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Abstract

This report shows that differential ghosts prove all algebraic invariants of algebraic differential
equations by proving that differential radical invariants derive from differential ghosts. Differen-
tial ghosts add differential equations to a differential equation system, which, if cleverly chosen,
simplify proofs, because they make it possible to relate the change in the quantities of interest to
additional variables that can be chosen to evolve freely. A fractional generalization of Darboux’s
principle for proving invariance of (polynomial) equations along polynomial differential equations
is shown to derive from differential ghosts. Differential adjoints are identified as the missing link to
derive a vectorial formulation of Darboux’s principle from vectorial differential ghosts, from which
differential radical invariants follow. These ideas are subsequently generalized from equalities to
inequalities, ultimately covering proofs of all true semialgebraic invariants.





1 Introduction
Hybrid systems combine both discrete and continuous dynamics. They may be used, for exam-
ple, to model cyber-physical systems with discrete software controls and physical components
that evolve along their continuous dynamics. Hence, methods used for the verification of hybrid
systems must suitably handle both the discrete and continuous dynamics, as well as the intricate
interactions between both dynamics. Differential Dynamic Logic (dL) [Pla08, Pla12b, Pla17a] is
a logic for deductive reasoning about such systems, where the continuous dynamics are specified
using a system of ordinary differential equations (ODEs). In fact, differential dynamic logic is
complete relative to differential equations, so its calculus reduces all valid properties of hybrid
systems to corresponding sub-questions about differential equations [Pla08, Pla12a, Pla17a]. This
yields the question of how to best prove the remaining properties of differential equations.

One way to handle ODEs axiomatically is to introduce rules that replace them with their corre-
sponding solutions [Pla08]. For example, the differential solution axiom for dL allows one to ax-
iomatically replace a (constant) differential equation with its solution [Pla17a], which generalizes
to any differential equation solvable in polynomial real arithmetic. However, such methods are not
scalable for two reasons. Firstly, most differential equation systems do not have closed-form solu-
tions. Secondly, even if solutions exist, they quickly involve undecidable real arithmetic [Ric69],
making them difficult to reason about in a deductive proof.

An alternative approach is to reason about invariant sets of the differential equations [Bla99,
Pla12b]. Informally, (positively) invariant sets are subsets of the state space from which the dy-
namics of the ODE under consideration cannot escape. Hence, if we start in such a set, then we are
guaranteed to stay within the set no matter how long we follow the dynamics of the ODE system.
The axiomatization of dL includes sound reasoning principles for proving invariance of formulas
of first-order real arithmetic [Pla10, Pla12b, Pla17a]. However, it was not previously known if
the existing axiomatization is complete, i.e. we can prove all true invariants of the ODEs under
consideration.1

In this report, we investigate a proof rule for algebraic invariants DRI [GP14] and one for
semialgebraic invariants LZZ [LZZ11]. Along the way, we identify three axioms internalizing the
uniqueness, continuity and analyticity of solutions to systems of ODEs with polynomial right-hand
sides.

We show that any instance of either proof rule can be soundly derived using these additional
axioms together with a standard axiomatization of dL. In fact, most of the steps in our deriva-
tions make use of standard dL axioms, such as DI,DC,DG. Furthermore, both DRI and LZZ are
complete for their respective types of invariants [GP14, LZZ11], which implies that our extended
axiomatization is sound and complete for all invariants that are first-order formulas of real arith-
metic.

In sharp contrast to previous approaches, the axioms we need can be stated as concrete formu-
las, rather than complex axiom schemata. Indeed, we shall see that both DRI and especially the
LZZ proof rules require very complex side conditions governing when they can be applied. This

1A notable exception is the complete axiomatization of dL relative to discrete dynamics [Pla12a], which proves
that valid properties of hybrid systems and differential equations reduce to discrete questions. Here we ask the com-
plementary pragmatic question whether dL’s differential equation axioms alone are sufficient.
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advantage makes our axiomatization amenable to implementation in a theorem prover for hybrid
systems, such as KeYmaera X [FMQ+15] which is built from a small axiomatic core based around
uniform substitution [Pla17a], implementable in around 1,700 lines of code. Having a small sound-
ness critical core minimizes the chance of implementation errors, and also allows for independent
code inspection. Both of these are key to increasing trust in the correctness of the resulting proofs.

2 Related Work
Proof Rules for Invariants. An overview of proof rules for the invariance of algebraic and semi-
algebraic sets can be found in [GSP17]. The soundness and completeness theorems for DRI,LZZ
are shown in [GP14] and [LZZ11] respectively. An alternative derivation of DRI can also be
found in [Bor17]. There are also other sound, but incomplete, proof rules for deductive verifi-
cation along an ODE system [TT09, Tiw08, PJP07, PJ04]. We do not consider these alternative
rules, but, e.g. barrier certificates [PJP07], are an easy consequence of the results in Section 6; see
Appendix A for a derivation. The aforementioned works focus on the proof rules as stand-alone
verification principles for checking invariance of a formula over the evolution of an ODE. As a
result, they usually involve complex side conditions necessary for correctness. This makes them
very difficult to implement soundly as part of a small axiomatic core, such as the implementation
of dL in KeYmaera X [FMQ+15, Pla17a]. Our work thus focuses on deriving these rules directly
from a small set of axiomatic principles.

Deductive Power and Proof Theory. The proof rules we study are sound and complete, but
their generality also means that the premises could be more complex than necessary, especially for
simpler invariants. This is where a study of the deductive power of various sound, but incomplete,
proof rules [GSP17] comes into play. If we know that an invariant of interest is of a simpler
class, then we could simply use the proof rule that is complete for that class. This intuition is
echoed in [Pla12c], which studies the relative deductive power of differential invariants (DI) and
differential cuts (DC), two important reasoning principles in dL, that are both shown to increase the
deductive power of the logic. Other proof theoretic studies of dL [Pla08, Pla12a] reveal surprising
correspondences between its hybrid, continuous and discrete aspects in the sense that each aspect
can be axiomatized completely relative to any other aspect.

Generating Invariants. Our work focuses on proving the invariance of a formula – an orthogonal
question is how we might generate these invariants in the first place. An effective approach, used,
for example, in [PJ04, PJP07, SSM08, PC08, GP14, LZZ11], is to use templates for polynomials
invariants. From a given template, the premises of a proof rule can be computed symbolically,
resulting in constraints on template parameters.
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3 Background
This section briefly reviews the relevant fragment of dL, and establishes the notational conventions
that we will use in this report. We refer readers to [Pla08, Pla12b, Pla17a] for a more complete
exposition of dL, including its discrete fragment.

3.1 Syntax and Semantics
Terms in dL are generated by the following grammar, where x is a variable, and c is a rational
constant:

e ::= x | c | e1 + e2 | e1 ∗ e2
These terms correspond to polynomials over the variables under consideration. For the pur-

poses of this report, we write x to refer to a vector of variables x0, · · · , xn, and we use p(x), q(x)
to stand for polynomial terms over these variables. When the variable context is clear, we also
simply write p, q without arguments instead.

Correspondingly, we define formulas of dL by the following grammar, where∼ is a comparison
operator =,≥, >, and α is a hybrid program:

φ ::= e ∼ e | φ ∧ φ | φ ∨ φ | φ→ φ | ¬φ | ∀xφ | ∃x e | [α]φ | 〈α〉φ

We assume that all the formulas of the form e ∼ e are normalized to have 0 on the right-
hand side. We also write p � 0 if there is a free choice of � between ≥ or >. We may define
p � 0 ⇐⇒ −p � 0, where � stands for ≤ or <, and � is correspondingly chosen.

Hybrid programs α allow one to express both discrete and continuous dynamics. We shall only
be concerned with the continuous dynamics, where α := x′ = f(x) &Q, i.e. an autonomous
vectorial ODE system in variables x0, · · · , xn, restricted to evolution domain Q. In fact, sound and
complete calculi for hybrid systems exist relative to purely continuous dynamical systems [Pla12a].

Semantically, terms and comparison operations on terms are given the usual interpretation
in first-order real arithmetic. The logical connectives are also defined in the standard way, for
example, u ∈ [[φ1 ∧ φ2]] is true if and only if u ∈ [[φ1]] and u ∈ [[φ2]]. Hybrid programs are
interpreted as transition relations, [[α]] ⊆ Rn × Rn, between states. In particular, the transition
semantics of an ODE is defined as:

(u, v) ∈ [[x′ = f(x) &Q]] ⇐⇒ ∃φ : [0, T ]→ Rnφ(0) = u, φ(T ) = v, φ � x′ = f(x) &Q

Here, φ(t) is a solution starting in state u and ending at v. The φ � x′ = f(x) &Q assertion checks
that φ respects the ODE system x′ = f(x), and that it stays in Q for t ∈ [0, T ].

Finally, the modal formula [α]φ is true in a state u iff for all states v such that (u, v) ∈ [[α]], φ
is also true in v. Dually, 〈α〉φ holds in u iff there exists a state v, where (u, v) ∈ [[α]] and φ holds
in v.

Putting these definitions together, we shall consider formulas of the form:

P → [x′ = f(x) &Q]P
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where P is a first-order formula of real arithmetic generated by φ (i.e. not containing modal oper-
ators). Intuitively, this formula asserts that P is a (positive) invariant of the ODE system – if we
start in a state satisfying P and follow the dynamics forwards in time, then we always remain in a
state satisfying P .

3.2 Axiomatization
We assume a classical sequent calculus for dL, and we only present here the axiomatization for
differential equations following [Pla17a, Figure 3].

Theorem 1 (Differential equation axiomatization). The following axioms are sound for dL [Pla17a]:

DW [x′ = f(x) &Q]P ↔ [x′ = f(x) &Q](Q→ P )

DC ([x′ = f(x) &Q]P ↔ [x′ = f(x) &Q ∧ C]P )← [x′ = f(x) &Q]C

DE [x′ = f(x) &Q]P ↔ [x′ = f(x) &Q][x′:=f(x)]P

DI ([x′ = f(x) &Q]P ↔ [?Q]P )← (Q→ [x′ = f(x) &Q](P )′)

DG [x′ = f(x) &Q]P ↔ ∃y [x′ = f(x), y′ = a(x) · y + b(x) &Q]P

Differential weakening (DW), asserts that we may assume that the evolution domain holds
while proving a post-condition. Differential cut (DC) asserts that if we separately prove thatC is an
invariant of the ODE system, then we may assume that the ODE under consideration additionally
never leaves C.

The differential effect axiom (DE) asserts that solutions obey the RHS of the differential equa-
tions. This is typically used to assert that the differential symbols take their corresponding values
when reasoning about the post-condition.

The differential induction axiom (DI) reduces questions about a invariant P to a question about
its differential (P )′. A particular instance of DI is the following:

DI≥ [x′ = f(x) &Q](p)′ ≥ 0→
(
p ≥ 0→ [x′ = f(x) &Q]p ≥ 0

)
Intuitively, if the differential of p stays positive throughout the evolution of an ODE, then if we
start in p ≥ 0, we must stay in p ≥ 0 because p can only be increasing. Therefore, p ≥ 0 is an
invariant. We note that DI≥ is equivalent to a version of the mean value theorem2:

Corollary 2 (Mean value theorem). The following analogue of the mean value theorem is a derived
axiom:

MVT p ≥ 0 ∧ 〈x′ = f(x) &Q〉p < 0→ 〈x′ = f(x) &Q〉(p)′ < 0

Proof. By taking contrapositives in DI≥.

2This is unsurprising, because the proof of soundness for DI≥ relies on the mean value theorem.
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Finally, the differential ghosts axiom (DG) allows one to add a fresh variable y to the system of
equations. The main soundness restriction of this rule is that the RHS must be linear in y. For our
purposes, we will let y be vectorial, i.e. we allow the existing differential equations to be extended
by a system that is linear in a vector of variables y. This axiom is known to increase the deductive
power over a calculus with only DI,DC [Pla12c]. Indeed, we shall see in the upcoming section that
making clever choices of differential ghosts will allow us to prove complicated properties beyond
the reach of DI,DC. We will exploit this increased deductive power in full in later sections.

3.3 Extensions
For the rest of this report, we will use two mild extensions to the standard grammar of dL terms
given above.

