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Abstract

This thesis develops a general and powerful statistical framework éoattomatic detection
of spatial and space-time clusters. Our “generalized spatial scan”"virakés a flexible, model-
based framework for accurate and computationally efficient clustertdmtes diverse application
domains. Through the development of the “fast spatial scan” algorittdmeaw Bayesian cluster
detection methods, we can now detect clusters hundreds or thousamefaster than previous
approaches. More timely detection of emerging clusters (with high detectivar@nd low false
positive rates) was made possible by development of “expectation-bssaa statistics, which
learn baseline models from past data then detect regions that are ansmaien these expec-
tations. These cluster detection methods were applied to two real-world prafmains: the
early detection of emerging disease epidemics, and the detection of clustartvity in fMRI
brain imaging data. One major contribution of this work is the development of$igesgstem for
nationwide disease surveillance, currently used in daily practice byadestate and local health
departments. This system receives data (including emergency deparéoamnts and medication
sales) from over 20,000 stores and hospitals nationwide, automaticallydeteerging clusters of
disease, and reports these results to public health officials. Througkpettive case studies and
semi-synthetic testing, we have shown that our system can detect ostrgaiticantly faster than
previous disease surveillance methods.
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Chapter 1

Spatial cluster detection

1.1 Introduction

This thesis develops new statistical and computational methods for the autoetatitiah of spatial
and space-time clusters. The basic goal of cluster detection is to automatiedbt tegions of
space that are “anomalous,” “unexpected,” or otherwise “interestibese anomalous spatial
patterns could correspond to a variety of phenomena, depending opgheation domain: we
may want to detect outbreaks of disease, clusters of stars or galasa@s timors, deposits of
precious metals, or a multitude of other possibilities.

This work will focus on one very general formulation of the cluster detagtimblem: find-
ing regions of space where the values of some quantity (the “count”jgmdisantly higher than
expected, given some other “baseline” information. For example, in thiicghdalth domain, we
may wish to detect spatial clusters of disease cases (or some relatedablsguantity, such as
hospital visits or medication sales) that are indicative of an emerging epid®mianain emphasis
in this domain is prospective disease surveillance, with the goal of detectiagyang outbreaks of
disease as early as possible. In the brain imaging domain, we wish to detgetthat correspond
to regions of increased or decreased brain activity. This could betasistect brain regions that
have been damaged by strokes or degenerative diseases, or toctlettesrs of brain activity that
allow us to differentiate between cognitive tasks: for example, we couldreically determine
whether a person is reading a book or watching a movie, simply by monitongdmal magnetic
resonance imaging (fMRI) images of their brain activity. In both of thegdieations, we have two
main tasks. First, we must identify the locations, shapes, sizes, and othargtars of potential
clusters, i.e. pinpointing and characterizing those spatial areas whiatoateelevant. Second, we
must determine whether each of these anomalous regions is due to a genedesiant cluster,
or simply a chance occurrence. In many application domains, both falg#e/@egincorrectly re-
porting a cluster) and false negatives (failing to report a true clustee) high costs: thus we want
to avoid detecting insignificant or irrelevant clusters, while maintaining highepto detect any
relevant clusters that do occur.

In other words, the goal of cluster detection is to answer two essentiatigug is anything
interesting (or unexpected) going on, and if so, where? This task daroken down into two parts:
first figuring out what we expect to see, then determining which regiewmt significantly from
our expectations. In our typical formulation of the cluster detection probharare given a set of
pointss; in space, where each poist has an associatambuntc; andbaselineb;. Both “counts”

9



10 CHAPTER 1. SPATIAL CLUSTER DETECTION

and “baselines” can be broadly defined, depending on the applicatiaidander consideration.
For example, in the public health domain, the caymhay represent the number of disease cases in
a given area, while the baseline might be the “at-risk” population of that akernatively, rather
than being given the baselines in advance, we might have to infer thesinbadrom historical
data. In any case, our main goal is to detect spatial regiof@ach containing a set of one or more
locationss;) such that the counts insideare significantly higher than expected, given the baselines.
For example, in the disease surveillance domain, these may correspordsmbhigh disease rate
or high relative risk. This formulation allows us to be very flexible in how clisstre defined:
we can choose domain-appropriate quantities for the count and bas#lowse a set of regions
to search over, and incorporate either very general or very speuifitels of clusters and of the
baseline data as appropriate for the given domain. Though we haveefbbiere on finding spatial
and spatio-temporal overdensities (higher than expected counts in@ps&ce-time data), many
other types of spatial patterns (underdensities, overdispersion, |spadidemporal correlations,
etc.) may also be detectable using this general framework.

In addition to discovering these patterns, we wish to determine whether eetpattern isig-
nificantor if it is likely to have occurred by chance. To do so, we can either conthatdatistical
significance(p-value) of potential clusters, or in a Bayesian setting, we can computeosierior
probability of each cluster. In each of these cases, our method workgpigthesis testingve test
the null hypothesig/j, of no clusters against a set of alternative hypothésgs'), each represent-
ing a cluster in some regiofi, and find regions where an alternative hypothesis is likely (e.g. the
null hypothesis is rejected, or has low posterior probability). The modetseafull and alternative
hypotheses are highly dependent on the application domain under aatisidebut our methods
are sufficiently flexible to be used for a wide variety of such models. Wedllpicreate models
based on careful study of the application domain, derive the resultimg &auction (e.g. likelihood
ratio of the alternative vs. null hypothesis), and find the “most significagions (the regions with
the highest values of this score function). We then use techniques suahdomization testing to
compute the statistical significance of each such region, allowing us to telhwainéclikely to be
“true” clusters and which are likely to have occurred by chance. Bygusifficiently rich models of
a domain, we can also distinguish between various causes of a statisticalfigaigrcluster in that
domain, enabling us to detect clusters due to “relevant” causes (suctligsage outbreak) while
eliminating clusters due to noisy data or a variety of other “irrelevant” factors

The cluster detection problem presents both statistical and computatioit@hgesa. The statis-
tical challenge is to accurately detect relevant clusters, while keepirgdatstives to a minimum.
The computational challenge is to detect these clusters very rapidly evemagsive real-world
datasets. To deal with these challenges, we have developed both neticatatisthods, for better
and more accurate cluster detection, and new algorithmic techniquespidarad efficient detec-
tion of clusters. By integrating these novel spatial statistical methods areptetsal algorithms, we
have created a powerful and general framework for automatic clustectibn. Most importantly,
this framework is sufficiently general to be usable for a wide variety ofiegons (ranging from
medicine and public health to astrophysics and neuroscience), andesul§idlexible to be eas-
ily adapted to new application domains. Here we apply our framework to twoadyitieal-world
problems: the early detection of emerging disease epidemics, enabling ipiorepademiological
response and thus potentially saving many lives, and the detection of slusteedical images, for
purposes such as tumor detection and the monitoring of brain activity.
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In the remainder of this chapter, | discuss the problem of cluster detectioorna detail, and
motivate the statistical methodology that will be used to solve this problem. In 8dcpl present
several concrete examples of the cluster detection problem, focusingplioadions to disease
surveillance and medical imaging. In Section 1.3, | compare cluster detectietated problems
in machine learning and data mining, including clustering and anomaly deteati®&ction 1.4, |
discuss the various issues that arise in cluster detection, and motivatetbhermsthods based on
the spatial scan statisti§78]. In Section 1.5, | present the spatial scan statistic in more detail, and
discuss some limitations of this approach. Finally, in Section 1.6, | describe thecordributions
of the thesis, and outline the structure of the remainder of this work. Patisathapter have been
adapted from our chapter in théandbook of Biosurveillancg 15]; | wish to thank my co-author
Andrew Moore and editor Michael Wagner for their contributions to thiskwor

1.2 Applications of cluster detection

Our discussion of cluster detection will focus primarily on two application dosaiisease surveil-
lance and medical imaging. These domains are discussed in the followirgcsohs, and consid-
ered in more detail in Chapters 6 and 7 respectively. Cluster detection issdfd in a variety
of other application domains, ranging from astrophysics to forest egofemy example, in the as-
trophysical domain, we might want to find a region of space that contaiighahthan expected
density of stars or galaxies with a given set of properties. Similarly, inrstaeology, we might
want to find areas with clusters of certain types of trees, or other pladtaramals. In these do-
mains, we might use baseline information such as the total population of steee®respectively,
adjusted for relevant covariates. Some other possible applications incligedtessing of radar
traces (e.g. for military surveillance and reconnaissance) and the detett&rrorist groups from
social network data. Many other possible application domains are disclgs€ulidorff [80], and
we also consider a variety of applications in our discussion of future Wikpter 8).

1.2.1 Cluster detection in biosurveillance

One essential application of cluster detection is in the public health domain, witdo#ief de-
tecting anomalous clusters of disease cases. These methods may be aseatifety of purposes,
ranging from detection of a bioterrorist attack (an intentional releasepatlaogen such as an-
thrax or bubonic plague) to identifying environmental risk factors foratss such as childhood
leukemia [122, 153, 88]. We focus primarily on the detection of emergingeski®f disease;
these outbreaks may be caused by a naturally occurring disease epidamiofluenza), bioter-
rorist attack (e.g. anthrax), or environmental hazard (e.g. radiati@h [€aus we wish to perform
prospective disease surveillan@malyzing public health data on a daily (or even hourly) basis with
the goal of detecting emerging outbreaks as quickly as possible. Timelytidatet outbreaks
must be achieved while keeping the number of false alarms to a minimum, and thusistde
able to accurately distinguish between clusters corresponding to outtaedihose corresponding
to other irrelevant causes. By detecting outbreaks rapidly and automatwalhope to allow more
rapid epidemiological response (e.g. distribution of vaccines, public healthings), potentially
reducing the rates of mortality and morbidity.

In disease surveillance, we are given the number of disease casam®fgs/en type in each
spatial location on each day. In our typical surveillance task, we havet ciata aggregated at the
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Zip code level for data privacy reasons. Thus we have a set of sjpatidionss;, where eacls;
represents the longitude and latitude of a zip code centroid, and the pamdisg count;; may
represent the number of disease cases of a specific type (e.g. iafludve must also have some
baseline informatiom; indicating how many cases we expect to see in each zip code: this could
be the underlying at-risk population of the zip code (typically denoteg;pgr an expected count
inferred from historical data. We compare these approaches in detdildpt€r 2; as we show in
Chapter 4, the latter, expectation-based approach enables us to atlie/éimely detection of
disease outbreaks than the traditional, population-based approach.

While cluster detection can be applied to monitoring for patterns of a speciéastis we of-
ten want to perform the more general task of disease-independent nrapietecting anomalous
clusters corresponding to any type of disease, including those of pedyionknown diseases. Our
typical approach to this task ®/ndromic surveillancewhere we monitor data corresponding to
disease symptoms. In this case, the cayifidr a given zip code; can be the number of emergency
department visits with a given type of chief complaint (e.g. respiratoryr@atestinal), the number
of over-the-counter medication sales of a specific type (e.g. coughaadfever), or some other
observable quantity (e.g. 911 calls, school and work absenteeism).isByvdring regions with
abnormally high counts of some syndrome, we can detect any type of akitiwéch causes that
syndrome. In addition to this increased generality, syndromic surveilldsc@bows us to achieve
more timely detection of outbreaks, since we can detect an outbreak eeea aalefinitive diag-
nosis of any given outbreak type. The utility of syndromic surveillancd,the many challenges
associated with this task, are discussed in detail in Chapter 6.

As disease surveillance is a canonical example of the cluster detectionitagk®at practical
utility, we focus primarily on this task throughout our work. We consider theyrsatistical and
computational challenges of cluster detection in this domain, and many of ltiogs to these
challenges can also be directly applied to other application domains. We epsitistical issues
in Chapters 2, 4, and 5, presenting a general framework for clustectas which can be applied
not only to disease surveillance but to many other domains. We consideutatiopal issues in
Chapters 3 and 5, enabling us to develop general algorithms for adoeettee cluster detection
task and scaling it to large datasets. In Chapter 6, we provide a detailegsl@t of disease
surveillance, and describe our SSS system, which is currently beindgrudaitly practice for spatial
surveillance of nationwide public health data.

1.2.2 Cluster detection in medical imaging

Automatic cluster detection has many possible applications in the medical imagingnd@na of
the most important such applications is the early detection of cancerous-capcerous tumors.
For example, brain tumors may be detected from magnetic resonance imadhgdda, or early
signs of breast cancer may be discovered from mammography data. rGlattetion methods
may also be useful in detecting other chronic health problems: for examgliectohg diabetic
retinopathy (a leading cause of blindness) from retinal exams. In thgsdieation domains, we
may use several types of baseline data for comparison, including imagesusig taken from
the same patient or “aggregate” images created from many other patientsataredy, a “purely
spatial” scan may be performed to detect high-density regions withouerefe to a baseline state.
In addition to the detection of abnormalities in structural images, we can also ols&ful in-
formation fromfunctional imaging For example, functional magnetic resonance imaging (fMRI)
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can be used to measure blood flow in the brain, creating a three-dimensicined of brain activity.
By detecting regions of increased or decreased brain activity, we aatdehatically discover areas
that have been damaged by strokes or by degenerative diseasas #lziheimer’s and Parkinson’s.
Another exciting application of cluster detection is the discovery of regibbsain activity corre-
sponding to different cognitive states. In this domain, our goals are toglissim between subjects
performing different tasks, and to discover which regions of the braimest active in performing
each task. For example, we may want to tell whether the subject is readakadr watching a
movie, based only on their fMRI image. For this task, we may compare the salijesin image
to an image of that subject’s brain under some “control condition” (sudixaténg on a cursor), or
simply compare two experimental conditions.

A typical fMRI image is a64 x 64 x 14 grid® of “voxels,” where the measured “activation”
of each voxel corresponds to the amount of activity in that region of thanb Thus for fMRI
cluster detection tasks, we typically have a cognand a baseliné; for each voxels;, where
¢; corresponds to the measured amount of fMRI activation in that voxetrutng experimental
condition, and; corresponds to the measured amount of fMRI activation in that voxedruihe
null or control condition. We note that fMRI data is typically three-dimendioaad we might
also want to use time as a fourth dimension, comparing sequences of fM&sisots” under the
experimental and control conditions. Since the standard algorithmic frarkdéardhe spatial scan
assumes only two dimensions, this demonstrates the importance of develdjilegedigorithms
for multidimensional spatial cluster detection. We discuss new algorithmsifpfag detection of
multidimensional clusters in Chapter 3, and apply these to brain imaging in Chapter

1.3 Cluster detection and related problems

The cluster detection task is related to bolhsteringandanomaly detectignbut is distinct from
each. Like clustering, the goal of cluster detection is to find “clustergiujgs of data points), but
rather than simply partitioning the entire dataset into groups, we searcpdbalsregions (each
containing some set of points) where some quantity is significantly higher xpected, adjusting
for quantities such as an underlying population or baseline. In clustéh@gumber of clusters is
often fixed, while in cluster detection one of the main goals is to accuratelyaletidther there are
anysignificant clusters, and if so, to compute where and how many clusteesatieerin this respect,
cluster detection is more similar to anomaly detection: we are searching fggggodyoints with
counts that are sufficiently high to be “surprising” or “unexpected”armtie assumption that no
clusters exist.

The difference between cluster detection and anomaly detection is that, whitexly detection
typically focuses on single data points and asks whether each point is lusmauster detection
focuses on finding spatial groups or patterns which are anomalousif@ach individual point in
the group might not be surprising on its own. For example, one typical faafll) approach to
anomaly detection is to learn a joint probability distribution over all featuresenfitta, and then to
detect individual records which have low probability given the model. Wéshod has been used
for a variety of applications, such as biosurveillance and network intrugtection. A variety of
methods can be used to model the “normal” data, ranging from mixture modgte B&yesian net-

!Note that this was the available resolution of fMRI images for our expetisnether fMRI images may have higher
or lower spatial resolutions.
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works [160] to neural networks [17]. While these methods can deteisticiugilly anomalous data
points, much less work has been devoted to detecting anomalous growgiteong One exception
is What's Strange About Recent Events (WSARE) [159, 160, 161iwthetects anomalous asso-
ciation rules; however, this method does not take spatial locations or guati@hity into account.
Thus cluster detection differs from traditional anomaly detection methodsibedt does not sim-
ply detect individually anomalous locations, but incorporates informatiam fmultiple locations
to detect anomalous regions of space.

We now return to the question of how cluster detection compares to clustésnmmpted above,
clustering and cluster detection have very different goals (partitionitegid groups versus find-
ing statistically anomalous regions). However, some clustering methods, cdynraferred to as
“density-based” clustering, partition the data based on the density of pnis{gace. Thus, the
highest density partitions found by these methods will be areas with anseatg®ints, corre-
sponding to areas with a higher than expected coyirt our model. As a result, these partitions
may correspond to the anomalous spatial regions that we are interesteedtindge

A variety of density-based clustering methods have been proposed.offtih® most well-
known are DBSCAN [46] and CLIQUE [4], each of which works by finglismall dense regions
and aggregating these high-density regions together in bottom-up fagbB®ICAN searches for
points which have many other points nearby (at leagtoints within distance, wherem ande are
user-specified input parameters), while CLIQUE aggregates pointsridar grid and searches
for grid cells containing a high proportion of points (greater than somespmified parameter
7). The set of all such “dense” points or cells is then used to form clusBBSCAN aggregates
nearby dense points, then also includes the other points inkagghborhood of these points, while
CLIQUE defines a cluster as a maximal set of connected dense cells. dflagrydensity-based
clustering approaches build on these two methods: MAFIA [59] is an drten$ CLIQUE to non-
uniform grids, DENCLUE [68] is similar to DBSCAN but uses local maxima ofdkasity function
as its starting points from which clusters are built, and STING [155] is algagkd algorithm that
uses quadtree decomposition to efficiently approximate DBSCAN's resudtseHal. [64] provide
an excellent survey of these and other clustering methods; anothelyalels¢éed method is bump
hunting [49], which uses a greedy heuristic search (iteratively remansiraglding some portion of
the data such that density is maximized) to locate dense regions.

Density-based clustering approaches have some advantages oy@nawother) cluster detec-
tion methods: they are fast to compute, have more flexibility in defining clustgestand are often
usable for massive and high-dimensional datasets. However, deasitgHelustering is not ade-
guate for the cluster detection task for a variety of reasons. First, wetdsimply want to find
overdensities of counts, but also to draw substantial conclusions Himrggions we find: in par-
ticular, whether each region represents a significant cluster or is likelgu® dccurred by chance.
In fields such as disease surveillance, it is essential to minimize the numia¢sepbsitives, while
maintaining high power to detect any true clusters (e.g. disease outbthakgrise. Thus hy-
pothesis testing (whether by statistical significance testing in a frequeritisgser by computing
posterior probabilities of potential clusters in a Bayesian setting) is antedgsart of the cluster
detection problem, but density-based clustering methods cannot givis irgftlhmation.

Second, cluster detection methods attempt to draw conclusions about egitimes; rather than
aggregating single cells as in density-based clustering. This broaderdthows cluster detection to
be more sensitive for detecting small (but significant) changes in coutits,effects are sufficiently
large in spatial extent. For example, our spatial scan methods are abledbal266 increase in
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the underlying disease rate of a region, while both clustering approaokddsuman observers may
have trouble with this task. The key is that, though none of the individualtsane sufficiently
elevated to be significant by themselves, the increase can be percéigaccaunts are aggregated
at the region level.

Finally, density-based clustering methods cannot deal adequately wiidllydand temporally)
varying baselines, because they are specific to the notion of densityndsenof points per unit
area® Adjusting for variable baselines is particularly essential for real-worldatie surveillance,
where our expected counts will vary based on population, seasond$tr@nd other covariates. Our
cluster detection approaches allow us to deal with counts and baselinesngiplpd probabilistic
framework, finding the global optimum of any score function (e.g. likelihoaitb statistic) that
distinguishes clusters from non-clusters, and thus identifying the most kedter given the counts
and baselines.

Thus, while density-based clustering and anomaly detection are closdlydrédathe cluster
detection problem, neither of these methods are able to perform importactaspthe cluster de-
tection task, including aggregation of information across multiple spatial locafiming whether
detected regions are significant, adjusting for varying baselines, aredadiging to the models and
statistics which are most appropriate for any given application domain. hethainder of this the-
sis, we motivate and describe cluster detection approaches based eraligation of thespatial
scan statisti¢78], which enable us to achieve all of these desired criteria.

1.4 Motivation for the spatial scan statistic

Let us consider the example of disease surveillance, assuming that gieeare¢he count (number
of disease cases), as well as the expected count (megarand standard deviatiar), for each zip
codes;. How can we tell whether any zip code has a number of cases that is sigtlifibigher
than expected? One simple possibility would be to perform a separate statisictdr each zip
code, and report all zip codes that are significant at some tevétor example, we might want
to detect all zip codes with observed count more than three standardioleviabove the mean
(p < .0013). However, there are two main problems with this simple approach. First, gesch
zip code separately prevents us from using information abougphgal proximityof adjacent zip
codes. For instance, while a single zip code with count two standard dexsgdtigher than expected
might not be sufficiently surprising to trigger an alarm, we would probabinteeested in detecting
a cluster of adjacent zip codes each with count two standard deviatidmer biigan expected. Thus,
the first problem with performing separate statistical tests for each zipisageluced power to
detect clusters spanning multiple zip codes: we cannot detect suchsesnaaless the amount of
increase is so large as to make each zip code individually significant. Adeaod somewhat
more subtle, problem is that ofiultiple hypothesis testingWe typically perform statistical tests
to determine if an area is significant at some fixed levetuch asx = 0.05, which means that if
there is no abnormality in that area (i.e., the “null hypothesis” of no clustengea$ our probability
of a false alarm is at most. A lower value ofa results in less false alarms, but also reduces our
chance of detecting a true cluster. Now let us imagine that we are seafohidigease clusters

2While we could simply normalize the counts in a density-based clusteringagpiby dividing each count by its
associated baseline, this approach is inadequate because a givdensitgrof counts (e.g. 10% higher than expected) is
more significant for larger values of count and baseline.



16 CHAPTER 1. SPATIAL CLUSTER DETECTION

in a large area containing 1000 zip codes, and that there happen to hgbneaks today, so any
areas we detect are false alarms. If we perform a separate signéfitastcfor each zip code,
we expect each test to trigger an alarm with probability= 0.05. But because we are doing
1000 separate tests, our expected number of false alard@®isx 0.05 = 50.2 Moreover, if
these 1000 tests were independent, we would expect to get at leasismalarm with probability
1 — (1 —0.05)190 ~ 1, Of course, counts of adjacent zip codes are likely to be correlatatigso
assumption of independent tests is not usually correct. The main pointheuogh, is that we are
almost certain to get false alarms every day, and the number of suchlfises & proportional to
the number of tests performed. One way to correct for multiple tests is theBoni method [20]:
if we want to ensure that our probability of getting any false alarms is at moste report only
those regions which are significant at leve) whereN is the number of tests. The problem with
the Bonferroni method is that it is too conservative, reducing the pofvtrectest to detect true
clusters. In our example, with = 0.05 and N = 1000, we only signal an alarm if a region’s
p-value is less than 0.00005, and thus only very obvious clusters candugeate

As an alternative to this simple method, we can choose a set of regions ¢th sear, where
each region consists of a set of one or more zip codes. We can defisettokregions based on
what we know about the size and shape of potential clusters; we canfeittie region shape and
size, or let these vary as desired. We can then do a separate testifoegmn rather than for each
zip code. This resolves the first problem of the previous method: assuneiingive chosen the set
of regions well, we can now detect clusters whether they affect a sifgleode, a large number
of zip codes, or anything in between. However, the disadvantage of thighés that it makes
the multiple hypothesis testing problem even worse: the number of regiorhsdaand thus the
number of tests performed, is typically much larger than the number of zigscddeprinciple,
the number of regions could be as high2&s whereZ is the number of zip codes, but in practice
the number of regions searched is much smaller (because we want toesnfurstraints on the
connectedness, size, and shape of regions). For example, if wid@oaiscular regions centered
at the centroid of some zip code, with continually varying radius (assumin@tregion contains
all zip codes with centroids inside the circle), the number of distinct regiopojsortional toZ2.
For the example above, this would give us one million regions to searchingreahuge multiple
hypothesis testing problem; less restrictive constraints (such as testing®lgiber than circles)
would require testing an even larger number of regions.

This method of searching over regions, without adjusting for multiple hygathesting, was
first used by Openshaw et al. [122] in their Geographical Analysishihec(GAM). The GAM
searches for disease outbreaks by testing a large number of ovegamgies of fixed radius, and
drawing all of the significant circles on a map; Figure 1.1 gives an exanipléat the output of
the GAM might look like. Because we expect a large number of circles to derdeven if there
are no outbreaks present, the presence of detected clusters isfivdsito conclude that there is
an outbreak. Instead, the GAM can be used as a descriptive tool ttmreal detection: whether
any outbreaks are present, and the location of such outbreaks, muatied manually from the
number and spatial distribution of detected clusters. For example, in Fidyréhé large number of
overlapping circles in the upper right of the figure may indicate an outbvesaile the other circles
might be due to chance. The problem is that we have no way of determiniatherhany given
circle or set of circles is statistically significant, or whether they are due @aosghand multiple

3This is true by linearity of expectation, regardless of whether the 1000aestsdependent.
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Figure 1.1: Example output of the Geographical Analysis Machine, withfgignt regions shown
as circles.

testing; it is also difficult to precisely locate those circles which are most likelytespond to
true outbreaks. Besag and Newell [15] propose a related appnehene the search is performed
over circles containing a fixed number of disease cases; this apprsacuéfers from the multiple
hypothesis testing problem, but again is valuable as a descriptive metheiddatizing potential
disease clusters.

The scan statistic was first proposed by Naus [108] as a solution to the munyiptehesis
testing problem. Let us assume we have a score of some sort for eagh: réay example the
Z-score,Z = k. The Z-score is the number of standard deviations that the observed e@int
higher than the expected coumt a largeZ-score indicates that the observed number of cases is
much higher than expected. Rather than triggering an alarm if any regsfi-Beore higher than
some fixed threshold, we instead find the distribution offtfaimurnrscore of all regions under the
null hypothesis of no clusters. This distribution tells us what we shouldatxpe most alarming
score to be when the system is executed on data in which there are nosclusteent (i.e. no
outbreaks, in the case of disease surveillance). Then we compareotben$the highest-scoring
(most significant) region on our data against this distribution to determine itistdtsgnificance
(or p-value). In other words, the scan statistic attempts to answer the quesfitimeré were no
clusters, and we searched over all of these regions, how likely wouldene find any regions
that score at least this high?” If the analysis shows that we would beurdikely to find any
such regions under the null hypothesis, we can conclude that the disdosegion is a significant
cluster. The main advantage of the scan statistic approach is that we cstrcadjactly for multiple
hypothesis testing: we can fix a significance levebnd ensure that the probability of having any
false alarms on a given day is at mostregardless of the number of regions searched. Moreover,
because the scan statistic accounts for the fact that our tests are mnddat, it will typically
have much higher detection power than a Bonferroni-corrected methathnie applications, the
scan statistic results in a most powerful statistical test [78].
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Although the scan statistic focuses on finding the single most significanthragiman also be
used to find multiple regions: secondary clusters can be examined, angigmficance found,
though the test is typically somewhat conservative for these. The tetliffozulty, though, is
finding the distribution of the maximum region score under the null hypoth&sisnbull [146]
solved this problem for circular regions of fixed population, using the maximumber of cases in
a circle as the test statistic, and using the method of randomization testing $gidtedow) to find
the statistical significance of discovered regions. The disadvantags aptiroach is that it requires
a fixed population size circle, and thus a multiple hypothesis testing problemxsttl & we want
to search over regions of multiple sizes or shapes. Similarly, Andersonigdngton [8] propose
a scan statistic which searches over fixed size rectangles. Kulldoriflagdrwalla [88, 78] solved
the problem for variable size regions using a likelihood ratio test: the testist&ithe maximum
of the likelihood ratio under the alternative and null hypotheses, wheraltimative hypothesis
represents clustering in that region and the null hypothesis assumesstereliWe discuss their
method, the “spatial scan statistic,” in the following section.

1.5 Detailed description of the spatial scan statistic

The spatial scan statistic, first presented by Kulldorff and Nagarwa8a78], is a powerful and
general method for spatial cluster detection. It is in common use by the puddithhcommu-
nity for finding significant spatial clusters of disease cases, for p@poanging from detection
of bioterrorist attacks to identification of environmental risk factors. P@mgple, scan statis-
tics have been applied to find spatial clusters of chronic diseases sirkass$ cancer [84] and
leukemia [69], as well as work-related hazards [83], West Nile virO3]&nd various other types
of outbreak. Kulldorff has implemented the spatial scan statistic in his SaTS&dfbtmare [87],
available at www.satscan.org, and this software is widely used in the publid ftmain.

In its original formulation, Kulldorff’s statistic assumes that we have a sspafial locations
s;, and are given a count and a populatiop; corresponding to each location. For example, each
may represent the centroid of a census tract, the corresponding@aonay represent the number
of respiratory emergency department visits in that census tract, andrfesmonding population
p; may represent the “at-risk population” of that census tract, derivad frensus population and
possibly adjusted for covariates. The statistic makes the assumption thabkesseafied count;
is drawn randomly from a Poisson distribution with megp;, wherep; is the (known) at-risk
population of that area, angd is the (unknown) risk, or underlying disease rate, of that area. The
risk is the expected number of cases per unit population: that is, wetdrpe a number of cases
equal to the product of the population and the risk, but the observedanohbases may be more or
less than this expectation due to chance. Thus our goal is to determine niletbeved increases
in count in a region are due to increased risk, or chance fluctuations. Pdisson distribution
is commonly used in epidemiology to model the underlying randomness of aoseage counts,
making the assumption that the variance is equal to the mean. If this assumptoimessonable
(i.e. counts are “overdispersed” with variance greater than the meduanderdispersed” with
variance less than the mean), we should instead use a distribution whicategpaodels mean and
variance, such as the Gaussian or negative binomial distributions. Wasalsme that each count
¢; is drawn independently, though the model can be extended to accouspdtal correlations
between nearby locations.
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FIS) = 1.256

Figure 1.2: Evaluation of the score functiéi{S) for the given regiort.

1.5.1 Kaulldorff’'s model

As discussed above, Kulldorff's spatial scan statistic attempts to dete@lgegions where the
underlying disease rates are significantly higher inside the region than outside the region. Thus
we wish to test the null hypothesig, (“the underlying disease rate is spatially uniform”) against
the set of alternative hypothesEs(.S): “the underlying disease rate is higher inside regsotihan
outside regiort”. More precisely, we have:

Hy: ¢; ~ Poissoffig,p;) for all locationss;, for some constany,;.
Hy(S): ¢; ~ Poissofig;,,p;) for all locationss; in S, andc; ~ Poissoliq,..p;) for all locationss;
outsideS, for some constantg,, > qout-

Note that the counts; and populationg; are known a priori, while the values of the disease rates
Giny Qout,» @Nd gy are unknown; these latter values will be inferred from the data by maximum
likelihood estimation.

The test statistic that we use is the likelihood ratio, that is, the likelihood (detgt&t) of

the data under the alternative hypothdsig.S) divided by the likelihood of the data under the null
PriData) H,(5))

hypothesisH,. This gives us, for any regiofi, a score functiornf'(S) = PrDatal ) - For
Cin Cout —Caul
! ieti 1 Cin Cou Cy it Cin Cou
Kulldorff’s statistic, we obtainf'(S) = (Pi Po“:) <Pale> ,if B > e, and

F(S) = 1 otherwise; this formula is derived in Chapter 2. In this equatign,andC,,; represent
the aggregate count ¢; inside and outside regiofi, and P;,, and P,,; represent the aggregate
population  p; inside and outside regiofi, respectively. We also defin€,; = Ci, + Cout
and P,; = Py, + P, See Figure 1.2 for an example of the evaluation#@f) for a region.
Kulldorff [78] proved that this likelihood ratio statistic is individually most pofuifor finding a
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single region of elevated disease rate: for the given model assumptionbédile/pothesesl; and
H,(S) given above), for a fixed false alarm rate, and for a given setgidns searched, it is more
likely to detect the cluster than any other test statistic.

1.5.2 Finding the most significant regions

Given the above test statistit(.S), the spatial scan statistic method can be easily applied by choos-
ing a set of region§, calculating the score functiofi(S) for each of these regions, and obtaining
the highest scoring regio$i* and its scord™ = F'(S*). We can imagine this procedure as moving
a “spatial window” (like the rectangle drawn in Figure 1.2) all around tterdearea, changing
the size and shape of the window as desired, and finding the window wikiehtge highest score
F(S). Even though there are an infinite number of possible window positions, sizd shapes, we
only need to evaluate the score function a finite number of times, since angdwms containing
the same set of spatial locationswill have the same score. The region with the highest score
F(5) is the “most significant region,” i.e. the region which is most likely to have lygarerated
under the alternative hypothesis rather than the null hypothesis, anththusgion which is most
likely to be a cluster. We typically search over the set of all “spatial wind@ia given shape and
varying size, for example, circular regions [78], square region$][Xd rectangular regions [112].
Searching over a set of regions which includes both compact and &ghgagions (e.g. rectan-
gles or ellipses) has the advantage of higher power to detect elongaséetlesulting from wind
dispersal of pathogens, but because the number of regions to seamcheased, this also makes
the scan statistic more difficult to compute. Computational issues are disinssede detail in
Chapter 3.

1.5.3 Statistical significance testing

Once we have found the regions with the highest scéigs), we must still determine which of
these “potential clusters” are likely to be “true clusters” resulting from eadie outbreak, and which
are likely to be due to chance. To do so, we calculate the statistical signdi¢awalue) of each
potential cluster, and all clusters withvalue less than some fixed significance levelre reported.
Because of the multiple hypothesis testing problem discussed above, net simply compute
separately whether each region scéi) is significant, because we would obtain a large number
of false positives, proportional to the number of regions searchexedd, for each regiofi, we
ask the question, “If this data set were generated under the null hygiethe how likely would we
be to find any regions with scores higher thas)?” To answer this question, we use the method
known asrandomization testingwe randomly generate a large number of “replicas” under the null
hypothesis, and compute the maximum scBfe= maxg F'(S) of each replica. We typically use
Monte Carlo randomization [43] to generate these replicas, but permutatimg )] can also be
used to test the null hypothesis of exchangeability of counts. More pigcia the Monte Carlo
approach, each replica is a copy of the original search area thatéhaartie population values
as the original, but has each valygandomly drawn from a Poisson distribution with m%#pl,
where C,;; and P,;; are respectively the total number of cases and the total populatlon for the
original search area. Thus the assumption under the null hypothesis &l tt@unts are generated
with a uniform disease rate, equal to the observed disease @I%L for the original dataset.

Once we have obtaineH#* for each replica, we can compute the statistical significance of any
region.S by comparingF'(.S) to these replica values df*, as shown in Figure 1.3. Thevalue of
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F*(G,) = 5.0

F*(G,)=11.3
Beats original!

Qriginal grid

F*(Gyg) = 7.6

Replicas

Figure 1.3: Example of randomization testing for computing the statistical sigmifoaf regionS.
If seven of the 999 replicas have higher scores théi), then thep-value ofS is 555 = 0.008.

regionS can be computed a@‘%{“ , WhereR is the total number of replicas created, &, is
the number of replicas with™ greater tharf'(.S). If this p-value is less than our significance level
«, we conclude that the region is significant (likely to be a true cluster); ipthielue is greater
thana, we conclude that the region is not significant (likely to be due to chal¢ée}ypically start
from the most significant regiof* and test regions in order of decreasifigS), since if a region
S is not significant, no region with lowdr (S) will be significant. We note that the randomization
testing approach given here has the benefit of bounding the ovdsallfasitive rate: regardless of
the number of regions searched, the probability of any false alarms islbduny the significance
level a. Also, the more replications performed (i.e. the larger the valug)pthe more precise the
p-value we obtain; a typical value would B&= 999. However, since the run time is proportional
to the number of replications, this dramatically increases the amount of computatiessary.

We note that, if we could compute a closed-form distribution for the test stafiStiander
the null hypothesis, this would allow much faster computation of statistical signdeby making
randomization testing unnecessary. Much work has been done oimdetistributions of the one-
dimensional and two-dimensional scan statistics, typically assuming a fixedeggan and uniform
underlying measure. Examples of such work include Naus [108], kd@d¢ and Alm [6, 7];
more details are given in Glaz et al. [57, 58]. Nevertheless, the distribafitime scan statistic
is not known in the general case of non-uniform underlying populatamtsvarying region size
and shape, and thus randomization testing is still necessary. Recent ampsigdts by Abrams
et al. [1] suggest that the null distribution of Kulldorff’s statistic is fit weyl & Gumbel extreme
value distribution; thus they propose running a smaller number of replicatimhar the null (e.g.
R = 99) to find the mean and variance, and using the inferred Gumbel distributicaidolatep-
values. At present, however, we believe that our Bayesian spatiastaiistic, presented in Chapter
5, is the only known spatial scan method that does not require randomiatiengeneral case.

Another alternative to randomization testing would be to perform a sepagaificance test
for each spatial region, and then to correct for multiple hypothesis tesfingihg the Bonferroni
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correction [20], the False Discovery Rate (FDR) criterion [12], or ohthe many other methods
in the multiple testing literature. However, all of these methods either assumesmikce of
tests, or alternatively, are conservative bounds which hold for anpittependencies. The spatial
scan performs tests for a large set of overlapping spatial regionshismalerlap creates a complex
dependency structure for the multiple tests. As a result, methods that assigpernident tests
are unable to bound the false positive rate, while bounds that hold firaaybdependencies are
far too conservative, resulting in reduced detection power. The usendbmization testing cor-
rectly accounts for the complex dependency structure, maximizing deteckizer pvhile providing
provable bounds on false positive rate under the null.

1.5.4 Limitations of the spatial scan statistic

The spatial scan statistic is a powerful method for cluster detection, anttlag $ias the potential
to be a valuable tool for finding clusters not only in the public health contextalso in many
other application domains. However, the utility of the spatial scan for dissaseillance and its
applicability to other domains have been limited by several factors. First, Himkgcan requires
us to search over a huge set of regions for each of a large numbesrdENMarlo replications. As
a result, this method does not scale well to large datasets: for many rddl-apmlications, the
traditional spatial scan method is computationally infeasible. Even for moderatg-datasets, the
spatial scan may take hours or days to run: for example, Kulldorff’'sSsam software was unable
to run on a dataset with 600,000 records and 17,000 distinct spatial laga#iod required four
hours to run on a smaller dataset with 60,000 records and 8,400 distirtiztl $peations [114].
This lack of scalability limits the usefulness of spatial scanning to relatively statdkets and non-
time-critical applications; new computational methods must be developed to neakpdtal scan
computationally feasible for large-scale surveillance tasks (e.g. natiordisdase surveillance)
where rapid detection time is critical. Additionally, computational considerations timitypes
of clusters that can be found: for example, Kulldorff’s algorithm [78] lintite search to compact
(circular) clusters, and has low power to detect elongated regionsar&hsever elongated regions
(e.g. rectangles) would take several weeks for nationwide public heati#h dhich is far too slow
for our outbreak detection task. We solve these problems by proposingdistioct algorithms
for making the spatial scan fast and scalable, enabling us to rapidlyhseeec elongated and
multidimensional rectangular clusters. Our fast spatial scan, discussglubjpter 3, reduces the
search time per replication by only searching a small fraction of regionsgtivbich might have
high scores) and proving that the other regions do not need to béedaithis results in speedups
of 100-1000x with no loss of accuracy, i.e. the fast spatial scan eexactly the same region and
p-value as a rige search over rectangles, but much faster. Our Bayesian spatialiseussed in
Chapter 5, avoids the need for randomization testing, thus only searchiogg¢imal dataset rather
than the large number of replica datasets and also resulting in a 1000xippeed

A second limitation of the spatial scan statistic is the inflexibility of its statistical moddl- Ku
dorff [78] proposed binomial and Poisson scan statistic models, but didomsider how the scan
statistic might be generalized to an arbitrary application domain where thesdsmaigat not be
accurate or appropriate. Most importantly, the traditional spatial scamagp is insufficient for
syndromic disease surveillance for several reasons. By assumingdighase counts will be pro-
portional to population under the null hypothesis of no outbreaks, thetstd#igs to account for
spatial or temporal variation in the underlying disease rate. In practicsge/darge amounts of
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spatial variation (due to factors such as the age and health of the popuetinonmental hazards,
etc.) as well as temporal variation (due to day of week effects, seasendsk, holidays, weather,
promotional sales of medications, etc.) All of these factors lead to redwetedtibn power in the
disease surveillance domain; other application domains will also have a \@rgetgh confounding
factors and causes of “false positives” which impede our ability to atelyreetect true clusters.
The traditional approach is not sufficiently flexible to model and incotedizese factors into the
cluster detection task. We solve this problem by proposing the “generajmthl scan” frame-
work discussed in Chapter 2, and we consider how many of the corifaufatttors can be included
as part of our models. All of our new statistics (e.g. the “expectationebszace-time scan statis-
tics” of Chapter 4, the “Bayesian scan statistic” of Chapter 5, and manys)taee special cases
of this general framework which allow more accurate detection of relemaahtuseful clusters in
real-world application. These new statistics also allow us to address kethaalimitations of the
traditional method, by enabling us to incorporate prior information, combine rreuttgta streams,
and differentiate between “relevant” and “irrelevant” causes of a statilstisignificant cluster.

1.6 Contributions of this work

This work makes four main contributions to the state of the art in cluster detedeorlopment of

a powerful and widely applicable statistical framework for detecting clastigvelopment of spa-
tial algorithms and data structures for very fast detection of clusterficappn of these statistics
and algorithms to make real-world contributions to disease surveillance aimdifmaging, and ex-
tension of the range of problems to which cluster detection methods can liedapirst, we have
developed thgeneralized spatial scainamework, a flexible, model-based framework for compu-
tationally efficient cluster detection in diverse application domains. Oneussful application of
this framework is arexpectation-basedpproach, where we infer the expected count of each spa-
tial location from historical data using time series analysis, then find spagjeng with higher
than expected counts. For example, we can detect disease outbredéib/limonitoring of over-
the-counter drug sales, inferring how many sales we expect to se@ badestorical sales data,
and detecting regions where the recent sales are abnormally high. Weléieonstrated that the
expectation-based disease surveillance approach can detect enepigiagnics faster than tradi-
tional methods. Even earlier detection was achieved by extending ounviainto thespace-time
case, enabling us to detect clusters which may arise either quickly orajiyg@und developing new
statistical techniques for detectiegnerging clusterswhere the effects of the cluster increase over
time.

A second contribution of this work is the development of fast spatial scaralgorithm for
cluster detection, which incorporates new multi-resolution search methodsramct| spatial data
structure (the “overlap-kd tree”) to make cluster detection methods 100x1f@ster with no loss
of accuracy. This algorithm enables us to perform cluster detection ierwardhour for massive
datasets which would otherwise require weeks of computation. The faisalspcan has been in-
corporated into our generalized spatial scan framework, making this rarkecomputationally
feasible (and very fast) for disease surveillance and many other orll-detection problems. By
extending the fast spatial scan to elongated clusters and multi-dimensitasdidawe have vastly
increased the set of application domains to which cluster detection methods applied; these ex-
tensions also enable us to perform fast space-time cluster detection a®rtoruspatial attributes
(such as patient age and gender) as additional search dimensionsligve Ithat the overlap-kd
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tree data structure will also be useful for accelerating spatial searchthigs for a variety of other
problem domains.

A third contribution of this thesis is the development of a Bayesian clustertaetepproach,
theBayesian spatial scarThis approach was shown to have higher power to detect clusters than th
typical frequentist hypothesis testing approach, as well as being édmadf times faster (i.e. com-
parable in speed to the fast spatial scan). The Bayesian approadtaalseveral other advantages
over the frequentist method: since it computes the posterior probabilitycbfpesential cluster, its
results are easy to interpret and visualize, and (as discussed in Chpjttean also be extended
more easily to the multivariate case.

In addition to developing general statistical and algorithmic methods for autochadter detec-
tion, we have applied these methods to make several important contributiongdieghse surveil-
lance and brain imaging domains. In retrospective case studies on knseasé outbreaks, our
methods demonstrated impressive results: for example, we were able tbatetetbreak of gas-
troenteritis in Walkerton, Ontario, a full day faster than other automatic dissarveillance sys-
tems. Similar results were obtained in semi-synthetic testing, i.e. detection of simoldabedaks
injected into real-world data. Through case studies in the brain imaging domwaialso demon-
strated the ability of the system to detect relevant clusters of brain activitg. nffost important
“applied” contribution of this thesis is the development and deployment o$tesyfor nationwide
prospective disease surveillance. Every day, this system recenargency department and over
the-counter drug sales data from over 20,000 stores and hospitals riddomses our automatic
cluster detection methods to find potential outbreaks of disease, and makegdlults available
to state and local public health officials through a web-based graphicehicee We currently have
several public health departments using our software to help them deigetregs, and their feed-
back has been valuable for the iterative development of our system anthderlying models and
methods. We are also working to integrate our cluster detection methods wettalsether systems
and methods for large-scale disease surveillance.

In the remainder of this thesis, | will discuss these statistical and algorithmtdilmations in
more detail. Chapter 2 presents our generalized spatial scan framewalk$ter detection, and
considers how this framework can be applied to detect useful and m¢lessters in real-world
application. Chapter 3 presents our fast spatial scan algorithm, and deateshat this algorithm
enables us to detect clusters 100-1000x faster on real datasets waittydass of accuracy. Chapter
4 extends our cluster detection methods to the detection of emerging spacéustees¢and shows
that these methods achieve accurate and timely detection of emerging outifrésesse. Chapter
5 describes our Bayesian spatial scan statistic, which allows us to inategoor knowledge and
observations of multiple data streams together in a principled probabilistic frarkieme demon-
strate that this results in both higher detection power and much faster run timaeticp. Chapters
6 and 7 apply our methods to two application domains, disease surveillandaraindmaging,
and demonstrate that we can detect useful and relevant clusters idaaein. Finally, Chapter 8
concludes by discussing several important areas for future work.



Chapter 2

A general statistical framework for
cluster detection

2.1 Introduction

Spatial cluster detection has two main goals: to identify the locations, shaqksizas of poten-
tially anomalous spatial regions, and to determine whether each of theséiglatkisters is more
likely to be a “true” cluster or simply a chance occurrence. In other womgswish to answer
the questions, is anything unexpected going on, and if so, where? Tkisaase broken down
into two parts: first figuring out what we expect to see, and then detergnimitich regions de-
viate significantly from our expectations. For example, in the application oasiéssurveillance,
we examine the spatial distribution of disease cases, and our goal is tmuetevhether any re-
gions have sufficiently high case counts to be indicative of an emergingsgisspidemic in that
area. Thus we first infer the baseline (e.qg. at-risk population, or eegp@cimber of cases) for each
spatial location, then determine which (if any) regions have significantly cases than expected.
While we could conceivably perform a separate statistical test for getlaklocation, this simple
approach fails to account for the spatial proximity of locations, and ufifem a severe problem of
multiple hypothesis testing\s discussed in Chapter 1, if we were to perform a separate hypothesis
test at levelh for each spatial location, the total number of false positives that we exmedd be

Y «, whereY is the total number of locations tested. For lakigenve are almost certain to get huge
numbers of false alarms; alternatively, we would have to use a threstegdow that the power of
the test would be drastically reduced.

