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Abstract

Statistical models of the amino acid composition of the proteins within a fold family are widely
used in science and engineering. Existing techniques for learning probabilistic graphical models
from multiple sequence alignments either make strong assumptions about the conditional indepen-
dencies within the model (e.g., HMMs), or else use sub-optimal algorithms to learn the structure
and parameters of the model. We introduce an approach to learning the topological structure and
parameters of an undirected probabilistic graphical model. The learning algorithm uses block-
L1 regularization and solves a convex optimization problem, thus guaranteeing a globally optimal
solution at convergence. The resulting model encodes both the position-specific conservation sta-
tistics and the correlated mutation statistics between sequential and long-range pairs of residues.
Our model is generative, allowing for the design of new proteins that have corresponding statistical
properties to those seen in nature. We apply our approach to two widely studied protein families:
the WW and the PDZ folds. We demonstrate that our model is able to capture interactions that
are important in folding and allostery. Our results additionally indicate that while the network of
interactions within a protein is sparse, it is richer than previously believed.





1 Introduction
The patterns in the amino acid composition of the proteins within a fold family provide insights
into the constraints that govern structure, function, and dynamics. While discriminative models of
these patterns have been widely used to predict the structure and/or function of a given sequence,
there is growing interest in the use of generative models to design proteins with a prescribed struc-
ture and/or function. This report introduces a new approach to learning the structure (i.e., topology)
and the parameters of an undirected graphical model from a given multiple sequence alignment.
Previous approaches to learning generative models have largely focused on the parameter esti-
mation problem. The structure learning problem was first considered in [24], followed by some
minor extensions [25], all of which are greedy algorithms that provide no guarantees as to the
optimality of the resulting model. To address this deficiency, we introduce a principled approach
to learning generative models from multiple sequence alignments. Our learning algorithm uses
block-L1 regularization and solves a convex optimization problem, thus guaranteeing a globally
optimal solution at convergence. The resulting model encodes both the position-specific conser-
vation statistics and the correlated mutation statistics between sequential and long-range pairs of
residues. Our model is generative, allowing for the design of new proteins that have corresponding
statistical properties to those seen in nature. We apply our approach to two widely studied protein
families: the WW and the PDZ folds. We demonstrate that our model is able to capture interactions
that are important in folding and allostery. Our results additionally indicate that while the network
of interactions within a protein is sparse, it is richer than previously believed. While this report is
limited to new more powerful models constructed from MSAs, we have previously shown in [15],
that constraints learned from sequence can be effectively integrated with constraints learned from
structure by using a probabilistic framework to model both sources of constraints.

2 Modeling Domain Families with Markov Random Fields
A protein is a polypeptide chain consisting of one or more mostly-independently evolving compo-
nents called domains. A set of evolutionarily related domains from different proteins is called a
family1. The domains within a family tend to have similar three dimensional structures and have
similar biological functions. Thus, by examining the statistical patterns of sequence conservation
and diversity within a domain family, we can gain insights into the constraints that determine struc-
ture and function. In what follows, we describe an approach to learn these statistical patterns from
a given multiple sequence alignment. The resulting model is a probability distribution over amino
acid sequences for a particular domain family.

LetXi be the multinomial random variable representing the amino-acid composition at position
i of the MSA of the domain family taking values in {1...k} where the number of states, k, is 21
(20 amino acids with one additional state corresponding to a gap). Let X = {X1, X2, ..Xp} be the
multi-variate random variable describing the amino acid composition of a MSA of length p. Our
goal is to model P (X), that is the amino-acid composition of the domain family.

1In this paper, the expression domain family is synonymous with protein family.
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(A) (B)

Figure 1: (A) A multiple sequence alignment (MSA) for a hypothetical domain family. (B) A
portion of a Markov Random Field encoding the conservation in and the coupling in the MSA.
The edge between random variables X1 and X4 reflects the coupling between positions 1 and 4 in
the MSA.

Unfortunately, P(X) is a distribution over a space of size kp, rendering the explicit modeling of
the joint distribution computationally intractable for naturally occurring domains. However, by ex-
ploiting the properties of the distribution, one can significantly decrease the number of parameters
required to represent this distribution.

