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“Ordnung ist heutzutage meistens dort, wo nichts ist.
Es ist eine Mangelerscheinung.”

— Bertold Brecht1
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1Quote taken from the introduction to Paul Feyerabend’s “Against Method”
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Abstract

Data mining is the extraction of knowledge from large amounts of data [HK01] and brings
together the fields of databases, machine learning and statistics. Technological advances
have enabled the creation of huge data repositories. The need to turn such data into useful
knowledge has fueled the development of data mining techniques. From a database per-
spective, the emphasis is often placed on scalability and efficiency. Practical approaches can
afford only a single or, at best, a few passes over the data, i.e., the algorithmic complexity
must be linear with respect to dataset size.

Recently, in addition to the data warehouse model where data from multiple sources are
integrated into a large store, the streaming model is emerging as an alternative data processing
paradigm. Several applications produce a continuous stream of data (e.g., phone call detail
records, web clickstreams or sensor measurements) that is too large to store in its entirety.
Therefore, in stream mining we are allowed only a single pass over the data, without random
access. Upon arrival of new observations, we have to incrementally update the data model.
Furthermore, space complexity must be sublinear with respect to dataset size.

In this thesis we develop spatial and stream mining tools for discovery of interesting pat-
terns. These patterns summarise the data, enable forecasting of future trends and spotting
of anomalies or outliers. Beyond the emphasis on efficiency and scalability, we focus on
simplifying or eliminating user intervention. Data mining algorithms must make the dis-
covery task easy for average users. Unfortunately, many of the existing techniques require
non-trivial user intervention at several steps of the process. Eliminating the requirement for
user intervention should be a top priority in designing data mining methods.

We show that multi-resolution analysis (i.e., examining the data at multiple resolutions
or scales) is a powerful tool towards these goals. In particular, for spatial data we employ
the correlation integral. For time series streams we use the wavelet transform and related tech-
niques. Furthermore, we leverage tools from signal processing (again wavelets and, also,
subspace tracking algorithms) to extract patterns from streams. Finally, we also employ com-
pression principles coupled with multi-level partitionings to automatically cluster spatial
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data.
The first two parts of this thesis focus on spatial mining methods. In the first part we

examine homogeneous spatial data, where all points belong to one class. In the second part
we examine heterogeneous spatial data, where the points may belong to two or more differ-
ent classe (e.g., species, galaxy types, etc). Finally, in the third part we focus on numerical,
time series streams and mining techniques for both single and multiple streams.
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Chapter 1

Introduction

Data mining is the natural evolution of information technology and driven by a data-rich
but information-poor situation [HK01]. The incorporation of digital computers in most as-
pects financial, industrial, scientific and even daily activities has led to the collection of large
amounts of data. For example, retailers store details on each sales transaction (such as list
of items purchased), long-distance service providers store call detail records for each phone
call [GKMS01], astrophysicists collect numerous information (such as position and absolute
brightness) for several hundred million celestial objects [SDS], and so on.

In all the above cases, individual data records have limited usefulness. However, when
the data are viewed in the right way and at the appropriate level of detail (neither of which
are known in advance), we may be able to extract informative patterns. For example, the fact
that a customer bought milk last Monday at 6:20pm may be of limited use. However, the fact
that 65% of the customers who bought milk also bought cookies may, for example, help in
choosing product placement. Or, the fact that a particular elliptical galaxy with luminosity
5.75× 1027 Watts is present at specific coordinates may not be very interesting. However,
the fact that elliptical and spiral galaxies generally do not occupy the same region in the sky
(within, say, a fraction of a degree) may help in explaining or verifying physical phenomena.

Development of data mining has been driven by the desire and need to extract concise
and informative nuggets of knowledge out of these vast stores of raw data. Thus, data min-
ing is the adaptation of machine learning and statistical processing techniques to very large
collections of data. This adaptation usually relies on effectively exploiting and incorporating
database technologies and methods.

In contrast to traditional database and information processing systems, data mining
methods seek to discover patterns and trends in the data, as opposed to answering spe-
cific user queries. For example, a traditional database system is designed to answer queries
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such as “what is the average population density in New York?” or “what was the average
temperature in Pittsburgh?” Data mining seeks to find interesting pieces of information,
such as “the average population density in Manhattan is significantly higher than the state
average” or “tomorrow’s temperature in Pittsburgh will be about 82◦F (28◦C).”

In contrast to traditional statistics and machine learning, data mining techniques place
the most emphasis on scalability to large datasets (in the order of gigabytes or terabytes of
data), rather than theoretical issues and properties (such as consistency, bias and statistical
efficiency). However, machine learning also places an emphasis on computational efficiency,
but to a lesser extent, at least traditionally. In fact, practical data mining approaches can
afford only a single or, at best, a few passes over the data, i.e., the algorithmic complexity
must be linear with respect to dataset size.

In addition, applications may also generate data in the form of streams. In this setting,
massive amounts of data are produced and traditional systems cannot store and process
them sufficiently fast. In fact, in some cases it may not be desirable or even feasible to store
all the data. For example, network operators may collect information for each data packet
that travels across the network. With billions of packets transmitted daily, the amount of
such data can potentially be vast. However, end users or higher level applications still wish
to extract useful information and patterns, often requiring immediate responses and unable
to afford any post-processing. The streaming data model may be viewed as a generalisation
of the traditional data warehouse model when the dataset size grows to infinity.

In the most general case, each individual data record (whether in a streaming setting or
not) may be a tuple with fields of arbitrary data types (e.g., binary, numerical or string).
We focus primarily on numerical values. Thus, datasets may be either a static collection of
multi-dimensional vectors or infinitely growing time series. In this thesis, we will use the
terms spatial data and stream data to refer to each of these cases, respectively.

At a very high level, there are several possible data mining tasks. In this thesis we focus
on unsupervised methods and primarily on clustering and outlier detection. For time series
streams we also examine forecasting models. These tasks are frequently inter-related, as
explained in Section 1.2.

Finally, algorithms for discovering concise and informative patterns are unavoidably
based on some prior notion of what to look for. In other words, starting from some set of
models that can concisely describe the data, an algorithm will search for the best model. The
family of models may be very broad and, consequently, allow discovery of several interest-
ing, non-trivial patterns, so this prior “bias” is not as restrictive as it may sound. However,
some data mining algorithms require the user to provide some non-trivial parameters that,
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Chapter 1. Introduction

in some way, guide the search for the best model. Example of such parameters may be the
number of clusters, the range of distance or time scales at which to examine the data, etc.
This information is typically not known in advance. Data mining algorithms must make the
discovery task easy for average users. We want to design methods that do not expose the
users to any such parameters, even though the prior “bias” is impossible to eliminate. The
search should return some patterns without requiring any guidance of this form.

1.1 Our contributions

In this thesis we develop tools for spatial and stream mining that satisfy the following re-
quirements:

• Parameter free: Our methods should be able to search the space of patterns without
requiring human intervention and guidance.

• Expressive: Our models should provide concise, powerful and intuitively interpretable
patterns.

• Scalable and any-time: Our algorithms should scale to very large datasets, which prac-
tically means that they should require only one pass over the data. In the case of
streams, we have to incrementally update the models and be able to provide up-to-
date patterns instantaneously, while using limited memory.

This thesis focuses on the tasks of outlier detection, as well as clustering and forecasting. In
the following sections, we elaborate on these tasks, on the broad range of data models we
assume and on our proposed methods.

1.2 What: models, forecasts and outliers

Next, we discuss the main data mining tasks we focus on. In this thesis, we consider clus-
tering and forecasting and also forecasting, which is, in a sense, the “dual” of the first two
problems. First we give some informal definitions of these tasks.

Definition 1 (Clustering). Given a set of data points, partition them into groups such that “simi-
lar” points are placed in the same group and “dissimilar” points are placed in different groups.
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1.3. How: parameters

In other words, clustering seeks to find groups of objects based on their “similarity,”
appropriately defined. Such a group of similar objects (i.e., a cluster) provides insights about
patterns present in the data, in terms of their spatial properties. Each cluster is essentially
a pattern. For example, the size of a cluster, the features that account for the similarity of
its members and the extent of the cluster in each of the feature dimensions may be elements
of such a pattern. The set of clusters also also provides useful information (e.g., how many
such patterns are present in the dataset).

Definition 2 (Forecasting). Given a sequence of data points, try to predict the next one or more
points.

Forecasting seeks to find patterns along the time dimension, as opposed to the feature or
spatial dimension. Thus, forecasting models also incorporate the “arrow of time” and are
typically generative (as opposed to descriptive).

Definition 3 (Outlier detection). Given either an (unordered) set or a sequence of points, try to
find those that deviate from “normal” (i.e., typical) behaviour.

Clustering and forecasting seek to find the “normal” spatial patterns and trends, respec-
tively. Hence, outlier detection may be viewed as the “dual” problem: points that deviate
from the typical spatial distribution or temporal trends are outliers.

1.3 How: parameters
As explained before, any algorithm for discovering concise and informative patterns is un-
avoidably based on some prior notion of what to look for. Designing a data mining method
requires striking the appropriate balance, so as to achieve the following goals:

• Model design: A model should be both powerful and concise. These two desiderata
are partly conflicting. It is easy to create models that have high descriptive power, at
the expense of description length and vice versa.

• Algorithm design: The models should admit search strategies that do not require user
guidance in the form of data dependent parameters.

Since data mining algorithms must make the discovery task easy for average users and al-
low the extraction of information that was previously unknown, a top priority in designing
data mining methods should be to eliminate, as much as possible, the requirement for user
intervention to guide the search for patterns.
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Our main approach to deal with is that any parameters involved are typically data driven,
as opposed to data dependent. Hence, the output of our algorithms is less sensitive to these
parameters in the sense that they typically produce some meaningful results regardless of
the chosen values and parameter defaults are typically sufficient. As a simple illustrative
example, consider the problem of detecting outliers, based on some predefined notion of
pairwise “similarity” or distance. One possible scheme would be to detect as outliers those
points p for which at least F% of the remaining points are at a distance D or more from p.
However, the parameter D is data dependent and their choice depends essentially on the
distribution of pairwise distances. A better approach might be to choose a distance thresh-
old relative to, say, the mean pairwise distance (as opposed to an absolute distance value).
Thus, we may instead flag as outliers those points for which F% of the points are at a distance
larger than µD + kσD , where µD and σD are the average pairwise distance and its standard
deviation. We still have the parameter k (instead of D), but the outlier flagging criterion
is now data driven, as opposed to data dependent. Of course, this scheme is very simple
and suffers from other problems such as, e.g., local variations in the pairwise distance dis-
tribution (see also Chapter 3). This is because the data model is very simple: we essentially
assume that all points are drawn from a single distribution. However, by choosing an ap-
propriate data model and by framing the problem so that any parameters are data driven,
we can get high-quality results with no user intervention. Finally, we also employ princi-
ples from information theory and compression in order to choose both the best model (i.e.,
parameters) as well as the specific parameter values (see also Chapter 9).

1.4 Spatial data
In this section we discuss the spatial data models considered in this thesis. In this thesis we
consider mainly pure spatial data, as well as extended spatial data where each point may
also have non-spatial attributes or features. First, we give the high-level definitions of the
data models we assume, in their most general form.

Definition 4 (Spatial data model). The dataset D consists of d-dimensional vectors, i.e., it is of
the form D := {x1, x2, x3, . . . , xn}, with xi ∈ R

d, for 1 ≤ i ≤ n.

For spatial data, we consider the problems of outlier detection (Chapter 3 and 4), as well
as the “dual” of clustering (Chapter 5).

Definition 5 (Extended spatial model). Each item in the dataset D is a d-dimensional vector
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together with m binary attributes (or features). Formally, the dataset D is of the form D := {(x1, a1),
(x2, a2), . . . , (xn, an)}, with xi ∈ R

d and ai ∈ {0, 1}m, for 1 ≤ i ≤ n.

We will consider the case m = 1 for outlier detection (Chapter 8). For clustering, we
consider the problem of simultaneously grouping the points and the binary attribute fields
(Chapter 9). In the latter case, we restrict the problem to raster data, where essentially each
data point xi belongs to N

d, instead of R
d as is the case for arbitrary vector data. Con-

sequently, we employ techniques from image compression to group both the pixels (i.e.,
points) as well as binary attributes. Note that, from a general vector data set we may con-
struct a raster data set by appropriately discretising the space (for example, substitute geo-
graphical longitude and latitude with city blocks).

1.4.1 Example domains and applications

In this section we describe briefly application domains where spatial data arise and give
some illustrative, intuitive examples.

Biodiversity and geographical data In a number of applications, the numerical coordi-
nates are low-dimensional and correspond to geographical location.

• Such data are collected for ecosystems and other natural systems, for example chim-
panzee locations painstakingly collected over several decades [Goo84], or presence of
several hundreds of bird species over a large area [LMP03], etc.

• In geographical/geopolitical applications, we may have points that represent popu-
lations, land and water features, regional boundaries, retail locations, police stations,
crime incidence and so on.

These data are particularly rich and a number of analyses are possible. For example, some
interesting patterns are:

• Most chimpanzees tend to cluster together and occupy the same locations, except for
a few isolated individuals which may merit special study.

• Houses and retail stores generally tend to occupy different areas, with few exceptions
(e.g., large metropolitan areas). Such information can help, for example, in city plan-
ning.
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• The relative density of police stations with respect to either houses or crime incidence
is constant, with the exception of some locations. This may indicate, e.g., poor coverage
at some locations (say, if the relative density of stations is lower), or other factors that
affect crime rate (say, if the relative density of crime incidence is higher).

Astrophysics data Astrophysicists and astronomers catalogue the location and absolute
intensity of celestial objects, such as galaxies. Viewed abstractly, this type of data is similar
to geographical data. However, the scale of ongoing cataloguing efforts is very large [SDS].
Furthermore, even single deviant observations would potentially be of great interest; it is
well known that the distributions of different celestial objects follow certain laws and any
violations would indicate either interesting phenomena or data acquisition errors. Finally,
the dimensionality of the data may be quite large (except coordinates and intensity, various
other properties are often measured, such as redshift, ). For all these reasons, this type of
data deserves special attention. Interesting patterns may be, for example:

• Elliptical and exponential galaxies form small clusters of one type and these clusters
“repel” each other.

• In the extended space of all numerical properties, celestial objects tend to occupy only
certain subspaces.

User profile data In several cases (e.g., retail, websites [ABKS99], network operators) user
profile data are routinely collected. Discovering clusters and outliers in such data would
help in tasks such as website design, product targeting, etc.

Other In a number of cases, data points may not necessarily belong to a multi-dimensional
Euclidean space or even to a vector space. However, in several cases, a notion of object
similarity can be established, by means of a distance function that often satisfies the triangle
inequality. Such data could potentially be embedded in a vector space, but that may be time
consuming. Our basic definitions apply in the case of metric spaces as well and our methods
can be extended to handle such cases. Some examples of such data and application domains
are:

• Document collections, with distances such as cosine similarity.

• Images and in general multimedia data, which in raw form may be treated as vectors
but, often, a better approach is to represent them via a smaller set of extracted features
(such as average intensity, colour histograms, texture information etc).
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• Graphs, with similarity established via graph kernels or other means.

1.5 Stream data

In this section, we discuss the stream data model considered in this thesis. In general, indi-
vidual records generated by a stream may contain values of arbitrary types (e.g., numbers—
such as temperature, network packet counts, stock prices, etc.—or strings—such as URLs
visited). In this thesis, we consider numerical streams, both single (equivalently, scalar-
valued time series) as well as multiple (equivalently, vector-valued time series). Essentially,
in contrast to spatial data, the data set size grows without bound. Thus, for our investiga-
tions, the stream data model we consider is the following.

Definition 6 (Stream data model). The dataset D is a growing sequence of n-dimensional vectors,
i.e., it is of the form D := {x1, x2, x3, . . . , xt, xt+1, . . .}, with xi ∈ R

n, for i ≥ 1.

For multiple streams, we assume all measurements are available together at a single site
(i.e., the vector consisting of all measurements for a single time tick is available at some
node). Distributed processing is beyond the scope of this thesis. Still, the continuous arrival
of data as well as the large number of streams pose significant challenges for incremental,
any-time mining.

1.5.1 Example domains and applications

In this section we describe briefly some application domains where time series stream data
arise and give some illustrative, intuitive examples.

Sensor data Sensors are small devices that gather measurements of physical systems, both
natural and artificial.

• Examples of the former are sensors for temperature, humidity, light intensity (e.g.,
from the sun) and other environmental parameters, river gauges, geological and seis-
mological observations, patient physiological data, etc.

• Sensors are also being embedded to monitor human-made structures, such as measur-
ing bridge or building vibrations, road traffic, chlorine concentration within drinkable
water distribution networks, etc.

8
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There are numerous, fascinating applications for such sensors and sensor networks, in fields
such as health care and monitoring, industrial process control, civil infrastructure, road traf-
fic safety and smart houses, to mention a few. Some examples of interesting patterns would
be:

• Automobile traffic follows a clear daily periodicity. Also, in each day there is another
distinct pattern (morning and afternoon rush hours). However, at an hour scale traffic
is highly irregular and bursty.

• All sensors measuring chlorine concentration follow the same periodic trend, which
a human may map to the normal water demand pattern. However, at some point in
time, a new, uncorrelated trend may appear, e.g., due to a leak affecting water flow in
the neighbourhood of some sensors or due to contamination of the water distribution
network.

Network monitoring Detailed network usage and profiling data are collected in modern
telecommunications networks.

• One of the main goals are performance monitoring and analysis, which in turn will
help in improved network planning (routing, resource allocation and provisioning,
etc) [GKMS01, LPC+04].

• Furthermore, numerous network probes are deployed today in the Internet, to aid in
anomaly and intrusion detection. Such data are collected from multiple locations into
large repositories [ISC] and subsequently analysed.

Some examples of interesting patterns may be:

• Network traffic follows a periodic pattern, with occasional spikes during Christmas.
This may help in provisioning network resources as necessary.

• Traffic flows exhibit high correlations and the set of traffic flows may be summarised
by a few hidden variables, each describing a correlated trend. Which nodes participate
in each trend may provide useful insights for network planning.

• There is a sudden increase in traffic to a set of machines. Furthermore, this new traffic
is highly correlated among these machines. This may be an indication of a distributed
denial of service (DDOS) attack, which may be hard to discover by simpler methods
(such per-server traffic rate monitoring and naive thresholding).

9
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Financial applications In the financial domain there are several sources of time series
stream data.

• A typical example is stock quotes, which generate thousands of streams updated every
few minutes [ZS02]. The analysis of market trends and correlations is a very important
application.

• Furthermore, financial institutions collect and maintain account historical data, such
as balance or transfer activity over time. Again, trends and correlations in such time
series may help in planning as well as fraud detection.

In all of the above cases, incremental processing of such data and any-time reporting of
trends and correlations is an important but difficult task. Some possible patterns of interest
would be:

• The market generally follows, e.g., daily and yearly cycles. At the current moment, the
overall trend is falling and most stocks reflect that. However, a group of, e.g., some
bio-tech companies exhibit high correlation among themselves and do not follow the
global trend.

• Account balances follow a certain trend. However, for the past couple of days, there
are suspicious correlations among some of these accounts.

1.6 Thesis overview
Our main technique is multi-resolution analysis. We also use ideas from signal processing,
information theory and compression. The outline of the thesis is shown in Figure 1.1. Next,
we describe each of the parts in more detail.

1.6.1 Part I — Homogeneous spatial data

In this part we consider homogeneous spatial data, where each point has only spatial fea-
tures. More precisely, all data points belong to a multidimensional vector space (see Definition 4)
or, more generally, to a metric space1. Our techniques rely on examination of the dataset at
multiple distance scales. We employ both the first and the second moments of pairwise
distance distributions. More specifically, our main tools are the local correlation integral (see

1A metric space is a set of points together with a distance function that satisfies the triangle inequality.
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Figure 1.1: Thesis outline.

Chapter 3), which is essentially the cumulative distribution function (CDF) of pairwise dis-
tances restricted to a local neighbourhood around each point in the dataset, as well as neigh-
bour growth curves (see Chapter 5), which describe how the number of neighbours around
each point grows with respect to distance.

In Chapter 3 we we propose a new method for evaluating “outlier-ness,” which we call
the Local Correlation Integral (LOCI) [PKGF03]. As with the best previous methods, LOCI is
highly effective for detecting outliers and groups of outliers (also known as micro-clusters).
In addition, it offers the following advantages and novelties: (a) It provides an automatic,
data-dictated cut-off to determine whether a point is an outlier—in contrast, previous meth-
ods force users to pick cut-offs, without any hints as to what cut-off value is best for a given
dataset. (b) It can provide a LOCI plot for each point; this plot summarises a wealth of infor-
mation about the data in the vicinity of the point, determining clusters, micro-clusters, their
diameters and their inter-cluster distances. None of the existing outlier-detection methods
can match this feature, because they output only a single number for each point: its outlier-
ness score. (c) Our LOCI method can be computed as quickly as the best previous methods.
(d) Moreover, LOCI leads to a practically linear approximate method, aLOCI (for approximate
LOCI), which provides fast highly-accurate outlier detection. To the best of our knowledge,
this is the first work to use approximate computations to speed up outlier detection.

In Chapter 4 we present outliers by example (OBE) [ZKPF04] to incorporate user feedback,
without exposing users to any parameters. Instead, we try to infer the (few) parameters
from user examples. A fundamental issue is that the notion of which objects are outliers
sometimes varies between users or, even, datasets. We present a novel, user-friendly solu-
tion to this problem, by bringing users into the loop. Our OBE (Outlier By Example) system
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is, to the best of our knowledge, the first that allows users to give some examples of what
they consider as outliers. Then, it can directly incorporate a small number of such examples
to successfully discover the hidden concept and spot further objects that exhibit the same
“outlier-ness” as the examples.

In Chapter 5 we present dimension induced clustering (DIC) [GHPT05] and develop a para-
meter-free transformation of high-dimensional points into a pair of local dimension and
local density features, which can be used to cluster points belonging to low-dimensional
manifolds. It is commonly assumed that high-dimensional datasets contain points most of
which are located in low-dimensional manifolds. Detection of low-dimensional clusters is
an extremely useful task for performing operations such as clustering and classification, nev-
ertheless, it is a very challenging computational problem. We study the problem of finding
subsets of points with low intrinsic dimensionality. Our main contribution is to extend the
definition of fractal correlation dimension, which measures average volume growth rate, in
order to estimate the intrinsic dimensionality of the data in local neighbourhoods. We pro-
vide a careful analysis of several key examples in order to demonstrate the properties of
our measure. Based on our proposed measure, we introduce a novel approach to discover
clusters with low dimensionality. The resulting algorithms extend previous density based
measures, which have been successfully used for clustering.

1.6.2 Part II — Heterogeneous spatial data

In the first part, we consider “pure” spatial data. In this part we develop mining methods
when each point has one or more binary attributes (or features) associated with it, besides
its spatial location (see Definition 5. For example, galaxies may belong to one of two types
(say, spiral or elliptical) or patches of land may contain several among tens or hundreds of
different species.

In Chapter 8 we introduce cross-outliers [PF03]. To the best of our knowledge, work on
outliers up to date focuses exclusively on the problem as follows [Haw80]: “given a single
set of observations in some space, find those that deviate so as to arouse suspicion that
they were generated by a different mechanism.” However, in several domains, we have
more than one set of observations (or, equivalently, as single set with class labels assigned
to each observation). A single observation may look normal both within its own class, as
well as within the entire set of observations. However, when examined with respect to
other classes, it may still arouse suspicions. Thus, we consider the problem “given a set
of observations with class labels, find those that arouse suspicions, taking into account the
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class labels.” Many of the existing outlier detection approaches cannot be extended to this
case. We present one practical approach for dealing with this problem.

In Chapter 9 we consider spatial data consisting of a set of binary features taking val-
ues over a collection of spatial extents (grid cells) and we propose a method that simulta-
neously finds spatial correlation and feature co-occurrence patterns, without any parame-
ters [PGT+05]. In particular, we employ the Minimum Description Length (MDL) principle
coupled with a natural way of compressing regions. This defines what “good” means: a
feature co-occurrence pattern is good, if it helps us better compress the set of locations for
these features. Conversely, a spatial correlation is good, if it helps us better compress the
set of features in the corresponding region. Our approach is scalable for large datasets (both
number of locations and of features).

1.6.3 Part III — Streams

In this part, we consider numerical, time series streams (see Definition 1.5) and develop
methods to capture trends at multiple time scales on a single stream, as well as correlations
among multiple streams.

In Chapter 12 we present AWSOM (Arbitrary Window Stream mOdeling Method) [PBF03]
which allows us to make long range forecasts using limited resources. It allows us to effi-
ciently and effectively discover interesting patterns and trends. This can be done automati-
cally, i.e., with no prior inspection of the data or any user intervention and expert tuning be-
fore or during data gathering. Our algorithms require limited resources and can thus be in-
corporated in sensors—possibly alongside a distributed query processing engine [CCC+02,
BGS01, MSHR02]. Updates are performed in constant time with respect to stream size, us-
ing logarithmic space. Existing forecasting methods (SARIMA, GARCH, etc) or “traditional”
Fourier and wavelet analysis fall short on one or more of these requirements. To the best of
our knowledge, AWSOM is the first framework that combines all of the above characteris-
tics.

In Chapter 13 we present SPIRIT (Streaming Pattern dIscoveRy in multIple Time-series) [PSF05].
Given n numerical data streams, all of whose values we observe at each time tick t, SPIRIT
can incrementally find correlations and hidden variables, which summarise the key trends
in the entire stream collection. It can do this quickly, with no buffering of stream values and
without comparing pairs of streams. Moreover, it is any-time, single pass, and it dynami-
cally detects changes. The discovered trends can also be used to immediately spot potential
anomalies, to do efficient forecasting and, more generally, to dramatically simplify further
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data processing.
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Chapter 2

Introduction

In this part we consider homogeneous spatial data, where each point has only spatial fea-
tures. More precisely, all data points belong to a multidimensional vector space (see Definition 4).
More generally, they may belong to a metric space, where only a pairwise distance function
that satisfies the triangle inequality is required. Spatial data arise in several applications,
such as biodiversity, geographical and astrophysics data, as well as multimedia and infor-
mation retrieval, to mention a few (see also Section 1.4.1).

Our techniques rely on examination of the dataset at multiple distance scales. We employ
both the first and the second moments of pairwise distance distributions. More specifically,
our main tools are the local correlation integral (see Chapter 3), which is essentially the cumu-
lative distribution function (CDF) of pairwise distances restricted to a local neighbourhood
around each point in the dataset, as well as neighbour growth curves (see Chapter 5), which
describe how the number of neighbours around each point grows with respect to distance.

2.1 Outlier detection

In many applications (e.g., fraud detection, financial analysis and health monitoring), rare
events and exceptions among large collections of objects are often more interesting than the
common cases. Consequently, there is increasing attention on methods for discovering such
“exceptional” objects in large datasets and several approaches have been proposed [AY01,
AAR96, BL94, BKNS00, JKM99, JKN98, KN97, KN98, KN99, KNT00].

In Chapter 3 we lay the foundations for LOCI, a novel outlier detection method which
examines the dataset at multiple distance scales. As with the best previous methods, LOCI is
highly effective for detecting outliers and groups of outliers (also known as micro-clusters).
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In addition, it provides a data-dictated cut-off to determine whether a point is an outlier—in
contrast, previous methods force users to pick cut-offs, without any hints as to what cut-
off value is best for a given dataset. LOCI can also provide a LOCI plot for each point;
this plot summarises a wealth of information about the data in the vicinity of the point,
determining clusters, micro-clusters, their diameters and their inter-cluster distances. None
of the existing outlier-detection methods can match this feature, because they output only
a single number for each point: its outlier-ness score In Chapter 4 we present OBE (Outlier
By Example), a method to incorporate user feedback, without exposing the users to any
parameters. Instead, we infer those parameters automatically, from a list of examples given
by the user. Our OBE system is, to the best of our knowledge, the first that allows users
to give some examples of what they consider as outliers. Then, it can directly incorporate a
small number of such examples to successfully discover the hidden concept and spot further
objects that exhibit the same “outlier-ness” as the examples.

2.2 Dimension induced clustering
Real datasets exhibit patterns and regularities. As a main consequence, points typically
lie on low-dimensional manifolds, rather than being evenly spread out. Detecting subsets of
points with low intrinsic dimensionality is useful in tasks such as indexing and classification.
Furthermore, separating points based on some notion of “local dimensionality” is helpful in
identifying subsets of points that are qualitatively different.

In Chapter 5 we draw upon ideas similar to those used in LOCI to intuitively define a
topological notion of dimension, which does not depend on the notion of a linear subspace.
Furthermore, our algorithms for identifying low-dimensional manifolds are not sensitive to
the dimension of the original space and, thus, do not suffer from the “curse of dimensional-
ity”. We develop a parameter-free transformation of high-dimensional points (or, in general,
points in a metric space) into a pair of local dimension and local density features, which can
be used to cluster points belonging to low-dimensional manifolds. Our resulting algorithms
extend previous density based measures, which have been successfully used for clustering.
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Chapter 3

Outlier detection

In this chapter we propose a new method (LOCI—LOcal Correlation Integral method) for
finding outliers in large, multidimensional data sets. The main contributions of our work
can be summarised as follows:

• We introduce the multi-granularity deviation factor (MDEF), which can cope with local
density variations in the feature space and detect both isolated outliers as well as out-
lying clusters. Our definition is simpler and more intuitive than previous attempts to
capture similar concepts [BKNS00]. This is important, because the users who interpret
the findings of an outlier detection tool and make decisions based on them are likely
to be domain experts, not KDD experts.

• We propose a novel (statistically intuitive) method that selects a point as an outlier if its
MDEF value deviates significantly (more than three standard deviations) from the local
averages. We also show how to quickly estimate the average and standard deviation
of MDEF values in a neighbourhood. Our method is particularly appealing, because
it provides an automatic, data-dictated cut-off for determining outliers, by taking into
account the distribution of distances between pairs of objects.

• We present several outlier detection schemes and algorithms using MDEF. Our LOCI
algorithm, using an exact computation of MDEF values, is at least as fast as the best
previous methods.

• We show how MDEF lends itself to a much faster, approximate algorithm (aLOCI)
that still yields high-quality results. In particular, because the MDEF is associated
with the correlation integral [BF95, TTPF01], it is an aggregate measure. We show how
approximation methods such as box counting can be used to reduce the computational
cost to only O(kN), i.e., linear both with respect to the data set size N and the number
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of dimensions k. Previous methods are considerably slower, because for each point,
they must iterate over every member of a local neighbourhood or cluster; aLOCI does
not.

• We extend the usual notion of an “outlier-ness” score to a more informative LOCI plot.
Our method computes a LOCI plot for each point; this plot summarises a wealth of
information about the points in its vicinity, determining clusters, micro-clusters, their
diameters and their inter-cluster distances. Such plots can be displayed to the user, as
desired. For example, returning the LOCI plots for the set of detected outliers enables
users to drill down on outlier points for further understanding. None of the existing
outlier-detection methods can match this feature, because they restrict themselves to a
single number as an outlier-ness score.

• We present extensive experimental results using both real world and synthetic data
sets to verify the effectiveness of the LOCI method. We show that, in practice, the
algorithm scales linearly with data size and with dimensionality. We demonstrate
the time-quality trade-off by comparing results from the exact and approximate algo-
rithms. The approximate algorithm can, in most cases, detect all outstanding outliers
very efficiently.

To the best of our knowledge, this is the first work to use approximate computations to
speed up outlier detection. Using fast approximate calculations of the aggregates computed
by an outlier detection algorithm (such as the number of neighbours within a given distance)
makes a lot of sense for large databases. Considerable effort has been invested toward find-
ing good measures of distance. However, very often it is quite difficult, if not impossible,
to precisely quantify the notion of “closeness”. Furthermore, as the data dimensionality in-
creases, it becomes more difficult to come up with such measures. Thus, there is already an
inherent fuzziness in the concept of an outlier and any outlier score is more of an informative
indicator than a precise measure.

This chapter is organised as follows. In Section 3.1 we give a brief overview of related
work on outlier detection. Section 3.2 introduces the LOCI method and describes some basic
observations and properties. Section 3.3 describes our LOCI algorithm, while Section 3.4 de-
scribes our aLOCI algorithm. Section 3.5 presents our experimental results, and we conclude
in Section 3.6.
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Local Density Problem Multi−granularity Problem

Figure 3.1: (a) Local density problem, and (b) multi-granularity problem

3.1 Related work

The existing approaches to outlier detection can be classified into the following five cate-
gories.

Distribution-based approach. Methods in this category are typically found in statistics
textbooks. They deploy some standard distribution model (e.g., Normal) and flag as outliers
those objects which deviate from the model [BL94, Haw80, RL87]. However, most distribu-
tion models typically apply directly to the feature space and are univariate (i.e., have very
few degrees of freedom). Thus, they are unsuitable even for moderately high-dimensional
data sets. Furthermore, for arbitrary data sets without any prior knowledge of the distribu-
tion of points, we have to perform expensive tests to determine which model fits the data
best, if any!

Depth-based approach. This is based on computational geometry and computes different
layers of k-d convex hulls [JKN98]. Objects in the outer layer are detected as outliers. How-
ever, it is well-known that these algorithms suffer from the dimensionality curse and cannot
cope with large k.

Clustering approach. Many clustering algorithms detect outliers as by-products [JMF99].
However, since the main objective is clustering, they are not optimised for outlier detection.
Furthermore, in most cases, the outlier detection criteria are implicit and cannot easily be
inferred from the clustering procedures. An intriguing clustering algorithm using the fractal
dimension has been suggested by [BC00]; however it has not been demonstrated on real
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datasets.

The above three approaches for outlier detection are not appropriate for high-dimensional,
large, arbitrary data sets. However, this is often the case with KDD in large databases. The
following two approaches have been proposed and are attracting more attention.

Distance-based approach. This was originally proposed by E.M. Knorr and R.T. Ng [KN97,
KN98, KN99, KNT00, BS03a]. An object in a data set P is a distance-based outlier if at least a
fraction β of the objects in P are further than r from it. This outlier definition is based on
a single, global criterion determined by the parameters r and β. This can lead to problems
when the data set has both dense and sparse regions [BKNS00] (see Figure 3.1(a); either the
left outlier is missed or every object in the sparse cluster is also flagged as an outlier).

Furthermore, all of the above approaches regard being an outlier as a binary property.
They do not take into account both the degree of “outlier-ness” and where the “outlier-ness”
is presented.

Density-based approach. This was proposed by M. Breunig, et al. [BKNS00]. It relies on
the local outlier factor (LOF) of each object, which depends on the local density of its neigh-
bourhood. The neighbourhood is defined by the distance to the MinPts-th nearest neighbour.
In typical use, objects with a high LOF are flagged as outliers. W. Jin, et al. [JTH01] proposed
an algorithm to efficiently discover top-n outliers using clusters, for a particular value of
MinPts.

LOF does not suffer from the local density problem. However, selecting MinPts is non-
trivial. In order to detect outlying clusters, MinPts has to be as large as the size of these
clusters (see Figure 3.1(b); if we use a “shortsighted” definition of a neighbourhood—i.e.,
too few neighbours—then we may miss small outlying clusters), and computation cost is
directly related to MinPts. Furthermore, the method exhibits some unexpected sensitivity
on the choice of MinPts. For example, suppose we have only two clusters, one with 20
objects and the other with 21 objects. For MinPts = 20, all objects in the smaller cluster have
large LOF values, and this affects LOF values over any range that includes MinPts = 20.

In contrast, LOCI automatically flags outliers, based on probabilistic reasoning. Also,
MDEF is not so sensitive to the choice of parameters, as in the above 20-21 clusters example.
Finally, LOCI is well-suited for fast, one pass, O(kN) approximate calculation. Although
some algorithms exist for approximate nearest neighbour search [AMN+98, Ber93, GIM99],
it seems unlikely that these can be used to achieve O(kN) time with LOF. Our method uses
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Figure 3.2: Estimation of MDEF from the local correlation integral and neighbour count
functions. The dashed curve is the number of αr-neighbours of pi and the solid curve is the
average number of αr-neighbours over the r-neighbourhood (i.e., sampling neighbourhood)
of pi.

an aggregate measure (the proposed local correlation integral) that relies strictly on counts.
Because it can be estimated (with box-counting) without iterating over every point in a set, it
can easily cope with multiple granularities, without an impact on speed.

3.2 Proposed method
One can argue that, intuitively, an object is an “outlier” if it is in some way “significantly
different” from its “neighbours.” Two basic questions that arise naturally are:

• What constitutes a “neighbourhood?”

• How do we determine “difference” and whether it is “significant?”

Inevitably, we have to make certain choices. Ideally, these should lead to a definition that
satisfies the following, partially conflicting criteria:

• It is intuitive and easy to understand: Those who interpret the results are experts in
their domain and not on outlier detection.

• It is widely applicable and provides reasonable flexibility: Not everyone has the same
idea of what constitutes an outlier and not all data sets conform to the same, specific
rules (if any).
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Figure 3.3: Definitions for n and n̂—for instance n(pi, r) = 4, n(pr , αr) = 1, n(p1, αr) = 6 and
n̂(pi, r, α) = (1 + 6 + 5 + 1)/4 = 3.25.

• It should lend itself to fast computation: This is obviously important with today’s ever-
growing collections of data.

3.2.1 Multi-granularity deviation factor (MDEF)

In this section, we introduce the multi-granularity deviation factor (MDEF), which satisfies
the properties listed above. Let the r-neighbourhood of an object pi be the set of objects
within distance r of pi.

Intuitively, the MDEF at radius r for a point pi is the relative deviation of its local neigh-
bourhood density from the average local neighbourhood density in its r-neighbourhood.
Thus, an object whose neighbourhood density matches the average local neighbourhood
density will have an MDEF of 0. In contrast, outliers will have MDEFs far from 0.

To be more precise, we define the following terms (Table 3.1 describes all symbols and
basic definitions). Let n(pi , αr) be the number of objects in the αr-neighbourhood of pi. Let
n̂(pi, r, α) be the average, over all objects p in the r-neighbourhood of pi, of n(p, αr) (see
Figure 3.3). The use of two radii serves to decouple the neighbour size radius αr from the
radius r over which we are averaging. We denote as the local correlation integral the function
n̂(pi, α, r) over all r.

