
Contractual Anonymity

Edward J. Schwartz David Brumley

Jonathan M. McCune

September 2009

CMU-CS-09-144

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We propose and develop techniques for achieving contractual anonymity. In contractual anonym-

ity, a user and service provider enter into an anonymity contract. The user is guaranteed anonymity

and unlinkability from the contractual anonymity system unless they break the contract. Service

providers are guaranteed that they can identify users who break the contract. Neither party can

change the contract without the other’s permission. In particular and unlike other schemes, the ser-

vice provider is not able to take any action toward a particular user (such as revealing her identity

or blacklisting her future authentications) unless she violates her contract.

Keywords: anonymous authentication, trusted computing, group signatures

1 Introduction

There are a variety of reasons why users may wish to use a network service anonymously, and in

turn why service providers may then wish to offer anonymous access to their service. Anonymous

services enable users to discuss sensitive personal issues via a message board or chat room, such as

victims of violence, cancer or AIDS patients, and child or spousal abuse information and support

groups. Anonymous services also allow people to report abuses by governments and companies

(i.e., whistle-blowing) without fear of retaliation. In some cases, a user may not have an a priori

motivation, but may simply wish to retain some degree of personal privacy on the Internet as a

matter of preference.

A service provider (SP), however, must be able to identify misbehaving users in order to protect

their service. For example, a service may want to identify users that use chat rooms to threaten

others, use anonymous networks for denial of service attacks, or send spam to message boards. The

ability to identify misbehaving users is important even in otherwise anonymous services, since this

may be necessary to keep the service functioning. There are a number of existing anonymous

authentication schemes that are designed to allow users to authenticate anonymously and also

allow the SP to disallow access to misbehaving users.

Unfortunately, there are currently no anonymous authentication schemes that simultaneously

guarantee that: 1) the identity of legitimate users will remain anonymous and indistinguishable as

long as they abide by a pre-negotiated terms of service contract, 2) network providers can identify

users who misbehave by violating the same contract, and 3) the contract is immutable and binding

once all parties agree. In particular, existing schemes for achieving anonymous authentication

either rely on a trusted third party [5, 10, 11], or are mutable and allow SPs to blacklist a user at

any time and for subjective reasons [8,24,25]. An immutable contract is necessary for a user to be

assured that the SP will not change the system in a way that affects that user’s anonymity without

her permission.

We propose the notion of contractual anonymity. In contractual anonymity, a user and a SP

agree to a contract such that the user’s anonymity is guaranteed as long as she does not violate the

contract, and the SP is guaranteed that they can identify the user upon producing proof that the

user violated the contract. However, neither party can change the anonymity contract at some later

date without the other’s consensus. Service providers and users must negotiate a new contract if

either side wishes to change the terms. Users who abide by the contract are guaranteed a SP learns

nothing about their identity from CAP when they authenticate1, and that their authentications are

indistinguishable from other users’ that have not broken their contract.

More specifically, we propose the following properties for a contractual anonymity scheme:

Anonymity The user can authenticate anonymously, i.e., users have an anonymous identity. No

one can relate a user’s real identity to her anonymous identity if she has not broken her

contract.

1In a contractual anonymity system, every unlinkable message that is sent to the service provider must be separately

authenticated, and thus such a message is called an authentication. Alternatively, an authentication can be thought of

as an authenticated message.

1

Contract-based The user and SP enter in a contract, and both parties are bound by the contract.

A contract specifies unambiguously the agreed-upon terms of service. In contract-based

anonymous authentication, the rules for revealing a user’s real identity are specified by the

contract. Neither the user nor the SP can modify the contract; they must explicitly agree to a

new contract if they wish to change the terms.

Unlinkability Separate authentications of a single anonymous identity that has not violated the

contract cannot be correlated. For example, it should not be possible for the SP to attribute a

group of authentications (e.g., logins or message signatures) that do not violate the contract

to the same anonymous identity. Furthermore, a SP should be unable to provide special

treatment to a user based on her past behavior, assuming that she has not broken her contract.

Revocability The SP is able to obtain a user’s identity if the SP has proof that the user broke her

contract. The SP can then take appropriate action, e.g., blacklisting the user.

Efficiency The protocol should be as efficient as possible.

Our Approach In this report, we present the Contractual Anonymity Protocol (CAP), a protocol

for achieving contractual anonymity with all of the above properties. At a high level, CAP enables

a user and a SP to agree on an anonymity contract where the terms of the contract can be any

boolean function. For example, the contract may stipulate that the user should not send packets that

match known attack patterns. Once the contract is agreed upon, the user receives an anonymous

identity. An anonymous identity (e.g., set of credentials) is not linkable to the real user. The service

provider is given proof that they can recover the user’s real identity from the anonymous identity

if the contract is broken.

In CAP, we base anonymous credentials on a cryptographic primitive called group signatures.

Group signatures give CAP users cryptographically secure anonymity and unlinkability, and guar-

antee to the SP the ability to detect authentications from blacklisted users. We discuss how we

use group signatures in detail in Section 2.3. At a high level, a group signature scheme allows any

member of the group to sign on behalf of the group. Individual members’ signatures are indistin-

guishable from any other members’ signatures.

However, group signature schemes are not sufficient to offer all of the properties required

for a contractual anonymity system. We address this in CAP by leveraging trusted computing to

construct a verifiable third party, called the accountability server (AS), that manages anonymous

identities. The AS is a software module that will only reveal a user’s real identity if the SP provides

message(s) that prove the user has violated the contract.

The particular server that an AS runs on is not arbitrarily trusted by either the user or SP. In-

stead, remote parties trust that the CAP software is implemented correctly (e.g., that user identities

will only be revealed when given proof of misbehavior), and the AS proves that it is running that

software. This is accomplished by leveraging recent advances in trusted computing, including re-

mote attestation and dynamic root of trust. We discuss these primitives in detail in Section 2.4. In

particular, the AS proves via attestation that it is running known software in an isolated execution

environment with an extremely small trusted computing base (TCB) (e.g., leveraging dynamic root

2

of trust to eliminate all but a few hundred lines of additional trusted code beyond the logic of the

AS itself), and that they are interacting directly with the AS’s TCB. The TCB code can be verified

by anyone (e.g., external security experts) to show that it returns a user’s real identity if and only if

a contract is broken. Thus, the SP and user in our protocol receive proof that the AS will enforce

exactly the desired contract.

Previous Approaches There have been several previous approaches to anonymous authentica-

tion. However, none have satisfied the requirements of contractual anonymity. At a high level,

these approaches differ from CAP by not binding anonymity to a pre-negotiated contract. For

example, many existing anonymity systems require a trusted third party (TTP) that is capable of

deanonymizing or linking users [6, 10, 11]. These systems differ from ours in that our AS is con-

strained to enforce only the terms of the contract; previous work allowed the TTP either to link

authentications through blacklisting at any time or deanonymize users for any reason.

Recently, a number of anonymous authentication and blacklisting schemes have been proposed

that do not require a TTP [8, 24, 25]. However, these systems provide no way to constrain the

conditions for a SP to link a user through blacklisting, i.e., they allow the SP to subjectively judge

malicious behavior. We can also allow for subjective judging. However, contractual anonymity

is also capable of providing a stronger sense of security for the user, because the user and SP can

agree to the conditions for breaking unlinkability guarantees before the user commits to using the

service at all.

Finally, CAP is much more efficient than previous competing approaches. Based on our mea-

surements (Section 5.2), a single machine can perform about 106 CAP authentications per day. A

user of PEREA [8, 24, 25], the most closely related work, can only carry out only about 2 ∗ 104

anonymous authentications per day (about 2% of the number we can carry out)2. These limitations

motivate the creation of a new protocol that addresses these challenges.

