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Abstract

We present a foundational language for distributed programming, called Lambda 5, that addresses both mobility
of code and locality of resources. In order to construct our system, we appeal to the powerful propositions-as-types
interpretation of logic. Specifically, we take the possible worlds of the intuitionistic modal logic IS5 to be nodes on
a network, and the connectives 2 and 3 to reflect mobility and locality, respectively. We formulate a novel system
of natural deduction for IS5, decomposing the introduction and elimination rules for 2 and 3, thereby allowing the
corresponding programs to be more direct. We then give an operational semantics to our calculus that is type-safe,
logically faithful, and computationally realistic.
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1 Introduction

The popularity of the Internet has enabled the possibil-
ity of large-scale distributed computation. Distributed
programming is especially popular for scientific com-
puting tasks. The goal of this paper is to present
a foundational programming language for distributed
computing. Scientific computing tasks often require
the physical distribution of computational resources
and sensing instruments. To be relevant, our language
must address both the mobility of code and the locality
of fixed resources.

Due to aesthetic considerations, we wish to take a
propositions-as-types interpretation of an appropriate
logic to form the basis of our programming language.
Moreover, since the type systems of realistic languages
such as ML and Haskell come from the same source,
our constructs will smoothly integrate with such lan-
guages. We argue that intuitionistic modal logic forms
an excellent basis for distributed computing because of
its ability to represent spatial reasoning.

Just as propositional logic is concerned with truth,
modal logic is concerned with truth relative to differ-
ent worlds. The worlds are related by an accessibility
relation whose properties distinguish different modal
logics. We will explain our choice of accessibility rela-
tion below.

Modal logic is generally concerned with two forms
of propositions 2A, meaning that A is true in every
(accessible) world, and 3A, meaning that A is true in
some (accessible) world. Our computational interpre-
tation realizes these worlds as the nodes in a network.
Because our model is a computer network where all
nodes can communicate with each other equally, we
choose an accessibility relation that is reflexive, sym-
metric, and transitive, which leads to the intuitionistic
modal logic IS5 [15]. A value of type 2A represents
mobile code of type A that can be executed at any
world; a value of type 3A represents the address of a
remote value of type A. To illustrate our interpreta-
tion, we present some characteristic true propositions
in IS5 and their intuitive justifications.

2A ⊃ A – Mobile code can be executed.

2A ⊃ 22A – Mobile code is itself mobile.

A ⊃ 3A – We can create an address for any value.

33A ⊃ 3A – We can obtain a remote address.

3A ⊃ 23A – Addresses are mobile values.

32A ⊃ 2A – We can obtain a remote mobile value.

The last two provable propositions are especially rel-
evant, and are only true because our accessibility rela-
tion is symmetric. These theorems are actually some
standard axioms for a Hilbert-style presentation of IS5.
We opt for a judgmental presentation, so all of these

are provable propositions in Lambda 5. In section 4.1
we look at the actual proof terms for some of these
sentences and their computational content.

On the other hand, the following are not provable:
6` A ⊃ 2A – Not all local values are mobile.
6` 3A ⊃ A – We cannot obtain all remote values.
Simpson, in his Ph.D. thesis [15], provides an ac-

count of intuitionistic modal logic based on a generic
multiple-world semantics. Two aspects prevent us from
using his formulation directly. First, his system is gen-
eralized to support accessibility relations that are ar-
bitrary geometric theories. For our use of IS5, there
is no useful computational content to a proof that two
worlds are related. We therefore dispense with judg-
ments of the accessibility relation and simply collect a
list of worlds that are mutually interaccessible.

The second issue requires a more significant change.
Simpson’s rules act non-locally in the sense that they
often use assumptions from one world to conclude facts
in another world. This leads to proof terms that are
inefficient at best, and at worst do not even fit our com-
putational model. (In section 4.5 we make this com-
parison concrete.) Our solution here is to decompose
the rules for the 2 and 3 connectives into restricted
rules that act locally, and motion rules which extend
our reasoning across world boundaries. In doing so we
nonetheless preserve the duality of the connectives and
the desirable logical qualities, as demonstrated in sec-
tion 3.

The remainder of the paper proceeds as follows. We
begin the first half by presenting our logic in judgmen-
tal style and proving standard properties about it. We
then present a sequent calculus based on Simpson’s IS5
which admits cut and is equivalent to our system of nat-
ural deduction. This yields a strong normal form theo-
rem for our system of natural deduction, validating its
design. In the second half of the paper we present the
operational semantics of Lambda 5 based on a network
abstraction. For this semantics we show type safety
and present several examples. We conclude with a dis-
cussion of related work and plans for the future.

In this extended technical report we provide
interesting cases of the proofs. Most proofs
have been mechanized in the Twelf system [12]
and verified using its metatheorem checker [14].
They appear in appendix B and electronically at
http://www.cs.cmu.edu/~concert/.

2 Judgmental Lambda 5

Recall that our logic expresses truth relative to worlds.
Following Martin-Löf [8], we employ the notion of a hy-
pothetical judgment, which is an assertion of judgment
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Ω; Γ, A@ω ` A′@ω

Ω; Γ ` A ⊃ A′@ω
⊃ I

Ω; Γ ` A′@ω
Ω; Γ ` A′ ⊃ A@ω

Ω; Γ ` A@ω
⊃ E

ω ∈ Ω
Ω; Γ, A@ω, Γ′ ` A@ω

hyp

ω′ fresh Ω, ω′; Γ ` A@ω′ ω ∈ Ω

Ω; Γ ` 2A@ω
2I

Ω; Γ ` 2A@ω

Ω; Γ ` A@ω
2E

ω ∈ Ω Ω; Γ ` 3A@ω′

Ω; Γ ` 3A@ω
get

ω′ fresh Ω; Γ ` 3A@ω
Ω, ω′; Γ, A@ω′ ` B@ω

Ω; Γ ` B@ω
3E

Ω; Γ ` A@ω

Ω; Γ ` 3A@ω
3I

ω ∈ Ω Ω; Γ ` 2A@ω′

Ω; Γ ` 2A@ω
fetch

Figure 1: Lambda 5 natural deduction

under certain assumptions. The judgments that cap-
ture our notion of truth at a particular world have the
form

Ω; Γ ` A true @ω

This judgment expresses that under the assumptions
in Γ and Ω, the proposition A is true at the world ω.
Γ is a set of assumptions of the form xi : Ai true @ωi

where all variables xi are distinct. Reasoning about
truth at worlds requires reasoning about worlds. For
S5, the only thing we need to know about a world is
that it exists, so Ω is a set of assumptions of the form
ωi exists where all variables ωi must be distinct. How-
ever, we elide “true” and “exists” when writing judg-
ments for brevity. We only consider judgments that
are well-formed in the following sense: All world vari-
ables that appear attached to assumptions or in the
conclusion are present in Ω.1

We define the meaning of our logical connectives
by way of introduction (marked I) and elimination
(marked E) rules. Introduction rules state the condi-
tions under which a formula involving the connective is
true. Elimination rules state how we can use a formula
involving the connective whose truth we know. As dis-
cussed earlier, we have in addition special rules that
encapsulate the mobility of certain connectives, which
also contribute to the definition of their meaning.

We consider only implication (⊃), necessity (2) and
possibility (3). As discussed in section 5, conjunction
and truth are easy to support, while disjunction and
falsehood require further consideration for a satisfac-
tory operational semantics.

The entire natural deduction system is given in fig-
ure 1. The hypothesis rule and rules for implication
are standard. They act locally in the sense that the
world ω remains the same everywhere.

1We could ensure this as a theorem by adding a well-
formedness condition on Γ under Ω in the hypothesis rule. To
simplify the discussion we take the common shortcut of ruling
out ill-formed contexts from the beginning.

In order to prove that a proposition is true every-
where, we prove its truth at a hypothetical world where
nothing is known but its existence. This explains the 2

introduction rule. The 2 elimination rule states that if
2A is true here (meaning A is true everywhere) then A
is true here. Note that 2E is different from Simpson’s
corresponding rule and only strong enough in conjunc-
tion with the fetch rule explained below.

For 3 we have the dual situation. If A holds here,
then we know it is true somewhere; this is 3 introduc-
tion. The 3 elimination rule states that if we know 3A,
then we can reason as if A holds at some hypothetical
world about which nothing else is known. Both of these
rules have unusual restrictions when compared to other
systems: in 3I the premise and conclusion are at the
same world; in 3E the first and second premise (and
therefore also the conclusion) are at the same world.

Finally, we have rules that explicitly represent the
mobility of 2 and 3 terms. The fetch rule states that
if 2A holds at ω, then it holds at another world ω′,
provided that ω′ exists. In other words, if A is true
everywhere from the perspective of one world, then it
is true everywhere from the perspective of any other
world. Similarly, get states that if A is true somewhere
from the perspective of one world, then it is also true
somewhere from the perspective of any other existing
world.

It’s worth noting that get and fetch are the source
of symmetry in Lambda 5. They are what allow us
to prove the characteristic S5 axioms 32A ⊃ 2A and
3A ⊃ 23A. Operationally, all communication on the
network will be encapsulated in these two rules.

Because we have a hypothetical judgment, we expect
to have a substitution principle that allows us to “fill
in” assumptions with proofs.

Theorem 1 (Substitution)
If D::Ω; Γ ` A@ω
and E ::Ω; Γ, A@ω ` B@ω′

then F ::Ω; Γ ` B@ω′.
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Proof is by structural induction on the derivation E ,
omitted here.

Similarly, because we have assumptions about the
existence of worlds, we have a world substitution prin-
ciple, which is also a theorem of our logic.

Theorem 2 (World Substitution)
If ω′ ∈ Ω
and E :: Ω, ω; Γ ` A@ω′′

then F :: [ω′/ω](Ω; Γ ` A@ω′′)

Here we mean the substitution to apply to the en-
tire judgment, particularly the world in the conclusion.
Proof is again by structural induction on E , omitted
here.

We also have the familiar principles of weakening
and contraction, for both world and truth assumptions.

For each connective, we require the properties of lo-
cal soundness and completeness. Local soundness en-
sures us that our elimination rules are not too strong—
if we introduce a connective and then immediately
eliminate it, we can find justification for our conclu-
sion. This is also called a local reduction.

The reduction for 2 is as follows:

D..
Ω, ω, ω′; Γ ` A@ω′

Ω, ω; Γ ` 2A@ω
2I

Ω, ω; Γ ` A@ω
2E

⇒R

[ω/ω′]D
..