• We add terms of the form: e1
e2

. This extends terms from polynomials to rational functions.
We assume that the denominators are non-zero in the domain of interest wherever such terms
appear in order for the term to have well-defined semantics. For example, if 1

e
appears on

the RHS of an ODE, then the evolution domain must imply that e 6= 0.

• We also need terms of the form: max(p, q),min(p, q). Unlike polynomials, such terms
are not smooth, and so we treat them as a separate syntactic class. In particular, they are
not allowed to appear on the right-hand sides of an ODE, and we do not allow arithmetic
operations on these terms. For formulas, this does not result in an extension in expressivity
because we may equivalently rewrite them with:

max(p, q) � e ⇐⇒ p � e ∨ q � e

min(p, q) � e ⇐⇒ p � e ∧ q � e

3.4 Notation
We write (p)(i) for the i-th differential [Pla17a] of the term p and L(i)

f(x)(p) for the i-th Lie derivative

of p along x′ = f(x). Following convention, we let (p)(0) = p = L(0)

f(x)(p). By the differential
lemma [Pla17a, Lemma 35], these two notions coincide along an ODE. This is internalized in dL
by the differential effect axiom DE, and a set of axioms for computing the syntactic derivations
c′,x′,+′,·′,◦′ [Pla17a, Lemmas 36-37]. Syntactically, this means that L(i)

f(x)(p) is equivalent to (p)(i)

after an i-fold application of differential assignment [′:=] and some arithmetic manipulation. More
formally, we can use the following derivation to convert between the two notions under an ODE
(assuming p is a polynomial). We omit the full derivation and freely swap the two notions for the
rest of this report.

∗
[′:=],c′,x′,+′,·′,◦′,R ` [x′ = f(x) &Q][x′:=f(x)](p)′ = Lf(x)(p)

DE ` [x′ = f(x) &Q](p)′ = Lf(x)(p)
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Note that for polynomial vector fields and polynomials p, Lf(x)(p) is also a polynomial, which
means that we can iterate the above derivation for any higher Lie derivative. This also allows us to
swap (p)(i) for L(i)

f(x)(p) under an ODE freely.
Since we work with autonomous ODE systems, it will also be convenient to assume that a

clock variable with x′0 = 1 exists in the system. Such a clock can always be introduced using DG
if not already present.

4 Darboux Polynomials
This section considers proof rules that directly derive in dL without additional axioms. Although
these proof rules are not complete on their own, they provide crucial intuition for the subsequent
sections. A generalization of the techniques presented here will be used in Section 5, where we
derive a complete proof rule for algebraic invariants.

4.1 Fractional Darboux are Ghosts of Differential Invariants
A polynomial p(x) is a Darboux polynomial [Dar78] for the system x′ = f(x) iff we have
Lf(x)(p(x)) = g(x)p(x) for some polynomial cofactor g(x). Correspondingly, p(x) is a fractional
Darboux polynomial if q(x)Lf(x)(p(x)) = g(x)p(x) for some cofactor polynomials g(x), q(x).

Our first derivation shows a proof of invariance for p(x) = 0, assuming it is a (fractional)
Darboux polynomial.

Lemma 3 (Darboux are ghosts of differential invariants). Fractional Darboux polynomials derive
with differential ghosts from differential invariants. The following is a derived proof rule3:

FDbx
Q ∧ q(x) 6= 0 ` [x′:=f(x)]q(x)(p(x))′ = g(x)p(x)

p(x) = 0 ` [x′ = f(x) &Q ∧ q(x) 6= 0]p(x) = 0

Proof. Let 1© denote the use of the premise of FDbx, and 2© abbreviate the right premise in the
following derivation.

DG

M[·],∃R

[]∧
p(x)=0 ` [x′ = f(x), y′ = − g(x)

q(x)y&Q ∧ q(x) 6= 0]p(x)y=0 2©

p(x) = 0, y 6= 0 ` [x′ = f(x), y′ = − g(x)
q(x)y&Q ∧ q(x) 6= 0](y 6= 0 ∧ p(x)y = 0)

p(x) = 0 ` ∃y [x′ = f(x), y′ = − g(x)
q(x)y&Q ∧ q(x) 6= 0]p(x) = 0

p(x) = 0 ` [x′ = f(x)&Q ∧ q(x) 6= 0]p(x) = 0

Note that the assumption q(x) 6= 0 is required in order for the application of DG to be sound. The

3The proof rule with q(x) = 1 is also called polynomial scale consecution in [SSM08].
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proof of the left premise continues as follows (after a simple cut with real arithmetic):

1©
∗

RQ ∧ q(x) 6= 0 ` g(x)
q(x)

p(x)y − g(x)
q(x)

yp(x) = 0
cut Q ∧ q(x) 6= 0 ` [x′:=f(x)](p(x))′y − g(x)

q(x)
yp(x) = 0

[′:=]Q ∧ q(x) 6= 0 ` [x′:=f(x)][y′:=− g(x)
q(x)

y](p(x))′y + y′p(x) = 0
DI p(x)y = 0 ` [x′ = f(x), y′ = −g(x)

q(x)
y&Q ∧ q(x) 6= 0]p(x)y = 0

cut,R p(x) = 0 ` [x′ = f(x), y′ = −g(x)
q(x)

y&Q ∧ q(x) 6= 0]p(x)y = 0

In fact, the choice of the differential ghost y′ = −g(x)
q(x)

y is obtained by solving the remaining con-
dition for y′. The right premise 2© is:

y 6= 0 ` [x′ = f(x), y′ = −g(x)

q(x)
y&Q ∧ q(x) 6= 0]y 6= 0

Its proof continues using a second ghost:

∗
G,R Q ∧ q(x) 6= 0 ` [x′:=f(x)]0 = 0
R Q ∧ q(x) 6= 0 ` [x′:=f(x)]−z g(x)

q(x)
y + y g(x)

q(x)
z = 0

[′:=] Q ∧ q(x) 6= 0 ` [x′:=f(x)][y′:=− g(x)
q(x)

y][z′:=g(x)
q(x)

z]zy′ + yz′ = 0
DI yz = 1 ` [x′ = f(x), y′ = −g(x)

q(x)
y, z′ = g(x)

q(x)
z&Q ∧ q(x) 6= 0]yz = 1

M[·],∃R y 6= 0 ` ∃z [x′ = f(x), y′ = −g(x)
q(x)

y, z′ = g(x)
q(x)

z&Q ∧ q(x) 6= 0]y 6= 0
DG y 6= 0 ` [x′ = f(x), y′ = −g(x)

q(x)
y&Q ∧ q(x) 6= 0]y 6= 0

By inspection of the derivation above, it is easy to see the following generalization to fractional
Darboux inequalities, where q(x)Lf(x)(p(x)) � g(x)p(x).

Lemma 4 (Darboux inequalities are ghosts of differential invariants). Fractional Darboux poly-
nomial inequalities derive with differential ghosts from differential invariants. The following is a
derived proof rule:

FDbx�
Q ∧ q(x)>0 ` [x′:=f(x)]q(x)(p(x))′ ≥ g(x)p(x)

p(x) � 0 ` [x′ = f(x) &Q ∧ q(x) > 0]p(x) � 0

Proof. Let 1© denote the use of the of FDbx, and 2© abbreviate the right premise in the following
derivation.

DG

M[·],∃R

DC
p(x)�0, y>0 ` [x′ = f(x), y′ = − g(x)

q(x)y&Q ∧ q(x)>0 ∧ y > 0]p(x)y � 0 2©

p(x) � 0, y > 0 ` [x′ = f(x), y′ = − g(x)
q(x)y&Q ∧ q(x)>0](y > 0 ∧ p(x)y � 0)

p(x) � 0 ` ∃y [x′ = f(x), y′ = − g(x)
q(x)y&Q ∧ q(x)>0]p(x) � 0

p(x) � 0 ` [x′ = f(x)&Q ∧ q(x)>0]p(x) � 0
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Note the minor variation in the proof: the last step above uses DC instead of []∧ so that y > 0
is available in the left premise. This allows the proof of the left premise to continue in a similar
fashion:

1©
∗

RQ ∧ q(x)>0 ∧ y > 0 ` g(x)
q(x)

p(x)y − g(x)
q(x)

yp(x) ≥ 0
cut Q ∧ q(x)>0 ∧ y > 0 ` [x′:=f(x)](p(x))′y − g(x)

q(x)
yp(x) ≥ 0

[′:=]Q ∧ q(x)>0 ∧ y > 0 ` [x′:=f(x)][y′:=− g(x)
q(x)

y](p(x))′y + y′p(x) ≥ 0
DI p(x)y�0 ` [x′ = f(x), y′ = −g(x)

q(x)
y&Q ∧ q(x)>0 ∧ y > 0]p(x)y � 0

cut,R p(x)�0, y>0 ` [x′ = f(x), y′ = −g(x)
q(x)

y&Q ∧ q(x)>0 ∧ y > 0]p(x)y � 0

Again, the choice of the differential ghost y′ = −g(x)
q(x)

y is obtained by solving the remaining con-
dition for y′. The right premise 2© is:

y > 0 ` [x′ = f(x), y′ = −g(x)

q(x)
y&Q ∧ q(x) > 0]y > 0

Its proof continues using a second ghost:

∗
G,R Q ∧ q(x)>0 ` [x′:=f(x)]0 = 0
R Q ∧ q(x)>0 ` [x′:=f(x)]−z2 g(x)

q(x)
y + 2yz g(x)

2q(x)
z = 0

[′:=] Q ∧ q(x)>0 ` [x′:=f(x)][y′:=− g(x)
q(x)

y][z′:= g(x)
2q(x)

z]z2y′ + 2yzz′ = 0
DI yz2 = 1 ` [x′ = f(x), y′ = −g(x)

q(x)
y, z′ = g(x)

2q(x)
z&Q ∧ q(x)>0]yz2 = 1

M[·],∃R y > 0 ` ∃z [x′ = f(x), y′ = −g(x)
q(x)

y, z′ = g(x)
2q(x)

z&Q ∧ q(x)>0]y > 0
DG y > 0 ` [x′ = f(x), y′ = −g(x)

q(x)
y&Q ∧ q(x)>0]y > 0

For the case where � is >, the equivalence p(y) > 0 ↔ ∃y (y > 0 ∧ p(x)y > 0) is used in the
M[·],∃R step.

A minor variation leads to the following result with an equational premise (proof omitted):

Lemma 5 (Darboux inequalities are ghosts of differential invariants). Fractional Darboux poly-
nomial inequalities derive with differential ghosts from differential invariants. The following is a
derived proof rule:

FDbx′�
Q ∧ q(x)6=0 ` [x′:=f(x)]q(x)(p(x))′ = g(x)p(x)

p(x) � 0 ` [x′ = f(x) &Q ∧ q(x) 6= 0]p(x) � 0

One simple consequence of this derived rule is the following analogue of the intermediate
value theorem, asserting that we can always reach a zero-crossing. Note that we will see stronger
versions in Section 6.
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Corollary 6 (Intermediate value theorem). The following are derived axioms:

IVT p(x) ≥ 0 ∧ 〈x′ = f(x) &Q〉 p(x) ≤ 0→ 〈x′ = f(x) &Q〉 p(x) = 0

IVT[]≥ p(x) ≥ 0→ [x′ = f(x) &Q ∧ p(x) 6= 0] p(x) ≥ 0

IVT[]> p(x) > 0→ [x′ = f(x) &Q ∧ p(x) 6= 0] p(x) > 0

Proof. IVT[]≥ and IVT[]> derive from each other by DW (and DI in case p(x) = 0). IVT derives
from IVT[]≥:

p(x) ≥ 0 ` [x′ = f(x)&Q ∧ p(x) 6= 0] p(x) ≥ 0
DC p(x) ≥ 0, [x′ = f(x)&Q]p(x) 6= 0 ` [x′ = f(x)&Q] p(x) ≥ 0

〈·〉,¬L,¬R p(x) ≥ 0, 〈x′ = f(x)&Q〉p(x) < 0 ` 〈x′ = f(x)&Q〉 p(x) = 0
∨L,id p(x) ≥ 0, 〈x′ = f(x)&Q〉p(x)=0 ∨ 〈x′ = f(x)&Q〉p(x)<0 ` 〈x′ = f(x)&Q〉 p(x) = 0

K p(x) ≥ 0, 〈x′ = f(x)&Q〉(p(x) = 0 ∨ p(x) < 0) ` 〈x′ = f(x)&Q〉 p(x) = 0
CE,∧L p(x) ≥ 0 ∧ 〈x′ = f(x)&Q〉 p(x) ≤ 0 ` 〈x′ = f(x)&Q〉 p(x) = 0

IVT[]≥ in turn proves by FDbx′� with q(x)
def
= p(x) and g(x)

def
= (p(x))′:

∗
R,G Q ∧ p(x)6=0 ` [x′:=f(x)]p(x)(p(x))′ = (p(x))′p(x)

FDbx′� p(x) ≥ 0 ` [x′ = f(x) &Q ∧ p(x) 6= 0] p(x) ≥ 0

5 Algebraic Invariants
In this section, we show that we can derive the following sound and complete proof rule, DRI, for
algebraic invariants [GP14].