Caveat: CAP, like previous anonymity schemes, provides a building block for users to anony-

mously communicate with a SP. It does not automatically take care of anonymizing the complete

protocol stack; see Section 6.1 for details.

Caveat: CAP provides strong anonymity guarantees at the authentication level. Although

contractual anonymity provides stronger guarantees against SP misbehavior than previous work, it

does not make any guarantees about the behavior of SP backend software. For instance, while a

SP cannot blacklist a user for posting a message allowed by the contract policy to an anonymous

message board, the SP can still remove that posting for subjective reasons.

Contributions

Contractual Anonymity We introduce the concept of contractual anonymity. In a contractual

anonymity system, users are guaranteed anonymity as long as they do not violate the policies

of their predetermined contract with the SP. The SP is guaranteed that it can learn a user’s

real identity (and thus take appropriate action such as blacklisting) if the user breaches the

contract.

2For PEREA parameters K=30, and T = one hour.

3

Contractual Anonymity Protocol We design the Contractual Anonymity Protocol (CAP), which

is the first protocol that provides contractual anonymity.

Efficient Implementation We implement a prototype of CAP and show that our system is more

efficient than previous competing approaches [7, 8, 24, 25]. Our system is designed to be

used with many anonymous applications, including ones with moderate authentication rates

(around 106 unlinkable messages per day), and does not have significant rate-limiting or

scalability problems.

Verifiable Escrow Unlike systems that simply assume a trusted third party (TTP), our system

runs the AS software in an isolated and verifiable execution environment. This enables users

and SPs to decide whether they want to trust the AS based on the software it is running.

2 Design Overview

2.1 CAP Overview

At a high level, the Contractual Anonymity Protocol is between three parties:

The Service Provider (SP) The SP wants to provide an anonymous service, such as an anon-

ymous message board, chat room, or network. For now, we assume the SP defines the contract

policy, since this situation naturally maps to current networks where the SP decides the terms of

service. (Alternatives for contract negotiation are discussed in Section ??.) In CAP, the SP is

guaranteed the ability to obtain the identity of a user that has broken an agreed-upon contract.

The User (U) Users wish to partake in the anonymous service offered by the SP, e.g., to be able

to post anonymously to a message board. When users agree to the contract policy, they are given

an anonymous identity. The identity serves as credentials which allow them to anonymously use

the service. Users are guaranteed to remain anonymous as long as they do not break the contract.

In our system, a user’s real identity is the unique certified, public endorsement key associated with

her computer’s trusted platform module (TPM). A user’s real identity is revealed to the SP if she

breaks her contract.

The Accountability Server (AS) In CAP, the AS serves as a verifiable third party for enforcing

contracts. Specifically, the AS 1) issues anonymous credentials to the user as described above, and

2) reveals the user’s real identity if and only if given proof that the user violated her contract. We

allow the AS to be a distinct entity so that a SP can operate its own AS. Alternatively, a single

AS can provide anonymous identity services for many SPs. The AS stores a mapping from each

user’s anonymous credentials to her real identity, so that the AS can determine a malicious user’s

real identity after being given evidence of misbehavior. Users and SPs can remotely verify that the

software running on the AS will only reveal this mapping if given proof that the user has broken

her contract.

4

Accountability
Server

Service ProviderUser

Registration

Breach

Attestation

Public Key

Request−Contract

Anonymous Communication

Malicious msg

Signed message

User’s identity

Malicious msg

Contract

Attestation, Contract, Anonymous credentials

Figure 1: The three stages of CAP: registration, anonymous communication, and breach.

5

An overview of CAP is shown in Figure 1. There are three stages in the protocol: registration,

anonymous communication, and contract breach. These phases are discussed in greater detail in

Section 3.

Setup Before the protocol starts, all the participants must engage in some form of setup. The

user, AS, and SP must all generate public/private keypairs that can be used for digital signatures

and asymmetric encryption. The SP must also obtain a certificate that binds its identifying name to

its public key. The AS must run the group signature key generation algorithm for each group that

is needed. Setup is discussed in more detail in Section 3.

Registration Phase In the initial registration phase a SP and user agree on a specific contract

policy. The contract policy stipulates the rules that users are expected to adhere to. For example,

the contract policy may specify that users should not send known attack messages. We discuss

policies further in Section 2.2.

In the default CAP implementation, the user receives a contract policy proposed by the SP. If

she agrees to the policy, then she requests a contract with that policy from the AS. (Alternatives

to this arrangement are discussed in Section ??.) The AS returns an anonymous identity and a

contract for the user to be used with the SP. The contract is a statement that the AS has bound the

user’s real identity, anonymous identity, and the contract policy. It provides assurance to the SP

that the AS knows the true identity of the user with the anonymous credentials, and will reveal the

identity if given proof that the user has broken the policy in her contract.

At the completion of the registration phase, the SP and user have a contract that guarantees the

user’s real identity will only be revealed by the AS if the SP can submit evidence (i.e., a set of

messages) that the user violated the contract.

Anonymous Communication Phase In the anonymous communication phase the user uses her

anonymous identity to interact with the SP. In particular, the user communicates with the service

by digitally signing a message with her anonymous identity private key. The SP then verifies that

the message was created by a user with a valid contract by verifying the signed message with the

public key specified in the contract.

Authenticated messages are both anonymous and unlinkable. For this reason, we also refer to

communicating messages to the SP as performing a separate authentication. An anonymous com-

munication operation is analogous to the authentication operation of an anonymous authentication

protocol.

Breach of Contract Phase A breach of contract happens when the user sends messages pro-

hibited by the contract policy to the SP. The SP can identify which user violated the contract

by presenting the prohibited messages to the AS. Upon confirming that the messages violate the

agreed-upon contract, the AS reveals the user’s identity to the SP, and also allows the SP to identify

any subsequent and prior communication using the revealed anonymous credentials.

At the end of the breach phase, the SP has the capability to identify the user that breached

her contract, and thus can take appropriate action. To be concrete, we assume that the SP will

6

blacklist the user. The blacklist (BL) is a list of users who have violated the contract and are no

longer allowed to use the service. However, CAP can be extended to support other actions, such

as anonymous blacklisting, in which SPs are given the ability to blacklist users without needing to

know their identities.

2.2 Contract Policies

An anonymity contract is a binding agreement that states a user’s identity may be exposed if they

violate the contract terms. We call those terms the contract policy.

A contract policy is a boolean predicate f : {msg1,msg2, . . . ,msgn} → {BREACH, OK}. The

status BREACH indicates that the messages violate the contract terms, and thus the user is in breach

of contract. OK indicates that the messages do not violate the policy.

Recall that CAP allows for messages by the same user to be unlinkable. Note that f does not

reveal which user created the messages, but only whether the included messages are in violation

of the policy. This allows the SP to run f without the aide of the AS. However, the SP may have

difficulty enforcing policies that require analyzing multiple messages from the same user, because

the SP cannot determine if the messages were created by the same user or not. Instead, if the SP

suspects that the messages violate the policy and were created by the same user, it must send them

to the AS which can determine if they were created by the same user using the AS’s group manager

abilities. We discuss this further in Section 6.3.

One advantage of contractual anonymity is that contract policies are immutable once both

parties have agreed to the contract. In contrast, other anonymity schemes [24, 25] allow the SP to

decide at any time that a user is misbehaving and blacklist them.

Filter-Based Policies One type of policy may be to disallow messages that are known to be

malicious. For example, the SP may have an intrusion detection system that implements a set of

rules for determining when messages are malicious. Note that such a policy should have one-sided

error, e.g., never mistake a safe message for a malicious one. Previous work has shown how to

automatically generate rules that have one-sided error, e.g., researchers have shown [9, 12] how

to automatically generate rules that will only match exploits for a known vulnerability, and never

match a safe input.