To deal with these problems, Kulldorff [78] proposed the spatial scaiststa This method
searches over a given set of spatial regions (where each regisistsoof a set of locations), finding
those regions which are most likely to be generated under the “alternge¢hesis” of clustering
rather than the “null hypothesis” of no clustering. A likelihood ratio test sdu® compare these
hypotheses, and randomization testing is used to compugevhkie of each detected region, cor-
rectly adjusting for multiple hypothesis testing. Thus, we can both identify paterusters and
determine whether each is significant.

Our recent work on spatial cluster detection has two main emphases: figeihéoalize Kull-
dorff’s spatial scan statistic to a larger class of underlying models, eigalino derive useful and
accurate statistics for a wide variety of application domains, and second ki tirese methods

25
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computationally tractable even for massive real-world datasets. Herecwe poimarily on the first
goal, developing a general statistical framework which is applicable afdlder a wide variety of

application domains. Many of the statistics we derive are also computatiorfadigef, in that they

can be computed simply from some additive sufficient statistics of the regiber wonsideration.
Moreover, we have integrated the “fast spatial scan” algorithms disdueshe next chapter into
this general framework, thus enabling both accurate and very faseictietection.

In the remainder of this chapter, | present our general statistical methyydi@iospatial cluster
detection. In Section 2.2, | present the “generalized spatial scan” Warkeand consider the
general issues and questions that arise in applying this framework t@aaifis problem domain.
In Section 2.3, | present four simple models which may be used within this frarkeand derive
computationally efficient scan statistics for each model. These four modetsstveral simplifying
assumptions, but differ in two respects: how the baseline information is ratedp(“expectation-
based” versus “population-based” approaches) and how cowdissmmed to be generated. Finally,
in Section 2.4, | present three more complex models, which may be usefulriaid® where the
simplifying assumptions of Section 2.3 are not valid. Parts of this chaptertdesreadapted from
our paper in the 2005 KDD Workshop on Data Mining Methods for AnomalyeBteon [113]. |
wish to thank my co-author Andrew Moore for his contributions to this work.

2.2 The generalized spatial scan framework

In this section, we present the “generalized spatial scan” frameworgpfatial cluster detection.
As is suggested by its name, this framework is a generalization of Kulldogétiad scan statis-
tic [78] which allows much greater flexibility in the underlying models, statisticd, algorithms.
This has several important advantages over the original spatial sdest, different application
domains require different models of the data, and rely on different tgpbaseline information;
statistics that have high power to detect clusters in one domain might perémrly in a different
application. Thus it is highly advantageous to have a framework whereawsimply “plug in”
new domain models and derive statistics which are useful for detectingintlelusters in the new
domain. Not only can we choose the models which are most appropriategfance, deciding
whether to account for overdispersion and spatial correlation oftshuyut we can also choose to
detect different types of clusters (for instance, clusters with highereéikpected counts compared
to the counts outside the cluster, or compared to historical data). A sedeadtage of the general
framework is an iterative development approach: we can start out witHesmmguels, putting these
techniques into daily practice in a new application domain, then examine the rgslititers that
are detected. We can then adapt the model appropriately to increaseodepeover and reduce
false positives in that domain. Many real-world datasets contain a varigigtafirregularities and
other unexpected and unmodeled phenomena, and thus simpler models nkghg ffiese irregu-
larities rather than the clusters we are actually interested in detecting. Byiagjaoar models to
account for these phenomena, we can ensure reasonable falseepasés while still maintaining
high power to detect any real clusters which may occur. The final aalyarof our general frame-
work is the careful consideration of tradeoffs between computatiorebtidity and the relevance
of detected clusters. In addition to presenting a variety of statistics whidbo#neuseful and com-
putationally tractable, we can also use the “fast spatial scan algorithm”sgisgun Chapter 3 to
detect these clusters hundreds or thousands of times faster. Integfati@se fast algorithms into
the general framework not only makes our general cluster detectioni¢ges more useful in real
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practice, but also extends the scope of our methods by allowing detecédongfated, rotated, and
multi-dimensional clusters.
The generalized spatial scan framework consists of the following six:steps

1. Obtain data for a set of spatial locations

2. Choose a set of spatial regions to search over, where each spgitalS consists of a set of
spatial locations;.

3. Choose models of the data undég (the null hypothesis of no clusters) ad (S) (the
alternative hypothesis assuming a cluster in regipn

4. Derive a “score functionF'(S) based ond;(S) and H.
5. Find the “most interesting” regions, i.e. those regidnaith the highest values af'(.5).

6. Determine whether each of these regions is “interesting,” either bgmarfg significance
testing or calculating posterior probabilities.

We now consider each step of this framework in detail, giving some idea cléneant decisions
that must be made when applying our methods to a new application domain. pte@hé and 7,
we discuss two such application domains, disease surveillance and braingimagre we discuss
the methods more generally, considering those issues which apply to anindoma

2.2.1 Obtain data for a set of spatial locations;

The spatial scan statistic assumes that we are given data for a set oflspatianss;. Typically,
these locations are assumed to be points in sédienensional Euclidean space, with the coordi-
nates of each point given. In the disease surveillance domain, for éxawgare typically given
data aggregated at the zip code level, and taking the latitude and longitudezih ttode centroid
gives us a point in two-dimensional space fMRI brain imaging, on the other hand, we are typ-
ically given activation data for a uniforéd x 64 x 14 grid of voxels, and thus each location is a
point (with integer coordinates) in three-dimensional space.

For each spatial locatiosy, we must have two quantities,cauntc;, and abaselineb;. In the
disease surveillance domain, the count may represent the number cfedisesss of some specific
type corresponding to spatial locatien while the baseline may represent some quantity such as
the expected number of cases of that type or the at-risk population. Inemgy the goal of our
method is to find regions where the counts are higher than expected tigevbaselines.

We typically assume that the counts are given in advance, while the baselaebe either
given (e.g. population from census data) or inferred (e.g. from listiatata or expert knowledge).
For example, one simple way of inferring baselines would be to estimate tagaested count;
in a zip code by the mean daily count in that zip code over the padays. For many datasets,
more complicated methods of time series analysis should be used to infer tEsielirexample,
in the over-the-counter drug sales data, we must account for bothregand day-of-week effects.

!Because a zip code is actually an irregular region in space rather thagla gaint, an alternative would be to
assume that cases are spread over the entire zip code area, eitbemiynifr according to some known distribution of
population.
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Various time series methods for inferring baseline values from historidal @al@ considered in
Chapter 4.

Two typical approaches to obtaining baselines argtulation-based methpwhere we ex-
pect each count to broportionalto its baseline under the null hypothesis, and éRpectation-
based methagdwhere we expect each count to égualto its baseline under the null hypothesis.
As we discuss in Section 2.3, these two approaches require the usecotmlifimodels and statis-
tics, and give different results under certain circumstances; hereaus bn some possible ways of
obtaining baseline values for each approach.

In the population-based method, baselibggypically represent the underlyingopulationof
locations;. These populations could be obtained from census data, and may beedd@rdnown
covariates to give an “at-risk” population. For example, Kleinman et al.augeneralized linear
mixed models approach to adjust population for day of week, seasonalitypther factors [76,
75]. Another possibility is to derive population estimates by measuring the ehlseme other
“baseline” quantity, which we expect to be proportional to populationrctgss of whether the null
hypothesis is true. One example would be the sales of a product sudtteasrdmttled water. These
“activity-based” estimates of population have the disadvantages of highiability and more noise,
but can deal with more rapid or short-term changes in population and laligjlée.g. for seasonal
tourist destinations such as beach or ski resorts).

In the expectation-based method, each basélitgpically represents thexpected countf lo-
cations; under the null hypothesis of no clusters. These expected valuegamnedefived from the
time series of historical data, forecasting the expected value of the tdatnusing some method
of time series analysis. Another possibility is to obtain the expected count bijtariog some
“control” condition, which we expect to be generated from the same ditisibunder the null. In
brain imaging, for example, we can use subjects fixating on a cursor asralamndition, compar-
ing this to an experimental condition where subjects read words or view @ictarthird option is
to obtain expected counts using a combination of some measure of populatiatanstant of pro-
portionality; for example, the population could be derived from censagtivity-based estimates,
while the constant of proportionality could be derived from global histddata.

In Section 2.3, we discuss the population-based and expectation-hgmedehes in more de-
tail, and derive the appropriate models and score functions for eacbambp

2.2.2 Choose a set of spatial regions to search over, wherechapatial region.S con-
sists of a set of spatial locations;

We want to choose a set of regions that corresponds well with the stmapsize of the clusters
we are interested in detecting. In general, the set of regions should theventire space under
consideration (otherwise we will have no power to detect clusters in oeered areas) and adjacent
regions should overlap (otherwise we will have reduced power to deliesiers that lie partly in
one region and partly in another). We typically consider the set of all negié some fixed shape
(e.g. circle, ellipse, rectangle), allowing the location and dimensions of égadr to vary; what
shape to choose depends on both statistical and computational consigeritice search too few
regions, we will have reduced power to detect clusters that do notiglmsgch any of the regions
searched; for example, if we search over square or circular regiensill have low power to detect
highly elongated clusters. On the other hand, if we search too many reglonswer to detect any
particular subset of these regions is reduced because of multiple hgjsotésting. Additionally,
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the runtime of the algorithm is proportional to the number of regions searaneidthus choosing
too large a set of regions will make the method computationally infeasible.

Our typical approach in epidemiological domains is to map the spatial locationgrid, and
search over the set of all rectangular regions on the grid. Additionaltyaxis-aligned rectangles
can be detected by searching over multiple rotations of the data. The two mamtagles of this ap-
proach are its ability to detect elongated clusters (this is important in epidemiotagyise disease
clusters may be elongated due to wind or water dispersion of pathogehalsarits computational
efficiency. Use of a grid structure allows us to evaluate any rectangagan in constant time, in-
dependent of the size of the region, using the well-known “cumulativatsttrick. Additionally,
we can gain huge computational speedups by applying the “fast spatrél algorithm, allowing
us to search many fewer regions without any loss of accuracy. Botluthelative counts trick and
the fast spatial scan algorithm are discussed in Chapter 3.

2.2.3 Choose models of the data undek, (the null hypothesis of no clusters) and
H,(S) (the alternative hypothesis assuming a cluster in regior). Derive a
“score function” F'(S) based onH,(S) and H,

These are perhaps the most difficult steps in our method, as we museaehodsls which are both
efficiently computable and relevant to the application domain under consater&or our models
to be efficiently computable, the score functibS) should be computable as a function of some
additive sufficient statistics of the regishbeing considered Typically these statistics are the total
count of the regionC’(S) = > ¢ ¢;, and the total baseline of the regidB(S) = > "¢ b;. If this'is
not the case, the model may still be useful for small datasets, but will atet aell to larger sources
of data. For our models to be relevant, any simplifying assumptions that we madtenot reduce
our power to distinguish between the “cluster” and “no cluster” cases,otgteat an extent. Of
course, any efficiently computable model is very unlikely to capture all ofdingplexity of the real
data, and these unmodeled effects may have either small or large impactectiodeerformance.
Thus we typically use an iterative design process, beginning with very simgdiels, and examin-
ing their detection power (ability to distinguish between “cluster” and “no citiséend calibration
(number of false positives reported in day-to-day use). If a modédhigasdetection power but poor
calibration, then we have a choice between increasing model complexityrtéiuiadly recalibrat-
ing the model (i.e. based on the empirical distribution of scores); howddgtection power is
low, then we have no choice but to figure out which unmodeled effectsaareing performance,
and deal with these effects one by one. Some such effects (e.g. missgalabe dealt with by
pre-processing, and others (e.qg. clusters caused by single anoroalatisns) can be dealt with by
post-processing (filtering the set of discovered regions to remove taased by known effects),
while others (such as overdispersion and correlation of counts) musillggcbe included in the
model itself. In Chapter 6, we discuss several of these effects priestne over-the-counter sales
data, and how we have dealt with each; here we focus on the geraravitork and then present
two simple and efficiently computable approaches.

As noted above, we must choose models of how the data is generated,noiethtiie null
hypothesist, (assuming that no clusters are present) and under the set of alteimgiivtheses
H,(S), each representing a cluster in some regioi®nce we have chosen these models, we must
make two choices regarding how to derive the corresponding statistiesharto use frequentist

2More precisely, we must havg(S) = F(X1(S)... X.(S)), where eactX;(S) = 2 es fleisbi).
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or Bayesianapproach, and whether to useximum likelihoodr marginal likelihoodparameter
estimates.

The most common statistical framework for the spatial scan is a frequentisithegis testing
approach. In this approach, assuming that the null hypothesis andikbactative hypothesis are

point hypotheses (with no free parameters), we can use the likelihoodiligiip= %

as our test statistic. This likelihood ratio statistic represents the likelihood of theadauming a
cluster in regionS, divided by the likelihood of the data assuming no clusters. A more interesting
question is what to do when each hypothesis has some parameter@Gpéeted; (S) € 01(S)
denote parameters for the alternative hypothé&sigS), and letfd, € ©y denote parameters for the
null hypothesisHy. There are two possible answers to this question. In the more typieaimum
likelihood framework, we use the estimates of each set of parameters that maximize lihedite

of the data:

maxy, (s)ee, (s) Pr(Datal H1(5), 61(5))

F(S) =
() maxg,co, Pr(Data| Ho, 0p)

In many cases, such as in Kulldorff’s statistic [78], this will lead to an indiglty most pow-
erful statistical test under the given model assumptions. We then perfordomization test-
ing using the maximum likelihood estimates of the parameters under the null hgjsothg, =
arg maxg,ceo, Pr(Data| Hy, 6y), as discussed below. In tinearginal likelihoodframework, on the
other hand, we instead average over the possible values of each farame

_ Jo,(s)c01(5) Pr(Data] H1(S), 01(5))Pr(01(S))

(S
(%) Jo,co, Pr(Datal Ho, 6o)Pr(6o)

This, however, makes randomization testing very difficult in the frequernijstoach. An al-
ternative method (discussed in detail in Chapter 5) is a Bayesian appiinashich we use the
marginal likelihood framework to compute the likelihood of the data under egpbthesis, then
combine these likelihoods with the prior probabilities of an cluster in each regjidrhus our test
statistic is the posterior probability of a cluster in each region:

r(Data| H1(S))Pr(H1(S5))
Pr(Data)

F(§) =" o Pr(Data| H;(S))Pr(H(S))

where P(H,(S)) is the prior probability of a cluster in regionS, and P(Data| H;(5)) is the
data likelihood assuming a cluster$h The marginal likelihood of the data is typically difficult to
compute, but in Chapter 5, we present an efficiently computable Baydsiistis using Poisson
counts and conjugate Gamma priors.

Thus we now have two efficiently computable approaches within our gefine@naework: the
frequentist approach (using the likelihood ratio statistic with maximum likelihoodrpeter esti-
mates, and computing statistical significance by randomization), and thei&aggproach (using
marginal likelihood). In Sections 2.3 and 2.4, we focus on the frequemisbach in more detail,
and give examples of how new and useful scan statistics can be devleeel examples of develop-
ing and applying new scan statistics within this framework are given in thestismuon space-time
statistics in Chapter 4.
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2.2.4 Find the “most interesting” regions, i.e. those regines .S with the highest values
of F(5)

Once we have decided on a set of regichso search, and derived a score functibis), the
“most interesting” regions are those that maximiZg5). In the frequentist spatial scan framework,
these are the most significant spatial regions; in the Bayesian frameWwesk, are the regions with
highest posterior probabilities. The simplest method of finding the most ititeyaggions is to
compute the score functiof(S) for every region. An alternative to this ive approach is to use
the fast spatial scan algorithms discussed in Chapter 3, which allow usuoer¢ide number of
regions searched, but without losing any accuracy. The idea is theg, wi@ only care about the
most significant regions, i.e. those with the highest scéles), we do not need to search a region
S if we can prove that it will not have a high score. Thus we start by exagiange regions, and

if we can show that none of the smaller regions containefléan have high scores, we do not need
to actually search each of these regions. Thus, we can achieve theesantas if we had searched
all possible regions, but by only searching a small fraction of thes¢h&uspeedups are gained by
the use of multiresolution data structures, which allow us to efficiently move betagarching at
coarse and fine resolutions; we discuss these methods in detail in Chapter 3

2.2.5 Determine whether each of these regions is “interesty,” either by performing
significance testing or calculating posterior probabilites

For the frequentist approach, once we have found the highest gaegionsS, we must calcu-
late the statistical significance of each discovered regiorahgomization testing As discussed

in Chapter 1, our goal is to perform statistical significance testing in suciyahat, if the dataset
has been generated under the null hypothesis (i.e. there are no clusteest), our probability
of incorrectly detecting any clusters is bounded by some constarggardless of the number of
regions tested. In other words, a region would be significant at .05 only if its score is so
high that 95% of the time under the null hypothesis,region would have that high a score. In
order to bound the overall false positive rate in this way, we randomlyegetarge numberR of
replica datasets by sampling under the null hypoth&gisgiven our maximum likelihood param-
eter estimates8,., = argmaxg, Pr(Data| Hy, 6) for the null. For example, for Kulldorff’'s scan
statistic, we generate counts independently fegm- Poissofig,;b;), using the maximum likeli-
hood estimate,; = GZ from the original dataset. We then calculate the maximum region score
F* = maxg F'(5) for each replica dataset. Now, for each potential cluSteve count the number
of replica dataset®,.,; with F* higher thanF'(S). From this, we can calculate thevalue of
regionS asp(S) = Rbéaf“ Then all regionsS with p(S) < « are significant at levek, while

all other regions are not significant. Since, for a given datasep-tredue of regionS decreases
monotonically with increasing scoi&(S), we can start by testing only the highest scoring region
S* of the original dataset. If the-value of S* is less thany, we can conclude that the discovered
region is unlikely to have occurred by chance, and is thus a significatibbpluster; we can then
examine secondary clusters. Otherwise, no significant clusters exist.

For the Bayesian approach, on the other hand, no randomization testimgédssary. In-
stead, we can compute the posterior probability of each potential clusteivioyng its score
Pr(Data| H,(S))Pr(H1(S)) by the total probability of the data, @ata) = Pr(Data| Hy)Pr(Hy) +
> g Pr(Data| H(S))Pr(H:(S)). We can then report all clusters with posterior probability greater
than some predetermined threshélg,...., or simply “sound the alarm” if the total posterior prob-
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ability of all clustersS is sulfficiently high (greater than some threshéig,,,,). Because we do
not need to perform randomization testing in the Bayesian method, we néetba@earch over
all regions for the original dataset, rather than the original dataset &ngi@ number (typically
R = 999) of replicas. Thus the Bayesian approach is approximately 1000x thstethe (néve)
frequentist approach, as we show empirically in Chapter 5. Howevectaweapply the fast spatial
scan described above to achieve similar speedups for the frequeptisael: in this case, we still
have to search over all replica datasets, but can do a much fasten seazach. We compare the
speed of the fast frequentist and Bayesian approaches in detail ieCBbaand consider how these
two approaches might be combined to achieve real-time spatial cluster detad@ibapter 8.

2.3 Some simple scan statistics

We now derive scan statistics for four different models, including Kuffooriginal scan statistic,
using the general framework discussed above. In each case, theddsrore function is obtained

using the likelihood ratid”(S) = %, with maximum likelihood estimates of any free

parameters. All four of these models make several simplifying assumptiasigdiing indepen-
dently distributed counts, uniform rates under the null, and a uniform closidel. These assump-
tions enable us to derive score functidngs) that are efficiently computable as a function of some
sufficient statistics of regio§. The disadvantage, however, is that violations of these assumptions
will negatively impact our ability to detect clusters. As noted above, more Enmpodels may be
necessary in such cases; some examples of these models are givetioin Sdc

We now consider each of the three simplifying assumptions in more detail. Fesissume
that each location’s count is drawn independently from some distribution Déstg;), whered;
represents the set of baseline parameters of that locationy,; aepresents some underlying “rate”
parameter. This assumption is violated when counts are spatially correlatepossible method of
accounting for these correlations is tegion-aggregated time seri¢RATS) approach discussed
in Chapter 4. Second, we make the assumption that the rate paragristaniform under the null
hypothesis: if no clusters are present, then every location has the stame fEhus we assume
that any spatial variation in counts under the null (e.g. due to differesi¢nlying populations) is
accounted for by our baseline parametgrsand our methods are designed to detect any additional
variation not reflected in these baselines. One difficulty with this is that we mec&yup variations
that are statistically significant but not large enough to be interesting itiggad hethresholded
scan statisticgliscussed in Section 2.4, and thdilter discussed in Chapter 6, are two possible
methods of dealing with this problem. Another difficulty is that we may pick up tiaria caused
by data irregularities in some single location (or a few locations). Methodealfrd) with these
irregularities include th&ernoulli-Poisson scan statistitiscussed in Section 2.4, and thdilter
discussed in Chapter 6. Our third assumption is a uniform cluster modek Wieeeffect of a cluster
is to uniformly increase the expected counts within that cluster by some multipficaiistant (the
amount of increase is unknown). We have considered several mode¢lallibw for spatial and
temporal variation in rate: two such models are tfom-parametric scan statistiaiscussed in
Section 2.4, and themerging cluster scan statistidiscussed in Chapter 4.

In the remainder of this section, we make the three simplifying model assumptiaussisi
above, and use these to derive simple and efficiently computable statisti@&ubsections 2.3.1
and 2.3.2, we consider two decisions that must be made when choosing b mbdther to use
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Population-based Expectation-based
TR
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In region: In region:
Population = 50000 # of cases = 200
# of cases = 150 Expected cases = 100

Disease rate = 0.003

Qut of region:
Population = 1 millien
# of cases = 1000
Disease rate = 0.001

Figure 2.1: Population-based and expectation-based scan statistiactpgso

an “expectation-based” or “population-based” approach, and disfatbution to assume. In Sub-
sections 2.3.3 and 2.3.4, we derive the expectation-based and popublasietstatistics under the
typical assumption of Poisson-distributed counts. Finally, in Subsectiorts&éh8 2.3.6, we derive

the expectation-based and population-based statistics for Gaussidmitistrcounts, allowing us

to model counts that can be overdispersed or underdispersed.

2.3.1 The expectation-based and population-based approaeh

The spatial cluster detection task requires us to answer two main questiongthismig unexpected
going on, and if so, where? In order to both discover unexpected dueste infer their locations,
we must first have some information about what we expect to see: thisnafion is represented
by the baseling; of each spatial locatiog;. As discussed in Section 2.2, we may obtain baselines
from a variety of sources, including census population data, histowcalts, or data from a control
group. The most important distinction we must draw is between two ways opeterg these
baselines: th@opulation-basedpproach, where we expect counts tgpbeportionalto baselines
under the null hypothesis of no clusters, and éxpectation-basedpproach, where we expect
counts to beequalto baselines under the null. These two approaches are illustrated in FigjuFo2
both approaches, we typically assume that each cquatgenerated from some distribution with
mean equal td; times some unknown “rate” parametgr but the interpretations of the baselines
b; and rateg; are very different in these two approaches.

In the population-based approach, the baselindypically represent thepopulationcorre-
sponding to each spatial locatien This population can be either given (e.g. from census data)
or inferred (e.g. from sales data), and can be adjusted for any kioowariates such as age of
population, risk factors, seasonality, and weather effects. Thespanneingg; represents the “un-
derlying rate,” or expected ratio of count to baseline, for that locatioor. example, in disease
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surveillance, it is common to speak of the “underlying disease rate,” @oteg number of disease
cases per unit population. Note that the underlying gate an unknown quantity which is distinct
from the (known) “observed rate% but we can use the observed rates to make statistical infer-
ences about the underlying rates. In the population-based apprachish to detect clusterS
where the observed rates aignificantlyhigher insideS than outsideS, allowing us to conclude
with high probability that the underlying ratgsare higher inside& than outsides. Thus, for each
region.S with an observed rate that is higher inside the region than outside the regtomust
perform statistical testing to decide between two possible explanations: &itterunderlying rate
is higher inside than outside, or b) the underlying rate is the same inside tdiepand the differ-
ence is due to chance. In the first caSds a significant cluster, while in the second caSés not
significant. More precisely, under the simplifying assumption of uniformstate wish to test the
null hypothesis that the rate is uniform everywhere fakire equal to some constapy;) against
the set of alternative hypotheses with= g¢;, inside some regio¥ andq; = ¢,,,+ outsides, for
some constantg,, > qout-

In the expectation-based approach, the baselinepresent thexpected courih each spatial
locations;. These are typically inferred from the time series of previous countss@atjufor any
relevant effects such as day-of-week and seasonality. The porr@isigq; represents the underly-
ing “relative risk,” or ratio of actual count to expected count. Our gthedn, is to discover regions
with actual counts significantly greater than expected counts, or equilyalegbserved relative risk
significantly greater than 1. Again, we must distinguish between signifidastecs (where the
observed relative risk is large enough to conclude that the underlylativeerisk is greater than
1) and non-significant regions (where we conclude that the undengiatjve risk equals 1, and
the higher-than-expected counts are due to chance). More precisedy, the simplifying assump-
tion of uniform rates, we wish to test the null hypothesis that 1 everywhere against the set of
alternative hypotheses with = ¢;,, inside.S andg; = 1 outsideS, for some constang;,, > 1.

Whether to use an expectation-based approach or a population-lgsedch depends both
on the type and quality of data, as well as the types of clusters we are tateiesletecting. As
noted above, the expectation-based approach should be used witan aecurately estimate the
expected count in each spatial location, either based on a sufficienthawfohistorical data, or
based on sufficient data from a null or control condition; in these ¢cagpsctation-based statistics
will have higher detection power than population-based statistics. On thehatiha, if we only have
relative(rather than absolute) information about what we expect to see, a fioptesed approach
should be used. For example, we may expect twice as many counts in locatsin Aocation B, but
we may not know exactly what to expect in either location: in this case, piprnibased statistics
are appropriate. Similarly, if we have some historical data, but not entmugbcurately estimate
global trends (such as seasonal and day of week effects), it midplettes to use a population-based
statistic since this approach is more robust to misestimation of the global expectatio

The expectation-based and population-based approaches als@giwdifferent results in two
important scenarios. First, if counts throughout the entire search ragiomuch higher than ex-
pected, the expectation-based approach will find these increasesigaifjcant. However, the
population-based approach will only find the increases significant iétisespatial variation in the
amount of increase: otherwise, no significant increase will be deteéte@dn extreme example,
consider a situation where every count is ten times its expected value: whagphetation-based
approach would “sound the alarm” in response to this surprising data,ofndagtion-based ap-
proach would entirely ignore the increase (sincertit® of counts inside and outside any subre-
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gion of the search area has remained constant). More commonly, the famptlased approach
has somewhat reduced power for detecting clusters with large spatiat.ektw example, if half
of the search region has a 20% increase in counts, this potential clustit compared to the
null hypothesis of a 10% increase in counts over the entire search yegidrthus it appears to
be a much smaller (and potentially non-significant) increase. Whether toaisgpkctation-based
or population-based approach in this scenario depends on how wer@tténg case of a global in-
crease: if we assume that such increases have resulted from langes{asad are therefore relevant
to detect), the expectation-based approach should be used, but sueethat such increases have
resulted from unmodeled and irrelevant global trends (and shoulddhetee ignored), then it is
more appropriate to use the population-based approach.

A second scenario where the two approaches differ is when the couat®iarea are much
lower than expected, and the other counts are normal. The expectasied-&yproach would not
trigger an alarm in response to this situation, since no region counts arcsigity higher than
expected. The population-based approach, on the other hand, wiggket tan alert in the “normal”
counts because they are significantly higher (as compared to their unddoselines) than the
other “low” counts. Thus in public health data, the population-based apprmay trigger false
alarms in response to holiday effects that cause decreased count®yegsales of over-the-
counter drugs) in a subset of the spatial locations. Again, whether tthasexpectation-based
or population-based approach in this scenario depends on what tipésters are considered
interesting. If lower-than-expected counts in an area are assumed te be idrelevant factors that
do not affect our expectations of the other counts, the expectatiattaggproach should be used,
and if these decreases are assumed to be global trends that lowepeatations elsewhere, the
population-based approach is more appropriate.

2.3.2 The Poisson and Gaussian models

In addition to choosing between expectation-based and population-bpgezhches, we must also
choose a model of how the counrtsare generated. In the public health domain, the most common
model is Poisson-distributed counts: we assume that each count (i.e. mirdiszrase cases) has
been drawn independently from a Poisson distribution with some (unknmeaiy;. This distri-
bution has been justified in several ways: as a discretization of a Poissmsp (assuming constant
rate in time and/or space), as an approximation to the binomial (where eawndercomes sick
with some probabilityp) for large population and low disease rate, or as an improvement over the
binomial for cases where each individual can be counted more than@mgcendividuals can visit
the emergency room multiple times, or buy multiple units of medication). In geneeaRdfsson
model is appropriate for integer counts, assuming that the variance akthibution is equal to the
mean. If counts are overdispersed (variance higher than mean) erdisukersed (variance lower
than mean), a different distribution should be used. Negative binomialbdistms can be used
to model overdispersed counts, while more complex distributions such asotheag-Maxwell-
Poisson [138] can be used to model counts which may be either ovestigpar underdispersed.
Since both of these distributions are more difficult to work with, we typically theeGaussian
distribution as an approximation when working with overdispersed or digjersed counts.

In the brain imaging domain, the most common model is Gaussian-distributed :counss-
sume that each count (e.g. measured fMRI activation in the given reditire drain) has been
drawn independently from a Gaussian distribution with some (unknown) meamd standard de-
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viation o;. The Gaussian distribution has been justified in many contexts, since thef sularge
number of i.i.d. random variables converges to a Gaussian. Moreovbe brain imaging domain,
usually preprocessing is done, and this preprocessing makes the dat&aussan. Sometimes
the independence assumption is dropped, and this leads @atirgsian random fieldpproaches
discussed in Chapter 7. In general, the Gaussian distribution is appeofmiaeal-valued counts
when distributions are not skewed and have normal kurtosis (e.g. ateeawy-tailed). It is es-
pecially useful (as compared to the Poisson) when counts may be sigthffiosardispersed or
underdispersed. When using the Gaussian distribution for integerdvadumts (e.g. as the approx-
imation to a discrete distribution such as the Poisson or negative binomial), tissi@ais generally
a close approximation when counts are sufficiently large.

For our simple models, we typically use either the Poisson or Gaussian distmgubiecause
each of these leads to efficiently computable score funciiti$§. In some cases, however, neither
of these models may be adequate, and we may wish to sacrifice some compldfiicieacy for
a more accurate and representative model of the data. In these cases wse models such as
the negative binomial for overdispersed integer counts, the Bernoudis®o model for data with
irregularities at some individual locations, and the non-parametric scastistéor data that is not
fit adequately by any known model. The Bernoulli-Poisson and nonypedric scan statistics are
discussed in Section 2.4.

For both the Poisson and Gaussian models, we typically assume that the nesaoh afistri-
bution is proportional to some known baseltpemultiplied by an unknown rate parametgyand
then we use the observed counts to perform inference o tHa the expectation-based statistic,
we assumeg; = 1 (count equal to expectation) everywhere under the nullgand1 (count greater
than expectation) in the affected region under the alternative hypotHasise population-based
statistic, we assumeg to be uniform everywhere under the null, and greater inside the affected
region than outside under the alternative hypothesis.

2.3.3 Derivation of the Poisson expectation-based statist

Let us first consider the simple expectation-based scan statistic dis@isser under the assump-
tion that counts are independently Poisson distributed. In this case, vgévarethe baseline (or
expected count); and the observed couatfor each spatial locatios;, and our goal is to determine

if any spatial regionS has counts significantly greater than baselines. Another way of asking this
guestion is, if each coumnt has been drawn from a Poisson distribution with mean proportional to
the expectatiom; times the “relative risk’y, is there any region with relative risk greater than 1?
Thus we test the null hypothesi§) against the set of alternative hypothe#gs.S), where:

Hy: ¢; ~ Poissoffb;) for all spatial locations;.
H,(S): ¢; ~ Poissofigb;) for all spatial locationss; in .S, and¢; ~ Poissoltb;) for all spatial
locationss; outsidesS, for some constant > 1.

Here, the alternative hypothesi$; (S) has one parameted, (the relative risk in regiort), and
the null hypothesigiy has no parameters. Computing the likelihood ratio, and using the maximum
likelihood estimate for our parametgrwe obtain the following expression:

maxgs1 HSZES Pr(c; ~ Poissofigb;)) Hsi%S' Pr(c; ~ Poissolb;))

F(S) = [1., Pr(c; ~ Poissoitb;))
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maxg>1 [ [ cg Pr(c; ~ Poissofigb;))
HsiES Pr(c; ~ Poissotfb;))

Plugging in the equations for the Poisson likelihood, and simplifying, we obtain:

e—4b; (qbi)ci
maxg>1 5. )
F(8) = —— les G

e bi(b;)%
HSiES (CE)')

—ab; 4Ci
maxgs1 Hsiese @i ge
HSZ'ES e

_ maxgs] e~1B¢¢
B

whereC and B are the total coun} _ ¢; and total baseling b; of region S respectively. We find
that the value of that maximizes the numeratorgs= max(1, %). Plugging in this value of, we

obtainF'(S) = (%)CeB*C, if C > B, andF(S) = 1 otherwise. BecausE(.S) is a function only

of the sufficient statistic€’(S) and B(.S), this function is efficiently computable: we can calculate
the score of any regiof§ by first calculating the aggregate count and baseline and then applying
the functionF'. This approach can easily be extended to the case where counts aratgerirom

¢; ~ Poissorigb;), for a known constangy, under the null hypothesis. In this case, we have

F(S) = (qo%)ceqoB—C if C > qoB, andF(S) = 1 otherwise.
As noted above, we can find the most significant spatial cluster by findengetjfion which

maximizesF'(S). We can then perform statistical significance testing by randomization as dis-

cussed above, where each replica dataset has all counts generd¢edhe null hypothesis;, ~

Poissolfib;), or ¢; ~ Poissolfligb; ) in the more general case.

2.3.4 Derivation of the Poisson population-based statigti

Next we consider the derivation of Kulldorff's spatial scan statistic [78 discussed in Chapter
1, this is a population-based method commonly used in disease surveillanck aldo makes the
simplifying assumption of independent, Poisson distributed counts. Howeukdorff’s statistic
assumes that the counts (i.e. number of disease cases) are distributed Bsissorigb; ), where

b; is the (known) census population gfandq is the (unknown) underlying disease rate. We then
attempt to discover spatial regions where the underlying diseasg isasignificantly higher inside
the region than outside. Thus we wish to test the null hypothiégi€'the underlying disease rate
is spatially uniform”) against the set of alternative hypothege6S): “the underlying disease rate
is higher inside regio® than outside5.” More precisely, we have the following:

Hy: ¢; ~ Poissofig,;b;) for all locationss;, for some constany,;.
Hy(S): ¢; ~ Poissolig;,b;) for all locationss; in S, andc; ~ Po0issofig,,:b;) for all locationss;
outsideS, for some constantg,, > qou:-

In this case, the alternative hypothesis has two free paramejgrandq,.:) and the null hypoth-
esis has one free parametey;{). Computing the likelihood ratio, and using maximum likelihood
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parameter estimates, we obtain:

MaXg,, >qou; | Is;es Pr(ci ~ POissOMiginbi)) [ 15, s Pr(c; ~ Poissoligoutb))

F(S) = _
(%) maxg,, Hsl, Pr(c; ~ Poissofigq;b;))

Plugging in the equations for the Poisson likelihood, and simplifying, we obtain:

e %inbi(ginb;)®i e~ P0utb (qoutbi)

F(S) = MaXg,, >gour | [5,e9 )] [L¢s )]
B e~ 901" (qqubi)®i
maxg,, [T, ——@ =

MaXg,,>goue | L es € " (gin) Tl s € %" (dour)
maxg,, Hsi e—qalbi (qan)®

e*lhan (qzn)czn efcIout Bout (qout)Cout

maXQin>Qout
maxg,, e—daitBall (qa”)call

whereC;, and B;,, are the total count and baseline inside regtrC,,; and B,,,; are the total
count and baseline outside regiSnhandC,; and B,;; are the total count and baseline everywhere.

We can then compute the maximum likelihood estimatgs= g—z Gout = gzzi, andq,; = gzii,

if g—: > Seut andgin = Gout = Gant = g;x otherwise. Plugging in these maximum likelihood
. . C’Ln Cout 70(1,” . X
values, we obtain:F(S) = (Q”) (g‘mi) (%ﬁ) Jif Sino> Cou and F(S) = 1
m ou a m ou

otherwise. Again, the score function can be computed efficiently, usingutffieient statistics of
regionS and the global sufficient statisti€s,; andB,;.

As in the expectation-based approach, we can find the most significatidlspuster by find-
ing the region that maximizeg'(S), and perform statistical significance testing by randomiza-
tion. In this case, however, each replica dataset has all counts geharaler the null hypothesis
¢; ~ Poissoflig,;b;), where we use the maximum likelihood estimatg = % from the original
dataset.

2.3.5 Derivation of the Gaussian expectation-based scarasistic

We now consider an expectation-based scan statistic with Gaussian-destrimunts. In this case,
in addition to the observed counts we are given the expected countand the expected standard
deviationo; for each spatial locatior;. Our goal, as before, is to determine if any spatial region
has counts significantly greater than baselines. Assuming that eachcgdiast been drawn from
a Gaussian distribution with mean proportionaltotimes the relative risly, and with standard
deviationo;, we must determine whether any region has relative risk greater thanus. Widntest
the null hypothesigi, against the set of alternative hypothe$gg.S), where:

Hy: ¢; ~ Gaussiafy;, o;) for all spatial locations;.
Hy(9): ¢; ~ Gaussiafyu,, o;) for all spatial locations; in S, andc; ~ Gaussiafy;, o;) for all
spatial locations; outsideS, for some constant > 1.

Notice that we have assumed that the variance of counts does not sdnsake the clustef;
similar statistics can be easily derived for cases where the variancedasre@ss before, the alter-
native hypothesigéf; (S) has one parameter(the relative risk in regioi$), and the null hypothesis
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Hj has no parameters. Computing the likelihood ratio, and using the maximum like stiothte
for the parametey, we obtain the following expression:

maxg>1 [ [, Pr(c; ~ Gaussiatyui, 0;)) [ 5,45 Pr(ci ~ Gaussiaty;, 0;))
[1,, Pr(c; ~ Gaussiaty;, 7))

F(S) =

maxg>1 [ [ cg Pr(c; ~ Gaussiafyp;, 0i))
HsiGS Pr(c; ~ Gaussiafy;, 0;))
Plugging in the equations for the Gaussian likelihood, and simplifying, we abtain
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whereB' = 37, ¢ % andC’ = Y7 g C;; These sufficient statisticB’(S) andC’(S) can be

interpreted as weighted sums of the expectatigrend counts; respectively, where the weighting
2

of a locations; is inversely proportional to the coefficient of variati%r’a. We find that the max-

imum likelihood value ofg is ¢ = max(1, %). Plugging in this value of;, we obtainF'(S) =

exp ((0/)2 i %’ - C’), if C’ > B’, andF(S) = 1 otherwise. BecausE(S) is a function only of

2B
the sufficient statistic6”(S) and B'(S), we again have an efficiently computable score function.

As above, we can find the most significant spatial cluSteby maximizingF'(S), and perform
statistical significance testing by randomization. To do so, we generaterepldda dataset by
drawing all counts from the null hypothesis~ Gaussiafy;, o;).

2.3.6 Derivation of the Gaussian population-based scan gistic

Finally, we consider a population-based scan statistic with Gaussian-disttibounts. Again, we
are given the observed count expected count;, and expected standard deviationfor each
locations;. But now we assume that the counts are distributed as Gaussiatyy;, o;), whereq
is the underlying rate, and search for regions with significantly higheinsige than outside. Thus
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we test the null hypothesid, against the set of alternative hypothe$gg.5), where:

Hy: ¢; ~ Gaussiafy, 1i, 0;) for all spatial locations;, for some constany,;.
Hy(95): ¢; ~ Gaussiaty;, u;, o;) for all spatial locations; in S, andc; ~ Gaussiafy,,1;, o;) for
all spatial locations; outsideS, for some constantg,, > gou:-

Computing the likelihood ratio, and using the maximum likelihood estimates of the resenpa
tersqgin, qout, andgy;, We obtain the following expression:

MaXg,, >qour Hsies Pr(c; ~ Gaussiaty;, i, o;)) HsiQS Pr(c; ~ Gaussialy,ytiti, 0;))
maxg,,, qu; Pr(c; ~ Gaussialy, i, 0;))

F(S) =

Plugging in the equations for the Gaussian likelihood, and simplifying, we obtain

(ci=Qinpi)® (ci—Goutti)*
MaXg;, >gour | [5;c.5 XD (—T [T s exp (——0

_ (Ci_Qalllti)z)

F(S) =
maxg,, Hsi exp ( 202

We now letB!

m?

all s; respectively. Similarly, we let"!

2
B!, andB/,, represent the suns, % for s; inside S, for s; outsideS, and for
Cl

out?

o andC’, represent the sunis, <t for s; inside S,
for s; outsideS, and for alls; respectively. Then this expression simplifies to:
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We can then compute the maximum likelihood estimatgs= % Gout = g‘,’—#i, andq,; = B‘fii,
i / / (o . . . . . .
if gz{” gﬁ’uf, andgin, = Gout = qau = *- otherwise. Plugging in these maximum likelihood

in out

all
n: — (C’:n)2 (C(liut)2 (C(llll)z i C’Zn Céut —
values, we obtain:F'(S) = eXp(ZBZ,_n ot s ) if B B andF(S) =1

otherwise. Againf'(S) is efficiently computable as a function of the sufficient statistics of region
S and the global sufficient statistic ;, and B,

As above, we can find the most significant spatial cluStelby maximizing#'(.S), and perform
statistical significance testing by randomization. To do so, we generatereplate. dataset by
drawing all counts from the null hypothesis~ Gaussiafy,; i, 0;), where we use the maximum

likelihood estimatey,; = gf,‘” from the original dataset.
all

2.4 More scan statistics

Many other likelihood ratio scan statistics are possible, including models with simeoltia attacks
in multiple regions and models with spatially varying (rather than uniform) ratesb#lieve that

some of these more complex model specifications may have more power to rédggant and

interesting clusters, while excluding those potential clusters which arelegaint to the application
domain under consideration. In this section, we briefly discuss threemseatiods which may be
useful for disease surveillance as well as other application domain$. rigithod deals with one
confounding factor which the simple models do not account for: the BdifRoisson scan statistic
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is robust to outliers, the thresholded scan statistics are robust to smalaflaotiin the underlying
rate, and the non-parametric scan statistic is robust to skewed and thdadycount distributions.
The cost of this greater flexibility is less computational efficiency: many afelstatistics cannot
be expressed in terms of the sufficient statistics of a region. The main fttas @verview is to
demonstrate the generality and flexibility of our statistical framework, and ilisyab be adapted
to domains where simpler models are inadequate. A more extensive explofaties@methods is
beyond the scope of this thesis, but will be addressed in further work.

2.4.1 The Bernoulli-Poisson scan statistic

In some application domains, use of the simple scan statistic models discussededts in a
large number of false positives duedatliers, or individual spatial locations with counts that are
much higher than expected. While in some cases we are interested in detactingsy localized
increases, it is more often the case that these increases are due tiaiitiegun the data or other
irrelevant causes. For example, in our monitoring of over-the-coumtey shles data, we often
see stores with large spikes in sales on a given day, due to bulk pusciasntory movements,
promotional sales, or errors in data collection. We typically want to ignosetbetliers (since they
are not indicative of a disease outbreak), and only detect clusteftbett multiple locations in an
area.

In the Bernoulli-Poisson scan statistic, we assume that all ceuate Poisson distributed with
meansy; b;, whereb; is the expected count anglis the relative risk at locatios;. The difference
from the standard expectation-based Poisson scan statistic is thatdhe drawn from a noisy
distribution, with probabilitye of being equal to some “outlier value;. The value ofe must be
specified as an input parametér< e < %), while theo; will be selected by maximum likelihood
parameter estimation. Thus we compare the null hypothési® the set of alternative hypotheses
H,(S), where:

Hy: for all spatial locations;, ¢; = 1 with probability1 — ¢, andg; = o; with probabilitye.
H,(5): for all spatial locations; in S, ¢; = g with probability1 — €, andg; = o; with probability
¢, for some constant > 1. For all spatial locations; outsideS, ¢; = 1 with probability1 — ¢, and
¢; = o; with probabilitye.

We now compute the likelihood ratio statistic, using maximum likelihood estimates okallfa-
rameters:

maxg>1 [ [, g max((1 — €)Pr(c; ~ Poissofigb;)), e max,, Pr(c; ~ Poissoifo;b;)))
[1,c5 max((1 — €)Pr(c; ~ Poissoffb;)), e max,, Pr(c; ~ Poissoifo;b;)))

F(S) =

maxgs1 [[,,cg max((1 — €)Pr(c; ~ Poissorigh;)), e Pr(c; ~ Poissofic;)))
[1,,csmax((1 — €)Pr(c; ~ Poissolfb;)), € Pr(c; ~ Poissofic;)))

(1—€)e™% (gh;)% ee™Ci(c;)%
maxg>1 [ [, g max ( ) A

1—€)e~bi(b;)% eeCi(c;)%
HsiES max (( )(Ci)!( ) ; (Ci()!) )

maxgs1 HsiES max((1 — €)e™ % (gb;)%, ee ™% (¢;)%)
HsiES max((1 — e)e=bi(b;)¢, ee=C(c;)%)
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The denominator may be calculated easily by computing the maximum of the empsgds—
€)e b (b;) andee ¢ (c;) for each spatial locatior;. All locations where the latter expression
is larger are outliers under the null hypothesis. The numerator is moreutlifioc calculate, as
we must compute the maximum likelihood value of the relative gisko do so, we note that the
function f(q) = (1 — €)e™%i(gb;) is concave downward with a maximum @t= 3 Thus, for
eachs;, we can compute the interval,{;,, ¢ma.) Such thatf(q) > ee % (¢;)%. We obtainqmm =

1 1
—E W (0,_% (ﬁ)) andgmee = — ¢ <_1,_é (ﬁ)) whereW(-) is Lambert’s
W function. We now form a single sorted ligt = (z;) containing all distincty,,;, andgmqx
values greater than 1. These represent all the distinct intervals we amsstler forg: ¢ € [1, 1],
q € [z1,22], .-+, ¢ € [2n—1,2n), ¢ € [2n,00]. FoOr each interval, we compute which locations are
and are not outliers, then compute the optimal value &fr that interval: ¢ = % restricted to
that interval, where” and B are respectively the total coudt ¢; and total baseling_ b; of all
non-outliers. This allows us to find the optimal valuegdbr regionS, the optimal set of outliers
under the alternative hypothedis (.S), and the scoré’(.S). As in the simple scan statistic models,
the most significant region is the one which maximiz&s'), and we can compute the significance
of this region by randomization. We create replica datasets by sampling tvedeull hypothesis
¢; ~ Poissofig;b;), whereg; = 1 for all non-outliers and; = g— for all outliers under the null.