Definition 7 (MDEF). For any pi, r and α we define the multi-granularity deviation factor
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Symbol Definition
P Set of objects P = {p1, . . . , pi, . . . , pN}.
pi Object in the dataset P, for 1 ≤ i ≤ N.
N Data set size (|P| ≡ N).
k Dimension of data set, i.e., when P is a vector space, pi =

(p1
i , p2

i , . . . , pk
i ).

d(pi, pj) Distance between pi and pj.
RP Point set radius, i.e., RP ≡ maxpi,pj∈P d(pi, pj).
NN(pi, m) The m-th nearest neighbour of object pi (NN(pi, 0) ≡ pi).
N (pi, r) The set of r-neighbours of pi, i.e.,

N (pi, r) ≡ {p ∈ P | d(p, pi) ≤ r}

Note that the neighbourhood contain pi itself, thus the counts can
never be zero.

n(pi, r) The number of r-neighbours of pi, i.e., n(pi , r) ≡ |N (pi, r)|.
n̂(pi, r, α) Average of n(p, αr) over the set of r-neighbours of pi, i.e.,

n̂(pi, r, α) ≡ ∑p∈N (pi,r) n(p, αr)
n(pi, r)

σ̂(pi, r, α) Standard deviation of n(p, αr) over the set of r-neighbours, i.e.,

σ̂(pi, r, α) ≡

√

∑p∈N (pi,r) (n(p, αr)− n̂(pi, r, α))2

n(pi, r)

When clear from the context (n̂), we use just σ̂.
MDEF(pi, r, α) Multi-granularity deviation factor for point pi at radius (or scale) r.
σMDEF(pi, r, α) Normalised deviation (thus, directly comparable to MDEF).
kσ Determines what is significant deviation, i.e., points are flagged as

outliers iff
MDEF(pi, r, α) > kσσMDEF(pi, r, α)

We fix this value to kσ = 3 (see Lemma 1).
C(pi, r, α) Set of cells on some grid, with cell side 2αr, each fully contained

within L∞-distance r from object pi.
Ci Cell in some grid.
ci The object count within the corresponding cell Ci.
Sq(pi, r, α) Sum of box counts to the q-th power, i.e.,

Sq(pi, r, α) ≡ ∑
Ci∈C(pi,r,α)

cq
i

Table 3.1: Symbols and definitions.
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(MDEF) at radius (or scale) r as:

MDEF(pi, r, α) =
n̂(pi, r, α)− n(pi, αr)

n̂(pi, α, r) (3.1)

= 1− n(pi , αr)
n̂(pi, α, r) (3.2)

See Figure 3.2. Note that the r-neighbourhood for an object pi always contains pi. This
implies that n̂(pi, α, r) > 0 and so the above quantity is always defined.

For faster computation of MDEF, we will sometimes estimate both n(pi , αr) and n̂(pi, r, α).
This leads to the following definitions:

Definition 8 (Counting and sampling neighborhood). The counting neighbourhood (or αr-
neighbourhood) is the neighbourhood of radius αr, over which each n(p, αr) is estimated. The sam-
pling neighbourhood (or r-neighbourhood) is the neighbourhood of radius r, over which we collect
samples of n(p, αr) in order to estimate n̂(pi, r, α).

In Figure 3.3, for example, the large circle bounds the sampling neighbourhood for pi,
while the smaller circles bound counting neighbourhoods for various p (see also Figure 3.2).

The main outlier detection scheme we propose relies on the standard deviation of the
αr-neighbour count over the sampling neighbourhood of pi. We thus define the following
quantity

σMDEF(pi, r, α) =
σ̂(pi, r, α)

n̂(pi, r, α)
(3.3)

which is the normalised standard deviation σ̂(pi, r, α) of n(p, αr) for p ∈ N (pi, r) (in Section 3.4
we present a fast, approximate algorithm for estimating σMDEF).

The main reason we use an extended neighbourhood (α < 1) for sampling is to enable
fast, approximate computation of MDEF as explained in Section 3.4. Besides this, α < 1 is
desirable in its own right to deal with certain singularities in the object distribution (we do
not discuss this due to space considerations).

Advantages of our definitions. Among several alternatives for an outlier score (such as
max(n̂/n, n/n̂), to give one example), our choice allows us to use probabilistic arguments
for flagging outliers. This is a very important point and is exemplified by Lemma 1 in
Section 3.2.2. The above definitions and concepts make minimal assumptions. The only
general requirement is that a distance is defined. Arbitrary distance functions are allowed,
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Chapter 3. Outlier detection

which may incorporate domain-specific, expert knowledge, if desired. Furthermore, the
standard deviation scheme assumes that pairwise distances at a sufficiently small scale are
drawn from a single distribution, which is reasonable.

For the fast approximation algorithms, we make the following additional assumptions
(the exact algorithms do not depend on these):

• Objects belong to a k-dimensional vector space, i.e., pi = (p1
i , p2

i , . . . , pk
i ). This assump-

tion holds in most situations. However, if the objects belong to an arbitrary metric
space, then it is possible to embed them into a vector space. There are several tech-
niques for this [CNBYM01] which use the L∞ norm on the embedding vector space1.

• We use the L∞ norm, which is defined as ||pi − pj||∞ ≡ max1≤m≤k |pm
i − pm

j |. This is
not a restrictive hypothesis, since it is well-known that, in practice, there are no clear
advantages of one particular norm over another [FLM77, GIM99].

3.2.2 LOCI outlier detection

In this section, we describe and justify our main outlier detection scheme. It should be
noted that, among all alternatives in the problem space LOCI can be easily adapted to match
several choices. It computes the necessary summaries in one pass and the rest is a matter of
interpretation.

In particular, given the above definition of MDEF, we still have to make a number of
decisions. In particular, we need to answer the following questions:

• Sampling neighbourhood: Which points constitute the sampling neighbourhood of
pi, or, in other words, which points do we average over to compute n̂ (and, in turn,
MDEF) for a pi in question?

• Scale: Regardless of the choice of neighbourhood, over what range of distances do we
compare n and n̂?

• Flagging: After computing the MDEF values (over a certain range of distances), how
do we use them to choose the outliers?

1Given objects πi in a metric space M with distance function δ(πi, πj), one typical approach is to choose k
landmarks {Π1, . . . , Πk} ⊆M and map each object πi to a vector with components pj

i = δ(πi, Πj).
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3.2. Proposed method

LOCI outlier detection method. The proposed LOCI outlier detection method answers
the above questions as follows. Advantages and features of LOCI are due to these design
choices combined with inherent properties of MDEF.

• Large sampling neighbourhood: For each point and counting radius, the sampling
neighbourhood is selected to be large enough to contain enough samples. We choose
α = 1/2 in all exact computations, and we typically use α = 1/16 in aLOCI (introduced
in Section 3.4) for robustness (particularly in the estimation of σMDEF).

• Full-scale: The MDEF values are examined for a wide range of sampling radii. In
other word, the maximum sampling radius is rmax ≈ α−1RP (which corresponds to
maximum counting radius of RP). The minimum sampling radius rmin is determined
based on the number of objects in the sampling neighbourhood. We always use a
smallest sampling neighbourhood with n̂min = 20 neighbours; in practice, this is small
enough but not too small to introduce statistical errors in MDEF and σMDEF values.

• Standard deviation-based flagging: A point is flagged as an outlier, if for any r ∈
[rmin, rmax] its MDEF is sufficiently large, i.e.,

MDEF(pi, r, α) > kσσMDEF(pi, r, α)

In all our experiments, we use kσ = 3 (see Lemma 1).

The standard deviation-based flagging is one of the main features of the LOCI method.
It replaces any “magic cut-offs” with probabilistic reasoning based on σMDEF. It takes into
account distribution of pairwise distances and compares each object to those in its sampling
neighbourhood. Note that, even if the global distribution of distances varies significantly
(e.g., because it is a mixture of very different distributions), the use of the local deviation
successfully solves this problem. In fact, in many real data sets, the distribution of pairwise
distances follows a specific distribution over all or most scales [TTPF01, BF95]. Thus, this ap-
proach works well for many real data sets. The user may alter the minimum neighbourhood
size rmin and kσ if so desired, but in practice this is unnecessary.

Lemma 1 (Deviation probability bounds). For any distribution of pairwise distances, and for
any randomly selected pi, we have

Pr {MDEF(pi, r, α) > kσσMDEF(pi, r, α)} ≤ 1
k2

σ
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Figure 3.4: LOCI plots from an actual dataset—see also Section 3.5.

Proof. From Chebyshev’s inequality it follows that, for a given point pi and radius r,

Pr {MDEF(pi, r, α) > kσσMDEF(pi, r, α)}
≤ Pr {|MDEF(pi, r, α)| > kσσMDEF(pi, r, α)}

≤ σ2
MDEF(pi, r, α)/(kσσMDEF(pi, r, α))2 = 1/k2

σ .

This is a relatively loose bound, but it holds regardless of the distribution. For known
distributions, the actual bounds are tighter; for instance, if the neighbourhood sizes follow
a normal distribution and kσ = 3, much less than 1% of the points should deviate by that
much (as opposed to ≈ 10% suggested by the above bound).

3.2.3 Alternative interpretations

As mentioned in Section 3.2.2, we have a range of design choices for outlier detection schemes.
Different answers give rise to different outlier detection schemes and provide the user with
alternative views. We should emphasise that, if the user want, LOCI can be adapted to any
desirable interpretation, without any re-computation. Our fast algorithms estimate all the
necessary quantities with a single pass over the data and build the appropriate “summaries,”
no matter how they are later interpreted.

Sampling neighbourhood: Small vs. large. The choice depends on whether we are inter-
ested in the deviation of pi from a small (highly local) or a relatively large neighbourhood.
Since LOCI employs standard deviation-based flagging, a sampling neighbourhood large
enough to get a sufficiently large sample is desirable. However, when the distance distribu-
tion varies widely (which rarely happens, except at very large radii) or if the user chooses
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3.2. Proposed method

non-deviation based scheme (which, although possible, is not recommended) this is an op-
tion.

Scale: Single vs. range and distance-based vs. population-based. Regardless of sampling
neighbourhood, users could choose to examine MDEF and σMDEF at either a single radius
(which is very close to the distance-based approach [KN99]) or a limited range of radii (same
for all the points). Alternatively, they may implicitly specify the radius (or radii) by neigh-
bourhood size (effectively varying the radius at each pi, depending on density). Either ap-
proach might make sense.

Flagging: Thresholding vs. ranking vs. standard deviation-based. Use of the standard
deviation is our main contribution and the recommended approach. However, we can easily
match previous methods either by “hard thresholding” (if we have prior knowledge about
what to expect of distances and densities) or “ranking” (if we want to catch a few “suspects”
blindly and, probably, “interrogate” them manually later).

3.2.4 LOCI plot

In this section we introduce the LOCI plot. This is a powerful tool, no matter what outlier de-
tection scheme is employed. It can be constructed instantly from the computed “summaries”
for any point pi the user desires and it gives a wealth of information about the vicinity of pi:
why it is an outlier with regard to its vicinity, as well as information about nearby clusters
and micro-clusters, their diameters and inter-cluster distances.

Definition 9 (LOCI plot). For any object pi, the plot of n(pi , αr) and n̂(pi, r, α) with n̂(pi, r, α)±
3σ̂(pi, r, α), versus r (for a range of radii of interest), is called its LOCI plot.

We give detailed examples from actual datasets in Section 3.5. Here we briefly introduce
the main features (see also Figure 3.4). The solid line shows n̂ and the dashed line is n is all
plots.

• Consider the point in the micro-cluster (at x = 18, y = 20). The n value looks similar
up to the distance (roughly 30) we encounter the large cluster. Earlier, the increase in
deviation (in the range of ≈ 10–20) indicates the presence of a (small) cluster. Half the
width (since α = 1/2, and the deviation here is affected by the counting radius) of this
range (about 10/2 = 5) is the radius of this cluster.
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Chapter 3. Outlier detection

// Pre-processing
Foreach pi ∈ P:

Perform a range-search
for Ni = {p ∈ P | d(pi , p) ≤ rmax}

From Ni, construct a sorted list Di
of the critical and α-critical distances of p i

// Post-processing
Foreach pi ∈ P:

For each radii r ∈ Di (ascending):
Update n(pi, αr) and n̂(pi, r, α)
From n and n̂, compute

MDEF(pi, r, α) and σMDEF(pi , r, α)
If MDEF(pi, r, α) > 3σMDEF(pi , r, α),

flag pi

Figure 3.5: The exact LOCI algorithm.

• A similar increase in deviation happens at radius 30, along with an increase in n̂. Also,
note that n shows a similar jump at α−1 × 30 = 60 (this time it is the sampling radius
that matters). Thus, ≈ 30 is the distance to the next (larger) cluster.

• In the cluster point (at x = 64, y = 19) we see from the middle LOCI plot that the two
counts (n̂ and σ̂) are similar, as expected. The increase in deviation, however, provides
the information described above for the first increase (here the counting radius matters
again, so we should multiply the distances by α).

• The general magnitude of the deviation always indicates how “fuzzy” (i.e., spread-out
and inconsistent) a cluster is.

• For the outstanding outlier point (at x = 18, y = 30), we see the deviation increase
along with the pair of jumps in n̂ and n (the distance between the jumps determined
by α) twice, as we would expect: the first time when we encounter the micro-cluster
and the second time when we encounter the large cluster.

3.3 The LOCI algorithm
In this section, we describe our algorithm for detecting outliers using our LOCI method.
This algorithm computes exact MDEF and σMDEF values for all objects, and then reports an
outlier whenever MDEF is more than three times larger than σMDEF for the same radius.
Thus the key to a fast algorithm is an efficient computation of MDEF and σMDEF values.
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3.4. The aLOCI algorithm

We can considerably reduce the computation time for MDEF and σMDEF values by ex-
ploiting the following properties:

Observation 1. For each object pi and each α, n(pi , r), n̂(pi, r, α), and thus MDEF(pi, r, α) and
σMDEF(pi, r, α) are all piecewise constant functions of r. In particular, n(pi , r) and n(p, αr) for all p
in the r-neighbourhood of pi can change only when the increase of r causes a new point to be added to
either the r-neighbourhood of pi or the αr-neighbourhood of any of the p.

This leads to the following definition, where N is the number of objects and NN(pi, m) is
the m-th nearest neighbour of pi.

Definition 10 (Critical Distance). For 1 ≤ m ≤ N, we call d(NN(pi, m), pi) a critical distance
of pi and d(NN(pi, m), pi)/α an α-critical distance of pi.

By observation 1, we need only consider radii that are critical or α-critical. Figure 3.5
shows our LOCI algorithm. In a pre-processing pass, we determine the critical and α-
critical distances Di for each object pi. Then considering each object pi in turn, and con-
sidering increasing radius r from Di, we maintain n(pi , αr), n̂(pi, r, α), MDEF(pi, r, α), and
σMDEF(pi, r, α). We flag pi as an outlier if MDEF(pi, r, α) > 3σMDEF(pi, r, α) for some r.

The worst-case complexity of this algorithm is O(N × (time of rmax range search + n2
ub)),

where nub = max{n(pi , rmax) | pi ∈ P}. Alternatively, if we specify the range of scales
indirectly by numbers of neighbours nmin and nmax instead of explicit rmin and rmax, then
rmin = d(NN(pi, nmin), pi) and rmax = d(NN(pi, nmax), pi). The complexity of this alternative
is O(N × (time of Rmax range search + n2

max), where Rmax = max{d(NN(pi, nmax), pi) | pi ∈
P}. Thus, the complexity of our LOCI algorithm is roughly comparable to that of the best
previous density-based approach [BKNS00].

3.4 The aLOCI algorithm
In this section we present our fast, approximate LOCI algorithm (aLOCI). Although algo-
rithms exist for approximate range queries and nearest neighbour search [AMN+98, Ber93,
GIM99], applying them directly to previous outlier detection algorithms (or the LOCI al-
gorithm; see Figure 3.5) would not eliminate the high cost of iterating over each object in
the (sampling) neighbourhood of each pi. Yet with previous approaches, failing to iterate
over each such object means the approach cannot effectively overcome the multi-granularity
problem (Figure 3.1(b)). In contrast, our MDEF-based approach is well-suited to fast approx-
imations that avoid these costly iterations, yet are able to overcome the multi-granularity
problem. This is because our approach essentially requires only counts at various scales.
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Chapter 3. Outlier detection

// Initialisation
Select set of shifts S = {s0, s1, . . . , sg}, where s0 = 0
lα = − lg(α)
Foreach si ∈ S:

Initialise quadtree Q(si)
// Pre-processing stage
Foreach pi ∈ P:

Foreach si ∈ S:
Insert pi in Q(si)

// Post-processing stage
Foreach pi ∈ P:

Foreach level l:
Select cell Ci in Q(sa) with side

di = RP/2l and centre closest to pi
Select cell Cj in Q(sb) with side

dj = RP/2l−lα and centre closest to centre of Ci
Estimate MDEF(pi,

dj
2 , α) and σMDEF(pi,

dj
2 , α)

If MDEF(pi,
dj
2 , α) > 3σMDEF(pi ,

dj
2 , α), flag pi

Figure 3.6: The approximate aLOCI algorithm.

3.4.1 Definitions and observations

Our aLOCI algorithm is based on a series of observations and techniques outlined in this
section.

To quickly estimate the average number of αr-neighbours over all points in an r-neighbour-
hood of an object pi ∈ P (from now on, we assume L∞ distances), we can use the following
approach. Consider a grid of cells with side 2αr over the set P. Perform a box count of the
grid: For each cell Cj in the grid, compute the count, cj, of the number of objects in the
cell. Each object in Cj has cj neighbours in the cell (counting itself), so the total number of
neighbours over all objects in Cj is c2

j . Denote by C(pi , r, α) the set of all cells in the grid such
that the entire cell is within distance r of pi. We use C(pi, r, α) as an approximation for the
r-neighbourhood of pi. Summing over the entire r-neighbourhood, we get S2(pi, r, α), where
Sq(pi, r, α) ≡ ∑Cj∈C(pi,r,α) cq

j . The total number of objects is simply the sum of all box counts,
i.e., S1(pi, r, α).

Lemma 2 (Approximate average neighbor count). Let α = 2−l for some positive integer l. The
average neighbour count over pi’s sampling neighbourhood is approximately:

n̂(pi, r, α) =
S2(pi, r, α)

S1(pi, r, α)
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3.4. The aLOCI algorithm

Proof. Follows from the above observations; for details, see [Sch88].

However, we need to obtain information at several scales. We can efficiently store cell
counts in a k-dimensional quad-tree: The first grid consists of a single cell, namely the
bounding box of P. We then recursively subdivide each cell of side 2αr into 2k sub-cells,
each with radius αr, until we reach the scale we desire (specified either in terms of its side
length or cell count). We keep only pointers to the non-empty child sub-cells in a hash table
(typically, for large dimensions k, most of the 2k children are empty, so this saves consider-
able space over using an array). For our purposes, we only need to store the c j values (one
number per non-empty cell), and not the objects themselves.

The recursive subdivision of cells dictates the choice2 of α = 2−l for some positive integer
l, since we essentially discretise the range of radii at powers of two.

In addition to approximating n̂, our method requires an estimation of σ̂. The key to our
fast approximation of σ̂ is captured in the following lemma:

Lemma 3 (Approximate std. deviation of neighbor count). Let α = 2−l for some positive
integer l. The standard deviation of the neighbour count is approximately:

σ̂(pi, r, α) =

√

S3(pi, r, α)

S1(pi, r, α)
− S2

2(pi, r, α)

S2
1(pi, r, α)

Proof. Following the same reasoning as in Lemma 2, the deviation for each object within
each cell Cj is cj − n̂(pi, r, α) ≈ cj − S2(pi, r, α)/S1(pi, r, α). Thus, the sum of squared differ-
ences for all objects within the cell is cj

(

cj − S2(pi, r, α)/S1(pi, r, α)
)2. Summing over all cells

and dividing by the count of objects S1(pi, r, α) gives 1
S1 ∑j

(

c3
j −

2c2
j S2

S1
+

cjS2
2

S2
1

)

= S3
S1
− 2S2

2
S2

1
+

S2
2

S2
1
,

which leads to the above result.

From the above discussion, we see that box counting within quad trees can be used to
quickly estimate the MDEF values and σMDEF values needed for our LOCI approach. How-
ever, in practice, there are several important issues that need to be resolved to achieve accu-
rate results, which we address next.

2In principle, we can choose any integer power α = c−l by subdividing each cell into ck sub-cells. However,
this makes no difference in practice.
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Discretisation. A quad-tree decomposition of the feature space inherently implies that we
can sample the actual averages and deviations at radii that are proportional to powers of
two (or, in general, cl multiples of rmin, for some integers c and l). In essence, we discretise
all quantities involved by sampling them at intervals of size 2l. However, perhaps surpris-
ingly, this discretisation does not have a significant impact on our ability to detect outliers.
Consider a relatively isolated object pi and a distant cloud of objects. Recall that we com-
pute MDEF values for an object starting with the smallest radius for which its sampling
neighbourhood has nmin = 20 objects, in order to make the (exact) LOCI algorithm more ro-
bust and self-adapting to the local density. Similarly, for the aLOCI algorithm, we start with
the smallest discretised radius for which its sampling neighbourhood has at least 20 neigh-
bours. Considering our point pi, observe that at large enough radius, both its sampling and
counting neighbourhoods will contain many objects from the cloud, and these points will
have similar neighbourhood counts to pi, resulting in an MDEF near zero (i.e., no outlier
detection). However, at some previous scale, the sampling neighbourhood will contain part
of the cloud but the counting neighbourhood will not, resulting in an MDEF near one, as
desired for outlier detection. Note that, in order for this to work, it is crucial that (a) we use
an α ≤ 2−l, and (b) we perform nmin neighbourhood thresholding based on the sampling
neighbourhood and not the counting neighbourhood.

Locality. Ideally, we would like to have the quad-tree grids contain each object of the
dataset at the exact centre of cells. This is not possible, unless we construct one quad-tree
per object, which is ridiculously expensive. However, a single grid may provide a close
enough approximation for many objects in the data set. Furthermore, outstanding outliers
are typically detected no matter what the grid positioning is: the further an object is from its
neighbours, the more “leeway” we have to be off-centre (by up to at least half the distance
to its closest neighbour!).

In order to further improve accuracy for less obvious outliers, we utilise several grids. In
practice, the number of grids g does not depend on the feature space dimension k, but rather
on the distribution of objects (or, the intrinsic dimensionality [CNBYM01, BF95] of the data
set, which is typically much smaller than k). Thus, in practice, we can achieve good results
with a small number of grids.

To summarise, the user may select g depending on the desired accuracy vs. speed. Out-
standing outliers are typically caught regardless of grid alignment. Performance on less
obvious outliers can be significantly improved using a small number g− 1 of extra grids.

Next we have to answer two related questions: how should we pick grid alignments and,
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3.4. The aLOCI algorithm

given the alignments, how should we select the appropriate grid for each point?

Grid alignments. Each grid is constructed by shifting the quad-tree bounding box by s (a
k-dimensional vector)3. At each grid level l (corresponding to cell diameter dl = RP/2l),
the shift effectively “wraps around,” i.e., each cell is effectively shifted by s mod dl, where
mod is applied element-wise and should be interpreted loosely (as the fractional part of the
division). Therefore, with a few shifts (each portion of significant digits essentially affecting
different levels), we can achieve good results throughout all levels. In particular, we rec-
ommend using shifts obtained by selecting each coordinate uniformly at random from its
domain.

Grid selection. For any object pi in question, which cells and from which grids do we select
to (approximately) cover the counting and sampling neighbourhoods? For the counting
neighbourhood of pi, we select a cell Ci (at the appropriate level l) that contains pi as close
as possible to its centre; this can be done in O(kg) time.

For the sampling neighbourhood, a naive choice might be to search all cells in the same
grid that are adjacent to Ci. However, the number of such cells is O(2k), which leads to
prohibitively high computational cost for high dimensional data. Unfortunately, if we insist
on this choice, this cost cannot be avoided; we will either have to pay it when building the
quad-tree or when searching it.

Instead, we select a cell Cj of diameter dl/α (where dl = RP/2l) in some grid (possibly
a different one), such that the centre of Cj lies as close as possible to the centre of Ci. The
reason we pick Cj based on its distance from the centre of Ci and not from pi is that we
want the maximum possible volume overlap of Ci and Cj. Put differently, we have already
picked an approximation for the counting neighbourhood of pi (however good or bad) and
next we want the best approximation of the sampling neighbourhood, given the choice of
Ci. If we used the distance from pi we might end up with the latter approximation being
“incompatible” with the former. Thus, this choice is the one that gives the best results. The
final step is to estimate MDEF and σMDEF, by performing a box-count on the sub-cells of Cj.

Deviation estimation. A final important detail has to do with successfully estimating σMDEF.
In certain situations (typically, in either very small or very large scales), many of the sub-cells
of Cj may be empty. If we do a straight box-count on these, we may under-estimate the de-
viation and erroneously flag objects as outliers.

3Conceptually, this is equivalent to shifting the entire data set by −s
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Dataset Description
Dens Two 200-point clusters of different densities and one outstanding

outlier.
Micro A micro-cluster with 9 points, a large, 600-point cluster (same

density) and one outstanding outlier.
Sclust A Gaussian cluster with 500 points.
Multimix A 250-point Gaussian cluster, two uniform clusters (200 and 400

points), three outstanding outliers and 3 points along a line from
the sparse uniform cluster.

NBA Games, points per game, rebounds per game, assists per game
(1991–92 season).

NYWomen Marathon runner data, 2229 women from the NYC marathon:
average pace (in minutes per mile) for each stretch (6.2, 6.9, 6.9
and 6.2 miles)

Table 3.2: Description of synthetic and real data sets.

This problem is essentially solved by giving more weight to the counting neighbourhood
of pi: in the set of box counts used for Sq(pi, r, α), we also include ci w times (w = 2 works
well in all the datasets we have tried), besides the counts for the sub-cells of Cj.

Lemma 4 (Deviation smoothing). If we add a new value a to set of N values with average m and
variance s2, then the following hold about the new average µ and variance σ2:

σ2
> s2 ⇔ |a−m|

s >
N + w

N and lim
N→∞

σ2

s2 = 1

where w is the weight of a (i.e., it is counted w times).

Proof. From the definitions for mean and standard deviation, we have

µ =
w

N + w a +
N

N + wm, σ2 =
w

N + w (a− µ)2 +
N

N + w s2

and (a− µ)2 =

(

N
N + w

)2
(a−m)2

Therefore σ2

s2 = N2

(N+w)3
( a−m

s
)2

+ N
N+w . The results follow from this relation.

From Lemma 4, if the number of non-empty sub-cells is large, a small w weighting has
small effect. For outstanding outliers (i.e., large |a−m|/s), this weighting does not affect the
the estimate of σMDEF significantly. Thus, we may only err on the conservative side for a few
outliers, while avoiding several “false alarms” due to underestimation of σMDEF.
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Figure 3.7: Time versus data set size and dimension (log-log scales).

3.4.2 The approximation algorithm

The aLOCI algorithm, based on the discussion in the previous section, is illustrated in
Figure 3.6. The quad-tree construction stage takes time O(NLkg), where L is the total num-
ber of levels (or scales), i.e., O(lg(rmax/rmin)). The scoring and flagging stage takes an addi-
tional O(NL(kg + 2k) time (recall that α is a constant). As noted above, the number of grids
g depends on the intrinsic dimensionality of P. We found 10 ≤ g ≤ 30 sufficient in all our
experiments. Similarly, L can be viewed as fixed for most data sets. Finally, the 2k term is
a pessimistic bound because of the sparseness in the box counts. As shown in Section 3.5,
in practice the algorithm scales linearly with data size and with dimensionality. Moreover,
even in the worst case, it is asymptotically significantly faster than the best previous density-
based approach.

3.5 Experimental evaluation
In this section we discuss results from applying our method to both synthetic and real
datasets (described in Table 3.2). We also briefly discuss actual performance measurements
(wall-clock times).

3.5.1 Complexity and performance

Our prototype system is implemented in Python, with Numerical Python for fast matrix
manipulation and certain critical components (quad-trees and distance matrix computation)
implemented in C as language extensions (achieving a 5× to 15× speedup). We are cur-
rently re-implementing the system in C and preliminary results show at least a 10× overall
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Figure 3.8: Synthetic data: LOF (MinPts = 10 to 30, top 10).
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Figure 3.9: Synthetic, LOCI. Top row: n̂ = 20 to full radius, α = 0.5. Bottom row: n̂ = 20 to 40
except micro where n̂ = 200 to 230, α = 0.5.

speedup. Figure 3.7 shows the wall clock times on a synthetic dataset, versus data set size
and dimension. All experiments were run on a PII 350MHz with 384Mb RAM. The graphs
clearly show that aLOCI scales linearly with dataset size as well as dimension, as expected.
In should be noted that the dataset chosen (a multi-dimensional Gaussian cluster) is actually
much denser throughout than a real dataset would be. Thus, the time vs. dimension results
are on the conservative side (lα = 4, or α = 1/16 in our experiments).

3.5.2 Synthetic data

We illustrate the intuition behind LOCI using a variety of synthetic datasets, demonstrate
that LOCI and aLOCI provide sound and useful results and we discuss how to interpret
LOCI plots “in action.” The results from LOF are shown in Figure 3.8. LOF is the current
state of the art in outlier detection. However, it provides no hints about how high an outlier
score is high enough. A typical use of selecting a range of interest and examining the top-N
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Figure 3.10: Synthetic: aLOCI (10 grids, 5 levels, lα = 4, except micro, where lα = 3).
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Figure 3.11: Dens, LOCI plots (top row) and aLOCI plots (bottom row).

scores will either erroneously flag some points (N too large) or fail to capture others (N too
small). LOCI provides an automatic way of determining outliers within the range of interest
and captures outliers correctly.

Figure 3.9 shows the results from LOCI on the entire range of scales, from 20 to RP on
the top row. On the bottom row, we show the outliers at a subset of that range (20 to 40
neighbours around each point). The latter is much faster to compute, even exactly, and still
detects the most significant outliers. Finally, Figure 3.10 shows the aLOCI results. However,
LOCI does not stop there and can provide information about why each point is an outlier
and about its vicinity (see Figure 3.12 and Figure 3.11).
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Figure 3.12: Micro, aLOCI plots—see Figure 3.4 for corresponding LOCI plots.

Dens dataset. LOCI captures the outstanding outlier. By examining the LOCI plots we
can get much more information. In the leftmost column of Figure 3.11 it is clear that the
outstanding outlier is indeed significantly different from its neighbours. Furthermore, the
radius where the deviation first increases (≈ 5) and the associated jumps in counts corre-
spond to the distance (≈ 5/2) to the first cluster. The deviation increase (without change in
counts) in the range of 50–80 corresponds to the diameter (≈ 30) of the second cluster.

The second column in Figure 3.11 shows a point in the micro-cluster, which behaves
very similarly to those in its sampling neighbourhood. Once again, the deviation increases
correspond to the diameters of the two clusters.

Finally, the two rightmost columns of Figure 3.11 show the LOCI plots for two points in
the large cluster, one of them on its fringe. From the rightmost column it is clear that the
fringe point is tagged as an outlier at a large radius and by a small margin. Also, the width
of the radius range with increased deviation corresponds to the radius of the large cluster.

“Drill-down.” It is important to note that the aLOCI plots (bottom row) already provide
much of the information contained in the LOCI plots (top row), such as the scale (or radius
range) at which each point is an outlier. If users desire detailed information about a particu-
lar range of radii, they can select a few points flagged by aLOCI and obtain the LOCI plots.
Such a “drill-down” operation is common in decision support systems. Thanks to the accu-
racy of aLOCI, the user can immediately focus on just a few points. Exact computation of
the LOCI plots for a handful of points is fast (in the worst case—i.e., full range of radii—it is
O(kN) with a very small hidden constant; typical response time is about one to two minutes
on real datasets).
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Figure 3.13: NBA, LOCI plots (top row) and aLOCI plots (bottom row).

Micro dataset. In the micro dataset, LOCI automatically captures all 14 points in the
micro-cluster, as well as the outstanding outlier. At a wider range of radii, some points on
the fringe of the large cluster are also flagged. The LOCI and aLOCI plots are in Figure 3.4
and Figure 3.12, respectively (see Section 3.2.4 for discussion).

Sclust and Multimix datasets. We discuss these briefly—the LOCI plots are similar to
those already discussed, or combinations thereof. In the sclust dataset, as expected, for
small radii we do not detect any outliers, whereas for large radii we capture some large
deviants. Finally, in the multimix dataset, LOCI captures the isolated outliers, some of
the “suspicious” ones along the line extending from the bottom uniform cluster and large
deviants from the Gaussian cluster.

3.5.3 Real data

In this section we demonstrate how the above rules apply in a real dataset (see Table 3.2). In
the previous section we discussed the shortcomings of other methods that provide a single
number as an “outlier-ness” score. We only show LOCI and aLOCI results and discuss the
LOCI plots from one real dataset (more results are in the full version of the thesis).
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Figure 3.14: NYWomen, LOCI plots (top row) and aLOCI plots (bottom row).

NBA dataset. Results from LOCI and aLOCI are shown in Figure 3.15 (for comparison, see
Table 3.3). Figure 3.13 shows the LOCI plots. The overall deviation indicates that the points
form a large, “fuzzy” cluster, throughout all scales. Stockton is clearly an outlier, since he is
far different from all other players, with respect to any statistic. Jordan is an interesting case;
although he is the top-scorer, there are several other players whose overall performance is
close (in fact, Jordan does not stand out with respect to any of the other statistics). Corbin is
one of the players which aLOCI misses. In Figure 3.15 he does not really stand out. In fact,
his situation is similar to that of the fringe points in the Dens dataset!

NYWomen dataset. Results from LOCI are shown in Figure 3.16 (aLOCI provides similar re-
sults). This dataset also forms a large cluster, but the top-right section of the cluster is much
less dense than the part containing the vast majority of the runners. Although it may initially
seem surprising, upon closer examination, the situation here is very similar to the Micro
dataset! There are two outstanding outliers (extremely slow runners), a sparser but signifi-
cant “micro-cluster” of slow/recreational runners, then the vast majority of “average” run-
ners which slowly merges with an equally tight (but smaller) group of high-performers. An-
other important observation is that the fraction of points flagged by both LOCI and aLOCI
(about 5%) is well within our expected bounds. The LOCI plots are shown in Figure 3.14
and can be interpreted much like those for the Micro dataset.
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Figure 3.15: NBA results, LOCI (n̂ = 20 to full radius) and aLOCI (bottom; 5 levels, lα = 4, 18
grids).

44



Chapter 3. Outlier detection

pi,1

400 600 800 1000 400 600 800 1200

40
0

80
0

40
0

80
0

12
00

pi,2

pi,3

40
0

80
0

12
00

400 600 800 1000

40
0

80
0

12
00

400 600 800 1000

pi,4

Positive Deviation (3σMDEF: 117/2229)

pi,1

400 600 800 1000 400 600 800 1200

40
0

80
0

40
0

80
0

12
00

pi,2

pi,3

40
0

80
0

12
00

400 600 800 1000

40
0

80
0

12
00

400 600 800 1000

pi,4

Positive Deviation (3σMDEF: 93/2229)

Figure 3.16: NYWomen, results, LOCI (n̂ = 20 to full radius) and aLOCI (bottom; 6 levels,
lα = 3, 18 grids).

45



3.6. Conclusions

LOCI aLOCI LOCI aLOCI
# Player # Player # Player # Player
1 Stockton J. (UTA) 1 Stockton J (UTA) 8 Corbin T. (MIN)
2 Johnson K. (PHO) 2 Johnson K (PHO) 9 Malone K. (UTA)
3 Hardaway T. (GSW) 3 Hardaway T (GSW) 10 Rodman D. (DET)
4 Bogues M. (CHA) 11 Willis K. (ATL) 6 Willis K (ATL)
5 Jordan M. (CHI) 4 Jordan M (CHI) 12 Scott D. (ORL)
6 Shaw B. (BOS) 13 Thomas C.A. (SAC)
7 Wilkins D. (ATL) 5 Wilkins D (ATL)

Table 3.3: NBA outliers with LOCI and aLOCI. All aLOCI outliers are shown in this table; see
also Figure 3.15.

3.6 Conclusions
In summary, the main contributions of LOCI are:

• Like the state of the art, it can detect outliers and groups of outliers (or, micro-clusters).
It also includes several of the previous methods (or slight variants thereof) as a “special
case.”

• Going beyond any previous method, it proposes an automatic, data-dictated cut-off to
determine whether a point is an outlier—in contrast, previous methods let the users
decide, providing them with no hints as to what cut-off is suitable for each dataset.

• Our method successfully deals with both local density and multiple granularity.

• Instead of just an “outlier-ness” score, it provides a whole plot for each point that gives
a wealth of information.

• Our exact LOCI method can be computed as quickly as previous methods.

• Moreover, LOCI leads to a very fast, practically linear approximate algorithm, aLOCI,
which gives accurate results. To the best of our knowledge, this is the first time ap-
proximation techniques have been proposed for outlier detection.

• Extensive experiments on synthetic and real data show that LOCI and aLOCI can au-
tomatically detect outliers and micro-clusters, without user-required cut-offs, and that
they quickly spot outliers, expected and unexpected.
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Chapter 4

Outliers by example

The notion of what is an outlier (or, exceptional/abnormal object) varies among users, prob-
lem domains and even datasets (problem instances): (i) different users may have different
ideas of what constitutes an outlier, (ii) the same user may want to view a dataset from differ-
ent “viewpoints” and, (iii) different datasets do not conform to specific, hard “rules” (if any).
We consider objects that can be represented as multi-dimensional, numerical tuples. Such
datasets are prevalent in several applications. From a general perspective [4,7,8,2], an object
is, intuitively, an outlier if it is in some way “significantly different” from its “neighbours.”
Different answers to what constitutes a “neighbourhood,” how to determine “difference”
and whether it is “significant,” would provide different sets of outliers. Typically, users are
experts in their problem domain, not in outlier detection. However, they often have a few
example outliers in hand, which may “describe” their intentions and they want to nd more
objects that exhibit outlier-ness characteristics similar to those examples. Existing systems
do not provide a direct way to incorporate such examples in the discovery process.

Example We give a concrete example to help clarify the problem. The example is on a 2-d
vector space which is easy to visualise, but ideally our method should work on arbitrary
dimensionality or, even, metric datasets1.

Consider the dataset in Figure 4.1. In this dataset, there are a large sparse cluster, a small
dense cluster and some clearly isolated objects. Only the isolated objects (circle dots) are out-
liers from a birds eye view. In other words, when we examine wide-scale neighbourhoods
(i.e., with large radiuse.g., covering most of the dataset), only the isolated objects have very
low neighbour densities, compared with objects in either the large or the small cluster. How-

1A metric dataset consists of objects for which we only know the pairwise distances (or, “similarity”), with-
out any further assumptions.
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ever, consider the objects on the fringe of the large cluster (diamond dots). These can also
be regarded as outliers, if we look closer at mid-scale (i.e., radius) neighbourhoods. Also,
objects on the fringe of the small cluster (cross dots) become outliers, if we further focus
into small-scale neighbourhoods. As exemplified here, different objects may be regarded as
outliers, depending on neighbourhood scale (or, size). This scenario is intuitive from the
users perspective. However, to the best of our knowledge, none of the existing methods
can directly incorporate user examples in the discovery process to nd out the hidden outlier
concept that users may have in mind.