Digital Signature Policies Another type of policy could be to allow privileged users to map

an anonymous message to a real user. For example, an anonymous message board intended to

provide anonymity to victims of cancer could be misused to post unrelated content anonymously

(e.g., posting terrorist threats). Such a service may wish to allow law enforcement the ability to

relate particular posts to individuals. The SP for the service can achieve this by specifying in the

contract the ability for a pre-arranged key belonging to law enforcement to retrieve the mapping

between anonymous ID and user ID. Note that the users of the service would have had to explicitly

agree to such a policy as a term for using the service. We can use digital signature policies to

implement subjective judging [24] by specifying that a pre-arranged key belonging to the SP can

be used to deanonymize a user.

7

2.3 Anonymity and Group Signatures

CAP uses group signatures [2, 5, 6] to implement anonymous identities. We describe group signa-

ture schemes and show how we use them to implement anonymous identities.

Group Signatures Group signature schemes provide anonymity among members of the group.

Each group member has a private signing key which allows them to sign messages on behalf of the

group. We require the group signature scheme to have a designated group manager [2, 5, 6].

A group signature scheme suitable for CAP has the following procedures.

GS KeyGen(n, k) The GS KeyGen algorithm takes in a security parameter k and the number of

group members n. The algorithm outputs a group public key KGPK , the group manager

secret key K−1
GMSK

, and a list of n group member private keys K−1
GSK

[i]. The group member

private keys and group public key are distributed to group members. The group manager

retains the group private key K−1
GMSK

.

GS Sign(KGPK , K−1
GSK

[i],M) GS Sign signs a message M with group member i’s private key

K−1
GSK

[i].

GS Verify(KGPK ,M
K

−1

GSK
[i],BL) GS Verify ensures that the given signed message M

K
−1

GSK
[i] has a

valid signature for message M . We use a variant of group signatures that allow for verifier-

local revocation [6]. In a verifier-local revocation scheme, GS Verify also checks if the user

who signed M
K

−1

GSK
[i] is on the list of blacklisted users BL. Note that the verify algorithm

cannot add members to the BL without possessing a special revocation token that must be

released by the group manager, and cannot distinguish between signatures made by members

not on BL.

GS Open(K−1
GMSK

,M
K

−1

GSK
[i]) GS Open determines which group member signed message M and

outputs a revocation token for that user. The revocation token can be distributed to group

members and added to their BL.

Group signature schemes have the following security properties:

Correctness Signatures produced by a group member using the GS Sign algorithm are accepted

as valid signatures by the GS Verify algorithm, as long as the group member is not on the

blacklist.

Unforgeability It is computationally infeasible for an adversary who is not a group member to

produce a signature that is accepted by the GS Verify algorithm.

Anonymity It is also computationally infeasible to determine which member of a group created

a particular signature without the use of K−1
GMSK

.

Traceability By using the GS Open algorithm, the group manager can always identify at least

one member of a coalition of one or more dishonest members that collude to produce a

signature.

8

Unlinkability It is computationally infeasible to determine if two messages were signed by the

same group member without possessing K−1
GMSK

or the signer’s revocation token.

Exculpability Group member i cannot create a signature M
K

−1

GSK
[i] such that

GS Open (M
K

−1

GSK
[i]) = j if i 6= j.

Readers interested in the security arguments are invited to consult the appropriate references [5,

6].

Anonymous Identities We use group signatures to create anonymous identities. Each user is a

member of a group for her particular SP and contract policy. The AS is the group manager. Our use

of group signatures achieves the desired properties (from Section 1) of anonymity, unlinkability,

revocability, and efficiency.

The CAP protocol provides anonymity because each message endorsed by a user is a group sig-

nature, and signatures among (unrevoked) group members are indistinguishable. The endorsement

signatures also provide unlinkability between messages, even if those messages are signed by the

same user. Users’ keys can be revoked via the GS Open algorithm. Finally, group signatures are

efficient. For example, we use a group signature scheme [6] that requires about 8 exponentiations

(and an additional 2 bilinear map computations) to sign a message. Verification takes 6 exponenti-

ations. Verification with revocation with perfect unlinkability can be performed in O(|BL|) time,

while revocation which slightly decreases unlinkability (see Section 6.4) can be done in O(1) time.

2.4 Trusted Computing and Contract Enforcement

CAP meets several requirements for a contractual anonymity scheme by leveraging trusted com-

puting. The contract-based property is achieved by using a verifiable third party that can securely

bind user identities to contract policies and convince remote parties that it will do so. As a side-

effect of using trusted computing, we avoid the need for Zero-Knowledge Proofs in CAP, since an

AS can prove that it will not misuse sensitive information. This makes our system efficient and

scalable. These properties can be achieved using technologies that are available on recent com-

modity platforms [1, 17, 23]. Specifically, trusted computing is used (1) to execute sensitive code

in an isolated, verifiable environment on the AS and user platforms; (2) to cryptographically seal

data so that it is only available to specific code that executes within the isolated environment; (3)

to attest to a remote party what code executed within the isolated environment, and its inputs and

outputs; and (4) to provide unique identifiers for the AS and users.

Isolated and Verifiable Execution The AS is a third-party server that users must trust to protect

their anonymity, and SPs simultaneously trust to reveal misbehaving users’ identities. CAP builds

trust in the AS by executing its critical components (i.e., those which handle sensitive information

like users’ true identities) in an isolated, verifiable environment. The isolation is achieved using the

dynamic root of trust primitive [16] available on commodity systems today [1, 17]. This primitive

reinitializes the platform into a known trusted state and records a measurement (cryptographic

9

hash) of the code that will be executed in the isolated environment. Once the execution has been

recorded, sealed storage and remote attestation become possible.

Protecting Sensitive Data Sensitive data is protected using TPM-based sealed storage, whereby

data can by encrypted such that subsequent decryption is only possible if the platform is execut-

ing specific software. Thus, AS code can seal the mapping between users’ true identities and

their anonymous credentials such that only that same AS code running in the isolated execution

environment will be able to unseal (decrypt) it.

Proving the AS Behaves Properly to a Remote Party One system can prove to another that it

has loaded certain code for execution within an isolated environment using TPM-based attestation.

An attestation demonstrates to a remote verifier that the platform in which a particular TPM resides

has instantiated an isolated execution environment with a particular code module. In CAP, this is

the AS’s identity-mapping module.

A remote verifier can make a trust decision regarding the operation of the attesting AS based

on its knowledge of the attested software. We expect that a known-good implementation of CAP

will be released. Rather than releasing a formal proof that the implementation is correct, we expect

that this implementation will be endorsed by security experts to have the desired properties: that

a user’s identity will be released if and only if there is evidence that the user broke her contract.

This enables users to achieve a similar level of control over their identity as in a TTP-less scheme,

because they can control what code has access to their identity. SPs gain a similar level of control

over the code that can issue anonymous credentials that allow access to their service. This process

takes place during the establishment of the secure channel in CAP (see Section 3.2.1).

We denote the process of creating an attestation of the currently running code module with

input i as Gen Attest(i). A third party can compute the value an attestation should have for code

module running with input i as Ver Attest(code module, i). A remote party can verify an attestation

by confirming that the attestation’s value is correct, and then verifying that there is valid signature

on the attestation from a key whose private component is known only to a TPM.

