the
last decade, however, the rise of kernel-embedded VMs for specialized programs has simplified
executing user code in kernel-space while providing guarantees that the programs cannot harm
the OS.

The most well-known of these VMs is Linux’s “extended” Berkeley Packet Filter (e BPF) li-
brary [190]. eBPF allows developers to write event-driven programs in C-like dialect that run
in kernel mode to trace the behavior of other processes. The kernel’s eBPF validator strictly
limits a program’s length, permissible operations, and storage allocation. But eBPF programs
can execute OS-level tasks efficiently due to their privileged execution mode. Developers com-
pile their programs to eBPF bytecode and then load them into the kernel. During this loading
step, the eBPF subsystem verifies the program’s safety, just-in-time compiles the bytecode to
machine code, and transfers it into the kernel.

The Linux kernel does not continuously run a loaded eBPF program. Instead, when an event
(e.g., kprobes, uprobes, or tracepoints) occurs in a monitored process, the process switches into
kernel mode and executes the eBPF code. Unlike some syscalls to retrieve metrics, the OS does
not preempt eBPF programs, which yields more predictable performance for the DBMS.

When a eBPF program runs, it can inspect kernel data structures, explore the DBMS’s ad-
dress space, accumulate metrics into eBPF maps, and communicate with the DBMS in user-
space. Upon completion, the thread resumes the DBMS’s original execution path. eBPF metrics
collection also minimizes the amount of code that needs to run in a privileged mode; without
system modification, a DBMS that collects OS metrics from user-space would need to run as
root. The OS sandboxes eBPF programs with strict verification requirements, making them
safer to use in production environments than a DBMS with elevated privileges in user-space.

To show the benefit of collecting DBMS metrics in kernel-space, we evaluate the average p99
latency of TPC-C transactions on NoisePage in three configurations: (1) one with no metrics
collection enabled, (2) one with metrics collection using user-space methods, and a final method
relying on eBPF. We run the workload with a single client to reduce the effects of contention on
any shared data structures. The results in Figure 3.1 show how metrics collection using eBPF
yields more predictable performance. As expected, both methods increase the p99 latency com-
pared to no metrics collection due to the increased amount of work being performed. However,
the reduced number of syscalls with eBPF reduces the tail latency of queries compared to the
user-space approach. The eBPF approach generates the same data as user-space syscalls, but
with fewer execution mode switches, resulting in better performance.

3.1.4 Offline vs. Online Training Data

A self-driving DBMS uses two type of data to train its behavior models: (1) offline data and (2)
online data.

Offline Data: A self-driving DBMS generates offline data if it uses a separate environment
from the production one. The most common approach is to deploy a clone of the production
instance and replay a workload trace [99, 155, 202]. Although creating database snapshots
has become easier in recent years, it still requires a new DBMS instance for the clone, which
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Figure 3.2: Offline vs. Online Training Data — Accuracy measurements of behavior models
trained with offline and online data when predicting the execution time of TPC-C queries.

can be prohibitively expensive. Furthermore, one must also capture a workload trace from the
production instance to replay on the clone.

An alternative to the clone-based approach is for DBMS developers to create targeted mi-
crobenchmarks (i.e., runners [152]) that simulate different execution scenarios. Since traces are
static and repetitive (especially for OLTP applications), they generate training data that does
not provide additional information. Runners target specific DBMS components by sweeping
input values to generate unique training data points that yield robust models. Although these
runners require additional engineering for DBMS developers, they reduce redundancy in the
offline training data collection.

Regardless of what approach a DBMS uses to generate offline data, the system will need
to sweep database configurations and parameters to mimic scenarios in the production DBMS.
Depending on the complexity of a DBMS’s runner suite, it could take several days or weeks to
generate enough offline data to yield robust, generalizable models. Then if the target DBMS’s
software changes (e.g., upgrading to a new DBMS version) or its hardware changes, the DBMS
may have to re-run its offline training data generation methods. It is still impossible to represent
all possible configurations and environments.

Online Data: This second data category occurs if the target production DBMS collects the
training data as it executes the application’s queries. Online data has the advantage that it
exactly reflects the DBMS’s current workload, database, and environment. This means that as
the application’s workload evolves or the database grows/shrinks in size, the training data will
reflect these changes.

To illustrate the benefit of using online data versus offline data, we compare the accuracy
of OU-level models in NoisePage to predict the system’s behavior when executing an OLTP
workload [152]. We group the OU models by DBMS subsystem because they share the same
input features. The offline models use training data collected from NoisePage’s built-in runners,
while the online models also use training data collected from running the TPC-C benchmark.
We then measure the models’ average absolute error in predicting the execution time of queries
from a TPC-C trace. We hold out 20% of queries (by query template type) from the online
training data set, and then evaluate model accuracy on these omitted queries.
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The results in Figure 3.2 show that online data improves the behavior models’ accuracy
when predicting OU execution time for previously unseen queries. The models for the WAL
subsystem, encompassing the log serializer and disk writer, experience the most improvement
because their behavior depends on the workload itself. More accurate OU models allow a self-
driving DBMS to better predict its behavior with future workloads and new configurations.

3.2 Framework Overview

Our analysis in the previous section argues that an ideal training data framework for a self-
driving DBMS collects internal input features and kernel-space output metrics from online
workloads. Given this, we now present the TScout (TScout) training data collection frame-
work. TScout facilitates the recording and processing of OU-granular training data from a
multithreaded DBMS to generate training data for the system’s behavior models. The frame-
work retrieves training data from the DBMS as it executes queries, and thus it does not require
developers to create microbenchmarks to simulate workloads. TScout collects output metrics
in kernel-space using eBPF with minimal performance impact without sacrificing measurement
accuracy. When it is not feasible to use kernel-space methods, TScout also supports user-space
metric collection and makes it easy to combine metrics collected from different approaches.

The architecture overview in Figure 3.3 shows that TScout’s deployment occurs in two
stages. In the initial Setup Phase, a developer annotates the DBMS’s source code with markers
to declare OU boundaries and what training data to collect for them. TScout then extracts these
markers and codegens a custom program for interfacing with the DBMS and collecting training
data in the Runtime Phase.

We designed TScout with two key properties to achieve non-intrusive instrumentation for
training data collection. The first is that TScout does not produce back pressure on the DBMS.
Although there is a small, unavoidable overhead to collecting data, TScout does not add block-
ing synchronization mechanisms on critical paths. The second property is that it supports
fine-grained, dynamic collection. TScout supports adjustable data collection frequencies per
internal subsystem rather than the “all or nothing” approach of many DBMSs.

The following section describes the architecture of the TScout framework in more detail.
We first describe how developers integrate TScout with a DBMS and its codegen process. We
then present how the framework operates in its Runtime Phase to retrieve metrics and other
data to produce training data for its behavior models. We discuss how TScout collects hardware
resource data in Section 3.3.

3.2.1 Setup Phase

TScout assumes that the target DBMS uses an internal approach to autonomous planning [152].
Thus, before deploying the DBMS with TScout, a developer must first modify the system’s
source code to indicate when, where, and how TScout collects training data. They do this by
annotating the DBMS with markers for each OU to specify their locations and subsystem. If
the OU belongs to a new subsystem of the DBMS, then the developer also defines the OU’s
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input features and resources for TScout to monitor. TScout’s Compiler uses this information to
generate the Collector’s eBPF code (Section 3.2.2).

Markers: TScout provides its markers as statically-defined tracepoint macros [20, 27, 66].
Tracepoints were introduced as part of Solaris’ DTrace project for kernel-level debugging and
dynamic tracing. At DBMS compilation time, these tracepoint macros generate NOP instructions
and metadata about their offset location in the program code. The OS replaces these NOPs with
instructions that enable TScout to instrument the OU when the program starts.

eBPF supports other invocation methods (e.g., uprobes [29]) that do not require source code
annotation. We use tracepoints instead of them for several reasons: (1) compiler optimizations
and function name mangling make it difficult to define OU boundaries in machine code, (2) OU
behavior can span multiple functions, (3) DBMS control flow can have multiple exit paths from
OUs (e.g., query and trigger exceptions), and (4) DBMSs that use JIT compilation [168] further
obfuscate system behavior, making instrumentation less reliable.

TScout uses markers to identify when the DBMS executes an OU. A developer annotates
each OU in the DBMS’s source code with a triplet of markers: (1) BEGIN, (2) END, and (3)
FEATURES. The first two represent the start (BEGIN) and finish (END) boundaries of an OU in
the system. At runtime, when a DBMS’s thread encounters a BEGIN marker, this triggers an
event that causes TScout to enable metrics collection for that thread. The framework then dis-
ables collection when that same thread encounters a END marker. TScout maintains an internal
state machine to handle situations when markers are in an unexpected order (Section 3.4.1).

The third marker type (FEATURES) is how the DBMS records the input features and any user-
level metrics for each OU’s behavior model (Section 3.1.1). In most cases, the features of an OU
are known before execution (i.e., an OU’s inputs describe the amount of work it will perform).
However, DBMSs also perform operations that cannot be summarized until completion. One
example of this scenario is processing messages from the network layer. PostgreSQL’s protocol
allows for multiple queries to be sent in a single packet, and only after fully inspecting the buffer
can the amount of work be summarized. For this reason, TScout treats input feature generation
as a separate event after OU execution.

Figure 3.3 shows an example of using markers for an OU that performs a sequential scan
on a table. The BEGIN and END markers enclose the loop that reads tuples from the table. The
FEATURES marker denotes the input parameters for the scan operation, including the table’s
name and the number of scanned tuples.

TScout does not collect training data all the time as continuously monitoring fine-grained
OUs would (1) degrade the DBMS’s performance and (2) generate a large amount of data that
require significant storage resources. Thus, TScout needs to toggle collection on and off at
runtime on a per query basis. TScout wraps markers with lightweight sampling logic that
determines whether to collect training data at runtime. Some input features also require the
DBMS to aggregate them before sending them to TScout (e.g., total memory used by an OU over
multiple allocations). TScout informs the DBMS that it can bypass this work via a user-space
flag that indicates when collection is enabled. We discuss these optimizations in Section 3.4.3.
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Figure 3.3: Framework Overview — TScout’s architecture is split into two phases. In the
Setup Phase, a developer annotates the DBMS’s source code. Then, TScout uses code genera-
tion to create a customized Collector for the Runtime Phase. During the Runtime Phase, the
Collector retrieves metrics and the DBMS’s OU input features to create training data. Finally,
these data are shipped to the Processor for archiving with other training data.

Codegen: After the developer adds markers to the DBMS’s source code, TScout then extracts
their embedded metadata from the DBMS to determine which metrics it needs to collect per
subsystem. For the example shown in Figure 3.3, the DBMS’s execution engine needs CPU,
memory, and disk metrics but not network metrics. This metadata also indicates that CPU and
disk metrics will come from TScout’s built-in probes whereas the memory metrics will come
from a developer provided probe. TScout then generates the source code for a eBPF program
to create the Collector component. As we describe in Section 3.2.2, the Collector retrieves the
necessary metrics for each marker and aggregates their measurements. The framework then
generates kernel-safe bytecode for this program using a eBPF compiler (BCC).

3.2.2 Runtime Phase

The administrator deploys the DBMS together with TScout on the same server. Using the ex-
ample in Figure 3.3, the application submits a query that performs a sequential scan and then @
the DBMS begins executing the query’s plan. We assume that the DBMS uses a single thread to
simplify our discussion but TScout supports multithreaded execution. @ The thread then ex-
ecutes the OU for the sequential scan that the developer annotated with markers in the Setup
Phase. €@ When the DBMS encounters the BEGIN marker for this OU at runtime, it triggers
TScout to enable metrics collection using its probes.

We next describe how TScout coordinates the retrieval of metrics from its probes with its
Collector component. We then discuss how TScout uses its Processor to extract training data
from the DBMS.

Collector: The Collector orchestrates training data collection from disparate sources in the
DBMS. In addition to the metric-specific code from TScout’s Codegen component, the Collector
also includes data structures to store intermediate metrics.
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@ The Collector uses a eBPF map to store a snapshot of probes’ results at the BEGIN marker.
@ After completion of the OU and triggering the END marker, the Collector retrieves this initial
data from the eBPF map, invokes the necessary probes again to get a current snapshot, computes
the value for each metric, and then stores the final results back in the eBPF map. When the
DBMS reaches the OU’s FEATURES marker, @ the Collector packages the features and metrics
together into a struct (sample data point) and then @ sends it to the Processor via a perf ring
buffer for the final step.

Probes: TScout’s probes generate metrics from the running DBMS. A probe is a small piece
of reusable code that retrieves one or more metrics that the framework uses for multiple OUs.
In the example from Figure 3.3, the framework contains a probe to retrieve the number of CPU
cache misses during the sequential scan OU.

TScout supports both user-level and kernel-level probes. In the Setup Phase, the developer
specifies which probe to use for each resource category. Both types of probes are necessary
because it is more efficient for the DBMS to retrieve some metrics using one type versus another
(Section 3.3). TScout’s markers support passing arguments to kernel-space probes so the DBMS
can provide qualifiers for an OU, such as which file descriptors or network sockets to monitor.

The memory probe in Figure 3.3 is an example of a user-level probe because the developer
writes the code to perform metrics retrieval from inside the DBMS. TScout provides the DBMS
with a buffer for storing input features and metrics at runtime. The DBMS’s responsibility is
to fill that buffer with necessary data and send it to the Collector at the FEATURES marker. For
kernel-level probes, TScout handles the retrieval and storage of metrics automatically.

Processor: The Processor is the user-space component that extracts and archives training
data. Once the Collector sends a completed sample as a perf buffer to the Processor, the Pro-
cessor can do additional cleaning on the data and write it to the appropriate output target (e.g.,
local disk, cloud storage).

When the Processor receives a sample, it extracts the raw data from the perf buffer and
transforms it to the correct format. For our implementation in NoisePage, this requires data type
conversions, but the final format is configurable based on the system’s ML training pipeline. For
example, a DBMS with a Volcano-style execution engine [117] with query plan operators that
call child operators can leverage the Processor’s transformation step to separate the runtime
metrics of parent and child operations in the query plan. If the Processor cannot keep up, it
has a feedback mechanism to decrease the sampling rate. Alternatively, the Processor can drop
data without incurring correctness problems; the Collector’s buffer is bounded so that TScout
will overwrite samples if it is full.

3.3 Resource Probes

Probes are reusable code that run at OU boundaries defined by the markers in the DBMS. For
each probe, the BEGIN marker starts the measurement, and the END completes the process.
TScout provides probes for four hardware categories: CPU, memory, network, and disk. There
are multiple reasons for this separation. First, the nature of how the DBMS uses these resources
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is different. The DBMS creates threads or processes that the OS schedules to run on the CPU. For
memory, the DBMS is constantly acquiring and releasing memory to execute queries whereas
it groups blocking I/O calls. The second reason for distinct probe definitions is because the OS
exposes different ways to measure each hardware type. The OS provides syscalls to measure
usage for some hardware, while others require access to kernel internals. Thus, depending on
the hardware category, a probe for TScout is either (1) user-level or (2) kernel-level.

TScout provides kernel-level probes written in eBPF for measuring CPU, network, and disk
activity. Section 3.2.2 describes how TScout generates this code in the Setup Phase. Memory is
the only category that requires developers to implement a user-level probe per DBMS. In this
case, TScout generates no Collector code for that hardware category. Instead, user-level probes
require the DBMS to track its resources during OU execution. The DBMS bundles those metrics
at the FEATURES marker before sending them to TScout’s Collector.

In addition to user-level and kernel-level metrics, hardware devices can expose counters
(e.g., CPU PMU, disk SMART stats). TScout does not provide probes to collect any of these.
The code required to access these counters can be vendor-specific, making it not portable and
onerous to implement. For example, Intel’s rdpmc instruction accesses PMUs, but this requires
low-level knowledge of the CPU’s ISA and the OS’s scheduling algorithm. We now describe
how TScout’s probes extract metrics per hardware category.

3.3.1 CPU Probe

TScout’s CPU probe measures the amount of work a CPU performs for the DBMS within the
boundaries of an OU. This work includes pipeline information like cycles, instructions, and
reference CPU cycles. It also records caching metrics, such as cache references and misses.
TScout use the perf_event functions of eBPF to retrieve this information. These functions
are a stable API provided by the Linux kernel that supports multiple architectures [206]. The
framework could also access perf_event in user-space; we measure the trade-offs between
different access methods in Section 3.5.2.

At the BEGIN marker, TScout’s CPU probe reads perf_event counters, normalizes their
values, and stores them in the Collector’s eBPF map. This normalization step is necessary
because of the limited PMU registers on the CPU. If the probe enables more perf counters than
the CPU supports, then the OS samples these values. The probe must normalize raw counters
by the elapsed active time in the PMU. TScout handles this step transparently.

At the OU’s END marker, the CPU probe again reads the perf counters and performs the
same normalization. It then retrieves the initial values from the eBPF map, computes their
difference, and stores the final metrics back in the eBPF map.

3.3.2 Memory Probe

TScout’s memory probe is the only user-level probe in the framework. The developer instru-
ments their OUs to collect their memory consumption for TScout. There are several reasons
that memory is the only hardware category that follows this model. First, memory allocations in
a DBMS have different life cycles that may persist beyond OU execution. Second, the frequency
of memory allocations make them impractical to instrument with eBPF. Lastly, the abstraction
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layers of memory allocators and virtual memory make it difficult to assign ownership to an OU
from eBPF. We now discuss each of these considerations in more detail.

Life Cycles: When a DBMS thread allocates memory, the system’s amount of time to use
that memory depends on many factors. Some memory is for transient tasks (e.g., C++ object
allocation), while some memory is for data structures that last the DBMS process’ lifetime (e.g.,
catalog metadata). But for modeling the DBMS’s runtime behavior for self-driving purposes,
the only allocations that matter are for buffers during query execution (e.g., query results, WAL
redo buffers). Thus, only the DBMS developer knows how long a memory allocation is expected
to be needed, and if the ownership will change beyond the OU that initiated the request.

Frequencies: A DBMS performs millions of memory allocations per second. Although al-
locators keep the majority of them completely in user-space, eBPF probes would force every
allocation to trap into kernel-space, which would be unbearably slow. TScout’s query sampling
reduces overhead, but it prolongs the time to generate sufficient training data. TScout’s user-
level memory probe allows DBMS developers to instrument allocations optimally at a granu-
larity that makes sense for each OU definition in their system.

Abstractions: Modern allocators (jemalloc, mimalloc)handle malloc calls by over-requesting
and then reusing memory to minimize syscalls. These allocators have tunable pools, reuse poli-
cies, and other optimizations to avoid fragmentation. As such, these allocators obscure the OS’s
view of true memory usage. The OS is only aware of a specific memory request from the DBMS

if it requests a large allocation that is unsuitable for OU instrumentation.

Within the kernel, virtual memory further complicates determining how much memory
an OU actually consumes. First, Linux assigns physical memory to virtual addresses lazily by
default, with the kernel relying on page faults to service allocations. This disparity between
request time and use time, and some allocators relying on this behavior to minimize system
calls, makes it difficult to attribute a request for raw memory to a specific memory allocation
by an OU. Lastly, POSIX instrumentation syscalls like getrusage are too coarse-grained, and
only provide summary statistics for the entire DBMS process.

For the above reasons, TScout provides a user-level probe for collecting memory metrics.
DBMS developers implement their own memory tracking for each OU, and populate the val-
ues at the appropriate FEATURES markers. TScout bundles these metrics with the results of
its kernel-level probes to complete an OU’s data. TS takes this approach because DBMSs al-
ready track memory to support knobs for join buffer sizes [156] and queries like EXPLAIN
ANALYZE [15].

3.3.3 Network Probe

TScout provides a kernel-level probe that records an OU’s network activity (e.g., bytes read/written).
One could implement this with a user-level probe, and many DBMSs already keep such statis-
tics by accumulating the results of networking syscalls. But a benefit of TScout’s approach
is separating instrumentation logic from control logic. DBMS networking state machines are
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complex code that rely on the return value of socket operations. Without TScout, a DBMS
needs additional code to respond to the socket results and accumulate metrics. With TScout,
developers only need to wrap socket operations (e.g., read, write) in markers.

There are user-space sources for network metrics, but they impose a larger overhead than
TScout’s eBPF approach. Linux command-line tools (e.g., netstat, ss) generate socket statis-
tics, but the frequency of OU execution make them infeasible. Linux’s sock_diag syscall also
provides socket-level metrics, but it also has overhead from data copying and parsing. Instead,
TScout’s network probe limits the transition overhead to just the mode-switch and extracts
socket statistics by reading kernel data structures (tcp_sock).

3.3.4 Disk Probe

TScout’s disk probe design is similar to the network probe described above: it is a kernel-level
probe that calculates bytes read and written for disk I/O. Like for network activity, this probe
could track this information in user-space based on the results of I/O syscalls, but TScout again
separates the concerns of instrumentation and control flow. The performance concerns of using
command-line tools at OU granularity and syscall overheads apply to measuring disk metrics.

TScout’s kernel-level disk probe collects disk statistics the same way as the network probe:
by reading metrics that the Linux kernel already maintains by traversing the DBMS’s task_struct.
As an optimization specifically for NoisePage, TScout’s implementation assumes a single open
file (e.g., WAL) for the entire DBMS process, which allows the probe to retrieve metrics from the
OS’s ioac I/O accounting struct. One can extend the probe to support tracking I/O for multiple
files by using their descriptors as marker parameters.

3.4 Engineering

We now present additional details and considerations of TScout’s implementation that we did
not cover in Sections 3.2 and 3.3.