In this chapter, we propose Outlier By Example (OBE), an outlier detection method that
can do precisely that: discover the desired outlier-ness at the appropriate scales, based on a
small number of examples. There are several challenges in making this approach practical;
we briefly list the most important: (1) What are the appropriate features that can capture
outlier-ness? These should ideally capture the important characteristics concisely and be ef-
ficient to compute. However, feature selection is only the tip of the iceberg. (2) Furthermore,
we have to carefully choose exactly what features to extract. (3) The method should clearly
require minimal user input and effectively use a small number of positive examples in order
to be practical. Furthermore, it should ideally not need negative examples. (4) Given these
requirements, can we train a classier using only the handful of positive examples and unla-
belled data? In this chapter we describe the key algorithmic challenges and design decisions
in detail.

In summary, the main contributions in this chapter are: (1) We introduce example-based
outlier detection. (2) We demonstrate its intuitiveness and feasibility. (3) We propose OBE,
which, to the best of our knowledge, is the first method to provide a solution to this problem.
(4) We evaluate OBE on both real and synthetic data, with several small sets of user exam-
ples. Our experiments demonstrate that OBE can successfully incorporate these examples
in the discovery process and detect outliers with outlier-ness characteristics very similar to
the given examples.

The remainder of this chapter is organised as follows: In Section 4.1, we discuss re-
lated work on outlier detection. In Section 4.2, we discuss the measurement of outlier-ness
and the different properties of outliers. Section 4.3 presents the proposed method in detail.
Section 4.4 reports the extensive experimental evaluation on both synthetic and real datasets.
Finally, in Section 4.5 we conclude.
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Chapter 4. Outliers by example

Figure 4.1: Illustration of different kinds of outliers in a dataset.

4.1 Related work
In essence, outlier detection techniques traditionally employ unsupervised learning pro-
cesses. The several existing approaches are reviewed in Section 3.1. In Chapter 3 we pro-
posed the multi-granularity deviation factor (MDEF) and LOCI. MDEF measures the “outlier-
ness” of objects in neighbourhoods of different scales. LOCI examines the MDEF values of
objects in all ranges and flags as outliers those objects whose MDEF values deviate signif-
icantly from the local average in neighbourhoods of some scales. The definition of MDEF
can capture “outlier-ness” in different scales and the default outlier flagging criteria provide
useful and meaningful results. However, users may still have to manually examine devia-
tions at different scales. In this chapter we explore how automate things further, so the user
is never exposed to any parameters.

Another outlier detection method was developed in [YT01], which focuses on the discov-
ery of rules that characterise outliers, for the purposes of filtering new points in a security
monitoring setting. This is a largely orthogonal problem. Outlier scores from SmartSifter
are used to create labelled data, which are then used to find the outlier filtering rules.

In summary, all the existing methods are designed to detect outliers based on some pre-
scribed criteria for outliers. To the best of our knowledge, this is the first proposal for outlier
detection using user-provided examples.

4.2 Measuring outlier-ness
In order to understand the users’ intentions and the outlier-ness they are interested in, a
first, necessary step is measuring the outlier-ness. It is crucial to select features that capture
the important characteristics concisely. However, feature selection is only the initial step.
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4.2. Measuring outlier-ness

Figure 4.2: Illustrative dataset and MDEF plots.

In OBE, we employ MDEF for this purpose, which measures outlier-ness of objects in the
neighbourhoods of different scales (i.e., radii).

Detailed definition of the multi-granularity deviation factor (MDEF) is given in Section 3.2.
Here we repeat some basic terms and notation for completeness. Let the r-neighbourhood of
an object pi be the set of objects within distance r of pi . Let n(pi , αr) and n(pi , r) be the num-
bers of objects in the αr-neighbourhood (counting neighbourhood) and r-neighbourhood
(sampling neighbourhood) of pi, respectively2. Let n̂(pi, r, α) be the average, over all objects
p in the r-neighbourhood of pi of n(p, αr).

Definition 11 (MDEF). For any pi , r and α, the multi-granularity deviation factor (MDEF) at
radius (or scale) r is defined as follows:

MDEF(pi, r, α) =
n̂(pi, r, α)− n(pi, αr)

n̂(pi, α, r)

Intuitively, the MDEF at radius r for a point pi is the relative deviation of its local neigh-
bourhood density from the average local neighbourhood density in its r-neighbourhood.
Thus, an object whose neighbourhood density matches the average local neighbourhood
density will have an MDEF of 0. In contrast, outliers will have MDEFs far from 0. The MDEF
values are examined (or, sampled) at a wide range of sampling radii r, rmin ≤ r ≤ rmax, where
rmax is the maximum distance of all object pairs in the given dataset and rmin is determined
based on the number of objects in the r-neighbourhood of pi . In our experiments, for each pi
in the dataset, rmin for pi (denoted by rmin,i) is the distance to its 20-th nearest neighbour. In
other words, we do not examine the MDEF value of an object until the number of objects in
its sampling neighbourhood reaches 20. This is a reasonable choice which effectively avoids

2In all experiments, α = 0.5, as in Chapter 3 and [PKGF03].
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introduction of statistical errors in MDEF estimates.
Next we give some examples to better illustrate MDEF. Figure 4.2 shows a dataset which

has mainly two groups: a large, sparse cluster and a small, dense one, both following a
Gaussian distribution. There are also a few isolated points. We show MDEF plots for four
objects in the dataset.

• Consider the point Nm in the middle of the large cluster (at about x = 70, y = 68). The
MDEF value is low at all scales: compared with its neighbourhood, whatever the scale
is, the local neighbourhood density is always similar to the average local density in its
sampling neighbourhood. So, the object can be always regarded as a normal object in
the dataset.

• In contrast, for the other three objects, there exist situations where the MDEFs are very
large, some times even approaching 1. This shows that they differ significantly from
their neighbours in some scales. The greater the MDEF value is, the stronger the degree
of outlier-ness.

Even though all three objects in Figure 4.2 can be regarded as outliers, they are still dif-
ferent, in that they exhibit outlier-ness at different scales.

• The MDEF value of the outlier in the small cluster, SC-O, (at about x = 22, y = 27),
reaches its maximum at radius r ≈ 5, then it starts to decrease rapidly until it becomes
0 and remains there for a while (in the range of r ≈ 23−−45). Then the MDEF value
increases again but only to the degree of 0.6. The change of MDEF values indicates
that the object is extremely abnormal compared with objects in the very small local
neighbourhood (objects in the small cluster).

• On the other hand, the outlier of the large cluster, LC-O, (at about x = 70, y = 98),
exhibits strong outlier-ness in the range from r = 10 to r = 30, then becomes more and
more ordinary as we look at a larger scale.

• For the isolated outlier, O-O, (at about x = 47, y = 20), its MDEF value stays at 0 up to
almost r = 22, indicating that it is an isolated object. Then, it immediately displays a
high degree of outlier-ness.
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Figure 4.3: The framework of OBE.

Figure 4.4: The artificial and the original examples.

4.3 Proposed method (OBE)

OBE detects outliers based on user-provided examples and a user-specified fraction of ob-
jects to be detected as outliers in the dataset. OBE performs outlier detection in three stages:
feature extraction step, example augmentation step and classification step. Figure 4.3 shows
the overall OBE framework.

4.3.1 Feature extraction step

The purpose of this step is to map all objects into the MDEF-based feature space, where the
MDEF plots of objects capturing the degree of outlier-ness, as well as the scales at which the
outlier-ness appears, are represented by vectors. Let D be the set of objects in the feature
space. In this space, each object is represented by a vector: Oi := (mi0, mi1, . . . , min, where
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mij := MDEF(pi, rj, αr), 0 ≤ j ≤ n and r0 := mink(rmin,k), rn := rmax, rj = rn−r0
n j + r0.

4.3.2 Example augmentation step
In the context of outlier detection, outliers are usually few, and the number of examples that
users could offer is even less. If we only learn from the given examples, the information
is very little to be used to construct an accurate classifier. However, example-based outlier
detection is practical only if the number of required examples is small. OBE effectively solves
this problem by augmenting the user-provided examples.

In particular, the examples are augmented by adding outstanding outliers and artificial
positive examples, based on the original examples.

Outstanding outliers After all objects are projected into the feature space, we can detect
outstanding outliers. The set of outstanding outliers is defined by {Oi | maxM(Oi) > K}
where maxM(Oi) := maxj(mij) and K is a threshold.

Artificial examples The examples are further augmented by creating “artificial” data. This
is inspired by the fact that an object is sure to be an outlier if all of its feature values (i.e.,
MDEF values) are greater than those of the given outlier examples. Figure 4.4 shows the
created artificial data and the original example.

Artificial data are generated in the following way:

1. Take the difference between maxM(Oi) and the threshold K, DiffM(i) := K−maxM(Oi).

2. Divide the difference, DiffM(i) into x intervals, where x is the number of artificial ex-
amples generated from an original outlier example plus 1. For instance, if the intended
augmentation ratio is 200%, two artificial example are generated from each original
example. Then we divide DiffM into 3 intervals (i.e., x = 3), IntvM(i) = DiffM(i)/x.

3. Then, create artificial examples as: OA(i, j) := (mi0 + j · IntvM(i), mi1 + j · IntvM(i), . . . , min +

j · IntvM(i)), for 1 ≤ j ≤ x − 1. Here, OA(i, j) is the j-th artificial example generated
from object Oi.

In this way, the “outlier-ness strength” of the user’s examples is amplified, in a way consis-
tent with these examples.

Putting together the original examples, outstanding outliers and artificial examples, we
get the positive training data.
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Input:
Set of outlier examples: E
Fraction of outliers: F
Dataset: D

Output:
Outliers similar to examples

Algorithm:
OO← ∅ // Outstanding outliers
// Feature extraction step
Foreach pi ∈ D:

Foreach j, 1 ≤ j ≤ n:
Compute MDEF value mij
If mij > K:

OO← OO ∪ {pi}

// Example augmentation step
Foreach example in E:

Create artificial examples
POS← E ∪OO∪ artificial examples
// Classification step
NEG← strongest negatives
P ← D
Do:

P′ ← P
SVM← TrainSVM(POS, NEG)
(P, N)← SVM.Classify(D)
NEG← N

While (|P| ≥ F · |D| and |P| 6= |P′|)
Return P′

Figure 4.5: The OBE procedure.

4.3.3 Classification step

So far, the (augmented) positive examples, as well as the entire, unlabelled dataset are avail-
able to us. The next crucial step is finding an efficient and effective algorithm to discover the
“hidden” outlier concept that the user has in mind.

We use an SVM (Support Vector Machine) classifier to learn the outlier-ness of interest to
the user and then detect outliers which match this. Traditional classifier construction needs
both positive and negative training data. However, it is too difficult and also a burden for
users to provide negative data. Most objects fall in this category and it is unreasonable to
expect users to examine them.

However, OBE addresses this problem and can learn only from the positive examples
obtained in the augmentation step and the unlabelled data (i.e., the rest of the objects in the
dataset). The algorithm shown here uses the marginal property of SVMs. In this sense, it
bears some general resemblance to PEBL [YHC02], which was also proposed for learning
from positive and unlabelled data. However, in PEBL, the hyperplane for separating posi-
tive and negative data is set as close as possible to the set of given positive examples. In the
context of OBE, the positive examples are just examples of outliers, and it is not desirable
to set the hyperplane as in PEBL. The algorithm here decides the final separating hyper-
plane based on the fraction of outliers to be detected. Another difference between OBE and
PEBL is that strong negative data are determined taking the characteristics of MDEF into
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consideration.
The classification step consists of the following five sub-steps. Figure 4.5 summarises the

overall procedure of OBE.

Negative training data extraction sub-step All objects are sorted in descending order of
maxM. Then, from the objects at the bottom of the list, we select a number of (strong) nega-
tive training data equal to the number of positive training data. Let the set of strong negative
training data be NEG. Also, let the set of positive training data obtained in the example aug-
mentation step be POS.

Training sub-step Train a SVM classifier using POS and NEG.

Testing sub-step Use the SVM to divide the dataset into the positive set P and negative set
N.

Update sub-step Replace NEG with N, the negative data obtained in the testing sub-step.

Iteration sub-step Iterate from the training sub-step to the updating sub-step until the
ratio of the objects in P converges to the fraction specified by the user. The objects in the
final P are reported to the user as detected outliers.

4.4 Experimental evaluation
In this section, we describe our experimental methodology and the results obtained by ap-
plying OBE to both synthetic and real data, which further illustrate the intuition and also
demonstrate the effectiveness of our method.

We use three synthetic and one real datasets (see Table 4.1 for descriptions) to evaluate
OBE.

4.4.1 Experimental procedure

Our experimental procedure is as follows:

1. To simulate interesting outliers, we start by selecting objects which represent outlier-
ness at some scales under some conditions, for instance, ∧q(minq, maxq, condq, Kq), where
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Dataset Description
Uniform A 6000-point group following a uniform distribution.
Ellipse A 6000-point ellipse following a Gaussian distribution.
Mixture A 5000-point sparse Gaussian cluster, a 2000-point dense Gaus-

sian cluster and 10 randomly scattered outliers.
NYWomen Marathon runner data, 2229 women from the NYC marathon:

average pace (in minutes per mile) for each stretch (6.2, 6.9, 6.9
and 6.2 miles).

Table 4.1: Description of synthetic and real datasets.

(minq, maxq, condq, Kq) stands for the condition that (mijcondqKq) for some j such that
minq ≤ j ≤ maxq, where condq could be either “>” or “<”.

2. Then, we “hide” most of these outliers. In particular, we randomly sample y% of the
outliers to serve as examples that would be picked by a user.

3. Next, we detect outliers using OBE.

4. Finally, we compare the detected outliers to the (known) simulated set of outliers.
More specifically, we evaluate the success of OBE in recovering the hidden outlier con-
cept using precision/recall measurements.

OBE reports as interesting outliers the outstanding ones, as well as those returned by the
classifier. Table 4.2 shows all the sets of interesting outliers along with the corresponding
discriminants used as the underlying outlier concept in our experiments. In the table, for
instance, the discriminant (1, 35, >, 0.9) means that objects are selected as interesting outliers
when their MDEF values are greater than 0.9 in the range of radii from 1 to 35. The number
of the outstanding outliers and interesting outliers is also shown in Table 4.2. We always
randomly sample 10% (i.e., y = 10) of the interesting outliers to serve as user provided
examples and “hide” the rest.

To detect outstanding outliers, we use K = 0.97 for all the synthetic datasets and K = 0.99
for the NYWomen dataset. The discovered outstanding outliers of the synthetic datasets are
shown in Figure 4.6. Also, during the augmentation step, we always generate 5 (i.e., x = 6)
artificial examples from each original example.

We use the LIBSVM [LIB] implementation for our SVM classifier. We extensively com-
pared the accuracy of both linear and polynomial SVM kernels and found that polynomial
perform consistently better. Therefore, in all experiments, we use polynomial kernels and
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Figure 4.6: Outstanding outliers in the synthetic datasets.

the same SVM parameters3. Therefore, the whole processes can be done automatically. We
report the effectiveness of OBE in discovering the “hidden” outliers using precision and
recall measurements:

precision := # of correct positive predictions
# of positive predictions

recall := # of correct positive predictions
# of positive data

4.4.2 Results

Uniform dataset Figure 4.7 shows the outliers detected by OBE. Although one might ar-
gue that no objects from an (infinite!) uniform distribution should be labelled as outliers, the
objects at the fringe or corner of the group are clearly “exceptional” in some sense. On the
top row, we show the interesting outliers, original examples and the detected results for case
U-Fringe. The bottom row shows those for case U-Corner (see Table 4.2 for a description of
the cases). Note that the chosen features can capture the notion of both “edge” and “corner”
and, furthermore, OBE can almost perfectly reconstruct these hidden outlier notions!

Ellipse dataset We simulate three kinds of interesting outliers for the ellipse dataset:
(i) the set of fringe outliers whose MDEF values are examined at a wide range of scales,
(ii) those mainly spread at the long ends of the ellipse which display outlier-ness in two
ranges of scales (from 15 to 25 and from30 to 40), and (iii) mainly in the short ends, which
do not show strong outlier-ness in the scales from 35 to 40. The output of OBE is shown in
Figure 4.8. Again, the features can capture several different and interesting types of outlying

3For the parameter C (the penalty imposed on training data that fall on the wrong side of the decision
boundary), we use 1000, i.e., a high penalty for mis-classification. For the polynomial kernel, we employ a
kernel function of the form (u′ ∗ b + 1)2.
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objects and OBE again discovers the underlying outlier notion!

Mixture dataset We also mimic three categories of interesting outliers: (i) the set of out-
liers scattered along the fringe of both clusters, (ii) those mainly spread along the fringe of
the large cluster, and (iii) those mainly in the small cluster.

NYWomen dataset In the real dataset, we mimic three kinds of intentions for outliers: The
first group (case N-FS) is the set of consistently fast or slow runners (i.e., the fastest 7 and
almost all of the 70 very slow ones). The second group of outlying runners (case N-PF) are
those who are at least partly fast. In this group, we discover both the fastest 23 runners and
those runners who were abnormally fast in one or two parts of the four stretches, although
they rank middle or last in the whole race. For example, one of them took 47 minutes for
the first 6.2 miles, while 91 minutes for the last 6.2 miles. The third set of interesting outliers
(case N-SS) is those who run with almost constant speed and rank middle in the whole race.
They are very difficult to perceive, but they certainly exhibit outlier-ness when we examine
them at a small scale. Because of space limits, we only show the result plots in the first and
fourth dimensions—see Figure 4.9.

For all datasets, Table 4.2 shows the precision and recall measurements for OBE, using
polynomial kernels (as mentioned, polynomial kernels always performed better than linear
kernels in our experiments). It also shows the number of iterations needed to converge in
the learning step. In Table 4.2, all the measurements are averages of ten trials. In almost all
cases, OBE detects interesting outliers with both precision and recall reaching 80–90%. In
the worst case (case N-SS of NYWomen), it still achieves 66% precision and 70% recall. The
number of iterations is always small (less than 10).

4.5 Conclusion
Detecting outliers is an important, but tricky problem, since the exact notion of an outlier
often depends on the user and/or the dataset. We propose to solve this problem with a
completely novel approach, namely, by bringing the user in the loop, and allowing him or
her to give us some example records that he or she considers as outliers.

The contributions in this chapter are the following:

• We propose OBE, which, to the best of our knowledge, is the first method to provide a
solution to this problem.
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Dataset OO Cases OBE
Label Description Condition IO Prec. Recall Iter.

Uniform 0 U-Fringe Fringe (0.3, 0.6, >, 0.4) 330 82.76 88.18 8.1
U-Corner Corner (1, 2, >, 0.5) 274 91.90 97.92 4.1

Ellipse 15 E-Fringe Fringe (5, 30, >, 0.85) 214 90.20 93.55 6.1
E-Long Long ends (15, 25, >, 0.8) 140 88.67 92.14 5.4

(30, 40, >, 0.6)
E-Short Short ends (5, 15, >, 0.8) 169 76.46 80.00 10.4

(35, 40, <, 0.6)

Mixture 29 M-All All (1, 35, >, 0.9) 166 86.32 93.80 4.5
M-Large Large cluster (15, 35, >, 0.9) 123 91.52 95.37 4.6
M-Small Small cluster (1, 5, >, 0.9) 72 91.30 97.92 5.3

NYWomen 17 N-FS Very fast/slow (900, 1400, >, 0.7) 91 81.53 84.95 6.5
N-PF Partly fast (300, 500, >, 0.8) 126 73.07 78.81 6.9

(1400, 1600, <, 0.4)
N-SS Stable speed (100, 300, >, 0.8) 121 66.55 70.74 9.2

(400, 600, <, 0.3) xs

Table 4.2: Interesting outliers, discriminants and the performance of OBE. OO denotes out-
standing outliers, IO denotes interesting outliers. Precision, recall and the number of itera-
tions for convergence in the classification step are used to show the performance of OBE.

Figure 4.7: Detection results on the Uniform dataset. Top row: case U-Fringe, bottom row:
case U-Corner—see Table 4.2 for a description of each case.
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Figure 4.8: Detection results on the Ellipse dataset. From top to bottom row, in turn: case
E-Fringe, case E-Long and case E-Short—see Table 4.2 for description of each case.

Figure 4.9: Detection results on the NYWomen dataset. From top to bottom row, in turn: case
N-FS, case N-PF, case N-SS—see Table 4.2 for a description of each case. Only the first and
fourth dimensions are used for the plots, although NYWomen is four-dimensional.
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• We build a system, and described our design decisions. Although OBE appears simple
to the user (“click on a few outlier-looking records”), there are many technical chal-
lenges under the hood. We showed how to approach them, and specifically, how to
extract suitable feature vectors out of our data objects, and how to quickly train a clas-
sifier to learn from the (few) examples that the user provides.

• We evaluated OBE on both real and synthetic data, with several small sets of user ex-
amples. Our experiments demonstrate that OBE can successfully incorporate these
examples in the discovery process and detect outliers with “outlier-ness” characteris-
tics very similar to the given examples.
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Chapter 5

Dimension induced clustering

Real datasets exhibit patterns and regularities. As a main consequence, points typically lie
on low-dimensional manifolds, rather than being evenly spread out. Detecting subsets of
points with low intrinsic dimensionality is useful in tasks such as indexing and classifica-
tion. It was originally observed [PKF00] and has recently been proved [KL04] that the well-
known “curse of dimensionality” translates essentially to a “curse of intrinsic dimensional-
ity,” in terms of finding efficient approximations to nearest-neighbour queries. Furthermore,
separating points based on some notion of “local dimensionality” is helpful in identifying
subsets of points that are qualitatively different. For example assuming a geographical set-
ting, locations along a river belong to a 1-D manifold, whereas locations on a lake would
belong to a 2-D manifold (for example Figure 5.1). Similarly, road intersections along a high-
way are on a 1-D manifold, while intersections within a city belong to a 2-D manifold. Thus,
discovering low-dimensional manifolds is also useful in its own right.

However, we are faced with three main challenges. The first question that naturally arises
is what “dimension” exactly means. Data patterns may be fairly complicated. Assuming
that points follow linear trends and always lie on hyper-planes is fairly restrictive; in fact,
they typically follow complex shapes, with limited extents. For example, in a more abstract
setting the lake and river may lie on the same 2-D plane, but they still differ in dimension.
Second, to complicate matters even further, the observations may not even belong to a vector
space. Yet, we should be still able to define the dimension of a subspace. Finally, in practical
applications, the dimension of the embedding space is large, in the order of thousands. Any
method of practical interest should be able to deal with spaces of arbitrarily high dimension
and still successfully find low-dimensional subsets embedded in the original space. It is
thus desirable to characterise manifolds of complex shape embedded in any space of high
dimension, and devise algorithms for identifying them. As we shall see, it is possible to
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Figure 5.1: A dataset that contains two subsets of different intrinsic dimensionality

intuitively define a topological notion of dimension, which does not depend on the notion of
a linear subspace. Furthermore, our algorithms for identifying low-dimensional manifolds
are not sensitive to the dimension of the original space and, thus, do not suffer from the
“curse of dimensionality”.

In order to argue about and detect the existence of a low-dimensional manifold in our
data, there must exist a sufficiently large number of points that are densely packed on this
manifold. Therefore, it seems reasonable, that using density based methods it would be pos-
sible to detect such subspaces. However, we argue that density alone is not enough for this
task. For the sake of examples consider city locations interspersed among highway intersec-
tions. The cities, lying on a 2-D surface, form the first cluster. The road intersections form the
second cluster, as a complex network of denser 1-D lines which occupies the same space as
the city manifold cluster. Density-based clustering approaches have a limited ability to de-
tect clusters-within-clusters. In this simple example, they would typically produce either a
large number of separate city clusters (one for each group of cities enclosed by roads), or one
single cluster containing both intersections and cities, depending on the density thresholds.

Consider also the example in Figure 5.1. In this case we have three qualitatively different
types of points. The set of points that lie on the curved 1-D line, the set of points that lie
on the 2-D cloud, and the noise points that are scattered in the 2-D plane. If the line and
the square have the same density, using a density based method is not possible to detect all
three of these subsets. Any density threshold will just separate the noise points from the
rest. Note also that dimensionality by itself would not be able to separate the square from
the noise points, since the noise points are also 2-dimensional. The synergy of density and
local dimension gives a clear separation of the three distinct datasets, as it is shown in the
figure.

In this chapter we propose the idea of creating a local-growth model for each point. This
growth model depends, in principle, only on pairwise point distances and captures how
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each point “views” its local neighbourhood. Using this model we can characterise each
point xi with two variables (di, ci), where di is the local dimensionality of the point xi, and ci
is the local density. Intuitively, di depends on the growth rate of the number of points in the
neighbourhood of xi, while ci depends on the density of points in the neighbourhood of xi.

Both variables are estimated from local growth curves. Local growth curves can be com-
puted directly from the data. Our algorithms require only a limited number of nearest-
neighbour (NN) queries. These are well-studied and several efficient algorithms exist to
answer them. For each point xi, the local growthcurve of xi is computed, and a line is fitted
on a subset of the points of the curve that corresponds to a local neighbourhood of xi. Then,
the local dimensionality di is defined as the slope of the fitted line, while the local density ci
is defined as the value of the fitted line for a specific radius r∗. We choose r∗ so as to max-
imise the information captured by the set of feature pairs (di, ci), in the sense of minimising
the correlation between di and ci.

Using the local density and local dimensionality, each point xi is represented by the fea-
ture pair (di, ci). Therefore, we map our dataset in a two dimensional space. This has the
following advantages. First, we can easily cluster the dataset using an off-the-shelf, two-di-
mensional clustering algorithm, like EM. Second, in an user interactive system, the number
of clusters and the correct partition can be identified through visual inspection.

Our main contributions are the following:

• Drawing upon ideas from fractals, we propose a general way to characterise the lo-
cal dimensionality of points. Our definitions are topological and independent of the
notion of a linear subspace. Our methods can be applied to datasets of arbitrary di-
mensionality and our algorithms are independent of the number of dimensions in the
original dataset.

• Our method maps the dataset into a 2-dimensional space. We show how to chose the
feature pairs (di, ci), so as to maximise the information they retain about the dataset,
and enhance the visual representation of the dataset.

• Our algorithms can successfully detect low-dimensional manifolds embedded in high-
dimensional spaces, even when they are spatially overlapping, by using the local di-
mensionality in addition to the local density.

• We show how we can use the local dimensionality along with local density to detect
low dimensional m-flats and low-rank submatrices.

Additionally, our method does not assume that the points lie in a vector space and can
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also be applied to metric data, when dimensionality is not directly obtainable from the data
representation itself.

The rest of this chapter is organised as follows. Section 5.1 discusses briefly the related
work. Section 5.2 introduces the key concepts and definitions. Section 5.3 explains their
properties and elaborates on effectively selecting feature pairs (di, ci). Section 5.4 presents
our algorithms and section 5.5 applies them to the problems of detecting low-dimensional
m-flats and low-rank submatrices. Finally, we conclude in section 5.6.

5.1 Related Work

In this section we briefly discuss related work, broadly divided in two categories: methods
that use some notion of density, and methods based on intrinsic dimensionality.

Density-based clustering Similar to our method, density-based clustering approaches also
rely on local density information in order to partition the dataset.

Hierarchical single linkage is a well-known method to find clusters with respect to den-
sity. To overcome problems in cases, when clusters are connected by small chains, popular
variants like DBSCAN [EKSX96] and OPTICS [ABKS99] use a modified linkage hierarchy,
where points within a cluster have to be reachable via core points (points having a certain
minimum number of neighbours). DBSCAN computes a clustering corresponding to a cut
in the linkage hierarchy, while OPTICS finds an ordering of the points from which a lower
part of the linkage hierarchy can be deduced. Both algorithms fall short in case of clusters
within clusters and the true hierarchy contains nodes with degree one. However, as our
approach does not rely on spatial separation of the clusters, but focuses on detecting subsets
with low intrinsic dimensionality, it can also deal with those cases.

Another density-based clustering method is DenClue [HK98], which employs kernel
density estimation and uses density thresholds to define the clusters to be found. Wave-
cluster [SCZ98] uses the wavelet transform and can detect clusters of arbitrary shape and
with different granularity. However, computing the wavelet transform in high dimensions
(more than 2) is computationally challenging. CLIQUE [AGGR98] is a density-based method
that can also detect subspaces such that high-density clusters exist in them. However, it is
grid-based and thus assumes that points lie in vector space. Furthermore, CLIQUE consid-
ers only hyper-rectangular clusters and projections parallel to the axes.
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Projective clustering There are some algorithms which can find clusters which are dense
in a projection of the original data space. Proclus [APW+99] and DOC [PJAM02] search
the space of axes-parallel projections to find good clusterings of the data. More advanced
techniques like Orclus [AY00] and projective k-means [AM04] analyse eigenvalues of subsets
of the data and can find arbitrary linear projections, in which points are clustered.

Fractals-related work Concepts of intrinsic dimensionality from fractals have been suc-
cessfully used in the database field for numerous problems, such as nearest-neighbour que-
ries [PKF00] and spatial query selectivity estimation [FK94, BF98]. Recent results [KL04] dis-
cuss doubling dimension as measure for intrinsic dimensionality. The proposed algorithm
works efficiently, when the intrinsic dimensionality is bounded.

Barbará et al. [BC00] propose a clustering approach that uses the fractal dimension. How-
ever, it relies on the global dimension of the dataset, which tends to be dominated by the
largest or most dense subsets of the data. In particular, for each point xi, it estimates the
global fractal (box-counting) dimension of the datasets X and of X \ xi and uses their differ-
ence to cluster the points.

Finally, LOCI (see Chapter 3) is an outlier detection method based on the local distribu-
tion of pairwise distances at multiple scales. Although the key concepts are loosely related,
LOCI focuses on an entirely different application and does not use the concept of intrinsic
dimensionality in any way.

5.2 Overview of the approach
In this section we give an overview of our method. As we discussed before, the method
draws upon and extends previous density-based algorithms, as well as concepts of intrinsic
dimensionality. The two key measures it uses are local density and local dimensionality. Both
are obtained by fitting a line on a subset of points of the local growth curve.

First, we review basic facts about the notion of intrinsic dimension. Then, we describe lo-
cal growth curves, and we explain how local density and local dimensionality are computed,
and how they are used for clustering the dataset.

5.2.1 Background on intrinsic dimension

As an underlying basis of our method, we use the notion of correlation dimension, which is a
measure of the intrinsic dimensionality of a dataset. In the following discussion, we assume
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that the dataset X is a subset of R
m, and for definition purposes we assume that the number

of points n in X approaches the infinity. Let d : X × X → R be a distance function between
pairs of points of X, and let C(r) be the average number of pairs of points within distance r,
that is,

C(r) = lim
n→∞

1
n2 ∑

x∈X
|B(x, r)|,

where B(x, r) = {y | y ∈ X, d(x, y) ≤ r} is the subset of points contained in a ball of radius r,
centred at point x. The correlation dimension is then defined as

dcorr = lim
r,r′→0

log[C(r)/C(r′)]
log[r/r′] . (5.1)

We assume that all the limits exist. Alternative definitions of intrinsic dimensionality can
be found in the literature, such as capacity or box counting dimension and information dimen-
sion. Intrinsic dimensionality measures are sometimes also collectively referred to as fractal
dimension. The interested reader can find a comprehensive development of the topic in a
standard textbook, e.g., Rasband [Ras90].

In practice, we deal with finite sets, so the definition of correlation dimension in Equa-
tion (5.1) is not applicable. In this case, we define the function C(r) as

C(r) =
1
n2 ∑

x∈X
|B(x, r)|, (5.2)

and estimate the correlation dimension by the slope of the function C(r) in the log-log scale.
The reason is that, since log[C(r)/C(r′)]

log[r/r′] =
log[C(r)]−log[C(r′)]

log r−log r′ , the correlation dimension expresses
the increase rate of log[C(r)] between log r and log r′.

The intuition is shown in Figure 5.2: For points that are one-dimensionally arranged,
as shown in Figure 5.2(a), one expects to find twice the number of points when doubling
the radius. On the other hand, for points that are scattered on the 2-D plane, as shown in
Figure 5.2(c), when doubling the radius, we expect the number of points to increase quadrat-
ically. The growth rates of the number of points in Figures 5.2(a) and 5.2(c) can then be esti-
mated from the slope of the C(r) curve in log-log scale, as shown in Figures 5.2(b) and 5.2(d),
respectively. These are close to one and two, respectively. To enable visual comparison, the
scales of the Figures 5.2(b) and Figures 5.2(d) are the same.
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Figure 5.2: Intuition behind the intrinsic dimensionality (correlation dimension).
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Figure 5.3: A dataset that contains two subsets of different intrinsic dimensionality

5.2.2 Local Correlation Dimension

The function C(r) as defined in Equation (5.2) computes the average number of neighbours
of a point within distance r, where the average is taken over all points of the dataset. How-
ever, due to averaging, if the dataset is non-homogeneous, the estimated correlation di-
mension will not reflect the “true” dimensionality of the data. Figure 5.3 illustrates this
point. Figure 5.3(a) shows a dataset with two distinct subsets of points: in the first subset
the points lie on a 1-D curve, while the second subset consists of a cloud of 2-D points. As a
consequence of taking averages, the intrinsic dimension of the whole dataset is somewhere
between one and two. Figure 5.3(b) shows the line fitted to the C(r) curve and, for compari-
son, lines with slopes one and two.

Therefore, in the case that a dataset consists of subsets with different intrinsic dimen-
sionality, the correlation dimension of a dataset does not correctly characterise the dimen-
sionality of the dataset. To overcome this problem we extend the definition of correlation
dimension for each point in the dataset.

Definition 12 (Local-Growth Curve). For each point x, we define the local-growth curve, to be
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the function of r, Gx : R→N that computes the fraction of neighbours of x in a ball of radius r,

Gx(r) = lim
n→∞

1
n |B(x, r)|.

The local growth curve Gx describes the density of the local neighbourhood of x for
all distances r. In addition, the Gx curve contains information about the growth rate of
the number of neighbours of x. We can now define the local-correlation dimension (or local
dimension) of point x.

Definition 13 (Local-Correlation Dimension). We define the local-correlation dimension dx
of point x, as

dx = lim
r,r′→0

log[Gx(r)/Gx(r′)]
log[r/r′] . (5.3)

As in the case of correlation dimension, when dealing with finite sets, we define the local
growth curve to be Gx(r) = 1

n |B(x, r)|, and we compute the local-correlation dimension dx
of a point x by the slope of Gx curve in log-log scale. Notice that for finite sets the Gx curve
is step-wise – its value chance only when the radius grows to include the next neighbour of
a point. As a result, the local-growth curve can be losslessly represented by specifying its
value on a finite set of radii Dx ⊂ R, which we call the domain of Gx.

5.2.3 Local representation

We now describe how to use the local growth curves and the local-correlation dimension in
order to represent the dataset.

Let X = {x1, . . . , xn} be a dataset of n points in some metric space. For each point xi we
define its domain Dxi , and we compute the local growth curve Gxi . We then take the Gxi

curve in log-log scale, and we find the line that fits it best, in a least squares sense. We use
Lxi to denote this line, and we call it the linear growth model for point xi.

Definition 14 (Linear Growth Model). We refer to the line

Lxi(log r) = di log r + bi

as the Linear Growth Model for the point xi.

The slope di of the line Lxi is an estimate of the local-correlation dimension of point xi.
Using the linear growth model, we can now represent the point xi using just two numbers.
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The first number is the value di, the local dimension of the point xi. The second number is
denoted by ci = Lxi(log r∗) and it corresponds to the density of the dataset in a ball of radius
r∗, centred on xi as it is estimated by the linear growth model Lxi for point xi. We defer the
discussion about the value r∗ to Section 5.3, Lemma 5. We call ci the local density of the point
xi. We write l(xi) = (di, ci) to denote the representation of xi by these two parameters.

Definition 15 (Local representation). The mapping l(xi) = (di, ci) is called the local represen-
tation of xi, where ci = Lxi(log r∗).

To illustrate the intuition behind local representation, consider two specific points A and
B that come from the two different subsets in the example of Figure 5.3. Panel 5.3(c) shows
Gx(r) for x = A and x = B together with the fitted lines. In our example, the local dimen-
sionality of point A is 1.20 and that of point B is 1.98. Therefore, we are able to distinguish
the subsets with different intrinsic dimensionality using the local dimensionality di.

As we will explain in the next section, it is meaningful to ignore the parts of the local
growth curve that correspond to very small and very large radii. The reason is that, for
small r, the value of Gx(r) is sensitive to local noise effects. Thus, ignoring small radii im-
proves the robustness of the estimated dimension. On the other hand, for large r too many
points contribute to the value of Gx(r). Therefore, Gx does not capture local-neighbourhood
structure around x any more; most curves look identical. For these reasons we restrict the
domain Dx of Gx(r) to a smaller subset Fx ⊆ Dx, which we call the fitting set of Gx(r), and
it is precisely the range over which we fit the linear-growth model Lx The details of how the
fitting set is determined are discussed in Section 5.3.2.

5.2.4 Overall clustering

The final step of our method is to detect clusters of points that form low-dimensional man-
ifolds in the ambient space of the dataset. Taking advantage of the simplicity of the local
representation l(xi) = (di, ci), we can perform this step using a standard clustering algo-
rithm. Assuming that the local representation maintains well the information about the
local density and the local dimensionality of the points, the clustering process is relatively
easy since it is an operation on two-dimensional data (i.e., the pair of numbers forming the
local representation). For our experiments we used the standard EM algorithm with full co-
variance matrices. Furthermore, the 2-D representation offers an informative visualisation
of the dataset. In an user-interactive system it is usually easy to determine the underlying
clusters in the dataset.
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Finally, we note that the output of our algorithm can be further processed to discover
dimensions of interest. First, in case that the algorithm places two manifolds of same di-
mension and density into one cluster, but the two manifolds do not intersect, then they can
be separated by the single-linkage clustering. Second, in case of axis aligned subspaces, we
can easily discover the attributes of interest by measuring the variance along each dimen-
sion. Finally, in case that we are interested in linear subspaces, running PCA will reveal the
directions of interest. All of these three tasks become significantly easier once the appropri-
ate subset of points has been identified by our method.

5.3 Analysis of our method
In this section we discuss the properties of our definitions, and their implications in the
overall approach. As our guide in this discussion we consider the simple cases of points
lying on a 2-D grid and on a 1-D line.

5.3.1 Discussion and Examples

The definition of correlation dimension in Section 5.2 assumes that the size of the set X is
infinite. For an infinite real line and an infinite real plane the dimensions are precisely 1 and
2, respectively. In practice, however, we deal with finite sets with finite extent, so we can
only compute an estimate of the actual dimension. We will now study the effect of finiteness
on the local representation of the points by investigating two simple cases. The first dataset L
consists of n one-dimensional points equally spaced on a line. The second dataset G consists
of n two-dimensional points arranged on a grid. Ideally, the intrinsic dimensionality of the
line should be one, and the dimensionality of the grid should be two. However, due to the
finite size of the datasets, the estimated dimensionality is different.

