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Abstract

We present a physics-based method for identifying native configurations of protein-protein inter-
actions amongst a set of nearly native decoys (< 2.0 Å Cα RMSD to the native structure) using
a fast new method for performing free energy calculations. The method uses Markov Random
Fields to encode the Boltzmann distribution for a given complex, and Generalized Belief Propa-
gation to perform the free energy calculation. Our method is fast, running in a few minutes on a
single-processor workstation, making it an attractive alternative to free-energy calculations based
molecular dynamics and Monte Carlo simulations, which can require hours or days on multiproces-
sor machines. The method is also accurate; in an experiment involving 9 targets with an average
of 8 nearly native decoys, our method ranks the native structure number one 67% of the time, and
in the top three for the remaining cases.





1 Introduction
Protein structure prediction is among the most challenging problems in molecular modeling. There
are two primary sub-problems associated with structure prediction. The first problem concerns
searching the space of possible configurations. The second problem involves scoring each config-
uration for the purpose of selecting the “best” structure. While significant progress has been made
over the past decade towards addressing both problems, it is fair to say that the protein structure
prediction problem remains an open problem.

The method presented in this paper addresses the problem of scoring putative structures of
protein-protein complexes. Specifically, we present a method capable of identifying the native
structure of a protein-protein complex among a set of nearly-native decoys. In the protein folding
literature, decoys are generally defined to be structures that are structurally different than the native
configuration, but are nevertheless indistinguishable from the native configuration in terms of their
internal energies. We will define the phrase “nearly-native decoy”, to mean a decoy that is within
< 2.0 Å Cα RMSD of the native structure. Distinguishing native structures from nearly native
structures is a particularly challenging task; indeed it has been conjectured that the class of energy
functions used in this paper (those involving sums of pairwise interactions) cannot distinguish
native structures from nearly native decoys [1, 18].

Our approach differs from previous work in that it involves the calculation of a physics-based
free energy, as opposed to a potential energy or a statical-based free-energy. The free energy of
a system is defined as G = E − TS, where E is the enthalpy of the system, T is the absolute
temperature, and S is the entropy of the system. Existing scoring functions fall into one of two
categories. The first class essentially computes the enthalpy (i.e., E), which includes contributions
due to hydrogen bonds, electrostatic interactions, etc. Such approaches are effectively modeling the
system at 0 Kelvin. The second class includes statistical potentials which are derived from analy-
ses of the contents of the Protein Data Bank (PDB). Our approach, in contrast, involves encoding
the Boltzmann distribution over structures using Markov Random Fields (MRFs) and performing
free energy calculations (at any temperature) using Generalized Belief Propagation (GBP). Tradi-
tional methods for performing free energy calculations invoke either molecular dynamics or Monte
Carlo simulations, which can take many hours or days on multi-process machines. GBP-based free
energy calculations, on the other hand, can be performed in minutes on a single processor work-
station, suggesting it is well-suited for large-scale proteomic studies.

We show that our method is capable of discerning the subtle differences between the native
structure and each decoy by examining the differences in the entropic contributions to the free
energies of each structure. In particular, we find that the native structure has the highest entropy
(and thus the lowest free energy) 67% of the time, and within the top three highest entropies 100%
of the time. These results shed new light onto the previously cited conjecture. If the conjecture
is true, one likely explanation is that entropy contributions become significant when structures are
similar. Our findings are consistent with this hypothesis.
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Figure 1: (a) Complex of pig alpha-amylase and camel amy09 VHH variable domain. The interface
region is outlined. (b) Part of the Markov Random Field induced by the outlined residues. Each
square (aka plate) contains 2 random variables, B and R, representing the configuration of the
backbone atoms and side-chain atoms for that residue, respectively. Upper left corner of each
plate indicates the chain. Upper right corner indicates the residue number. Edges between random
variables (and plates) indicate the physical interactions being modeling by the MRF. Note, the
complete MRF for this complex has 613 plates, one for each residue in the complex.