3.4.1 eBPF Development

eBPF enables tools to run programs inside the OS without recompiling the kernel or loading
privileged modules. eBPF currently requires a modern Linux kernel; TScout targets kernel
version 5.4 due to its wide adoption in the major Linux distributions. As we now describe, eBPF
imposes unique constraints for these programs.

Most of these limitations come from eBPF’s verifier that checks programs as they are loaded
into the kernel. The verifier enforces a program’s safety and performance guarantees by build-
ing a control flow graph and then checks for unreachable instructions. It allows for loops, but
they must be bounded at compile-time. eBPF does not allow dynamic allocation other than in
eBPF maps, and it restricts pointers to a safe APIL. Because TScout reads kernel data structures
to extract runtime metrics, TScout validates kernel memory accesses before dereferencing. The
verifier also restricts the total length of the program to 1 M instructions. This is not a problem
for TScout as its compiled eBPF programs only contain 100s of instructions.
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Figure 3.4: Query Engine Integration — TScout’s vectorized input features supports collect-
ing training data from a JIT compilation execution engine with a pipeline containing multiple
OUs.

eBPF tooling is limited, and messages from the eBPF compiler and verifier do not always
make errors obvious. TScout simplifies eBPF development by using its Codegen component to
generate high-level C code that uses the BCC library to generate eBPF code. As described in
Section 3.2.1, DBMS developers select the hardware resources to monitor for an OU, and TScout
automatically composes probe code.

TScout benefits from eBPF constraints by enforcing a strict state machine. If TScout exe-
cutes in an unexpected order, the Collector resets training data collection, discards any inter-
mediate results, and logs an error message. This scenario can occur in two ways: (1) a DBMS
developer placing markers in a sequence that TScout deems incorrect (e.g., out-of-order mark-
ers) and (2) exceptional control flow due to client request to the DBMS.

3.4.2 Query Engine Integration

TScout’s flexibility supports all modern DBMS designs. As we now describe, two cases are
challenging to implement OU training data collection in a DBMS’s execution engine.

JIT Query Compilation: With this technique, the DBMS converts a query plan into exe-
cutable code that it then compiles and links into its address space [168]. The problem, however,
is that tracepoints in this dynamic code are not known when TScout’s Codegen component cre-
ates its eBPF program and will not trigger events at runtime. Instead, one can wrap the location
in the DBMS that invokes a compiled query with markers. But in a system using fine-grained
OUs, a compiled query will contain multiple OUs. In general, the problem is that one may want
to model query execution at a granularity that the DBMS does not support.

To overcome this problem, TScout supports recording the input features for multiple OUs
that the DBMS executes together. In the example shown in Figure 3.4, the compiled query
contains three OUs: (1) index lookup, (2) filter, and (3) writing to an output buffer. After invok-
ing the query, the Collector retrieves a single set of metrics from its probes but the FEATURES
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marker emits vectors of input features for the query’s three OUs. Breaking apart which portion
of the metrics correspond to which OU happens when the DBMS trains new models, which is
outside the purview of TScout.

Recursive Operators: Another problem is when an operator invokes itself, causing TScout
to encounter the same BEGIN marker twice before a END marker. This can occur in a Volcano-
style [117] DBMS when an operator higher in the query plan invokes the same operator type.
For example, a hash join operator calls next on its child operator that happens be the same hash
join operator. This situation can also arise in queries with recursive common table expressions
(CTEs) where an operator may call its own function.

We solved this problem by modifying TScout’s Collector to maintain intermediate results
using a stack eBPF map. For each BEGIN marker, the Collector pushes a new OU invocation
entry onto this stack. Then as it encounters FEATURES markers, it pops the last entry from the
stack, checks that it matches the expected OU type, and then transmits the data to the Processor.

3.4.3 Sampling

For training data collection in NoisePage, we implemented adjustable sampling for subsystem
events. These events are typically queries, but some subsystems group operations to improve
performance. For example, the disk serializer combines query results into buffers, so each sam-
ple corresponds to a single buffer.

Per-subsystem sampling reduces overhead at the expense of lower data generation rates.
TScout maintains a 100-bit field for each subsystem to represent its sampling rate. For example,
a sampling rate of 100% has this field to all one, while a rate of 20% will have 20 random bits
set to one. The random distribution of ones reduces the burstiness of collection. Without shuf-
fling, a transaction’s query sequence may fall entirely within the sampling window, thereby
experiencing higher latency than other transactions. Lastly, each thread in NoisePage main-
tains offsets to index into the bit fields. On a candidate collection event, the thread checks the
bit value at its offset, uses the value to enable or disable training data for the event, and then
increments the offset until it wraps around to zero.

3.4.4 Dynamic Feature Selection

A key challenge in a training data collection framework like TScout is how to support changing
what data to collect. Previous work in DBMS tuning has shown the benefits of automatic fea-
ture selection algorithms to simplify modeling [202]. Adding additional collection targets (e.g.,
user-space probes) to a DBMS requires source code changes. If the DBMS already exposes the
necessary data, external approaches can modify what data they retrieve without affecting the
system’s behavior. But internal approaches may potentially require redeployment and restart-
ing whenever the models require new input features, which is difficult because production
DBMSs have high uptime requirements.

If one does not need to modify the DBMS’s code, then TScout supports dynamic selection of
internal features without restarting in two ways: (1) TScout’s Collector runs in the same address
space as the DBMS, so it has access to all information available at deployment. (2) TScout
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can dynamically unload eBPF programs, modify them, and reload them. With this capability,
developers can change the internal features to collect, restart TScout, and generate new models
from the training data. We defer the problem of using TScout to automatically identify which
features to include in a DBMS’s OU models as future work.

3.5 Evaluation

To evaluate the efficacy of the TScout framework, we integrated it in the NoisePage DBMS [36].
NoisePage is a PostgreSQL-compatible DBMS that uses HyPer-style MVCC [169] over Apache
Arrow in-memory columnar data [149]. The original version of NoisePage uses OU-level behav-
ior models that it trains via offline runners with user-level probes [152]. We modified NoiseP-
age’s source code to introduce TScout’s markers and probes for its OUs.

We deployed NoisePage on a server with 2x20-core Intel Xeon Gold 5218R CPUs, 192 GB
DRAM, and Samsung PM983 SSD. For the experiment in Section 3.5.6 with a smaller hardware
configuration, we use a server with a single 6-core Intel Core i7-10710U CPU, 64 GB DRAM,
and Samsung 970 EVO+ SSD. Both machines run Ubuntu 20.04 with Linux (v5.4) that supports
eBPF.

In each experiment, we deploy NoisePage and TScout’s eBPF-based Collector running in
the kernel. We also use a single-threaded Processor to extract training data and write it to a file
on the server’s local disk. Since NoisePage uses operation-fusion in its execution engine, we
preprocess the DBMS’s online models to break multiple OUs per execution engine operation
into per-OU data points using offline models (Section 3.4.2).

When evaluating the performance of OU models trained with data from TScout, we report
the average absolute error. OLTP transactions are short-lived and result in noisy runtime mea-
surements, so we measure the absolute error (|Actual — Predict|) for each query template and then
compute the average.

3.5.1 Workloads

We use the following workloads in our evaluation. All queries execute over JDBC using the
BenchBase framework [5, 96].

YCSB: The Yahoo! Cloud Serving Benchmark [88] is a synthetic benchmark modeled after
cloud services. To maximize the transaction throughput, we use a read-only configuration for
YCSB that only executes queries that retrieve a single tuple using its primary key. The YCSB
database contains a single table comprised of tuples with a primary key and 10 columns of
random data, each 100 bytes in size. Each tuple’s size is approximately 1 KB. We use a database
with 12m tuples (~13 GB).

SmallBank: This workload models a banking application where transactions perform simple
read and update operations on customers’ accounts [65, 82]. All transactions involve a small
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number of tuples retrieved using primary key indexes. In addition to the original six transac-
tion types, we added a transaction that transfers money between two accounts. The database
contains three tables with 50m accounts (~10 GB).

TATP: The Telecom Application Transaction Processing benchmark is an OLTP testing ap-
plication that simulates a caller location system used by telecommunication providers [209]. It
has nine transaction types that use either a primary key to find caller records or a secondary
index as an indirection look-up to caller records. The database contains 20m tuples (~16 GB)
stored across four tables.

TPC-C: This is an order-processing application that contains nine tables and five transaction
types [196]. For our experiments, we use a 1-warehouse database (128 MB), a 20-warehouse
database (~2.5 GB), and a 200-warehouse database (~25 GB).

CH-benCHmark: This is a hybrid (HTAP) workload comprised of the TPC-C OLTP schema
with queries adapted from the TPC-H OLAP benchmark [87]. We use four threads to execute
TPC-H queries and 16 threads to execute TPC-C transactions.

3.5.2 Runtime Overhead

We first measure to what extent collecting training data with TScout reduces the DBMS’s per-
formance. We modified NoisePage to use three collection methods with TScout: (1) kernel-level
probes with continuous perf counters (user-bypass), (2) user-level probes with dynamic perf
counters (user-space toggle), and (3) user-level probes with continuous perf counters (user-space
continuous). For the first and last methods, TScout enables its probes even if the framework
never retrieves the data (e.g., TScout toggles on CPU counters for all OUs at DBMS start-up).
The second approach dynamically toggles perf at the start and stop of each OU. We do not
evaluate toggled perf in a kernel-level probe as this does not align with eBPF’s access APL

This experiment enables data collection for all DBMS subsystems to ensure the maximum
impact. We sweep the TScout’s sampling rate from 0% to 100%. We run each rate configura-
tion three times and report (1) the average throughput and (2) how many data samples TScout
generates. We execute the workloads described in Section 3.5.1 with 20 client threads. We use
user-bypass with 0% sampling rate as the baseline because the only user-space logic is minimized
to sampling behavior, which all three methods need.

The results in Figure 3.5 show that the DBMS’s performance drops as the sampling rate
increases for each method. This reduction is because the DBMS, OS, and TScout spend more
time collecting and processing training data as the rate increases. In the user-space toggle con-
figuration when the sampling rate reaches 100%, the DBMS’s throughput drops by almost 50%.
The user-space continuous approach reduces the DBMS’s throughput by 2-8% even when the
sampling rate is 0% because the kernel does more work at each context switch to save the CPU’s
PMU state. But since user-space continuous only requires a single syscall to retrieve perf coun-
ters, it incurs at most a 15% reduction compared to the other methods. user-bypass requires
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Figure 3.5: Runtime Overhead (Transaction Throughput) - Impact of query sampling on
OLTP transaction throughput, comparing user-space and kernel-space approaches to system
metrics collection.

multiple syscalls to read perf counters, which slow the system down despite the syscalls oc-
curring under a single switch in execution mode. user-space toggle is the slowest because it
requires three syscalls with execution mode switches for each sampled event: one to enable
counters, disable counters, and read results.

user-space continuous has the smallest impact on the DBMS’s performance at a high sam-
pling rate, but we must also consider the data generation rate. As such, we next compare the
number of data points that TScout extracts from the DBMS as the sampling rate increases. We
measure this from the number of training data samples that the Processor writes to its output
source.

Figure 3.6 shows TScout’s data generation throughput increases as the sampling rate in-
creases but only up to a point. For user-space toggle and user-space continuous, the overhead
of retrieving data from the user-space probes prevents them from generating more data points
beyond a 2-4% sampling rate and the Processor is mostly idle waiting for data from the Col-
lector. On the other hand, TScout generates data using user-bypass at a 3x higher generation
rate than the other two methods. user-bypass achieves peak throughput at a 20-30% sampling;
at a higher sampling rate, the overhead of collecting the data from probes slows down query
execution, leading to less collected data. We attribute user-bypass’s advantage to its in-kernel
data structures with efficient RCU synchronization [160].
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Figure 3.6: Runtime Overhead (Training Data Generation) — Impact of query sampling on
OLTP training data generation, comparing user-space and kernel-space approaches to system
metrics collection.

The results in Figures 3.5 and 3.6 show that the ideal configuration for TScout is to use user-
bypass with a sampling rate of 10%. This setup yields the maximum throughput for both the
application’s workload and training data generation.

3.5.3 Adjustable Sampling

The previous experiment evaluated TScout’s overhead when collecting training data for all
the DBMS’s subsystems simultaneously. As described in Section 3.4.3, TScout also has per-
subsystem sampling that allows it to collect training data only for the OUs whose models require
refinement. Such flexibility further reduces TScout’s overhead since it is not an “all or nothing”
approach.

To demonstrate how collecting data for individual subsystems affects the DBMS’s perfor-
mance, we run YCSB and then dynamically adjust TScout’s subsystem sampling rates at run-
time. TScout starts with a 0% sampling rate. After 60 sec, TScout starts sampling 10% of queries
across four subsystems: (1) execution engine, (2) networking, (3) log serializer, and (4) disk
writer. Then after another 60 sec, TScout adjusts the execution engine and networking sam-
pling rates to 0% to simulate a scenario where TScout has generated enough data. TScout
maintains its 10% sampling rate for the other two DBMS subsystems.
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Figure 3.7: Adjustable Sampling - Impact of training data sampling on YCSB transaction
throughput.

As shown in Figure 3.7, the DBMS’s throughput drops by ~7% when TScout starts training
data collection for all subsystems. But the DBMS’s returns to its original throughput when
TScout disables collection for the system’s execution engine and networking. Although TScout
keeps collecting data for the DBMS’s WAL-related subsystems, the workload is read-only, and
TScout does not generate much training data and imposes minimal overhead to the DBMS’s
throughput.

3.5.4 Adapting to Environment Changes

We next evaluate the ability of the DBMS’s models to adapt to changes in its environment. We
target the scenario where the DBMS migrates to a new machine with different hardware capa-
bilities. This experiment highlights a key benefit of online training data collection: a self-driving
DBMS does not need to redeploy its offline runners to retrain its models after the migration.

We consider two separate scenarios where the DBMS migrates to either (1) a better machine
(Larger-HW) or (2) a weaker machine (Smaller-HW). As described above, our more powerful
machine has 2x20-cores and the lesser one has 6-cores. For each scenario, we first deploy the
DBMS with only offline models on its initial hardware type. We then move the DBMS to the new
machine and enable TScout’s collection for 1 min while executing TPC-C (20 warehouses, one
client). During this time, TScout generates ~2m training data samples; we tested generating the
same data at lower sampling rates with a longer workload time but saw similar results. We then
retrain the DBMS’s behavior models with the online and offline data combined and evaluate the
model accuracy with 5-fold cross-validation.

The results in Figure 3.8 show that online data helps in nearly every scenario across all sub-
systems. The largest improvement is NoisePage’s disk writer (Figure 3.8d), where online data
improves the models’ accuracy by 98% and 86% when migrating to larger and smaller hard-
ware, respectively. The accuracies of the log serializer models also improve by up to 91% with
online data; as we mentioned previously, this gain is because the online data better represents
the runtime behavior of the system’s group commit implementation. Both the networking and
execution engine (Larger-HW only) see modest improvements as well, though the average error
already starts small in those scenarios (i.e., <20ps).

The only model whose accuracy does not improve with online data is the execution engine
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Figure 3.8: Adapting to Environment Changes — Comparing prediction error of baseline
OU models trained with offline runner data against models trained with online TPC-C data.

on smaller hardware in Figure 3.8a. We see a similar but a less pronounced reduction when
running this same experiment on other machines that are slightly less powerful than our 2x20
machine. We believe that this diminution is due to a shortage of features describing the CPU for
the models to generalize across architectures. The CPU most impacts query execution time, yet
the only hardware context feature is the CPU’s clock speed. The larger machine has over twice
the amount of L3 cache (27.5 MB vs. 12 MB), significantly affecting query performance. We
suspect that features that characterize the CPU beyond clock speed would increase the benefit
of online training data in this scenario.

3.5.5 Model Convergence

We now measure the convergence time for NoisePage’s behavior models to understand how
much training data is necessary to generate accurate predictions. As shown in Section 3.5.2,
TScout generates thousands of data points per second at a low sampling rate. Thus, this exper-
iment informs us on how long to enable collection for a DBMS’s current configuration.

We simulate a scenario where the DBMS migrates to a larger server and must refine existing
models initially trained on a weaker machine with online data. We execute TPC-C (20 ware-
houses, one client) for 15 min with TScout’s metrics collection enabled. We again use 5-fold
cross-validation to evaluate the model accuracy. For each fold of test data, we retrain the model
with increasingly larger random data samples to evaluate the convergence.

The results in Figure 3.9 show the accuracy measurements of the models for NoisePage’s
four subsystems with larger training data set sizes. The horizontal line in each graph represents
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Figure 3.9: Model Convergence (TPC-C) — Comparing prediction error of baseline OU mod-
els trained with offline runner data against models trained with increasing size online TPC-C
data.

the baseline accuracy of NoisePage’s offline models. Figure 3.9c indicates that the DBMS’s log
serializer models converge after 40k data points and improve accuracy by up to 98%. This is
because NoisePage uses group commit and batches records from different transactions to reduce
disk I/O. The offline runners target individual OUs, and do not represent the behavior of the
end-to-end workload. Similarly, the DBMS’s disk writer models converge after 70k data points
in Figure 3.9d. This subsystem is workload dependent like the log serializer, but also shows how
online data benefits scenarios where the I/O device changes. The networking models shown
in Figure 3.9b do not require much data to converge and its error difference from the offline
models is small (i.e., <5 pus).

The most interesting result is for the execution engine in Figure 3.9a where the online mod-
els are less accurate than offline. Although the difference is small (i.e., <1 ps), it contradicts
expectations and what we see with the other models. NoisePage’s offline runners are heavily
influenced by TPC-C’s workload with a single client [152], and thus there is not much for online
data to improve.

To provide a better use case to show convergence, we run TPC-C scaling the number of
clients. We only report in Figure 3.10 the results for the execution engine with fewer training
data set sizes; the convergence for the other subsystems are not shown, but their behavior
follows those of Figure 3.9. As the number of clients increases, the offline models are less

34



[ 2 terminals [ 5 terminals [ 10 terminals = 20 terminals

S 1001 939 7% 8% 9295 7% _98% o596 _97% _99%
o
w A
S = 801
<
c 0 ]
£ 60 Joon o
235 40 30%
S 3
T QO 201
O <
4

0

10000 20000 30000

Data Set Size

Figure 3.10: Model Convergence (TPC-C) - OU model accuracy improvement for the ex-
ecution engine with increasing number of workers. Higher bars show a greater reduction in
error.

accurate at predicting execution time. With 20 clients, the offline models’ average absolute
error is 885 us. Each query contains multiple OUs, so these errors compound when predicting
total DBMS performance. The biggest contributor to this error is contention for resources under
heavy load that the offline runners do not capture. For the online models, average absolute error
drops to less than 10 ps.

Lastly, we measure model convergence with an HTAP workload. We run CH-benCHmark
for 15 minutes with one warehouse and 20 clients. We configure BenchBase to use 16 clients
to execute TPC-C and four clients to execute CH-benCHmark queries. We use the same 5-fold
cross-validation for evaluation.

The trends for the results in Figure 3.11 are similar to our measurements in Figure 3.9.
The log serializer takes longer to converge with the CH-benCHmark workload but eventually
reaches similar performance levels. The disk writer and network subsystems exhibit similar
benefits of online modeling. The execution engine is again the most difficult to model. Fig-
ure 3.11a shows strict improvement with all data sizes, but the models can perform worse from
one data point to the next. This may be due to overfitting and demonstrates that care is needed
when training models in an online setting.

TScout generates tens of thousands of training data points per second during high-performance
workloads. At this rate, TScout provides enough training to refine models with minimal over-
head quickly.

3.5.6 Model Generalization

We now evaluate the accuracy of models trained using online data in various scenarios that a
self-driving DBMS will encounter in real-world deployments. This experiment aims to demon-
strate that the accuracy of the DBMS’s behavior models’ improves for their current deployment
scenario, and ideally even for scenarios that the DBMS has not yet encountered. At a minimum,
the online models should perform no worse in these new scenarios than their offline model
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Figure 3.11: Model Convergence (CH-benCHmark) - Comparing prediction error of base-
line OU models trained with offline runner data against models trained with increasing size
online CH-benCHmark data.

counterparts. For example, we are interested if the online models generated in Section 3.5.4
overfit to their new environment.

We run the TPC-C benchmark in four scenarios that vary some aspect of the DBMS’s envi-
ronment: (1) database size, (2) hardware, (3) thread count, and (4) workload. For each scenario,
we first execute the workload on NoisePage in an initial setting for 1 min with training data
collection enabled. Next, we deploy NoisePage again in a new setting and collect more training
data. We then compare how well the models trained with the first data set predict the DBMS’s
behavior as measured in the second set. We use NoisePage’s models trained with offline data
using the first setting as a baseline. We then switch the settings and repeat the evaluation to
test generalization.

Database Size: We vary the size of the database by changing the number of TPC-C ware-
houses with a single client. The first configuration starts with online data from TPC-C with
one warehouse and then evaluates TPC-C with 20 warehouses (Larger-DB). The second config-
uration starts with online data from 20 warehouses and then evaluates one warehouse (Smaller-
DB).
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Figure 3.12: Model Generalization - Comparing prediction error of baseline OU models
trained with offline runner data against models trained with online TPC-C data. Online data
does not match configuration of test workload.

Hardware: We next compare the models using training data on different hardware. For the
first configuration, we collect online data from the 6-core machine running TPC-C with 20
warehouses and one client. We then measure the models’ accuracy for TPC-C on the 2x20-core
machine (Larger-HW). The second configuration reverses the hardware: we train the models
from the 2x20-core machine and then evaluate on the 6-core machine (Smaller-HW).