Ω, ω; Γ ` A@ω

If we derive A at a hypothetical fresh world ω′ (calling
this derivation D), and then use 2A to conclude A@ω,
we can reduce this to a direct use of D by our world
substitution principle, abbreviated here as [ω/ω′]D.

The reduction for 3 is similar, employing both world
and regular substitution:

D..
Ω; Γ ` A@ω

Ω; Γ ` 3A@ω
3I

E..
Ω, ω′; Γ, x:A@ω′ ` B@ω

Ω; Γ ` B@ω
3E

⇒R

[D/x][ω/ω′]E
..

Ω; Γ ` B@ω

Here we write [D/x] for an application of the substi-
tution principle to [ω/ω′]E , which is itself the result of
world substitution.

Note that neither local reduction accounts for the
motion rules get and fetch. The global soundness prop-
erty in section 3 shows that this is not problematic.
We omit the standard reduction for ⊃. Note that un-
der the Curry-Howard isomorphism the action of the

local reductions on proof terms forms the core of the
operational semantics.

The counterpart to local soundness is local com-
pleteness. This ensures that our elimination rules are
not too weak—if we have a derivation of a formula us-
ing the connective, we can apply our elimination rules
in such a way as to reintroduce the formula. The pro-
cess is known as a local expansion. The expansion for
2 is as follows:

D..
Ω, ω; Γ ` 2A@ω

⇒E

D..
Ω, ω, ω′; Γ ` 2A@ω

Ω, ω, ω′; Γ ` 2A@ω′
fetch

Ω, ω, ω′; Γ ` A@ω′
2E

Ω, ω; Γ ` 2A@ω
2I

If we have a derivation of 2A (D) we can reintroduce
2A by fetching it into the hypothetical world ω′ about
which nothing else is known, which is enough to apply
2I . The expansion for 3 is similar:

D..
Ω, ω; Γ ` 3A@ω

⇒E

D..
Ω, ω; Γ ` 3A@ω

Ω, ω, ω′; Γ, A@ω′ ` A@ω′
hyp

Ω, ω, ω′; Γ, A@ω′ ` 3A@ω′
3I

Ω, ω, ω′; Γ, A@ω′ ` 3A@ω
get

Ω, ω; Γ ` 3A@ω
3E

If we have a derivation of 3A (D) we can reintroduce
3A by learning A at some hypothetical ω′ via 3E, then
reintroducing 3A there and moving it back to ω.

Again, we omit the expansion for ⊃, which is stan-
dard. As implied by their names, local soundness and
completeness give us only a local guarantee that our
logic makes sense. In fact, local soundness is weaker
than usual because of our motion rules. Though we
see that 2I followed by 2E is justified, what about an
intervening sequence of fetch rules? The global check
comes by way of equivalence to an appropriate sequent
calculus. Because sequent calculus proofs have a par-
ticular form, this gives us immediate theoretical and
philosophical results. The following section proves this
correspondence. The operational interpretation (sec-
tion 4) does not depend on it.
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Ω; Γ, A ⊃ B@ω −→ A@ω
Ω; Γ, A ⊃ B@ω, B@ω −→ C@ω′

Ω; Γ, A ⊃ B@ω −→ C@ω′
⊃ L

Ω; Γ, A@ω −→ B@ω

Ω; Γ −→ A ⊃ B@ω
⊃ R

Ω, ω; Γ, A@ω −→ A@ω
init

ω′ fresh Ω, ω′; Γ, 3A@ω, A@ω′ −→ C@ω′′

Ω; Γ, 3A@ω −→ C@ω′′
3L

Ω, ω; Γ −→ A@ω′

Ω, ω; Γ −→ 3A@ω
3R

Ω, ω′; Γ, 2A@ω, A@ω′ −→ C@ω′′

Ω, ω′; Γ, 2A@ω −→ C@ω′′
2L

ω′ fresh Ω, ω, ω′; Γ −→ A@ω′

Ω, ω; Γ −→ 2A@ω
2R

Figure 2: Sequent calculus SS5

3 Sequent Calculus

We establish a (cut-free) sequent calculus SS5 with the
following basic judgment:

Ω; Γ −→ A@ω

This judgment states that with truth assumptions Γ
and world assumptions Ω, the proposition A is true at
ω. The rules of the sequent calculus SS5 are given in
figure 2. Note that this calculus admits non-local rea-
soning in the 2L and 3R rules, and lacks the motion
rules from natural deduction. It is a version of Simp-
son’s L23(T ) specialized to the case of interaccessible
worlds (IS5).

The sequent calculus still admits world substitution,
which is straightforward and therefore omitted here.
It is also immediate to prove that weakening and con-
traction are admissible rules which do not change the
structure of a derivation. The substitution principle for
derivations turns into the admissibility of cut, which
states that a proof of A@ω licenses us to use A@ω as
a hypothesis.

Theorem 3 (Admissibility of Cut (SS5))
If D :: Ω; Γ −→ A@ω
and E :: Ω; Γ, A@ω −→ B@ω′

then F :: Ω; Γ −→ B@ω′.

The proof proceeds by lexicographic induction on
(in order) the cut formula A, the derivation D, and
the derivation E , following Pfenning [10]. This proof
is new2 and appears in machine checkable form in ap-
pendix B. We present a few characteristic cases here.

We must check each possible combination of rules
used to conclude D and rules used to conclude E . (In
practice we do not need to look at all n2 cases since
many can be dealt with schematically.) Each pair takes
on one of the following forms, for which we provide a
representative case.

2Simpson [15] used an indirect proof via natural deduction

Initial Cuts If D or E is an initial sequent, we
proceed directly.

Example: Suppose D is any derivation and

E =Ω, ω; Γ, A@ω −→ A@ω
init

. Then F = D.

Left-Commutative Cuts If D ends with a use of
a left rule, we appeal to the induction hypothesis on
the same cut formula but a smaller left derivation. We
then re-apply the left rule to the cut-free proof.

Example:

D =

D′

..
Ω′, ω3; Γ′, 2C@ω′′, C@ω3 −→ A@ω

Ω′, ω3; Γ′, 2C@ω′′ −→ A@ω
2L

E arbitrary

Then

F =

IH(D′, weaken-Γ(E))
..

Ω, ω3; Γ′, 2C@ω′′, C@ω3 −→ B@ω′

Ω, ω3; Γ′, 2C@ω′′ −→ B@ω′
2L

Right-Commutative Cuts Similarly, if E ends
with a use of a right rule, or a left rule acting on some-
thing other than the cut formula A, then we have a
right commutative case. We appeal to the induction
hypothesis on the same A but smaller right derivation,
and then re-apply the rule to the cut-free proof.

Example:

D arbitrary

E =

E ′

..
Ω′, ω′; Γ, A@ω −→ C@ω′′

Ω′, ω′; Γ, A@ω −→ 3C@ω′
3R
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Then

F =

IH(D, E ′)
..

Ω′, ω′; Γ −→ C@ω′

Ω′, ω′; Γ −→ 3C@ω′
3R

Principal Cuts If the derivation D just concluded
the cut formula A with a right rule and the derivation
E just made use of A with the corresponding left rule,
then we have a principal cut. Our strategies differ de-
pending on the connective in question, but we always
appeal to the inductive hypothesis on A (but smaller
derivations D and E) and then on subformulas of A
and larger derivations. Because these are the most in-
teresting cases we show both the 2 and 3 principal
cuts.

Example 1:

D =

D′

..
Ω, ω, ω′′, ω3; Γ −→ A@ω3

Ω, ω, ω′′; Γ −→ 2A@ω
2R

E =

E ′

..
Ω, ω, ω′′; Γ, 2A@ω, A@ω′′ −→ B@ω′

Ω, ω, ω′′; Γ, 2A@ω −→ B@ω′
2L

1. Ω, ω, ω′′; Γ, A@ω′′ −→ 2A@ω (weakening D)
2. Ω, ω, ω′′; Γ, A@ω′′ −→ B@ω′ (IH(1,E ′))
3. Ω, ω, ω′′; Γ −→ A@ω′′ ([ω′′/ω3]D′)
4. Ω, ω, ω′′; Γ −→ B@ω′ (IH(3, 2, A@ω))

The final appeal to the induction hypothesis is jus-
tified by the smaller cut formula.

Example 2:

D =

D′

..
Ω, ω; Γ −→ A@ω3

Ω, ω; Γ −→ 3A@ω
3R

E =

E ′

..
Ω, ω, ω′′; Γ, 3A@ω, A@ω′′ −→ B@ω′

Ω, ω; Γ, 3A@ω −→ B@ω′
3L

1. Ω, ω, ω′′; Γ, A@ω′′ −→ 3A@ω (weakening D)
2. Ω, ω, ω′′; Γ, A@ω′′ −→ B@ω′ (IH(1, E ′))
3. Ω, ω; Γ, A@ω3 −→ B@ω′ ([ω3/ω′′]2)
4. Ω, ω; Γ −→ B@ω′ IH(D′, 3, A@ω3)

World substitution in step 3 requires that ω3 ∈ Ω.
This is justified by our restriction of judgments to those

where all mentioned world variables appear in Ω. Our
appeal to the induction hypothesis in step 4 is again
justified by the reduction in size of the cut formula. 2

Each rule in the sequent calculus, when read
bottom-up, proceeds by decomposing the principle con-
nective of a proposition of the sequent in the antecedent
(by a left rule) or the succeedent (by a right rule).
Unlike natural deduction, a sequent derivation there-
fore embodies what Martin-Löf calls a verification: a
canonical proof of a proposition which proceeds only by
analysis of the proposition to be proved. This gives us
an important orthogonality condition: we can extend
or limit our logic to different sets of connectives with-
out affecting the provability of propositions involving
those connectives.

It is now a relatively simple matter to validate the
correctness of our natural deduction system. First, we
have to show that every proposition that has a verifi-
cation, has a verification where the init rule is applied
only to atomic propositions (theorem 4). Second, we
have to show that every proposition that has a proof
(in natural deduction) has a verification (in the sequent
calculus). This (theorem 5) is the global analogue of
the local soundness property.

Theorem 4 (Global Completeness)
For any A,
Ω, ω; Γ, A@ω −→∗ A@ω.

In −→∗, the init rule is replaced with

Ω, ω; Γ, p@ω −→∗ p@ω
initp

where p is an atomic proposition. Proof is by induction
on the structure of A. For example:

Case A = 2B.

IH(B)
..