As an example of the computation of the Bernoulli-Poisson statistic, let us evrssigkgion
with five locationss;, with (¢;, b;) equal to(12, 10), (100, 3), (9, 11), (17, 10), and(22, 10) respec-
tively. Assuminge = 0.01, we find the interval$gmin, ¢maz) €qual t0(0.43,2.58), (24.2,44.5),
(0.24,1.94), (0.74,3.27), and (1.07,3.94) respectively. Thus we know that, under the null hy-
pothesisg = 1, the second and fifth locations are outliers. To find the optimal valug ofe
must search the interval$, 1.07], [1.07,1.94], [1.94, 2.58], [2.58, 3.27], [3.27,3.94], [3.94, 24.2],
[24.2,44.5], and[44.5, co]. We obtain the optimal value in the intenjal07, 1.94], where only the
second location is an outlier. In this case, we have {22 = 1.46, with the resulting
scoreF'(S) = 22.1. As the probability of outliers increases, more locations become outliers:
for e > .0825, the third location is also an outlier under the alternative hypothesis. Similardy, a
decreases, we have less outliers: the very anomalous locatiom;withl00 andb; = 3 is only a
non-outlier fore < 3 x 10~73. Finally, we note that in the limit of — 0, the score’’(S) converges
to that of the simple expectation-based Poisson scan statistic.

2.4.2 Thresholded scan statistics

Another potential source of false positives when simple scan statisticsegeisislight variations

in the underlying rate parameter Our simple statistics attempt to detect any regions where the
rate is higher than expected: in the expectation-based approach, themsyaegions where the
relative riskqg > 1, and in the population-based approach, these are any regions wheameh

is higher inside the region than outsidg,( > g..:). For example, even a 1% increase in rate
will be detected if it corresponds to a large enough underlying populatibaseline to make that
increase significant. However, in many applications, we are only interestegiions where the
rate issubstantiallyincreased, so these slight fluctuations in rate can be thought of as stiyistica
but not practically significant. In practical applications such as diseageiance, the simple scan
statistics often detect slight increases in count corresponding to a lpagjalsegion, but these
regions are unlikely to be indicative of a “true cluster” (e.g. disease eakdr It is more likely
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that the variations result from other, irrelevant factors such as modspetsication: we may have
underestimated the baseline for the given region, or failed to accousotifioe relevant covariates.
No matter how complex our model, there will always be some aspects of thevoddl-data that
we fail to account for, and we would like our statistics to be as robust te thepossible.

Our solution is to only detect clusters where the underlying rate is incrégsmdre than some
constant > 0. We term such methodbresholded scan statisticande the detection threshold
For the expectation-based statistic, we wish to detect regions where thieerelsk ¢ > 1 + ¢,
and for the population-based statistic, we wish to detect regions wheratég,r > (1 + €)gout-
For examplee = 0.2 would correspond to detecting regions with more than 20% increases in rate,
while e = 0 is equivalent to the simple scan statistics discussed above. A threshotatestatistic
may be defined in a number of ways, depending on our answers to fivectigtiestions. First,
as noted above, we can define either expectation-based or populated-ftatistics. Second, we
must choose what sort of fluctuation in rates is allowable under the nutithgpis of no clusters.
This requires us to answer three questions: do we allow rates to fluctuetedngd — ¢ and1 + ¢
or between 1 and + ¢, do we allow fluctuations everywhere or only in a single region, and must
the amount of fluctuation be constant across locations or differentafdr cation? Finally, we
must choose what sort of increase is allowable under the alternativehegisH, (S): we can ei-
ther assume a constant multiplicative increase, or a different amountre&s®for each location in
the region. Here we consider one such statistic, which is expectatiod;k@ksvs counts to fluc-
tuate everywhere (and differently for each location) between llahd, and assumes a constant
multiplicative increase unddif(.5). In this case, we compare the null hypotheisto the set of
alternative hypotheses, (.S), where:

Hy: ¢; ~ Poissoffe;b;) everywhere, where < ¢; < 1 + .
Hy(S): ¢; ~ Poissoflqe;b;) inside regionS for some constang > 1, ande¢; ~ Poissolfe;b;)
outsideS, wherel <¢; <1 +e.

For these models, we derive the following likelihood ratio statistic:

maxg>1 HS»;ES maxXi<e;<l+e PI’(CZ' ~ POiSSOI(“Iqq‘bZ'))
HsiES maXji<e;<l+e Pr(ci ~ POiSSOIﬁEibi))

F(S) =

e_qeibi (qubi)ci
maXg>1 Hsies Max] <e; <l+e (co)!
H e~ ibi(e;b;)%
s;€5 MAX1<e;<14-€ !

- maxgs1 [[cg maxice<ive €19 (g€;)

HsiES maXxi<e;<l+e e—¢€ibi (Gi)ci

The denominator of this expression can be computed easily by noting thaptingabvalue of
eache; is ;* restricted to the intervdll, 1 + ¢]. The numerator is more difficult to calculate, as we
must compute the maximum likelihood value of the paramgt@o do so, we note that eashhas

€ = CZ restrlcted td1, 1+e] We will havel < qcé < 1+efortheintervaly € [¢min, ¢maz], Where
Amin 1+6)b andgmq. = . We now form a single sorted list = (z;) containing all distinct
Gmin ané gmaz Values greater than 1. These represent all the distinct intervals we onsstier
forq: ¢ € [1,z1), ¢ € [z1,22], .., ¢ € [2n—1,2n], ¢ € [2n,00]. For each intervag € [z;, zj41],
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we can compute the optimal value @by dividing the locations into three groups: locations with
5 < zj, locations withg: > (1 + €)z;11, and locations withe; < §£ < (1 + €)2;41. For the
first set of locations, the optlmal value efwill be 1 regardless of the value gf For the second
set of locations, the optimal value ef will be (1 + ¢) regardless of the value qgf For the third
set of locations, the optimal value efwill be -, and each location’s contribution to the score is

independent of. Thus, forvalueso@restrlcted tqz],zjﬂ] we have:

—qeib;
arg max H max e €;
& q 1<e;<1+e€ (q )

= —gb; c; —(1+€)gb; 1 i (G ¢
arg max H e Piq H e (1+¢€)q) H e <bz>

‘;—zgz] 2—22(1+E)Zj+1 Zj<§_z<(1+€)zj+l
= arg max e~ i g H e~ (1Fe)abi ges
q
iﬁ ?l (1+€)zj41
_ are max e~ d(BiH(149B2) Crv0r _ _ C1+ Ch
q Bi+(14+¢€)By

restricted to the intervak;, z;1]. In these equations;; andB; are the total coun}  ¢; and total
baseline}  b; for all locations with7: < z;, andC> and B, are the total cound  ¢; and total
baseline) _ b; for all locations withg: > " > (1+ €)zj41. Given the optimal value of for the interval,
we compute the scorg(S) by settlng alle; = _i- restricted to[1, 1 + €]. Finally, we choose the
maximum score over all intervals to obtain the optimal valué'e§).

As in the simple scan statistic models, the most significant region is the one whicimizes
F(S), and we can compute the significance of this region by randomization. Veeeareplica
datasets by sampling under the null hypothegis- Poissofie;b;), where eacly; is equal tolf—'l%
restricted to the interval,, 1 + €].

In previous work, we proposediscriminativescan statistic model that computes the likelihood
ratio of the alternative hypothesig; (S) to the null hypothesigi,(.S) for a given regionS. One
discriminative version of the thresholded scan statistic, which we used &), [ddmpares the null
hypothesisHy(S): gin < (1 + €)gou: to the alternative hypothesi (S): ¢ > (1 + €)qout,
where g;, and ¢,,,+ are the underlying rates inside and outside regforespectively. Thus we
have a thresholded statistic that is population-based, allows a constamagase in a single
region under the null, and assumes a constant multiplicative increase Ha@dgy. While this
statistic is somewhat different from our generalized scan statistic frarkefwdrich assumes a
single composite null hypothesi rather than a separate nully(S) for each region tested),
the discriminative thresholded scan statistic is efficiently computable, and ilsesssuccessfully
to detect clusters in multidimensional disease surveillance and brain imaginghdais8]. The
thresholded scan statistic results presented in Chapters 3 and 7 rely oertis\of the statistic;
we also plan to compare these results to the other thresholded scan statist dismissed above.
For the discriminative thresholded scan statistic, we derive the likelihoodstatistic as follows:

maxXeg,,, >(14+€)qout HsiES Pr(ci ~ POiSSquinbi)) HsieG—S PI’(CZ‘ ~ POiSSOmQOutbi))

F(S) = : :
) MAaXy, <(1+€)gout | Ls;e5 PN(ci ~ P0ISSONginb;)) [, e g Pr(ci ~ PoissOligoutbi))
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_ ( Cin )C <cout>0m ( Cai )C
(1 + 6)-Bin Bout B, + €Bin

if Cm > (14 ¢) Cout where the counts and baselines are defined as in the Poisson population-
based statistic. Then the most significant region can be obtained by maxirigijgand we can
compute statistical significance by randomization under the null hypothg$is).

2.4.3 The non-parametric scan statistic

As discussed above, our expectation-based scan statistics attempt tamaasgiected distribution

of counts for each spatial location under the null hypothesis of no ctystem find regions where
the counts are higher than expected. The simple expectation-based stasgisticge that the counts
are generated by some parametric model, then learn the parameters of thistppmdaly from
historical data. For example, the Poisson expectation-based statistic tleautmsseline (expected
count) b; for each spatial location, while the Gaussian expectation-based statistis leath the
expected count; and the expected varianeg The disadvantage of these model-based approaches
is that they rely heavily on our distributional assumptions: for example, tiss@ostatistic cannot
account for overdispersion or underdispersion of counts, andeméitiisson nor Gaussian statistics
can account for heavy-tailed count distributions.

Our solution is anon-parametric scan statistiapproach, where we make no model assump-
tions on the distribution of counts, but instead use the empirical distributiontoficisl counts for
each spatial location. Let us assume that we have a eouartd a time series of past counts
(1 <t < T) for each spatial locatior;. Furthermore, let us make three simplifying assumptions:
that the historical data contains no relevant clusters, that the time seriesri§dor each location
is stationary, and that counts are uncorrelated. Then under the naliihegis of no clusters, we
expect that the current count for each location will be drawn from the same distribution as the
historical counts:! for that location. Thus we can define the empirisalalue P; for each spatial
locations; to be the ratloTbjzaﬁ+1 whereT}.,; is the number of historical counts larger thar;.
Under the null hypothesis, and given the simplifying assumptions aboek |@zation’s empirical
p-value will be asymptotically uniformly distributed ¢, 1]. We wish to detect regionswhere the
countse; are higher than expected, and thus wherefthare lower than expected. In other words,
we wish to test the null hypothesi, against the set of alternative hypothe$gs.5), where:

Hy: P; ~ Uniform[0, 1] everywhere.

Hy(S): P; ~ g(x) inside S, and P; ~ Uniform[0, 1] outsideS, for some unknown probability
distributiong(z) with cumulative distributiorG(x) satisfyingG(0) = 0, G(1) = 1, andG(«) > «
forall0 < a <1.

To test this hypothesis, we use the “higher criticism” method of Donoho anfBJdin We first
compute the empirical-value P, for each spatial location. For any constant « < 1, we expect
eachP; to be less tham with probability o under the null hypothesis, or with probability at least
a under any alternative hypothedis (S) such thats; € S. For a regionS, we can defineV(5S)

to be the number of spatial locations.$h and N, (.S) to be the number of spatial locations $h
with P; < «. Then we expeclV,,(.S) to be binomially distributed with meamN (S) and variance
a(l — a)N(S) underHy, and we expect the values 6f,(S) to be larger thamv N (S) under the
alternative hypothesi#/; (S). Following [37], we can select a range @fthat we are interested in,
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Qmin < a < amaz, @nd we can define the non-parametric scan statistic as follows:

F(S) = _— N (S) —aN(9)
Amin<a<Qmaz a(]_ — a)N(S)

As usual, we can compute the most significant regiérby finding the maximum value of (S),
and calculate the statistical significance of this region by randomization teskng.the non-
parametric statistic, we can generate the empigiealues of the replica datasets directly, drawing
each value from the uniform distribution ¢i 1]. An alternative method of significance testing, in
keeping with the non-parametric approach, would be to compute the test statistianaxg F'(.S)

of the historical data for each time stepthen compute the empiricatvalue of the maximum
region score using these values.

To use the non-parametric scan statistic in practice, we must consider the wimgpdissump-
tions above. Most importantly, we do not expect the time series of countss@mtienary in most
applications, but must adjust for covariates such as seasonal aind-depek trends. Thus we must
apply the statistic to counts that have been adjusted for these and othantelevariates. Addition-
ally, we can account for correlated counts by examining the pairwiselations of the empirical
p-values: more precisely, we can add the quaritl‘f)fsl_l’Si{ZeS(Pr(].Di1 <a, P, <a)—a?) tothe
variance of the binomial distribution fa¥, (.S), and adjust the score functidn(S) accordingly.
Randomization testing can be performed by generating correlated countsiemg the empirical
p-value of the maximum score, as discussed above.



Chapter 3

Fast algorithms for spatial cluster
detection

3.1 Introduction

This chapter focuses on computational methods for rapid and efficiatidbgluster detection. Effi-
cient cluster detection algorithms are necessary for two reasons: ficstife we are often search-
ing for clusters in huge spatial datasets, makinty@anethods computationally infeasible, and
second, because application domains such as disease surveillarioe wego detect and respond
to clusters as soon as possible. When responding to an emerging outbdis&ase, every hour
of earlier detection has the potential to significantly reduce morbidity and mortatieg [149].
There are three sources of “lag time” between the onset of an outbneltha earliest time we
could possibly detect the outbreak: the time it takes patients to generate welitaith (i.e. visiting
emergency departments or buying over-the-counter drugs), the time totdblkedata (e.g. by the
National Retail Data Monitor) and make it available for analysis, and the timedstakanalyze
the data and report results. For massive datasets, the lag time resultingdtaranalysis has the
potential to be huge, but faster algorithms will help to reduce this lag time. Weatlpieceive
syndromic data on a daily or hourly basis, and thus we want to achieve rfealaime” analysis,
processing data in minutes or hours rather than in days or weeks. Moreov algorithms should
be fast enough that multiple such analyses (e.g. different statistical moddierent data streams)
can be performed, giving public health officials a better situational awaserAn eventual goal of
this work is to enable real-time cluster detection and investigation, allowing puddithhofficials
to explore multiple time series and perform multiple spatial scan queries “on theOfilyr work
toward this goal is discussed in Chapter 8.

The centerpiece of my discussion of computational methods is the “fastisgEtig” a new
multi-resolution search algorithm which allows us to perform the spatial saadrbds or thou-
sands of times faster without any loss of accuracy. This algorithm reliesraw type of space-
partitioning data structure which we call the “overlap-kd tree,” and this stati@ture might also be
useful for speeding up other spatial search algorithms. The fastIsgEtrais presented in Section
3.3; before presenting this method, | provide an overview of the compughpooblem and describe
the standard “riae” computational methods in Section 3.2. Finally, Section 3.4 presents rekults o
running the fast spatial scan on various public health and brain imagingetstand compares the
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fast spatial scan to other computational approaches. | also discusstediomal methods further in
Chapter 4 (space-time scanning) and Chapter 5 (the Bayesian scan ktatistic

Much of this chapter has been adapted from our papers in KDD 20@&4, [M1PS 2004 [118],
and the 2004 National Syndromic Surveillance Conference [119], dsaw®ur chapters in the
Handbook of Biosurveillandd 15] andSpatial and Syndromic Surveillance for Public Hedlth4].
| wish to thank my co-authors Andrew Moore, Maheshkumar Sabhnaancisco Pereira, and
Tom Mitchell, as well as editors Mike Wagner and Andrew Lawson, for tbeitributions. The
fast spatial scan was first derived for the two-dimensional case &j,[ahd extended to the multi-
dimensional case in [118]; it was first presented to the public health commonitg4, 119]. We
also presented an earlier, approximate version of the fast spatial sEbhlin110], but we focus
here on the exact, more efficient method presented in our later work.

3.1.1 Searching for elongated regions

Most of the previous approaches to cluster detection searctofapactclusters, such as circles
(e.g. Kulldorff [78]) or squares. One exception to this is the work of Kufflet al. [86], who
search over a subset of the elliptical clusters, but this method is computstiofeasible for even
moderately-sized datasets. Our fast spatial scan method, howevers &lovapid and efficient
detection ofelongatedclusters as well: we search over the space of rectangular clustersexthis
tension is extremely important in epidemiological applications because dideasers are often
elongated: airborne pathogens may be blown by wind, creating an ellipsloiché)j and water-
borne pathogens may be carried along the path of a river. In each s& taeses, the resulting
clusters have high aspect ratios, and a test for compact clusters walldapower for detecting
the affected region. Detection of clusters with high aspect ratios is alsotampan brain imaging,
because of the “folded sheet” structure of the brain, and in astroghymscause galaxies and other
astronomical objects may be elongated in shape.

While our discussion below focuses on finding “axis-aligned” rectamgelgions, assuming
that data points have been aggregated to a grid, the fast spatial scha easily extended to find
rectangular regions which are not aligned with the coordinate axes. i@pésmethod of doing
this is to examine multiple “rotations” of the data, mapping each to a separate gribarputing
the most significant region and its score for each grid. In this case, weatsogperform the same
rotations on each replica grid, and thus the complexity of the algorithm is multipfittetnumber
of rotations. However, if we have information about relevant conditiorch s wind direction or
the flow of a river, we can use this information to align the coordinate aresicing or avoiding
the need to examine multiple rotations.

3.1.2 Searching for multidimensional regions

In [118], we extended the fast spatial scan to multidimensional datasatsatically increasing the
scope of problems for which these techniques can be used. In additiataigets with more than
two spatial dimensions (for example, functional magnetic resonance imagiagwhich consists
of a 3D image of brain activity), we can also examine data with a temporal comparenvhere

we wish to take demographic information such as age and gender into ac€murexample, for
biosurveillance datasets (e.g. over-the-counter drug sales datsgnwesedimeas a third, “pseudo-
spatial” dimension, in addition to the spatial dimensions of longitude and latitudect8eg for
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clusters in this three-dimensional space allows us to seargbefsistent spatial clustersspatial
regions where the counts are higher than expected for some length of tinamather example, we
can use gender and age decile as pseudo-spatial dimensions in the kap&gpartment dataset,
and search for clusters in this four-dimensional space. This givetesuhigher power to detect
outbreaks which affect different patient demographics to diffenetetres. For example, if a disease
primarily strikes elderly males, we might find a cluster with gender = male andegjle & 6 in
some spatial region, and this cluster may not be detectable from the comlaitzedTthis method
accounts correctly for the multiple hypothesis testing resulting from testingeliffeombinations
of genders and age groups; if we were to instead perform a sepasti kevelo on each combi-
nation of gender and age decile, the overall false positive rate would ble higher tharv due to
multiple testing.

3.2 Computational issues in spatial scanning

In this section, we return to the question of what set of regions to sewetlffo'st considered in the
generalized spatial scan framework of Chapter 2), and discuss ha#ftom this search efficiently.
First, we note that the run time of theina spatial scan can be approximated by the product of three
factors: the number of replicatior$, the average number of regions searched per replicésipn
and the average time to search a regiohhe number of replicationB is typically fixed in advance,
but we can stop early if many replicas beat the original search area @.sakimum region scores
F* of the replicas are higher than the maximum region séor@f the original). If this happens,
it is clear that no significant clusters are present. The other two fac§oend¢ depend on both
the set of regions to be searched and the algorithm used to searchdbesesr For a set af/
distinct spatial locations in two dimensions, the number of circular or axisedigquare regions
(assuming that the size of the circle or square can vary) is proportioddPtovhile the number
of axis-aligned rectangular regions (assuming that both dimensions oéc¢tengle can vary) is
proportional toM/. For non-axis-aligned squares or rectangles, we must also multiply thisarumb
by the number of different orientations searched. However, mostitilgw only search a subset
of these regions: for example, Kulldorff’s algorithm [80] searchely circles centered at one of
the M spatial locations, and the number of such regions is proportionsitpnot A/3. Another
possibility is to aggregate the spatial locations to a grid, either uniform odbasehe distinct
spatial coordinates of the data points. For a two-dimensiakiak N grid, the number of axis-
aligned square regions is proportional Ao, and the number of axis-aligned rectangular regions
is proportional toN*. Whatever set of regions we choose, the simplest possible implementation
of the scan statistic is to search each of these regions by stepping threutghgpatial locations,
determining which locations are inside and outside the region, computing thegatg baselines
and counts, and applying the score function. Thus in this approachave£d] (number of regions
searched per replication) equal to the total number of distinct regiods,(ime to search a region)
proportional to the number of spatial locatiohs

There are several possible ways to improve on the runtime of thie approach. First, we can
reduce the time to search a regigmmaking this search time independent of the number of spatial
locationsM. We consider two possible methods for searching a region in constant timeefirgt
method, which we call “incremental addition,” assumes that we want totseasy all regions of
a given type: for example, in the approach of Kulldorff [80], we wargearch all distinct circular
regions centered at one of the spatial locations. To do so, we increasgton’s size incrementally,
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such that one new spatial location at a time enters the region; for each cetwoig we can add that
location’s count and baseline to the aggregates, and recompute thdwstiien. For example, in
Kulldorff’'s method, for each locatior; we keep a list of the other locations, sorted from closest to
furthest away. Then we can search over Mialistinct circular regions centered @tby adding the
other points one at a time in order. Because the sorting only has to be dosméama does not have
to be repeated for each replication) this results in constant search timegpamn.rIn other words,
Kulldorff’s method requires time proportional t/? to search over all of thé/? regions. This
must be done for each of tHe replications, giving total search time proportional?d/2.

The second method assumes that points have been aggregatey tg an grid, and that we
are searching over squares or rectangles. We can use the well-Koomnlative counts” tech-
nique to search in constant time per region. We first precompute a matrix ofithelative counts
CCij = D ke1.i D1=1.; Ckl N O(N?) operations, using dynamic programming. We can then com-
pute each region’s count by adding/subtracting at most four cumuladiwetg, and similarly for
baselined. Thus we can calculate the score of a regiorOifl) by computing the count’ and
baselineB, then applying the score functidi(C, B). As a result, we can perform the scan statistic
for gridded square or rectangular regions in time proportionak times the number of regions,
i.e. RN3 or RN* for square or rectangular regions respectively. We also note thauthala-
tive counts technique can be usedl/idimensions: in this case, we must add/subtract a number of
counts that scales exponentially with dimension but is still independent ofithgige N. Thus a
naive search requires tin@( RN +1) or O( RN?¢) for d-dimensional hypercubes drdimensional
hyper-rectangles respectively.

Even if we can search in constant time per region, the spatial scan statidilt esteemely
computationally expensive, because of the large number of regiorthedai-or example, to search
over all rectangular regions on2%6 x 256 grid, and perform randomization testing (assuming
R = 999 replications), we must search a total of 1.1 trillion regions, which would takd5l
days on our test systems. This is clearly far too slow for real-time detectiemefging disease
outbreaks. While one option is to simply search fewer regions, this readurgsower to detect
clusters. A better option is provided by the fast spatial scan algorithmssdisdibelow, which
allow us to reduce the number of regions searched, but without losing@wacy. The idea is
that, since we only care about the most significant regions, i.e. those witligest scored’(.5),
we do not need to search a regisnf we know that it will not have a high score. Thus we start
by examining large regionS§, and if we can show that none of the smaller regions contained in
S can have high scores, we do not need to actually search each of gggsest Thus, we can
achieve the same result as if we had searched all possible regiong; balybsearching a small
fraction of these. Further speedups are gained by the use of multireaddiatia structures, which
allow us to efficiently move between searching at coarse and fine resaslufitrese methods are
able to search hundreds or thousands of times faster than an exhaestigh, without any loss of
accuracy (i.e. the fast spatial scan finds exactly the same regiomaadde as exhaustive search).
As a result, these methods have enabled us to perform spatial scartasetslauch as nationwide
over-the-counter sales data, from over 20,000 stores in near reaktarehing for disease clusters
in minutes or hours rather than days or weeks.

1 X
More precisely, we haka:ilmiz El:jl.”jg Ckl = CCiy,jo — CCig,j1—1 — CCiy—1,j5 T CCiy —1,j;—1, Wherecci,o =
CCo,j; = 0.
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3.3 The fast spatial scan algorithm

For the fast spatial scan, we consider the case in which data havedgregated to d-dimensional
grid. LetG be ad-dimensional grid of cells, with siz& x Ns x ... x Ny. Each cells; € G (where

1 is ad-dimensional vector) is associated witfcauntc; and abaselineb;. As discussed above,
the count of a cell might represent the number of disease casesingdarthat geographical area
over some time interval, while the baseline of that cell might represent atexpeount (estimated
from past data) or at-risk population. Given these counts and basadimegoal is to search over
all d-dimensional rectangular regioSsC G, and find regions where the total codnts) = > ¢ ¢;

is higher than expected, given the basel®5) = >4 b;. In addition to discovering these high-
density regions, we must also perform statistical testing to determine whetw tlegions are
significant. Though we focus on finding the single, most significant reglm method can be
iterated (removing each significant cluster once it is found) to find multiplefgignt regions.

As discussed in the previous chapter, we can find the most significaohragd itsp-value by
deriving a score functio’(S) based on the null and alternative hypotheses we wish to compare,
finding the regionS* with the maximum value of'(S), and performing randomization testing to
calculate significance. We present a fast search algorithm which is alplglito a general function
F(S), whereF(S) is based on the total count of regioh C(S) = )¢ ¢;, and the total baseline
of regionS, B(S) = ¢ b;. Thus we will often writeF'(C, B), whereC and B are the count and
baseline of the region under consideration. In this discussion, we asbahtbe score functiof’
satisfies the following three intuitive properties:

1. For afixed baseline, score increases monotonically with C(%ﬂ(@, B) > 0forall (C, B).
2. For a fixed count, score decreases monotonically with basgﬁl(e?, B) < oforall (C, B).

3. For a fixed ratio%, score increases monotonically with count and basel@%((}, B) +
Cor(c,B) > 0forall (C,B).

The first two properties state that an overdensity of counts is presemt edunt is large relative
to baseline; thus score will be increased by either increasing the codetmeasing the baseline.
The third property states, in essence, that an overdensity of counts éssigoificant when the
underlying count and baseline are large. As a simple example, a regioa 20% of the population
is sick (% = .20) might be very significant if it represented ten thousand sick peoplefdiityo
thousand, but not so significant if it represented five people, ondhofrwis sick. More generally,
smaller counts and baselines will typically result in higher variance in the %ti@or example,
assuming that counts are Poisson distributed with means proportiofiglttee variance o% is
proportional to% = %. Thus a higher than expected ratio of count to baseline will be increased in
significance when count and baseline are large.

Here we present fast spatial scaralgorithm which is exact (always finds the correct value of
F* and the corresponding regidgit) and yet is much faster thaniwa search. The key intuition
is that, since we only care about finding the highest scoring region, wetoeed to search over
every single rectangular region: in particular, we do not need to s@asel of regions if we can
prove that none of them can ha¥&S) > F*. As a simple example, if a given region has a very
low count, we may be able to conclude tinatsubregion contained in that region can have a score
higher thanf™, and thus we do not need to actually compute the score of each subrégiswe
use a top-downbranch-and-boundpproach: we maintain the current maximum scbteof the
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regions we have searched so far, calculate upper bounds on tes s€subregions contained in a
given region, angbruneregions whose upper bounds are less than the current valtie. dVhen
searching a replica grid, we care only whetti&rof the replica grid is greater thafi*(G). Thus
we can us&™ of the original grid for pruning on the replicas, and can stop searchiagl&a if we
find a region with7'(S) > F*(G).

3.3.1 The overlap-kd tree data structure

Our top-down approach to cluster detection can be thought of as a muliitescsearch of the
space under consideration: we search first at coarse resolutiagyesrggions), then at successively
finer resolutions (smaller regions) as necessary. This suggests ieati@hical, space-partitioning
data structure such as kd-trees [13, 127], mrkd-trees [34], orticpesd[48, 133] may be useful in
speeding up our search. However, our desire for an exact solutikasnitadifficult to apply these
data structures to our problem. In a kd-tree, each spatial region isiegyrpartitioned into two
disjoint “child” regions, each of which can then be further subdivid€de difficulty, however, is
that many subregions of the parent are not contained entirely in either bhildverlap partially
with each. Thus, in addition to recursively searching each child regiennust also search over
all of these “shared” regions at each level of the tree. d~dimensional data, there a(N2?)
shared regions even at the top level of the tree (i.e. regions partiallappéarg both halves of
grid G). Thus an exhaustive search over all such regions is too computatiompiygve, and
a different partitioning approach is necessary. A second option waaileh lvork in bottom-up
fashion, attempting to find the two “pieces” of the highest scoring regioe,imreach child, and
then merge the two. This approach fails because of the non-monotonicity s€dine function: the
highest scoring region may havédnggherscore than either of its two pieces.

Here we improve on the top-down search idea by using a new data strubrioxerlap-kd tree,
where the children of a region overlap. The idea of overlapping chiidreemmon in the literature,
and has been used in data structures including R-trees [62]. Theedifkers that our data structure
must be optimized for the task of searching over all regions to find the higbashg region, rather
than dynamic insertion and deletion of spatial data. Since we cannot &ffatd individual tree
searches for each region, an R-tree is too inefficient for our s¢éas&hand instead we consider a
new variant of the kd-tree with overlapping children.

An initial step toward the overlap-kd tree data structure can be seen bigleoing two divisions
of a two-dimensional rectangular spatial regién first, into its left and right halves (which we
denote byS; andSs), and second, into its top and bottom halves (which we denotg;land S,).
Assuming thatS has sizek; x ks, this means that; and.S; have size%kl x ko, andS3 and Sy
have sizé:; x %kz. Considering these four (overlapping) halves, we can show thatdmggion of
S either a) is contained entirely in (at least) oneSef . . S4, or b) contains the centroid ¢f. Thus
one possibility would be to searchby exhaustively searching all regions containing its centroid,
then recursing the search on its four “childresy”. . . S;. Again, there ar€® (N 2?) “shared” regions
at the top level of the tree (i.e. regions containing the centroid of(@yjdo an exhaustive search is
infeasible.

Our solution is a partitioning approach in which adjacent regions partiallgfagyea technique
we call “overlap-multiresolution partitioning.” Again we consider the divis@nS into its left,
right, top, and bottom “children.” However, while in the discussion abaehechild contained
exactly half the area o, now we let each child contaimorethan half the area. We again assume
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Figure 3.1: Overlap-multiresolution partitioning of regiSr(for d = 2). Any subregion ofS either
a) is contained in som§;, ¢ = 1...4, or b) containsS¢.

that regionS has sizek; x ko, and we choose fractiong, fo > % ThenS; and .S, have size
fik1 X ke, andS3 and S, have sizes; x foks. This partitioning (forf; = fo = %) is illustrated in
Figure 3.1. Note that there is a regiSp common to all four children; we call this region tbenter

of S. The size ofS¢ is ((2f1 — 1)k1 x (2f2 — 1)k2), and thus the center has non-zero area. When
we partition regionS in this manner, it can be proved that any subregiof efther a) is contained
entirely in (at least) one of; ... S4, or b) contains the center regidiy.. Figure 3.1 illustrates each

of these possibilities.

This partitioning approach may be extended to arbitrary dimension, resultiagiavel data
structure which we term aoverlap-kd tree The overlap-kd tree, like kd-trees and quadtrees, is a
hierarchical, space-partitioning data structure. The root node of thedpgesents the entire space
under consideration (i.e. the entire gfi), and each other node represents a subregion of the grid.
Each non-leaf node of @&dimensional overlap-kd tree had children, an “upper” and a “lower”
child in each dimension. For example, in three dimensions, a node has sixeahilgiper and lower
children in thex, y, andz dimensions. The overlap-kd tree is different from the standard kd-tree
and quadtree in that adjacent regions overlap: rather than splitting thom rieghalf along each
dimension, instead each child contamsrethan half the area of the parent region. In general, let
region$ have sizé:; x ks x ... x kq. Then the two children of in dimensionj (for j = 1...d)
have sizeky x ... x kj_1 x fik; X kjy1 X ... x kq, wherel < f; < 1. Defining the cente¢
as the region common to all of the®é children, it can be proved (as in the two-dimensional case)
that any subregion of either a) is contained entirely in at least oneSpf . . Sy, Or b) contains the
center regiorS¢. A picture of this partitioning in the three-dimensional case is given in Figie 3

Now we can search all subregions®ty recursively searching; ... .S,4, then searching all
of the regions contained ifi which contain the cente¥. Unfortunately, there may still be a large
number of such “outer regions”: at the top level there@(é?¢) regions contained in gri@ which
contain its cente€?. However, since we know that each such region contains the large@gip
we can place very tight bounds on the score of these regions, oftenrgdloato prune most or all
of them. We discuss how these bounds are calculated in the following s$iginsethus the basic
outline of our search procedure (ignoring pruning, for the moment) is:

over |l ap-search(S)

{
call base-case-search(S)
define child regions S 1..S 2d, center S C as above
call overlap-search(S_.i) for i=1..2d



54 CHAPTER 3. FAST ALGORITHMS FOR SPATIAL CLUSTER DETECTION

aibe gt

e

N

)
t il

-----
itinge

s
.......

ol
RN N\

Figure 3.2: Overlap-multiresolution partitioning of regiSr(for d = 3). Any subregion of5 either
a) is contained in som§;, i = 1...6, or b) containsSc.

for all S such that S is contained in S and contains S C,
call base-case-search(S)

Now we consider how to select the fractiofyfor each call of overlap-search, and characterize
the resulting se® of regionsS on which overlap-search] is called. Regions € ¢ are called
gridded regionsand regionss' ¢ ® are callecbuter regions We begin the search by calling overlap-
search(7). Then for each recursive call to overlap-sea®h{vhere the size af isk; x ... x kg, we
set eacly; based on the value &f: f; = % if k; = 2" for some integer, andf; = % if k; =3x2"
for some integer. For simplicity, we assume that a\l; are either a power of two, or three times a
power of two, and thus all region sizéswill fall into one of these two cases. For instance, if the
original grid G has size&4 x 64, then the children o7 will be of sizes64 x 48 and48 x 64, and
the grandchildren of; will be of sizes64 x 32, 48 x 48, and32 x 64. Repeating this partitioning
recursively down to regions of size 1 (or larger, if we so choose)phtain the overlap-kd tree
structure. For = 2, the first two levels of the overlap-kd tree are shown in Figure 3.3. Note tha
even though grid¥ has four child regions, and each of its child regions has four childrehas
only ten (not 16) distinct grandchildren, several of which are the chifdutiple regions. The X’'s
on the tree will be discussed later, and can be ignored for now.

The overlap-kd tree has several useful properties, which we mtrasee without proof. First,
for every rectangular regiofi C G, eitherS is a gridded region (contained in the overlap-kd tree),
or there exists a unique gridded regishsuch thatS is an outer region o8’ (i.e. S is contained in
S’, and contains the center region#f). This means that, if overlap-search is called exactly once
for each gridded region, and no pruning is done, then base-casgisgill be called exactly once
for every rectangular regiofi C G. In practice, we will prune many regions, so base-case-search
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Figure 3.3: The first two levels of the two-dimensional overlap-kd treechEebde represents a
gridded region (denoted by a thick rectangle) of the entire dataset (thémesgnd dots).

will be calledat most oncdor every rectangular region, and every region will be either sedrohe
pruned. The second nice property of our overlap-kd tree is that tHentateber of gridded regions
|®| is O((N log N)%) rather thanO(N24). This implies that, if we are able to prune (almost) all
outer regions, we can find the most significant regio®{i N log N)¢) time. In fact, we may not
even need to search all gridded regions, so in many cases the seatoh evi#n faster.

Before we consider how to calculate score bounds and use them fongrwe must first deal
with an essential issue in searching overlap-kd trees. Since a child regiphave multiple parents,
how do we ensure that each gridded region is examined only once, th#mebeing called recur-
sively by each parent? One simple answer is to keep a hash table of thesregidvave examined,
and only call overlap-searchi if region S has not already been examined. The disadvantage of this
approach is that it requires space proportional to the number of grigdgahs,O((N log N)?),
and spends a substantial amount of time doing hash queries and updabese Alegant solution
is what we callazy expansionrather than calling overlap-searéh) on all the children of a region
S, we selectively expand only certain children at each stage, in such thasthere is exactly one
path from the root of the overlap-kd tree to any node of the tree. Orfe stheme is shown in
Figure 3.3: if the path between a parent and child is marked witl alazy expansion does not
make that recursive call. No extra space is needed by this method; inatsiadyle set of rules is
used to decide which children of a node to expand. A child is expandedatinb other parents,
or if the parent node has the highgsiority of all the child’s parents. We give parents with lower
aspect ratios priority over parents with higher aspect ratios: for exampke x 48 parent would
have priority over &4 x 32 parent if the two share 48 x 32 child. This rule allows us to perform
variants of the search where regions with very high aspect ratios ainechaded; an extreme case
would be to only search for squares, as in our earlier fast spatiabgmd{111]. Within an aspect
ratio, we fix an arbitrary priority ordering. Since we maintain the property ¢liary node is ac-
cessible from the root, the correctness of our algorithm is maintainedy gridded region will be
examined (if no pruning is done), and thus every regionh G will be either searched or pruned.
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3.3.2 Score bounds

We now consider which regions can peined(discarded without searching) during our multireso-
lution search procedure. First, given some regiowe must calculate an upper bound on the scores
F(S") for regionsS’ C S. More precisely, we are interested in two upper bounds: a bound on the
score ofall subregionsS’ ¢ S, and a bound on the score of thater subregions of5 (those re-
gions contained it$ and containing its centeés~). We compare these to the maximum region score
F* = max F'(S) that we have found so far in our search. If the first bound is less thagual to
the current value of™*, we can prune regiof completely; we do not need to search any (gridded
or outer) subregion af. If only the second bound is less than or equal to the current valé& of
we do not need to search the outer subregionS, ddut we must recursively call overlap-search on
the gridded children of. If both bounds are greater than the current valué'6fwe must both
recursively call overlap-search and search the outer regions.

Score bounds are calculated based on various pieces of informationthbsubregions of,
including: upper and lower bounds, ..., b..in On the baseline of subregiois; an upper bound
dmaz ON the ratio% of S’; an upper bound;,,. on the ratio% of S’ — S¢; and a lower bound,,,;,,
on the ratio% of S — S’. We also know the coun® and baseling3 of region S, and the count
Ceenter @NA baselind c,¢.- Of regionSe.

We will focus here on finding an upper bound on the scores of all gidme of S containing
the center of5. (We can also upper bound the scorealbkubregions of as a special case, where
the baseline, count, and area of the center are zero.) To compute thi§ betury, andb;,, be the
count and baseline @f’. To find an upper bound of(S”), we must calculate the valuesf, and
b Which maximizeF' subject to the given constraints:

Cin —Ccenter .
1. 7 A < dinc
in center

2. gﬂ < dmaz

C—cin
3. B*gm > dmin

4. bmin S bm S bmaw

While we could use convex programming to solve this maximization problem in therglen
case, the properties of the score function make this task significantly,edi®ing us to calculate
the optimal values of;,, andb;,,. Sinceg—g > 0, we know that the maximum value &f for a given
b;n occurs where;,, is maximized subject to the constraints. We solve the first three constraints for
Cin, QiVING USc¢;;, = min(Cq, Cy, C3), where:

Cl — dmcbzn - (dmcbcenter - Ccenter) — dzncbm - Zl
02 = dmaxbin

In the typical casé,we haved,,in < dmaz < dine, Z1 > 0, andZs > 0: this means that;,, = C;
for smallb;,,, ¢;, = Co for moderate,,,, andc;, = Cs3 for largeb;,, as illustrated in Figure 3.4.

2We must also handle a variety of special cases where one or moresef iequalities are violated, and some
constraints may not be relevant. We omit the details of this case-by-cabsis.
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Figure 3.4: Maximizing count;,, for a given baseling;,,. Count must be less than (b;,,), C2(bix),
andC’g(bZ-n).

Thus we can solve for the intersection poifits;, B3, and Bz, whereC; < C for b;, < Bjj,
and we use these quantities to find the maximum allowable eguritr a givenbd,,,. Solving the
equations, we find thaB, = ;—24—, Biz = 7257, andBy; = 7—25—. In the typical
case’ we have) < By < B3z < Bag < 0. In this case, we use the valuesif, andBss, and the
value B;3 is not needed. Then the count = ceenter + dine(bin — beenter) TOF beenter < bin < Bia,
Cin = dmaxbin for Bia < bzn < Bags, andcin = dmaxBQS + dmzn(bzn - BQS) for bin > Bos. This
is illustrated by Figure 3.5: the regighis separated into four “layers” of differing rates (ratio of
counts to baseline). Starting from the inside, we have the center (with ankoaseliné..,:.- and
countceenter), @ layer of high raté;,,., a layer of moderate ratg, ..., and a layer of low rat€,,,;,, .
Now we can writez;,, as a function ob;,,, and thus the scorE becomes a function of the single
variableb;,. Where does the maximum of this function occur? Again we rely on propeaties
the functionF'(C, B), and a case-by-case analysis is necessary. In the typicalgase d,,.. >

feenter. \ye know that the score increases with baseline in the “high rate” and ‘ratedate” layers.

center

This follows from two properties of our score functiofy > 0 and9% + $9E > 0. In the high rate
layer, the ratio of counts to baselines fgr (g—z) increases froni% to dynae @S we add more
baselines, so the scoré is monotonically increasing with baseline. In the moderate rate layer,
the ratio of counts to baselines f6f stays constant (at,,...) as baseline increases, so agailis
monotonically increasing. In the low rate layer, the ratio of counts to basdbnes decreasess
baseline increases: in this case, since count and baseline are bo#isingr¢éhe score may increase
or decrease. We assume that the score fundfibas no local maxima in the interv@B,s, B), and
thus that the maximum occurs either(@t,, b;,) = (dimaz B3, B23) Or at(cip, bin) = (C, B).* We

are only interested in finding subregions with scdnggerthan the parent, so we can ignore the

3See previous note.

“Formally, we assume the following constraint on the first and seconiihigaof I: F2Foc + F:Fpp —
2FcFpFcp > 0. This is true for a large class of functions, including Kulldorff’'s statistitthis constraint is vio-
lated, we must also calculafé(C, B) at each local maximum, which is not difficult if the number of maxima islsma
and each maximum is easy to calculate.
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Baseline = B-B_23

S %  Baseline = B_23-B_12

Baseline = B_12 — b_center

Baseline =
b_center

Rate =
c_center / b_center

Rate = d_inc

Rate = d_max

Rate = d_min

Figure 3.5: Division of regionS into layers of differing rate. In the typical case, subregin
includes all but the outer layer.

latter case. Thus our upper bound B\S’) is F(cin, bin), Whereb;,, = Bas andc;, = dpmazbin-
The various special cases, where one or more of the inequalities atovekted, are handled
similarly using the intersection poinf8;5, By, and Bos as necessary. We also must adjust our
value ofb;,, if it violates the inequalityb,,in. < bin < bz, adjustinge;, accordingly given the rate
of the layers being added or subtracted.

3.3.3 Calculating bounds by quartering

We now consider how the bounds on baselines and rates (ratios oftoduameline) are obtained.
The simplest method of doing so is to use global values: first, we precomputaitimum and
maximum baseline®3 and ratios% of all “small” regions S in the grid, requiring timeO(N?).

To do this, we first precompute the minimum and maximum baseline and rate of g# siells

s; in the grid. We can also use the minimum and maximum baselines of a grid cell, togethe
with the minimum and maximum area of a region, to obtain boungds andb, ... Slightly less
conservative bounds can be obtained using the assumption of a minimumsegh,.;,,, and these
can be used rather than the single square bounds when allowable.vEssigiusable (though very
conservative) values fat,,;,, dmaz, dine, bmin, aNdby,q... These global bounds are inexpensive to
compute (we need only compute them once per grid), but result in veseomtive estimates of
region scores.

Thus we use these bounds in our algorithm as a first pass which prungseggons but also
leaves many unpruned. If a region survives this round of pruningsomgute much tighter bounds
on region scores in a second pass, which is also more computationallysesgemo do so, we
obtain tighter bounds on the baselines and rates using a novel techniqaewguartering then
use these constraints to boufdS’) as above. We explain the quartering method for the two-
dimensional casei(= 2) but note that we have generalized this procedure to arbitrary dimension.

Given a regiorf of sizek; x ko, with a (non-zero) center regid#t, the first step of quartering
is to divide S into its four (non-overlapping) quadramis . . . Sy, as in Figure 3.6. We now consider
eachsS; separately, together with the quarter of the censer; which overlaps that quadrant. For
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S 1

Figure 3.6: Quartering of regiafi

each quadrant, we consider all rectangesvith one corner at the centroid ¢f, and one corner
outsideS¢; (i.e. on one of the dots in Figure 3.6). Note that there(afk, k2) such rectangles, and
thus we can search over all of these regiSh@ quadratic time, as opposed @(k?k32) for naive
search of allS” c S containingSc.

Our search procedure is very simple: given a redgigetb;,,, c¢;», andA;,, denote its baseline,
count, and area; lét,.., cou, andA,,;. denote the baseline, count, and are&of S7; and letby; f,
caif, andAg; ¢ denote the baseline, count, and are&pf- Sc,;. We then calculate the rate (ratio
of count to baselineal and the average baseline per dglfor each ofS, S; — S/, andS! — S¢;:
din = g—z bsin = A , and the other quantitiesld,:, daif, bsout, bsaif) are deflned S|m|IarIy
We then setl,, . equal to the maximum of all;,,, d;,. equal to the maximum of alfy; s, and
dmin €qual to the minimum of alll,,,;. Similarly, we take the minimum and maximum values of
bs,in» bs,out, @Ndby 4; 1, We can use these to calculate boubhgs, andb,,., once we are given the
minimum and maximum area ¢f. Then ratio of count to baseline is monotonic, so we know that
the ratio of the entire regiof’ is bounded by the maximum of the max-ratios and the minimum of
the min-ratios computed for all regior$. Baseline per square is also monotonic, so an identical
argument applies.