Thread Count: This scenario uses the same database size and hardware, but we increase the
number of concurrent threads executing in the DBMS. The first configuration executes TPC-C
with 20 warehouses and one client, and then the second configuration uses 20 warehouse and
20 clients (More-Threads). The second configuration swaps the thread count (Fewer-Threads).

New Queries: Lastly, this scenario evaluates the models when the application’s workload
changes. One potential approach is to train the models on TPC-C in the first configuration
but then switch to a different benchmark for the second. Such a setup measures the models’
robustness, not the benefit of online data. Instead, we use TPC-C (20 warehouses, one client)
for both configurations but train on an 80% sample of its queries (randomly selected based on
query templates) in the first configuration. We then evaluate the other 20% queries in the sec-
ond configuration. We use the same 5-fold cross-validation for evaluation.

Figure 3.12 presents the results for these scenarios divided by subsystem. Our first obser-
vation is that offline models with small errors (<10 us) improve in almost all scenarios. For
networking models, this is for two reasons: (1) they have a small number of input features and
(2) the subsystem’s behavior is consistent in all scenarios. The workload does not change the
model’s error rate (which was already low) and online data only improves them. The execution
engine models are more complex, and its models continue their performance with online data,
maintaining sub-10 ps average errors. These results show that training with online data does
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not overfit the models to the workload and still yields robust models that generalize to unseen
scenarios.

For offline models with larger errors (>10 us), online data improves model performance in all
scenarios except for two shown in Figure 3.12d. The disk writer models perform about the same
when migrating to smaller hardware, but average error increases by 2x with larger hardware
because the input features for this model do not capture the storage device’s capabilities. This
is another example of a model that would improve with hardware context [213].

As in Section 3.5.4, Figure 3.12c indicates that the log serializer models improve because its
behavior is mostly influenced by query arrival rate due to effects of group commit. Both the
DBMS’s execution engine and disk writer subsystems also incur lower model accuracy on the
larger hardware scenario. The former’s accuracy drops by 16% in Figure 3.12a, while the latter’s
accuracy drops by 113% in Figure 3.12d. This discrepancy reflects the hardware characteristics
of the two machines and how OU input features that reflect their performance are important
(i.e., hardware context [213]).

3.6 Conclusion

We presented the TScout framework for training data collection in self-driving DBMSs. We
showed how it addresses the engineering challenges of collecting high-quality online training
data from production DBMSs, with the flexibility to support any system architecture. With
TScout, developers modify their DBMS to add markers at points in the code to enable the metrics
collection for four hardware categories (CPU, memory, disk, network). TScout automatically
receives and processes events at these markers using a kernel-space eBPF program. In our
evaluation using NoisePage, we showed that TScout produces better training data that results
in more accurate models than previous methods with minimal performance overhead.

38



Chapter 4

User-Bypass DBMS Proxy

Modern cloud applications often connect to database management systems (DBMSs) over a
network in a manner that is not optimal for performance: either maintaining large numbers
of persistent, mostly idle connections or rapidly churning connections. Both scenarios cause
the DBMS to squander resources on state information for each connection or perform oner-
ous and redundant network operations. One standard solution to overcome this problem is to
use a proxy that acts as a middlebox [84] between the front-end client and back-end DBMS.
Examples include AWS RDS Proxy [47], PgBouncer [39], Pgpool-II [40], MaxScale [30], and
ProxySQL [45]. Although their features vary, these proxies all implement a target DBMS’s net-
work protocol so that clients can connect to them without needing to modify application code.

Using a DBMS proxy as the authoritative connection manager for the back-end DBMS pro-
vides multiple benefits. The proxy maintains a persistent connection pool to the back-end
DBMS to multiplex client requests and responses — minimizing the number of connections talk-
ing to the DBMS. This optimization reduces the overhead of tasks that scale linearly with the
number of clients like transaction commit. Furthermore, because the proxy’s pooled connec-
tions only authenticate with the DBMS once, it prevents the DBMS from repeatedly performing
connection setup procedures and frees system resources for query execution.

But the need to support DBMS network protocols imposes constraints on proxies’ imple-
mentations. As Application Layer (L7) [94] middleboxes, these proxies follow the same design:
they are user-space applications that read byte streams from client sockets, extract connection
state, match the client to a back-end socket, and forward messages to the correct destination.
This design incurs significant overhead from the repeated operating system (OS) system calls to
read and write to sockets. Some high-performance systems have previously used kernel-bypass
to elide the OS networking stack [48]. Unfortunately, this approach increases engineering and
deployment complexity. To our knowledge, no DBMS proxies employ this technique; they are
ineflicient user-space applications that do not scale effectively for the most demanding appli-
cations.

Given this, we present an alternative system architecture called user-bypass. User-bypass
relies on eBPF programs that push down DBMS-specific connection logic into the OS to cre-
ate fast paths in the Linux networking stack. User-bypass elides expensive system calls and
buffer copying without sacrificing functionality or safety. We are not the first to embed L7
logic into the kernel using eBPF [113, 140, 184]. However, to our knowledge, we are the first
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to articulate the idea of “user-bypass” instead of “kernel-bypass” and the first to deploy this
design strategy to DBMS proxies. To demonstrate the effectiveness of this approach, we im-
plemented a PostgreSQL-compatible proxy called Tigger using user-bypass. It offers efficient
connection pooling and workload mirroring within kernel-space. Tigger supports the target
DBMS’s network protocol and is a drop-in replacement for other proxies.

We compare Tigger’s performance against other open-source proxies for online transaction
processing (OLTP) workloads. Our results show that Tigger’s user-bypass architecture is the
most responsive and reduces transaction latency by up to 29%. Tigger also minimizes CPU
utilization — offering the best performance by being 42% more efficient than the next proxy.
When comparing Tigger’s workload mirroring capabilities, it provides an average of 92% lower
transaction latency while using 88% less CPU.

Our work makes the following contributions: (1) a discussion of DBMS proxies in the con-
text of modern cloud applications, (2) the user-bypass method for pushing DBMS logic into
kernel-space, and (3) the design of the Tigger DBMS proxy using user-bypass.

This paper is organized as follows. Section 4.1 describes network connection challenges,
how DBMS proxies alleviate those issues, and the shortcomings of existing designs. Section 4.2
introduces user-bypass and the technologies that enable it. Section 4.3 presents the Tigger
architecture, followed by a discussion of its implementation in Section 4.4. We then present our
experimental evaluation in Section 4.5. We provide concluding remarks in Section 3.6.

4.1 Background

We begin with motivating the need for DBMS proxies. We present the challenges of scaling
the number of persistent DBMS clients and their overhead, and then describe how proxies use
pooling to improve DBMS efficiency. Lastly, we discuss existing proxies implementations and
detail their scalability limits in cloud environments.

4.1.1 Connection Scaling

Modern cloud application frameworks perform horizontal scaling in response to changes in
load, creating more instances that must communicate with the DBMS [2, 56]. Thus, a short burst
of activity can quickly generate thousands of connections. Some programming frameworks
and libraries use client-side pooling to maintain long-lived connections (e.g., Phoenix [159],
HikariCP [24], pgxpool [41]). This scenario amplifies the scale of connections to the DBMS, as
new instances in an autoscaling group can result in thousands of connections for their pools
that may sit idle.

For multiple reasons, supporting many persistent clients is challenging for DBMSs. The first
is that each new connection incurs some fixed overhead in the DBMS even before that connec-
tion issues a query request. To support multiple connections in parallel, the DBMS will assign
each connection a worker that is either a lightweight thread (e.g., MySQL, Oracle, MSSQL) or
a heavyweight process (e.g., PostgreSQL, DB2, TimescaleDB). Each worker requires a fixed
amount of memory, CPU, and effort from the OS to manage those resources. For example, Post-
greSQL has a memory overhead on the order of megabytes per connection [108, 176]. This cost
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Figure 4.1: Connection Pooling Example - A DBMS proxy reduces the number of connec-
tions to back-end DBMSs by multiplexing connections from many clients to a smaller number
of pooled connections.

is for a new, unused connection before the DBMS populates auxiliary data structures, such as
result caches or prepared statement digests.

Second, since a DBMS provides ACID guarantees for transactions, its concurrency control
scheme requires it to perform additional work for each connected client. For example, with op-
timistic concurrency control, the DBMS performs a validation step when a transaction commits
to check whether that transaction conflicts with the read/write sets of other clients connected
to the DBMS [211]. PostgreSQL allocates memory for each possible connection, so the con-
ventional wisdom is to set its max_connections knob as small as possible to keep concurrency
control operations fast; otherwise, it limits the scalability of the DBMS [109].

One approach to handle many connections is to scale the DBMS horizontally by adding
more nodes. Then, an L3/L4 proxy (e.g., HAProxy [22], nginx [35]) performs load balancing
over TCP sessions between nodes. However, these additional nodes add complexity and cost to
a deployment. Combined with client-side pooling, the DBMS could waste resources supporting
mostly idle connections. A better approach to address these scaling challenges is to deploy
a DBMS proxy that performs connection pooling [150]. Instead of connecting to the DBMS,
applications connect to the proxy using the same authentication methods. The proxy then
manages all connections between front-end clients and one or more back-end DBMSs. With
transaction pooling, the proxy multiplexes client connections over shared back-end connections,
as shown in Figure 4.1. The proxy temporarily allocates a server connection until a transaction
commits or rolls back. This approach improves performance when many persistent connections
do not continuously submit transactions to the DBMS.

To demonstrate how transaction pooling can improve performance, we run the YCSB work-
load [88] with 10,000 connections in two configurations. The clients connect directly to the
DBMS in the first setup and through Tigger DBMS proxy in the second. We discuss our exper-
imental setup in Section 4.5.

Figure 4.2 shows the latency distributions from the two scenarios. YCSB’s p99 and mean
latencies are much higher than the median when many clients connect directly to the DBMS. In
contrast, using the proxy slightly increases the minimum latency while significantly reducing
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Figure 4.2: Connection Pooling for Many Clients — YCSB transaction latencies showing
the effect of Tigger’s transaction pooling. The red circle shows sample mean, and the upper
whisker shows p99.

the p99 and mean latencies. We explore more workloads in this configuration in Section 4.5.2.

4.1.2 Connection Establishment

In addition to large numbers of persistent connections, short-lived ephemeral clients also pose
challenges for DBMSs. Ideally, applications should use client-side connection pooling, but im-
properly tuned web frameworks result in short client sessions (i.e., the time between connect and
disconnect) that last only for the duration of a transaction. Popular frameworks, such as Lar-
avel [61] and Django [62], do not use persistent connections by default. The application opens
a new connection to the DBMS for each request and discards the connection upon completion.
Furthermore, some cloud software designs cannot exploit client-side connection pooling. For
example, microservices that rely on stateless serverless functions (e.g., AWS Lambda) create a
new connection on each invocation.

Short sessions are problematic in DBMSs because the connection setup and teardown work
steal CPU cycles that the DBMS could use for executing queries. This overhead is due to how
DBMSs handle parallel connections: the system creates a new worker dedicated to each con-
nection. Creating a new worker incurs overhead for (1) task creation, (2) socket allocation, (3)
TCP handshakes, (4) Transport Layer Security (TLS) handshakes, (5) client authentication, and
(6) querying DBMS settings and catalogs. These unavoidable steps take milliseconds and waste
DBMS resources when performed thousands of times per second. Then when the connection
closes, the DBMS performs additional bookkeeping and cleanup.

Once again, DBMS proxies help with this problem. Since they are optimized for connec-
tion management, their logic for opening and closing connections is more efficient than DBMS
workers that have to balance many tasks (e.g., query planning/execution, logging, garbage col-
lection). Moving connection setup and teardown execution to a different machine frees the
DBMS’s CPU to focus on these other tasks. The extra network hop introduced by the DBMS
proxy offsets costly system calls like fork() and the subsequent page faults accompanying a
new process.

To highlight these issues, we use PostgreSQL and YCSB in two configurations representative
of serverless applications where each transaction opens a new connection. In the first setup they
connect directly to the DBMS, and in the second they connect through the Tigger DBMS proxy.

Figure 4.3 shows the latency improvement at 2,000 TPS when serverless clients connect to
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Figure 4.3: Connection Pooling for Serverless Clients — YCSB transaction latencies show-
ing the effect of Tigger’s persistent connections. The red circle shows sample mean, and the
upper whisker shows p99.

Tigger instead of directly to the DBMS. PostgreSQL uses processes for multitasking, so every
transaction performs the fork () andwait() system calls. As a baseline not shown in the figure,
the mean latency for YCSB with persistent servers in this environment is 0.2 ms. Creating and
discarding a connection in PostgreSQL adds over 3.5 ms of latency.

DBMS proxies can provide partial benefits of a persistent connection pool even when it is
not an option. Despite introducing extra network hops, Tigger reduces the latency overhead
of short-lived connections — dropping from an average of 3.9 ms to 1.7 ms. For short transac-
tions like in YCSB, a DBMS proxy halves the latency in serverless environments. These results
demonstrate how connection establishment affects performance.

4.1.3 User-Space Proxy Design

DBMS proxies contain logic specific to a back-end DBMS’s network protocol, thus making them
L7 network applications. This behavior contrasts with L3/L4 proxies (e.g., HAProxy [22], ng-
inx [35]) that transparently perform load balancing at lower layer protocols. Such L7 logic re-
quires processing network data in user-space (i.e., above the OS networking stack) or applying
deep packet inspection (DPI) in lower levels of the network stack.

To the best of our knowledge, all existing DBMS proxies follow the same design in Fig-
ure 4.4a: they are event-driven user-space applications that, after the authentication steps, (1)
read client messages from a network socket, (2) inspect the stream of bytes, (3) match the client
to a back-end server, and (4) send the data on the matched socket. Query results follow a similar
logic but with the sender and receiver reversed. Our inspection of open-source proxies supports
this belief, though implementation details vary from proxy to proxy. PgBouncer is written in
C and uses the libevent library for notifications but is entirely single-threaded. Odyssey [37]
is also in C, directly calls epoll for event management, but uses a bespoke coroutine library
written in assembly and asynchronous I/O to enable parallelism. ProxySQL is in C++, relies on
the poll system call, and follows a more typical multithreaded design.

These proxy implementations coordinate send () and recv () system calls with DBMS protocol-
specific control logic. This design limits their scalability as network bandwidths increase. Re-
search shows that copying buffers during system calls accounts for ~50% of the kernel’s net-
work stack CPU cycles [83]. PostgreSQL developers concluded that a saturated PgBouncer
process spends most of its time copying data in and out of buffers between user-space and
kernel-space [85]. As we will show in Section 4.5, PgBouncer’s single-threaded design limits
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Figure 4.4: User-Space and User-Bypass DBMS Proxies — User-space proxies rely on system
calls to redirect queries and results between clients and DBMSs. Tigger employs user-bypass
as a fast path in kernel-space, only passing authentication and user settings message to user-
space.

its throughput. Although Odyssey offers more parallelism, its CPU demands scale with its ca-
pabilities. Ideally, a DBMS proxy should do most of its work without copying socket buffers to
user-space via system calls.

4.2 User-Bypass

We next define our user-bypass method in the context of Linux networking and existing kernel-
bypass techniques. We also discuss the kernel feature that enables user-bypass and its limita-
tions.

4.2.1 Kernel-Bypass vs. User-Bypass

A complete overview of Linux’s networking stack is beyond the scope of this chapter; we will
focus on the portion relevant to DBMS proxies. Linux contains multiple layers for processing
network traffic. These layers handle transport (e.g., TCP), network (e.g., IP), and link layer (e.g.,
Ethernet) protocols. The stack exposes a socket interface [52] for applications to copy data
between user-space and kernel-space, along with traffic control [54] interfaces to configure
queuing disciplines and network filters.

User-space applications that prioritize performance over simplicity can elide these software
layers using kernel-bypass methods. In this scenario, a user-space application receives bytes
directly from the device driver — bypassing the kernel’s network stack. Thus, the application
manages communication protocols and their associated state machines. The most common
kernel-bypass pattern for network applications is to use Intel’s Data Plane Development Kit
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(DPDK) [16] software library with user-space TCP implementations like mTCP [130]. Other
libraries (e.g., F-Stack [21] and ScyllaDB’s Seastar [48]) attempt to simplify development by
bundling DPDK with bespoke TCP logic. In 2018, Linux added native kernel-bypass support
with AF_XDP [127], removing the dependency on out-of-tree kernel modules such as DPDK.
We discuss our (frustrating) experiences using kernel-bypass in DBMS proxies in Section 7.1.

Historically, kernel-bypass was the preferred way to implement high-performance Linux
networking applications. There are several reasons for this view: (1) the Linux networking
stack was perceived as slow and inefficient, (2) applications performed encryption in user-space
using a software library (e.g., GnuTLS, LibreSSL, OpenSSL), and (3) a lack of programmability in
the networking stack. The interfaces to program the network stack were limited to filtering and
routing decisions based on L2/L3 rules (e.g., iptables, nftables, tc). This lack of extensibility
in the kernel prevented L7 DPI necessary for a DBMS proxy. Thus, kernel-bypass remained
viable for network applications with complex user-space logic.

Kernel-bypass aims to improve performance by transferring buffers between devices and
user-space applications instead of the kernel processing them. User-bypass is the opposite ap-
proach: the developer pushes application logic into the kernel’s network stack as low as possible
to avoid copying data between user-space and kernel-space, while benefiting from the kernel
handling L1-L4 networking. Until recently, if a developer wanted to embed application logic
into the kernel, they would have to either (1) load a kernel module or (2) modify and recompile
it. Such approaches are difficult and sacrifice system reliability and safety. However, updates
to Linux make user-bypass a viable alternative to kernel-bypass. The efficiency of the Linux
networking stack has also improved: a single CPU core can process 42 Gbps [83], and dedicated
servers can process 670 Gbps of data [63]. Next, kernel TLS (kTLS) allows developers to move
encryption into kernel-space and hardware [183]. But the key reason that user-bypass is now
possible is the increased programmability via eBPF, which is composable with kTLS [76].

4.2.2 eBPF

To understand user-bypass, we now provide an overview of how the technique embeds DBMS
logic in the Linux kernel. The primary technology that enables this functionality is extended
Berkeley Packet Filter (eBPF). This modern Linux subsystem enables developers to write safe,
event-driven programs running in kernel-space [190]. Application developers and cloud ven-
dors have rapidly adopted eBPF due to its safety and features [7, 9, 12]. For example, Meta loads
over 40 eBPF programs on every server, with hundreds more loaded on demand [191].

eBPF programs run a limited instruction set in a kernel-embedded virtual machine. Develop-
ers typically write eBPF programs in higher-level languages like C or Rust that compile to eBPF
bytecode via LLVM. Upon loading the eBPF program, modern kernels compile the bytecode to
native machine code. eBPF program capabilities vary based on their type and attachment point,
but they attach to predetermined functions in the OS stack for network processing.

Developers load eBPF programs into kernel-space and then associate them with events (e.g.,
functions, static tracepoints) to trigger their execution. When a running thread hits the attach-
ment point, it starts the execution of the eBPF program in privileged mode. Depending on their
behavior and attachment location, developers use eBPF programs for software debugging, pro-
filing, or modifying data flow (e.g., network buffers) through kernel-space. Tigger attaches
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eBPF programs with DBMS protocol logic in the socket and Traffic Control (TC) layers of the
Linux networking stack.

The execution state of eBPF programs is ephemeral, meaning that its decision-making is
limited to the data available during a single invocation of the handler. However, with eBPF
maps, the program can maintain state across events, enabling user-bypass to support more
complex application behavior.

These data structures reside in kernel-space and are the primary mechanism for creating
stateful user-bypass programs. Tigger relies on three eBPF map types to coordinate execution
across multiple eBPF programs: the (1) stack and (2) array map types are a persistent stack
and array, respectively, while the (3) sockmap type is a unique map type that attaches an eBPF
program to socket activity. Developers associate a sockmap with a single eBPF program and
then add or remove socket file descriptors to or from the map. When activity occurs on a
registered socket (i.e., updates to an ingress or egress buffer), the kernel executes the associated
eBPF program.

Because the CPU is in privileged mode when eBPF programs run, the kernel requires them to
pass a verification step before it loads them. The eBPF verifier enforces kernel API compliance,
memory access safety, execution bounds, and instruction count. The verifier generates a control
flow graph for all possible branches of the eBPF program and checks limits like 512 B stack
size and 1 M instructions. Although these restrictions limit the complexity of application logic
with user-bypass, DBMS network protocols for the most common message types (i.e., queries,
results) are expressible in eBPF. Despite the verifier’s guarantees, developers should consider
security and safety practices with eBPF deployment due to its close interaction with kernel
functions, especially in multi-tenant environments.

4.3 Tigger DBMS Proxy

We present Tigger as a solution that relies on user-bypass to overcome the challenges with
existing DBMS proxies described in Section 4.1.3. As shown in Figure 4.4b, Tigger employs user-
bypass, resulting in both user-space and kernel-space components to implement the DBMS’s
network protocol.

In this section, we first show how to apply user-bypass to DBMS proxies with our imple-
mentation for Tigger. We then detail Tigger’s support for the PostgreSQL network protocol.