Ω, ω, ω′; Γ, 2B@ω, B@ω′ −→∗ B@ω′

Ω, ω, ω′; Γ, 2B@ω −→∗ B@ω′
2L

Ω, ω; Γ, 2B@ω −→∗
2B@ω

2R

Global completeness is the global analogue of the lo-
cal completeness property, because it ensures that the
left rules are strong enough to decompose and recon-
stitute any proposition.

Theorem 5 (Equivalence of Lambda 5 and SS5)

Ω; Γ ` A@ω iff Ω; Γ −→ A@ω.

Each direction is proved by structural induction on
the input derivation. In the Lambda 5 to SS5 direction,
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we use the cut theorem for SS5. The interesting cases
come from the mismatch between the rules for 2 and
3 in the two systems. We provide a few cases here and
again note that the proof is given in machine-checkable
form in appendix B.

If D :: Ω; Γ ` A@ω then F :: Ω; Γ −→ A@ω.
Case 1:

D =

D′

..
Ω, ω; Γ ` 2A@ω′

Ω, ω; Γ ` 2A@ω
fetch

Then let

E =

Ω, ω, ω′′; Γ, 2A@ω′, A@ω′′ −→ A@ω′′
init

Ω, ω, ω′′; Γ, 2A@ω′ −→ A@ω′′
2L

Ω, ω; Γ, 2A@ω′ −→ 2A@ω
2R

1. Ω, ω; Γ −→ 2A@ω′ (IH D′)
2. Ω, ω; Γ −→ 2A@ω (cut(1, E))

Case 2:

D =

D′

..
Ω, ω; Γ ` 3A@ω′

Ω, ω; Γ ` 3A@ω
get

Then let

E =

Ω, ω, ω′′; Γ, 3A@ω′, A@ω′′ −→ A@ω′′
init

Ω, ω, ω′′; Γ, 3A@ω′, A@ω′′ −→ 3A@ω
3R

Ω, ω; Γ, 3A@ω′ −→ 3A@ω
3L

1. Ω, ω; Γ −→ 3A@ω′ (IH D′)
2. Ω, ω; Γ −→ 3A@ω (cut(1, E))

The remainder of the cases are straightforward given
the cut theorem. 2

If D :: Ω; Γ −→ A@ω then Ω; Γ ` A@ω
Case 1:

D =

D′

..
Ω, ω′; Γ, 2A@ω, A@ω′ −→ C@ω′′

Ω, ω′; Γ, 2A@ω −→ C@ω′′
2L

Then let

E =

Ω, ω′; Γ, 2A@ω ` 2A@ω
hyp

Ω, ω′; Γ, 2A@ω ` 2A@ω′
fetch

Ω, ω′; Γ, 2A@ω ` A@ω′
2E

1. Ω, ω′; Γ, 2A@w, A@ω′ ` C@ω′′ (IH D′)
2. Ω, ω′; Γ, 2A@w ` C@ω′′ (subst(E , 1))

Case 2:

D =

D′

..
Ω, ω; Γ −→ A@ω′

Ω, ω; Γ −→ 3A@ω
3R

Then

F =

D′

..
Ω, ω; Γ ` A@ω′

Ω, ω; Γ ` 3A@ω′
3I

Ω, ω; Γ ` 3A@ω
get

Case 3:

D =

D′

..
Ω, ω′; Γ, 3A@ω, A@ω′ −→ C@ω′′

Ω; Γ, 3A@ω −→ C@ω′′
3L

Then

F =

Ω; Γ, 3A@ω ` 3A@ω
hyp

Ω; Γ, 3A@ω ` 3A@ω′′
get

F ′

Ω; Γ, 3A@ω ` C@ω′′
3E

Where

F ′ =

IH(D′)
..

Ω, ω′; Γ, 3A@ω, A@ω′ ` C@ω′′

The remainder of the cases are straightforward given
the substitution principle. 2

In this proof the dualities between 2 and 3 are
somewhat obscured. First note that the case for 2R
(not shown) is immediate by induction, whereas the
case for 3R requires an intervening get. Because the
2R rule’s premise is at a new hypothetical world we
could think of it as being non-local reasoning, and in-
sert a fetch, making the duality clear. This simply leads
to slightly longer proofs. Secondly, the 2L rule requires
a substitution while the 3L rule does not. This is sim-
ply because the let form of 3 elimination has a built-in
substitution. We could have equivalently considered a
let form for 2E, which would have made these cases
match up.

We can exploit the computational content of this
meta-theoretic proof to translate an arbitrary natu-
ral deduction to the sequent calculus and then back.
Analysis of the proofs of theorem 5 shows that the re-
sulting natural deduction will satisfy a strong normal
form. This normal form satisfies the subformula prop-
erty and can be constructed using only introduction
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rules bottom-up and only elimination rules top-down
until an assumption matches the conclusion. More-
over, the fetch rule needs to be used only immediately
above a 2E rule. Similarly, the get rule needs to be
used only immediately before the left premise of a 3E
rule or immediately below a 3I rule. Therefore we
claim that the decomposition of the introduction and
elimination rules into local rules and movement rules
has not destroyed the logical reading of deductions.

The sequent calculus makes it easy to see consis-
tency: some propositions are not provable. Working
bottom-up, we see that the proposition A ⊃ 2A is un-
provable after applying ⊃ R and 2R, and being left
with no rules to continue. Similarly, after an appli-
cation of ⊃ R and 3L, we see that 3A ⊃ A is also
unprovable. Decidability of IS5 is another easy conse-
quence [15].

In order to bridge the gap from logic to program-
ming language, we give a proof term assignment to
Lambda 5 natural deduction in the next section, which
is then given a distributed operational semantics.

4 Operational Interpretation

We can associate a programming language with our
logic by viewing propositions as types and proofs of
those propositions as programs.

Our operational semantics defines an abstract ma-
chine: a network and the steps of computation of a
program distributed among its nodes. Because we fo-
cus on distributed—as distinguished from concurrent—
computation, our abstract machine is sequential and
deterministic. The network consists of a fixed number
of hosts named wi. Each world has associated with it
some state describing its execution context (explained
later) and a table. This table stores mappings from
labels ` to values. These labels, when paired with the
world name, form a portable address that others can
use to refer to this value.

Before we describe this machine in detail, we add
proof terms to the natural deduction system from sec-
tion 2 (figure 3). These proof terms form the external
language of Lambda 5. As remarked previously, we
give the following computational interpretation to our
connectives. As usual, values of type A ⊃ B are func-
tions from A to B. Values of type 2A are pieces of
quoted code that can be run anywhere to produce a
value of type A. A value of 3A takes the form w.`—a
pair of a world name and label. This is an address of
a table entry at w containing a value of type A.

The proof term for 2I is box ω′.M . It binds the
world variable ω′ within M , which must be well-typed
at ω′. We do not attempt to evaluate under the box .

Straightforwardly, unbox instantiates the hypothetical
world with the actual current world and then evalu-
ates the contents of the box . The term fetch[ω′]M
performs a remote procedure call (RPC), executing the
code M at ω′ and then retrieving the resulting value,
which must have 2 type.

The introduction form for 3 is hereM . Opera-
tionally, we will evaluate the term M and insert the
value in a table at the current world. It will be given a
new label, and the address will be w.`. The elimination
form, letdω.x = M inN , evaluates M to one of these
pairs, and then binds variables for the label and world
for the purposes of evaluating N . World-label pairs
make sense globally, so we are able to retrieve them
with get 〈ω′〉M , which behaves as fetch but returns a
value of 3 type.

Note that in both RPC forms we must send the term
M to the remote host. Though this term has 2 or 3

type, it is an arbitrary expression, not yet a box or w.`.
In this sense all code must be “mobile;” however, we
are able to distinguish between mobile code that can
be transmitted to only one location (A@ω) and code
that is universally mobile (2A).

In order to ground our discussion of the operational
machinery, we present in the next section some exam-
ples of Lambda 5 programs and their intended behav-
ior.

4.1 Examples

As examples, we revisit several of the axioms informally
explained in the introduction.

Let’s look again at the symmetry axiom 32A ⊃ 2A.
We consider this our key example, because it encapsu-
lates the notion of moving mobile code from some other
location to our location. Here is a Lambda 5 proof term
for it:

λx. letdω.y = x infetch[ω] y

This term deconstructs the diamond to learn the
world at which the mobile code exists, and then fetches
it to the current world.

The axiom (3A ⊃ 2B) ⊃ 2(A ⊃ B) is provable in
any intuitionistic modal logic, regardless of the accessi-
bility relation.3 Here is the proof term, assuming that
it lives at ω.

λf. box ω′.λy.
unbox(fetch[ω](f(get 〈ω′〉 herey)))

3However, it is not provable in constructive modal logics such
as the judgmental S4 due to Pfenning and Davies [11] where
necessity is taken to mean provability with no assumptions.
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Ω; Γ, x : A@ω ` M : A′@ω

Ω; Γ ` λx.M : A ⊃ A′@ω
⊃ I

Ω; Γ ` N : A′@ω
Ω; Γ ` M : A′ ⊃ A@ω

Ω; Γ ` MN : A@ω
⊃ E

ω ∈ Ω
Ω; Γ, x : A@ω, Γ′ ` x : A@ω

hyp

ω′ fresh Ω, ω′; Γ ` M : A@ω′ ω ∈ Ω

Ω; Γ ` box ω′.M : 2A@ω
2I

Ω; Γ ` M : 2A@ω

Ω; Γ ` unboxM : A@ω
2E

ω ∈ Ω Ω; Γ ` M : 3A@ω′

Ω; Γ ` get 〈ω′〉M : 3A@ω
get

ω′ fresh Ω; Γ ` M : 3A@ω
Ω, ω′; Γ, x : A@ω′ ` N : B@ω

Ω; Γ ` letdω′.x = M inN : B@ω
3E

Ω; Γ ` M : A@ω

Ω; Γ ` hereM : 3A@ω
3I

ω ∈ Ω Ω; Γ ` M : 2A@ω′

Ω; Γ ` fetch[ω′]M : 2A@ω
fetch

Figure 3: Lambda 5 external language

This proof is a bit surprising. We take f , which lives
at ω. The boxed code takes y : A, which lives at ω′.
We then switch back to ω in order to apply f ; to do so
we get a 3A from ω′. This back-and-forth is inevitable
because we cannot apply f until 3A is true, and 3A is
only true once we begin to prove the boxed conclusion.

Let’s take a look at the “shortcut” axiom 33A ⊃
3A.