To see the kinds of properties that we can exploit, let us consider a toy domain family repre-
sented by a MSA as shown in Fig. 1-(A). A close examination of the MSA reveals the following
statistical properties of its composition: (i) the Tyrosine (‘Y’) at position 2 is conserved across the
family; (ii) positions 1 and 4 are co-evolving – sequences with a (S) at position 1 have a Histidine
(H) at position 4, while sequences with a Phenylalanine (F) at position 1 have a Tryptophan (W) at
position 4; (iii) the remaining positions appear to evolve independent of each other. In probabilistic
terms we say that X1, X3 are co-varying, and that the remaining Xi’s are statistically independent.
We can therefore encode the joint distribution over all positions in the MSA by storing one joint
distribution P (X1, X4), and the uni-variate distributions P (Xi), for the remaining positions (since
they are all statistically independent of every other variables). The ability to factor the full joint
distribution, P (X), in this fashion has an important consequence in terms of space complexity.
Namely, we can reduce the space requirements from 217 to 212 + 5 ∗ 21 parameters. This dras-
tic reduction in space complexity translates to a corresponding reduction in time complexity for
computations over the distribution. While this simple example utilizes independencies in the dis-
tribution; this kind of reduction is possible in the more general case of conditional independencies.
A Probabilistic Graphical Model (PGM) exploits these (conditional) independence properties to
store the joint probability distribution using a small number of parameters.

Intuitively, a PGM stores the joint distribution of a multivariate random variable over a graph;
while any distribution can be modeled by a PGM with a complete graph, exploiting the conditional
independencies in the distribution leads to a PGM with a (structurally) sparse graph. Following
[24], we use a specific type of probabilistic graphical model called a Markov Random Field (MRF).
In its commonly defined form with pair-wise log-linear potentials, a Markov Random Field (MRF)
can be formally defined as a tupleM = (X, E ,Φ,Ψ) where (X, E) is an undirected graph over the
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random variables, and Φ,Ψ are a set of node and edge potentials, respectively, usually chosen to
be log-linear functions of the form:

φs = (evs
1evs

2 ...evs
k); ψst =
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where v = {vs|s = 1 . . . p} and w = {wst|(s, t) ∈ E} are node and edge “weights”, and k is the
number of states that each random variable can take.

The probability of a particular sequence x = {x1, x2, . . . , xp} according to M is defined as:

PM(X) =
1

Z

∏
s∈V

φs(Xs)
∏

(s,t)∈E

ψst(Xs, Xt) (2)

where Z, the so-called partition function, is a normalizing constant defined as a sum over all pos-
sible assignments to X.

Z =
∑
X∈X

∏
s∈V

φs(Xs)
∏

(s,t)∈E

ψst(Xs, Xt) (3)

The structure of the MRF for the MSA shown in Fig. 1(A) is shown in Fig. 1(B). For exposi-
tional clarity, only four nodes of the MRF are shown, corresponding to positions 1-4 in the MSA.
The edge between variables X1 and X4 reflects the statistical coupling between those positions in
the MSA.

3 Structure learning with L1 Regularization
In the previous section we outlined how an MRF can parsimoniously model the probability distri-
bution P (X). In this section we consider the problem of learning the MRF from an MSA. This
problem can be divided into two parts: (i) structure learning — learning the edges of the graph,
and (ii) and parameter estimation — learning v,w (since they completely define the potentials
Φ,Ψ), given the structure of the graph.

Due to its importance and applicability in a broad spectrum of areas, the problem of struc-
ture learning for graphical models has received considerable attention from several communities.
Broadly, the previously considered approaches to this problem are either constraint based [24, 23]
or score based [7]. Constraint based methods estimate conditional independencies from data using
hypothesis testing and then determine a graph that represents these independencies. Score based
approaches combine a metric to measure goodness of fit with a metric to measure complexity of
the graph to score each graph. This is combined with a (typically greedy) search procedure that
generates candidate graphs. However, since the number of possible graphs is super exponential in
the number of vertices the search problem is in general NP hard.