4.3.1 User-Bypass Proxy Design

Tigger is a modified version of PgBouncer [39] that employs user-bypass to replace core compo-
nents with eBPF-enhanced implementations. We chose PgBouncer as the foundation for Tigger
because it is the most widely deployed DBMS proxy for PostgreSQL. However, the user-bypass
design in this section could be applied to a different proxy (e.g., MaxScale for MySQL) to sup-
port other DBMSs. User-bypass results in a hybrid software design with both user-space and
kernel-space logic, providing a fast path for the most common proxy tasks. Tigger’s user-space
component retains PgBouncer’s single-threaded design but achieves parallelism through user-
bypass because eBPF components run on kernel threads.
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Figure 4.5: Tigger’s User-Bypass Architecture — Tigger’s hybrid design constrains user-
space and kernel-space (i.e., eBPF programs and maps) components. We describe the steps in
Section 4.3.1

The user-space portion of Tigger is responsible for connection establishment, client authen-
tication, and settings management. This component synchronizes the connection state with
Tigger’s kernel-space logic by reading and writing to eBPF maps. Tigger retains these parts as
the user-space component for several reasons: (1) DBMS authentication methods (e.g., SCRAM-
SHA-256, GSSAPI) are too complex to satisfy the eBPF verifier’s limitations described in Sec-
tion 4.2.2, (2) these events are infrequently executed and not part of the hot path of dispatching
queries, and (3) it simplifies user-bypass engineering by reusing an existing application. These
user-space authentication components follow the same semantics as in PgBouncer, enabling ad-
ministrators to define how front-end users map to back-end connection pools. These settings
ensure clients cannot submit queries to the DBMS with improper credentials.

Tigger maintains two independent connection pools: (1) a user-bypass pool (2) a user-space
pool. The first is dedicated to user-bypass links between clients and back-ends. In the typical
case, Tigger links a client to a back-end DBMS, redirects the session’s queries and responses,
and unlinks the two endpoints without executing any user-space code. In the rare event that all
user-bypass sockets are in use, Tigger can pass a client’s session up to the fallback connection
pool managed in user-space at the cost of being slower. Exceptional protocol operations like
cancel requests also pass to user-space and route through this pool.

When Tigger starts, it loads its eBPF maps and programs into kernel-space. Tigger’s con-
nection pooling relies on two eBPF handler programs: one to process buffers for back-end
DBMS sockets (Server) and another for front-end client sockets (Client). Each handler at-
taches to its sockmap to trigger execution, and the other two maps (IdleSocketsMap and
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SocketStatesMap) synchronize the kernel-space state with the user-space components. De-
pending on the proxy’s configuration, Tigger may install more eBPF handlers to provide addi-
tional features (see Section 4.4.2).

Most of Tigger’s handlers operate at the socket layer (i.e., above the TCP stack) attached to
sockmap events. The handlers run on kernel worker threads responsible for software interrupts,
which is how Linux processes network events in kernel-space. Although eBPF programs can
hook into lower levels of the networking stack (e.g., XDP, TC) it is not ideal to push DBMS pro-
tocol logic lower than the socket layer: every layer bypassed in kernel must be re-implemented
by the proxy. For example, hooking into the network stack below the TCP layer requires the
proxy to implement the complex TCP state machine and its associated messages (e.g., ACKs
and retries). Furthermore, eBPF programs must be attached at the socket layer to perform DPI
on encrypted content using kTLS [76].

At the sockmap layer, Tigger benefits from the OS handling protocols below the L7 layer.
The OS arranges ingress bytes in their correct sequence order and reliably sends egress bytes.
Socket buffers appear as they would in user-space (i.e., ready for L7 logic), with the OS pro-
cessing headers related to TCP/IP and Ethernet. Therefore, Tigger’s eBPF handlers’ logic is
similar to user-space DBMS proxy logic. After compilation, Tigger’s Client handler contains
267 eBPF instructions, but due to its loops and branches the verifier evaluates 217,732 instruc-
tions. Although Client is lower than the verifier’s 1 M instruction limit, more branches or loop
iterations exponentially increases the verifier’s work.

Figure 4.5 shows Tigger’s hybrid design and steps through the user-space and eBPF fea-
tures that enable user-bypass. After Tigger loads its handlers (i.e., Client and Server) and
maps into kernel-space, @ its user-space component opens and authenticates connections to
the back-end DBMS for pooling. Next, @ Tigger adds the server sockets to ServerSocketsMap.
This step ensures that the Server handler runs whenever a DBMS socket buffer is ready for
processing. With the back-end socket ready to accept queries, @ Tigger adds it to the stack
map of idle sockets. @ Tigger resets the state metadata associated with the socket. Upon a
new connection request, @ the client authenticates with Tigger’s user-space component. @
Tigger adds the client’s socket to ClientSocketsMap. The Client handler will now execute
on buffer activity from a front-end connection. Lastly, @ Tigger resets the metadata associated
with the client socket stores in SocketStatesMap. To apply user-bypass to a different system,
developers reproduce this logic in the user-space components of another DBMS proxy.

4.3.2 DBMS Protocol Logic

When a socket buffer arrives, Tigger’s Server and Client handlers perform DPI to apply DBMS
protocol logic — extracting the state of client sessions to implement features like connection
pooling. For PostgreSQL messages, processing a socket buffer involves inspecting each message
header to determine its type, length, and, if necessary, the body. A PostgreSQL message is
not guaranteed to fit within a single buffer, so SocketStatesMap maintains metadata to help
the handlers process messages that span buffers. First, it contains enough space to store a
partial header in case the header spans multiple socket buffers. Second, it has an offset into the
following buffer to find the next message.

Figure 4.6 shows an example of how Tigger processes multiple PostgreSQL messages in
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Figure 4.6: Applying DBMS Protocol Logic — Tigger performs DPI on DBMS messages to
determine types and lengths. If a message spans multiple buffers, Tigger stores the position
to start reading the next buffer in the SocketStatesMap eBPF map. We describe the steps in
Section 4.3.2.

a socket buffer containing 500 bytes. @ The Client handler reads the first message header
and length and computes the location of the next header. @ The Client handler repeats the
process and arrives at the third PostgreSQL message. @ The header indicates that the INSERT
statement is 1213 bytes long, but the socket only has 398 of its 500 bytes remaining. In this
scenario, @ Client stores the offset (i.e., 815) to look for the following PostgreSQL message
header in SocketStatesMap. When the next client socket buffer arrives, the handler starts
processing at that offset rather than inspecting every byte.

Both the Client and Server handlers process the PostgreSQL protocol similarly but apply
different control logic. Client looks for message headers related to the session (e.g., authenti-
cation, disconnect). As described in Section 4.3.1, client messages are typically query requests,
and Client redirects those to a back-end DBMS. If the buffer contains session messages, Client
passes it to Tigger’s user-space component. Similarly, Server looks for control messages that
denote transaction status (i.e., active vs. idle), which requires reading the message body and the
headers. Based on this information, Server uses eBPF maps to coordinate transaction pooling
among multiple front-end and back-end connections.

4.4 Tigger Features

We now describe how Tigger implements DBMS-specific logic to support the two most im-
portant features of proxies: pooling and replication. Although the message protocol will differ
for other DBMSs, the way Tigger achieves user-bypass for these features would be the same.
Specifics related to the PostgreSQL protocol could be adapted to other DBMS protocols.

4.4.1 Connection Pooling

As introduced in Section 4.1.1, connection pooling is when a proxy shares a single server con-
nection across one or more client collections. Tigger supports two common forms of pooling:
session and transaction pooling. These settings determine how long a front-end client holds
a pooled back-end connection. Session pooling allocates a pooled connection for the duration
of a client’s session, so it is impossible to multiplex connections to reduce the peak number
of connections to the DBMS. This mode requires less work from the DBMS proxy than trans-
action pooling since it does not maintain transaction state. Instead, the proxies only need to
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Figure 4.7: Connection Pooling with User-Bypass — Tigger performs pooling with two
handlers and the maps shown in Figure 4.5. We describe the steps in Section 4.4.1.

check for messages that terminate the client’s session. In contrast, transaction pooling releases
connections back to the pool at the end of a transaction, reducing the number of connections to
the back-end DBMS as shown in Figure 4.1. Tigger’s Client handler does not link clients and
servers at authentication time, instead waiting until a query arrives. This approach minimizes
how long a client holds a connection and makes it available to other client requests as soon as
possible.

Figure 4.7 details Tigger’s steps when handling a client request over a pooled connection.
When an authenticated client submits a query, @ Tigger’s Client handler executes when the
buffer arrives at the socket layer of the proxy. @ Client first checks SocketStatesMap to
see if this socket is already linked to a back-end DBMS socket. If not, Tigger acquires the
first socket available from IdleSocketsMap. If there are no available user-bypass sockets, the
session passes to user-space to be handled by Tigger’s slow path. After matching with a user-
bypass socket, Client processes the buffer (as described in Section 4.3.2) to determine if it is a
session, and if it is Client passes it to user-space.

In the typical case the socket buffer contains a query, so Client redirects the buffer to
the linked user-bypass socket and updates the metadata in SocketStatesMap. @ The back-
end DBMS executes the query and sends the results back to Tigger. The Server handler runs
on buffer arrival, finding the linked front-end socket for the back-end. @ Server processes the
buffer, stores any intermediary state in SocketStatesMap, and redirects the buffer to the linked
DBMS socket. @ occurs depending on the proxy’s pooling mode: at transaction completion for
transaction pooling or client disconnect for session pooling. During this step, Server unlinks
the client from the DBMS and inserts the back-end socket into IdleSocketsMap.

4.4.2 Workload Mirroring

DBAs also deploy DBMS proxies to provide different forms of replication. Applications use such
replication for load balancing, high availability, or test environments. One important type of
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Figure 4.8: Workload Mirroring with User-Bypass — Tigger performs workload mirroring
with additional eBPF programs and maps, including one attached at the TC layer. We describe
the steps in Section 4.4.2.

replication is workload mirroring, where the proxy sends the same queries to multiple DBMSs
but treats one as the authoritative primary node [201]. With mirroring, there are no consensus
protocols, result set validation, or awareness between DBMS nodes of their arrangement. It is
helpful for prewarming replicas before adding them to the pool of active instances, as well as
facilitating the testing of DBMS versions using live traffic during upgrades [137].

Tigger supports workload mirroring between multiple back-end DBMSs. Tigger still per-
forms connection pooling with the primary DBMS, as described in Section 4.4.1. Replication
requires an additional handler (Mirror) to send one inbound message to multiple back-ends.
Tigger cannot perform workload mirroring in the Client handler due to a limitation in the
eBPF verifier: the API to clone socket buffers is unavailable at the socket layer. eBPF programs
can only access the clone API at the TC interface.

As shown in Figure 4.8, Tigger’s Mirror handler consists of multiple eBPF programs. The
first program clones the necessary buffers and attaches as a TC classifier for egress traffic —
executing after the socket, TCP, IP, and Ethernet stacks. The second eBPF program attaches
at the sockmap layer like the Client and Server handlers and sends cloned buffers to their
replicas. These two programs cooperate in mirroring outbound traffic to replica DBMSs.

When workload mirroring is enabled, Tigger’s user-space component adds entries in a eBPF
map (MirrorSocketsMap) that associates primary DBMS sockets to their replicas’ sockets. The
user-space component also creates a separate pool of connections for replicas but does not place
them into the IdleSocketsMap to avoid linking them directly to clients.

Step @ in Figure 4.8 picks up after @ in Figure 4.7 (see Section 4.4.1). At this point, Client
bypassed user-space and redirected a query from the client to the primary DBMS. Any new
messages arriving at Client now respond with “not ready” until all backends are ready. As the
outbound message leaves the proxy for the primary, @ Mirror checks the destination port in
MirrorSocketsMap, and then @ clones the buffer to be sent to a replica.

However, the replica’s buffer contains Ethernet, IP, and TCP headers for the primary’s ses-
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Figure 4.9: Workload Mirroring Header Manipulation - Mirror clones buffers at the TC
layer, then manipulates protocol headers to send them back to the socket layer via UDP.

sion. At the TC layer, manually changing the cloned buffer’s headers is not possible: permuting
the headers requires Tigger to maintain its own TCP state machines for replicas. Not only is
this too complex to implement in eBPF, it is also impossible to use the OS’s network stack for
any further communication on that socket due to mismatches with OS’s TCP logic.

To overcome this problem, Mirror uses a eBPF program at the sockmap layer to redirect the
cloned buffer to the replica, similar to Client and Server. This program allows the OS to man-
age all communication with replicas, but the cloned buffer still resides at the TC layer. To get it
back to the Mirror handler at the sockmap layer, @ Mirror’s TC program manually changes
the cloned buffer’s message type from egress TCP to ingress UDP, as shown in Figure 4.9.

To change all the necessary headers, Mirror first swaps the Ethernet header’s addresses,
which does not change the header’s checksum. Similarly, Mirror switches the IP header’s ad-
dresses and changes the protocol to UDP. The latter operation requires updating the IP header
checksum, but the change from TCP to UDP is a compile-time constant, so this is a fast opera-
tion. The final header update completely overwrites the old egress TCP header with an ingress
UDP header. Mirror’s TC component then writes two pieces of metadata in the buffer after the
UDP header. Since TCP headers are larger than UDP, Tigger uses these unused bytes to store
(1) the replica’s socket for this buffer and (2) the offset to application data. TCP headers are
variable length, so Tigger must explicitly track where the DBMS message begins.

When the cloned buffer arrives at the socket layer, @ Mirror extracts the stored replica
socket and trims the excess bytes from the original TCP header. Keeping the destination socket
in the buffer is an optimization that enables Mirror’s sockmap program to redirect buffers
without retrieving additional map data. Lastly, Mirror redirects the buffer to the replica DBMS,
and updates SocketStatesMap so that Client can synchronize with all the responses.

4.5 Evaluation

We evaluate Tigger’s using PostgreSQL (v14.5) DBMS, and configure the shared_buffers knob
so that working sets fit in memory. We compare Tigger against three other open-source PostgreSQL-
compatible proxies:
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Table 4.1: AWS EC2 Instance Details — Hardware configurations and pricing for the cé6i
tamily of AWS EC2 instances.

Instance vCPUs RAM (GB) Cost ($/hr)

coi.large 2 4 0.085
c6i.xlarge 4 8 0.17
c6i.2xlarge 8 16 0.34
c6i.dxlarge 16 32 0.68
c6i.8xlarge 32 64 1.36
c6i.12xlarge 48 96 2.04

* PgBouncer (v1.17): With decades of development, PgBouncer is the most popular proxy
for connection pooling with PostgreSQL. Due to its popularity and maturity, we use Pg-
Bouncer as the reference implementation for user-space DBMS proxies.

* Odyssey (v1.3): Yandex developed Odyssey as a modern replacement for PgBouncer. It
uses multiple workers and coroutines to support parallelism across connections. We use
Odyssey as an example of a high-performance user-space DBMS proxy.

* Pgpool-II (v4.3.3): This proxy predates PostgreSQL’s native replication features, and
was commonly deployed to provide high availability for PostgreSQL clusters. Pgpool-II
does not support transaction pooling, so we omit it from most of the evaluation. Instead,
we only compare Pgpool-II's workload mirroring against Tigger’s since PgBouncer and
Odyssey do not support that feature.

We do not compare against RDS Proxy because it is a fully managed service. This design
makes it impossible to control RDS Proxy’s instance size or investigate its performance char-
acteristics.

Unless otherwise specified, all experiments run as follows. We evaluate Tigger using AWS
EC2 cé6i instances running Ubuntu Linux 22.04 LTS in the same availability zone [17].

Table 4.1 summarizes the resources and pricing for these instances. We use separate in-
stances for each system component: (1) 12xlarge for PostgreSQL, (2) 12xlarge for application
servers, and (3) and xlarge for DBMS proxies. We use a smaller instance for the proxies to re-
flect how users provision proxies in real-world deployments. To better compare user-bypass,
we reduce the proxy server’s number of receive queues to one to eliminate kernel parallelism
for network processing [3].

Each experiment runs at least five times. Latency evaluations use a fixed submission rate of
2000 transactions per second (TPS). This setup ensures all systems perform the same work to
compare latency and CPU efficiency. Throughput evaluations run with an unlimited submission
rate.

In all box plots, the lower whisker shows the minimum data point, and the upper whisker
shows the 99th percentile (p99) data point. We plot p99 instead of the maximum for two reasons:
(1) p99 is a standard metric when evaluating the latency of software systems, and (2) write-
heavy workloads generate latency outliers due to DBMS resource conflicts (e.g., locks, fsync())
that do not reflect the performance of DBMS proxies.
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4.5.1 Workloads

In these experiments, we only consider OLTP workloads; OLAP workloads (e.g., TPC-H) are
bottlenecked by query execution at the DBMS (e.g., scans, aggregations), which makes them
unsuitable for demonstrating the benefits of Tigger’s user-bypass design. In a serverless OLAP
scenario, connection establishment overhead will not be the bottleneck compared to query
execution. Customers deploy DBMS proxies for OLAP for reasons other than performance
(e.g., security) outside this evaluation’s scope.

All queries execute over JDBC using the BenchBase framework [5, 96]. We turn off auto-
matically prepared statements in the JDBC driver to avoid naming contamination when the
back-end connections are shared across client connections. This problem occurs when drivers
prepare different statements under the same name, so DBAs turn off this feature when deploy-
ing a DBMS proxy.

* No-op: The workload contains a single transaction that executes an empty query string
(i.e., “;”). The DBMS returns an empty query result. This workload is ideal for measuring
DBMS proxy overhead because it minimizes the work that the client and DBMS execute.

* SmallBank: This workload models a banking application where transactions perform
short read and update operations [65, 82]. The database contains three tables which we
scale to ~3.4 GB.

* TATP: This benchmark simulates a cellphone caller location system [209]. It has nine
transaction types, and we scale the database to ~1.9 GB stored across four tables.

+ TPC-C: This order-processing application contains nine tables and five transaction types [196].

For our experiments, we use a 20-warehouse database (~2.1 GB).

*+ Twitter: This workload models the troubled social media website where users post mes-
sages and follow others. We scale the database to ~4.4 GB.

* YCSB: The Yahoo! Cloud Serving Benchmark models cloud service workloads [88]. We
run read-only transactions to reduce bottlenecks from EBS writes. The database contains
a single table, 1 KB tuples, and a total database size of ~2.3 GB.

4.5.2 Connection Pooling for Many Clients

We begin our evaluation by exploring the scenario from Section 4.1.1 in more detail. The work-
load represents a typical cloud-native application. We use 25 application servers, each with 400
clients, for 10,000 database connections. The DBMS utilization is low, with each of the 25 appli-
cation servers submitting 80 TPS distributed across their connections, for a total of 2,000 TPS
arriving at the back-end DBMS.

Table 4.2 shows summary statistics of transaction latencies for the six workloads. To more
easily quantify overheads and benefits, Figure 4.10 shows the percent change for each DBMS
proxy compared to the scenario with no proxy. Due to its user-bypass design, Tigger offers the
lowest latencies of any DBMS proxy in every workload. Compared to running without a proxy,
Tigger lowers the mean and p99 latencies in every workload except No-op and TPC-C.

No-op does not benefit from using a DBMS proxy. Even at a high connection count, Post-
greSQL performs minimal work for No-op, so reducing the number of connections with a DBMS
proxy provides no benefit. However, as a microbenchmark for proxies’ protocol efficiency, we
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Table 4.2: Connection Pooling for Many Clients — Transaction latencies (ms) of DBMS
proxies compared to connecting directly to PostgreSQL.

No-op SmallBank TATP TPC-C Twitter YCSB
x p50 p99| x p50 p99| X p50 p99 x p50 p99| x p50 p99| x p50 p99
No proxy|0.18 0.15 0.32]2.10 1.84 4.14|0.90 0.48 2.60|13.92 5.74 224.84|0.72 0.47 2.07|0.62 0.36 1.72
PgBouncer |0.34 0.32 0.52|2.16 2.16 3.58|0.84 0.63 2.16|19.55 7.44 339.95/0.66 0.62 1.48|0.50 0.47 0.90
Odyssey |0.35 0.28 0.48|2.19 2.12 3.38|0.88 0.59 2.13(52.24 7.76 1259.11|0.59 0.48 1.29|0.60 0.46 1.08
Tigger | 0.24 0.22 0.39]1.96 1.99 3.20|0.71 0.50 1.96|16.08 7.15 258.00(0.52 0.48 1.29|0.40 0.37 0.76

Table 4.3: Connection Pooling for Many TPC-C Clients — Transaction latencies (ms) of
DBMS proxies compared to connecting directly to PostgreSQL.

Delivery NewOrder OrderStatus Payment StockLevel
x p50  p99 x p5>0  p99 x p>0  p99 X p50 po9 x p>0  p99
No proxy| 8.68 8.02 26.42| 9.57 7.55 4299| 1.85 1.22  7.31|21.05 3.25 562.54| 3.60 3.08 6.36
PgBouncer | 14.04 10.84 143.69|14.15 9.82 157.60| 4.71 1.42 128.15|28.41 3.69 756.52| 542 2.22 128.59
Odyssey | 36.47 11.57 824.07[39.52 10.28 887.05|26.97 1.44 824.11|71.46 3.79 1578.33|29.43 2.25 881.82
Tigger |10.42 10.15 24.04|10.85 9.36 31.28| 1.46 1.26 3.77|24.77 3.54 691.03| 2.27 2.06 453

see that Tigger offers up to 31% lower latency than the other proxies. The size of the ingress
query and egress results are essentially zero, so we are seeing the benefits of user-bypass eliding
system calls and user-space thread scheduling.

The diversity of TPC-C’s transactions makes it difficult to summarize its performance, as
in Table 4.2. For example, Delivery includes more queries and thus round-trips to the DBMS.
OrderStatus and StockLevel are short and read-only. NewOrder and Payment experience more
contention, especially when the number of clients exceeds the number of warehouses. These
characteristics and non-uniform transaction profile submission rates result in a multimodal
latency distribution. For that reason, we provide per-transaction summary statistics.