2 Modeling Protein Complexes with MRFs
Markov Random Fields are a subclass of probabilistic graphical models (PGM). Probabilistic
graphical models comprise a family of techniques for representing and computing over com-
plex multivariate probability distributions. Markov Random Fields are particularly well suited
for physics-based modeling because, unlike some other kinds of PGMs, they are capable of mod-
eling arbitrary interactions among a set of random variables. In the context of molecular modeling,
this means that MRFs can model long-range (i.e., non-bonded) interactions.

A MRF for a complex consisting of n atoms has a total of n random variables. However, in
order to simplify the explanation of our model and its visualization, we will group atoms together
by type (either backbone or side-chain). Thus all random variables are assumed to vector-valued.

In what follows, random variables are represented using upper case variables, sets of random
variables appear in bold face, while lower case variables represent specific values that the random
variables can assume. For example, if a particular complex consists of chains α, β, γ, ..., we will
denote the configuration of all the backbone atoms of chain α as the random variable Bα, and the
configuration of all the side chain atoms for that chain as the random variable Rα. Bi

α (resp. Ri
α) is

the random variable representing the backbone (resp. side-chain) configuration of the ith residue of
chain α, and bi

α (resp. ri
α) represents a particular configuration of the backbone (resp. side-chain)

of the ith residue in chain α.
Let X = {Bα,Rα,Bβ,Rβ, ...} be the random variable representing the phase space of a com-
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plex consisting of chains α, β, etc. Each B and R can be encoded in terms of either Cartesian
or internal coordinates. A MRF is a compact encoding of P (X) as an undirected graph and a
set of potential functions (Fig. 1). More formally, a MRF, M , is a pair M = (G, Φ) where
G = (V, E) is an undirected graph, and Φ is a set of potential functions over the maximal cliques
in G, C(G). The graph’s vertex set V = {V1, V2, ..., Vn} is isomorphic to the set of variables (i.e.,
X) and we will make no distinction between the ith vertex and the ith random variable. Each edge
e = {u, v} ∈ E, represents a dependency between random variables u ∈ V and v ∈ V . Each
potential, φc, is a mapping from the possible joint assignments of the elements of c to the positive
reals.

Figure 1-B depicts a small portion of the MRF encoding the pig alpha-amylase and camel
amy09 VHH variable domain complex. Here, we have grouped the random variables for each
residue to simplify the visualization. There is one plate for each residue, and each plate con-
tains the B and R variables for that residue. Edges between each B and R indicate that these
random variables are dependent. Edges between plates i and j are a short-hand for the set of
edges: (Bi, Bj),(Bi, Rj),(Ri, Bj), and (Ri, Rj). The figure only shows ten plates corresponding to
ten residues in the interface region of the complex. The full MRF, as used in our experiments,
contains one such plate per residue in the complex being studied.

A MRF encodes the following joint probability distribution:

P (X = x) =
1

Z
exp

( ∑
c∈C(G)

φc(xc)

)
(1)

where xc is the state of the variables in clique c, and Z is the partition function:

Z =
∑
x∈X

exp

( ∑
c∈C(G)

φc(xc)

)
. (2)

Note that it is not necessary for the potential functions to be probability density functions.
Naturally, the probability distribution we are interested in is the one corresponding to Boltz-

mann’s law:

PB(x) =
1

Z(T)
exp

(
−E(x)

kBT

)
(3)

where Z(T ) is a temperature-sensitive partition function, E(x) is the potential energy of a partic-
ular configuration, x, kB is Boltzmann’s constant, and T is the temperature in degrees Kelvin. We
can ensure that the MRF follows this distribution by defining the potential functions in terms of
Boltzmann factors:

φc(xc) ≡ exp

(
−E(xc)

kBT

)
(4)

where the potential energy E can be computed using any molecular mechanics or statistical poten-
tial.
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This completely defines the MRF. In principle, the graph G should be fully connected, reflecting
the fact that each atom interacts with every other atom in the system. Unfortunately, the complexity
of the algorithm for performing free energy calculations is dependent on the size of the cliques in
the graph which is, of course, a function of the number of edges in the graph. For this reason,
we make a common simplifying assumption and restrict the set of edges in the graph to those
involving atoms close enough to make a non-negligible contribution to the total energy. Recall
that our task is to score a set of given structures. We can therefore reduce the number of edges
by applying a distance threshold. That is, only those atoms that are less than some pre-defined
distance apart in the given structure are connected by an edge. The topology of the graph thus
corresponds to the coarse-grained topological features of the complex. An alternative strategy is
to define the edges based on the strength of interaction between particles. Using this method one
can, for example, include edges between distant strongly charged atoms in an effort to better model
long-range electrostatic interactions. Regardless of which criteria are used to select edges, we note
that the edges do not prevent the complex from changing configurations; the edges merely dictate
which interactions will be modeled.