Consider the points in the set L and assume that the point xi is located at position i of
the real line. Consider one of the endpoints of the line, e.g., the leftmost point x1 of the line.
The local growth curve of x1 is Gx1(r) = r

n (when computing |B(x1, r)| we do not count the
point itself). For the point xm in the middle of the line m = n/2, the local growth curve is
Gxm(r) = 2r

n . In both of these cases, the local dimensionality of points x1 and xm is one, as
expected. However, consider the point xp that lies in position p = n/4. For radii r = 1.. n

4 ,
Gxp(r) = 2r

n , while for radii r = n
4 ...3n

4 , Gxp(r) = r
n . Due to this change in the local growth

curve, when fitting a line the local dimensionality of the point xp is underestimated. For
example, for a line with 500 points, the local dimensionality is estimated to be around 0.87.
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Figure 5.4: Boundary effects on the estimation of the correlation dimension.

The di values for all points are shown in Figure 5.4.

Determining the correct slope is even harder for the two-dimensional grid. Consider the
point xm in the middle of the grid. For simplicity we will assume that the distance between
points is measured using the L∞ norm. It is not hard to see that the local growth curve for
this point is Gxm(r) = 1

n ((2r + 1)2 − 1) = 1
n(4r2 + 4r) (again, the point xm is not counted in

the computation). Due to the additive term 4r we need to have r → ∞ in order for the local
dimension dm of xm to tend to 2. In practice, this results in underestimating the dimension of
the point. For a 50× 50 grid the local dimension of the middle points is estimated to be close
to 1.6. Furthermore, simple computations show that for a point xs on the side of the grid,
Gxs(r) = 1

n(2r2 + 3r), while for a point xc on the corner of the grid, Gxs(r) = 1
n (2r2 + 3r).

Again, the local growth curve on the boundary of the grid is different from that inside the
grid. Therefore, when the curve hits the boundary there is a change in the local growth
curve, which results in further underestimation of the local dimension. An example with a
50× 50 grid is shown in Figure 5.4. The contour lines show how the local dimension changes
for different points of the grid. The maximum and minimum values are shown on the plot.

We next consider the case of a dataset consisting of a line embedded in a grid. We assume
that the line consists of grid points which are replicated µ times. The value µ is the density of
the line. For simplicity, assume that the line lies in the middle of the grid and it is parallel to
one axis of the grid. Furthermore, in order to avoid dealing with boundary points, assume
that the grid extends to infinity in all directions. For a point on the line x` it is not hard to
show that the local growth curve is Gxm(r) = 1

n((2r + 1)2 + µ(2r + 1)− 1). When the value
µ is large enough compared to r the growth of Gxm(r) is dominated by the linear term. Of
course as r → ∞, the quadratic part becomes dominant. For a grid point, the growth is the
same as before as long as the ball around the point has not reached the line. When the line is
reached, the local growth curve becomes the same as for a line point (this is also due to the
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fact that we consider the L∞ distance, and the line is parallel to the axis).
In the next paragraph we will see how to address the issues raised by the previous ex-

amples. The idea is to compute the local dimensionality dx of each point by fitting a line
not to the entire local growth curve Gx, but only on the fitting set Fx. We discuss how we
determine Fx next.

5.3.2 Determining the fitting set

An important issue in the definition of local growth curves is the domain of radii over which
they are defined. An immediate idea is to define the curves over the interval ranging from
the minimal pairwise distance up to the diameter of the dataset. Let R denote this interval.
This is the maximal interval over which the local growth curves can be defined. However,
this approach is extreme, since for most points, the low part of the curve will be zero (balls
with small radius contain no points), while the upper part of the curve will be one (balls
with large radius contain the whole dataset). This will result in poor estimates for the local
dimension of these points.

One approach for dealing with this problem is to restrict the definition of the local growth
curves over an interval [rmin, rmax] ⊂ R, which one might believe that captures the useful
information of the local growth curve. However, this approach is also problematic when
the density of the dataset differs in different regions of the space. Furthermore, for points
that lie in large dimensional spaces, the minimum and maximum distances converge, so it
is challenging to find a meaningful interval.

To address these issues, we choose to define a different domain Dx for each point in the
dataset. This domain is defined by growing a ball around x such that at each step we extend
the ball to include (at least) one more neighbour. In other words, the domain Dx is precisely
the set of radii {r1, r2, ..., rn}, where rk is the distance of x to its k-th nearest neighbour.

Following the discussion in Section 5.3.1, it becomes clear that it is beneficial to restrict
the domain Dx by considering the distances only up to some kmax-th nearest neighbour,
instead of all possible neighbours. This has the following advantages. First, it captures
best the idea of locality upon which our approach is based. As it was demonstrated in the
case of the line embedded in the grid, this can help discriminate between points that lie on
different manifolds. Second, it helps in avoiding strong boundary effects, since fewer points
hit the boundaries, and thus we can better estimate their “real” dimension. This is shown in
Figures 5.5 (a), (b), and (c), where by restricting the interval from above, we obtain a better
estimation of the dimension for more points of the line and the grid.
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Figure 5.5: Restricting the fitting interval

We further restrict the interval Rx from below, by considering only the neighbours that
are no closer than the kmin-th nearest neighbour. As discussed in Section 5.3.1, in the case of
the grid this helps obtain a better estimate of the dimension. This becomes obvious when
comparing the the figures (b) and (c) in Figure 5.5. Figure (c) is obtained by restricting the
interval Rx from below, where we obtain an estimate of the dimension closer to 2.

Furthermore, for small values of k (i.e., for the very first nearest neighbours) the radius
rk might be affected by small local variations of the density of the points. Such density
variations might include isolated points or unusually dense areas. Our point is illustrated
in Figure 5.5(d) 100 points have been generated uniformly at random in a d-dimensional
hypercube, for d = 2, 5, and 10. By repeating the process of random point generation 1000
times, we estimate the expected distance and the variance of the k-th nearest neighbour
from a randomly selected point as a function of k. Figure 5.5(d) shows that the variance of
the distances of the very first nearest neighbours is large. Therefore, by ignoring the k-th
nearest neighbours for k < kmin we obtain a more robust estimation of the local dimension.
We are now ready to summarise with the following simple definition.

Definition 16 (Fitting set). The set of radii Fx = {rk ∈ Dx | r(x)
kmin
≤ rk ≤ r(x)

kmax
}, where r(x)

kmin
and

r(x)
kmax

are the distances of the kmin-th and kmax-th nearest neighbours of x is called the fitting set.

In our experiments, we have found that the algorithm is not particularly sensitive in the
choice of kmin and kmax. For example, the values kmin = 0.01 · n and kmax = 0.1 · n give good
quality of results in a wide variety of datasets.

5.3.3 Estimating local density

In this paragraph we derive an estimation for the radius r∗, which is used for computing the
local density ci = Lxi(log r∗) for each xi. For simplicity of notation we rewrite Equation (14)
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as Y = diX + bi. We also write X∗ = log r∗ and Y∗ = diX∗ + bi = ci. Notice that by fitting a
line to the curve Gxi we obtain the parameters di and bi. The goal is to compute the “best”
choice of parameter log r∗ that achieves the local representation l(xi) = (di, ci) for each xi.

The main observation is that by setting log r∗ = +∞ in Equation (14), the resulting values
ci of local densities are perfectly correlated with the values di of local dimensions. The reason
is that for log r∗ = +∞ the ordering of ci’s is completely determined by the ordering of di’s.
Similarly, for log r∗ → −∞, the ci’s are perfectly anti-correlated with di’s. Since our goal is
to use the pair (di, ci) that capture as much information for each xi as possible, we would
like to choose r∗ so that the parameters di and ci are uncorrelated. Based on this idea we can
estimate the optimal radius r∗ for the local representation l(xi). Note that it makes a huge
difference for the visualisation as well as for automated clustering algorithms, whether the
two-dimensional data (di, ci) are uncorrelated or not.

Lemma 5. The choice of r∗ for which di and ci are uncorrelated is given by

log r∗ = −∑(di − d̄)(bi − b̄)

∑(di − d̄)2

Proof. The correlation between the variables di and ci can be estimated by the coefficient

rdc =
∑i(di − d̄)(ci − c̄)

√

∑i(di − d̄)2 ∑i(ci − c̄)2
,

where d̄ = E[di] and c̄ = E[ci] are the expectations of di’s and ci’s, respectively. To make
the correlation zero we need to choose r∗ so that the numerator of rdc is equal to zero. Let
b̄ = E[bi] be the expectation of bi’s. Since ci = diX∗ + di, by linearity of expectation we get
c̄ = E[ci] = E[bi + X∗di] = b̄ + X∗ d̄. The numerator of the correlation coefficient can now be
written as

∑(di − d̄)(ci − c̄)
= ∑(di − d̄)(bi + X∗di − b̄− X∗ d̄)

= ∑(di − d̄)(X∗(di − d̄) + (bi − b̄))

= X∗∑(di − d̄)2 + ∑(di − d̄)(bi − b̄).

Setting rdc = 0 gives the optimal value of log r∗.
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Input: Dataset X of n points, number of clusters b
Ouput: Clustering of X into b clusters

1: for all i ∈ {1, . . . , n} do
2: Compute k-th NN of xi, for k = kmin . . . kmax
3: Compute the local representation (di, ci) of xi.
4: end for
5: XLR = {(d1, c1), . . . , (dn, cn)}
6: Cluster the set XLR into b clusters.

Figure 5.6: The DIC algorithm

5.4 The algorithm

We now present the Dimension Induced Clustering (DIC) algorithm. The algorithm works
on the representation of the dataset defined in Section 5.2. The objective of the algorithm
is to partition points so that points in the same cluster lie on dense manifolds of the same
dimension.

5.4.1 DIC algorithm

The outline of the DIC algorithm is shown in Figure 5.6. The input to the algorithm is
a set X of n elements, that we want to cluster in b clusters. In first step, the algorithm
computes for each element xi, the distance of xi to its k-th nearest neighbour for all k =

kmin, . . . , kmax. The distances of the nearest neighbours of xi specify completely the local
growth curve Gxi . By fitting the linear growth model Lxi on Gxi and by estimating the local
density, as in section 5.3.3, we compute the local representation l(xi) = (di, ci) for each xi.
Thus, we map the set X into a two dimensional set XLR that contains the local representation
of all points. The task now becomes to cluster the two-dimensional points in XLR. Clustering
in two dimensions is conceptually much simpler than clustering in high-dimensional spaces.
The correct clustering can often be determined even by simple visual inspection. In the
automated case applying a EM (Expectation Maximisation) algorithm [HTF01b] for fitting
b Gaussian distributions on the data works well in many cases. If the set X consists of b
sufficiently dense subsets that lie on manifolds of different dimension, which are sufficiently
separated, the algorithm will be able to separate these subsets.
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5.4.2 Efficiency of DIC

The complexity of the DIC algorithm is dominated by the complexity of computing for every
point xi the distance to the kmin to kmax neighbours of the point xi. The simple solution to
this problem is to compute the distances between all points in the set X, and for each point
xi sort the points with respect to their distance from point xi, and retrieve the necessary
information. The time for computing all pairwise distances is O(n2).

A different approach is to construct an index for the elements in X that supports fast
execution of k-nearest neighbour queries. In case that X consists of vector data, spatial index
structures can be used for the efficient calculation such as [AMN+98, KS97, BKK96]. In case
of metric data the OMNI framework [FTCTF01], or data structures like the M-tree [CPZ97]
can be used. Since the computation of the local representation is inherently approximate,
the use of approximative methods for k-nearest neighbour queries such as locality-sensitive
hashing [GIM99], is also possible.

Investigating the construction of the appropriate nearest neighbour index is beyond our
scope. We assume that such an index exists, and we use it as a black box for obtaining the
distances of the k-th nearest-neighbour queries for k = kmin, . . . , kmax. The efficiency of the
DIC algorithm is determined by the efficiency of this index.

5.5 Experiments
In this section we study experimentally the properties and the performance of the DIC algo-
rithm.

5.5.1 Applications and Datasets

We apply our algorithms on the following types of datasets.

Embedded m-flats: Consider a set X of n points in R
d that can be decomposed in two subsets

N, and F, of size s and f respectively, where n = s + f . The points in N are are distributed
uniformly at random in (0, 1)d. For the points in F, in the first d− m coordinates they take
values normally distributed around 0.5, with variance 0.01. In the last m coordinates they
take values uniformly distributed in (0, 1). As s, f → ∞ the intrinsic dimensionality of the
sets N and F approaches d and m respectively. We call the set F an m-flat. The value m is the
dimension of the m-flat. The set N can be thought of as an m-flat of dimension d, so we say
that N has full dimension.
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The objective of the algorithms is to partition the set X into sets N and F. We apply the
DIC algorithm on X, requesting 2 clusters. We will demonstrate that the DIC algorithm, is
able to return the sets F and N as the clusters even when m and d are relatively close. The
flat F is the set of nodes with the smaller average intrinsic dimensionality.

Manifolds within manifolds: The setting is similar to the previous one, only this time the
set X contains more than one m-flats of different dimensions. Namely, the set X can be
decomposed into sets N, F1, . . . , Fp, where N has full dimension d, and F1, F2, . . . , Fp are m-
flats with dimensions m1 < m2 < . . . < mp respectively. The m-flats are constructed as
described above. Note that since for every flat Fi we always “fix” the first d−mi coordinates,
the m-flats with lower dimension are embedded within the m-flats of higher dimensions.
This results in creating a chain hierarchy of manifolds where every manifold is embedded
in all the preceding ones in the chain.

Again, we apply the DIC algorithm, requesting p + 1 clusters. When the dimensionalities
of the m-flats are sufficiently separated, the algorithm returns as clusters that p flats and the
set N. The average estimated dimension for each set are ordered according to the actual
dimension of the flats.

Low Rank Submatrices: The input is an n × m matrix that takes values in [0, 1]. Within
the matrix there is a collection of k rows and ` columns, such that the combinatorial k × `

submatrix has low rank. The objective is to identify the rows and columns of this submatrix.
We generate such datasets as follows. First we generate a k × ` matrix S of rank exactly

r, where r � min{n, m}. We then plant it in the matrix M. The remaining elements of M are
generated uniformly at random, scaled so that the mean is zero and the standard deviation
is one. Therefore, if we remove either the k rows, or the ` columns of matrix S from M, we
obtain a matrix of rank min{n− k, m} and min{n, m− `} respectively. To this matrix we add
a “noise” matrix X with entries distributed normally around 0, with variance 0.05.

In order to extract S from the matrix M we apply the DIC algorithm in two steps. First we
perform a clustering of the rows, and we identify the rows of the matrix S. The dimension
of these rows is m− `, as opposed to m which is for the rest of the rows, so it is easy for the
DIC algorithm to identify them. We then cluster the columns of M. The dimension of the
columns in S is n− k as opposed to n for the rest of the columns, so again DIC manages to
partition the rows. Given the rows and columns we can extract matrix S.
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Figure 5.7: Discovering m-flats with DIC

5.5.2 Experiments with DIC

In this section we present experiments with DIC algorithm on various datasets. In all runs
of the algorithm, we set kmin = 10, and kmax = 100, two values that we observed that they
work well in practice.

We start by experimenting with datasets that contain a single m-flat F, embedded in a
space of higher dimension d, together with a set N of noise points distributed uniformly at
random. The datasets are constructed as described in section 5.5.1. Since the objective is to
separate the set F and N, we evaluate our algorithm by looking into the total classification
error of the algorithm. The total classification error Etot is computed as follows: We first
compute the confusion matrix C whose Cij entry contains the number of overlapping points
between the i-th cluster of the ground truth and the j-th cluster of the clustering found by
the algorithm. Then Etot = 1− (∑i maxj Cij)/n.

Our experiments indicate that the DIC algorithm performs exceptionally well in this set-
ting, even in the case that the dimension of the host space and the m-flat are very close, or
if the m-flat is embedded in a high dimensional space. Figure 5.7(a) plots the local represen-
tation of the data points when d = 3 and m = 2, and their clustering. Figure 5.7(b) shows
the the case where d = 50 and m = 40. In both cases, the size of the dataset is 1,000 points,
of which 500 belong to the m-flat. We observe that the algorithm manages to identify the
m-flats successfully. The total classification error is 8.1% in the first case, and 1.2% in the
second case.

In order to better understand the performance of DIC, we performed a more detailed
experiment, generating datasets with the dimension of the host space being d = 2 . . . 10, and
the dimension of the m-flat ranging from 1 to d− 1. In all cases, the dataset consists of 1,500
points, 500 of which belong to the m-flat. Table 5.1 reports the average classification error for
20 runs of the algorithm (the numbers are percentages). We observed that the classification
error is never more than 39%, and this occurs in the case that the dimension of the host space
and that of the m-flat differ by just one.
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1 2 3 4 5 6 7 8 9
2 9.2
3 13.0 20.14
4 14.9 1.53 29.28
5 16.1 0.26 6.74 26.42
6 15.4 0.08 0.68 6.99 31.1
7 7.1 0.02 0.17 1.25 13.7 33.4
8 10.5 0.00 0.02 0.41 2.1 14.6 36.3
9 1.4 0 0.01 0.08 0.6 2.9 18.7 37.9

10 7.4 0.01 0.01 0.04 0.2 0.9 4.2 20.7 38.3

Table 5.1: Classification error of discovering m-flat clusters

We now turn our attention to cases where there are more than one m-flats in the dataset.
Figures 5.7(c) and (d) show the plots of the local representations of two datasets that contain
flats of different dimension. In the first case the dimension of the host space is d = 10 and the
two manifolds have dimension m1 = 3, and m2 = 6. In the second case we have (m1, m2, d) =

(10, 20, 30), In both cases all three sets of points F1, F2, N contain 500 points each. We observe
that the DIC algorithm manages to discriminate the three sets. The average classification
error is 1.53% for the first case, and 0.51% for the second case, where the average is taken
over 20 runs. Datasets with more than three flats are examined in the Appendix.

Figure 5.8: Discovering low rank matrices

We also experiment with low rank matrices, trying to detect a (combinatorial) 100× 100
submatrix of rank 2, within a 1000× 1000 matrix. The algorithm proves to be quite success-
ful, obtaining classification error just 0.16%, where the average is taken over 10 runs. In this
case the large dimension of the matrix works in favour of our algorithm. The algorithm of-
ten achieves a perfect partition of the matrix (4 out of the 10 runs). A case where we obtain
a perfect partition of the matrix is shown in Figure 5.8. The blue part of the figure shows
the correctly found low rank submatrix, the red and yellow areas correspond to the attached
random columns and rows and the green part totally belongs to the random matrix.

The problem of finding low rank submatrices has been applied to microarray data. Wang
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Figure 5.9: Analysis of microarray data, (a) dimensionality and density for each row, (b)
density contours in the rectangular area of (a) reveal two clusters, (c) 1D histogram of the
density component, (d) 1D histogram of the dimensionality component.

et. al. [WWYY02] report a solution for rank-1 submatrices. We experiment with the same
microarray data used in [WWYY02]1. The data contains the expression levels of 2884 genes
(rows) for 17 different patients (columns). Finding combinatorial low-rank matrices in such
types of data is important since they represent subsets of genes that are co-regulated on
some subsets of patients. Figure 5.5.2a shows a plot of the local representation of the rows
(genes) of the matrix. The scatter plot shows no obvious clustering except a few outliers.
A more detailed density estimation of the 2D data reveals two hidden clusters. The figure
5.5.2b shows the density contour lines, estimated by a 30× 30 histogram (light grey means
high density). There is one small cluster the rows of which has dimensionality around 3 and
lower density than the bigger cluster with intrinsic dimensionality of about 6. Note that the
two clusters can not be found using either density or intrinsic dimensionality, as shown by
the two 1D histograms of the both measurements (fig. 5.5.2c,d). This shows that our idea of
combining density with intrinsic dimensionality is a real step forward.

1The data can be obtained at http://arep.med.harvard.edu/biclustering/yeast.matrix
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Chapter 5. Dimension induced clustering

5.6 Conclusions
We address the problem of discovering clusters of points that lie on low-dimensional man-
ifolds. Our approach is to extend the definition of fractal correlation dimension and cre-
ate a local-growth model for each point. Based on this model, each point in the dataset
can be mapped to a local representation consisting of a density coefficient and a dimen-
sionality coefficient. We argue that the local representation maintains well the information
about the manifolds that points belong to, and discovering those manifolds becomes a two-
dimensional clustering problem.

Our method is able to discover low-dimensional manifolds that are not necessarily linear,
it can find clusters within clusters, as well as clusters that occupy the same space. Further-
more the method does not require a vector-space representation of the data; it can be used
equally well for metric datasets. We perform experiments in which we demonstrate the
effectiveness of our algorithms for discovering low-dimensional m-flats and for detecting
low-rank sub-matrices. We also show that our method outperforms other approaches that
are based only on density and do not take into account the notion of dimensionality.
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Chapter 6

Summary

In this part we considered homogeneous spatial data, where each point has only spatial
features. Our techniques rely on examination of the dataset at multiple distance scales. We
employ both the first and the second moments of pairwise distance distributions.

In Chapter 3 we presented a new method for evaluating “outlier-ness,” which we call the
Local Correlation Integral (LOCI). As with the best previous methods, LOCI is highly effective
for detecting outliers and groups of outliers (a.k.a. micro-clusters). In addition, it offers the
following advantages and novelties: (a) It provides an automatic, data-dictated cut-off to
determine whether a point is an outlier—in contrast, previous methods force users to pick
cut-offs, without any hints as to what cut-off value is best for a given dataset. (b) It can
provide a LOCI plot for each point; this plot summarises a wealth of information about the
data in the vicinity of the point, determining clusters, micro-clusters, their diameters and
their inter-cluster distances. None of the existing outlier-detection methods can match this
feature, because they output only a single number for each point: its outlier-ness score. (c)
Our LOCI method can be computed as quickly as the best previous methods. (d) Moreover,
LOCI leads to a practically linear approximate method, aLOCI (for approximate LOCI), which
provides fast highly-accurate outlier detection. To the best of our knowledge, this is the first
work to use approximate computations to speed up outlier detection.

In Chapter 4 we presented outliers by example (OBE) [ZKPF04] to incorporate user feed-
back, without exposing users to any parameters. Instead, we try to infer the (few) parame-
ters from user examples. A fundamental issue is that the notion of which objects are outliers
typically varies between users or, even, datasets. We present a novel solution to this prob-
lem, by bringing users into the loop. Our OBE (Outlier By Example) system is, to the best of
our knowledge, the first that allows users to give some examples of what they consider as
outliers. Then, it can directly incorporate a small number of such examples to successfully
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discover the hidden concept and spot further objects that exhibit the same “outlier-ness” as
the examples.

In Chapter 5 we presented dimension induced clustering (DIC) [GHPT05] and develop a
parameter-free transformation of high-dimensional points into a pair of local dimension and
local density features, which can be used to cluster points belonging to low-dimensional
manifolds. It is commonly assumed that high-dimensional datasets contain points most of
which are located in low-dimensional manifolds. Detection of low-dimensional clusters is
an extremely useful task for performing operations such as clustering and classification, nev-
ertheless, it is a very challenging computational problem. We study the problem of finding
subsets of points with low intrinsic dimensionality. Our main contribution is to extend the
definition of fractal correlation dimension, which measures average volume growth rate, in
order to estimate the intrinsic dimensionality of the data in local neighbourhoods. We pro-
vide a careful analysis of several key examples in order to demonstrate the properties of
our measure. Based on our proposed measure, we introduce a novel approach to discover
clusters with low dimensionality. The resulting algorithms extend previous density based
measures, which have been successfully used for clustering.
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Spatial mining — Heterogeneous
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Chapter 7

Introduction

In several applications, each object in the dataset may have non-spatial attributes (or fea-
tures), besides its spatial location. For example, galaxies may belong to one of two types
(say, spiral or elliptical) or patches of land may contain several among tens or hundreds of
different species (see also Section 1.4.1). In this part of the thesis we examine two possible
combinations of spatial and non-spatial attributes.

In Chapter 8 we consider the case of a single non-spatial attribute which can take one
of two possible values. Equivalently, each point in the dataset may belong to one of two
classes. In this setting, we examine the problem of detecting cross-outliers, i.e., outliers in one
class with respect to the other. The proposed approach extends the methods in Chapter 3
and examines the implications of having two classes of points. More specifically, to the best
of our knowledge, work on outliers up to date focuses exclusively on the problem as fol-
lows [Haw80]: “given a single set of observations in some space, find those that deviate so
as to arouse suspicion that they were generated by a different mechanism.” Instead, we
consider the problem “given a set of observations with class labels, find those that arouse
suspicions, taking into account the class labels.” A single observation may look normal both
within its own class, as well as within the entire set of observations. However, when exam-
ined with respect to other classes, it may still arouse suspicions. Many of the existing outlier
detection approaches cannot be extended to this case. We present one practical approach for
dealing with this problem.

In Chapter 9 we allow an arbitrary number of binary non-spatial features, for each spatial
location. We restrict the spatial locations to lie on a rectangular grid. In other words, we deal
with raster data but with the value of each pixel being a multidimensional binary vector. In
this setting, we examine with the problem of simultaneously finding spatial correlation pat-
terns and feature co-occurrence patterns, without any parameters. In particular, we employ
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the Minimum Description Length (MDL) principle coupled with a natural way of compress-
ing regions. This defines what “good” means: a feature co-occurrence pattern is good, if it
helps us better compress the set of locations for these features. Conversely, a spatial corre-
lation is good, if it helps us better compress the set of features in the corresponding region.
Our approach is scalable for large datasets (both number of locations and of features).
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Chapter 8

Cross-outliers

As noted in [Haw80], “the intuitive definition of an outlier would be ‘an observation that
deviates so much from other observations as to arouse suspicions that it was generated by a
different mechanism’.” The traditional and—to the best of our knowledge—exclusive focus
has been on the problem of detecting deviants in a single set of observations, i.e.,

Problem 1 (Outlier detection—single set). Given a set of objects, find these that deviate signifi-
cantly from the rest.

However, there are several important practical situations where we have two collections
of points. Consider the following illustrative example: Assume we have the locations of two
types of objects, say vegetable patches and rabbit populations. If we consider, say, rabbit
populations in isolation, these may be evenly distributed. The same may be true for food
locations alone as well as for the union of the two sets.

Even though everything may look “normal” when we ignore object types, there is still
the possibility of “suspicious” objects when we consider them in relation to objects of the
other type. For example, a group of patches with far fewer rabbits present in the vicinity
may indicate a measurement error. A population away from marked food locations may
hint toward the presence of external, unaccounted-for factors.

The above may be considered a “toy” example that only serves illustrative purposes.
Nonetheless, in several real-world situations, the spatial relationship among objects of two
different types is of interest. A few examples:

• Situations similar to the one above actually do arise in biological/medical domains.

• In geographical/geopolitical applications, we may have points that represent popu-
lations, land and water features, regional boundaries, retail locations, police stations,
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crime incidence and so on. It is not difficult to think of situations where the correlations
between such different objects are important.

• In astrophysics, it is well known that the distributions of different celestial objects fol-
low certain laws (for example, elliptical and exponential galaxies form small clusters
of one type and these clusters “repel” each other). There are vast collections of astro-
physical measurements and even single deviant observations would potentially be of
great interest.

In brief, we argue that the following outlier detection problem is of practical importance:

Problem 2 (Cross-outlier detection). Given two sets (or classes) of objects, find those which devi-
ate with respect to the other set.

In this case we have a primary set P (e.g., elliptical galaxies) in which we want to discover
cross-outliers with respect to a reference set R (e.g., spiral galaxies). Note that the single set
case is always a special case, where R = P.

However, the converse is not true. That is, approaches for the single-set problem are
not immediately extensible to cross-outlier detection. First off, several outlier definitions
themselves cannot be extended (see also Section 8.4.1), let alone the corresponding methods
to apply the definitions and compute the outliers. In summary, the contributions in this
chapter are two-fold:

• We identify the problem of cross-outlier detection. To the best of our knowledge, this
has not been explicitly studied in the past, even though it is of significant practical
interest. In general, an arbitrary method for the single-set problem cannot be easily
extended to cross-outlier detection (but the opposite is true).

• We present a practical method that solves the problem. The main features of our
method are:

– It provides a meaningful answer to the question stated above, using a statistically
intuitive criterion for outlier flagging (the local neighbourhood size differs more
than three standard deviations from the local averages), with no magic cut-offs.

– Our definitions lend themselves to fast, single-pass estimation using box-counting.
The running time of these methods is typically linear with respect to both dataset
size and dimensionality.
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– It is an important first step (see also Section 8.4.3) toward the even more general
problem of multiple-class cross-outliers (where the reference set R may be the
union of more than one other class of objects).

The rest of this chapter is organised as follows: Section 8.1 briefly discusses related work
for the single class case, as well as more remotely related work on multiple dataset cor-
relations and clustering. Section 8.2 presents our definition of a cross-outlier and briefly
discusses its advantages. Section 8.3 demonstrates our approach on both synthetic and real
datasets. Section 8.4 discusses some important issues and possible future directions. Finally,
Section 8.5 gives the conclusions.

8.1 Background and related work

In this section we present prior work on the problem of single class outlier detection. To the
best of our knowledge, the multiple class problem has not been explicitly considered.

8.1.1 Single dataset outlier detection

Previous methods for single dataset outlier detection broadly fall into the following cate-
gories: distribution based, clustering based, depth based, distance based and density based.
These were reviewed in Section 3.1.

8.1.2 Multiple class outlier detection

To the best of our knowledge, this problem has not received explicit consideration to this
date. Some single class approaches may be modified to deal with multiple classes, but the
task is non-trivial. The general problem is open and provides promising future research
directions. In this section we discuss more remotely related work.

Multi-dimensional correlations The problem of discovering general correlations between
two datasets has been studied to some extent, both in the context of data mining, as well
as for the purposes of selectivity estimation of spatial queries. However, none of these ap-
proaches deal with single points and identification of outlying observations.

[TTPF01] deals with the problem the general relationship of one multi-dimensional dataset
with respect to another. This might be a good first step when exploring correlations between
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datasets. However, even when two datasets have been found to be correlated as a whole and
to some extent co-located in space, this method cannot identify single outlying points.

Prior to that, [FSJT00] considers the problem of selectivity estimation of spatial joins
across two point sets. Also, [BF95, BBKK97] consider the selectivity and performance of
nearest neighbour queries within a single dataset.

Non-spatial clustering Scalable algorithms for extracting clusters from large collections
of spatial data are presented in [NH94] and [KN96]. The authors also combine this with
the extraction of characteristics based on non-spatial attributes by using both spatial domi-
nant and non-spatial dominant approaches (depending on whether cluster discovery is per-
formed first or on subsets derived using non-spatial attributes). It is not clear if these results
can be extended to deal with the multiple class outlier detection problem. In the single class
case, clusters of one or very few points can be immediately considered as outliers. However,
this is not necessarily the case when dealing with multiple classes.

8.2 Proposed method
In this section we introduce our definition of an outlier and discuss its main properties. Our
approach is based on the distribution of distances between points of the primary set and
a reference set with respect to which we want to discover outliers. We use an intuitive,
probabilistic criterion for automatic flagging of outliers.

8.2.1 Definitions

The definitions in this section are similar to those in Section 3.2.1, extended to the case of
two classes of points. In particular, here we consider the problem of detecting outlying
observations from a primary set of points P, with respect to a reference set of points R. We
want to discover points p ∈ P that “arouse suspicions” with respect to points r ∈ R. Note
that single-set outliers are a special case, where R = P.

Table 8.1 describes all symbols and basic definitions. To be more precise, for a point
p ∈ P let n̂P,R(p, r, α) be the average, over all points q ∈ P in the r-neighbourhood of p,
of nR(q, αr). The use of two radii serves to decouple the neighbour size radius αr from the
radius r over which we are averaging.

We eventually need to estimate these quantities (see also Figure 8.1). We introduce the
following two terms:
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Symbol Definition
P Primary set of points P = {p1, . . . , pi, . . . , pN}.
pi
R Reference set of points R = {r1, . . . , ri, . . . , rM}.
ri
N, M Point set sizes.
k Dimension of the data sets.
d(p, q) Distance between points p and q.
RP, RR Range (diameter) of each point set—e.g., RP := maxp,q∈P d(p, q).
NP(p, r) The set of r-neighbours of p from the point set P, i.e.,

N (p, r) := {q ∈ P | d(p, q) ≤ r}

Note that p does not necessarily belong to P.
nP(p, r) The number of r-neighbours of pi from the set P, i.e., nP(p, r) :=

|NP(p, r)|. Note that if p ∈ P, then nP(p, r) cannot be zero.
α Locality parameter.
n̂P,R(p, r, α) Average of nR(p, αr) over the set of r-neighbours of p ∈ P, i.e.,

n̂P,R(p, r, α) :=
∑q∈NP(p,r) nR(q, αr)

nP(p, r)

For brevity, we often use n̂ instead of n̂P,R.
σ̂P,R(p, r, α) Standard deviation of nR(p, αr) over the set of r-neighbours of

p ∈ P, i.e.,

σ̂P,R(p, r, α) :=

√

∑q∈NP(p,r) (nR(q, αr) − n̂P,R(p, r, α))2

nP(p, r)

where p ∈ P. For brevity we often use σ̂ instead of σ̂P,R.
kσ Determines what is significant deviation, i.e., a point p ∈ P is

flagged as an outlier with respect to the set R iff

|n̂P,R(p, r, α)− nR(p, αr)| > kσσ̂P,R(p, r, α)

Typically, kσ = 3.

Table 8.1: Symbols and definitions.
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Figure 8.1: Definitions for n and n̂. Points in the primary set P are shown with “×”
and points in the reference set R with “�”. For instance, nP(pi, r) = 4 (including itself),
nR(pi, αr) = 1, nR(p1, αr) = 6 and n̂P,R(pi, r, α) = (1 + 5 + 4 + 0)/4 = 3.25.

Definition 17 (Counting and sampling neighborhood). The counting neighbourhood (or
αr-neighbourhood) is the neighbourhood of radius αr, over which each nR(q, αr) is estimated. The
sampling neighbourhood (or r-neighbourhood) is the neighbourhood of radius r, over which we
collect samples of nR(q, αr) in order to estimate n̂P,R(p, r, α). The locality parameter is α.

The locality parameter α determines the relationship between the size of the sampling
neighbourhood and the counting neighbourhood. We typically set this value to α = 1/2 (see
also Section 8.4.1).

Our outlier detection scheme relies on the standard deviation of the αr-neighbour count
of points in the reference set R. Therefore, we also define the quantity σ̂P,R(p, r, α) to be
precisely that, for each point p ∈ P and each sampling radius r.

Definition 18 (Cross-outlier criterion). A point p ∈ P is a cross-outlier at scale (or radius) r
with respect to the reference set R if

|n̂P,R(p, r, α)− nR(p, αr)| > kσσ̂P,R(p, r, α)

Finally, the average and standard deviation with respect to radius r can provide very
useful information about the vicinity of a point.

Definition 19 (Distribution plot). For any point p ∈ P, the plot of nR(p, αr) and n̂P,R(p, r, α)

with n̂P,R(p, r, α) ± 3σ̂P,R(p, r, α), versus r (for a range of radii of interest), is called its (local)
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Symbol Definition
C(p, r, α) Set of cells in some grid, with cell side 2αr, each fully contained

within L∞-distance r from point p.
Ci Cell in some grid.
ciP The count of points from set P within the corresponding cell Ci.
SqP(p, r, α) Sum of box counts (from set P) to the q-th power, i.e.,

SqP(p, r, α) := ∑
Ci∈C(p,r,α)

ciPq

Pq
P,R(p, r, α) Sum of box count products (from sets P and R); in particular,

Pq
P,R(p, r, α) := ∑

Ci∈C(p,r,α)

ciPciRq

Note that, SqP = Pq−1
P,P .

Table 8.2: Box-counting symbols and definitions.

distribution plot.

8.2.2 Advantages of our definitions

Among several alternatives for an outlier score (such as max(n̂/n, n/n̂), to give one exam-
ple), our choice allows us to use probabilistic arguments for flagging outliers.

The above definitions and concepts make minimal assumptions. The only general re-
quirement is that a distance is defined. Arbitrary distance functions are allowed, which may
incorporate domain-specific, expert knowledge, if desired.

A final but very important point is that distance distributions can be quickly estimated
in time that is linear with respect both to dataset sizes and dimensionality. Therefore, the
above definitions lend themselves to fast, single-pass estimation algorithms, based on box-
counting (see Chapter 3). The only further constraint imposed in this case is that all points
must belong to a k-dimensional vector space (either inherently, or after employing some
embedding technique).

The main idea is to approximate the r-neighbour counts for each point p with pre-computed
counts of points within a cell1 of side r which contains p.

1In practice, we have to use multiple cells in a number randomly shifted grids and use some selection or
voting scheme to get a good approximation; see Chapter 3 for more details.
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In a little more detail, in order to quickly estimate n̂(p, r, α) for a point pi ∈ P (from now
on, we assume L∞ distances), we can use the following approach. Consider a grid of cells
with side 2αr over both sets P and R. Within each cell, we store separate counts of points it
contains from P and R. Perform a box count on the grid: For each cell Cj in the grid, find the
counts, cjR and cjP, of the number of points from R and P, respectively, in the cell. There is
a total number of cjP points p ∈ P∩ Cj (counting p itself), each of which has cjP neighbours
from R. So, the total number of R neighbours over all points from P in Cj is cjPcjR. Denote
by C(p, r, α) the set of all cells in the grid such that the entire cell is within distance r of
pi. We use C(p, r, α) as an approximation for the r-neighbourhood of pi. Summing over all
these cells, we get a total number of P-R pairs of P

P,R(p, r, α) := ∑Cj∈C(p,r,α) cjPcjR. The
total number of objects is simply the sum of all box counts for points in P, i.e., S1P(p, r, α)

n̂P,R(p, r, α) =
P1

P,R(p, r, α)

S1P(p, r, α)

A similar calculation can be done to estimate

σ̂P,R(p, r, α) =

√

√

√

√

P2
P,R(p, r, α)

S1P(p, r, α)
−
(

P1
P,R(p, r, α)

S1P(p, r, α)

)2

8.3 Experimental results

In this section we give examples of our method and discuss some important observations
related to our approach, as well as the problem in general.

Gap In this case (see Figure 8.2, top row) the primary set consists of 340 points with a uni-
formly random distribution within a square region. In single-set outlier detection (R = P)
some fringe points are flagged with a positive deviation (i.e., at some scale, their neighbour
count is below the local average). Also, a few interior points in locally dense regions are
flagged with a negative deviation.

In cross-outlier detection, we use a reference set R of 1400 points, again uniformly ran-
dom in a slightly larger square region, but with a central square gap. As expected, the points
of P that fall within well within the gap of R are detected as cross-outliers with a positive
deviation. Also, very few2 other points are flagged.

2Since R is significantly denser than P, this is expected.
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Figure 8.2: “Plain” outliers (left, R = P) and cross-outliers (right). The reference set is shown
with square, grey points in the right column. Outliers are marked with larger, red points in
each case. In all cases, α = 1/4.
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Figure 8.3: “Plain” outliers (left, R = P) and cross-outliers (right) for the galaxy datasets. In
all cases, α = 1/4.