Table 4.3 shows that while Tigger reduces the p99 latency in four out of five TPC-C trans-
actions, Payment’s higher submission rate and latency hide this in Table 4.2. Tigger’s user-
bypass design offers the best performance of the three proxies again, though we cannot explain
Odyssey’s poor performance. TPC-C’s performance subtleties demonstrate the trade-offs in
deploying a DBMS proxy. For example, deploying Tigger may be a good decision if reduced tail
latencies are worth the slight increase in average latency.

4.5.3 Connection Pooling for Serverless Clients

We next revisit the YCSB experiment from Section 4.1.2 that evaluates the latency impact of
short-lived connections — this time with more proxies than Tigger. We aim to measure the
proxies’ connection creation overhead and assess the benefits of Tigger’s user-bypass design.
Because BenchBase opens a connection at the start of a transaction and closes the connection
at the end, we configure the proxies to use session pooling for this experiment. Thus the results
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Figure 4.10: Connection Pooling for Many Clients — Percent change of Table 4.2 comparing
different DBMS proxies against connecting directly to PostgreSQL.

from Figures 4.3 and 4.11 are not directly comparable to other transaction pooling experiments.
The effect is the same (i.e., connections are released to the pool at the end of the transaction),
but this configuration requires the proxies to perform less work to track transaction status.

Figure 4.11 shows the same data as Figure 4.3 but with latency measurements for Odyssey
and PgBouncer. As discussed in Section 4.1.2, DBMS proxies provide performance improve-
ments in serverless environments by maintaining a connection pool. Figure 4.11 shows how
allocating a connection from a persistent pool is about 2 ms faster than going to the DBMS for
a new connection.

Tigger outperforms the other two proxies, offering the lowest minimum, mean, and median
latencies. Tail latency is slightly higher for Tigger because this scenario is ill-suited to Tigger’s
user-bypass design. As described in Section 4.3.1, Tigger passes client authentication to its user-
space components, which ultimately do more work than PgBouncer’s because Tigger has to
maintain metadata in eBPF maps. Tigger handling subsequent queries with user-bypass makes
up for the authentication overhead to provide the best performance on average for serverless
clients.
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Figure 4.11: Connection Pooling for Serverless Clients — YCSB transaction latencies show-
ing the effect of proxies’ persistent connections. The red circle shows sample mean, and the
upper whisker shows p99.
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Figure 4.12: Workload Mirroring — Transaction latencies through DBMS proxies configured
for workload mirroring. The red circle shows sample mean, and the upper whisker shows p99.

4.5.4 Workload Mirroring

We now evaluate Tigger’s workload mirroring as described in Section 4.4.2. For this experiment,
we deploy PostgreSQL with two nodes: (1) primary and (2) replica. We configure Pgpool-
IT [40] to use its “native replication” clustering mode that routes queries to connection pools
for both the primary and the replica DBMSs. The proxy returns results to the client from the
primary, and there is no validation that both servers produced the same results. The proxy
only ensures that both servers are ready for the following query before allowing the client to
proceed. This scenario mimics simultaneously sending an actual workload to a production and
staging DBMS. We configure Tigger’s mirroring logic to behave like Pgpool-II. Pgpool-II does
not support transaction pooling, so we use session pooling and lower the number of client
connections to 20.

Figure 4.12 shows the mean latencies of YCSB in the mirroring scenario described above.
On average, Tigger produces transaction latencies that are 92% lower than those with Pgpool-IL
Mirroring is expensive to implement in user-space because for each replica, a user-space proxy
must copy the queries and results from the kernel, which is the most costly part of the Linux
networking stack. In contrast, Tigger’s user-bypass design benefits from eliding system calls
and zero-copy socket buffer duplication in the Linux kernel to enable mirroring. Comparing
Tigger’s performance from another YCSB experiment in Table 4.2 without mirroring and much
more connections, we see that Tigger maintains <1 ms transaction latency in both scenarios.
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Figure 4.13: Protocol Efficiency — No-op throughput to compare transaction against session
pooling, and TCP against Unix sockets.

4.5.5 Protocol Efficiency

We next evaluate the proxies’ efficiency at applying DBMS protocol logic and explore the over-
heads associated with TCP and Unix sockets. We configure the proxies for both session and
transaction pooling, as detailed in Section 4.4.1. We reduce the number of terminals to 20 be-
cause we are using session pooling and do not want the number of back-end DBMS connec-
tions to get too large. This experiment evaluates how efficiently proxies apply knowledge of
the DBMS’s network protocol to find transaction boundaries in messages and maintain state
about connection status.

To avoid unnecessary overhead from the DBMS and exercise proxies’ logic as much as pos-
sible, we run the No-op workload. We also run the proxies on the same server as the DBMS
to reduce network hops. This configuration also allows us to evaluate Odyssey and PgBouncer
with TCP and Unix socket connections to the DBMS. Unix sockets are more efficient than TCP
networking, so we enable this optimization to quantify their benefit.

The results in Figure 4.13a show the throughput of the proxies in transaction pooling mode.
As a baseline, No-op throughput when BenchBase connects to PostgreSQL without a proxy is
214k TPS. PgBouncer performs the worst, with 71% and 67% reductions in No-op throughput
over TCP and Unix sockets, respectively. Odyssey’s throughput drops 29% and 24% over TCP
and Unix sockets. Unix sockets perform better for both proxies because it is a more efficient
form of interprocess communication than going through the entire TCP stack. In comparing
these results to Figure 4.13b, we see that Tigger experiences no throughput degradation when
performing extra logic for transaction pooling. The other proxies do not perform as poorly
with the simpler task of session pooling, but Tigger offers consistently better performance and
pushes the bottleneck to communication overhead elsewhere.

These results also show the benefit of Tigger’s user-bypass, as it outperforms the other
proxies, reducing the throughput by only 8% compared to the baseline performance. No-op’s
messages are small (i.e., fewer than 64 bytes), so the primary benefit of user-bypass is reducing
system call overhead. Unix sockets between the DBMS and proxy yield little benefit over TCP
sockets.
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Figure 4.14: CPU Efficiency - Breakdown of CPU utilization for YCSB in Table 4.2 and Fig-
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cution.

4.5.6 CPU Efficiency

We next evaluate the CPU efficiency of Tigger’s user-bypass approach compared to other DBMS
proxies using YCSB. We measure the proxy server’s CPU utilization using sysstat [53], which
attributes time spent in user-space, kernel-space, and software interrupts. We are interested in
the latter because Tigger’s eBPF programs attached at the sockmap layer run on kernel threads
queued as software interrupts (see Section 4.3.1).

Figure 4.14a shows the CPU utilization for the YCSB experiment in Table 4.2. PgBouncer
again serves as the baseline. Although Odyssey provides lower latencies than PgBouncer, it
increases the CPU overhead by 54%. Odyssey’s complex user-space logic for coroutines incurs
high overhead to perform the same amount of work as PgBouncer. Lastly, Tigger requires the
fewest CPU cycles while providing the best performance of the three proxies. As expected,
Tigger’s user-bypass design shows almost no CPU time spent in user-space, and reduces the
time spent in the kernel by not repeatedly copying socket buffers in system calls.

Figure 4.14b shows the CPU utilization for the YCSB experiment in Figure 4.12. Tigger uses
88% less CPU than Pgpool-II to perform workload mirroring. Pgpool-II must copy buffers and
duplicate system calls to perform mirroring, which incurs significant overhead. Tigger benefits
from zero-copy socket buffer cloning and redirects these buffers to mirrors without system calls.

4.5.7 Large Data Transfer

Although large data transfers through DBMS proxies are not as common as transactional work-
loads, we evaluate the overhead of performing such a task. In this scenario, we run the pg_dump
utility that creates a backup of a PostgreSQL database over the network. pg_dump connects to
the DBMS like any client, communicates over the PostgreSQL protocol, and extracts database
contents data using the COPY SQL command. We run pg_dump on a dedicated application server,
create a PostgreSQL database with 20 tables, and insert 50m single-column INTEGER tuples into
each table. The overall database size is 34 GB.

Figure 4.15 shows the elapsed time for pg_dump to complete a backup in different proxy
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Figure 4.15: Large Data Transfer — Elapsed time for pg_dump to back up a 34 GB database
through different DBMS proxies.

scenarios. All three proxies complete the copy without overhead (i.e., pg_dump’s efficiency is
the bottleneck). This experiment demonstrates a workload where the bottleneck exists at the
client or the DBMS, rather than the proxy. In this scenario, a DBMS proxy adds no measurable
overhead.

4.5.8 Proxy Instance Size

To complete our evaluation, we now measure the maximum throughput of the proxies with
varying EC2 instance sizes. While customers typically deploy proxies on weak servers, we
aim to investigate their performance benefits when allocated more resources. For Odyssey and
Tigger, this offers opportunities to express parallelism, while PgBouncer only supports a single
worker. We run No-op, TPC-C, and YCSB with unlimited submission rates.

Figure 4.16 shows the throughput of the different DBMS proxies on varying instance sizes.
For every instance type, Tigger yields the highest throughput. All three proxies scale roughly
linearly as the resources of each instance increase. For Odyssey, this makes sense because it
uses multiple user-space worker threads, so Odyssey expresses greater parallelism. PgBouncer
performs better as instance types change despite being single-threaded. We attribute this to
the noisy neighbor problem: the more resources requested from a multi-tenant system, the less
competition for unprovisioned hardware (i.e., CPU caches).

With No-op and the smallest instance type (i.e., large, which the other experiments use
for the proxy), Tigger more than doubles the throughput of PgBouncer and Odyssey. In this
scenario, all three proxies are bottlenecked by CPU utilization. Tigger’s higher performance
demonstrates the benefit of user-bypass, which does not waste CPU cycles shuffling network
buffers between user-space and kernel-space. In all three workloads, Odyssey requires an
8xlarge instance at 8x the cost to match Tigger’s baseline performance on a large instance.
This experiment demonstrates the benefit of user-bypass to efficiently use CPU resources in
resource-constrained scenarios and the impact that user-bypass has on cloud cost.

4.6 Conclusion

DBMS proxies manage connections to address scalability and connection life cycle issues in-
troduced by modern cloud applications. These programs apply DBMS-specific protocol logic to
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Figure 4.16: Proxy Instance Size — Transaction throughput while varying proxy server in-
stance size.

multiplex client connections. But these proxies incur inefficiencies because they are user-space
applications that rely on system calls to copy buffers to and from kernel-space. We introduce
a user-bypass technique to overcome these shortcomings by pushing application logic into the
Linux kernel using eBPF. We show how to apply user-bypass with our PostgreSQL-compatible
proxy Tigger. When compared against other DBMS proxies, Tigger offers the best performance
and lowest operating cost. Our evaluation shows the value of user-bypass to reduce data move-
ment between kernel-space and user-space and avoid costly system calls.
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Chapter 5

User-Bypass DBMS Architecture

As more developers adopt eBPF and apply user-bypass techniques, the need for more robust
data management solutions grows. eBPF programs store their data in eBPF maps, which do
not offer ACID properties. For example, eBPF offers safe concurrent accesses for multithreaded
applications based on Linux’s read-copy-update (RCU) semantics, but only for a single access
(i.e., read, update). This limitation forces developers to implement their own synchronization
mechanisms to avoid race conditions when accessing eBPF maps multiple times.

Simmilarly, eBPF programs do not support inter-process communication (IPC) and must
coordinate concurrent execution through eBPF maps. Building this bespoke logic is onerous and
error-prone, making it difficult for developers to reason about the serializability of execution.
Lastly, eBPF maps reside in kernel-space memory, providing no interface to make their contents
durable on disk.

As a workaround, eBPF developers may choose to store their application state in a user-
space DBMS . However, eBPF programs cannot communicate synchronously with user-space
applications. This restriction makes it impossible for event-driven, time-limited eBPF programs
to retrieve data within their execution budget.

To solve the abovementioned problems, we present BPF-DB, an in-memory, kernel-embedded
DBMS that offers ACID-compliant transactions for eBPF applications. We implement BPF-DB
in eBPF rather than modifying the OS kernel. With this approach, developers can develop
user-bypass applications using BPF-DB without sacrificing their system’s security or stability.
We discuss our deviations from traditional DBMS design to suit eBPF’s restrictive execution
environment.

We build two sample applications using BPF-DB: (1) a transactional key-value store (KVS),
and (2) a voter application that exercises serializable multi-statement transactions. We compare
BPF-DB’s KVS against Redis-compatible in-memory DBMSs, and its voter application against
VoltDB. The former scenario matches state-of-the-art designs, offering over 2 M requests per
second for networked clients. Compared to VoltDB, BPF-DB achieves 43% higher throughput.

This chapter is organized as follows. We first discuss embedded DBMSs and expand on
the limited data management options in eBPF’s runtime in Section 5.1. Then, we introduce
BPF-DB as a solution to those limitations in Section 5.2. Next, in Section 5.3, we detail the
implementation challenges and design decisions of BPF-DB in the context of traditional DBMS
solutions. We demonstrate two applications built on BPF-DB in Section 5.4 and then compare
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them against state-of-the-art implementations in Section 5.5. We provide concluding remarks
in Section 5.6.

5.1 Background

We begin by discussing embedded DBMSs in contrast to standalone DBMSs. Then, we discuss
state of eBPF storage and concurrency semantics.

5.1.1 Embedded DBMSs

DBMS developers typically distribute standalone DBMSs that run in dedicated user-space pro-
cesses. Client applications send queries and retrieve results from the DBMS via inter-process
communication (IPC), for example, over sockets with a DBMS-specific protocol. In contrast,
embedded DBMSs compile the DBMS into the client application, either by including the DBMS
source code or linking the DBMS as a library. Clients interact with an embedded DBMS through
an application programming interface (API) and access database contents in the context of their
own source code, thread execution, and process address space. Developers may use an embed-
ded DBMS if their application is the only database client or the deployment environment does
not offer robust multi-tasking or IPC (e.g., embedded systems).

Embedded DBMSs vary in their capabilities and complexity. SQL systems like SQLite [110]
and DuckDB [175] offer ACID transactions and robust analytics performance, respectively.
Other embedded DBMSs like Berkeley DB [170] and RocksDB [98] present a key-value interface
and enable client applications to run transactions over database contents. Embedded DBMSs
simplify the non-trivial work of query processing and data integrity so application developers
can focus on the core functionalities of their products.

5.1.2 eBPF Storage and Concurrency

As introduced in Section 2.2, eBPF maps store data in kernel-resident memory between program
invocations. These maps use a key-value interface and are safe for concurrent access due to the
Linux kernel’s read-copy-update (RCU) interface [160]. However, each access to a map is a sin-
gle atomic operation, and eBPF execution does not provide any interface to atomically modify
multiple eBPF map entries at once (e.g., transactions or grouped writes). These abstractions are
sufficient if eBPF programs attach to points without concurrent execution (e.g., single-threaded
application). However, eBPF programs can attach to multithreaded applications or launch from
kernel tasks that run on CPU interrupts. In this parallel execution scenario, developers must
consider race conditions when interleaving eBPF map operations.

Although its eBPF maps rely on RCU internally, the Linux kernel provides limited access to
its RCU mechanism. With RCU, developers can mark explicit synchronization points in their
programs to implement features similar to epoch-based garbage collection. A recent kernel
patch added an RCU-based read latch for reading kernel data protected by RCU semantics [11].
However, its applications are limited, and the feature is only available on new Linux kernels.
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Without RCU primitives, ordering and synchronization from eBPF programs are challeng-
ing to implement without an explicit coordination mechanism. eBPF maps do not expose any
way to roll back operations, so guaranteeing execution with “exactly once” semantics is non-
obvious. As a reduced instruction set, eBPF supports a subset of atomic instructions (e.g., ADD,
AND, OR, XOR, XCHG, CMPXCHG) [8]. The kernel extends atomic primitives by providing a
spin latch eBPF helper, but the verifier restricts the scenarios when developers can use it. For
example, the verifier enforces that the eBPF program does not call functions while holding a
latch, and programs cannot hold more than one latch at a time to prevent deadlocks. With these
restrictions, developers cannot use a spin latch to provide mutual exclusion to access multiple
eBPF map entries simultaneously because these operations require function calls. In practice,
eBPF maps provide no ACID guarantees, and it is non-trivial and laborious to reimplement this
behavior for every application in eBPF.

5.2 BPF-DB Embedded DBMS

We now introduce a solution to the challenges outlined in Section 5.1. Specifically, we ease
eBPF’s concurrency and data management challenges with an embedded DBMS for eBPF pro-
grams. BPF-DB is an in-memory DBMS that runs in kernel-space to provide serializable ACID
transactions and a key-value interface for eBPF applications. Through BPF-DB’s API, devel-
opers define eBPF program sequences akin to stored procedures. These procedures interleave
custom eBPF code with BPF-DB’s operators using continuation-passing style (CPS) [194] logic.
With this form of control flow, developers define continuations when calling into procedures.
When the called procedure completes, rather than returning to its caller as in direct style, it
calls the appropriate continuation. Developers can construct procedures that tail call through
multiple eBPF programs and BPF-DB operators through continuations. We describe this design
in further detail in Section 5.2.2

Figure 5.1 shows the design of BPF-DB: eBPF programs (shown in blue) running in kernel-
space access and modify database contents through ACID-compliant operators. BPF-DB stores
database contents in eBPF maps that client applications only access through BPF-DB’s opera-
tors. However, they can define and access other eBPF maps to store application data that does
not require ACID semantics.

BPF-DB’s primary eBPF map is its Index, which stores keys and their associated metadata
(e.g., locks, version information). BPF-DB accesses associated values in eBPF maps for differ-
ent value sizes from this key metadata. BPF-DB uses these value maps to address the lack of
dynamic memory allocation in eBPF programs. For example, values up to 8 B are stored in one
eBPF map, and values up to 16 B in another. Because BPF-DB stores its data in kernel mem-
ory independent from its eBPF programs, developers can load and unload client applications
and BPF-DB operators without losing database contents. This design is similar to how Scuba
achieves system restarts without reloading data by storing its database contents in shared sys-
tem memory [114]. We discuss BPF-DB’s storage architecture in greater detail in Section 5.3.1.

To deploy BPF-DB, eBPF developers implement their application logic in standalone pro-
grams. Each time their application accesses BPF-DB, developers define continuations that in-
struct BPF-DB what code to execute after completing its operator. Developers then compile

65



g ¢ a File
3 € —>
§ WAL Consumer % Network
] ﬁ 5
eBPF Applications :’ Operators eBPF Maps ~:
[Object Caching] : ( BEGIN ) :
Kernel ! :
g [ Observability ] . ( SET ) .
o < > < > |
T Container ! E :
g Networking ' GET [ ] '
> ! A .
Intrusion : : :
[ Detection ] ] ( COMMIT ) i
E : Index Values :
[ Proxying ] : g BPF_DB :

Figure 5.1: BPF-DB Embedded DBMS - eBPF programs (shown in blue) running in kernel-
space invoke BPF-DB’s API to access and modify database contents through serializable, ACID-
compliant operators. BPF-DB optionally logs writes to a buffer accessible from user-space
which a consumer can then persist locally or replicate.

their client application and BPF-DB and load the programs into the kernel with the BPF () sys-
tem call. Once verified and loaded into the kernel, BPF-DB instantiates its eBPF maps and
applications can start accessing database contents. One benefit of compiling BPF-DB operators
with client applications is that compilers can optimize the generated eBPF code for continua-
tion definitions and current knob settings (e.g., WAL enabled, maximum number of versions,
maximum locks per transaction). The result is specialized operators akin to pre-compiled stored
procedures. For example, turning logging on or off is a compile-time constant for BPF-DB op-
erators. If WAL is turned off at compilation time, an optimizing compiler like Clang or GCC
will omit all WAL logic during dead code elimination. However, this design choice does not
prevent developers from enabling BPF-DB’s WAL during runtime. By later recompiling BPF-
DB’s operators with logging enabled, the compiler generates new eBPF programs that can be
atomically swapped with existing programs using the BPF () system call.

5.2.1 ACID Semantics

BPF-DB provides ACID (i.e., atomicity, consistency, isolation, durability) guarantees to eBPF
programs accessing its database contents concurrently. Transactions enable developers to group
multiple database operations (e.g., GET, SET) together and appear as though they occur as a sin-
gle logical event. BPF-DB also provides roll-back semantics to eBPF programs. When combined
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Table 5.1: BPF-DB Operators and Tail Call Continuations — Application developers define
eBPF programs for each of BPF-DB’s possible tail call exits.

Operation Tail Call Continuations

BEGIN (1) OK, (2) Error

BEGIN (read-only) (1) OK

GET (1) Key found, (2) Key not found, (3) Error
GET (read-only) (1) Key found, (2) Key not found
GET (auto-commit) (1) Key found, (2) Key not found
SET (1) OK, (2) Error

SET (auto-commit) (1) OK, (2) Error

COMMIT (1) OK, (2) Error

COMMIT (read-only) (1) OK

ROLL BACK (1) OK

with transaction atomicity, BPF-DB ensures that either all operations in a transaction complete
or none of the operations complete.

BPF-DB makes it easier for eBPF developers to consider race conditions through consis-
tency and isolation. For example, BPF-DB’s key-value API maintains primary key semantics so
developers can uniquely address records and use BPF-DB as their primary data store. For eBPF
programs accessing BPF-DB from multiple threads, their transactions proceed as if running in
isolation as long as their operations do not violate serializability. Developers receive feedback
when their transactions cannot commit and can react depending on the semantics of their ap-
plication (e.g., retry). BPF-DB’s design provides eBPF programs with “exactly once” semantics
that they previously lacked. Lastly, BPF-DB can optionally record modifying transactions to a
write-ahead log (WAL), ensuring the durability of all writes to the DBMS. eBPF maps are not
persistent and do not provide an interface to save their contents to disk. BPF-DB addresses this
shortcoming by exporting a WAL of its operations that a user-space application can store on
disk or replicate over the network.