In essence, what are doing is bounding the baselines and rates faeteeop regionS’ con-
tained in each quadrant. Then we use the maximum and minimum values of tlag#ies to
bound the baselines and rates for all regishs Another way to think of this is that we are cal-
culating bounds on baselines and rates for all the irregular (but rdetikg) regions containing
the centelS¢o and consisting of one rectangle in each quadrant, as drawn in Figurén@mbthese
guantities are also bounds on the baselines and rates i@icgdingleswhich containSz. We do
not provide a formal proof here, but we note that the bounds on basedind ratios derived by
quartering are exact (i.e. no rectanglfec S, such thatS- C 57, can have baseline or rate outside
these bounds) and that they are much tighter than the global bounds, glimainy more regions
to be pruned. However, as noted above, quartering is significantly rmorputationally expensive
than using the global bounds, taking time proportional to the volume of regjiand thusO(N9)
per region for large regions. This is why we first use the global boémdgruning outer regions,
and only use quartering on regions that this initial pruning does not eliminate.
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3.3.4 The algorithm

We now possess all of the algorithmic and statistical tools needed to preseaigorithm in full.
The basic structure is similar to the top-down “overlap-search” routingepted above, with sev-
eral important differences. First, we use a best-first search (implethesieg a pair of priority
gueuesy; andg,) rather than a recursive depth-first search. Our algorithm has twesstén the
first stage we examine only gridded regions, and in the second stag@meh sater regions if nec-
essary. In both stages, we prune regions whenever possible, talgutereasingly tight bounds
on subregions’ baselines and rates, and using these to calculate oppesby,,. on F(S’) as
above. For the original grid, regions are pruned whenever they €qmdven to have a score less
than the highest value df(S) found so far; for the replica grids, regions are pruned whenevgr the
can be proven to have a score less than the maximum score of the origéthédrgtt also, we can
stop searching a replica immediately if we find a region with score higher thanakienum of the
original grid). We can also do this for the case where we are interestewlindithek-best regions
of the original grid; in this case, we can simply use the current value dftthbighest scoré’(S)

for pruning. For simplicity, we focus on searching the original grid, andifig the 1-best region, in
our presentation of the algorithm below. The first stage of our algoritlmogads as follows, using
the (loose) global bounds on baselines and rates to caldiatg;:

Add Gto q_1.
While g 1 not enpty:
Get region S with highest F(S) fromqg_1.
If F(S) > F*, set S* = Sand F* = F(S).
If F_bound(S in S) > F*,
add gridded children of Sto g_1 (using "lazy expansion").
If F_bound(S in S containing S C) > F*, add Sto qg_2.

Thus, after the first stage of our algorithm, we have searched or ghralhgridded regions
(requiring at mostO((N log N)?) time), and the currens* is the gridded region with highest
F(5). ¢2 now contains the subset of gridded regions whose outer regions bayetribeen pruned,
prioritized by their upper bound&,....4- The second stage of our algorithm proceeds as follows:

Wiile g_2 not enpty (and sone S on ¢_2 has F_bound(S) > F*):
CGet region S with highest F_bound(S) fromg_2.
Use quartering to calculate tighter bounds on B(S) and C(S)/B(S).
Recal cul ate F_bound(S) using these bounds.
If F_bound(S) > F*, then search-outer-regions(S).

Now the only question left is how to perform the search-outer-regiomsgoiure. We first note
that a hyper-rectangular region requigelscoordinates for specification: the minimum valtieand
sizek; in each dimension. Thus a néve search of the outer regions Sfcould be done usingd
nested loops, stepping over each legal combination of these coordinatesi¢h that the resulting
region S’ is in S and containsS¢). Our procedure is similar to this, except that we take several
more opportunities for pruning. Once we have fixed the valuées @) andxz;(S’) for a given
i, we can obtain a tighter bound di(S’) by expandinghe center regiob andcontractingthe
parent regionS such thatk;(S) = k;(Sc) = ki(S’) andz;(S) = z;(Sc) = z;i(S"). We then
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recalculate bounds on the baselines and rates for theShamd S using quartering, and finally
recomputeFy,...q for the new parent and center. Only if the new valuégf,.. is greater thar™
do we need to loop ovek;; andz;; for that combination of; andz;.

Thus the second stage of our algorithm can be seen as a series efiSdieat an outer region
must pass through if it is to be searched. The first screen is whethearéetpegion is taken off
g> and examined, the second screen is whether the parent region pasgeartiering test, the third
screen is whether the new parent region (formed &ftendzx; are fixed) passes the quartering test,
etc. We can show that the complexity of this procedur@(i®72?) if all our screens fail, and better
thanO(IN2?) otherwise. Typically well over 90% of regions are eliminated at each scee thus
we search only a small fraction of possible regions.

We now examine the complexity of this procedure in the two-dimensional cass g large
parent region (i.e. one containig(N*) outer regionss’). If the parent region does not pass the
first screen, we have spent orfly(1) to search thes®(N*) regions; if the parent does not pass the
second screen, we have spent only@gv?) time required by quartering. If the parent passes the
second screen, but none of the new parent regions pass throupirdhend fourth screens, we have
spent onlyO(N?) x O(N) (for quartering, given eacky andz;) + O(N?) (for bounding scores,
given eachky, z1, andks) = O(N?) time. Thus only if all four screens fail will the algorithm have
O(N*) complexity.

3.4 Results

In our fast spatial scan work [112, 118], we have demonstrated thidast spatial scan algorithm
achieves huge speedups over thereapproach both on real and simulated datasets, without any
loss of accuracy (i.e. our algorithm finds exactly the same regiop-aadlie as the rige approach).
These results include:

e 450-4700x speedups on 2D Emergency Department datasets, foregdllitions ranging
from 128 x 128 t0 512 x 512 [112].

e 96-739x speedups on 2D OTC sales datasets, for grid resolutionagdrmm 128 x 128 to
256 x 256 [112].

e 7-148x speedups on 3D fMRI imaging datasets, for grid resolutiofdof 64 x 14 vox-
els [118].

e 235-325x speedups on 4D Emergency Department datasets, using'pgtader (2 values)
and age decile (8 values) as pseudo-spatial dimensions and thusregand8 x 128 x 2 x 8
grid [118].

e 48-1400x speedups on 3D OTC sales datasets, searching for peisistial clusters (i.e. us-
ing date of sale as a pseudo-spatial dimension with 8 values) and thusisgat28 x 128 x 8
grid [118].

We have also done preliminary work comparing our algorithm to Kulldorfé§ Scan soft-
ware [87] (the current state of the art for detection of disease clyistgireg Emergency Department
data. This comparison suggests that we can detect elongated diseseses dlQs100x faster than
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Table 3.1: Performance of algorithm, simulated datag€ts; 256. For each dataset, we give the
time in seconds to search the original grid and each replica grid, as wek asithber of regions
searched. The speedup is the ratio of runtimes of theerand fast approaches.

test method sec/orig speedup sec/rep speedup regions (orig) régpns
all nave 3864 x1 3864 x1 1.03B 1.03B
7x9, 0.01 fast 5.47 X706 1.68 x2300 100K 1.20K
11x5,0.002| fast 21.72 x178 12.43 x311 1.03M 196K
4x3, 0.002 fast 42.96 x90 40.57 x95 2.50M 1.87M
no region fast 189.68 x20 110.25 x35 27.4M 12.7M

SaTScan can detect circular clusters, despite needing to searchmuehdarger space of possible
clusters [114]. These results show that our method is sufficiently fast teséful for the detection
of significant spatial clusters, even in cases where the datasets areg@olaother approaches to
be feasible. We now present these results in detail in the following subsectio

3.4.1 Results for two-dimensional scan

We first describe results with artificially generated grids and then reddwase data. An artificial
grid is generated from a set of parametes &1, k2, i, o, ¢, ¢”) as follows. The grid generator
first creates arv x N grid, and randomly selectsia x ko “test region.” Then the baselirtg of
each grid cell (representing at-risk population) is chosen randomly &raormal distribution with
meany and standard deviatian(baselines less than zero are set to zero). Finally, the count of each
grid cell is chosen randomly from a Poisson distribution with paramgtekvhere the disease rate
q = ¢ inside the test region angd= ¢” outside the test region.

For all our simulated tests, we used grid si¥e = 256, and a background disease rate of
q" = .001. We tested for three different combinations of test region paramétersifz, ¢'): (7 x 9,
.01), (11 x 5, .002), and @ x 3, .002). These represent the cases of an extremely dense disease
cluster, and large and small disease clusters which are significantteittremely dense. We also
ran a fourth test where no disease cluster was present, ang thug01 everywhere.

We used three different population distributions for testing: the “stafidhstribution (u =
104, ¢ = 10%), and two types of “highly varying” populations. For the “city” distributiong
randomly selected @0 x 10 “city region”: populations were generated with= 5 x 10* and
o = 5x10% inside the city, ang. = 10* ando = 102 outside the city. For the “high? distribution,
we generated all populations with= 10* ande = 5 x 10. For each combination of test region
parameters and population distribution, run times were averaged oven@0matrials. We also
ran an additional 90 trials (for a total of 110) to test accuracy, confirttiagthe algorithm found
the highest scoring region in all cases. We also recorded the avarageenof regions examined;
for our algorithm, this includes calculation of score bounds as well agsadrindividual regions.
Separate results are presented for the original grid and for eachardplia large number of random
replications £ = 999) the results per replica dominate, since total run timg,is, + R(t,p) to
search the original grid and perform randomization testing. See Tabler3dsiults.

Our first observation was that the run time and number of regions seasere not significantly
affected by the underlying population distribution; typically the three resiffisred by only 5-
10%, and in many cases test regions were fdasterfor the highly varying distributions than the
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Figure 3.7: Emergency Department dataset. The left picture shows thkénlea@opulation) distri-
bution and the right picture shows the counts. The most significant regébtovgn as a rectangle.

standard distribution. Thus Table 3.1, rather than presenting sepasaits fler each population
distribution, presents the average performance over all three populigivibutions for each test.
This result demonstrates the robustness of the algorithm to highly norruniifaselines; this is
very different than our previous work [111], where the algorithm wegerely slowed by highly
varying baselines. The algorithm achieved average speedups rdra@img5x (for no test region),

to 2300x (for an extremely dense test region) as compared to the approach. We note that, for
the case of no test region, it is typically not necessary to run more tha0 t&domizations before
concluding with high probability that the discovered region is not significeat.example, if four

or more of the first ten replicas beat the original grid, we know that thidtresll only occur 0.1%

of the time if the region is significant, so we can safely assume that the regian ssgmificant.
Thus our true average “worst-case” results will be closer to the 95adsymeon small, significant
(but not extremely dense) test regions. Since thieenapproach requires approximately 45 days for
a256 x 256 grid with R = 999, this suggests that our algorithm can complete the same task in less
than 12 hours.

We now discuss the performance of the algorithm on various real-wotédels. Our first test
set was a database of anonymized Emergency Department data collected/éstern Pennsyl-
vania hospitals in the period 1999-2002. This dataset contained a tot8D@d® records, each
representing a single ED visit and giving the latitude and longitude of the patiemme location to
the nearest 0.005 degrees % mile). These locations were mapped to three grid si2és: 128,
256, and 512. For each grid, we tested for spatial clustering of “teédésease cases: the count
of a grid cell was the number of ED visits in that area in the last two months, arithtedine of
a cell was the total number of ED visits in that cell in the entire four years taf. d@ee Figure 3.7
for a picture of this dataset, including the highest scoring region. Fdr e&these grids, our fast
algorithm found the same, statistically significant regiprvélue 1/1000) as the ia approach.
The major difference, of course, was in runtime and number of regicarsised (see Table 3.2).
Our algorithm found the most significant region of the original grids 22{2éter than the rige
approach; however, much faster performance was achieved wherhsg the replica grids. The
algorithm achieved speedups increasing from 450x to 4700x as grithsieased from 128 to 512.



64 CHAPTER 3. FAST ALGORITHMS FOR SPATIAL CLUSTER DETECTION

Table 3.2: Performance of algorithm, real-world datasets. For eachetlatas give the time in
seconds to search the original grid and each replica grid, as well aaitii@en of regions searched.
The speedup is the ratio of runtimes of théwesand fast approaches.

test method sec/orig speedup sec/rep speedup regions (orig) régipns
ED nave 72 x1 68 x1 62.0M 62.0M
(N = 128) fast 3 x24 0.15 x453 5.12M 15.9K
ED nave 1207 x1 1185 x1 1.03B 1.03B
(N = 256) fast 55 x22 1.2 x988 95.9M 74.7K
ED nave 19146 x1 18921 x1 16.8B 16.8B
(N =512) fast 854 x22 4.0 x4730 1.51B 120K
national OTC| ndve 71 x1 77 x1 62.0M 62.0M
(VN = 128) fast 2 x36 0.8 x96 682K 200K
national OTC| nave 1166 x1 1232 x1 1.03B 1.03B
(N = 256) fast 14 X96 2.8 x440 3.24M 497K
regional OTC| naive 78 x1 79 x1 62.0M 62.0M
(VN = 128) fast 2 x39 0.6 x132 783K 101K
regional OTC| naive 1334 x1 1330 x1 1.03B 1.03B
(N = 256) fast 13 x103 1.8 X739 3.10M 168K

Our second test set was a nationwide database of retail sales of evamtthter cough and cold
medication. Sales figures were reported by zip code; the data coved8dziDcodes across the
U.S., with highest coverage in the Northeast. In this case, our goal wae tib the spatial distri-
bution of sales on a given day (2/14/2004) was significantly differemt the spatial distribution of
sales a week before (2/7/2004), and to identify a significant cluster idased sales if one exists.
Note that the population-based statistic used in this test adjusts for incoeataseases in the total
number of sales; clusters are only detected if there is spatial variation imnitwerd of increase or
decrease. Thus we used the sales on 2/7 as our underlying baseliifwitisty and the sales on
2/14 as our count distribution. We created four grids from this data, twywsl of the national
data, and two using only data from the Northeast (where a greaterrfoopof zip codes report
sales data). For both “national” and “regional” over-the-counter daeacreated grids of sizes
N = 128 and N = 256, converting each zip code’s centroid to a latitude and longitude. For each
of these four grids, our algorithm found the same statistically significaramdg-value 1/1000) as
the ndve approach, and achieved speedups of 96-132x otethe 128 grids and 440-739x on the
256 x 256 grids.

Thus the algorithm found the most significant region in all of our simulated-@aeworld tri-
als, while achieving speedups of at least 20x (and typically much largerapared to the i
approach. This speedup is extremely important for the real-time detectidseaise outbreaks: if a
system is able to detect an outbreak in minutes rather than days, prevastigerres or treatments
can be administered earlier, decreasing rates of morbidity and mortality. Ngeebthat our algo-
rithm will be useful for rapid detection of significant spatial clusters inréet of other applications
as well.

3.4.2 Comparison to SaTScan

It is difficult to evaluate the computational speed of an algorithm in isolatiahttaus a comparison
to other techniques in the literature is necessary. We note, howevemttebfithe prior algorithmic
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work on scan statistics allows for the efficient detectiorelmingatedclusters; the detection of
compact clusters (e.g. circles or squares) is a significantly easier compatdtsk, since there
is one less degree of freedom to search over. Thus the most accomgtarison is to the obvious
technique of nively searching all rectangles; this comparison was done in the previotierse
However, since no available software actually uses this/eectangles” approach, we feel that a
comparison to other techniques (though inexact at best) will be useful.

In particular, we focus on Martin Kulldorff’s SaTScan software [83RTScan represents the
current state-of-the-art in cluster detection, and is widely used in themptbgical community.
We emphasize that this is not an “apples to apples” comparison: becatieingéxactness of this
comparison and the inherent differences between the two methods of detetion, it is difficult
to draw general conclusions. In particular, there are three main diffesebetween the methods.
First, as noted above, our algorithm searches for elongated clustgerijiicular, axis-aligned rect-
angles) while SaTScan searches for compact clusters (in particudesgir Thus (assuming that
M is the number of distinct spatial locations) our algorithm must search oved thé*) possi-
ble rectangles, while SaTScan must search ovetth&?) possible circles. Second, neither our
algorithm nor SaTScan actually searches over “all” of the regions ofittes gype (rectangles or
circles). SaTScan searches only circles centered at one of the datsg peducing the search space
to O(M?) regions. Our method, on the other hand, aggregates the data points toranuNif< N
grid, and searches over tiig( N*) gridded rectangular regions. Thus our method’s runtime is a
function of the grid resolutioV, while SaTScan’s runtime is a function of the number of spatially
distinct data points\/. If each data point truly represents cases occurring at that preuasials
location, we are losing some precision by aggregating points to a grid; leowbis loss of pre-
cision is minimal for high grid resolutiond’. Also, in cases where data points are derived from
regions (e.g. representing a census tract or zip code by a point miwes @nter of that region)
then the assumption of discrete data points is itself somewhat inexact. Fin#lyyuranethod and
SaTScan use clever computational techniques to speed up perforrnanpeuning method allows
us to search only a small subset of the&N*) gridded rectangular regions, while obtaining the same
results as if we had searched all of these regions. SaTScan, thowgs ibdt use pruning to speed
up the search (and thus, must actually search over all aDtidé?) regions), uses an “incremental
addition” technique which allows searching in constant time per region. \WWeaalsieve constant
search time per region, using the “cumulative counts” trick noted above.

As a simple comparison, we ran both our method and SaTScan on the Enyelgrartment
dataset discussed above. This dataset consisted of 630,000 re¢evbih the last 60,000 records
(recent data) were used as “counts” and the entire dataset wassus&skdines. Since many records
corresponded to identical spatial locations, this gave us approximitety17, 000 distinct spatial
locations. We ran both our method and SaTScan on this dataset, using theysaeme (Pentium
4, 1800 MHz processor, 1 GB RAM) for each. For all runs, we ugs@iMonte Carlo replications.
Our system found the most significant rectangular region in 11 minutesi28 & 128 grid and
81 minutes for 56 x 256 grid, computing a-value of 1/1000 in each case. SaTScan ran out of
memory and thus was unable to find the most significant circular region faddlaset; in compar-
ison, our method requires very little memory 60 MB for grid sizes up t®56 x 256). Thus we
instead ran SaTScan on one tenth of the data (60,000 records, 10¢@D@sfscount”), containing
M = 8,400 distinct spatial locations. In this case, SaTScan found the most signiticaatar
region in 4 hours; this suggests that (given sufficient memory) it woutti tfie most significant
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circular region for the entire dataset in approximately 16.5 haurs.

We note that, for the smaller dataset, both methods found very similar spat@ise&§aTScan
found a circle with center coordinates (40.34 N latitude, 79.82 W longitudkdi@mmeter 18.58 km,
with C' = 2458, B = 8443, and a score (log-likelihood ratio) of 413.56. For28 x 128 grid size,
our method found a rectangle with almost the same centroid (40.32 N latitud&,Vi&idhgitude),
and size23.6 x 17.2 km. This slightly larger region had = 2599, B = 9013, and a score of
429.85. In this case, the most significant rectangular region has a l@etasio, so as expected,
the region and score are similar to that found by SaTScan. If, on thelwhdr the most significant
rectangular region has a high aspect ratio, we would expect our algoattind a region with a
significantly higher score.

We emphasize again that this comparison between our method and SaT Suthrpiebminary
(testing only on a small sample of datasets) as well as inexact (becausediffthences between
the algorithms discussed above). Thus we do not attempt to draw anabemeclusions about the
relative speeds of the two methods; we note only that our “fast spatial iscable to find elongated
clusters in times comparable to (and in at least some cases, significantitiiastethe detection
of compact clusters by SaTScan. Since SaTScan is in wide use in the ep@agosibcommunity,
this demonstrates that the runtime of our method is sufficiently fast to be disethe detection of
significant spatial clusters.

Finally, we note another recently developed method that allows fast dppatexcomputation of
spatial scan statistics. Agarwal et al. [3] present a method of approdyntat@puting Kulldorff’s
spatial scan statistic as a sum of linear discrepancy functions. This allevgc#im statistic to be
computed (within additive errar) for axis-aligned rectangles in tirr(é(%N3 log N). ltis likely
that this method will also allow fast cluster detection, but at some cost inamcun particular, we
are not guaranteed to find the most significant region, and also, the cagnuiél results obtained by
randomization will be less reliable. How much impact these factors have orvéhnallareliability
of cluster detection using their method has not yet been determined.

3.4.3 Results for multi-dimensional fast spatial scan

We now describe results of our fast spatial scan algorithm on threefsgtgltd dimensional real-
world data: two sets of epidemiological data (from emergency departmdty &isd over-the-
counter drug sales), and one set of fMRI brain imaging data. Bef@epting these results, we
wish to emphasize three main points. First, the extension of scan statistics fmdinwensional
to d-dimensional datasets dramatically increases the scope of problems for tivbge techniques
can be used. As discussed above, in addition to datasets with more thanatied dipnensions
(for example, the fMRI data), we can also examine data with a temporal canp(as in the OTC
dataset), or where we wish to take demographic information into accouin the ED dataset).
Second, in all of these datasets, the use of thresholded scan statisticsgdds in Chapter 2) in-
stead of the classical scan statistic allows us to focus our search on suhafiser regions rather
than slight (but statistically significant) increases over a large area. ,(Tdsrdur results here will

SWe ran the default version of SaTScan. This uses unique data locatiwhich there were 17,000 in the full dataset,
as candidate region centers. Itis also possible to run SaTScan onspesé#ied grid of candidate region centers. Perhaps
that mode might be faster? In fact, the number of unique centers inpeeiments reported above is approximately equal
to the number of centers on a 128 by 128 grid, and considerably lesthtitan a 256 by 256 grid. Thus SaTScan would
not be accelerated by switching to a grid approach.
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demonstrate, the fast spatial scan gains huge performance improvewentiseondve approach,
making the use of the scan statistic feasible in these large, real-world datasets

Our first test set was the database of anonymized Emergency Depadatertollected from
Western Pennsylvania hospitals in the period 1999-2002, as discumse dhis dataset contains a
total of 630,000 records, each representing a single ED visit and givinigtitude and longitude of
the patient’s home location to the nearés‘nile. Additionally, a record contains information about
the patient’s gender and age decile. Thus we map records into a foursiomahgrid, consisting
of two spatial dimensions (longitude, latitude) and two “pseudo-spatial” diinesigpatient gender
and age decile). This has several advantages over the traditionatliftvemsional) spatial scan.
First, our test has higher power to detect syndromes which affectidifpatient demographics to
different extents. For example, if a disease primarily strikes male infantsyiglet find a cluster
with gender = male and age decile = 0 in some spatial region, and this clusteotiagy detectable
from the combined data. Second, our method accounts correctly for multipthwesis testing.

If we were to instead perform a separate test at leveh each combination of gender and age
decile, the overall false positive rate would be much higher thaWe mapped the ED dataset to
a128 x 128 x 2 x 8 grid, with the first two coordinates corresponding to longitude and latitude,
the third coordinate corresponding to the patient’s gender, and the fmotdinate corresponding
to the patient’s age decile. We tested for spatial clustering of “recent” shseases: the count
of a cell was the nhumber of ED visits in that spatial region, for patients ofafatand gender,
in 2002, and the baseline was the total number of ED visits in that spatial régiopatients of
that age and gender, over the entire temporal period 1999-2002. Teuaidclusters, we used
the discriminative thresholded scan statistic discussed in Chapter 2, witts \@ltiee threshold
parametet ranging from O to 1.0. For the classical scan statistie (0), we found a region of size
35 x 34 x 2 x 8; thus the most significant region was spatially localized but cut acrossradlays
and age groups. The region h&d= 3570 and B = 6409, as compared t(% = 0.05 outside
the region, and thus this is clearly an overdensity of counts. This wagmeuafiby the algorithm,
which found the region statistically significaptyalue 1/101). With the three other valuespthe
algorithm found almost the same regid% (x 33 x 2 x 8, C' = 3566, B = 6390) and again found

it statistically significant-value 1/101). For all values @f the fast scan statistic found the most
significant region hundreds of times faster than thivengpatial scan (see Table 3.3): while the
naive approach required approximately 12 hours per replication, theclastsearched each replica
in approximately 2 minutes, plus 100 minutes to search the original grid. Thdaghalgorithm
achieved speedups of 235-325x over thivaapproach for the entire run (i.e. searching the original
grid and 100 replicas) on the ED dataset.

Our second test set was a nationwide database of retail sales of evawtthter cough and cold
medication. Sales figures were reported by zip code; the data covdl@edipodes across the U.S.
In this case, our goal was to see if the spatial distribution of sales in a gigek (February 7-14,
2004) was significantly different than the spatial distribution of sales duhie previous week, and
to identify a significant cluster of increased sales if one exists. Since weed#o detect clusters
even if they were only present for part of the week, we used the dabe {F14) as a third dimension.
This is similar to the retrospective space-time scan statistic of [82], which aésotime as a third
dimension. However, that algorithm searches over cylinders rathehgpar-rectangles, and thus
cannot detect spatially elongated clusters. The count of a cell was tiakenthe number of sales
in that spatial region on that day; to adjust for day-of-week effeceshtseline of a cell was taken
to be the number of sales in that spatial region on the day one week pninr3deb. 7). Thus
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Table 3.3: Performance of algorithm, multi-dimensional real-world datasets

test € sec/orig sec/rep speedup regions (orig) regions (rep)
ED 0 6140 126 x235 358M 622K
(128 x 128 x 2 x 8) | 0.25| 6035 100 X275 352M 339K
(7.35B regions) 0.5 5994 102 X272 348M 362K
1.0 5607 79.6 x325 334M 336K
oTC 0 4453 195 x48 302M 2.46M
(128 x 128 x 8) 0.25| 429 123 x90 12.2M 1.39M
(2.45B regions) 0.5 334 51 x210 8.65M 350K
1.0 229 5.9 x1400 4.40M <10
fMRI 0 880 384 X7 39.9M 14.0M
(64 x 64 x 14) 0.01| 597 285 x9 35.2M 10.4M
(588M regions) 0.02 558 188 x14 33.1M 6.65M
0.03| 547 97.3 x27 32.3M 3.93M
0.04| 538 30.0 X77 31.9M 1.44M
0.05| 538 131 x148 31.7M 310K

we created 428 x 128 x 8 grid, where the first two coordinates were derived from the longitude
and latitude of that zip code, and the third coordinate was temporal, baskx alate. For this
dataset, the classical scan statistic{ 0) found a region of sizd23 x 76 from February 7-11.
Unfortunately, since the ratg was only 0.99 inside the region (as compared to 0.96 outside) this
region would not be interesting to an epidemiologist. Nevertheless, the regisriound to be
significant p-value 1/101) because of the large total baseline. Thus, in this casdagisecal scan
statistic finds a large region of very slight overdensity rather than a smdéeser region, and
thus is not as useful for detecting epidemics. Fet 0.25 ande = 0.5, the scan statistic found

a much more interesting region: 4ax 1 region on February 9 wher€ = 882 and B = 240.

In this region, the number of sales of cough medication was 3.7x its expeaieet ¥he region’s
p-value was computed to be 1/101, so this is a significant overdensity. Far, the region found
was almost the same, consisting of three of these four cells,With 825 and B = 190. Again

the region was found to be significant-¢alue 1/101). For this dataset, theiveaapproach took
approximately three hours per replication. The fast scan statistic took &esiseseconds and four
minutes per replication, plus ten minutes to search the original grid, thus olgtaipéedups of 48-
1400x on the OTC dataset. We note that higher values of the thresholdddition to focusing our
search on more relevant regions, also allow the fast spatial scan to égnuming, thus achieving
significantly faster run times.

Our third and final test set was a set of fMRI data, consisting of twop'shats” of a subject’s
brain under null and experimental conditions respectively. The expetaheondition was from
a test by Mitchell et al. [103] where the subject is given words, onetae he must read these
words and identify them as verbs or nouns. The null condition is the didg@erage brain activity
while fixating on a cursor, before any words are presented. Ea@sisobconsists of 64 x 64 x 14
grid of voxels, with a reading of fMRI activation for the subset of theelexvhere brain activity is
occurring. In this case, the count of a cell is the fMRI activation for vieael under the experimental
condition, and the baseline is the activation for that voxel under the nodiiton. For voxels with
no brain activity, we have; = b, = 0. For the fMRI dataset, the amount of change between
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activated and non-activated regions is small, and thus we used valaesngfing from 0 to 0.05 as
suggested by the fMRI literature.

For the classical scan statistic€ 0) our algorithm found 3 x 20 x 11 region, and again found
this region significanty{-value 1/101). However, this is another example where the classical scan
statistic finds a region which is Iargé ©f the entire brain) and only slightly increased in count:
% = 1.007 inside the region an% = 1.002 outside the region. Far = 0.01, we find a more
interesting cluster: & x 10 x 1 region in the visual cortex containing four non-zero voxels. For
this region% = 1.052, a large increase, and the region is significant at 0.1 (p-value 10/101)
though not atv = 0.05. Fore = 0.02, we find the same region, but conclude that it is not significant
(p-value 32/101). Fot = 0.03 ande = 0.04, we find a3 x 2 x 1 region with% = 1.065, but this
region is not significantg-values 61/101 and 89/101 respectively). Similarly,det 0.05, we find
a single voxel with% = 1.075, but again it is not significanpfvalue 91/101). For this dataset, the
naive approach took approximately 45 minutes per replication. The fast &#stis took between
13 seconds and six minutes per replication, thus obtaining speedupgi8k'ti the fMRI dataset.

Thus we have demonstrated (through tests on a variety of real-worlcetgtdsat the fast mul-
tidimensional spatial scan statistic has significant performance advaotagabe né/e approach,
resulting in speedups up to 1400x without any loss of accuracy. Thissribkeasible to apply
scan statistics in a variety of application domains, including the spatial and -$patmral detec-
tion of disease epidemics (taking demographic information into account), laassbe detection
of regions of increased brain activity in fMRI data.
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Chapter 4

Methods for space-time cluster detection

4.1 Introduction

This chapter extends our spatial cluster detection framework to the fipazease. While most of
the prior work on cluster detection is purely spatial in nature (e.g. [4,9®, #is clear that the time
dimension is an essential component of most cluster detection problemsallypie are inter-
ested in detecting clusters that amaergingn time, and our goal is to detect these emerging clusters
as early as possible. For example, in the public health domain, our goal maybtect emerging
clusters of disease cases, which may be indicative of a naturally oagdisease outbreak (e.g. in-
fluenza), a bioterrorist attack (e.g. anthrax release), or an envirtahtezard (e.g. radiation leak).
In any case, early detection of such disease clusters can lead to eabliedyealth response, poten-
tially saving many lives. In medical imaging, we may attempt to detect tumors or lotizardous
growths, and early detection of such tumors may increase the patientsecbhsurvival. Finally,
in military reconnaissance, the goal may be to monitor the strength and activétyeofiy forces,
and we may want to detect a buildup of troops that is indicative of an impenttancka

Kulldorff et al. [82] first proposed a variant of the spatial scan statfsticletection of space-
time clusters, and applied scan statistics for prospective disease suneeitigBl]. The goal of the
space-time scan statistic is a straightforward extension of the purely spatialte detect regions
of space-time where the counts are significantly higher than expecteds lassume that we have
a discrete set of time steps= 1...7 (e.g. daily observations fdf days), and for each spatial
locations;, we have counts! and baselines! representing the observed and expected number of
cases in the given area on each time step. Then there are two very simplefvexysnding the
spatial scan to space-time: to run a separate spatial scan for each timeostaptreat time as an
extra dimension and thus run a single multidimensional spatial scan in spacdetiragagmple, we
could search over three-dimensional “hyper-rectangles” whictesgmt a given rectangular region
of space during a given time interval). The problem with the first method ishiiatnly examining
one day of data at a time, we may fail to detect more slowly emerging clusteesproblem with
the second method is that we tend to find less relevant clusters: for ptivepsurveillance, we
want to detect newly emerging clusters, not those that have persistetbing time. Thus, in order
to achieve better methods for space-time cluster detection, we must considgiestion, “How is
the time dimension different from space?” We argue that there are threedmstiictions:

1. The concept of “now”. In the time dimension, the present is an important poreference.
For example, in disease surveillance, we are typically only interested inrdtisé are still “active”
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at the present time, and that have emerged within the recent past (e.g. Withirays or a week).

We do not want to detect clusters that have persisted for months or, yeatsve are also not
interested in those clusters which have already come and gone. Théiexdephis, of course, is if

we are performing a retrospective analysis, attempting to detect all §ipazelusters regardless of
how long ago they occurred. The retrospective statistic searchesimeemntervalst, .., . . - tmaz,
wherel <t < tmae < T, While the prospective statistic searches over time intetygls. .. T,
wherel < t,;, < T, adjusting correctly for multiple hypothesis testing in each case. We focus
here on prospective analysis, since this is more relevant for our tygigedse surveillance task.

2. “Learning from the past.” In the spatial cluster detection framewaorkrgin Chapter 2, we
typically assume that we have some baseline denominator data, such as&papulation, given
in advance. In the space-time framework, on the other hand, we musthiafexpected count$ of
recent days from the time series of previous couhtthen use the expectation-based scan statistic
(discussed in Chapter 2) to find space-time clusters where the countgghes than expected.
Thus the first major contribution of this chapter is an expectation-base®-$ipae scan statistic
approach. Inferring expectations from previous counts has deadvantages over the standard
method of relying on at-risk population: we can account for spatial vanatiaisease rate (due
to factors such as age and health of population and environmental Heaarisll as the variation
of disease rate over time (due to factors such as day of week and alg3opand thus reduce the
number of false positives due to these sources of variation in the basskne r

3. The “arrow of time.” Time has a fixed directionality, moving from the pastugh the
present, to the future. We are often interested in clusters wdneérgeover time: for example, a
disease may start out having only minor impact on the affected populationinttrease its impact
(and thus the observed symptom counts) either gradually or rapidly ungbksg Based on this
observation, the second major contribution of this chapter is a variant sptte-time scan statistic
designed for more rapid detection of emerging outbreaks. The idea isthat than assuming (as
in the standard, “persistent” space-time scan statistic) that the diseagaeatains constant over
the course of an epidemic, we expect the disease rate to increase oventihtieus we fit a model
which assumes a monotonically increasing sequence of diseaseratesach affected time step
t in the affected regioh.We will show that this “emerging cluster” space-time scan statistic often
outperforms the standard “persistent cluster” approach.

Taking these factors into account, the prospective space-time scan shetsstiwo main parts:
inferring (based on past counts) what we expect the recent coubés snd finding regions where
the observed recent counts are significantly higher than expecteé.pvixisely, given a “temporal
window size” W, we wish to know whether any space-time cluster within the lastlays has
countsc! higher than expected. To do so, we first infer the expected calints E [c!] for all
spatial locations on each recentday’ — W < t < T, then use a space-time scan statistic to find
space-time clusters with higher than expected counts. These stepsailates detail below.

In the remainder of this chapter, | present our statistical and computatithbds for the de-
tection of space-time clusters. Section 4.2 describes our frameworksoe e cluster detection,
and how the generalized spatial scan framework can be adapted to tieetispa case. Section 4.3
presents several variants of the space-time scan statistic, including methdeésefcting persistent
clusters, emerging clusters, and parametrized clusters. Section 4.4sdistlus inference of base-
line values by time series analysis, Section 4.5 discusses computationakratisits, and Section

lItis also possible to consider models where the disease rate variedyist time but in space. Examples of models
with spatially varying disease rate are given in Chapter 2.
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4.6 discusses related work. Finally, | present results and discussmur gpace-time methods in
Sections 4.7 and 4.8.

Parts of this chapter have been adapted from our papers in KDD 2@0% §hd the 2005
National Syndromic Surveillance Conference [121], as well as a CMbhieal report [109]. |
wish to thank my co-authors Andrew Moore, Maheshkumar SabhnaniKkandy Daniel for their
contributions to this work. Additionally, parts of this chapter have beentaddpom our chapter
in theHandbook of Biosurveillancd 15]; | wish to thank my co-author Andrew Moore and editor
Michael Wagner for their contributions.

4.2 Space-time cluster detection

In the general case, we have data collected at a set of discrete time steps . T" (where timeT
represents the present) at a set of discrete spatial locatioRer eachs; at each time stefy we are
given acountc!, and our goal is to find if there is any regisi(set of locations;) and time interval

(t = tmin - - - tmaz) fOr which the counts are significantly higher than expected. Thus we firgtst
decide on the set of spatial regiofis and the time intervals,,;,, . . . tmqz, that we are interested
in searching. In the scan statistics framework discussed below, we typéeaigh over the set of
all spatial regions of some given shape, and variable size. For simpli@tgsaume here that the
spatial locations; are aggregated to a uniform, two-dimensiomglx N grid G, and we search
over the set of all axis-aligned rectangular regihs G.? This allows us to detect both compact
and elongated clusters, which is important since disease clusters may gatetbdue to dispersal
of pathogens by wind, water, or other factors. For prospectivesglance, as is our focus here, we
care only about those clusters which are still present at the currenfftjmued thus we search over
time intervals with,,,,.. = T'; if we were performing a retrospective analysis, on the other hand, we
would search over all,,,,.. < 7. We must also choose the size of the “temporal wind®W” we
assume that we are only interested in detecting clusters that have emergadhattastii’ days
(and are still present), and thus we search over time intetyals .. T forall T — W < t,pin < T.

In the disease detection framework, we assume that the count (numlzeesf ¢n each spatial
regions; on each day is Poisson distributed; ~ Poissoii\!) with some unknown parametgt.
Thus our method consists of two parts: time series analysis for calculatingpbeted number of
cases (or “baseline’yt = E|[c!] for each spatial region on each day, and space-time scan statistics
for determining whether the actual numbers of cagen some regionS are significantly higher
than expected (givetf) in the lastiV’ days. The choice of temporal window sié impacts both
parts of our method: we calculate the baselibiefor the “current” daysl’ — W < ¢ < T by time
series analysis, based on the “past” days ¢t < T — W, and then determine whether there are any
emerging space-time clusters in the [HStdays.

Our space-time scan statistic method is much like the purely spatial method: wsecti@o
modelsHy and H1 (S, tmin), Where the null hypothesiH, assumes no clusters and the alternative
hypothesisH (S, tmin) represents a cluster in spatial regigistarting at time.,,,;,, and continuing
to the present tim&'. From our models, we can derive the corresponding score fungtidnt, )
using the likelihood ratio statistic, and then find the space-time clgSter; ;. ) which maximizes
the score functiorf’. Finally, we can compute the statistical significangesélue) of this space-
time cluster by randomization testing, as in the purely spatial approach. Ttogrpance of our

2Non-axis-aligned rectangles can be detected by examining multiple rotafitims data, as in [112].
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space-time scan statistic method is affected by four main considerations: ¢hef $sire temporal
window IV, the type of space-time scan statistic used, the level on which the data igatggteand
the method of time series analysis. We discuss these considerations in detail be

4.3 Space-time scan statistics

One of the most important statistical tools for cluster detection ispla¢ial scan statisti¢88, 78,
80]. This method searches over a given set of spatial regions, fititiisg regions which maximize
a likelihood ratio statistic and thus are most likely to be generated under theasilterhypothesis
of clustering rather than under the null hypothesis of no clustering. Raizdton testing is used
to compute they-value of each detected region, correctly adjusting for multiple hypothegiage
and thus we can both identify potential clusters and determine whether thejgaificant. The
standard spatial scan algorithm [80] has two primary drawbacks: it isragly computationally
intensive, making it infeasible to use for massive real-world datasetspragaompact (circular)
clusters are detected. In Chapter 3, we have addressed both of thesams by proposing the
“fast spatial scan” algorithm [112, 118], which can rapidly searahefongated clusters (hyper-
rectangles) in large multi-dimensional datasets. As noted above, we cherséo search over
rectangular regions, using a space-time variant of the fast spatiahsastessary to speed up our
search.

In its original, population-based formulation [88, 78], the spatial scan titatiees not take
time into account. Instead, it assumes a single couf¢.g. number of disease cases) for each
spatial locatiors;, as well as a given baselitg(e.g. at-risk population). Then the goal of the scan
statistic is to find regions where tinate (or expected ratio of count to baseline) is higher inside the

region than outside. The statistic used for this is the likelihood fatis)) = %, where

the null hypothesigi, represents no clustering, and each alternative hypotigsiS) represents
clustering in some regiof. More precisely, undef, we assume a uniform disease raig, such
thatc; ~ Poissolfig,;b;) for all locationss;. UnderH;(S), we assume that ~ Poissofg;,b;) for
all locationss; € S, andc; ~ Poissotiq,..b;) for all locationss; € G — S, for some constantg,, >
Jout- From this, we can derive an expression ffS) using the maximum likelihood estimates of
Cin Cout —Cau
Gin» Qouts aNdgay: F(S) = (g—z) (%) (%) Jif Gino> Cout and F(S) = 1
otherwise, where “in,” “out,” and “all” are the sums of counts and bassliior.S, G — S, andG
respectively. Then the most significant spatial regtois the one with the highest scofgS); we
denote this region bg*, and its score by™. Once we have found this region by searching over the
space of possible regior§ we must still determine its statistical significance, i.e. whefffeis a
significant spatial cluster. To adjust correctly for multiple hypothesis testwegfind the region’s
p-value by randomization: we randomly create a large nunibef replica grids under the null
hypothesis;; ~ Poissofig,;b;), and find the highest scoring region and its score for each replica
grid. Then thep-value can be computed ﬁé}ﬁfl whereRy..; is the number of replica grids with
F* higher than the original grid. If this-value is less than some constantherea = .05), we can
conclude that the discovered region is unlikely to have occurred bycehand is thus a significant
spatial cluster; we can then search for secondary clusters. Othenwisggnificant clusters exist.
The formulation of the scan statistic that we use here is somewhat diffeeauge we are
interested not in detecting regions with higher rates inside than outsideediohs with higher
countsthanexpectedThis “expectation-based” framework is presented in Chapter 2, atwtiefty
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review the approach here. Let us assume that basélinegresent the expected values of each count
¢i; we discuss how to obtain these baselines below. Then we wish to test the/pathesisH:

all countse; are generated by ~ Poissolfb; ), against the set of alternative hypothesgg.S): for
spatial locations; € S, all countsc; are generated by, ~ Poissofigb;), for some constant > 1,

and for all other spatial locations € G — S, all countsc; ~ Poissotfb;). We then compute the
likelihood ratio:

FS) = Pr(Data| Hy(S)) maxg>1]],, g Pr(c; ~ Poissotigb;))
~ Pr(Data| Hy) [ 1,5 Pr(ci ~ Poissorfb; ))

_ 1NaXg>1 Hsies(qbi)c’e i _ maXg>] qCine=Bin

Ci —b,; —B.;
[Lsesti'e™ e”in

Using the maximum likelihood estimate of the parameter max (1

Cin
’ an

), we obtain the score

mn

over all spatial region$' to find the highest scoring regidi. Then the statistical significancg-(
value) of S* can be found by randomization testing as before, where the replica geideaerated
under the null hypothesis ~ Poissorfb; ).

. C Civz . .
functionF(S) = (B_) eBin=Cin if G}, > B;,, andF(S) = 1 otherwise. As before, we search

4.3.1 The 1-day space-time scan statistic

To extend this spatial scan statistic to the prospective space-time case, thessimgthod is to use
a 1-day temporal windowl¥ = 1), searching for clusters on only the present day 7. Thus
we wish to know whether there is any spatial regibowith higher than expected counts on d&y
given the actual counts and expected count$ for each spatial locatios;.. To do so, we compare
the null hypothesigiy: ¢! ~ Poissoifb!) for all s;, to the set of alternative hypothesHs(S):
cl' ~ Poissoiigb!) for all s; € S, for some constan > 1, andc! ~ Poissortb! ) elsewhere.
Thus the statistic takes the same form as the purely spatial scan statistic, ahdtame 7'(S) =

($)eB=C,if C > B, andF(S) = 1 otherwise, wher& = Yescl andB = Y o b
denote the total count and total baseline of regtbon time stepl’. Again, we search over all
spatial regionsS to find the highest scoring regid$i* and its scoreéF™*. To compute the-value,

we perform randomization testing as before, where each replica gricoasse! generated from

Poissortb! ) and all other counts! (¢  T') copied from the original grid.

4.3.2 Multi-day space-time scan statistics

While the 1-day prospective space-time scan statistic is very useful fecttey rapidly growing
outbreaks, it may have difficulty detecting more slowly growing outbreaks)cted above. For
the multi-day prospective space-time scan statistics, we have some temporaw¥ing- 1, and
must determine whether any outbreaks have emerged within the most VEcdays (and are still
present). In other words, we wish to find whether there is any spatimreégwith higher than
expected counts on days,, ... 1, for someT — W < t,;n < T. To do so, we first compute
the expected counts and the actual countd for each spatial locatios; on each dayi’ — W <

t < T we discuss how the baselinéﬁsare calculated in the following section. We then search
over all spatial region$ C G, and all allowable values af,;,,, finding the highest value of the
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spatio-temporal score functidi(S, ¢,,: ). The calculation of this function depends on whether we
are searching for “persistent” or “emerging” clusters, as we disceksb In any case, once we
have found the highest scoring regi@s$*, ¢ ...) and its score™, we can compute the-value of
this region by performing randomization testing as before, where eatibaepid has counts!
generated from Poiss¢h) for T — W < ¢t < T, and all other counts! copied from the original
grid.

Now we must consider how to compute the functfofs, ¢,,.;,, ). The standard population-based
method for computing the space-time scan statistic, proposed for the retiesmase by [82] and
for the prospective case by [81], builds on the Kulldorff spatial statissic [78] given above. Asin
the purely spatial scan, this method assumes that baséliaes given in advance (e.g. population
in each location for each time interval), and that coufisre generated from Poisson distributions
with means proportional tbf. Then the goal is to find space-time clustésst,,;,) where the rate
(ratio of count to baseline) is significantly higher inside the region than aut#d in the purely
spatial case, this can be adapted to our expectation-based framewatkicmthe goal is to find
space-time clusters where the observed codngse higher than the expected coubits For the
“persistent cluster” case, we maintain the other major assumption of the standdel: that the
multiplicative increase in counts (“relative risk”) in an affected region liesiaonstant through the
temporal duration of the cluster. For the “emerging cluster” case, we thateste the assumption
that the relative risk increases monotonically through the cluster’s duralios also possible to
assume a parametric form for the increase in relative risk over time (e.gonempal or linear
increase), as we discuss below.

4.3.3 Persistent clusters

The test for persistent clusters assumes that the relative risk of a clist@ins constant over time;
as a result, the score function is very similar to the 1-day statistic, with sums ¢&kethe entire
duration of a cluster rather than only a single day.

As noted above, we must search over all spatial regsoausd all values of,,,;,, (whereT'— W <
tmin < T), finding the maximum scoré’(S, ¢,,;,). For a given regionS and valuet,,;,, we
compare the null hypothest: ¢! ~ Poissoitb!) for all spatial locations; and alll’ - W < ¢ < T,
to the set of alternative hypothesHs (S, ¢, ): ¢k ~ Poissotigb!) for s; € S andt =ty ... T,
for some constang > 1, andc! ~ Poissorfb!) elsewhere. Thus we can compute the likelihood
ratio:
maxg>1 || F’r(c;‘t ~ POiSSOI@qbf)) _ maxg>1 H(qbﬁ)cfe_qbﬁ

[1Pr(ct ~ Poissotbt)) B TT(bt)c e

F(S, tmin) —

Ce—qB

where the products are taken owgrc S andt,,;, <t < T. This simplifies tomax,>1 ‘16,—3
whereC andB are the total count, ¢ >, ., c;andtotal baseling>, o>, . bjre-
spectively. Finally, using the maximum likelihood estimate max (1, &), we obtainf(S, tyni,) =

(%)C eB~Cif C > B, andF = 1 otherwise.