DRI

p = 0→
N−1∧
i=1

L(i)

f(x)(p) = 0

p = 0→ [x′ = f(x)]p = 0
(L(N)

f(x)(p) =
∑N−1

i=0 giL
(i)

f(x)(p))

The side condition of this rule, L(N)

f(x)(p) =
∑N−1

i=0 giL
(i)

f(x)(p), asserts that L(N)

f(x)(p) is contained
in the ideal generated by lower Lie derivatives of p, where gi are cofactor polynomials witnessing
ideal membership. The (equational) Darboux proof rule is a special case of DRI with N = 1.

Note that it is sufficient for us to consider an invariant of the form p = 0 since any algebraic
invariant defined by finite conjunctions and disjunctions of equations may be reduced to this form
with the following real arithmetic equivalences:

p = 0 ∧ q = 0 ⇐⇒ p2 + q2 = 0

p = 0 ∨ q = 0 ⇐⇒ pq = 0

The following definition is central to the soundness and completeness of DRI [GP14]:
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Definition 1 (Differential rank). The differential rank of a polynomial p in a vector field f(x) is
the smallest N such that:

L(N)

f(x)(p) =
N−1∑
i=0

giL
(i)

f(x)(p)

The proof that the differential rank is well-defined can be found in [NY99, GP14, LZZ11]. It
relies on the fact that the polynomial ring R[x] is Noetherian, which implies that the (ascending)
chain of ideals:

〈p〉 ⊂ 〈p,Lf(x)(p)〉 ⊂ · · ·

terminates. In addition, N is computable by successively checking for ideal membership of
L(N)

f(x)(p) in 〈p,Lf(x)(p), · · · ,L
(N−1)

f(x) (p)〉 for N = 1, 2, · · · . An upper bound on the length of the
chain, and hence, N , is given in [NY99, Theorem 4].

5.1 Vectorial Disequational Darboux
We start by deriving a vectorial generalization of the Darboux-style proof rules in the previous
section. The derivation requires the ability to simultaneously add a vector of fresh variables to the
ODE under consideration with differential ghosts.

Lemma 7 (Vectorial disequational Darboux are differential ghosts). Vectorial DG proves:

VDbx 6=
Q ` [x′:=f(x)](~p(x))′ = G(x)~p(x)

~p(x) · ~p(x) > 0 ` [x′ = f(x) &Q]~p(x) · ~p(x) > 0

where G(x) is an M ×M matrix of polynomials, and ~p(x) is an M dimensional vector.

Proof. The ∃R step uses ~p(x) as witness for ~y since ~p(x) · ~p(x) > 0 implies ~p(x) · ~y > 0 then
(conversely ~p(x) · ~y > 0 also necessitates ~p(x) · ~p(x) > 0 in step M[·]):

1©

∗
G,RQ ` [x′:=f(x)]G(x)~p(x) · ~y −G(x)~p(x) · ~y ≥ 0
R Q ` [x′:=f(x)]G(x)~p(x) · ~y − ~p(x) ·G(x)T~y ≥ 0

cut Q ` [x′:=f(x)](~p(x))′ · ~y − ~p(x) ·G(x)T~y ≥ 0
[′:=] Q ` [x′:=f(x)][y′:=−G(x)T~y](~p(x))′ · ~y + ~p(x) · (~y)′ ≥ 0
DI ~p(x) · ~y > 0 ` [x′ = f(x), ~y′ = −G(x)T~y&Q]~p(x) · ~y > 0

M[·],∃R~p(x) · ~p(x) > 0 ` ∃~y [x′ = f(x), ~y′ = −G(x)T~y&Q]~p(x) · ~p(x) > 0
DG ~p(x) · ~p(x) > 0 ` [x′ = f(x) &Q]~p(x) · ~p(x) > 0

For notational simplicity, we used matrix and vector notation to express the proof rule and
derivation. However, instances of the rule at any dimension M can be derived using our term lan-
guage (without matrices and vectors) using vectorial DG. Note also that as a simple consequence of
real arithmetic, we may replace the invariant formula with ~p(x) · ~p(x) > 0 ⇐⇒

∨M−1
i=0 pi(x) 6= 0.
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5.2 Differential Adjoints
Differential adjoints express that x can flow to y forward iff y can flow to x backwards along an
ODE. They are at the heart of the “there and back again” axiom that equivalently expresses proper-
ties of differential equations with evolution domain constraints in terms of properties of forwards
and backwards differential equations without evolution domain constraints [Pla12a, Pla15].

Lemma 8 (Differential adjoints). The differential adjoint axiom is sound:

′∗ 〈x′ = f(x) &Q(x)〉x = y ↔ 〈y′ = −f(y) &Q(y)〉 y = x

Proof. Both implications are proved separately. Consider any state ω in which one side is true and
prove the other.

“→” Assume that there is a transition (ω, ν) ∈ [[x′ = f(x) &Q(x)]] of duration r such that
ν ∈ [[x = y]]. By uniqueness, the solutions of x′ = −f(x) &Q(x) are exactly the reverse of
solutions of x′ = f(x) &Q(x). Thus, (ν, ω) ∈ [[x′ = −f(x) &Q(x)]]. Since ν ∈ [[x = y]],
the solutions of x′ = −f(x) &Q(x) starting in ν directly correspond to the solutions of
y′ = −f(y) &Q(y) starting in ν, just with the values of x and y swapped. That is, the two
respective solutions ϕ of x′ = −f(x) &Q(x) and ϑ of y′ = −f(y) &Q(y) agree with ν and
ω except that ϕ(t)(x) = ϑ(t)(y) and ϕ(t)(y) = ϑ(t)(x) = ν(x) = ν(y) for all times t.
Consequently, ω(x) = ϕ(r)(x) = ϑ(r)(y). Let µ denote the state reached from ω along
y′ = −f(y) &Q(y) after duration r. Then (ω, µ) ∈ [[y′ = −f(y) &Q(y)]] and µ ∈ [[x = y]],
because µ(y) = ϑ(r)(y) = ω(x) by coincidence lemma since ω and ν agree on the free
variables of y′ = −f(y) &Q(y) by bound effect lemma as (ω, ν) ∈ [[x′ = f(x) &Q(x)]] of
duration r such that ν ∈ [[x = y]] implies that both agree except on x, x′.

“←” This direction follows from direction “→” by swapping the names x and y, because
−(−f(x)) = f(x).

5.3 Reflections
The differential adjoint axiom yields predicate reflection under 〈·〉. Intuitively, if we can start in a
state u satisfying P and reach a state v satisfying R following the ODE, then we may follow the
ODE backwards starting at v and ending at u.

Corollary 9 (〈·〉Reflection). The following predicate reflection axiom derives from ′∗:

reflect〈·〉 ∃x (P (x) ∧ 〈x′ = f(x) &Q(x)〉R(x))↔ ∃x (R(x) ∧ 〈x′ = −f(x) &Q(x)〉P (x))

Proof. Both implications are proved separately and the “←” direction follows by instantiating the

11



proof of the “→” direction, since −(−f(x)) = f(x).

∗
∃R R(z), 〈z′ = −f(z) &Q(z)〉P (z) ` ∃x (R(x) ∧ 〈x′ = −f(x) &Q(x)〉P (x))
CE P (y), R(z), 〈z′ = −f(z) &Q(z)〉z = y ` ∃x (R(x) ∧ 〈x′ = −f(x) &Q(x)〉P (x))
′∗

P (y), R(z), 〈y′ = f(y) &Q(y)〉z = y ` ∃x (R(x) ∧ 〈x′ = −f(x) &Q(x)〉P (x))
B,∃LP (y), 〈y′ = f(y) &Q(y)〉∃z (z = y ∧R(z)) ` ∃x (R(x) ∧ 〈x′ = −f(x) &Q(x)〉P (x))
CE P (y), 〈y′ = f(y) &Q(y)〉R(y) ` ∃x (R(x) ∧ 〈x′ = −f(x) &Q(x)〉P (x))
∃L ∃x (P (x) ∧ 〈x′ = f(x) &Q(x)〉R(x)) ` ∃x (R(x) ∧ 〈x′ = −f(x) &Q(x)〉P (x))

Consequently, we have the following invariant reflection principle: ¬P must have been always
true if it ever is true, if P remains always true (and vice versa).

Corollary 10 (Reflection). The invariant reflection axiom is sound, and derives from ′∗:

reflect ∀x (P → [x′ = f(x) &Q]P )↔ ∀x (¬P → [x′ = −f(x) &Q]¬P )

Proof. This follows immediately from reflect〈·〉 by instantiating it with R def
= ¬P and negating both

sides of the equivalence.

5.4 Vectorial Darboux
Combining invariant reflection and VDbx6=, yields the following:

Lemma 11 (Vectorial Darboux are vectorial ghosts). VDbx derives from vectorial DG by ′∗.

VDbx
Q ` [x′:=f(x)](~p(x))′ = G(x)~p(x)

~p(x) = 0 ` [x′ = f(x) &Q]~p(x) = 0

Proof.
Q ` [x′:=f(x)](~p(x))′ = G(x)~p(x)

R Q ` [x′:=− f(x)](~p(x))′ = −G(x)~p(x)
VDbx 6=~p(x) · ~p(x) > 0 ` [x′ = −f(x) &Q]~p(x) · ~p(x) > 0

R ~p(x) · ~p(x) 6= 0 ` [x′ = −f(x) &Q]~p(x) · ~p(x) 6= 0
reflect ~p(x) · ~p(x) = 0 ` [x′ = f(x) &Q]~p(x) · ~p(x) = 0
R ~p(x) = 0 ` [x′ = f(x) &Q]~p(x) = 0

The arithmetic on top of axiom reflect uses the fact that ~p(x)·~p(x) 6= 0 is equivalent to ~p(x)·~p(x) >
0, because ~p(x) · ~p(x) < 0 is equivalent to false. The arithmetic in the final step holds because the
Lie derivative satisfies L(i)

f (p) = ∇p · f = −∇p ·−f = −L(i)

−f (p).

12



5.5 Differential Radical Invariants
We now derive DRI as a special case of VDbx using a clever choice of the cofactor matrix G(x).

Lemma 12 (Differential radical invariants are vectorial Darboux). DRI derives from VDbx, which
in turn derives from ′∗ and vectorial DG.

DRI

p = 0→
N−1∧
i=1

L(i)

f(x)(p) = 0

p = 0→ [x′ = f(x)]p = 0
(L(N)

f(x)(p) =
∑N−1

i=0 giL
(i)

f(x)(p))

Proof. Let N be the rank of a use of the DRI proof rule, i.e. such that its side condition proves.
We start by setting up for a proof by VDbx.

p = 0 `
N−1∧
i=1

L
(i)

f(x)(p) = 0


L(N−1)

f(x) (p)
...

Lf(x)(p)

p

 = 0 ` [x′ = f(x)&Q]


L(N−1)

f(x) (p)
...

Lf(x)(p)

p

 = 0

M[·]


L(N−1)

f(x) (p)
...

Lf(x)(p)

p

 = 0 ` [x′ = f(x)&Q]p = 0

cut p = 0 ` [x′ = f(x)&Q]p = 0

The left open premise is the premise of DRI. The cut proves because of the following simple fact
of arithmetic:

p = 0 ∧

(
N−1∧
i=1

L(i)

f(x)(p) = 0

)
↔


L(N−1)

f(x) (p)
...

