
CHIP MULTIPROCESSORS FOR SERVER WORKLOADS

NIKOLAOS HARDAVELLAS

CMU-CS-09-150

JULY 2009

SCHOOL OF COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

CARNEGIE MELLON UNIVERSITY

Thesis Committee:

Babak Falsafi, co-Chair

Anastasia Ailamaki, co-Chair

David R. O’Hallaron

Todd C. Mowry

Luiz André Barroso (Google)

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

© Copyright 2009 by Nikolaos Hardavellas

All Rights Reserved

This research was sponsored by equipment donations from Intel, two Sloan research fellowships, an ESF European Young Investigator award, an

IBM faculty partnership award, and the National Science Foundation under grants CCR-0205544, CCF-0702658, CCR-0509356, CCF-0845157, IIS-

0133686, and IIS-0713409. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the

official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: computer architecture, cache, multicore, chip multiprocessors, data placement, chip

design, NUCA, commercial server workloads, performance modeling, design-space exploration.
ii

to our family

to Jasmine

to Kivanc

where you are, is paradise
iii

iv

Abstract

We stand on the cusp of the giga-scale era of chip integration. Technological advancements

in semiconductor fabrication yield ever-smaller and faster devices, enabling billion-transistor

chips with multi-gigahertz clock frequencies. To utilize the abundant transistors on chip, modern

processors pack an exponentially increasing number of cores on chip, multi-megabyte caches, and

large interconnects to facilitate intra-chip data transfers. However, the growing on-chip resources

do not directly translate into a commensurate increase in performance. Rather, they come at the

cost of increased on-chip data access latency, while thermal considerations and pin constraints

limit the parallelism that a multicore chip can support.

To mitigate the increasing on-chip data access latency, cache blocks on chip should be

placed close to the cores that use them. We observe that cache access patterns can be classified at

run time into distinct classes with different on-chip block placement requirements. Based on this

observation, we propose Reactive NUCA (R-NUCA), a distributed cache design which reacts to

the class of each access to place blocks close to the requesting cores. We then explore the design

space of physically-constrained multicore processors, and find that future multicores should utilize

low-operational-power transistors even for time-critical components (e.g., cores) to ease the power

wall, employ novel on-chip block placement techniques to utilize efficiently large caches, while

techniques like 3D-stacked memory can mitigate the off-chip bandwidth constraint even for peak-

performance designs. Moving forward, we find that heterogeneous multicores hold great promise

in improving designs even further.
v

vi

Acknowledgements

Any success I have had, I owe to my advisors, Babak Falsafi and Anastasia Ailamaki. They

taught me how to think and do research, how to speak and write. Their penetrating insights have

been a source of inspiration for this work. But, foremost, they have been my dear friends; always

eager to help, always there when I need them the most. Thank you!

I am grateful to my thesis committee, Dave O’Hallaron, Todd Mowry, and Luiz André Bar-

roso. Their support has been unwavering, and their comments and suggestions has improved this

work tremendously. I thank you all for your collaboration and gracious help, and for making the

thesis process such a pleasurable experience. I also owe special thanks to Andreas Moshovos for

generously devoting a lot of his time to me.

I wouldn’t have gone into research, if it wasn’t for Marios Mavronicolas, an amazing

teacher and great friend who took me under his wings early in my student life and offered me my

first research experience. Thankfully for the field of theoretical computer science, but sadly for

computer architecture, later I decided to switch research areas.

There are a lot of people who supported me at Carnegie Mellon, and without their help this

work would never be possible. They have all been my mentors and my dear friends. Brian Gold

tolerated me as an office-mate, and provided invaluable input and support, both for my work as

well as outside the office. Stephen Somogyi and Mike Ferdman put countless hours towards help-

ing me decipher results and polish papers and talks. Tom Wenisch made our research infrastructure
vii

viii
possible. Jared Smolens often put his incredible skills to the help of others. Eric Chung was always

ready for long and deep research discussions. Thank you all for everything.

If it was not for my wife, Kivanc Sabirli, I would have truly lost my mind at various stages

of my thesis work. Her unconditional support kept me going; her infinite love put a purpose in my

life and reminded me of what truly matters; her smile gave me power to hike the thesis mountain.

Kivanc, I couldn’t have done it without you. You are my home. Long time [sic].

I’ve watched countless dawns with Jasmine and Lilly after a night of hard work, listening to

birds upon the first break of the morning light. They kept me company in the wee hours, Jasmine

sitting on my chair or on the warm laptop, Lilly laying on the keyboard when it was time for a

break. Jasmine and Lilly, thank you for your warm company. You’ll always be with us.

This section would never be complete without expressing my sincere gratitude to our fam-

ily. The unconditional love and support of Yiannis, Yiota, and Themis pulled me through rough

seas and taught me the value of education. This dissertation is as much their accomplishment, as it

is mine. The enormous hospitality and love of Hikmet, Semra, Isik and Erhan warmed my heart

when I needed it the most. I can only aspire sometime to be as gentle and thoughtful as they are.

I am grateful to Leonidas Kontothanassis and Cindy Arens. Their friendship and encourage-

ment has been instrumental throughout my life. They are among the most generous people I have

ever met, and I owe them more than I can ever put in words. Special thanks are also due to Alexan-

dros Labrinidis. His hospitality allowed me to proceed undeterred in the last stages of the thesis,

and his friendship, mentoring and support have helped me tremendously throughout my career.

Sotiris Damouras has been the ideal house-mate. His friendship and support has filled our

life in Pittsburgh with warm memories, and our breaks at the porch provided a much-needed

ix .
respite. Vagelis Vlachos and Michael Papamichael helped me put work aside once in a while and

enjoy life, and supported me a lot at the last stages of this effort. Takis, Maria, Tina, Panos, Areti,

Kostas, Ioanna, Manos, Liz, Eleni, Tania, Yiannis, Pantelis and Ippokratis have always opened

their houses to us and hosted parties and cook-outs that cleared my head and recharged my mind.

Thank you all for helping me keep my sanity.

I wish to thank the roasters at Vivace for their amazing coffee, the people at Isomac for their

great coffee machines, and at Mazzer for their grinders. Matt Koeske for introducing me to the cul-

ture of espresso aficionados and fine teas. The A-level faculty for making sure my cup was always

full. The Brothers K Coffee House in Evanston, IL for providing me with an office during the last

month of the thesis writing, and for making sure my cup remained bottomless. James Hoe for the

Friday lunch series that kept us all connected, and for his advise and support whenever requested.

There are a lot more people to thank, and a hundred pages would not suffice to list them all.

Please, permit me to thank you all at once and take this acknowledgement as an invitation to toast

yourselves, wherever you might be.

I sincerely hope you enjoy reading.

x

xi .
Table of Contents

 Abstract... v

 Acknowledgements... vii

 List of Figures... xv

 List of Tables .. xvii

Chapter 1 Introduction... 1

1.1 Performance Analysis of Modern CMPs..2

1.2 Near-Optimal On-Chip Block Placement and Replication.....................................4

1.3 Optimal CMPs Across Technologies..6

1.4 Contributions ..7

Chapter 2 Performance Analysis of CMPs..11

2.1 Introduction .. 11

2.2 CMP Camps and Workloads... 14

2.2.1 Fat Camp vs. Lean Camp ... 15

2.2.2 Unsaturated vs. Saturated Workloads ... 16

2.3 Experimental Methodology .. 18

2.4 DBMS Performance on CMPs ... 21

2.5 Analysis of Data Stalls ... 24

2.5.1 Impact of On-Chip Cache Size ... 25

2.5.2 Impact of Core Integration on Single Chip .. 28

2.5.3 Impact of On-Chip Core Count .. 29

2.5.4 Ramifications.. 30

xii
2.6 Summary .. 32

Chapter 3 Reactive NUCA.. 35

3.1 Background .. 38

3.1.1 Non-Uniform Cache Architectures ...38

3.1.2 Tiled Architectures ..39

3.1.3 Requirements for Intelligent Block Placement ...41

3.2 Characterization of L2 References... 41

3.2.1 Methodology ...41

3.2.2 Categorization of Cache Accesses ..43

3.2.3 Characterization of Access Classes...46

3.2.4 Characterization Conclusions..52

3.3 R-NUCA Design.. 52

3.3.1 Indexing and Rotational Interleaving ..54

3.3.2 Placement ..55

3.3.3 Page Classification ..56

3.3.4 Extensions ...60

3.3.5 Generalized Form of Rotational Interleaving..61

3.4 Evaluation .. 63

3.4.1 Methodology ...63

3.4.2 Classification Accuracy...65

3.4.3 Impact of R-NUCA Mechanisms ..67

3.4.4 Performance Improvement ..74

3.4.5 Impact of Technology..76

3.5 Summary .. 77

Chapter 4 Optimal CMPs Across Technologies.. 79

4.1 First-Order Analytical Modeling ... 80

4.1.1 Technology Model...80

4.1.2 Hardware Model..81

4.1.3 Area Modeling of Hardware Components ..83

4.1.4 Performance Modeling ..84

xiii .
4.1.5 Miss Rate Model and Application Dataset Evolution .. 86

4.1.6 Power Models ... 90

4.1.7 Off-Chip Bandwidth Model.. 94

4.1.8 Modeling 3D-Stacked Memory .. 94

4.2 Peak-Performing Designs Under Physical Constraints .. 95

4.3 Physically-Constrained Designs Across Technologies... 99

4.3.1 Multicore Processors With milliWatt Cores ... 101

4.3.2 CMPs with Ideal Cores... 104

4.3.3 CMPs with 3D-Stacked Memory.. 106

4.4 Summary...108

Chapter 5 Related Work..111

Chapter 6 Future Work ...117

Chapter 7 Conclusions .. 121

 Bibliography ... 123

xiv

xv .
List of Figures

Figure Title Page

FIGURE 1: Historic trends of on-chip caches on (a) size, and (b) latency................................3

FIGURE 2: Unsaturated vs. saturated workloads. ... 17

FIGURE 3: validation using the saturated DSS workload.. 20

FIGURE 4: (a) Response time and (b) throughput of LC normalized to FC........................... 22

FIGURE 5: Breakdown of execution time...23

FIGURE 6: Effect of cache size and latency on throughput. ...25

FIGURE 7: Effect of cache size and latency on CPI for (a) OLTP and (b) DSS..................... 26

FIGURE 8: CPI breakdown with increasing L2 size. .. 27

FIGURE 9: Impact of chip multiprocessing on CPI. ... 28

FIGURE 10: Impact of core count on (a) throughput, and (b) CPI breakdown. 29

FIGURE 11: Typical tiled architecture and floorplan of folded 2D-torus. 39

FIGURE 12: L2 Access Categorization and Clustering. ... 44

FIGURE 13: L2 Reference breakdown.. 45

FIGURE 14: L2 working set sizes for private data, instruction and shared data....................... 47

FIGURE 15: Instruction and shared data reuse by same core. .. 49

FIGURE 16: Example of R-NUCA clusters and Rotational Interleaving. 53

FIGURE 17: Page table entry and TLB extensions. .. 56

FIGURE 18: Time-line of private page classification. .. 57

FIGURE 19: Time-line of shared-data page classification. ... 58

FIGURE 20: RIDs and examples for size-8 and size-16 fixed-center clusters.......................... 63

xvi
FIGURE 21: Page-grain access types and misclassifications. .. 66

FIGURE 22: Total CPI breakdown for L2 designs. .. 67

FIGURE 23: CPI breakdown of L1-to-L1 and L2 load accesses. ... 69

FIGURE 24: CPI contribution of L2 accesses to private data... 70

FIGURE 25: Per-core miss rates for scientific and multiprogrammed workloads.................... 71

FIGURE 26: Per-core miss rates for server workloads. .. 72

FIGURE 27: CPI contribution of L2 instruction accesses. ... 73

FIGURE 28: CPI breakdown of instruction clusters with various sizes. 74

FIGURE 29: Performance Improvement of R-NUCA. ... 75

FIGURE 30: Performance of R-NUCA relative to Ideal. ... 76

FIGURE 31: Miss rate model fitting (left) and relative error plots (right). 88

FIGURE 32: Core count-cache size trade-off subject to physical constraints. 96

FIGURE 33: Performance of physically-constrained designs... 98

FIGURE 34: Performance of GPP CMPs across technologies and device types.................... 100

FIGURE 35: Core count for peak-performance HP, HP/LOP and LOP designs. 101

FIGURE 36: Performance of GPP, EMB, and Ideal-P 20nm CMPs running OLTP. 102

FIGURE 37: Core count of CMPs with embedded and ideal cores. 103

FIGURE 38: Speedup of CMPs with embedded and ideal cores. ... 104

FIGURE 39: Power breakdown of conventional and 3D-memory CMPs at 20nm. 105

FIGURE 40: GPP, EMB and Ideal-P CMPs at 20nm with 3D-memory (OLTP).................... 106

FIGURE 41: Speedup of CMPs with conventional and 3D-stacked memory......................... 107

FIGURE 42: Core counts for CMPs with 3D-stacked memory. ... 108

FIGURE 43: On-chip cache sizes for CMPs with conventional memory. 109

xvii .
List of Tables

Table Title Page

Table 1: Chip multiprocessor camp characteristics... 15

Table 2: System parameters for the 8-core and 16-core CMPs..................................... 42

Table 3: Workload parameters for R-NUCA evaluation. .. 43

Table 4: Performance Model Parameters. ...83

Table 5: Miss Rate Model Parameters... 87

xviii

Chapter 1

Introduction

Commercial server software systems (e.g., database management systems, web servers) are

at the center of a multi-billion dollar server industry, utilizing state-of-the-art processors to maxi-

mize performance. Over the past decades, processor designs focused primarily on improving per-

formance by exploiting instruction-level parallelism (ILP). The resulting wide-issue out-of-order

(OoO) processors overlap both computation and memory accesses to increase performance, but

fall short of realizing their full potential when running server workloads. Many important server

workloads exhibit large instruction footprints and tight data dependencies that reduce instruction-

level parallelism and incur data and instruction transfer delays [2,79,93,101].

Thus, increasingly aggressive OoO techniques yield diminishing returns in performance,

while their power dissipation is reaching prohibitive levels [14]. The shortcomings of out-of-order

processors, along with the continued increase in the number of transistors available on chip, have

encouraged most vendors to integrate multiple processors on a single chip, instead of simply

increasing the complexity of individual cores. Major manufacturers already ship 8-core chip multi-

processors [61] with plans to scale to 100s of cores [8,86]. Specialized vendors already push the

envelope further, with Cisco CRS-1 featuring 188 processing cores, Tilera’s TILE64 with 64 cores,

and Azul Vega 3 with 54 out-of-order cores.
1

2
The resulting chip multiprocessor (CMP) designs may increase processor stalls through pro-

moting on-chip data sharing across cores and increasing contention for shared hardware resources.

However, to date, there hasn’t been a comprehensive study that examines how the emerging hard-

ware trends affect the performance of server workloads.

1.1 Performance Analysis of Modern CMPs

Recent studies show that processors are far from realizing their maximum performance

when executing commercial server workloads. Prior research [75, 101] indicates that the adverse

memory access patterns in commercial server workloads result in poor cache locality and overall

performance. Server workloads are known to spend at least half of their execution time on data-

access stalls, implying that high-performance systems should focus on bringing data on chip

[2, 93, 101], typically to the second-level (L2) cache found on chip in modern processors.

However, over the past decade, advancements in semiconductor technology have dramati-

cally changed the landscape of on-chip caches. The increase in the number of transistors available

on-chip has enabled on-chip cache sizes to increase exponentially across processor generations.

The trend of increasing on-chip cache sizes is apparent in Figure 1 (a), which presents historic data

on the on-chip cache sizes of several processors in the last two decades. The upward trend in cache

sizes shows no signs of a slowdown. Industry advocates large caches as a microarchitectural tech-

nique that allows designers to exploit the available transistors efficiently to improve performance

[14]. At the same time, the advent of multicore processors requires large on-chip caches to supply

the ever-increasing number of on-chip cores with data. As a result, modern processors increasingly

3 CHAPTER 1. INTRODUCTION
feature mega-caches on chip (e.g., 16MB in Dual-Core Intel Xeon 7100 [85], and 24MB in Intel

Nehalem-EX [53] and Intel Itanium 2 [104]).

Large caches, however, come at the cost of high access latency. Figure 1 (b) presents his-

toric data on the L2 cache access latency, indicating that on-chip L2 latency has increased between

3-fold to 6-fold during the past decade — e.g., from 4 cycles in Intel Pentium III (1995) to 26

cycles in Sun UltraSPARC T2 (2007) [95]. Caches enhance performance most when they capture

fully the primary working set of the workload; otherwise, they provide only marginal improve-

ments in the miss rate as size increases. Commercial server workloads typically have a small pri-

mary working set which can be captured on chip, and a large secondary set which is beyond the

reach of on-chip caches for modern processors. Conventional wisdom dictates that large on-chip

caches provide significant performance benefits as they eliminate off-chip memory requests. In

reality, a large cache may degrade the performance of server workloads because the cache’s high

latency slows the common case (cache hits) and introduces stalls in the execution, while the addi-

tional capacity fails to lower the miss rate enough to compensate.

1

10

100

1000

10000

100000

1990 2000 2010
Year

O
n

-c
h

ip
 C

ac
h

e
(K

B
)

0

5

10

15

20

25

1990 2000 2010
Year

H
it

 L
at

en
cy

 (
cy

cl
es

)

FIGURE 1: Historic trends of on-chip caches on (a) size, and (b) latency.

4
As a case study, we investigate the performance of database workloads on modern CMPs

and identify data cache stalls as a fundamental performance bottleneck. Recent work in the data-

base community [1, 2, 79] attributes most of the data stalls to off-chip memory accesses. In con-

trast to prior work, our results indicate that the current trend of increasing L2 latency intensifies

stalls due to L2 hits1, shifting the bottleneck from off-chip accesses to on-chip L2 hits.

Thus, merely bringing data on-chip is no longer enough to attain maximum performance

and sustain high throughput. Rather, it is imperative that modern CMP designs optimize for low

on-chip data access latencies as well, especially to the (typically larger) last-level cache (LLC).

1.2 Near-Optimal On-Chip Block Placement and Replication

The exponential increase in the number of cores on chip results in a commensurate increase

in the on-chip cache size required to supply all these cores with data. At the same time, physical

and manufacturing considerations suggest that future processors will be tiled: the last-level on-

chip cache will be decomposed into smaller slices, and groups of processor cores and cache slices

will be physically distributed together throughout the die area [8,107]. Tiled architectures give rise

to varying access latencies between the cores and the cache slices spread across the die, naturally

leading to a Non-Uniform Cache Access (NUCA) organization of the LLC, where the latency of a

cache hit depends on the physical distance between the requesting core and the location of the

cached data. Although increasing device switching speeds results in faster cache-bank access

times, communication delay remains constant across technologies [20], and access latency of far

away cache slices becomes dominated by wire delays and on-chip communication [60].

1. We refer to the time spent by the processor accessing a cache block that missed in L1D but was found in L2 as “L2 hit
stalls”.

5 CHAPTER 1. INTRODUCTION
An ideal LLC allows for fast access to data, large aggregate capacity to store the ever-

increasing applications’ working sets, and has a simple and practical design. Ideally, the cache

places blocks on chip close to the cores that access them. In the case of shared blocks, a mecha-

nism is required to either place the shared blocks equally close to all sharers, or to replicate the

blocks among all shares, thereby bringing them close to each one. In this thesis we propose Reac-

tive NUCA (R-NUCA), a scalable, low-overhead, and low-complexity cache architecture that opti-

mizes block placement for all cache accesses.

R-NUCA cooperates with the operating system to classify accesses at the page granularity,

achieving negligible hardware overhead and avoiding complex heuristics that are prone to error,

oscillation, or slow convergence [12,19,23]. The placement decisions in R-NUCA guarantee that

each modifiable block is mapped to a single location in the aggregate cache, obviating the need for

complex, area- and power-intensive coherence mechanisms prevalent in prior on-chip block place-

ment proposals [12,19,23,107]. R-NUCA utilizes Rotational Interleaving, a novel lookup mecha-

nism that matches the fast speed of address-interleaved lookup, without pinning blocks to a single

location in the cache [23,107]. Rotational interleaving allows read-only blocks to be shared by

neighboring cores and replicated at distant ones, ensuring low access latency while balancing

capacity constraints. Overall, we find that R-NUCA allows for near-optimal block placement in a

physically-distributed on-chip cache, attaining performance within 5% of an ideal cache design.

While it is imperative that future multicores optimize for on-chip data access latency, there

are still many design decisions left to be answered. The capability of future CMPs to host expo-

nentially larger numbers of cores do not directly translate into a commensurate increase in perfor-

mance. Rather, the abundance of hardware resources comes not only at the cost of increased on-

chip data access latencies, but also increased power consumption and off-chip bandwidth require-

6
ments. However, chips are physically constrained—cooling technology and thermal considerations

limit the maximum power at almost constant levels across process technologies, manufacturing

considerations and yield economics cap the maximum affordable chip size, while packaging con-

straints limit the number of pins and the available off-chip bandwidth. Thus, it is important that we

optimize future multicore processors with all constraints in mind, in addition to performance. With

a promising distributed cache design on hand, we then embark on exploring the design parameters

of physically-constrained multicore processors to find the optimal designs for server workloads.

1.3 Optimal CMPs Across Technologies

Design parameters such as the number and type of cores, the supply voltage, the on-chip

clock frequency, the size of the on-chip cache, and the chip’s operational temperature are inter-

twined and affect each other non-linearly. Thus, to attain maximum performance and power-effi-

ciency, it is imperative that all design parameters are jointly optimized to maximize their impact on

performance while keeping overheads at bay.

Through first-order analytic modeling of server applications’ dataset evolution, multicore

performance, power, off-chip bandwidth, memory technology, and thermal constraints, we propose

multicore designs for commercial server workloads that attain the highest performance at a given

power budget. These models conform to ITRS projections across process technologies and jointly

optimize supply and threshold voltage, on-chip clock frequency, core count and technology, cache

size, and memory technology to result in multicore designs that lie on the pareto frontier of peak-

performance designs. We find that ideal future multicores will be based on heterogeneous cores

built with low-operational-power devices, employ large multi-megabyte caches, utilize 3D-die

7 CHAPTER 1. INTRODUCTION
stacking to alleviate the pin bandwidth limitations, and rely on novel on-chip data placement

mechanisms that encourage localized data transfers.

1.4 Contributions

In this thesis we investigate multicore designs for commercial server workloads. Through a

combination of analytic modeling, execution trace analysis and cycle-accurate full-system simula-

tion using FLEXUS [42,103] of multicore processors running a range of unmodified commercial

server applications and multiprogrammed workloads, we demonstrate:

• On-chip cache latency dominates execution time. The large on-chip cache sizes of modern

CMPs and the high levels of data sharing in commercial workloads increase the cache hit rate,

but the higher data access latencies penalize each hit with extra cycles. The combined effects

result in server workloads spending up to 35% of their execution time stalled on cache hits,

amounting to an increase on the time spent in the on-chip cache by a factor of 5-7 over tradi-

tional symmetric multiprocessors.

• On-line classification of cache accesses. We show that cache accesses in server workloads can

be classified at run time into classes that exhibit distinct characteristics, leading to different on-

chip cache block placement policies.

• Reactive NUCA. We leverage the characteristics of each access class to design Reactive

NUCA (R-NUCA), a low-overhead, low-latency mechanism for block placement in distributed

caches. R-NUCA improves performance by allocating cache blocks close to the cores that

access them, replicating or migrating them as necessary without the overhead of a hardware

coherence mechanism.

8
• Rotational Interleaving. To make block replication practical, we propose Rotational Interleav-

ing, a mechanism for fast lookup in distributed caches with replicated blocks. Rotational Inter-

leaving enables cache block replication in the distributed cache without wasting space and

without coherence overheads. It balances capacity constraints with access latency by distribut-

ing blocks to nearest neighbors to relieve capacity pressure and ensuring that all allocation

decisions among neighbors are mutually consistent, while indexing blocks by always probing

only the cache slice that may have the requested block (single-probe lookup). Thus, it provides

lookup speeds comparable to conventional address interleaving, without pinning blocks to a

single location in the cache.

• Performance Robustness. We find that R-NUCA provides performance stability across work-

loads, as on a per-workload basis it either matches the performance of competing cache designs

or improves upon them by 17% on average and by 32% at best, while performing within 5% of

an ideal design.

• CMP Design-Space Exploration Across Process Technologies. We explore the design space

of physically-constrained CMPs across technologies and find that heterogeneous multicores is

a viable alternative that holds great promise in optimizing the chip design. Contrary to conven-

tional wisdom, we find that the cores can be implemented using low-operational-power devices

without loss in performance, but with significant reduction in power. In contrast to prior

research findings, we find that 3D-stacked memory can mitigate the bandwidth wall, making

peak-performance designs purely power-constrained. Finally, we find that cache sizes will con-

tinue to grow at an exponential rate, so future multicore processors will require novel on-chip

data placement mechanisms that encourage localized data transfers.

9 CHAPTER 1. INTRODUCTION
The rest of the thesis is organized as follows. In Chapter 2, we analyze the performance of

chip multiprocessors running database workloads as a case study that quantifies the impact of

modern hardware trends on commercial server workloads. In Chapter 3, we introduce Reactive

NUCA and Rotational Interleaving and evaluate their performance. In Chapter 4, we introduce

first-order analytical models that we use to explore the design space of physically-constrained

multicore processors across technologies. We comment on related research in Chapter 5 and con-

clude in Chapter 6.

The performance analysis in Chapter 2 was previously presented in CIDR 2007 [41]. The

Reactive NUCA and Rotational Interleaving designs in Chapter 3 were previously presented in

ISCA 2009 [40]. In this document, we provide a more detailed description of Reactive NUCA and

Rotational Interleaving that was not possible in the limited space of a conference publication.

Material presented in Chapter 4 has not yet appeared in other venues.

10

Chapter 2

Performance Analysis of CMPs

2.1 Introduction

The commercial server market forms a multi-billion dollar industry [36,37] that penetrates

deeply into our everyday life, from ATM and credit card transactions, to travel, to commerce, to

government services. High-end servers employ state-of-the-art processors and software to maxi-

mize performance. Any failure to realize their maximum potential directly translates into lost

investment and impacts the end user who demands low response times and high availability at

minimum cost. At the same time, improving the performance of commercial server software will

free computational resources for additional services besides the absolutely necessary for a transac-

tion (e.g., it will allow augmenting transactions with on-line fraud detection). Unfortunately, cur-

rent technological trends make it increasingly difficult to attain high processor utilization and

reach maximum performance.