More recently several authors [29, 16, 14, 20] have considered convex approximations to the
complexity metric and tractable (convex) approximations to the goodness of fit metric. Of these,
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those based on L1 regularization are the most interesting because of their strong theoretical guaran-
tees (consistency in both parameters and structure, i.e. as the number of samples increases we are
guaranteed to find the true model, and high statistical efficiency, i.e. the number of samples needed
to achieve this guarantee is small). See [28] for a recent review of L1-regularization. We use a
similar convex optimization based approach for both structure learning and parameter estimation.
To that end, we first describe a suitable objective function for the problem.

The log-likelihood of the parameters Θ = (E ,v,w), given a set of sequencesX = {X1,X2,X3, ....,Xn},
is

ll(Θ) =
1

n

∑
Xi∈X

∑
s∈V

logφs(X
i
s) +

∑
(s,t)∈E

logψst(X
i
s, X

i
t)

− logZ (4)

where the term in the braces is the unnormalized likelihood of each sequence, and Z is the global
partition function. The problem of learning the structure and parameters of the MRF is now simply
that of maximizing ll(Θ). To avoid over-fitting and learning densely connected structures, we need
to regularize the log-likelihood. In what follows we describe a method to learn sparse structures
by optimizing the pseudo-likelihood using block-L1 regularizers.

The general regularized structure learning problem can be formulated as:

max
θ
ll(θ)−R(θ) (5)

For the specific case of block-L1 regularization, R(θ) usually takes the form:

R(θ) = λnode‖v‖2 + λedge

∑
1≤s<t≤p

‖wst‖q (6)

where λnode and λedge are regularization parameters that determine how strongly we penalize higher
(absolute) weights. The value of λnode and λedge control the trade-off between the log-likelihood
term and the regularization term in our objective function.

The regularization described above groups all the parameters that describe an edge together in
a block. The second term in Eq. 6 is the sum of the norms of each block. The choice of norm is
usually selected from q ∈ {1, 2,∞}. Since norms are always positive, this is exactly equivalent
to penalizing the L1 norm of the vector of norms of each block with the penalty increasing with
higher values of λedge.

The choice of norm affects the nature of the sparsity. Using q = 1 is equivalent to penalizing
the likelihood by the sum of the L1 norms of the individual parameters. That is, using q = 1
encourages sparsity in the parameters. In contrast, using q = {2,∞} encourages structural sparsity
(sparsity in the edges).

In the following sections we present a method to tractably compute the objective, followed by
a method to optimize it.

3.1 Pseudo Likelihood
The log-likelihood as defined in Eq. 4 is smooth, differentiable, and concave. However, maxi-
mizing the log-likelihood requires computing the global partition function Z and its derivatives,
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which in general can take upto O(kp) time. While approximations to the partition function based
on Loopy Belief Propagation [16] have been proposed as an alternative, such approximations can
lead to inconsistent estimates.

Instead of approximating the true-likelihood using approximate inference techniques, we use a
different approximation based on a pseudo-likelihood proposed by [5], and used in [29, 20]. The
pseudo-likelihood is defined as:

pll(Θ) =
1

n

∑
Xi∈X

p∑
j=1

log(P (X i
j|X i

−j))

=
1

n

∑
Xi∈X

p∑
j=1

logφj(X
i
j) +

∑
k∈V ′

j

logψ(X i
j, X

i
k)− Zj


where X i

j is the residue at the jth position in the ith sequence of our MSA, X i
−j denotes the

“Markov blanket” of X i
j , and Zj is a local normalization constant for each node in the MRF.

The set V ′j is the set of all vertices which connect to vertex j in the PGM. The replacement of a
global partition function with local partition functions (which are sums over possible assignments
to single nodes rather than a sum over all assignments to all nodes of the sequence) makes the
pseudo-likelihood easier to compute than the true likelihood.

The pseudo-likelihood retains the concavity of the original problem, and so this approximation
makes the problem tractable. Moreover, this approximation is known to yield a consistent estimate
of the parameters. That is, as the number of samples increases, parameter estimates using pseudo-
likelihood converge to the parameter values using true likelihood.