Lf(x)(p)
p

 = 0

We then apply VDbx, with a proper choice of G(x):

VDbx

R
Q ` [x′:=f(x)](L(N−1)

f(x) (p))′ = gN−1L
(N−1)

f(x) (p) + · · ·+ g1Lf(x)(p) + g0p

Q ` [x′:=f(x)](


L(N−1)

f(x) (p)
...

Lf(x)(p)

p

)′ =


gN−1 . . . g1 g0
1 . . . 0 0

0
. . . 0 0

0 . . . 1 0



L(N−1)

f(x) (p)
...

Lf(x)(p)

p



L(N−1)

f(x) (p)
...

Lf(x)(p)

p

 = 0 ` [x′ = f(x)&Q]


L(N−1)

f(x) (p)
...

Lf(x)(p)

p

 = 0
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The last proof step on the right premise uses that Q ` [x′:=f(x)](Lf(x)(p))′ = 1L(2)

f(x)(p) is

valid, or more generally for all i < N − 1 that the following proves by construction of L(i+1)

f(x) (p):

Q ` [x′:=f(x)](L(i)

f(x)(p))
′ = 1L(i+1)

f(x) (p)

Consequently from Q it is possible to directly prove all but the first row of:

[x′:=f(x)](


L(N−1)

f(x) (p)
...

L(2)

f(x)(p)

Lf(x)(p)
p

)′ =


gN−1 . . . g2 g1 g0

1 . . . 0 0 0
... . . . ...

...
...

0 . . . 1 0 0
0 . . . 0 1 0




L(N−1)

f(x) (p)
...

L(2)

f(x)(p)

Lf(x)(p)
p


The first row leaves an open premise, which is the side condition of DRI.

By the soundness and completeness theorem for DRI [GP14], our derivation shows that all
algebraic invariants are provable by vectorial DG and the differential adjoints axiom ′∗. However,
not all first-order formulas of real arithmetic can be represented by algebraic sets. Additionally,
we have not considered the effects of the evolution domain Q.

Using predicate reflection again, we may slightly extend the reach of DRI to simple inequalities
with the following:

Corollary 13 (Backwards DDC signs). The following axiom is sound, and derives from ′∗,IVT[]>:

ddc
∀x
(
p = 0→ [x′ = ±f(x) &Q]p = 0

)
↔ ∀x

(
p > 0→ [x′ = ∓f(x) &Q]p > 0

)
∧ ∀x

(
p < 0→ [x′ = ∓f(x) &Q]p < 0

)
where ± and ∓ indicate that the sign of the ODE is flipped across the equivalence.

Proof. Using reflect directly derives:

∀x
(
p = 0→ [x′ = f(x) &Q]p = 0

)
↔ ∀x

(
p 6= 0→ [x′ = −f(x) &Q]p 6= 0

)
Thus, it is sufficient for us to show: ∀x

(
p 6= 0→ [x′ = −f(x) &Q]p 6= 0

)
is equivalent to:

∀x
(
p > 0→ [x′ = −f(x) &Q]p > 0

)
∧ ∀x

(
p < 0→ [x′ = −f(x) &Q]p < 0

)
“→” We show the derivation for p > 0 since the one for p < 0 is symmetric.

∗
DC,IVT[]> p>0, [x′ = −f(x)&Q]p6=0 ` [x′ = −f(x)&Q]p>0
∀L,→L p>0,∀x

(
p6=0→ [x′ = −f(x)&Q]p6=0

)
` [x′ = −f(x)&Q]p>0

∀R,→R ∀x
(
p6=0→ [x′ = −f(x)&Q]p6=0

)
` ∀x

(
p>0→ [x′ = −f(x)&Q]p>0

)
reflect ∀x

(
p=0→ [x′ = f(x)&Q]p=0

)
` ∀x

(
p>0→ [x′ = −f(x)&Q]p>0

)
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“←” The idea is to case split on whether we start at p > 0 or p < 0, and then apply the assump-
tions directly. The open premise 1© is symmetric, and it is closed using the corresponding
assumption hidden by · · · .

reflect

∀R,→R

R

∨L

∀L,→L

R,M[·]
∗

p>0, [x′ = −f(x)&Q]p>0, · · · ` [x′ = −f(x)&Q]p6=0

p>0,∀x
(
p>0→ [x′ = −f(x)&Q]p>0

)
, · · · ` [x′ = −f(x)&Q]p6=0

1©

p>0 ∨ p<0,∀x
(
p>0→ [x′ = −f(x)&Q]p>0

)
, · · · ` [x′ = −f(x)&Q]p 6=0

p 6=0,∀x
(
p>0→ [x′ = −f(x)&Q]p>0

)
, · · · ` [x′ = −f(x)&Q]p6=0

∀x
(
p>0→ [x′ = −f(x)&Q]p>0

)
, · · · ` ∀x

(
p 6=0→ [x′ = −f(x)&Q]p 6=0

)
∀x
(
p>0→ [x′ = −f(x)&Q]p>0

)
, · · · ` ∀x

(
p=0→ [x′ = f(x)&Q]p=0

)

Thus, to prove the invariance of p > 0, we could instead try to prove that p = 0 is invariant.
However, this is not complete in general, and it also does not generalize to invariants involving
conjunctions and disjunctions of inequalities, except when they are individually invariant.

6 Semialgebraic Invariants
By quantifier elimination, the set of points satisfying a first-order formula of real arithmetic P is
semialgebraic, and can be characterized by a quantifier-free, finite formula of the form:

P ⇐⇒
M∨
i=0

(m(i)∧
j=0

pij ≥ 0 ∧
n(i)∧
j=0

qij > 0
)

where pij, qij are polynomials, and M,m(i), n(i) are finite indexes.
This section shows that the following sound and complete proof rule, due to [LZZ11], for

semialgebraic invariants with a semialgebraic evolution domain constraint Q is a derived rule. We
follow the simplified notation used in [GSP17] in our exposition of the rule.

LZZ
¬P ∧Q→ In−f(x)(¬P ) ∨ In−f(x)(¬Q) P ∧Q→ Inf(x)(P ) ∨ Inf(x)(¬Q)

P → [x′ = f(x) &Q]P

Here, let Φ : Rn×[0, T ]→ Rn be the generic solution of the ODE system x′ = f(x) parameterized
by both time and initial conditions. We define:

Inf(x)(P )(x)
def
= x ∈ {y | ∃ε > 0 ∀0 < t < εP (Φ(y, t))}

In other words, it is true at those points y where the solution of the ODE system x′ = f(x) starting
at x = y immediately enters and stays in P for ε > 0 time.

For simplicity, we will first focus on deriving the following simpler proof rule without the
evolution domain constraints before generalizing to LZZ at the end of this section:

In
¬P → In−f(x)(¬P ) P → Inf(x)(P )

P → [x′ = f(x) &Q]P
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As stated, the LZZ proof rule is a semantic proof rule, because it refers to the generic solution
Φ in its premises. This is awkward to implement in a proof calculus because it requires us to have
the generic solution Φ, and also be able to correctly calculate Inf(x)(P ) from it.

6.1 Properties of Inf(x)(P )

The primary result of [LZZ11] is if P ⇐⇒
∨M
i=0

(∧m(i)
j=0 pij ≥ 0∧

∧n(i)
j=0 qij > 0

)
is semialgebraic,

then there is a semialgebraic formula that characterizes Inf(x)(P ).
In particular, the operator Inf(x)(·) is homomorphic across the usual logical connectives, and

we have:

Inf(x)(P ) ⇐⇒
M∨
i=0

(m(i)∧
j=0

Inf(x)(pij ≥ 0) ∧
n(i)∧
j=0

Inf(x)(qij > 0)
)

The formulas Inf(x)(p > 0) and Inf(x)(p ≥ 0) for arbitrary polynomials p can also be characterized
by finite formulas.

Let us first consider Inf(x)(p > 0). For any given point in y ∈ Rn, there are three possible
scenarios:

• If p(y) > 0, then because solutions of the ODE are continuous, the solution must locally
stay in the set of points satisfying p > 0. Therefore, we have p > 0→ Inf(x)(p > 0)

• If p(y) < 0, then for the same continuity reasons, the solution cannot immediately enter
p > 0. Thus, p < 0→ ¬Inf(x)(p > 0).

• If p(y) = 0, then we must look to the higher Lie derivatives of p. For example, if additionally
Lf(x)(p(y)) > 0, then the solution locally enters y > 0, while if Lf(x)(p(y)) < 0, then it
locally enters y < 0. In general, as long as the first non-zero Lie derivative of p at y is
positive, then we will locally enter p > 0.

We define notation for the local Lie derivative condition recursively:

Definition 2 (First positive non-zero Lie derivative).

γ=nf(x)(p) > 0 ≡ L(n)

f(x)(p) > 0 ∧
n−1∧
i=0

L(i)

f(x)(p) = 0

γ≤0f(x)(p) > 0 ≡ p > 0

γ≤n+1
f(x) (p) > 0 ≡ γ≤nf(x)(p) > 0 ∨ γ=n+1

f(x) (p) > 0

The formula Inf(x)(p > 0) is exactly true whenever γ≤nf(x)(p) > 0 holds for any n:

Inf(x)(p > 0) ⇐⇒ γ≤∞f(x)(p) > 0

Moreover, if Np is the differential rank of p along x′ = f(x), then it is equivalent to the
following finite disjunction:

Inf(x)(p > 0) ⇐⇒ γ
≤Np−1
f(x) (p) > 0
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The reasoning for Inf(x)(p ≥ 0) is largely similar, since if a solution locally enters p > 0 it
must also locally enter p ≥ 0. However, we must additionally account for the possibility that p = 0
itself is invariant. Here, we have:

Inf(x)(p ≥ 0) ⇐⇒ γ
≤Np−1
f(x) (p) > 0 ∨

Np−1∧
i=0

L(i)

f(x)(p) = 0

Together, these properties imply that for any semialgebraic set P , the premises of LZZ are
definable by finite formulas. This makes them amenable to derivation in our proof calculus for
dL. However, note that the rule is still highly schematic – the equivalences for Inf(x)(P ) requires
P to be decomposed into semialgebraic sets, and also requires side conditions on the differential
rank with respect to x′ = f(x) for each of the polynomials in P . A direct implementation of
the rule would have to syntactically decompose P into polynomials, and correctly compute each
polynomial’s Lie derivatives and differential rank with respect to the specific vector field x′ = f(x)
on which the rule is applied. We show that we can soundly derive any instance of the rule with
axioms, rather than such complex schemata.

6.2 Boundary Crossing Axioms
A crucial feature of the formulas characterizing Inf(x)(P ) is that they are concerned with how
solutions behave at the boundary of P . For example, we saw that the most interesting case of
Inf(x)(p > 0) occurs when p = 0.

Here, we introduce two new axioms that we will use for the rest of this section. These axioms
are designed to allow the sound introduction of evolution domain constraints that allow us to reason
about these boundary situations within dL. Note that these axioms hold for generalized terms e
containing the max,min functions.

The first axiom is a strengthened version of the intermediate value theorem. Intuitively, it
asserts that if the solution starts in a state satisfying e(x) � 0, and ends in a state satisfying
e(x) � 0, then the solution must stay within e(x) � 0 until we first reach the boundary at e(x) = 0.

Lemma 14 (Intermediate value theorem with domain constraint). The following analogue of the
intermediate value theorem is sound:

IVT& e(x) � 0 ∧ 〈x′ = f(x) &Q〉 e(x) � 0→ 〈x′ = f(x) &Q ∧ e(x) ≥ 0〉 e(x) = 0

Here, we take � to be either ≥ or >, and � to be either ≤ or <.

Proof. Consider a solution φ : [0, T ] → R witnessing the existential on the LHS, and let h :
[0, T ]→ R be the valuation of e(x) along φ. Since φ is continuous and e is a continuous function
of its inputs4, their composition, h, is also continuous.

Let τ be the supremum of the set U = {t ∈ [0, T ] : ∀∀0≤ζ≤t h(ζ) ≥ 0}, which is non-empty
since h(0) � 0. We claim that h(τ) = 0. Suppose h(τ) > 0, then by continuity, there exists an

4Polynomials, viewed as functions, are continuous, and max,min are continuous as long as their arguments are
continuous.
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open interval (τ−ε, τ+ε), ε > 0 around τ where h > 0, and thus we have τ+ ε
2
∈ U , contradicting

τ being the supremum. Similarly, suppose h(τ) < 0, then there is an open interval to the left of
τ where h < 0 where we may choose a smaller upper bound for U . Therefore h(τ) = 0, and by
construction, restricting φ to the interval [0, τ ] yields a suitable witness for the RHS.