While prior research advocates that high-end server systems and software should focus on

bringing data on chip to mitigate the processor-memory performance gap [2], the advent of multi-

core processors has resulted in an exponential increase in cache sizes and on-chip interconnects

which shift the dominant performance bottlenecks. Large caches and interconnects come at the

expense of slow on-chip data access times, which increases the contribution of on-chip cache hits
11

12
to execution time. At the same time, the relative contribution of off-chip accesses to execution

time dwindles as clock frequency increases have stagnated [7] and DRAM access latency contin-

ues to improve. Additionally, multicore processors may increase processor stalls through promot-

ing on-chip data sharing across cores and increasing contention for shared hardware resources.

In this study, we quantify the effects of current hardware trends on the performance of com-

mercial server workloads using database applications as a case study. We demonstrate that the

growing L2 hit latency largely determines the performance of commercial software servers. In

essence, server workloads are running into an “on-chip cache wall”, which has become the new

fundamental bottleneck. Our results present a departure from prior research findings that identify

off-chip accesses as the dominant barrier to high performance [2, 1, 79]. In contrast to prior work,

our results indicate that the current trend of increasing L2 latency intensifies stalls due to L2 hits1,

shifting the bottleneck from off-chip accesses to on-chip L2 hits. Thus, merely bringing data on-

chip is no longer enough to attain maximum performance and sustain high throughput.

In this study we recognize that chip multiprocessor designs follow two distinct schools of

thought, and present a taxonomy of processor designs and DBMS workloads to distinguish the

various combinations of workload and system configuration. We divide chip multiprocessors into

two “camps.” The fat camp employs wide-issue out-of-order processors and addresses data stalls

by exploiting instruction-level parallelism (e.g., Intel Core Duo [52], IBM Power 5 [57]). The lean

camp employs heavily multithreaded in-order processors to hide data stalls across threads by over-

lapping data access latencies with useful computation (e.g., Sun UltraSPARC T1 [61]). Even

though LC is heavily multithreaded, it is a much simpler hardware design than the complex out-of-

order FC. We divide database applications into saturated workloads, in which idle processors

1. We refer to the time spent by the processor accessing a cache block that missed in L1D but was found in L2 as “L2 hit
stalls”.

13 CHAPTER 2. PERFORMANCE ANALYSIS OF CMPS
always find an available thread to run, and unsaturated workloads, in which processors may not

always find threads to run, thereby exposing data access latencies. We characterize the perfor-

mance of each database workload and system configuration pair within the taxonomy through

cycle-accurate full-system simulations using FLEXUS [42,103] of on-line transactional processing

(OLTP) and decision support system (DSS) workloads on a commercial DBMS. Our results indi-

cate that:

• High on-chip cache latencies shift the data stall component from off-chip data accesses to L2

hits, to the point where up to 35% of the execution time is spent on L2 hit stalls for our work-

load and CMP configurations. The increased cache latency results in workloads losing as much

as half of their potential performance.

• High levels of on-chip core integration increase L2 hit rates, improving performance by 12-

15% and increasing the relative contribution of L2 hit stalls to 10% and 25% of execution time,

respectively, for DSS and OLTP.

• The combined effects of high L2 latency and higher L2 hit rates due to on-chip core integration

increase the contribution of L2 hit stalls on execution time by a factor of 5 for DSS and a factor

of 7 for OLTP over traditional symmetric multiprocessors, explaining the observed departure

from prior research findings.

14
• Conventional DBMS hide stalls only in one out of four combinations of chip designs and work-

loads. Despite the significant performance enhancements that stem from chip-level parallelism,

the fat camp still spends 46-64% of execution time on data stalls. The lean camp efficiently

overlaps data stalls when executing saturated workloads, but exhibit up to 70% longer response

times than the fat camp for unsaturated workloads.

The remainder of this chapter is structured as follows. Section 2.2 proposes a taxonomy of

chip multiprocessor technologies and workloads. Section 2.3 presents our experimental methodol-

ogy and Section 2.4 analyzes the behavior of a commercial database server on chip multiproces-

sors, as a function of hardware designs and workloads. Section 2.5 discusses the effects of

hardware parameters on data stalls. Finally, Section 2.6 presents a summary of our analysis.

2.2 CMP Camps and Workloads

In this section we propose a taxonomy of chip multiprocessor technologies and database

workloads, and analyze their characteristics. To our knowledge, this is the first study to provide an

analytic taxonomy of the behavior of database workloads in such a diverse spectrum of current and

future chip designs. A recent study [30] focuses on throughput as the primary performance metric

to compare server workload performance across chip multiprocessors with varying processor gran-

ularity, but has stopped short of a detailed performance characterization and breakdown of where

time is spent during execution. The taxonomy we propose enables us to concentrate on each seg-

ment separately and derive the reasons behind our performance observations. Through a series of

simulations we find that the behavior of database systems varies as a function of hardware and

workload type, and that conventional database systems fail to provide high performance across the

entire spectrum.

15 CHAPTER 2. PERFORMANCE ANALYSIS OF CMPS
2.2.1 Fat Camp vs. Lean Camp

Hardware vendors adopt two distinct approaches to chip multiprocessor design. One

approach uses cores that target maximum single-thread performance through sophisticated out-of-

order execution and aggressive speculation (fat-camp or FC). Representative chip multiprocessors

from this camp include Intel Core Duo [52] and IBM Power5 [57]. The second approach favors

much simpler designs with cores that support many thread contexts1 in hardware (lean-camp or

LC). Such cores overlap stalls in a given thread with useful computation by other threads. Sun

UltraSPARC T1 [61] and Compaq Piranha [10] fall into this camp. Table 1 summarizes the charac-

teristics of each technology camp.

Integrating multiple cores on a chip multiprocessor exhibits similar effects within each

camp (e.g., increase in shared resource contention). In this chapter we study the increasing perfor-

mance differences between fat and lean camps when running identical database workloads, assum-

ing that both camps are supported by the same memory hierarchy. Thus, it suffices to analyze the

characteristics of each camp by focusing on the characteristics of the different core technologies

within each camp.

1. We refer to hardware threads as “hardware contexts” to distinguish them from software (operating system) threads.

Table 1: Chip multiprocessor camp characteristics.

Core Technology Fat Camp (FC) Lean Camp (LC)

Issue Width Wide (4+) Narrow (1 or 2)

Execution Order Out-of-order In-order

Pipeline Depth Deep (14+ stages) Shallow (5-6 stages)

Hardware Threads Few (1-2) Many (4+)

Core Size Large (3 x LCsize) Small (LC size)

16
Because LC cores are heavily multithreaded, we expect them to hide stalls efficiently and

provide high and scalable throughput when there is enough parallelism in the workload. However,

when the workload consists of a few threads, the LC cores cannot find enough threads to overlap

stalls, leaving long data access latencies exposed. On the other hand, the FC cores are optimized

for single-thread performance through wide pipelines that issue/complete multiple instructions per

cycle, and out-of-order speculative execution. These features exploit instruction-level parallelism

within the workload to hide stalls.

Thus, we expect LC cores to outperform FC cores when there is enough parallelism in the

workload, even with much lower single-thread performance than that of an FC core. However,

when the workload consists of few threads, we expect the response time of the single-thread opti-

mized FC cores to be significantly lower than the corresponding response time of their LC coun-

terparts.

In addition to the performance differences when comparing single cores, an LC CMP can

typically fit three times more cores in one chip than an FC CMP, resulting in roughly an order of

magnitude more hardware contexts in the same space. In this study we do not apply constraints on

the chip area. Keeping a constant chip area would favor the LC camp because it would have a

larger on-chip cache than the FC camp, allowing LC to attain even higher performance in heavily

multithreaded workloads, because LC is able to hide L2 stalls through multithreading.

2.2.2 Unsaturated vs. Saturated Workloads

Database performance varies with the number of requests serviced. Our unsaturated work-

load highlights single-thread performance by assigning one worker thread per query (or transac-

tion) it receives. A conventional DBMS can increase the parallelism through partitioning, but in

17 CHAPTER 2. PERFORMANCE ANALYSIS OF CMPS
the context of this study we can treat this as having multiple clients (instead of threads). The reader

should also keep in mind that not all query plans are trivially parallelizable.

We observe that the performance of a database application falls within one of two regions,

for a given hardware platform, and characterize the workload as unsaturated or saturated. A work-

load is unsaturated when processors do not always find threads to run. As the number of concur-

rent requests increases, performance improves by utilizing otherwise idle hardware contexts.

Figure 2 illustrates throughput as a function of the number of concurrent requests in the system

when running TPC-H queries on a commercial DBMS on a real 4-core IBM Power5 (FC) server.

Increasing the number of concurrent requests eventually results in a saturated workload, where

there are always available threads for idle processors to run. Peak performance occurs at the begin-

ning of the saturated region; increasing the number of concurrent requests too far overwhelms the

hardware, reducing the amount of useful work performed by the system and lowering perfor-

mance.

0

1

2

3

4

1 10 100 1000

Number of Clients

N
o

rm
. T

h
ro

u
g

h
p

u
t

Unsaturated Saturated

FIGURE 2: Unsaturated vs. saturated workloads.

18
2.3 Experimental Methodology

We use FLEXUS [42,103] to provide accurate simulations of chip multiprocessors and sym-

metric multiprocessors running unmodified commercial database workloads. FLEXUS is a cycle-

accurate full-system simulator that simulates both user-level and operating system code. We use

the SimFlex statistical sampling methodology [103]. Our samples are drawn over an interval of 10

to 30 seconds of simulated time (as observed by the operating system in functional simulation) for

OLTP, and over the complete workload execution for DSS. We show 95% confidence intervals on

performance measurements using paired measurement sampling. We launch measurements from

checkpoints with warmed caches and branch predictors, then run for 100,000 cycles to warm

queue and interconnect state prior to collecting measurements of 50,000 cycles. We use the aggre-

gate number of user instructions committed per cycle (i.e., committed user instructions summed

over the simulated processors divided by total elapsed cycles) as our performance metric, which is

proportional to overall system throughput [103].

We characterize the performance of database workloads on an LC CMP and an FC CMP

with the UltraSPARC III instruction set architecture running the Solaris 8 operating system. The

LC CMP employs four 2-issue superscalar in-order cores. The LC cores are 4-way multithreaded,

for a total of 16 hardware contexts on the LC CMP. The hardware contexts are interleaved in

round-robin fashion, issuing instructions from each runnable thread in turn. When a hardware con-

text stalls on a miss it becomes non-runnable until the miss is serviced. In the meantime, the LC

core executes instructions from the remaining contexts.

The FC CMP employs four aggressive out-of-order cores that can issue four instructions per

cycle from a single hardware context. The two CMP designs have identical memory subsystems

19 CHAPTER 2. PERFORMANCE ANALYSIS OF CMPS
and clock frequencies and feature a shared on-chip L2 cache with size that ranges from 1MB to

26MB.

We estimate cache access latencies using Cacti 5.3 [97]. Cacti is an integrated cache access

time, cycle time, area, leakage, and dynamic power model. By integrating all these models

together, cache trade-offs are all based on the same assumptions and, hence, are mutually consis-

tent. In some experiments we purposefully vary the latency of caches beyond the latency indicated

by Cacti to explore the resulting impact on performance or to obtain conservative estimates.

Our workloads consist of OLTP (TPC-C) and DSS (TPC-H) benchmarks running on a com-

mercial DBMS. The saturated OLTP workload consists of 64 clients submitting transactions on a

100-warehouse database. The saturated DSS workload consists of 16 concurrent clients running

four queries from the TPC-H benchmark, each with random predicates. We select the queries as

follows [88]: Queries 1, 6 are scan-dominated, Query 16 is join-dominated and Query 13 exhibits

mixed behavior. To achieve practical simulation times we run the queries on a 1GB database. We

corroborate recent research that shows that varying the database size does not incur any microar-

chitectural behavior changes [88]. Unsaturated workloads use the above methodology running

only a single client, with intra-query parallelism disabled to highlight single-thread performance.

We tune both the OLTP and DSS workloads to minimize I/O overhead and maximize CPU and

memory system utilization.

20
We validate by comparing against an IBM OpenPower720 server that runs the same work-

loads. We calculate the cycles per instruction (CPI) on OpenPower720 by extracting Power5’s

hardware counters through pmcount [27], post-processing the raw counters using scripts kindly

provided by IBM, and comparing the results with a simulation that approximates the same IBM

server. Figure 3 presents the absolute CPI values and their respective breakdowns. The overall

simulated CPI is within 5% of the measured CPI for both OLTP and DSS workloads. The compu-

tation component for OpenPower720 is 10% higher, which we attribute to Power5’s instruction

grouping and cracking overhead. The data stall component is 15% higher due to the absence of a

hardware prefetcher mechanism.

While employing a stride prefetcher will not change the performance trends that are the

focus of our study, it is instructive to discuss its performance implications on our workload mix.

Prior research [93] measures the impact of hardware prefetching on the performance of OLTP and

DSS workloads and finds that even complex hardware prefetchers that subsume stride prefetchers

yield less than 10% performance improvement for OLTP workloads and scan-dominated DSS que-

ries. Join-dominated DSS queries do see as much as 50% improvement, but contribute relatively

0.0

0.5

1.0

1.5

FLEXUS OpenPower720

C
P

I

Computation I-stalls D-stalls Other stalls

FIGURE 3: validation using the saturated DSS workload.

21 CHAPTER 2. PERFORMANCE ANALYSIS OF CMPS
little to total execution time in our DSS query mix. Even if a stride prefetcher could match the per-

formance improvements of [93], we estimate that the performance improvement due to a stride

prefetcher on our OLTP workload will be less than 10%, while the performance improvement on

our scan-dominated DSS workload will be less than 20%. However, the performance trends due to

the increasing L2 latencies will remain the same.

2.4 DBMS Performance on CMPs

In this section we characterize the performance of both CMP camps on a commercial

DBMS running unsaturated and saturated DSS and OLTP workloads. For unsaturated workloads

the performance metric of interest is response time, while for saturated workloads the performance

metric of interest is throughput. Figure 4 (a) presents the response time of the LC CMP normalized

to the FC CMP when running unsaturated (single-thread) workloads. Figure 4 (b) presents the

throughput of the LC CMP normalized to the throughput of the FC CMP when running saturated

workloads.

The LC CMP suffers up to 70% higher response times than FC when running unsaturated

(single-thread) DSS workloads and up to 12% higher when running unsaturated OLTP workloads,

corroborating prior results [79]. The performance difference between FC and LC on unsaturated

OLTP workloads is narrower due to limited ILP. Even though FC exhibits higher single-thread per-

22
formance than LC, the LC CMP achieves 70% higher throughput than its FC counterpart when

running saturated workloads (Figure 4 b).

Figure 5 shows the execution time breakdown for each camp and workload combination.

Although we configure the CMPs with an unrealistically fast 26MB shared L2 cache, data stalls

dominate execution time in three out of four cases. While FC spends 46% - 64% of execution time

on data stalls, LC spends at most 13% of execution time on data stalls when running saturated

workloads, while spending 76-80% of the time on useful computation. The multiple hardware con-

texts in LC efficiently overlap data stalls with useful computation, thereby allowing LC to outper-

form significantly its FC counterpart on saturated workloads.

Despite prior work [2] showing that instruction stalls often dominate memory stalls when

running database workloads, our CMP experiments indicate that data stalls dominate the memory

access component of the execution time for all workload/camp combinations. Both camps employ

instruction stream buffers [56], a simple hardware mechanism that automatically initiates

FIGURE 4: (a) Response time and (b) throughput of LC normalized to FC.

0

0.5

1

1.5

2

2.5

FC LC FC LC

OLTP DSS

Unsaturated

N
o

rm
. R

e
s

p
o

n
s

e
 T

im
e

0

0.5

1

1.5

2

FC LC FC LC

OLTP DSS

Saturated
N

o
rm

. T
h

ro
u

g
h

p
u

t

23 CHAPTER 2. PERFORMANCE ANALYSIS OF CMPS
prefetches to successive instruction cache lines following a miss. Our results corroborate prior

research [79] that demonstrates instruction stream buffers efficiently reduce instruction stalls.

Because of their simplicity, instruction stream buffers can be employed easily by the majority of

chip multiprocessors, thus we do not further analyze instruction cache performance.

We conclude that the abundance of threads in saturated workloads allows LC CMPs to hide

data stalls efficiently. The multiple hardware contexts available on the LC CMP allow it to perform

useful computation while some of the contexts are stalled on long latency data access operations,

thereby improving overall throughput. In contrast, the FC CMP fails to utilize fully its hardware

resources because database workloads exhibit limited ILP. FC processors would also benefit from

multithreaded operation, but their complexity limits the number of hardware contexts they can

employ. Our calculations show that each FC core would require more than 15 hardware contexts to

fully overlap data stalls, which is infeasible due to the complexity and power implications it

entails. Thus, FC CMPs cannot hide data stalls the way context-rich LC CMPs can.

0%

20%

40%

60%

80%

100%

FC LC FC LC FC LC FC LC

OLTP DSS OLTP DSS

Unsaturated Saturated

E
xe

cu
ti

o
n

 T
im

e

Computation I-stalls D-stalls Other stalls

FIGURE 5: Breakdown of execution time.

24
However, we expect that in spite of less than ideal performance on database workloads, FC

CMPs will still claim a significant market share due to their unparalleled single-thread perfor-

mance and optimized execution on a variety of other workloads (e.g., desktop, scientific comput-

ing). Thus, database systems must be designed to perform well on both CMP camps, independent

of workload type. To maximize performance across hardware and workload combinations, data-

base systems must exhibit high thread-level parallelism across and within queries and transactions,

and improve data locality/reuse. Increased parallelism helps exploit the abundance of on-chip

thread and processor execution resources when the workload is not saturated. Data locality helps

eliminate stalls independent of workload type.

Figure 5 shows that in six out of eight combinations of hardware and workloads, data stalls

dominate execution time even with unrealistically fast and large caches. In Section 2.5 we analyze

the data stall component of execution time to identify dominant subcomponents and trends, that

will help guide the implementation and optimization of future database software. In the interest of

brevity, we analyze data stalls by focusing on saturated database workloads running on FC CMPs,

but the results of our analysis are applicable across all combinations of hardware and workloads

that exhibit high data stall time.

2.5 Analysis of Data Stalls

In this section we analyze the individual sub-components of data cache stalls and identify

the emerging importance of L2 hit stalls, which account for up to 35% of execution time for our

hardware configurations and workloads. This represents a a 7-fold increase as compared to tradi-

tional symmetric multiprocessors with small caches running the same workloads.

25 CHAPTER 2. PERFORMANCE ANALYSIS OF CMPS
Section 2.5.1 explores the impact of increased on-chip cache sizes on the breakdown of data

stalls. In Section 2.5.2 we analyze the impact of moving from traditional (multi-chip) multiproces-

sors to single-chip multiprocessors. Finally, in Section 2.5.3 we study the effects of high levels of

on-chip core integration.

2.5.1 Impact of On-Chip Cache Size

Large on-chip L2 caches shift the data stall bottleneck in two ways. First, large caches

exhibit high hit rates. As more requests are serviced by the cache, data stalls shift from memory to

L2 hits. Second, rising hit latencies penalize each hit and increase the number of stalls caused by

L2 hits without changing the number of accesses to other parts of the memory hierarchy.

Figure 6 presents the impact of increasing cache size on DBMS performance. We simulate

both OLTP and DSS workloads on a FC CMP, with cache sizes ranging from 1MB to 26MB. To

separate the effect of hit rates from that of hit latencies, we perform two sets of simulations. The

upper (dotted) pair of lines shows the performance increase achieved when the hit latency remains

0

0.5

1

1.5

2

2.5

3

0 10 20 30

N
o

rm
.

T
h

ro
u

g
h

p
u

t

L2 Cache Size (MB)

DSS-const DSS-real

OLTP-const OLTP-real

FIGURE 6: Effect of cache size and latency on throughput.

26
fixed at an unrealistically low 4 cycles. The lower (solid) pair of lines shows the performance

under the more reasonable hit latencies estimated using CACTI for each cache configuration.

These estimates are conservative because hit latencies estimated by CACTI are typically lower

than the ones achieved in commercial products.

In all cases, increasing the cache size significantly improves performance as more of the pri-

mary L2 working set fits in the cache. However, the realistic-latency and constant-latency perfor-

mance curves quickly begin to diverge, even before the cache captures a significant fraction of the

entire working set. Even though there is no cycle penalty for increasing L2 sizes in the constant-

latency case, we see diminishing returns because even the biggest cache fails to capture the large

secondary L2 working set. In contrast, realistic hit latencies further reduce the benefit of larger

caches, and the added delay begins to outweigh the benefits of lower miss rates. The adverse

effects of high L2 hit latency reduce the potential performance benefit of large L2 caches by up to

2.2x for OLTP and 2x for DSS.

0

0.5

1

1.5

2

2.5

3

0 10 20 30

C
P

I

L2 Cache Size (MB)

L2-hit stalls Mem stalls Total

0

0.5

1

1.5

2

2.5

3

0 10 20 30

C
P

I

L2 Cache Size (MB)

L2-hit stalls Mem stalls Total

(b) CPI contributions for DSS(a) CPI contributions for OLTP

FIGURE 7: Effect of cache size and latency on CPI for (a) OLTP and (b) DSS.

27 CHAPTER 2. PERFORMANCE ANALYSIS OF CMPS
Figure 7 (a) and (b) show the effect of realistic L2 hit latencies and sizes to L2 hit stalls,

memory stalls and overall CPI for OLTP and DSS respectively. In the constant-latency case (not

shown) the stall component due to L2 hits quickly stabilizes at less than 5% of the total CPI. On

the other hand, realistic L2 latencies are responsible for a growing fraction of L2 hit stalls to the

overall CPI, especially in DSS, where they become the single largest component of execution time.

Conversely, the larger L2 sizes cause a decrease in off-chip requests, with a subsequent reduction

of memory stalls. These figures demonstrate that the growing L2 sizes result in L2 hits contribut-

ing significantly to execution time, while the contribution of off-chip memory requests drops.

The remainder of the CPI increase comes from instruction stalls due to L2 hits, again an

artifact of larger (and slower) caches. Instruction stalls due to L2 are especially evident in the

OLTP workload, where they account for roughly half of the overall CPI increase. This is evident in

Figure 8 which shows the breakdown of CPI for OLTP and DSS with increasing cache size.

Increasing cache sizes and their commensurate increase in latency can have dramatic effects

on the fraction of time spent on L2 hit data stalls. For our workloads running on a FC CMP we

0

0.5

1

1.5

2

2.5

1 4 8 16 26 1 4 8 16 26

OLTP DSS

C
P

I

L2 Cache Size (MB)

Other D-stalls I-stalls Comp

FIGURE 8: CPI breakdown with increasing L2 size.

28
measure a 12-fold increase in time spent in L2 hit stalls when increasing the cache size from 1MB

to 26MB; rising hit latencies are responsible for up to 78% of this increase.

2.5.2 Impact of Core Integration on Single Chip

In this section we study the outcome of integrating multiple processing cores on a single

chip. We compare the performance of a commercial database server running OLTP and DSS work-

loads in two variants of our baseline system: (a) a 4-processor SMP with private 4MB L2 caches at

each node, and (b) a 4-core CMP with a single shared 16MB L2.

Figure 9 presents normalized CPI breakdowns for the two systems, with labels indicating

the actual CPI. We observe that the performance of the CMP systems is higher. The difference in

the performance between the SMP and the CMP systems can be attributed to the elimination of

coherence traffic. Data accesses that result in long-latency coherence misses in the SMP system

are converted into L2 hits on the shared L2 cache of the CMP and fast L1-to-L1 on-chip data trans-

fers. Thus, the L2 hit stall component of CPI increases by a factor of 7 over the corresponding

SMP designs, explaining the disparity of our results as compared to prior research findings [2,88].

0%

20%

40%

60%

80%

100%

SMP CMP SMP CMP

OLTP DSS

N
o

rm
al

iz
ed

 C
P

I

Comp I-stalls L2-hit Other-D-stalls Other

1.40 1.01 1.95 1.46

FIGURE 9: Impact of chip multiprocessing on CPI.

29 CHAPTER 2. PERFORMANCE ANALYSIS OF CMPS
2.5.3 Impact of On-Chip Core Count

Chip multiprocessors integrate multiple cores on a single chip, which promotes sharing of

data through the common L2 cache. At the same time, contention for shared hardware resources

my offset some of the benefits of fast on-chip data sharing. To study the impact of high levels of

core integration on chip we simulate saturated OLTP and DSS workloads on a FC chip multipro-

cessor with a 16MB shared L2 as we increase the number of cores from 4 (the baseline) to 16.

Figure 10(a) presents the change in performance as the number of processing cores

increases. The diagonal line shows linear speedup as a reference. We observe a 9% super-linear

increase in throughput at 8 cores for DSS, due to an increase in sharing, after which pressure on the

L2 cache adversely affects performance for both workloads. OLTP, in particular, realizes about

74% of its potential linear performance improvement. The pressure on the cache is not due to extra

misses — in fact, the L2 miss rate continues to drop due to increased sharing as more cores are

added. Rather, physical resources such as cache ports and status registers induce queueing delays

0

5

10

15

20

0 4 8 12 16 20

N
o

rm
. T

h
ro

u
g

h
p

u
t

Number of Cores

DSS OLTP

0

0.5

1

1.5

2

2 4 8 16 2 4 8 16

OLTP DSS

C
P

I

Number of Cores

Other D-stalls I-stalls Comp

FIGURE 10: Impact of core count on (a) throughput, and (b) CPI breakdown.

30
during bursts of misses. These correlated misses are especially common in OLTP and are largely

responsible for the sub-linear speedup when adding more cores.