5.2.2 Application Programming Interface

BPF-DB presents a key-value interface to its client application. Table 5.1 enumerates BPF-DB’s
operators and each operator’s possible tail call continuations. Application developers must
define all continuations for operators they use. Otherwise, BPF-DB’s code will fail to compile.

Depending on the operator they are using, developers define continuations from a set of
four possible states. GET operators require continuations for whether a key exists or not. The
OK state signifies that the called operator succeeded, and is ready to tail call its continuation.
In contast, the Error state denotes that the operation cannot proceed and that the transaction
is now in a failed state and cannot commit. Error states can be originate from several sources.
First, BPF-DB employs locking to provide ACID semantics, and lock conflicts for a GET or SET
operator cause an Error state. Second, if WAL is enabled and BPF-DB is unable to write entry
due to the buffer being full, it will generate an Error state. Lastly, BPF-DB checks the return
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Figure 5.2: Continuations for SET - BPF-DB’s SET operator (shown in red) with application
logic (shown in blue). Conditional tail calls define the continuations for each eBPF program,
represented by a box.

code eBPF helper function calls provided by the kernel. If any of those functions fail due to an
internal constraint (e.g., out of memory), then BPF-DB reports an Error state.

BPF-DB provides read-only transactions for performance optimization and developer con-
venience. Because BPF-DB maintains multiple versions of database records, non-modifying
transactions can proceed without blocking writers. Read-only transactions do not contain any
Error states because they do not acquire locks or flush log records. Read-only transactions also
do not perform writes on database contents using eBPF helpers. This design improves BPF-DB’s
performance and reduces the number of continuations for application developers to define.

Figure 5.2 shows a control-flow graph of BPF-DB’s CPS design and integration with custom
application logic. Each box represents an eBPF program, with application logic in blue and
BPF-DB logic in red. In this example, a parser written in eBPF receives an input query string to
set the key “foo” to the value “bar”. If the string is a valid query, the parser populates a Context
object that BPF-DB stores in an eBPF map with both the key and the value and tail calls into
the SET operator. The BPF-DB SET operator runs to completion and either tail calls to the error
handler because it could not set the value or tail calls to the success handler. This example uses
strings for keys and values, but BPF-DB does not expose a notion of types in its APL Keys and
values are byte sequences with corresponding length attributes, and applications use their own
data encoding scheme. This design makes it easy for application developers to store binary or
string-encoded data in BPF-DB, as demonstrated in Section 5.4.

BPF-DB’s CPS architecture provides multiple benefits. First, BPF-DB’s operators are self-
contained eBPF programs accessed through tail calls, so their eBPF instructions do not count
against an application’s instruction limit. Second, we define BPF-DB’s operators (along with
their continuations) separately so developers compile and load BPF-DB into the Linux kernel
independently. If an eBPF developer is writing their project in a language other than C (e.g.,
Rust, Go) they can continue to use their original language independently of BPF-DB. Lastly, the
separation of BPF-DB and application logic not only simplifies development, but also provides
runtime benefits. The Linux kernel atomically loads and unloads eBPF programs so developers
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can modify application and BPF-DB logic independently without downtime. We discuss some
possibilities of this benefit in Section 7.2.

BPF-DB exposes a low-level DBMS AP], similar to RocksDB. For this reason, developers are
responsible for producing valid BPF-DB procedures. For example, custom procedures must not
BEGIN a modifying transaction and then call BPF-DB’s read-only COMMIT operator. We be-
lieve this is a suitable design choice for multiple reasons. First, as discussed in Section 7.2, eBPF
is amenable to code generation from high-level scripting languages. A future domain-specific
language and corresponding compiler could enforce BPF-DB constraints at code generation
time, similar to checks within eBPF’s verifier. Even without code generation, building a static
analysis tool to enforce BPF-DB semantics could help developer productivity. Second, if an
application provides interactive transactions to clients, whereby clients could invoke behavior
that would violate BPF-DB’s semantics, the application code could enforce this runtime valida-
tion logic. For example, the parser in Figure 5.2 could handle the case of an interactive client
calling an invalid command sequence with its continuations rather than calling into BPF-DB.
Third, eBPF developers are used to disciplined software design due to the eBPF verifier’s strict
requirements, and BPF-DB’s requirements are no more onerous than existing eBPF limitations.

5.3 BPF-DB Design

In this section, we detail BPF-DB’s design considerations in the context of traditional in-memory
DBMS design. First, we discuss BPF-DB’s storage manager, which uses eBPF maps to store
variable-sized key-value pairs. Next, we present BPF-DB’s concurrency control implementation
for serializable transactions. Then, we show the challenges of ensuring durability for contents
stored in kernel-space and describe BPF-DB’s write-ahead logging solution. Lastly, we detail
design and implementation considerations for BPF-DB’s operators.

5.3.1 Storage Management

DBMSs rely on storage managers to store, organize, and retrieve database entries. This compo-
nent builds upon complex data structures that ensure correctness even under concurrent oper-
ations. For example, a disk-based storage manager will store its databases in fixed-size pages
that it organizes into pools with specialized eviction policies (e.g., LRU, clock). The storage
manager is also responsible for maintaining supplemental data structures for indexes like B+
trees or hash tables. Some storage managers are key-value-based and rely entirely on tree-based
data structures like the log-structured merge (LSM) tree. BPF-DB relies on an in-memory stor-
age manager for variable-length key-value pairs, providing a design that generalizes to more
complex data types for its host applications.

BPF-DB stores its database in kernel-resident data structures to access and manage the con-
tents for other eBPF applications. As detailed in Chapter 2, the only memory that eBPF pro-
grams can use to retain data in between program executions is eBPF maps. In this execution en-
vironment, there is no API to access the heap (i.e., dynamic memory allocation) like malloc().
Thus, BPF-DB uses eBPF maps to store all of its database contents.

eBPF programs must define their eBPF maps and corresponding key and value sizes before
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Figure 5.3: BPF-DB’s Index and Value Maps — BPF-DB uses a top-level index where locks
are stored inline with the key and version metadata. Values are stored in separate eBPF maps
based on their size class. Values maps for other size classes are not shown.

being loaded into the kernel. This requirement exists because the verifier must enforce the rule
that eBPF programs do not access keys or values out of bounds. A naive implementation could
use a single eBPF hash map for the entire database, where the keys and values are restricted
to one size. However, this design would trade simplicity for memory fragmentation. Every
key-value pair would use the maximum number of bytes regardless of the actual size of the
entry. BPF-DB works around this lack of dynamism in eBPF value size by instantiating eBPF
maps for different size classes. Then, BPF-DB stores values in the eBPF map that best suits
their sizes, similar to user-space memory allocators that maintain free lists for different object
sizes [74, 75, 121, 208].

Figure 5.3 shows the design of BPF-DB’s hierarchical eBPF maps that store its database
contents. The first level is the database Index, which contains keys and metadata (e.g., locks,
timestamps) for every database entry. For brevity, Figure 5.3 only shows a subset of the value
maps for different size classes. BPF-DB first performs a lookup in the database index to access
a database entry, . For a GET operator, the absence of an index entry is enough information to
call to the continuation for the key not existing in the database. If an index entry does exist,
then the GET operator must perform a second eBPF map lookup into the correct value map.
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Figure 5.4: Database Key with Multiple Values — BPF-DB maps a single key entry to multi-
ple values based on their commit timestamp. These values can belong to different size classes.

BPF-DB employs multi-versioned concurrency control (MVCC) to provide isolation between
concurrent transactions. Figure 5.4 details the contents of a single entry in the database index,
showing a key “foo” with two corresponding versions: (1) a “bar” value in one size class and (2)
a “buzz..” value in another size class. Rather than using a centralized lock table, BPF-DB stores
locks inline with the key and version metadata, a common design for in-memory DBMSs [116].
We elaborate on BPF-DB’s locking and concurrency control in Section 5.3.2.

Each database index entry also contains MVCC information for its key. Unlike many DBMSs,
the number of versions for each entry is not unbounded. There are several reasons for this de-
sign choice. (1) The eBPF verifier requires compile-time bounds on all loops, so traversing a
version chain requires an a priori limit on the number of elements that a eBPF program will
inspect. (2) The lack of dynamic memory allocation precludes a typical linked list implemen-
tation for the version chain. (3) BPF-DB assumes short transactions; thus, it will not need to
maintain many versions of an entry for extended periods.

Typical DBMSs that employ MVCC order their version chains based on timestamps, either
from newest to oldest or oldest to newest [211]. The former optimizes for recent transactions
to scan fewer entries of the chain at the expense of increased contention and possible index
maintenance at the head of the chain. The latter simplifies index maintenance during updates,
deferring their updates until GC prunes old versions.

BPF-DB implements neither of these version chain orderings—instead it maintains an un-
ordered array of 8 B version timestamps. When a GET or SET operator needs to determine the
correct version of a record to access based on its timestamp, it scans the whole array. As de-
scribed above, version chains must be bounded to satisfy the eBPF verifier, and BPF-DB assumes
transactions are short-lived and thus does not need to maintain many old versions. For these
reasons, we assume that a version array fits within a CPU’s 64 B L1 cache line, corresponding
to a maximum number of either versions. Scanning a data structure that fits within a cache line
is fast, and the added logic of maintaining an ordered version array is not worth the verifier
complexity penalty.
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Updating a database entry creates a new version; eventually, the old version will no longer
be visible to any new transactions. For this reason, BPF-DB must perform garbage collection
(GC) to prune old versions from the system. BPF-DB employs a cooperative GC approach where
SET operators, if the version array is full, then SET also removes any obsolete versions. We use
cooperative GC to exploit the fact that the SET operator must acquire the write lock on an entry
to update it so we can avoid added contention from an external GC worker trying to acquire
write locks. This design has the trade-off of potentially allowing stale versions to persist in
the database until a key’s version array fills and triggers cooperative GC. We explore changing
version array sizes and disabling MVCC in Sections 5.5.8 and 5.5.9, respectively. If coopera-
tive GC retains too many stale versions, a future optimization for BPF-DB would be to create
a background kernel worker (written in eBPF) that uses the bpf_timer () helper to perform
background GC at a fixed interval. This approach would come at the expense of increased
per-entry lock and eBPF map latch contention. This design is evocative of Deuteronomy [145],
which applies soft and hard limits to the total number of versions in the system to trigger GC.
However, BPF-DB’s limits are more fine-grained on a per-key basis.

5.3.2 Transaction Management

Multi-statement transactions are a hallmark feature of DBMSs. The transaction manager ap-
plies policies to enforce a concurrency control protocol. These protocols maintain the ACID
properties of the DBMS, ensuring (1) all operations in a transaction appear to occur atomically,
(2) the database maintains a consistent view to users, (3) transactions run in isolation from each
other, and (4) and changes to the database are durable before a transaction completes.

Transaction managers apply concurrency control methods like two-phase locking (2PL),
optimistic concurrency control (OCC), or timestamp ordering (TO) to allow for inter-query
parallelism [211]. Each method has trade-offs, and multi-versioned systems incur additional
choices like version chain ordering (e.g., newest-to-oldest, oldest-to-newest), garbage collection
schemes, and version contents.

eBPF’s execution environment limits traditional concurrency control implementations. For
example, each operator is a self-contained eBPF program and thus must encapsulate all concur-
rency control logic for that operator. Also, BPF-DB requires a concurrency control protocol that
is simple enough to satisfy the eBPF verifier. OCC introduces non-determinism, whereby com-
mit logic must reevaluate database operations against others to detect conflict. As described in
Section 5.1.2, eBPF’s inability to nest spin latches or call eBPF helper functions while holding a
latch restricts concurrency control protocols with complex mutual exclusion logic. Lastly, eBPF
programs are event-driven and cannot yield their thread or suspend execution. This require-
ment precludes concurrency control methods that require an external scheduler whereby an
operator would enqueue a request and await its scheduled result [177, 197].

For these reasons, BPF-DB does not have a centralized transaction manager. BPF-DB applies
a multi-versioned Strict Two-Phase Locking (Strict-2PL) for serializable transactions [71]. With
this approach, operators acquire read and write locks that reside inline with the records [116]
rather than in a centralized lock table. The “Strict” implementation of 2PL requires transac-
tions to hold all their locks until they either commit or roll back. BPF-DB’s timestamp-based
multi-versioning presents performance benefits. For example, we adopt a multiversion mixed
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method [71] (ROMV [207]) whereby read-only transactions do not acquire any read locks but
still maintain serializable properties.

Locking-based concurrency control introduces the potential for deadlocks, and DBMSs typ-
ically implement either deadlock detection or deadlock prevention. Deadlock detection gener-
ates dependency graphs and then applies a cycle detection algorithm—logic that is too complex
for the eBPF verifier. Instead, BPF-DB employs a policy for lock acquisition that prevents dead-
locks. BPF-DB allocates timestamps for multi-versioning but does not use these timestamps to
implement a wound-wait or wait-die deadlock prevention policy. These policies require coor-
dination between workers to implement lock stealing and coordinate restarts, and eBPF does
not provide primitives for this behavior. Instead, BPF-DB applies a no-wait policy for lock
acquisition that provides the fastest transaction performance for in-memory DBMSs [211].

5.3.3 Logging and Checkpointing

In-memory DBMSs must write their database contents to persistent storage to ensure durability.
These systems rely on two methods to guarantee that they can restore their database contents
after a restart: logging and checkpointing. Logging and checkpointing components are the least
amenable to applying user-bypass. This conflict stems from eBPF’s inability to write to disk.
I/O operations like writes can block for an indeterminate amount of time, which is not allowed
during the execution of eBPF programs. We will discuss the challenges and opportunities of
applying these techniques in BPF-DB.

Write-ahead logging (WAL) requires the DBMS to maintain a ledger of all database mod-
ifications. Upon restart, the DBMS replays the log to reconstruct the database contents. The
standard method to perform these tasks is ARIES [165], though modern systems introduce new
optimizations [125]. Most DBMSs expose a knob that determines whether transactions commit
synchronously or asynchronously. With asynchronous durability, the DBMS submits a trans-
action’s changes to the log writer but can acknowledge transaction completion to the client
without guaranteeing that the changes are persistent on disk. Synchronous durability ensures
the OS has written a transaction’s contents via the write() system call. It may also guarantee
that the system performs the fsync() system call to ensure OS write buffers are flushed.

eBPF’s inability to initiate I/O (i.e., disk or network writes) necessitates a user-space com-
ponent to persist BPF-DB’s database contents. Thus, BPF-DB takes a hybrid user-space and
kernel-space approach to logging. If WAL is enabled, BPF-DB sends all write operations to a
ring buffer accessible from user-space. If the ring buffer is full and BPF-DB cannot complete its
write operation, it reports an error and tail calls the error continuation. The application must
roll back the transaction because not all its writes are in the log.

As shown in Figure 5.1, a WAL consumer process in user-space consumes the contents of
the ring buffer. eBPF’s ring buffer offers the ability to notify user-space consumers via epoll ()
when to consume the buffer. BPF-DB offers a tunable knob whereby it will only notify waiters
after writing a specified amount of data. This approach reduces the amount of signal han-
dling overhead between kernel-space and user-space, and can be adjusted based on the desired
wakeup frequency of any user-space consumers.

After wakeup by notification or a timeout, the user-space component consumes data from
the buffer, providing asynchronous durability for BPF-DB writes. BPF-DB writes timestamps
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out with its logical log records, and provides an eBPF map entry for WAL consumers to update
the last persisted timestamp. With this approach, client applications implement their dura-
bility semantics and can optionally check if their writes are durable before proceeding. The
fixed-sized ring buffer and the timestamp for most recently flushed writes present two possi-
ble mechanisms for applications built on BPF-DB to apply back pressure to a workload. We
evaluate the performance and trade-offs of this logging approach in Section 5.5.4.

Checkpointing is the process of writing all the contents of the database to disk, thus preserv-
ing a consistent snapshot of the database at a single point in time. Upon restart, the DBMS reads
the checkpoint file’s contents to load the database contents into memory. The most straightfor-
ward approach to checkpointing is to block all transactions that are not read-only while flush-
ing the database contents to disk. Once the checkpoint is complete, all transactions can resume.
This approach limits the transaction performance of the system if there are no predictable pe-
riods of quiescence. DBMSs commonly support fuzzy checkpointing [178], whereby all trans-
actions continue to run during the checkpointing process. However, the DBMS performs extra
bookkeeping to guarantee that the checkpointing component sees a consistent snapshot of the
database contents.

Similar to the limitations related to I/O initiation for logging, checkpointing also requires
a user-space component, which we defer for future work. However, we still discuss some of
the challenges associated with checkpointing below. We discuss future work related to check-
pointing in greater detail in Section 7.2.

Techniques that rely on virtual memory’s copy-on-write to create a snapshot of database
contents by calling fork() on the DBMS’s process will not work with a user-bypass system
because the database is stored in kernel memory [135]. Instead, a user-space process must
read the contents of BPF-DB’s eBPF maps using the BPF () system call. This approach requires
the DBMS to stop accepting queries because no DBMS locking mechanisms are available from
user-space.

5.4 Applications

Section 5.2.2 describes BPF-DB as an embedded DBMS that enables developers to build eBPF
applications around its operators. We now detail the two sample applications we use to demon-
strate and evaluate BPF-DB: (1) a transactional key-value store and (2) a multi-statement trans-
action workload.

5.4.1 Transactional Key-Value Store

The first system we use to evaluate BPF-DB is a transactional key-value store (KVS) that sup-
ports a modified Redis network protocol. We implement an eBPF program that parses a subset
of Redis commands and types with continuations to call into corresponding BPF-DB operators.
This design allows us to reuse Redis’s command-line interface and benchmarking tools. The
KVS’s parser supports basic SET and GET commands. We also extended the protocol with cus-
tom commands for beginning and ending transactions because the Redis protocol’s MULTI/EXEC
commands do not provide serializable ACID semantics. Redis is a string-based protocol, so the
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Figure 5.5: Transactional Key-Value Store Control-Flow Graph — The transactional KVS
composes BPF-DB’s GET and SET commands (shown in red) with application logic (shown in
blue). Conditional tail calls define the continuations for each eBPF program.
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Figure 5.6: Voter Control-Flow Graph — The VOTE procedure from the Voter benchmark
includes three GET and two SET commands with application logic to validate between each
operator.

transactional KVS stores all keys and values in their native Redis encoding. We also define
eBPF programs that serialize and send Redis protocol responses over the network to the client
as BPF-DB continuations.

Figure 5.5 shows an example of the control-flow graphs to support GET and SET. In Fig-
ure 5.5a, the query "GET foo" is input to the first piece of application code, the Redis parser. If
the input string parses as a GET command, the application populates BPF-DB’s context object
with the key and tail calls into BPF-DB’s GET operator. GET has two possible outcomes: (1) the
provided key is not found, in which case BPF-DB tail calls to an eBPF program that responds
with Redis’s NIL object, or (2) the key is found, and the continuation eBPF program serializes
the value response to the client. Figure 5.5b shows similar behavior but with continuations that
reflect SET’s possible continuations.

5.4.2 Voter

The second system exercises BPF-DB’s serializable transactions with multiple GET and SET
operators per transaction. We implement the Voter benchmark [193], which models a call-in
voting system. We only run the VOTE stored procedure and drop any views and procedures
related to results tallying. Parameters include the number of contestants and the maximum
number of votes per phone number, which we set to 12 and two, respectively. The schema
consists of (1) CONTESTANTS table that maps contestant identifiers to contestant names, (2)
VOTES table that records the phone number, state, and contestant identifier of each vote, and
(3) AREA_CODE_STATE that maps a set of phone area codes to their states. We briefly describe
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the VOTE stored procedure below:

* The workload generator provides three arguments. (1) The ten-digit phone number’s area
code is selected uniformly from a known set, with the seven remaining digits generated
from a uniform distribution. (2) The contestant identifier is uniformly chosen from the set
of valid contestants, but approximately 1% of VOTE operations contain an invalid contes-
tant number to exercise the stored procedure’s validation logic. (3) The maximum number
of votes is defined at the start of the workload and remains constant for all invocations
of the VOTE procedure.

* The DBMS looks up the phone area code to determine its state.

* The DBMS looks up the contestant identifier to verify its validity.

* The DBMS looks up the phone number’s vote count to see if the phone number is over
its vote limit.

* The DBMS records a new vote if the input arguments satisfy the constaints.

Figure 5.6 shows how these steps map to BPF-DB operations. The input to the system is
the name of the stored procedure, the phone number, the contestant identifier, and the vote
limit. VOTE’s logic is simple enough that we do not need separate eBPF programs between each
operator. Instead, it can embed the data validation logic (e.g., check if the phone number is over
its vote limit) in the continuation definitions before tail calling the next operator.

Because of its KVS interface, BPF-DB does not expose explicit schemas or tables. Instead,
BPF-DB’s Voter application prepends keys with distinct prefixes so entries in different tables
map to distinct key spaces. To mimic the view for the number of votes by each phone number,
BPF-DB’s implementation defines a separate keyspace and explicitly maintains an entry for
each phone number. This approach requires an extra SET for BPF-DB compared to the VOTE
procedure’s SQL definition.

5.5 Evaluation

In this section, we evaluate BPF-DB’s design and performance characteristics. First, we describe
our experimental setup, including environmental parameters and workloads. Then, we provide
an in-depth discussion of each experiment and its results.