The proof of IVT& only required the fact that the solution φ is continuous. In our case, we
additionally have ODE systems where the right-hand sides are analytic polynomial terms5. For
any ODE system with analytic right-hand sides, their solutions are also analytic [Chi06, Theorem
1.3].

Using this property, we may further strengthen IVT&. As before, if a solution starts in a state
satisfying e ≥ 0 and ends in a state satisfying e < 0, then we stay in e ≥ 0 until we reach e = 0.
Now, IVT& does not place further restrictions on the behavior of the solution at the intermedi-
ate state satisfying e = 0. The next axiom additionally asserts that the solution reaches a state
satisfying e = 0, and then immediately enters e < 0 afterwards 6.

Lemma 15 (Intermediate value staging theorem). The following axiom is sound:

IVST e ≥ 0 ∧ 〈x′ = f(x) &Q〉 e < 0→ 〈x′ = f(x) &Q ∧ e ≥ 0〉 〈x′ = f(x) &Q ∧ e ≤ 0〉e < 0

Proof. Let φ : [0, T ] → Rn be a witness for the LHS of the implication, and let h : [0, T ] → R
be the valuation of the term e along φ, so h(0) ≥ 0 > h(T ). As before, note that φ, h are both
continuous functions.

We first show by induction on the structure of e that for 0 ≤ t < T , whenever h(t) = 0, then
there exists 0 < ε ≤ T − t such that the sign of h on the interval (t, t+ ε] is constant.

• Case e := p. Since x′ = f(x) is assumed to be a polynomial system, its solution φ is an
analytic function. The valuation of polynomial p along φ is a polynomial of an analytic
function, therefore, h is also analytic. By analyticity, there exists an open interval a < t <
b ≤ T around h(t) = 0 where the Taylor series of h about t converges to h in that interval.

If the series is uniformly zero, then h is uniformly zero in that interval, and so we may choose
ε ∈ (0, b− t) where the h = 0 is constant in (t, t+ ε).

Otherwise, the Taylor series is not uniformly zero and h is locally dominated by its first
non-zero term for a small enough choice of ε. Choosing such a ε yields an interval (t, t+ ε)
where the sign of h is equal to the sign the first non-zero term in its Taylor series expansion
about t.

• Case e := max(e1, e2) . Let h1, h2 be the valuation of e1, e2 along φ respectively, then
h = max(h1, h2). Since h(t) = 0, without loss of generality, assume h1 = 0, h2 ≤ 0. If
h2 < 0, then by continuity, h2 < 0 for a sufficiently small interval around t. Therefore, the
local sign of max(h1, h2) around t is equal to the sign of h1 around t, and the conclusion
follows by the induction hypothesis. Otherwise, h1 = 0 and h2 = 0 so by the induction

5In fact, rational functions are also analytic if their denominators are non-zero in the domain of definition.
6Note that we have carefully chosen this axiom as it can be stated without soundness critical side conditions. An

alternative is presented in Appendix B.
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hypothesis, there exist (t, t + ε1], (t, t + ε2] where the signs of h1, h2 are constant. Now, let
τ = min(τ1, τ2) so that both h1, h2 have constant signs on (t, t + ε], a simple case analysis
on the local signs of h1, h2 shows that the sign of h is also constant on (t, t+ ε].

• Case e := min(e1, e2). This is symmetric to the previous case.

Pick τ following the same construction as in the proof of IVT&. Following the same continuity
argument, h(τ) = 0. We showed that there is ε > 0 such that the sign of h is constant on the
interval (τ, τ + ε). It is easy to see that the sign must be h < 0, because otherwise, h ≥ 0 for the
interval, contradicting the choice of τ as the supremum.

We may now construct a witness for the RHS by first choosing φ restricted to the interval [0, τ ]
as the witness for the outer diamond modality. For the inner diamond modality, we noted that h is
strictly negative on (τ, τ + ε), therefore, we may use φ restricted to [τ, τ + ε

2
] as the witness.

Note that IVT& is implied by IVST because of the evolution domain constraints e ≥ 0, e ≤ 0,
so we really only need to add the latter axiom. However, IVST requires analyticity of solutions,
which restricts the type of functions that we may include as the RHS of ODEs.

A simple combination of IVT& with reflect〈·〉 yields the following corollary restricting back-
wards evolution.

Corollary 16 (Intermediate value theorem, backwards restriction). The following (reversed) ver-
sion of IVT& is sound:

IVTO ∃x (e � 0 ∧ 〈x′ = f(x) &Q〉e < 0)→ ∃x (e = 0 ∧ 〈x′ = f(x) &Q ∧ e ≤ 0〉e < 0)

Proof.

∗
∃R e(y) < 0, 〈y′ = −f(y)&Q ∧ e(y) ≤ 0〉e(y) = 0 ` ∃x (e(x) < 0 ∧ 〈x′ = −f(x)&Q ∧ e(x) ≤ 0〉e(x) = 0)

IVT& e(y) < 0, 〈y′ = −f(y)&Q〉e(y) � 0 ` ∃x (e(x) < 0 ∧ 〈x′ = −f(x)&Q ∧ e(x) ≤ 0〉e(x) = 0)
∃L ∃x (e(x) < 0 ∧ 〈x′ = −f(x)&Q〉e(x) � 0) ` ∃x (e(x) < 0 ∧ 〈x′ = −f(x)&Q ∧ e(x) ≤ 0〉e(x) = 0)

reflect〈·〉 ∃x (e(x) � 0 ∧ 〈x′ = f(x)&Q〉e(x) < 0) ` ∃x (e(x) = 0 ∧ 〈x′ = f(x)&Q ∧ e(x) ≤ 0〉e(x) < 0)

6.3 Frozen Predicates
As a first consequence of the new axioms, we show that time-frozen systems, i.e. where the time
variable t is held fixed in the evolution domain constraint, cannot evolve. The significance of
reasoning about frozen systems has been indicated elsewhere [Pla17b, MBT05]. The proof is
generic for vectorial x, although it can be done component-wise as well.

Corollary 17 (Frozen evolution). The following is a derived axiom:

Frz x = y → [x′ = f(x), t′ = 1 &Q ∧ t = 0]x = y
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Proof. The idea is to explicitly find a region where (|x− y|2)′ ≤ ε, ε > 0. In that region, |x− y|2
is bounded above by εt = 0, but that implies x = y. The rest follows since x = y is the minimum
point of |x− y|2, i.e. (|x− y|2)′ = 0 < ε. In detail:

R,CE

[·],¬R

MVT

R,B,∃L

cut,R
IVT&

〈·〉,¬L

DI,DC

DW

R
(|x− y|2 ≤ εt = 0, (|x− y|2)′ = 0 < ε)

ε > 0, t = 0, (|x− y|2)′ ≤ ε, |x− y|2 ≤ εt ` (|x− y|2)′ 6= ε

ε > 0 ` [x′ = f(x), t′ = 1&Q ∧ t = 0 ∧ (|x− y|2)′ ≤ ε ∧ |x− y|2 ≤ εt](|x− y|2)′ 6= ε

ε > 0 ` [x′ = f(x), t′ = 1&Q ∧ t = 0 ∧ (|x− y|2)′ ≤ ε](|x− y|2)′ 6= ε

ε > 0, 〈x′ = f(x), t′ = 1&Q ∧ t = 0 ∧ (|x− y|2)′ ≤ ε〉(|x− y|2)′ = ε ` false

ε > 0, (|x− y|2)′ ≤ ε, 〈x′ = f(x), t′ = 1&Q ∧ t = 0〉(|x− y|2)′ > ε ` false

ε > 0, |x− y|2 = 0, 〈x′ = f(x), t′ = 1&Q ∧ t = 0〉(|x− y|2)′ > ε ` false

|x− y|2 = 0, 〈x′ = f(x), t′ = 1&Q ∧ t = 0〉(|x− y|2)′ > 0 ` false

|x− y|2 = 0, 〈x′ = f(x), t′ = 1&Q ∧ t = 0〉|x− y|2 > 0 ` false

|x− y|2 = 0 ` [x′ = f(x), t′ = 1&Q ∧ t = 0]|x− y|2 = 0

x = y ` [x′ = f(x), t′ = 1&Q ∧ t = 0]x = y

Note that (|x− y|2)′ = 2(x− y)Tx′, and this is abbreviated in the derivation above for clarity. The
expanded form is used to prove |x− y|2 = 0→ (|x− y|2)′ = 0.

By contextual equivalence and monotonicity [Pla17a], any predicate that holds before a frozen
ODE continues to hold after the ODE:

Corollary 18 (Frozen predicates). The following is a derived axiom:

FrzP [?Q ∧ t = 0]p(x)↔ [x′ = f(x), t′ = 1 &Q ∧ t = 0]p(x)

Proof. “→”

∗
DW y = x,Q, t = 0, p(y) ` [x′ = f(x), t′ = 1 &Q ∧ t = 0 ∧ y = x]p(x)

Frz,DC y = x,Q, t = 0, p(y) ` [x′ = f(x), t′ = 1 &Q ∧ t = 0]p(x)
R,∃L Q, t = 0, p(x) ` [x′ = f(x), t′ = 1 &Q ∧ t = 0]p(x)

DW,[?],→L [?Q ∧ t = 0]p(x) ` [x′ = f(x), t′ = 1 &Q ∧ t = 0]p(x)

“←”
∗

DW,[?][x′ = f(x), t′ = 1 &Q ∧ t = 0]p(x) ` [?Q ∧ t = 0]p(x)

6.4 Local Sign Conditions
Consider the following situation, where p is locally increasing because Lf(x)(p) > 0, but p ≤ 0 is
in the evolution domain, preventing p from locally increasing.

Lf(x)(p) > 0 ∧ p = 0 ∧ P → [x′ = f(x) &Q ∧ p ≤ 0]P
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Intuitively, the ODE system is stuck because evolving for non-zero time would immediately violate
the evolution domain constraint. Therefore, any predicate P that holds initially continues to hold
after evolving the ODE.

This argument is central to our derivation of all semialgebraic invariants of ODEs, and we now
prove a family of these local sign conditions.

Lemma 19 (Locally frozen predicates). The following are derived axioms:

frzSgn γ=nf(x)(p) > 0 ∧ P → [x′ = f(x) &Q ∧ p ≤ 0]P

frzSgn≤ γ≤nf(x)(p) > 0 ∧ P → [x′ = f(x) &Q ∧ p ≤ 0]P

Proof. We can recursively apply ∨L to derive any instance of frzSgn≤ using the appropriate in-
stance of frzSgn:

∗
frzSgnγ=0

f(x)(p) > 0 ` [x′ = f(x)&Q ∧ p ≤ 0]x0 = 0 · · ·
∗

frzSgnγ=n
f(x)(p) > 0 ` [x′ = f(x)&Q ∧ p ≤ 0]x0 = 0

∨L γ≤nf(x)(p) > 0 ` [x′ = f(x)&Q ∧ p ≤ 0]P

To derive frzSgn, we assume that an appropriate clock, x′0 = 1, with x0 = 0 initially is already
present in the system. The idea is to show that x0 is stuck at x0 = 0, and apply FrzP. Note that the
case with n = 0 is trivial because the evolution domain constraint is false initially.

x0 = 0, γ=n
f(x)(p) > 0 ` [x′ = f(x)&Q ∧ p ≤ 0]x0 = 0

∗
FrzPP ` [x′ = f(x)&Q ∧ p ≤ 0 ∧ x0 = 0]P

DC x0 = 0, γ=n
f(x)(p) > 0, P ` [x′ = f(x)&Q ∧ p ≤ 0]P

The next observation is that if L(n)

f(x)(p) is positive, it must stay positive for a short amount of time.
We may introduce this fact by reducing the left open premise down to a classical case split. We
use the following modal equivalence in the cut step before case splitting with ∨L:

〈α〉P ∨ ¬〈α〉P ⇐⇒ 〈α〉P ∨ [α]¬P

DI,DC

R

cut

∨L
1© 2©

ε > 0, · · · , 〈x′ = f(x)& · · ·〉L(n)

f(x)(p) ≤ ε ∨ [x′ = f(x)& · · ·]L(n)

f(x)(p) > ε ` [x′ = f(x)& · · ·]x0 = 0

ε > 0, x0 = 0,L(n)

f(x)(p) > ε,
∧n−1

i=0 L
(i)

f(x)(p) = 0 ` [x′ = f(x)&Q ∧ p ≤ 0 ∧ x0 ≥ 0]x0 = 0

x0 = 0,L(n)

f(x)(p) > 0,
∧n−1

i=0 L
(i)

f(x)(p) = 0 ` [x′ = f(x)&Q ∧ p ≤ 0 ∧ x0 ≥ 0]x0 = 0

x0 = 0, γ=n
f(x)(p) > 0 ` [x′ = f(x)&Q ∧ p ≤ 0 ∧ x0 ≥ 0]x0 = 0

x0 = 0, γ=n
f(x)(p) > 0 ` [x′ = f(x)&Q ∧ p ≤ 0]x0 = 0

For the right disjunct ( 2©), we add L(n)

f(x)(p) ≥ ε into the evolution domain constraint with DC.