We note that a MRF-based approach to representing molecules is compatible with traditional
representations, like the Protein Data Bank (PDB) format. As outlined above, a PDB file can be
used to construct the MRF by using it to define the set of edges. It is also possible to select one (or
more) configurations encoded in the MRF and then construct and output a PDB formatted file or
any other standard format.

3 Free Energy Calculations with Markov Random Fields
The Helmholtz free energy, F , of a system is a thermodynamic quantity defined as:

F = − ln Z. (5)

for a closed system at constant temperature. It is minimized when the system is at equilibrium.
Thus, we will assume that our complexes are at equilibrium.

There has been a considerable amount of work by physicists at developing various approxima-
tions to estimate the value of Eq. 5 (e.g., [2, 9, 13, 14]). While the properties of these approxi-
mations have been extensively studied, there have been comparatively few algorithms for actually
computing these approximations. Recently, however, it has been shown that a family of inference
algorithms are mathematically equivalent to certain approximations of Eq. 5 [24]. In particular,
Pearl’s Belief Propagation algorithm [16] is equivalent to the Bethe approximation [2] of F . This
discovery led to the development of the Generalized Belief Propagation (GBP) algorithm [23]
which is equivalent to the Kikuchi approximation [9] to F . The Kikuchi approximation is a better
approximation than the Bethe approximation [24], and GBP has been shown to be much more
efficient than previous algorithms for computing the Kikuchi approximation [17].

BP and GBP adopt a variational approach. Consider a computationally tractable probability
distribution, Q(X), that approximates the computationally intractable distribution P (X). We define
the variational, or Gibbs free energy, G, as follows:
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G = U(Q)− TS(Q) (6)

where

U(Q) =
∑

x

Q(x)E(x) (7)

is the variational average energy, and

S(Q) = −
∑

x

Q(x) ln Q(x) (8)

is the variational entropy.
It follows from the definitions that

G = F + D(Q||P ) (9)

where

D(Q||P ) ≡
∑

x

Q(x) ln
Q(x)

P (x)
(10)

is the Kullback-Liebler divergence, or relative entropy between P (X) and Q(X). It can be shown
that the Kullback-Liebler divergence is always non-negative, and zero only when P (X) = Q(X).
Thus, G ≥ F . That is, the Gibbs free energy is an upper bound on the Helmholtz free energy.

Notice that any algorithm which minimizes G is also an exact method for computing both P (X)
and F . Belief Propagation and GBP are algorithms for minimizing G. The term ‘belief’ in both
BP and GBP refers to the marginal distributions of Q(X) that these algorithms compute. This is
the essential idea behind MRF-based free energy calculations. Of course, these same marginals
can also be used to identify lowest energy (i.e., highest probability) configurations (e.g., [22]).

3.1 MRF-based Decoy Detection
Our hypothesis is that the native structure can be distinguished from nearly native decoys by con-
sidering the free energy of complex (as opposed to the potential energy). Decoys are generally
defined as having similar or identical potential energies to the native structure. Thus, if our hy-
pothesis is correct, the native structure is the one with the highest entropy. This suggests a straight-
forward approach to identifying the native structure — compute the free energy of each complex
using GBP and then rank structures by entropy. In Section 5 we describe the results of a set of
experiments designed to test our hypothesis.
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4 Related Work
Probabilistic graphical models have been used to address a number of problems in structural bi-
ology, primarily in the area of secondary structure prediction (e.g., [4]). Applications of graph-
ical models to tertiary structure are generally limited to applications of Hidden Markov Models
(HMMs) (e.g., [8]). HMMs make severe independence assumptions to allow for efficient learn-
ing and inference, the result of which is that long-range interactions cannot be modeled. Markov
Random Field-based molecular modeling was first introduced in 2002 when Yanover and Weiss
used it to perform side-chain placement for fixed backbones [22]. Subsequent applications of MRF
modeling include: force-field parameterizations [21], constructing protein backbone traces [6] and
all-atom models [5] from electron density maps, protein sequence design [20], and fold recog-
nition/threading [10]. Recently [7], we have applied MRFs for the specific task of free energy
calculations. In that work we showed that the quantitative predictions concerning mutants and
∆∆G are well-correlated with experimental values. We also showed that free-energy calculations
are sufficient for identifying native structures for individual proteins. In this paper, we extend that
work to decoy detection for nearly-native protein complexes.