Figure 10(b) shows the CPI breakdown of a CMP running our OLTP and DSS workloads as

the core count increases. The breakdown shows that the contribution of instruction stalls for OLTP

increases dramatically with increasing core count. This increase is due to contention for the

instruction cache blocks. As we will see in the next chapter, the instruction stream for commercial

server workloads is universally shared among all cores, so the introduction of more cores does not

result in more misses; on the contrary, the hit rate for instructions increases as all cores request the

same blocks. However, the increased contention for instruction blocks creates hot spots in the

cache, causing the cores to queue their requests behind others already in the cache controller and

stall until the requests can be serviced. This observation shows that while it is important for future

multicore architectures to alleviate the growing on-chip cache access latency, it is also important to

invent techniques that will reduce contention for hot cache blocks.

2.5.4 Ramifications

Our analysis of data stalls and the impact of current hardware trends on CMP performance

have several ramifications. The bottleneck shift to L2 hit stalls arises primarily from the combina-

tion of higher L2 hit rates, increased L2 hit latencies and increased cache block contention due to

on-chip core integration. The emerging L2 hit stalls indicate that simply bringing data on chip no

longer suffices to attain maximum performance. In the future it will become increasingly impor-

tant to utilize techniques that lower the L2 access latency. This will be our focus in Chapter 3.

The growing L2 hit latencies can be alleviated by bringing data beyond L2 and closer to L1,

for example through streaming and prefetching. Several streaming and prefetching techniques

31 CHAPTER 2. PERFORMANCE ANALYSIS OF CMPS
have been proposed by the architectural community [55,78,93,101,21,48,83,90,99,92,59,

102,70,72,84,71], where complicated hardware, the compiler or a hardware/software mechanism

strive to recognize the workloads’ access patterns and stream data ahead of the request. However,

these techniques typically focus on predicting off-chip requests, where the large size and relative

inactivity of L2 make them tolerable to mispredictions, and the processor-memory gap provides a

large opportunity for improvement. In on-chip streaming, however, the small L1s and stream buf-

fers are prone to pollution, and the L1-to-L2 distance is relatively small, so none but the most

accurate techniques may effectively stream blocks within a chip. Unfortunately, commercial server

workloads exhibit adverse and arbitrarily complex data sharing and access patterns [21,94,101]

that hamper most efforts to build prefetching engines that attain both high accuracy and coverage.

Second, increasing the number of cores that share an on-chip L2 cache does not cause an

inordinate number of additional cache misses for commercial server workloads. In fact, these

workloads exhibit significant sharing, so the cores benefit from each other’s requests (constructive

interference). However, the extra cores do cause contention for hot blocks that can degrade perfor-

mance in spite of the lower miss rate. We expect that future CMP designs will feature specially-

designed L2 caches to reduce this pressure, allowing workloads to benefit from the effects of shar-

ing. Our proposed cache design in Chapter 3 also helps alleviate most of the cache block conten-

tion by replicating the hottest blocks across the die area.

Third, incorporating large (slow) caches on chip can have detrimental effects to the perfor-

mance of commercial server workloads. Optimized future CMP designs should incorporate caches

large enough to capture the primary L2 working set, but not larger, so they can maintain reason-

ably low hit latencies. This observation runs counter to the conventional wisdom that larger caches

32
are always a good way to use extra transistors [14]. We will investigate the trade-off between hit

rate and cache access latency through first-order analytic modeling of CMPs in Chapter 4.

Finally, the software system can be restructured to intelligently balance parallelism with

locality and work synergistically with hardware. Conventional software is optimized for outdated

hardware architectures, assuming private resources and coarse-grain OS-managed threads with no

coordination of resource usage among them. However, modern CMPs employ shared hardware

resources and facilitate fine-grain communication between software threads. To utilize efficiently

the available hardware resources, modern software systems can be restructured to split otherwise

single-threaded operations into many smaller parallel tasks, and simultaneously optimize for data

affinity to processors to minimize cross-chip data transfers. Such software architectures can

expose the data access and sharing patterns to the execution system, allowing simple hardware

techniques to eliminate the remaining on-chip data access stall times. We will discuss our current

efforts in this area when we present future work in Chapter 6.

2.6 Summary

High levels of integration have enabled the advent of chip multiprocessors and increasingly

large (and slow) on-chip caches. These trends of increasing core counts and larger on-chip caches

pose new performance challenges to the architecture and software communities. In this study we

present a performance characterization of a commercial database servers in a number of represen-

tative chip multiprocessor technologies. Our results indicate that on-chip cache accesses are the

new performance bottleneck, with L2 hit stalls rising from oblivion to become the dominant single

execution time component. Future processors must employ novel cache architectures that keep

access latency and block contention at bay without sacrificing capacity. At the same time, software

33 CHAPTER 2. PERFORMANCE ANALYSIS OF CMPS
systems and not ready for such dramatic shifts in hardware design and must be restructured to uti-

lize efficiently the new hardware.

In the next chapter, we introduce Reactive NUCA, our proposal for a novel distributed

cache architecture that allows for fast access and low contention for hot cache blocks by placing

blocks on chip close to the cores that access them. Later, in Chapter 6, we present our on-going

work on novel software architectures that enhance parallelism and locality, and show promise in

utilizing efficiently the hardware resources of modern multicore processors.

34

Chapter 3

Reactive NUCA

The exponential increase in the number of cores on chip results in a commensurate increase

in the on-chip cache size required to supply all these cores with data and the on-chip interconnect

that facilitates cross-chip data transfers. At the same time, physical and manufacturing consider-

ations suggest that future processors will be tiled: the last-level on-chip cache will be decomposed

into smaller slices, and groups of processor cores and cache slices will be physically distributed

throughout the die area [8,107].

Tiled architectures result in varying access latencies between the cores and the cache slices

spread across the die, as the latency of a cache hit depends on the physical distance between the

requesting core and the location of the cached data. Although increasing device switching speeds

results in faster cache-bank access times, communication delay remains constant across technolo-

gies [20], and access latency of far away cache slices becomes dominated by wire delays and on-

chip communication [60]. Thus, tiled architectures naturally lead to a Non-Uniform Cache Access

(NUCA) [60] organization of the LLC.

From an access-latency perspective, an LLC organization where each core treats a nearby

LLC slice as a private cache is desirable. Although a private organization results in fast local hits,

it requires area-intensive, slow and complex mechanisms to guarantee the coherence of shared

data, which are prevalent in many multicore workloads [11,41]. At the same time, the growing
35

36
application working sets render private caching designs impractical due to the inefficient use of

cache capacity, as cache blocks are independently replicated in each private cache slice.

At the other extreme, a shared organization where blocks are statically address-interleaved

in the aggregate cache offers maximum capacity by ensuring that no two cache frames are used to

store the same block. Because static interleaving defines a single, fixed location for each block, a

shared LLC does not require a coherence mechanism, enabling a simple design and allowing for

larger aggregate cache capacity. However, static interleaving results in a random distribution of

cache blocks across the LLC slices, leading to frequent accesses to distant cache slices and high

average access latency.

An ideal LLC enables the fast access of the private organization and the design simplicity

and large capacity of the shared organization. Recent research advocates hybrid and adaptive

mechanisms to bridge the gap between the private and shared organizations. However, prior pro-

posals require complex, area-intensive, and high-latency lookup and coherence mechanisms

[12,19,23,107], waste cache capacity [12,107], do not scale to high core counts [19,39], or opti-

mize only for a subset of the cache accesses [12,19,24]. In this thesis we propose Reactive NUCA

(R-NUCA), a scalable, low-overhead, and low-complexity cache architecture that optimizes block

placement for all cache accesses, at the same time attaining the fast access of the private organiza-

tion and the large aggregate capacity of the shared organization.

R-NUCA cooperates with the operating system to classify accesses at the page granularity,

achieving negligible hardware overhead and avoiding complex heuristics that are prone to error,

oscillation, or slow convergence [12,19,23]. The placement decisions in R-NUCA guarantee that

each modifiable block is mapped to a single location in the aggregate cache, obviating the need for

complex, area- and power-intensive coherence mechanisms of prior proposals [12,19,23,107].

37 CHAPTER 3. REACTIVE NUCA
R-NUCA utilizes Rotational Interleaving, a novel lookup mechanism that matches the fast speed

of address-interleaved lookup, without pinning blocks to a single location in the cache [23,107].

Rotational interleaving allows read-only blocks to be shared by neighboring cores and replicated at

distant ones, ensuring low access latency while balancing capacity constraints.

The work presented in this chapter makes the following contributions:

• Through execution trace analysis, we show that cache accesses for instructions, private data,

and shared data exhibit distinct characteristics, leading to different replication, migration, and

placement policies.

• We leverage the characteristics of each access class to design R-NUCA, a novel, low-overhead,

low-latency mechanism for block placement in distributed caches.

• We propose rotational interleaving, a novel mechanism for fast nearest-neighbor lookup with

one cache probe, enabling replication without wasted space and without coherence overheads.

• Through full-system cycle-accurate simulation of multicore systems, we show that R-NUCA

provides performance stability across workloads. On a per-workload basis, R-NUCA either

matches the performance of competing cache designs or improves upon them by 17% on aver-

age. More specifically, R-NUCA attains a maximum speedup of 32%, and an average speedup

of 14% across all workloads over the private design (17% for server workloads) and 6% over

the shared design (17% for multi-programmed workloads and OLTP), while achieving perfor-

mance within 5% of an ideal cache design.

The rest of this chapter is organized as follows. Section 3.1 presents background on distrib-

uted caches and tiled architectures. Section 3.2 presents our classification and offers a detailed

38
empirical analysis of the cache-access patterns of server, scientific, and multi-programmed work-

loads. We describe R-NUCA in Section 3.3 and evaluate it in Section 3.4. We summarize our find-

ings in Section 3.5.

3.1 Background

3.1.1 Non-Uniform Cache Architectures

The exponential increase in the cache sizes of multicore processors (CMPs) renders uniform

access latency impractical, as capacity increases also increase access latency [41]. To mitigate the

rising access latency, recent research [60] advocates decomposing the cache into slices. Each slice

may consist of multiple banks to optimize for low access latency within the slice [13], and all

slices are physically distributed on the die. Thus, cores realize fast accesses to nearby slices and

slower accesses to physically distant ones.

Just as cache slices are distributed across the entire die, processor cores are similarly distrib-

uted. Economic, manufacturing, and physical design considerations [8,107] suggest tiled architec-

tures, with cores coupled together with cache slices in tiles that communicate via an on-chip

interconnect. Tiled architectures are attractive from a design and manufacturing perspective,

enabling developers to concentrate on the design of a single tile and then replicate it across the die

[8]. They are also economically attractive, as they can easily support families of products with

varying number of tiles and power/cooling requirements. Finally, their scalability to high core

counts make them suitable for large-scale CMPs.

39 CHAPTER 3. REACTIVE NUCA
3.1.2 Tiled Architectures

Figure 11 presents a typical tiled architecture. Multiple tiles, each comprising a processor

core, caches, and network router/switch, are replicated to fill the die area. Each tile includes pri-

vate L1 data and instruction caches and an L2 cache slice. Each L1 cache miss probes an on-chip

L2 cache slice via an on-chip network that interconnects the tiles. Depending on the L2 organiza-

tion, the L2 slice can be either a private L2 cache or a portion of a larger distributed shared L2

cache. Also depending on the cache architecture, the tile may include structures to support cache

coherence such as L1 duplicate tags [10] or sections of the L2-cache distributed directory. The tiles

are connected through an on-chip folded 2D-torus interconnect.

Private L2 organization. Each tile’s L2 slice serves as a private second-level cache for the

tile’s core. Upon an L1 miss, the L2 slice located in the same tile is probed. On a write miss in the

local L2 slice, the coherence mechanism (a network broadcast or access to an address-interleaved

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

P6 Tile
CORE

I$ D$

L2 slice

FIGURE 11: Typical tiled architecture and floorplan of folded 2D-torus.

40
distributed directory) invalidates all other on-chip copies. On a read miss, the coherence mecha-

nism either confirms that a copy of the block is not present on chip, or it obtains the data from an

existing copy. With a directory-based coherence mechanism, a typical coherence request is per-

formed in three network traversals. A similar request in token-coherence [73] requires a broadcast

followed by a response from the farthest tile.

Enforcing coherence requires large storage and complexity overheads. For example, a full-

map directory for a 16-tile CMP with 64-byte blocks, 1MB L2 slices, and 64KB split I/D L1

caches requires 288K directory entries, assuming two separate hardware structures to keep the L1

caches and the L2 slices coherent (on each request, both structures are searched in parallel). With a

42-bit physical address space, and a 16-bit sharers bit-mask and 5-bit state per block to account for

intermediate states, the directory size per tile is 1.2MB, exceeding the L2 capacity. Thus, full-map

directories are impractical for the private L2 organization. Limited-directory mechanisms are

smaller, but may require complex, slow, or non-scalable fall-back mechanisms such as full-chip

broadcast. In this work, we optimistically assume a private L2 organization where each tile has a

full-map directory with zero area overhead.

Shared L2 organization. Cache blocks are address-interleaved among the slices, which

service requests from any tile through the interconnect. On an L1 cache miss, the miss address dic-

tates the slice responsible for caching the block, and a request is sent directly to that slice. The tar-

get slice stores both the block and its coherence state. Because each block has a fixed, unique

location in the aggregate L2 cache, the coherence state must cover only the L1 cache tags; follow-

ing the example above, a full-map directory for a shared L2 organization requires only 152KB per

tile.

41 CHAPTER 3. REACTIVE NUCA
3.1.3 Requirements for Intelligent Block Placement

A distributed cache presents a range of latencies to each core, from fast access to nearby

slices, to several times slower access to slices on the opposite side of the die. Intelligent cache

block placement can improve performance by placing blocks close to the requesting cores, allow-

ing fast access.

We identify three key requirements for intelligent block placement in distributed caches.

First, the block address must be decoupled from its physical location, allowing to store the block at

a location independent of its address [22]. Decoupling the physical location from the block address

complicates lookup on each access. Thus, the second requirement for intelligent block placement

is a lookup mechanism capable of quickly and efficiently locating the cached block. Finally, intel-

ligent block placement must optimize for all accesses prevalent in the workload. A placement pol-

icy may benefit some access classes while penalizing others [108]. To achieve high performance,

an intelligent placement algorithm must react appropriately to each access class.

3.2 Characterization of L2 References

3.2.1 Methodology

We analyze the cache access patterns using trace-based and cycle-accurate full-system sim-

ulation in FLEXUS [42, 103] of a tiled CMP executing unmodified applications and operating sys-

tems. FLEXUS extends the Virtutech Simics functional simulator with timing models of processing

tiles with out-of-order cores, NUCA cache, on-chip protocol controllers, and on-chip interconnect.

We simulate a tiled CMP similar to Section 3.1.2, where the LLC is the L2 cache.

42
We run server and scientific workloads on CMPs optimized for high core counts [30], so we

run these workloads on a 16-core CMP with 1MB L2 cache per core. Similar to [19], we believe

that multi-programmed desktop workloads are likely to run on CMPs with fewer cores that leave

enough die area for a larger on-chip cache, required to store the larger private working sets of each

software process. Thus, we run our multi-programmed mix on an 8-core tiled CMP with 3MB L2

cache per core. To estimate the L2 cache size for each configuration, we assume a die size of

180mm2 in 45nm technology and calculate component sizes following ITRS guidelines [87]. We

account for the area of the system-on-chip components, allocating 65% of the die area to the tiles

[30]. We estimate the area of the cores by scaling a micrograph of the Sun UltraSPARC II proces-

sor. We summarize our tiled architecture parameters in Table 2.

We simulate systems running the Solaris 8 operating system and executing the workloads

listed in Table 3. We include a wide range of server workloads: online transaction processing

(TPC-C on IBM DB2 v8 ESE and Oracle 10g), decision support systems (TPC-H queries 6,8, and

13 on IBM DB2 v8 ESE), and a web server workload (SPECweb running on Apache HTTP Server

CMP Size 16-core for server and scientific workloads
8-core for multi-programmed workloads

Processing Cores UltraSPARC III ISA; 2GHz, OoO cores
8-stage pipeline, 4-wide dispatch/retirement

96-entry ROB and LSQ, 32-entry store buffer

L1 Caches split I/D, 64KB 2-way, 2-cycle load-to-use, 3 ports
64-byte blocks, 32 MSHRs, 16-entry victim cache

L2 NUCA Cache 16-core CMP: 1MB per core, 16-way, 14-cycle hit
8-core CMP: 3MB per core, 12-way, 25-cycle hit

64-byte blocks, 32 MSHRs, 16-entry victim cache

Main Memory 3 GB memory, 8KB pages, 45 ns access latency

Memory Controllers one per 4 cores, round-robin page interleaving

Interconnect 2D folded torus (4x4 for 16-core, 4x2 for 8-core)
32-byte links, 1-cycle link latency, 2-cycle router

Table 2: System parameters for the 8-core and 16-core CMPs.

43 CHAPTER 3. REACTIVE NUCA
v2.0). For the TPC-C and TPC-H workloads we follow the scaling rules of the TPC specifications.

We include a multiprogrammed workload (MIX), consisting of SPEC CPU2000 applications with

one application per core. Finally, even though we tailor the design of R-NUCA to server work-

loads, we include a scientific application (em3d, which models electromagnetic wave propagation

through 3D-space) as a frame of reference.

With one exception, we focus our study on the workloads described in Table 3. To show the

wide applicability of our L2 reference clustering observations, Figure 12 includes statistics gath-

ered using a larger number of server workloads (TPC-C on DB2 and Oracle, TPC-H queries 6, 8,

11, 13, 16, and 20 on DB2, SPECweb on Apache and Zeus), scientific workloads (em3d, moldyn,

ocean, sparse), and the multi-programmed workload from Table 3.

3.2.2 Categorization of Cache Accesses

We analyze the L2 accesses at the granularity of cache blocks along two axes: the number of

cores sharing an L2 block and the percentage of blocks with at least one write request during the

OLTP – Online Transaction Processing (TPC-C v3.0)

DB2 IBM DB2 v8 ESE,
100 warehouses (10 GB), 64 clients, 2 GB buffer pool

Oracle
Oracle 10g Enterprise Database Server

100 warehouses (10 GB), 16 clients, 1.4 GB SGA

Web Server (SPECweb99)

Apache
Apache HTTP Server v2.0.

16K connections, fastCGI, worker threading model

DSS – Decision Support Systems (TPC-H)

Qry 6, 8, 13 IBM DB2 v8 ESE, 480 MB buffer pool, 1GB database

Scientific

em3d 768K nodes, degree 2, span 5, 15% remote

Multi-programmed (SPEC CPU2000)

MIX 2 copies from each of gcc, twolf, mcf, art; reference inputs

Table 3: Workload parameters for R-NUCA evaluation.

44
workload’s execution (read-write blocks). Each bubble in Figure 12 represents blocks with the

same number of sharers (1-16). For each workload, we plot two bubbles for each number of shar-

ers, one for instruction and one for data accesses. The bubble diameter is proportional to the num-

ber of L2 accesses. We indicate instruction accesses in black and data accesses in yellow (shared)

or green (private), drawing a distinction for private blocks (accessed by only one core).

-20%

0%

20%

40%

60%

80%

100%

120%

0 2 4 6 8 10 12 14 16 18 20

Number of Sharers

%
 R

ea
d

-W
ri

te
 B

lo
ck

s
in

 B
ub

b
le

Instructions Data-Private Data-Shared
I i D P i D Sh d

% L2
accesses

0

-20%

0%

20%

40%

60%

80%

100%

120%

-4 -2 0 2 4 6 8 10 12 14 16 18 20

Number of Sharers

%
 R

ea
d

-W
ri

te
 B

lo
ck

s
in

 B
u

bb
le

Instructions Data-Private Data-Shared
I i D P i D Sh d

0

0%

 % L2 accesses

(b) Scientific and Multi-Programmed Workloads

(a) Server Workloads

FIGURE 12: L2 Access Categorization and Clustering.

45 CHAPTER 3. REACTIVE NUCA
We observe that, in server workloads, L2 accesses naturally form three clusters with distinct

characteristics: (1) instructions are shared by all cores and are read-only, (2) shared data are shared

by all cores and are mostly read-write, and (3) private data exhibit a varying degree of read-write

blocks. We further observe that scientific and multi-programmed workloads access mostly private

data, with a small fraction of shared accesses in data-parallel scientific codes exhibiting producer-

consumer (two sharers) or nearest-neighbor (two to six sharers) communication. The instruction

footprints of scientific and multi-programmed workloads are effectively captured by L1-I.

The axes of Figure 12 suggest an appropriate L2 placement policy for each access class. Pri-

vate data blocks are prime candidates for allocation near the requesting tile; placement at the

requesting tile achieves the lowest possible access latency. Because private blocks are always read

or written by the same core, coherence is guaranteed without requiring a hardware mechanism.

Read-only universally-shared blocks (e.g., instructions) are prime candidates for replication across

multiple tiles; replicas allow the blocks to be placed in the physical proximity of the requesting

cores, while the blocks’ read-only nature obviates coherence. Finally, read-write blocks with many

0%

20%

40%

60%

80%

100%

OLTP
DB2

OLTP
Oracle

Apache DSS
Qry6

DSS
Qry8

DSS
Qry13

em3d MIX

T
o

ta
l L

2
A

cc
es

se
s

Instructions Data-Private Data-Shared-RW Data-Shared-RO

FIGURE 13: L2 Reference breakdown.

46
sharers (shared data) may benefit from migration or replication if the blocks exhibit reuse at the

L2. However, migration requires complex lookup and replication requires coherence enforcement,

and the low reuse of shared blocks does not justify such complex mechanisms (Section 3.2.3.3).

Instead, shared blocks benefit from intelligent block placement on chip.

Although server workloads are dominated by accesses to instructions and shared read-write

data, a significant fraction of L2 references are to private blocks (Figure 13). The scientific and

multi-programmed workloads are dominated by accesses to private data, but also exhibit some

shared data accesses. The varying importance of the cache accesses categories underscores a need

to react to the access class when placing blocks at L2, and emphasizes the opportunity loss of

addressing only a subset of the access classes.

3.2.3 Characterization of Access Classes

3.2.3.1 Private Data

Accesses to private data, such as stack space and thread-local storage, are always initiated

by the same processor core. As a result, replicating private data at multiple locations on chip only

wastes cache capacity [106]. Although some private data are read-write, having only one requestor

eliminates the need for a cache coherence mechanism for private blocks. Therefore, the only

requirement for private data is to be placed close to its requestor, ensuring low access latency1.

R-NUCA places private data in the slice close to the requesting core, ensuring minimum latency.

To evaluate whether private data fit in a single slice, Figure 14 shows the CDF of L2

accesses to private data, instructions, and shared data as a function of the footprint of each access

1. The operating system may migrate a thread from one core to another. In these cases, coherence can be enforced by the
OS by shooting down the private blocks upon a thread migration.

47 CHAPTER 3. REACTIVE NUCA
class (in log-scale). Accesses are normalized to the total L2 cache accesses for each workload. As

shown in the figure, the private-data working set for OLTP fits into a single, local L2 slice for each

core. The total size of the private data is about 3MB, but the private data are spread among 16

cores, thereby requiring only about 192KB per slice. Similarly, the primary working set for private

data for the web workload is about 6KB per slice. The secondary working set is too large to fit in

any reasonable L2 slice; however, it accounts for only 1.5% of L2 accesses, thus its impact on per-

formance is expected to be small. The private-data working set for the multi-programmed MIX

barely fits into a single cache slice, while the working set for the DSS and scientific workloads is

0%

20%

40%

60%

80%

100%

10 10
0

1,
00

0

10
,0

00

10
0,

00
0

1,
00

0,
00

0

Shared Data (KB)

T
o

ta
l L

2
 A

c
c

es
se

s
 (

C
D

F
) OLTP DB2

OLTP Oracle

Apache

DSS Qry6

DSS Qry8

DSS Qry13

em3d

MIX

0%

20%

40%

60%

80%

100%

10 10
0

1,
00

0

10
,0

00

10
0,

00
0

1,
00

0,
00

0

Private Data (KB)

T
o

ta
l L

2
 A

c
c

es
se

s
 (

C
D

F
)

0%

20%

40%

60%

80%

100%

10 10
0

1,
00

0

10
,0

00

10
0,

00
0

1,
00

0,
00

0

Instructions (KB)

T
o

ta
l L

2
 A

c
c

es
se

s
 (

C
D

F
)

FIGURE 14: L2 working set sizes for private data, instruction and shared data.

48
too big to fit. DSS workloads scan multi-gigabyte database tables and scientific workloads operate

on large data sets, both exceeding any reasonable L2 capacity.

To accommodate large private data working sets, prior proposals advocate migrating (spill-

ing) these blocks to neighbors [24]. Spilling may be applicable to multi-programmed workloads

composed of applications with a range of private-data working set sizes; however, it is inapplica-

ble to server or scientific workloads. All cores in a typical server or balanced scientific workload

run similar threads, with each L2 slice experiencing similar capacity pressure. Migrating private

data blocks to a neighboring slice is offset by the neighboring tiles undergoing an identical opera-

tion and spilling in the opposite direction. Thus, cache pressure remains the same, but requests

incur higher access latency.

3.2.3.2 Instructions

Instruction blocks are typically written once when the operating system loads an application

binary or shared library into memory. Once in memory, instruction blocks remain read-only for the

duration of execution. Figure 12 indicates that instruction blocks in server workloads are univer-

sally shared among the processor cores. All cores in server workloads typically exercise the same

instruction working set, with all cores requiring low-latency access to the instruction blocks with

equal probability. Instruction blocks are therefore amenable to replication. By caching multiple

copies of the blocks on chip, replication enables low-latency access to the instruction blocks from

multiple locations on chip.

In addition to replication, in Figure 15 (left) we examine the utility of instruction-block

migration toward a requesting core. We present the percentage of L2 accesses which constitute the

1st, 2nd, and subsequent instruction-block accesses by one core without intervening L2 accesses

for the same block by a different core. The grey and higher portions of the bars represent reuse

49 CHAPTER 3. REACTIVE NUCA
accesses that could experience a lower latency if the instruction block was migrated to the request-

ing core after the first access. The results indicate that accesses to L2 instruction blocks are finely

interleaved between participating sharers, with minimal opportunity of instruction block migra-

tion. On the contrary, migration may reduce performance, as it increases contention in the on-chip

network.

Figure 14 (right) shows that the instruction working set size for some workloads approxi-

mates the size of a single L2 slice. Indiscriminate replication of the instruction blocks at each slice

creates too many replicas and increases the capacity pressure and the off-chip miss rate. At the

same time, replicating a block in adjacent L2 slices offers virtually no latency benefit, as multiple

replicas are one network hop away from a core, while having just one copy nearby is enough.