Core In this case (see Figure 8.2, middle row), the primary set again consists of 300 points
with a uniformly random distribution within a square region. The single-set outliers are
similar to the previous case.

In cross-outlier detection, we use a reference set R of 250 points uniformly random within
a central square “core.” As expected again, the points of P that fall within the reference
“core” are all detected as outliers. Also, some fringe points are still detected as outliers (see
Section 8.3.1).

Lines The primary set P consists of 100 points regularly spaced along a line (Figure 8.2,
bottom row). The single-set outliers (P = R) consist of eight points, four at each end of the
line. Indeed, these points are “special,” since their distribution of neighbours clearly differs
from that of points in the middle of the line.

In cross outlier detection, the reference set R consists of two lines of 100 points each, both
parallel to P and slightly shifted downward along their common direction. As expected, the
points at the bottom-left end of P are no longer outliers, with respect to P. Note that the
same four points along the top-right end are flagged (see discussion in Section 8.3.1).

Galaxy The primary set consists of a section with 993 spiral galaxies and the reference set
of a section with 1218 elliptical galaxies, both from the Sloan Digital Sky Survey (Figure 8.3).
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Figure 8.4: Distribution plot for cross-outliers in Galaxy. The horizontal axis is scale (or,
sampling radius r). The solid line is n̂P,R(p, r, α) and the dashed line is nR(p, α). The grey
bands span ±3σ̂P,R(p, r, α) around the average. The galaxy on the right is flagged with
positive deviation, the other two with negative. All are flagged at small scales by a narrow
margin.

Although not shown in the figure, all cross-outliers are flagged with a negative deviation
(except two at the very edge of the dataset). Also (see Figure 8.4 and Section 8.3.1) all are
flagged by a narrow margin. This is indeed expected: elliptical galaxies form clusters, in-
tertwined with clusters of spiral galaxies. The distribution is overall even (as evidenced by
the consistently wide standard deviation band); however, a few of the elliptical galaxies are
within unusually dense clusters of spiral galaxies.

8.3.1 Observations

Fringe points The points located along the fringes of a data set are clearly different from
the rest of the points.

One could argue that outlier definitions such as the one of the depth-based approach [JKN98]
rely primarily on this observation in order to detect outliers. Our method goes beyond that
and can also capture isolated central points (as can be seen, for example, from the Gap ex-
ample), but can still distinguish fringe points.

With respect to pairwise distances upon which our approach is based, the first obser-
vation is that fringe points have fewer neighbours than interior points. More than that,
however, all neighbours of fringe points lie on the same half-plane. It is a consequence of
this second fact that the standard deviation of neighbour counts is (comparatively) smaller at
certain scales for fringe points.
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Figure 8.5: Distribution plot for cross-outliers in Core. Again, the horizontal axis is scale (or,
sampling radius r). The solid line is n̂P,R(p, r, α) and the dashed line is nR(p, α). The grey
bands span ±3σ̂P,R(p, r, α) around the average.

This explains why in the Core example more fringe points are detected as cross-outliers
than in Gap. The reference set in Gap is chosen to cover a slightly larger region than the
primary set in order to illustrate this point. The fringe points of P in Gap are not fringe
points with respect to R: they have R-neighbours on all sides of the plane. However, the
fringe points of P in Core have R-neighbours only on one half-plane. Thus, the fringe
points of P in Core are indeed different than the interior points (always with respect to R).

Role of each distribution In this paragraph we further discuss the sampling and counting
neighbourhoods. In particular, the former contains points of the primary set P, while the
latter of the reference set R. Thus, the distribution of points in both sets plays an important
role in cross-outlier detection (but see also Section 8.4.1).

This explains the fact that in Lines the same four endpoints are flagged as cross-outliers.
We argue that this is a desirable feature. First, the points near the top-right end that are closer
to R are indeed less “distinct” than their neighbours at the very end. This fact depends on
the distribution of P, not R! Furthermore, consider extending P toward the top-right: then,
neither of the endpoints are suspicious (whether surrounded or not by points of R). This,
again, depends on the distribution of P! Indeed, in the latter case, our method does not
detect any outliers.

Digging deeper As hinted in the discussion of the results, the sign of the deviation can
give us important information. However, we can go even further and examine the distri-
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bution plots, which we discuss very briefly here. Figure 8.5 is included as an example. We
can clearly see that a point within the gap belongs to a sparse region (with respect to R).
Moreover, we can clearly see that the point within the gap is flagged by a much wider mar-
gin and at a wider range of scales, whereas a fringe point is marginally flagged. Thus, the
distribution plots provide important information about why each point is an outlier, as well
as its vicinity.

8.4 Discussion

In this section we first discuss why the problem of cross-outlier detection is different from
the single-set case, even though the two may, at first, seem almost identical. We also discuss
some directions for future research. These relate to the fast, single-pass estimation algo-
rithms that our definitions admit.

8.4.1 Differences to single class outlier detection

The intuitive definition of [Haw80] implies two important parts in any definition of an out-
lier: what is considered a deviation (i.e., where or how we look for them) and how do we
determine significant deviations. Therefore, all outlier definitions employ a model for the
data and a measure of correlation, either explicitly or implicitly.

The first difference in the case of cross-outliers follows directly from the problem defi-
nition. What we essentially estimate is not a single probability distribution or correlation,
but either some (conditional) probability with respect to the reference set or the covariance
among sets. However, several of the existing definitions do not make their model assump-
tions clear or employ a model that cannot be easily extended as described above. These
outlier detection approaches are hard to modify.

It should be noted that our definition employs a very general and intuitive model which
is based on pairwise distanced and makes minimal assumptions.

The second major difference again follows from the fact that we are dealing with two
separate sets. Simply put, in the “classical” case (R = P), we can obviously assume that a
point set is co-located in space with respect to itself. However, this need not be the case
when R 6= P. This assumption is sometimes implicitly employed in outlier definitions.

Tools such as that of [TTPF01] are useful here as a first step to determine the overall
spatial relationship between the two sets. It must further be noted that, in our approach, the
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locality parameter α is tunable and typically two values should be sufficient: α ≈ 1/2 (or 1)
and any α ≤ rmin/ max{RP, RR} where rmin is the smallest distance between any two points
(irrespective of type)3.

8.4.2 Efficiency considerations

Our definitions are based on pairwise distance distributions. As demonstrated in [TTPF01,
PKGF03], these can be estimated very quickly with a single pass over the data, in time that
is practically linear with respect to both data set size and dimensionality. The only minor
restriction imposed by these algorithms is that α = 1/2k for some integer k.

Furthermore, if we have more than two classes of points, the pre-processing step for
box counting can be modified to keep separate counts for each class. This does not increase
computational cost (only space in proportion to the number of classes) and allows fast outlier
detection where the reference set R is the union of points from several classes (rather than a
single class).

8.4.3 Generalisations

The observation in the last paragraph of the previous section naturally leads to the problem
of multi-class outlier detection. As pointed out, the fast algorithms can easily detect outliers
when the reference set R is any given combination of classes, without incurring any extra
computational cost.

An interesting future research direction is to extend these algorithms with heuristic prun-
ing approaches (e.g., similar to those in association rule4 algorithms [AS94]; in our case,
items correspond to point classes) to efficiently search the entire space of all class combina-
tions (i.e., point-set unions) in the place of R.

8.5 Conclusions

In this chapter we presented the problem of cross-outlier detection. This is the first contribu-
tion; we argue that this is a non-trivial problem of practical interest and certainly more than

3The second choice for α formally implies that, at every scale, the sampling neighbourhood completely
covers both datasets.

4This is one potential approach; regions with no co-located classes can probably be ignored. Of course, this
far from exhausts all possible pruning techniques.
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an immediate generalization. We discuss several aspects of the problem that make it dif-
ferent from “classical” outlier detection. The former is a special case of cross-outliers (with
R = P) but the converse is not true.

Beyond introducing the problem, we present a method that can provide an answer. Fur-
thermore, our definitions use a statistically intuitive flagging criterion and lend themselves
to fast, single-pass estimation. We demonstrate our approach using both synthetic and real
datasets.
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Chapter 9

Simultaneous spatial and feature
clustering

In this chapter we deal with the problem of finding spatial correlation patterns and fea-
ture co-occurrence patterns, simultaneously and automatically. For example, consider environ-
mental data where spatial locations correspond to patches (cells in a rectangular grid) and
features correspond to species presence information. For each patch and species pair, the
observed value is either one or zero, depending on whether the particular species was ob-
served or not at that patch. In this case, feature co-occurrence patterns would correspond to
species co-habitation and spatial correlation patterns would correspond to natural habitats
for species groups. Combining the two will generate homogeneous regions characterised
by a set of species that live in those regions. We wish to find “good” patterns of this form
simultaneously and automatically.

Spatial data in this form (binary features over a set of locations) occur naturally in several
settings, e.g.:

• Biodiversity data, such as the example above.

• Geographical data, e.g., presence of facilities (shops, hospitals, houses, offices, etc) over
a set of city blocks.

• Environmental data, e.g., occurrence of different phenomena (storms, hurricanes, snow,
drought, etc. or ) over a set of locations in satellite images.

• Historical/linguistic data, e.g., occurrence of different words in different counties, or
occurrence of various types of historical events over a set of locations.

In all these settings, we would like to discover meaningful feature co-occurrence and spatial
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correlation patterns. Existing methods either discover one of the two types of patterns in
isolation, or require the user to specify certain parameters or thresholds.

We view the problem from the perspective of succinctly summarising (i.e., compressing)
the data, and we employ the Minimum Description Length (MDL) principle to automate the
process. We group locations and features simultaneously: feature co-occurrence patterns help
us compress spatial correlation patterns better, and vice versa. Furthermore, for location
groups, we incorporate spatial affinity by compressing regions in a natural way.

Section 9.1 presents some of the background, in the context of our problem. Section 9.2
builds upon this background, leading to the proposed approach described in Section 9.3.
Section 9.4 presents experiments that illustrate the results of our approach. Section 9.5 sur-
veys related work. Finally, in Section 9.6 we conclude.

9.1 Background

In this section we introduce some of the background, in the context of the problem we wish
to solve. In subsequent sections, we explain how we adapt these techniques for our pur-
poses.

9.1.1 Minimum description length (MDL)

In this section we give a brief overview of a practical formulation of the minimum descrip-
tion length (MDL) principle. For further information see, e.g., [CT91, Grü05]. Intuitively, the
main idea behind MDL is the following: Let us assume that we have a familyM of models
with varying degrees of complexity. More complex models M ∈ M involve more parame-
ters but, given these parameters (i.e., the model M ∈ M), we can describe the observed data
more concisely.

As a simple, concrete example, consider a binary sequence D := [d(1), d(2), . . . , d(n)]

of n coin tosses. A simple model M(1) might consist of specifying the number h of heads.
Given this model M(1) ≡ {h/n}, we can encode the dataset D using L(D|M(1)) := nH(h/n)

bits [RL79], where H(·) is the Shannon entropy function. However, in order to be fair, we
should also include the number L(M(1)) of bits to transmit the fraction h/n, which can be
done using log? n bits for the denominator and dlog(n + 1)e bits for the numerator h ∈
{0, 1, . . . , n}, for a total of L(M(1)) := log? n + dlog(n + 1)e bits. In the above, log? is the
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universal code length for integers [Ris83] and is written as

log? x = log2 x + log2 log2 x + . . . ,

where only the positive terms are retained.

Definition 20 (Code length and description complexity). L(D|M(1)) is code length for D,
given the model M(1). L(M(1)) is the model description complexity and L(D, M(1)) := L(D|M(1))+

L(M(1)) is the total code length.

A slightly more complex model might consist of segmenting the sequence in two pieces
of length n1 ≥ 1 and n2 = n − n1 and describing each one independently. Let h1 and h2 be
the number of heads in each segment. Then, to describe the model M(2) ≡ {h1/n1, h2/n2},
we need L(M(2)) := log? n + dlog ne + dlog(n − n1)e + dlog(n1 + 1)e + dlog(n2 + 1)e bits.
Given this information, we can describe the sequence using L(D|M(2)) := n1 H(h1/n1) +

n2H(h2/n2) bits.
Now, assume that our family of models isM := {M(1), M(2)} and we wish to choose the

“best” one for a particular sequence D. We will examine two sequences of length n = 16,
both with 8 zeros and 8 ones, to illustrate the intuition.

Let D1 := {0, 1, 0, 1, · · · , 0, 1}, with alternating values. We have L(D1|M(1)
1 ) = 16H(1/2) =

16 and L(M(1)
1 ) = log? 16 + dlog(16 + 1)e = 10 + 5 = 15. However, for M(2)

1 the best
choice is n1 = 15, with L(D1|M(2)

1 ) ≈ 15 and L(M(2)
1 ) ≈ 19. The total code lengths are

L(D1, M(1)
1 ) ≈ 16 + 15 = 31 and L(D1, M(2)

1 ) ≈ 15 + 19 = 34. Thus, based on total code
length, the simpler model is better1. The more complex model may give us a lower code
length, but that benefit is not enough to overcome the increase in description complexity:
D1 does not exhibit a pattern that can be exploited by a two-segment model to describe the
data.

Let D2 := {0, · · · , 0, 1, · · · , 1}with all similar values contiguous. We have again L(D2|M(1)
2 ) =

16 and L(M(1)
2 ) = 15. But, for M(2)

2 the best choice is n1 = n2 = 8 so that L(D2|M(2)
2 ) =

8H(0) + 8H(1) = 0 and L(M(2)
2 ) ≈ 24. The total code lengths are L(D2, M(1)

2 ) ≈ 16 + 15 = 31
and L(D2, M(2)

2 ) ≈ 0 + 24 = 24. Thus, based on total code length, the two-segment model
is better. Intuitively, it is clear that D2 exhibits a pattern that can help reduce the total code
length. This intuitive fact is precisely captured by the total code length.

In fact, this simple example is prototypical of the groupings we will consider later. More
generally, we could consider a familyM := {M(k) | 1 ≤ k ≤ n} of k-segment models and

1The absolute codelengths are not important; the bit overhead compared to the straight transmission of D
tends to zero, as n grows to infinity.
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Image (4x4)

Colour: 7 x H(5/7, 1/7, 1/7) = 8.04 bits
Total: 17.04 bitsEntropy coding:

Naive coding:
16 x 3 = 48 bits

16 x H(7/16, 5/16, 4/16) = 24.74 bits

Tree

Structure: 0 01111 1 1 1  (depth−first order) = 9 bits

Figure 9.1: Quadtree compression: The map on the left has 4× 4 = 16 cells (pixels), each
having one of three possible values. The resulting quadtree has 10 leaf nodes, again each
having one of three possible values.
apply the same principles. Furthermore, the datasets we will consider are two-dimensional
matrices D := [d(i, j)], instead of one-dimensional sequences. In Section 9.2.2 we address
both of these issues. To complicate matters even further, one of the dimensions of D has
a spatial location associated with it. Section 9.3 presents data description models that also
incorporate this information.

In fact, choosing the appropriate family of models is non-trivial. Roughly speaking, at
one extreme we have the singleton family of “just the raw data,” which cannot describe any
patterns. At the other extreme, we have “all Turing machine programs that produce the
data as output,” which can describe the most intricate patterns, but make model selection
intractable. Striking the right balance is a challenge. In this chapter, we address it for the
case of spatial data.

9.1.2 Quadtree compression

A quadtree is a data structure that can be used to efficiently index contiguous regions of
variable size in a grid. It has been used successfully in image coding and has the benefit of
small overhead and very efficient construction [VG87]. Figure 9.1 shows a simple example.
Each internal node in a quadtree corresponds to a partitioning of a rectangular region into
four quadrants. The leaf nodes of a quadtree represent rectangular groups of cells and have
a value p associated them, where p is the group ID. In the following we briefly describe
quadtree codelengths.
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Structure The structure of a quadtree uniquely corresponds to a partitioning of the grid.
For example, the partitioning into three regions in Figure 9.1 on the left corresponds to the
structure on the right. This partitioning is chosen in a way that respects spatial correlations.
The structure can be described easily by performing a traversal of the tree and transmitting
a zero for non-leaf nodes and a one for leaf nodes. The traversal order is not significant; we
choose depth-first order (see Figure 9.1).

Values Quadtree structure conveys information about the partition boundaries (thick grid
lines in Figure 9.1). These capture all correlations: in effect, we have reduced the original set
of equal-sized cells to a (smaller) set of variable-sized, square cells (each one corresponding
to a leaf node in the quadtree). Since the correlations have already been taken into account,
we may assume that the leaf node values are independent. Therefore, the cost to transmit
the values is equal to the total number of leaf nodes, multiplied by the entropy of the leaf
value distribution.

Lemma 6 (Quadtree codelength). Let T be a quadtree with m′ leaf nodes, of which m′p have value
p, where 1 ≤ p ≤ k. Then, the number of internal nodes is dm′/3e − 1. Structure information
can be transmitted using one bit per node (leaf/non-leaf) and values can be transmitted using entropy
coding. Therefore, the corresponding total codelength is

L(T) = m′H
(m′1

m′ ,
m′2
m′ , . . . , m′k

m′
)

+
⌈

4m′
3

⌉

− 1

This has a straightforward but important consequence:

Lemma 7. The codelength L(T) for a quadtree T can be computed in constant time, if we know the
distribution of leaf node values.

In other words, for a full quadtree (i.e., one where each node has either zero or four
descendants), if we know m′ and m′p, for 1 ≤ p ≤ k, we can compute the cost in closed
form, using Lemma 6. Note that the quadtree does not have to be perfect (i.e., all leaves
do not have to be at the same level). When a node is reassigned a different value, region
consolidations may occur (i.e., pruning of leaves with same value). Updating m′ and m′p will
require time proportional to the number of consolidations, which are typically localised. In
the worst case, the time will be O(log m) if pruning cascades up to the root node.
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Symbol Definition
D Binary data matrix.
m, n Dimensions of D (rows, columns); rows correspond to cells.
k, ` Number of row and column groups.
k∗, `∗ Optimal number of groups.
QX, QY Row and column assignments to groups.
Dp,q Submatrix for intersection of p-th row and q-th column group.
mp, nq Dimensions of Dp,q.
|Dp,q| Number of elements |Dp,q| := mpnq.
ρp,q Density of 1s in Dp,q.
H(·) Binary Shannon entropy function.
L(Dp,q|QX, QY, k, `) Codelength for Dp,q.
L(D, QX, QY, k, `) Total codelength for D.

Table 9.1: Symbols and definitions.

9.2 Preliminaries

In this section we formalise the problem and prepare the ground for introducing our ap-
proach in Section 9.3.

9.2.1 Problem definition

Assume we are given m cells on an evenly-spaced grid (e.g., field patches in biological data)
and n features (e.g., species). For each pair (i, j), 1 ≤ i ≤ m and 1 ≤ j ≤ n, we are also given
a binary observation (e.g., species presence/absence at each cell).

We want to group both cells and features, thus also implicitly forming groups of obser-
vations (each such group corresponding to an intersection of cell and feature groups). The
two main requirements are:

1. Spatial affinity: Groups of cells should exhibit spatial coherence, i.e., if two cells i1
and i2 are close together, then we wish to favour cell groupings that place them in the
same group. Furthermore, spatial affinity should be balanced with feature affinity in a
principled way.

2. Homogeneity: The implicit groups of observations should be as homogeneous as pos-
sible, i.e., be nearly all-ones or all-zeros.

The problem and our proposed solution can be easily extended to a collection of categorical
features (i.e., taking more than two values, from a finite set of possible values) per cell.
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9.2.2 MDL and binary matrices

Let D = [d(i, j)] denote a m × n (m, n ≥ 1) binary data matrix. A bi-grouping is a simulta-
neous grouping of the m rows and n columns into k and ` disjoint row and column groups,
respectively. Formally, let

QX : {1, 2, . . . , m} → {1, 2, . . . , k}
QY : {1, 2, . . . , n} → {1, 2, . . . , `}

denote the assignments of rows to row groups and columns to column groups, respectively.
The pair {QX, QY} is a bi-grouping.

Based on the observation that a good compression of the matrix implies a good, concise
grouping, both k, ` as well as the assignments QX, QY can be determined by optimising the
description cost of the matrix. Let

Rp := Q−1
X
(

p
)

, 1 ≤ p ≤ k
Cq := Q−1

Y
(

q
)

, 1 ≤ q ≤ `

be the set of rows and columns assigned to row group p and column group q, with sizes
mp := |Rp| and nq := |Cq|, respectively. Then, let

Dp,q := [d(Rp, Cq)], 1 ≤ p ≤ k, 1 ≤ q ≤ `.

be the sub-matrix of D defined by the intersection of row group p and column group q. The
total codelength L(D) ≡ L(D, QX, QY, k, `) for transmitting D is expressed as

L(D) = L(D|QX , QY, k, `) + L(QX , QY, k, `).

For the first part of Eq. 9.2.2, elements within each Dp,q are assumed to be drawn inde-
pendently, so that

L(Dp,q|QX, QY, k, `) = dlog(|Dp,q|+ 1)e+ |Dp,q|H
(

ρp,q
)

where ρp,q is the density (i.e., probability) of ones within Dp,q and |Dp,q| = mpnq is the
number of its elements. This is analogous to the coin toss sequence models described in
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Section 9.1.1. Finally,

L(D|QX , QY, k, `) :=
k

∑
p=1

`

∑
q=1

L(Dp,q|QX, QY, k, `).

For the second part of Eq. 9.2.2, row and column groupings are assumed to be indepen-
dent, hence

L(QX, QY, k, `) = L(QX , QY|k, `) + L(k, `)
= L(QX |k) + L(k) + L(QY|`) + L(`).

Finally, a uniform prior is assigned to the number of groups, as well as to each possible
grouping given the number of groups, i.e.,

L(k) = − log Pr(k) = log m

L(QX|k) = − log Pr(QX|k) = log
( m

m1 · · · mk

)

and similarly for the column groups.
Using Stirling’s approximation ln n! ≈ n ln n − n and the fact that ∑i mi = m, we can

easily derive the bound

L(QX|k) = log
( m

m1 · · · mk

)

= log m!
m1! · · ·mk!

= log m!−
k

∑
i=1

log mi! ≈ m log m−
k

∑
i=1

mi log mi

= −m
k

∑
i=1

mi
m log mi

m = mH
(m1

m , . . . , mk
m
)

≤ m log k.

Therefore, we have the following:

Lemma 8. The codelength for transmitting an arbitrary m-to-k mapping QX, where mp symbols
from the range are mapped into each value p, 1 ≤ p ≤ k, is approximately

L(QX|k) = mH
(m1

m , . . . , mk
m
)
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don’t
care

Map Map negation
Unconditional

quadtree quadtree
Conditional

5 bits (structure) 1 bit (structure)

(c)(a) (b) (d)

non−existent
Figure 9.2: Quadtree compression to discount the complexity of the enclosing region’s shape;
only the complexity of cell group shapes within the map’s boundaries matters.
9.2.3 Map boundaries

The set of all cells may form an arbitrary, complex shape, rather than a square with a side
that is a power of two. However, we wish to penalise only the complexity of interior cell
group boundaries. The shape of boundaries on the edges (e.g., coastline) of the map should
not affect the cost.

For example, assume that our dataset consists of the three black cells in Figure 9.2(a). If
all three cells belong to the same group and we encode this information naı̈vely, then we get
a quadtree with five nodes (Figure 9.2(c)). However, the complexity of the resulting quadtree
is only due to the fact that the bottom-left is “non-existent.”

If we know the shape of the entire map a priori, we can encode the same information
using 1 bit, as shown in Figure 9.2(d). In essence, both transmitter and receiver agree upon
a set of “existing” cell locations (or, equivalently, a prior quadtree corresponding to the map
description). This information should not be accounted for in the total codelength, as it is
fixed for a given dataset. Given this information, all cells groups in the transmitted quadtree
(e.g., group of both light and dark grey in Figure 9.2(d)) should be intersected with the set of
existing cells (e.g., black in Figure 9.2(a)) to get the actual cells belonging to each group (e.g.,
only dark grey in Figure 9.2(d)).

Since the “non-existent” locations are known to both parties, we do not need to take
them into account for the leaf value codelength, which is still m′H(m′1/m′, . . . , m′k/m′) (see
Lemma 6), where m′p is the number of quadtree leaves having value p (1 ≤ p ≤ k) and
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m′ = ∑
k
p=1 m′p. However, for the tree-structure codelength we need to include the number

m′0 of nodes corresponding to non-existent locations (e.g., white in Figure 9.2(c)). Thus, the
structure codelength is d4(m′ + m′0)/3e − 1.

9.3 Spatial bi-grouping

In the previous sections we have gradually introduced the necessary concepts that lead up
to our final goal: coming up with a simple but powerful description for binary data, which
also incorporates spatial information and which allows us to automatically group both cells
as well as features, without any user-specified parameters.

In order to exploit dependencies due to spatial affinity, we can pursue two alternatives:

1. Relax the assumption that the values within each Dp,q are independent, thus modify-
ing L(D|QX, QY, k, `). This amounts to saying that, given cells i1 and i2 belong to the
same group, then it is more likely that feature j will be present in both cells if they are
neighbouring.

2. Assign a non-uniform prior to the space of possible groupings, thus modifying L(QX, QY, k, `).
This amounts to saying that two cells i1 and i2 are more likely to belong to the same
group, if they are neighbouring.

We choose the latter, since our goal is to find cell groups that exhibit spatial coherence. In the
former alternative, spatial affinity does not decide how we form the groups; it only comes
into play after the groupings have been decided. The second alternative fortunately leads
to efficient algorithms. Each time we consider changing the group of a cell, we have to
examine how this change affects the total cost. As we shall see, this test can be performed
very quickly.

In particular, we choose to modify the term L(QX |k). Let us assume that the dataset has
m = 16 cells, forming a 4× 4 square (see Figure 9.1), and that cells are placed into k = 3
groups (light grey, dark grey and black in the figure). Instead of transmitting QX as an
arbitrary m-to-k mapping (see Section 9.2.2), we can transmit the image of m = 16 pixels
(cells), each one having one of k = 3 values. The length (in bits) of the quadtree for this
image is precisely our choice of L(QX |k) (compare Lemmas 6 and 8).

By using the quadtree codelength, we essentially penalise cell group region complex-
ity, rather than the number of cell groups. The number of groups is factored into the cost
indirectly, since more groups typically imply higher region complexity.
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Two clusters:

Two clusters: 16 bits / Single cluster: 37 bits
Block codelength:

Single cluster:

Quadtree length:

1 bit [root node only]
21 (struct.) + 16 x H(1/2, 1/2) = 37 bits [above]

Figure 9.3: In this simple example (16 cells and 2 species, i.e., 32 binary values total), if we
require groupings to obey spatial affinity, we obtain the shortest description of the dataset
(locations and species) if we place all cells in one group. Any further subdivision only adds
to the total description complexity (due to cell group region shapes).

9.3.1 Intuition

For concreteness, let us consider the case of patch locations and species presence features.
The intuitive interpretation of cell and feature groups is the following:

• Row (i.e., cell) groups correspond to “neighbourhoods” or “habitats.” Clearly, a habitat
should exhibit a “reasonable” degree of spatial coherence.

• Column (i.e., species) groups correspond to “families.” For example, a group consist-
ing of “gull and pelican” may correspond to “seabirds,” while a group with “eagle and
falcon” would correspond to “mountain birds.”

The patterns we find essentially summarise species and cells into families and habitats. The
summaries are chosen so that the original data are compressed in the best way. Given the
simultaneous summaries, we wish to make the intersection of families and habitats as uni-
form as possible: a particular family should either be mostly present or mostly absent from
a particular habitat. This criterion jointly decides the species of a family and the cells of a
habitat. However, our quad-tree based model complexity favours habitats that are spatially
contiguous and do not have overly complicated boundaries.

The group search algorithms are presented in subsection 9.3.2. Intuitively, we alterna-
tively re-group cells and features, always reducing the total codelength.

Example A simple example is shown in Figure 9.3. We choose this example as an extreme
case, to clarify the trade-offs between feature and spatial affinity. Experiments based on
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9.3. Spatial bi-grouping

this boundary case are presented in section 9.4. Assume we have two species, located on a
square map in a checkerboard pattern (i.e., odd cells have only species A and even cells only
species B). Consider the two alternatives (we omit the number of bits to transmit species
groups, which is the same in both cases):

• Two cell groups, in checkerboard pattern: One group contains only the even cells
and the other only the odd cells. In this case, we need 37 bits for the quadtree (see
Figure 9.3). For the submatrices, we need dlog(8 · 1 + 1)e+ 8H(1) = 4 bits for each of
the four blocks (two species groups and two cell groups), for a total of 16 bits. The total
codelength is 37 + 16 = 53 bits.

• One cell group, containing all cells: In this case we need only 1 bit for the (singleton
node) quadtree and dlog(32 · 1 + 1)e + 32H(1/2) = 37 bits total for the submatrices.
The total codelength is 37 + 1 = 38 bits.

Therefore, our approach prefers to place all cells in one group. The interpretation of this is
that “both species A and B occupy the same locations, with presence in ρ1,1 = 50% of the
cells.” Indeed, if we chose to perfectly separate the species instead, the cell group bound-
aries become overly complex and exhibit no spatial affinity. Furthermore, if the number of
species was different, the tipping point in the trade-off between cell group complexity and
species group “impurity” would also change. This is intuitively desirable, since describing
exceptions in larger species groups is inherently more complex.

9.3.2 Algorithms

Finding a global optimum of the total codelength is computationally very expensive. There-
fore, we take the usual course of employing a greedy local search (as in, e.g., standard k-
means [HTF01a] or in [CPMF04]). At each step we make a local move that always reduces
the objective function L(D). The search for cell and feature groups is done in two levels:

• INNER level (Figure 9.4): We assume that the number of groups (for both cells and
features) is given and try to find the grouping that minimises the total codelength. The
possible local moves at this level are: (i) swapping feature vectors (i.e., group labels for
rows of D), and (ii) swapping cell vectors (i.e., group labels for columns of D).

• OUTER level (Figure 9.5): Given a way to optimise for a specific number of groups (i.e.,
outer level), we progressively try the following local moves: (i) increase the number
of cell groups, and (ii) increase the number of feature groups. Each of these moves
employs the inner level search.
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Algorithm INNER:
Start with an arbitrary bi-grouping (Q0

X, Q0
Y) of the matrix D into k row groups and ` column

groups. Subsequently, at each iteration t perform the following steps:

1. For this step, we will hold column assignments, i.e., Qt
Y, fixed. We start with Qt+1

X :=
Qt

X and, for each row i, 1 ≤ i ≤ n, we update Qt+1
X (i) ← p, 1 ≤ p ≤ k so that the choice

maximises the “cost gain”
(

L(D|Qt
X , Qt

Y, k, `) + L(Qt
X |k)

)

−
(

L(D|Qt+1
X , Qt

Y, k, `) + L(Qt+1
X |k)

)

.

We also update the corresponding probabilities ρt+1
p,q after each update to Qt+1

X .
2. Similar to step 1, but swapping group labels of columns instead and producing a new

bi-grouping (Qt+1
X , Qt+2

Y ).
3. If there is no decrease in total cost L(D), stop. Otherwise, set t ← t + 2, go to step 1,

and iterate.

Figure 9.4: Row and column grouping, given the number of row and column groups.

If k and ` were known in advance, then one could use only INNER to find the best grouping.
These moves guide the search towards a local minimum. In practice, this strategy is very
effective. We can also perform a small number of restarts from different points in the search
space (e.g., by randomly permuting rows and columns of D) and keep the best result, in
terms of total codelength L(D).

For each row (i.e., cell) swap, we need to evaluate the change in quadtree codelength,
which takes O(log m) time in the worst case (where m is the number of cells). However, in
practice, the effects of a single swap in quadtree structure tend to be local.

Complexity Algorithm INNER is linear in the number nnz of non-zeros in D. More pre-
cisely, the complexity is O

(

(nnz · (k + `) + n log m) · T
)

= O(nnz · (k + ` + log m) · T), where
T is the number of iterations (in practice, about 10–15 iterations suffice). We make the reason-
able assumption that nnz > n + m. The n log m term corresponds to the quad-tree update for
each row swap. In algorithm OUTER, we increase the total number k + ` of groups by one at
each iteration, so the overall complexity of the search is O((k∗ + `∗)2nnz + (k∗ + `∗)n log m),
which is is linear with respect to the dominating term, nnz.
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9.4. Experimental evaluation

Algorithm OUTER:
Start with k0 = `0 = 1 and at each iteration T:

1. Try to increase the number of row groups, holding the number of column groups fixed.
We choose to split the row group p∗ with maximum per-row entropy, i.e.,

p∗ := arg max
1≤p≤k

∑
1≤q≤`

|Dp,q|H(ρp,q)/mp.

Construct an grouping QT+1′
X by moving each row i of the group p∗ that will be split

(QT
X(i) = p∗, 1 ≤ i ≤ m) into the new row group kT+1 = kT + 1, if and only if this

decreases the per-row entropy of group p∗.
2. Apply algorithm INNER with initial bi-grouping (QT+1′

X , QT
Y) to find new ones

(QT+1
X , QT+1

Y )..
3. If there is no decrease in total cost, stop and return (k∗, `∗) = (kT, `T) with correspond-

ing bi-grouping (QT
X, QT

Y). Otherwise, set T ← T + 1 and continue.
4–6. Similar to steps 1–3, but trying to increase column groups instead.

Figure 9.5: Algorithm to find number of row and column groups.

9.4 Experimental evaluation

In this section we discuss the results our method produces on a number of datasets, both
synthetic (to illustrate the intuition) and real. We implemented our algorithms in Matlab 6.5.
In order to evaluate the spatial coherence of the cell groups, we plot the spatial extents of
each group (e.g., see also [ZK04]). In each case we compare against non-spatial bi-grouping
(as presented in Section 9.2.2). This non-spatial approach produces cell groups of quality
similar to or better than, e.g., straight k-means (with plain Euclidean distances on the feature
bit vectors) which we also tried.

SaltPepper This is essentially the example in Section 9.3.1, with two features in a chess-
board pattern. For the experiment, the map size is 32× 32 cells, so the size of D is 1024× 2.
The spatial approach places all cells in the same group, whereas the non-spatial approach
creates two row and two column groups. The total codelengths are (for a detailed explana-
tion, see Section 9.3.1):
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(a) Non-spatial grouping (b) Spatial grouping
Figure 9.6: Noisy regions.

Codelength
Groups Non-spatial Spatial
1× 1 2048 + 22 = 2070 2048 + 14 = 2062
2× 2 0 + 61 = 61 0 + 2431 = 2431

NoisyRegions This dataset consists of three features (say, species) on a 32× 32 grid, so the
size of D is 1024× 3. The grid is divided into three rectangles. Intuitively, each rectangle is
a habitat that contains mostly one of the three species. However, some of the cells contain
“stray species” in the following way: at 3% of the cells chosen at random, we placed a wrong,
randomly chosen species. Figure 9.6 shows the groupings of each approach. The spatial
approach favours more spatially coherent cell groups, even though they may contain some
of the stray species, because that reduces the total codelength. Thus, it captures the “true
habitats” almost perfectly (except for a few cells, since the algorithms find a local minimum
of the codelength).

Birds This dataset consists of presence information for 219 Finnish bird species over 3813
patches, 10Km×10Km in size which cover the map of Finland. The 3813× 219 binary matrix
contains 33.8% non-zeros (281,953 entries out of 835,047).

First, we observe that the cell groups in Figure 9.7(b) clearly exhibit a higher degree of
spatial affinity than those in Figure 9.7(a). In fact, the grouping in Figure 9.7(b) captures the
boreal vegetation zones in Finland: the light blue and green regions correspond to the south
boreal, yellow to the mid boreal and red to the north boreal vegetation zone.

With respect to the species groups, the method successfully captures statistical outliers
and biases in the data. For example, osprey is placed in a singleton group. The data for
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(a) Non-spatial grouping (b) Spatial grouping
(k = 23 cell groups, (k = 14 cell groups,

` = 18 species groups) ` = 16 species groups)
Figure 9.7: Finnish bird habitats; our approach produces much more spatially coherent cell
groups (see, e.g., red, purple and light blue) and captures the boreal vegetation zones.
this species was received from a special study, where a big effort was made to seek nests.
Similarly, black-throated diver is placed in a singleton group, most likely because of its good
detectability from large distances. Rustic bunting has highly specialised habitat requirements
(mire forests) and is also not grouped with any other species.

9.5 Related work

In “traditional” clustering we seek to group only the rows of D, typically based on some
notion of distance or similarity. The most popular approach is k-means (see, e.g., [HTF01a]).
There are several interesting variants, which aim at improving clustering quality (e.g., k-
harmonic means [ZHD00] and spherical k-means [DM01]) or determining k based on some
criterion (e.g., X-means [PM00] and G-means [HE03]). Besides these, there are many other
recent clustering algorithms that use an altogether different approach, e.g., CURE [GRS98],
BIRCH [ZRL96], Chameleon [KHK99] and DENCLUE [HK98] (see also [HK01]). The LIMBO
algorithm [ATMS04] uses a related, information theoretic approach for clustering categorical
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data.
The problem of finding spatially coherent groupings is related to image segmentation;

see, e.g., [ZK04]. Other more general models and techniques that could be adapted to this
problem are, e.g., [BBM04, KT02, Pot52]. However, all deal only with spatial correlations
and cannot be directly used for simultaneously discovering feature co-occurrences.

Prevailing graph partitioning methods are METIS [KK98] and spectral partitioning [NJW01].
Related is also the work on conjunctive clustering [MRS03] and community detection [RK01].
However, these techniques also require some user-specified parameters and, more impor-
tantly, do not deal with spatial data. Information theoretic co-clustering [DMM03] is related,
but focuses on lossy compression of contingency tables, with distortion implicitly speci-
fied by providing the number of row and column clusters. In contrast, we employ MDL
and a lossless compression scheme for binary matrices which also incorporates spatial in-
formation. The more recent work on cross-associations [CPMF04] is also parameter-free,
but it cannot handle spatial information. Finally, Keogh et al. [KLR04a] propose parameter-
free methods for classic data mining tasks (i.e., clustering, anomaly detection, classification)
based on standard compression tools.

Frequent itemset mining brought a revolution [AS94] with a lot of follow-up work [HK01,
HPYM04]. These techniques have also been extended for mining spatial collocation pat-
terns [LMP03, Sal04, ZMCS04, HXSP03]. However, all these approaches require the user
to specify a support and/or other parameters (e.g., significance, confidence, etc).

9.6 Conclusion
We propose a method to automatically discover spatial correlation and feature co-occurrence
patterns. In particular:

• We group cells and features simultaneously: feature co-occurrence patterns help us com-
press spatial correlation patterns better, and vice versa.

• For cell groups (i.e., spatial correlation patterns), we propose a practical method to
incorporate and exploit spatial affinity, in a natural and principled way.

• We employ MDL to discover the groupings and the number of groups, directly from
the data, without any user parameters.