Unique Identities For a contractual anonymity scheme to be deployed, users must have a unique

identity that they cannot readily change. If users could change their identity, they could register

the new identities at will to bypass blacklisting. CAP uses the Endorsement Credential [23] that

is included in Trusted Platform Modules (TPMs) as the globally unique identity for the users. It

is this identity that the AS keeps in escrow. If a user violates her contract, this identity is released

to the SP, which can add it to its blacklist to prevent the user from obtaining new anonymous

credentials. Alternatively, users’ identities can be readily tied to some other unique identifier (e.g.,

driver’s license or social security number) if desired. We discuss this further in Section 4.

10

3 Architecture

3.1 Setup

Before the user, service provider, and accountability server begin participating in CAP, they must

complete the necessary setup steps. The user and the AS must a generate public/private keypair that

is valid for digital signatures and asymmetric encryption. The private components of these keys

must kept secret to the trusted CAP code, however, so they must be generated and sealed using the

TPM when the trusted code is running in isolation. The user and AS do not need certificates other

than their TPM endorsement key certificates; they are able to convince others of their public keys

using attestation.

The SP must also generate a public/private keypair, but does not do so inside the trusted execu-

tion environment. Since the SP lacks any TPM support, it must also obtain a certificate that binds

its name to a public key (e.g., a commodity SSL certificate).

The AS is also responsible for generating group signature keys for each contract policy and

SP combination in use. As with the private components of the signature/encryption keypairs, the

group manager secret key and group private keys must be generated and sealed in the isolated

environment. Although there are a number of ways to arrange for this to occur, CAP’s standard

behavior is to generate a new group when a user is requesting a contract for a previously unseen

(SP, contract policy) tuple. Instead of generating all group private keys at once, CAP creates the

group with a large number of private keys, but saves the initial keying material and outputs the

private keys on demand. On-demand private key generation reduces the amount of information

that needs to be copied into the secure isolation environment, and also allows groups to be large

enough to handle peaks in demand while not wasting space on unused keys.

3.2 Operation of the System

We now describe how a secure channel is established between parties, and then describe the phases

of CAP. Figure 1 gives a depiction of the different phases (registration, anonymous communica-

tion, and breach).

3.2.1 Establishing a Secure Channel

Many parts of CAP rely on the ability to create a secure channel between the protocol participants.

Although the general problem of creating a secure channel between participants possessing authen-

ticated public keys is well understood, CAP must create a secure channel between actors whose

corresponding private keys are sealed (using the TPM) so that only the CAP software can access

them, which requires a slightly different protocol. Specifically, a CAP secure channel must be able

to provide 1) confidentiality and integrity of any messages sent inside the channel, and 2) assur-

ance that the remote party’s private key is sealed so that only the trusted CAP software can access

it. These combined properties 1) allow messages to be delivered confidentially to the trusted CAP

software without being read or modified (even though they must pass through untrusted compo-

nents such as the operating system), and 2) allow a remote party to certify that messages received

11

from the channel could only have been generated by the trusted CAP software. This is needed

when communicating with the AS, because the user and SP’s trust in the AS is based on the trusted

CAP software.

Before the secure channel is established, participants with a TPM (e.g., the user and AS) must

possess an endorsement key certificate issued by a trusted manufacturer that indicates that the

TPM is created by that manufacturer. The user and SP must have a list of known trusted code

signatures for the AS, and the AS must have a list of known trusted code signatures for the user.

All the trusted code signatures should be written in such a way that the trusted private key and

any sensitive information they utilize is sealed so that only the trusted code can access it. After

the secure channel is established, any participant communicating with a TPM-equipped participant

will believe that the TPM participant’s private key is sealed so that only the trusted code can access

it, because the AS has proved it is running code that is trusted to do this. Because of this, the

remote party can infer that any data encrypted to the corresponding public key will be known only

to the trusted code, and any message signed with the private key could only have been created by

the trusted code.

We now explain the secure channel establishment in the registration protocol between the user

and AS (Figure 2, Lines 4–17). A secure channel is established in the breach protocol as well, but

the process is very similar (Figure 4, Lines 1–11).

On Lines 4–5, the user generates an untrusted nonce3 and sends the nonce and its public key

to the AS. The AS generates its own nonce and creates an attestation to prove that is running the

CAP software in response to the user’s request (Lines 6–7).

A verified attestation proves several important facts to the verifier (in this case, the user). First,

by including NU and NAS in the attestation, the AS proves that it is responding to the user’s

request, which ensures freshness, i.e., the isolated execution environment ran in response to the

user’s request. Second, the AS proves that messages encrypted to KAS or digitally signed by K−1
AS

can only be read or created by the AS. This is because the AS keeps security-sensitive data like

K−1
AS

sealed so that only CAP software can access it. The user can verify this, because they can

verify the exact code the AS is running. Last, the AS also conveys that it has received the user’s

key, KU .
After creating the attestation, the AS sends the attestation, nonce, its public key and its TPM

Endorsement Key Certificate (Line 8). At this point, the user verifies that the attestation is correct;

if it is not, she aborts the protocol (Lines 9–10). Otherwise, she encrypts and signs her random

number, and expects the AS to increment it in response to prove that it can decrypt and sign using

K−1
AS

(Line 11). In response, the AS sends RU + 1 and its own random number (Line 12). When

the user receives its incremented random number, it believes that KAS is bound to the trusted CAP

code, and is willing to send its Endorsement Key (EK) Certificate encrypted under that key as

part of an attestation, because the CAP code will only disclose the user’s EK if the user breaks

her contract. The user generates an attestation which provides similar properties to the AS, and

sends it with its EK certificate, and the AS’s incremented random number (Lines 13–14). Upon

receiving the incremented random number, the AS verifies the user’s attestation (Lines 15–16),

3The nonces in CAP are known by the untrusted software. This is in contrast to the random numbers, which are

known only by the trusted part of the code.

12

and both parties then switch to more efficient symmetric cryptography (Line 17). This can be done

with standard techniques [20].

3.2.2 Protocol Phases

The CAP protocol is split into three parts: the registration, anonymous communication, and breach

phases. The registration phase is required before a user can start sending messages to the SP. The

anonymous communication phase serves to mark messages as coming from a user that has a valid

contract. The breach phase takes place when the SP wants to know who created messages that are

in violation of the contract.

Registration Phase CAP begins with the user connecting to the SP (Line 1 in Figure 2). The

user does not have a contract, since it is her first time connecting, and indicates this in her initial

message. The SP replies with a message indicating that a contract is required to use the service

(Lines 2–3). Specifically, the user must obtain a contract from the specified AS and the contract

must have the specified contract policy (CP), which is the policy that the user must agree to. If the

user agrees to abide by the CP, she connects to the AS and begins to create a contract. Otherwise,

she aborts.

To obtain a contract, the client connects to the AS and begins the U-AS protocol (Line 4). As

was described in Section 3.2.1, the user and AS establish a secure channel (Lines 4–17). Once

the channel is established, the client sends 1) the contract policy that the SP requires, and 2) the

address of the SP (Line 18). The AS maintains a list of users that have been blacklisted by the SP,

and aborts if one of those users is attempting to register (Line 19).

At this point in the protocol, the AS connects directly to the SP and executes the key binding

protocol (Line 20). This allows the SP to ensure that the AS is running the CAP software, and

to verify that K−1
AS

is bound to that software. This convinces the SP that a user’s identity will be

revealed if she breaks her contract. The AS also learns the SP’s public key during this protocol.

This protocol is expressed in detail in Figure 3, and is a subset of the messages needed to establish

a secure channel (Section 3.2.1), and so we do not discuss it further.

After the key binding, the AS will proceed to create a contract. The contract consists of the

contract policy the user agrees to, the public key of the group signature group that the user is part

of, and the SP’s public key. The AS sends the contract and a group private key to the user (Figure 2,

Line 21). Finally, the user sends the contract to the SP, and she is ready to start endorsing messages

(Line 22). The SP ensures that the contract is signed by a key that it knows about from the AS-SP

key binding protocol (Figure 3).

