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Abstract

We describe our improvements to the IEEE 802.11 support in the Monarch ver-
sion of the ns network simulator. Our extensions add several management fea-
tures needed for power management, such as beacon frames and the timing syn-
chronization function. We implement the queuing and traffic announcement fa-
cilities at the core of power management. A method for recording the energy con-
sumption of the wireless interface is also presented. Several other enhancements
are discussed, such as support for the 802.11b high-rate PHY and corrections to
existing features in the simulator. These changes greatly increase the usefulness
of ns for researchers studying the performance of ad hoc networks under power
management.
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1 Introduction

IEEE 802.11 wireless LANs have become very popular MAC and PHY layer tech-

nologies in ad hoc networking research. These wireless network interfaces experi-

ence high energy consumption1 while in the idle state, waiting to send or receive

frames [4, 5, 7]. A power management mode has been defined to reduce the en-

ergy costs of the idle state, but it exhibits poor latency performance in multihop

infrastructureless environments.

Many methods to improve the performance of multihop ad hoc networks un-

der 802.11 power management have been proposed. These range from proactive

relay election [1] to reactive timer-based approaches [14] to demand-driven route

negotiation [3]. What these methods all have in common is their use of power

management suspension. When a node is “active” under any of these schemes, it

suspends the use of the 802.11 features which reduce energy consumption at the

expense of latency.

We have extended the Monarch version [2] of the ns network simulator [6]

to support research into 802.11 power management in ad hoc networks. Our

changes are extensive, more than tripling the size of the 802.11 code. They in-

clude an implementation of several management features such as beacon frames

and the timing synchronization function. We have implemented the queuing

and traffic announcement features that underly 802.11 power management in

the infrastructureless environment. We have added instrumentation to measure

the energy consumption of the simulated wireless interface. In the course of de-

1In this report, we focus on the energy consumption of the entire network interface, which in-
cludes components such as a firmware processor, modem, RF converter, and RF amplifier. This is
distinct from the energy radiated onto the wireless medium, which tends to be orders of magni-
tude smaller.
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veloping these extensions, we evaluated several nonstandard improvements to

various 802.11 features, which we describe.

In this report, we reference sections — also called “clauses” — of the 802.11

specification [12] using the shorthand “§.” For example, “(§7.1)” refers to the

section on MAC frame formats in the specification. When describing a section of

some other document, including this report, we will indicate so explicitly.

It is our hope that this improved simulator will be helpful to future researchers

investigating power management in ad hoc networks. We welcome any feedback

on experiences with these extensions.

2 802.11 Management Features

The most familiar aspects of the 802.11 design are the control features, which

regulate access to the wireless medium. These algorithms remain essentially un-

changed in the presence of power management. Section 11 of the 802.11 specifi-

cation [12] defines the management features which allow stations to coordinate at

a higher level. These features enable timer synchronization, which is critical for

the rendezvous nature of 802.11 power management. They also enable stations to

coordinate their frame exchanges with the use of the low-power doze state.

2.1 Synchronization

The fundamental unit of organization in an 802.11 network is the basic service

set, or BSS. A BSS is a group of stations acting under the same coordination

function. For instance, the 802.11 distributed coordination function (DCF) is the

well-known CSMA/CA method of statistical multiplexing using Request to Send

(RTS), Clear to Send (CTS), Data, and Acknowledgment (ACK) frames. When a

2



BSS is operating without access to an infrastructure network, it is termed an in-

dependent basic service set, or IBSS. This is the mode of operation relevant to ad

hoc networking.

All stations in a BSS are required to maintain a timer synchronized to a com-

mon clock. In infrastructure networks, the access point provides the synchro-

nization by periodically broadcasting beacons. In an IBSS, there is no such dis-

tinguished station, so a distributed algorithm is used to synchronize the timers.

2.1.1 Station Timers

The microsecond-resolution timer at each station is required to be accurate within

±0.01% by the specification (§11.1.2.4). We simulate timer drift by randomly as-

signing each station a drift value, and adjusting timer samples by the amount of

the drift. This method assumes that, following a timer update, the timer deviates

from “absolute” (ns) time at a fixed rate.

Time is continuous in ns; most events in the simulator are dispatched by real-

valued timers. Physical movement and signal propagation are two aspects of the

simulator which occur in absolute time. A station’s timer may be faster or slower

than absolute time, according to its assigned drift value. For an interval ∆τ mea-

sured using a station’s timer, the corresponding absolute interval ∆t is given by

∆t =
∆τ

1 + d
. The timer drift d is, for each station, chosen from a uniform random

distribution on [−0.01%, 0.01%], consistent with the accuracy requirements of

the specification.

To sample the station timer, we need the absolute time tnow, available from

Scheduler::instance().clock() . We also need two additional pieces of

state: the absolute time of the last timer update, tup, and the value of the station
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timer at that update, τup. We can then compute the station timer value associated

with the present moment:

τnow =
[(

tnow− tup
)
× (1 + d)

]
+ τup

Several timer drift methods are provided which return the value of the station

timer, or convert between absolute time and station time:

• Mac802_11::get_tsf_timer() returns the current station timer value,

rounded to the nearest microsecond.

• Mac802_11::adjusted_time(double t) returns the duration of ab-

solute time that would elapse if the duration t were measured using the

station’s timer.

• Mac802_11::tsf_time(double a) returns the microsecond-resolution

duration that would be measured by the station’s timer when the absolute

duration a elapses.

2.1.2 Beacon Frames

The stations in an IBSS periodically contend to generate a beacon frame, which

describes the parameters of the network and synchronizes station timers. Beacon

frames are transmitted to the broadcast address, and have frame type 00two and

subtype 1000two. They are recognizable in the ns trace by the first octet of the

frame control field, “[80... ,” as shown below:

s 0.000656894 _1_ MAC --- 0 MAC 80 [ 8010 0 ffffffff 1 290]

Figure 1 illustrates the other fields in an 802.11 frame dump. Each such line

begins with a type indicating whether the event records a frame being sent (“s”),
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Figure 1: ns trace fields for 802.11 frames.

received (“r ”), or dropped (“D”). Next, the absolute simulation time of the event

is displayed, in seconds. The node address and the trace name “MAC” follow. The

next field is used for drop events to indicate the reason why the frame was dis-

carded. The causes are defined in cmu/cmu-trace.h; for example, the cause “PWR”

is described in Section 2.2.2. The packet id is used by higher-layer agents such

as DSRAgent ; all 802.11 control and management frames have an id of 0. 802.11

frame events have a packet type of “MAC,” followed by the frame size in octets.

The next five fields (enclosed within “[...] ”) expose the Frame Control field

(§7.1.3.1), Duration (§7.1.3.2), Destination Address (§7.1.3.3.4), Source Address

(§7.1.3.3.5), and the first two octets of the Body (§7.1.3.5) for Data frames.

In our implementation, beacons contain the following parameters:

• Beacon Interval (§7.3.1.3), the period between successive target beacon

transmission times (TBTTs). This value is expressed in 802.11 time units

(TUs), which are 1,024µs in length. For example, our implementation en-

codes a beacon interval of 200ms as 196 TUs, or 200.704ms.