3.2 Optimizing L1-regularized Pseudo-Likelihood
In the previous two sections we described an objective function, and then a tractable and consis-
tent approximation to it, given a set of weights (equivalently, potentials). However, to solve this
problem we still need to be able to find the set of weights that maximizes the likelihood under the
block-regularization form of Eq. 5. We note that the objective function associated with block-L1

regularization is no longer smooth. In particular, its derivative with respect to any parameter is
discontinuous at the point where the group containing the parameter is 0. We therefore consider
an equivalent formulation where the non-differentiable part of the objective is converted into a
constraint making the new objective function differentiable.

maxθ,α ll(θ)− λnode‖v‖2 −
∑

1≤s<t≤p αst

subject to: ∀(1 ≤ s < t ≤ p) : αst ≥ ‖wst‖q

where the constraints hold with equality at the optimal (θ,α).
One way to solve this reformulation is through a two stage procedure involving the use of pro-

jected gradients. In the first stage, we ignore the constraints, compute the gradient of the objective,
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and then take a step in this direction. If the step results in any of the constraints being violated we
solve an alternative (and simpler) Euclidean projection problem:

minθ′α′‖
[
θ′

α′

]
−

[
θ
α

]
‖2

subject to: ∀(1 ≤ s < t ≤ p) : αst ≥ ‖wst‖q

which finds the closest parameter vector to the vector obtained by taking the gradient step (by
minimizing the Euclidean distance), while satisfying the original constraints. This problem can be
solved efficiently for block-L1 norms using Spectral Projected Gradients (SPG), as shown in [20].
Thus, we used the algorithm from [20] to solve this problem in our experiments. Methods based
on projected gradients are guaranteed to converge to a stationary point [6], and convexity ensures
that this stationary point is globally optimal.

4 Related Work
The study of co-evolving residues in proteins has been a problem of key interest due to its wide
utility. Much of the early work focused on detecting such pairs in order to predict contacts in a
protein in the absence of a solved structure [1, 13] and to perform fold recognition. The pioneering
work of [17] used an approach to determine probabilistic dependencies they call SCA and observed
that analyzing such patterns could provide insights into the allosteric behavior of the proteins and
be used to design new sequences[22]. Others have since developed similar methods [10, 11]. By
focusing on co-variation or probabilistic dependencies between residues, such methods conflate
direct and indirect influences and can lead to incorrect estimates. In contrast, [24] developed
an algorithm that determine conditional independencies to learn a Markov Random Field over
sequences. Their constraint-based algorithm proceeds by determining conditional independencies
and adding edges in a greedy fashion. However, the algorithm can provide no guarantees on the
correctness of the networks it learns. They then extended this approach to incorporate interaction
data to learn models over pairs of interacting proteins [25] and also develop a sampling algorithm
for protein design using such models[26]. More recently, [30] use a similar approach to determine
residue contacts at a protein-protein interface. Their method uses a gradient descent approach using
Loopy Belief Propagation to approximate likelihoods. Also, their algorithm does not regularize the
model and can therefore be prone to over-fitting. In contrast, we use a Pseudo-Likelihood as our
objective function thereby avoiding problems of convergence that Loopy BP based methods can
face and regularize the model using block regularization to prevent over-fitting.

Block regularization is most similar in spirit to the group Lasso [31] and the multi-task Lasso
[2]. Lasso [27] is the problem of finding a linear predictor, by minimizing the squared loss of the
predictor with an L1 penalty. It is well known that the shrinkage properties of the L1 penalty lead to
sparse predictors. The group Lasso extends this idea by grouping the weights of some features of
the predictor using an L2 norm, [31] show that this leads to sparse selection of groups. The multi-
task Lasso solves the problem of multiple separate (but similar) regression problems by grouping
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the weight of a single feature across the multiple tasks. Intuitively, we solve a problem similar to
a group Lasso, replacing the squared loss with an approximation to the negative log-likelihood,
where we group all the feature weights of an edge in an undirected graphical model. Thus, sparse
selection of groups gives our graphs the property of structural sparsity.