DC
ε > 0, · · · ` [x′ = f(x)& · · · ∧ L(n)

f(x)(p) ≥ ε]x0 = 0

ε > 0, · · · , [x′ = f(x)& · · ·]L(n)

f(x)(p) > ε ` [x′ = f(x)& · · ·]x0 = 0
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For the left disjunct ( 1©), we obtain a similar evolution domain constraint using IVT& instead.

IVT&

〈·〉,¬L,M[·]
ε > 0, · · · ` [x′ = f(x)& · · · ∧ L(n)

f(x)(p) ≥ ε]L
(n)

f(x)(p) > ε

ε > 0, · · · , 〈x′ = f(x)& · · · ∧ L(n)

f(x)(p) ≥ ε〉L
(n)

f(x)(p) = ε ` false

ε > 0,L(n)

f(x)(p) > ε, · · · , 〈x′ = f(x)& · · ·〉L(n)

f(x)(p) ≤ ε ` false

The next step for both disjuncts is to apply repeated integration using the bound that we have
just introduced into the evolution domain. This eventually allows us to derive x0 = 0. In the left
disjunct, we need an additional FrzP step to show that L(k)

f(x)(p) > ε remains true in the postcondi-
tion. Since the proofs for both disjuncts are similar, we will write R here for a predicate that has
to be frozen across the evolution.

DI,DC

DI,DC

DI,DC

DC,DW,R

FrzP
∗

ε > 0, x0 = 0,
∧n−1

i=0 L
(i)

f(x)(p) = 0, R ` [x′ = f(x)&Q ∧ p ≤ 0 ∧ x0 ≥ 0 ∧ · · · ∧ p ≥ εx
k
0

k! ∧ x0 = 0]R

ε > 0, x0 = 0,
∧n−1

i=0 L
(i)

f(x)(p) = 0, R ` [x′ = f(x)&Q ∧ p ≤ 0 ∧ x0 ≥ 0 ∧ · · · ∧ p ≥ εx
k
0

k! ]R

· · ·
ε > 0, x0 = 0,

∧n−1
i=0 L

(i)

f(x)(p) = 0, R ` [x′ = f(x)&Q ∧ p ≤ 0 ∧ x0 ≥ 0 ∧ L(n)

f(x)(p) ≥ ε,L
(n−1)

f(x) (p) ≥ εx0]R

ε > 0, x0 = 0,
∧n−1

i=0 L
(i)

f(x)(p) = 0, R ` [x′ = f(x)&Q ∧ p ≤ 0 ∧ x0 ≥ 0 ∧ L(n)

f(x)(p) ≥ ε]R

In most cases, we shall use the following immediate corollaries of frzSgn≤ with diamond
modalities.

Corollary 20 (Local sign conditions). The following derived rules are sound:

frzSgn〈·〉
∗

γ≤nf(x)(p) > 0, P, 〈x′ = f(x) &Q ∧ p ≤ 0〉¬P ` false

LocSgn
∗

γ≤nf(x)(p) > 0, 〈x′ = f(x) &Q ∧ p ≤ 0〉p < 0 ` false

Proof. frzSgn〈·〉 follows by negating the box modality in frzSgn≤. LocSgn follows by instantiating

P
def
= p ≥ 0 because γ≤nf(x)(p) > 0 implies p ≥ 0.

We will need to generalize to a situation where there are sign conditions on multiple pi, but
where the evolution domain constraint is disjunctive. For simplicity, the statement and proof here
is for a simultaneous condition on two polynomials, p, q, although the technique generalizes to any
pi. Note that we have written � instead of ≤ here because the proof works even if the comparison
operator was < for some of the pi.

Corollary 21 (Simultaneous locally frozen predicates). The following are derived axioms:

frzSgn γ=nf(x(p) > 0 ∧ γ=mf(x)(q) > 0 ∧ P → [x′ = f(x) &Q ∧ (p � 0 ∨ q � 0)]P

frzSgn≤ γ≤nf(x(p) > 0 ∧ γ≤mf(x)(q) > 0 ∧ P → [x′ = f(x) &Q ∧ (p � 0 ∨ q � 0)]P
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Proof. As before, it is sufficient for us to show frzSgn because frzSgn≤ follows by taking disjunc-
tive combinations with ∨L. The proof strategy is also very similar: we show that x0 = 0 is frozen
and apply FrzP. For convenience, we use the same ε here to bound both p, q.

DC,FrzP

DI,DC

R

IVT&,DC
ε > 0, x0 = 0,

∧n−1
i=0 L

(i)

f(x)(p) = 0,
∧m−1

i=0 L
(i)

f(x)(q) = 0, R ` [x′ = f(x)& · · · ∧ L(n)

f(x)(p) ≥ ε ∧ L
(m)

f(x)(q) ≥ ε]R
ε > 0, · · · ,L(n)

f(x)(p) > ε,L(m)

f(x)(q) > ε ` [x′ = f(x)&Q ∧ (p � 0 ∨ q � 0) ∧ x0 ≥ 0]x0 = 0

x0 = 0, · · · ,L(n)

f(x)(p) > 0,L(m)

f(x)(q) > 0 ` [x′ = f(x)&Q ∧ (p � 0 ∨ q � 0) ∧ x0 ≥ 0]x0 = 0

x0 = 0, γ=n
f(x)(p) > 0, γ=m

f(x)(q) > 0 ` [x′ = f(x)&Q ∧ (p � 0 ∨ q � 0) ∧ x0 ≥ 0]x0 = 0

x0 = 0, γ=n
f(x)(p) > 0, γ=m

f(x)(q) > 0 ` [x′ = f(x)&Q ∧ (p � 0 ∨ q � 0)]x0 = 0

x0 = 0, γ=n
f(x)(p) > 0, γ=m

f(x)(q) > 0, P ` [x′ = f(x)&Q ∧ (p � 0 ∨ q � 0)]P

The IVT&,DC step above applies the same case split technique twice to introduce both L(n)

f(x)(p) ≥
ε and L(m)

f(x)(q) ≥ ε into the evolution domain constraints. We again write R for an arbitrary
predicate that needs to be preserved across frozen evolution of the ODE; there are 4 cases of the
same shape arising from the case splits.

From here, we apply repeated integration to simultaneously bound both p, q. This allows us to
add x0 = 0 into the evolution domain constraints, and apply FrzP.

DI,DC

DI,DC

DI,DC

DC,DW,R

FrzP
∗

ε > 0, x0 = 0, · · · , R ` [x′ = f(x)&Q ∧ (p � 0 ∨ q � 0) ∧ x0 ≥ 0 ∧ · · · p ≥ εx
n
0

n! ∧ q ≥ ε
xm
0

m! ∧ x0 = 0]R

ε > 0, x0 = 0, · · · , R ` [x′ = f(x)& · · · ∧ (p � 0 ∨ q � 0) ∧ x0 ≥ 0 ∧ p ≥ εx
n
0

n! ∧ q ≥ ε
xm
0

m! ]R

· · ·
ε > 0, x0 = 0,

∧n−1
i=0 L

(i)

f(x)(p) = 0, · · · , R ` [x′ = f(x)& · · · ∧ L(m)

f(x)(q) ≥ ε ∧ L
(n−1)

f(x) (p) ≥ εx0]R

ε > 0, x0 = 0,
∧n−1

i=0 L
(i)

f(x)(p) = 0, · · · , R ` [x′ = f(x)& · · · L(n)

f(x)(p) ≥ ε ∧ L
(m)

f(x)(q) ≥ ε]R

As before, we will often refer to the diamond modality version of frzSgn≤ in the sequel.

Corollary 22 (Simultaneous local sign conditions). The following derivation is sound:

frzSgn〈·〉
∗

γ≤nf(x)(p) > 0, γ≤mf(x)(q) > 0, P, 〈x′ = f(x) &Q ∧ (p � 0 ∨ q � 0)〉¬P ` false

6.5 Invariant Inequalities
We are now ready for the instance of In with a single inequality p ≥ 0.

Lemma 23 (In, p ≥ 0). The In proof rule for invariants of the form p ≥ 0 is derivable using
IVTO,DRI,LocSgn, which are in turn derivable from vectorial DG with IVT&,′∗.

Proof. The first part of the deduction uses IVTO to focus on the last zero crossing, then the right
In premise is applied for a case split. The left premise after ∨L closes immediately by LocSgn.
The remaining open premise is abbreviated by 1©.
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[·],¬R

IVTO,∃L

assum

∨L

LocSgn
∗

p = 0, γ≤N−1f(x) (p) > 0, 〈x′ = f(x) & p ≤ 0〉p < 0 ` false
1©

p = 0, γ≤N−1f(x) (p) > 0 ∨
∧N−1
i=0 L

(i)

f(x)(p) = 0, 〈x′ = f(x) & p ≤ 0〉p < 0 ` false

p = 0, 〈x′ = f(x) & p ≤ 0〉p < 0 ` false

p ≥ 0, 〈x′ = f(x)〉p < 0 ` false

p ≥ 0 ` [x′ = f(x)]p ≥ 0

The remaining premise ( 1©) closes by DRI:

〈·〉,¬L

M[·]

DRI
(L(N)

f(x)(p) = gN−1L
(N−1)

f(x) (p) + · · ·+ g1Lf(x)(p) + g0p)∧N−1
i=0 L

(i)

f(x)(p) = 0 ` [x′ = f(x) & p ≤ 0]
∧N−1
i=0 L

(i)

f(x)(p) = 0

p = 0,
∧N−1
i=1 L

(i)

f(x)(p) = 0 ` [x′ = f(x) & p ≤ 0]p ≥ 0

p = 0,
∧N−1
i=1 L

(i)

f(x)(p) = 0, 〈x′ = f(x) & p ≤ 0〉p < 0 ` false

The last proof step with DRI is of special interest, because it could be done at the start of the
derivation before any subsequent proof steps. This observation will help to streamline all of our
subsequent proofs. The following is a simple consequence of VDbx6=:

Corollary 24 (Disequilibria). The following is sound:

Diseq
Np−1∨
i=0

L(i)

f(x)(p) 6= 0→ [x′ = f(x) &Q]

Np−1∨
i=0

L(i)

f(x)(p) 6= 0

where L(N)

f(x)(p) = gN−1L
(N−1)

f(x) (p) + · · ·+ g1Lf(x)(p) + g0p.

Proof. We make the same choice of cofactor matrix G
def
=


gN−1 . . . g1 g0

1 . . . 0 0

0
. . . 0 0

0 . . . 1 0

 as in the

derivation of DRI from VDbx. Let ~l def
=


L(N−1)

f(x) (p)
...

Lf(x)(p)
p

 be the vector of Lie derivatives.

∗
Q ` [x′:=f(x)](~l(x))′ = G(x)~l(x)

VDbx 6= ~l(x) ·~l(x) > 0 ` [x′ = f(x)&Q]~l(x) ·~l(x) > 0
M[·] ~l(x) ·~l(x) > 0 ` [x′ = f(x)&Q]

∨Np−1
i=0 L(i)

f(x)(p) 6= 0
cut,R ∨Np−1

i=0 L(i)

f(x)(p) 6= 0 ` [x′ = f(x)&Q]
∨Np−1

i=0 L(i)

f(x)(p) 6= 0
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Intuitively, Diseq shows that any polynomial that does not already start at equilibrium can never
reach equilibrium. This leads us to the following remark on our derivations.