Thus, replication should be done at a coarser granularity: R-NUCA logically divides the L2 into

clusters of neighboring slices, replicating instructions at the granularity of a cluster rather than in

individual L2 slices. While an application’s working set may not fit comfortably in an individual

0%

20%

40%

60%

80%

100%

O
LT

P
 D

B
2

O
LT

P
 O

ra
cl

e

A
p

ac
he

D
S

S
 Q

ry
6

D
S

S
 Q

ry
8

D
S

S
 Q

ry
13

em
3d

M
IX

O
LT

P
 D

B
2

O
LT

P
 O

ra
cl

e

A
pa

ch
e

D
S

S
 Q

ry
6

D
S

S
 Q

ry
8

D
S

S
 Q

ry
13

em
3d

M
IX

Instructions Shared Data

T
o

ta
l L

2
A

cc
e

ss
es

1st access 2nd access 3rd-4th access 5th-8th access 9+ access

FIGURE 15: Instruction and shared data reuse by same core.

50
L2 slice, it fits into the aggregate capacity of a cluster. Each slice participating in a cluster of size n

should store 1/n of the instruction working set. By controlling the cluster size, it is possible to

smoothly trade off instruction-block access latency for cache capacity: many small clusters pro-

vide low access latency while consuming a large fraction of the capacity of each participating

slice; a few large clusters result in higher access latency but with a small number of replicas.

For our system configurations and workloads, clusters of 4 slices are appropriate. Clusters

of size 4 ensure that instruction blocks are at most one network hop away from the requesting core

while storing only a quarter of the instruction working set at each slice.

3.2.3.3 Shared Data

Shared data comprise predominantly read-write blocks containing data and synchronization

structures. Replication or migration of shared blocks can provide low-latency access for the subse-

quent references to the same block from the local or nearby cores. However, on each write, com-

plex coherence mechanisms are necessary to invalidate the replicas or to update the migrating

blocks. Figure 15 (right) shows the number of L2 accesses to a shared data block issued by the

same core between consecutive writes by other cores. In most cases, a core accesses a block only

once or twice before a write by another core. Thus, an invalidation will occur nearly after each rep-

lication or migration opportunity, eliminating the possibility of accessing the block at its new loca-

tion in most cases, and rendering both techniques ineffective for shared data.

Not only do the access characteristics shown in Figure 15 (right) indicate a small opportu-

nity for the replication or migration of shared data, the complexity and overheads of these mecha-

nisms entirely overshadow their benefit. The replication or migration of shared data blocks at

arbitrary locations on chip require the use of directory- or broadcast-based mechanisms for lookup

and coherence enforcement, as each block is likely to have different placement requirements.

51 CHAPTER 3. REACTIVE NUCA
However, to date, there have been only few promising directions to provide fast lookup [80], while

the area and latency overheads of directory-based schemes (Section 3.1.2) discourage their use,

and broadcast-based mechanisms do not scale due to the bandwidth and power overheads of prob-

ing multiple cache slices per access. Also, replicating or migrating shared data would increase the

cache pressure and the off-chip requests due to the shared data’s large working sets

(Figure 14, middle).

Placing shared read-write data in a NUCA cache presents a challenging problem because

their coherence requirements, diverse access patterns, and large working sets render migration and

replication policies undesirable for these data. The challenge has been recognized by prior studies

in NUCA architectures. However, the problem remained largely unaddressed, with the best pro-

posals completely ignoring shared read-write blocks [12] or ignoring them once their adverse

behavior is detected [23].

Instead of relying to migration or replication, R-NUCA places the shared read-write data

close to the requestors by distributing them evenly among all participating sharers. Shared data

blocks in server workloads are universally accessed (Figure 12), with every core having the same

likelihood to be the next accessor [94]. Therefore, R-NUCA distributes shared data across all tiles

using standard address interleaving. By placing the blocks at the address-interleaved locations,

R-NUCA avoids replication. Thus, it eliminates wasted space and obviates the need for a coher-

ence mechanism by ensuring that, for each shared block, there is a unique slice to which that block

is mapped by all sharers. At the same time, R-NUCA utilizes a trivial and fast lookup mechanism,

as a block’s address uniquely determines its location. Because the access latency depends on the

network topology, accesses to statically-placed shared data benefit most from a topology that

avoids hot spots and affords best-case (average) access latency for all cores (e.g., torus).

52
Other on-chip interconnect topologies are also possible. Recently, Balfour and Dally [9]

concluded that while folded 2D-torus networks compare favorably against 2D-meshes for on-chip

interconnects, other topologies (e.g., concentrated 2D-meshes) exhibit better area-delay and

energy-delay characteristics. However, an exhaustive evaluation of on-chip interconnect topolo-

gies is beyond the scope of this thesis. Without loss of generality, we simulate CMPs employing a

folded 2D-torus interconnect, but our techniques are not restricted to a particular topology.

3.2.4 Characterization Conclusions

The diverse cache access patterns of server workloads make each access class amenable to a

different placement policy. R-NUCA is motivated by this observation, and its design is guided by

the characteristics of each class. More specifically, we find that:

• An intelligent placement policy is sufficient to achieve low cache access latency.

• L2 hardware coherence mechanisms in a tiled CMP running server workloads are unnecessary

and should be avoided.

• Private blocks should be placed in the local slice of the requesting core.

• Instruction blocks should be replicated in clusters (groups) of nearby slices.

• Shared data blocks should be placed at fixed address-interleaved cache locations.

3.3 R-NUCA Design

We base our design on a CMP with private split L1 I/D caches and a distributed shared L2

cache. The L2 cache is partitioned into slices, which are interconnected by an on-chip folded 2D-

53 CHAPTER 3. REACTIVE NUCA
torus network. We assume that cores and L2 slices are distributed on the chip in tiles, forming a

tiled architecture similar to the one described in Section 3.1.2. This assumption is not a limitation,

as the mechanisms we describe apply to alternative organizations, for example, groups of cores

assigned to a single L2 slice.

Conceptually, R-NUCA operates on overlapping clusters of one or more tiles. R-NUCA

introduces fixed-center clusters, which consist of the tiles logically surrounding a core. Each core

defines its own fixed-center cluster. For example, Figure 16 shows a tiled multicore processor

where each rectangle represents a tile with the lines surrounding some of the tiles representing

cluster boundaries. Clusters C and D in Figure 16 each consist of a center tile and the neighboring

tiles around it. Clusters can be of various power-of-2 sizes. Clusters C and D in Figure 16 are size-

4. Size-1 clusters always consist of a single tile (e.g., cluster B). In our example, size-16 clusters

comprise all tiles (e.g., cluster A). As shown in Figure 16, clusters may overlap. Data within each

cluster are interleaved among the participating L2 slices, and shared among all cores participating

in that cluster.

10 11 0100
00 01 1110
10 11 0100
00 01 1110

00
A

B C

D

10 11 0100
00 01 1110
10 11 0100
00 01 1110

00
A

B C

D
FIGURE 16: Example of R-NUCA clusters and Rotational Interleaving.

54
3.3.1 Indexing and Rotational Interleaving

R-NUCA indexes blocks within each cluster using either standard address interleaving or

rotational interleaving. In standard address interleaving, an L2 slice is selected based on the bits

immediately above the set-index bits of the accessed address. In rotational interleaving, each core

is assigned a rotational ID (RID) by the operating system. The RID is different from the conven-

tional core ID (CID) that the OS assigns to each core for process bookkeeping.

RIDs in a size-n cluster range from 0 to n-1. To assign RIDs, the OS first assigns the RID 0

to a random tile. Consecutive tiles in a row receive consecutive RIDs. Similarly, consecutive tiles

in a column are assigned RIDs that differ by log2(n) (along rows and columns, n-1 wraps around to

0). An example of RID assignment for size-4 fixed-center clusters is shown in Figure 16, where

the binary numbers in the rectangles denote each tile’s RID.

To index a block in its size-4 fixed-center cluster, the center core uses the 2 address bits

<a1, a0> immediately above the set-index bits. The core compares the bits with its own RID

<c1, c0> using a boolean function; the outcome of the comparison determines which slice caches

the accessed block. The general form of the boolean indexing function for size-n clusters with the

rotational-interleaving bits starting at offset k is:

For size-4 clusters, the 2-bit result R indicates that the block is in, to the right, above, or to

the left of the requesting tile, for binary results <0,0>, <0,1>, <1,0> and <1,1> respectively.

In the example of Figure 16, when the center core of cluster C accesses a block with address

bits <0, 1>, the core evaluates the indexing function and access the block in the slice to its left.

Similarly, when the center core of cluster D accesses the same block, the indexing function indi-

R Addr k log2 n  1– : k+  RID 1+ +  n 1– =

55 CHAPTER 3. REACTIVE NUCA
cates that the block is at the slice above. Thus, each slice stores exactly the same 1/n-th of the data

on behalf of any cluster to which it belongs.

Rotational interleaving allows clusters to replicate data without increasing the capacity pres-

sure in the cache, and at the same time enable fast nearest-neighbor communication. The imple-

mentation of rotational interleaving is trivial, requiring only that tiles have RIDs and that indexing

is performed through simple boolean logic on the tile’s RID and the block’s address. Although for

illustration purposes we limit our description here to size-4 clusters, rotational interleaving is sim-

ply generalized to clusters of any power-of-two. An in-depth discussion of rotational interleaving

can be found at Chapter 3.3.5

3.3.2 Placement

Depending on the access latency requirements, the working set, the user-specified configu-

ration, or other factors available to the OS, the system can smoothly trade off latency, capacity, and

replication degree by varying the cluster sizes. Based on the cache block’s classification presented

in Section 3.2.2, R-NUCA selects the cluster and places the block according to the appropriate

interleaving mechanism for this cluster.

In our configuration, R-NUCA utilizes only clusters of size-1, size-4 and size-16. R-NUCA

places core-private data in the size-1 cluster encompassing the core, ensuring minimal access

latency. Shared data blocks are placed in size-16 clusters which are fully overlapped by all sharers.

Instructions are allocated in the most size-appropriate fixed-center cluster (size-4 for our work-

loads), and are replicated across clusters on chip. Thus, instructions are shared by neighboring

cores and replicated at distant ones, ensuring low access latency for surrounding cores while bal-

ancing capacity constraints. Although R-NUCA forces an instruction cluster to experience an off-

56
chip miss rather than retrieving blocks from other on-chip replicas, the performance impact of

these “compulsory” misses is negligible.

3.3.3 Page Classification

R-NUCA classifies memory accesses at the time of a TLB miss. Classification is performed

at the OS-page granularity, and communicated to the processor cores using the standard TLB

mechanism. Requests from L1 instruction caches are immediately classified as instructions and a

lookup is performed on the size-4 fixed-center cluster centered at the requesting core. All other

requests are classified as data requests, and the OS is responsible for distinguishing between pri-

vate and shared data accesses.

To communicate the private or shared classification for data pages, the operating system

extends the page table entries with a two-bit state (one bit denotes the current classification while

the other bit is used for a temporary poison state, “T”), and a log(n)-bits field to record the CID of

the last core to access the page (Figure 17). Similarly, the TLB entry is extended with one bit that

denotes whether the page is classified as private or shared-data.

FIGURE 17: Page table entry and TLB extensions.

vpage ppageCIDP/S/TPage table entry:

2 bits log(n)

vpage ppageP/STLB entry:

1 bit

57 CHAPTER 3. REACTIVE NUCA
Figure 18 shows the time-line of classifying a page as private. Upon the first access to a

page (1), a core encounters a TLB miss and traps to the OS (2). The OS locates the page table entry

for the faulting page, marks is as private and the CID of the accessor is recorded (3). The accessor

receives a TLB fill with an additional Private bit set (4) and the corresponding cache block is allo-

cated at the local L2 slice (5). On any subsequent request, during the virtual-to-physical transla-

tion, the requesting core examines the Private bit and looks for the block only in its own local L2

slice.

On a subsequent TLB miss to the page, the OS compares the CID in the page table entry

with the CID of the core encountering the TLB miss. In the case of a mismatch, either the thread

accessing this page has migrated to another core and the page is still private to the thread, or the

page is shared by multiple threads and must be re-classified as shared. Because the OS is fully

aware of thread scheduling, it can precisely determine whether or not thread migration took place,

and correctly classify a page as private or shared.

If a page is actively shared, the OS must re-classify the page from private to shared.

Figure 19 shows the time-line of a page classification as shared-data. The first access to a page,

TLB Miss

OS

vpage ppageiP

core

L2
Ld A

Core i

allocate A

vpage ppagePTLB fill:

1

2

3

4

5

FIGURE 18: Time-line of private page classification.

58
e.g., by core i, causes the page to be classified as private to core i. Upon a subsequent access by

another core j (1), that core encounters a TLB miss and traps into the OS (2). The OS compares the

CID in the page table entry with the CID of the core encountering the TLB miss and discovers a

mismatch (3). Thus, it needs to re-classify the page as shared.

Upon a re-classification, the OS first sets the page to a temporary poisoned state (3). TLB

misses for this page by other cores are delayed until the poisoned state is cleared. Once the Poi-

soned bit is set, the OS shoots down the TLB entry (4) and invalidates any cache blocks belonging

to the page at the previous accessor’s tile1 (5). When the shoot-down completes, the OS classifies

the page as shared by clearing the Private bit in the page table entry (6), removes the poisoned

state, and services any pending TLB requests, including the one from core j. Because the Private

bit is cleared, any core that receives a TLB fill (7) will treat accesses to this page as shared, apply-

1. Block invalidation at the previous accessor is required to guarantee coherence when transitioning from a private to
shared classification. The invalidation can be performed by any shoot-down mechanism available to the OS, such as
scheduling a special shoot-down kernel thread at the previous accessor’s core; instructions or PAL code routines to
perform this operation already exist in many of today’s architectures.

OS

vpage ppageiP

core

L2

Core i

vpage ppagexT

TLB Miss

core

L2
Ld A

Core j

i≠j

inval A
TLBi

evict A

1
2

3

4

5
vpage ppageS

TLB fill:

vpage ppagexS6

7

core

L2

Core k

allocate A
8

FIGURE 19: Time-line of shared-data page classification.

59 CHAPTER 3. REACTIVE NUCA
ing the standard address interleaving over the size-16 cluster (entire aggregate cache) to locate the

shared block. Thus, after the TLB fill, the corresponding block is allocated at the L2 slice corre-

sponding to the address interleave of the requested address (e.g., L2 cache slice k) (8). Any subse-

quent accesses to this block will be serviced by that L2 slice.

If a page is private but the thread has migrated from one core to another, a procedure similar

to re-classification is employed. The only difference being that after the invalidation of the previ-

ous accessor, the page retains its private classification, and the CID in the page table entry is

updated to the CID of the new owner.

It is possible that pages have blocks of different categories. For example, a page may have

blocks for private data and blocks for shared data; yet, R-NUCA classifies an entire page with a

single category. Classifying pages with both private and shared data as shared-data results in cor-

rect execution, with only minor implications to performance (as we will see in Chapter 3.4.2).

Similarly, pages may hold both data and instructions. As long as cache blocks within these pages

store only a single class (i.e., within a page, some blocks store only instructions while other blocks

store only data, but no blocks store both classes) then R-NUCA classifies blocks correctly.

For convenience, we assume in this work that the operating system separates code from data

at the granularity of cache blocks. This separation allows R-NUCA to replicate instructions with-

out requiring hardware coherence mechanisms. It is important to note that this assumption is done

for convenience only and has no correctness implications. Even if the operating system did not

separate instructions from data at the cache-block granularity, classifying these blocks as shared-

data results in correct execution, with only minor implications to performance (Chapter 3.4.2).

60
3.3.4 Extensions

Although our configuration of R-NUCA utilizes only clusters of size-1, size-4 and size-16,

the techniques can be applied to clusters of different types and sizes. For example, R-NUCA can

utilize fixed-boundary clusters, which have a fixed rectangular boundary and all cores within the

rectangle share the same data. The regular shapes of these clusters make them appropriate for par-

titioning a CMP into equal-size non-overlapping partitions, which may not always be possible

with fixed-center clusters. The regular shapes come at the cost of allowing a smaller degree of

nearest-neighbor communication, as tiles in the corners of the rectangle are farther away from the

other tiles in the cluster.

The indexing policy is orthogonal to the cluster type. Indexing within a cluster can use stan-

dard address interleaving or rotational interleaving. The choice of interleaving depends on the

block replication requirements. Rotational interleaving is appropriate for replicating blocks while

balancing capacity constraints. Standard address interleaving is appropriate for disjoint clusters.

By designating a center for a cluster and communicating it to the cores via the TLB mechanism in

addition to the Private bit, both interleaving mechanisms are possible for any cluster type of any

size.

Our configuration of R-NUCA employs fixed-center clusters only for instructions; however,

alternative configurations are possible. For example, heterogeneous workloads with different pri-

vate data capacity requirements for each thread (e.g., multi-programmed workloads) may favor a

fixed-center cluster of appropriate size for private data, effectively spilling blocks to the neighbor-

ing slices to lower cache capacity pressure while retaining fast lookup.

61 CHAPTER 3. REACTIVE NUCA
3.3.5 Generalized Form of Rotational Interleaving

As discussed in Chapter 3.3.1, indexing with rotational interleaving requires that the

requesting core evaluates a simple boolean function. Conceptually, this boolean function is a com-

pound function of three boolean functions. Let Addr be the address of the block to be placed in a

size-n cluster of a tiled multicore processor, where the cache index and the block offset use the

lowest k bits of the address Addr. Then the three boolean functions are:

1.The first function IL is the interleaving function: it maps the address Addr of the block to

a destination slice RIDdest within the cluster. Typically, the IL function maps the address bits right

above the cache index to the destination RID:.

2.The next function RV is the relative-vector function: it maps the tuple

<RIDcenter, RIDdest> to a destination vector D, denoting the location of RIDdest relative to the cen-

ter of the cluster RIDcenter.

3.The third function GM is the global-mapping function: it maps the tuple <CIDcenter, D> to

the system-wide ID of the destination slice CIDdest. The slice CIDdest is the location where the

block with address Addr is placed.

The IL function is similar to the one used in traditional address-interleaving. The RV func-

tion determines which direction from the center of the cluster (i.e., from the requesting core) to

send the access request. It’s general form is

IL: Addr k n 2log 1:k–+  RIDdest

RV: RIDcenter RIDdest  D

GM: CIDcenter D  CIDdest

62
where the & operator denotes the bit-wise AND and the bar operator denotes the power-of-

2 complement. The RV function is the one that guarantees that overlapping clusters have mutually-

consistent interleavings. By construction, the outcomes D of the indexing function RV and the des-

tination slice RIDs are the same when the function is applied to clusters centered at a slice with

RID 0.

Finally, the GM function is topology-dependent. It is relatively easy to construct it for regu-

lar network topologies (e.g., in a 2D-torus with n tiles and m tiles per row, the tile below CIDa is

the tile CIDa + m, where n-1 wraps around to 0). Irregular network topologies may have more

complex functions or need to resort to lookup tables. Similarly, the GM function provides an addi-

tional degree of freedom in the mapping of the cluster to physical tiles. While a size-4 fixed-center

cluster logically consists of 4 neighboring tiles, these tiles need not necessarily map to 4 physically

neighboring ones. This freedom of mapping allows Rotational Interleaving to share blocks among

any tiles in a multicore processor, provided there is a function or lookup table to map a logical

cluster to a physical one. It is important to note that, conventional address interleaving is a special

case of rotational interleaving, where

Rotational interleaving can be generalized to any cluster of size a power of 2. The RID

assignment algorithm presented in Chapter 3.3.1 provides correct assignments when the size of the

D RV RIDcenter RIDdest   RIDdest RIDcenter 1+ +  & n 1– ==

      
 
 


















 ,

 ,

:1log:1log

:vector , slice 22

DDCIDGM

CIDRIDRIDRV

knkAddrknkAddrIL

RIDCID

DX

center

XXcenter

XX

63 CHAPTER 3. REACTIVE NUCA
cluster is less than n/2. For bigger clusters (i.e., size-n/2 and size-n) the RIDs of tiles in a column

differ by m, where m is the number of tiles in a row. Figure 20 (left) shows the RID assignments

and examples of a size-8 fixed-center clusters in a 64-tile processor, while Figure 20 (right) shows

the RID assignments and example of a size-16 fixed-center cluster in a 64-tile processor.

3.4 Evaluation

3.4.1 Methodology

For both CMP configurations, we evaluate four NUCA designs: private (P), ASR (A),

shared (S), and R-NUCA (R). The shared and private designs are described in Section 3.1.2.

ASR [12] is based on the private design and adds an adaptive mechanism that probabilistically

allocates clean shared blocks in the local L2 slice upon their eviction from L1. If ASR chooses not

to allocate a block, the block is cached at an empty cache frame in another slice, or dropped if no

empty L2 frame exists or another replica is found on chip. ASR was recently shown to outperform

all prior proposals for on-chip cache management in a CMP[12].

Although we did a best-effort implementation of ASR, our results did not match with [12].

We believe that the assumptions of our system penalize ASR, while the assumptions of [12] penal-

ize the shared and private cache designs. The relatively fast memory system (90 cycles vs. 500

1 2 43
6 7 10
3 4 65

1 320

5 6 07
2 3 54
7 0 21

5 764

5 6 07
2 3 54
7 0 21

5 764

1 2 43
6 7 10
3 4 65

1 320
1 2 43
6 7 10
3 4 65

1 320

5 6 07
2 3 54
7 0 21

5 764

5 6 07
2 3 54
7 0 21

5 764

1 2 43
6 7 10
3 4 65

1 320
12 13 1514
8 9 1110
4 5 76

1 320

0 1 32
12 13 1514
8 9 1110

5 764

12 13 1514
8 9 1110
4 5 76

1 320

0 1 32
12 13 1514
8 9 1110

5 764
12 13 1514
8 9 1110
4 5 76

1 320

0 1 32
12 13 1514
8 9 1110

5 764

12 13 1514
8 9 1110
4 5 76

1 320

0 1 32
12 13 1514
8 9 1110

5 764

FIGURE 20: RIDs and examples for size-8 and size-16 fixed-center clusters.

64
cycles in [12]) and the long-latency coherence operations due to our directory-based implementa-

tion ([12] utilizes token broadcast) leave ASR with a small opportunity for improvement. We

implemented six versions of ASR: an adaptive version following the guidelines in [12], and five

versions that statically choose to allocate an L1 victim at the local slice with probabilities 0, 0.25,

0.5, 0.75 and 1, respectively. In our results for ASR, we report, for each workload, the highest-per-

forming of these six versions.

For the private and ASR designs, we optimistically assume an on-chip full-map distributed

directory with zero area overhead. In reality, a full-map directory occupies more area than the

aggregate L2 cache, and yet-undiscovered approaches are required to maintain coherence among

the tiles with a lower overhead. Such techniques are beyond the scope of this study. Similarly, we

assume that ASR mechanisms incur no area overhead. Thus, the speedup of R-NUCA compared to

a realistic implementation of the private or ASR designs will be higher than reported in this study.

Our on-chip coherence protocol is a four-state MOSI protocol modeled after Piranha [10].

The cores perform speculative load execution and store prefetching [25,38,79]. We simulate one

memory controller per four cores, each controller co-located with one tile, assuming communica-

tion with off-chip memory through flip-chip technology. Tiles communicate through the on-chip

network. We list other relevant parameters in Table 2.

We simulate a 2D-folded torus [29] on-chip interconnection network. While prior research

typically utilizes mesh interconnects due to their simple implementation, meshes are prone to hot

spots and penalize tiles at the network edges. In contrast, torus interconnects have no edges and

treat nodes homogeneously, spreading the traffic across all links and avoiding hot spots. 2D-tori

can be built efficiently in modern VLSI by following a folded topology [98] which eliminates long

links. While a 2D-torus is not planar, each of its dimensions is planar, requiring only two metal

65 CHAPTER 3. REACTIVE NUCA
layers for the interconnect [98]. With current commercial products already featuring 11 metal lay-

ers, and favorable comparisons of tori against meshes with respect to area and power overheads

[98], we believe 2D-torus interconnects are a feasible and desirable design point.

We measure performance using the SimFlex multiprocessor sampling methodology [103].

Our samples are drawn over an interval of 10 to 30 seconds for OLTP and web server applications,

the complete query execution for DSS, one complete iteration for the scientific application, and the

first 10 billion instructions after the start of the first main-loop iteration for MIX. We launch mea-

surements from checkpoints with warmed caches, branch predictors, TLBs, on-chip directories,

and OS page tables, then warm queue and interconnect state for 100,000 cycles prior to measuring

50,000 cycles. We use the aggregate number of user instructions committed per cycle (i.e., com-

mitted user instructions summed over all cores divided by total elapsed cycles) as our performance

metric, which is proportional to overall system throughput [103].

3.4.2 Classification Accuracy

Although in Section 3.2 we analyzed the workloads at the granularity of cache blocks,

R-NUCA performs classification at page granularity. Pages may simultaneously contain blocks of

multiple classes; part of a page may contain private data, while the rest may contain shared data.

For our workloads, 6% to 26% of L2 accesses are to pages with more than one class

(Figure 21 (a)). However, the accesses issued to these pages are dominated by a single class; if a

page holds both shared and private data, accesses to shared data dominate. Classifying these pages

as shared-data effectively captures the majority of accesses. Similarly, in pages that hold both data

and instructions, accesses to instructions dominate.

66
As discussed in Chapter 3.3.3, in this work we assume that the operating system separates

code from data at the granularity of cache blocks. This separation allows R-NUCA to replicate

instructions without requiring hardware coherence mechanisms. However, it is important to note

that this assumption is done for convenience only and has no correctness implications and only

minor implications to performance. In the worst case, the white bars in Figure 21 (a) correspond to

accesses to cache blocks that store both instructions and data (as opposed to accesses to pages that

have blocks storing only instructions and blocks storing only data). Even if the operating system

did not separate instructions from data at the cache-block granularity, classifying these blocks as

shared-data would result in correct execution, at the cost of misclassifying some instructions as

shared data (which amounts to less than 6% of total L2 accesses).

Overall, we find that the classification at page granularity results in the misclassification of

less than 0.75% of L2 accesses (Figure 21 (b)).