5.5.1 Experimental Setup

eBPF programs are typically attached to other pieces of software (e.g., kernel stack, user-space
programs) and execute when a running process traverses their attachment point. For network
applications, developers have several choices of where to attach eBPF programs depending on
their performance and feature requirements. For our transactional KVS, we attach its initial
eBPF program (i.e., Redis parser) in the socket layer of the network stack, as shown in Fig-
ure 5.7a. When a buffer arrives on specified sockets, the Redis parser and subsequent BPF-DB
continuations will run. This approach introduces network stack overheads but allows us to
compare BPF-DB’s performance against other Redis-compatible systems.
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Figure 5.7: BPF-DB Benchmarking Strategies - We benchmark BPF-DB in two ways: (1) as
BPF-DB applications attached at the socket layer of the kernel’s network stack as in Figure 5.7a,
driven by an external tools over the network, and (2) loaded into kernel-space not attached to
any events as in Figure 5.7b. Instead, we drive BPF-DB with the bpf () system call from user-
space threads.

To eliminate external bottlenecks and more directly measure BPF-DB’s performance, we
also run workloads where a user-space thread invokes BPF-DB operations, as shown in Fig-
ure 5.7b. These threads use the bpf () system call and its BPF_PROG_TEST_RUN argument to run
BPF-DB in a controlled fashion. In this scenario, we no longer evaluate BPF-DB in the network
layer, so we do not need the Redis parser before BPF-DB’s GET or SET operators. We do not
need continuations to serialize and send the result back to a network client. Compared to Fig-
ure 5.7a, there are no software interrupts for the kernel to schedule, no extra buffers to copy,
and no network protocols or NIC driver overheads. This scenario targets BPF-DB’s operators
directly.

We evaluate BPF-DB on servers that contain 2x20-core Intel Xeon Gold 5218R CPUs, 192 GB
DRAM, a Samsung PM983 SSD, and a dual-port 10GbE network adapter. All servers run Ubuntu
Linux 22.04 LTS (Linux kernel v5.15) and connect to a Cisco Nexus 3064 10GbE network switch.
Unless otherwise specified, we use separate servers for DBMSs and workload generators. We
pin user-space programs to a single CPU socket to avoid NUMA effects. Similarly, we config-
ure the NIC to use 20 receive queues, each with affinity set to a dedicated CPU core on the
local NUMA node. Lastly, we optimize the network stack by disabling interrupt rate limiting,
expanding network buffer sizes, and turning off TCP timestamps and selective acknowledge-
ments.

Workloads: We compare BPF-DB’s transactional KVS against three other open-source Redis-
compatible proxies:
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* Redis (v7.2.4): Redis is one of the most widely deployed in-memory key-value stores.
Due to its popularity and maturity, we use Redis as the baseline implementation for user-
space key-value stores.

* KeyDB (v6.3.4): KeyDB is a multithreaded fork of Redis. Developers added user-space
worker threads and coarse-grained latches to maintain consistency across workers. This
implementation enables us to evaluate the Redis architecture with added parallelism. We
configured KeyDB to use four worker threads, as their documentation does not recom-
mend increasing beyond this number due to latch contention.

* Dragonfly (v1.14.4): This multithreaded KVS is a new in-memory implementation of
the Redis protocol. Dragonfly employs key-space partitioning, lightweight user-space
threads (i.e., fibers), asynchronous I/O, and a locking scheme inspired by VLL [177] to
maintain consistency across workers. Dragonfly serves as the state-of-the-art implemen-
tation for our networked KVS comparison. We configure Dragonfly to use 20 worker
threads to match the number of physical CPUs on its NUMA node.

In these networked KVS scenarios, we use memtier_benchmark [31] for workload genera-
tion and modify its key generation to support skewed Zipf distributions (6 = 0.99). We load 10M
keys for each experiment and use 16 B and 1 KB value sizes to reflect typical in-memory cache
workloads and YCSB [88], respectively. memtier_benchmark submits the workload in a closed
loop across 1,000 simultaneous clients on 80 worker threads. Each configuration runs five times.
All Redis workloads run with logging and checkpointing disabled because each DBMS provides
different durability semantics. For this reason, we evaluate BPF-DB’s WAL characteristics in
isolation in Section 5.5.4.

In addition to Redis workloads, we evaluate BPF-DB’s serializable multi-statement transac-
tion performance. We compare against VoltDB [58] (now Volt Active Data), a high-performance,
ACID-compliant in-memory DBMS that supports serializable transactions. VoltDB is based on
the H-Store [133] academic project, and applies performance optimizations like horizontal par-
titioning (i.e., sharding) across CPU threads and pre-compiled Java stored procedures. This de-
sign is a valuable comparison to BPF-DB, which supports chaining multiple operations together
through tail calls to run all of a transaction’s statements in a single operation. We configure
VoItDB to use 20 partitions to maximize its performance when pinned to 20 dedicated CPU
cores.

5.5.2 KVS Throughput (Networked)

We begin our evaluation by investigating the transactional KVS as a networked in-memory
DBMS, a typical deployment scenario for Redis-compatible systems. This experiment compares
BPF-DB against other Redis-compatible in-memory systems for mixed GET and SET workloads.
We attach the networked KVS described in Section 5.4.1 at the kernel’s socket layer. When a
socket buffer arrives at the network layer, the networked KVS (1) parses the message for a valid
GET or SET message, (2) parses the key and (optional) value, (3) tail calls into the correspond-
ing BPF-DB operation, and lastly (4) tail calls into continuations that construct and send the
response to the network client.

In addition to measuring with both 16 B and 1 KB values as described in Section 5.5.1,
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Figure 5.8: KVS Throughput (Networked) — Total requests per second over 10GbE network
(Redis protocol) while varying the ratio of SET commands from read-only to write-only. Sce-
narios differ in value size (16 B or 1 KB) and key distribution (uniform or Zipf).

we also want to evaluate how different ratios of reads and writes affect DBMS performance.
Increased writes can reduce the scalability of a DBMS due to memory allocations, data structure
synchronization (e.g., latches), and concurrency control protocols (e.g., 2PL, OCC). For this
reason, we scale the ratio of SET operations from 0% (i.e., read-only) to 100% (i.e., write-only) in
10% increments and measure the maximum throughput as reported by memtier_benchmark.

Figure 5.8a shows the throughput for 16 B values with uniform random key generation. As a
single-threaded user-space application, Redis offers the lowest performance with 202 K requests
per second (RPS) for the read-only scenario, dropping 3% to 196 KRPS as SETs increase. KeyDB’s
thread-based parallelism enables it to outperform Redis, albeit with a speedup that is not linear
to its four worker threads. KeyDB starts at 629 K RPS for the read-only scenario, dropping 17%
to 524 K RPS in the write-only scenario. In general, Redis and KeyDB exhibit similar trends
in the other scenarios (i.e., value size and key distribution) of Figure 5.8, and due to their non-
competitive throughput (<1 M RPS), we omit further discussion of their performance.

In Figure 5.8a, for the read-only scenario, Dragonfly processes 2.19 M RPS while BPF-DB
achieves 2.39 M RPS, a 9% increase in throughput. However, as writes increase, the performance
lead flips: KeyDB yields 2.13 M RPS and BPF-DB performs 1.88 M RPS in the write-only sce-
nario. In this scenario, Dragonfly’s user-space data structures are more efficient than BPF-DB’s
kernel-space eBPF maps, which require internal latches and RCU synchronization. As writes in-
crease, the overheads of these synchronization methods hurt BPF-DB’s throughput. Figure 5.8b
exhibits similar trends, demonstrating the performance of BPF-DB’s strict-2PL concurrency
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Figure 5.9: KVS CPU Scalability (Local) - Total requests per second running BPF-DB locally
while varying the number of CPU cores dedicated to BPF-DB. We measure three ratios of SET
commands, and scenarios differ in value size (16 B or 1 KB) and key distribution (uniform or

Zipf).

control and bounded version vectors, even under high contention scenarios like skewed key
distributions.

In Figure 5.8a, Dragonfly and BPF-DB with 1 KB values exhibit different behavior compared
to 16 B values. These results demonstrate that Dragonfly and BPF-DB can saturate the network
bandwidth limits of the test environment. At read-only and write-only extremes, the network
limits DBMS throughput to 10 Gbps, while more diverse workloads benefit from bidirectional
bandwidth. Throughput peaks when GET and SET each make up half of the requests. As a
backing store for a networked KVS, BPF-DB remains competitive with state-of-the-art imple-
nentations like Dragonfly and offers fully serializable transactions.

5.5.3 KVS CPU Scalability (Local)

Next, we remove the network bottleneck that limits throughput in Section 5.5.2 to find BPF-DB’s
maximum throughput. In this scenario, we use the bpf () system call and its BPF_PROG_TEST_RUN
argument to trigger BPF-DB GET and SET operators from user-space threads in a controlled
manner. We scale the number of CPU threads running in user-space to understand better BPF-
DB’s scalability under increasing resource (e.g., CPU, memory, lock) contention. Once again,
we load 10 M keys before test execution and run the workload with different ratios of SET op-
erations, value sizes, and key distributions. We will use this configuration for the remaining
KVS experiments.
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Figure 5.10: Write-Ahead Logging - Total requests per second running BPF-DB locally with
WAL disabled and enabled. We measure three ratios of SET commands, and scenarios differ in
value size (16 B or 1 KB) with a uniform key distribution to reduce contention and maximize
throughput.

Figure 5.9 shows the throughputs achieved by BPF-DB driven by local CPU threads using
the bpf () system call. The 90% SET scenario plateaus earlier than the less write-intensive work-
loads, demonstrating the increased write overhead with eBPF maps’ RCU synchronization. In
the 16 B values and uniform key distribution scenario, 10% SET levels off at 6.5 M RPS, contin-
uing to scale almost to the number of CPU cores (20). 90% SET reaches maximum performance
near 3.5 M RPS much earlier, where synchronization overheads limit CPU core utilization to 15
of the total 20 cores.

Changing the key distribution from uniform to Zipf does not introduce a significant per-
formance drop. The added lock contention and garbage collection work are not the bottleneck;
instead, they emphasize again that the underlying eBPF maps limit performance.

Increasing the value size to 1 KB reduces throughput in all test scenarios due to the increased
time spent copying values to and from BPF-DB. In the 1 KB values and uniform key distribution
scenario, 10% SET plateaus at 5.9 M RPS, 9% lower than the test with smaller value sizes. 90% SET
levels off at 3 M RPS, this time a 14% drop compared to smaller value sizes. Larger value sizes
introduce longer critical sections to eBPF map synchronization mechanisms; thus, the write-
intensive workload suffers from a more significant performance drop. This analysis mirrors
Linux’s recommendations for kernel patches that rely on RCU, which states that RCU is not a
scalable synchronization technique when writes constitute more than 10% of the workload [46].
However, eBPF does not expose an alternative synchronization method for eBPF maps, so BPF-
DB must use the provided interface.

5.5.4 Write-Ahead Logging Throughput (Local)

We now quantify the performance impact of BPF-DB’s WAL architecture, as described in Sec-
tion 5.3.3. In this scenario, we want to maximize BPF-DB’s requests per second to exercise its
WAL code path and reduce overheads in other system areas. For this reason, we only gener-
ate keys from a uniform distribution. Zipf key distribution accesses a small number of keys,
generating lock contention and many versions for cooperative GC to clean up.
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Figure 5.11: Voter Throughput (Networked) — Total transactions per second over 10GbE
network compared to VoltDB.

We run BPF-DB’s local KVS with 20 worker threads with multiple SET ratios and then repeat
the experiment with BPF-DB’s WAL enabled, as described in Section 5.3.3. To not be limited by
disk throughput, the user-space log consumer immediately removes data from the shared ring
buffer and does not write log records to disk. Subsequently, sending this data to another device
(e.g., replicated over the network or written to a local disk) would introduce bottlenecks that
do not measure the overhead of BPF-DB’s user-space WAL design. Knobs related to the WAL
are as follows: 512 MB ring buffer, BPF-DB notifies any processes waiting on the ring buffer’s
file descriptor after writing 2 MB, and the user-space consumer has a timeout of 1 ms if it does
not receive a notification to consume the buffer.

Figure 5.10 shows BPF-DB’s throughput with WAL enabled and disabled. The 90% SET sce-
nario with both 16 B and 1 KB values induces the most writes and, thus, is the most taxing on
the WAL architecture. With 16 B values, the write-heavy scenario drops from 3.33 M RPS to
3.26 M RPS, showing that WAL incurs a 2% overhead. None of those operations incur a roll-back
due to a full ring buffer, so we attribute this overhead exclusively to the additional instructions
for copying and submitting write operations into the ring buffer.

The 90% SET 1 KB scenario suffers a 35% drop in performance with WAL enabled, going from
2.98 M RPS to 1.92 M RPS. The larger value sizes require BPF-DB to spend more CPU cycles
copying data into the ring buffer and induce more work for the user-space consumer. This
workload averages almost 1.4 M roll-backs per second due to a full ring buffer when BPF-DB
attempts to submit data. This experiment demonstrates the limitations of BPF-DB’s user-space
WAL design, where the user-space consumer cannot exceed approximately 2 GB/s. We could
enhance BPF-DB for write-heavy scenarios by applying parallelism techniques similar to those
in Silo [199]: multiple ring buffers could have multiple user-space consumers if the host can
write more than 2 GB/s to storage. We defer this optimization for future work.

5.5.5 Voter Throughput (Networked)

We now evaluate BPF-DB’s multi-statement transaction performance compared to VoltDB us-
ing the Voter benchmark described in Section 5.5. For VoltDB, we use its asynchronous work-
load generator to maximize throughput over the network. However, we modify the driver to
use multiple threads because one instance cannot saturate our VoltDB server. For BPF-DB, we
define a stored procedure that contains BEGIN, three GETs, two SETs, and either COMMIT or ROLL
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Figure 5.12: Voter CPU Scalability (Local) — Total transactions per second running BPF-DB
locally while varying the number of CPU cores dedicated to BPF-DB.

BACK stitched together through tail call continuations. We implement the logic in eBPF between
each operator to maintain the VOTE procedure’s constraints. As in Section 5.5.2, we attach the
stored procedure in the kernel’s socket layer and prepend BPF-DB’s operations with a parser
to extract the arguments. We modify memtier_benchmark to generate arguments that match
Voter’s specifications, and trigger the stored procedure with a new VOT Redis command. This
design allows us to reuse memtier_benchmark’s network protocol, thread-based parallelism,
optional rate-limiting, and summary statistics to evaluate this workload.

Figure 5.11 shows the Voter benchmark’s maximum throughput, showing that BPF-DB
achieves 43% higher throughput than VoltDB. The KVS throughput in Figure 5.8 achieves 2 M RPS
for 16 B values, allowing us to quantify the overhead of running multiple BPF-DB operations
in a transaction. In this experiment, BPF-DB processes 1.65 M transactions per second (TPS).
We attribute this performance drop, compared to single statement operations, primarily to the
extra eBPF map operations of reading and updating multiple values. Despite its partitioned and
lock-free architecture, when we profile VoltDB at maximum throughput we find that it spends
significant time in futex and synchronization calls introduced by the Java Virtual Machine and
user-space thread scheduling. We discuss BPF-DB’s Voter performance in greater detail in the
following section.

5.5.6 Voter CPU Scalability (Local)

Like Section 5.5.3, we remove network overheads from the workload and instead drive BPF-
DB’s VOTE stored procedure with user-space threads using the bpf () system call. We will
measure BPF-DB’s maximum throughput for serializable transactions with multiple statements.
This scenario removes all overheads associated with the network layer and targets BPF-DB’s
performance directly. We also want to show BPF-DB’s scaling characteristics for this workload,
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Figure 5.13: Voter Flame Graph — Aggregation of CPU call stacks for BPF-DB running the
Voter workload.

so we sweep the number of CPU threads running in user-space that invoke the VOTE stored
procedure.

Figure 5.12 shows BPF-DB’s maximum TPS for the Voter workload while increasing CPU
threads. Like the 90% SET workload in Figure 5.9, Voter is write-intensive and plateaus when
using around 15 of the 20 available CPU cores. However, the maximum throughput is lower
than that experiment due to the extra BPF-DB operations, eBPF map lookups, and commit logic.
We find that BPF-DB can maintain around 2 M TPS on a single 20-core CPU socket for multi-
statement serializable transactions.

To further understand BPF-DB’s performance characteristics, we use BCC’s profile tool [4]
to sample call stacks while BPF-DB runs the Voter workload. We then render a Flame Graph [19]
to aggregate and analyze the resulting stack traces, as shown in Figure 5.13. BPF-DB spends
most of its CPU time executing code not contained within its own eBPF programs. Instead,
kernel-provided eBPF helper functions limit BPF-DB’s performance. For example, 78.5% of the
stack trace samples are in eBPF map operations (e.g., lookup, update), 4.6% are in the kernel’s
hash function (i.e., jhash), 4.8% are in the kernel’s spin_lock implementation, and 9.5% are in
helpers that copy data between kernel-owned memory. We leave optimizing BPF-DB further
to reduce its reliance on kernel-provided helpers as future work.

5.5.7 Partitioned Storage

VoltDB applies horizontal partitioning to elide lock acquisition and reduce contention within its
storage manager. Based on this design, we evaluate BPF-DB’s performance when partitioning
its key space across four shards. We replace the top-level index eBPF map with four indexes
and similarly split the eBPF maps for value storage similarly. Before performing eBPF map
lookups, we apply a fast hash function to determine the partition for a given key. We use the
XXH64 [59] function due to its good performance and logic that passes the eBPF verifier. Faster
hash functions either perform logic that is too complex to satisfy the verifier or rely on SIMD
instructions (e.g., AVX2) that are unsupported by eBPF. We run BPF-DB locally using the KVS
workload and generate keys from a uniform distribution to maximize throughput.

Figure 5.14 shows BPF-DB’s throughout with varying SET ratios. Performance is slightly
lower in the read-heavy workload (i.e.,10% SET) with 16 B and 1 KB values. Once SET commands
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Figure 5.14: Partitioned Storage — Total requests per second running BPF-DB locally with
and without key space partitioning. We measure three ratios of SET commands, and scenarios
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maximize throughput.
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Figure 5.15: Scaling Maximum Versions — Total requests per second running BPF-DB locally
while varying the maximum number of versions per database entry. Scenarios differ in value
size (16 B or 1 KB), and we maximize version generation by using the 90% SET workload with
skewed (i.e., Zipf) key distribution.

exceed 50%, partitioned storage yields a slight performance benefit. The increase in throughput
never exceeds 8%, though, as seen in the scenario with 10% SET and 1 KB values. In practice, we
find that key space partitioning does not yield a significant speedup because BPF-DB does not
spend most of its execution time in code areas that benefit from the reduced map contention.

5.5.8 Scaling MVCC Versions

As detailed in Section 5.3.1, due to the compile-time verifier constraints, BPF-DB supports
MVCC with a maximum number of versions for each database value. If one of BPF-DB’s SET
operations attempts to write to a value that has reached its maximum number of versions, it
must attempt cooperative garbage collection or roll back, as described in Section 5.3.1. In this
experiment, we measure the performance impact of changing this compile-time constant while
running a workload that generates a large number of versions (90% SET) by using a skewed key
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Figure 5.16: Maximum Versions and the Verifier - program size and verifier work for BPF-
DB’s GET and SET operators while varying the maximum number of versions per database
entry.

distribution (i.e., Zipf).

Figure 5.15 shows the performance impact on BPF-DB of changing the maximum number
of versions per database entry. For 16 B values, BPF-DB with two versions per record supports
3.2 M RPS and 1.7 M roll backs per second from no available versions, while eight versions
per key yields 3.4 M RPS and 0.9 M roll backs per second. While this change nearly halves
the number of roll backs per second, there is only a 6.6% increase in overall throughput. At
maximum throughput of over 3 M RPS on a small number of keys, increasing the number of
keys does little to change how quickly BPF-DB exhausts its available versions. The results for
1 KB values are similar, demonstrating that maximum throughput is not significantly affected
by changing the maximum number of versions.

In addition to altering runtime behavior for BPF-DB, changing the number of maximum
versions also affects both program size and the amount of work for the eBPF verifier. Recall
that we limit the maximum number of versions per database entry because the verifier requires
compile-time constants for all loops, and must explore all iterations and branches during veri-
fication. Consequently, changing this value affects the compiled code and the verifier’s work.

Figure 5.16 shows the output of using bpftool [13] to get eBPF program size and the num-
ber of instructions processed by the verifier. We scale the maximum number of versions as in
Figure 5.15. In Figure 5.16a GET’s number of eBPF instructions scales linearly with the max-
imum number of versions. This behavior is due to the loop that compares timestamps to the
entire version array to find the correct value to read. The optimizing compiler unrolls the loop
to improve performance, thus increasing instruction count. In contrast, SET’s number of in-
structions oscillates before scaling linearly. When the compiler generates eBPF code for SET
with maximum number of versions set to three, it optimizes the C code differently and results in
increased instruction count. This oscillation shows the difficulty in anticipating how compilers
like Clang and GCC generate optimized eBPF bytecode.

GET contains more instructions than SET despite its less complex logic (e.g., GET does not
perform GC). GET’s high instruction count is due to the instructions that copy values out of
the value map, which we implement due to the lack of memcpy (). SET does not require these
instructions because the logic to copy a value into a map is handled by the eBPF helper that
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Figure 5.17: Single Version Storage — Total requests per second running BPF-DB locally
with MVCC and without. Scenarios differ in value size (16 B or 1 KB), and we maximize version
generation by using the 90% SET workload with skewed (i.e., Zipf) key distribution.

inserts the value into the map. Looking up a value in a eBPF map only returns a pointer to the
value, which GET in turn copies at its instruction cost into the BPF-DB Context object.