• Capability Information (§7.3.1.4) describes features of the network such as

the use of encryption or access to an infrastructure network. Our imple-

mentation indicates infrastructureless operation by clearing the Extended

Service Set (ESS) bit and setting the IBSS bit. We also clear the Contention-

Free (CF) Pollable, CF Poll Request, and Privacy bits.
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• Timestamp (§7.3.1.10) contains a 64-bit encoding of the sender’s station

timer, in microseconds. This representation keeps time for about 584,542

years before rolling over.

• Service Set Identity (§7.3.2.1), or SSID, is a variable-length field (up to 32

octets) which names the extended service set to which this network be-

longs. Our implementation uses a zero-length field, indicating the broad-

cast SSID.

• Supported Rates (§7.3.2.2) lists the data rates in the basic rate set (which

must be supported by all stations in the network) and supported rate set

(which are optional). Our implementation lists the 1Mbps and 2Mbps rates

in the basic rate set, encoded as 82sixteen and 84sixteen, respectively. We also

list 11Mbps as a supported rate, encoded as 16sixteen.

• DS Parameter Set (§7.3.2.4) lists the current channel of this direct sequence

spread spectrum (DSSS) network. Our implementation indicates channel 1

— 2,412MHz (§15.4.6.2) — which is consistent with the initialization of

NetIf/SharedMedia in the script cmu/scripts/run.tcl.

• IBSS Parameter Set (§7.3.2.7) describes an IBSS-specific parameter, the du-

ration of the Announcement Traffic Indication Message (ATIM) window

within each beacon interval. The ATIM window is explained in Section 2.2.1

of this report. The value is expressed in TUs; for example, our implemen-

tation encodes an ATIM window of 40ms as 40 TUs, or 40.96ms.

All stations in the IBSS participate in a distributed beacon generation algo-

rithm (§11.1.2.2). A station initializes an IBSS by broadcasting a beacon bearing

the parameters for the IBSS, including the beacon interval. The time at which
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this beacon is transmitted, coupled with the beacon interval parameter, defines

the complete sequence of target beacon transmission times (TBTTs) for the IBSS.

Every station which subsequently joins the IBSS will participate in the beacon

generation algorithm at each TBTT. A station joins the IBSS by receiving a beacon

and adopting the parameters contained therein. Our implementation treats the

time at which a first beacon is received to be a TBTT.

Beacon generation uses a different backoff timer than that used for normal

frame transmission. At each TBTT we set Mac802_11::use_alt_backoff ,

which indicates that use of the normal backoff timer (Mac802_11::mhBackoff )

is disabled. We then set the beacon backoff timer Mac802_11::mhBeacon to a

time drawn from a uniform distribution on [0, 2× aCWmin× aSlotTime], where

aCWmin is obtained from the DSSS PHY_MIB::CWMin and aSlotTime is ob-

tained from PHY_MIB::SlotTime . If a beacon arrives while the backoff timer

is running, then the timer and beacon transmission attempt are canceled. If the

backoff timer expires and no beacon has arrived, then the station transmits a bea-

con. Unless power management is in use, the station then resumes the use of the

normal backoff timer.

2.1.3 Timing Synchronization Function

A station must adopt any parameters in a beacon received with a later timestamp

than the station’s own timer (§11.1.4). In our implementation, stations initialize

with a timer value of zero. They then join the IBSS by receiving a beacon with

a timestamp greater than zero, and adopt the timestamp, beacon interval, and

ATIM window duration values contained in that beacon.
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By adopting later timestamps, stations synchronize their timers to their fastest

neighboring station. The scalability of this method has been studied [8]; the

fastest stations can lose synchronization with the rest of the IBSS. This possibility

has not caused practical problems in our own experiments.

2.2 Power Management

The 802.11 IBSS design addresses the high energy costs of the radio idle state

with a rendezvous-based power management scheme. Inactive stations can place

their transceiver electronics in a low-power doze state, which prevents the wire-

less interface from sending or receiving frames. Using the synchronized station

timers, all IBSS stations periodically wake and exchange announcements about

their offered traffic. Stations which do not need to remain awake and send or

receive data may return to the doze state.

2.2.1 Theory of Operation

Conceptually, the wireless network interface can be in one of four major states:

doze, idle, receive, or transmit. Transitions between idle, receive, and transmit are

governed by the medium access algorithm itself. For example, a station which

sends a directed data message first waits in the idle state for the medium to be-

come available. It then moves to the transmit state to send a request to send (RTS)

frame, returns to idle, then moves to receive when the clear to send (CTS) frame

arrives, and so forth.

Transitions to and from the low-power doze state are managed above the

medium access control level. At each TBTT, all stations must emerge from doze

and be prepared to send or receive beacon frames. Following beacon generation,
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the stations remain awake and exchange announcements about their scheduled

traffic activity. An announcement is an indication that a station has buffered

data frames addressed to a named destination. Stations which announce their

destinations, or which receive announcements addressed to themselves (or the

broadcast address), must remain awake until the next TBTT. The remaining sta-

tions return to the low-power doze state.

t

To: i To: j To: i To: j

To: i To: j To: k

Data Data

ATIM ATIM

ATIM Window

Figure 2: 802.11 ATIM frame transmission.

Figure 2 shows the traffic announcement process. When data frames are

passed down to the MAC layer, the MAC implementation must check to see

if the frame destinations might be awake. If the destinations are not known to be

awake, the frames are buffered until the next beacon interval. At each TBTT, all

stations wake and enter an ATIM window, the duration of which is a parameter

of the IBSS. During the window, no data frames may be sent. Stations exchange

ATIMs to indicate their scheduled data activity. Following the ATIM window,

stations transmit buffered data frames to those destinations which were success-

fully announced.

2.2.2 Power State Transitions

In addition to the major power states of doze, idle, receive, and transmit, our im-

plementation separately models the transitions into and out of the doze state.

Published measurements of 802.11 interfaces indicate that doze transitions are
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non-ideal and have a distinct power rate [10, 11]. Our implementation simulates

a 250µs transition to doze (TO_DOZE_TIME) and a 250µs transition out of doze

(FROM_DOZE_TIME).

interface

start or join IBSS

reset

off

idle

to−doze

doze

from−doze

transmitreceive

end of ATIM window wake timer expires

timer expires
from−doze

start receive
timer

receive timer expires

to−doze timer expires

start interface timer

expires
timer

Figure 3: Power state machine.

Figure 3 shows the state machine implemented by our power model. All

stations begin the simulation in the off state. The script cmu/scripts/mobile node.tcl

schedules node 1 to start the IBSS at time zero, at which point that node’s MAC

interface transitions to the idle state. All other stations are scheduled to try and

join the IBSS at time 1.0, when they also transition from off to idle. All stations

reset their interfaces at the end of the simulation, returning them to the off state.

When a new frame arrives at a station, Mac802_11::recv() is called to

process the reception. If the interface is in the off state, or is dozing as will be

described later, the frame is dropped. Dropped frames appear in the frame trace

with the cause “PWR,” as shown below:

D 0.201508211 _2_ MAC PWR0 MAC 80 [8010 0 ffffffff 1 130f]

If the frame is not dropped, and can otherwise be received (i.e., a frame collision

has not occurred), then the receive timer Mac802_11::mhRecv is started. At

the same time, the interface transitions to the receive state. The receive timer
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expires when reception completes, and the interface returns to the idle state in

Mac802_11::recvHandler() .