[16] consider learning with only an L1 penalty (and not a block-L1 penalty), biasing the model
to include fewer features, but not directly biasing the model towards sparse structures. They also
use a different approximation to the likelihood term, using Loopy Belief Propagation. [20] apply
block-regularized structure learning to the problem of detecting abnormalities in heart motion.
Particularly they develop an efficient algorithm for tractably solving the convex structure learning
problem, based on projected gradients. We use their algorithm in this paper.

5 Results
Given the probabilistic framework defined in Sec. 2, and the optimization objectives and algorithms
defined in Sec. 3, we are now in a position to learn a graphical model given the sequence record
of a protein family. The optimization framework has two major parameters that can be varied:
the norm of the block-regularizer (L1,L2,L∞) and the penalty parameters (λv, λe). To understand
the effects of these parameters, we first evaluated our method on artificial protein families whose
sequence records were generated from known, randomly generated models. This let us evaluate
the success of the various components of our framework in a controlled setting where the ground
truth was known.

We then present our results on two real protein families, the PDZ and WW.

5.1 Simulations
We generated 32-node graphs, where each edge was including with probability ρ. Ten different
values of ρ varying from 0.01 and 0.45 were used; for each value of ρ, twenty different graphs
were generated resulting in a total of 200 graphs. For each edge that was included in a graph,
edge and node weights were drawn from a Normal distribution (weights ∼ N (0,1)). For each
of these 200 graphical models, we then sampled 1000 sequences using a Gibbs sampler with a
burn-in of 10,000 samples and discarding 1,000 samples between each accepted sequence. These
1000 sequences were then partitioned into two sets: a training set containing 500 sequences and
a held-out set of 500 sequences used to test the model. The training set was then used to train a
model using each of the three block regularization norms.

We first test our accuracy on structure learning. Since the structure of the model directly de-
pends only on the regularization weight on the edges, the structures were learnt for each norm and
each training set with different values of λe(between 1 and 500), keeping λv fixed at 1.

Fig. 2 shows our performance in predicting the true structure by using L1-L2 (Fig. 2-A), L1-
L∞ (Fig. 2-B), and L1 (Fig. 2-C). The accuracy is measured using the F-score (the harmonic mean
of precision and recall) of the edge set. We observe that for all settings of ρ each of the block
regularizers learn fairly accurate graphs at some value of λe. We see that L1 − L∞ requires higher
regularization than the other norms to achieve comparable F-scores. This is because the L∞ norm
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Figure 2: F-scores of structures learnt by using (A)L1-L2 norm, (B)L1-L∞ norm and (C)L1 norm.
Each figure shows the average and standard deviation of the F-score across 20 different graphs as
a function of ρ, the probability of edge-occurrence.

of a vector is strictly less than its L2 and L1 norms. Fig. 3-A shows the global comparison across
the three regularizers as a function of ρ, using in each case, the best model learnt across the different
values of λe. Figure 3-A also compares our structure learning method with the algorithm in [24].
We evaluate their method over a wide range of parameter settings and select the best model. Figure
3-A shows that our methods significantly out-perform their method for all values of ρ. We see that
over all settings our best model has an average F-score of at least 0.6. Thus, we are able to infer
fairly accurate structures given the proper choice of settings.

Figure 3-B, shows the error in our parameter estimates given the true graph as a function of
ρ. We also find that parameter estimation is reasonably robust to the choice of the regularization
weights, as long as the regularization weights are non-zero.

5.2 Evaluating Structure and Parameters Jointly
In a simulated setting, structure and parameter estimates can be compared against known ground
truth. However, for real domain families we need other evaluation methods. We evaluate the
structure and parameters for real domain families by measuring the imputation error of the learnt
models. Informally, the imputation error measures the probability of not being able to “generate”
a complete sequence, given an incomplete one. The imputation error of a column is measured
by erasing it in the test MSA, and then computing the probability that the true (known) residues
would be predicted by the learnt model. This probability is calculated by performing inference on
the erased columns, conditioned on the rest of the MSA. The imputation error of a model is the
average of its imputation error over columns.