Our method easily extends to other natural spatial hierarchies, when available (e.g., city
block, neighbourhood, city, county, state, country), as well as to categorical feature values.
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9.6. Conclusion

Finally, we employ fast algorithms that are practically linear in the number of non-zero en-
tries.
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Chapter 10

Summary

In this part we considered mining methods when each point has one or more binary at-
tributes (or features) associated with it, besides its spatial location (see Definition 5.

In Chapter 8 we introduced cross-outliers [PF03]. To the best of our knowledge, work
on outliers up to date focuses exclusively on the problem as follows [Haw80]: “given a
single set of observations in some space, find those that deviate so as to arouse suspicion
that they were generated by a different mechanism.” However, in several domains, we have
more than one set of observations (or, equivalently, as single set with class labels assigned
to each observation). A single observation may look normal both within its own class, as
well as within the entire set of observations. However, when examined with respect to
other classes, it may still arouse suspicions. Thus, we consider the problem “given a set
of observations with class labels, find those that arouse suspicions, taking into account the
class labels.” Many of the existing outlier detection approaches cannot be extended to this
case. We present one practical approach for dealing with this problem.

In Chapter 9 we consider spatial data consisting of a set of binary features taking values
over a collection of spatial extents (grid cells) and we propose a method that simultaneously
finds spatial correlation and feature co-occurrence patterns, without any parameters. In par-
ticular, we employ the Minimum Description Length (MDL) principle coupled with a natu-
ral way of compressing regions. This defines what “good” means: a feature co-occurrence
pattern is good, if it helps us better compress the set of locations for these features. Con-
versely, a spatial correlation is good, if it helps us better compress the set of features in the
corresponding region. Our approach is scalable for large datasets (both number of locations
and of features).
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Part III

Stream mining
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Chapter 11

Introduction

Data streams have received considerable attention in various communities (theory, databases,
data mining, networking, systems), due to several important applications, such as network
analysis [CJSS03], sensor network monitoring [YG03], moving object tracking [Agg03], fi-
nancial data analysis [ZS02], and scientific data processing [ZS03]. All these applications
have in common that: (i) massive amounts of data arrive continuously, which makes tra-
ditional database systems prohibitively slow, and (ii) users, or higher-level applications, re-
quire immediate responses and cannot afford any post-processing (e.g., in network intrusion
detection). Data stream systems have been prototyped [ACC+03, MWA+03, CCD+03] and
deployed in practice [CJSS03]. In addition to providing SQL-like support for data stream
management systems (DSMS), it is crucial to detect patterns and correlations that may exist
in data streams.

In this part we consider semi-infinite, time series data streams. Formally, such a stream is
a discrete sequence of numbers x1, x2, . . . , xt, . . .. Several applications produce huge amounts
of data in this form [GKMS01, GKS01, DGGR02, GG02], where individual values are typi-
cally samples or measurements. Time sequences have attracted attention [BD91], for fore-
casting in financial, sales, environmental, ecological and biological time series, to mention a
few. However, several new and exciting applications have recently become possible.

The emergence of cheap and small sensors has attracted significant attention. Sensors
are small devices that gather measurements—for example, temperature readings, road traf-
fic data, geological and astronomical observations, patient physiological data, etc. There are
numerous, fascinating applications for such sensors and sensor networks, in fields such as
health care and monitoring, industrial process control, civil infrastructure [CGN00], road
traffic safety and smart houses, to mention a few. Although current small sensor proto-
types [HSW+00] have limited resources (512 bytes to 128Kb of storage), dime-sized devices
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with memory and processing power equivalent to a PDA are not far away. In fact, PDA-like
devices with data gathering units are already being employed in some of the above appli-
cations. The goal in the next decade is single-chip computers with powerful processors and
2–10Gb [CGN00] of non-volatile storage. Furthermore, embedded processors are becoming
ubiquitous and their power has yet to be harnessed. A few examples of such applications
are (a) intelligent (active) disks [RFGN00] that learn input traffic patterns and do appropri-
ate prefetching and buffering, (b) intelligent routers that monitor data traffic and simplify
network management.

We use the term “sensor” broadly, to refer to any embedded computing device with fairly
limited processing, memory and (optionally) communication resources and which generates
a semi-infinite sequence of measurements.

Stream data also arise naturally in several other important applications, such as net-
work monitoring and financial applications. Detailed network usage and profiling data
are collected in modern telecommunications networks. One of the main goals are per-
formance monitoring and analysis, which in turn will help in improved network plan-
ning [GKMS01, LPC+04]. Furthermore, numerous network probes are deployed today in
the Internet, to aid in anomaly and intrusion detection. Such data are collected from multi-
ple locations into large repositories [ISC] and subsequently analysed.

In the financial domain, the canonical example is is stock quotes, which generate thou-
sands of streams updated every few minutes [ZS02]. The analysis of market trends and
correlations is a very important application. Furthermore, financial institutions collect and
maintain account historical data, such as balance or transfer activity over time. Again, trends
and correlations in such time series may help in planning as well as fraud detection. In all
these cases, incremental processing of such data and any-time reporting of trends and cor-
relations is an important but difficult task.

In Chapter 12 we focus on a single stream and focus on how to capture trends at mul-
tiple time scales using limited resources. Our proposed method, AWSOM, can do this
automatically, i.e., with no prior inspection of the data or any user intervention and ex-
pert tuning before or during data gathering. Our algorithms require limited resources and
can thus be incorporated in sensors—possibly alongside a distributed query processing en-
gine [CCC+02, BGS01, MSHR02]. Updates are performed in constant time with respect to
stream size, using logarithmic space. Existing forecasting methods (SARIMA, GARCH, etc)
or “traditional” Fourier and wavelet analysis fall short on one or more of these requirements.

In Chapter 13 we examine multiple streams and consider the problem of capturing cor-
relations and finding hidden variables corresponding to trends on collections of time series
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Chapter 11. Introduction

streams. Our proposed method, SPIRIT, can incrementally find correlations and hidden
variables, which summarise the key trends in the entire stream collection. It can do this
quickly, with no buffering of stream values and without comparing pairs of streams. More-
over, it is any-time, single pass, and it dynamically detects changes. The discovered trends
can also be used to immediately spot potential anomalies, to do efficient forecasting and,
more generally, to dramatically simplify further data processing.
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Chapter 12

Patterns on a single stream

The limitations on available memory and computational resources on sensors unavoidably
imply the need for certain trade-offs—it is impossible to store everything. Furthermore,
we want to make the most of available resources, allowing the sensor to adapt and operate
without supervision for as long as possible. This is the problem we address in this chapter,
for a single stream of numerical values. The goal is a “language” (i.e., model/representa-
tion) for efficient and effective stream mining. We want to collect information, in real-time
and without any human intervention, and discover patterns such as those illustrated in
Figure 12.1.

This problem is orthogonal to that of continuous query processing. We focus on an adap-
tive algorithm that can look for arbitrary patterns and requires no prior knowledge and
initial human tuning to guide it. There are situations when we do not know beforehand what
we are looking for. Furthermore, it may be impossible to guide the sensor as it collects data,
due to the large volume of data and/or limited or unavailable communication. If further
exploration is desired, users can issue further queries, guided by the general long-term pat-
terns to quickly narrow down the “search space.”

In detail, the main requirements are (see also Figure 12.1):

1. Concise models: The models should be able to capture most of the regularities in real-
world signals, using limited resources. In particular, we want

(a) Periodic component identification; humans can achieve this task, visually, from
the time-plot. Our method should automatically spot multiple periodic compo-
nents, each of unknown, arbitrary period.

(b) Noise filtering/identification; various types of “noise” are present in most real

133



Automobile − Full

Time

A
ut

om
ob

ile

0 5000 10000 15000

0
50

0
10

00
15

00
20

00
Automobile − Day

Time
A

ut
om

ob
ile

0 1000 2000 3000 4000

0
50

0
10

00
15

00
20

00

Automobile − Hour

Time

A
ut

om
ob

ile

500 550 600 650 700

0
50

0
10

00
15

00
20

00

Figure 12.1: Automobile traffic, complete series, one day and one hour (the first two are
8- and 4-point averages to make the trends easier to see). There is clearly a daily periodic-
ity. Also, in each day there is another distinct pattern (morning and afternoon rush hours).
However, at an hour scale traffic is highly bursty—in fact, it can be modelled by self-similar
noise. We want a method that can capture all this information automatically, with one pass
and using limited memory!

signals; our framework should deal with it and identify several of its characteris-
tics.

(c) Finally, we need a few, simple patterns (i.e., equations and features), so they can
be easily communicated to other nearby sensors and/or to a central processing
site.

2. Streaming framework: In particular, we want

(a) An online, one-pass algorithm, since we can afford neither the memory nor time
for offline updates, much less multiple passes over the data stream

(b) Limited memory use, since sensor memory will be exhausted, unless our method
carefully detects redundancies (or equivalently, patterns) and exploits them

(c) Any-time forecasting and outlier detection; it is not enough to do compression
(e.g., of long silence periods, or by ignoring small Fourier or wavelet coefficients).
The model should be generative and thus able to report outliers. An outlier can
be defined as any value that deviates too much from our forecast (e.g., by two
standard deviations).

3. Unsupervised, automatic operation: In a general sensor setting, we cannot afford human
intervention.
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Chapter 12. Patterns on a single stream

The AWSOM framework can extract several key features of the stream, in a principled way.
It can do so in a single pass, with minimal resource requirements. Based on these features, it
can immediately provide information about the stream at several levels. In brief, AWSOM
has all of the above characteristics, while none of the previously published methods (AR
and variations, Fourier analysis, wavelet decomposition—see Section 12.1.2) can claim the
same.

12.1 Related work
Previous work broadly falls into two categories. The first includes work done by the databases
community on continuous query processing. These methods employ increasingly sophisti-
cated mathematical methods, but the focus is typically on some form of compression (or,
synopses) which do not employ generative models. The other includes various popular sta-
tistical models and methods for time series forecasting. However, standard estimation meth-
ods for these models typically fail in one or both of the requirements (2) and (3) earlier.

Thus the authors believe that there is a need for straightforward methods of time series
model building which can be applied in real-time to semi-infinite streams of data, using
limited memory.

12.1.1 Continuous queries and stream processing

An interesting method for discovering representative trends in time series using sketches was
proposed by Indyk et al. [IKM00]. A representative trend is a section of the time series that
has the smallest sum of “distances” from all other sections of the same length. The proposed
method employs random projections for dimensionality reduction and FFT to quickly com-
pute the sum of distances. However, it cannot be applied to semi-infinite streams, since each
section has to be compared to every other.

Related to the above is the very recent approach of Ergün et al. [EMS04]. They define ap-
proximate periodicity based on self-distances (extending the notion of exact periodicity from
combinatorial pattern matching) and present efficient sampling techniques that require only
O(
√

n) samples to compute self-distances for any potential period, without any prior knowl-
edge.

Gilbert et al. [GKMS01] use wavelets to compress the data into a fixed amount of mem-
ory, by keeping track of the largest Haar wavelet coefficients and carefully updating them
on-line. In the following, we will use the name Incremental DWT or IncDWT for short. How-
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ever, this method does not try to discover patterns and trends in the data. Thus, it cannot
compete directly with our method, which employs a generative model. More recently, Garo-
falakis et al. [GG02] presented an approach for accurate data compression using probabilistic
wavelet synopses. However, this method has an entirely different focus and cannot be ap-
plied to semi-infinite streams. The recent work of Guha et al. [GK02] efficiently constructs
ε-accurate histograms in a stream setting, for a fixed number of buckets, using space and
time-per-element that is logarithmic with respect to stream size (or poly-logarithmic with re-
spect to a fixed window size). Further work on streams focuses on providing exact answers
to pre-specified sets of queries using the minimum amount of memory possible. Arvind
et al. [ABB+02] study the memory requirements of continuous queries over relational data
streams. Datar et al. [DGI+02] keep exact summary statistics and provide theoretical bounds
in the setting of a bit stream. Das et al. [DLM+98] examine the problem of discovering rules
in time series, by quantising them and then mining local, frequent-itemset type rules over
sliding window fragments, based on certain similarity criteria.

There is also recent work on approximate answers to various types of continuous queries.
Gehrke et al. [GKS01] presents a comprehensive approach for answering correlated aggre-
gate queries (e.g., “find points below the (current) average”), using histogram “summaries”
to approximate aggregates. Dobra et al. [DGGR02] present a method for approximate an-
swers to aggregate multi-join queries over several streams, using random projections and
boosting. More recently, Considine et al. [CLKB04] have proposed novel sketching tech-
niques for aggregate queries with the goal of minimising communication and computation
overhead.

Olston et al. [OJW03] present a query processing framework for minimising commu-
nication overhead over a set of specific continuous queries over multiple streams, while
providing error guarantees. Also, the work in [BO03] considers the problem of efficiently
monitoring the top-k values in a distributed, multiple stream setting.

Zhu and Shasha [ZS03] examine the problem of efficient detection of elastic bursts in
streams. In [ZS02] they use the DFT to summarise streams within a finite window and
then compute the pairwise correlations among all streams. Also, Yi et al. [YSJ+00] present a
method for analysis of multiple co-evolving sequences.

A system for linear pattern discovery on multi-dimensional time series was presented
recently by Chen et al. [CDH+02]. Although this framework employs varying resolutions
in time, it does so by straight aggregation, using manually selected aggregation levels (al-
though the authors discuss the use of a geometric progression of time frames) and can only
deal with, essentially, linear trends. Recently, Bulut et al. [BS03b] proposed an approach
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Contin. Trends / Auto-
Method Streams Forecast matic Memory
DFT (N-point) NO NO — —
SWFT (N-point) YES(?) NO — —
DWT (N-point) NO NO — —
IncDWT [GKMS01] YES NO — —
Sketches [IKM00] NO YES(?) — —
AR / ARIMA YES YES NO [BD91] W2

AWSOM YES YES YES m|D|2

Table 12.1: Comparison of methods.

for hierarchical stream summarisation (similar to that of [GKMS01]) which focuses on sim-
ple queries and communication/caching issues for wavelet coefficients. Even more recently,
Palpanas et al. [PVK+04] consider approximation of time-series with amnesic functions. They
propose novel techniques suitable for streaming, and applicable to a wide range of user-
specified approximating functions.

Finally, in other areas of database research, Zhang et al. [ZGTS02] present a framework
for spatio-temporal joins using multiple-granularity indices. Aggregation levels are pre-
specified and the main focus is on efficient indexing. Tao et al [TFPL04] recently presented
an approach to recursively predict motion sequence patterns.

12.1.2 Time series methods

None of the continuous querying methods deal with pattern discovery and forecasting. The
typical “textbook” approaches to forecasting (i.e., generative time series models) include
auto-regressive (AR) models and their generalisations, auto-regressive moving average (ARMA),
auto-regressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) [BD91].
Other popular time-series models include GARCH (generalised auto-regressive conditional het-
eroskedasticity) [Bol86] and ARFIMA (auto-regressive fractionally integrated moving average) [Ber94].
These time-series models could be used; however, standard estimation methods for these
models fail in one or both of the requirements (2) and (3) stated in the introduction. Further-
more, these methods often have a number of other limitations.

Existing model-fitting methods are typically batch-based (i.e., do not allow online up-
date of parameters). Established methods for determining model structure are at best com-
putationally intensive, besides not easily automated. Large window sizes introduce severe
estimation problems, both in terms of resource requirements as well as accuracy.
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Symbol Definition
X, P, . . . Matrices (boldface capital).
y, q, b, . . . Vectors (boldface lower-case).
Xt Value at time t = 0, 1, . . . (sometimes also X[t]).
N Number of points so far from {Xt}.
Wl,t Wavelet (or, detail) coefficient (level l, time t); also denoted

W[l, t]
Vl,t Scaling (or, smooth) coefficient (level l, time t); also denoted

V[l, t].
β

(l)
i AWSOM coefficient at time lag i, for the equation at level l.

AWSOM(n0) AWSOM model of order n0 (i.e., with n0 model coefficients,
per level). The total order of this model is k ≡ n0.

Table 12.2: Symbols and definitions.

In addition, ARIMA models cannot handle bursty time series, even when the bursts are
re-occurring. While GARCH models [Bol86] can handle the class of bursty white noise se-
quences, they do not have the richness in structure to model a wide variety of different time
series. Recently, the ARIMA model has been extended to ARFIMA, which handles the class
of self-similar bursty sequences [Ber94]. However, ARFIMA models pose particular compu-
tational problems since they cannot be expressed in Markovian form, making the likelihood
computationally burdensome to evaluate.

All the above methods deal with linear forecasting. Non-linear modelling methods [WG94]
also require human intervention to choose the appropriate windows for non-linear regres-
sion or to configure an artificial neural network.

12.1.3 Other

There is a large body of work in the signal processing literature related to compression and
feature extraction. Typical tools include the Fast Fourier Transform (FFT), as well as the
Discrete Wavelet Transform (DWT) [PW00]. However, most of these algorithms (a) deal with
fixed length signals of size N, and (b) cannot do forecasting (i.e., do not employ a generative
model).

12.2 Background material

In this section we give a very brief introduction to some necessary background material.
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12.2.1 Auto-regressive (AR) modelling
Auto-regressive models are the most widely known and used. We present the basic ideas—
more information can be found in, e.g., [BD91]. The main idea is to express Xt as a function
of its previous values, plus (filtered) noise εt:

Xt = φ1Xt−1 + . . . + φWXt−W + εt (12.1)

where W is a window that is determined by trial and error, or by using a criterion that pe-
nalises model complexity (i.e., large values of W), like the Akaike Information Criterion (AIC).
Seasonal variants (SAR, SAR(I)MA) also use window offsets that are multiples of a single,
fixed period (i.e., besides terms of the form Xt−i, the equation contains terms of the form
Xt−Si where S is a constant). The typical ARIMA modelling approach involves manual pre-
processing to remove trend and seasonal components.

In more detail, an auto-regressive model of order p, or AR(p) express Xt as a linear
combination of previous values, i.e., Xt = φ1Xt−1 + · · ·+ φpXt−p + εt or, more concisely

φ(L)Xt = εt

where L is the lag operator and φ(L) is a polynomial defined on this operator:

LXt ≡ Xt−1

φ(L) = 1− φ1L− φ2L2 − · · · − φpLp

and εt is a white noise process, i.e.,

E[εt] = 0 and Cov[εt, εt−k] =







σ2 if k = 0

0 otherwise

Using least-squares, we can estimate σ2 from the sum of squared residuals (SSR). This is
used as a measure of estimation error; when generating “future” points, εt is set to E[εt] ≡ 0.

The next step up are auto-regressive moving average models. An ARMA(p, q) model
expresses values Xt as

φ(L)Xt = θ(L)εt

where θ(L) = 1− θ1L − · · · − θqLq. Estimating the moving average coefficients θi is fairly
involved. State of the art methods use maximum-likelihood (ML) algorithms, employing
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iterative methods for non-linear optimisation, whose computational complexity depends
exponentially on q.

ARIMA(p, d, q) models are similar to ARMA(p, q) models, but operate on (1− L)dXt, i.e.,
the d-th order backward difference of Xt:

φ(L)(1− L)dXt = θ(L)εt

Finally, SARIMA(p, d, q)×(P, D, Q)T models are used to deal with seasonalities, where:

φ(L)Φ(LT)(1− L)d(1− LT)DXt = θ(L)Θ(LT)εt

where the seasonal difference polynomials

Φ(LT) = 1−Φ1LT −Φ2L2T − · · · −ΦPLPT

Θ(LT) = 1−Θ1LT −Θ2L2T − · · · −ΘQLQT

are similar to φ(L) and θ(L) but operate on lags that are multiples of a fixed period T. The
value of T is yet another parameter that either needs to be estimated or set based on prior
knowledge about the series Xt.

12.2.2 ACF and PACF

The auto-correlation function (ACF) and partial auto-correlation function (PACF) are traditionally
used to gain an understanding of time-series behaviour.

Definition 21 (ACF). For a (weakly) stationary series {Xt}, the autocovariance function is de-
fined as

γk := Cov[Xt − µ, Xt−k − µ] ≡ E
[

(Xt − µ)(Xt−k − µ)
]

,

where µ := E[Xt]. The autocorrelation function (ACF) then is

ρk := γk/γ0,

i.e., the correlation coefficients at lag k.

By definition, ρ0 = 1. Also, assuming a white noise process, approximate 95% confidence
intervals are given by ±1.96

√
N, where N is the number of points in the series.

For a pure white noise process, the ACF is zero for all values (ρk = 0, for all k ≥ 1). For a
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pure auto-regressive (AR) process, the ACF decays exponentially. Finally, for a pure moving
average process of order q (MA(q)), the ACF is non-zero for values up to q (ρk = 0 iff k > q).

In this section, we examine the ACF per DWT level. Since we know that, by construction
Et[Wl,t] = 0 for every l, the autocovariances and autocorrelations are

γ
(l)
k := Covt[Wl,t, Wl,t−k] and ρ

(l)
k := γ

(l)
k /γ

(l)
0 .

Traditionally, when studying auto-regressive processes, the partial autocorrelation func-
tion is also used.

Definition 22 (PACF). The partial autocorrelation function (PACF) αk at lag k is the correla-
tion coefficient between between the two sets of residuals obtained by regressing Xt and Xt−k on the
intervening values Xt−k+1, . . . , Xt−1.

In particular, α1 = ρ1 and αk (k > 1) is a measure of the correlation between Xt and Xt−k
after the (linear) effect of intervening observations has been removed. The PACF αk at lag k
is typically estimated by fitting an AR(k) model to the data.

Therefore, for a pure AR(p) process, the PACF is non-zero for values up to p (αk = 0 iff
k > p). For a pure MA process, the PACF decays exponentially.

In practice, real series are not so “clear cut” with respect to the ACF and PACF and things
are complicated somewhat further by sampling effects when dealing with real data. Thus,
this information must be interpreted with some care, but it still provides guidance.

12.2.3 Recursive Least Squares (RLS)

Recursive Least Squares (RLS) is a method that allows dynamic update of a least-squares fit.
The least squares solution to an overdetermined system of equations Xb = y where X ∈
R

m×k (measurements), y ∈ R
m (output variables) and b ∈ R

k (regression coefficients to be
estimated) is given by the solution of XTXb = XTy. Thus, all we need for the solution are
the projections

P ≡ XTX and q ≡ XTy

We need only space O(k2 + k) = O(k2) to keep the model up to date. When a new row
xm+1 ∈ R

k and output ym+1 arrive, we can update

P ← P + xm+1xT
m+1 and

q ← q + ym+1xm+1.
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Figure 12.2: Haar bases and correspondence to time/frequency (for signal length N = 16).
Each wavelet coefficient is a linear projection of the signal to the respective basis.

In fact, it is possible to update the regression coefficient vector b without explicitly inverting
P to solve b = P−1q. In particular (see, e.g., [You84]) the update equations are

G ← G− (1 + xT
m+1Gxm+1)

−1Gxm+1xT
m+1G

b ← b−Gxm+1(xT
m+1b− ym+1),

where the matrix G can be initialised to G ← εI (where ε is a small positive number and I is
the k× k identity matrix).

RLS and AR In the context of auto-regressive modelling (Eq. 12.1), we have one equation
for each stream value Xw+1, . . . , Xt, . . ., i.e., the m-th row of the X matrix above is

xm = [Xm−1 Xm−2 · · · Xm−w]T ∈ R
w

for t− w = m = 1, 2, . . . (t > w). In this case, the solution vector b consists precisely of the
auto-regression coefficients in Eq. 12.1, i.e.,

b = [φ1 φ2 · · · φw]T ∈ R
w.
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12.2.4 Wavelets
The N-point discrete wavelet transform (DWT) of a length N time sequence gives N wavelet
coefficients. Wavelets are best introduced with the Haar transform, because of its simplicity
(a more rigorous introduction can be found, e.g., in [PW00]). At each level l of the construc-
tion we keep track of two sets of coefficients, each of which “looks” at a time window of size
2l:

• Vl,t: The smooth component, which consists of the N/2l scaling coefficients. These cap-
ture the low-frequency component of the signal; in particular, the frequency range
[0, 1/2l].

• Wl,t: The detail component, which consists of the N/2l wavelet coefficients. These capture
the high-frequency component; in particular, the range [1/2l , 1/2l−1].

The construction starts with V0,t = Xt and W0,t is not defined. At each iteration l = 1, 2, . . . , lg N
we perform two operations on Vl−1,t to compute the coefficients at the next level:

• Differencing, to extract the high frequencies:

Wl,t = (Vl−1,2t −Vl−1,2t−1)/
√

2

• Smoothing, which averages1 each consecutive pair of values and extracts the low fre-
quencies:

Vl,t = (Vl−1,2t + Vl−1,2t−1)/
√

2

We stop when Wl,t consists of one coefficient (which happens at l = lg N + 1). The scaling
coefficients are needed only during the intermediate stages of the computation. The final
wavelet transform is the set of all wavelet coefficients along with Vlg N+1,0. Starting with
Vlg N+1,0 (which is also referred to as the signal’s scaling coefficient) and following the in-
verse steps, we can reconstruct each Vl,t until we reach V0,t ≡ Xt.

Figure 12.2 illustrates the final effect for a signal with N = 16 values. Each wavelet
coefficient is the result of projecting the original signal onto the corresponding basis signal
(i.e., taking the dot product of the signal with the basis). Figure 12.2 shows the scalogram, that
is, the energy (i.e., squared magnitude) of each wavelet coefficient versus the location in time
and frequency it is “responsible” for. In general, there are many wavelet transforms, but they
all follow the pattern above: a wavelet transform uses a pair of filters, one high-pass and one

1The scaling factor of 1/
√

2 in both the difference and averaging operations is present in order to preserve
total signal energy (i.e., sum of squares of all values).
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low-pass. For example, in Haar wavelets, this pair consists of the simple differencing and
averaging filters, respectively.

For our purposes here, we shall restrict ourselves to wavelets of the Daubechies family,
which have desirable smoothness properties and successfully compress many real signals.
In practice, although by far the most commonly used (largely due to their simplicity), Haar
wavelets are too unsmooth and introduce significant artifacting [PW00]. In fact, unless oth-
erwise specified, we use Daubechies-6.

Incremental wavelets This part is a very brief overview of how to compute the DWT incre-
mentally. This is the main idea of IncDWT [GKMS01], which uses Haar wavelets. In general,
when using a wavelet filter of length L, the wavelet coefficient at a particular level is com-
puted using the L corresponding scaling coefficients of the previous level. Recall that L = 2
for Haar (average and difference of two consecutive points), and L = 6 for Daubechies-6
that we typically use. Thus, we need to remember the last L− 1 scaling coefficients at each
level. We call these the wavelet crest.

Definition 23 (Wavelet crest). The wavelet crest at time t is defined as the set of scaling coeffi-
cients (wavelet smooths) that need to be kept in order to compute the new wavelet coefficients when
Xt arrives.

Lemma 9 (DWT update). Updating the wavelet crest requires space (L− 1) lg N + L = O(L lg N) =

O(lg N), where L is the width of the wavelet filter (fixed) and N the number of values seen so far.

Proof. See [GKMS01]. Generalising to non-Haar wavelets and taking into account the wavelet
filter width is straightforward.

Wavelet properties

In this section we emphasise the DWT properties which are relevant to AWSOM.

Computational complexity The DWT can be computed in O(N) time and, as new points
arrive, it can be updated in O(1) amortised time. This is made possible by the structure of the
time/frequency decomposition which is unique to wavelets. For instance, the Fourier trans-
form also decomposes a signal into frequencies (i.e., sum of sines), but requires O(N lg N)

time to compute and cannot be updated as new points arrive.
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Figure 12.3: AWSOM—Intuition and demonstration. AWSOM captures intra-scale correla-
tions (a). Also, (b) demonstrates why we fit different models per level.

Time/frequency decomposition Notice (see scalogram in Figure 12.2) that higher level co-
efficients are highly localised in time, but involve uncertainty in frequency and vice-versa.
This is a fundamental trade-off of any time/frequency representation and is a manifestation
of the uncertainty principle, according to which localisation in frequencies is inversely propor-
tional to localisation in time. The wavelet representation is an excellent choice when dealing
with semi-infinite streams in limited memory: it “compresses” well many real signals, while
it is fast to compute and can be updated online.

Wavelets and decorrelation A wavelet transform with filter of length 2L can decorrelate
only certain signals provided their L-th order (or less) backward difference 2 is a station-
ary random process [PW00]. For real signals, this value of L is not known in advance and
may be impractically large: the space complexity of computing new wavelet coefficients is
O(L lg N)—see Lemma 9.

For a more detailed analysis and discussion of the properties of real-world signals, see Section 12.5.2.

Wavelet variance One further benefit of using wavelets is that they decompose the vari-
ance across scales. Furthermore, the plot of log-power versus scale can be used to detect
self-similar components (see Section 12.2.5 for a brief overview).

2In particular, the Daubechies-2L wavelet filters are essentially L-th order backward differences (and, con-
sequently, the scaling filters are essentially 2L-point weighted moving averages).
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Figure 12.4: Illustration of Haar and Daubechies-6 cascade gain (levels 3–5). The horizontal
axis is frequency and the curves show how much of each frequency is “represented” at
each wavelet level. As expected, D-6 filters (used in all experiments), have better band-pass
properties.

12.2.5 More wavelet properties

Frequency properties Wavelet filters employed in practice can only approximate an ideal
bandpass filter, since they are of finite length L. The practical implications are that wavelet
coefficients at level l correspond roughly to the frequency range [1/2l+1, 1/2l] (or, equiv-
alently, periods in [2l, 2l+1] (see Figure 12.4 for the actual correspondence). This has to be
taken into account for precise interpretation of AWSOM models by an expert.

Wavelet variance and self-similarity The wavelet variance decomposes the variance of a
sequence across scales. Due to space limitations, we mention basic definitions and facts;
details can be found in [PW00].

Definition 24 (Wavelet variance). If {Wl,t} is the DWT of a series {Xt} then the wavelet variance
Vl is defined as Vl = Var[Wl,t]

Under certain general conditions, V̂l = 2l
N ∑

N/2l
t=1 W2

l,t is an unbiased estimator of Vl . Note
that the sum is precisely the energy of {Xt} at scale l.
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Definition 25 (Self-similar sequence). A sequence {Xt} is said to be self-similar following a pure
power-law process if SX( f ) ∝ | f |α, where −1 < α < 0 and SX( f ) is the SDF3

It can be shown that Vl ≈ 2
∫ 1/2l

1/2l+1 SX( f )d f , thus if {Xt} is self-similar, then

logVl ∝ l,

i.e., the plot of logVl versus the level l should be linear. In fact, slope of the log-power versus
scale plot should be approximately equal to the exponent α. This fact and how to estimate
Vl are what the reader needs to keep in mind.

—-

12.3 Proposed method

In this section we introduce our proposed model. What equations should we be looking for
to replace ARIMA’s (see Equation 12.1)?

12.3.1 Intuition behind our method

First part—information representation This is a crucial choice—what is a good way to
represent the key information in the series, given the severe resource constraints in a stream-
ing, sensor setting? We want a powerful and flexible representation that can adapt to the se-
quence, rather than expect someone to adapt the sequence to the representation. We propose
to use wavelets because they are extremely successful in compressing most real signals, such
as voice and images [Fal96], seismic data [ZdZ98], biomedical signals [Aka97] and economic
time sequences [GSW01]. By using wavelet coefficients, we immediately discard many re-
dundancies (i.e., near-zero valued wavelet coefficients) and focus on what really matters.
Furthermore, the DWT can be computed quickly and updated online.

Second part—correlations In the wavelet domain, how can we capture arbitrary period-
icities? A periodic signal will have high-energy wavelet coefficients at the scales that corre-
spond to its frequency. Also, successive coefficients on the same level should have related

3The spectral density function (SDF) is the Fourier transform of the auto-covariance sequence (ACVS) SX,k ≡
Cov[Xt, Xt−k]. Intuitively, it decomposes the variance into frequencies.
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values (see Figure 12.3(a)). Thus, in order to capture periodic components, we should look
for intra-scale correlations between wavelet coefficients4.

The last question we need to answer is: what type of regression models should we use
to quantify these correlations? Our proposed method tries to capture these by fitting linear
regression models in the wavelet domain. These can also be updated online with RLS.

Summary

We propose using the wavelet representation of the series and capturing correlations in the
wavelet domain (see Figure 12.3(b)). If we naı̈vely try to apply linear auto-regression in the
time domain, there are several problems:

• Window size: In order to capture long-term (non-sinusoidal) periodic components, the
window size has to be as large as the period. If we hope to capture any information
about long-term periodic trends, the window size has to be extremely large and this
clearly violates the limited memory requirements (it also creates other problems, as
discussed next).

However, the wavelet coefficients at each level capture information at a coarser reso-
lution, but at windows whose size increases exponentially with the level.

• Noise: Even with a large window size, the presence of noise (typically at higher fre-
quencies) severely affects model fitting. Dealing with noise in the time domain is pos-
sible (moving average being the simplest approach), but cannot be done easily in an
online setting and often requires human intervention (seasonal models typically used
for this reason, where the period has to be manually identified).

However, the wavelet transform filters out this noise quite successfully and does so in a
principled manner, than has been proven to work for several real signals. Furthermore,
it allows us to extract certain important characteristics of the noise.

Therefore, our approach significantly improves modelling power while dramatically reduc-
ing memory requirements, by essentially performing auto-regression on the wavelet repre-
sentation instead of the original signal. At the same time, it adheres to the principle of no
prior human intervention and tuning (or, adapting to new data as they arrive).

4Bursts, on the other hand, carry energy in most frequencies and give rise to inter-scale correlations; see
also the discussion in Section 12.5.1 for more details on this aspect.
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Input: Continuous, numerical stream X[1], X[2], . . . , X[t], . . .
Model order n0 (typically n0 ≤ 6)

Output: Wavelet variances Vl
AWSOM coefficients β

(l)
i

Wavelet crest (or, initial conditions) W[N − i− 1, l]

Where: N is the number of points seen so far
1 ≤ l ≤ dlg Ne and 1 ≤ i ≤ n0

UpdateCrest (X[t]):
Foreach l ≥ 0 s.t. 2l divides t:

Compute V[l, t/2l ]
If 2l+1 divides t:

Compute W[l, t/2l+1]
Delete W[l, t/2l+1 − L]

Update (X[t]):
UpdateCrest(X[t])
Foreach new coefficient W[l, t′] in the crest:

Find the linear model it belongs to
based on l and t′ mod Λ

Update P ≡ XTX and
q ≡ XTy for this model

ModelSelection:
For each linear model:

Estimate SSR of complete model
For each subset of regression variables:

Compute SSR of reduced model
from 10

Estimate probability that reduction
in variance is not due to chance

Select the subset of variables with
highest probability (or keep all
if not within 95% confidence interval)

Figure 12.5: High-level description of the algorithms.

12.3.2 AWSOM modelling

We express the wavelet coefficients at each level as a function of the n0 previous coefficients
of the same level, i.e.,

Wl,t = β
(l)
1 Wl,t−1 + β

(l)
2 Wl,t−2 + · · ·+ β

(l)
n0 Wl,t−n0 (12.2)

where Wl,t are the wavelet coefficients (at time t and level l) and β
(l)
i are the AWSOM coeffi-

cients (for level l and lag i). We estimate one set of such coefficients for each level l; note that
l is at most lg N. This is a model of order n0, denoted as AWSOM(n0). To summarise:

Definition 26 (AWSOM model and order). A model with n0 coefficients β
(l)
i , i = 1, 2, . . . , n0 for

each wavelet level l is denoted as AWSOM(n0). Its (total) order is n0.

This can capture arbitrary periodic components and is sufficient in many real signals.
Figure 12.5 described the algorithm; we update the wavelet crest on-line (as described

before) and use recursive least squares to update the regression models, also online.

12.3.3 Model selection

Many of the dependencies may be statistically insignificant, so the respective coefficients
β(l)i should be set to zero. We want to (a) avoid over-fitting and (b) present to the user those
patterns that are important. We can do model selection using only data gathered online and
with time complexity independent of the stream size. Next, we show how feature selection
can be done from the data gathered online (i.e., P and q for each AWSOM equation). The
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12.3. Proposed method

algorithm is sketched in Figure 12.5. The main idea is to determine whether the reduction
in error achieved by adding extra parameters is statistically significant (based on some cri-
terion), i.e., it cannot be attributed to noise.

Model testing and selection

The key quantity we need is the total squared error (or, square sum of residuals (SSR)).

Lemma 10 (Square sum of residuals). If b is the least-squares solution to the overdetermined
equation Xb = y, then

sn ≡
n
∑
i=1

(xi
Tb− yi)

2 = bTPb− 2bTq + y2

Proof. Straightforward from the definition of sn, which in matrix form is sn = (Xb− y)2.

Thus, besides P and q, we only need to update y2 (a single number), by adding y2
i to it

as each new value arrives. Now, if we select a subset I = {i1, i2, . . . , ip} ⊆ {1, 2, . . . , k} of
the k variables x1, x2, . . . , xk, then the solution bI for this subset is given by PIbI = qI and
the SSR by sn = bT

IPIbI − 2bIqI + y2 where the subscript I denotes straight row/column
selection (e.g., PI = [pij ,ik ]ij,ik∈I )

The F-test (Fisher test) [DS02] is a standard method for determining whether a reduction
in variance is statistically significant. The F-test is based on the sample variances, which
can be computed directly from the SSR (Lemma 10). Although the F-test holds precisely
(i.e., non-asymptotically) under normality assumptions, in practice it works well in several
circumstances, especially when the population size is large (as is the case with semi-infinite
streams).

12.3.4 Complexity

In this section we show that our proposed AWSOM models can be easily estimated with a
single-pass, “any-time” algorithm. From Lemma 9, estimating the new wavelet coefficients
requires space O(lg N). In fact, since we typically use Daubechies-6 wavelets (L = 6), we
need to keep exactly 5 lg N + 6 values. The AWSOM models can be dynamically updated
using RLS.

At each level, we fit a separate regression model; since the number of levels is dlg Ne,
this leads to the following result:
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Figure 12.6: (a) Memory space requirements (normalised): Space needed to keep the models
up-to-date (AWSOM and AR with equivalent, fair window size. (b) Time complexity versus
stream size (Python prototype), including model selection; the relationship is exactly linear,
as expected.

Lemma 11 (Logarithmic space complexity). Maintaining an AWSOM(k) model requires O(lg N +

mk2) space, where N is the length of the signal so far, k is the total AWSOM order and m = dlg Ne =

O(lg N) the number of equations.

Proof. Keeping the wavelet crest scaling coefficients requires space O(lg N). If we use re-
cursive least squares, we need to maintain a k× k matrix for each of the m equations in the
model.

Auto-regressive models with a comparable window size need space O(m2k2), since the
equivalent fair window size is W ≈ mk. Here, “fair” means that the number of total number
of AWSOM coefficients plus the number of initial conditions we need to store is the same
for both methods. This is the information that comprises the data synopsis and that would
have to be eventually communicated. However, the device gathering the measurements
needs extra storage space in order to update the models. The latter is, in fact, much larger
for AR than for AWSOM (see Figure 12.6(a)). Thus this definition of equivalent window
actually favours AR.