λr. letdω′.x = r inget 〈ω′〉x

The program simply follows 33A to the place where
3A is true, and retrieves that address with get.

The other symmetry axiom 3A ⊃ 23A has two
different proofs that are each interesting. These proof
terms are well-typed at ω:

1. λx. letdω′.y = x
inbox ω′′. get 〈ω′〉(here y)

2. λx. box ω′. get 〈ω〉 x

In the first proof, we deconstruct the diamond and
republish it at ω′ each time the box is opened. This
keeps ω out of the loop at the expense of redundant
table entries. In the second proof, we do not republish
the address but simply get it from ω.

In section 4.5 we justify our decomposition by com-
paring some of these proof terms to a hypothetical sys-
tem where the rules act non-locally.

4.2 Local Reductions and Expansions

With Proof Terms

We can repeat the local reductions and expansions from
section 2 in the presence of proof terms. The reductions
form the basis of our operational semantics, so it is in-
teresting to see the computational principles involved.
The reduction for 2 is as follows:

D..
Ω, ω, ω′; Γ ` M : ω′@

Ω, ω; Γ ` box ω′.M : 2A@ω
2I

Ω, ω; Γ ` unboxbox ω′.M : A@ω
2E

⇒R

[ω/ω′]D
..

Ω, ω; Γ ` [ω/ω′]M : A@ω

Boxing simply abstracts over a world, which unbox-
ing fills in with the current world.

The reduction for 3 is:

D..
Ω; Γ ` M : A@ω

Ω; Γ ` hereM : 3A@ω
3I

E..
Ω, ω′; Γ, x:A@ω′ ` N : B@ω

Ω; Γ ` letdω′.x = hereM inN : B@ω
3E

⇒R

[D/x][ω/ω′]E
..

Ω; Γ ` [M/x][ω′/ω]N : B@ω

Here we substitute the actual world ω at which the
expression M exists for the hypothetical world ω′. We
also substitute the expression M for the bound variable
x.

The expansion for 2 is as follows:

D..
Ω, ω; Γ ` M : 2A@ω

⇒E

D..
Ω, ω, ω′; Γ ` M : 2A@ω

Ω, ω, ω′; Γ ` fetch[ω]M : 2A@ω′
fetch

Ω, ω, ω′; Γ ` unbox fetch[ω]M : A@ω′
2E

Ω, ω; Γ ` box ω′. unbox fetch[ω]M : 2A@ω
2I

8



D..
Ω, ω; Γ ` M : 3A@ω

⇒E

D..
Ω, ω; Γ ` M : 3A@ω E

Ω, ω; Γ ` letdω′.x = M inget〈ω′〉 herex : 3A@ω
3E

where E =

Ω, ω, ω′; Γ, x:A@ω′ ` x : A@ω′
hyp

Ω, ω, ω′; Γ, x:A@ω′ ` herex : 3A@ω′
3I

Ω, ω, ω′; Γ, x:A@ω′ ` get〈ω′〉 herex : 3A@ω
get

In each of these expansions, we simply wrap the
proof term with the primitives that eliminate and then
reintroduce it.

Having justified Lambda 5 as a logic, we now switch
gears to its interpretation as a type system for a dis-
tributed programming language.

4.3 Type System

The syntax of our type system and operational seman-
tics is given in figure 4. As mentioned, we give specific
names, w, to hosts in our network. Because we still
have hypothetical worlds ω (for the introduction of 2

or elimination of 3), we have world expressions (writ-
ten as a Roman w) which range over both ω and w.

The class of expressions is the same as proof terms
in our logic except for the appearance of labels `. We
have seen labels as a component of an address of type
3A. These values of diamond type are well-typed at
any world. In comparison, “disembodied” labels ` are
well-typed only in the world where their table lives.
For example, suppose there is a resource of type A in
the table at world w1. If the label ` refers to that
resource, then it will have type A@w1. On the other
hand, the address w1.` can have type 3A@w2—at a
different world.

As a result, a term that is physically present at
one node may nonetheless contain components that are
only well typed at other worlds. One consequence of
our safety theorem is that these subterms will only be
evaluated in the appropriate worlds!

The tables at each world (b) are just mappings from
labels to values. The type of these tables is τ , a map-
ping from labels to types.

Our abstract machine is continuation based. For in-
stance, an attempt to evaluate an application MN will
result in a ◦ N frame being pushed onto the contin-
uation. This continuation expects a lambda value, at
which point it will begin evaluating N . New in our

system is the idea that continuations can span multi-
ple worlds. This arises from the RPC mechanisms. For
instance, suppose we evaluate fetch[w′]M at w. To
do so, we suspend our current work at w and begin a
new continuation on w′ to evaluate M . The bottom
of this continuation will be returnw, which awaits a
value to return to our old continuation at w.

Because RPCs can be reentrant in the sense that
code we invoke in one world may in turn invoke code
back in the original world, we may have multiple out-
standing continuations. However, because the compu-
tation is serial, a stack of pending continuations suf-
fices. So, a continuation k is a stack of frames f with
either returnw or finish at its bottom. A continua-
tion stack C is simply a list of pending continuations.
The continuation finish is the very bottom of the en-
tire network-wide continuation, and when reached rep-
resents the final answer of our program.

Now we can discuss network configurations. A con-
figuration

�
is a mapping from world constants to their

current continuation stacks and tables. The configura-
tion changes as a program is executed; the continuation
stacks grow and shrink, and the table monotonically
accumulates new values. However, the domain of

�

remains constant.

A network state � is a configuration paired with a
cursor. The cursor is of the form w : [k, M ] and repre-
sents the current focus of computation. The expression
M is currently pending evaluation, the continuation k
is the currently active continuation, and the world w
is where the computation is taking place. The world w
must of course be in the configuration, but the contin-
uation k does not appear in that world’s continuation
stack.

The final point of the syntax is the configuration
type Σ. This simply describes the “type” of the net-
work by mapping world constants to table types.

The natural deduction system given in figure 3, with
proof terms, can be thought of as the type system for
the external language of Lambda 5 programs. How-
ever, we must extend this type system to talk about
networks, tables, and continuations in order to state
properties about our abstract machine. To do this, we
need a number of new judgments.

The typing judgment Σ; Ω; Γ ` M : A@w simply
extends the natural deduction judgment to incorporate
config types and world expressions. The definition of
the well-formedness condition Σ; Ω ` w is in figure 5.
It is straightforward: world variables are well-formed
when they are in Ω and world names are well-formed
when they are in the domain of the configuration type
Σ. Also in this figure are the definitions of Σ ` ` : A@w
(which simply ensures that w’s entry in Σ maps ` to
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types A, B ::= 2A | A ⊃ B | 3B
configs

�
::= {w1 : 〈C1, b1〉, · · · }

networks � ::=
�

;w : [k, M ]
tables b ::= • | b, ` = v

config types Σ ::= {w1 : τ1, · · · ,wi : τi}
table types τ ::= • | τ, ` : A
world exps w ::= w | ω
world vars ω world names w

labels ` value vars x, y

values v ::= λx.M | box ω.M | w.`
cont stacks C ::= ? | C::k

conts k ::= returnw | finish | k � f
frames f ::= ◦ N | v ◦ | here◦ | unbox◦

| letdω.x = ◦ inN
exps M, N ::= v | MN | x | ` | fetch[w]M

| hereM | get 〈w〉M
| unboxM | letdω.x = M inN

Figure 4: Syntax of Lambda 5 type system

Σ; Ω, ω ` ω
wvar

1 ≤ j ≤ i

{w1 : τ1, . . . ,wi : τi}; Ω ` wj

wname

{w1 : τ1, · · · ,wj : (•, . . . , ` : A, . . . ), · · · ,wi : τi} ` ` : A@wj

label type

Σ; ·; · ` vj1 : Aj1@wj · · · Σ; ·; · ` vjm : Ajm@wj

Σ = {· · · ,wj : (•, `j1 : Aj1, . . . , `jm : Ajm), · · · }

Σ ` (•, `j1 = vj1, . . . , `jm = vjm)@wj

table type

Figure 5: Auxiliary Judgments: World well-formedness, label typing, table typing

A) and table well-formedness, Σ ` b@w. A table is
well-formed when it contains exactly the same labels
as its table type claims, and each of the values has the
correct type under Σ. We will define the continuation
typing judgment Σ `

�
; k : A@w, which says that the

continuation k (and configuration
�

) expects values of
type A at world w.

All of these judgments are used to conclude well-
formedness for an entire network state, which is writ-
ten Σ ` � . The type system reuses the rules from the
Lambda 5 external language (figure 3) with the fol-
lowing changes. First, we systematically change each
judgment of Ω; Γ ` M : A@ω to Σ; Ω; Γ ` M : A@w,
except in the 2I rule, where the premise must still be
concluded at the new hypothetical world ω′. Second,
world existence conditions ω ∈ Ω are replaced by the
world expression well-formedness condition Σ; Ω ` w.
Finally, we add a number of new rules from figures 6
and 7, including new typing rules for w.` and disem-
bodied `, called dia and lab.

Typing of continuations is fairly straightforward.
Recall that the judgment records the type expected by
the continuation, not the type it produces. The most
interesting rule is the rule for returnw. This rule en-
sures that the continuation stack at w is non-empty,
and that its outermost continuation expects the same

type as the return. Via this rule the continuation typ-
ing condition unwinds the entire network-wide contin-
uation. Also worth noting is that the finish contin-
uation is well-formed regardless of any junk that may
remain in the continuation stacks in the rest of the net-
work. (This is an arbitrary choice and does not affect
type safety.)

Σ = {w1 : τ1, · · · ,wi : τi} 1 ≤ j ≤ i�
= {w1 : 〈C1, b1〉, · · · ,wi : 〈Ci, bi〉}

Σ ` b1@w1 · · · Σ ` bi@wi

Σ; ·; · ` M : A@wj Σ `
�

; k : A@wj

Σ `
�

;wj : [k, M ]

Figure 7: Network typing

Finally, we have the network typing judgment (fig-
ure 7). The network

�
;wj : [k, M ] is well formed

under some config type Σ if several conditions hold.
Both

�
and Σ must have the same domain, and wj

must be in that domain. Each of the tables in
�

must
be well-formed, and there must exist a mediating type
A such that the current expression M has that type
and the current continuation k expects it.