Using imputation error directly for model selection generally gives us models that are too
dense. Intuitively, once we have identified the true model, adding extra edges decreases the impu-
tation error by a very small amount, probably a reflection of the finite-sample bias. On the other
hand, we note that there is a distinct “knee” in the graphs of the number of edges versus the im-
putation error (see Fig. 5 and Fig. 6). We believe the true model would be in the vicinity of this
knee.
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Figure 3: (A) Edge occurrence probability ρ versus F-score for the structure learning methods we
propose, and the method proposed in [24]. (B) L2 norm of the error in the estimated parameters as
a function of the weight of the regularization in stage two.

5.3 A generative model for the WW domain
The WW domain family (Pfam id: PF00397 [3]) is a small protein interaction module with two
highly conserved tryptophans that adopts a curved three-stranded β-sheet structure with a binding
site for proline-containing peptides. In [22] and [19], the authors determine, using Statistical Cou-
pling Analysis (SCA), that the residues can be divided into two clusters: the first cluster contains
a set of 8 strongly coupled residues (highlighted in yellow in Fig. 4), and the second cluster con-
tains everything else. Based on this finding, the authors then designed 44 sequences that satisfy
co-evolution constraints of the first cluster, of which 12 actually fold in vivo. An alternative set of
control sequences, which did not satisfy the constraints, failed to fold.

We first constructed a MSA by starting with the PFAM alignment and removing sequences to
construct a non-redundant alignment (no pair of sequences was greater than 90% similar). This
resulted in an MSA with 700 sequences of which two thirds were used as a training set and the
rest were used as a test set. The training set was used to learn models for each of the three norms,
using multiple settings of λe. Given the structure of the graph, parameters were learned using
λv = 1, λe = 1.

Fig. 5-A shows the imputation error of each of the learnt models on the test set. As can be seen,
the first few edges contribute to a significant decrease (the first 20 edges contribute to a third of the
total decrease in imputation error). This is consistent with [22, 24] who find a small set of vertices
and edges to be important. However, the knee of the curve is much further down, at 122 edges.
This indicates that the actual pattern of interactions in a domain family, while sparse, is richer than
previously thought. In the figure we compare our results to the GMRC method of [24], and to
a method that adds edges in the order of their statistical coupling (∆∆Gstat) that is also used by
the SCA method. We notice that our imputation errors are considerably lower to the methods we
compare to.
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To see which residues are affected by these edges, we performed the following experiment. We
constructed a shuffled MSA by taking the natural MSA and randomly permuting the amino acids
within the same column for each column. The new MSA now contains no co-evolving residues
but has the same conservation profile as the original MSA. We then computed a coupling profile
for the domain by calculating the difference in the imputation errors between sequences in the test
set and the shuffled MSA. Intuitively, having a high imputation error difference means that the
position was strongly constrained in the original MSA. Fig. 4 shows the results of this analysis; we
identify 15 positions in the MSA including all 8 positions previously identified by [19].

In addition to this analysis we also performed a retrospective analysis of the artificial sequences
designed by [19]. We attempt to distinguish sequences that folded from those that didn’t. To make
a fair comparison we select a model of comparable sparsity to that in [19] (shown with a black
circle in Fig. 5). Although this is a discriminative (folded or not) test of a generative model we
achieve a high AUC of 0.843 (the ROC curve is shown in the Fig. 7). We therefore postulate that
the additional constraints that we identified are indeed critical to the stability of the WW fold.
The AUC is comparable to the published results of [24]. However, their model has a much higher
imputation error as shown in Fig. 5.

5.4 Allosteric regulation in the PDZ domain
The PDZ domain is a family of small, evolutionarily well represented protein binding motifs. The
domain is most commonly found in signaling proteins and helps to anchor trans-membrane proteins
to the cytoskeleton and hold together signaling complexes. The PDZ domain is also interesting
because it is considered an allosteric protein. The domain, and its members have been studied
extensively, in multiple studies, using a wide range of techniques ranging from computational
approaches based on statistical coupling ([17]) and Molecular Dynamics simulations [8], to NMR
based experimental studies ([12]).