0%

20%

40%

60%

80%

100%

O
LT

P
 D

B
2

O
LT

P
 O

ra
cl

e

A
pa

ch
e

D
S

S
 Q

ry
6

D
S

S
 Q

ry
8

D
S

S
 Q

ry
13

em
3d

M
IXT

o
ta

l L
2

 A
cc

es
se

s

One Class Instructions+Data Private+Shared Data

0%

20%

40%

60%

80%

100%

O
LT

P
 D

B
2

O
LT

P
 O

ra
cl

e

A
pa

ch
e

D
S

S
 Q

ry
6

D
S

S
 Q

ry
8

D
S

S
 Q

ry
13

em
3d

M
IXT

o
ta

l L
2

A
c

ce
ss

es

Private Data as Shared Correct

(b) Access misclassifications.

FIGURE 21: Page-grain access types and misclassifications.

(a) Access breakdown by block types per page.

67 CHAPTER 3. REACTIVE NUCA
3.4.3 Impact of R-NUCA Mechanisms

Because different workloads favor a different cache organization, we split our workloads

into two categories: private-averse and shared-averse, based on which design has a higher cycles-

per-instruction (CPI). The private design may perform poorly if it increases the number of off-chip

accesses, or if there is a large number of L1-to-L1 or L2 coherence requests. Such requests occur if

a core misses in its private L1 and L2 slice, and the data are transferred from a remote L1 (L1-to-

L1 transfer) or a remote L2 (L2 coherence transfer). The private and ASR designs penalize such

requests, because each request accesses first the on-chip distributed directory, which forwards the

request to the remote tile, which then probes its L2 slice and (if needed) its L1 and replies with the

data. Thus, such requests incur additional network traversals and accesses to L2 slices. Similarly,

the shared design may perform poorly if there are many accesses to private data or instructions,

0

0.2

0.4

0.6

0.8

1

1.2

P A S R P A S R P A S R P A S R P A S R P A S R P A S R P A S R

OLTP
DB2

Apache DSS
Qry6

DSS
Qry8

DSS
Qry13

em3d OLTP
Oracle

MIX

Private-averse workloads Shared-averse
workloads

N
o

rm
al

iz
ed

 C
P

I

Busy L1-to-L1 L2 Off chip Other Re-classification

FIGURE 22: Total CPI breakdown for L2 designs. The CPI is normalized to the
total CPI of the private design.

68
which the shared design spreads across the entire chip, while the private design services through

the local and fast L2 slice.

Figure 22 shows the CPI (normalized to the private design) due to useful computation

(busy), L1-to-L1 transfers, L2 loads and instruction fetches (L2), off-chip requests, other delays

(e.g., front-end stalls), and the CPI overhead due to R-NUCA page re-classifications. Load latency

is affected the most by high on-chip data access latency because commercial server workloads

have tight dependencies resulting in cores stalling for data to arrive. While load latency is exposed

to the application, store latency may also get exposed when store buffers become full and process-

ing cores stall waiting for the store buffer to drain. However, recent proposals for store-wait-free

architectures promise to minimize the store latency [18,100]. Thus, we account for store latency in

the other category.

Figure 22 confirms that the re-classification overhead of R-NUCA is negligible. Page re-

classifications happen only once per shared page, and at steady state amount to less than 0.4% of

the total CPI for each workload. Overall, R-NUCA outperforms the competing designs, lowering

the L2 hit latency exhibited by the shared design, and eliminating the long-latency coherence oper-

ations of the private and ASR designs, while at the same time approximating the low off-chip miss

rate of the shared organization.

69 CHAPTER 3. REACTIVE NUCA
Impact of L2 coherence elimination. Figure 23 shows the portion of the total CPI due to

accesses to shared data, which may engage the coherence mechanism. Shared data in R-NUCA

and in the shared design are interleaved across all L2 slices, with both designs having equal

latency. The private and ASR designs replicate blocks, alternating between servicing requests from

the local slice (L2 shared load) or a remote slice (L2 shared load coherence). Although local L2

slice accesses are fast, remote accesses engage the on-chip coherence mechanism, requiring an

additional network traversal and two additional tile accesses compared to the shared or R-NUCA

designs. Thus, the benefits of fast local reuse for shared data under the private and ASR designs

are quickly outweighed by long-latency coherence operations. On average, eliminating L2 coher-

ence requests in R-NUCA results in 18% lower CPI contribution of accesses to shared data. Simi-

larly, the private and ASR designs require accessing both local and remote L2 slices to complete

an L1-to-L1 transfer, whereas the shared and R-NUCA designs use only one access to an L2 slice

0

0.1

0.2

0.3

0.4

P A S R P A S R P A S R P A S R P A S R P A S R P A S R P A S R

OLTP
DB2

Apache DSS
Qry6

DSS
Qry8

DSS
Qry13

em3d OLTP
Oracle

MIX

Private-averse workloads Shared-averse
workloads

N
o

rm
al

iz
ed

 C
P

I

L1-to-L1

L2 shared load coherence

L2 shared load

FIGURE 23: CPI breakdown of L1-to-L1 and L2 load accesses. The CPI is
normalized to the total CPI of the private design.

70
before requests are sent to an L1. By eliminating the additional remote L2 slice access, R-NUCA

lowers the latency for L1-to-L1 transfers by 27% on average. Overall, eliminating coherence

requirements at L2 lowers the CPI due to shared data accesses by 22% on average compared to the

private and ASR designs.

Impact of local allocation of private data. Similar to the private and ASR designs,

R-NUCA allocates private data at the local L2 slice for fast access, while the shared design

increases latency by distributing private data across all L2 slices. Figure 24 shows the impact of

allocating the private data locally. R-NUCA reduces the access latency of private data by 42%

compared to the shared design, matching the performance of the private organization.

To accommodate large private data working sets, prior proposals advocate migrating (spill-

ing) these blocks to neighbors [24]. Spilling may be applicable to multi-programmed workloads

composed of applications with a range of private-data working set sizes. Figure 25 shows the per-

0

0.1

0.2

0.3

0.4

P A S R P A S R P A S R P A S R P A S R P A S R P A S R P A S R

OLTP
DB2

Apache DSS
Qry6

DSS
Qry8

DSS
Qry13

em3d OLTP
Oracle

MIX

Private-averse workloads Shared-averse
workloads

N
o

rm
al

iz
ed

 C
P

I
0.56

FIGURE 24: CPI contribution of L2 accesses to private data. The CPI is
normalized to the total CPI of the private design.

71 CHAPTER 3. REACTIVE NUCA
core miss rates of the scientific and multiprogrammed workloads in our suite when running on a

CMP with private L2 organization. Scientific workloads typically exhibit high miss rates as they

run large models requiring vast amounts of memory. Yet, the miss rate is uniform across cores, as

typically the dataset is blocked and distributed among the cores, with each core exerting the same

pressure on its local L2 cache slice. Similarly, spilling provides little advantage to server work-

loads. All cores in a typical server workload run similar threads, with each L2 slice experiencing

similar capacity pressure (Figure 26). Migrating private blocks to a neighboring slice is offset by

the neighboring tiles undergoing an identical operation and spilling in the opposite direction. Thus,

cache pressure remains the same, but requests incur higher access latency.

On the other hand, multiprogrammed workloads run disjoint processes on each core, each

with varying capacity requirements. Thus, L2 slices often exhibit significantly higher miss rate

than neighboring ones (e.g., the SPEC CPU2000 mcf application running on cores 2 and 3 in

Figure 25, right). Such workloads could benefit from spilling to neighboring slices. While in this

work we do not investigate private-data spilling, it is easy to extend R-NUCA to utilize rotational

interleaving to spill private data to neighboring slices when it provides a performance advantage.

C0

C4

C12

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

C
0

C
1

C
2

C
3

MIX
95-100
90-95
85-90
80-85
75-80
70-75
65-70
60-65
55-60
50-55
45-50
40-45
35-40
30-35
25-30
20-25
15-20
10-15
5-10
0-5

C0

C4

C12

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

C
0

C
1

C
2

C
3

em3d
95-100
90-95
85-90
80-85
75-80
70-75
65-70
60-65
55-60
50-55
45-50
40-45
35-40
30-35
25-30
20-25
15-20
10-15
5-10
0-5

FIGURE 25: Per-core miss rates for scientific and multiprogrammed workloads.

72
C0

C4

C12

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

C
0

C
1

C
2

C
3

Apache
95-100
90-95
85-90
80-85
75-80
70-75
65-70
60-65
55-60
50-55
45-50
40-45
35-40
30-35
25-30
20-25
15-20
10-15
5-10
0-5

C0

C4

C12

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

C
0

C
1

C
2

C
3

DSS Q8
95-100
90-95
85-90
80-85
75-80
70-75
65-70
60-65
55-60
50-55
45-50
40-45
35-40
30-35
25-30
20-25
15-20
10-15
5-10
0-5

C0

C4

C12

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

C
0

C
1

C
2

C
3

DSS Q6
95-100
90-95
85-90
80-85
75-80
70-75
65-70
60-65
55-60
50-55
45-50
40-45
35-40
30-35
25-30
20-25
15-20
10-15
5-10
0-5

C0

C4

C12

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

C
0

C
1

C
2

C
3

OLTP Oracle
95-100
90-95
85-90
80-85
75-80
70-75
65-70
60-65
55-60
50-55
45-50
40-45
35-40
30-35
25-30
20-25
15-20
10-15
5-10
0-5

C0

C4

C12

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

C
0

C
1

C
2

C
3

DSS Q13
95-100
90-95
85-90
80-85
75-80
70-75
65-70
60-65
55-60
50-55
45-50
40-45
35-40
30-35
25-30
20-25
15-20
10-15
5-10
0-5

C0

C4

C12

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

C
0

C
1

C
2

C
3

OLTP DB2
95-100
90-95
85-90
80-85
75-80
70-75
65-70
60-65
55-60
50-55
45-50
40-45
35-40
30-35
25-30
20-25
15-20
10-15
5-10
0-5

FIGURE 26: Per-core miss rates for server workloads.

73 CHAPTER 3. REACTIVE NUCA
Impact of instruction clustering. R-NUCA’s clustered replication distributes instructions

among neighboring slices. Replication ensures that instruction blocks are only one hop away from

the requestor, and rotational interleaving ensures fast lookup that matches the speed of a local L2

access. In contrast, the shared design spreads instruction blocks across the entire die area, requir-

ing significantly more cycles for each instruction L2 request (Figure 27). As a result, R-NUCA

obtains instruction blocks from L2 on average 40% faster than the shared design. In OLTP-Oracle

and Apache, R-NUCA even outperforms the private design by 20%, as the latter accesses remote

tiles to fill some requests.

While the private design enables fast instruction L2 accesses, the excessive replication of

instruction blocks causes evictions and an increase in off-chip misses. Figure 28 compares the per-

formance of instruction clusters of various sizes. We find that storing instructions only in the local

L2 slice (size-1) increases the off-chip CPI component by 62% on average over a size-4 cluster,

0

0.1

0.2

0.3

0.4

P A S R P A S R P A S R P A S R P A S R P A S R P A S R P A S R

OLTP
DB2

Apache DSS
Qry6

DSS
Qry8

DSS
Qry13

em3d OLTP
Oracle

MIX

Private-averse workloads Shared-averse
workloads

N
o

rm
al

iz
ed

 C
P

I

FIGURE 27: CPI contribution of L2 instruction accesses. The CPI is normalized to
the total CPI of the private design.

74
resulting in reduced performance. At the same time, clusters larger than size-4 spread instruction

blocks to a larger area, increasing instruction access latency by 34% to 69% for size-8 and size-16

clusters respectively. We find that, for our workloads and system configurations, size-4 clusters

offer the best balance between L2 hit latency and off-chip misses.

3.4.4 Performance Improvement

R-NUCA lowers the CPI contribution of L2 hits by 18% on average compared to the private

design, and by 22% on average compared to the shared design. At the same time, like the shared

design, R-NUCA is effective at maintaining the large aggregate capacity of the distributed L2. The

CPI due to off-chip misses for R-NUCA is on average within 17% of the shared design’s for server

workloads, while the private design increases the off-chip CPI by 72%. Thus, R-NUCA delivers

both the fast local access of the private design and the large effective cache capacity of the shared

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816

OLTP
DB2

Apache DSS
Qry6

DSS
Qry8

DSS
Qry13

em3d OLTP
Oracle

MIX

Private-averse workloads Shared-averse
workloads

N
o

rm
al

iz
ed

 C
P

I
Busy PeerL1 L2 Off chip Other Purge

FIGURE 28: CPI breakdown of instruction clusters with various sizes. The CPI is
normalized to size-1 clusters.

75 CHAPTER 3. REACTIVE NUCA
design, bridging the gap between the two. R-NUCA attains an average speedup of 14% over the

private and 6% over the shared organizations, and a maximum speedup of 32%. Figure 29 shows

the corresponding speedups, along with the 95% confidence intervals produced by our sampling

methodology. The performance difference between the shared design and R-NUCA for em3d

stems from the higher off-chip miss rate of R-NUCA for this workload. While R-NUCA compares

favorably against the private design because it eliminates L2 coherence for shared data and

achieves lower off-chip miss rate, its miss rate is still higher than the shared design’s.

In Figure 29, we also show an Ideal design (I) that offers to each core the capacity of the

aggregate L2 cache at the access latency of the local slice. The ideal design assumes a shared orga-

nization with direct on-chip network links from every core to every L2 slice, where each slice is

heavily multi-banked to eliminate contention. We find that R-NUCA achieves near-optimal block

placement, as its performance is within 5% of the ideal design (Figure 30).

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

PASR I PASR I PASR I PASR I PASR I PASR I PASR I PASR I

OLTP
DB2

Apache DSS
Qry6

DSS
Qry8

DSS
Qry13

em3d OLTP
Oracle

MIX

Private-averse workloads Shared-averse
workloads

S
p

ee
d

u
p

FIGURE 29: Performance Improvement of R-NUCA. Speedup is normalized to the
private design.

76
3.4.5 Impact of Technology

As Moore’s Law continues and the number of cores on chip continue to grow, the on-chip

interconnect and the aggregate cache will grow commensurately. This will make the shared design

even less attractive, as cache blocks will be spread over an ever increasing number of tiles. At the

same time, the coherence demands of the private and private-based designs will grow with the size

of the aggregate cache, increasing the area and latency overhead for accesses to shared data.

R-NUCA eliminates coherence among the L2 slices, avoiding the private design’s overheads,

while still exhibiting fast L2 access times. Moreover, by allowing for the local and nearest-neigh-

bor allocation of blocks, R-NUCA will continue to provide an ever-increasing performance benefit

over the shared design. Finally, we believe that the generality of R-NUCA’s clustered organiza-

tions will allow for the seamless decomposition of a large-scale multicore processor into virtual

-40%

-30%

-20%

-10%

0%

10%

PASR I PASR I PASR I PASR I PASR I PASR I PASR I PASR I

OLTP
DB2

Apache DSS
Qry6

DSS
Qry8

DSS
Qry13

em3d OLTP
Oracle

MIX

Private-averse workloads Shared-averse
workloads

S
p

ee
d

u
p

 o
ve

r
Id

ea
l

FIGURE 30: Performance of R-NUCA relative to Ideal.

77 CHAPTER 3. REACTIVE NUCA
domains, each one with its own subset of the cache, where each domain will experience fast and

trivial cache lookup through rotational interleaving with minimal hardware and operating system

involvement.

3.5 Summary

Wire delays are becoming the dominant component of on-chip communication; meanwhile,

the increasing device density is driving a rise in on-chip core count and cache capacity, both fac-

tors that rely on fast on-chip communication. Although distributed caches permit low-latency

accesses by cores to nearby cache slices, the performance benefits depend on the logical organiza-

tion of the distributed LLC. Private organizations offer fast local access at the cost of substantially

lower effective cache capacity, while address-interleaved shared organizations offer large capacity

at the cost of higher access latency. Prior research proposes hybrid designs that strike a balance

between latency and capacity, but fail to optimize for all accesses, or rely on complex, area-inten-

sive, and high-latency lookup and coherence mechanisms.

In this work, we observe that accesses can be classified into distinct classes, where each

class is amenable to a different block placement policy. Based on this observation, we propose

R-NUCA, a novel cache design that optimizes the placement of each access class. By utilizing

novel rotational interleaving mechanisms and cluster organizations, R-NUCA offers fast local

access while maintaining high aggregate capacity, and simplifies the design of the multicore pro-

cessor by obviating the need for coherence at the LLC. With minimal software and hardware over-

heads, R-NUCA improves performance by 14% on average, and by 32% at best, while achieving

performance within 5% of an ideal cache design.

78
While it is imperative that future multicore processors optimize for on-chip data access

latency, it is important that we optimize future multicore processors with all constraints in mind, in

addition to performance. The abundance of hardware resources comes not only at the cost of

increased on-chip data access latencies, but also increased power consumption and off-chip band-

width requirements. To achieve optimal performance at a given power envelope, it is important to

consider all design parameters. With a promising distributed cache design on hand, we embark on

exploring the design parameters of physically-constrained multicore processors in the following

chapter.

Chapter 4

Optimal CMPs Across Technologies

As Moore’s Law continues and the number of transistors on chip rises exponentially, there

is enough die real estate to fabricate large-scale CMPs with potentially hundreds of cores. Such

CMPs are able to execute several billions of instructions per second under ideal conditions. Unfor-

tunately, this massive processing capability is throttled by the latency gap between the memory

subsystem and the processor, and for many commercial server applications, only a fraction of the

peak performance can be achieved [2,11,30,41]. Judiciously growing the on-chip cache allows for

more data to be serviced from the faster cache rather than the slower main memory, but cache and

cores compete for die area. At the same time, power and thermal considerations limit the number

of cores that can run concurrently, while leakage current limits the amount of cache that can be

employed. While scaling the supply voltage allows for lower overall power consumption, it does

so only at the expense of performance. Concurrently, bandwidth constraints impede the ability to

feed all cores with data, raising yet another wall that computer architects must consider [82].

Without careful balancing of all constraints and design parameters, the end result is multi-

core designs that do not reach their full potential. To reach the required performance levels they

dissipate too much power, raising their cost of ownership and operation, especially for large data

centers. Enterprise IT is already in shock from the astronomically high budgets required to build,

cool and operate warehouse-sized “computers”. The high barrier of entry pushes many smaller
79

80
businesses to off-load their computational demands to the cloud, simply transferring their IT prob-

lem to the cloud provider. Inefficiencies in the datacenter’s power infrastructure, along with ineffi-

cient computation, are pushing current data centers to an “economic meltdown” [15]. While the

datacenter infrastructure is responsible for almost half of the energy expended, servers are respon-

sible for the other half, with processors and memories occupying the largest slice (37%) [34].

Thus, maximizing the overall performance of the processor for a given power budget may hold

promise in alleviating some of the energy burden of modern warehouse-style computing.

Parameters such as the supply voltage, clock frequency, core count, cache size, and the

workload’s stress of the memory hierarchy affect the performance and viability of a chip design in

non-linear ways. Thus, it is important to optimize jointly all the parameters of a CMP design.

However, complexity and run-time requirements make it impractical to rely on full-system simula-

tion for such a large-scale study. Instead, for our study we build first-order analytical models of

performance, power, area, and bandwidth of dominant components, and investigate the effects of

technology scaling on optimizing physically-constrained CMPs for commercial workloads. The

goal of this effort is not to provide absolute values on how many cores a CMP should have. Rather,

our intent is to uncover trends and devise guidelines for promising CMP designs of the future.

4.1 First-Order Analytical Modeling

4.1.1 Technology Model

We model multicore processors across four process technologies: 65nm (in large-scale com-

mercial production since 2007), 45nm (to be used by the majority of new products by 2010), 32nm

(due in 2013) and 20nm (due in 2017). For each technology process, we utilize parameters and

projections from the International Technology Roadmap for Semiconductors (ITRS) 2008 Edition

81 CHAPTER 4. OPTIMAL CMPS ACROSS TECHNOLOGIES
[7]. While the ITRS date projections may differ from the projections of other sources forecasting

technology, we follow ITRS to ensure our technology assumptions are mutually consistent.

When scaling across technologies, we follow ITRS forecasts on new device types that are

expected to replace older ones that don’t scale beyond some technology node. In agreement with

ITRS, we assume bulk planar CMOS for the 65nm and 45nm nodes, ultra-thin-body fully-depleted

MOSFETs for 32nm technology [31], and double-gate FinFETs [91] for the 20nm node. Such

devices are already under development at industrial labs and several working prototypes exist.

4.1.2 Hardware Model

4.1.2.1 Core Model

We assume that the cores are built in one of three ways: general purpose cores (GPP),

embedded cores (EMB) or ideal cores (Ideal-P). The GPP cores are similar to the cores in Sun’s

UltraSPARC chips [61,64]. We assume 4-way fine-grain multi-threaded scalar in-order cores, as

similar cores have been shown to optimize performance for commercial workloads [41,30]. How-

ever, general-purpose cores may still consume an inordinate amount of power and area as com-

pared to carefully tuned embedded processors. Thus, we also run our models on cores similar to

ARM11 MPCore [47,4], assuming that the ARM core can deliver the same performance as a sin-

gle-threaded GPP when the rest of the chip parameters are identical.

Finally, we also evaluate ideal cores (Ideal-P) that have ASIC-like properties, consuming

140x less power and delivering 7x the performance of a general purpose core [16]. This design

point provides an upper bound on what cores could achieve. The evaluation of Ideal-P cores is use-

ful for designs in the deep-nanometer regime, where CMPs could house hundreds to thousands of

cores. With so much real estate at hand, the chip may offer sets of cores that are heavily optimized

82
for different sets of functions, in addition to some amount of reconfigurable logic. An application

running on such a heterogeneous CMP could switch on only the cores that most closely match the

requirements of the work on hand, and run critical parts of the code on the reconfigurable logic, in

addition to using some general-purpose cores for the less-critical or complex/uncommon parts of

the program. Thereby, many of the cores running could exhibit near-ASIC properties.

4.1.2.2 Cache Model

Each core in our model has 64KB private split data/instruction caches that are 4-way set-

associative with 64-byte cache blocks. We assume that micro-architectural techniques hide the L1

access latency in all cases, so the L1 caches in our model simply filter data and instruction

accesses to the second-level cache. Our L1 caches are physically-tagged and write-back, and we

model a 16-entry victim buffer between L1 and L2.

All cores in our model share a second-level cache ranging in size from 1MB to 512 MB. As

caches grow in size and become slower, their optimal organization changes from monolithic

caches with a single access latency to a NUCA organization with variable access latency. A NUCA

cache is split into multiple slices [60], physically distributed across the die area and connected to

each other and to the cores through an on-chip interconnect. Prior research shows that a NUCA

organization outperforms any multi-level cache design [60], thus we assume a NUCA second-level

cache and do not evaluate deeper on-chip cache hierarchies.

We model L2 caches with 64-byte blocks and 16-way set-associativity. We optimize each

L2 cache configuration for each technology node with CACTI 6.0 [77] and use the tool’s average

access latency estimate in our models. CACTI models the access time, cycle time, area and power

characteristics of caches, and optimizes their design for a given technology and configuration.

CACTI 6.0 improves upon prior versions of the tool by introducing the ability to model large

83 CHAPTER 4. OPTIMAL CMPS ACROSS TECHNOLOGIES
NUCA caches through accurate modeling of the on-chip interconnect, and the ability to model dif-

ferent types of wires (RC-based wires with different power, delay, and area characteristics, and dif-

ferential low-swing buses). In addition to the NUCA organization and interconnect, each slice is

also independently optimized and multi-banked for performance [77, 13].

4.1.3 Area Modeling of Hardware Components

We assume a 310 mm2 die, which corresponds to the die size that high-performance proces-

sors can be economically fabricated on [7]. We model proportional-scaling for the cores and cache

area [30], allocating 72% of the die for cores and cache, while the remaining area is used by the

on-chip interconnect, memory controllers and other system-on-chip components.

We estimate the core area by scaling existing designs. For GPP cores, we scale the cores of

the Sun UltraSPARC T1 processor [64]. It is built in 90nm, with an area estimated at 13.67 mm2

per core in 65nm assuming 64KB split L1 I/D caches. For EMB cores the starting point is ARM11

MPCore, with an estimated core size of 2.48 mm2 at 65nm. Finally, we assume the size of Ideal-P

cores is similar to the EMB ones. We scale the cores across technologies by following ITRS guide-

lines on transistor size, logic and SRAM density, area efficiency, and SRAM cell area factor for

each technology. Finally, we calculate the area required for the L2 cache by calculating the area of

the tag and data arrays following ITRS projections and assuming ECC-protected caches.

R Process technology (65nm, 45nm, 32nm, or 20nm)

N Number of cores

H Type of cores (general purpose-GPP, embedded-EMB, Ideal-P)

H0 Baseline GPP processor: 4-way MT, scalar, in-order

M Size of L2 cache in MB

F Frequency of on-chip clock in GHz

A Server application running (OLTP-DB2, DSS, Apache)

Table 4: Performance Model Parameters.

84
4.1.4 Performance Modeling

Assume a multicore processor with the characteristics shown at Table 4 The processor’s

performance when running application A is given by Amdahl’s Law:

where fparallel is the fraction of the application that can be fully parallelized. We assume that 99%

of the application can be parallelized, which is reasonable for commercial server workloads. It is

important to consider Amdahl’s Law when investigating massive parallelism, as even a small

serial portion can severely limit the speedup obtained by throwing more cores at the problem. For

example, with a 99% parallelizable application, 128 cores yield a speedup of only 56, while 1024

cores achieve a speedup of only 91, which is an order of magnitude less than linear speedup!

The performance of a single core running application A can be estimated by the aggregate

number of user instructions committed per cycle (IPC), as this metric proportional to overall sys-

tem throughput [103]:.

In the equation above, CorePerfFactor(H,H0,A) represents the performance of core H rela-

tive to the performance of core H0. This factor is 1.7 for a GPP core, as a 4-way multithreaded core

 
N

Af
Af

ARHFMPerf

ARHFMNPerf

parallel
parallel

)(
)(1

),,,,,1(

)app,process,typecore,GHz,cache L2 MB ,cores (






),,(),,,,(),,,,(

:where

),,,,(

),,,,,1(

00 AHHctorCorePerfFaARHFMIPCARHFMIPC

ARHFMIPCF

cycles

nsinstructio

time

cycles
time

nsinstructio
ARHFMPerf









85 CHAPTER 4. OPTIMAL CMPS ACROSS TECHNOLOGIES
achieves speedup of 1.7 over a single-threaded one when running server workloads [41]. Based on

the relative performance of the core models outlined in Chapter 4.1.2.1, we estimate this factor to

be 1 for EMB cores, and 7 for Ideal-P cores.