Anonymous Communication Phase To endorse a message, the user simply signs the message

m using her group private key K−1
GSK

[i], and sends the signed message to the SP (Line 22). When

the SP receives a signed message, it ensures that it has received a valid contract that included that

group public key. The SP also verifies that the message has a valid signature by executing the

group signature verification operation (Line 23).

13

U-SP registration protocol

1. U→ SP: {message, contract = ⊥}
2. SP: if contract = ⊥, execute Line 3, else Line 23

3. SP→ U: {Get-Contract, AS,CP}
K

−1

SP

U-AS registration protocol

4. U: NU

R
← {0, 1}α, RU

R
← {0, 1}α

5. U→ AS: {KU , NU}

6. AS: NAS

R
← {0, 1}α, RAS

R
← {0, 1}α

7. AS: a← Gen Attest(KU |NU |KAS|NAS)
8. AS→ U: {KAS, NAS, a, CTPM−AS}

9. U:
a′ ← Ver Attest(Trusted CAP Code,
KU |NU |KAS|NAS)

10. U: abort if a 6= a′

11. U→ AS: {{RU}K−1

U

}KAS

12. AS→ U: {{RU + 1, RAS}K−1

AS

}KU

13. U: a← Gen Attest(KU |NU |KAS|NAS)
14. U→ AS: {{RAS + 1, a, CTPM−U}K−1

U

}KAS

15. AS:
a′ ← Ver Attest(Trusted CAP Code,
KU |NU |KAS|NAS)

16. AS: abort if a 6= a′

17. Setup symmetric encryption and MAC

18. U→ AS: {AddrSP , {Get-Contract, AS,CP}
K

−1

SP

}

19. AS: abort if CTPM−U on SP’s blacklist

20. AS: executes key binding protocol

21. AS→ U: {{CP,KGPK , KSP}K−1

AS

, K−1
GSK

[i]}

U-SP anonymous communication protocol

22. U→ SP:
{{message}

K
−1

GSK
[i], contract =

{CP,KGPK , KSP}K−1

AS

}

23. SP:
if GS Verify(KGPK , {message}

K
−1

GSK
[i],BL) = 1,

accept message, else abort.

Figure 2: The registration and anonymous communication protocols. The user obtains a contract

using the registration protocol. The anonymous communication protocol is then used to send anon-

ymous messages to the service provider (SP). All messages after Line 17 are implicitly encrypted

and MACed using symmetric cryptography.

Breach Phase When a user generates message(s) that violate her contract, the SP delivers the

offending message(s) to the AS. This protocol is shown in Figure 4. After establishing a secure

channel (Lines 1–11), the AS verifies that the received messages are signed by a group that the AS

manages (Lines 12–13). Then, the AS verifies that the messages violate the contract (Line 14).

14

AS-SP key binding protocol

1. AS: NAS

R
← {0, 1}α

2. AS→ SP: {KAS, NAS}

3. SP: NSP

R
← {0, 1}α

4. SP→ AS: {KSP , NSP , CSP}
5. AS: a← Gen Attest(KSP |NSP |KAS|NAS)
6. AS→ SP: {a, CTPM−AS, {{RAS}K−1

AS

}KSP
}

7. SP:
a′ ← Ver Attest(Trusted CAP Code,
KSP |NSP |KAS|NAS)

8. SP: abort if a 6= a′

Figure 3: The key binding protocol.

The AS obtains the group private key4 that violated the contract, by using the GS Open operation

(Line 15). It then reveals 1) the user’s group signature revocation token, and 2) the user’s TPM

Endorsement Key Certificate to the SP (Line 16). With that information, the SP can add the user’s

current group key to the group signature revocation list so that her messages will no longer be

accepted.

4 Features

Contract + Unlinkability = Anti-discrimination CAP prevents a SP and its AS from discrim-

inating against anonymous users based on their past messages. Previous systems with TTP’s have

not appropriately limited the power of the TTP to revoke [6,10,11], thus the TTP could potentially

revoke well-behaved users. For example, someone could compromise the TTP and revoke users,

or bribe the TTP itself to misbehave. Thus, such systems can discriminate.

Previous TTP-free systems allowed subjective judging [24,25], i.e., users can be blacklisted for

any reason. The ability to subjectively judge means that a SP can block all future authentications

from a user for any reason whatsoever. For example, a user could post a message the SP simply

decides it does not like, and the SP would be free to block all future authentication. Thus, the SP

could discriminate against a user without knowing their real identity in such systems.

In CAP, anyone can verify that the AS will only reveal a user’s identity if their contract is

violated. Further, the AS seals the contract, which results in an encrypted blob that can only be

decrypted when the trusted CAP code is running in a verifiable execution environment. Thus, even

if the untrusted part of the CAP software, the operating system, or the BIOS is compromised, the

AS cannot reveal a behaving user’s real identity. A SP cannot discriminate against users not in

breach of contract because multiple authentications are unlinkable; there is no way to link multiple

anonymous authentications of a single behaving user.

4We assume for simplicity here that all messages in violation of the contract policy are signed with the same private

key, i.e., that there is only a single malicious user.

15

Breach protocol

1. AS: NAS

R
← {0, 1}α, RAS

R
← {0, 1}α

2. AS→ SP: {KAS, NAS}

3. SP: NSP

R
← {0, 1}α, RSP

R
← {0, 1}α

4. SP→ AS: {KSP , NSP}
5. AS: a← Gen Attest(KSP |NSP |KAS|NAS)
6. AS→ SP: {a, CTPM−AS, {{RAS}K−1

AS

}KSP
}

7. SP:
a′ ← Ver Attest(Trusted CAP Code,
KSP |NSP |KAS|NAS)

8. SP: abort if a 6= a′

9. SP→ AS: {{RAS + 1, RSP}K−1

SP

}KAS

10. AS→ SP: {{RSP + 1}
K

−1

AS

}KSP

11. Setup symmetric encryption and MAC

12. SP→ AS:
{m = {{message1}K−1

GSK
[x], . . . ,

{messagen}K−1

GSK
[z]}}

13. AS:
∀msgi ∈ m, abort if

GS Verify(KGPK ,msgi,BL) = 0
14. AS: abort if CP (m) 6= 1
15. AS: gid← GS Open(message1, K

−1
GMSK

)
16. AS→ SP: {gid,GidToEKcert[gid]}

Figure 4: The breach protocol. The service provider (SP) submits any messages suspected to be

in violation of the contract to the accountability server (AS). The AS verifies the messages, and

returns the identity of the users that violated their contracts, if any. All messages after Line 11 are

implicitly encrypted and MACed using symmetric cryptography.

Verifiable Blacklists Blacklists are commonly used in network services to block known mali-

cious identities. Current blacklists, however, typically do not provide much information as to why

a particular identity is on the list. CAP can easily be extended to implement verifiable blacklists.

We say a blacklist is verifiable if each identity on the blacklist is accompanied by a proof of the

malicious activity that led to its being blacklisted.

During registration, a user and SP agree to the contract policy. The user will register their

TPM’s Endorsement Key (EK) Certificate CTPM−U with the AS and receive an anonymous cre-

dential K−1
GSK

[i]. During contract breach, the AS is provided with a sequence of signed messages

that violate the contract. A blacklist will contain both K−1
GSK

[i] (so that subsequent messages from

the user can be identified) and CTPM−U (so that the blacklisted user cannot ask another AS to

create a new credential).