When an outgoing frame becomes available for transmission, the interface

timer Mac802_11::mhIF is started, and the interface transitions to the trans-

mit state. Once the transmission is complete, the interface timer expires. The

interface returns to the idle state in Mac802_11::txHandler() .

t
ATIM Window

TBTT TBTT

wakeup before TBTT

awake awakedoze doze

wake timer

ATIM window timer

TBTT timer

Figure 4: Relationship between TBTT, ATIM window, and wake timers.

When a station uses power management, it enters the low-power doze state

during beacon intervals in which it is not scheduled to send or receive frames.

Doze state transitions are managed by several new timers as shown in Figure 4.

At each TBTT, a station restarts its TBTT timer, Mac802_11::mhTBTT , which

expires in one beacon interval. In addition, a power managing station enters

the ATIM window, and starts the ATIM window timer Mac802_11::start() ,

which expires at the end of the window.

At the end of the ATIM window, a station must decide whether it will re-

main awake, or return to the doze state. Broadly, the rule is that a station cannot

enter doze if it sends or receives an ATIM frame — addressed to itself or to a mul-

ticast address — during the ATIM window (§11.2.2.3). Specifically, the station

cannot doze once it transmits an ATIM frame, regardless of whether the frame is

acknowledged or not (in the case of a directed ATIM). Also, a station that wins

beacon contention and transmits a beacon frame cannot doze.
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Our implementation decides to doze in Mac802_11::end_atim_window()

if all of the following conditions hold:

• The station has not received any ATIM frames addressed to itself or to the

broadcast address in the current ATIM window.

• The station has not transmitted any beacon frames in the current beacon

interval. (This can be overridden, as described in Section 4.3.)

• The station has not transmitted any broadcast ATIM frames, has not aban-

doned a directed ATIM frame after exceeding the retry count, has not aban-

doned a directed ATIM frame at the end of the ATIM window, and is not

in the process of transmitting an ATIM frame.

• Use of the doze state is not disabled using power management suspension,

described in Section 4.1.

• The duration until the next TBTT is greater than the time before a TBTT at

which a dozing station would normally wake.

Once a station decides to doze, it schedules its entry into the doze state via an

intermediate to-doze state by setting the to-doze timer Mac802_11::mhToDoze .

Once this timer expires, the interface is set to the doze state and the wakeup timer

Mac802_11::mhWake is started. This timer will expire a short time before the

next TBTT. The reason for the early wakeup is to make sure that a station does not

miss hearing a beacon transmission due to timer asynchronism. Stations wake

3ms prior to the TBTT (DEFAULT_WAKEUP_BEFORE_TBTT). When the wakeup

timer expires, the interface enters the from-doze state and sets the from-doze timer

Mac802_11::mhFromDoze . Once this timer expires, the interface is fully awake

and returns to the idle state.
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While the interface is in the to-doze, doze, or from-doze states, it can neither

send nor receive frames. The test Power::is_dozing() returns true when the

interface is in any of these states. Also, the test Power::is_off() returns true

when the interface is off.

2.2.3 Queuing

The PriQueue link layer message queue buffers messages from higher proto-

col layers before handing them off to the Mac802_11 interface. This queue re-

leases one message at a time to the MAC layer, and waits for that message to be

transmitted or abandoned before releasing another. Figure 5(a) shows the partial

sequence of events when three messages are dispatched to the link layer back-to-

back. The first message is passed to the MAC code using Mac802_11::send() .

While this message is being transmitted, the remaining messages arrive at the

link layer queue, where they are buffered. Once the MAC layer transmits the

frame, it calls back to the link layer queue, which releases the next message.

When used with IBSS power management, this design can lead to low medium

utilization. Suppose the three messages passed to the link layer were destined

for addresses A, B, and A. The first message to reach the MAC layer will trigger

an ATIM traffic announcement for A in the next ATIM window (if necessary).

After the data frame to A is transmitted, the next message — to B — is released.

B has not been announced, so the MAC layer waits until the next ATIM window

to announce B, and then later, send the data frame to B. A similar delay occurs

when the final frame — again, to A — is sent, since A was not announced during

the beacon interval in which the frame to B was sent.
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new frame arrives

PriQueue

Mac802_11
send sendcallback

frame transmitted

new frame arrivesnew frame arrives

(a) Without power management, using PriQueue.
new frame arrives

Mac802_11

NullQueue

(PMQueue)
send send send

frame transmitted frame transmitted frame transmitted

new frame arrives new frame arrives

(b) With power management, using NullQueue and PMQueue in the 802.11 layer.

Figure 5: Message queuing with PriQueue and NullQueue.

Instead of passing messages to the MAC layer one at a time, we should in-

stead pass each message as soon as possible. This allows the MAC layer to an-

nounce all of its pending destinations at the earliest possible time. Figure 5(b)

shows this approach, replacing PriQueue with a trivial NullQueue , which

passes messages directly to the Mac802_11 interface immediately. Upon arriv-

ing at the MAC layer, the messages are placed in a PMQueue, the contents of

which are inspected at the beginning of each ATIM window. A list of message

destinations is constructed, and these destinations are announced with ATIM

frames.

PMQueueis always used when 802.11 IBSS power management is enabled

in our implementation. Section 8.1 explains how to override PriQueue with

NullQueue when running ns.
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2.2.4 ATIM Frames

Following a TBTT, ATIM announcements are sent “after a Beacon frame is either

transmitted or received by the [station]” (§11.2.2.1). Specifically, our implemen-

tation begins the ATIM process with ATIMQueue::begin_announcements()

under the following conditions:

• The station has won beacon contention, and transmitted a beacon.

• The station has received its first beacon during the current beacon interval.

This includes the special case of the first beacon a station receives after

trying to join an IBSS, which defines its sequence of TBTTs, and therefore,

ATIM windows.

• Optionally, the station has abandoned its attempt to transmit a beacon.

(Described in Section 4.4.)

When ATIM transmission begins, there are two sources for the destination

addresses which will be announced by ATIMQueue. The highest priority source

contains addresses for which an announcement has been scheduled independent

of the PMQueuecontents. This kind of scheduling is described in Section 4.2. The

other source is the PMQueueitself, which returns a complete list of its current

destination addresses with PMQueue::get_destinations() . Regardless of

source, a station announces an address at most once during an ATIM window.

ATIM frames have type 00two and subtype 1001two. They are recognizable

in the ns trace by the first octet of the frame control field, “[90... ,” as shown

below:

s 5.622507966 _3_ MAC --- 0 MAC 52 [ 9010 103 2 3 0]
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Announcements for the broadcast address are always considered success-

ful. Directed announcements, however, must be acknowledged to succeed. Our

implementation retries unacknowledged ATIMs up to the relevant retry limit

(§9.2.5.3).2 We never precede a directed ATIM with RTS/CTS.