Figure 5.16b shows the number of instructions that the verifier processes when loading GET
and SET operators with different numbers of maximum versions. GET scales linearly because
the number of states that the verifier inspects increases as the limit on the loop that scans
the version array increases. However, SET’s verifier complexity increases exponentially as the
maximum number of versions increases. SET contains more complex logic inside of the loops
that scan the version array, particularly to perform cooperative GC. Though not shown in the
figure, increasing the maximum number of versions past eight causes the verifier to reject the
SET program. The results of this experiment demonstrate the non-obvious lack of correlation
between eBPF program size and the amount of work the verifier performs to load a program.

5.5.9 Single Version Storage

We next evaluate a BPF-DB design that eliminates MVCC entirely. For single-statement opera-
tions like the KVS workload, maintaining multiple versions adds unnecessary overhead because
a transaction does not need a consistent snapshot of multiple database entries. In this workload,
SET and GET operations only access a single entry, and we can rely on Strict-2PL concurrency
control to maintain correctness. Removing MVCC allows BPF-DB to elide version chain traver-
sal, timestamp allocation, and cooperative garbage collection. In exchange, timestamp-based
optimizations for read-only transactions become impossible, requiring these operations to ac-
quire a read lock. To compensate, we augment BPF-DB’s lock acquisition logic to retry up to
4096 times, which is within the bounds of the verifier. We evaluate this design choice with the
same high contention workload as Section 5.5.8: 90% SET with Zipf key distribution.

Figure 5.17 shows BPF-DB’s maximum throughput with MVCC and without. The reduced
complexity of BPF-DB’s SET and GET operators enables higher overall throughput, despite GET
now requiring a lock acquisition. This single-statement workload shows notable speedup from
this change, increasing throughput by 13% and 15% for 16 B values and 1 KB values respectively.
In exchange, multi-statement transactions with conflicting access sets would incur more roll
backs. Developers may decide to make this trade-off if transactions are unlikely to conflict
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Table 5.2: Maximum Versions and Latency (16 B) — Average operator latency (in microsec-
onds) running BPF-DB locally with MVCC and without. This scenario uses 16 B values, and
we maximize version generation by using the 90% SET workload with skewed (i.e., Zipf) key
distribution.

Max versions Min p25 p50 p75 p99

049 096 1.12 139 442
0.52 091 1.03 120 12.80
0.41 0.85 1.01 1.23 16.84
0.40 0.85 1.00 130 13.98
040 0.84 098 124 11.36
040 0.82 096 1.19 1296
040 0.80 094 1.16 1941
0.40 0.80 094 1.14 15.61

O 3 O Ul v W N

Table 5.3: Maximum Versions and Latency (1 KB) — Average operator latency (in microsec-
onds) running BPF-DB locally with MVCC and without. This scenario uses 1 KB values, and
we maximize version generation by using the 90% SET workload with skewed (i.e., Zipf) key
distribution.

Max versions Min p25 p50 p75 p99

0.68 146 1.7 2.0 532
0.65 132 155 1.83 46.21
0.53 1.25 151 186 45.04
0.52 1.22 149 187 44.03
0.52 1.18 1.44 1383 39.56
0.52 1.16 141 178 40.89
052 1.14 139 175 37.32
0.52 1.13 138 172 37.25

O 3 O Ul W W N =

because their access sets are either small or unlikely to overlap.

We conclude our analysis of MVCC versions by combining the approaches of Sections 5.5.8
and 5.5.9 to measure the impact on GET and SET operator latency. We fix the number of requests
at 100 K RPS and measure operator latency in a high contention scenario that generates many
versions (90% SET, Zipf keys). Tables 5.2 and 5.3 show the results of measuring operator latency
while changing the maximum number of MVCC versions. Removing MVCC entirely (i.e., one
maximum version) increases p25, median, and p75 latency in exchange for a reduction in p99
latency. Note that this scenario removes all BPF-DB logic related to garbage collection as well,
which contributes to the large reduction in tail latency. Developers may wish to specialize BPF-
DB’s MVCC design to their application and workload, and we discuss this possibility further in
Section 7.2.
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5.6 Conclusion

We presented BPF-DB, an embedded DBMS that offers serializable, ACID-compliant transac-
tions in kernel-space for user-bypass applications. BPF-DB decomposes its operators into in-
dividual eBPF programs that developers can use to build custom procedures. These proce-
dures interleave custom application logic with BPF-DB operators, held together in sequences
through tail calls. We demonstrated applications built on BPF-DB and compared them against
state-of-the-art counterparts. Our results showed that embedding a DBMS in kernel-space is
not only feasible but scalable. Future eBPF applications can use BPF-DB for robust, safe, and
high-performance DBMS semantics.
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Chapter 6

Related Work

6.1 Observability and Training Data Collection

To the best of our knowledge, there is no prior work on training data collection for self-driving
DBMSs. There is, however, an existing corpus on profiling, observability, and modeling for
DBMSs and other software systems. We now discuss this prior research.

Profiling: The approaches to collect queries’ profiling data differ depending on whether they
target administrators versus system developers. For the former, EXPLAIN ANALYZE annotates
query plans with internal metrics, like the elapsed time or the number of accessed tuples per op-
erator. Monitoring tools, such as VividCortex [57] and Amazon’s RDS Performance Insights [1],
track execution times along with additional DBMS- and OS-level metrics.

Most DBMSs also provide bespoke profiling methods in their source code. PostgreSQL con-
tains DTrace probes similar to what TScout uses for query tracing, debugging, and performance
analysis [43]. One could use these probes to build markers that communicate with TScout’s Col-
lector, but they still need additional FEATURES markers to capture OU input features. MySQL
contained DTrace probes in its source, but these were deprecated in v5.7 and subsequently
removed in v8.0 in 2018 [33]. MongoDB has support for creating USDT probes, but this func-
tionality appears unused [32].

In addition to profiling an individual query, most DBMSs track internal performance statis-
tics over time. These statistics represent the user-level behavior of the DBMS across multiple
queries, such as data read from or written to disk. To track timing information, DBMSs rely on
portable methods using either POSIX built-ins (e.g., clock_gettime) or language-level high-
resolution clocks (e.g., std: : chrono). Some DBMSs such as PostgreSQL [44] and MySQL [34]
capture hardware metrics using tools like rusage. As we describe in Section 3.3, there are
limitations to using coarse-grained approaches for generating high-quality training data.

Observation Services: System observability is a concept adapted from control theory that
refers to the analysis of system runtime telemetry for visualizing and understanding complex
software interactions [67, 128]. A common pattern is to collect all available metrics at runtime,
identify a relevant subset of the metrics for a given task, and then feed those metrics into a
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specific model or tool.

ViperProbe [146] is an adaptive eBPF-based gray box approach to metrics collection for
Kubernetes microservices. ViperProbe uses offline analysis to identify relevant metrics for a
program and then generates a eBPF program to collect those metrics.

Other observability tools typically build on kernel monitoring primitives, such as OS perfor-
mance counters, Strace, Ftrace, DTrace, Sysdig (which was rewritten to use eBPF), or eBPF. For
example, Slack’s Observability Data Management System [134] analyzes metrics to diagnose
and resolve disruptions across multiple services. Seer [111], MicroRCA [210], and LOUD [157]
are systems that gather all available metrics to identify root causes of QoS violations, locate per-
formance issues in microservices, and localize faults in a cloud setting, respectively. Sieve [195]
identifies a salient metrics and associated dependencies, but it analyzes offline. Pythia [69] is a
proposed always-on automated instrumentation framework.

In comparison, TScout is an adaptive internal approach to dynamic metrics collection. Fur-
thermore, we designed TScout to facilitate the collection of high-quality training data for self-
driving DBMSs.

Modeling: Previous work in DBMS knob tuning takes a similar approach to observation ser-
vices, using external features and metrics to train models about DBMS behavior. For example,
OtterTune [202] and CDBTune [147] both train ML models optimizing DBMS knob configura-
tions by using the external metrics collected from running the target workload. Similarly, other
work in DBMS modeling relies on collecting training data from external sources like query
logs, query plans, or custom runners. QPPNet [155] extracts execution times and execution
plans from PostgreSQL’s EXPLAIN ANALYZE to train models that predict the execution time of
queries. ModelBot2 [152] exercises offline runners to train OUs-level models similar to TScout.
DBSeer [166] extracts SQL query logs to cluster queries based on their runtime behavior. DeepS-
ketch [136] executes training queries to obtain cardinalities. GPredictor [215] extracts query
plans and execution performance from the DBMS to train a graph-embedding performance
model. UDO [205] evaluates its performance on sample workloads offline. Huawei’s open-
Gauss aggregates training data from three external sources: (1) database metrics, (2) SQL query
log, and (3) database log [148]. Other learned system proposals like SageDB are not prescriptive
in generating training data in online settings [138].

6.2 Network Functions and System Calls

We now discuss existing research on eBPF observability, programmable networks, and tech-
niques similar to user-bypass for pushing DBMS-specific logic into kernel-space.

Network Observability Proxies: Envoy is an L3/L4 proxy with some L7 capabilities for
DBMS observability [18]. Endpoint support is limited to HTTP/2 and gRPC, along with “sniff-
ing filters” for DBMSs like MongoDB and PostgreSQL. For PostgreSQL, Envoy can accumulate
counters for queries (i.e., INSERT, UPDATE) and errors in the query stream but does not perform
connection pooling or workload replication. Because it is not a PostgreSQL endpoint, it cannot
process encrypted traffic.
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Network Function Virtualization (NFV): Custom behavior in the network stack and mid-
dleboxes has increased in recent years, particularly with the rise of SmartNICs among cloud
vendors [105]. Programming languages like P4 [78] and Domino [187] allow more expressibil-
ity in the network layer, but developers apply them to flow routing using packet headers rather
than L7 logic.

Recent works increasingly rely on the benefits of eBPF to push logic into kernel-space and
even to hardware layers [102, 163, 180, 203, 212]. These eBPF efforts target L3/L4 applications
like flow routing, intrusion detection, and denial-of-service mitigation and rely on a class of
eBPF programs called XDP which are more restrictive than Tigger’s sockmap programs. BMC
also uses XDP to apply user-bypass to memcached, enabling kernel threads to handle the key-
value store’s simple operations over UDP [113].

TCP Splicing: Network researchers explored kernel-space connection pooling at the trans-
port layer (e.g., TCP) in kernel-space with a technique called TCP splicing [154]. The goal was
similar to user-bypass: avoid copying buffers to user-space that will ultimately be forwarded
to another socket. Prior work evaluated these techniques on web server and firewall work-
loads but required invasive changes to the OS to implement. For example, IBM AIX developers
made changes directly to the kernel source code [179], a Linux implementation required an
out-of-tree kernel module [86], and other approaches used custom designs like Scout OS and
Exokernel [112, 189]. The Linux effort was unique in applying L7 logic to provide URL-aware
forwarding [86]. This logic could be duplicated using user-bypass to offer a safe implementation
without risking kernel panics.

One outcome of these efforts is the splice() system call in Linux that promises zero-copy
forwarding between file descriptors without duplicating the data in user-space. However, this
approach still incurs system call overhead and requires waking up an user-space application
to coordinate forwarding. Lastly, it is impossible to peek at the data in flight, so DPI to apply
DBMS logic requires copying the data to user-space.

6.3 OS Extensibility and Unikernels

OS Extensibility: For decades, database researchers discussed the shortcomings of using
OS services to design DBMSs [192]. In response, the research community proposed methods
to extend OS behavior to better suit user-space applications [73, 181, 182]. However, these
approaches lacked a standard API and strong OS support like eBPF to extend behavior.

More recently, researchers presented the ExtOS Linux prototype designed to reduce data
movement in the software stack [70]. For example, they proposed adding programmability to
the read() system call to push database filters into the OS via a kernel module. Their initial
results showed promising speedup, and they proposed extensions to eBPF which was not yet
suitable for their task in 2019.

Unikernels: These applications represent kernel-bypass pushed to an extreme, where appli-
cations are compiled with a library OS to yield an application-specific machine [104, 129, 139,
204]. Unikernels remain an active and promising research area, but the industry has been slow
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to adopt this approach. Designing unikernel applications requires similar expertise and has the
same challenges as kernel-bypass methods. While more limited in capabilities, eBPF is easily
deployed in cloud native environments and companies are rapidly adopting it, as described in
Section 4.2.2. Recent work argues that cloud virtualization and their hypervisor abstractions
provide new opportunities for DBMSs designed as unikernels [141].

eXpress Resubmission Path (XRP): Recent work applies user-bypass to the Linux kernel’s
storage stack [214]. For example, B+ tree lookups read multiple disk pages before finding the
destination leaf node. The DBMS copies the entire page from kernel-space to user-space via
system calls, only to find a pointer to the correct child node and repeat the process. Similar to
the network stack, repeatedly accessing the storage stack imposes overhead from system calls
and memory copies.

XRP pushes DBMS logic into the NVMe driver via eBPF. With XRP, the DBMS performs
B+ tree node traversal in kernel-space by resubmitting multiple NVMe operations. XRP’s use
of user-bypass reduced the amount of data copied to user-space and the number of repeated
system calls. They demonstrated the latency and throughput benefits of XRP against kernel-
bypass using DPDK and asynchronous I/O.

Kernel-Bypass: As discussed in Section 4.2.1, kernel-bypass is a technique to bring packets
directly to user-space by eliding the Linux network stack. We created a version of PgBouncer
that uses kernel-bypass via F-Stack [21] to evaluate the benefits and challenges of kernel-bypass,
especially compared to user-bypass. But integrating F-Stack dependencies and creating a pro-
ductive development environment proved challenging. For example, DPDK requires exclusive
control of a dedicated NIC, making debugging difficult with standard networking tools. De-
spite communicating with F-Stack engineers, we did not achieve acceptable performance with
DPDK-enhanced PgBouncer; it is 10-100x slower than unmodified PgBouncer. Our engineer-
ing problems match the recent effort to create a DPDK version of Open vSwitch [200], which
concludes by recommending AF_XDP instead.

To our knowledge, the only database vendor making significant use of kernel-bypass is Yel-
lowbrick, which does not use DPDK but instead wrote their own network and storage device
drivers [120]. Although ScyllaDB promotes DPDK compatibility in their Seastar framework,
they do not deploy DPDK in production [119]. In general, deploying DPDK applications into
production is difficult due to API/ABI instability, which forces developers to choose between
features and fixes of new releases and code stability of LTS releases [161]. eBPF experienced
similar API growing pains over the last ten years but is proving to be a less burdensome devel-
opment environment than kernel-bypass.

Kernel-embedded DBMSs: McObject sells eXtremeDB as a user-space embedded DBMS
that also offers a kernel mode [115]. In kernel mode, developers like their user-space appli-
cations with eXtremeDB’s API library. This library communicates with a kernel module that
contains a proxy, the DBMS, and runtimes for network and storage drivers. As discussed in
Section 1.3, unsigned kernel modules require users to disable Secure Boot—a mitigation tech-
nique against firmware-based attacks. BPF-DB does not require a kernel module and runs via
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eBPF at the expense of a more restricted kernel APL

More recently, researchers introduced DINT, a distributed, key-value transaction service
that runs in kernel-space via eBPF [216]. DINT applies user-bypass similarly to Tigger, whereby
common operations run in kernel-space while less common operations run in user-space. For
DINT, this approach stores small value sizes in fixed-sized eBPF maps, while larger value sizes
that require malloc() reside in user-space. Similar to BPF-DB, DINT use a hybrid user-space
and kernel-space logging and recovery approach with user-space components responsible for
log replay. DINT, like BMC, uses XDP eBPF programs and attachment points, which limits its
application to UDP protocols. In their evaluation, DINT achieves 2.6x higher throughput than
a kernel-bypass baseline.
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Chapter 7

Future Work

7.1 User-Bypass DBMS Proxy

We show a technique called user-bypass in the context of DBMS proxies. We believe this opens a
number of opportunities for both DBMS proxies and aspects of DBMS design that could benefit
from application logic in kernel-space.

Proxy Features: Tigger implements the most common features needed in DBMS proxies
to demonstrate the benefits of user-bypass, but there are more capabilities to evaluate. For
example, Vitess [188] supports SQL-aware logic to perform query rewriting and sharding for
MySQL. Also, techniques that modify the query stream, like transaction reordering and in-
network computation [97, 131], may be feasible in a DBMS proxy using user-bypass.

Pgpool-II and ProxySQL provide a query result cache to return result sets for frequently sub-
mitted queries. These caches rely on simple time-to-live (TTL) policies with string-matching
of queries rather than SQL-aware eviction methods. For example, a cached result will not au-
tomatically be evicted if a query changes its value in the DBMS. For this reason, these caches
are error-prone but could be used to reduce the burden of queries automatically submitted by
application frameworks like “SELECT 1”. More sophisticated solutions (e.g., Heimdall [23])
support transparent query caching with automatic invalidation. These techniques could bene-
fit from user-bypass if their approaches satisfy the eBPF verifier. For example, a full SQL parser
is outside the verifier’s scope, and eBPF maps may not be large enough for a robust query result
cache.

Asynchronous I/0: Linux provides an asynchronous I/O interface called io_uring. In late
2021, a Linux developer posted an experimental patch for io_uring that offers support for net-
work sockets [89]. The new kernel feature reads and writes via shared buffers with user-space,
which reduces the number of data copies. A DBMS proxy would still need to copy data between
these buffers, and all coordination would still be performed via user-space application waiting
on epoll (). Nonetheless, we remain interested in evaluating io_uring’s impact on DBMS proxy
design.
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Hardware Acceleration: The improved capabilities of SmartNICs and FPGAs and their pro-
liferation in public cloud settings create new opportunities for accelerating applications via
hardware [105]. For example, Mellanox and Netflix added support for offloading kTLS to NICs [183].
This development may enable performing L7 logic like DBMS proxies at lower levels of the net-
work stack. Hardware TLS is not broadly available, but future devices may enable user-bypass
techniques at the hardware layer.

7.2 User-Bypass DBMS Architecture

We demonstrate a design for an embedded DBMS that runs in kernel-space to enable rich user-
bypass applications. We believe there are more opportunities to continue this work in varying
directions.

Code Generation: Currently, applications developers wanting to use BPF-DB must write
their code in C++ and require significant eBPF knowledge. However, high-level scripting lan-
guages that compile down to eBPF (e.g., bpftrace [14]) lower the barrier to entry. Prior work
demonstrated the ability to code-generate eBPF programs from templates, which were then
specialized to DBMS source code [80]. A domain-specific language (DSL) for eBPF programs
that includes BPF-DB semantics would make it easier for developers to write stored procedures
like VOTE shown in Section 5.4. Generating these stored procedures would also enable BPF-DB
specialization at code generation time. For example, BPF-DB could elide eBPF maps for value
sizes that would not be used or tailor the number of MVCC versions.

Fuzzy Checkpointing: As described in Section 5.3.3, BPF-DB supports write-ahead logging
for durability. BPF-DB’s continuation-passing style presents new opportunities to implement
different checkpointing techniques. For example, the Linux kernel can atomically swap eBPF
programs at runtime. One way to implement blocking checkpointing would be to swap out
BPF-DB’s SET operators with eBPF programs that just call the error continuation while check-
pointing is in progress. Once the checkpoint is complete, the SET operators could be swapped to
their original version and applications could resume writing to the database. More sophisticated
fuzzy checkpointing could build on this technique by temporarily swapping in SET operators
that write to an alternate set of eBPF maps while a checkpoint is in progress. GET operators
would also need to be swapped to be able to look in the right eBPF map for their values. After
the checkpoint is complete, the original operators could be swapped back.

Kernel Patches: While this work demonstrates the feasbility and benefits of an embedded
DBMS as eBPF programs, it also explores the limitations imposed by the verifier. If BPF-DB
were implemented as a new eBPF map type in the Linux kernel (e.g., BPF_MAP_TYPE_TXN_HASH)
with corresponding eBPF helper functions, then some of this limitations would be relaxed.
For example, the ability to hold multiple latches would enable metadata (e.g., locks, versions,
timestamps) that are currently packed into fixed-size eBPF map values to be located in different
memory locations while still being updated atomically. Similarly, transactions could call the
kernel’s RCU semantics directly which would reduce the current synchronization overheads.
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Chapter 8

Concluding Remarks

In this dissertation, we presented user-bypass as a technique to improve the performance of
frequent DBMS operations. This design exists in the content of current systems’ “all or noth-
ing” approach to resource management and the OS. Current DBMSs either acquire and release
resources through OS system calls or wrest control of system resources through kernel-bypass.
We showed how user-bypass takes an alternative approach, whereby DBMSs can extend OS
behavior to suit their performance requirements and capabilities.

We detailed how user-bypass builds upon a Linux technology called eBPF that enables OS
extensibility in a safe and performant manner. Chapter 3 demonstrated how eBPF programs
attached to a DBMS running in user-space can provide behavior akin to a new system call.
These new kernel operations reduced the number of round-trips for the DBMS to kernel-space,
increasing query performance while collecting system metrics. Then, in Chapter 4, we used
user-bypass to build a high-performance DBMS proxy that performs connection pooling and
workload mirroring in kernel-space. This design showed the benefits of embedding DBMS-
specific logic into the networking stack, resulting in a proxy that required fewer resources than
state-of-the-art contemporaries. Lastly, in Chapter 5, we designed an embedded DBMS that
runs serializable, ACID-compliant transactions in kernel-space. We explored the challenges
of building a DBMS for this environment and compared our approach with traditional DBMS
design. We implemented sample applications around this embedded DBMS and demonstrated
the promise of this design for future applications.

Taken as a whole, the work presented in this dissertation demonstrates the performance
and robustness benefits of applying user-bypass to design DBMS software in concert with OS
extensibility.
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