In CAP, the AS can publish those messages as proof that a breach has occured to enable verifi-

able blacklists. More specifically, the AS publishes the tuple ({CP,KGPK , KSP}K−1

AS

, {M}
K

−1

GSK
[i],

K−1
GSK

[i],Gen Attest(K−1
GSK

[i] → CTPM−U)), such that {CP,KGPK , KSP}K−1

AS

is the user’s con-

16

tract, {M}
K

−1

GSK
[i] is the offending message(s), and the AS attests to the fact that the anonymous

identity was issued to the referenced real identity. No trusted maintainer is required because the

blacklist entries contain proof that the contract was violated.

Mitigating the Sybil Attack In the Sybil attack [15] a user can subvert security by forging

new identities. In our system, users cannot create new identities themselves without breaking the

security of group signatures. Thus, in our setting a Sybil attack corresponds to a user successfully

receiving a new identity from an AS, since the newly forged identity could bypass the blacklist.

To the best of our knowledge, no other implemented anonymous authentication system has

solved this problem in a practical manner. For instance, in PEREA [25], a suggested method is for

the user to register with the SP by presenting her driver’s license in person5. However, we argue

that this is impractical for typical network services.

Our architecture mitigates the Sybil problem by binding the anonymous identity to the the

unique endorsement key found in each user’s TPM as the user’s identity. A user cannot practically

obtain a new endorsement key without replacing the TPM (since the TPM is a physical device

and there is no programmatic way to replace it). Thus, while an attacker can bypass blacklists by

purchasing new equipment, she cannot do so without incurring relative expense.

5 Implementation

We now describe our implementation of the CAP system, and note security-relevant implementa-

tion decisions.

We implemented CAP using two cryptographic libraries: the PBC SIG group signature li-

brary [18] that implements the BBS [6] group signature scheme, and the XySSL library [27] for

implementations of RSA, AES, SHA-1, and HMAC. We use 256-bit AES keys, HMAC keys,

nonces and random values. RSA keys are 1024-bit. The BBS signature scheme is configured to

use a Type A pairing that offers security similar to that of a 1024-bit RSA key [5]. We do not cur-

rently implement efficient verifier-local revocation for the group signature keys [6], because we are

unaware of a publicly available implementation, although we intend to implement this ourselves

in future work. We note that we plan on implementing a O(1)-time revocation scheme that adds

a single table look-up per verification, which is unlikely to significantly change our performance

measurements. Options for implementing such revocation are discussed in Section 6.4.

Portions of the code that execute on the user’s and AS’s platforms constitute the security-

sensitive, trusted components of CAP. Our implementation uses the Flicker system [19] to provide

verifiable, hardware-supported isolation of security-sensitive code from all other software and de-

vices on a platform by using a TPM [23] and hardware-supported dynamic root of trust [16]. As

a result, the Trusted Computing Base (TCB) for security-sensitive CAP code includes only the

Flicker stub code, and excludes the operating system, BIOS, and all DMA-capable devices. These

trusted components will be the same across all uses of CAP, i.e., their code will be publicly known

and evaluated to be known-good.

5This still preserves anonymity because the registration is not linkable to future authentications.

17

The registration and breach phases of CAP involve processing inside the Flicker isolation en-

vironment, because the protocol requires access to information that must be kept secret. However,

Flicker does not support direct access to a network stack. Therefore, software that directly in-

terfaces with the network stack must run on the untrusted host operating system. The untrusted

portion of CAP is responsible for launching the Flicker sessions on the user’s and AS’s platforms.

We note that the untrusted code could choose not to launch the Flicker session. This is equivalent

to the power-off attack described in Section 6.2, but the untrusted code cannot impersonate trusted

code.

The trusted CAP components that run in the Flicker environment are responsible for protecting

their state using TPM Seal and TPM Unseal. Many protocol messages in the registration and

breach phases are passed as input to the Flicker environment, along with the sealed copy of any

sensitive data that may be required. The trusted code will then unseal the information it needs and

create its reply message. It will then output the reply message to be sent over the network, and seal

and output any updated sensitive state before returning to the host operating system.

Sealed state on the user’s platform includes RU , RAS , K−1
U

, KAS , and KU−AS . Sealed state

on the AS’s platform includes, for each registered user Ui: RAS , RUi
, K−1

AS
, KUi

, KAS−Ui
, and

the registered users’ endorsement key certificates (true identities) CTPM−Ui
. It further includes

the entire set of private group signature keys K−1
GSK

[i] (i.e., keys for each registered member, and

unused keys that may be assigned to future members), and the group manager secret key K−1
GMSK

.

5.1 Evaluation

Our test machine is an off-the-shelf Lenovo Thinkpad T400 with a 2.53 GHz Intel Core 2 Duo

processor and 2 GB of RAM. It runs Ubuntu 8.10 with Linux kernel 2.6.24. Our current im-

plementation only utilizes one core, but a more sophisticated implementation could use multiple

CPUs to improve performance. We perform all of our experiments on this one machine, i.e., we

execute the SP, AS, and user code on the same machine. This configuration gives a conservative

estimate of the protocol’s end-to-end running time in a real system (excluding network latency),

since only one Flicker session can be running at a time.

5.2 Performance

Anonymous Communication Once a contract is established, no Flicker sessions are needed to

anonymously endorse messages by the user. We do not protect the user’s private group signing

key within Flicker because it is not required for the security of the system (although it is the

user’s responsibility to safeguard their keys)6. Consequently, the common-case operation of CAP

is efficient. On average, message endorsement takes 86 ms ± 0.4 ms on the user’s platform, and

message verification takes 87 ms ± 0.2 ms on the SP’s platform. Signature generation requires

calculations equivalent to 8 exponentiations and 2 bilinear map computations, and verification

takes 6 exponentiations and 3 computations of the bilinear map [6]. Figures 5 and 6 show that the

6It is straightforward to put the user’s private group key inside Flicker at the cost of invoking a Flicker session for

every sign operation.

18

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600 700 800

T
im

e
 (

m
s
)

Blacklist size

CAP
PEREA, K=15

BLAC

Figure 5: Comparison of anonymous communication time at the user for CAP, PEREA [25], and

BLAC [24]. Note that data points for BLAC and PEREA were extrapolated from figures in the

original publications.

endorsement time of CAP scales well with the size of the blacklist for both the user and SP. Table 1

compares the asymptotic and empirical performance measurements reported by prior works [24,

25].

Registration We have measured the end-to-end time it takes for a user to negotiate a contract us-

ing the registration protocol. Although the contract negotiation protocol takes O(|blacklist|) time

between the AS and SP to determine if the user is on the blacklist, the total time is largely domi-

nated by the time it takes to enter and resume from the Flicker execution environment, including

the time it takes to execute the TPM Seal and TPM Unseal commands. The blacklist would have

to be impractically large for this linear time component of the runtime to have any impact. In our

implementation, contract negotiation averages 7.99 ± 0.04 s. Although this may seem like a long

time, it is faster than the time it takes many users to enter their login information, and is needed

infrequently (only when a user registers to use a new service, or the SP changes its policies). The

majority of the time spent during registration is spent executing the TPM Unseal command. Thus,

by batching multiple requests together in a single Flicker session, the cost of unsealing data can

19

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800

T
im

e
 (

m
s
)

Blacklist size

CAP
PEREA, K=5

PEREA, K=30
BLAC

Figure 6: Comparison of anonymous communication time at the service provider (SP) for CAP,

PEREA [25], and BLAC [24]. Note that data points for BLAC were extrapolated from figures in

the original publication.

be amortized to achieve reasonable throughput. It may also be possible to replace the use of the

TPM’s (relatively slow) sealed storage with its (relatively fast) non-volatile RAM facilities [19],

though our current implementation does not support TPM NV RAM.