When a directed ATIM fails to elicit an acknowledgment after the thresh-

old number of retries, we treat the destination as unreachable. Following the

ATIM window, messages in the PMQueueare passed back to Mac802_11 in

two stages. First, those messages addressed to unreachable stations are returned

using Mac802_11::send_unreachable() , which invokes the transmit fail-

ure callback for each such message. Next, messages for announced destinations

are passed in FIFO order using Mac802_11::send_now() . Messages having

unannounced destinations remain buffered until a later beacon interval.

3 Changes to Existing 802.11 Implementation

In the course of adding the management features described in Section 2, we iden-

tified several aspects of the existing code which could be improved or updated.

The Monarch ns code implemented the original 1997 version of 802.11 [12], which

supported a peak channel rate of 2Mbps. The newer 802.11b [13] increased that

rate to 11Mbps, and is far more common at the time of this writing. We added

support for the newer standard, and implemented the PHY Layer Convergence

Protocol in greater detail. We also corrected several instances of wrong updates

to the MAC backoff timer and Contention Window.

2The Monarch code ships with the parameter aRTSThreshold (§11.4.4.2.15) set to zero, mean-
ing that all directed ATIM and data frames are retried up to aLongRetryLimit (§11.4.4.2.17). The
specification recommends a value of 3000 bytes for aRTSThreshold.
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3.1 802.11b High-Rate PHY

Proper support for the 802.11b high-rate PHY requires more than simply chang-

ing the channel rate constant from 2Mbps to 11Mbps. An 802.11b IBSS which

retains backwards compatibility with 802.11 stations must transmit at a number

of distinct channel rates. Section 2.1.2 listed the basic and supported rates for our

implementation. The rules for the use of these rates are as follows (§9.6):

• All control frames (RTS, CTS, ACK) must be transmitted at one of the rates

in the basic rate set. Our implementation uses 2Mbps.

• All multicast or broadcast frames, regardless of type, must be transmitted

at one of the rates in the basic rate set. Again, we use 2Mbps.

• Directed data or management frames may be sent at any supported rate.

Our implementation uses 11Mbps.

Further complicating matters is the PHY Layer Convergence Protocol — de-

scribed in Section 3.2 — which adds a preamble and header to all transmitted

frames. The header and preamble are transmitted at 1Mbps (§15.2.3). This is

a correction from the original Monarch code, which sent the entire frame at the

prevailing channel rate. A consequence of the original behavior was that the

simulator understated the amount of time required to transmit a frame.

Several macros have been defined in cmu/mac-802 11.h to compute frame

transmission times. BASIC_RATE(len) and OPTIONAL_RATE(len) return the

amount of time required to send a frame of size len octets at 2Mbps and at the

prevailing channel rate (11Mbps), respectively.
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3.2 PHY Layer Convergence Protocol

For completeness, our implementation adds a PHY Layer Convergence Protocol

(PLCP) header to each frame (§15.2.3). This header describes the length of the

frame, and the bit rate at which the frame is being transmitted. The struct

dsss_plcp_frame contains placeholders for the PLCP preamble (§15.2.3.1) and

CRC (§15.2.3.6). It also contains the Start Frame Delimiter, Signal, Service, and

Length fields (§15.2.3.2–15.2.3.5).

Of special interest is Mac802_11::TX_Time(p) , which now computes the

amount of time required to transmit packet p using the value stored in the PLCP

Length field. This value is set using the frame transmission time macros de-

scribed in Section 3.1. As a result, the transmission timer Mac802_11::mhIF is

set more accurately than in the original code.

3.3 Corrections to 802.11 Implementation

In the course of reviewing the 802.11 specification, we corrected several minor

errors in the Monarch code. The first has to do with the station retry counters

(§9.2.4), which are to be reset to zero following the transmission of a broadcast

frame. The existing code was not performing the reset; this has been fixed.

There are two station retry counters, SSRC for frames up to aRTSThreshold

bytes in size, and SLRC for longer frames. SSRC is to be reset to zero when an

ACK for a frame of any size is received. Additionally, SLRC is to be reset to zero

if the frame which elicited the ACK was longer than aRTSThreshold (§9.2.4). The

existing code would reset one counter or the other, but never both; this has also

been fixed.
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Finally, the Contention Window parameter (§9.2.4) determines the amount of

random backoff a station observes prior to a frame transmission attempt. This

parameter increases in size every time a transmission attempt fails. Specifically,

it should only increase when one of the station retry counters is incremented.

The existing code contained unnecessary increases of the Contention Window in

Mac802_11::check_pktRTS() and Mac802_11::check_pktTx() , which

are called prior to the first transmission attempt for an RTS or data frame, respec-

tively. This can increase the duration of the random backoff before any failures

have been observed. These superfluous increases have been removed.

4 Nonstandard 802.11 Enhancements

We have experimented with several changes to the behavior of 802.11 under

power management. Some of these modifications address latency issues arising

from the traffic announcement facility described in Section 2.2.1. Others were at-

tempts to improve aspects of 802.11 which yield conspicuously poor behavior in

multihop environments. By default, these enhancements are disabled, but can

be individually selected using Mac802_11::set_options() . This method

accepts the options descriptor shown in Figure 6. The five mac_options are

described in Sections 4.1–4.5.

struct mac_options {
bool pm_suspension;
bool fast_wakeup;
bool no_beacon_keepawake;
bool atims_after_abandoned_beacon;
bool bcast_atim_implies_awake;

};

Figure 6: The MAC options descriptor.
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4.1 Power Management Suspension

The 802.11 IBSS power management design introduces latency to message trans-

mission by buffering frames until their destinations can be announced. In a

multihop environment, these delays accumulate, and can add several seconds

to end-to-end delivery latency. Several proposals to reduce latency under power

management have been published [1, 3, 14]. These all work by suspending the use

of power management at some nodes. The idea is that if station A knows that

station B is awake (i.e., not using power management), then A can immediately

send frames to B without waiting for the announcement process.

There are several ways by which a station can learn that its neighbor is sus-

pending power management. Exact methods are beyond the scope of this report,

but in general the techniques involve explicit negotiation or inference based on

observed message activity. Section 5 presents two examples of the latter type.

Our implementation supports four methods relevant to power management

suspension. These are enabled when the pm_suspension option is set:

• Mac802_11::suspend_pm() causes the station to never doze at the end

of an ATIM window. All outgoing frames have the Power Management bit

(§7.1.3.17) of their Frame Control field cleared after this method is invoked.

• Mac802_11::resume_pm() restores the use of the doze state to the nor-

mal 802.11 behavior.

• Mac802_11::neighbor_suspend_pm(nsaddr_t neighbor) adds the

MAC-layer neighbor to a table of destinations for which ATIM announce-

ments are not generated, and to which frames may be transmitted imme-

diately.
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• Mac802_11::neighbor_resume_pm(nsaddr_t neighbor) causes the

removal of neighbor from the table of suspending neighbors. The named

neighbor is removed at the beginning of the next ATIM window.

4.2 Fast Wakeup

Power management suspension (Section 4.1) is a means of reducing the latency

of message transmission to stations which are known to be active. In an on-

demand routing protocol such as Dynamic Source Routing [9], the identities of

awake neighbors may not be known in advance of some operations. For ex-

ample, a DSR traffic source discovers routes to traffic sinks by flooding a Route

Request message through the network. Using the 802.11 MAC, this flooding is

implemented by propagating broadcasts of the Route Request.
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Figure 7: Route Discovery using IBSS power management.