With the typing rules in hand, we can give a dy-
namic semantics to network states that explains the
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Σ `
�

; finish : A@w

Σ `
�

; k : 3A@w

Σ `
�

; k � here◦ : A@w

Σ `
�

; k : A′@w Σ; ·; · ` N : A@w

Σ `
�

; k � ◦ N : A ⊃ A′@w

Σ ` ` : A@w Σ; Ω ` w

Σ; Ω; Γ ` w.` : 3A@w
dia

Σ `
�

; k : A@w

Σ `
�

; k � unbox◦ : 2A@w

Σ `
�

; k : B@w Σ; ω; x : A@ω ` N : B@w

Σ `
�

; k � letdω.x = ◦ inN : 3A@w

Σ ` ` : A@w
Σ; Ω; Γ ` ` : A@w

lab
Σ `

�
; k : B@w Σ; ·; · ` v : A ⊃ B@w

Σ `
�

; k � v ◦ : A@w

Σ ` {w′ : 〈C; b〉; ws}; k : A@w′

Σ ` {w′ : 〈C::k; b〉; ws}; returnw′ : A@w

Figure 6: Extended expression and continuation typing rules

evaluation of distributed programs. Our dynamic se-
mantics takes the form of a stepping relation 7→ that
relates pairs of network states. Its definition is given
in figure 8.

Much of the dynamic semantics is standard for a
continuation-based abstract machine. The reduction
rule for unbox (unbox-reduce) instantiates the mobile
code with the current world. When we encounter a
label (lookup), we look it up in the current world’s table
and proceed with that value. To publish a value (here-
reduce), we generate a new label and add the mapping
to our table. The resulting address is our current world
paired with the label.

The reduction for letd (letd-reduce) substitutes
both that world constant and the disembodied label
into the body of the letd. Note that our substitution
must work on expressions, namely labels. We can’t
evaluate ` yet because we are not necessarily in the
correct world.

Finally, the RPC rules are interesting. Evaluating a
fetch[w′]M at w (fetch-push) means saving the cur-
rent continuation at w, and beginning a new continua-
tion to evaluate M at w′ with returnw at its bottom.
The rule for get (get-push) is essentially the same. Re-
ducing returnw (return) simply moves the value to w,
resuming with its outermost continuation.

A programming language is only sensible if it is type
safe, that is, if a well-typed program has a defined
meaning in terms of evaluation on the abstract ma-
chine. In the next section we give the type safety the-
orem, which is proved in appendix A. We then give a
comparison to a hypothetical system where the rules
act non-locally.

4.4 Type Safety

Type safety is the conjunction of two properties,
progress (theorem 6) and type preservation (theo-
rem 7). Progress states that any well-formed network
state is either terminal (meaning it has successfully fin-
ished computation) or can make a step to a new net-

work state. Preservation states that any step we make
from a well-formed network results in a state that is
also well-formed. A network is terminal if it is of the
form

�
; w : [finish, v].4 We say that store types are

related as Σ ⊇ Σ′ if they have the same world con-
stants in their domains, and for each world the table
types τ = Σ(wi) and τ ′ = Σ′(wi) agree on the domain
of τ .

Theorem 6 (Progress)
If D :: Σ ` �
then either � is terminal or ∃ � ′ . � 7→ � ′ .

Theorem 7 (Preservation)
If D :: Σ ` � and E :: � 7→ � ′

then ∃Σ′,F .Σ′ ⊇ Σ and F :: Σ′ ` � ′ .

Proof of progress is by induction on the derivation
D. Proof of preservation is by induction on the deriva-
tion E with inversions on D. These proofs are given in
appendix A.

Therefore, a well typed program can make a step
(or is done), and steps to another well-typed program.
By iterating these two theorems it is easy to see that a
well-typed program can never become stuck. However,
as stated our type safety theorem does not guarantee
that the type of the final value sent to finish does not
change through the course of execution. To prove this
we can index the network well-formedness judgment
with the “final answer” type and modify the continua-
tion typing rule for finish without any change in the
preservation proof, observing that none of the transi-
tions modify this type.

4.5 Comparison

To justify our decomposition, we compare the proof
terms from section 4.1 to a hypothetical system “H5”
where the rules act non-locally (closely modeled after

4Again observe that we choose to not require continuations
in the configuration � to be empty.
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Ω; Γ, x : A@ω
H̀

M : A′@ω

Ω; Γ
H̀

λx.M : A ⊃ A′@ω
⊃ I

Ω; Γ
H̀

N : A′@ω
Ω; Γ

H̀
M : A′ ⊃ A@ω

Ω; Γ
H̀

MN : A@ω
⊃ E

ω ∈ Ω
Ω; Γ, x : A@ω, Γ′

H̀
x : A@ω

hyp

Ω, ω; Γ
H̀

M : 2A@ω′

Ω, ω; Γ
H̀
unboxfrom[ω′]M : A@ω

2E
ω′ fresh Ω, ω′; Γ

H̀
M : A@ω′ ω ∈ Ω

Ω; Γ
H̀
box ω′.M : 2A@ω

2I

ω′ fresh Ω; Γ
H̀

M : 3A@ω′′

Ω, ω′; Γ, x : A@ω′

H̀
N : B@ω

Ω; Γ
H̀
letdfrom 〈ω′′〉 ω′.x = M inN : B@ω

3E
Ω, ω′; Γ

H̀
M : A@ω

Ω, ω′; Γ
H̀
there 〈ω〉M : 3A@ω′

3I

Figure 9: Hypothetical system H5

Simpson’s system N23 [15]). It shares features with
calculi discussed in section 6.

The typing rules for H5 are given in figure 9. H5
has no get or fetch; instead it replaces here, unbox,
and letd with three new terms:

• there 〈ω〉M , which computes M of type A at ω and
then returns its address of type 3A;

• unboxfrom[ω]M , which computes M (of type 2A)
at ω, and then returns its value of type A;

• letdfrom 〈ω〉 ω′.y = M inN , which is like letd

except that it computes M (of type 3A) at ω instead
of locally.

In H5, the proof term of 32A ⊃ 2A@ω would be:

(H5)
λx. letdfrom 〈ω〉 ω′.y = x

in box ω′′. unboxfrom[ω] y

Note that this term is not moving the code at all!
Instead, it creates a new box that, when opened, will
unbox the code from the original world into the tar-
get world. This hardly fits our model of mobile code.
Moreover, the 3 elimination letdfrom allows its source
to be an arbitrary world, so we may end up calling
ourselves remotely. An implementation could optimize
local RPC, but it is better to enable purely local rea-
soning in the semantics itself.

The H5 proof term of 33A ⊃ 3A@ω is:

(H5)
λr. letdfrom 〈ω〉 ω′.x = r

in letdfrom 〈ω′〉 ω′′.y = x
in there 〈ω′′〉y

In addition to the self-RPC seen in the last term,
the H5 program is forced to deconstruct both diamonds
and reintroduce a direct address. This has the effect of
publishing A in the table at ω′′, where it already must
have been published!

5 Future Work

With the minimal set of connectives presented here,
our system has the same theorems as Simpson’s IS5.
This is because the accessibility relation in S5 is that
of equivalence classes. Although there may be more
than one equivalence class of worlds, disjoint classes
cannot affect each other. Now, Lambda 5 only supports
reasoning about a single class; the list of worlds in Ω.
Each IS5 theorem is proved at some world, and so we
can focus our attention on that world’s class and repeat
the proof in Lambda 5, discarding any assumptions
from other classes.

The addition of some other standard connectives like
∧ and > poses no problem. When introducing disjunc-
tive connectives like ⊥ and ∨, however, we must be
careful. Compare the elimination rule for 2 with the
elimination for ⊥ in Simpson’s IS5:

2A@ω ω R ω′

A@ω′
2E

⊥@ω
C@ω′

⊥E

Here, ω R ω′ if ω′ is accessible from ω. In order to
unbox from one world into another they must be in the
same equivalence class. However, if ⊥ is true at some
world then any proposition is true at any other world,
irrespective of their mutual (in)accessibility. Now our
argument above does not hold, because disjoint equiv-
alence classes may affect each other. In the presence
of ⊥ or ∨ we must make the slightly weaker claim that
IS5 and Lambda 5 have the same theorems under as-
sumptions about a single class only. This includes all
theorems of the form ω; · ` A@ω because all worlds
introduced in the proof of A@ω will be interaccessible
with ω.

Because ⊥ and ∨ reason non-locally, we require spe-
cial considerations in the operational semantics. False-
hood is simple: since there is no value of type ⊥E we
can initiate a remote procedure call which is known

12



app-push�
;w : [k, MN ] 7→

�
; w : [k � ◦ N ; M ]

app-flip�
;w : [k � ◦ N ; v] 7→

�
;w : [k � v ◦, N ]

app-reduce�
;w : [k � (λx.M)◦, v] 7→

�
;w : [k, [v/x]M ]

here-push�
;w : [k, hereM ] 7→

�
;w : [k � here◦, M ]

unbox-push�
;w : [k, unboxM ] 7→

�
; w : [k � unbox◦, M ]

return
{w : 〈C::k, b〉; ws};w

′ : [returnw, v] 7→
{w : 〈C, b〉; ws};w : [k, v]

fetch-push
{w : 〈C, b〉; ws};w : [k, fetch[w′]M ] 7→
{w : 〈C::k, b〉; ws};w

′ : [returnw, M ]

get-push
{w : 〈C, b〉; ws};w : [k, get 〈w′〉M ] 7→
{w : 〈C::k, b〉; ws};w

′ : [returnw, M ]

here-reduce
{w : 〈C, b〉; ws};w : [k � here◦, v] 7→
{w : 〈C; b, ` = v〉; ws};w : [k,w.`] (` fresh)

unbox-reduce�
;w : [k � unbox◦, box ω.M ] 7→�
;w : [k, [w/ω]M ]

lookup
{w : 〈C, b〉; ws};w : [k, `] 7→
{w : 〈C, b〉; ws};w : [k, v] (b(`) = v)

letd-push�
;w : [k, letdω.x = M inN ] 7→�
;w : [k � letdω.x = ◦ inN, M ]

letd-reduce�
;w : [k � letdω.x = ◦ inN,w′.`] 7→�
;w : [k, [`/x][w′/ω]N ]

Figure 8: Dynamic Semantics

never to return. For ∨, the value analyzed is not gen-
erally portable to our world. We conjecture that a
remote procedure call mechanism can distinguish cases
remotely and send back only a label and a bit indicat-
ing whether the left of right case applies.

Other future work includes incorporating recursion
and other type constructs for functional programming.

We also wish to implement such an extension as a
real programming language for the ConCert project [5].
Therefore we need to consider lower-level details of an
implementation such as distributed garbage collection,
failure recovery, and certification of mobile code.