4.3.4 Emerging clusters

While the space-time scan statistic for persistent clusters assumes thaenesktiof a cluster re-
mains constant through its duration, this is typically not true in disease sunggll@Vvhen a disease



4.3. SPACE-TIME SCAN STATISTICS 77

outbreak occurs, the disease rate will typically rise continually over tretidarof the outbreak un-
til the outbreak reaches its peak, at which point it will level off or deseeaDur main goal in the
epidemiological domain is to detect emerging outbreaks (i.e. those that hiayetneached their
peak), so we focus on finding clusters where the relative risk is monaignincreasing over the
duration of the cluster. Again, we must search over all spatial regtoand all values of,,,;,
(whereT — W < tpin < T), finding the maximum scoré&'(S, ¢,,:,). For a given regiort and
valuet,,;,, we compare the null hypothesif): ¢! ~ Poissorfb!) for all spatial locations; and all
T—W <t <T,tothe set of alternative hypothes&s(S, t.in): ¢; ~ Poissofigb!) for s; € S and
t = tmin ... T, for some monotonically increasing sequence of constartsy;, . < ... < qr,
andc! ~ Poissotib!) elsewhere. Thus we can compute the likelihood ratio:

maxi<q, . <..<qr [|P(c] ~ Poissorig;b}))
[1Pr(ct ~ Poissotib!))

F(S> tmin) =

_ maxic,, <<qp [l(ab) e
[10)%e ™

maXi<g, . <..<qr [1- tomin...T dt
o B

Ct o—at Bt

whereC; and B; are the total coun}, ¢ c; and the total baseling,
total baseling__ 4>, =, b} as above.

Now, we must maximize the numerator subject to the monotonicity constraints gn ffeedo
so, letE) = E; ... I, be a partitioning of,,;,, . . . T into sets of consecutive integers, such that for
allty,t2 € Ej, q1, = @1, = Qj, and for allE;, andE;,, wherej; < jo, Q;, < Qj,. In other words,
the E; define a partitioning of,,,;,, . .. 7" into time periods where the relative risk is constant. Note
that theg; are uniquely defined by the partitiod and the rateg);. We can then write:

5,5 bj on dayt, andB is the

maxp, g, Maxi<Q,<. <@, | 1g, (@) e @5
—B
(&

F(S, tmin) -

whereB; = 37, co > ep, Ui andCy = 37, cs D% cp, ;- We now prove several lemmas which
will help us to simplify this expression.

Lemma 4.3.1 A necessary condition fdiZ, ()) to maximizeF'(S, ¢,y ) is thatQ; = i for all 5.
J

Proof Let us assume a fixed partitionirdg = {£; }, with strictly increasing?;, and ask whether
the Q; are optimal for those?;. We note that, in the absence of constraints on@h)e each

expressior %5 (Qj)cf is maximized at); = g—; Moreover, the score is convex with respect to
Qj. Thus, if some)); < %, we can increase the score by raising t@g‘slightly (without changing

the ordering ofR;), so the giver; are not optimal. Similarly, if som&; > BJ , We can increase
the score by lowering tha®; slightly (without changing the orderlng @};), so the given); are
not optimal. Thus for th€); to be optimal, we must hav@; = BJ_ forallj. |}

Lemma 4.3.2 A necessary condition fofF, Q) to maximizeF' (S, t,,:) is that for all j; < jo,
S S
le < B]-2 )
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Proof Otherwise eitheQ;, # g—jl orQj, # g—j? orQj, > Qj,. In the first two cases, the
1 2

condition of Lemma 4.3.1 is violated, so tlig are not optimal. In the third case, the restriction

that theQ; are strictly increasing is violated, so thg are not legal. |}

Thus we can write:

C,
—c; (C; 7Y )

mase s O (5) 0 e

F(S, tmin) = 5 =e max —
e Ey..Ep 5, B;

where the partitioning” = {F;} must satisfy the condition of Lemma 4.3.2, i.e. the ra@sare

strictly increasing withy. ’
Finally, we give an algorithm which produces the optimal partitionthe- { E;}. This method

uses a stack data structure, where each element of the stack repeeparttonZ; by a 5-tuple

(tstart tend, Cj, Bj, Q4). The algorithm starts by pushing the 5—tué[€, T,Cr, By, max (1, %))
onto the stack. Then for ea¢hfrom T' — 1 down tot,,,;,,, we do the following:

temp = (t, t, Ct, Bt, mx(1l, Ct / B1))
while (tenp.Q >= stack.top. Q
tenp2 = stack. pop
tenp = (tenp.start, tenp2.end, tenp.Cttenp2.C, tenp.B +
tenp2.B, max(1l, (tenp.Cttenp2.C) / (tenp.B+tenp2.B)))
st ack. push(tenp)

We now prove that this method produces the unique optimal partitioBiagd rateg), and thus
the values ofy; that maximize the score subject to the monotonicity constraints above.

Lemma 4.3.3 A necessary condition for the partitionirigto maximizeF (S, t,,.;, ) is that for each

_ Ck > k=tt1...t5 Ck
E; =ty ...ty forall t such that; < ¢ < t,, we havest=t-t lE
y 1 2 151 <12 2=ty .t B T 2ipmit1.y Br

Proof Otherwise there exists sonmig; = t;...ty, and some such thatt; < t < ty, where

Zk:tlmtck ) Zk:t+lu.t2 Ck i ; ;
T <Q; < S Br (note thatQ); is a weighted average of the two ratios). We can

now increase the score by separatifiginto two partitionst);, = ¢;...tandEj;, =t + 1...1s,
whereQ);, is slightly less thar@;, and@);, is slightly more thar); (without otherwise changing
the order ofQ;). ThusE is not optimal.  |§

Lemma 4.3.4 A partitioning E' satisfying the conditions of Lemmas 4.3.2 and 4.3.3 is unique, and
thus that partitioning is optimal.

Proof Assume two partitioning®&® and E? satisfying the conditions of Lemmas 4.3.2 and 4.3.3.
Consider the firsf such thatE} £ Ef LetE} =ty...t1 andEJ? =1ty...ts, assuming without loss
of generality that; > t5. Now consider the first > j such thatE,% =t3...t4 andty > ¢1. Thus

. _ c .
we havety < to < t3 < t1 < ty. Letus writeu(tg...t3) = % and define the other(-)

k=tq...to

similarly. Applying the condition of Lemma 4.3.2 162, we knowy(tg ... t2) < u(ts...ts). Also,
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if to+1 < tz, weknowpu(ty...ta) < u(ta+1...t3—1) < p(ts...ts). Applying the condition of
Lemma 4.3.3 td2, we know that ift; < t4, we haveu(ts...t1) > pu(ts...tg) > p(ti+1...ty).
From these inequalities, we knom(ts ...t;) > u(to...ts — 1). But applying the condition of
Lemma 4.3.3 toE!, we know u(tg...t3 — 1) > u(ts...t1), which is a contradiction. Thus
the partitioning satisfying the conditions of Lemmas 4.3.2 and 4.3.3 is unique. Biese are
necessary conditions for optimality, and a unique partitioning satisfies tioasitions, we know
that the partitioning is optimal. |

Theorem 4.3.5 The method presented above maximizgs, ¢,,:,) subject to the monotonicity
constraints.

Proof We first note that the method satisfies the conditions of Lemma 4.3.1 @ince % for
each partitionF;), and Lemma 4.3.2 (since the while loop ensures the orderirig; pf To show
that the method satisfies the condition of Lemma 4.3.3, we show that each rigiwpareated by
the “merge step” temp = (temp.start, temp2.end) maintains this condition as an invariant. Let
Eiemp =to ... t1, andEemp2 = t1+1. .. t2. We know thatE.,,,,, and Ej.,,;,» satisfy the condition
of Lemma 4.3.3, and we must show that the merged partfiign, also satisfies this condition. In
other words, we are givem(tg...j) > u(j+1...t1) forall j (to < j < t1),andu(ti+1...5) >
wij+1...to)forallj (t1 +1 < j < t3). We also know that temp.Q is at least temp2.Q, since
the merge step only takes place if this condition holdsy@@...%;1) > u(t; +1...t2). To show
that the merged partition satisfies the condition of Lemma 4.3.3, we must shoy(that. j) >
w(g+1...ty) forall j (to < j < t2). We know this is true foj = ¢;, but must also prove it
forj < ¢ty andj > ¢;. Forj < t1, we haveu(ty...j7) > u(to...t1) > p(j +1...¢1) and
,u(to...tl) > ,u,(tl—i—l. . .tg). ThUS,U,(t().. j) > ,U,(j—i—l .tl) and,u,(to. . j) > ,u(tl—l—l.. .tg),
sou(ty...j) > p(j+1...t2) as desired. Fof > ¢, we haveu(t; +1...75) > p(t1+1...t2) >
,u(j +1.. .tg) andu(tg .. .tl) > /L(tl +1... tg). ThUS,u(tO ce tl) > ,u(j +1... tg) andu(tl +
L. >p(+1...t2),sou(to...7) > p(j+1...t2) asdesired. |

4.3.5 Parametrized clusters

Here we assume that the rate increases over the duration of the clustatimgdto some known,
parametrized distribution. We focus here on the case where the rate isemtiadly increasing
(multiplied by ¢ on every time step). Similar expressions may be derived for the case ofaa line
increase in rate (i.e. rate is increaseddwn every time step).

In this case, we compare the null hypothelis the rate equals 1 over all locations and times,
to the set of alternative hypothesHs(S): the rate isp!~min*1 at timest = t,,i, ... T in region
S, and equals 1 over all other locations and times. The likelihood ratio is:

maxg>1 ][ Pr(ct ~ Poissofib ¢! tmint1))
[1Pr(ct ~ Poissoffbt))

F(S, tmm) -

max,s1 H €7¢t_tmin+lb§ ((btftmerl)cﬁ

= I g

e*¢t_tmm+13t (¢t*tmm+1)cz

T
maxe>1 Ht:tmm

T -B
Ht:tmin € !
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T
= max e(l_(ﬁtitmirfkl)Bt¢(t_t'min+1)ct
p>1
t=tmin
whereB; = 3 gy, bt andCy = Y g, ct. Maximizing with respect t@ requires finding the

root of a polynomial of degre® — t,,,;, + 1, approximate (gradient) methods may also be used.

4.4 Inferring baseline values

In order to infer the baselings for the “current” days’ — W < ¢ < T, we must consider two
distinct questions: on what level smgregatethe data for time series analysis, and what method
of time series analysis to use. We consider three different levels of spggatgation, which we
term “building-aggregated time series” (BATS), “cell-aggregated time SE{@ATS), and “region-
aggregated time series” (RATS) respectively. For the BATS method, n&der the time series for
each spatial location independently; for example, we may have a separatetiggefor each store
or hospital, or counts may be already aggregated at some level (e.g.dgjp deor each of these
locationss;, we independently compute the baselibeél’ — W < ¢ < T') from the past counts!

(1 <t < T-W),using one of the time series analysis methods below. Then whenevelowiata

F (S, tmin) for a region, we use the baselingsand counts:! for each location in the region. The
CATS method first computes the aggregate cefifior each cell of the grics; € G on each day

t, by summing counts of all spatial locations in that cell. Then the baselinase computed
independently for each grid cel] € GG, and whenever we calculatg(S, ¢,,,;,) for a region, itis the
cell counts and baselines that we use to compute the score. Finally, the RATSImetismever it
searches a regiaofi, aggregates the time series of coufit$S) “on the fly” by summing counts of

all spatial locations in that region, computes baseliBgs$') for the “current” dayd"—W < ¢t < T,

and applies the score functidni(S, ¢,,:,) to the resulting counts and baselines. This allows us to
account for spatial correlations between cells, because the resukigigrif time series is formed
by aggregating these correlated counts. However, the lack of a sepaseline per cell makes it
more difficult to perform significance testing, as discussed below.

Randomization testing must also be performed differently for each of the tavels of ag-
gregation. To generate a replica grid for BATS, we independently draouat for each spatial
locations; for each current day, using its baseliné’. To generate a replica grid for CATS, we
independently draw a count for eacéll of the grids; € G for each current day, using the cell
baselineb!. Finally, randomization testing for RATS is somewhat more difficult than forother
methods, since we must produce cell counts from a correlated distribuftie.can be done by
Gibbs sampling [55] or possibly generalized Monte Carlo significance tedt#fjgbut the need to
perform sampling makes randomization much more computationally expensiahek alterna-
tive would be to bound False Discovery Rate [12] or some other criteriverahan computing
statistical significance.

We also note that missing data is a potentially serious problem for all of theseasetRkor
BATS, we may use time series approaches which adjust for the presemégsing data; for CATS
and RATS, we must infer these missing values before aggregating data @ltior region level.
For the over-the-counter drug sales data, our current best abpi®a@an exponentially weighted
regression approach, applied to day-of-week adjusted counts;jtretradnt is made by estimating
the proportion of weekly counts falling on each day, and normalizing byetfeedors.
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4.4.1 Time series analysis methods

For a given location, cell, or regias}, our goal is to estimate the expected values of the “current”
counts,bl = E[cf], T — W < t < T, from the time series of “past” count$, 1 < ¢t < T — W.

A variety of univariate time series methods may be used to infer these basdiépesding on how
we wish to deal with three questions: day of week effects, seasondstrend bias.

Many epidemiological quantities (for example, OTC drug sales) exhibit gtday of week
and seasonal trends. Here we consider three methods of dealing witli wagk effects: we can
ignore them stratify by day of week (i.e. perform a separate time series calculation for egch da
of the week), oradjustfor day of week. To adjust for day of week, we assume that the obderv
count on a given day is the product of an “actual’ count and a condigendent on the day of
week. Thus we compute the proportion of cousiten each day of the week & 1...7). Then we
transform each past day’s observed count by dividing 8y do a single time series calculation on
the transformed past counts to predict the transformed current caumatdinally multiply by75;
to obtain the predicted count for each current day. By adjusting instestdatifying, more data is
used to predict each day’s count (potentially reducing the variancerasimates), but the success
of this approach depends on the assumption of a constant and multiplicayhced-sveek effect.

We also consider three methods of adjusting for seasonal trends: tolysth® most recent
counts (e.g. the past four weeks) for prediction, to use all counts dightvthe most recent counts
more (as is done in our exponentially weighted moving average and expilyeneighted linear
regression methods), and to use regression techniques to extrapakieadrends to the current
data. For datasets with little or no seasonal trend, simple mean or moving @veedigods can be
sufficient, but for datasets with strong seasonality, these methods will laigdone seasonal trend,
resulting in numerous false positives for increasing trends (e.g. satesigh and cold medication
at the start of winter) or false negatives for decreasing trends @ughcand cold sales at the end of
winter). To account for these trends, we recommend the use of remressthods (either weighted
linear regression or non-linear regression depending on the datayap@ate the current counts.
Finally, we consider both methods which attempt to give an unbiased estimat @frtient count
(e.g. mean of past counts), and methods which attempt to give a positivedbeéstimate of the
current count (e.g. maximum of past counts). As we show, the unbias#itbds typically have
better detection power, but the conservatively biased methods havevidigage of reducing the
number of false positives to a more manageable level.

Here we consider a total of 10 time series analysis methods, includingé&dl (b = maximum
count of last 28 days), “alinean” ¢! = mean count of last 28 days), “stratax” (b = maximum
count of same day of week, 1-4 weeks ago), “stretan” ¢! = mean count of same day of week, 1-4
weeks ago), two exponentially weighted moving average methods (EXkMIA’ stratified by day
of week, “adfEWMA” adjusted for day of week), and two exponentially weighted linegression
methods (“straEWLR” stratified by day of week, “adEWLR” adjusted for day of week). Our final
two methods are inspired by the recent work of Kulldorff et al. [85] on'ipace-time permutation
scan statistic,” so we call them “striull” (stratified by day of week) and “alKull” (ignoring day
of week effects). In this framework, the baseliijés computed a% i.e. space and time
are assumed to be independent, so the expected fraction of all tcai;élsirrgcm locations; on
dayt can be computed as the product of the fraction of all cases occurringatida s; and the
fraction of all cases occurring on day The problem with this method is that the current day’s
counts are used for prediction of the current daxXpectedtounts. As a result, if there is a cluster
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on the current day, the baselines for the current day will also be higdtkrcing our power to detect
the cluster. Nevertheless, the stkaill and all Kull methods do extremely well when detecting
localized clusters (where the increase in counts is noticeable for a smialhrégt the region is
small enough that the total count for the day is essentially unaffected).

We also note an interesting interaction between the level of aggregationeangbthod of time
series analysis. If the expected coubjt§7’ — W < ¢ < T') are calculated as a linear combination
of past counts! (1 < ¢ < T'— W), and the weights for each past dagre constant from location to
location, then we will calculate the same baselines (and thus, the same segegd)ess of whether
we aggregate on the building, cell, or region level. This turns our to bedruadst of the methods
we investigate: almean, stratmean, straEWMA, stratEWLR, all_Kull, and stratKull. On the
other hand, if we choose different weights for each location (as is $ewhen we adjust for day
of week, as in adEWMA and adiEWLR), we will calculate different baselines (and thus, different
scores) depending on our level of aggregation. Finally, we havediffeyent results for the “max”
methods (stramax and allmax) depending on the level of aggregation, because the maximum is
not a linear operator. Since the sum of the maximum counts of each locafign { max; c})
is higher than the maximum of the sumdx; >, g cb), we always expect BATS to predict the
highest baselines, and RATS to predict the lowest baselines. For thiesrgisen below, we only
distinguish between BATS, CATS, and RATS aggregation for those methbdewhe distinction
is relevant (allmax, stratmax, adjEWMA, and adjEWLR).

4.5 Computational considerations

We begin by making two important observations. First, for any of the time san@ysis methods
given above, the baselinés (I’ — W < t < T) can be inferred from the past counfs(l <

t <T—W)inO(T). Second, we can compute the score funcit{i$, ¢,,:,), for a given spatial
regionS and for allT — W < t,,:;, < T, in total timeO (W), regardless of whether the persistent
or emerging scan statistic is used. This is obvious for the persistent statisgcveincan simply
proceed backward in time, adding the cumulative catyrand cumulative baselinB; for each day

t, and recomputing the score. (We can accumulate these counts and Isaise(iti&l’) by using
the “cumulative counts” trick discussed in Chapter 3 for each ofitheurrent days.) Th& (W)
complexity is less obvious for the emerging statistic, since adding any newrday result in up to
O(W) pops from the stack. But each daypsshedonto the stack at most once, and thus the total
number ofpopsfor the W days is at mostV, giving total complexityO (W), notO(W?2).

For the BATS method, our computation may be divided into three steps: firepmpute base-
lines for each spatial location, requiring total tiféN,7"), whereN; is the number of locations.
Second, we aggregate “current” store baselines and counts to theegyidring timeO(N2W)
whereN is the grid size. Third, we search over all spatio-temporal regiéns,§,,): for each such
region, we must compute the aggregate counts and baselines, and apgdpridéunctionF’. As
noted above, we can do this@(1W') per region, but since a hae search requires us to examine all
O(N*) gridded rectangular regions, the total search tin@(i&/ 1), bringing the total complexity
to O(N,T + N*W). For CATS, we first aggregate all store baselines and counts to theeyidy-
ing time O(N,T + N2T). Then we calculate baselines for each of ¥egrid cells, requiring total
time O(N?2T). Finally, we search over all spatio-temporal regions; as in BATS, thisiresjtime
O(N*W), bringing the total complexity t& (N, T + N2T + N4W). For RATS, we first aggregate
all store baselines and counts to the grid (as in CATS), requiring @1é,7" + N2T). Then for
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each of theN* regions we search, we must calculate the baselines for “current” dagtsedly,
requiring timeO(T'), and compute the score function using the counts and baselines fontcurre
days, requiring time (). Thus the total complexity i© (N1 + N*T).

For large grid size®/, theO(N*) complexity of searching over all spatial regions makesiaena
search over all such regions computationally infeasible. However, wepaly thefast spatial scan
discussed in Chapter 3, allowing us to find the highest scoring region grtalse while searching
only a small fraction of possible regions. In the purely spatial case, gtesffatial scan works by
using a multi-resolution, branch-and-bound searchrt;me sets of regions that can be proven to
have lower scores than the best region score found so far. We sy e@dend this method to
the space-time case: given a spatial regiorve must upper bound the scorB$S’, ¢,,,,) for all
regionsS’ C S andT — W < tm < T. The simplest way of doing so is to compute separate
bounds on baselines and countsSbffor each time step, using the methods given in Chapter 3,
then use these bounds to compute an upper bound on the score. It mighe @lgssible to achieve
tighter bounds (and thus, better pruning) by enfor@ogsistencgonstraints across multiple days,
i.e. ensuring that’ has the same spatial dimensions on each time step.

4.6 Related work

In general, spatio-temporal methods can be divided into three classdisil spodeling techniques
such as “disease mapping,” where observed values are spatially sohtmthier the distribution of
values in space-time [28, 16]; tests for a general tendency of the ddtasterd77, 101]; and tests
which attempt to infer the location of clusters [82, 81, 85]. We focus on tter lelass of methods,
since these are the only methods which allow us to both answer whether aificaig clusters
exist, and if so, identify these clusters. Three spatio-temporal clustestidet@pproaches have
been proposed by Kulldorff et al.: the retrospective and prospespigee-time scan statistics [82,
81], and the space-time permutation scan statistic [85]. The first two apg@eattempt to detect
persistent clusters, assuming that baselines are given based os pepsilation estimates. The
retrospective statistic searches over all space-time intervals, while thegutive statistic searches
over those intervals ending at the present time. As noted above, theseldoons make sense
for the case of explicitly given denominator data, and copndportionalto these baselines (e.g.
we expect a population of 10000 to have twice as many cases as a popolaida0, but do
not know how many cases we expect to see). They are not approfmiatee case where we
infer the expected valuesf counts from the time series of past counts (e.g. based on past data,
we expect to see 40 cases in the first population and 15 cases in these&wen if accurate
denominator data is provided, the retrospective and prospective statistygsick up purely spatial
clusters resulting from spatial variation in the underlying rate (e.g. diftgrarts of the country have
different disease rates), or purely temporal clusters based on tdrfipotaations in rate (seasonal
effects or long-term trends), and thus the detected clusters tend to heskfas for prospective
detection of emerging outbreaks.

The recently proposed “space-time permutation scan statistic” [85] attempsntxly these
problems; like the present work, it allows baseline data to be inferred tihentime series of past
counts. As noted above, baselines are calculated by assuming thatioasedependently dis-
tributed in space and time, and a variant of the test for persistent clusteseds(searching for
regions with higher rate inside than outside). Then randomization testing & lWopermuting
the dates and locations of cases. This method focuses on detsutiog-time interactigrand ex-
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plicitly avoids detecting purely spatial or purely temporal clusters. The ds#dges of this are
twofold. First, it loses power to detect spatially large clusters, becass®(ad above) the current
day’s counts are used to estimate what the current day’s counts shoutdthe most extreme case,
a spatially uniform multiplicative increase in disease rate over the entirensaia@a would be com-
pletely ignored by this method, and thus it is unsafe to use for surveillarepei combination
with other methods. The second disadvantage is that if the count dexinas®e spatial region
and remains constant elsewhere, this is detected as a spatio-temporal dib&eaesults in false
positives in cases where stores in one area are closed and storedénemntidrea remain open: the
open stores are flagged as a cluster even if their counts have actuatpskdt.

All of the previously proposed space-time scan statistics are populatsadbthey often start
from census data, which gives an unadjusted populatjaorresponding to each spatial location
s;. This population can then be adjusted for covariates such as the distribfiffatient age and
gender, giving an estimated “at-risk population” for each spatial locatioa.recent paper, Klein-
man et al. [75] suggest two additional, model-based adjustments to the pop@stiimates. First,
they present a method for temporal adjustment (accounting for day o, weanth of the year,
and holidays), making the populations larger on days when more visits ake (fg. Mondays
during influenza season) and smaller on days when fewer visits are likgly $undays and holi-
days). Second, they apply a “generalized linear mixed models” (GLMMjageh, first presented
in Kleinman et al. [76], to adjust for the differing baseline risk in each gsrigact. This makes
the adjusted population larger in tracts which have a larger baseline rigi) wiakes sense since
a given number of observed cases should not be as significant if eevelol counts in that region
are consistently high. These baseline risks are computed from histoateali . the time series of
past counts in each census tract, using the GLMM version of logisticsgigreto fit the model.

Another possibility for inferring baselines is to make the assumption of indigee of space
and time, as in [85]; this means that the expected count in a given regionasteghe total count
of the entire area under surveillance, multiplied by the historical proporfioaunts in that region.
This approach is successful in detecting very localized outbreaképdmg power to detect more
widespread outbreaks [120]. The reason for this is that a widesprehokak will increase the total
count significantly, thus increasing the expected count in the outbrgalareand hence making the
observed increase in counts seem less significant. In the worst mgenarassive outbreak which
causes a constant, multiplicative increase in counts across the entirandegasurveillance would
be totally ignored by this approach; this is also true for many of the populaised methods,
since they only detect spatial variation in disease rate, not an overabisein counts. If these
methods are used, we recommend using a purely temporal method in paralisute ¢éhat large-
scale outbreaks (as well as localized outbreaks) can be detected.ViEatheéhe accurate inference
of expected counts from historical data is still an open problem, with differeethods performing
well for different datasets and outbreak types.

Several other spatio-temporal cluster detection methods have also lopesga. lyengar [74]
searches over “truncated rectangular pyramid” shapes in space-tingealtbwing detection of
clusters which move and grow (or shrink) linearly over time; the disadvantathat this much
larger set of possible space-time regions can only be searched apately. Assuncao et al. [9]
assume a spatio-temporal Poisson point process: the exact locatiarhgdaat in time and space
is given, rather than aggregating points to discrete locations and inteAvdésst statistic similar
to the space-time permutation scan statistic is derived, assuming a Poissoityifiteicsion that is
separable in space and time.
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4.7 Results

We evaluated our methods on two types of simulated outbreaks, injected inEermesgency De-
partment and over-the-counter drug sale data for Allegheny Coumpsilrania First, we con-
sidered aerosol releases of inhalational anthrax (e.g. from a bios¢rattack), produced by the
BARD (“Bayesian Aerosol Release Detector”) simulator of Hogan e¥8l. [The BARD simulator
takes in a “baseline dataset” consisting of one year’s worth of Emerd@epsrtment records, and
the quantity of anthrax released. It then produces multiple simulated attackswéth a random
attack location and environmental conditions (e.g. wind direction), and ai8sg/esian network
model to determine the number of spores inhaled by members of the affegathian, the re-
sulting number and severity of anthrax cases, and the resulting numbespifatory Emergency
Department cases on each day of the outbreak in each affected zipkEacte simulated outbreak
can then be injected into the baseline ED dataset, and our methods’ detect@mpace can be
evaluated using the testing framework below.

Second, we considered a “Fictional Linear Onset Outbreak” (or ‘GL)Qwith a linear increase
in cases over the duration of the outbreak. A FLOO outbreak is a simple sicholatiereak defined
by a set of zip codes, a duratidfy;,,, and a valueA. The FLOO simulator then produces an
outbreak lastingy;,, days, withtA respiratory cases in each of the zip codes onflay< ¢ <
Tf100/2, andTy;,,A /2 cases on day, Tf,0/2 < t < T0. Thus we have an outbreak where the
number of cases ramps up linearly for some period of time, then levels offle\t#s is clearly
a less realistic model than the BARD-simulated anthrax attack, it does haa@kagivantages. It
allows us to precisely control the parameters of the outbreak curve (mohbases on each day),
allowing us to test the effects of these parameters on our methods’ deteetfornmance. Also,
it allows us to perform experiments using over-the-counter drug saleagateell as Emergency
Department data, while the BARD simulator only simulates ED cases.

We note that simulation of outbreaks is an active area of ongoing resieababsurveillance.
The creation of realistic outbreak scenarios is important because of fioaltfof obtaining suf-
ficient labeled data from real outbreaks, but is also very challengingte-8f-the-art outbreak
simulations such as those of Buckeridge et al. [23], and Wallstrom et%4] [dombine disease
trends observed from past outbreaks with information about the ¢lraekground data into which
the outbreak is being injected, as well as allowing the user to adjust paramsatdr as outbreak
duration and severity.

We now discuss our basic semi-synthetic testing framework, followed bycagsdimon of the
performance of our methods on each of the three main experiments (aathbagaks in ED data,
FLOO outbreaks in ED data, and FLOO outbreaks in OTC data).

4.7.1 Semi-synthetic testing

Our basic goal in the semi-synthetic testing framework is to evaluate detectimnrpance: what

proportion of outbreaks a method can detect, and how long it takes to ttetsetoutbreaks. Clearly
these numbers are dependent on how often the method is allowed to “seuwaddriin,” and thus we
have a tradeoff between sensitivity (i.e. ability to detect true outbreakkjlerection time on the

3All data was aggregated to the zip code level to ensure anonymity, gidirdjsBinct spatial locations (zip code
centroids). The ED data contained an average of 40 respiratory/dagewhile the OTC data averaged 4000 sales of
cough and cold medication/day.
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Table 4.1: Summary of performance. Detection rate and average daysetd, de false posi-
tive/month, all datasets.

best median temporal spatial
dataset rate days rate days rate days rate days best method
BARD (0.125) 1.000 | 1.600 | 1.000 | 1.800 | 1.000 | 1.900 | 1.000 | 2.317 1-day, allmean
BARD (0.015625) | 0.883 | 3.679 | 0.883 | 3.906 | 0.867 | 4.250 | 0.883 | 5.094 1-day, allmean

FLOO.ED (1,20) 1.000 | 4.484 | 1.000 | 5.066 | 0.988 | 6.119 | 1.000 | 7.289 | 3-day emerging, strstEWMA
FLOO.ED (2,20) 1.000 | 2.898 | 1.000 | 3.211 | 1.000 | 4.551 | 1.000 | 4.074 | 3-day emerging, strstEWMA

FLOO.ED (4,14) 1.000 | 1.748 | 1.000 | 2.076 | 1.000 | 3.103 | 1.000 | 2.290 1-day, allmean
FLOO_OTC (20,20) | 1.000 | 3.891 | 0.595 | 7.621 | 0.315| 7.358 | 0.260 | 8.910 1-day, stratKull
FLOO.OTC (40,14) | 1.000 | 2.319 | 0.981 | 4.609 | 0.240 | 4.667 | 0.232 | 6.082 1-day, stratull
FLOO.OTC (all1,14) | 0.475| 5.424 | 0.179 | 3.340 | 0.274 | 5.000 | 0.213 | 6.036 1-day, stralEWLR

one hand, and specificity (i.e. frequency of false positives) on the.dare precisely, our semi-
synthetic framework consists of the following components. First, givenyeae of baseline data
(assumed to contain no outbreaks), we run the space-time scan statisticHatay of the last nine
months of the year (the first three months are used to provide baselinentigtaaoutbreaks in this
time are considered). We thus obtain the highest scoring regjfipand its scord™ = F(S*), for
each of these days. Then for each “attack” that we wish to test, we doltbwifhg. First, we inject
that outbreak into the data, incrementing the number of cases as abovefofleach day of the
attack, we compute the highest scorimetevantregionS* and its scord”™*, where a relevant region

is defined as one which contains the centroid of all the cases injected thatliareason that we
only allow the algorithm to search over relevant regions is because wetdwamt to reward it for
triggering an alarm and pinpointing a region which has nothing to do with theeakb We then
compute, for each day= 0. .. Touprear (WhereT, reak 1S the length of the attack), the fraction
of baseline days (excluding the attacked interval) with scores higher teandkimum score of all
relevant regions on days 0 toThis is the proportion of false positives we would have to accept in
order to have detected that outbreak by tldgy repeating this procedure on a number of outbreaks,
we can obtain summary statistics about the detection performance of eaclimeghcompute its
averaged AMOC curve [47] (average proportion of false positivesiad for detection on dayof

an outbreak), and for a fixed level of false positives (e.g. 1 fals#iy@snonth), we compute the
proportion of outbreaks detected and the average number of days ttiaiete

Note that this basic framework does not perform randomization testingpridytcompares
scoresof attack and baseline days. There are several disadvantages to thadméetht, since
the baseline$! for each day are different, the distribution of scores for each daptca grids
will be different, and thus the highest scoring regions may not correspractly to those with the
lowestp-values. A second disadvantage is that it does not tell us how to pectdionation: setting
thresholdp-values in order to obtain a fixed false positive rate in real data. This igsed in more
detail below.

We tested a total of 150 methods: each combination of the three aggregatds (BATS,
CATS, RATS), five space-time scan statistics (1-day, 3-day emergidgy ersistent, 7-day emerg-
ing, 7-day persistent) and the ten methods of time series analysis listed a®wempared these
methods against two simple “straw men”: a purely spatial scan statistic (assunifagm under-
lying at-risk population, and thus setting the baseline of a region proportiorne area), and a
purely temporal scan statistic (analyzing the single time series formed bygagjggetogether all
spatial locations, using 1-day athean). Since both the ED and OTC datasets were relatively small
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Table 4.2: Comparison of methods. Average days to detect, 1 false pisdivil, all datasets.

BARD BARD | FLOOED | FLOOED | FLOO.ED | FLOO.OTC | FLOO.OTC | FLOO.OTC

method (0.125) | (0.016) | (1,20) (2,20) (4,14) (20,20) (40,14) (all1,14)
1-day 1.60 4.53 5.62 3.05 1.75 3.89 2.32 9.92
3-day persistent| 1.75 4.58 4.53 2.93 1.94 4.02 2.61 11.61
3-day emerging 1.75 4.55 4.48 2.90 1.92 3.96 2.53 11.57
7-day persistent| 1.80 4.67 4.73 3.06 2.01 4.35 2.83 11.89
7-day emerging| 1.77 4.67 4,71 3.09 2.00 4.29 2.78 11.73
all_maxBATS 1.98 5.03 6.34 3.61 2.16 6.58 3.30 10.80
all_max CATS 1.97 4.92 5.75 3.18 2.03 6.58 3.46 10.80
all_maxRATS 1.72 4.65 5.06 3.32 2.03 10.15 5.11 11.02
all_mean 1.60 4.53 4.79 3.04 1.75 15.34 6.67 11.78
stratmax BATS 1.87 4.83 5.25 3.38 2.17 7.11 3.69 11.73
stratmax CATS 1.87 4.82 5.25 3.23 2.10 7.21 3.75 11.82
stratmax RATS 1.73 4.68 5.20 3.21 2.08 12.34 4.57 11.54
stratmean 1.75 4.63 4.68 3.04 1.99 15.92 6.46 11.67
stratEWMA 1.75 4.58 4.48 2.90 1.92 16.88 11.49 12.19
ad,EWMA 1.68 4.55 4.65 2.92 1.89 16.58 7.56 11.84
stratEWLR 1.83 4.82 5.17 3.42 2.29 10.84 5.23 9.92
ad . EWLR 1.75 4.67 5.24 3.12 2.03 10.19 4.36 10.78
all_Kull 1.80 4.65 4.69 2.96 1.95 4.25 2.59 11.63
stratKull 1.75 4.68 4.53 2.92 1.94 3.89 2.32 10.89

in spatial extent (containing only records from Allegheny County), wedssmall grid V = 16,
maximum cluster size = 8), and thus it was not necessary to use the ftiat span. For larger
datasets, such as nationwide OTC data, a much larger grid size Neg. 256) is necessary to
achieve adequate spatial resolution, and thus the fast spatial scan wa4ilibgortant component
of our nationwide disease surveillance system.

For each outbreak type, we compared the detection performance of thoda¢o the two straw
men, and also determined which of our methods was most successful glaplePerformance
was evaluated based on detection rate (proportion of outbreaks dé¢taiclefhlse positive/month,
with ties broken based on average number of days to detect; we list botlerfioenpance of our
“best” spatio-temporal method according to this criterion, as well as a geprative “median”
method (i.e. the 75th best method out of 150). We compare the methods in mdténd&dle
4.2, giving each method’s average number of days to detection at 1 faga@/month, assuming
that undetected outbreaks were detected onIday,.... For each of the five scan statistics, we
report performance assuming its best combination of time series analysisdnagtti@ggregation
level; for each of the ten time series analysis methods, we report perfoengsuming its best
scan statistic. Level of aggregation only made a significant differemdbdallmax and stratnax
methods, so we report these results separately for BATS, CATS, am&.R#r each outbreak, we
also construct AMOC curves of the “best,” “median,” purely temporad, jpmrely spatial methods;
we present three of these curves (one for each outbreak type) ireFgli We also discuss each
outbreak type in more detail below.

4.7.2 Anthrax outbreaks, ED data

For the anthrax outbreaks, we began with real baseline data for tespiEanergency Department
visits in Allegheny County in 2002. We used this data to simulate epidemics usindpEBARvo
different levels of anthrax release: 0.125 (high) and 0.015625 (I&w).each release amount, 60
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Figure 4.1: AMOC curves for three of the eight datasets. The fouresuave for the best spatio-
temporal method((), the median spatio-temporal methaq, the purely temporal method), and

the purely spatial methodt). Note that the purely temporal method, unlike the others, is not
required to pinpoint the region location, so its AMOC will be lower at the steanaattack (before
there are a sufficient number of cases to detect); this is purely a fundtibe testing methodology,
and does not imply better performance.

simulated epidemics were created. Separately for the high and low levelssted &l methods,
forming an average AMOC curve for each over all simulated epidemicspasaduring detection
rate and average days to detect.

For the high release dataset, all of the methods tested were able to rapidhatie€i@ outbreaks.
For a fixed false positive rate of 1/month, every method detected all olth{Ed0% detection rate),
with average time to detection ranging from 1.6 to 2.067 days. The top methodiajis@o detect)
was the 1-day statistic using atlean, and half of all methods detected in 1.8 days or fewer. Since
the average delay from release to the first reported case was 1.18&luzses times were close to
ideal detection performance. All methods exceptnadix outperformed the purely temporal scan
statistic (100% detection rate, 1.9 days to detect), and all methods outpeaiftrenpurely spatial
scan statistic (100% detection rate, 2.317 days to detect). For this datasetywteevery little
difference between the best and worst performing methods, and thulsatdsto draw definitive
conclusions. Nevertheless, we observed that shorter temporal wsnmevormed better (1-day was
best, 7-day was worst), and there were no significant differendesba emerging and persistent
scan statistics. Looking at the outbreak curve for this epidemic, it is clegithi$is the case: all
outbreaks have huge spikes in the number of cases starting on day 4ooth2re is no advantage
to having a longer window; and since there is essentially no “ramp-up” indher of cases (just
the large spike, at which point the outbreak is obvious to any method) theceadvantage to the
emerging over persistent statistics. For time series analysis, theealh method performed best,
followed by adjEWMA. This result is somewhat surprising, suggesting that the ED basiditze
has very little day of week or seasonal trends.

Results on the low release dataset were similar, except for two diffeyeasalting from the
amount of release. First, 7 of the 60 outbreaks were missed by all metheds;dhtbreaks con-
sisted of a very small number of cases (less than 5 in total), and as a resaltnths essentially
no signal to detect. The other 53 outbreaks typically produced a largelaious spike in cases
(again, with very little ramp-up prior to the spike), though the delay betwdease and spike was
longer on average (2.6 days from release to first reported casain,Ahe 1-day window was best,



4.7. RESULTS 89

though the 3-day statistics performed almost as well, anchain and adEWMA were the top two

methods. Our spatio-temporal methods again outperformed the straw meainnged.679 days to

detect (best) and 3.906 days to detect (median) at 1 false positive/monithwas substantially
better than the purely temporal and purely spatial methods, which requ@ d4nd 5.094 days
respectively.

4.7.3 FLOO outbreaks, ED data

For the FLOQED outbreaks, we again began with the 2002 Allegheny County ED dataset. W
injected three types of FLOO attacks, assuming that only zip code 1521 d(Rittg was affected:
(A = 4,Ttoo = 14), (A = 2,Tf100 = 20), and(A = 1,T, = 20). Thus the first attack
has the fastest-growing outbreak curde ¢ases on day), and the third has the slowest-growing
outbreak curvet(cases on day). For each outbreak type, we simulated outbreaks for all possible
start dates in April-December 2002, and computed each method’s avesggemance over all
such outbreaks. All the spatio-temporal methods were able to detect ateimhj@gtbreaks at a rate
of 1 false positive/month; not surprisingly, median number of days to detectased from 2.076
for the fastest growing outbreak, to 5.066 for the slowest growing eatbrAll of these detection
times were more than one full day faster than the purely spatial and purelhotaimpethods,
with one exception (0.22 days faster than purely spatialor 4). Again, the allmean method
performed well (1-day almean was the winner foh = 4, with a detection time of 1.748 days),
as did adjiEWMA and stratEWMA (3-day emerging straEWMA was the winner folA = 2 and

A = 1, with detection times of 2.898 and 4.484 days respectively). Our most ititeressult
was the effect of the temporal window sié: for the fastest growing outbreak, the 1-day method
detected outbreaks 0.2 days faster than the 3-day and 7-day methofis, the slowest growing
outbreak, both 3-day and 7-day methods detected outbreaks a fulistay than the 1-day method.
Emerging methods outperformed persistent methods for approximately 80%r trfials, though
the difference in detection time was typically fairly small (0.02-0.10 days, mitipg on the time
series analysis method). We also observed that higher aggregationlyyp&dormed better for
the alLlmax and stratnax methods (i.e. RATS performed best, and BATS worst).

4.7.4 FLOO outbreaks, OTC data

For the FLOQOTC outbreaks, we began with one year’s worth of data for retail sélegeo-the-
counter cough and cold medication in Allegheny County, collected from 241&/12/05. We in-
jected three types of FLOO attacks: for the first two, we again assumeahtlyatip code 15213 was
affected, but (since the overall numbers of OTC sales were much riggrethe overall numbers of
ED visits) we injected larger numbers of cour(td, = 40, T, = 14) and(A = 20, T'f;, = 20).
For the third attack, we assumed ttadt zip codes in Allegheny County were affected, using
(A = 1,Tp,, = 14) for each. For each outbreak type, we simulated outbreaks for all p@ssib
start dates over the last nine months of our data, and computed each matlerdige performance
over all such outbreaks. Our first observation was that these attalessubstantially harder to
detect than in the ED data: for the two localized attacks, our median methodsatettet! 98.1%
and 59.5% of outbreaks for the faster-growidy £ 40) and slower-growing4 = 20) outbreaks
respectively. It appears that the main reason for this was the difficultycarately predicting the
OTC counts for the baseline days, as we observed huge differenpesonmance between the var-
ious time series analysis methods. The data contained significant seastbhdalyeof week trends,
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as well as other irregularities (e.g. large spikes in sales in single stomslgy resulting from
promotions), and most of our methods were not entirely successful ouating for these; nev-
ertheless, they performed much better than the purely spatial and purelgredmmethods, which
only detected 23-32% of these outbreaks. Our second observatiothatabhe straKull method
performed remarkably well in predicting the localized outbreaks, detectitig M0% accuracy
in 2.32 and 3.89 days fo\ = 40 and A = 20 respectively; strakull and all Kull detected the
A = 20 outbreaks over two days faster than any other methods. This suggddtsodeamethods
were able to predict baselines for the non-attack days much more adgtinate any of the other
time series analysis methods: using the current day’s counts to predictrtkatday’s baselines al-
lows accurate adjustment for seasonal trendsjfahé attack is sufficiently localizednly slightly
reduces detection power. Clearly it would be better to have a method whikcty predicts the
trendswithoutusing the current day’s counts, but none of the methods discussedvbes able to
do this. For the non-localized attack (cases added to every zip codgowrer of stratkull was
substantially reduced, and it was only able to detect 36% of outbrealle, our best-performing
method (straEWLR) detected 48%. And this is far from the worst case for dtudt: since dif-
ferent zip codes have different average sales, adding the same mohdoeints to each creates a
large amount of space-time interaction. If we had inst@attiplied counts in each zip code by the
same factor, straKull would haveno power to detect this. We also note that the 1-day statistics
performed best for all three outbreak types on the OTC data, thoughdhg 8merging statistics
performed almost as well. Again, emerging methods consistently outperfqrensidtent methods,
and the difference in detection time was larger than on the ED data (typicall0®R0Xdays). Fi-
nally, we note that the lower levels of aggregation (BATS and CATS) ofdpaed RATS for the
“max” methods; this is the opposite result from what we observed on theai d

Based on these conflicting results, it is difficult to recommend a single metmadséoon all
datasets and outbreak types. As shown above, the optimal temporal wirmodepends on how
fast the number of cases increases, with longer temporal windows pjgteofor more slowly
growing outbreaks. The optimal temporal window is also affected by asiratbtradeoff between
number of false positives and detection time: a lower acceptable false paaitd/(and thus, longer
acceptable detection time) increases the optimal window size. For examplbeféiL OQED
(1,20) outbreak, the 3-day emerging statistic has the fastest time to detecicateabf 1 false pos-
itive/month, while the 7-day emerging statistic has the fastest time to detectiontat@f dafalse
positive/year. As noted above, the emerging statistics consistently outpetie corresponding
persistent statistics, and while the amount of difference is not that larg2-0020 days across all
outbreaks and methods), even slightly earlier detection may make a substdisiahce in the ef-
ficacy of outbreak response. It appears that the 3-day emergindistatasreasonable compromise
solution, at least for the set of outbreaks tested. It may also be a gaotbiden emerging statistics
with different window sizes in parallel, for better detection of both fastagmg and slow-growing
outbreaks; optimal combination of detectors is an interesting and opemaiesgeestion. It is clear
that the best time series analysis method depends on the characteristicslafatbet, as well as
whether the outbreak is spatially localized or occupies a large spatial regestratKull method
is excellent for localized outbreaks, but should be used only in pardtlebrnother method that can
detect large-scale outbreaks. For datasets with little seasonal trehdastlte ED data used here,
very simple mean and moving average methods are sufficient, but it is stilleemguestion to find
a method which can accurately predict baseline counts for OTC data witkiogtthe current day’s
counts to predict the current day’s expectations.
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Table 4.3: Comparison of expectation-based and population-basedtatiatics. Days to detect
and proportion of outbreaks detected, 1 false positive/month.
FLOOED FLOOED FLOOED BARD.ED BARDED FLOOOTC FLOQOTC

method (4,14) (2,20) (1,20) (.125) (.016) (40,14) (25,20)

population-based 1.859 3.324 6.122 1.733 3.925 3.582 5.393
(100%) (100%) (96%) (100%) (88%) (100%) (100%)

expectation-based  1.729 3.035 5.545 1.600 3.679 5.679 7.513
(100%) (100%) (99.6%) (100%) (88%) (61.6%) (44.0%)

4.7.5 Comparison of expectation-based and population-bad approaches

We have shown that the expectation-based space-time scan statistic is apldiypand accurately
detect disease outbreaks, and that this approach outperforms belthtparporal and purely spatial
scan statistics. We now compare the expectation-based and populataghsicas statistics on the
ED and OTC datasets, using the same method of estimating baselines for leawba@ CATS,
no time series correction) and a 1-day temporal window. Based on dimimary results (running
both methods on synthetic, purely spatial data), we expect that for a,givdiased estimate of
the expected count, the expectation-based statistic will outperform thdatioptbased statistic.
On the other hand, the population-based statistic will be more robust to stemglobal bias in
estimation (overestimating or underestimating the total count for each dageelwhich method
performs better on the ED and OTC datasets, we compare the two methodgsiniegperiments,
as shown in Table 4.3. From these results, we can see that the expebtdexhstatistic outper-
forms the population-based statistic on all five runs for the ED dataset, layerage of 0.369
days (approximately nine hours). On the other hand, the populatiomtisésgstic outperforms
the expectation-based statistic by a large margin on the OTC dataset, detdutiosg @vice as
many outbreaks and two days faster. These results demonstrate thgp¢latatirn-based statistic
does well when we have accurate estimates of the expected countsphbytwleen the estimates
are not accurate. As we know from the above discussion, thmedin method does not account
well for seasonal trends, resulting in poor estimates of the expectedscfuunOTC data. The
population-based method is more robust to estimation errors than the expebied method,
but even better performance can be achieved by using the expectated-bpproach with time
series analysis methods that account for seasonal trends, or bythisiBgyesian cluster detection
methods of Chapter 5.