Then, the IPC is simply estimated by summing the expected number of cycles an instruction

needs to execute assuming an ideal pipeline (one cycle for the execution, and some fractional

cycles to account for the probability this instruction accesses the L2 cache or main memory):

where:

The probability an instruction accesses the L2 cache (hit or miss) is proportional to the frac-

tion of load/store dynamic instructions in the application and the L1 miss rate, multiplied by the

miss rate for the L2 cache. These probabilities along with the corresponding latencies are:

The L2 access time is calculated using CACTI 6.0. The memory access time is calculated

assuming that DRAM latencies improve at a rate of 7% per year and calculate the speed of a tech-

),,,(2),,,(21

1

),,,,(0

ARFMPerInstMissCyclesLARFMerInstHitCyclesPL

ARHFMIPC






),,,2(),,2Pr(),,,(2

),,,2(),,2Pr(),,,(2

RFMmissLyclesLatencyInCAMmissLARFMPerInstMissCyclesL

RFMhitLyclesLatencyInCAMhitLARFMerInstHitCyclesPL




 

F

RFimeMemAccessTRMAccessTimeL
RFMmissLyclesLatencyInC

F

RMAccessTimeL
RFMhitLyclesLatencyInC

AMMissRateAMissRate
AdStnsBetweenLInstructio

AMmissL

AMMissRateAMissRate
AdStnsBetweenLInstructio

AMhitL

LL

LL

1
),(),(2

),,,2(

1
),(2

),,,2(

),()(
)(

1
),,2Pr(

),(1)(
)(

1
),,2Pr(

21

21










86
nology node relative to the speed of main memory in 2007. For the latter, we conservatively

assume a DRAM latency of 53ns in 2007 (65nm node), even though similar products were com-

mon in the marketplace since 2005 (e.g., PC-533 and PC-667 [26]).

For a memory access, we assume the CMP has an on-chip memory controller with a 2-cycle

latency, while the DRAM modules are located on the board about 5cm from the processor chip.

The memory access time then is given by:

With the hardware components in place, we then estimate the application-dependent com-

ponents (e.g., the application’s memory reference intensity, given by the number of instructions

between consecutive loads and stores—InstructionsBetweenLdSt(A), and the L1 and L2 cache

miss rates). InstructionsBetweenLdSt(A) is a characteristic of the application that doesn’t depend

on the CMP configuration. We measure it for each application in FLEXUS [42,103] by simulating a

16-core CMP with the configuration and application parameters shown in Table 2 and Table 3

respectively. Similarly, through the same simulation runs we measure the L1 miss rate—

MissRateL1(A).

4.1.5 Miss Rate Model and Application Dataset Evolution

To estimate the miss rate of the second-level cache (MissRateL2(A)) we rely on a combina-

tion of modeling and full-system simulations. We simulate our workloads again on FLEXUS on a

16-core CMP and measure each workload’s miss rate as a function of the L2 size, which ranges in

 

ITRS'08 toaccording process ofon introducti ofyear)(

5cm)(~ modulesmemory and CMPbetween distance physical),(

93.0)65,0()(

ns 2cycles 2 latency controllermemory chipon)(

:where

),(2)()(),(

2007)(

RRyear

memcoreDist

nmimeMemAccessTRDRAMAccess

FFMCAccess

dSignalSpeememcoreDistRDRAMAccessFMCAccessRFimeMemAccessT

Ryear












87 CHAPTER 4. OPTIMAL CMPS ACROSS TECHNOLOGIES
size from 256KB to 64MB. Then, we perform curve-fitting [110] on the simulations’ miss rate

measurements to find a function that best approximates the measured miss rates.

We evaluate a large pool of over 900 candidate functions with at most three coefficients to

control smoothness and over-fitting. The function candidates include polynomials, logarithmic

functions, exponentials, hyperbolas, x-shifted and y-shifted power laws, reciprocal functions, and

functions prominent in the scientific literature (e.g., Weibull, Steinhart-Hart), along with several

variations (e.g., adding linear growth to a function, or exponential decay). The parameters of each

function are individually fitted to provide the lowest sum of absolute values of relative errors, a

robust curve-fitting technique albeit a slow one. Then, the functions are ranked according to their

average error for each of the workloads, and the function with the lowest sum of absolute values of

relative errors across workloads is the one used in the model.

Following this procedure, we find that the function most accurately predicting a cache’s

miss rate for our workloads is an x-shifted power law, of the form:

where y is the target miss rate and x is the size of the cache in MB. The parameters for each work-

load are fitted, and are shown in Table 5, along with the average and maximum errors of the fitted

function. Figure 31 shows the agreement between the model and the experimental data on the left,

and the relative errors plot on the right for each one of our workloads.

)( xy

Table 5: Miss Rate Model Parameters.

X-Shifted Power Law: y = α (x + β) γ

α β γ mean error max error

OLTP-DB2 0.5785 0.4750 -0.589 1.3% 8.2%

DSS 0.5925 0.5154 -0.327 0.5% 6.5%

Apache 1.0081 2.1104 -0.503 1.2% 4.9%

88
FIGURE 31: Miss rate model fitting (left) and relative error plots (right).

Apache miss rate model fitting (X represents cache size, Y the miss rate).

DSS miss rate model fitting (X represents cache size, Y the miss rate).

OLTP-DB2 miss rate model fitting (X represents cache size, Y the miss rate).

89 CHAPTER 4. OPTIMAL CMPS ACROSS TECHNOLOGIES
We find that the average error of the x-shifted power law is less than 1.3% across our work-

loads, while the maximum error is 8.2%. We find that a traditional power law of the form y = αxγ

which has been used in prior studies to model miss rates [82] fails to capture accurately the miss

rate characteristics of commercial server workloads. The best fit for a traditional power law attains

average errors of 11% for Apache and 6.4% for OLTP-DB2, with maximum errors of 58% and

23.6% respectively. It is worth noting that the commonly-used rule-of-thumb that quadrupling the

cache size halves the miss rate is subsumed by the traditional power law. While the rule-of-thumb

is among the most accurate functions with one coefficient, the additional degrees of freedom

offered by the x-shifted power law allow it to more accurately capture the miss rate behavior.

To predict a workload’s miss rate, we can simply substitute x for the cache size and apply

the appropriate fitted function. However, doing so across technologies implicitly assumes that

applications do not change over time. However, applications evolve and their datasets grow at an

exponential rate. To accurately estimate the miss rate of an application across technologies that

span a decade, it is imperative that we consider the application’s dataset evolution as well.

Nathan Myhrvold observed that the Microsoft Windows operating system grows at a rate of

33% per year, and argued that software is a gas that expands to fill its container (“Myhrvold’s

Law”) [63]. We corroborate this result by measuring the dataset growth of the Transactional Pro-

cessing Council’s TPC-A, -B, -C, and -E [28] benchmarks’ datasets since 1994. These benchmarks

are frequently updated to accurately represent the computational demands of online transactional

processing and data warehousing in large-scale database management systems deployed at cus-

tomer sites. Our results indicate that these benchmarks’ datasets grow by 29.13% per year, which

approximates Myhrvold’s Law. Thereby, when estimating the miss rate of a cache we lower its

effective size by the expected growth of the application’s dataset in the considered time frame.

90
The workloads we simulate for the miss rate estimation follow the dataset scaling rules in

effect circa 2007, so this date is the starting point for the dataset evolution of our analytic model-

ing. The complete formula to calculate the L2 cache miss rate accounting for the application’s

dataset evolution by derating the effective cache size is given by:

With a complete performance model on hand, we then proceed to model the power of the

hardware designs we evaluate.

4.1.6 Power Models

The total power is given by the sum of the power of the individual components:

where Power ≤ Powermax(R) as given by ITRS for technology process R. The core power is

obtained by scaling the active power PH’ of a reference core H’ to a new technology R:

The reference cores used for power estimates are the ones used for the area modeling

(Chapter 4.1.2.1). In the equation above, Vdd,H’ and FH’ represent the supply voltage and fre-

quency of the reference core H’ in technology node RH’, while Vdd(R) is the nominal supply volt-

age of technology R. The scaling factor fVdd is used to perform voltage-frequency scaling in our

 

 2007)(

2

2913.1),(

),(

),,(















Ryear

effectiveL

RAngeDatasetCha

RAngeDatasetCha

M

MRAMMissRate








miscOIstaticnetdynamicLcores PPPPPPPower  /,2

 
  '

2
',

2

'
'

)(

)(

)(

)factor scaling re, temperatu ,GHz ,process , typecore ,cores (

HHdd

ddV

H
H

Vcores

F

F

V

RVf

RtanceGateCapaci

RtanceGateCapaci
PN

fTFRHNP

dd

dd








91 CHAPTER 4. OPTIMAL CMPS ACROSS TECHNOLOGIES
models to trade-off clock frequency for lower power. The supply voltage scales such that

2.3×Vth(R,T) ≤ fVdd×Vdd(R) ≤ Vdd(R) at a temperature of T oK [6]. The scaling factor fVdd is quan-

tized in steps of 10%. Finally, the frequency F also scales with the supply voltage, such that

F ≤ Fmax(R)×fFmax(fVdd). Frequency doesn’t scale exactly linearly with voltage, so we curve-fit

published data [17] to describe fFmax(·).

The L2 dynamic power is estimated similarly by scaling the UltraSPARC T1 cache from

published data on power breakdown [64], but it is proportional to the cache activity (access rate):

The activity factor is calculated by the relative L1 miss rates of our designs and workloads

over the reference cache design:

Similarly, the network power is activity based, and scaled over the same reference design.

The activity of the network is the same as the activity of the cache on the number of messages

injected to the network, with an additional factor reflecting the average hop count of each message

assuming a 2D-torus on-chip interconnect:

 
 

000

0 2
,

2

0

,2

)(

)(

)(
),,,(

)app ,cache MB ,factor scaling temp.,T ,GHz ,process , typecore ,cores (

CCdd

ddV

C
C

VdynamicL

F

F

V

RVf

RtanceGateCapaci

RtanceGateCapaci
CHNAtivityRelativeAcPM

AMfFRHNP

dd

dd








)(
)(

1

)(
)(

1
),,(

),,,(

0

0

10

10

0

CL
C

L

AMissRate
AenLdStInstrBetwe

N

AMissRate
AenLdStInstrBetwe

AHHctorCorePerfFaN
CHNAtivityRelativeAc






 
 

0000

0 2
,

2

0

)(

)(

)(

4

2
4

2

),,,(

)app ,factor scaling Temp., T ,GHz ,process , typecore ,cores (

NetNetdd

ddV

NetNet

Net

Vnet

F

F

V

RVf

RtanceGateCapaci

RtanceGateCapaci

N

N

NetHNAtivityRelativeAcP

AfFRHNP

dd

dd








92
The static power estimator for the cache is proportional to the size of the reference cache C0,

the ratio of the subthreshold leakage current of the target and the reference technologies for the

corresponding temperatures, and the ratio of the average transistor’s gate width. We model across

technologies an average ratio of gate length to gate width of 3 [7]:

We model only the subthreshold leakage and ignore the gate and junction leakage, as prior

research shows they have only a small contribution to the overall leakage of a cache [81]. The

leakage current is exponentially dependent on the chip’s temperature, however the ITRS projec-

tions are given for a target temperature of only 25 oC. We estimate the change in the leakage cur-

rent at a typical operating temperature of today’s CMPs (66 oC [64]) similar to [65, 49]:

Because a large part of the chip could potentially be populated by cores, it is important in

the leakage calculation to add the leakage of the cores. We calculate the leakage of the cores by

)(

)(

),(

),()(

)re temperatu factor, scaling ,process ,cache MB (

0000

0

0 ,
,

Cgate

gate

CCSD

SD

Cdd

ddV
Cstatic

C

Vstatic

RAvgWidth

RAvgWidth

TRI

TRI

V

RVf
P

M

M

TfRMP

dd

dd








 
 

ITRS'08 from)(

fitted , wheretcoefficien re temperatu voltagethreshold

)()(

electron of charge electrical constant,Boltzmann

Kelvin at voltagethermal)(

(fitted)Kelvin at t coefficien swing ldsubthresho)(

)(

)(

)(

0

000

00

o

o

)()(

)(

2

0
0

TV

kTTkk

TTkTVTV

qK

q

TK
TTV

TTn

eTTg

Tg

Tg
)(R,TI(R,T)I

th

thth

T

TVTn

TV

SDSD

T

th

 
















93 CHAPTER 4. OPTIMAL CMPS ACROSS TECHNOLOGIES
estimating the number of transistors in a core using ITRS logic transistor density projections, and

assuming that, at any given time, ½ of the bits remain the same and the corresponding transistors

do not switch and leak:

The power of the I/O subsystem is also calculated proportionally to the reference GPP core

design by calculating the relative I/O activity based on the estimated L2 miss rate the injection rate

to the L2 cache by all participating cores. Because bandwidth is a limited resource, in the worst

case the power would be the power expended when all the I/O pins are fully utilized. To account

for that, we cap the bandwidth by the maximum allowed by the technology and the I/O subsystem

we evaluate. In a conventional I/O subsystem, the memory modules are located off the die and

communication is performed through the package’s pins. The I/O power then is estimated by:

Finally, the power of the miscellaneous system-on-chip components is calculated similarly

to the active power of the core by scaling the power of the reference design across technologies.

ddVSDgateH

Vstatic

VfTRIRAvgWidthRtyistorDensiLogicTransAreaN

TfRHNP

dd

dd





),()()(5.0

)re temperatu factor, scaling ,process type,core ,cores (



































































































chipoff

chipoff

Hdd

dd

H

H
HOI

chipoff

chipoff

Hdd

dd

H

L

L

HH
HOI

OI

F

F

RHV

RHV

R

(R)

SRBW

SRBW
P

F

F

RHV

RHV

R

(R)

AHMissRate

AHMissRate

F

F

AHHctorCorePerfFaN

AHHctorCorePerfFaN
P

MIN

SAFVddRHNP

'),'(

),(

)(tanceGateCapaci

tanceGateCapaci

),max(

),max(

,

'),'(

),(

)(tanceGateCapaci

tanceGateCapaci

),'(

),(

),,'(

),,(

)subsystem I/O n,applicatio ,GHz ,Volts ,y technolog, typecore ,cores (

2
'

2

'

0
',/

2
'

2

'

'0'

0
',/

/

0

2

2

94
4.1.7 Off-Chip Bandwidth Model

We model the bandwidth a chip design requires again relative to the same reference design

that we use to estimate power, by modeling the relative off-chip activity rate. The baseline band-

width numbers are obtained through simulation of the application on the reference design. Thus,

the bandwidth of a multicore chip is given by:

4.1.8 Modeling 3D-Stacked Memory

Besides evaluating a conventional memory system, where memory is located on board close

to the processor, we evaluate CMPs where memory is placed on a 3D-die stack on top of the pro-

cessing cores and the L2 cache. We base our estimates of 3D-stacked memory on [69]. Each layer

can host 8 Gbits of memory at 45nm technology, with a worst-case power consumption of 3.7W.

We assume the 3D-die has 8 layers of memory arrays, for a total of 8GB. An additional layer is

required in the stack to host controllers and logic, for a total of 9 layers. The additional 9 layers

increase the average temperature of the chip by an estimated 6.5 0C. Thus, when we evaluate 3D-

stacked designs, we account for the effects of the increased temperature on power.

Communication between the cores/cache and the 3D-stacked memory is done through verti-

cal buses. Because each layer is only a few microns thick, and the on-chip clocks have stopped

scaling exponentially, we estimate that a vertical bus can be traversed within a single cycle. We

estimate the area for a 1Kbit vertical bus at 45nm is 0.32 mm2, and model 8 such buses in our

designs for a total of 2.56mm2 area occupancy. With a total of 8Kbits in vertical buses connecting

),'(

),(

),,'(

),,(

)napplicatio,GHz, typecore ,cores (

2

2

'0'

0
' AHMissRate

AHMissRate

F

F

AHHctorCorePerfFaN

AHHctorCorePerfFaN
BW

AFHNBW

L

L

HH
H 








95 CHAPTER 4. OPTIMAL CMPS ACROSS TECHNOLOGIES
the cores/cache to the 3D-stacked memory, and with a 1 GHz clock, the buses can deliver a stun-

ning 1TB/s of bandwidth to the memory arrays in the stack, pushing the bandwidth wall far out.

In our models, we treat the 3D-stacked memory as a large L3 cache because the memory it

houses is not enough for a full large-scale server software installation. Thus, we update our analyt-

ical models accordingly, in effect employing 2 memory subsystems: one that extends from the L2

cache to the 3D-stack, and one that extends from the 3D-die to the memory modules on board. For

the 3D-stack on chip, we assume that memory access time improves an additional 32.5% due to

more efficient communication between the cores the memory in the 3D-stack [69]. We model the

miss rate of the 3D-stack using the same x-shifted power law we employ for the L2 cache.

4.2 Peak-Performing Designs Under Physical Constraints

There is already a large gap between the area and power envelopes in modern multicore pro-

cessors, which is aggravated as process technology progresses. The “Area” curve in Figure 32

shows the core count-cache size area trade-off in a sample multicore processor with GPP cores at

20nm running our DSS workload, while the “Power” curve shows the power trade-off assuming

maximum on-chip clock frequency. While we can fit potentially hundreds of cores, we can only

power a handful of them at maximum frequency due to inordinate power requirements. This obser-

vation is typically called the power wall, which prohibits the chip from being fully populated.

In reality, however, the power wall is a power-performance trade-off. Lowering the voltage

lowers the power consumption so a design can power a few more cores and cache, as shown by the

curves between the power and area envelopes which assume lower supply voltage than the ITRS

projections. It is even possible to fully populate the chip, as shown by the intersection of the area

and 0.27V curves. However, this comes at the expense of lowering frequency and thus perfor-

96
mance. While the technology supports frequencies in excess of 10GHz, a 0.27V supply voltage

confines the chip to a mere 1GHz clock.

At the same time, pin bandwidth presents another obstacle. While transistor counts double

every three years, pin counts remain constant and their speed doubles every six years [7]. Thus,

off-chip bandwidth falls behind and severely limits multicore chips. Because the bandwidth

required by a CMP is a function of its performance, the bandwidth constraint pushes designs

towards the bottom-right corner in Figure 32, favoring designs with fewer cores but larger caches

which filter out more memory requests. For clarity, Figure 32 shows only the bandwidth limits

corresponding to 1GHz and 2.7GHz clocks for each core count-cache size configuration.

The requirements imposed by the physical constraints may run contrary to each other. While

bandwidth limitations favor larger caches, power constraints favor smaller ones that leak less. At

the same time, performance may impose conflicting requirements. More and faster cores translate

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 256 512

N
u

m
b

e
r

o
f

C
o

re
s

Cache Size (MB)

Area
1 GHz, 0.27V
2.7 GHz, 0.36V
4.4 GHz, 0.45V
5.7 GHz, 0.54V
6.9 GHz, 0.63V
8 GHz, 0.72V
9 GHz, 0.81V
Power (Max Freq.)
Bandwidth (1 GHz)
Bandwidth (2.7GHz)
Peak Performance

FIGURE 32: Core count-cache size trade-off subject to physical constraints.

97 CHAPTER 4. OPTIMAL CMPS ACROSS TECHNOLOGIES
into higher performance, but the power and bandwidth walls favor fewer and slower ones. The dis-

covery of the best design, thus, is subject to a careful balance between the conflicting requirements

imposed by the physical constraints, and the desire for higher performance of the chip.

We discover the peak-performance designs by fixing one design parameter at a time, elimi-

nating from the resulting designs the ones that are not viable because they exceed a physical con-

straint, and then selecting the highest performing design from the remaining set. The design we

select at each step is a potential candidate for the overall best design point. The overall best design

is selected after comparing all potential candidates at the end of the selection process.

The peak-performance curve in Figure 32 shows the progression of our algorithm in the

core count-cache size plot. In essence, our algorithm walks each time across the most limiting

physical constraint, while exploring the slack afforded by the other constraints to improve perfor-

mance. In the example of Figure 32, power limitations result in lowering the clock rate and voltage

initially to 1GHz / 0.27V, at which point the most limiting constraint is bandwidth. The algorithm

walks along the bandwidth limit, and when it reaches a larger 8MB cache that can support more

cores or fewer faster ones, it discovers it is better to utilize fewer but faster cores. Thus, it increases

the clock rate and jumps to the 2.7GHz bandwidth line with fewer cores.

When it reaches a large enough cache (32MB) it meets the power wall for the corresponding

voltage of 0.36V. To increase performance, it lowers the voltage back to 0.27V / 1GHz which

allows it to power 88 cores instead of the previous 32. Shortly thereafter, though, it meets the

power wall again, and from that point on the chip remains power constrained until there are no

designs left to explore. The highest performing design among all the candidates lies at the intersec-

tion of the power and bandwidth limits for 2.7GHz / 0.36V, where both constraints are balanced.

98
The performance of multicore processors with GPP cores at 20nm running our DSS work-

load is presented in Figure 33. The Area curve shows the performance of area-constrained designs

at maximum frequency assuming unlimited power and bandwidth, while the Power curve shows

the performance of power-constrained designs at maximum frequency with unlimited area and

bandwidth. The area and power constraints are combined in the Area+Power curve, which per-

forms voltage-frequency scaling (VFS) to find the highest-performing designs assuming unlimited

bandwidth. The bandwidth constraint is represented by the Bandwidth curve, which performs VFS

to find the highest-performing design subject only to bandwidth constraints. Figure 33 clearly

shows that the peak-performing designs are initially bandwidth and later power constrained, while

the best design lies at the intersection of the constraints.

It is important to note that while the Area+Power VFS curve in Figure 33 combines the area

and power constraints, the designs it represents are only power-constrained and don’t reach the

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 64 128 256 512

1
0

0
0

 x
 M

IP
S

Cache Size (MB)

Area (Max Freq.)

Power (Max Freq.)

Area+Power (VFS)

Bandwidth (VFS)

Peak Performance

FIGURE 33: Performance of physically-constrained designs.

99 CHAPTER 4. OPTIMAL CMPS ACROSS TECHNOLOGIES
area limit. Thus, the curve represents the real power wall. The power wall doesn’t mean we cannot

power the entire chip; rather, it means that power constraints impose a limit on performance.

4.3 Physically-Constrained Designs Across Technologies

To mitigate the power wall, some processors utilize high-Vth transistors for non-time-criti-

cal components to lower the leakage current. Such low-operational-power (LOP) transistors

achieve orders of magnitude lower subthreshold leakage current, while retaining 54%-68% of the

switching speed of their high-performance (HP) counterparts [7]. Caches are a prime candidate for

using LOP transistors, as their activity level is significantly lower than the cores’ and their high

density results in high aggregate leakage.

In Figure 34 and Figure 35 we explore CMPs with GPP cores that utilize (i) HP transistors

for the entire chip—left column, (ii) HP transistors for the cores and LOP for the cache—middle

column, and (iii) LOP transistors for the entire chip—right column. In the interest of brevity,

Figure 34 shows results only for OLTP across technologies; the trends are similar for the other

workloads and core technologies. The transistors we evaluate are described in more detail in [7].

Because full-HP designs are severely power-limited across technologies (Figure 34, left),

they can only power a few cores. While the chip at 20nm can fit 180 cores, HP designs can hardly

power more than 32 (Figure 35). Utilizing LOP transistors for the cache enables larger caches that

can support more cores and yield higher performance (Figure 34 and Figure 35, middle). At 20nm,

HP/LOP designs support around 64 cores, twice the HP count. But, cores leak as well because, on

average, only half of the transistors switch every cycle. At 64 cores, about 20% of the chip power

is dissipated due to leaky cores.

100
0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128 256 512

1
00

0
 x

 M
IP

S

Cache Size (MB)

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128 256 512

1
00

0
 x

 M
IP

S

Cache Size (MB)

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128 256 512

1
00

0
 x

 M
IP

S
Cache Size (MB)

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128 256 512

1
00

0
 x

 M
IP

S

Cache Size (MB)

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128 256 512
1

00
0

 x
 M

IP
S

Cache Size (MB)

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

0200400600800100012001400

1248163264128256512

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128 256 512

1
00

0
 x

 M
IP

S

Cache Size (MB)

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128 256 512

1
00

0
 x

 M
IP

S

Cache Size (MB)

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128 256 512

1
00

0
 x

 M
IP

S

Cache Size (MB)

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128 256 512

1
00

0
 x

 M
IP

S

Cache Size (MB)

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128 256 512

1
0

0
0

 x
 M

IP
S

Cache Size (MB)

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128 256 512

1
00

0
 x

 M
IP

S

Cache Size (MB)

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 128 256 512

1
0

0
0

 x
 M

IP
S

Cache Size (MB)

FIGURE 34: Performance of GPP CMPs across technologies and device types.

HP HP/LOP

65nm

45nm

32nm

20nm

LOP

101 CHAPTER 4. OPTIMAL CMPS ACROSS TECHNOLOGIES
Implementing cores with LOP transistors can eliminate core leakage, at a potential hit in

performance. However, to tame power consumption, the peak-performing designs employ on-chip

clocks at less than 43% the maximum frequency supported by the technology. While LOP transis-

tors are slower than HP ones, they still retain 54%-68% of the maximum switching speed and are

well within the realm of the optimal clock rate. As such, LOP devices can be used to implement

the (already slow) cores. Full-LOP CMPs attain similar performance as HP/LOP ones (Figure 34,

right) and can achieve a 25% higher performance per watt.

In the interest of clarity, we focus the remainder of the discussion on LOP designs. While

such designs offer high performance at lower power than their HP and HP/LOP counterparts,

power-efficient cores like the ones commonly used in embedded systems hold the potential to push

the power envelope even further.

4.3.1 Multicore Processors With milliWatt Cores

Lean cores deliver high performance when running commercial server workloads at reason-

able power consumption (e.g., Sun UltraSPARC T1 consumes 2W per core [64]). However, the

1

2

4

8

16

32

64

128

256

512

1024

2004 2007 2010 2013 2016 2019

N
u

m
b

er
 o

f C
o

re
s

Year of Technology Introduction

Area (Max Freq.)