6 Related Work

Others have also used modal logic for distributed com-
puting. For example, Borghuis and Feijs’s Modal Type
System for Networks [1] provides a logic and oper-
ational semantics5 for network tasks with stationary
services and mobile data. They use 2, annotated
with a location, to represent services. For example,
2

o(A ⊃ B) means a function from A to B at the lo-
cation o. With no way of internalizing mobility as a
proposition, the calculus limits mobile data to base
types. Services are similarly restricted to depth-one
arrow types. By using 2 for mobile code and 3 for
stationary resources, we believe our resulting calculus
is both simpler and more general.

Cardelli and Gordon [4] were perhaps the first to
devise a modal logic for reasoning about programs spa-
tially, later refined by Caires and Cardelli [2, 3]. They
do not take a propositions-as-types view of their logic;
instead, they start from a process calculus, mobile am-
bients, and develop a classical logic for reasoning about
their behaviors. Therefore, their modal logic is very
different from intuitionistic S5 and includes connec-
tives for stating temporal properties, security proper-
ties, and properties of parallel compositions. In con-
trast, Lambda 5 may be seen as a pure study of mobil-
ity and locality in a fully interconnected network.

Hennessy et al. [6] develop a distributed version of
the π-calculus and impose a complex static type sys-
tem in order to constrain and describe behavior. Sim-
ilarly, Schmitt and Stefani [13] develop a distributed,
higher-order version of the Join Calculus with a com-
plex behavioral type system. In comparison, our sys-
tem is much simpler, eliminating the complexities of
concurrency, access control, and related considerations.
By basing our system on the Curry-Howard correspon-
dence, we have a purely logical analysis and, further-
more, we expect straightforward integration into a full-
scale functional language for realistic programs.

Moody [9] gives a system based on the construc-
tive modal logic S4 due to Pfenning and Davies [11].
This language is based on judgments A true (here),
A poss (somewhere), and A valid (everywhere) rather
than truth at particular worlds. The operational se-
mantics of his system takes the form of a process cal-

5by way of compilation into shell scripts!
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culus with nondeterminism, concurrency and synchro-
nization; a significantly different approach from our se-
quential abstract machine. From the standpoint of a
multiple world semantics, the accessibility relation of
S4 satisfies only reflexivity and transitivity, not sym-
metry. From the computational point of view, acces-
sibility describes process interdependence rather than
connections between actual network locations. Pro-
grams are therefore somewhat higher-level and express
potential mobility instead of explicitly code motion as
in the fetch and get constructs. In particular, due to
the lack of symmetry it is not possible to go back to a
source world after a potentially remote procedure call
except by returning a value.

Jia and Walker [7] give a judgmental account of an
S5-like system based on hybrid logics, but do not com-
pare it to known logics. Hybrid logics internalize worlds
inside propositions by including a proposition that a
value of type A resides a world ω, which we might write
“A atω.” This leads to a technically different logic and
language though they have similar goals. Their rules
for 2 and 3 are similar to the non-local H5 system that
we compare Lambda 5 to in section 4.5. Like Moody,
they give their network semantics as a process calcu-
lus with passive synchronization across processes as a
primitive notion. As a result, they also must have mul-
tiple processes running at a particular location, each
one associated with a label. In comparison, we are
able to achieve active returns of values by restricting
our non-local computation to two terms, and associ-
ating remote labels with entries in a table rather than
with processes. We feel that this is a more realistic and
efficient semantics.

7 Conclusion

We have presented a logic and foundational program-
ming language Lambda 5 for distributed computation
based on a Curry-Howard isomorphism for the intu-
itionistic modal logic S5, viewed from a multiple-world
perspective. Computationally, values of type 2A are
mobile code and values of type 3A are addresses of
remote values, providing a type-theoretic analysis of
mobility and locality in an interconnected network. We
have shown that Lambda 5 remains faithful to the logic,
via translations from natural deduction to and from a
sequent calculus in which cut is admissible. Moreover,
by localizing introduction and elimination rules for mo-
bile and remote code (2E, 3I , and 3E) and adding
explicit rules for code motion, we achieve an efficient
and natural computational interpretation.
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[2] Lúıs Caires and Luca Cardelli. A spatial logic for con-
currency (part I). In Theoretical Aspects of Computer
Software (TACS), pages 1–37. Springer-Verlag LNCS
2215, October 2001.
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APPENDIX

A Type Safety

In this appendix we provide proofs of type safety. We require a few straightforward lemmas before continuing,
whose easy verification we omit. We have the principles of weakening and contraction, and substitution for truth
and world assumptions, as stated earlier. We also admit weakening of the configuration type Σ (addition of fresh
labels to the table types) for the table typing judgment Σ ` b@w, expression typing judgment Σ; Ω; Γ ` M : A@w,
and continuation typing judgment Σ `

�
; k : A@w. For weakening of table typing, we can only add labels to

worlds other than w. Because our expression and continuation typing rules are syntax directed, we are able to
apply inversion to them. Finally, we have the standard canonical forms lemma.

Lemma 1 (Canonical Forms) The forms of closed values are predicted by their types.

If D :: Then v = . . .
1. Σ; ·; · ` v : 2A@w box ω.M
2. Σ; ·; · ` v : 3A@w w.`
3. Σ; ·; · ` v : A ⊃ B@w λx.M

Proof is by induction on the typing derivation D.

Theorem 6 (Progress)

If D :: Σ ` �
then either � is terminal or ∃ � ′ . � 7→ � ′ .

Proof is by induction on the derivation D. For each case, say � =
�

;w : [k, M ], where
�

= {w1 :
〈C1, b1〉, · · · ,wi : 〈Ci, bi〉}. By inversion on D we know that dom(Σ) = dom(

�
) and w ∈ dom(Σ). We also

know there exists some type A such that:

Bi :: Σ ` bi@wi (i ∈ 1 . . . n)
T :: Σ; ·; · ` M : A@w
C :: Σ `

�
; k : A@w

We start with cases on M .

M = . . . case

M ′N ′ � ′ =
�

;w : [k � ◦N ′, M ′] by app-push.

x Impossible, as no rule can conclude Σ; ·; · ` x : A@w.

`

w = wj for some j.
By inversion on T we have T1 :: Σ ` ` : A@wj , therefore ` : A ∈ Σ.
Therefore by inversion on Bj we have that bj = (•, . . . , ` = v, . . . ).
So by lookup we have � ′ =

�
;w : [k, v].

hereM ′ � ′ =
�

;w : [k � here◦, M ′] by here-push.

get 〈w〉M ′

�
= {w : 〈C, b〉;ws}.

By inversion on T we see that Σ; · ` w. Since Ω is empty, we know w = wj for some
1 ≤ j ≤ i.
Therefore � ′ = {w : 〈C :: k, b〉;ws};wj : [returnw, M ′] by get-push.
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fetch[w]M ′
As for get, we get by inversion on T that w = wj for some 1 ≤ j ≤ i.
Therefore � ′ = {w : 〈C :: k, b〉;ws};wj : [returnw, M ′] by fetch-push.

unboxM ′ � ′ =
�

;w : [k � unbox◦, M ′] by unbox-push.

letd

x〈w〉 = M ′

inN
� ′ =

�
;w : [k � letdx〈w〉 = ◦ inN, M ′] by letd-push.

v If M is a value v, then we proceed by cases on the continuation k.

k = . . . case

finish � is terminal.

returnw′
By inversion on T we know that w′ = wj for 1 ≤ j ≤ i and

�
= {wj : 〈Cj :: kj , bj〉;ws}.

So � ′ = {wj : 〈Cj , bj〉;ws};wj : [kj , v] by return.

k′
� f If k is a stack of frames then we proceed by cases on the top frame f .

f = . . . case

◦N By app-flip, � ′ =
�

;w : [k′
� v ◦, N ].

v′ ◦
By inversion on C, Σ; ·; · ` v′ : A ⊃ B@w. Therefore by canonical forms (lemma 1),
v′ = λx.M ′. Then � ′ =

�
;w : [k′, [v/x]M ′] by app-reduce. Observe that substitution is

defined for all v, x, M ′.

here ◦

�
= {w : 〈C, b〉;ws} so by here-reduce, � ′ = {w : 〈C, (b, ` = v)〉;ws};w : [k′,w.`] where `

is any fresh label.

unbox◦

Only one rule applies for C so we know that A = 2A′.
By canonical forms (lemma 1) on T , v = box ω.M ′.
Therefore � ′ =

�
;w : [k′, [w/ω]M ′] by unbox-reduce. Note that substitution is defined for

all w, ω, M ′.

letd

x〈ω〉 = ◦
inN

Only one rule applies for C so we know that A = 3A′.
By canonical forms (lemma 1) on T , v = w′.`.
Therefore � ′ =

�
;w : [k′, [`/x][w′/ω]N ] by letd-reduce. Note again that substitution is

defined everywhere.

This exhausts the cases, completing the proof. 2

Theorem 7 (Preservation)

If D :: Σ ` � and E :: � 7→ � ′

then ∃Σ′,F .Σ′ ⊇ Σ and F :: Σ′ ` � ′ .

Proof is by induction on the derivation E . For each case say � =
�

;w : [k, M ]. As in theorem 6, by inversion
on D we know dom(Σ) = dom(

�
) and w ∈ dom(Σ). Without loss of generality call these worlds w1 . . .wn. We

also know there exists some type A such that:
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Bi :: Σ ` bi@wi (i ∈ 1 . . . n)
T :: Σ; ·; · ` M : A@w
C :: Σ `

�
; k : A@w

And we must show a corresponding Σ′, A′, B′

i, T
′, and C′ such that Σ′ ` � ′ .

Except in the case where we reduce here and update the tables with a new label the configuration typing and
table types remain the same. Therefore Σ′ = Σ and B′

i = Bi except where noted.

{wj : 〈C::k, b〉; ws};w : [returnwj , box ω.M ] 7→
{wj : 〈C, b〉; ws};wj : [k, box ω.M ]

By inversion on C, we know C0 :: Σ ` {wj : 〈C, b〉; ws}; k : A@wj . Then, we have C′ = C0.
By inversion on T , we have Σ; ·; · ` M : A@ω, so by the box rule we have Σ; ·; · ` box ω.M : 2A@wj

as required.