5 Results
Our hypothesis was that free energy calculations can be used to distinguish native from nearly
native structures (Sec. 3.1). If this hypothesis is true, then the native structure will be at the top
of a list of structures ranked by decreasing entropy. We tested this hypothesis by assembling a
number of data sets, performing free energy calculations with GBP, and ranking structures in order
of decreasing entropy.

5.1 Data and Assumptions
Data were obtained from the CAPRI (CRITICAL ASSESSMENT OF PREDICTION OF INTERAC-
TIONS) website [15] and a collection from the Vakser lab [19]. The criterion for inclusion were
as follows: a) structure data were available for both the native structure and decoys, b) the decoys
have 100% sequence identity to the native structure, c) the existence of one or more decoys with
≤ 2.0 Å Cα RMSD to the native structure, d) no HETATM records (except waters), and e) no
missing backbone atoms. Using these criteria, a total of 9 targets were studied. There were an
average of 8 decoys for each of the 9 targets.

The data for each target includes the structure for the native conformation and one or more
decoy conformations. For each target, Ti = {t1, t2, ..., tn}, a separate MRF was constructed,
{M1, M2, ...,Mn}, in the manner outlined in Section 2. The set of edges in the graph for each Mi

were between those atoms that are within 8.0 Å of each other in the corresponding ti.
In principle, MRFs are capable of modeling full conformational flexibility. Our implementa-

tion, however, makes two simplifying assumptions. First, we model the backbones of each chain
within each complex, ti, as being rigid. Using the chain rule of probability, the probability of any
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Description # Residues # Structures Rank of Native Str.
CAPRI target 6 [15] 613 8 1
CAPRI target 7 [15] 455 6 1

CAPRI target 12 [15] 193 19 2
CAPRI target 14 [15] 581 17 1
CAPRI target 19 [15] 533 8 1

1a2p-1a19 [19] 197 5 1
1sup-2ci2 [19] 340 3 2
2ptn-4pti [19] 281 4 3

5cha-2ovo [19] 292 4 1

Table 1: Data and Results Our experiments were performed on data drawn from two sources (see
text for details). Column 1 describes the data set. Column 2 lists the total number of residues in the
complex. Column 3 is the size of the data set (number of decoys + the native structure). Column
4 is the rank of the native structure, as determined by our method. The native structure is ranked
number one in 6 out of 9 targets.

particular configuration of the complex, x, can be factored as:

P (X = x|Θ) = P(B = b)P(R = r|B = b,Θ)

, where Θ represents any parameters used to describe this model, including sequence information,
temperature etc. Under our assumption of a rigid backbone, P (B = b) = 1. We do, however,
consider the flexibility of the side chains of each chain in the complex. That is, we rank structures
based on the conditional distribution P (R|B = b,Θ). Second, we model the flexibility of the
side chains using a discrete rotamer library. In particular, we used a backbone-dependent rotamer
library [11]. That rotamer library defines prior probabilities on each rotameric configuration. These
priors were incorporated into the MRF.

Our potentials were defined using the force-field used in the side-chain placement prediction
program SCWRL [3], which consists of a linear approximation to the repulsive van der Waals force.
The remaining parameter of our method, temperature, was set to 315 K. Free energy calculations
were performed using GBP implemented in the Java programming language and run on a single
processor Linux 3.2GHz workstation. Each free energy calculation required 5 minutes or less.