Lemma 12 (Time complexity). Updating the model when a new data point arrives requires O(k2)

time on average, where k is the number of AWSOM coefficients in each equation.
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12.4. Experimental evaluation

Dataset Size Description
Triangle 64K Triangle wave (i.e., piecewise linear;

amplitude 5, period 256)
Mix 256K Square wave (ampl. 25, period 256)

plus sine (amplitude 5, period 64)
Sunspot 2K Sunspot data
Automobile 32K Automobile traffic sensor trace

from large Midwestern state
Temperature 32K Measurements from indoor tempera-

ture sensor (per second, deg. Celsius)

Table 12.3: Description of datasets (sizes are in number of points, 1K=1024 points).

Proof. On average, the wavelet crest scaling coefficients can be updated in O(1) amortised
time. Although a single step may require O(lg N) time in the worst case, on average, the
(amortised) time required is O(∑

n
i=0 B(i)/N) = O(1) (where B(i) is the number of trailing

zeros in the binary representation of i)5. Updating the k× k matrix for the appropriate linear
equation (which can be identified in O(1) time, based on the level l), requires time O(k2).

Auto-regressive models with a comparable window size need O(m2k2) time per update.

Corollary 1 (Constant-time update). When the model parameters have been fixed (typically k is a
small constant ≈ 6 and m ∼ lg N), the model requires space O(lg N) and amortised time O(1) for
each update.

Figure 12.6(b) shows that this is clearly the case, as expected.

12.4 Experimental evaluation
We compared AWSOM against standard AR (with the equivalent, fair window size—see
Section 12.3.4), as well as hand-tuned (S)ARIMA (wherever possible). Our prototype AW-
SOM implementation is written in Python, using Numeric Python for fast array manipula-
tion. We used the standard ts package from R6 for AR and (S)ARIMA models. We illustrate
the properties of AWSOM and how to interpret the models using synthetic datasets and then
show how these apply to real datasets (see Table 12.3).

Only the first half of each sequence was used to estimate the models, which were then
applied to generate a sequence of length equal to that of the entire second half. For AR

5Seen differently, IncDWT is essentially a pre-order traversal of the wavelet coefficient tree.
6R version 1.6.0; see http://www.r-project.org/.
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Figure 12.7: Forecasts—synthetic datasets. Note that AR gives the wrong trend (if any),
while seasonal AR fails to complete and is not shown.

and (S)ARIMA, the last values (as dictated by the lags) of the first half were used to initiate
generation. For AWSOM we again used as many of the last wavelet coefficients from each
DWT level of the first half as were necessary to start applying the model equations. We
should note that generating more than, say, 10 steps ahead is very rare: most methods in the
literature [WG94] generate one step ahead, then obtain the correct value of Xt+1, and only
then try to generate Xt+2. Nevertheless, our goal is to capture long-term behaviour under
severe resource constraints and AWSOM achieves this efficiently.

12.4.1 Interpreting the models

Visual inspection A “forecast” is essentially a by-product of any generative time series
model: application of any model to generate a number of “future” values reveals precisely
the trends and patterns captured by that model. In other words, synthesising points based
on the model is the simplest way for any user to get a quick, yet fairly accurate idea of what
the trends are or, more precisely, what the model thinks they are. Thus, what we expect to
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Figure 12.8: Wavelet log-power diagnostic (real datasets). Horizontal axis is wavelet scale
(l) and vertical axis is log-power (log Vl) (see Section 12.2.5). A linear trend with negative
slope (between 0 and -1) indicates presence of self-similar noise. Automobile exhibits self-
similarity in scales up to 6 (which roughly corresponds to one hour) but not overall.

see (especially in a long-range forecast) is the important patterns that can be identified from
the real data. However, an expert user can extract even more precise information from the
models.

Variance test As explained in Section 12.2.5, if the signal is self-similar, then the plot of
log-power versus scale is linear.

Definition 27 (Variance log-power diagnostic). The log-power vs. scale plot is the wavelet vari-
ance log-power diagnostic plot (or just log-power diagnostic). In particular, the correlation
coefficient ρα quantifies the relation. If the plot is linear (in a range of scales), the slope α̂ is the
self-similarity exponent (−1 < α < 0, closer to zero the more bursty the series).

A large value of |ρα|, at least across several scales, indicates that the series component
in those scales may be modelled using, e.g., a fractional noise process with parameter dic-
tated by α (see Automobile). However, we should otherwise be careful in drawing further
conclusions about the behaviour within these scales.

We should note that after the observation by [LTWW94], fractional noise processes and,
in general, self-similar sequences have revolutionised network traffic modelling. Further-
more, self-similar sequences appear in atomic clock fluctuations, river minima, compressed
video bit-rates [Ber94, PW00], to mention a few examples.

Wavelet variance (energy and power) The magnitude of variance within each scale serves
as an indicator about which frequency components are the dominant ones in the sequence.
To precisely interpret the results, we also need to take into account the fundamental un-
certainty in frequencies (see Figure 12.4). However, the wavelet variance plot quickly gives
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Figure 12.9: Forecasts—real datasets. AR fails to detect any trend, while seasonal AR fails to
complete or gives a wrong conclusion in 260× time.

us the general picture of important trends. Furthermore, it guides us to focus on AWSOM
coefficients around frequencies with large variance.

To summarise, the steps are: (1) Examine the log-power diagnostic to identify sub-bands
that correspond to a self-similar component. These may be modelled using a fractional
noise process for generation purposes; for forecasting purposes they are just that: noise.
(2) Examine the wavelet energy spectrum to quickly identify important sub-bands.

Experimental goals. In each case, we demonstrate that AWSOM can provide information
to answer the following questions, using limited resources and no supervision:

(Q1) Identify and capture periodic components: this can be done by simply inspecting the
forecasts, or by examining the wavelet variance. The latter also gives information
about the relative “significance” (essentially, amplitude) of each component.
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12.4. Experimental evaluation

(Q2) Diagnose the presence of self-similar noise in the appropriate scales: The log-power
diagnostic provides the necessary information.

(Q3) Perform long-range forecasts: Besides identifying periodic components, the AWSOM
coefficients at the appropriate scales capture their behaviour (regardless of their relative
amplitude).

12.4.2 Synthetic datasets

We present synthetic datasets to illustrate the basic properties of AWSOM, its behaviour
on several characteristic classes of sequences, and the principles behind interpreting the
models. Applying the models to generate a number of “future” data points is the quickest
way to see if each method captures long-term patterns.

Triangle AR fails to capture anything, because the window is not large enough. SAR
estimation (with no differencing, no MA component and only a manually pre-specified 256-
lag seasonal component) fails completely. In fact, R segfaults after several minutes, even
without using maximum-likelihood estimation (MLE). However, AWSOM captures the pe-
riodicity.

This is immediately evident from the forecasts, which capture the trend almost perfectly.
Also, inspection the wavelet variance (Figure 12.12(a)) shows a single spike at scale 7 (which
corresponds to a window of 27 = 128; this is as expected, since there is zero change among
consecutive windows of the next size, 256).

Mix AR is again confused and does not capture even the sinusoidal component. SAR
estimation (without MLE) fails (R’s optimiser returns an error, after several minutes of com-
putation).

Quick inspection of the AWSOM forecast shows clearly the two periodic components.
The wavelet variance plot (Figure 12.12(b)) also gives this information: there is again a spike
at scale 7 (or, window 27 = 128; same interpretation as Triangle), which corresponds to
the square wave periodic component. There is also a rise at scale 5 (or window 25 = 32),
which corresponds to the sinusoidal periodic component7). The difference in magnitude of
the variances is precisely due to the difference in amplitude of the two periodic components:
indeed, the square wave component is a much “stronger” one. However, regardless of the

7The non-zero value at scale 6 is expected and due to frequency leaks, as explained in Section 12.2.5.
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Figure 12.10: Automobile—generation with fractional noise.

strength (i.e., variance) of each component, the AWSOM coefficients capture their behaviour.
In summary, using limited resources, AWSOM provides all the key information about the
series.

12.4.3 Real datasets

For the real datasets, we show the marginal distribution quantile-quantile plots (or Q-Q plots—
see Figure 12.11 and Figure 12.10)8.

Sunspot This is a well-known dataset with a time-varying “period9.” AR again fails com-
pletely. SAR (without a MA component, much less MLE) takes 40 minutes to estimate.
AWSOM (in Python) takes less than 9 seconds. SAR misses the marginal distribution (see
Figure 12.11) but, more importantly, it does not discover any period; that information has
to be manually provided, after an initial inspection of the data. Furthermore, SAR can only
deal successfully with one period only. AWSOM captures the general periodic trend, with a
desirable slight confusion about the “period.”

First, the log-power diagnostic (Figure 12.8(b)) shows some hint of self-similar noise at
scales 2− −4 (and, indeed, the series has some fluctuation at the month scale). We won’t
focus on this behaviour here (see, however, discussion on Automobile) since the other

8These are the scatter plots of (x, y) such that p% of the values are below x in the real sequence and below
y in the generated sequence. When the distributions are identical, the Q-Q plot coincides with the bisector of
the first quadrant.

9Signals exhibiting this behaviour are often referred to as cyclical, as opposed to periodic
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periodic (or, more accurately, cyclic) components are those that are of the most interest and
dominate the series by far.

The wavelet variance (Figure 12.12(d)) indeed shows a spike in the vicinity of scale 6
(or window 26 = 64). Each time tick is one month; it is a well-known fact (the so-called
“Maunder minimum”) that sunspots cycle at about 9–11.5 years (or, 108–138 months), with
an average cycle length of about 10.8 years (approximately 129–130 months). Indeed, we see
that the wavelet variance has a peak at windows of 64−−128 (scales 6−−7), which would
correspond to repeating cycles every 128 or more months, as is the case.

Furthermore, the AWSOM coefficients at those scales capture the trend at that granularity
(as can be seen immediately from the forecast), with the desirable “confusion” about the
period.

Finally, closer examination of the series shows that the peaks at the last third are much
lower than the rest of the series. This explains the other peak in Figure 12.12(d) at the scales
of 9−−10, which correspond to a window of about 1/4–1/2 of the total series length.

Automobile This dataset has a strongly linear log-power diagnostic in scales 1–6 (Figure 12.8(a)).
However, the lower frequencies (i.e., larger scales) contain the most energy (see Figure 12.12(e)).
This indicates we should focus at these scales. The lowest frequency corresponds to a daily
periodicity (approximately 4000 points per day, or about 8 periods in the entire series).
The next highest frequency corresponds to the morning and afternoon rush-hours (approxi-
mately 2000 points per half-day). Also, we would expect to see a rise in the wavelet variance
at scales corresponding to windows of ≈ 1000− 2000 or in the vicinity of scales 10− −11.
Indeed, this is the case, and at these scales, the AWSOM coefficients capture the periodic
components.

Furthermore, there appear to be significant differences in the dips between the two halves
(this is clearer in Figure 12.1, where some of the noise has been removed), which explains
the continued rise up to scale 12 (along with some small frequency leak, as explained in
Section 12.2.5). This trend is not repeated frequently enough to be captured by a the regres-
sion models. However, the variance plot gives us a hint about this and the regression models
on the other scales still do their job.

Next, we examine closer the self-similar noise at the hour scale (or high frequencies). In
this series, these frequencies (corresponding scales 1–6) can be modelled by fractional noise.
Figure 12.10 shows a generated sequence with fractional noise, as identified by AWSOM.
The fractional difference parameter10 is estimated as δ̂ ≡ −α̂/2 ≈ 0.276 and the amplitude

10This parameter is also related to the Hurst exponent.
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Figure 12.11: Marginal Q-Q plots (slope and correlation coefficients in parentheses).

is chosen to match the total variance in those scales.
However, for unsupervised outlier detection, this is not necessary: what would really

constitute an outlier would be, for instance, days that (a) do not follow the daily and rush-
hour patterns, or (b) whose variance in the fractional noise scales is very different. This can
be captured automatically by the series components in the appropriate frequency sub-bands
that AWSOM identifies as a periodic component and bursty noise, respectively.

Temperature This data set consists of temperature measurements (in degrees Celsius)
from small sensors that attach to the joystick port11. Each time tick is one second, thus the en-
tire dataset is approximately 10 hours. The interpretation is similar to that of Automobile,
except that there isn’t a strong noise component at any scale (see Figure 12.8(c); the slope is
not negative, as required for diagnosing self-similar noise). Also, observe that the wavelet
variance (Figure 12.12(f)) tells us that the strongest trends happen at largest scales (from 10
and on, or windows > 1024). In other words, the most interesting activity is at times larger
than about half an hour, which is indeed the case.

12.5 Discussion

In this section we first discuss correlations across scales (as opposed to within scales, which
we have considered so far). Capturing linear correlations in this case shows some promise,
provided that the signal is not extremely bursty (as can be partially “diagnosed” by the

11http://www.ices.cmu.edu/sensornets/
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Figure 12.12: Wavelet variances (average energy, normalised). The horizontal axis is wavelet
level (l, i.e., wavelet window 2l) and the vertical is wavelet variance (i.e., average of squares
of wavelet coefficients for each l). The vertical axis is (linearly) normalised to a maximum of
1. Essentially, values at level l indicate “strength” of the series component at periods in the
range [2l, 2l+1] (see also Section 12.2.5).

Symbol Definition
βδl,δt AWSOM coefficient, (δl, δt) ∈ D).
D Set of window offsets for AWSOM.
AWSOM(n0, . . . , nλ) Offsets per level (n0, . . . , nλ) in D—see Definition 28.

(n0, . . . , nλ) is also called the AWSOM order.
λ Depth of AWSOM model, λ ≥ 0.
k Total order of an AWSOM model k ≡ |D| = ∑

λ
l=0 nl .

Table 12.4: Extra symbols and definitions (for models with inter-scale correlations).

variance criterion). More generally, we believe that further investigation of inter-scale corre-
lations is a promising future direction.

Next, we discuss some evidence that illustrate why wavelet filters combined with lin-
ear regression per level actually have good modelling power, even under severe resource
limitations.

12.5.1 Inter-scale correlations

In practice, correlations between scales are also occasionally present. These occur when there
is a burst in the series; bursts localised in time have a presence in all frequencies (see also
Figure 12.13(a)). If these bursts occur repeatedly and fairly consistently, then one possible
approach for capturing them is to use linear regression not only within scales, but also across
scales.

Formally, we try to fit models of the following form (see Table 12.4 for a summary of the
main symbols):

Wl,t = ∑
(δl,δt)∈D

β
(l)
δl,δtWl+δl,t/2δl−δt + εl,t (12.3)
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Chapter 12. Patterns on a single stream

whereD is a set of index offsets and εl,t is the usual error term. For example, in Figure 12.13(b),
D = {(0, 1), (0, 2), (1, 0)} and Wl,t = β0,1Wl,t−1 + β0,2Wl,t−2 + β1,0Wl+1,t/2. The βδl,δt are
called the AWSOM coefficients.

Definition 28 (AWSOM order). The set of offsets is always of the form

D = { (0, 1), (0, 2), . . . , (0, n0),
(1, 0), (1, 1), (1, 2), . . . , (1, n1 − 1),

. . . ,
(λ, 0), . . . , (λ, nλ − 1) }

i.e., each wavelet coefficient is expressed as a function of the previous n0 wavelet coefficients on the
same level, n1 coefficients from one level below and so on. For a particular choice of D, we use

AWSOM(n0, n1, . . . , nλ)

to denote this instance of our model. We call (n0, . . . , nλ) the model’s order. The total order is the
number of AWSOM coefficients k per equation, i.e., k = ∑

λ
δl=0 nδl and λ is called the depth of the

model.

For example, Figure 12.13(b) shows an AWSOM(2, 1) model. A fixed choice of D is suf-
ficient for all signals. In practice, we use one inter-scale coefficient, corresponding to offset
(1, 0).

Furthermore, we fit one equation per level (see Figure 12.13(b)), as long as the level con-
tains enough wavelet coefficients to get a good fit12. Thus, we fit one equation for every
level l < La. These are the active levels, where La is the level that has no more than, say,
Na = 16 wavelet coefficients. For levels l ≥ La (the inactive levels), we can either keep the
exact wavelet coefficients (which would be no more than 16 + 8 + · · ·+ 1 = 31 in the above
case) and/or fit one more equation.

In other words, the number of inactive levels Li is always fixed to, say, Li = 4 and the
number of active levels La grows as the stream size increases.

When fitting an AWSOM model with depth λ ≥ 1, we also fit different equations depend-
ing on time location t. For instance, if we are using AWSOM1(n0, 2), we should fit one equa-
tion for pairs Wl,2t and Wl−1,t and another for pairs Wl,2t+1 and Wl−1,t (see Figure 12.13(c)).

12However, the remaining coefficients may still provide important information about the signal. Further-
more, they will be later used to fit models, as more points arrive.
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Figure 12.13: (a) Inter-scale correlations, intuition. (b,c) Illustration of AWSOM(1, 1) with
Li = 2 inactive levels. The shade of each wavelet coefficient corresponds to the model equa-
tion used to “predict” it. The unshaded wavelet coefficients correspond to initial conditions
(i.e., with incomplete AWSOM window D).

In general, we need 2λ separate models to ensure that the inter-scale correlations λ levels
down are not “shoehorned” into the same regression model.

To summarise, the inter-scale AWSOM model fits a number of equations:

Wl,t = ∑
(δl,δt)∈D

β
(l ′,t′)
δl,δt Wl+δl,t−δtεl,t (12.4)

for l′ ≤ La and t′ ≡ t mod T, 0 ≤ t′ < T. For example, if T = 2, we estimate one linear
equation for each set of wavelet coefficients W0,2i, W0,2i+1, Wl,2i and Wl,2k+1 (l ≥ 1, i ≥ 0).
The significant advantage of this approach is that we can still easily update the AWSOM
equations online, as new data values arrive. This is possible because the equation is selected
based only on l and t for the new wavelet coefficient.

Complexity The complexity with respect to stream size does not change. In particular, the
number of model equations now is m = LaT where

T ∼ 2λ and La ∼ lg N
NaT = lg N − lg NΛ − λ.
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Figure 12.14: Forecasts—Impulses. The signal consists of an impulse train (every 256
points), for a total of 64K points.

Once again, m = O(lg N), since λ is fixed and depends only on the AWSOM order. The
number of AWSOM coefficients k is now the total order of the model. Thus, once again, the
space required with respect to stream is O(lg N). The linear equation to be updated can,
again, be identified in O(1) time (using t mod T, as well as the level l), so the update with
respect to stream size still requires only O(1) amortised time.

Model combination Model selection as presented in Section 12.3.3 can be extended to in-
clude model combination. The only thing that needs to be decided in advance is the largest
AWSOM(n0, . . . , nλ) order we may want to fit. From the data collected, we can then au-
tomatically select any model of smaller order (AWSOM(n′0, . . . , n′λ′), where λ′ ≤ λ and
n′i ≤ ni).

If we split measurements xi into two subsets X1 and X2 with corresponding outputs y1
and y2, then the LS solution for both subsets combined is given by

b = (XTX)−1XTy,

where
X =

[

XT
1 XT

2

]T
and y = [yT

1 yT
2 ]T

i.e.,

b = (XT
1 X1 + XT

2 X2)
−1(XT

1 y1 + XT
2 y2)

= (P1 + P2)
−1(q1 + q2).
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Figure 12.15: Marginal Q-Q plots for Sunspot with inter-scale correlations.

Therefore, it is possible to combine sub-models when reducing the number of levels (effec-
tively reducing T ≡ 2λ).

Experimental evaluation

We show inter-scale AWSOM models for Sunspot and Temperatures using one inter-
scale coefficient (i.e., instead of AWSOM(k), we use AWSOM(k, 1)—in all cases, a single
inter-scale coefficient is sufficient). Also, for illustrative purposes, we show one synthetic
dataset, Impulses (based on Figure 12.13(a)).

In summary, inter-scale coefficients, used in conjunction with the log-power diagnostic,
can be helpful in better capturing the nature of the signal. The use of inter-scale coefficients
does not change anything in the previous discussions of questions (Q1)–(Q3). The only
further consideration here is the presence of repeated bursts and strong dips or rises.

Impulses This synthetic dataset (see Figure 12.14) consists of single impulses that repeat
every 256 time ticks. It illustrates how inter-scale correlations may help (see Figure 12.13(a)).
AR fails to capture anything (again, too small window) and SAR estimation fails, while
AWSOM captures the overall behaviour.

Regarding the wavelet variance, we indeed see a peak at scale 7 (i.e., window 27 = 128;
again, wavelet consecutive windows of 256 at the next scale show no change, so the wavelet
coefficients are zero, as expected). The other non-zero values at lower scales are also ex-
pected. As noted before, periodic components are generally well-isolated in frequency (or,
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Figure 12.16: Forecasts—Sunspot and Temperature with inter-scale correlations.

scale), but a single impulse in time has presence in all frequencies; repeated impulses show
presence only at frequencies higher than the impulse frequency. So, this is normal and, in
fact, it is precisely why inter-scale correlations are helpful in these cases.

Sunspot and Temperature In both cases, the inter-scale coefficient captures some of the
burstiness present in the signal. This is illustrated more clearly in Sunspot. Note that the
detection of periodic trends is not affected. However, the dips and spikes of the signal are
captured at varying degrees.

12.5.2 Why AWSOM makes sense

In this section, we discuss in more detail the properties of the DWT and the intuition be-
hind AWSOM, using real signals to demonstrate the key points. The auto-correlation function
(ACF) and partial ACF (PACF) are explained briefly in Section 12.2.2. In summary, the PACF
for a pure auto-regressive AR(p) process is non-zero for lags up to p. For a pure moving
average (MA) process, the PACF decays exponentially. Conversely, the ACF for a pure auto-
regressive (AR) process decays exponentially. For a pure moving average process MA(q),
the ACF is non-zero for lags up to q. For a pure white noise process, the ACF is zero for all
lags. The dashed lines in the graphs indicate confidence intervals.
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Figure 12.17: DWT of Triangle (note that each level is plotted at a different scale; coeffi-
cients on levels other than 7 are negligible).
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Figure 12.18: ACF (per DWT level) for Triangle.

Triangle Figure 12.17 shows the DWT coefficients (in particular, a large enough frag-
ment so that the plots and patterns are clearly distinguishable). The main behaviour of
the signal is reflected in level 7 (which corresponds to frequencies [1/64, 1/128] or a win-
dow of 128) and that an AWSOM(1) model would be sufficient to capture it. In particular,
W7,t = −W7,t−1 and, in fact, with feature selection this is precisely the equation we get. The
PACF (see Figure 12.19) also indicates that low-order auto-regressive models are sufficient
for several levels. However, the non-zero values on all levels except 7 are almost negligible
and that is generally the case for signals that are fairly smooth at an appropriate scale13.
Therefore, failing to capture them perfectly has a small impact.

13For regularly repeating bursts, see the preceding discussion in Section 12.5.1.
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Figure 12.19: Partial ACF (per DWT level) for Triangle.
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Figure 12.20: DWT of Automobile.

Automobile Figure 12.20 shows the complete DWT. Among these, the largest variance
belongs to levels 10 and 9. The PACF (Figure 12.22) provides some indication that an AWSOM(3)

model would be sufficient to capture most of the behaviour at level 10 (also, note that the
ACF decays). This can also be seen to some extent in the DWT plot (in fact, the largest AW-
SOM coefficient at that level corresponds to lag 3). At level 9, all three coefficients are kept
by feature selection, but the largest one corresponds to lag 1, as expected.

General remarks First, the DWT does not decorrelate the signals; if that was the case,
then we should have ρk = 0 for all k ≥ 1. However, the DWT does successfully filter out
the noise and capture the main behaviour of the signal at the appropriate levels (which
generally correspond to the largest variance). This is demonstrated by the plots of the DWT
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Figure 12.21: ACF (per DWT level) for Automobile.

0 10 20 30−
0.

06
0.

02

Lag

P
A

C
F
(W

1)

0 10 20 30−
0.

06
0.

02

Lag

P
A

C
F
(W

2)

0 10 20 30−
0.

04
0.

04

Lag

P
A

C
F
(W

3)

0 10 20 30

−
0.

10
0.

05

Lag

P
A

C
F
(W

4)

0 10 20 30

−
0.

05

Lag

P
A

C
F
(W

5)

0 10 20 30−
0.

15
0.

10

Lag

P
A

C
F
(W

6)

0 10 20 30

−
0.

2
0.

1

Lag

P
A

C
F
(W

7)

0 10 20 30

−
0.

2
0.

2

Lag

P
A

C
F
(W

8)

0 10 20 30

−
0.

4
0.

2

Lag

P
A

C
F
(W

9)

0 10 20 30−
0.

6
0.

2

Lag

P
A

C
F
(W

10
)

Automobile − Partial ACF

Figure 12.22: Partial ACF (per DWT level) for Automobile.
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levels. Furthermore, the ACF also indicates presence of long-range dependencies. Finally,
it shows that AR models typically suffice to capture the behaviour of the key components
of the signal (i.e., the levels with the largest wavelet coefficients, which correspond to the
largest variance).

Finally, the information we keep for an AWSOM(p) model is sufficient to compute the
ACF up to lag p, as well as the PACF up to the same lag (see also Section 12.3.3—the P matrix
keeps all the necessary auto-covariance information). This can be used after the log-power
diagnostic to extract further information.

12.6 Conclusions
Sensor networks are becoming increasingly popular, thanks to falling prices and increasing
storage and processing power. We presented AWSOM, which achieves all of the following
goals:

1. Concise patterns: AWSOM provides linear models with few coefficients, it can detect
arbitrary periodic components, it gives information across several frequencies and it
can diagnose self-similarity and long-range dependence.

2. Streaming framework: We can update patterns in an “any-time” fashion, with one pass
over the data, in time independent of stream size and using O(lg N) space (where N is
the length of the sequence so far). Furthermore, AWSOM can do forecasting (directly,
for the estimated model).

3. Unsupervised operation: Once we decide the largest AWSOM order, no further interven-
tion is needed; the sensor can be left alone to collect information.

We showed real and synthetic data, where our method captures the periodicities and bursti-
ness, while manually selected AR (or even (S)ARIMA generalisations, which are not suitable
for streams with limited resources) fails completely.

AWSOM is an important first step toward hands-off stream mining, combining simplicity
with modelling power. Continuous queries are useful for evidence gathering and hypothesis
testing once we know what we are looking for. AWSOM is the first method to deal directly
with the problem of unsupervised stream mining and pattern detection and fill the gap.
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Chapter 13

Correlations among multiple streams

In this chapter, we consider the problem of capturing correlations and finding hidden vari-
ables corresponding to trends on collections of semi-infinite, time series data streams, where
the data consist of tuples with n numbers, one for each time tick t.

Streams often are inherently correlated (e.g., temperatures in the same building, traffic
in the same network, prices in the same market, etc.) and it is possible to reduce hundreds
of numerical streams into just a handful of hidden variables that compactly describe the key
trends and dramatically reduce the complexity of further data processing. We propose an
approach to do this incrementally.

We describe a motivating scenario, to illustrate the problem we want to solve. Consider a
large number of sensors measuring chlorine concentration in a drinkable water distribution
network (see Figure 13.1, showing 15 days worth of data). Every five minutes, each sensor
sends its measurement to a central node, which monitors and analyses the streams in real
time.

The patterns in chlorine concentration levels normally arise from water demand. If water
is not refreshed in the pipes, existing chlorine reacts with pipe walls and micro-organisms
and its concentration drops. However, if fresh water flows in at a particular location due
to demand, chlorine concentration rises again. The rise depends primarily on how much
chlorine is originally mixed at the reservoirs (and also, to a small extent, on the distance to
the closest reservoir—as the distance increases, the peak concentration drops slightly, due to
reactions along the way). Thus, since demand typically follows a periodic pattern, chlorine
concentration reflects that (see Figure 13.1(a), bottom): it is high when demand is high and
vice versa.

Assume that at some point in time, there is a major leak at some pipe in the network.
Since fresh water flows in constantly (possibly mixed with debris from the leak), chlorine
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(a) Sensor measurements (b) Hidden variables
Figure 13.1: Illustration of problem. Sensors measure chlorine in drinking water and show
a daily, near sinusoidal periodicity during phases 1 and 3. During phase 2, some of the
sensors are “stuck” due to a major leak. The extra hidden variable introduced during phase 2
captures the presence of a new trend. SPIRIT can also tell us which sensors participate in the
new, “abnormal” trend (e.g., close to a construction site). In phase 3, everything returns to
normal.

concentration at the nodes near the leak will be close to peak at all times.
Figure 13.1(a) shows measurements collected from two nodes, one away from the leak

(bottom) and one close to the leak (top). At any time, a human operator would like to know
how many trends (or hidden variables) are in the data and ask queries about them. Each
hidden variable essentially corresponds to a group of correlated streams.

In this simple example, SPIRIT discovers the correct number of hidden variables. Under
normal operation, only one hidden variable is needed, which corresponds to the periodic
pattern (Figure 13.1(b), top). Both observed variables follow this hidden variable (multi-
plied by a constant factor, which is the participation weight of each observed variable into the
particular hidden variable). Mathematically, the hidden variables are the principal compo-
nents of the observed variables and the participation weights are the entries of the principal
direction vectors1.

1More precisely, this is true under certain assumptions, which will be explained later.
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However, during the leak, a second trend is detected and a new hidden variable is intro-
duced (Figure 13.1(b), bottom). As soon as the leak is fixed, the number of hidden variables
returns to one. If we examine the hidden variables, the interpretation is straightforward:
The first one still reflects the periodic demand pattern in the sections of the network under
normal operation. All nodes in this section of the network have a participation weight of
≈ 1 to the “periodic trend” hidden variable and ≈ 0 to the new one. The second hidden
variable represents the additive effect of the catastrophic event, which is to cancel out the
normal pattern. The nodes close to the leak have participation weights ≈ 0.5 to both hidden
variables.

Summarising, SPIRIT can tell us that (Figure 13.1):

• Under normal operation (phases 1 and 3), there is one trend. The corresponding hid-
den variable follows a periodic pattern and all nodes participate in this trend. All is
well.

• During the leak (phase 2), there is a second trend, trying to cancel the normal trend.
The nodes with non-zero participation to the corresponding hidden variable can be
immediately identified (e.g., they are close to a construction site). An abnormal event
may have occurred in the vicinity of those nodes, which should be investigated.

Matters are further complicated when there are hundreds or thousands of nodes and more
than one demand pattern. However, as we show later, SPIRIT is still able to extract the key
trends from the stream collection, follow trend drifts and immediately detect outliers and
abnormal events.

Besides providing a concise summary of key trends/correlations among streams, SPIRIT
can successfully deal with missing values and its discovered hidden variables can be used
to do very efficient, resource-economic forecasting.

Of course, there are several other applications and domains to which SPIRIT can be ap-
plied. For example, (i) given more than 50,000 securities trading in US, on a second-by-
second basis, detect patterns and correlations [ZS02], (ii) given traffic measurements [YSJ+00],
find routers that tend to go down together.

Contributions

The problem of pattern discovery in a large number of co-evolving streams has attracted
much attention in many domains. We introduce SPIRIT (Streaming Pattern dIscoveRy in mul-
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tIple Time-series), a comprehensive approach to discover correlations that effectively and effi-
ciently summarise large collections of streams. SPIRIT satisfies the following requirements:

• It is streaming, i.e., it is incremental, scalable, any-time. It requires very memory and
processing time per time tick. In fact, both are independent of the stream length t.

• It scales linearly with the number of streams n, not quadratically. This may seem
counter-intuitive, because the naı̈ve method to spot correlations across n streams ex-
amines all O(n2) pairs.

• It is adaptive, and fully automatic. It dynamically detects changes (both gradual, as well
as sudden) in the input streams, and automatically determines the number k of hidden
variables.

The correlations and hidden variables we discover have multiple uses. They provide a suc-
cinct summary to the user, they can help to do fast forecasting and detect outliers, and they
facilitate interpolations and handling of missing values, as we discuss later.

The rest of the chapter is organised as follows: Section 13.1 discusses related work, on
data streams and stream mining. Section 13.2 overviews some of the background and ex-
plains the intuition behind our approach. Section 13.3 describes our method and Section 13.4
shows how its output can be interpreted and immediately utilised, both by humans, as well
as for further data analysis. Section 13.5 discusses experimental case studies that demon-
strate the effectiveness of our approach. In Section 13.6 we elaborate on the efficiency and
accuracy of SPIRIT. Finally, in Section 13.7 we conclude.

13.1 Related work
There is a large body of work on streams, which we loosely classify in two groups.

Data stream management systems (DSMS) We include this very broad category for com-
pleteness. DSMS include Aurora [ACC+03], Stream [MWA+03], Telegraph [CCD+03] and
Gigascope [CJSS03]. The common hypothesis is that (i) massive data streams come into
the system at a very fast rate, and (ii) near real-time monitoring and analysis of incoming
data streams is required. The new challenges have made researchers re-think many parts of
traditional DBMS design in the streaming context, especially on query processing using cor-
related attributes [DGMH05], scheduling [BO03, CCR+03], load shedding [TCZ+03, DGR03]
and memory requirements [ABB+02].
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In addition to system-building efforts, a number of approximation techniques have been
studied in the context of streams, such as sampling [BDM02], sketches [DGGR02, CDIM02,
GGR03], exponential histograms [DGI+02], and wavelets [GKS04]. The main goal of these
methods is to estimate a global aggregate (e.g. sum, count, average) over a window of size
w on the recent data. The methods usually have resource requirements that are sublinear
with respect to w. Most focus on a single stream.

The emphasis in this line of work is to support traditional SQL queries on streams. None
of them try to find patterns, nor to do forecasting.

Data mining on streams Researchers have started to redesign traditional data mining al-
gorithms for data streams. Much of the work has focused on finding interesting patterns
in a single stream, but multiple streams have also attracted significant interest. Ganti et
al. [GGR02] propose a generic framework for stream mining. Guha et al. [GMM+03] propose
a one-pass k-median clustering algorithm. Domingos and Hulten [DH00] construct a deci-
sion tree online, by passing over the data only once. Recently, [HSD01, WFYH03] address
the problem of finding patterns over concept drifting streams. In Chapter 12 we proposed a
method to find patterns in a single stream, using wavelets [PBF03]. More recently, Palpanas
et al. [PVK+04] consider approximation of time-series with amnesic functions. They propose
novel techniques suitable for streaming, and applicable to a wide range of user-specified
approximating functions.

Keogh et al. [KLR04b] propose parameter-free methods for classic data mining tasks (i.e.,
clustering, anomaly detection, classification), based on compression. Lin et al. [LVKG04]
perform clustering on different levels of wavelet coefficients of multiple time series. Both
approaches require having all the data in advance. Recently, Ali et al. [AMAK05] propose
a framework for Phenomena Detection and Tracking (PDT) in sensor networks. They define a
phenomenon on discrete-valued streams and develop query execution techniques based on
multi-way hash join with PDT-specific optimisations.

CluStream [AHY03] is a flexible clustering framework with online and offline compo-
nents. The online component extends micro-cluster information [ZRL96] by incorporat-
ing exponentially-sized sliding windows while coalescing micro-cluster summaries. Actual
clusters are found by the offline component. StatStream [ZS02] uses the DFT to summarise
streams within a finite window and then compute the highest pairwise correlations among
all pairs of streams, at each timestamp. Very recently, BRAID [SPF05b] addresses the prob-
lem of discovering lag correlations among multiple streams. The focus is on time and space
efficient methods for finding the earliest and highest peak in the cross-correlation functions

175



13.2. Principal component analysis (PCA)

between all pairs of streams. Neither CluStream, StatStream or BRAID explicitly focus on
discovering hidden variables.

Guha et al. [GGK03] improve on discovering correlations, by first doing dimensionality
reduction with random projections, and then periodically computing the SVD. However, the
method incurs high overhead because of the SVD re-computation and it can not easily han-
dle missing values. MUSCLES [YSJ+00] is exactly designed to do forecasting (thus it could
handle missing values). However, it can not find hidden variables and it scales poorly for a
large number of streams n, since it requires at least quadratic space and time, or expensive
reorganisation (selective MUSCLES).

Finally, a number of the above methods usually require choosing a sliding window size,
which typically translates to buffer space requirements. Our approach does not require any
sliding windows and does not need to buffer any of the stream data.

In conclusion, none of the above methods simultaneously satisfy the requirements in the
introduction: “any-time” streaming operation, scalability on the number of streams, adap-
tivity, and full automation.

13.2 Principal component analysis (PCA)
Here we give a brief overview of PCA [Jol02] and explain the intuition behind our approach.
We use standard matrix algebra notation: vectors are lower-case bold, matrices are upper-
case bold, and scalars are in plain font. The transpose of matrix X is denoted by XT. In the
following, xt ≡ [xt,1 xt,2 · · · xt,n]T ∈ R

n is the column-vector2 of stream values at time t. The
stream data can be viewed as a continuously growing t × n matrix Xt := [x1 x2 · · · xt]T ∈
R

t×n, where one new row is added at each time tick t. In the chlorine example, xt is the
measurements column-vector at t over all the sensors, where n is the number of chlorine
sensors and t is the measurement timestamp.

Typically, in collections of n-dimensional points xt ≡ [xt,1 . . . , xt,n]T, t = 1, 2, . . . , there
exist correlations between the n dimensions (which correspond to streams in our setting).
These can be captured by principal components analysis (PCA). Consider for example the
setting in Figure 13.2. There is a visible linear correlation. Thus, if we represent every point
with its projection on the direction of w1, the error of this approximation is very small. In
fact, the first principal direction w1, is the optimal in the following sense.

Definition 29 (First principal component). Given a collection of n-dimensional vectors xτ ∈ R
n,

2We adhere to the common convention of using column vectors and writing them out in transposed form.
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(a) Original w1 (b) Update process (c) Resulting w1

Figure 13.2: Illustration of updating w1 when a new point xt+1 arrives.

τ = 1, 2, . . . , t, the first principal direction w1 ∈ R
n is the vector that minimises the sum of

squared residuals, i.e.,

w1 := arg min
‖w‖=1

t
∑
τ=1
‖xτ − (wwT)xτ‖2.

The projection of xτ on w1 is the first principal component (PC) yτ,1 := wT
1 xτ , τ = 1, . . . , t.

Note that, since ‖w1‖ = 1, we have (w1wT
1 )xτ = (wT

1 xτ)w1 = yτ,1w1 =: x̃τ, where
x̃τ is the projection of yτ,1 back into the original n-D space. That is, x̃τ is the reconstruction
of the original measurements from the first PC yτ,1. More generally, PCA will produce k
vectors w1, w2, . . . , wk such that, if we represent each n-D data point xt := [xt,1 · · · xt,n] with
its k-D projection yt := [wT

1 xt · · · wT
k xt]T, then this representation minimises the squared

error ∑τ ‖xt − x̃t‖2. Furthermore, the principal directions are orthogonal, so the principal
components yτ,i, 1 ≤ i ≤ k are by construction uncorrelated, i.e., if y(i) := [y1,i, . . . , yt,i, . . .]T is
the stream of the i-th principal component, then

(

y(i))Ty(j) = 0 if i 6= j.