OLTP - Peak Perf.

DSS - Peak Perf.

Apache - Peak Perf.

OLTP Power (Max Freq.)

DSS Power (Max Freq.)

Apache Power (Max Freq.)

1

2

4

8

16

32

64

128

256

512

1024

2004 2007 2010 2013 2016 2019

N
u

m
b

er
 o

f C
o

re
s

Year of Technology Introduction

Area (Max Freq.)

OLTP - Peak Perf.

DSS - Peak Perf.

Apache - Peak Perf.

OLTP Power (Max Freq.)

DSS Power (Max Freq.)

Apache Power (Max Freq.)

1

2

4

8

16

32

64

128

256

512

1024

2004 2007 2010 2013 2016 2019

N
u

m
b

er
 o

f C
o

re
s

Year of Technology Introduction

Area (Max Freq.)

OLTP - Peak Perf.

DSS - Peak Perf.

Apache - Peak Perf.

OLTP Power (Max Freq.)

DSS Power (Max Freq.)

Apache Power (Max Freq.)

HP HP/LOP LOP

FIGURE 35: Core count for peak-performance HP, HP/LOP and LOP designs.

102
embedded systems have long been dominated by milliWatt cores that deliver reasonable perfor-

mance at orders of magnitude lower power. For example, ARM1176JZ(F)-S consumes 279 mW

while packing an 8-stage, scalar, out-of-order pipeline, with dynamic branch prediction, separate

Ld/St and arithmetic pipelines, a SIMD unit, and a vector floating-point co-processor [5]. Prior

research has indicated that simple in-order cores are the cores of choice for commercial server

workloads [30,41]. These workloads typically exhibit tight data dependencies and adverse mem-

ory access and sharing patterns that hinder most microarchitectural optimizations. Thus, simple yet

efficient embedded cores also present a viable alternative for a multicore building block.

We evaluate such systems using ARM11 MPCore (Chapter 4.1.2). We find that they gener-

ally exhibit trends similar to GPP-based multicores. The peak-performing designs are initially

bandwidth-constrained, later become power-constrained, and the best design points lie at the inter-

section of the constraints (Figure 36). Both GPP and EMB designs require similar-sized caches to

support multiple cores and remain within the bandwidth envelope.

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128 256 512

1
00

0
 x

 M
IP

S

Cache Size (MB)

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128 256 512
1

00
0

 x
 M

IP
S

Cache Size (MB)

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128 256 512

1
00

0
 x

 M
IP

S

Cache Size (MB)

General Purpose (GPP) Embedded (EMB) Ideal (Ideal-P)

FIGURE 36: Performance of GPP, EMB, and Ideal-P 20nm CMPs running OLTP.

103 CHAPTER 4. OPTIMAL CMPS ACROSS TECHNOLOGIES
However, we find that to reach peak performance, EMB multicores require almost twice the

cores of their GPP counterparts (Figure 35 and Figure 37). While the additional cores deliver sig-

nificantly higher performance in today’s 65nm technology (Figure 38), at smaller technologies the

number of cores is so high that the additional cores provide only diminishing returns due to

Amdahl’s Law. As a result, while the best 20nm EMB design packs 176 cores on chip rather than

the 88 of the GPP design, it attains a mere 15% improvement in performance.

At the same time, the larger number of cores requires a large interconnect that dissipates

almost half of the chip’s power and 68% more power than the GPP-based interconnect (Figure 39).

This leads to EMB designs yielding performance per watt similar to the GPP ones, as the power

efficiency of the EMB cores is outweighed by the power consumption of the larger interconnect.

Due to the power requirements of large interconnects and the impact of Amdahl’s Law on

massive on-chip parallelism, EMB designs are expected to provide some benefit for a few technol-

ogy nodes, but only marginal benefits at smaller ones. Novel interconnects (e.g., concentrated

mesh topologies [9]) may lower the power requirements of large-scale EMB designs and make

1

2

4

8

16

32

64

128

256

512

1024

2004 2007 2010 2013 2016 2019

N
u

m
b

e
r

o
f C

o
re

s

Year of Technology Introduction

Area (Max Freq.)

OLTP - Peak Perf.

DSS - Peak Perf.

Apache - Peak Perf.

OLTP Power (Max Freq.)

DSS Power (Max Freq.)

Apache Power (Max Freq.)

1

2

4

8

16

32

64

128

256

512

1024

2004 2007 2010 2013 2016 2019

N
u

m
b

e
r

o
f C

o
re

s

Year of Technology Introduction

Area (Max Freq.)

OLTP - Peak Perf.

DSS - Peak Perf.

Apache - Peak Perf.

OLTP Power (Max Freq.)

DSS Power (Max Freq.)

Apache Power (Max Freq.)

Embedded Cores (EMB) Ideal Cores (Ideal-P)

FIGURE 37: Core count of CMPs with embedded and ideal cores.

104
them more viable, but further research and innovation is required in this field, in addition to

rethinking the software stack to extend Amdahl’s Law.

Because Amdahl’s Law prohibits large core counts from delivering high aggregate perfor-

mance (except for embarrassingly parallel applications), an alternative is to deliver higher perfor-

mance with fewer cores. This can be achieved through heterogeneous computing, where a

multicore chip may house hundreds of cores but every time power only the ones most useful to the

application. The low number of cores lowers the impact of Amdahl’s Law, while the match-mak-

ing of the cores to the application’s requirements holds the potential to provide high performance

with high power efficiency in most cases.

4.3.2 CMPs with Ideal Cores

We explore the possible returns of heterogeneous computing by evaluating multicore chips

built out of Ideal-P cores with ASIC-like properties: Ideal-P cores deliver 7x the performance of a

single-threaded GPP core at 1/140th the power. While it is questionable whether cores may ever be

1.0

2.0

4.0

8.0

16.0

32.0

2004 2007 2010 2013 2016 2019

S
p

ee
d

u
p

 o
ve

r
65

n
m

 G
P

P

Year of Technology Introduction

Ideal-P OLTP

Ideal-P DSS

Ideal-P Apache

EMB OLTP

EMB DSS

EMB Apache

GPP OLTP

GPP DSS

GPP Apache

FIGURE 38: Speedup of CMPs with embedded and ideal cores.

105 CHAPTER 4. OPTIMAL CMPS ACROSS TECHNOLOGIES
able to achieve such high returns, the inclusion of reconfigurable logic on chip and spatial comput-

ing [16] may approximate these assumptions in some cases. Thus, we consider our analysis the

first step towards a feasibility study, rather than an accurate performance estimator.

We find that the superior power and performance characteristics of Ideal-P cores pushes the

power envelope much further than possible with other core designs (Figure 36). As a result, Ideal-

P multicores attain roughly a 2x speedup over the GPP and EMB designs (Figure 38). While previ-

ous designs are ultimately power-limited, Ideal-P designs are constrained mostly by off-chip band-

width. The bandwidth limit pushes them towards designs with hundreds of megabytes of on-chip

cache, inescapably leading to cache leakage dominating the power budget.

The superior single-core performance of Ideal-P, along with the limitations imposed by

Amdahl’s Law on massive parallelism, allows even small-scale CMPs to achieve higher perfor-

mance than GPP or EMB-based designs with four times more cores. In fact, our results indicate

that while almost a thousand cores can fit in a 20nm chip, the optimal (bandwidth-limited) designs

are at 16 to 32 cores. The low core count may free a significant amount of die real estate to be used

by heterogeneous CMPs for more cores that optimize for a wider spectrum of applications.

0%

20%

40%

60%

80%

100%

G
P

P

E
M

B

Id
ea

l-
P

G
P

P

E
M

B

Id
ea

l-
P

Conventional
Memory

3D-Stacked
Memory

P
o

w
e

r

3D-Memory

Other

I/O

Network

Cache static

Core static

Cache dynamic

Core dynamic(OLTP)

FIGURE 39: Power breakdown of conventional and 3D-memory CMPs at 20nm.

106
While all designs we have looked so far are limited by bandwidth and power, the two con-

straints are not independent but are affecting each other. Bandwidth considerations result in

designs with large caches, which consume power otherwise available to add more cores or allow

for faster ones. There are recent research proposals, however, that promise to alleviate the band-

width wall.

4.3.3 CMPs with 3D-Stacked Memory

Advances in fabrication technology have resulted in techniques that enable stacking multi-

ple chip substrates on top of each other [69]. Communication between the substrates is performed

through vertical buses which can deliver terabytes per second of bandwidth [69]. While stacking

multiple processor chips may have prohibitive thermal implications, stacking memory on top of

processing cores results only in a small increase in temperature (10 oC for 9 additional layers [69])

while it offers an unprecedented bandwidth to memory arrays. The resulting 3D-stacked memory

can be used as a large “in-package” cache, that can ease the burden imposed by the cores on the

off-chip pins.

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128 256 512

1
0

00
 x

 M
IP

S

Cache Size (MB)

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128 256 512
1

0
00

 x
 M

IP
S

Cache Size (MB)

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128 256 512

1
00

0
 x

 M
IP

S

Cache Size (MB)

Ideal (Ideal-P)Embedded (EMB)General Purpose (GPP)

FIGURE 40: GPP, EMB and Ideal-P CMPs at 20nm with 3D-memory (OLTP).

107 CHAPTER 4. OPTIMAL CMPS ACROSS TECHNOLOGIES
We evaluate 3D-stacked CMP designs across technologies, assuming the stacked memory is

used as a cache. We find that 3D-stacked memory pushes the bandwidth constraint beyond the

power constraint in most cases (Figure 40). This leads to peak-performance designs that are only

power-constrained and achieve higher performance than their conventional-memory counterparts

(Figure 41 shows the speedup of each design averaged over all our workloads).

While 3D-memory delivers a relatively small performance improvement in GPP or EMB

multicore processors (less than 35%), it results in almost 2x speedup when employed on a CMP

with Ideal-P cores. By pushing the bandwidth constraint far out and lowering the memory latency

by 32.5%, caches do not need to be so large anymore. In fact, if we assume perfectly scalable

applications, caches are kept at less than 16MB for 20nm designs, while most of the chip is popu-

lated by cores. However, Amdahl’s Law results in diminishing returns from high core counts, and

as a result our peak-performance designs employ fewer cores than allowed by linear scaling, and

use the remaining area and power for cache. Caches in multicore designs with 3D-stacked memory

are typically between 15% to 23% the size of the corresponding designs with conventional mem-

ory at 20nm, which still amounts to a respectable 48-56MB for peak-performance designs.

1

2

4

8

16

32

2004 2007 2010 2013 2016 2019

A
vg

. S
p

ee
d

u
p

 o
ve

r
65

n
m

 G
P

P

Year of Technology Introduction

Ideal-P w/ 3D-Mem

Ideal-P

EMB w/ 3D-Mem

EMB

GPP w/ 3D-Mem

GPP

FIGURE 41: Speedup of CMPs with conventional and 3D-stacked memory.

108
As the addition of 3D-stacked memory alleviates the bandwidth wall for most memory

accesses, it allows for more cores on chip (about two to three times more for our designs at

20nm—Figure 42). The high core counts along with smaller caches lead to designs where the net-

work subsystem dominates the power of the chip (Figure 39) and becomes the new bottleneck.

4.4 Summary

Overall, we find that as technology moves forward, the desire for performance leads to mul-

ticore designs with a relatively large amount of cores. Yet, Amdahl’s Law and physical constraints

restrict the number of cores that can be practically employed. Utilizing faster and more efficient

ones (e.g., Ideal-P) results in the ability to provide high performance with a smaller core count,

rescuing the chip from Amdahl’s Law and delivering superior performance at lower power. At the

same time, a large area of the chip is left unused (almost half the chip at 20nm with 3D-stacked

memory) which could be used to implement customized cores and power them only when neces-

sary. As such, moving towards heterogeneous computing where only parts of the chip operate at

any time holds promise in delivering high performance at low power.

1

2

4

8

16

32

64

128

256

512

1024

2004 2007 2010 2013 2016 2019

N
u

m
b

e
r

o
f C

o
re

s

Year of Technology Introduction

1

2

4

8

16

32

64

128

256

512

1024

2004 2007 2010 2013 2016 2019

N
u

m
b

e
r

o
f C

o
re

s

Year of Technology Introduction

1

2

4

8

16

32

64

128

256

512

1024

2004 2007 2010 2013 2016 2019

N
u

m
b

e
r

o
f C

o
re

s

Year of Technology Introduction

Area (Max Freq.)

OLTP w/ 3D-Mem

DSS w/ 3D-Mem

Apache w/ 3D-Mem

OLTP Power (Max Freq.)

DSS Power (Max Freq.)

Apache Power (Max Freq.)

Ideal (Ideal-P)Embedded (EMB)General Purpose (GPP)

FIGURE 42: Core counts for CMPs with 3D-stacked memory.

109 CHAPTER 4. OPTIMAL CMPS ACROSS TECHNOLOGIES
Realizing this goal requires techniques that push the power and bandwidth walls further out.

Implementing cores with low-operational-power (LOP) devices can mitigate core leakage, which

can be significant as core counts increase. To tame dynamic power, the cores will have to run at

low speeds which are well within the capabilities of LOP devices, thereby allowing designers to

use them for time-critical components contrary to conventional wisdom and without performance

loss. The bandwidth wall can be mitigated through techniques like 3D-die stacking, allowing tera-

bytes-per-second access to a multi-gigabyte memory array.

The bandwidth limitations, coupled with the exponential increase in the applications’ datas-

ets, results in caches growing at an exponential rate (Figure 43). Thus, new multicore chips will

require techniques to provide fast access and manage data placement on enormous physically-dis-

tributed on-chip caches (e.g., R-NUCA). Finally, as the core counts and caches grow, and the per-

formance of individual cores is likely to increase, the power dissipated by the on-chip interconnect

and the cache dominates. Thus, further innovation is required in providing feather-weight on-chip

interconnects and storage.

1

2

4

8

16

32

64

128

256

512

2004 2007 2010 2013 2016 2019

C
ac

h
e

S
iz

e
(M

B
)

Year of Technology Introduction

Ideal-P OLTP

Ideal-P DSS

Ideal-P Apache

EMB OLTP

EMB DSS

EMB Apache

GPP OLTP

GPP DSS

GPP Apache

FIGURE 43: On-chip cache sizes for CMPs with conventional memory.

110

Chapter 5

Related Work

Barroso et al. [11] conduct a performance study of OLTP and DSS workloads on a distrib-

uted shared memory multiprocessor and conclude that instruction and data locality on OLTP can

be captured effectively by large caches. Our study shows that data stalls dominate execution on

chip multiprocessors even with very large caches, because the dominant stall component then

shifts to L2 hits. Barroso et al. [10] compare the performance of the Piranha chip multiprocessor

against a single out-of-order processor with similar resources. However, they do not consider FC

cores for the Piranha chip, and lack the key feature of fine-grain multi-threading to mask memory

latency inside the processor core, which is critical to achieve high aggregate CMP performance.

Ranganathan et al. [79] examine the performance of database workloads on shared-memory

multiprocessors and identify simple optimizations that improve performance when employed by

aggressive out-of-order processors. However this study does not consider lean cores, which out-

perform their aggressive out-of-order counterparts on saturated workloads despite their low single-

thread performance. Lo et al. [68] study the performance of database workloads on simultaneous

multithreaded (SMT) processors and show that aggressive wide-issue out-of-order SMT proces-

sors can outperform their single-threaded counterparts. However, wide-issue out-of-order proces-

sors with many hardware contexts are complex designs, and their area and power overhead render

them unsuitable for CMPs that target database workloads. In our study we show that even simple
111

112
in-order multithreaded processors can outperform aggressive out-of-order ones when the workload

exhibits significant thread-level parallelism.

To mitigate the access latency of large on-chip caches, Kim proposed Non-Uniform Cache

Architectures (NUCA) [60], showing that a network of cache banks can be used to reduce average

access latency. Chishti proposed to decouple physical placement from logical organization [22] to

add flexibility to the NUCA design. R-NUCA exploits both proposals. The work by Chishti et al.

on CMP-NuRAPID [23] is the closest to our design. The authors advocate migration of private

blocks, replication for shared read-only blocks and in-situ communication for shared read-write

blocks, but they rely on complicated coherence protocol modifications and hardware indirection

structures to guarantee coherence and perform block placement. In contrast, R-NUCA obviates the

need for hardware coherence mechanisms at the last-level cache, thereby eliminating indirection

upon cache lookup, while it collaborates with the operating system to make placement decisions.

Beckmann evaluated NUCA architectures in the context of CMPs [13], concluding that

dynamic migration of blocks within a NUCA can benefit performance but requires smart lookup

algorithms and may cause contention in the physical center of the cache. Kandemir proposed

migration algorithms for the placement of each cache block [58], and Ricci proposed smart lookup

mechanisms using Bloom filters [80]. In contrast to these works, R-NUCA avoids block migration

in favor of intelligent block placement, avoiding the central contention problem and eliminating

the need for complex lookup algorithms.

Zhang observed that different classes of accesses benefit from either a private or shared sys-

tem organization [108] in multi-chip multi-processors. Falsafi proposed to apply either a private or

shared organization by dynamically adapting the system on a page granularity [33]. R-NUCA sim-

113 CHAPTER 5. RELATED WORK
ilarly applies either a private or shared organization at page granularity, however, we leverage the

OS to properly classify the pages, avoiding reliance on heuristics.

Huh extended the NUCA work to CMPs [51], investigating the effect of sharing policies.

Yeh [105] and Merino [76] proposed coarse-grain approaches of splitting the cache into private

and shared slices. Guz [39] advocated building separate but exclusive shared and private regions

of cache. R-NUCA similarly treats data blocks as private until accesses from multiple cores are

detected. Finer-grained dynamic partitioning approaches have also been investigated. Dybdahl

proposed a dynamic algorithm to partition the cache into private and shared regions [32], while

Zhao proposed partitioning by dedicating some cache ways to private operation [109]. R-NUCA

enables dynamic and simultaneous shared and private organizations, however, unlike prior propos-

als, without modification of the underlying cache architecture and without enforcing strict con-

straints on either the private or shared capacity.

Chang proposed a private organization which steals capacity from neighboring private

slices, relying on a centralized structure to keep track of sharing. Liu used bits from the requesting-

core ID to select the set of L2 slices to probe first [67], using a table-based mechanism to perform

a mapping between the core ID and cache slices. R-NUCA applies a mapping based on the

requesting-core ID, however this mapping is performed through boolean operations on the ID

without an indirection mechanism. Additionally, prior approaches generally advocate performing

lookup through multiple serial or parallel probes or indirection through a directory structure;

R-NUCA is able to perform exactly one probe to one cache slice to look up any block or to detect

a cache miss.

Zhang advocated the use of a tiled architecture, coupling cache slices to processing cores

[107]. Starting with a shared substrate, [107] creates local replicas to reduce access latency, requir-

114
ing a directory structure to keep track of the replicas. As proposed, [107] wastes capacity because

locally allocated private blocks are duplicated at the home node, and offers minimal benefit to

workloads with a large shared read-write working set which do not benefit from replication.

R-NUCA assumes a tiled architecture with a shared cache substrate, but avoids the need for a

directory mechanism by only replicating blocks known to be read-only. Zhang improves on the

design of [107] by migrating private blocks to avoid wasting capacity at the home node [106],

however this design still can not benefit shared data blocks.

Beckmann proposed an adaptive design that dynamically adjusts the probability by which

read-only shared blocks are allocated at the local slice [12]. Unlike [12], R-NUCA is not limited to

replicating blocks to a single cache slice, allowing for clusters of nearby slices to share capacity

for replication. Furthermore, the heuristics employed in [12] require fine-tuning and adjustment,

being highly sensitive to the underlying architecture and workloads, whereas R-NUCA offers a

direct ability to smoothly trade off replicated capacity for access latency. Marty studied the bene-

fits of partitioning a cache for multiple simultaneously-executing workloads [74] and proposed a

hierarchical structure to simplify handling of coherence between the workloads. The R-NUCA

design can be similarly applied to achieve run-time partitioning of the cache while still preserving

the R-NUCA access latency benefits within each partition.

OS-driven cache placement has been studied in a number of contexts. Sherwood proposed

to guide cache placement in software [89], suggesting the use of the TLB to map addresses to

cache regions. Tam used similar techniques to reduce destructive interference for multi-pro-

grammed workloads [96]. Jin advocated the use of the OS to control cache placement in a shared

NUCA cache, suggesting that limited replication is possible through this approach [54]. Cho used

the same placement mechanism to partition the cache slices into groups [24]. R-NUCA leverages

115 CHAPTER 5. RELATED WORK
the work of [54] and [24], using the OS-driven approach to guide placement in the cache. Unlike

prior proposals, R-NUCA enables the dynamic creation of overlapping clusters of slices without

additional hardware, and enables the use of these clusters for dedicated private, replicated private,

and shared operation. Fensch advocates the use of OS-driven placement to avoid the cache-coher-

ence mechanism [35]. R-NUCA similarly uses OS-driven placement to avoid cache-coherence at

the L2, however, R-NUCA does so without placing strict capacity limitations on the replication of

read-only blocks or requiring new hardware structures and TLB ports.

Hartstein et al. [45] evaluate the nature of cache misses for a variety of workloads and vali-

date the square-root rule-of-thumb for cache misses. Rogers et al [82] extend this work to CMPs

and conclude that miss rates follow a simple power law. In this work, through robust fitting of hun-

dreds of candidate functions, we wind that x-shifted power laws describe accurately the cache miss

behavior of commercial server workloads, while simpler power laws may generate relative errors

in excess of 50%. Hill and Marty [46] explore analytically how different levels of software paral-

lelism and core asymmetry affect the performance of multicore processors, while our model

focuses on the trade-offs between physical constraints and performance.

Rogers et al [82] model how die area allocation to cores and caches affect the on-chip mem-

ory traffic in current as well as future technology generations, and conclude that bandwidth is the

main performance constraint. However, the authors don’t consider the power implications on per-

formance, and base their models on the assumption that modern multicores are already bandwidth

constrained which contradicts prior research [11]. While we agree with their observation that 3D-

stacked memory does not alleviate the bandwidth wall when a single layer is considered, we find

that the addition of multiple layers of dense DRAM arrays [69] effectively mitigates the bandwidth

wall for all designs across technologies.

116
A recent study that explored the design space of CMPs [30] focuses on throughput as the

primary performance metric to compare server workload performance across chip multiprocessors

with varying processor granularity, but stops short of a detailed performance characterization and

breakdown of where time is spent during execution, and fails to address all the tunable parameters.

Similarly, Huh et al. [50] explore the design space of CMPs to determine the best configuration

and extrapolate SPEC results to server workloads, but do not consider the power implications of

CMP designs, and their studies focus on smaller systems where bandwidth and power and less crit-

ical. Moreover, the performance model in [50] employs private L2 caches per core, which greatly

increase the data sharing overhead and off-chip miss rate.

Li et al. [66] present a comprehensive study of the CMP design space subject to physical

constraints and jointly optimize across a large number of design parameters. However, they inves-

tigate only SPEC benchmarks and a single technology node (65nm), while we focus on commer-

cial server workloads across technologies. Moreover, [66] assumes that cache latency remains

constant when scaling the cache size, which does not allow the accurate exploration of a wide

range of cache sizes.

Alameldeen [3] studies how compression improves processor performance, and develops an

analytic model to balance cores, caches and communication. In contrast, we explore how physical

constraints determine the configuration of CMPs across technologies and evaluate different

devices, core technologies and 3d-stacked memory to extend the constraints. Kumar et al. [62]

present a performance evaluation of a heterogeneous CMP, but focuses on a CPU-intensive diverse

workload instead of homogeneous commercial server workloads that are the target of our study.

Chapter 6

Future Work

As cache sizes grow to accommodate more cores and mitigate the bandwidth wall, on-chip

accesses dominate the execution time. While our work on R-NUCA is a step forward in mitigating

the increasing on-chip block access latency, our design targets commercial server workloads. To be

effective for all types of applications, R-NUCA needs to optimize access patterns prevalent in

other application domains as well. Multi-programmed workloads can be further optimized by

applying Rotational Interleaving on the private data, thereby easing the pressure to the private

cache by distributing blocks to neighbors. Ideally, the operating system employs a mechanism that

estimates the demands of each application and spreads them on the multicore such that applica-

tions with high storage demands are far apart. The same mechanism can guide the size of the Rota-

tional Interleaving clusters, expanding them or contracting them as necessary in response to

changing demands.

Similarly, non-universal sharing patterns, like producer-consumer or single-writer-multiple-

readers may benefit from a different placement of the data. While the current incarnation of R-

NUCA interleaves shared data across the entire chip, producer-consumer patterns may benefit

from declaring these data private to the consumer. The producer’s write latency can potentially be

hidden by the store buffer, thus it is less critical than the reads issued by the consumer, which may

cause the processor to stall waiting for the data to become available. At the same time, the abstrac-
117

118
tion of Rotational Interleaving offers the ability to share data between any subset of cores in the

system, by properly defining the corresponding functions. For example if four neighboring cores

want to share data that are private to their core group, these data can be treated similar to instruc-

tions. If these cores are not neighbors but spread across the entire chip, R-NUCA can still operate

on a virtual cluster, as if the cores are neighbors, and in the last step map the virtual destination

core to the appropriate physical one.

Mechanisms to make R-NUCA adaptive should also be considered. While for our work-

loads the behavior of the blocks at steady state does not change over time, this is generally not the

case in other applications that go through phases with different computational and storage

demands. Aging mechanisms or user-level library calls to “forget” classifications and force R-

NUCA to re-learn the class of a page may prove useful in this context.

As we move into the deep nanometer regime, however, other problems may become equally

pressing. Amdahl’s Law prevents most applications from utilizing an abundance of cores, simply

because the applications become serial for even a very small fraction of their execution. Heteroge-

neous multicores may provide significant relief, by optimizing not only the parallel execution of

the application but also speeding up the serial one. Our design space exploration has only

scratched the surface of this area, and further detailed analysis is required to evaluate its benefits.

Another way to fight back is to rethink the software stack, and restructure applications with

both parallelism and locality in mind. This has been an on-going theme in our group, where we

develop our ideas in the context of a database management server as a proof-of-concept. Our pro-

totype staged database engine [43,44] splits conventional single-threaded requests into many

smaller tasks that can execute in parallel and utilize otherwise idle hardware resources. These

119 CHAPTER 6. FUTURE WORK
smaller tasks form producer-consumer pairs and exploit pipelining and operator-level parallelism

[44] to reuse data quickly and reduce overall execution time.