Figure 7 shows the interaction between IBSS power management and the

Route Discovery procedure. Source 1 is discovering the route (1, 2, 3, 4). At

each hop, the broadcast Route Request (“RREQ”) is delayed while the propagat-

ing station announces the broadcast address with an ATIM. Then, as the unicast

Route Reply (“RREP”) messages are returned, each station on the route may need

to perform an ARP transaction to learn the MAC-layer address of the next hop.

Both the broadcast ARP request and the directed Route Reply transmission in-
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duce additional ATIM delays. If the beacon interval between ATIM windows is

hundreds of milliseconds in duration, then this Route Discovery can require sev-

eral seconds. This discovery latency is several orders of magnitude greater than

that experienced without power management.

Fast wakeup is a method for reducing this latency by applying a DSR con-

cept to the MAC layer. When the fast_wakeup options is set, a received broad-

cast ATIM triggers a priority transmission of a broadcast ATIM. In other words,

broadcast ATIM frames propagate quickly through the network using a con-

trolled flooding technique similar to Route Request propagation.

Algorithm 1 HANDLE-ATIM(a)

if address(a) = Broadcast then
rcvd-bcast-atims← rcvd-bcast-atims + 1
if sent-bcast-atims = 0 then {controlled flooding}

if rcvd-bcast-atims = 1 then
SET-ATIM-HOLDOFF {random delay}

ATIM-ENQUEUE(address(a))

Algorithm 1 shows the additional handling of a received ATIM frame a when

fast wakeup is enabled. When a station receives its first broadcast ATIM frame of

the current ATIM window, if it has not already transmitted a broadcast ATIM, it

schedules a broadcast ATIM for transmission. The transmission will be delayed

by a random time determined in Mac802_11::set_atim_holdoff() .

The new broadcast ATIM frame is scheduled by manually adding an address

to the ATIMQueue using ATIMQueue::announce() . Such addresses are an-

nounced with higher priority than those obtained from the PMQueue. The idea

is to allow the broadcast ATIMs to propagate as far across the network as possi-

ble during an ATIM window. Following the window, the DSR Route Request can

propagate as far as the broadcast ATIMs were able to reach. This dramatically re-

duces Route Discovery latency under power management [3]. The method does
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not require syntactic changes to any 802.11 frame, and is backwards-compatible

with 802.11 implementations that do not support fast wakeup.

4.3 Beacon Generation and Dozing

Section 2.2.2 listed the conditions under which a station could doze at the end

of an ATIM window. Stations are not permitted to doze if they have transmit-

ted a beacon frame during the current beacon interval (§11.2.2.3). In the single-

hop environment for which IBSS mode was designed, this condition might make

sense: at most one station should “win” the beacon contention procedure. In a

multi-hop network, the general case is that many stations generate beacons. This

is affected by station density; the fewer neighbors a station can hear, the more

likely it is to “win” the contention procedure and transmit a beacon.

The problem is that stations which transmit beacons often — for example,

due to their position in a sparse network — will remain awake in relatively more

beacon intervals. In the limiting case, a station which cannot hear any neighbors

will generate a beacon in every beacon interval, and never doze. This behavior

can lead to very high energy consumption independent of (data) traffic activity.

When the no_beacon_keepawake option is set, this requirement is ignored.

Stations can enter doze even if they transmit a beacon, as long as they do not

need to remain awake for some other reason (e.g., they have transmitted ATIM

frames). When this option is set, a neighboring station is not assumed to be

awake based solely on its transmission of a beacon in the current beacon interval.

(Normally, such a transmission is sufficient evidence of awakeness.) This option

can substantially reduce station energy consumption, especially in sparse or idle

networks.
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4.4 Releasing ATIM Frames After Abandoned Beacons

Another aspect of the IBSS design which is reasonable in single-hop environ-

ments, but which breaks down in multi-hop networks, is the condition under

which ATIM frame transmission may commence. ATIMs are to be transmitted

“following the reception or transmission of the beacon, during the ATIM win-

dow” (§11.2.2.4). Consider the classic hidden terminal problem of Figure 8, in

which 1, 2, and 3 are contending to transmit a beacon following a TBTT. Suppose

that 1 and 3 transmit at the same time, and their beacons collide at 2, preventing

2 from receiving either beacon. If 2 attempts to transmit its beacon, but finds the

medium to be busy, the specification defines no method for recovery (§11.1.2.2).

In such a circumstance, a station must abandon its transmission attempt.

31 2

Figure 8: Hidden terminal problem.

The problem occurs when a station receives no beacons (as in the case of col-

lision), and must abandon its own beacon transmission. The station therefore

fails to meet the criteria for releasing ATIM frames, and cannot announce any of

its pending destinations. This can lead to underutilization of the medium. When

the atims_after_abandoned_beacon option is set, ATIM transmission com-

mences after a beacon transmission is attempted, but abandoned. This option

can result in some stations receiving an ATIM frame before they have sent or

received a beacon frame.

24



4.5 Broadcast ATIM Frames and Directed Transmissions

Finally, an optimistic enhancement to the traffic announcement facility assumes

that a broadcast ATIM transmission will wake all neighboring stations. When the

bcast_atim_implies_awake option is set, a neighbor is taken to be awake if

a broadcast ATIM was sent in the current beacon interval, and a directed ATIM

to that neighbor did not fail in the current beacon interval. (The latter suggests

that the neighbor has moved out of range; Section 2.2.4 describes handling of

failed directed ATIMs.) This option is optimistic because congestion in the ATIM

window may prevent some stations from receiving a broadcast ATIM, causing

them to enter doze following the window. Directed transmissions to such stations

will then fail, even if the stations are within range of the transmitting station.

5 Cross-Layer Power Management

The power management suspension technique (Section 4.1) requires stations to

know the power management status of their neighbors. We provide some simple

examples of how stations can use information at higher layers — such as the DSR

layer — to infer the status of nearby stations. These examples implement the

abstract class PM, which defines the interface used by DSRAgent to pass events

to the power management logic.

Figure 9 illustrates the interaction between the existing protocol stack and the

cross-layer power management examples. Generally, DSR stimulates the power

management instance by signaling events such as packet reception. Power man-

agement then performs operations on the lower layers, such as suspending MAC

power management. The actions shown in (parentheses) are not used by the ex-

amples described in this Section. They are explained in [3].
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Figure 9: Power management layer interaction.

Sections 5.1 and 5.2 describe instances of the “Power Mgmt.” interface shown

in Figure 9. Both designs suspend node power management upon processing

certain messages. For example, the receipt of a CBR message might be taken as

a signal that a node is an active participant in some route, and should therefore

remain awake. The previously-published approach of Section 5.1 uses MAC-

layer snooping to infer the power management status of neighboring stations.

The design of Section 5.2 uses higher-layer message events, and incorporates all

of the optimizations from Section 4.

When one of these power management instances is configured, we modify

the pruning rule used by DSR to control the flood of Route Request messages.