Breach Lastly, we also examine the end-to-end time for a SP to determine the identity of a

misbehaving user. Our implementation of the breach protocol takes 0.32± 0.09 s on average from

the time the SP detects a malicious message to the time it receives the user’s identity from the AS,

excluding the time to establish the secure channel as described in Section 3 for the breach protocol.

5.3 Trusted Computing Base (TCB)

CAP has a relatively small trusted computing base that needs to run in the Flicker isolated execu-

tion environment [19]. Table 2 shows the lines of code in the TCB for the user and the AS. The

majority of the code is the PBC cryptographic libraries for implementing group signatures, which

also depend on portions of the GNU Multiple Precision Arithmetic Library. RSA and the sym-

20

System Auth. (U) Auth. (SP) Auth. (U) Auth. (SP) Parameters

CAP 86 ms 87 ms O(1) O(1)

PEREA [25] 5900 ms 160 ms O(K|BL|)† O(K) KSP = 30, KU = 10

BLAC [24] 1450 ms 870 ms O(|BL|) O(|BL|)

Table 1: Comparison of authentication time between CAP and other systems for reasonable pa-

rameter choices (|BL| = 800). We do not include string comparisons in the asymptotic analysis.

Measurements for PEREA and BLAC are taken from the relevant works, as we were unable to ob-

tain the source code for these schemes [24,25]. †: The amount of computation needed for PEREA

is O(K∆|BL|), but the actual time required to authenticate is O(K|BL|) because of the risk of

timing attacks.

metric cryptographic functions, as well as the TPM driver and supporting code for TPM Seal and

TPM Unseal also make significant contributions to code size. The actual logic for CAP comprises

a relatively small overall portion of the TCB, suggesting that formal verification or manual audit

are realistic options. We also note that we have made no effort to strip unused content from the

cryptographic and mathematical libraries. Significant additional reductions in code size are readily

attainable. Even so, our entire TCB measures in a few tens of thousands of lines. This is orders of

magnitude less than the TCB for code running on top of a commodity operating system.

Component Language SLOC

Flicker: User .c/.S 953

Flicker: User .h 1590

Flicker: AS .c/.S 1173

Flicker: AS .h 1549

Flicker: Shared

Crypto / TPM .c 4134

Crypto / TPM .h 202

Crypto .c 2698

Crypto .h 1791

PBC .c/.S 11527

PBC .h 1160

GMP .c/.S 4859

GMP .h 5802

Table 2: Lines of code in the trusted computing base (TCB) of our implementation as measured by

sloccount [26].

21

6 Discussion

6.1 CAP as a Primitive

CAP provides a mechanism for users to anonymously sign messages, and thus it is a component in

a larger, overall protocol. For example, CAP may be run on top of TCP/IP, and as part of a larger

chat protocol.

We do not make anonymity guarantees about the complete protocol stack: only the CAP com-

ponent. For example, a user who types in their personal information to a chat service could cir-

cumvent any security otherwise offered from CAP. Similarly, the chat protocol may run CAP on

top of TCP/IP, which may allow chat servers to log IP addresses. Although CAP does not solve

the complete protocol stack problem, CAP can be used at each layer of the stack. For example,

Tor is a widely-used network-level service that is intended to help create network-level privacy

for higher-level services by preventing a network server from learning the IP address of a network

client. Tor could use CAP to enforce policies regarding proper use. A chat application could run

on top of Tor, and use CAP for anonymous communication to provide contractual anonymity for

chat sessions.

6.2 Security

There are several potential attacks against CAP. The first potential attack is that the AS could be

powered off or otherwise made unavailable. An AS that is unavailable cannot reveal the identity of

users who misbehave. There are several possible ways to counter this problem. First, an SP could

insist upon an AS that has been designed with high availability in mind, e.g., by having a network

of ASs that could each reveal a users identity. Attacks on availability are present in most protocols,

and can be addressed by standard methods in fault-tolerant computing and cryptography.

Another attack is that a malicious SP could require each user to obtain a unique contract policy

such that every user would be a member of a different group signature group. Although such a

user would remain anonymous, all of their requests would be linkable. All anonymity systems

offer weak unlinkability guarantees if some party can determine that the pool of active users is

small. Because CAP relies on trusted computing, it can solve this problem in a unique way: the

AS can reveal the number of active registered users upon request. Each user can then create her own

threshold for the number of active users. If the number of active users is below the user’s threshold,

then the service should not be used. To the best of our knowledge, TTP-less systems [7, 8, 24, 25]

are also vulnerable to this type of attack, but have no defense against it since there is not a neutral

third party that can attest to the number of active users.

We assume that the TPM on the AS is tamper-proof. However, real systems may only be able

to provide tamper-resistant TPM’s that are potentially vulnerable to physical attacks. CAP can be

extended to use standard threshold cryptography techniques [14] such that a coalition of ASes are

needed to reveal a misbehaving users identity. Threshold cryptography would distribute the secret

AS key for unlocking a user’s real identity across t servers where some number n of them need to

be compromised to successfully carry out this attack.

22

6.3 Threshold Policies

Some policies in our system may be inefficient to implement. For example, threshold policies

are commonly used to prevent spamming, e.g., users should not send more than k messages per

day. Our architecture provides message unlinkability, which by its very nature prevents the linking

needed for the SP to check threshold policies. (One could implement a threshold policy by having

the SP send a large set of messages to the AS, but doing so is clearly very inefficient.) We leave

contractual anonymity that allows for threshold policies as an open problem.

6.4 Verifier-local Revocation

In the group signature scheme we use there is a tradeoff between unlinkability and the runtime of

GS Verify in the size of the blacklist [6]. Verifying that a message signer is not on the blacklist can

be performed in O(1) time by the SP if the scheme allows for a small probability that messages

can be linked, and in O(|BL|) time for perfect unlinkability. For example, if |BL| = 1024, each

table entry in a precomputed lookup table is about 128 bytes long, and the SP devotes 128Mb to

create a lookup table, then there is about a 1/1024 chance that two messages sent by the same user

can be linked. In CAP, the SP, AS, and users will all know which scheme is used, and thus will

know whether there is a chance messages will be linkable. Paranoid users can always insist on

using services that rely on the O(|BL|) algorithm.

7 Related Work

CAP is similar to existing anonymous authentication systems. However, it should be noted that

these existing systems, unlike CAP, do not provide all of the properties required to achieve con-

tractual anonymity.

The existing anonymous authentication systems can be divided into several categories. Mem-

bers of the first class of anonymous authentication systems utilize a trusted third party (TTP)

server [10, 11]. In these schemes, users escrow their identities on a TTP, which is able to reveal

the identity of the user to the service provider (SP) if there is evidence of misbehavior. However,

a user has no assurance that the TTP will keep her identity secret if she behaves. Although TTPs

can use rich policies for defining malicious behavior, they lack any mechanism for proving that a

user’s identity is bound to those policies. While CAP’s accountability server (AS) is a third party

server, the physical server and its operator do not have to be trusted. Instead, the user and service

provider can remotely verify the code that the AS is running using trusted computing and choose

to trust it based on their knowledge of the code’s semantics.

Because of the risk of storing identities on a TTP that cannot be verified, researchers have

created other anonymous authentication systems that eliminate the need for TTPs. One class of

these TTP-less systems are those based on e-cash [3, 4, 21, 22]. In these schemes, users remain

anonymous unless they authenticate too many times. In e-cash systems, spending currency is

considered authentication, and so de-anonymization is important to thwart the double spending

of e-cash. These systems have been generalized into anonymous credential systems that provide

23

anonymity and unlinkability unless a user authenticates k or more times. Unfortunately, these

systems can only define policies in terms of thresholds, and so many types of misbehavior can not

be expressed. CAP is not restricted to enforcing any one type of policy.