{wj : 〈C::k, b〉; ws};w : [returnwj ,w
′.`] 7→

{wj : 〈C, b〉; ws};wj : [k,w′.`]

By inversion on C, we know C0 :: Σ ` {wj : 〈C, b〉; ws}; k : A@wj . Then, we have C′ = C0.
By inversion on T , we have Σ ` ` : A@w′, so by the dia rule we have Σ; ·; · ` w′.` : 3A@wj as
required.

�
;w : [k � ◦N ; v] 7→�
;w : [k � v ◦, N ]

By inversion on C, A = A′′ ⊃ A′ and we have C1 :: Σ `
�

; k : A′@w and C2 :: Σ; ·; · ` N : A′′@w.
Then, T ′ = C2, and C′ =

C1..
Σ `

�
; k : A′@w

T..
Σ; ·; · ` v : A′′ ⊃ A′@w

Σ `
�

; k � v ◦ : A′′@w

�
;w : [k, MN ] 7→�
;w : [k � ◦N ; M ]

By inversion on T , we have T1 :: Σ; ·; · ` M : A′′ ⊃ A′@w and T2 :: Σ; ·; · ` N : A′′@w.
Then T ′ = T1 and C′ =

C..
Σ `

�
; k : A′@w

T2..
Σ; ·; · ` N : A′′@w

Σ `
�

; k � ◦N : A′′ ⊃ A′@w

�
;w : [k � (λx.M)◦, v] 7→�
;w : [k, [v/x]M ]

By inversion on C we have C1 :: Σ `
�

; k : A′@w and C2 :: Σ; ·; · ` λx.M : A ⊃ A′@w.
By inversion again on C2 we have C3 :: Σ; ·; x : A@w ` M : A′@w.
Therefore C′ = C1. By substitution on C3 and T , we have T ′ :: Σ; ·; · ` [v/x]M : A′@w, as required.
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{w : 〈C, b〉; ws};w : [k, fetch[w′]M ] 7→
{w : 〈C::k, b〉; ws};w

′ : [returnw, M ]

By inversion on T , w′ ∈
�

and T ′ :: Σ; ·; · ` M : 2A@w′.
Thus C′ =

C..
Σ ` {w : 〈C; b〉; ws}; k : 2A@w

Σ ` {w : 〈C::k, b〉; ws}; returnw : 2A@w′.

{w : 〈C, b〉; ws};w : [k, get 〈w′〉M ] 7→
{w : 〈C::k, b〉; ws};w

′ : [returnw, M ]

Similarly, by inversion on T , w′ ∈
�

and T ′ :: Σ; ·; · ` M : 3A@w′.
Thus C′ =

C..
Σ ` {w : 〈C; b〉; ws}; k : 3A@w

Σ ` {w : 〈C::k, b〉; ws}; returnw : 3A@w′.

�
;w : [k, hereM ] 7→�
;w : [k � here◦, M ]

By inversion on T we have T ′ :: Σ; ·; · ` M : A′@w.
Then C′ =

C..
Σ `

�
; k : 3A′@w

Σ `
�

; k � here◦ : A′@w

�
;w : [k, unboxM ] 7→�
;w : [k � unbox◦, M ]

By inversion on T we have T ′ :: Σ; ·; · ` M : 2A′@w.
Then C′ =

C..
Σ `

�
; k : A′@w

Σ `
�

; k � unbox◦ : 2A′@w

�
;w : [k � unbox◦, box ω.M ] 7→�
;w : [k, [w/ω]M ]

By inversion on C we have C ′ :: Σ `
�

; k : A@w.
By inversion on T we have T1 :: Σ; ω; · ` M : A@ω. By world substitution, we have T ′ :: Σ; ·; · `
[w/ω]M : A@w = [w/ω]T1, as required.

{w : 〈C, b〉; ws};w : [k, `] 7→
{w : 〈C, b〉; ws};w : [k, v]

(b(`) = v)

w = wj for some j.
C′ = C.
Because b(`) = v, by inversion on Bj we have Σ; ·; · ` v : B@wj .
By inversion on T we have T1 :: Σ ` ` : A@wj . Because the domain of Σ is disjoint, we know that
A = B so T ′ = T1.
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�
;w : [k, letdx〈ω〉 = M inN ] 7→�
;w : [k � letdx〈ω〉 = ◦ inN, M ]

By inversion on T , there exists B such that T ′ :: Σ; ·; · ` M : 3B@w and T1 :: Σ; ω′; x : B@ω′ ` N :
A@w.
Then C′ =

C..
Σ `

�
; k : A@w

T1..
Σ; ω′; x : B@ω′ ` N : A@w

Σ `
�

; k � letdx〈ω〉 = ◦ inN : 3B@ω

�
;w : [k � letdx〈ω〉 = ◦ inN,w′.`] 7→�
;w : [k, [`/x][w′/ω]N ]

By inversion on C, we have C ′ :: Σ `
�

; k : B@w and C1 :: Σ; ω′; x : A@ω′ ` N : B@w. By world
substitution, we have C2 :: Σ; ·; x : A@w′ ` [w′/ω′]N : B@w = [w′/ω]C1.
By inversion on T , we have T1 :: Σ ` ` : A@w′. Therefore by the lab rule we have T2 :: Σ; ·; · ` ` :
A@w′.
By substitution on C2 and T2 we have T ′ :: Σ; ·; · ` [`/x][w′/ω]N : B@w, as required.

{w : 〈C, b〉; ws};w : [k � here◦, v] 7→
{w : 〈C; b, ` = v〉; ws};w : [k,w.`]

(` fresh)

In this case S′ and B′

i will differ from the inputs.
w = wj for some j.
By inversion on C, we have C1 :: Σ `

�
; k : 3A@wj .

Σ = {w1 : τ1, · · · ,wi : τi}.
Let Σ′ = {w1 : τ1, · · ·wj : (τj , ` : A) · · · ,wi : τi}. Note that because ` is fresh, Σ′ ⊇ Σ.
Then C′ = weaken-Σ(C1).
T ′ =

{· · ·wj : (τj , ` : A) · · · } ` ` : A@wj

{· · ·wj : (τj , ` : A) · · · }; ·; · ` wj .` : 3A@wj

By inversion on Bj we get Tj1 :: Σ; ·; · ` vj1 : Aj1@wj through Tjm :: Σ; ·; · ` vjm : Ajm@wj .
B′

i = weaken-Σ(Bi) for i 6= j, and B′

j =
Tj1..

Σ′; ·; · ` vj1 : Aj1@wj · · ·

Tjm..
Σ′; ·; · ` vjm : Ajm@wj

weaken-Σ(T )
..

Σ′; ·; · ` v : A@wj

Σ `′ @(bj , ` = v)wj

This completes the proof of preservation. 2

B Machine Checkable Proofs

This appendix contains the Twelf code for the proofs of theorem 3 (cut), theorem 5 (equivalence to sequent calculus),
and normalization. Also included are simplified versions of type safety. The code is available electronically from
http://www.cs.cmu.edu/~concert/ and each proof is verifiable by Twelf’s metatheorem checker.

B.1 Cut, Equivalence, Normalization

world : type. %name world W o.

prop : type. %name prop A.

%%% Natural deduction
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@ : prop -> world -> type. %name @ N.

%infix none 1 @.

% Implication

=> : prop -> prop -> prop.

%infix right 8 =>.

=>I : (A @ W -> B @ W) -> (A => B @ W).

=>E : (A => B @ W) -> A @ W -> B @ W.

% Necessity

! : prop -> prop.

%prefix 9 !.

!I : ({o:world} A @ o) -> ! A @ W.

!E : ! A @ W -> A @ W.

!G : ! A @ W’ -> ! A @ W.

% Possibility

? : prop -> prop.

%prefix 9 ?.

?I : A @ W -> ? A @ W.

?E : ? A @ W -> ({o:world} A @ o -> C @ W) -> C @ W.

?G : ? A @ W’ -> ? A @ W.

%%% Sequent calculus (SS5)

hyp : prop -> world -> type. %name hyp H h.

conc : prop -> world -> type. %name conc D.

% Judgmental rules

init : hyp A W -> conc A W.

% Implication

=>R : (hyp A W -> conc B W)

-> conc (A => B) W.

=>L : conc A W

-> (hyp B W -> conc C U)

-> (hyp (A => B) W -> conc C U).

% Necessity

!R : ({o:world} conc A o)

-> conc (! A) W.

!L : (hyp A W’ -> conc C U)

-> (hyp (! A) W -> conc C U).

% Possibility

?R : conc A W’

-> conc (? A) W.

?L : ({o:world} hyp A o -> conc C U)

-> (hyp (? A) W -> conc C U).

%%% Admissibility of Cut

cut : {A:prop} conc A W -> (hyp A W -> conc C U) -> conc C U -> type.

%mode cut +A +D +E -F.

% Initial cuts

ci_l : cut A (init H) ([h] E h) (E H).

ci_r : cut A D ([h] init h) D.
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% Principal cuts

c_=> : cut (A1 => A2) (=>R ([h1] D2 h1)) ([h] =>L (E1 h) ([h2] E2 h h2) h) F

<- cut (A1 => A2) (=>R ([h1] D2 h1)) ([h] E1 h) E1’

<- ({h2:hyp A2 W} cut (A1 => A2) (=>R ([h1] D2 h1)) ([h] E2 h h2) (E2’ h2))

<- cut A1 E1’ ([h1] D2 h1) F1

<- cut A2 F1 ([h2] E2’ h2) F.

c_! : cut (! A1) (!R ([o] D1 o)) ([h] !L ([h1] E1 h h1) h) F

<- ({h1:hyp A1 W’} cut (! A1) (!R ([o] D1 o)) ([h] E1 h h1) (E1’ h1))

<- cut A1 (D1 W’) ([h1] E1’ h1) F.

c_? : cut (? A1) (?R D1) ([h] ?L ([o][h1] E1 h o h1) h) F

<- ({o:world} {h1:hyp A1 o} cut (? A1) (?R D1) ([h] E1 h o h1) (E1’ o h1))

<- cut A1 D1 ([h1] E1’ W’ h1) F.