To mitigate the rising cache latency, the application’s data can be partitioned logically

across the cores, while incoming request are scheduled on the cores based on what data they

access. Such a software system can transform data that were previously shared across requests and

slow to access, into core-private data with fast local access times. Thereby, this software architec-

ture complements R-NUCA by optimizing for private data that can be efficiently mapped close to

each core. At the same time, it renders data sharing patterns within a parallel request predictable,

because the communication between tasks is explicit and the access and sharing patterns are

known in advance and can be exposed to the execution system. Thus, no complicated hardware

prediction mechanisms are required to re-discover the patterns [21,78,102], overcoming a signifi-

cant obstacle of conventional server software [94] and enabling simple hardware streaming

engines to hide data access latencies.

Finally, more work is needed on techniques to alleviate the bandwidth and power walls.

While 3D-stacked memory promises to deliver high bandwidth to a portion of the memory, on-

chip interconnects and cache leakage consume the majority of the chip’s power and prevent it from

reaching its full potential. New techniques are required to either ease the pressure on these two

structures, or reduce their power requirements.

120

Chapter 7

Conclusions

As Moore’s Law continues for at least another decade, the number of cores on chip and the

cache size will continue to grow at an exponential rate. While in the last decade off-chip accesses

were the primary determinant of performance for commercial server workloads, the increasing

latency of the on-chip cache results in cache accesses dominating the execution time. To tame the

on-chip cache latency, caches become distributed and accesses to cache blocks become a function

of the block’s physical location. Now, the block’s placement on-chip determines performance.

We observe that cache accesses in server workloads can be classified at run time into classes

that exhibit distinct characteristics, leading to different on-chip cache block placement policies.

Based on this observation, we propose Reactive NUCA, a low-overhead, low-latency mechanism

for block placement in distributed caches. R-NUCA improves performance by allocating cache

blocks close to the cores that access them, replicating or migrating them as necessary without the

overhead of a hardware coherence mechanism.

Alleviating the cache access bottleneck allows multicore processors to continue realizing

improvements in performance. However, increasing core counts does not directly translate into

performance improvements, as chips are physically constrained in area, power and bandwidth. We

explore the design space of physically-constrained CMPs across technologies in search of peak-

performance designs, and find that heterogeneous multicores is a viable alternative that holds great
121

122
promise in optimizing the multicore architecture. Contrary to conventional wisdom, we find that

low-operational-power devices can be used for time-critical components without loss in perfor-

mance (but with significant reduction in power), while 3D-stacked memory shows promise in alle-

viating the bandwidth wall.

Bibliography

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weaving relations for cache per-

formance. In Proceedings of VLDB, 2001.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a modern processor:

Where does time go? In The VLDB Journal, pages 266–277, September 1999.

[3] A. R. Alameldeen. Using compression to improve chip multiprocessor performance. PhD

thesis, University of Wisconsin at Madison, Madison, WI, USA, 2006.

[4] ARM. ARM MPCore.

http://www.arm.com/products/CPUs/ARM11MPCoreMultiprocessor.html.

[5] ARM. ARM1176JZ(F)-S: enhanced security and lower energy consumption for consumer

and wireless applications. http://www.arm.com/products/CPUs/ARM1176.html.

[6] M. Azimi, N. Cherukuri, D. N. Jayasimha, A. Kumar, P. Kundu, S. Park, I. Schoinas, and

A. S. Vaidya. Integration challenges and tradeoffs for tera-scale architectures. Intel Technol-

ogy Journal, August 2007.

[7] J. Balfour and W. J. Dally. Design tradeoffs for tiled CMP on-chip networks. In ICS’06: Pro-

ceedings of the 20th Annual International Conference on Supercomputing, 2006.

[8] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S. Smith,

R. Stets, and B. Verghese. Piranha: A scalable architecture base on single-chip multiprocess-

ing. In Proceedings of the 27th Annual International Symposium on Computer Architecture,

June 2000.
123

124
[9] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory system characterization of com-

mercial workloads. In Proceedings of the 25th Annual International Symposium on Comput-

er Architecture, pages 3–14, June 1998.

[10] B. M. Beckmann, M. R. Marty, and D. A. Wood. ASR: Adaptive selective replication for

CMP caches. In Proceedings of the 39th Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO 39), pages 443–454, 2006.

[11] B. M. Beckmann and D. A. Wood. Managing wire delay in large chip-multiprocessor caches.

In Proceedings of the 37th Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO 37), pages 319–330, 2004.

[12] S. Borkar. Microarchitecture and design challenges for gigascale integration. In MICRO 37:

Proceedings of the 37th Annual IEEE/ACM International Symposium on Microarchitecture,

2004.

[13] K. Brill. The invisible crisis in the data center: The economic meltdown of moore’s law.

white paper, Uptime Institute, 2007.

[14] M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein. Spatial computation. In

ASPLOS-XI: Proceedings of the 11th international conference on Architectural support for

programming languages and operating systems, pages 14–26, 2004.

[15] T. Burd, T. Pering, A. Stratakos, and R. Brodersen. A dynamic voltage scaled microproces-

sor system. In 2000 IEEE International Solid-State Circuits Conference, 2000. Digest of

Technical Papers. ISSCC, pages 294–295, 2000.

[16] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. Bulk enforcement of sequential consisten-

cy. In Proceedings of the 34th Annual International Symposium on Computer Architecture,

2007.

125 BIBLIOGRAPHY
[17] J. Chang and G. S. Sohi. Cooperative caching for chip multiprocessors. In Proceedings of the

33rd Annual International Symposium on Computer Architecture, pages 264–276, 2006.

[18] G. Chen, H. Chen, M. Haurylau, N. Nelson, P. M. Fauchet, E. G. Friedman, and D. H. Albo-

nesi. Electrical and optical on-chip interconnects in scaled microprocessors. In IEEE Inter-

national Symposium on Circuits and Systems, pages 2514–2517, 2005.

[19] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching for general-purpose pro-

grams. In Proceedings of the SIGPLAN’02 Conference on Programming Language Design

and Implementation (PLDI), June 2002.

[20] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Distance associativity for high-performance

energy-efficient non-uniform cache architectures. In Proceedings of the 36th Annual IEEE/

ACM International Symposium on Microarchitecture (MICRO 36), 2003.

[21] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing replication, communication,

and capacity allocation in CMPs. In Proceedings of the 32nd Annual International Sympo-

sium on Computer Architecture, pages 357–368, 2005.

[22] S. Cho and L. Jin. Managing distributed, shared L2 caches through OS-level page allocation.

In Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO 39), pages 455–468, 2006.

[23] Y. Chou, L. Spracklen, and S. G. Abraham. Store memory-level parallelism optimizations

for commercial applications. In Proceedings of the 38th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO 38), pages 183–196, 2005.

[24] Concord Idea Corp. Elpida SyncMAX press conference. http://www.syncmax.com/doc/

Press_Conference_Sept15_2005_ver0_95H.pdf, September 2005.

[25] W. J. Dally and C. L. Seitz. The torus routing chip. Distributed Computing, 1(4):187–196,

1986.

126
[26] J. D. Davis, J. Laudon, and K. Olukotun. Maximizing CMP throughput with mediocre cores.

In Proceedings of the Thirteenth International Conference on Parallel Architectures and

Compilation Techniques, pages 51–62, 2005.

[27] J. Deng, K. Kim, C.-T. Chuang, and H.-S. P. Wong. Device footprint scaling for ultra thin

body fully depleted SOI. In ISQED ’07: Proceedings of the 8th International Symposium on

Quality Electronic Design, pages 145–152, 2007.

[28] H. Dybdahl and P. Stenstrom. An adaptive shared/private NUCA cache partitioning scheme

for chip multiprocessors. In Proceedings of the Thirteenth IEEE Symposium on High-Perfor-

mance Computer Architecture, pages 2–12, 2007.

[29] B. Falsafi and D. A. Wood. Reactive NUMA: A design for unifying S-COMA and CC-NU-

MA. In Proceedings of the 24th Annual International Symposium on Computer Architecture,

pages 229–240, June 1997.

[30] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a warehouse-sized comput-

er. In ISCA ’07: Proceedings of the 34th annual international symposium on Computer ar-

chitecture, pages 13–23, 2007.

[31] C. Fensch and M. Cintra. An OS-based alternative to full hardware coherence on tiled CMPs.

In Proceedings of the 14th IEEE Symposium on High-Performance Computer Architecture,

2008.

[32] Gartner, Inc. Gartner says worldwide relational database market increased 8 percent in 2005,

press release. http://www.gartner.com/press_releases/asset_152619_11.html, May 2006.

[33] Gartner, Inc. Gartner says worldwide server shipments grew 9 percent, while industry reve-

nue grew 4 percent in third quarter of 2006, press release. http://gartner.com/it/

page.jsp?id=498468, November 2006.

127 BIBLIOGRAPHY
[34] K. Gharachorloo, A. Gupta, and J. Hennessy. Two techniques to enhance the performance of

memory consistency models. In Proceedings of the 1991 International Conference on Par-

allel Processing (Vol. I Architecture), pages I–355–364, August 1991.

[35] Z. Guz, I. Keidar, A. Kolodny, and U. C. Weiser. Utilizing shared data in chip multiproces-

sors with the Nahalal architecture. In Proceedings of the 20th Annual ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA), pages 1–10, 2008.

[36] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive NUCA: Near-optimal

block placement and replication in distributed caches. In ISCA ’09: Proceedings of the 36th

Annual International Symposium on Computer Architecture, pages 184–195, 2009.

[37] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki, and B. Falsafi. Database

servers on chip multiprocessors: Limitations and opportunities. In 3rd Biennial Conference

on Innovative Data Systems Research, pages 79–87, 2007.

[38] N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E. Wunderlich, S. Chen, J. Kim, B. Falsafi,

J. C. Hoe, and A. G. Nowatzyk. SimFlex: a fast, accurate, flexible full-system simulation

framework for performance evaluation of server architecture. SIGMETRICS Performance

Evaluation Review, 31(4):31–35, April 2004.

[39] S. Harizopoulos and A. Ailamaki. A case for staged database systems. In Proceedings of the

1st Biennial Conference on Innovative Data Systems Research (CIDR ’03), January 2003.

[40] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. Qpipe: A simultaneously pipelined rela-

tional query engine. In Proceedings of the 24th Annual ACM International Conference on

Management of Data (SIGMOD ’05), June 2005.

[41] A. Hartstein, V. Srinivasan, T. R. Puzak, and P. G. Emma. Cache miss behavior: is it sqrt(2)?

In CF ’06: Proceedings of the 3rd conference on Computing frontiers, pages 313–320, 2006.

128
[42] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. Computer, 41(7):33–38,

2008.

[43] K. Hirata and J. Goodacre. ARM MPCore: The streamlined and scalable arm11 processor

core. In ASP-DAC ’07: Proceedings of the 2007 Asia and South Pacific Design Automation

Conference, pages 747–748, 2007.

[44] Z. Hu, M. Martonosi, and S. Kaxiras. Tcp: Tag correlating prefetchers. In Proceedings of the

Ninth IEEE Symposium on High-Performance Computer Architecture, 2003.

[45] H. Hua, C. Mineo, K. Schoienfliess, A. Sule, S. Melamed, and W. Davis. Performance trend

in three-dimensional integrated circuits. In Interconnect Technology Conference, 2006 Inter-

national, pages 45–47, 2006.

[46] J. Huh, D. Burger, and S. W. Keckler. Exploring the design space of future CMPs. In Pro-

ceedings of the Ninth International Conference on Parallel Architectures and Compilation

Techniques, pages 199–210, 2001.

[47] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler. A NUCA substrate for

flexible CMP cache sharing. In Proceedings of the 19th Annual International Conference on

Supercomputing, pages 31–40, 2005.

[48] IBM Corp. Pmcount for linux on power architecture. http://www.alphaworks.ibm.com/tech/

pmcount, 2006.

[49] Intel. Intel core duo processor and intel core solo processor on 65nm process datasheet, 2006.

[50] Intel. Intel fact sheet: Intel previews intel xeon nehalem-EX processor, press release.

http://www.intel.com/pressroom/archive/releases/20090526comp.htm?iid=pr1_rel%

easepri_20090526m, May 2009.

129 BIBLIOGRAPHY
[51] L. Jin, H. Lee, and S. Cho. A flexible data to L2 cache mapping approach for future multicore

processors. In Proceedings of the 2006 Workshop on Memory System Performance and Cor-

rectness (MSPC’06), pages 92–101, 2006.

[52] D. Joseph and D. Grunwald. Prefetching using Markov Predictors. In Proceedings of the

24th Annual International Symposium on Computer Architecture, pages 252–263, June 1997.

[53] N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-

associative cache and prefetch buffers. In Proceedings of the 17th Annual International Sym-

posium on Computer Architecture, pages 364–373, May 1990.

[54] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM power5 chip: A dual-core multithreaded pro-

cessor. IEEE Micro, 24(2):40–47, 2004.

[55] M. Kandemir, F. Li, M. J. Irwin, and S. W. Son. A novel migration-based NUCA design for

chip multiprocessors. In Proceedings of the 2008 ACM/IEEE conference on Supercomput-

ing, pages 1–12, 2008.

[56] S. Kaxiras and J. R. Goodman. Improving cc-numa performance using instruction-based pre-

diction. In Proceedings of the Fifth IEEE Symposium on High-Performance Computer Ar-

chitecture, pages 161–170, February 1999.

[57] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache structure for wire-

delay dominated on-chip caches. ACM SIGPLAN Not., 37(10):211–222, 2002.

[58] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded SPARC pro-

cessor. IEEE Micro, 25(2):21–29, March-April 2005.

[59] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas. Single-ISA hetero-

geneous multi-core architectures for multithreaded workload performance. In ISCA ’04: Pro-

ceedings of the 31st annual international symposium on Computer architecture, 2004.

130
[60] J. Larus. Spending moore’s dividend. Communications of the ACM, 52(5):62–69, 2009.

[61] A. S. Leon, K. W. Tam, J. L. Shin, D. Weisner, and F. Schumacher. A power-efficient high-

throughput 32-thread SPARC processor. IEEE Journal of Solid-state circuits, 42(1):7–16,

2007.

[62] B. Li, L.-S. Peh, and P. Patra. Impact of process and temperature variations on network-on-

chip design exploration. In NOCS ’08: Proceedings of the Second ACM/IEEE International

Symposium on Networks-on-Chip, pages 117–126, 2008.

[63] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron. CMP design space exploration subject to

physical constraints. In The 12th International Symposium on High-Performance Computer

Architecture, pages 17–28, 2006.

[64] C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizing the last line of defense before

hitting the memory wall for CMPs. In Proceedings of the Tenth IEEE Symposium on High-

Performance Computer Architecture, page 176, 2004.

[65] J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M. Levy, and S. S. Parekh. An

analysis of database workload performance on simultaneous multithreaded processors. In

Proceedings of the 25th Annual International Symposium on Computer Architecture, pages

39–50, 1998.

[66] G. H. Loh. 3D-stacked memory architectures for multi-core processors. In ISCA ’08: Pro-

ceedings of the 35th International Symposium on Computer Architecture, 2008.

[67] C.-K. Luk and T. C. Mowry. Compiler based prefetching for recursive data structures. In

Proceedings of the 7th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS VII), pages 222–233, October 1996.

[68] C.-K. Luk and T. C. Mowry. Automatic compiler-inserted prefetching for pointer-based ap-

plications. IEEE Transactions on Computers, 48(2), February 1999.

131 BIBLIOGRAPHY
[69] C.-K. Luk and T. C. Mowry. Memory forwarding: Enabling aggressive layout optimizations

by guaranteeing the safety of data relocation. In Proceedings of the 26th Annual International

Symposium on Computer Architecture, 1999.

[70] M. K. Martin, M. D. Hill, and D. A. Wood. Token coherence: Decoupling performance and

correctness. In Proceedings of the 30th Annual International Symposium on Computer Ar-

chitecture, June 2003.

[71] M. R. Marty and M. D. Hill. Virtual hierarchies to support server consolidation. In Proceed-

ings of the 34th Annual International Symposium on Computer Architecture, 2007.

[72] A. M. G. Maynard, C. M. Donnelly, and B. R. Olszewski. Contrasting characteristics and

cache performance of technical and multi-user commercial workloads. In ASPLOS-VI: Pro-

ceedings of the 6th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 145–156, 1994.

[73] J. Merino, V. Puente, P. Prieto, and J. ’Angel Gregorio. SP-NUCA: a cost effective dynamic

non-uniform cache architecture. ACM SIGARCH Computer Architecture News, 36(2):64–71,

2008.

[74] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing NUCA organizations

and wiring alternatives for large caches with CACTI 6.0. In MICRO ’07: Proceedings of the

40th Annual IEEE/ACM International Symposium on Microarchitecture, pages 3–14, 2007.

[75] K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history buffer. In Proceed-

ings of the Tenth IEEE Symposium on High-Performance Computer Architecture, February

2004.

[76] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso. Performance of database

workloads on shared-memory systems with out-of-order processors. In Proceedings of the

8th International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS VIII), pages 307–318, October 1998.

132
[77] R. Ricci, S. Barrus, D. Gebhardt, and R. Balasubramonian. Leveraging bloom filters for

smart search within NUCA caches. In Proceedings of WCED, June 2006.

[78] S. Rodriguez and B. Jacob. Energy/power breakdown of pipelined nanometer caches (90nm/

65nm/45nm/32nm). In ISLPED ’06: Proceedings of the 2006 international symposium on

Low power electronics and design, pages 25–30, 2006.

[79] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin. Scaling the bandwidth

wall: challenges in and avenues for CMP scaling. In ISCA ’09: Proceedings of the 36th an-

nual international symposium on Computer architecture, pages 371–382, 2009.

[80] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based prefetching for linked data struc-

tures. In Proceedings of the 8th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS VIII), October 1998.

[81] A. Roth and G. S. Sohi. Effective jump pointer prefetching for linked data structures. In Pro-

ceedings of the 26th Annual International Symposium on Computer Architecture, May 1999.

[82] S. Rusu, S. Tam, H. Muljono, D. Ayers, and J. Chang. A dual-core multi-threaded xeon pro-

cessor with 16MB L3 cache. In IEEE International Solid-State Circuits Conference, 2006.

ISSCC 2006. Digest of Technical Papers, pages 315–324, 2006.

[83] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins, A. Lake,

J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan. Larrabee: a

many-core x86 architecture for visual computing. ACM Trans. Graph., 27(3):1–15, 2008.

[84] Semiconductor Industry Association. The international technology roadmap for semiconduc-

tors (ITRS), process integration, devices, and structures. http://www.itrs.net/, 2002 Update.

[85] Semiconductor Industry Association. The international technology roadmap for semiconduc-

tors (ITRS). http://www.itrs.net/, 2007 Update.

133 BIBLIOGRAPHY
[86] Semiconductor Industry Association. The international technology roadmap for semiconduc-

tors (ITRS). http://www.itrs.net/, 2008 Edition.

[87] M. Shao, A. Ailamaki, and B. Falsafi. DBmbench: Fast and accurate database workload rep-

resentation on modern microarchitecture. In Proceedings of the 15th IBM Center for Ad-

vanced Studies Conference, October 2005.

[88] T. Sherwood, B. Calder, and J. Emer. Reducing cache misses using hardware and software

page placement. In Proceedings of the 13th Annual International Conference on Supercom-

puting, pages 155–164, 1999.

[89] T. Sherwood, S. Sair, and B. Calder. Predictor-directed stream buffers. In Proceedings of the

33rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 33), pages

42–53, December 2000.

[90] T. Skotnicki. Materials and device structures for sub-32 nm CMOS nodes. Microelectronics

Engineering, 84(9-10):1845–1852, 2007.

[91] Y. Solihin, J. Lee, and J. Torrellas. Using a user-level memory thread for correlation

prefetching. In Proceedings of the 29th Annual International Symposium on Computer Ar-

chitecture, May 2002.

[92] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Spatial memory

streaming. In Proceedings of the 33rd Annual International Symposium on Computer Archi-

tecture, June 2006.

[93] S. Somogyi, T. F. Wenisch, N. Hardavellas, J. Kim, A. Ailamaki, and B. Falsafi. Memory

coherence activity prediction in commercial workloads. In Proceedings of the Third Work-

shop on Memory Performance Issues (WMPI-2004), June 2004.

[94] Sun Microsystems. UltraSPARC T2 supplement to the UltraSPARC architecture 2007, draft

D1.4.3. http://opensparc-t2.sunsource.net/specs/UST2-UASuppl-current-draft-HP-EXT.pdf

134
September 2007.

[95] D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing shared L2 caches on multicore sys-

tems in software. In Proceedings of the Workshop on the Interaction between Operating Sys-

tems and Computer Architecture, 2007.

[96] S. Thoziyoor, N. Muralimanohar, and N. P. Jouppi. CACTI 5.1. PHL Technical Report HPL-

2008-20, 2008.

[97] B. Towles and W. J. Dally. Route packets, net wires: On-chip interconnection networks. De-

sign Automation Conference, 0:684–689, 2001.

[98] Transaction Processing Performance Council. The TPC Benchmark. Transaction Processing

Performance Council, 2001.

[99] Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt, and C. C. Weems. Guided region

prefetching: a cooperative hardware/software approach. In Proceedings of the 30th Annual

International Symposium on Computer Architecture, pages 388–398, June 2003.

[100] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Mechanisms for store-wait-free

multiprocessors. ACM SIGARCH Computer Architecture News, 35(2):266–277, 2007.

[101] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and B. Falsafi. Temporal

streaming of shared memory. In Proceedings of the 32nd Annual International Symposium

on Computer Architecture, June 2005.

[102] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, C. Gniady, A. Ailamaki, and B. Falsafi.

Store-ordered streaming of shared memory. In PACT ’05: Proceedings of the 14th Interna-

tional Conference on Parallel Architectures and Compilation Techniques, pages 75–86,

2005.

135 BIBLIOGRAPHY
[103] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C. Hoe. Sim-

Flex: statistical sampling of computer system simulation. IEEE Micro, 26(4):18–31, July-

August 2006.

[104] J. Wuu, D. Weiss, C. Morganti, and M. Dreesen. The asynchronous 24MB on-chip level-3

cache for a dual-core itanium-family processor. In IEEE International Solid-State Circuits

Conference Digest of Technical Papers, 2005.

[105] T. Y. Yeh and G. Reinman. Fast and fair: data-stream quality of service. In Proceedings of

the 2005 International Conference on Compilers, Architectures and Synthesis for Embedded

Systems (CASES ’05), pages 237–248, 2005.

[106] M. Zhang and K. Asanovic. Victim migration: Dynamically adapting between private and

shared CMP caches. Technical report, MIT, 2005.

[107] M. Zhang and K. Asanovic. Victim replication: Maximizing capacity while hiding wire de-

lay in tiled chip multiprocessors. In Proceedings of the 32nd Annual International Sympo-

sium on Computer Architecture, pages 336–345, 2005.

[108] Z. Zhang and J. Torrellas. Reducing remote conflict misses: Numa with remote cache versus

coma. In Proceedings of the Third IEEE Symposium on High-Performance Computer Archi-

tecture, page 272, 1997.

[109] L. Zhao, R. Iyer, M. Upton, and D. Newell. Towards hybrid last-level caches for chip-multi-

processors. SIGARCH Computer Architecture News, 36(2):56–63, 2008.

[110] ZunZun.com. ZunZun.com online curve fitting and surface fitting web site. http://zun-

zun.com/.

136

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1
	Introduction
	1.1 Performance Analysis of Modern CMPs
	1.2 Near-Optimal On-Chip Block Placement and Replication
	1.3 Optimal CMPs Across Technologies
	1.4 Contributions

	Chapter 2
	Performance Analysis of CMPs
	2.1 Introduction
	2.2 CMP Camps and Workloads
	2.2.1 Fat Camp vs. Lean Camp
	2.2.2 Unsaturated vs. Saturated Workloads

	2.3 Experimental Methodology
	2.4 DBMS Performance on CMPs
	2.5 Analysis of Data Stalls
	2.5.1 Impact of On-Chip Cache Size
	2.5.2 Impact of Core Integration on Single Chip
	2.5.3 Impact of On-Chip Core Count
	2.5.4 Ramifications

	2.6 Summary

	Chapter 3
	Reactive NUCA
	3.1 Background
	3.1.1 Non-Uniform Cache Architectures
	3.1.2 Tiled Architectures
	3.1.3 Requirements for Intelligent Block Placement

	3.2 Characterization of L2 References
	3.2.1 Methodology
	3.2.2 Categorization of Cache Accesses
	3.2.3 Characterization of Access Classes
	3.2.3.1 Private Data
	3.2.3.2 Instructions
	3.2.3.3 Shared Data

	3.2.4 Characterization Conclusions

	3.3 R-NUCA Design
	3.3.1 Indexing and Rotational Interleaving
	3.3.2 Placement
	3.3.3 Page Classification
	3.3.4 Extensions
	3.3.5 Generalized Form of Rotational Interleaving

	3.4 Evaluation
	3.4.1 Methodology
	3.4.2 Classification Accuracy
	3.4.3 Impact of R-NUCA Mechanisms
	3.4.4 Performance Improvement
	3.4.5 Impact of Technology

	3.5 Summary

	Chapter 4
	Optimal CMPs Across Technologies
	4.1 First-Order Analytical Modeling
	4.1.1 Technology Model
	4.1.2 Hardware Model
	4.1.2.1 Core Model
	4.1.2.2 Cache Model

	4.1.3 Area Modeling of Hardware Components
	4.1.4 Performance Modeling
	4.1.5 Miss Rate Model and Application Dataset Evolution
	4.1.6 Power Models
	4.1.7 Off-Chip Bandwidth Model
	4.1.8 Modeling 3D-Stacked Memory

	4.2 Peak-Performing Designs Under Physical Constraints
	4.3 Physically-Constrained Designs Across Technologies
	4.3.1 Multicore Processors With milliWatt Cores
	4.3.2 CMPs with Ideal Cores
	4.3.3 CMPs with 3D-Stacked Memory

	4.4 Summary

	Chapter 5
	Related Work
	Chapter 6
	Future Work
	Chapter 7
	Conclusions
	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