The last class of systems are those that do not rely on a TTP but also allow for rich policies to

be enforced. The systems in this class allow for subjective judging, in which the SP can choose to

link a user’s authentications for any reason by adding her to a blacklist. Unfortunately, there is no

pre-negotiated anonymity policy, and so the user has no guarantees about when her access might be

revoked. Systems in this category also have scalability issues [7,8,24] or require considerable rate-

limiting to function [25]. Because an authentication must occur for each unlinkable message, these

systems are not practical for applications that send messages at moderate rates (106 unlinkable

messages a day). We show that CAP is efficient and scales well (see Section 5.1) in comparison

to PEREA [25] and BLAC [24], the most efficient of these schemes. Unlike PEREA and BLAC,

CAP allows users and service providers to negotiate the terms for the user’s anonymity such that a

user can not be blacklisted unless she breaks her contract.

We use trusted computing so that the AS can be verified to be running a known implementation

of the anonymity software. In particular, we base our work on Flicker [19]. Datta et al. [13] have

proven that dynamic root of trust systems like Flicker allow verifiers to make strong conclusions

about the software state on a machine performing an attestation.

8 Conclusion

We introduce the notion of contractual anonymity, a type of anonymous authentication that pro-

vides strong guarantees for the user and service provider, and present CAP, a protocol that achieves

the contractual anonymity properties. We utilize trusted computing to overcome the scalability

limitations in other anonymous systems. CAP scales well with respect to the size of the blacklist,

supports services with moderate message rates, and does not blindly rely on a trusted third party

that can deanonymize well-behaved users. Finally, we implement the end-to-end CAP system, and

show through our experiments that CAP is scalable and practical.

24

References

[1] Advanced Micro Devices. AMD64 Architecture Programmer’s Manual: Volume 2: System

Programming. December 2005. [Online]. Available: AMD Publication no. 24594 rev. 3.11.,

http://www.amd.com. [Accessed: May 1, 2009].

[2] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably

secure coalition-resistant group signature scheme. In Advances in Cryptology – CRYPTO,

volume 1880 of Lecture Notes in Computer Science, pages 255–270. Springer, 2000.

[3] Man Ho Au, Sherman S. M. Chow, and Willy Susilo. Short e-cash. In Progress in Cryp-

tology - INDOCRYPT, volume 3797 of Lecture Notes in Computer Science, pages 332–346.

Springer, 2005.

[4] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA. In Security and

Cryptography for Networks, volume 4116 of Lecture Notes in Computer Science, pages 111–

125. Springer, 2006.

[5] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Advances in

Cryptology – CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 41–55.

Springer, 2004.

[6] Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation. In ACM

Conference on Computer and Communications Security, pages 168–177. ACM, 2004.

[7] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In ACM

Conference on Computer and Communications Security, pages 132–145. ACM, 2004.

[8] Ernest F. Brickell and Jiangtao Li. Enhanced privacy ID: a direct anonymous attestation

scheme with enhanced revocation capabilities. In Workshop on Privacy in the Electronic

Society, pages 21–30. ACM, 2007.

[9] David Brumley, James Newsome, Dawn Song, Hao Wang, and Somesh Jha. Towards au-

tomatic generation of vulnerability-based signatures. In IEEE Symposium on Security and

Privacy, pages 2–16. IEEE Computer Society, 2006.

[10] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient

revocation of anonymous credentials. In Advances in Cryptology – CRYPTO, volume 2442

of Lecture Notes in Computer Science, pages 61–76. Springer, 2002.

[11] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from

bilinear maps. In Advances in Cryptology – CRYPTO, volume 3152 of Lecture Notes in

Computer Science, pages 56–72. Springer, 2004.

[12] Manuel Costa, Miguel Castro, Lidong Zhou, Lintao Zhang, and Marcus Peinado. Bouncer:

Securing software by blocking bad input. In ACM Symposium on Operating Systems Princi-

ples, pages 117–130. ACM, 2007.

25

http://www.amd.com

[13] Anupam Datta, Jason Franklin, Deepak Garg, and Dilsun Kaynar. A logic of secure systems

and its applications to trusted computing. In IEEE Symposium on Security and Privacy. IEEE

Computer Society, 2009.

[14] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Advances in Cryptology –

CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 307–315. Springer, 1989.

[15] John R. Douceur. The sybil attack. In International Workshop on Peer-To-Peer Systems,

volume 2429 of Lecture Notes in Computer Science, pages 251–260. Springer, 2002.

[16] D. Grawrock. The Intel Safer Computing Initiative: Building Blocks for Trusted Computing.

Intel Press, 2006.

[17] Intel Corporation. Trusted eXecution Technology – measured launched envi-

ronment developer’s guide. [Online]. Available: Document number 315168005,

http://www.intel.com. [Accessed: May 1, 2009], June 2008.

[18] Ben Lynn, Hovav Shacham, and Joe Cooley. PBC sig group signature library. [On-

line]. Available: http://www.crypto.stanford.edu/pbc/sig. [Accessed: May

1, 2009].

[19] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi Isozaki.

Flicker: An execution infrastructure for TCB minimization. In ACM European Conference

in Computer Systems, pages 315–328. ACM, April 2008.

[20] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.

CRC Press, 1997.

[21] Lan Nguyen and Reihaneh Safavi-Naini. Dynamic k-times anonymous authentication. In

Applied Cryptography and Network Security, volume 3531 of Lecture Notes in Computer

Science, pages 318–333. Springer, 2005.

[22] Isamu Teranishi and Kazue Sako. k-times anonymous authentication with a constant proving

cost. In Public Key Cryptography, volume 3958 of Lecture Notes in Computer Science, pages

525–542. Springer, 2006.

[23] Trusted Computing Group. Trusted platform module main specification, Part 1: Design prin-

ciples, Part 2: TPM structures, Part 3: Commands. [Online] Available: Version 1.2, Revision

103. http://www.trustedcomputinggroup.org. [Accessed: May 1, 2009], July

2007.

[24] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. Blacklistable anonymous

credentials: blocking misbehaving users without ttps. In ACM Conference on Computer and

Communications Security, pages 72–81. ACM, 2007.

26

http://www.intel.com
http://www.crypto.stanford.edu/pbc/sig
http://www.trustedcomputinggroup.org

[25] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. PEREA: towards practical

TTP-free revocation in anonymous authentication. In ACM Conference on Computer and

Communications security, pages 333–344. ACM, 2008.

[26] David A. Wheeler. Linux kernel 2.6: It’s worth more! [Online]. Available:

http://www.dwheeler.com/essays/linux-kernel-cost.html. [Accessed:

May 1, 2009].

[27] XySSL Developers. XySSL cryptographic library. [Online]. Available:

http://polarssl.org. [Accessed: May 1, 2009].

27

http://www.dwheeler.com/essays/linux-kernel-cost.html
http://polarssl.org

	1 Introduction
	2 Design Overview
	2.1 CAP Overview
	2.2 Contract Policies
	2.3 Anonymity and Group Signatures
	2.4 Trusted Computing and Contract Enforcement

	3 Architecture
	3.1 Setup
	3.2 Operation of the System
	3.2.1 Establishing a Secure Channel
	3.2.2 Protocol Phases

	4 Features
	5 Implementation
	5.1 Evaluation
	5.2 Performance
	5.3 Trusted Computing Base (TCB)

	6 Discussion
	6.1 CAP as a Primitive
	6.2 Security
	6.3 Threshold Policies
	6.4 Verifier-local Revocation

	7 Related Work
	8 Conclusion