We use the MSA from [17]. We chose a random sub-sample with two-thirds of the sequences
as the training set and use the rest as a test set. Using this training set, we learnt generative models
for each of the block regularizers, with multiple settings of λe in each case and then computed the
imputation error on the test set (shown in Fig. 6-A). We selected the model that formed the knee
on the curve with the best imputation error. This model had around 700 edges and is shown in full
in Fig. 8. Fig. 6-B shows a subset of the edges colored according to their strength(red strongest;
blue weakest).

The SCA based approach of [17] identified a set of residues that were coupled to a residue near
the active site (HIS-70) including a residue at a distal site on the other end of the protein (GLY-
49 in this case). Since the SCA approach can only determine the presence of a dependence but
cannot distinguish between direct and indirect couplings, only a cluster of residues was identified.
Our model also identifies this interaction, but more importantly, it determines that this interaction
is mediated by ALA-74 with position 74 directly interacting with both these positions. By pro-
viding such a list of sparse interactions our model can provide a small list of hypotheses to an
experimentalist looking for possible mechanisms of such allosteric behavior.

In addition to the pathway between HIS-70 and GLY-49, we also identify residues not on the
pathway that are connected to other parts of the protein including, for example ASN-61 of the
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Figure 4: Part of the WW MSA we used. In yel-
low are positions identified by [19] as being crit-
ical to folding. Positions we additionally iden-
tify are in green. The conservation profile (top)
shows the entropy (scaled) at each position. The
coupling profile is shown below the MSA.
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Figure 5: (A)Number of edges versus imputa-
tion error for the WW domain. The model at
the knee was a model that minimized the L1-L2

norm and had 122 edges (shown with a black di-
amond). Comparisons to the GMRC method and
a method based on statistical coupling (∆∆Gstat)
are shown. (B) The edges of the model used in
the discriminative task, overlaid on the structure
of the WW domain of a ubiquitin protein lig-
ase(PDB id: 1I5H)[4]
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Figure 6: (A) Number of edges versus imputation error for the PDZ domain. Comparisons to the
GMRC method and a method based on statistical coupling (∆∆Gstat) are shown. (B) Edges learnt
from our models overlaid on the structure of PDZ domain of PSD-95(PDB id:1BE9). Edge colors
indicate the strength of the coupling (red being the strongest, and blue being the weakest)

protein. This position is connected to ALA-88 and VAL-60 in our model, and does not appear in
the network suggested by [17], but has been implicated by NMR experiments [12] as being dy-
namically linked to the active site. Thus, our method appears to capture a richer set of interactions
than that are possible using SCA.

6 Discussion and Future Work
In this paper we have proposed a statistical sequence-based approach to modeling the evolutionary
pressures on a protein family. Overall, we find that by employing sound probabilistic modeling and
convex structure (and parameter) learning, we are able to find a good balance between structural
sparsity (simplicity) and goodness of fit. We demonstrate the utility of our method in identifying
constraints useful both in protein design and in furthering our understanding of protein function
and regulation.

One limitation associated with a sequence-only approach to learning a statistical model for
a domain family is that the correlations observed in the MSA can be inflated due to phylogeny
[18, 9]. There are a number of ways to incorporate phylogenetic information into our model. For
example, given a phylogenetic clustering of sequences, we can incorporate a single additional node
in the graphical model reflecting the cluster to which the sequence belongs. This would allow us
to distinguish functional coupling from coupling caused due to phylogenetic variations.

Designing proteins from a generative sequence based model such as ours could be greatly
enhanced by incorporating structure based information which explicitly models the physical con-
straints of the protein. Such information could easily be incorporated either through the use of
informative priors (e.g., interaction energies, etc), or by the addition of edge features.
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Figure 7: ROC curve of our model for the task of distinguishing artificial WW sequences that fold
from those that don’t. All sequences and their labels (folded in vivo or not) are from [19]

Recently, [21] proposed a new method specifically to optimize costly functions, where the
projection step is cheap, by using a quasi-Newton algorithm which uses local curvature of the
objective to approximate its second derivative. Typically, this leads to much faster convergence.
We expect this to be applicable to our method.
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