The structures were ranked in terms of decreasing free energy as calculated by GBP. The results
are shown in Table 1. The native structure is ranked number one for 6 out of 9 targets (67%
accuracy). In the remaining 3 targets, the native structure was ranked number either two or three.
The predicted free energy and the RMSD were not significantly correlated (corr. coef. = 0.3). We
note that while the present study does not consider the problem of nearly native structures among
more distant decoys, as is more natural in the context of structure prediction, we have demonstrated
previously [7] that our method is capable of performing that task with high accuracy (84%). We
are presently conducting a more comprehensive test of our method for protein complexes.

7



6 Discussion and Conclusion
Free energy is a thermodynamic quantity that either directly or indirectly governs many of the
physical properties of interest to scientists. Consequently, one of the most fundamental and im-
portant tasks in molecular modeling is the calculation of free energies. Unfortunately, traditional
methods for performing free energy calculations, based on either molecular dynamics (MD) or
Monte Carlo (MC) simulations, are expensive, requiring hours or days on multi-processor ma-
chines. MRF-based free energy calculations are potentially an attractive alternative to MD and
MC-based methods because they are orders of magnitude faster. Our experiments required several
minutes on single processor workstation using un-optimized codes.

More importantly, our results suggest that MRF-based free energy calculations may be suf-
ficiently accurate to distinguish native from nearly native structures of protein complexes. This
represents a new strategy for decoy detection; existing methods score structures using either a
potential energy function or a statistical approximation of the free energy. One of the most inter-
esting aspects of our results is that they are obtained making severe simplifying assumptions (i.e.,
rigid backbone and discrete side-chain configurations) and an extremely simple energy potential.
The use of the simple potential is especially interesting because it has previously been conjectured
[1, 18] that such potentials are incapable of distinguishing native from nearly native structures.
We believe that highly similar structures may be best evaluated in terms of their free energy and/or
entropy. The computational efficiency of GBP makes it well suited to performing these free energy
calculations.

We are presently performing decoy detections on a much larger set of benchmark protein com-
plex decoys [12]. Early results are promising and consistent with those presented here. For exam-
ple, our method ranks the native structure of a multi chain complex (PDB ID: 1AHW) number 1
among a set of 58 nearly native decoys. However, on a different complex (PDB ID: 1AKJ), our
method ranks the native structure last among 8 nearly native decoys. Closer inspection revealed
that in this case, the native structure has one fewer residues than the decoy structures. The free
energies of structures with different sequences are not immediately comparable in the context of
decoy detection. This sensitivity to the number of residues is not unexpected, but it does reveal
that our approach is brittle when it comes to the precise details of the structures being compared.

There are several additional limitations of our existing implementation of MRF-based free en-
ergy calculations. First, our method allows only limited flexibility. In previous work [7], we have
demonstrated that MRF-based free energy calculations are well-correlated with experimental val-
ues, but the absolute magnitude of the predictions can be very different than experimental values.
The limited flexibility of our approach is likely one source of error in our calculations, and we are
presently working on the development of new algorithms that allow full flexibility.

Acknowledgments
This research was supported by a U.S. Department of Energy Career Award (DE-FG02-05ER25696),
and a Pittsburgh Life-Sciences Greenhouse Young Pioneer Award to C.J.L.

8



References
[1] M. R. Betancourt and D. Thirumalai. Pair potentials for protein folding: choice of refer-

ence states and sensitivity of predicted native states to variations in the interaction schemes.
Protein Science, 8:361–369, 1999.

[2] H. A. Bethe. Statistical theory of superlattices. Proc. Roy. Soc. London A, 150:552–575,
1935.

[3] A. Canutescu, A. A. Shelenkov, and R. L. Dunbrack Jr. A graph theory algorithm for protein
side-chain prediction. Protein Science, 12:2001–2014, 2003.

[4] W. Chu, Z. Ghahramani, and D. Wild. A graphical model for protein secondary structure
prediction. Proc. 21st Ann. Intl. Conf. on Machine Learning (ICML) Banff, Canada), 2004.

[5] F. DiMaio, A. Soni, G. N Jr. Phillips, and J.W. Shavlik. Creating all-atom protein models
from electron-density maps using particle-filtering methods. Bioinformatics, in press, 2007.