Observation 2 (Dimensionality reduction). If we represent each n-dimensional point xτ ∈ R
n

using all n principal components, then the error ‖xτ − x̃τ‖ = 0. However, in typical datasets, we
can achieve a very small error using only k principal components, where k � n.

In the context of the chlorine example, each point in Figure 13.2 would correspond to
the 2-D projection of xτ (where 1 ≤ τ ≤ t) onto the first two principal directions, w1 and
w2, which are the most important according to the distribution of {xτ | 1 ≤ τ ≤ t}. The
principal components yτ,1 and yτ,2 are the coordinates of these projections in the orthogonal
coordinate system defined by w1 and w2.

However, batch methods for estimating the principal components require time that de-
pends on the duration t, which grows to infinity. In fact, the principal directions are the
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Symbol Description
x, . . . Column vectors (lowercase boldface).
A, . . . Matrices (uppercase boldface).
xt The n stream values xt := [xt,1 · · · xt,n]T at time t.
n Number of streams.
wi The i-th participation weight vector (i.e., principal direction).
k Number of hidden variables.
yt

yt ≡ [yt,1 · · · yt,k]
T := [wT

1 xt · · ·wT
k xt]

T.

x̃t Reconstruction of xt from the k hidden variable values, i.e.,

x̃t := yt,1w1 + · · ·+ yt,kwk.

Et Total energy up to time t.
Ẽt,i Total energy captured by the i-th hidden variable, up to time t.
fE, FE Lower and upper bounds on the fraction of energy we wish to maintain via SPIRIT’s

approximation.

Table 13.1: Description of notation.

eigenvectors of XT
t Xt, which are best computed through the singular value decomposition

(SVD) of Xt. Space requirements also depend on t. Clearly, in a stream setting, it is impos-
sible to perform this computation at every step, aside from the fact that we don’t have the
space to store all past values. In short, we want a method that does not need to store any
past values.

13.3 Tracking correlations and hidden variables: SPIRIT
In this section we present our framework for discovering patterns in multiple streams. In the
next section, we show how these can be used to perform effective, low-cost forecasting. We
use auto-regression for its simplicity, but our framework allows any forecasting algorithm
to take advantage of the compact representation of the stream collection.

Problem definition Given a collection of n co-evolving, semi-infinite streams, producing
a value xt,j, for every stream 1 ≤ j ≤ n and for every time-tick t = 1, 2, . . ., SPIRIT does the
following:

• Adapts the number k of hidden variables necessary to explain/summarise the main
trends in the collection.
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• Adapts the participation weights wi,j of the j-th stream on the i-th hidden variable (1 ≤
j ≤ n and 1 ≤ i ≤ k), so as to produce an accurate summary of the stream collection.

• Monitors the hidden variables yt,i, for 1 ≤ i ≤ k.

• Keeps updating all the above efficiently.

More precisely, SPIRIT operates on the column-vectors of observed stream values xt ≡
[xt,1, . . . , xt,n]T and continually updates the participation weights wi,j. The participation weight
vector wi for the i-th principal direction is wi := [wi,1 · · · wi,n]T. The hidden variables
yt ≡ [yt,1, . . . , yt,k]

T are the projections of xt onto each wi, over time (see Table 13.1), i.e.,

yt,i := wi,1xt,1 + wi,2xt,2 + · · ·+ wi,nxt,n,

SPIRIT also adapts the number k of hidden variables necessary to capture most of the infor-
mation. The adaptation is performed so that the approximation achieves a desired mean-
square error. In particular, let x̃t = [x̃t,1 · · · x̃t,n]T be the reconstruction of xt, based on the
weights and hidden variables, defined by

x̃t,j := w1,jyt,1 + w2,jyt,2 + · · ·+ wk,jyt,k,

or more succinctly, x̃t = ∑
k
i=1 yi,twi.

In the chlorine example, xt is the n-dimensional column-vector of the original sensor
measurements and yt is the hidden variable column-vector, both at time t. The dimension of
yt is 1 before/after the leak (t < 1500 or t > 3000) and 2 during the leak (1500 ≤ t ≤ 3000),
as shown in Figure 13.1.

Definition 30 (SPIRIT tracking). SPIRIT updates the participation weights wi,j so as to guarantee
that the reconstruction error ‖x̃t − xt‖2 over time is predictably small.

This informal definition describes what SPIRIT does. The precise criteria regarding the
reconstruction error will be explained later. If we assume that the xt are drawn according
to some distribution that does not change over time (i.e., under stationarity assumptions),
then the weight vectors wi converge to the principal directions. However, even if there are
non-stationarities in the data (i.e., gradual drift), in practice we can deal with these very
effectively, as we explain later.

An additional complication is that we often have missing values, for several reasons:
either failure of the system, or delayed arrival of some measurements. For example, the
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sensor network may get overloaded and fail to report some of the chlorine measurements
in time or some sensor may temporarily black-out. At the very least, we want to continue
processing the rest of the measurements.

13.3.1 Tracking the hidden variables
The first step is, for a given k, to incrementally update the k participation weight vectors wi,
1 ≤ i ≤ k, so as to summarise the original streams with only a few numbers (the hidden
variables). In Section 13.3.2, we describe the complete method, which also adapts k.

For the moment, assume that the number of hidden variables k is given. Furthermore,
our goal is to minimise the average reconstruction error ∑t ‖x̃t − xt‖2. In this case, the de-
sired weight vectors wi, 1 ≤ i ≤ k are the principal directions and it turns out that we can
estimate them incrementally.

We use an algorithm based on adaptive filtering techniques [Yan95, Hay92], which have
been tried and tested in practice, performing well in a variety of settings and applications
(e.g., image compression and signal tracking for antenna arrays). We experimented with
several alternatives [Oja89, DK96] and found this particular method to have the best proper-
ties for our setting: it is very efficient in terms of computational and memory requirements,
while converging quickly, with no special parameters to tune. The main idea behind the
algorithm is to read in the new values xt+1 ≡ [x(t+1),1, . . . , x(t+1),n]

T from the n streams at
time t + 1, and perform three steps:

1. Compute the hidden variables y′t+1,i, 1 ≤ i ≤ k, based on the current weights wi, 1 ≤
i ≤ k, by projecting xt+1 onto these.

2. Estimate the reconstruction error (ei below) and the energy, based on the y′t+1,i values.

3. Update the estimates of wi, 1 ≤ i ≤ k and output the actual hidden variables yt+1,i for
time t + 1.

To illustrate this, Figure 13.2(b) shows the e1 and y1 when the new data xt+1 enter the system.
Intuitively, the goal is to adaptively update wi so that it quickly converges to the “truth.”
In particular, we want to update wi more when ei is large. However, the magnitude of
the update should also take into account the past data currently “captured” by wi. For
this reason, the update is inversely proportional to the current energy Et,i of the i-th hidden
variable, which is Et,i := 1

t ∑
t
τ=1 y2

τ,i. Figure 13.2(c) shows w1 after the update for xt+1.

Algorithm TRACKW
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0. Initialise the k hidden variables wi to unit vectors w1 = [10 · · · 0]T, w2 = [010 · · · 0]T, etc.
Initialise di (i = 1, ...k) to a small positive value. Then:
1. As each point xt+1 arrives, initialise x́1 := xt+1.
2. For 1 ≤ i ≤ k, we perform the following assignments and updates, in order:

yi := wT
i x́i (yt+1,i = projection onto wi)

di ← λdi + y2
i (energy ∝ i-th eigenval. of XT

t Xt)
ei := x́i − yiwi (error, ei ⊥ wi)

wi ← wi +
1
di

yiei (update PC estimate)

x́i+1 := x́i − yiwi (repeat with remainder of xt).

The forgetting factor λ will be discussed in Section 13.3.3 (for now, assume λ = 1). For each
i, di = tEt,i and x́i is the component of xt+1 in the orthogonal complement of the space
spanned by the updated estimates wi′ , 1 ≤ i′ < i of the participation weights. The vectors
wi, 1 ≤ i ≤ k are in order of importance (more precisely, in order of decreasing eigenvalue or
energy). It can be shown that, under stationarity assumptions, these wi in these equations
converge to the true principal directions.

Complexity We only need to keep the k weight vectors wi (1 ≤ i ≤ k), each n-dimensional.
Thus the total cost is O(nk), both in terms of time and of space. The update cost does not
depend on t. This is a tremendous gain, compared to the usual PCA computation cost of
O(tn2).

13.3.2 Detecting the number of hidden variables

In practice, we do not know the number k of hidden variables. We propose to estimate k
on the fly, so that we maintain a high percentage fE of the energy Et. Energy threshold-
ing is a common method to determine how many principal components are needed [Jol02].
Formally, the energy Et (at time t) of the sequence of xt is defined as

Et := 1
t ∑

t
τ=1 ‖xτ‖2 = 1

t ∑
t
τ=1 ∑

n
i=1 x2

τ,i.

Similarly, the energy Ẽt of the reconstruction x̃ is defined as

Ẽt := 1
t ∑

t
τ=1 ‖x̃τ‖2.
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Lemma 13. Assuming the wi, 1 ≤ i ≤ k are orthonormal, we have

Ẽt = 1
t ∑

t
τ=1 ‖yτ‖2 = t−1

t Ẽt−1 + 1
t ‖yt‖.

Proof. If the wi, 1 ≤ i ≤ k are orthonormal, then it follows easily that ‖x̃τ‖2 = ‖yτ,1w1 + · · ·+
yτ,kwk‖2 = y2

τ,1‖w1‖2 + · · ·+ y2
τ,k‖wk‖2 = y2

τ,1 + · · ·+ y2
τ,k = ‖yτ‖2 (Pythagorean theorem

and normality). The result follows by summing over τ.

It can be shown that algorithm TRACKW maintains orthonormality without the need for
any extra steps (otherwise, a simple re-orthonormalisation step at the end would suffice).

From the user’s perspective, we have a low-energy and a high-energy threshold, fE and
FE, respectively. We keep enough hidden variables k, so the retained energy is within the
range [ fE · Et, FE · Et]. Whenever we get outside these bounds, we increase or decrease k. In
more detail, the steps are:

1. Estimate the full energy Et+1, incrementally, from the sum of squares of xτ,i.

2. Estimate the energy Ẽ(k) of the k hidden variables.

3. Possibly, adjust k. We introduce a new hidden variable (update k ← k + 1) if the current
hidden variables maintain too little energy, i.e., Ẽ(k) < fEE. We drop a hidden variable
(update k ← k− 1), if the maintained energy is too high, i.e., Ẽ(k) > FEE.

The energy thresholds fE and FE are chosen according to recommendations in the litera-
ture [Jol02, Fuk90]. We use a lower energy threshold fE = 0.95 and an upper energy thresh-
old FE = 0.98. Thus, the reconstruction x̃t retains between 95% and 98% of the energy of
xt.

Algorithm SPIRIT
0. Initialise k ← 1 and the total energy estimates of xt and x̃t per time tick to E ← 0 and
Ẽ1 ← 0. Then,
1. As each new point arrives, update wi, for 1 ≤ i ≤ k (step 1, TRACKW).
2. Update the estimates (for 1 ≤ i ≤ k)

E ← (t− 1)E + ‖xt‖2

t and Ẽi ←
(t− 1)Ẽi + y2

t,i
t .
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3. Let the estimate of retained energy be

Ẽ(k) := ∑
k
i=1 Ẽi.

If Ẽ(k) < fEE, then we start estimating wk+1 (initialising as in step 0 of TRACKW), initialise
Ẽk+1 ← 0 and increase k ← k + 1. If Ẽ(k) > FEE, then we discard wk and Ẽk and decrease
k ← k− 1.
The following lemma proves that the above algorithm guarantees the relative reconstruction
error is within the specified interval [ fE, FE].

Lemma 14. The relative squared error of the reconstruction satisfies

1− FE ≤ ∑
t
τ=1 ‖x̃τ − xτ‖2

∑t ‖xτ‖2 ≤ 1− fE.

Proof. From the orthogonality of xτ and the complement x̃τ − xτ we have ‖x̃τ − xτ‖2 =

‖xτ‖2 − ‖x̃τ‖2 = ‖xτ‖2 − ‖yτ‖2 (by Lemma 13). The result follows by summing over τ and
from the definitions of E and Ẽ.

Finally, in Section 13.6.2 we demonstrate that the incremental weight estimates are ex-
tremely close to the principal directions computed with offline PCA.

13.3.3 Exponential forgetting

We can adapt to more recent behaviour by using an exponential forgetting factor 0 < λ < 1.
This allows us to follow trend drifts over time. We use the same λ for the estimation of both
wi as well as the AR models (see Section 13.4.1). However, we also have to properly keep
track of the energy, discounting it with the same rate, i.e., the update at each step is:

E ← λ(t− 1)E + ‖xt‖2

t and Ẽi ←
λ(t− 1)Ẽi + y2

t,i
t .

Typical choices are 0.96 ≤ λ ≤ 0.98 [Hay92]. As long as the values of xt do not vary wildly,
the exact value of λ is not crucial. We use λ = 0.96 throughout. A value of λ = 1 makes sense
when we know that the sequence is stationary (rarely true in practice, as most sequences
gradually drift). Note that the value of λ does not affect the computation cost of our method.
In this sense, an exponential forgetting factor is more appealing than a sliding window, as
the latter has explicit buffering requirements.
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13.4 Putting SPIRIT to work
We show how we can exploit the correlations and hidden variables discovered by SPIRIT
to do (a) forecasting, (b) missing value estimation, (c) summarisation of the large number of
streams into a small, manageable number of hidden variables, and (d) outlier detection.

13.4.1 Forecasting and missing values

The hidden variables yt give us a much more compact representation of the “raw” variables
xt, with guarantees of high reconstruction accuracy (in terms of relative squared error, which
is less than 1− fE). When our streams exhibit correlations, as we often expect to be the case,
the number k of the hidden variables is much smaller than the number n of streams. There-
fore, we can apply any forecasting algorithm to the vector of hidden variables yt, instead of
the raw data vector xt. This reduces the time and space complexity by orders of magnitude,
because typical forecasting methods are quadratic or worse on the number of variables.

In particular, we fit the forecasting model on the yt instead of xt. The model provides an
estimate ŷt+1 = f (yt) and we can use this to get an estimate for

x̂t+1 := ŷt+1,1w1[t] + · · ·+ ŷt+1,1wk[t],

using the weight estimates wi[t] from the previous time tick t. We chose auto-regression for
its intuitiveness and simplicity, but any online method can be used.

Correlations Since the principal directions are orthogonal (wi ⊥ wj, i 6= j), the components
of yt are by construction uncorrelated—the correlations have already been captured by the
wi, 1 ≤ i ≤ k. We can take advantage of this de-correlation reduce forecasting complexity.
In particular for auto-regression, we found that one AR model per hidden variable provides
results comparable to multivariate AR.

Auto-regression Space complexity for multivariate AR (e.g., MUSCLES [YSJ+00]) is O(n3`2),
where ` is the auto-regression window length. For AR per stream (ignoring correlations), it
is O(n`2). However, for SPIRIT, we need O(kn) space for the wi and, with one AR model
per yi, the total space complexity is O(kn + k`2). As published, MUSCLES requires space
that grows cubically with respect to the number of streams n. We believe it can be made
to work with quadratic space, but this is still prohibitive. Both AR per stream and SPIRIT
require space that grows linearly with respect to n, but in SPIRIT k is typically very small
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(k � n) and, in practice, SPIRIT requires less memory and time per update than AR per
stream. More importantly, a single, independent AR model per stream cannot capture any
correlations, whereas SPIRIT indirectly exploits the correlations present within a time tick.

Missing values When we have a forecasting model, we can use the forecast based on xt−1
to estimate missing values in xt. We then use these estimated missing values to update the
weight estimates, as well as the forecasting models. Forecast-based estimation of missing
values is the most time-efficient choice and gives very good results.

13.4.2 Interpretation
At any given time t, SPIRIT readily provides two key pieces of information (aside from the
forecasts, etc.):

• The number of hidden variables k.

• The weights wi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ n. Intuitively, the magnitude |wi,j| of each weight
tells us how much the i-th hidden variable contributes to the reconstruction of the j-th
stream.

In the chlorine example during phase 1 (see Figure 13.1), the dataset has only one hidden
variable, because one sinusoidal-like pattern can reconstruct both streams (albeit with dif-
ferent weights for each). Thus, SPIRIT correctly identifies correlated streams. When the
correlation was broken, SPIRIT introduces enough hidden variables to capture that. Finally,
it also spots that, in phase 3, normal operation is reestablished and thus disposes of the
unnecessary hidden variable. In Section 13.5 we show additional examples of how we can
intuitively interpret this information.

13.5 Experimental case studies
In this section we present case studies on real and realistic datasets to demonstrate the ef-
fectiveness of our approach in discovering the underlying correlations among streams. In
particular, we show that:

• We capture the appropriate number of hidden variables. As the streams evolve, we
capture these changes in real-time [SPF05c] and adapt the number of hidden variables
k and the weights wi.
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Dataset n k Description
Chlorine 166 2 Chlorine concentrations from EPANET.
Critter 8 1–2 Temperature sensor measurements.
River 3 1 River gauge data from USACE.
Motes 54 2–4 Light sensor measurements.

Table 13.2: Description of datasets.

• We capture the essential behaviour with very few hidden variables and small recon-
struction error.

• We successfully deal with missing values.

• We can use the discovered correlations to perform good forecasting, with much fewer
resources.

• We can easily spot outliers.

• Processing time per stream is constant.

Section 13.6 elaborates on performance and accuracy.

13.5.1 Chlorine concentrations

Description The Chlorine dataset was generated by EPANET 2.03 that accurately sim-
ulates the hydraulic and chemical phenomena within drinking water distribution systems.
Given a network as the input, EPANET tracks the flow of water in each pipe, the pressure
at each node, the height of water in each tank, and the concentration of a chemical species
throughout the network, during a simulation period comprised of multiple timestamps. We
monitor the chlorine concentration level at all the 166 junctions in the network shown in
Figure 13.3(a), for 4310 timestamps during 15 days (one time tick every five minutes). The
data was generated by using the input network with the demand patterns, pressures, flows
specified at each node.

Data characteristics The two key features are:

• A clear global periodic pattern (daily cycle, dominating residential demand pattern).
Chlorine concentrations reflect this, with few exceptions.

3http://www.epa.gov/ORD/NRMRL/wswrd/epanet.html
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• A slight time shift across different junctions, which is due to the time it takes for fresh
water to flow down the pipes from the reservoirs.

Thus, most streams exhibit the same sinusoidal-like pattern, except with gradual phase shifts
as we go further away from the reservoir.

Results of SPIRIT SPIRIT can successfully summarise the data using just two numbers
(hidden variables) per time tick, as opposed to the original 166 numbers. Figure 13.3(a)
shows the reconstruction for four of the sensors (out of 166). Only two hidden variables
give very good reconstruction.

Interpretation The two hidden variables (Figure 13.3(b)) reflect the two key dataset char-
acteristics:

• The first hidden variable captures the global, periodic pattern.

• The second one also follows a very similar periodic pattern, but with a slight “phase
shift.” It turns out that the two hidden variables together are sufficient to express (via
a linear combination) any other time series with an arbitrary “phase shift.”

13.5.2 Light measurements

Description The Motes dataset consists of light intensity measurements collected using
Berkeley Mote sensors, at several different locations in a lab (see Figure 13.4), over a period
of a month.

Data characteristics The main characteristics are:

• A clear global periodic pattern (daily cycle).

• Occasional big spikes from some sensors (outliers).

Results of SPIRIT SPIRIT detects four hidden variables (see Figure 13.5). Two of these are
intermittent and correspond to outliers, or changes in the correlated trends. We show the
reconstructions for some of the observed variables in Figure 13.4(b).
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Interpretation In summary, the first two hidden variables (see Figure 13.5) correspond to
the global trend and the last two, which are intermittently present, correspond to outliers.
In particular:

• The first hidden variable captures the global periodic pattern.

• The interpretation of the second one is again similar to the Chlorine dataset. The first
two hidden variables together are sufficient to express arbitrary phase shifts.

• The third and fourth hidden variables indicate some of the potential outliers in the
data. For example, there is a big spike in the 4th hidden variable at time t = 1033,
as shown in Figure 13.5. Examining the participation weights w4 at that timestamp,
we can find the corresponding sensors “responsible” for this anomaly, i.e., those sen-
sors whose participation weights have very high magnitude. Among these, the most
prominent are sensors 31 and 32. Looking at the actual measurements from these sen-
sors, we see that before time t = 1033 they are almost 0. Then, very large increases
occur around t = 1033, which bring an additional hidden variable into the system.

13.5.3 Room temperatures

Description The Critter dataset consists of 8 streams (see Figure 13.10). Each stream
comes from a small sensor4 (aka. Critter) that connects to the joystick port and measures
temperature. The sensors were placed in 5 neighbouring rooms. Each time tick represents
the average temperature during one minute.

Furthermore, to demonstrate how the correlations capture information about missing
values, we repeated the experiment after blanking 1.5% of the values (five blocks of consecu-
tive timestamps; see Figure 13.7).

Data characteristics Overall, the dataset does not seem to exhibit a clear trend. Upon closer
examination, all sensors fluctuate slightly around a constant temperature (which ranges
from 22–27oC, or 72–81oF, depending on the sensor). Approximately half of the sensors
exhibit a more similar “fluctuation pattern.”

4http://www.ices.cmu.edu/sensornets/
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Results of SPIRIT SPIRIT discovers one hidden variable, which is sufficient to capture the
general behaviour. However, if we utilise prior knowledge (such as, e.g., that the pre-set
temperature was 23oC), we can ask SPIRIT to detect trends with respect to that. In that case,
SPIRIT comes up with two hidden variables, which we explain later.

SPIRIT is also able to deal successfully with missing values in the streams. Figure 13.7
shows the results on the blanked version (1.5% of the total values in five blocks of consecutive
timestamps, starting at a different position for each stream) of Critter. The correlations
captured by SPIRIT’s hidden variable often provide useful information about the missing
values. In particular, on sensor 8 (second row, Figure 13.7), the correlations picked by the
single hidden variable successfully capture the missing values in that region (consisting of
270 ticks). On sensor 7, (first row, Figure 13.7; 300 blanked values), the upward trend in
the blanked region is also picked up by the correlations. Even though the trend is slightly
mis-estimated, as soon as the values are observed again, SPIRIT very quickly gets back to
near-perfect tracking.

Interpretation If we examine the participation weights in w1, the largest ones correspond
primarily to streams 5 and 6, and then to stream 8. If we examine the data, sensors 5 and
6 consistently have the highest temperatures, while sensor 8 also has a similar temperature
most of the time.

However, if the sensors are calibrated based on the fact that these are building tempera-
ture measurements, where we have set the thermostat to 23oC (73oF), then SPIRIT discovers
two hidden variables (see Figure 13.10). More specifically, if we reasonably assume that we
have the prior knowledge of what the temperature should be (note that this has nothing to
do with the average temperature in the observed data) and want to discover what happens
around that temperature, we can subtract it from each observation and SPIRIT will discover
patterns and anomalies based on this information. Actually, this is what a human operator
would be interested in discovering: “Does the system work as I expect it to?” (based on my
knowledge of how it should behave) and “If not, what is wrong?” So, in this case, we indeed
discover this information.

• The interpretation of the first hidden variable is similar to that of the original signal:
sensors 5 and 6 (and, to a lesser extent, 8) deviate from that temperature the most, for
most of the time. Maybe the thermostats are broken or set wrong?

• For w2, the largest weights correspond to sensors 1 and 3, then to 2 and 4. If we ex-
amine the data, we notice that these streams follow a similar, fluctuating trend (close
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to the pre-set temperature), the first two varying more violently. The second hidden
variable is added at time t = 2016. If we examine the plots, we see that, at the begin-
ning, most streams exhibit a slow dip and then ascent (e.g., see 2, 4 and 5 and, to a
lesser extent, 3, 7 and 8). However, a number of them start fluctuating more quickly
and violently when the second hidden variable is added.

13.5.4 River gauges

Description The dataset was collected from the USACE current river conditions website5.
It consists of river stage (or, water level) data from three different measuring stations in the
same river system (see Figure 13.8).

Data characteristics The data exhibit one common trend and has plenty of missing values
(26% of all values, for all three streams).

Results and interpretation Examining the three hidden variable weights found by SPIRIT,
these have ratios 1.5 : 1.1 : 1. Indeed, if we look at all 20,000 time ticks, this is what we see;
all streams are very similar (since they are from the same river), with the “amplitude” of the
fluctuations having roughly these proportions. Hence, one hidden variable is sufficient, the
three weights compactly describe the key information and the interpretation is intuitive.

Besides recovering missing values from underlying correlations captured by the few hid-
den variables, SPIRIT’s tracking abilities are not affected even in extreme cases.

13.6 Performance and accuracy
In this section we discuss performance issues. First, we show that SPIRIT requires very lim-
ited space and time. Next, we elaborate on the accuracy of SPIRIT’s incremental estimates.

13.6.1 Time and space requirements

Figure 13.9 shows that SPIRIT scales linearly with respect to number of streams n and num-
ber of hidden variables k. AR per stream and MUSCLES are essentially off the charts from
the very beginning. Furthermore, SPIRIT scales linearly with stream size (i.e., requires con-
stant processing time per tuple).

5http://wmw.lrp.usace.army.mil/current/
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The plots were generated using a synthetic dataset that allows us to precisely control
each variable. The datasets were generated as follows:

• Pick the number k of trends and generate sine waves with different frequencies, say
yt,i = sin(2πi/kt), 1 ≤ i ≤ k. Thus, all trends are pairwise linearly independent.

• Generate each of the n streams as random linear combinations of these k trend signals.

This allows us to vary k, n and the length of the streams at will. For each experiment
shown, one of these parameters is varied and the other two are held fixed. The numbers
in Figure 13.9 are wall-clock times of our Matlab implementation. Both AR-per-stream as
well as MUSCLES (also in Matlab) are several orders of magnitude slower and thus omitted
from the charts.

It is worth mentioning that we have also implemented the SPIRIT algorithms in a real
system [SPF05c], which can obtain measurements from sensor devices and display hidden
variables and trends in real-time.

13.6.2 Accuracy

In terms of accuracy, everything boils down to the quality of the summary provided by the
hidden variables. To this end, we show the reconstruction x̃t of xt, from the hidden variables
yt in Figure 13.6. One line uses the true principal directions, the other the SPIRIT estimates
(i.e., weight vectors). SPIRIT comes very close to repeated PCA.

We should note that this is an unfair comparison for SPIRIT, since repeated PCA requires
(i) storing all stream values, and (ii) performing a very expensive SVD computation for each
time tick. However, the tracking is still very good. This is always the case, provided the
corresponding eigenvalue is large enough and fairly well-separated from the others. If the
eigenvalue is small, then the corresponding hidden variable is of no importance and we do
not track it anyway.

Reconstruction error Table 13.3 shows the reconstruction error, ∑ ‖x̃t− xt‖2/ ∑ ‖xt‖2, achieved
by SPIRIT. In every experiment, we set the energy thresholds to [ fE, FE] = [0.95, 0.98]. Also,
as pointed out before, we set λ = 0.96 as a reasonable default value to deal with non-
stationarities that may be present in the data, according to recommendations in the liter-
ature [Hay92]. Since we want a metric of overall quality, the MSE rate weighs each observa-
tion equally and does not take into account the forgetting factor λ.
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Dataset Chlorine Critter Motes
MSE rate 0.0359 0.0827 0.0669
(SPIRIT)
MSE rate 0.0401 0.0822 0.0448
(repeated PCA)

Table 13.3: Reconstruction accuracy (mean squared error rate).

Still, the MSE rate is very close to the bounds we set. In Table 13.3 we also show the MSE
rate achieved by repeated PCA. As pointed out before, this is already an unfair comparison.
In this case, we set the number of principal components k to the maximum that SPIRIT
uses at any point in time. This choice favours repeated PCA even further. Despite this, the
reconstruction errors of SPIRIT are close to the ideal, while using orders of magnitude less
time and space.

13.7 Conclusion

We focus on finding patterns, correlations and hidden variables, in a large number of streams.
Our proposed method has the following desirable characteristics:

• It discovers underlying correlations among multiple streams, incrementally and in
real-time [SPF05c] and provides a very compact representation of the stream collec-
tion, via a few hidden variables.

• It automatically estimates the number k of hidden variables to track, and it can auto-
matically adapt, if k changes (e.g., an air-conditioner switching on, in a temperature
sensor scenario).

• It scales up extremely well, both on database size (i.e., number of time ticks t), and on
the number n of streams. Therefore it is suitable for a large number of sensors / data
sources.

• Its computation demands are low: it only needs O(nk) floating point operations—
no matrix inversions nor SVD (both infeasible in online, any-time settings). Its space
demands are similarly limited.

• It can naturally hook up with any forecasting method, and thus easily do prediction,
as well as handle missing values.
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We showed that the output of SPIRIT has a natural interpretation. We evaluated our method
on several datasets, where indeed it discovered the hidden variables. Moreover, SPIRIT-
based forecasting was several times faster than other methods.
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Figure 13.3: Chlorine dataset: (a) the network layout. (b) actual measurements and recon-
struction at four junctions (highlighted in (a)). We plot only 500 consecutive timestamps (the
patterns repeat after that). (c) shows SPIRIT’s hidden variables.
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(a) Lab map
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Figure 13.4: Mote dataset: (b) shows the measurements (bold) and reconstruction (thin) on
node 31 and 32 (highlighted in (a)).
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Figure 13.5: Mote dataset, hidden variables: The third and fourth hidden variables are inter-
mittent and indicate “anomalous behaviour.” Note that the axes limits are different in each
plot.
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Figure 13.6: Reconstructions x̃t for Critter. Repeated PCA requires (i) storing the entire
data and (ii) performing PCA at each time tick (quadratic time, at best—for example, wall
clock times here are 1.5 minutes versus 7 seconds).
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Figure 13.7: Detail of the forecasts on Critterwith blanked values. The second row shows
that the correlations picked by the single hidden variable successfully capture the missing
values in that region (consisting of 270 consecutive ticks). In the first row (300 consecutive
blanked values), the upward trend in the blanked region is also picked up by the correlations
to other streams. Even though the trend is slightly mis-estimated, as soon as the values are
observed again SPIRIT quickly gets back to near-perfect tracking.
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Figure 13.8: Actual River data (river gauges, in feet) and SPIRIT output, for each of the
streams (no pun intended). The large portions with missing values across all streams are
marked with dotted lines (there are also other missing values in some of the streams); about
26% of all values are missing, but this does not affect SPIRIT’s tracking abilities.198
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Figure 13.10: Actual Critter data and SPIRIT output (a), for each of the temperature sen-
sors. The experiment shows that with only two hidden variable, SPIRIT can track the overall
behaviour of the entire stream collection. (b) shows the hidden variables.
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Chapter 14

Summary

In this part, we considered numerical, time series streams (see Definition 1.5) and develop
methods to capture trends at multiple time scales on a single stream, as well as correlations
among multiple streams.

In Chapter 12 we presented AWSOM (Arbitrary Window Stream mOdeling Method) [PBF03]
which allows us to make long range forecasts using limited resources. It allows us to effi-
ciently and effectively discover interesting patterns and trends. This can be done automati-
cally, i.e., with no prior inspection of the data or any user intervention and expert tuning be-
fore or during data gathering. Our algorithms require limited resources and can thus be in-
corporated in sensors—possibly alongside a distributed query processing engine [CCC+02,
BGS01, MSHR02]. Updates are performed in constant time with respect to stream size, us-
ing logarithmic space. Existing forecasting methods (SARIMA, GARCH, etc) or “traditional”
Fourier and wavelet analysis fall short on one or more of these requirements. To the best of
our knowledge, AWSOM is the first framework that combines all of the above characteris-
tics.

In Chapter 13 we presented SPIRIT (Streaming Pattern dIscoveRy in multIple Time-series) [PSF05].
Given n numerical data streams, all of whose values we observe at each time tick t, SPIRIT
can incrementally find correlations and hidden variables, which summarise the key trends
in the entire stream collection. It can do this quickly, with no buffering of stream values and
without comparing pairs of streams. Moreover, it is any-time, single pass, and it dynami-
cally detects changes. The discovered trends can also be used to immediately spot potential
anomalies, to do efficient forecasting and, more generally, to dramatically simplify further
data processing.
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Chapter 15

Epilogue

In this thesis we develop spatial and stream mining tools for discovery of interesting pat-
terns. These patterns summarise the data, enable forecasting of future trends and spotting
of anomalies or outliers. Beyond the emphasis on efficiency and scalability, we focus on
simplifying or eliminating user intervention. Data mining algorithms must make the dis-
covery task easy for average users. Unfortunately, many of the existing techniques require
non-trivial user intervention at several steps of the process. Eliminating the requirement for
user intervention should be a top priority in designing data mining methods.

We developed tools for outlier detection, clustering and forecasting on spatial data (both
homogeneous and heterogeneous) and on streams satisfy the following requirements:

• Parameter free: Our methods can search the space of patterns without requiring hu-
man intervention and guidance. Any parameters present are data driven and our algo-
rithms produce meaningful patterns when these parameters are set to default values.
We also propose techniques to adapt these parameters, when and if user feedback is
desired. In any case, users are not exposed to any hard to choose, data dependent pa-
rameters. Finally, we also employ the MDL principle to guide the search for the best
model.

• Expressive: Our models provide concise, powerful and intuitively interpretable pat-
terns.

• Scalable and any-time: Our algorithms scale to very large datasets. They should re-
quire only one pass over the data and in the case of streams, we can incrementally
update the models and provide up-to-date patterns instantaneously, while using lim-
ited memory.
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We show that multi-resolution analysis (i.e., examining the data at multiple resolutions or
scales) is a powerful tool towards these goals. In particular, for spatial data we employ the
correlation integral. For time series streams we use the wavelet transform and related tech-
niques. Furthermore, we leverage tools from signal processing (again wavelets and, also,
subspace tracking algorithms) to extract patterns from streams. Finally, we also employ com-
pression principles coupled with multi-level partitions to automatically cluster spatial data.
Next, we briefly summarise each part of this thesis.

Part I In this part we investigated how to do outlier detection and clustering on spatial
data (see Definition 4) by examining the data at multiple distance scales. First, in Chapter 3,
we presented our basic outlier detection scheme, which can detect meaningful outliers based
on pairwise distances. In Chapter 4 we show how to extend this scheme to incorporate user
feedback when desired, allowing even further data driven exploration, without exposing
the users to any parameters. Finally, in Chapter 5 we show how to employ similar ideas
for clustering the data based on notions of both local density as well as local dimensionality.
The main proposed technique is a parameter-free transformation of high-dimensional points
into a pair of local density and dimensionality.

Part II In this part we explore further analyses possible on the extended spatial data model
(see Definition 5). First, in Chapter 8, we investigate the implications of having binary class
labels associated with each data point for outlier detection and we introduce cross-outliers.
In Chapter 9 we explore how to automatically and simultaneously find spatial co-location
and binary feature co-occurrence patterns, when an arbitrary number of binary features (or,
attributes) are associated with each point. To this end, we employ the Minimum Description
Length (MDL) principle, which is a powerful tool for automatic model selection.

Part III In this part we present data mining methods for stream data (see Definition 6). In
Chapter 12 we show how to incrementally capture trends at multiple time scales, using lim-
ited memory and CPU resources. In Chapter 13 we examine multiple streams and consider
the problem of capturing correlations and finding hidden variables corresponding to trends
on collections of time series streams. These correlations can be used to do efficient forecast-
ing and, consequently, detect outliers along the time dimension. Furthermore, changes in
number of correlated trends can be used to detect anomalies.
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15.1 Discussion
In this section we discuss potential future directions, first for spatial and then for stream
data.

15.1.1 Spatial mining

Cross-outlier detection with multiple classes In Chapter 8 we considered the case of two
classes of points. Extending this to multiple classes is an interesting and challenging prob-
lem, which is also related to frequent itemset mining as well as algorithms for spatial co-
location pattern mining, based on frequent itemsets. However, most existing approaches
require significant user guidance.

Extensions to simultaneous spatial and feature clustering In Chapter 9 we dealt with
raster data. In several cases, data are naturally available in this form (e.g., per city block
or per observation site/patch). Extending the to vector data is another interesting prob-
lem. Also, another interesting direction is to explore other forms of data that have some
notion of “neighbours,” such as web graphs (where “proximity” would be defined in terms
of hyperlink distance, rather than geographical location—although information related to
geographical location or network topology might also be incorporated).

15.1.2 Stream mining

Correlations and multiple timescale forecasting Combining the methods presented in
Chapter 12 and 13 into a unified tool is an interesting but non-trivial task. For example,
it is not clear whether applying AWSOM to the correlations discovered at the finest time
resolution is sufficient, or whether it would make sense to do correlation discovery per fre-
quency band. For example, in automobile traffic, the presence of highly irregular “noise”
at small time scales would probably prevent discovery of correlations. However, the daily
time scale, most sensors should be highly correlated to each other.

Lag correlations SPIRIT (Chapter 13) considers correlations among streams at a single
time slice: values of different streams are “compared” to discover correlations only if these
values belong to the same timestamp. However, in certain cases, two or more streams may
be lag correlated, i.e., they may look similar if they are delayed (or lagged) for a certain
amount of time ticks. For example, sensors measuring traffic along a highway will show
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the same trend, but the measurements “downstream” will be delayed by the distance be-
tween the sensors divided by the average travel speed. We have already examined this
problem in [SPF05a, SPF05b], but further improvements in efficiency may be possible. Also,
the algorithms presented in this thesis could potentially also be incorporated in this mining
process.

Structural periodicity detection In this case, we wish to discover the dominant periods
present in a time series stream. If the periods are known or if the series are of finite length,
the solution is well-known. However, performing the same task in a streaming environment
with limited resources poses interesting challenges. Furthermore, this problem is related to
lag correlations, since a periodic time series is, by definition, lag correlated with itself with
the lag equal to the period.

Distributed mining In Chapter 13 we consider the case where the measurements from all
streams are collected at a central node. It would be interesting to explore how to perform
the same task in a distributed fashion, by discovering trends and hidden variables at a local,
neighbourhood level and then communicating this information as necessary, possibly in a
hierarchical fashion, in order to discover global correlations. Furthermore, the summary
consisting of the hidden variables (without the participation weights) may be viewed as a
form of anonymising the individual measurements, thus protecting privacy.
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[BBKK97] Steffan Berchtold, Christisn Böhm, Daniel A. Keim, and Hans-Peter Kriegel.
A cost model for nearest neighbor search in high-dimensional data space. In
Proc. PODS, pages 78–86, 1997.

[BBM04] Sugato Basu, Mikhail Bilenko, and Raymond J. Mooney. A probabilistic frame-
work for semi-supervised clustering. In Proc. KDD, 2004.
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