Remark 25 (Removing equilibria). To show the invariance of a semialgebraic formula P , i.e.

P → [x′ = f(x) &Q]P

where some of the polynomials in P are (possibly) at equilibrium, it is sufficient to consider a set
of open premises Pi, each of the form:

Pi → [x′ = f(x) &Q]Pi

where we may additionally assume that none of the polynomials appearing in each Pi are at equi-
librium. Furthermore, if the LZZ premises hold for P , then they continue to hold for Pi.

Proof. Consider a semialgebraic formula P ≡
∨M
i=0

(
p ≥ 0∧

∧m(i)
j=0 pij ≥ 0∧

∧n(i)
j=0 qij > 0

)
. Here,

p is a polynomial that might be at equilibrium – note that none of qij can be at equilibrium because
they must start at qij > 0 in order to satisfy the invariant.

Let Pp=0
def
=
∨M
i=0

(∧m(i)
j=0 pij ≥ 0∧

∧n(i)
j=0 qij > 0

)
. We classically case split on whether p starts

at equilibrium, 1© abbreviates the left premise after applying ∨L:

1©
P ` [x′ = f(x)&Q ∧

∨Np−1
i=0 L(i)

f(x)(p) 6= 0]P
DC,DiseqP,¬

∧N−1
j=0 p(j) = 0 ` [x′ = f(x)&Q]P

∨LP,
∧N−1

j=0 p(j) = 0 ∨ ¬
∧N−1

j=0 p(j) = 0 ` [x′ = f(x)&Q]P

P ` [x′ = f(x)&Q]P

The open right disjunct has been reduced to an invariant where p does not start at equilibrium, and
additionally, Diseq allows us to add this fact to the evolution domain constraint. We may continue
on the right, e.g. with LZZ, using this additional assumption.

The left disjunct ( 1©) removes p from consideration entirely using DRI:

Pp=0 ` [x′ = f(x)&Q ∧ p = 0]Pp=0
DW,M[·]P,

∧N−1
j=0 p(j) = 0 ` [x′ = f(x)&Q ∧ p = 0]P

DRI P,
∧N−1

j=0 p(j) = 0 ` [x′ = f(x)&Q]P

In this case, Pp=0 has one fewer polynomial (possibly) at equilibrium. We may also check that
if the LZZ premises hold for P initially, then the premises of LZZ continue to hold for Pp=0. By
recursively applying this derivation for all polynomials p that appear in P on the open premises, we
eventually reduce to open premises where all of the polynomials involved are not at equilibrium.

An important consequence of removing equilibria is that we may, without loss of generality,
assume that

∨Np−1
i=0 L

(i)

f(x)(p) 6= 0 is in the evolution domain for all polynomials p in the invariant
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under consideration. Under this assumption, we have:

Inf(x)(p ≥ 0) ⇐⇒ γ≤N−1f(x) (p) > 0 ∨
Np−1∧
i=0

L(i)

f(x)(p) = 0

⇐⇒ γ≤N−1f(x) (p) > 0

⇐⇒ Inf(x)(p > 0)

Formally, we use DI,DW together with the evolution domain constraint in order to apply the above
equivalence wherever Inf(x)(p ≥ 0) occurs. We omit these steps and directly use the equivalence
in the sequel.

6.6 Closed or Open Semialgebraic Invariants

Any closed semialgebraic formula may be written as P ≡
∨M
i=0

∧m(i)
j=0 pij ≥ 0.

Inf(x)(
M∨
i=0

m(i)∧
j=0

pij ≥ 0) ⇐⇒
M∨
i=0

m(i)∧
j=0

Inf(x)(pij ≥ 0)

⇐⇒
M∨
i=0

m(i)∧
j=0

γ
≤Nij−1
f(x) (pij) > 0

Lemma 26 (In,
∨M
i=0

∧m(i)
j=0 pij ≥ 0). The In proof rule for closed semialgebraic invariants is

derivable using IVTO,DRI,frzSgn〈·〉, which are in turn derivable from vectorial DG with IVT&,′∗.

Proof. We rely on the equivalence
∨M
i=0

∧m(i)
j=0 pij ≥ 0 ⇐⇒ maxMi=0 min

m(i)
j=0 pij ≥ 0. Introducing

the generalized term involving max,min allows us to apply IVTO.

R,CE

[·],¬R

IVTO,∃L

R,assum,CE

∨M
i=0

∧m(i)
j=0 γ

≤Nij−1
f(x) (pij) > 0, 〈x′ = f(x)&

∧M
i=0

∨m(i)
j=0 pij ≤ 0〉

∧M
i=0

∨m(i)
j=0 pij < 0 ` false

maxMi=0 min
m(i)
j=0 pij = 0, 〈x′ = f(x)& maxMi=0 min

m(i)
j=0 pij ≤ 0〉maxMi=0 min

m(i)
j=0 pij < 0 ` false

maxMi=0 min
m(i)
j=0 pij ≥ 0, 〈x′ = f(x)〉maxMi=0 min

m(i)
j=0 pij < 0 ` false

maxMi=0 min
m(i)
j=0 pij ≥ 0 ` [x′ = f(x)]maxMi=0 min

m(i)
j=0 pij ≥ 0∨M

i=0

∧m(i)
j=0 pij ≥ 0 ` [x′ = f(x)]

∨M
i=0

∧m(i)
j=0 pij ≥ 0

We case split on the disjunction using ∨L, and for the case resulting from index i, we finish
with the following derivation:

〈〉∧

frzSgn〈·〉
∗∧m(i)

j=0 γ
≤Nij−1
f(x) (pij) > 0, 〈x′ = f(x)&

∧M
i=0

∨m(i)
j=0 pij ≤ 0〉

∨m(i)
j=0 pij < 0 ` false∧m(i)

j=0 γ
≤Nij−1
f(x) (pij) > 0, 〈x′ = f(x)&

∧M
i=0

∨m(i)
j=0 pij ≤ 0〉

∧M
i=0

∨m(i)
j=0 pij < 0 ` false

Note that frzSgn〈·〉 applies here because
∨m(i)
j=0 pij ≤ 0 is implied by the evolution domain con-

straint, and because
∧m(i)
j=0 γ

≤Nij−1
f(x) (pij) > 0 implies

∧m(i)
j=0 pij ≥ 0, which, when negated, yields∨m(i)

j=0 pij < 0.
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If instead the invariant P under consideration was an open semialgebraic set, then its comple-
ment, ¬P is closed and semialgebraic. Therefore, we may apply the derivation above after using
reflect to change the invariant under consideration to ¬P .

6.7 Semialgebraic Invariants

Let P ≡
∨M
i=0

(∧m(i)
j=0 pij ≥ 0 ∧

∧n(i)
j=0 qij > 0

)
be semialgebraic, notice that we are unable to

encode P directly using max,min, unlike in the previous section. However, by careful case splits,
we may derive the proof rule with the help of the IVST axiom.

Lemma 27 (In). The In proof rule for semialgebraic invariants is derivable using IVST, along with
DRI,frzSgn〈·〉, which are in turn derivable from vectorial DG with ′∗.

Proof. By propositional rearrangement, we have

¬P ⇐⇒ ¬
M∨
i=0

(m(i)∧
j=0

pij ≥ 0 ∧
n(i)∧
j=0

qij > 0
)

⇐⇒
M∧
i=0

(m(i)∨
j=0

pij < 0 ∨
n(i)∨
j=0

qij ≤ 0
)

⇐⇒
N∨
i=0

( a(i)∧
j=0

rij < 0 ∧
b(i)∧
j=0

sij ≤ 0
)

In the last step, we distribute conjunctions over disjunctions and rename the resulting polynomi-
als accordingly. Note that rij, sij are from the same set of polynomials as pij, qij respectively.
Following the same rearrangement, we also have:

In−f(x)(¬P ) ⇐⇒ ¬In−f(x)(P )

⇐⇒
N∨
i=0

( a(i)∧
j=0

In−f(x)(rij < 0) ∧
b(i)∧
j=0

In−f(x)(sij ≤ 0)
)

⇐⇒
N∨
i=0

( a(i)∧
j=0

In−f(x)(rij < 0) ∧
b(i)∧
j=0

In−f(x)(sij < 0)
)

⇐⇒
N∨
i=0

( c(i)∧
j=0

In−f(x)(tij > 0)
)

Since we assumed that none of polynomials in P are at equilibrium, we also have that none of
rij, sij are at equilibrium. The second-to-last equivalence uses this to replace In−f(x)(sij ≤ 0) with
In−f(x)(sij < 0). The last equivalence further combines rij, sij for brevity in our derivation below.
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An approximation of the interior of ¬P is given by:

int(¬P )
def
=

N∨
i=0

( a(i)∧
j=0

rij < 0 ∧
b(i)∧
j=0

sij < 0
)

Following the re-indexing above, we may equivalently write:

int(¬P ) ⇐⇒
N∨
i=0

( c(i)∧
j=0

tij < 0
)

The first proof step is to case split classically on whether we enter int(¬P ).

[·],¬L

cut

∨L
P, 〈x′ = f(x)〉¬P, 〈x′ = f(x)〉int(¬P ) ` false P, 〈x′ = f(x)〉¬P, [x′ = f(x)]¬int(¬P ) ` false

P, 〈x′ = f(x)〉¬P, 〈x′ = f(x)〉int(¬P ) ∨ [x′ = f(x)]¬int(¬P ) ` false

P, 〈x′ = f(x)〉¬P ` false

P ` [x′ = f(x)]P

For the right branch, we immediately DC ¬int(¬P ) into the evolution domain constraint. In
the re-indexed form, the last line closes by the same derivation we showed previously.

DC

reflect〈·〉

assum

frzSgn〈·〉,∨L
∗

¬P,
∨N

i=0

∧c(i)
j=0 γ

≤Nt
ij

−f(x)(tij) > 0, 〈x′ = −f(x)&
∧N

i=0

∨c(i)
j=0 tij ≤ 0〉P ` false

¬P,
∨N

i=0

∧c(i)
j=0 In−f(x)(tij > 0), 〈x′ = −f(x)&

∧N
i=0

∨c(i)
j=0 tij ≤ 0〉P ` false

¬P, In−f(x)(¬P ), 〈x′ = −f(x)&¬int(¬P )〉P ` false

¬P, 〈x′ = −f(x)&¬int(¬P )〉P ` false

P, 〈x′ = f(x)&¬int(¬P )〉¬P ` false

P, 〈x′ = f(x)〉¬P, [x′ = f(x)]¬int(¬P ) ` false

It is useful to note here that P ⇐⇒
∧N
i=0

(∨a(i)
j=0 rij < 0∨

∨b(i)
j=0 sij ≤ 0

)
, and so the evolution

domain we introduced plays the role of an approximation for the topological closure P .
For the left branch, we note that int(¬P ) is expressible using max,min as:

int(¬P ) ⇐⇒
N

min
i=0

max
( a(i)

max
j=0

rij,
b(i)

max
j=0

sij
)
< 0

For brevity in the derivations, we write T := minNi=0 max
(

max
a(i)
j=0 rij,max

b(i)
j=0 sij

)
. Furthermore,

we have:

P ⇐⇒ ¬¬P

⇐⇒
N∧
i=0

( a(i)∨
j=0

rij ≥ 0 ∨
b(i)∧
j=0

sij > 0
)

=⇒
N∧
i=0

( a(i)∨
j=0

rij ≥ 0 ∨
b(i)∧
j=0

sij ≥ 0
)

⇐⇒ ¬int(¬P ) ⇐⇒ T ≥ 0
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We may thus cut T ≥ 0 immediately on the left of the sequent, allowing us to setup an application
of IVST.

P, 〈x′ = f(x)&T ≥ 0〉〈x′ = f(x)&T ≤ 0〉T < 0 ` false
IVST P, T ≥ 0, 〈x′ = f(x)〉T < 0 ` false
CE P, T ≥ 0, 〈x′ = f(x)〉int(¬P ) ` false
cut P, 〈x′ = f(x)〉int(¬P ) ` false

Next, we use CE to classically case split in the middle of the diamond modalities. By expanding
out the abbreviation T , we have already shown that the left branch closes earlier in this section.
We write 1© for the remaining open premise.