[6] Frank Dimaio, Jude Shavlik, and George N. Phillips. A probabilistic approach to protein
backbone tracing in electron density maps. Bioinformatics, 22(14):e81–e89, 2006.

[7] H. Kamisetty, E.P. Xing, and C.J. Langmead. Free Energy Estimates of All-atom Protein
Structures Using Generalized Belief Propagation. In Proc. of the 7th Ann. Intl. Conf. on
Research in Comput. Biol. (RECOMB), pages 366–380, 2007.

[8] K. Karplus, R. Karchin, J. Draper, J. Casper, Y. (Mandel-Gutfreund), M. Diekhans, and
R. Hughey. Combining local-structure, fold-recognition, and new-fold methods for protein
structure prediction. Proteins, 53:491–6, 2003.

[9] R. Kikuchi. A theory of cooperative phenomena. Phys. Rev, 81:988–1003, 1951.

[10] Y. Liu, J. Carbonell, P. Weigele, and V. Gopalakrishna. Segmentation conditional random
fields (scrfs): A new approach for protein fold recognition. Proc. of the 9th Ann. Intl. Conf.
on Comput. Biol. (RECOMB) Boston, MA, May 14-18 ), pages 408–422, 2005.

[11] S.C. Lovell, J.M. Word, J.S. Richardson, and D.C. Richardson. The Penultimate Rotamer
Library. Structure Function and Genetics, 40:389–408, 2000.

[12] Mintseris, J. and Wiehe, K. and Pierce, B. and Anderson, R. and Chen, R. and Janin, J. and
Weng, Z. Protein-Protein Docking Benchmark 2.0: an Update. Proteins, 60(2):214–6, 2005.

[13] T. Morita. Cluster variation method for non-uniform ising and heisenberg models and spin-
pair correlation function. Prog. Theor. Phys., 85:243 – 255, 1991.

[14] T. Morita, T. M. Suzuki, K. Wada, and M. Kaburagi. Foundations and applications of cluster
variation method and path probability method. Prog. Theor. Phys. Supplement, 115, 1994.

9



[15] National Institute of General Medical Sciences. CAPRI: Critical Assessment of PRediction
of Interactions, 2007. URL: http://capri.ebi.ac.uk/capri.html.

[16] Judea Pearl. Fusion, propagation, and structuring in belief networks. Artif. Intell., 29(3):241–
288, 1986.

[17] A. Pelizzola. Cluster variation method in statistical physics and probabilistic graphical mod-
els. J. phys. A : math. gen, 38:R309–R339, 2005.

[18] R. Tobi, D. Elber. Distance-dependent, pair potential for protein folding: Results from linear
optimization. Proteins: Structure, Function and Genetics, 41:40–46, 2000.

[19] Vakser, I.A. Database of protein-protein decoys for the validation of energy functions and
refinement procedures. http://www.bioinformatics.ku.edu/files/vakser/decoys/database.html.

[20] C. Yanover, T. Meltzer, and Y. Weiss. Linear programming relaxations and belief propagation
– an empirical study. Jourmal of Machine Learning Research, 7:1887–1907, 2006.

[21] C. Yanover, O. Schueler-Furman, and Y. Weiss. Minimizing and Learning Energy Functions
for Side-Chain Prediction. In Proc. of the 7th Ann. Intl. Conf. on Research in Comput. Biol.
(RECOMB), pages 381–395, 2007.

[22] Yanover, C. and Weiss, Y. Approximate Inference and Protein Folding. NIPS, pages 84–86,
2002.

[23] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Generalized belief propagation. Advances in
Neural Information Processing Systems (NIPS), 13:689–695, 2000.

[24] J.S. Yedidia, W.T. Freeman, and Weiss Y. Constructing free-energy approximations and gen-
eralized belief propagation algorithms. IEEE Transactions on Information Theory, 51:2282–
2312, 2005.

10


	1 Introduction
	2 Modeling Protein Complexes with MRFs
	3 Free Energy Calculations with Markov Random Fields
	3.1 MRF-based Decoy Detection

	4 Related Work
	5 Results
	5.1 Data and Assumptions

	6 Discussion and Conclusion