The goal is to increase the diversity of routes discovered by DSR [3]. Normally,

when Request 〈P, n〉 arrives on route P =
(

p1, p2, . . . , p|P|
)

with sequence num-

ber n, it is only accepted if no previous Request from p1 also had sequence n.
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Our modification compares the route P against all previous Requests from p1

with sequence n. Let 〈Q, n〉 be a previous Request with Q =
(

p1, q2, . . . , q|Q|
)

.

The Request 〈P, n〉 is accepted if ∀〈Q, n〉 : |Q∩P|
|Q| ≤ T, where 0 < T ≤ 1 is a diver-

sity threshold. T determines the maximum commonality that may exist between

P and any previously-seen route with sequence n. In our implementation, T = 3
4

seems to do a good job of pruning short Requests near the source (which reduces

congestion), while encouraging diversity at more distant nodes.

5.1 On-demand Power Management

On-demand Power Management [14], or ODPM, is a cross-layer design which

uses uncoordinated timers at nodes to configure MAC power management. We

corresponded with the primary author of the 2003 ODPM paper to clarify some

design points described therein. We also reviewed her implementation, origi-

nally developed for a different version of ns. We then implemented OndemandPM

as an instance of the PMinterface, since ODPM is an instance of the general ar-

chitecture of Figure 9.

Additionally, OndemandPMimplements the FrameMonitor interface, which

allows the MAC layer to pass information about received frames to the power

management instance. In particular, ODPM uses the Power Management bit

(§7.1.3.17) in the Frame Control field of received frames to infer the power man-

agement status of neighboring stations. This bit, along with the address of the

sending station, is passed to a FrameMonitor instance such as OndemandPM,

which then updates its list of suspending neighbors.

Several concepts are described in the paper [14] which were not implemented

in the code made available by the paper author. These include the use of peri-
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odic “HELLO” messages, and neighbor state inference based on node degree and

beacon frames. Our implementation matches the author’s code, not the paper, in

these instances.

Timer Duration
Route Request keepalive 0s
Route Reply keepalive 5s
CBR message keepalive (source) 2s
CBR message keepalive (relay) 2s
CBR message keepalive (sink) 2s
Refresh interval 5s

Table 1: On-demand Power Management timer durations.

We adopted the timer values described in the paper, which are reproduced

in Table 1. The refresh interval is not implemented as a timer, but rather is used

when a transmission failure occurs. When a station sends an RTS frame but does

not receive a CTS from its neighbor, it checks the suspending neighbor list. If

the neighbor has not been heard from in longer than the refresh interval, then

one of two things happens. If the neighbor was previously suspending power

management, it is considered to have resumed power management. Otherwise,

its list entry is removed.

The code uses a different value for the refresh interval: 900 seconds. This

value means “forever” in many simulators based on the Monarch ns distribution.

We used the value of 5 seconds from the paper in our implementation.

OndemandPMconfigures only one of the mac_options described in Sec-

tion 4: power management suspension. As a result, it experiences lower average-

case message delivery latency than if standard 802.11 IBSS power management

were used. Route Discovery latency and energy profile are similar to IBSS power

management, however [3].
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5.2 Local Power Management

Local Power Management [3], or LPM, takes a different approach to uncoordi-

nated, timer-based power management. Rather than having to observe every

frame received from neighboring stations in order to update power status es-

timates (as in ODPM), LPM relies only on those messages normally processed

by DSR. Additionally, LPM uses all five mac_options from Section 4, which

improves Route Discovery latency and energy performance.

LPM uses a table of ActiveRoute instances to implement the concept of ac-

tive destinations. When DSR requests a route to a new destination, LocalPM

constructs a new ActiveRoute which will enforce consistency in the routes

used for messages to that destination. DSR normally chooses the route for each

outgoing message independently. We would like the same route to be used for

as long as possible, so that the nodes on the route know to remain awake, and

nodes not on the route can return to doze.

As soon as a route to the new destination is discovered, it is loaded into the

ActiveRoute and is used consistently until the route is finalized. Finalization

occurs PM_FINALIZE seconds after the new ActiveRoute is constructed. At

this time, the DSR route cache is checked again for the cache-preferred route,

which then becomes the new route used for subsequent messages. This two-

stage process gives Route Discovery enough time to find several routes to the

destination. By the time of finalization, enough routes should be known that a

“good” one can be chosen for subsequent use. After an ActiveRoute has not

been used for PM_ACTIVE_TIMEOUTseconds, then the active destination state

is torn down.
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Timer Duration
Active route finalize 250ms
Active route timeout 500ms
CBR PM suspension 500ms
DSR PM suspension 500ms

Table 2: LPM timer durations.

Table 2 shows the ActiveRoute timer values used in our implementation.

It also shows the duration for which LPM suspends power management upon

processing CBR or DSR messages. Such messages result in updates to a Suspend

table which tracks the power management suspension timers associated with a

node and its neighbors. A separate timer is maintained for each message type; a

node resumes power management when all of its timers have expired.

Because LocalPM deals only with messages processed at the DSR layer, it

needs to know IP-to-MAC address translations so that it may configure neigh-

bor status at the MAC layer. Our implementation exposes the ARPTable to

LocalPM both for lookup and update.

Each DSR message bears the IP address of the most recent node to transmit

the message. DSR messages are of course sent as the payload of a MAC-layer

data frame. We assume that DSR has access to the MAC frame and its headers;

this is reasonable for a kernel-mode network-layer implementation. Each DSR

message either received or overheard by a node therefore contains both a source

route header and a MAC header. These headers provide an IP-to-MAC transla-

tion for the address of the transmitting node.

Given the information provided in each DSR message, we implement an ob-

vious Address Resolution Protocol (ARP) snooping technique. For every DSR

message received or overheard by a node, we insert an address translation into

the ARP cache for the sender of that message using ARPTable::snoop() .
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ARP snooping eliminates the need for explicit ARP requests. A DSR node

never transmits a directed data frame to a neighbor from which it has not pre-

viously received at least one frame. For example, during Route Discovery, nodes

send broadcast Route Requests (which do not require address translation) be-

fore sending directed Route Replies. A node which transmits a Route Reply to a

neighbor necessarily has received a Route Request from that neighbor, and there-

fore has already added an address translation for the neighbor to its ARP cache.

6 Power Model

To support experimentation with different radio power models, our implemen-

tation applies specific power rates to the states described in Section 2.2.2 in post-

processing. The simulator itself only records the times each simulated wireless

network interface spends in each state. Subsequent analysis can then explore

the effects of different power profiles on overall energy consumption, without

having to re-run the simulator.

We provide two tools to help study power state behavior. The first simply

adds up all the time spent by an interface in each state, and outputs these totals at

the end of a simulation. This approach minimizes filesystem activity and permits

straightforward post-processing. The other tool outputs state transition times for

each interface as the simulator runs. This is helpful for visualizing the power

behavior of interfaces, but imposes higher demands on the filesystem.

6.1 Power State Total Occupation Times

The 802.11 implementation records power state transitions using the Power ab-

stract class. By default, a PowerTotal instance adds up the times spent in
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each of the seven states shown in Figure 3. At the end of the simulation, in

Mac802_11::reset() , PowerTotal::stop() is called to write out the time

totals to a log named by the -powerlog option described in Section 8.1.