4.7.6 Effects of time series correction

As noted above, an exponentially weighted linear regression method isltypisad to correct the
time series data before applying our space-time scan statistics. One fatwortiicates the use
of this method, however, is that our input data streams (ED and OTC datejt dladicate whether
a given location’s data is missing, but simply return a zero count. Thus éoEh data, we do
not perform time series correction since we are unable to tell zero valuesiissing values. For
the OTC data, on the other hand, average counts are much largeragdec cough and cold
sales. Thus we use a simple heuristic: if sales of all types are zero feem gfore on a given day,
we assume that the data is missing and perform time series correction. Aowénshable 4.4,
time series correction makes a large difference for both population-lzaxkéxpectation-based
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Table 4.4: Comparison of corrected and uncorrected time series methags tddetect and pro-
portion of outbreaks detected, 1 false positive/month.
FLOO.OTC FLOQOTC

method (40,14) (25,20)
population-based 2.745 3.977
(corrected) (100%) (100%)
population-based 3.582 5.393
(uncorrected) (100%) (100%)
expectation-based 5.627 7.797
(corrected) (86.7%) (55.6%)
expectation-baseq 5.679 7.513
(uncorrected) (61.6%) (44.0%)

methods: the expectation-based method improves from 53% to 71% of dutltetected, and
the population-based method can detect outbreaks over 1 day fastetimieeseries correction is
performed.

4.7.7 Calibration

As noted above, our testing framework simply compares scores of theshigtming regions on
each day, and computes AMOC curves; no randomization testing is doddhas we do not
actually compute the-value of discovered regions. Because our detection performandghis h
it is clear that the attacked regions would have lowermlues than the highest scoring regions
on non-attacked days. But this does not answer the question of calibratievhat thresholg-
value should we trigger an alarm? If non-attacked days were actuallyajedeunder the null
hypothesis, we could choose some levednd be guaranteed that we will only trigger false alarms
that proportion of the time (e.g. once every 20 daysdoe .05). However, our null hypothesis,
that each count! is generated by a Poisson distribution with méaris clearly false, sincé! is
only an estimate of what we expettto be, assuming that no outbreak is present. If this estimate
were unbiased and exactly precise (zero variance), then we wollkevachfalse positive rate of
a. In practice, however, this estimate can be both biased and highly impr&cisany method of
calculating baselines that is approximately unbiased, but has non-zeance(i.e. all of our time
series analysis methods exceptralix and stramax), we expect the proportion of false positives
to be greater than, since the scan statistic picks out any regions whgigan underestimate of.
The allmax and stratnax methods, on the other hand, are conservatively biased (predichirgg va
of b} which overestimate! on average) but also have non-zero variances; thus they may result
in proportions of false positives either higher or lower thanTo examine the calibration of our
methods, we calculated tipevalue for each day in both the ED and OTC datasets (with no injected
attacks). We used a 3-day emerging scan statistic, BATS aggregationouittiifferent time series
analysis methods: two unbiased methods_@djLR and allmean) and two conservative methods
(all_max and stratmax). R = 100 randomizations were performed, and we counted the proportion
of false positives atv = 0.01 anda = 0.05 for each method on each dataset. See Table 4.5 for
results.

As expected, we observe a large number of false positives in both ttatas¢he unbiased
methods. For the OTC dataset, we also have high false positive ratescevitre ftonservative
methods. What conclusions can we draw from this? Because of the caiitamour predictions,
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Table 4.5: Proportion of false positives

ED dataset OTC dataset
method | a=01|a=.05|a=.01 | a=.05

adjEWLR | 0.171 0.393 0.725 0.808
all_mean 0.091 0.240 0.789 0.840
stratmax | 0.000 0.025 0.275 0.344
all_max 0.000 0.000 0.058 0.072

the baseline data, especially the OTC data, is not fit well by the null hypstHésvertheless, the
likelihood ratio statistic (which serves as a sort of distance away from théynpothesis) is very
successful at distinguishing between attacks and non-attacked dayswScan we calibrate the
statistic? One option would be to use an unbiased method with a much lower tdrashait the
problem with this is that it would require a huge number of randomizations tordiete whether
the p-value is less than.. Another option would be to use a conservative method, but the problem
is that these methods not only record fewer false positives, but aldessable to detect a true
positive. In fact, as our results above demonstrate, the conservatitedseypically have much
less power to distinguish attacks from non-attacked days for a givelhdifase positives, so this
is clearly not a good idea. A better option is to trigger alarms for a givenhbléson thescore
rather than on the-value, with that threshold learned from previous data (e.g. the yedD Girig
OTC data used here). An even better solution might be to account for tleetaimty of our baseline
estimates!, as discussed below, and thus make our null hypothesis more accureselybe the
real data.

4.8 Conclusions

We have presented a new class of space-time scan statistics designeel fapithdetection of
emerging clusters, and demonstrated that these methods are highly Ruaretse task of rapidly
and accurately detecting emerging disease epidemics. We are currenkingvtry extend this
framework in a number of ways. Perhaps the most important of these mextems to account for
the imprecision in our baseline estimatésusing methods of time series analysis which not only
predict the expected values of the “current” counts but also estimateribeegin these estimates.
Our current difficulty is that we are testing the null hypothesis that all ttjrare generated from
the estimated value, but since these values are only estimates, the null hypothesis is clearly
false. As a result, as we demonstrated in the previous section, the staaddognization testing
framework results in large numbers of false positives, i.e. on most nackatégs we still observe a
p-value less than 0.05. The combination of time series methods which accoimpfecision of es-
timates, and scan statistics which use distributions that can account for nteesr@mnce separately
(e.g. Gaussian or negative binomial distributions) should allow us to ¢divese problems. This
will also make the distinction between building-aggregated, cell-aggregaiddegion-aggregated
time series methods more relevant, as the variance computations will be vergulifiepending on
the level of aggregation. A second (and related) extension is accodatifegtors such as overdis-
persion and spatial correlation between neighboring counts. Oumtunethods assume that each
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spatial location, cell, or region has an independent time series of comatshas infer baselines
independently for each such time series. When we extend the model to distribthat model
mean and variance separately, we should be able to calculate correlatoresb time series of
neighboring spatial locations, and adjust for these correlations.

Finally, we are in the process of applying our spatio-temporal scan statstesionwide over-
the-counter drug sales, searching for emerging disease outbreakdaily basis. Scaling up the
system to national data creates both computational issues (the use of 8pafad scan is essential
for searching large grids) as well as statistical issues (dealing with lemgiies in the data, such
as missing data, and increased sales resulting from product promotféasye currently working
with state and local public health officials to ensure that the clusters we @poespond to relevant
potential outbreaks, thus rapidly and accurately identifying emerging eakbrwhile keeping the
number of false positives low.



Chapter 5

Bayesian spatial cluster detection

5.1 Introduction

Spatial cluster detection has two main goals: to identify the locations, shaygkesizas of potential
clusters, and to determine whether each potential cluster is more likely to he&cster or sim-
ply a chance occurrence. Thus we must compare the null hypottgsitno clusters against some
set of alternative hypothesésg, (5), each representing a cluster in some region or regforis the
standard frequentist setting, we compare these hypotheses by sigrgfitesting, computing the
p-values of potential clusters by randomization; here we propose a Bayfeamework, in which
we compute posterior probabilities of each potential cluster. Our primary atioiivapplication is
prospective disease surveillanaietecting spatial clusters of disease cases resulting from a disease
outbreak. We perform surveillance on a daily basis, with the goal of fineinerging epidemics as
quickly as possible, while keeping the number of false positives low.

In this chapter, | present a new Bayesian approach to spatial clusemtida, the “Bayesian
spatial scan statistic,” and demonstrate that this method has several gdgaotvar the standard
(frequentist) method. First, the Bayesian method allows us to incorporatefioomation about
the size and shape of an cluster, and the impact of the cluster on the data bgmg monitored.
Second, because randomization testing is unnecessary within the Bdyasiawork, we can com-
pute the Bayesian scan approximately 1000x faster than the frequeptisaap. Other advantages
of the Bayesian method include higher detection power and easier calibraigaalization, and
interpretation of results. Additionally, the method can be extended to a “mudiigdBayesian scan
statistic,” enabling us to combine inputs from multiple data streams and to difféeebgaveen
different types of clusters (e.g. different types of outbreak in theadissurveillance case).

In Section 5.2, | review the frequentist spatial scan statistic and discoes afaits limitations,
and in Section 5.3, | present the new Bayesian spatial scan statistic. Sextloand 5.5 compare
the frequentist and Bayesian approaches with respect to detection gasveomputation time, and
Section 5.6 details some other advantages of the Bayesian approach., Firgdlgtion 5.7, | discuss
extension of the Bayesian method to the multivariate case, and some of thiégbatgvantages of
the multivariate framework.

Much of this chapter has been adapted from our papers in NIPS 2065 dhd the 2005 Na-
tional Syndromic Surveillance Conference [117]. | wish to thank my dbers Andrew Moore and
Gregory Cooper for their contributions to this work. Thanks also to Andrawson, Mike Wagner,
and Artur Dubrawski for helpful feedback on the univariate and mailiate Bayesian approaches.
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Finally, | wish to thank Gauri Datta and David Banks for suggesting the sedidUBayes) ap-
proach to prior selection, described in Section 5.3.

5.2 Review of the frequentist scan statistic

In the spatial surveillance setting, each day we have data collected fdrod discrete spatial
locationss;. For each locatiors;, we have acountc¢; (e.g. number of disease cases), and an
underlyingbaselineb;. The baseline may correspond to the underlypogulationat risk, or may
be an estimate of the expected value of the count (e.g. derived from theetiree af previous count
data). Our goal, then, is to find if there is any spatial regiofset of locationss;) for which the
counts are significantly higher than expected, given the baselinesinfalicity, we assume here
that the locations; are aggregated to a uniform, two-dimensiomélx N grid G, and we search
over the set of rectangular regio§sC G. This allows us to search both compact and elongated
regions, allowing detection of elongated disease clusters resulting frqrarsiéd of pathogens by
wind or water.

One of the most important statistical tools for cluster detection is Kulldesfiaial scan statis-
tic [88, 78]. This method, described in detail in Chapters 1 and 2, seaosleesa given set of
spatial regions, finding those regions which maximize a likelihood ratio statilithars are most
likely to be generated under the alternative hypothesis of clustering ithtnethe null hypothesis
of no clustering. Randomization testing is used to compute-tedue of each detected region, cor-
rectly adjusting for multiple hypothesis testing, and thus we can both identifpiaitelusters and
determine whether they are significant. Kulldorff's framework assumeasthatsc; are Poisson
distributed with¢; ~ Poissofigb;), whereb; represents the (known) census population of gell
andgq is the (unknown) underlying disease rate. Then the goal of the scanistatie find regions
where the disease rate is higher inside the region than outside. The stagstifoushis is the

likelihood ratio F'(S) = %, where the null hypothesi&, assumes a uniform disease

rateq = qq;. UnderH;(S), we assume that = g;,, for all s; € S, andg = ¢, forall s; € G- S,
for some constantg,, > qgou:.

Once we have found the highest scoring regin= arg maxg F'(S) of grid G, and its score
F* = F(S*), we must still determine the statistical significance of this region by randomization
testing. To do so, we randomly create a large nunibef replica grids by sampling under the null
hypothesis, and find the highest scoring region and its score for eplibergrid. Then the-value
of S* is Rl};‘ﬁfl, whereRy.; is the number of replica&’ with F* higher than the original grid.

The frequentist scan statistic is a useful tool for cluster detection, anoimsnonly used in
the public health community for detection of disease outbreaks. Howevee, dne three main
disadvantages to this approach. First, it is difficult to make use of anyipfaymation that we may
have, for example, our prior beliefs about the size of a potential oltlamec its impact on disease
rate. Second, the accuracy of this technique is highly dependent oarteetoess of our maximum
likelihood parameter estimates. As a result, the model is prone to parametiitingerand may
lose detection power in practice because of model misspecification. Fin&lyteifuentist scan
statistic is very time consuming, and may be computationally infeasible for largeetat#®\ néve
approach requires searching over all rectangular regions, botihdooriginal grid and for each
replica grid. Since there a@(NN*) rectangles to search for ai x N grid, the total computation
time is O(RN*), where R = 999 is a typical number of replications. In Chapter 3, we show
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how to reduce computation time by a factor of 20-2000x using the “fast $gada” algorithm;
nevertheless, we must still perform this faster search both for the driggidaand for each replica.
We propose to remedy these problems through the use of a Bayesian sgrtiatatistic. First,
our Bayesian model makes use of prior information about the likelihood,amEmpact of an out-
break. If these priors are chosen well, we should achieve better daetpotiger than the frequentist
approach. Second, the Bayesian method usearginal likelihoodapproach, averaging over pos-
sible values of the model parameters, qo.t, andq,;, rather than relying on maximum likelihood
estimates of these parameters. This makes the model more flexible and lestopreerfitting, and
reduces the potential impact of model misspecification. Finally, under thesBaymodel there is
no need for randomization testing, and (since we need only to searchighmabgrid) even a niae
search can be performed relatively quickly. We now present the Bayspatial scan statistic, and
then compare it to the frequentist approach on the task of detecting simuiseade epidemics.

5.3 The Bayesian scan statistic

Here we consider the natural Bayesian extension of Kulldorff’s staistic, moving from a Pois-
son to a conjugate Gamma-Poisson model. Bayesian Gamma-Poisson modeisraraan rep-

resentation for count data in epidemiology, and have been used in dimapping by Clayton and
Kaldor [28], Mollié [105], and others. In disease mapping, the effect of the Gamma priopiie-to
duce a spatially smoothed map of disease rates; here we instead focusutiog the posterior
probabilities, allowing us to determine the likelihood that an outbreak hasrecand to estimate
the location and size of potential outbreaks.

For the Bayesian spatial scan, as in the frequentist approach, we wisimpare the null hy-
pothesisH of no clusters to the set of alternative hypotheHgsS), each representing a cluster in
some regiorb. We assume that the hypotheses are mutually exclusiVe&loPe- > o Pr(H:(S)) =
1, where the sum is taken over a given set of regi§nas before, we assume Poisson likelihoods,
¢; ~ Poissofigh;). The difference is that we assume a hierarchical Bayesian model Wieedés-
ease rates;,, qout, andg,; are themselves drawn from Gamma distributions. Thus, under the null
hypothesisH,, we havey = ¢ for all s; € G, whereq,; ~ Gammaay;, B.). Under the alter-
native hypothesig¢f; (S), we have; = g;,, for all s; € S andq = g, for all s; € G — S, where we
independently draw;,, ~ Gammday,, Bin) andgeu: ~ Gammaa,yt, Bout). We discuss how the
« andg priors are chosen below.

From this model, we can compute the posterior probabiliti€&/PrS) | D) of an outbreak in
each regionS, and the probability R, | D) that no outbreak has occurred, given datdSet

Pr(Hy | D) = PURSIIBII) and per(S) | D) = PLELLEIRULIED, where PED) =
Pr(D | Hy)Pr(Hy) + > ¢ Pr(D | H1(S))Pr(H1(S)). We discuss the choice of prior probabilities
Pr(Hp) and P(H,(S)) below. To compute the marginal likelihood of the data given each hypoth-
esis, we must integrate over all possible values of the parametgrgd.:.» ¢.;;) weighted by their
respective probabilities. Since we have chosen a conjugate priornasdy obtain a closed-form

solution:

Pr(D | Ho) = /Pr(Qall ~ Gammaa, Ban)) [ [ Pr(ci ~ Poissofigubi)) dgan
$; €G
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Pr(D | Hi(9)) = /Pr(qm ~ Gammédaiy, Bin)) H Pr(c; ~ P0issoliq;,b;)) dgin,
s, €S

X /Pr(QOut ~ Gammaaouty ﬁout)) H PI‘(CZ‘ ~ POiSSOI(IQOutbi)) dQOut
s; €G-S

Since we have Poisson-distributed counts and a Gamma prior, the margifibblbkkis negative
binomial. Computing the integral, and lettidag= > ¢; andB = > b;, we obtain:

] « bz ¢ ,—qb;
/Pr(q ~ Gammaa,ﬁ))HPr(cl- ~ Poissoflgb;)) dqg = / %qa_le_ﬁqn %dq
B [ a1 80,5 —axbi g, B [ aro-1 —B+B)y,, . BrT(a+C)
O(F(a)/q e Plg e ¢ dq_r(a)/qu e O+ qdq_(ﬁ+B)a+CF(a)

Thus we have the following expressions for the marginal likelihoods:

(Batr) et T'(cau + Canr)
(Bait + Bau) et Can T ()

P(D | Hy)

(ﬁin)am F(azn + C@n) (ﬁout)aout F(aout + Cout)
X
(Bm + Bin)aerCm F(am) (ﬁout + Bout)a°“t+c‘mt F(aout)

The Bayesian spatial scan statistic can be computed simply by first calculaisgater'(S) =
Pr(D | H1(S))Pr(H;(S)) for each spatial regiofy, maintaining a list of regions ordered by score.
We then calculate PD | Hy)Pr(Hy), and add this to the sum of all region scores, obtaining the
probability of the data RiD). Finally, we can compute the posterior probability Pr(S) | D) =

PrD| HIFS‘;)/)DI)Dr(Hl(S)) for each region, as well as @, | D) = Prﬂw. Then we can
return all regions with non-negligible posterior probabilities and the postprabability of each.
We can also compute the overall probability of an outbreaki/Pt D) = "¢ Pr(H(S) | D) =

1 — Pr(Hy | D). Note that no randomization testing is necessary, and thus overall compgexity
proportional to number of regions searched, &¢N*) for searching over axis-aligned rectangles

inanN x N grid.

Pr(D | H1(95)) x

5.3.1 Choosing priors

One of the most challenging tasks in any Bayesian analysis is the choiderst [ffor any regiord
that we examine, we must have values of the parameter pripfs'), 5in (S), aout (S), andBou: (S),
as well as the region prior probability #(S5)). We must also choose the global parameter priors
oy andSyy, as well as the “no outbreak” prior |).

Here we consider the simple case of a uniform region prior, with a knoven probability of
an outbrealP;. In other words, if there is an outbreak, it is assumed to be equally likelycior dic
any spatial region. Thus we have(Fly) = 1 — Py, and P(H,(S)) = reg IS the total
number of regions searched. The paramétecan be obtained from hlstorlcal data or estimated
by human experts. The model can also be easily adapted to a non-unégion prior, taking into
account our prior beliefs about the size, shape, and location of akthréor example, we could
use a non-uniform prior which penalizes highly elongated shapes basedeometric measure of
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compactness, as in Duczmal et al. [41, 39]. Alternatively, we couldusegirical Bayespproach
in which the region prior is learned from data. One possible method wouldéetaine theipper

level setqall cells with g— > k for some threshold), gradually lower the threshold and discover
what shapes emerge.

For the parameter priors, we assume that we have access to a large ofiddey of past data,
during which no outbreaks are known to have occurred. We can thamadstimated values of
the parameter priors under the null hypothesis by matching the first anddsewoments of each
Gamma distribution to their estimated values from historical daiteother words, we set the mean
and variance of the distribution Gam(ng,;, 3,;) to the estimated mean and variance of the rate

A
[e]

parameter,; observed in past dat&2 = E[q,;], andZgt = Var [qaul.- Solving foray;; and Sy,
u B
a all

: Elgu)” £
we obtaina,; = <7 andj3., — _Eldaul
“' 7 Varlg.) Bt Var(gaul

Since the values af,;; are not known for the historical data, we consider two possible meth-
ods of computing the estimated mean and variancg,@f First, since the maximum likelihood
estimate ofy,;; is the ratio of total count to total baselir%, we can use the sample mean and

sample variance of this ratio as estimates of the distributiap,af E [qai] = Esample [%} , and

Var [qai] = Varlsgmpie [%Z . This results in an unbiased estimate of the mead,©f but a con-

servatively biased estimate (overestimate) of the varianeg;of Thus we call this approach the
“conservative Bayes” (CBayes) method.
To obtain an unbiased estimate of the variance,@f we note that the observed variance%eﬁ

can be broken into the sum of two components, one resulting from the variat%% given q.;
and one resulting from the variationgy;. In other words, we have:

Canl Canl Canl
Var = E |Var Var |E
[ B B | aut | | + B | qant

Poisso B, Poisso B,
_E [Var[ 10qai Bait) Iqau” + Var [E[ 10qai Bait) |qau”
B Bau

qatt Ban qazzBazz] [ qall ] |:Call:|
=E + Var =E + Var =E|—=| + Var
Thus we seE [qait] = Esample [g“ﬂ as in the CBayes approach, but now we set the variance

Var [quu) = Varsampie [gzx] —Esample [%} . We call this approach to prior selection the “unbiased
Bayes” (UBayes) method. !

We have now described two methods for calculation of the global paranites, p.,; andF,;.
The calculation of priorsy;,(S), Bin(S), aou(S), and By, (S) is identical except for two differ-
ences: first, we must condition on the observed rates inside or outside fgespectively, and sec-

ond, we must assume the alternative hypoth&sisS) rather than the null hypothesig,. Repeat-

E out S ’
ing the above derivation for the “out” parameters, we obtain (S) = H andfByu:(S) =
qout

!Note that the current data is not used to estimatethed3. Thus our method differs from “empirical Bayes” meth-
ods that use the same data for estimating priors and computing likelihomdstimeless, our method is still “empirical”
in the sense that our priors are data-driven.
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Elgout (5)] : _ Cout(S)
VAl (9)] Then for the CBayes and UBayes methods, we &\g,:(S)] = Esampie [ B S)},

whereC,,;(S) and B,,;(S) are respectively the total couht . c; and total baseling . ¢ b;

outside the region. For UBayes, we hax?ﬂ[qout(S)] = Varlymple [g“jgﬂ — Esample {ggufgﬂ,
out out
Cout(s)i|

and for CBayes, we hawar g, (S)] = Varampie { B |-

Our derivation for the “in” parameters is very similar, with one major diffeeenge must ac-
count for the impact of an outbreak on the disease rate inside r8gigecall that our historical data
is assumed to have no outbreaks, and thus gives us an estimate of thagpributibn of disease
rate inside regiol¥ when no outbreak is occurring. We assume that the outbreak will incggalsg
a multiplicative factorn; to account for this in the Gamma distribution Ganimg, 5;,, ), we multi-

m(Efgin()])”

A Varig, s onin(S) =
Elgin(5)] - _ Cin(S)
Varls, (5 Then for the CBayes and UBayes methods, we &g, (S)] = Esampie [Bm(s)},
whereC;, (S) and By, (S) are respectively the total coudt ¢ ¢; and total baseling ¢ b; inside

ply «;, by m while leavings;,, unchanged. Thus we obtain,, (S) =

the region. For UBayes, we havéar [9in(S)] = Varsgmpie {g:gﬂ — Esample [g;—gﬂ and for
CBayes, we hav&ar [qin(S)] = Varsample [gZ—ESSH Since we typically do not know the exact

value ofm, here we use a discretized uniform distributionforranging fromm = 1...my,.. at
intervals of Am.2 Then scores can be calculated by averaging likelihoods over the distritmftion
m.

5.3.2 Computational considerations

As discussed above, aina approach to calculating the Bayesian spatial scan statistic requires us
to calculate the score functidni(S) = Pr(D | H1(S))Pr(H,(S)) for each spatial regiof. Thus, if
we search over the space of all axis-aligned rectangular regionsin:anV grid, we must search
O(N*) regions. As in Chapter 3, we can search each regian(i) by preconstructing a grid of
the cumulative countsc;; = >, ;> ck, and similarly for the baselines. Then the total
count or total baseline of a region may be calculated by adding/subtrattimgsafour cumulative
counts, regardless of the size of the region. Thus the total time to seardh»arV grid G is
O(N*%), and since in the Bayesian approach we do not need to do randomizating, t#ss is the
total complexity of our algorithm.

We can speed up our search by applying the “fast spatial scan” algaoitiChapter 3, allowing
us to rapidly find the regios™ with the highest scoré’(.S). The fast spatial scan uses a top-down,
branch-and-bound search to prune regions that cannot have theshigore, thus allowing us to
find S* while searching only a small fraction of regions. A novel multiresolution datecture
known as an overlap-kd tree enables efficient search, resulting20@0x speedups on a variety of
real-world datasets.

However, two issues make it difficult to apply the fast spatial scan in the®ay framework.
First, we must ensure that the criteria of Chapter 3 hold: the score fumatishincrease with the
total count of a region, decrease with the total baseline of a regionf@ral ¢onstant ratio of count
to baseline) increase with count and baseline. It can be proven that ¢ibdidd P{D | H(S))

2In our experiments, We US®,,., = 3 andAm = 0.2.
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meets these criteria, so for the uniform region prior given above, the $aoction will also meet
these criteria, and the fast spatial scan can be used. For non-umfmr g, this may not be the
case, so we must adjust our upper bound accordingly. More prediséfye non-uniform case, we
can find an upper bound df(S’) for all regionsS’ C S by upper bounding both the likelihood
Pr(D | H;(S")) and the prior RtH(S”)). Then we can prune a set of regia$isif the upper bound
on F'(S’) is lower than the highest score found so far.

A second issue which complicates the application of the fast spatial scandnetimat, in the
Bayesian framework, calculation of posterior probabilities requires usrtgpate and divide by the
likelihood of the data RiD), which necessitates computing the sum of scores for all spatial regions
S. This makes pruning difficult, since pruned regions may add a significaotiat of probability
mass to the total. There are three possible solutions to this problem. First, wle tz8s pruning:
we can bound the maximum total contribution of a set of regi®n® the probability of the data,
and only prune these regions if their total probability is guaranteed to be stnsdicond solution
would be to assume an empirical Bayesian pridiFRK S)) that is equal to zero for any region that
is pruned, and only gives probability to unpruned regions. In the unifegion prior case, we can
set P(H(9)) = ni if region S is searched, and B, (S)) = 0 if region S is pruned, where
Nreg IS the total number of regions searched (not pruned). A third alternistiseework with the

posterior odds ratioggﬁlgj)y;) = Pr(grigﬁ());ggggs*)) instead of the posterior probabilities.

This is useful because computation of the denominat@PPis not required, and the regiosi*
with highest posterior odds ratio also has the highest posterior probablibrgover, we can easily
compute a lower bound on the posterior probability of an outbreak givepdsierior odds ratio:
for a region with a posterior odds ratio of the posterior outbreak probability is at legst.. A
tighter lower bound may be achieved by maintaining a list ofitheest regions, giving a posterior

outbreak probability of at Ieasftgzi%fffm-

5.4 Results: detection power

We evaluated the Bayesian and frequentist methods on two types of simutagchtory out-
breaks, injected into real Emergency Department and over-the-caliotesales data for Allegheny
County, Pennsylvania. All data were aggregated to the zip code levestmeeanonymity, giving
the daily counts of respiratory ED cases and sales of OTC cough andchedlidation in each of 88
zip codes for one year.

For these datasets, we are given only a cefirfor each zip codes; for each dayt, and the
baselines are not known a priori. Thus we first infer the baselihés each zip code; for each
dayt, using the mean count of the previous 28 dajs= 5 >, | .5 b *. We then use these

counts and baselines to compute the alpha and beta priors as above jgisingeeks of past data.

= _ Cau| — 1 G t t
For exampleE [¢ui] = Esampie [Baﬂ = 26 D t—to—56...t0—1 ﬁ, whereC?,;, and B}, denote the

total count and baseline respectively for dayndt, denotes the current day. Zip code centroids
were mapped to 46 x 16 grid (i.e. all counts for each zip code were mapped to the grid cell
containing the centroid of that zip code), and all rectangles Bp<® were examined.

We first considered simulated aerosol releases of inhalational anthgaxfom a bioterrorist
attack), generated by the Bayesian Aerosol Release Detector, or BARDI he BARD simulator
uses a Bayesian network model to determine the number of spores inhatetiMjuals in affected
areas, the resulting number and severity of anthrax cases, and thangesumber of respiratory
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Table 5.1: Days to detect and proportion of outbreaks detected, 1 fadgerp/month
FLOOED FLOOED FLOOED BARDED BARDED FLOOOTC FLOQOTC

method (4,14) (2,20) (1,20) (.125) (.016) (40,14) (25,20)
frequentist 1.859 3.324 6.122 1.733 3.925 3.582 5.393
(100%) (100%) (96%) (100%) (88%) (100%) (100%)
CBayesmax 1.740 2.875 5.043 1.600 3.755 5.455 7.588
(100%) (100%) (100%) (100%) (88%) (63%) (79%)
UBayesmax 1.710 2.848 4.875 1.633 3.679 5.461 7.588
(100%) (100%) (100%) (100%) (88%) (63%) (79%)
CBayestot 1.882 3.195 5.777 1.633 3.811 3.475 5.195
(100%) (100%) (100%) (100%) (88%) (100%) (100%)
UBayestot 1.847 3.184 5.516 1.633 3.811 3.475 5.195
(100%) (100%) (100%) (100%) (88%) (100%) (100%)

ED cases on each day of the outbreak in each affected zip code. €nmdst/pe of outbreak
was a simulated “Fictional Linear Onset Outbreak” (or “FLOQO"), as infi2éa4. A FLOOQ, T)
outbreak is a simple simulated outbreak with durafignvhich generatesA cases in each affected
zip code on day of the outbreak < ¢ < T/2), then generate¥'A/2 cases per day for the
remainder of the outbreak. Thus we have an outbreak where the nufrdaees ramps up linearly
and then levels off. While this is clearly a less realistic outbreak than the BgiRiDlated anthrax
attack, it does have several advantages: most importantly, it allows usdisgly control the slope
of the outbreak curve and examine how this affects our methods’ detedbiidy. a

To test detection power, a semi-synthetic testing framework similar to Chapters4used:
we first run our spatial scan statistic for each day of the last nine monthsofetér (the first
three months are used only to estimate baselines and priors), and obtairothd sdor each
day. Then for each outbreak we wish to test, we inject that outbreak intdatiae and obtain the
scoreF™(t) for each day of the outbreak. By finding the proportion of baseline days with scores
higher thanF™(t), we can determine the proportion of false positives we would have to atep
detect the outbreak on day This allows us to compute, for any given level of false positives,
what proportion of outbreaks can be detected, and the mean numbeystadetection. We
compare three methods of computing the scBte the frequentist methodF(* is the maximum
likelihood ratio F'(S) over all regionsS), the Bayesian maximum method™( is the maximum
posterior probability Rii; (S) | D) over all regionsS), and the Bayesian total metho#*(is the
sum of posterior probabilities PH1(S) | D) over all regionsS, i.e. total posterior probability of
an outbreak). For the two Bayesian methods, we consider the CBayddBays methods for
calculating priors, thus giving us a total of five methods to compare. In Eableve compare these
methods with respect to proportion of outbreaks detected and mean nufrdersato detect, at
a false positive rate of 1/month. Methods were evaluated on seven typasaubted outbreaks:
three FLOO outbreaks on ED data, two FLOO outbreaks on OTC data, andARD outbreaks
(with different amounts of anthrax release) on ED data. For each outbypa, each method’s
performance was averaged over 100 or 256 simulated outbreaks RDEBA FLOO respectively.
In Table 5.1, the best-performing methods for each dataset are showiditype; these include
the method with lowest average time to detection, as well as any method whémenaerce is not
significantly different (using a pairedtest witha. = .05).

In Table 5.1, we observe very different results for the ED and OTCsdtta For the five runs
on ED data, all four Bayesian methods consistently detected outbreaéstfzen the frequentist
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method. This difference was most evident for the more slowly growingl@rdo detect) outbreaks,
especially FLOO(1,20). Across all ED outbreaks, the Bayesian metiosgesi an mean improve-
ment of between 0.24 days (CBayies) and 0.55 days (UBayawax) as compared to the frequentist
approach; “max” methods performed substantially better than “tot” methodsUBayes” meth-
ods performed slightly better than “CBayes” methods. For the two runs @ dafa, on the other
hand, the CBayemax and UBayesnax methods performed much worse (over two days slower)
than the frequentist method. On the other hand, the CB&tesnd UBayedot methods again
outperformed the frequentist method, by an average of 0.15 days. Weeodhat the main reason
for these differing results is that the OTC data is much noisier than the EDattetaxhibits much
stronger seasonal trends. As a result, our baseline estimates (using@htieamprevious 28 days)
are reasonably accurate for ED, but for OTC the baseline estimates witkelsigd the seasonal
trends (and thus, underestimate the expected counts for increasing armhdverestimate for de-
creasing trends). The “max” methods perform badly on the OTC dataibe@alarge number of
baseline days have the total posterior probability of an outbreak closeltotiiis case, the maxi-
mum region posterior varies wildly from day to day, depending on how mutttedbtal probability
is assigned to a single region, and is not a reliable measure of whethettameakuhas occurred.
On the other hand, the total probability of an outbreak will still be (slightly) éiglor outbreak
than non-outbreak days, so the “tot” methods can perform well on O&Hhss ED data. Thus,
our main result is that the Bayesian methods CBagéeand UBayedgot, which use the total pos-
terior probability of an outbreak to decide when to sound the alarm, condysteriperform the
frequentist method for both ED and OTC datasets.

5.5 Results: computation time

As noted above, the Bayesian spatial scan must search over all néetaragions for the original
grid only, while the frequentist scan (in order to calculate statistical signdeay randomization)
must also search over all rectangular regions for a large number (lypiga= 999) of replica
grids. Thus, as long as the search time per region is comparable for tlesi8aynd frequentist
methods, we expect the Bayesian approach to be approximately 10@8x fas Table 5.2, we
compare the run times of the Bayesian and frequentist methods for sepecisingle grid and
calculating significancepfvalues or posterior probabilities for the frequentist and Bayesian method
respectively), as a function of the grid si2é. We note that the speed of the various Bayesian
methods (CBayes vs. UBayes, “tot” vs. “max”) is essentially identical, soleveot differentiate
between these in the table. All rectangles up to $iz& were searched, and for the frequentist
methodR = 999 replications were performed. The results confirm our intuition: the Bagesia
methods are 900-1200x faster than the frequentist approach, falads/of NV tested. However,
the frequentist approach can be accelerated dramatically using thespfatsal scan” algorithm
discussed in Chapter 3. Comparing the fast spatial scan to the Bayepiaaen we see that the
fast spatial scan scales better as a function of grid size: thus it is fagtetité Bayesian approach
for sufficiently large grid sizes > 256), but slower for smaller grids. Either method can search
a 256 x 256 grid, and calculate significance-yalues or posteriors respectively) in 10-12 hours,
as compared to months for the standardedrequentist) approach. Thus we now have two ways
to make the spatial scan computationally feasible for large datasets: to apfhstiepatial scan
discussed in Chapter 3, or to use the Bayesian framework presenéedrbeeven larger grid sizes,

it may be possible to extend the fast spatial scan to the Bayesian framethisrkvould give us
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Table 5.2: Comparison of run times for varying grid si¥e

method N=16 N=32 N=64 N =128 N = 256
Bayesian (neve) 0.7sec | 10.8sec| 2.8 min 44 min 12 hrs
frequentist (n&ve) | 12 min 29hrs 49 hrs | ~31days| ~500 days
frequentist (fast) | 20sec | 1.8 min | 10.7 min 77 min 10 hrs

the best of both worlds, searching only a single grid, and using a fastithign to do so. We are
currently investigating this potentially useful synthesis, and we discussabsdtyility in more detail
in Chapter 8.

5.6 Discussion

We have presented a Bayesian spatial scan statistic, and demonstrated ways in which this
method is preferable to the standard (frequentist) scan statistic appho&gction 5.4, we demon-
strated that the Bayesian method, with a relatively non-informative prioilaitittn, consistently
outperforms the frequentist method with respect to detection power. Sie&atresian framework
allows us to easily incorporate prior information about size, shape, andtirapan outbreak, it is
likely that we can achieve even better detection performance using mormatfee priors, e.g. ob-
tained from experts in the domain. In Section 5.5, we demonstrated that tiesiBaypatial scan
can be computed in much less time than thivadrequentist method, since randomization testing
is unnecessary. This allows us to search large grid sizes usiniya search algorithm, and even
larger grids might be searched by extending the fast spatial scan toyesi8aframework.

We now consider three other arguments for use of the Bayesian spatialHcst, the Bayesian
method has easily interpretable results: it outputs the posterior probabilitathatitbreak has
occurred, and the distribution of this probability over possible outbregikme. This makes it easy
for a user (e.g. public health official) to decide whether to investigate eateintial outbreak based
on the costs of false positives and false negatives; this type of decisyse cannot be done easily
in the frequentist framework. Another useful result of the Bayesian adaththat we can compute
a “map” of the posterior probabilities of an outbreak in each grid cell, by suigthia posterior
probabilities P¢H, (S) | D) of all regions containing that cell. This technique allows us to deal with
the case where the posterior probability mass is spread among many rdgiassserving cells
which are common to most or all of these regions. We give an example oasuelp in Figure 5.1.

Second, calibration of the Bayesian statistic is easier than calibration oftingsintist statistic.
As noted above, itis simple to adjust the sensitivity and specificity of the Bayawethod by setting
the prior probability of an outbrealk;, and then we can “sound the alarm” whenever posterior
probability of an outbreak exceeds some threshold. In the frequentisbtheath the other hand,
many regions in the baseline data have sufficiently high likelihood ratios thedpticas beat the
original grid; thus we cannot distinguish thevalues of outbreak and non-outbreak days. While
one alternative is to “sound the alarm” when the likelihood ratio is above sorashibld (rather
than whenp-value is below some threshold), this is technically incorrect: because Hedirizs
for each day of data are different, the distribution of region scorestig null hypothesis will
also differ from day to day, and thus days with higher likelihood ratios donegessarily have
lower p-values. Third, we argue that it is easier to combine evidence from multipdetoes within
the Bayesian framework, i.e. by modeling the joint probability distribution. Weratlee process
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Figure 5.1: Output of Bayesian spatial scan on baseline
OTC data, 1/30/05. Cell shading is based on posterior prob-
ability of an outbreak in that cell, ranging from white (0%) to
black (100%). The bold rectangle represents the most likely
region (posterior probability 12.27%) and the darkest cell is
the most likely cell (total posterior probability 86.57%). To-
tal posterior probability of an outbreak is 86.61%.

of examining Bayesian detectors which look simultaneously at the day’s Emardepartment
records and over-the-counter drug sales in order to detect emelgstgrs, and we believe that
combination of detectors is an important area for future research. Wesdiskis “multivariate

Bayesian scan statistic” in more detail in the following section.

In conclusion, we note that, though both Bayesian modeling [28, 105]feagLiEntist) spatial
scanning [88, 78] are common in the spatial statistics literature, this is (to thefo@sr knowl-
edge) the first model which combines the two techniques into a single frakelndact, very little
work exists on Bayesian methods for spatial cluster detection. One notaigptien is the litera-
ture on spatial cluster modeling [51, 94], which attempts to infer the locatiofusfer centers by
inferring parameters of a Bayesian process model. Our work diffens these methods both in its
computational tractability (their models typically have no closed form solutionpatputationally
expensive MCMC approximations are used) and its easy interpretabiliggolts. Thus we believe
that this is the first Bayesian spatial cluster detection method which is pdwadwseful, yet com-
putationally tractable. We are currently running the Bayesian and frégtiecan statistics on daily
OTC sales data from over 20,000 stores, searching for emerging @isetiseaks on a daily basis
nationwide. Additionally, we are working to extend the Bayesian statistic to fi¥h, with the
goal of discovering regions of brain activity corresponding to givegnitive tasks [156, 163, 118].
We believe that the Bayesian approach has the potential to improve bothaspdetection power
of the spatial scan in this domain as well.

5.7 The multivariate Bayesian scan statistic

We are currently working on a Bayesian multivariate cluster detection approhe “multivariate
Bayesian scan statistic” (MBSS). The primary goal of this work is to combingptaudata sources
in a realistic statistical framework, in order to increase detection power agidttoguish between
potential causes of a detected cluster.

Let us consider an example where we are monitoring three streams of datathe-counter
sales of cough medication, over-the-counter sales of nasal detanigesand respiratory emer-
gency department visits. A standard spatial scan approach wouldmpeafeeparate statistical test
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ED visits ED visits OTC sales OTC sales
(fever) (respiratory) {nasal) (cough) "

Multivariate Bayesian
Spatial Scan

)

No Anthrax Influenza
outbreak outbreak outbreak
in region S in region S

Figure 5.2: A pictorial diagram of the multivariate Bayesian scan statistieyiglganultiple input
streams and multiple types of outbreak.

for each of these data streams; this has the disadvantages of multiple tegtiegi¢e number of
false positives is proportional to number of data streams) as well as makdif§dult to inter-
pret any positive results. Our proposed approach instead simultaneoositors all of the data
streams, computing the joint probability of all observed data under normmalittans and in the
presence of various types of spatially localized outbreak. This givérscusased power to detect
outbreaks that affect multiple data streams: for example, an outbreak wéngzfi-like illness is
likely to increase the counts for all three streams (as well as other streamastever emergency
department visits and over-the-counter thermometer sales). Thus by simuls§nmonitoring all
of these streams, we can detect an outbreak with proportionally smaller impaiceé counts for
each individual stream, thus allowing detection closer to the onset of theesdisAdditionally, this
simultaneous monitoring allows us to distinguish between different potentiaksaaf a detected
cluster of disease cases. For example, we would expect an outbriedlalattional anthrax to affect
those streams monitoring cough and fever symptoms, but not to have a majat ompsales of
nasal decongestants, while influenza would lead to significant increeakshree symptom types.

In the MBSS framework, we are given a set of outbreak types {Oy}, k =1... K, and a
set of data streamfgi,,, }, m = 1... M. An example of such a model, with multiple outbreak types
and multiple data streams, is given in Figure 5.2. The outbreak types may lrespitiadic illnesses
(influenza, anthrax, etc.) or non-specific syndromes (e.g. flu-like §lneBhe data streams may
include sources such as ED visits (with each stream representing axlifthief complaint, e.g. res-
piratory) and OTC drug sales (with each stream representing a diffiereduct group, e.g. nasal
decongestants). We are also given a set of spatial regidossearch, where each consists of a
different set of spatial locations. Finally, we are given the datasbt= {c},,}, where each
is the count in spatial locatios; at timet for data streami,,. Our goal, then, is to compute the
posterior probability RitH (S, O) | D) that each outbreak type has affected each spatial region,
given the multivariate datasél.
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Applying Bayes’ Theorem, we obtain:

Pl’(D | Hl(S, Ok))Pr(Hl(S, Ok) ’ Ok)PI’(Ok)

PI(H1(S, 04) | D) = 51 D)

PF(D | H())PF(H())

Pr(HO ‘ D) = Pr(D)

In this equation, Rif)) is the prior probability of the null hypothesis (no outbreaks) an@gy is
the prior probability that outbreak typge, has occurred. To simplify our calculations, we assume
here that all outbreak types are mutually exclusive, and thUSr- >, Pr(Oy,) = 1; multiple si-
multaneous outbreaks can be dealt with as separate hypotheses. GdaljiyoPr( H; (S, Oy) | O)

is the prior probability that outbreak tyge, will affect a given spatial regios. This distribution
can be different for different outbreak types: for instance, thetioe®f outbreaks of cryptosporid-
iosis or other water-borne illnesses can be predicted based on watidudiistr information; and
we would expect a highly contagious disease such as avian influenZacbaafarger spatial area
than a wind-dispersed outbreak of inhalational anthrax. Again, wevesthat an outbreak affects
exactly one spatial region, so we have, Pr(H,(S, Oy) | Ox) = 1. The most challenging part of
our method is to compute the probability of the data (i.e. joint probability of all degarss) given
each possible combination of outbreak and region, as well as the probabilitg data under the
null hypothesis of no outbreaks. We discuss this part of the method in neteg blelow. Finally,
the normalizing factor RiD) can be computed by summing the productdPr H)Pr(H) for each
hypothesisH.

To compute the probability of the data given the null hypothégjsor an alternative hypoth-
esisH; (S, Oy), we can use a Gamma-Poisson model as in the univariate Bayesian scaic statis
discussed above. We assume that each cgynhas been drawn from a Poisson distribution with
meang; b ., whereb!  is the “baseline” (or expected count) of streamin spatial locations;
at timet, andg; ,,, is the “relative risk.” Each baseline can be inferred from the time serigasf
counts for the given stream and given spatial location, using one of theséries analysis methods
given in Chapter 4. These inferences can either be performed indiepyy or we can take into
account the correlation between streams in the same or nearby locatiates. ndnmal conditions,
the relative rislql{m is drawn from the Gamma prior distribution for that stream, Gaiamag,.,),
which is learned from the time series of past counts as above.

On the other hand, if an outbreak is present, the relative risks within thetedf area will be
drawn from a different Gamma prior with higher mean value. Each outbreekwyll affect dif-
ferent data streams to different degrees, and some data streams mayaffectted. The parameter
prior distributions for each outbreak type can either be learned frontabig outbreak data, or
estimated based on expert knowledge of that outbreak. Because gatenjuior is used, we can
derive a closed form solution for the marginal likelihood of the data undeh éypothesis, effi-
ciently computable as a function of the aggregate counts, aggregate basatid parameter priors,
as above. We can then combine these likelihoods with the prior probabilitieden tor obtain the
posterior probability of each hypothesis.

As discussed in the following chapter, a number of other methods havepbeeosed in the
biosurveillance literature for combining multiple data streams. However, thes®mdsegenerally
do not take spatial information into account, and do not allow discriminationdsetiwultiple types
of outbreak. One exception is the work of Cooper et al. on PANDA [&8]ch models both anthrax
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and influenza, and uses emergency department records and owewutiter medication sales to
distinguish between these two types of outbreak. Our MBSS work diffenrs PANDA because it
focuses on detecting spatial clusters of disease from aggregated e ANDA uses a Bayesian
network representation and person-specific models but does notitxglimisider spatial data.



Chapter 6

Application to disease surveillance

6.1 Introduction

Epidemiologists have been analyzing biosurveillance data spatially sincentiea$@ork of John
Snow on the disease cholera [141]. During an 1854 epidemic of cholénithon, Snow discov-
ered spatial clustering of cholera deaths around a single water pumpefdbsed him to discover
that cholera is caused by contaminated water, and to halt the epidemic bygdlusicontaminated
pump. Since Snow’s work, spatial statistical methods have come to play aasmagly large role in
disease surveillance [44, 91]. In particular, spatial scan statistichfi@] become a well-used and
thriving analytic method, owing in large part to the popularity of Martin Kullfler6aTScan soft-
ware [87] in the public health community. Scan statistics have also been imategaonto several
other experimental biosurveillance systems such as RODS [145], ESSIEN; BioSense [99],
and many others [66, 167].