∗
P, 〈x′ = f(x)&T ≥ 0〉¬P ` false

〈〉∧P, 〈x′ = f(x)&T ≥ 0〉
(
¬P ∧ 〈x′ = f(x)&T ≤ 0〉T < 0

)
` false 1©

〈〉∨,∨L P, 〈x′ = f(x)&T ≥ 0〉
(
(P ∨ ¬P ) ∧ 〈x′ = f(x)&T ≤ 0〉T < 0

)
` false

CE P, 〈x′ = f(x)&T ≥ 0〉〈x′ = f(x)&T ≤ 0〉T < 0 ` false

The remaining open premise in 1© is:

P, 〈x′ = f(x) &T ≥ 0〉
(
P ∧ 〈x′ = f(x) &T ≤ 0〉T < 0

)
` false

We first note a simple propositional re-arrangement:

T ≤ 0 ⇐⇒
N

min
i=0

max
( a(i)

max
j=0

rij,
b(i)

max
j=0

sij
)
≤ 0

⇐⇒
N∨
i=0

( a(i)∧
j=0

rij ≤ 0 ∧
b(i)∧
j=0

sij ≤ 0
)

⇐⇒
M∧
i=0

(m(i)∨
j=0

pij ≤ 0 ∨
n(i)∨
j=0

qij ≤ 0
)

where the last step follows by reversing the re-arrangement that we used to get ¬P from P .
Similarly,

T < 0 ⇐⇒
M∧
i=0

(m(i)∨
j=0

pij < 0 ∨
n(i)∨
j=0

qij < 0
)

=⇒
M∧
i=0

(m(i)∨
j=0

pij < 0 ∨
n(i)∨
j=0

qij ≤ 0
)

⇐⇒ ¬P
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Therefore, we have:

V

CM

CE

assum

frzSgn〈·〉,∨L
∗

P, Inf(x)(P ), 〈x′ = f(x)&
∧M

i=0

(∨m(i)
j=0 pij ≤ 0 ∨

∨n(i)
j=0 qij ≤ 0

)
〉¬P ` false

P, 〈x′ = f(x)&
∧M

i=0

(∨m(i)
j=0 pij ≤ 0 ∨

∨n(i)
j=0 qij ≤ 0

)
〉¬P ` false

P, 〈x′ = f(x)&T ≤ 0〉¬P ` false

P, 〈x′ = f(x)&T ≤ 0〉T < 0 ` false

P, 〈x′ = f(x)&T ≥ 0〉
(
P ∧ 〈x′ = f(x)&T ≤ 0〉T < 0

)
` false

Again, note that the evolution domain introduced here corresponds to an approximation for the
closure ¬P .

6.8 Semialgebraic Invariants with Semialgebraic Evolution Domains
We now show that the full LZZ rule for a semialgebraic evolution domain constraint Q is a mild
extension of the derivations we made for In.

Firstly, note that in all of our derivations of In above, we may additionally assume that the
evolution domain Q holds initially whenever we use the premises of In. In particular, we may
derive the following sound proof rule:

In&

Q ∧ ¬P → In−f(x)(¬P ) Q ∧ P → Inf(x)(P )

P → [x′ = f(x) &Q]P

From a continuity point of view, if Q represents an open set, then we must locally stay in Q
under any evolution of the ODE. Therefore,Q→ Inf(x)(Q) andQ→ In−f(x)(Q), which simplifies
the premises of LZZ. This implies that In& is complete for open Q, and that In is complete for
Q ≡ true.

However, In& is not complete when Q is not open. For example, x ≥ 0 ∧ t = 0 is trivially
invariant in the following system because t is stuck.

x ≥ 0 ∧ t = 0→ [x′ = −1, t′ = 1 & t = 0](x ≥ 0 ∧ t = 0)

However, the right premise of In& is not valid, and so the rule does not apply:

t = 0 ∧ x ≥ 0→ (t = 0 ∧ 1 = 0)︸ ︷︷ ︸
Inx′=−1,t′=1(t=0)

∧ (x > 0 ∨ x = 0 ∧ −1 > 0)︸ ︷︷ ︸
Inx′=−1,t′=1(x≥0)

The issue here is that, even though we start in the evolution domain, evolving for non-zero time
would immediately leave the evolution domain. The full LZZ proof rule remedies this situation
by allowing the evolution domain constraint to be immediately violated. We use the fact that
Inf(x)(t 6= 0) ⇐⇒ ¬Inf(x)(t = 0). The right premise is now trivially valid since the newly
introduced disjunct is always true:

t = 0 ∧ x ≥ 0→ (t = 0 ∧ 1 = 0)︸ ︷︷ ︸
Inx′=−1,t′=1(t=0)

∧ (x > 0 ∨ x = 0 ∧ −1 > 0)︸ ︷︷ ︸
Inx′=−1,t′=1(x≥0)

∨¬(t = 0 ∧ 1 = 0)︸ ︷︷ ︸
¬Inx′=−1,t′=1(t=0)

Following this intuition, we may re-examine our derivations for In.
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Lemma 28 (LZZ). The LZZ proof rule for semialgebraic invariants is derivable using IVST, along
with DRI,frzSgn〈·〉, which are in turn derivable from vectorial DG with ′∗.

Proof. Following the derivation for In, we only need to show that whenever its premises are
used, we may instead use the premises of LZZ. We assume that Q is semialgebraic, and that
¬Q ≡

∨N
i=0

(∧m(i)
j=0 pij ≥ 0 ∧

∧n(i)
j=0 qij > 0

)
. We therefore have that Q ⇐⇒ ¬¬Q ⇐⇒∧M

i=0

(∨m(i)
j=0 pij < 0 ∨

∨n(i)
j=0 qij ≤ 0

)
. As usual, we assume that none of pij, qij are at equilibrium.

The key steps where the premises of LZZ are used have the shape:

P, 〈x′ = f(x) &Q ∧ ¬P 〉¬P ` false

where ¬P is an approximation of the topological closure of ¬P .
Having the approximate closure in the evolution domain forces the system to be locally stuck

if Inf(x)(P ) is true initially, assuming that none of the polynomials in P are at equilibrium. There-
fore, it is not possible for ¬P to hold after the evolution while P is true initially, leading to a
contradiction.

In the following derivation, the left branch closes as before because ¬P is in the evolution
domain constraint. The remaining (new) open branch is abbreviated by 1©.

DI,DW

assum

∨L

∗
P, Inf(x)(P ), 〈x′ = f(x)&Q ∧ ¬P 〉¬P ` false

1©

P, Inf(x)(P ) ∨ Inf(x)(¬Q), 〈x′ = f(x)&Q ∧ ¬P 〉¬P ` false

Q,P, 〈x′ = f(x)&Q ∧ ¬P 〉¬P ` false

P, 〈x′ = f(x)&Q ∧ ¬P 〉¬P ` false

Now, we observe that:

Q ⇐⇒
M∧
i=0

(m(i)∨
j=0

pij < 0 ∨
n(i)∨
j=0

qij ≤ 0
)

=⇒
M∧
i=0

(m(i)∨
j=0

pij ≤ 0 ∨
n(i)∨
j=0

qij ≤ 0
)

where the last line acts as an approximation of the closure, ¬¬Q. Therefore, the rest of 1© derives
similarly because the system is stuck and so cannot transition from satisfying P initially to ¬P
after an evolution:

CM

frzSgn〈·〉,∨L
∗

P, Inf(x)(¬Q), 〈x′ = f(x)&¬¬Q ∧ ¬P 〉¬P ` false

P, Inf(x)(¬Q), 〈x′ = f(x)&Q ∧ ¬P 〉¬P ` false
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7 Conclusion
We have shown that our extended axiomatization of dL is sound and complete for all semialgebraic
invariants of polynomial ODE systems. While this shows that we can always construct a proof for
true semialgebraic invariants, an end user of dL would certainly not want to build all of our lem-
mas from scratch. Thus, an immediate application of our work would be to add the new axioms to
KeYmaera X, and to implement the necessary tactical automation [FMBP17] around our deriva-
tions. As mentioned in Section 2, it may also be the case that cleaner proofs are possible using
proof rules for restricted classes of invariants. Indeed, our proof relies heavily on formula manip-
ulation in real arithmetic, which we assume is decided by quantifier elimination (R). In practice,
some additional care would have to be taken to ensure that the quantifier elimination algorithms
are actually handed goals that they can decide in a reasonable amount of time. Other directions
include adding automation for generating these invariants, and extending recent formalizations of
dL in Isabelle/HOL and Coq [BRV+17] with our new axioms.
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A Barrier Certificates
The barrier certificates proof rule [PJ04, PJP07] is given by:

BC
p = 0→ Lf(x)(p) > 0

p � 0→ [x′ = f(x)]p � 0

This rule is interesting because it comes with associated methods for finding such invariants for an
ODE system. It is also easy to see that the premises are a special case of the In proof rule that we
have already derived. Here, we give a direct derivation of the rule:

Lemma 29 (Barrier certificates). The barrier certificates proof rule for invariants of the form p � 0
is derivable using IVT&.

Proof. We prove the cases p ≥ 0 and p > 0 separately. Firstly, the p ≥ 0 case uses an application
of IVTO and a basic instance of LocSgn at n = 1.

∗
LocSgn p = 0,Lf(x)(p) > 0, 〈x′ = f(x) & p ≤ 0〉p < 0 ` false
assum p = 0, 〈x′ = f(x) & p ≤ 0〉p < 0 ` false

IVTO,∃L p ≥ 0, 〈x′ = f(x)〉p < 0 ` false
[·],¬R p ≥ 0 ` [x′ = f(x)]p ≥ 0
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From this, we can directly derive the proof rule for p > 0 invariants by reflect.

∗
BC −p ≥ 0 ` [x′ = −f(x)]− p ≥ 0

reflect p > 0 ` [x′ = f(x)]p > 0

Note that BC for −p ≥ 0 applies here because the premise guarantees p = 0→ Lf(x)(p) > 0, but
L−f(x)(−p) = Lf(x)(p).

B Alternative Boundary Crossing Axiom
We introduced the use of extended, non-smooth terms max,min into the term language to aid in
our derivation of LZZ. Here, we consider an alternative proof rule that does not require these
extended terms. By closer observation of the proof, we see that these terms are used solely to
apply the IVST axiom. Moreover, the purpose of IVST was to introduce an approximation of the
closure into the evolution domain constraint. We shall consider the following, alternative axiom
which achieves this directly:

S ∧ 〈x′ = f(x) &Q〉¬S → 〈x′ = f(x) &Q ∧ S〉〈x′ = f(x) &Q ∧ ¬S〉¬S
Here, the (true) topological closure operator is definable in first-order real arithmetic by:

S(x)
def≡ ∀ε>0∃y ∈ S ‖x− y‖2 < ε2

Informally, this axiom asserts that if we start in a state satisfying S, then we can travel within
S to its boundary, ∂S, at which point we cross over into ¬S. Unfortunately, this latter assertion is
not true for arbitrary S. Consider the following counter-example, let

g(x) =

{
0 x = 0

x sin( 1
x
) x 6= 0

and consider the instance of the axiom with S(x)
def
= g(x) ≤ 0, x′ = 1, and with x = 0 initially.

Now, the LHS of the axiom is clearly true, since we may always evolve the ODE to a state where
g(x) > 0. However, g(x) crosses 0 infinitely often near x = 0, which means that by choosing x
small enough, we may always find g(x) ≤ 0 for x arbitrarily close to zero. This contradicts the
RHS, because there is no run satisfying the inner diamond modality.

Moreover, the set S is definable in dL (for x ≥ 0) by:

x = 0 ∨ [i := ∗; ?ix = 1; t := 0; s := 0; c := 1; s′ = c, c′ = −s, t′ = 1](t = i→ xs ≤ 0)

Here, i is the value of 1
x
, while c, s track the values of cos(t), sin(t) respectively. After the first

box modality, we force s to be sin( 1
x
). We can make the axiom sound by requiring that S is

semialgebraic – the proof of soundness is essentially similar to our proof of soundness for IVST.
However, this results in a syntactic check that no modal operators occur in S.
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