1 0.000000 93.602326 0.149500 \
0.149500 567.428837 219.259446 \
19.410392 900.000000

2 1.000000 150.308347 0.240250 \
0.240000 520.309069 217.589877 \
10.312457 900.000000

3 1.000000 180.052388 0.287750 \
0.287500 494.533904 216.422052 \
7.416407 900.000000

Figure 10: PowerTotal log excerpt.

Figure 10 shows an excerpt from the log data produced by PowerTotal . The

file is tab-delimited, and lists for each node (named in the first field) the times

spent in the off, doze, to-doze, from-doze, idle, receive, and transmit states. The ninth

field is the sum of state times, which as a sanity check should add up to the total

simulation time.

A simple script to read in a PowerTotal log and compute total per-node

energy consumption is shown in Figure 11. The %powerlevels hash contains

measured power rates, in Watts, for the popular WaveLAN 802.11b PCMCIA

device [7]. Previous work has cited power rates for the to-doze and from-doze

states that are twice that of the idle state [10]. Our example rates reflect this

relationship.

6.2 Power State Transition Traces

It is sometimes useful for illustrative purposes to know the timeline of power

state transitions, rather than simply the total occupancy times. An optional

Power implementation, PowerTrace records every transition by every simu-
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#!/usr/bin/perl

while (@ARGV) {

if ($ARGV[0] =˜ /(.+)\.log/) {
open(LOG, $ARGV[0]) or die "Can’t open log: $!\n";
$logname = $1;
last;

}

shift;

}

open(DAT, ">$logname.dat");

%powerlevels = ( "o" => 0.000 * 4.74, # off
"d" => 0.010 * 4.74, # doze
"s" => 0.156 * 4.74 * 2, # to-doze
"w" => 0.156 * 4.74 * 2, # from-doze
"i" => 0.156 * 4.74, # idle
"r" => 0.190 * 4.74, # receive
"t" => 0.284 * 4.74 ); # transmit

$v = ’\t([\d\.]+)’;

while ($line = <LOG>) {

if ($line =˜ /ˆ([\da-f]+)$v$v$v$v$v$v$v/) {

printf DAT "%llx\t%f\n", hex($1),
$2 * $powerlevels{"o"} +
$3 * $powerlevels{"d"} +
$4 * $powerlevels{"s"} +
$5 * $powerlevels{"w"} +
$6 * $powerlevels{"i"} +
$7 * $powerlevels{"r"} +
$8 * $powerlevels{"t"};

}

}

close(DAT);
close(LOG);

Figure 11: PowerTotal post-processing example (cmu/scripts/powertotal.pl).
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lated wireless interface in a single log file. Specific power rates can be applied

in post-processing to produce power-vs.-time curves for each interface.3 The use

of PowerTrace is enabled in cmu/mac-802 11.cc by defining the preprocessor

macro USE_POWERTRACE.

1.202791 1b i
1.202804 4 i
1.204502 1 t
1.204502 1b r

Figure 12: PowerTrace log excerpt.

Trace output is written continuously during the simulation to a log named

by the -powerlog option described in Section 8.1. Figure 12 shows an excerpt

from a PowerTrace log. The file is tab-delimited, and lists (simulator) time,

node address, and power state. Addresses are expressed in hexadecimal, and

power states are encoded with a single character as shown in Table 3.

Code State
o off
d doze
s to-doze (mnemonic: “sleep”)
w from-doze (mnemonic: “wake”)
i idle
r receive
t transmit

Table 3: PowerTrace power state encodings.

The PowerTrace log output contains transition data for each node inter-

leaved with that of all other nodes. Figure 13 shows a simple script to read in a

trace and write out separate power curves for each node. The script is concise,

but is wasteful of memory. This and similar post-processing tools should gen-

erally be used with short simulations involving small numbers of nodes, due to

the potentially high volume of log output generated by PowerTrace .

3Total interface energy consumption can be derived by integrating these curves. This method is
costly in terms of filesystem activity, and was the motivation for the more efficient PowerTotal .
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#!/usr/bin/perl

while (@ARGV) {

if ($ARGV[0] =˜ /(.+)\.log/) {
open(LOG, $ARGV[0]) or die "Can’t open log: $!\n";
last;

}

shift;

}

while ($line = <LOG>) {

if ($line =˜ /ˆ([\d\.]+)\t([\da-f]+)\t(.)/) {

push @{ $states{$2} }, [ $1, $3 ];

}

}

close(LOG);

%powerlevels = ( "o" => 0.000 * 4.74, # off
"d" => 0.010 * 4.74, # doze
"s" => 0.156 * 4.74 * 2, # to-doze
"w" => 0.156 * 4.74 * 2, # from-doze
"i" => 0.156 * 4.74, # idle
"r" => 0.190 * 4.74, # receive
"t" => 0.284 * 4.74 ); # transmit

foreach $node ( sort {$a <=> $b} keys %states ) {

open(DAT, ">power_$node.dat");

foreach $i ( 0 .. $#{ $states{$node} } ) {

print DAT "$states{$node}[$i][0]\t" .
"$powerlevels{$states{$node}[$i][1]}\n";

}

close(DAT);

}

Figure 13: PowerTrace post-processing example (cmu/scripts/powertrace.pl).
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Figure 14: Power trace showing doze, wake, and frame exchanges.

Figure 14 shows an example power curve produced by post-processing a

PowerTrace log. Just before 20 milliseconds, the interface wakes from doze,

and then receives some beacon frames. Following a 40-millisecond ATIM win-

dow, the node remains awake to exchange several control and data frames.

7 Building the Simulator

Our improvements were implemented against version 1.1.2 of the Monarch ns

extensions. We provide two patches which update the Monarch code base: one

to provide compatibility with new platforms and tools, the other to provide

functional improvements such as 802.11 IBSS power management. The -jd8

patch updates the build scripts and implements syntactic corrections to support

Mac OS X (Darwin) and the Intel C++ Compiler for Linux. The -jd8.3 patch

augments the first patch by implementing 802.11 IBSS mode, IBSS power man-

agement, cross-layer power management, and other features.
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$ ls
cmu-extendedns-1.1.2.tar.gz
cmu-extendedns-1.1.2-jd8.patch.gz
cmu-extendedns-1.1.2-jd8.3.patch.gz
$ mkdir cmu-extendedns-1.1.2-jd8.3
$ cd cmu-extendedns-1.1.2-jd8.3
$ tar zxf ../cmu-extendedns-1.1.2.tar.gz
$ gunzip -c ../cmu-extendedns-1.1.2-jd8.patch.gz | \

patch -p1
(Successful patch output.)
$ gunzip -c ../cmu-extendedns-1.1.2-jd8.3.patch.gz | \

patch -p1
(Successful patch output.)
Make powertotal.pl and powertrace.pl scripts executable:
$ find ns-src -name "*.pl" -exec chmod +x
$ cd ns-src
Replace autoconf scripts with ones that know about Darwin:
$ cp /usr/share/libtool/config.* .
$ autoconf
Assumes Tcl/Tk 8.4:
$ ./configure --disable-static --with-tcl=/sw \

--with-tcl-ver=8.4 --with-tk=/sw --with-tk-ver=8.4 \
--with-otcl=/sw --with-tclcl=/sw

(Successful configure output.)
$ make depend
(Successful make output.)
$ make
(Successful make output.)
$ cd ../ad-hockey
$ make
(Successful make output.)