In this chapter, | will discuss the spatial disease surveillance task in mtai, ded describe
our new SSS (Spatial Scan Statistics) surveillance system. The SSS sysdateweloped by my-
self and colleagues at the Auton Laboratory (Carnegie Mellon Universitg RODS Laboratory
(University of Pittsburgh), and is based on the new spatial cluster deteniéthods presented in
this dissertation. This system enables us to monitor nationwide public healtredatarhergency
department visits and over-the-counter drug sales) on a daily basishisepfor emerging out-
breaks of disease. Every day, SSS receives data from over 2€@@8 and hospitals nationwide,
uses our automatic cluster detection methods to find potential outbreaksadalisad makes these
results available to public health officials through a web-based graphieafaoce. We currently
have several public health departments using our software to help theoh elgitlemics, and their
feedback has been valuable for the iterative development of our sgstéitine underlying models
and methods. | am also working to integrate our cluster detection methods wétakether sys-
tems for large-scale disease surveillance, in order to address notpatigl surveillance but other
aspects of the disease surveillance task.

Before presenting the SSS system in Section 6.4 of this chapter, | will diftoeisole of spatial
disease surveillance in early detection of disease outbreaks. Sectiois@&i8s@s the importance
of early detection and the need for spatial and syndromic surveillandeSection 6.3 discusses
the many challenges inherent in the spatial surveillance task. Sectionsd6@6apresent results
of the deployed SSS system. Section 6.5 discusses our experienceg rimensystem for daily
prospective surveillance, and presents some of the most interesting<ldistected. Section 6.6
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is a detailed case study based on retrospective analysis of the Walkastnoigtestinal outbreak.
Finally, Section 6.7 presents a general overview of the biosurveillancatliter, focusing primarily
on spatial methods.

While many members of the Auton Laboratory and RODS Laboratory playedfisant roles
in the development of the SSS system, | would most like to thank Maheshkurnlan&a for his
efforts in implementing the system and developing the user interface. Addiyidreem grateful to
Michael Wagner and the RODS Laboratory for their efforts in data colleaitd for making this
data available to us. The description of the SSS system presented héechasdapted from our
papers in ADKDD 2005 [131] and the 2005 National Syndromic Surveila@onference [132].
| wish to thank my co-authors Maheshkumar Sabhnani, Andrew MoorehadédicWagner, Rich
Tsui, and Jeremy Espino for their contributions to these papers. Alsts, @iathis chapter have
been adapted from our chapter in tHandbook of Biosurveillancgl15]; | wish to thank my co-
author Andrew Moore and editor Michael Wagner for their contributidrigally, analysis of the
Walkerton outbreak was performed in collaboration with Rick Davies and@#ES collaborators;
the discussion here has been adapted from our paper in the 2005 N&odaomic Surveillance
Conference [32] and our paper [33].

6.2 Importance of spatial surveillance for early outbreak detection

Early detection of disease outbreaks is important for several reaBosts.we must deal with the
very real, and scary, possibility of a bioterrorist attack— an intentiohahse of a deadly pathogen
such as anthrax, smallpox, or bubonic plague. In 2001, letters contanthgax spores were sent
to various senate and media offices, causing five deaths. The World Krghinization (WHO)
estimates that a large quantity (e.g. 100 kg) of aerosolized anthrax,eéleasr a major city such
as Washington, D.C., could Kill between 1 million and 3 million people, and hospitalitiens
more. A potentially even greater threat is that posed by emerging infectigeeses such as Severe
Acute Respiratory Syndrome (SARS) or avian influenza. WHO has statédatian influenza
could lead to a global human pandemic, resulting in between 2 million and 7 million fatalitie
This is widely considered to be a conservative estimate, and other estimetgsutzhe number of
potential fatalities as high as 150 million. A third reason for early detection istthatbles better
epidemiological responses to many commonly occurring outbreaks (ssefasenal influenza and
gastrointestinal outbreaks) which kill or hospitalize many thousands gi@ewery year. Finally,
we can detect and respond to patterns of symptoms due to other facidisasenvironmental
pollution, which may not be directly caused by pathogens.

We focus here on the case of a bioterrorist anthrax attack, and comsigieearly detection is
important. Inhalational anthrax is a highly virulent disease: left untredtbas approximately a
95% chance of being fatal within 2-3 weeks. However, anthrax is a bieatiisease, and the ear-
lier an affected patient is treated (e.g. with ciprofloxacin or other powarttibiotics), the greater
the chance of survival. Meselson et al. [102] estimate that there is a éwirod opportunity” of
approximately four days within which it is possible to mitigate the effects of anlattRatients
treated within the incubation period (the first 3-4 days, before any sympmcewesent) have only
a 1% chance of mortality, while the mortality rate climbs to 45% or higher once thapbdeomes
symptomatic. Early detection of an anthrax outbreak can lead to earlier treatmoém for indi-
viduals with early-stage symptoms, and also for those individuals who amently asymptomatic
but are likely to have been affected. One estimate, from DARPA, is that-@&ydmprovement in
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detection time over our current capabilities could reduce fatalities by a fatsix. Additionally,
as Wagner et al. [149] note, improvements of even an hour over orgntwutbreak detection ca-
pabilities could reduce the economic impact of a bioterrorist anthrax attalelrtyreds of millions
of dollars. Thus early detection of anthrax could dramatically reduce tsieoddhe outbreak to
society, both in money and in lives. For contagious diseases such as@ARian influenza, early
detection and response could also dramatically reduce the spread stdisshicing the number of
individuals affected and possibly preventing a full-scale outbreaklliziearly detection of bioter-
rorist attacks might have wide-ranging national security benefits, inajudipture of terrorists and
prevention of further attacks.

While early detection of outbreaks is important, it is also difficult to achieve.mibst common
mode of detection (waiting for some astute physician to notice the outbrealepod it to public
health) is often very slow, because the early-stage symptoms of manyssdismases are non-
specific. For example, the early symptoms of anthrax are flu-like, includingtcand fever. Thus
a physician is unlikely to be able to distinguish anthrax from influenza wittesutlts of tests such
as a chest X-ray, and the physician is unlikely to call for such tests uhniessispicion has already
been aroused. If the physician noticed a large increase in the numbatierfits reporting some
set of symptoms, this might arouse suspicion, but since each individysicpdn or hospital only
sees a small subset of the affected population, this indication of the outimighk come too late
to be useful. As a result, we could see over a week of lag time between theairs/mptoms
from anthrax exposure and a definitive diagnosis of anthrax. On tlee loéimd, individuals affected
by the anthrax outbreak might display a number of early-stage behaviock ywhen viewed in
the aggregate, might be indicative of an outbreak. For example, aneaffexividual might buy
over-the-counter drugs, including cough/cold and fever medicati@siight be absent from work
or school, and might visit a doctor, clinic, hospital, or emergency depattniea large number
of individuals were affected in the same locale, we would observe irese@asggregate quantities
such as the number of over-the-counter drugs sold or hospital visiis) these increases, we could
infer that an outbreak was occurring, as well as pinpointing the affeetgdn. Additionally, based
on the population and region affected, and the symptom types indicateddmyitizeeases, we could
infer a probability distribution over possible causes of the outbreak. By immgading a surveillance
system to perform these tasks rapidly and automatically, we can recelyeveanings of potential
outbreaks with little or no human effort.

Thus one main argument of this dissertation is that we can achieve verydegebtion of out-
breaks by gathering syndromic (or symptom) data, and automatically identéyiregging spatial
clusters of symptoms. In collaboration with the RODS Laboratory at the hiiyeof Pittsburgh,
we are currently gathering daily, nationwide health data including emerglpartment visits and
over-the-counter drug sales; we can then apply the automatic clustetialet®ethods discussed
above to identify clusters that are indicative of emerging outbreaks. Bus fon the tasks of detect-
ing outbreaks and pinpointing their locations; the task of differentiating etwéferent types of
outbreak is more difficult, but in Chapter 5, we presented some initial stepsiditaction based
on the multivariate Bayesian scan statistic (MBSS).

6.3 Challenges of spatial disease surveillance

While spatial disease surveillance has great potential as an analyticaldretlearly detection of
outbreaks, we must deal with many challenges to make these methods oseéalfworld data.
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In particular, we focus here on the monitoring of emergency departméntglad over-the-counter
drug sales (OTC) data. We consider many potential phenomena in thessrdatas which may
cause either false positives (detection of clusters which are not epidgicallg relevant) or false
negatives (failure to detect a true outbreak), and potential means ligl@dth each of these
phenomena. Some of these solutions have been built into our current impéeimeof the SSS
system, as discussed in the following section, while others have beenedigferfuture versions of
the system. We note that this discussion focuses only on the statistical antinpatiallenges of
applying our methods in the real world; a separate challenge is the compatgtioblem of scaling
our methods to massive nationwide datasets containing millions of records.uCiiapal issues,
and our approach to developing scalable and computationally efficienérchistection methods,
are discussed in detail in Chapter 3.

We can roughly divide the challenges of spatial disease surveillance m&® ¢inoups: chal-
lenges related to data acquisition, challenges related to modeling “normalineadata (including
all of the phenomena which may cause clusters but are not epidemiologiegiasamt), and chal-
lenges related to modeling outbreaks (and other “relevant” clusters). istfasd each of these
challenges in detail in the following subsections.

6.3.1 Challenges of data acquisition

Itis clear that even sophisticated models and methods will fail if the data mischot sufficiently
complete or reliable. As an extreme example, we will be completely unable to detecitbreak
if its effects are not present in the monitored data, either because we Haveany data for that
region of the country, or because we are not monitoring the affectecsttatams. Our colleagues
at the RODS Laboratory are working hard to increase the proportioreafdtintry covered by our
data feeds; we currently have high coverage on the East and Wests@oé& lower coverage in the
center of the United States.

Data irregularities are another serious problem, as many of these iriggaleause significant
anomalies in the data which would be picked out by any anomaly detection aigsritiregularities
in the OTC data were a major source of false positives in our early use 88Besystem, but have
been reduced significantly by improvements to the National Retail Data MoRitawever, many
irregularities are still present in the ED data we receive.

A third, and typically less serious, problem is that of missing data. Data aréngiafen a
store fails to report the current day’'s OTC sales, or when a hospitatdareport the current day’s
ED visits. We have developed methods to impute the values of missing countsempionentially
weighted linear regression or other methods of time series analysis to infexpleeted counts
under the assumption that no outbreak is occurring. Based on this catserssumption, our
power to detect an outbreak is reduced if many of the corresponding@dataissing, but we are
unlikely to encounter any false positives due to missing data. Our methodsdting with missing
data are discussed in Chapter 4.

As a final example of the challenges of obtaining the right data, we note #nabther of our
methods can be reduced due to disparities between the set of “clustess&wearching and the
population which was actually affected by the outbreak. For exampletsegrover only compact
regions might cause us to miss elongated clusters, or searching overarse eoresolution might
cause us to miss very small (but epidemiologically relevant) clusters. Asarmthmple, if home
zip codes are the only data in an emergency department’s records, tiatacnon a downtown
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office location might not appear as a spatial cluster. It is possible thab@gie use of commuting
statistics [24, 40] can help in this case. Finally, if an outbreak only affeméssegment of the
population (e.g. children), our power to detect is reduced if we do rgmeat the population
appropriately.

6.3.2 Modeling baseline data

A second set of challenges is posed by modeling “baseline data,” i.e. th&ibeof the monitored
ED and OTC data streams when no outbreaks are occurring. In ouresgudyiences of apply-
ing cluster detection to over-the-counter pharmacy data, it was immediatelytickgasimplistic
assumptions in the underlying model can lead to false alarms: there are ntaxjsease-related
reasons for clusters of over-the-counter medication purchasesuo @ a result, we must con-
sider the many ways in which the real data does not correspond to oull agsienptions, and
either adjust the model or clean the data accordingly.

For example, day-of-week and seasonal trends must be incorpamédeslir time series anal-
ysis methods in order to obtain accurate baseline estimates of expected d¢bthdse trends are
not accurately predicted, we will have increased likelihood of false pesitivhen baselines are
underestimated, and increased likelihood of false negatives when lessatia overestimated. A
major difficulty relates to the fact that we are using inferred baseline vaupsrform anomaly
detection, while our simplistic model treats these values as known rather tiearethfAs a result,
our anomaly detection methods will pick out not only real anomalies, but asiorns where the
baseline values have been underestimated. One way of dealing with thismrislto use conser-
vative baseline values (e.g. intentionally overestimate baselines by some )nkayiexample, we
could use the maximum (rather than mean) counts in historical data, or weaddikbme number
of standard deviations to the inferred mean. A second approach wotdise the unbiased base-
line values, but to “dial down” the sensitivity of the method by only reportirgyrtiost significant
(highest scoring) clusters, and recalibrating their statistical significhased on the historical dis-
tribution of maximum scores. A third approach would be to account for tira @&riance resulting
from the inferred baselines (for example, using a t-distributed scan stagigtar than a Poisson or
Normal), but this results in a more complicated statistic that is harder to efficiemtipuate.

More generally, our current statistics are likely to have an increased ffalsitive rate due to
many sources of model misspecification. Iterative improvements to the uimgemipdel can reduce
false positives due to many of these sources. For example, our coroglgls assume a spatially
uniform relative risk under the null hypothesis: this means that any spatiation in risk should be
reflected in the underlying baselines. An alternative would be to allow sorreiga in risk under
the null to account for unmodeled, spatially-varying effects. Additionally, current models do
not account for spatial and temporal correlations, though the RATf®&gagtion method discussed in
Chapter 4 is one way to deal with spatially correlated data. Using time serigsiamaethods such
as ARIMA would be one way to deal with temporal autocorrelation. Finally,typéal Poisson
model does not account for overdispersed data, though our Gawsssia statistic model (derived
in Chapter 2) can account for overdispersion. In practice, we fintddf& data (but not ED data)
is highly overdispersed, requiring the use of a method that can acamumtdrdispersion.

Finally, we consider some of the many phenomena which may cause clustddsandeEOTC
data but are not epidemiologically relevant. One such phenomenon is proaictedes of over-
the-counter medications: in this case, a store or chain sells large numbengsofiot because
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people are sick, but because the medications are on sale. Our dataeedyg promoted versus
non-promoted sales, so we can either filter out clusters due to promotioaeplaitly model the
effects of a promotion on the counts of affected stores. A related phetmomerhich accounted
for many false positives in early runs of our SSS system, was large spikes sales of individual
stores. These spikes could have been due to promotions, to bulk pesdhaa single buyer (e.g. a
chain of hotels), or to inventory movements. One way of dealing with thesespikuld be to
count the number of transactions rather than the number of units sold,idinfdrmation is not
currently available to us. Instead we consider two possible methods of glegtim single-store
spikes: filtering out regions with increases resulting from a single stok eaplicitly modeling
single-store spikes. We discuss the filtering of single store increaset {titter”) in the following
section, and the use of a Bernoulli-Poisson store model in Chapter 2.

Other epidemiologically irrelevant clusters may be caused by unmodeledatega many of
these false positives can be avoided by directly including the appropoateiate as part of our
model. A simpler, though less accurate, alternative is to filter out clustersingsrom these factors
as a post-processing step. Examples of such covariates include holigaigsilly counts drop
during a major holiday, but are increased before and after the holigagip-demographic effects
(in certain areas, sales may exhibit trends corresponding to sociaitg@tiecks or other monthly
income sources), and weather (cough and cold sales are increasad tyeather; also, people tend
to stock up on medications before and after severe weather). Anothesiiig effect, discussed in
more detail in Section 6.5, is increased counts due to temporary movemengutHtm: this could
include populations displaced by severe weather (e.g. the devastatiommoONeans caused by
Hurricane Katrina) or temporary population increases in popular towestriations. These effects
could be dealt with directly if the populations were known, or indirectly bymmadizing counts
using sales of a baseline product such as soda or bottled water. Finally,cdusters of symptoms
may correspond to already-known causes, whether known outb(eaksseasonal influenza) or
environmental causes (e.g. wildfires in California). We want to be able tehegbected counts
resulting from known causes in order to detect other outbreaks whectiraultaneously occurring.
For example, we should be able to detect an anthrax attack even if it takesiplkaregion already
affected by seasonal influenza. The use of the multivariate Bayesi@8 @ylapproach should help
us to model known outbreaks and distinguish these from other relevateidu

6.3.3 Challenges of modeling outbreaks and other relevantusters

A third set of challenges is posed by modeling of outbreaks and othewvardleclusters. We are
typically not focused on detecting a specific type of outbreak, but insteadant to be able to
detect any outbreak including those of previous unknown diseases. résult, we focus on the
modeling of “baseline” data as discussed above, and want to detecigamifjcant increases in
counts as compared to the baseline. Our use of spatial scan statistics deesoma assumptions
about the clusters we want to detect: most importantly, that they are spatiadlyzést (i.e. we
want to detect a spatial region of increased counts). Epidemics thatydisplapatial clustering
will not be detected by spatial surveillance. Additional assumptions may be atthe individual
statistics being used: for example, our persistent cluster statistic assuarestant relative risk over
the course of an outbreak, while the emerging cluster statistic assumes a mcaibtancreasing
relative risk. Both methods assume that the relative risk due to an outbreplttially uniform
in the affected region, but other statistics can be derived to allow spatiajlingarelative risk. In
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addition to these “general” detectors which find any significant deviations the background data,
we could also derive models for specific outbreak types that we arestedri@ detecting (e.g. avian
influenza, anthrax). More accurate models of individual outbreakstgpeld be included within
the multivariate Bayesian scan statistic approach, giving us higher povasteat these specific
outbreaks without reducing our power to detect more general outbagtdens.

All of these factors present new and challenging opportunities for baibeleling of ED and
OTC data, and continued iterative improvements of our models and methods wihiengur ability
to differentiate real outbreaks from false positives. We note that evenwrent, simple methods
(implemented within the SSS system discussed in Section 6.4) are able to presfdenformation
and to distinguish real outbreaks from false positives. This ability is detraded in our discussion
of prospective surveillance using the SSS system (Section 6.5) andtmspective analysis of the
Walkerton gastroenteritis outbreak (Section 6.6).

6.4 Description of the SSS system for spatial disease surveillance

In this section, we present Spatial Scan Statistics (SSS), a new systepaf@l disease surveil-
lance. The SSS system was created in collaboration with Maheshkumare®albhndrew Moore,
Michael Wagner, Rich Tsui, and Jeremy Espino [131, 132], and implemeantyg of the cluster de-
tection methods discussed in this thesis. The SSS software is available fdodadvirom the Auton
Laboratory website (www.autonlab.org), and the RODS Laboratory iteefseds.health.pitt.edu).

Our current implementation of the SSS system monitors sales of over-théec¢OTC) med-
ications from over 20,000 stores throughout the nation. We can also issgyitem to monitor
Emergency Department (ED) visits from thousands of hospitals nationtkigiegh at this point our
ED data feeds are not quite as reliable. Thus our current implementatiesefon using the OTC
sales for automatic detection of outbreaks, and ED data is used as aascamarce to investigate
potential outbreaks. Monitoring is performed on a daily basis (currently evithday of lag time
from the date of sale), enabling us to rapidly detect emerging clusterseafsdis We are currently
working to reduce the lag time, as well as to improve the quality of the ED dataveeceéWhile
our eventual goal is to simultaneously monitor and combine information from muittéestreams
using the multivariate Bayesian scan statistic (MBSS) approach, oumtgystem instead relies
on the frequentist, expectation-based scan statistics discussed in Chapsarg the fast spatial
scan algorithm of Chapter 3 to speed up our search as necessary.

The main purpose of our SSS system is to provide a tool for the automatitidetgfcemerging
disease outbreaks. By providing intelligent algorithms to detect outbreaksnmely manner, we
hope to reduce the human and economic costs of outbreaks, whether auxoterrorist attack
or a naturally occurring epidemic. A second purpose of our SSS systémndiesmonstrate that
the general cluster detection techniques discussed in this thesis caredulgieperformance not
only on simulated data but on real public health data. In order to deteaildes$ters in real-
world data, we must cope with the many factors that make OTC and ED dataultlifianodel,
including seasonal and day-of-week trends, missing data, and degssizch as weather, holidays,
and promotional sales. Some of these modeling issues are incorporatedeirtiortbnt system,
while others have been deferred to future versions of SSS.

Another challenge of building the SSS system results from the generalityr afetection task.
Our goal is to present public health users with all of the “interesting” clastsulting from any
phenomena of which they should be made aware, but to suppress anietasting” clusters that
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are not epidemiologically relevant. Thus we typically do not have any speunidel of what an
outbreak looks like, and we also may not have models of the many “uninteyéptienomena
which may result in false positives. While we have enumerated (and coegigessible solutions)
for many of these phenomena in the previous section, this list is unlikely toHaistive, and more
phenomena are likely to arise when incorporating other data sources miwooigls. One possible
solution is provided by the multivariate Bayesian (MBSS) approach, in whigltan specify a
separate, scenario-based model for each outbreak type and foupsxteresting phenomenon,
then combine these into a single model which enables us to differentiate bate®sting and
uninteresting clusters. Nevertheless, construction of all of these modigtglisto be a time-
consuming task requiring large amounts of expert knowledge, and it enesly unlikely that even
an expert will be able to identify and develop all the necessary modelsdeoatch. Our eventual
goal is to learn these models automatically from user feedback, but this xsramely challenging
learning task. A more immediate goal is to provide a tool that not only showsetieetdd clusters
to the expert users, but also allows them to investigate and provide fdedbdhese clusters. This
feedback loop can then be used for iterative refinement of our moddisnathods, leading to
continual improvement of our detection and investigation tools and providihgble insights into
the complex process of disease outbreak detection.

Our system searches for spatio-temporal patterns in the over-théecaling sales from phar-
macies, groceries, and other stores throughout the United States. 8imensearch region (which
can be a city, county, state, or even the entire country), the algorithrmiss this search region to
a uniform, rectangulalV x N grid. It then searches over all axis-aligned rectangular regions on the
grid, in order to find regions that have shown a recent anomalous secheaales. As discussed in
Chapter 4, our algorithm has two parts, first inferring the expecteeljba$ sales for each grid cell
and then detecting regions that show high deviation in sales from the estinzsgtelihbs. These
detected regions are labeled as alerts— clusters of increased OTC salemyhindicate disease
outbreaks. We use several variants of the expectation-based staticstar emerging clusters,
including different temporal windows siz&g and different methods of time series analysis; more
details of these methods are given in Chapter 4. Given our limited ability to dighnglusters
caused by outbreaks from clusters with other causes, we presariededderts to public health of-
ficials only after they have been filtered by some simple rules to remove unisiyeresmomalies.
We can then incorporate the public health feedback to improve the perfoenasdour system.

6.4.1 System overview

In Figure 6.1, we present an overview of our SSS system for prigpelisease surveillance. This
system can be divided into three major components: input (automatically igathetionwide
hospital and pharmacy data), analysis (performing automatic cluster datectithe input data
streams), and output (making the detected clusters available for investiggatioiblic health users).
We now consider each component of this system in more detail.

Input to the SSS system is provided by the National Retail Data Monitor (NREO&Veloped
and operated by the RODS Laboratory at the University of Pittsburgle NIRDM, described
in detail in [148, 150], receives daily OTC data from the national andl leeadors. This data
consists of daily store level sales of 9000 OTC products used for thetsymafic treatment of
infectious diseases. The NRDM groups individual product sales intgrd@os of similar products
(e.g. baby/child electrolytes, cough/cold, thermometers, stomach remediésternal analgesics).
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Figure 6.1: Overview of the SSS system.
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Figure 6.2: Examples of a) day-of-week and b) seasonal trends irtteereounter sales data.

We receive data from the NRDM (from over 20,000 stores nationwide) daily basis, with a one-
day delay from the date of sale. Each record includes the store ID, isspanding zip code, date
of sale, and units sold for a particular syndrome. In addition to receiviagtinrent day’s counts
(number of units sold in each product group) for each store, we alsonobnd process the past
three months of data (around 5.5 million records) to estimate the baseline (i.eenafigales we
would expect to see) for each store. For space-time statistics with a langeoria window, we
also use the counts and baselines for up to seven days prior to thetclayen

As discussed in the previous section, there are various challenges wWittatésy the store
baseline sales. First, there are strong seasonal and weekly trend©inGhaata. Figure 6.2 shows
a sample weekly trend in pediatric electrolyte sales. Sales on a typical MandJuesday tend
to be higher than on Friday and Saturday. The weekly trend exhibits spatiation, depending
on many unmodeled factors such as region of the country, urban drcamanunity, etc. Figure
6.2 also shows a sample seasonal trend in cough and cold medication sedegyerdaily sales in
the month of March were approximately 5000 units higher than in April. We h#senoticed a
sudden rise in sales for days following a national holiday. We addrese#s®nal and day-of-week
trends by incorporating them into the baseline time series analysis. Missingrdatdes another
challenge: the current data storage schema does not differentiateshatigsing data (i.e. stores
that have not reported sales for a specific date by the time of analysigeamdounts (i.e. stores
that sold zero units on that date). To deal with this limitation, we assume thatréatassing only
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if a store reports no sales for all product categories. If a store hrascepeints for some product
categories and non-zero counts for others, the zero counts amexssa result from zero sales
rather than from missing data. We infer all missing data points from the time sdéroegints for
that location, using the exponentially weighted linear regression techniggmilded in Chapter
4. Once the time series has no missing data, any reasonable univariate ieseatgorithm that
accounts for day-of-week and seasonal trends can be applied totestenant baseline sales; see
Chapter 4 for more details.

After we receive and pre-process the past three months of natioi@t@tg, we define multiple
search regions with differing resolution: in addition to performing a scahegntire country, we
also perform scans in individual states or counties. This providesrseaits specifically tailored
to interested state and local health departments; additionally, scanning olfglemmesolutions
ensures that we detect large-scale anomalies as well as clusters tmatrargpatially localized but
still epidemiologically relevant. As noted above, the search region is mapecetdangular two-
dimensional grid of sizeéV x N. We need to know the store locations in order to map them onto
the grid cells; however, due to data privacy concerns, we do notdwass to the exact longitude
and latitude of each store. Instead, we are given the zip code contairihgtae, and use the
longitude and latitude of the zip code centroid to populate the grid cells.

The search algorithm then scores every possible axis-aligned relgaregion using the recent
baselines (expected counts) and observed counts in the region. Bas#lies can be aggregated
either for individual stores (the “building-aggregated time series” methoBA®S) for individual
grid cells (the “cell-aggregated time series” method, or CATS), or on-th&flan entire search
region (the “region-aggregated time series” method, or RATS). Additiaraisariety of methods
are used for time-series analysis. Details on the aggregation techniqli¢isnanseries analysis
methods are given in Chapter 4. We also perform significance testing endheof each region by
randomization. This helps us remove anomalous regions that could be exiéaileing generated
by chance. Thé-best regions (i.e. those significant regions with the highest scorésharefore
the lowestp-values) are reported as possible disease outbreaks.

Once we have this set of potential outbreak regions, we perform two spagleprocessing
steps (“filters”) to remove regions due to uninteresting phenomena. We ing@alymany false
positives resulting from “single store” anomalies: individual stores withdapikes in sales on a
given day. Two possible explanations for these single store anomalieslkigurchases by a single
buyer (e.g. restocking by a hotel, clinic, etc.) or promotional sales. We=asied this issue by only
reporting those regions that have shown increased counts due to multiele $toother words, we
filter out a region if removing any single store from that region would cdtssgcore to become
insignificant. This “location filter” (L-filter) is a simple, conservative methddlealing with un-
modeled single-store phenomena. Other possible solutions would be to WBertimailli-Poisson
model described in Chapter 2, or to produce detailed models of each walisohgle-store phe-
nomenon. Second, we also saw many false positives due to slight incie@seints corresponding
to a large spatial region. Any increase in disease rate, no matter how sntalnée statistically
significant if it corresponds to a large enough underlying populationaseline; however, most
public health officials are only interested in substantial increases in disa@seso these slightly
increased rates can be thought of as statistically, but not epidemiologgigtyficant. These in-
creases could result from model misspecification, unmodeled covarmatesderestimates of the
baseline for the given region. In order to make a simple adjustment formtehtially unmodeled
fluctuations in day-to-day counts, we also apply a conservative “tbiédgitter” (T-filter), which
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Figure 6.3: Screen shot of the SSS viewer application, investigating atiabtdert in Indiana.
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Figure 6.4: Screen shot of a user web page for SSS.

assumes that the baselines were underestimated by some specified angourit-16%). If both
the “single-store” adjusted score and the “threshold” adjusted scerstifirsignificant, we report
the region as a potential outbreak.

Once we have established the set of alerts to report, we must make thesexraddable for
investigation by the public health users. User testing for early versiongrafystem revealed that
it was insufficient to present users with detected clusters without prayidiols for investigation
of these clusters. Thus we developed a web-based graphical ietarféch enables users to inves-
tigate, manage, and provide feedback on alerts. More precisely, otfaggeonsists of two parts.
First, we developed the SSS viewer tool, which allows users to investigaterabyabrowsing the
data on a GIS map and by “drilling down” into region-level and store-level tems data. A screen
shot of the viewer tool is shown in Figure 6.3. Second, we developed3Bergb interface, which
enables users to manage and track multiple alerts. The web interface al&tepreasy opportuni-
ties for users to provide and view feedback on individual alerts. Tlidlfack has two functions:
sharing the workload of investigating alerts between different end ,uemadsproviding us (the SSS
developers) with user feedback on which alerts were genuine and wiighuninteresting or due
to non-outbreak reasons. A screen shot of the web interface is shdvigure 6.4.

The current version of the web interface allows users to view alertk their importance, add
feedback comments, and give suggestions. Users can also seaatdrfousing different criteria,
such as zip code, score, observed counts, and expected coumtiiodally, users can add their
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Figure 6.5: Alert in Columbus, OH, resulting from a possible Gl outbredie [Eft figure shows
the increase in pediatric electrolyte sales detected by SSS, and the rigatsliguvs a confirmatory
increase in Gl Emergency Department visits.

custom-defined input scripts to the pool of scripts that run daily. Usersseatheir own grid
resolution, change baseline evaluation time series method, set aggregatipete By enabling
users to create their own input scripts and to give feedback on the rgsalktiris, we hope to learn
what results and settings are most relevant to real users in the suneiiéeakc This feedback will
help us better manage these alerts and distinguish true outbreaks moratéffidie the future,
we also plan to provide more features (e.g. tracking of previously rapategts for post analysis
purposes) to the end users, thus improving their ability to investigate and malemts.

Finally, we plan to give users improved capability for ad hoc browsing aat/ais of multiple,
multivariate time series using the new TCUBE tool, currently under developboydvitheshkumar
Sabhnani and other colleagues in the Auton Laboratory [130]. By congpthis tool with SSS,
we hope to give users the flexibility to perform any desired investigatiorig also focusing their
attention on the clusters that we believe to be most relevant.

6.5 SSSin practice: prospective surveillance and clusters deted

We now discuss our experiences running the SSS system for pragpaatieillance of the nation-
wide OTC sales data. We have been running the SSS system daily on OT€&lrdatdate 2003.
Initially, the system reported a large number of false positives, making iculiffior users to focus
on the most relevant clusters. Two main improvements enabled us to significethilye the false
positive rate. First, improvements in the data quality provided by the Natiorall R&ata Monitor
reduced the number of false positives due to data irregularities. Seaxdalidg the post-processing
filters discussed above enabled us to remove many false positives tleastatstically significant
according to our model but clearly did not correspond to actual oltbréle now obtain between
10 and 20 alerts per week. Some of these alerts can be diagnosed as likelgiue to data irreg-
ularities or model misspecifications, while others are of potential epidemiolaoglesance. These
potentially relevant clusters then require further investigation, either bieam or by public health
users, to determine whether or not the detected cluster correspondadtuahoutbreak or other,
irrelevant phenomena. Because of limited manpower, our team was un@iblegtigate many such
clusters, especially those that occurred in regions where we were pohfact with state and lo-
cal public health departments. Nevertheless, we were able to discoverl@nof interesting and
potentially relevant clusters, both due to disease outbreaks and duetplotim@mena.
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Figure 6.6: Alert in Salt Lake City, UT, resulting from an early outbreakedsonal influenza. The
figure shows the increase in cough/cold medication sales detected by SSS.

On January 25, 2006, the SSS system detected a spike in the sales tfpeltietrolytes near
Columbus, Ohio. This increase is shown in Figure 6.5. We first did some praliyimvestigation
of the cluster using the SSS viewer tool. This investigation revealed that theag® emerged
gradually over the course of January 23-25, was not limited to a singke@tahain, was not due to
promotional sales, and did not affect other categories of OTC salea.résult of our preliminary
investigation, we hypothesized that this increase resulted from a small, t@astrointestinal
outbreak starting January 23rd. Because we are not currently inotavita Ohio health officials,
we were unable to obtain a definitive confirmation of this potential outbreakvekder, we were
able to obtain and analyze emergency department records for this aseshofn in Figure 6.5,
gastrointestinal emergency department visits were also significantly ieckéasveen January 23
and 27, peaking on the 25th. Other types of ED visits were not significactigased. This evidence
supports our hypothesis of a small and localized GI outbreak.

Another relevant cluster that we found corresponded to an earlguatly severe outbreak of
seasonal influenza that took place in the Salt Lake City area of Utah imiNmare2003. Our system
observed the first signal of this outbreak on November 5, detecting egase in cough and cold
OTC sales in the Salt Lake City area. As shown in Figure 6.6, cough andsatdd remained
high throughout November, triggering more alerts on the 12th, 14th, atd Nete that we also
observe a false positive on September 15, which appears to have leeém al database error (we
also observed many other false positives across the nation on this dath)d&abase errors were
common in 2003 and 2004, but are now much less common due to improvementNREné. It
is also interesting to note that a more detailed study of the Utah outbreak,ateddiy the RODS
Laboratory and available on their website, suggests that the outbrebk ltae been detected
sooner (possibly as early as October 25) by focusing on pediatridhcancold sales. According
to the RODS case study, the outbreak was visible from ED chief complaint mogi{oespiratory
and constitutional categories) around November 7, suggesting that nogisdOTC sales enabled
more timely detection of this outbreak than ED visits.

Another potentially relevant cluster that we found does not directly spoed to a disease
outbreak, but instead was due to an environmental hazard. Betweenpe®2tband November 4,
2003, a series of major, uncontrolled wildfires in southern Californiaezhasriously degraded air
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Figure 6.7. Two alerts in Riverside, CA, resulting from the 2003 wildfires,Qztober 21 and

October 29 respectively. Both figures show increases in cough/colttatied sales detected by
SSS.
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Figure 6.8: Alert showing increased sales in tourist destinations over karay weekend, 2005.
SSS reported several alerts, including the highlighted alert in RehobaeithBBelaware.

quality, leading to widespread increases in cough and cold medication €aleS§SS system first
detected the wildfires on October 21, the day that the fires started; welsageaaumber of alerts
throughout southern California. One such alert, in the Riverside ershpwn in Figure 6.7. We
also saw many alerts in southern California between October 29 and O8tblbmarresponding to
the period of worst air quality from the fires. One such alert, also in therBie area, is shown
in Figure 6.7. It is interesting to note that OTC cough and cold medicationscaranneffective
cure for respiratory problems due to smoke inhalation, but we were theless able to pick up
substantial evidence of the regions affected by smoke from the firesl loasthe patterns of cough
and cold sales.

As a final example, we show one cluster detected by SSS that we do reitleoto be epi-
demiologically relevant. During the 2005 Memorial Day weekend, we notedge laumber of
detected clusters along the eastern coast of the United States. Figurep@a@dime such cluster,
in Rehoboth Beach, Delaware. Further investigation revealed that tleeseegions corresponded
to popular tourist destinations, especially beach resort areas. Thas itlear that the combina-
tion of a long holiday weekend and warm weather led to a temporary incireg@spulation due to
an influx of tourists, resulting in increased OTC sales as well as incréz8adsits. These false
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positives demonstrate the need to model and suppress clusters resoltingmporary population
shifts. As noted in Section 6.3, two ways to deal with such clusters are to reeasd adjust for
population, if such information is available, or otherwise to normalize by toteksa sales of a
baseline product.

Many of the epidemiologically irrelevant causes of clusters discussedctinBeé.3 have also
been observed in the OTC data, including sales trends due to inclemenengaith as hurricanes
in Florida). Although these are interesting results, they underscore tieuliif of determining
which increases in sales are due to real outbreaks, and which incarasgue to a variety of other
unmodeled factors.

6.6 SSS case study: The Walkerton Gl outbreak

Disease surveillance systems should be evaluated in a real-world setting tEfommending their
widespread deployment. This evaluation is difficult to accomplish prosedgtivecause disease
outbreaks occur sporadically and are difficult to anticipate. Additionatiigldishment of ground
truth for evaluation is very difficult in prospective mode. However, eatiun of disease surveil-
lance systems can be accomplished retrospectively using historical datakfrown and well-
characterized outbreaks. We focus here on one such case stuniytbaeak of gastroenteritis in
Walkerton, Ontario, and examine the effectiveness of our SSS systeearfly detection of this
outbreak.

The Walkerton outbreak occurred in the Grey-Bruce area of Ontarioay 2000, centered in
the town of Walkerton, and resulted in an estimated 2321 cases of gastitieriventually 1346
of these cases were individually identified. Of the 1346 identified caSesd&iduals required hos-
pitalization, 27 developed hemolytic-uremic syndrome, and six died. The#ilistto the region’s
public health unit raising concern of an outbreak were made on Friday, 1da This detection
was made by an astute (and lucky) physician, who happened to obsdtiaemuases of pediatric
bloody stools, a rare enough occurrence to trigger his suspicion. rBheffective intervention was
a presumptive boil water advisory issued on Sunday, May 21.

Our study of the Walkerton outbreak [32, 33] was conducted as arodspaptocol with human
research ethics board approval from the University of Ottawa Hesiituite, the South Bruce Grey
Health Center and the Owen Sound Hospital. Our investigating group (th&DS@ollaborators”)
was led by Dr. Rick Davies of the Ottawa Heart Institute. With the assistartbe édcal hospitals,
hospital corporations and Public Health Unit, we accessed electronic headitds data (including
free-text chief complaint, age, gender, and demographic data) fr@n639 ER visits made to 10
hospitals in the Grey-Bruce Region of Ontario from January 1, 1999Datémber 31, 2001. Five
of the 10 hospitals brought their electronic systems online during 1999aand only provide data
for part of that year; data were complete for all 10 hospitals for 2002801

Free-text chief complaints were categorized into syndromes of interiegt asversion of the
RODS (Real-time Outbreak and Disease Surveillance) system [145]dptbio us by the CNPHI
(Public Health Agency of Canada) and QUESST (Ministry of Health andgLterm Care of On-
tario) projects. A processed data set containing 1) the categorizedconmgfaint, 2) the hospital
visited, 3) town of residence, 4) gender and 5) age group was ussdiieequent analyses, which
were done at the University of Ottawa Heart Institute and at the Autonrbédmy, Carnegie Mellon
University.
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Table 6.1: Results of spatial scan using the SSS software. SSS was abledbtde Walkerton
outbreak on May 19.

Date Most significant cluster Score| False positive rate
May 16 | 11 cases, not near Walkerton 1.28 48.5%
May 17 | 7 cases, in and near Walkerton0.38 79.9%
May 18| 3 cases, not near Walkerton 2.87 20.4%
May 19 15 cases, in Walkerton 15.1 0.1%
May 20 33 cases, in Walkerton 42.1 0%
May 21 45 cases, in Walkerton 58.5 0%

While our complete study [33] describes a wide variety of methods used tot gete char-
acterize the Walkerton outbreak, we focus here on automatic detectionaisi85S system, and
compare this system to several other methods, UNALERT (univariate tins samalysis) and
WSARE (What's Strange About Recent Events) [159, 160, 161]. daah method, we wish to
measure the relationship between timeliness of detection (which day the Walkettoeak could
have been detected) and false positive rate (the proportion of falsesdlathe three years of base-
line data). For a given day of the outbreak, the false positive rate isediefia the percentage of
non-outbreak days that were found to be more significant than thateaiitioiay. In other words,
this is the percentage of false positives we would have had to acceptdntoriave detected the
Walkerton outbreak on the given day.

Thus we used the SSS software to conduct a spatial scan focusingemdassified as Gl for
the entire Grey-Bruce region, for each of the five days before thenadédr advisory. In Table 6.1,
we present the results of this scan. For each day, we indicate the lochtioa most significant
cluster detected, its scof€(S), and the resulting false positive rate needed for detection. We also
show screen shots of the SSS software runs for May 19 and May 21 imeF&9. Our results
demonstrate that the spatial scan would have identified an abnormality in Wallar May 19
(two days before the boil water advisory) with a false positive rate of {dr¥é false positive in the
three years of data). We also note that the cluster in Walkerton on May 1benaypreliminary
indicator of the outbreak, but it was not significant enough to triggeteaty anless we were willing
to accept a false positive every 1.25 days. However, if we had atcedber data sources (such
as over-the-counter drug sales), it may have been possible to automatiewtt the Walkerton
outbreak on the 17th.

We compared the SSS detection results to two other methods: univariate tinseeaseigsis
(using a standard control chart) and What's Strange About Recanmtt&E{YWSARE). Our results
indicate that, if we performed univariate analysis on the time series of totaistd for all Grey-
Bruce hospitals, we would not have been able to detect the Walkertorealtontil May 20. Thus
SSS was able to detect a full day faster than univariate analysis, deatorgsthat the spatial scan
can achieve more timely detection as well as pinpointing the location of an okitbSailarly,
WSARE was able to detect the Walkerton outbreak on May 20 with a falsevmositie of 1.4%.
Comparing WSARE to SSS, we note that SSS was able to detect the Walkettboeaduone day
earlier than WSARE. The tradeoff, of course, is that WSARE is a morergeédetector, and can
detect a wider range of outbreak types and other anomalous patterrexarople, the anomalous
pattern found by WSARE on May 20 was, “Normally 0.2% of all records@rsyndromes from
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Figure 6.9: Results of running SSS on the Walkerton gastroenteritis okitlrea left figure shows
the most significant cluster on May 19, consisting of 15 cases in Walkertenright figure shows
the most significant cluster on May 21, consisting of 45 cases in Walkerton.

Walkerton, but recently 5.8% of all records are Gl syndromes from &kilk.” This is a clear
indication that WSARE found a pattern that was directly relevant to the Walkeés| outbreak,
specifying both the outbreak type and approximate location.

In conclusion, the Walkerton outbreak ultimately resulted in six deaths arsgddbousands
to become ill. Our study [33] shows that surveillance of emergency rooef cbmplaints would
have provided important information regarding this outbreak, and miglet&dwanced its detection
by as much as several days. An additional benefit is provided by thmatitodetection and char-
acterization of outbreaks by tools such as SSS, reducing the burdeis stitiieillance on public
health. We demonstrated that SSS was able to automatically detect the Walkdhtarak on May
19, two days before the boil water advisory. Though the outbreak gtaally detected on the 19th
by an astute physician, we note several important observations. Fig&iy&Sable to detect on the
19th with only one false positive in the three years of data, while false pesitive to physicians
reporting unusual symptoms are much more common. Second, the physit@stsion relied on
much more specific information (multiple cases of pediatric bloody stools) whichumavailable
to SSS; if the same physician had not examined all of these cases, or ifdtieyhbeen sufficient
to trigger his suspicion, the outbreak would not have been detected &tygimally, it is likely
that incorporation of other data sources (such as over-the-counigisdles) would have enabled
us to automatically detect the outbreak several days earlier.

6.7 Related work in biosurveillance

As noted above, our work is most closely related to the spatial and spacedanestatistics ap-
proaches of Kulldorff [78, 81]. These methods were discussed il ,data compared to our new
approaches, in the previous chapters; here we describe other méhagstial and syndromic
surveillance. Unlike the approaches based on scan statistics, whichddetit dlusters and pin-
point their spatial location, the other spatial methods in the literature eithertdimdspecific clus-

ters, or do not evaluate the statistical significance of discovered cludter® general overviews
of the literature on spatial and syndromic biosurveillance can be found inables by Lawson et
al. [91, 95], Elliott et al. [44], and Wagner et al. [147]. In addition to #patial cluster detection
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methods discussed above, these methods include general and folustedng methods, disease
mapping approaches, and spatial cluster modeling, as well as a varieig-spatial methods. We
discuss each of these areas in the following subsections.

We note that, with a few exceptions such as the Bayesian mixture modeling teefioijuaw-
son and Clark [90, 93] and Gangnon and Clayton [51], none of theHgoaieattempt to model the
locations and spatial extents of clusters, nor are any judgments made @tatibtical significance
testing) as to whether the resulting variations in risk are due to chance.rthgess, the wider
literature on disease mapping and modeling has several advantagesawvetatistics, including
the ability to directly model correlations and both fixed and random effects.

6.7.1 General clustering and space-time interaction

General clustering methods are hypothesis testing methods which testdoembtendency of the
data to cluster. In other words, these methods attempt to answer the quéstibis, data set more
spatially clustered than we would expect?” Such methods do not identifyfispeasters, but in-
stead give a single result of “spatially clustered” or “not spatially clusterehese methods are use-
ful if we want to know whether anything unexpected is going on, but daae about the specific
locations of unexpected events. Examples of such methods include Whittenabrl 57], who use
the mean distance between all pairs of cases as a test statistic, and Bahetgamo [19], who use
the interpoint distance distributiod{-statistic) to measure the amount of clustering. Tango [143]
proposes a quadratic form test, comparing the numbers of observexkpacted counts weighted
by a covariance matrix. Several other methods test for general clygsteritata with non-uniform
populations, by combining case information with information about unaffeicigigliduals (con-
trols) drawn from the underlying population. These methods typically asgubstion, “are cases
closer to other cases than they are to non-cases”™? Cuzick and Ed@&fadensider several test
statistics based on thenearest neighbors of each case. Anderson and Titterington [8pseam
“integrated squared distance” statistic based on non-parametric derigitatean: the test statistic
is the squared difference between density estimates for cases ands;antegrated over the test
region. Similarly, Diggle and Chetwynd [36] compare the second moments cateand control
distributions.

Closely related to the tests of “general” clustering are tests for space-timadid®. These
tests answer the question of whether there is space-time clustering of, exeamisafter adjusting
for purely spatial and purely temporal clustering. In other words, espate interaction is present
when points that are close together in time also tend to be close together in @pdacdce-versa.
The two best-known tests for space-time interactions are the Knox [7MWantkel [101] tests. The
Knox test requires specification of threshold values for “closenedsfimand space (i.e. two points
are close together in space if their spatial distance is lessithamd close together in time if their
temporal distance is less thdp. Then spatial and temporal distances are computed for each pair
of points, and if many points that are “close” in time are also “close” in spadevace-versa then
space-time interaction is present. Mantel's test is a generalization of thet&stowhich computes
the product of functions of the temporal and spatial distances for esiclfgoints, and uses the
sum of these products as a test statistic. Baker [10] extends the Knda testes where the values
of the critical parameters that define “closeness” in space and time an@wnk Kulldorff [79]
proposes an extension of the Knox test which adjusts for shifts over time idistribution of the
underlying population of individuals. Finally, Rogerson [129] combinéfeal” variant of the
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Knox test with cumulative sum methods in order to detect “emerging” spacentit@iaction by
prospective surveillance.

6.7.2 Focused tests for detection of increased risk near a @specified source

Focused clustering methods are hypothesis testing methods which, givespagfied spatial lo-
cation, attempt to answer the question, “Is there an increase in risk in @eaashis location?”
These methods can be used to examine potential environmental hazasdsyfple, testing for an
increased risk of lung cancer near a coal-burning power plant. Siededhtions are specified in
advance, these methods are primarily used to test locations that have &rstifieid by other means.
This is different than spatial scan methods, which are used to discadgirgpoint significant clus-
ters without a priori knowledge of their locations. Reviews of the literaturéooused clustering
include Hills and Alexander [67] and Bithell [18], as well as the chaptetsainson et al. [91] and
Elliott et al. [44].

Many tests for focused clustering have been proposed, with diffeasntmptions about the
distribution of relative risk near the focus. Besag and Newell [15] mstHot-spot clustering,”
assuming a constant increase in relative risk for locations within some distdintbe focus, and
using the population radius containing a given number of cases as thestagstic. The tests of
Waller et al. [152] and Lawson [89] assume that relative risk varie]swasfi, wherek is constant
andd is the distance from the focus. For example, Waller's test statistic is the stira déviations
of observed incidence in each location from its expectation under the reijhted by the amount
of exposure. Diggle [35] instead assumes that relative risk decreggesentially with distance to
the focus, and proposes a test for case/control data based on thigpties. Finally, Stone [142]
proposes a non-parametric test which assumes that relative risk is moatifodé&creasing with
distance to the focus.

6.7.3 Disease mapping

Disease mapping approaches have the goal of producing a spatially smhawdp of the variation in
disease risk. For example, a very simple disease mapping approach mighembserved disease
rate (number of observed cases per unit population) in each area;aaaaced approaches use
a variety of Bayesian models and other spatial smoothing techniques to estimateddrlying
risk of disease in each area. These methods do not explicitly identify clastdions, but disease
clusters may be inferred manually by identifying high-risk areas on thétirgmap. Nevertheless,
no hypothesis testing is typically done, so we cannot draw statistical caotsuas to whether
these high risk areas have resulted from true disease clusters orlieomoecfluctuation.Disease
mapping is discussed in detail in Lawson et al. [92, 91] and Elliott et al. [44]

Breslow and Day [21] consider various methods of smoothing data foasBsmapping, in-
cluding kernel smoothing and kernel density estimation. Their methods damseoine any under-
lying model of the data, and are most useful for exploratory data anal@sier disease mapping
approaches are model-based, enabling statistical analysis and testargderof significantly in-
creased risk. A variety of hierarchical models have been proposetbphevel of the hierarchy typ-
ically assumes that counts are Poisson distributed with mean proportionaldwa kxpected count

IMore precisely, while Bayesian disease mapping methods can prodeipesterior probability of elevated risk at
each individual spatial location, they cannot draw statistical conclusibost the cluster as a whole.
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multiplied by an unknown relative risk. The second level of the hierarchyasaume that risks are
drawn from a Gamma distribution, as in Clayton and Kaldor [28] and E§1lD4], who use empir-
ical Bayes methods to estimate these risks. Alternatively, the log relativeaiisBemodeled using
a Gaussian distribution, as in Waller et al. [151] and MoJi05]. This latter representation has the
advantage of being able to represent both fixed and random effectsxdmple, the log relative
risk 6; can be modeled as a vector of random effects Witk Gaussiafy, o) and non-informative
hyperpriors. These models can be simulated using Markov Chain Monilie (@EMC) methods,
sampling from the posterior probability distribution, as in Besag et al. [16)Glayton and Bernar-
dinelli [29]. The disadvantage of these “fully Bayesian” approachaesdas MCMC may be slow
to converge to the true posterior, and it may be hard to confirm when @nee has occurred.
An alternative would be to estimate the unknown vector of hyperparamesieig maximum likeli-
hood: such “empirical Bayesian” approximations may produce reatmpatimates of the relative
risks, but may fail to account for model uncertainty. In any case, the hiizded disease mapping
approaches enable us to account for overdispersion of casedhardsources of heterogeneity.
Spatial correlation can also be included by incorporating an additionaiakpatructured ran-
dom effect term. An alternative method of accounting for correlationsviengby Wolpert and
Ickstadt [73, 158], who propose a hierarchical random field modtel spatially correlated counts.

6.7.4 Spatial cluster modeling

Spatial cluster modeling methods attempt to combine the benefits of disease mapgiggatial
cluster detection, by constructing a probabilistic model in which the undertfiusiers of disease
are explicitly represented. A typical approach is to assume that casgermesated by some un-
derlying process model which depends on a set of cluster centersg Wigenumber and locations
of cluster centers are unknown. Then we attempt to simultaneously infeegittameters of the
model, including the cluster centers and the disease risks in each arasgréhise cluster locations
are inferred, and while no formal significance testing is done, the methbtkiscacompare models
with different numbers of cluster centers, giving an indication of bothtidrahere are any clusters
and where each cluster is located. One typical disadvantage of such setlwomnputational: the
underlying models rarely have closed-form solutions, and the MarkainCWionte Carlo meth-
ods used to approximate the model parameters are often computationallyvieteBgamples of
such methods include Lawson et al. [90, 93] and Gangnon and Claytdnfbr a more detailed
discussion of spatial cluster modeling, see Lawson and Denison [94].

In the Lawson and Clark model [93], the intensity of disease cases isssqat as a product of
the overall disease rate, the population at risk, and a spatially-varylatiyeerisk function. This
relative risk function is parameterized in terms of an unknown number akehis a corresponding
set ofx cluster locations, and further parameters corresponding to the risk demand clusters. All
of the model parameters are inferred simultaneously: since the numbenpboents is unknown,
reversible jump Markov Chain Monte Carlo sampling is used [61]. The matehtso be adapted
to aggregated data by setting the expected count in a region equal to thaliotey that area of
the intensity function, and covariates and random effects can also bdeaclu

A second type of spatial cluster modeling approach is based on mixture mexglataples of
such approaches include Schlattmann aridhriBng [134] and Richardson and Green [128]. In
these models, the dataset is assumed to consist of cases, each of whiakrndrdm one of an
unknown number of mixture components. These methods enable explicit ngpdélpopulation
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heterogeneity, as different mixture components may have very diffgrepérties. Both the number
of components, and the properties of each component, are inferrgfaigier empirical Bayes or
Markov Chain Monte Carlo.

Finally, Gangnon and Clayton consider a range of methods which spampdlce f§om scan
statistics [53, 52] to Bayesian cluster modeling [51, 54]. In [53, 52], twsider three methods:
a weighted scan statistic, the weighted average of likelihood ratios (WAL tlle maximum
weighted average of likelihood ratios containing a given cell (WALRS).tiee of these meth-
ods can be thought of as approximations to our Bayesian spatial scaticst#tis weighted scan
statistic is a maximum a-posteriori estimate of the most probable cluster, the WatiRis is an
approximation of the total posterior probability of an outbreak, and the WA\kRitistic is an ap-
proximation of the total posterior probability of an outbreak containing angeadl. We believe
that the use of the full Bayesian model, and the exact calculation of pagtevizabilities given the
model, is preferable to any of these approximations. In later work, Gangma Clayton also con-
sider a hierarchical Bayesian model [51, 54], but use a differéott gistribution (based on Markov
Connected Component Fields), and the result is a model which cannotijited efficiently but
only approximated by simulation.

6.7.5 Non-spatial surveillance methods

Syndromic surveillance includes a wide variety of methods for early deteatidisease epidemics.
Excellent surveys of the literature on syndromic surveillance are givéheilandbook of Bio-
surveillance[147], as well as the review papers by Wagner et al. [149], Mandl.€tL00], and
Buckeridge et al. [22]. Here we briefly consider some of the many metlowdsyfidromic surveil-
lance that do not explicitly take spatial data into account. Many of these ne#redased on time
series analysis; we consider here both univariate and multivariate methods

Univariate temporal methods consider a single time series, and signal atentstive current
count is significantly higher than its historical expectation. The simplest suwthod is the She-
whart chart [137], which alerts whenever the current count is mae $ome number of standard
deviations from its mean. Other variants of the control chart track the sewatbunt, using ei-
ther a moving average (MA) or exponentially weighted moving average (BY¥1L]. Cumulative
sum (CUSUM) methods [123, 72] consider the accumulated deviation frerm#an over multiple
time steps, and signal alerts when the accumulated deviation is sufficiently Tengese methods
have some useful theoretical properties, including bounds on theirdney of alerts under the null.
Many other regression models can be used for forecasting the coognts. These methods include
the Generalized Linear Mixed Models (GLMM) approach of Kleinman et7] find the cyclical
regression model of Serfling [136]. ARIMA and other standard time sanalysis methods [63], as
well as newer approaches based on wavelet decomposition [1683}/stabe used for forecasting.
Le Strat and Carrat [96] used Hidden Markov Models (HMMs) to monitéiuenza-like illnesses
and poliomyelitis. Similarly, Kalman filters can be used for temporal outbreaktitmig65]. One
advantage of HMMs and Kalman filters over other temporal methods is thatatioey explicit
representation and modeling of disease state (i.e. which diseases, ifeaagcarring).

In many time series monitoring domains, multivariate signals have been cormkiddre sim-
plest (and most common) multivariate equivalent of a control chart is thellihg 72 method.
This method learns the joint distribution on a set of signals from historical ttata alerts if the
current multivariate signal is sufficiently far from its expectation. This adlaws to detect when
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any of the individual signals, or the relationship between these signaiatesignificantly. Many
other multivariate methods have been developed, including multivariate neigithe EWMA and
CUSUM methods. These are all very general and useful methods tenm@laing whether any of
several data streams deviate from normal conditions; however, unlilsp#tial scan statistic, none
of these methods are able to provide spatial information about the size, simajdocation of poten-
tial outbreaks. A detailed description and comparison of multivariate methagfilgeis by Burkom
et al. [25, 26, 27].

Another class of methods for multivariate biosurveillance uses associateomming to search
for unusually frequent patterns in public health data (such as overetineter drug sales). For
example, DuMouchel [42] developed empirical Bayes screening talséar frequent multi-item
associations. This method can be used to detect unusual patterns oftinadiaées indicative of
an epidemic, for example, an increase in the number of patients who boatbarti-diarrheal and
fever medications.

Finally, Bayesian networks are another useful tool for multivariate bbiesilance, as they al-
low efficient representation and inference of the relationships betwegs hambers of variables.
Bayesian networks have been used within biosurveillance in a numbentefts, including What's
Strange About Recent Events [160, 161], which searches for doompatterns in recent records
using a Bayesian network to infer the background model, and PANDAY&tth builds a huge net-
work representing every person residing in a city and uses this netwarfetavhether an anthrax
attack has occurred.



Chapter 7

Application to brain imaging

7.1 Introduction

In this chapter, we apply our cluster detection methods to the analysis ofifmaging data. We fo-
cus here offunctional imagingwhich measures brain activity, and thus our task is to detect clusters
which correspond to regions of increased or decreased brain ackeityexample, we might want
to detect regions of the brain that have been damaged by strokes oaligts of neurodegenerative
diseases, including Alzheimer’'s and Parkinson’s. Here we focus applitation in cognitive neu-
roscience, in which the main goal is to detect clusters of brain activity that akao differentiate
between cognitive states. Thus we want to distinguish between subjeftiseg different cogni-
tive tasks (for example, reading a book versus watching a movie), areteawine which areas of
the brain are most active in performing each task. In this cluster detectigmtasnalyze data pro-
duced by functional magnetic resonance imaging (fMRI). An fMRI seamneasures the changes
in blood oxygenation resulting from neural activity in a subject’s braineakdimensional “snap-
shots” of the subject’s brain activity are taken at regular intervals (titpiegery 1-3 seconds) while
the subject is performing a cognitive task or receiving some stimulus insidedheer [165, 163].
Worsley [163] notes that the fMRI response to a stimulus is delayed anerdéspby about six sec-
onds, which can be modeled by convolution of the stimulus pattern with a hermmitymesponse
function consisting of a sharp peak followed by a slight drop below thenabactivation level.
Thus we can detect clusters of brain activity by finding regions of thia linat show significantly
increased activation in response to the presentation of the stimulus.

This task can be mapped directly into our general statistical frameworKustec detection:
at each time step we have a three-dimensional grid consistingofx 64 x 14 voxelss;, where
the measured “activation” of each voxel corresponds to the amouiatieitain that region of the
brain! We can use this activation directly as the codntorresponding to spatial location at
time stept, or we can first pre-process the data by normalizing and smoothing.oHeysossibility
would be to use the entire sequence of fMRI images produced for a giugect and stimulus,
inferring the baseline level of activation for each voxel from historitzh (i.e. the previous counts
cb), and detecting regions where the voxels have increased activatioour Iresults below, we
consider an even simpler version of the fMRI cluster detection task, whereompare a single

As noted above4 x 64 x 14 was the maximum spatial resolution of fMRI images available for our éxpets.
Other fMRI images may havi28 x 128 x 14 or higher resolutions.
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brain image taken from the subject after receiving the experimental stimedug$ponding to the
peak of the subject's hemodynamic response) to another image taken aftarbject receives a
“control” stimulus (again corresponding to the peak of response). Weusan use the measured
activation of each voxel in the “experimental” image as our set of countand the measured
activation of each voxel in the “control” image as our set of baselipnebhen we can detect clusters
of brain activity that are activated by the experimental stimulus by findingmed = {s;} where
the counts:; are significantly higher than expected, given the baselines

As in the disease surveillance domain, a variety of confounding factore indKficult to de-
tect clusters in brain images. One difficulty is temporal variation in the measutadtion due
to the phenomenon of fMRI drift [140], which can be caused by instabilitidhe fMRI scanner
or changing physiological responses of subjects. A second difficultyeishallenge of model-
ing the non-linear hemodynamic response function [165]. Third, whiles&an distributions are
often used to model fMRI activation, our results suggest that these disbris are not normally
distributed, often having lower kurtosis (lighter tails) than would be expdoted a Gaussian dis-
tribution. Finally, huge challenges are presented by differencessssubsects. As Wang et al. [156]
note, different subjects’ brains have substantially different sizeshages, and different subjects
may generate different spatial patterns of brain activation given the sagmitive state. Further-
more, an individual subject’s response may differ between trials basgthysiological state and
mental distraction, and in some cases we may detect no signal becausbj#ut did not attend
to the stimulus. Solutions to all of these domain-specific challenges are b#y®isdope of this
thesis, though many of them have been considered in the related worlsshsichelow. We be-
lieve that many of these challenges can be addressed within our clustetiatefeamework, as in
the disease surveillance domain, by a combination of pre-processingaftevidde irregularities in
the data), post-processing (to filter out irrelevant regions), and thaiterdevelopment of more
complex models which are appropriate to the brain imaging domain.

In the remainder of this chapter, | consider the application of our clustectilen methods to
finding clusters of increased brain activity in fMRI data. The main purpbsas brief exposition is
to demonstrate the applicability of our methods to brain imaging: our fast multidinredsipatial
scan makes these methods computationally feasible, and the flexibility of outicahframework
enables us to detect useful and relevant clusters of brain activity.ed¢tio® 7.2, | present our
preliminary results in the brain imaging domain, reviewing the speed resultsdestin Chapter 3
and considering the quality of the clusters found. Finally, in Section 7.8sgnt an overview of the
fMRI brain imaging literature, focusing on cluster detection. Parts of thipteln&ave been adapted
from our paper in NIPS 2004 [118]. | wish to thank my co-authors Awdkéoore, Francisco
Pereira, and Tom Mitchell for their contributions to this work. Additionallyy extremely grateful
to Tom Mitchell and his group for making their fMRI brain imaging data availablesto

7.2 Results

Ouir first results in the brain imaging domain were presented in Chapter 8¢ wieedemonstrated
that our fast multidimensional spatial scan algorithm was able to detect sl7sfiet8x faster than
the nave spatial scan approach. This speedup makes it computationally feagieli¢daom cluster
detection using the spatial scan on brain imaging data, reducing the run timeveks to hours.
We now consider the regions found by our scans, and whether thessmond to useful and
relevant clusters of brain activity. As noted above, the purely spatifdlftluster detection task
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Table 7.1: Clusters of brain activity detected in fMRI data, “word verasebne” task. All detected
clusters were found to be significant & .05) using the discriminative thresholded scan statistic
with e = .01.

subject  cluster coordinates area of brain
08170 (20-24, 34-43, 13) visual cortex

08179 | (16-17, 40-42, 12-13 visual cortex

08179 (24, 56, 10) unknown, possibly noise
08179 | (11-14, 22-25,12-13 Broca’s area

08179 | (44-45, 22-23, 11-12) Broca’s area (opposite side)
08179 | (40-42, 28-30, 13) Wernicke'’s area

consists of a three-dimensional grid of voxels. For each voxel, we daaintc; and a baseline
b;, wherec; corresponds to the measured amount of fMRI activation in that voxetruthg ex-
perimental condition, and; corresponds to the measured amount of fMRI activation in that voxel
under the null or control condition. We used data from an experimentitshill et al. [103] where
the subject is given words, one at a time, and must read these wordseanidyithem as verbs
or nouns. We considered two tests: the easier “word versus baselghke'where the goal was to
distinguish subjects reading a word from the baseline condition of thatctdbjating on a cursor,
and the harder “noun versus verb” task, where the goal was to disginether the subject was
reading a noun or a verb. In each case, we detected significant slo§fecreased brain activity
using the discriminative thresholded scan statistic discussed in Chapter ai#is of the detec-
tion thresholde ranging from 0 to 0.05. As noted in Chapter 3, the classical scan statistid]
was unable to find relevant clusters, instead detecting large region% (@ dhe entire brain) that
were only slightly increased in count. When we used a larger threshold,vailu statistics de-
tected smaller regions with more substantial increases, and some of thieses regy correspond
to relevant clusters of brain activity.

We first attempted the more difficult “noun versus verb” task, searclinglfisters with more
than 1% increase in activation = .01) in data from six different subjects. Our results were
inconsistent, with no regions found in four of the six subjects. While the otiwesubjects did have
significant regions of activity, our domain expert was unable to identifgettees corresponding to
relevant areas of the brain. Thus we considered the simpler “words/éeseline” task, focusing
on these two subjects. In this task, we were able to find relevant reg®itgrdified by our domain
expert; a list of these regions and the corresponding functional ef¢las brain is shown in Table
7.1. For both subjects, we detected significant clusters of activity in thalvtsutex. For one
subject, this was the only significant region detected, while the other sudgechad significant
clusters in the language centers of the brain (Broca’s and Werniclegs)a These clusters make
sense given the nature of the experimental task; however, more datdisdhieefore we can draw
conclusive cross-subject comparisons.

While a detailed consideration of the brain imaging domain is beyond the scdpis dfiesis,
future work will address a number of aspects of this domain. Our main gthddemo improve the
detection power of our methods to obtain consistent cross-subject rémtligor simple tasks such
as the “word versus baseline” task, and for more challenging tasksasutie “noun versus verb”
task. First, we plan to compare our current, purely spatial approach teptue-time approach
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discussed above: we believe that using data from the entire sequetMRIoimages rather than
only a single image will increase detection power, as will the use of our &fpEtbased scan
statistics. Second, we must derive models and statistics that are mostradprégr this applica-
tion domain, perhaps using a thresholded Gaussian statistic which acamuspsifial correlations
between adjacent voxels. Further performance gains may be achigwecbiporating the hemo-
dynamic response function directly into our models (using a parametrized-$ip@e scan statistic
as discussed in Chapter 4), as well as accounting for confounditay$azich as fMRI drift.

7.3 Related work in brain imaging

We now provide a brief overview of the literature on cluster detection in fd&Bk. As noted
above, two of the main goals of cluster detection in the brain imaging domain aiffet@idtiate
between subjects performing different cognitive tasks, and to find wieigions of the brain are
most active in performing each task. It is also possible to differentiate batwegnitive states
without performing cluster detection, though these methods will not pinpointeteeant regions
of the brain. For example, Mitchell et al. [103, 156] have consideregh&l, classifier-based ap-
proach for distinguishing cognitive states. These approaches trainssi@a Néve Bayes classifier
to predict the subject’s cognitive state given their observed fMRI dathage able to achieve high
accuracies for tasks including “reading a sentence versus viewinguaeyic'reading ambiguous
versus non-ambiguous sentences,” and “reading words in diffeegnéintic categories.” In [156],
classifiers were trained across multiple subjects, enabling accuratetigaten across subjects in
these discrimination tasks. While these are impressive results, we foeusrerethods which will
identify significant clusters of brain activity rather than simply performingsifcation of fMRI
images, thus revealing which areas of the brain are indicative of theatiffes between cognitive
states. We do not attempt to perform cross-subject generalization,ebbtlieve that this is an
important area for future work.

As noted by Perone Pacifico et al. [126], a common approach to identifyitigated voxels in
fMRI images is to perform a separate hypothesis test for each voxatdtiypafter applying some
method of spatial smoothing) and to report all voxels that are significanta levely. A variety of
such tests have been proposed, ranging from Kolmogorov-SmirnoJ3¢gtsnonlinear regression
in a Bayesian framework [56]. One of the most common methods for findirggeckiof activity,
known as “statistical parametric mapping” [50], uses generalized lineaelsntmpredict the activ-
ity of each voxel given the stimulus. In all of these cases, becauseasegtatistical tests are being
performed on thousands of voxels, some adjustment for multiple hypothetsig tessnecessary,
for example the use of permutation tests [11] or random field theory (assdisd below) to esti-
mate the null distribution of the maximum value of the test statistic. Because stasdgicificance
is tested on a per-voxel basis, clusters of brain activity must be inféyefouping individually
significant voxels, and no per-cluster false positive rate is guaran@mel recent exception to this
statement is the work of Perone Pacifico et al. [126], who use a ran@tmafproach to bound
the proportion of false clusters discovered, and apply their method to tiédral scan statistic
(maximizing the number of points in a two-dimensional window) and to analysisiBl images.
Nevertheless, their results cannot be used for the more general spatiatatistic approaches that
we consider here, including detection of clusters with variable size aqésha well as the use of
flexible, model-based score functions.
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Another well-known method of detecting clusters in fMRI data was originajeWbrsley et
al. [164, 166, 163]. This method, first used for analysis of positron garisomography (PET)
data in [164] and generalized to other types of brain imaging data in [16&cts clusters by first
smoothing the data to make it approximately Gaussian, allowing sitnlé” test statistics to be
used. To account for spatial correlation between voxelgndom fieldapproach is used [163]:
we first compute the test statistic for each voxel, forming an ini8gg of test statistics for the
activation, then choose a threshaldand declare as activated all points whétes) > t. The
thresholdt can be computed by using the Euler characteristic of random fields, whichxamates
the p-value of the global maximurif'(s). The advantage of this approach is that a simple exact
expression has been obtained for the expected Euler characteristicnobactivation is present:
this distribution was calculated for Gaussian random fields by Adler [2[fanchany other types
of random field by Worsley [162]. As a result, we can directly obtaingtivalue of the maximum
value of the test statistic without performing randomization testing.

Random field approaches have both advantages and disadvantagegased to spatial scan-
ning: like our Bayesian spatial scan, no randomization testing is neceardrthus rapid detection
of significant clusters can be performed. Additionally, the random fieftagrhes explicitly ac-
count for the correlation structure of the data. However, becausesimgie voxels are tested, these
approaches cannot bound the per-cluster false positive rate. Addiyidhe assumption of a fixed
correlation structure limits detection to compact clusters of a given sizedlmsthe smoothing
bandwidth) and a fixed shape. Siegmund and Worsley [139] extendrtdenefield method to sig-
nals of unknown width by maximizing a Gaussian random fiel®/i 1 dimensions vV dimensions
for the location plus one dimension for the width). Nevertheless, this methodbstiibt search over
varying cluster shapes as in the spatial scan approach. Finally, eeafihe need to compute the
distribution of the Euler characteristic, random field methods cannot lofasgeneral score func-
tions F'(S). On the other hand, our generalized spatial scan framework enabtesetficiently
compute the most significant regions (and theiralues) for a wide range of score functions, thus
giving us the flexibility to choose those models and statistics which are mostajatecfor a given
application domain.
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Chapter 8

Conclusions and future work

8.1 Introduction

In this thesis, | have presented a variety of methods for accurate anditatiopally efficient clus-
ter detection in diverse application domains. Our methods improve on the psestimte of the art
in several aspects. First, they exhibit higher accuracy and better abilitgtémt relevant clusters
while excluding irrelevant clusters (Chapter 4). Second, they are mucé computationally ef-
ficient, typically achieving two to three orders of magnitude speedup (Cisaptend 5). Third,
our generalized framework (Chapter 2) expands the scope of apptisadievhich cluster detection
techniques can be applied, and fourth, we can incorporate informatbrasuprior knowledge and
multiple data streams to further improve detection power (Chapter 5).

As discussed in Chapter 1, the spatial scan is a powerful statistical mettiodigh potential
utility for a variety of application domains. However, the usability of this methatldeen restricted
in practice by both computational intractability (making it infeasible for use orsivaseal-world
datasets) and a lack of modeling flexibility (making it unable to distinguish relér@m irrelevant
clusters in real-world application). In this thesis, | have proposed atyasfetechniques which
make spatial scanning both practical and useful for massive datasetd application domains.

Using the generalized spatial scan framework we developed in Chapterc@nsidered several
ways of making scan statistics more accurate and thus more useful in pradticeexpectation-
based scan statistic approach (discussed in Chapters 2 and 4) ersatdesccount for the spatial
and temporal variation in the underlying model, by learning expected cawmstiie time series of
previous data then finding spatial clusters with higher than expected céumther improvements
were gained by extending this model to a space-time scan statistic, and degelep statistics
for the detection of emerging and persistent clusters, as discussedpteCha The generality of
our framework also allows us to create new, computationally efficient statthitscan account
for other aspects of the domain model: for example, Gaussian scan statiaticarthaccount for
overdispersion of counts, or thresholded scan statistics that can ateictidg statistically but not
practically significant clusters. As discussed in Chapter 6, many othecspf an application
domain can be dealt with either by preprocessing (e.g. to deal with missingodgtastprocessing
(e.g. filtering out irrelevant regions), further increasing our detegimmer. Finally, our Bayesian
scan statistics (discussed in Chapter 5) can incorporate prior informéioon e size, shape, and
impact of clusters, leading both to higher detection power and more easilgrietisle results.

Within our generalized spatial scan framework, we considered two wiaysking the spatial
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scan computationally feasible and very fast for applications involving laege datasets (such as
monitoring nationwide public health data). Our “fast spatial scan” algorithesgnted in Chapter

3, accelerates the spatial scan between 100-1000x without any lossuvéey (i.e. it finds exactly
the same clusters andvalues as a rfige scan). This enables us to run the algorithm in under 20
minutes, instead of taking days, on nationwide data. In the public health dore&must discover
and report emerging outbreaks of disease as quickly as possible, spebidup is essential for the
practical utility of spatial scan for outbreak detection. An alternative metticgpeeding up the
spatial scan is given in Chapter 5: our Bayesian cluster detection method é¢dismtha need for
randomization testing, thus enabling a 1000x speedup over the fiaquentist approach.

In addition to advancing the state of the art in cluster detection methods, weoalssetl on
applying these methods to detect useful and relevant clusters in sappliahtion domains. Chap-
ters 4-6 applied our cluster detection techniques to the early detection atdisetbreaks from
public health data, such as emergency department records and cwawutiter drug sales data. We
demonstrated high detection power for both semi-synthetic tests (synthetreakghnjected into
real baseline data) and retrospective analysis of known diseaseaksgbChapter 6 also described
how we put these techniques into real-world practice: our SSS tool isrdiyrperforming nation-
wide disease surveillance on a daily basis, and has already demonstratgitititso detect useful
and relevant clusters in practice. Chapter 7 applied our techniques tiodfitdiR imaging data, with
the goal of finding clusters of brain activity that can distinguish betwedardift cognitive states.
While this work is still in the early stages, | presented some simple “proof ofequth results
demonstrating that our methods can rapidly detect relevant clustersimfdotévity. In addition to
continuing our work in these two application domains, we are also in the mrotextending and
applying these methods for many other domains. Some of these applicationginclud

e Detection of terrorist groups, using the Bayesian spatial scan statistiotaime probabilistic
link and group data with our analysis of individual suspects.

Network intrusion detection, searching for patterns indicative of an attack

Detection of anomalous spatial patterns in container shipping data.

e Tumor detection from medical imaging data, including the detection of brain tufrars
structural MRI data and breast cancer from mammography data.

Combination of data from multiple noisy sensors, e.g. to analyze water qudiity da

Many of these applications pose new and interesting challenges, includohglingof the relevant
features of each domain, application of our methods to link and networkatadagombination of
multiple data streams. We are also extending this work in a number of other aval/spme of the
most interesting extensions are discussed in the following section.

8.2 Future work

We now briefly consider six important directions for future work: extemsid our methods to
multiple data streams and multiple cluster models, real-time detection and investigatlostefs,
incorporation of other types of data, detection of irregular clustersitrgclisease state over time,
and automatic learning of relevant versus irrelevant clusters fromfasdback. Each of these
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extensions has the potential to dramatically improve the generality and utility ahetlrods in
real-world practice, as we discuss in the following subsections.

8.2.1 Extension to multiple data streams

As discussed in Chapter 5, one of the most important extensions of ouradristtiee multivariate
Bayesian scan statistic (MBSS), which allows us to combine information from reuitita streams
in a principled Bayesian framework. In the disease surveillance domainyitheccomplish two
main goals: increasing our power to detect outbreaks that affect multiglenst; and enabling
us to differentiate between multiple potential causes of an outbreak. Moeraily, the MBSS
framework allows us to consider many potential causes of an obsenadrchioth relevant causes
(such as a disease outbreak) and irrelevant causes (such asneegiteenotional sales). Then by
proposing a separate, scenario-based generative model for gachftgluster, we can distinguish
between the different causes and decide which clusters are and aeéemant. As discussed below,
we hope to eventually automate the learning of these models based on ukbarclkeeThe MBSS
method outputs the joint posterior probability distribution over all possible nsgaod causes, given
all streams of data; thus it not only identifies and pinpoints potential clustéeddn explains them
in terms of its causal models. We believe that the extension to multiple streams andawlitsper
models will make this method valuable for a wide variety of application domains. inguitation
of MBSS is in progress, and we discuss this method in more detail in Chapter 5.

8.2.2 Real-time cluster detection and investigation

As discussed above, our “fast spatial scan” and “Bayesian spa#ial’ snethods each enable us
to perform automatic cluster detection in under one hour (instead of dayseaks) for massive
real-world datasets. It is likely that the fast spatial scan can be madefasten in future work,
and we are considering several ways to accomplish this, including moressgg forms of region
pruning, simultaneous testing for multiple clusters and multiple parameter valetts; bse of
cached statistics, and several detailed implementation issues. The fast Sgtizan also be
efficiently parallelized, since each of tlie = 1000 replications can be performed in parallel, and
there are also multiple opportunities for parallel computation within each replicatio

An even more exciting avenue for future work arises from the fact tleefetst spatial scan and
Bayesian scan achieve their speedups in very different ways: theplaisal scan reduces the time
per replication by 100-1000x, while the Bayesian scan eliminates the neediftiple replications
(thus searching only a single grid instead of 1000). By combining these timongeas discussed
in Chapter 5, it should be possible to create a method which searches amjjyeagsid but does so
using a fast search rather than dweesearch. We estimate that this combination should reduce the
run time to under two minutes for national-level data. Even larger speetopsisbe possible by
incorporating the new Time Series Aggregation Cube (TCUBE) technolodgndevelopment by
the Auton Laboratory [130]: by enabling much faster aggregation of timiessdata, this cached
data structure should reduce scan time to a matter of seconds.

Our eventual goal is to be able to detect clustergeal timeeven for massive datasets. This
will allow near-instantaneous notification of emerging clusters (e.g. disgademics), especially
if data is made available incrementally and continuously streamed into the systeeoudn users
(such as public health officials) will be able to run large numbers of queries “point, click,
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and compute” basis, enabling them to rapidly obtain all the information they toeegiestigate,
evaluate, and respond to detected clusters. As discussed in ChaptigsiMumar Sabhnani and |
are working to combine our SSS cluster detection system with a viewer tced loasT CUBE, thus
enabling ad hoc browsing and spatial analysis of data from multiple, multieanmae series. This
will give the user the capability to rapidly and easily investigate the clusterglfoy SSS, as well
as performing any other desired investigations. As | discuss furthewpalmnger-term goal is to
automate much or all of the process of cluster detection and investigatiamimggpnly top-level
guidance from human users.

8.2.3 Extension to other data types

Our current multidimensional spatial scan approach takes as input fcseintsc; and baselines;
associated with spatial locations where each; corresponds to a point ifrdimensional Euclidean
space. This allows us to scan over records with any real-valued attriltitether these are spatial
attributes such as latitude and longitude, or other attributes such as time eag#, hnd weight.
Our scan returns hyper-rectangular regions corresponding tesarfigach attribute and containing
all s; within these ranges.

For computational efficiency, our current method discretizes eachvabatd attribute uni-
formly into a user-specified number of buckets, thus creatidglamensional grid structure. This
discretization makes it easy to handle ordered categorical values (e.deailes, movie ratings)
as well as real-valued attributes. However, the discretization of reagdatiributes risks losing
detection power and spatial precision when it aggregates distinct spatsiblos into a single grid
cell. In some applications, such as brain imaging, the data we receive badyabeen aggregated
to a grid structure. But in other applications, such as disease survejllaaaeceive information
about the exact coordinates of each data point and would like to maintaintalsofeprecision.
In this case, we can map points tman-uniform grid drawing grid lines corresponding to the dis-
tinct spatial coordinates of our data points in each dimension. An extrers®mwnesf this would
be to have a grid of siz&l; x M> x ... x My, whereM; is the number of distinct coordinates in
dimensioni. Since this would create grids of overly large size for most realistic datagetsan
“round” coordinates which are close to each other to the same value, allowito reduce the size
of the grid as desired (with the tradeoff being decreased precisio®) pfilem with this approach
is that the resulting grid is likely to be very “sparse,” containing many grid egtls low or even
zero counts. Thus a search of all gridded regions (even one aateeldry the fast spatial scan tech-
niques discussed above) may waste valuable time by searching regiomsamhigpatially distinct
but contain identical sets of data points. Our solution to this problem was pogeesmart ndve
approach for iterating over all distinct axis-aligned rectangular regibhnis technique uses an “in-
cremental addition” algorithm somewhat similar to Kulldorff’'s method for deiag over circles;
it should be significantly faster than aine gridded approach when the grid is sparse, but since
no pruning is done, it must actually search over all of the distinct rectanglie are also working
to extend ourfast spatial scampruning approach to non-aggregate data: our proposed approach is
to use an overlap-kd tree withcal gridding (creating a different resolution of non-uniform grid
at each node of the tree), pruning regions when possible, and usimgntmt n&ve approach on
regions that cannot be pruned.

Thus we have considered how to search over multidimensional data wittalead and ordered
discrete-valued attributes. We now consider how to deal with unordéserkte-valued attributes:
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the difficulty here is that we can no longer focus our search on ranfgie @ttribute, but must
consider all of the exponentially many combinations of attribute values as digtgions. One pos-
sibility would be to make some sort of simplifying assumption, e.g. assuming thatterctontains
no more thark distinct values of the attribute. It is also possible that, for attributes with relgtiv
few values, that cached data structures such as TCUBE (discusses) and AD-trees [106] will
make it possible to search exhaustively over all sets of values. Fortalesé data types, we must
think carefully about how to estimate the baselines or expected countsclorezord or range of
attributes. One possible approach may be to use Bayes Nets as an ugderbjdabilistic model,
building on prior work by Schneider and Moore [135]. This may also allaegration of our work
with the What's Strange About Recent Events (WSARE) methods of Woal [d59, 160, 161].
One eventual goal of our work is to develop general methods for findimggtpatterns in data
which are most significant, relevant, or anomalous. We plan to achieve tlaigbgeralization of
cluster detection, in which we search for subsets of the data which agectlifffrom their expecta-
tion (or from the rest of the data) in some similar way, as if all of these reduwad been affected by
some common (but possibly unknown) process. In a Bayesian framgwexkan combine the prior
probability that a process has affected a particular set of records \eittietia likelihood given this
process and affected “group,” and use machine learning methods tthiefiype and parameters of
the underlying process. This method extends cluster detection, in thatrthg"ds not limited to
a spatial region (or spatially proximate set of points) but can represgrmation of the attribute
space or any subset of records. Additionally, searching over grbap several advantages over
the typical method of searching for individual “anomalous” points: we @atect subtler trends
which would not be obvious from any single record, as well as finditgy&feaecords which are not
individually anomalous, but have interesting patterns of interaction.

8.2.4 Detection of irregular clusters

While our discussion above has focused on detecting either axis-alignehted rectangular clus-
ters, it may also be useful to extend our methods to the detection of irregsifembed clusters. For
example, given data for a set of zip codes, we might want to searclathvegionsS containing a
connected set of zip codes, including both rectangular and non-gedéamegions. Scanning over
irregular regions would give us higher power to detect clusters withsahed cannot be approxi-
mated by a (rotated) rectangle. Additionally, scanning over connectesheegllows us to perform
cluster detection in a general metric space (given only the connectiondistadces between ad-
jacent points), rather than requiring the points to be embedded in gafimeensional Euclidean
space. This enables us to apply the spatial scan to link and network datasgtsiany other
datasets that are not “spatial” in the traditional Euclidean sense.

However, it is clear that the set of all connected regions will be venelémg most practical
applications, making it computationally infeasible to search over all suchnggfalditionally, we
might believe that some such regions are much more likely to be clusters thas: dtneexample,
we might believe that clusters are unlikely to be highly irregular in shape,abithiey are likely
to follow the shape of a river or highway. Thus any method of searclongriegular clusters
must answer two questions: what subset of regions to search, antb asight the likelihoods of
these regions. In the frequentist setting, we can search for the rap@minsiaximize a penalized
likelihood ratio statistic, and calculate the statistical significance of these selgyormndomization.
For example, Duczmal et al. [41] assume that compact clusters are mdyeHie highly elongated
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clusters, and thus they use a penalized statistic that multiplies the likelihood raimieasure of
the cluster's compactness. In the Bayesian setting, on the other handnweeight regionss' by
assigning them different prior probabilities(Pf; (S)), ensuring that Rit/y) + >~ ¢ Pr(H:(S5)) = 1.

We now consider three possible ways of choosing which subset ofned¢iosearch: using
natural features of the domain, scanning some set of “not-too-irrégelgions, or searching only
those regions that are most likely to be potential clusters. We are currewdistigating several
variants of the spatial scan that use natural features to choose gaamsreAs one example (joint
work with Maheshkumar Sabhnani and Andrew Moore), we can ruraiadfgcan along a river or
highway. This method enables us to detect outbreaks that are carrieatéry ly airborne release
from a moving vehicle, or by human-to-human transmission along a transportaute. In this
case, we scan over the set of regighs= (z1, 2, d) consisting of all points within distancé of
some point on the river between starting paintand ending poink,, wherex+, z2, andd are all
allowed to vary. Another possibility would be to group the zip codes by watsspire zone and
use these as our set of scan regions; this method is being used in jointtloN@han Grigoryan,
Maheshkumar Sabhnani, and Mike Wagner.

Another option is to choose some subset of the connected regions cansistilusters that
are “not too irregular.” These methods decide which regions to seastdbonly on the spatial
distribution of locations. For example, the “flexible scan statistic” of Tangb Eakahashi [144]
searches over connected regighsonsisting of some locatios) and some (possibly empty) subset
of its K — 1 nearest neighbors. This algorithm is only feasible for small to medium clsiges, as
its run time is over one week fdx > 30. We are investigating another method which first forms a
hierarchical clustering of the spatial locations, then scans over albrindlee resulting hierarchy of
regions. This method is somewhat similar to Kulldorff’s tree-based scantistf8i3], but learns the
hierarchy from data rather than being provided with this hierarchy inraxbeBecause the number
of regions searched scales only linearly with the number of locations, thiothithvery fast even
for large datasets, but detection power will be substantially reducedhjoclasters that cut across
our partition of the space. To improve detection power, at the expenserebsed computation
cost, we can search connected regions consisting of pairs (or l@tggpfnodes that are nearby in
the hierarchy.

The final class of methods for irregular cluster detection attempt to focusetireh on those
regions which are most likely to be clusters. As noted by Patil and Taillie [1Rd$e methods take
one of two approaches: to perform a heuristic search over the sehoécted regions using some
stochastic optimization method, or to use some preprocessing step to identifyed sticandidate
regions to search. Duczmal et al. [38, 39] propose two heuristic s@aethods (using simulated
annealing and genetic algorithms respectively) which enable them to findn@ated region that
approximately maximizes the penalized likelihood ratio statistic. Because heurigtiodseare
used, convergence to the most significant cluster is not guarantegdhiammay also affect the
precision of the resulting-value. Patil and Taillie [124, 125] instead perform an exhaustiveckear
over a subset of the connected regions. This subset is computed imgfaiddistinctupper level
setsof the graph, where an upper level set consists of all locations with rgtehthan some
threshold. They then search over the connected components of thrdeygdsets. We are currently
investigating another method (joint work with Maheshkumar Sabhnani) wisies adiscriminative
random field (DRF) to identify potential clusters then searches only ogsettiusters. This method
differs from the others because it relies heavily on the ability of the DRF tbrétevant clusters;
the resulting scan may be over a very small number of potential clusterseratall.
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We note that all of these “focused search” methods choose a diffezenf clusters to search
for each dataset, and thus for each replica dataset if randomization tegtejdemed. This has
two effects: first, because the search must be performed again foreglica, computationally
expensive search methods will lead to very large run time. Second, asybiariance in the
search method will lead to imprecision in the calculagedalue, and a large number of replicas
may be necessary. Nevertheless, thalue is asymptotically unbiased (i.e. uniformly distributed
on [0, 1] under the null) as long as no distinction is made between original and reptasetain
our search. We could avoid this issue by using the Bayesian spatialladen,this case we must
decide whether to condition the prior probability of attack on the number asmedound, and this
decision depends on the properties of our focused search method.

8.2.5 Tracking disease state over time

In disease surveillance, it is important not only to detect potential clustelisease but also to in-
vestigate and evaluate these clusters. One necessary tool for pulthcusess is to be able toack
the detected clusters over time: for example, they might want to examine tle@cprogression of
a previously detected cluster, or look back in time to find other clusters tedapwvith the current
cluster. We are in the process of implementing these tools (using the new TGtolure for
computationally efficient time series aggregation and analysis) and addmgahsur SSS cluster
detection software. Nevertheless, these methods of tracking clustexd hoe investigation tools,
and do not improve our ability to detect clusters. On the other hand, we naghible to achieve
better detection power by drawing inferences about the underlyingsdistate in each spatial lo-
cation, and tracking this disease state over time. One possible approalchb@dao use a separate
hidden Markov model (HMM) for each location, using the current argl paservations (counts and
baselines) to infer the most likely sequence of disease states for thatamteprevious time steps.
Brigham Anderson is currently working on a multivariate HMM model for d&e surveillance,
and one of our long-term goals is to combine this method with spatial scan,rdatgg a method
which can both track disease state and take spatial information into accoueweA more powerful
approach might be to move from the HMM approach to one which incorpoeakéarkov random
field (MRF) or hidden Markov random field (HMRF). This would allow us todabthe probabilis-
tic relationships between adjacent spatial locations, enabling us to adoowsmatial correlation
and to explicitly model the spread of disease.

8.2.6 Automatic learning from user feedback

As discussed above, the multivariate Bayesian scan statistic approacHhomilLia to discriminate
between relevant and irrelevant clusters by incorporating probabilistiela@f each potential
cause of a cluster. One challenge is that the number of potential causée may large, including
both a variety of relevant causes (e.g. different outbreak types inisgbask surveillance domain)
and a variety of irrelevant causes (e.g. inclement weather). It woudchiagge amounts of an expert's
time and knowledge to model each of these potential causes, and manyasisels cnay not be
recognized until they are observed in practice. Thus we need some fwgicly and easily
adapting our models, without imposing an undue burden on human usergoSsibility is to learn

the causal modelautomaticallyfrom user feedback. The idea is that users can classify detected
clusters into groups by labeling them as corresponding to one of a gétesf sauses, some of
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which are labeled as relevant and some as irrelevant. A model for eéehtipbcause is learned
automatically from the labeled examples corresponding to that cause. An seitiaf causes can
be provided in advance, but the system’s utility would be increased by asimgnomaly detection
methods to automatically propose new causal models when none of theifiirgesauses are able
to explain the data.

One eventual goal of this work is to generalize our cluster detection meittods general and
widely applicable system for the automatic discovery of relevant patteros.pf@posed system
combines pattern detection and investigation with two forms of model learningiingaa model
of the environment from observation, and learning a model that discrimihalesant” from “ir-
relevant” patterns using human feedback. We combine these techniquedteraive process
consisting of four stages. In tletectionstage, the system automatically detects potentially inter-
esting subsets of the data, using the general pattern detection technsmessed above to find
subsets of the observed data which are sufficiently anomaleasgroupto invalidate its current
environmental model. In thiavestigatiorstage, the system applies a given set of “tools” (e.g. statis-
tical tests) to gather more information about each detected pattern; pat@rasemot sufficiently
“robust” or “significant” may be discarded at this stage. In ¢xplanationstage, the system pro-
poses hypotheses as to potential causes of each pattern. A new Isypotirebe derived from the
data using our Bayesian data mining methods: in addition to detecting an anomedaps these
methods can infer a possible process that explains the anomaly with higdibityb We can also
obtain hypotheses from the current relevance model (which consistsef of potential causes
of anomalies, each labeled as relevant or irrelevant), and determineenfzety of these might
be sufficient to explain the anomalous group. More statistical tests caredegasompare these
hypotheses (e.g. examining how well the pattern generalizes to other, italidta), enabling the
system to choose a “best” hypothesis for each pattern. At this stageamwdiscard patterns that
can be “explained away” as being due to some irrelevant cause.

The final, and most interesting, stage of our systemadaslel revisiorvia incorporation of hu-
man feedback. In order to maximize the autonomy of the system, and minimize thenlum its
human “supervisor,” we use attive learningframework in which the system chooses a small set
of potentially relevant patterns and presents these for the human to crithgié the standard
active learning task, the system must choose between “exploitation’efrdieg patterns that are
most likely to be relevant) and “exploration” (presenting patterns that will avgpithe system’s
ability to discriminate between relevant and irrelevant). However, the systumries consist of a
detected pattermather than an individual data point: each pattern includes an anomalows gff
points, the system’s explanatory hypothesis as to the cause of this anonththearesults of the
investigations performed to verify this hypothesis. The response to thieses| can also be more
complex: in addition to deciding whether the pattern is “relevant” or “irreleVdine human can
also “correct” the system’s work in several ways, such as proposmgnehypothesis of what is
causing the anomaly, or modifying the anomalous group by adding or remdatagpoints. In ad-
dition to enabling the system to update its relevance model, this feedback mag@lse revising
the environment model, and possibly changing the set of investigation tablthain parameters.
For example, if the system incorrectly identifies a group as anomalous, itomuestt this miscon-
ception by generalizing its environment model to a larger hypothesis spaoeporating both the
original model and the system’s best hypothesis explaining the anomalmys gdur work toward
this general system for pattern discovery is still in the early stages, boeliexe it has the potential
to make a significant contribution to disease surveillance and many otherajapliareas.
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