Figure 15: Unpacking, patching, configuring, and building ns on Darwin.

Figure 15 illustrates the build process on Mac OS X (Darwin). The patches

and process are correct as of Mac OS X 10.3.5, using the Fink installation of

Tcl/Tk 8.4 under /sw. During the pre-compilation process, the GNU autoconf

environment must be updated using vendor-supplied scripts that know about

Darwin. The simulator is configured to use installations of OTcl and TclCL which

are not typically found in vendor package systems. Installation of these compo-

nents is beyond the scope of this report.
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The build process on Linux is similar to that shown in Figure 15. One differ-

ence is that no autoconf scripts need be copied. Also, as of SuSE Linux 8.1, the

configure script produced by autoconf is not executable by default. Finally, to use

the Intel C++ Compiler (as of version 7.0), some environment variables must be

configured. All of these steps are addressed by removing the cp command in Fig-

ure 15, and inserting the following commands after the invocation of autoconf :

$ chmod +x configure

$ export CC=icc CXX=icc LD=icc

8 Using the Simulator

The patched version of ns is used in the same manner as the original Monarch

version. Some new features are always available. These include the use of the

802.11b high-rate PHY (Section 3.1), the improved PLCP implementation (Sec-

tion 3.2), and the corrections to 802.11 retry counters and Contention Window

usage (Section 3.3). Most other improvements are configurable, and are disabled

by default. Running the patched simulator with unmodified (from the original

simulator) command-line options should produce results that are similar to the

original. Any variations should result from the aforementioned features, and the

presence of IBSS beacons, which are enabled by default.

8.1 Power Management Options

Several new options are available in the patched simulator to configure IBSS

mode, power management, and logging. Table 4 lists the options and sum-

marizes their usage. We note that beacon frames can be disabled by passing

“-ibss 0 ,” which produces behavior more similar to the original simulator.
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Also, when power management is enabled using “-atim ,” “-llq NullQueue ”

should also be passed to provide the queuing behavior described in Section 2.2.3.

Option Usage
-ibss beaconinterval Activates beacons and specifies the interval, in mil-

liseconds, between their transmission. A beacon in-
terval of 0 disables beacons. Default value: 200 .

-atim window Enables IBSS power management and specifies the
length of the ATIM window, in milliseconds. (Note:
also specify -llq NullQueue .) A window length of
0 disables power management. Default value: 0.

-pm crosslayer Enables a cross-layer power management instance for
all nodes, such as PM/OndemandPMor PM/LocalPM .
Default value: disabled.

-dsrlog file Enables DSRLOG() logging in DSRAgent , writing the
output to file. Default value: disabled.

-maclog file Enables LOG() logging in Mac802_11 , writing the
output to file. Default value: disabled.

-pmlog file Enables LPMLOG() logging in LocalPM , or
ODPMLOG() logging in OndemandPM, writing
the output to file. Default value: disabled.

-powerlog file Enables power state logging in PowerTotal or
PowerTrace , writing the output to file. Default
value: disabled.

Table 4: ns options for IBSS mode, power management, and logging.

The cross-layer power management schemes described in Section 5 are dis-

abled by default, but can be configured using the “-pm” option. Only one such

scheme can be used in a simulation run. When configured, all nodes participate

in the scheme using the same parameters.

The original Monarch ns implementation logs significant events, such as frame

transmissions or DSRAgent actions, to a trace file named by “-tr .” For debug-

ging purposes, it can be useful to have more comprehensive log data separated

by functional module. The “-dsrlog ,” “-pmlog ,” and “-maclog ” options en-

able logging for the DSR, cross-layer power management, and MAC code, re-

spectively. Some of these, particularly the MAC logging facility, generate signif-

icant output, which may affect simulator performance.
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Original example:
$ ./ns cmu/scripts/run.tcl -rp cmu/dsr/dsr.tcl \

-x 1500 -y 300 -cp scen/cbr-50-20-4-512 \
-sc scen/scen-1500x300-50-0-20-1 -stop 900 \
-tr out.tr

With power state logging:
$ ./ns cmu/scripts/run.tcl -rp cmu/dsr/dsr.tcl \

-x 1500 -y 300 -cp scen/cbr-50-20-4-512 \
-sc scen/scen-1500x300-50-0-20-1 -stop 900 \
-tr out.tr -powerlog power.log

Using IBSS power management with 40ms ATIM window:
$ ./ns cmu/scripts/run.tcl -rp cmu/dsr/dsr.tcl \

-x 1500 -y 300 -cp scen/cbr-50-20-4-512 \
-sc scen/scen-1500x300-50-0-20-1 -stop 900 \
-tr out.tr -powerlog power.log \
-llq NullQueue -atim 40

Using Local Power Management:
$ ./ns cmu/scripts/run.tcl -rp cmu/dsr/dsr.tcl \

-x 1500 -y 300 -cp scen/cbr-50-20-4-512 \
-sc scen/scen-1500x300-50-0-20-1 -stop 900 \
-tr out.tr -powerlog power.log \
-llq NullQueue -atim 40 -pm PM/LocalPM

Figure 16: Running ns.

Figure 16 shows some examples of running the patched ns simulator. The ex-

amples are based on the one given in [2], which is provided for reference. Note

that in the final example using Local Power Management, the options for config-

uring 802.11 IBSS power management must still be used.

8.2 Ad-Hockey

Monarch ns includes a visualization tool, ad-hockey, which can be helpful in un-

derstanding the behavior of a mobile network. We have augmented ad-hockey

with the ability to display node power states. This feature requires the use of

PowerTrace (Section 6.2). Figure 17 shows how the power state data is incorpo-

rated into the .viz file produced by viz-trace using the “-p ” option. The ad-hockey

program is then run as usual.
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$ cd ../ad-hockey
Combine communications and power events in out.tr.viz:
$ ./viz-trace -p ../ns-src/power.log ../ns-src/out.tr
$ ./ad-hockey ../ns-src/scen/scen-1500x300-50-0-20-1 \

../ns-src/out.tr.viz

Figure 17: Using ad-hockey with power state display.

Figure 18 shows ad-hockey displaying power states for each node. The circular

outline of each node changes color with its state. Nodes in the off state have a

black outline, doze, to-doze, and from-doze nodes are blue, idle nodes are red, nodes

in receive are orange, and nodes in transmit are yellow. Due to the way display

events are scheduled in ad-hockey, it can be difficult to catch a particular node in

the receive or transmit states. As Figure 18 shows, it is much easier to spot the

difference between idle and dozing nodes.4

(a) The ad-hockey visualization tool.

(yellow)
offoff doze idle receive transmit

(black) (blue) (red) (orange)

(b) Power state outline color key.

Figure 18: Ad-hockey with interface power state indication.

4Note the small number of idle nodes distributed among the dozing nodes towards the “right”
side of the network. These nodes won the beacon contention algorithm and must remain awake
irrespective of traffic load. This behavior was discussed in Section 4.3.
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