% Right commuting cuts

cr_init : cut A D ([h] init H) (init H).

cr_=>R : cut A D ([h] =>R ([h1] E1 h h1)) (=>R ([h1] F1 h1))

<- ({h1:hyp C1 U} cut A D ([h] E1 h h1) (F1 h1)).

cr_=>L : cut A D ([h] =>L (E1 h) ([h2] E2 h h2) H) (=>L F1 ([h2] F2 h2) H)

<- cut A D ([h] E1 h) F1

<- ({h2:hyp B2 U’} cut A D ([h] E2 h h2) (F2 h2)).

cr_!R : cut A D ([h] !R ([o] E1 h o)) (!R ([o] F1 o))

<- ({o:world} cut A D ([h] E1 h o) (F1 o)).

cr_!L : cut A D ([h] !L ([h1] E1 h h1) H) (!L ([h1] F1 h1) H)

<- ({h1:hyp B1 U’} cut A D ([h] E1 h h1) (F1 h1)).

cr_?R : cut A D ([h] ?R (E1 h)) (?R F1)

<- cut A D ([h] E1 h) F1.

cr_?L : cut A D ([h] ?L ([o][h1] E1 o h1 h) H) (?L ([o] [h1] F1 o h1) H)

<- ({o:world} {h1:hyp B1 o} cut A D ([h] E1 o h1 h) (F1 o h1)).

% Left commuting cuts

cl_=>L : cut A (=>L D1 ([h2] D2 h2) H) ([h] E h) (=>L D1 ([h2] F2 h2) H)

<- ({h2:hyp B2 U’} cut A (D2 h2) ([h] E h) (F2 h2)).

cl_!L : cut A (!L ([h1] D1 h1) H) ([h] E h) (!L ([h1] F1 h1) H)

<- ({h1:hyp B1 U’} cut A (D1 h1) ([h] E h) (F1 h1)).

cl_?L : cut A (?L ([o][h1] D1 o h1) H) ([h] E h) (?L ([o][h1] F1 o h1) H)

<- ({o:world} {h1:hyp B1 o} cut A (D1 o h1) ([h] E h) (F1 o h1)).

%block lo : block {o:world}.
%block lh : some {A:prop} {W:world} block {h:hyp A W}.
%worlds (lo | lh) (cut A D E F).

%total {A [D E]} (cut A D E F).

%%% Translation ND to SEQ

ndseq : A @ W -> conc A W -> type. %name ndseq R r.

%mode ndseq +N -D.

% Implication

ns_=>I : ndseq (=>I ([u1] N2 u1)) (=>R ([h1] D2 h1))

<- ({u1:A1 @ W} {h1:hyp A1 W}
ndseq u1 (init h1) -> ndseq (N2 u1) (D2 h1)).

ns_=>E : ndseq (=>E N2 N1) D

<- ndseq N2 D’

<- ndseq N1 D1

<- cut (A1 => A2) D’ ([h] =>L D1 ([h2] init h2) h) D.
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% Necessity

ns_!I : ndseq (!I ([o] N1 o)) (!R ([o] D1 o))

<- ({o:world} ndseq (N1 o) (D1 o)).

ns_!E : ndseq (!E N1) D

<- ndseq N1 D’

<- cut (! A1) D’ ([h] !L ([h1] init h1) h) D.

ns_!G : ndseq (!G N1) D

<- ndseq N1 D’

<- cut (! A1) D’ ([h] !R ([o] !L ([ho] init ho) h)) D.

% Possibility

ns_?I : ndseq (?I N1) (?R D1)

<- ndseq N1 D1.

ns_?E : ndseq (?E N1 ([o][u1] N2 o u1)) D

<- ndseq N1 D1’

<- ({o:world} {u1:A1 @ o} {h1:hyp A1 o}
ndseq u1 (init h1) -> ndseq (N2 o u1) (D2 o h1))

<- cut (? A1) D1’ ([h] ?L ([o][h1] D2 o h1) h) D.

ns_?G : ndseq (?G N1) D

<- ndseq N1 D’

<- cut (? A1) D’ ([h] ?L ([o] [h1] ?R (init h1)) h) D.

%block luhs : some {A:prop} {W:world}
block {u:A @ W} {h:hyp A W} {r:ndseq u (init h)}.

%worlds (lo | luhs) (ndseq N D).

%total N (ndseq N D).

%%% Translation SEQ to ND

seqnd : conc A W -> A @ W -> type. %name seqnd S.

hypnd : hyp A W -> A @ W -> type. %name hypnd T t.

%mode seqnd +D -N.

%mode hypnd +H -N.

% Init

sn_init : seqnd (init H) D

<- hypnd H D.

% Implication

sn_=>R : seqnd (=>R ([h1] D2 h1)) (=>I ([u1] N2 u1))

<- ({h1:hyp A1 W} {u1:A1 @ W}
hypnd h1 u1 -> seqnd (D2 h1) (N2 u1)).

sn_=>L : seqnd (=>L D1 ([h2] D2 h2) H) (N2 (=>E N N1))

<- seqnd D1 N1

<- ({h2:hyp A2 W} {u2:A2 @ W}
hypnd h2 u2 -> seqnd (D2 h2) (N2 u2))

<- hypnd H N.

% Necessity

sn_!R : seqnd (!R ([o] D1 o)) (!I ([o] N1 o))

<- ({o:world} seqnd (D1 o) (N1 o)).

sn_!L : seqnd (!L ([h1] D2 h1) H) (N2 (!E (!G N)))

<- ({h1:hyp A1 W’} {u1:A1 @ W’}
hypnd h1 u1 -> seqnd (D2 h1) (N2 u1))

<- hypnd H N.
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% Possibility

sn_?R : seqnd (?R D1) (?G (?I N1))

<- seqnd D1 N1.

sn_?L : seqnd (?L ([o][h1] D2 o h1) H) (?E (?G N) ([o] [u1] N2 o u1))

<- ({o:world} {h1:hyp A1 o} {u1:A1 @ o}
hypnd h1 u1 -> seqnd (D2 o h1) (N2 o u1))

<- hypnd H N.

%block lhut : some {A:prop} {W:world}
block {h:hyp A W} {u:A @ W} {t:hypnd h u}.

%worlds (lo | lhut) (seqnd D N) (hypnd H N’).

%total (D H) (seqnd D N) (hypnd H N’).

%%% Normal deductions

norm : A @ W -> type. %name norm M.

elim : A @ W -> type. %name elim E e.

%mode norm +N.

%mode elim +N.

% Coercion

n_elim : norm N <- elim N.

% Implication

n_=>I : norm (=>I ([u1] N2 u1))

<- ({u1:A1 @ W} elim u1 -> norm (N2 u1)).

n_=>E : elim (=>E N2 N1)

<- elim N2

<- norm N1.

% Necessity

n_!I : norm (!I ([o] N1 o))

<- ({o:world} norm (N1 o)).

% !E by itself is redundant, but could be admitted

%{
n_!E : elim (!E N1)

<- elim N1.

}%
n_!E!G : elim (!E (!G N1))

<- elim N1.

% Possibility

% ?I and ?E by themselves are redundant, but could be admitted

%{
n_?I : norm (?I N1)

<- norm N1.

n_?E : norm (?E N ([o][u1] N2 o u1))

<- elim N

<- ({o:world} {u1:A1 @ o} elim u1 -> norm (N2 o u1)).

}%
n_?G?I : norm (?G (?I N1))

<- norm N1.

n_?E?G : norm (?E (?G N) ([o] [u1] N2 o u1))

<- elim N

<- ({o:world} {u1:A1 @ o} elim u1 -> norm (N2 o u1)).
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%%% Translation of cut-free sequent derivations

%%% yields normal deductions

tnorm : seqnd D N -> norm N -> type.

telim : hypnd H N -> elim N -> type.

%mode tnorm +S -M.

%mode telim +T -E.

tn_init : tnorm (sn_init T) (n_elim E)

<- telim T E.

tn_=>R : tnorm (sn_=>R ([h1][u1][t1] S2 h1 u1 t1)) (n_=>I ([u1][e1] M2 u1 e1))

<- ({h1:hyp A1 W} {u1:A1 @ W} {t1:hypnd h1 u1} {e1:elim u1}
telim t1 e1 -> tnorm (S2 h1 u1 t1) (M2 u1 e1)).

tn_=>L : tnorm (sn_=>L T ([h2][u2][e2] S2 h2 u2 e2) S1)

(M2 _ (n_=>E M1 E))

<- tnorm S1 M1

<- ({h2:hyp A2 W} {u2:A2 @ W} {t2:hypnd h2 u2} {e2:elim u2}
telim t2 e2 -> tnorm (S2 h2 u2 t2) (M2 u2 e2))

<- telim T E.

tn_!R : tnorm (sn_!R ([o] S1 o)) (n_!I ([o] M1 o))

<- ({o:world} tnorm (S1 o) (M1 o)).

tn_!L : tnorm (sn_!L T ([h1][u1][t1] S2 h1 u1 t1))

(M2 _ (n_!E!G E))

<- ({h1:hyp A1 W’} {u1:A1 @ W’} {t1:hypnd h1 u1} {e1:elim u1}
telim t1 e1 -> tnorm (S2 h1 u1 t1) (M2 u1 e1))

<- telim T E.

tn_?R : tnorm (sn_?R S1) (n_?G?I M1)

<- tnorm S1 M1.

tn_?L : tnorm (sn_?L T ([o][h1][u1][t1] S2 o h1 u1 t1))

(n_?E?G ([o][u1][e1] M2 o u1 e1) E)

<- ({o:world} {h1:hyp A1 o} {u1:A1 @ o} {t1:hypnd h1 u1} {e1:elim u1}
telim t1 e1 -> tnorm (S2 o h1 u1 t1) (M2 o u1 e1))

<- telim T E.

%block lhute : some {A:prop} {W:world}
block {h:hyp A W} {u:A @ W} {t:hypnd h u} {e:elim u}

{te:telim t e}.
%worlds (lo | lhute) (tnorm S M) (telim T E).

%total (S T) (tnorm S M) (telim T E).

%%% Global normalization corollary

%%% formulated here only for closed terms

%%% all lemmas work for open terms

normalize : A @ W -> A @ W -> type.

%mode normalize +N -N’.

nn0 : normalize N N’

<- ndseq N D

<- seqnd D N’.

%worlds () (normalize N N’).

%total [] (normalize N N’).

normalization : normalize N N’ -> norm N’ -> type.

%mode normalization +NN -M.
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nz0 : normalization (nn0 S R) M

<- tnorm S M.

%worlds () (normalization NN M).

%total [] (normalization N N’).

B.2 Type Safety

The operational semantics for which we mechanize type safety differs from the one given in section 4.4 in two ways.
First, instead of distributing the continuation explicitly into stacks located at different worlds, we have one global
continuation, pieces of which belong to the different worlds. Second, instead of keeping a table at each world and
looking up labels, we substitute values which are intrinsicially bound to a world. Both differences are superficial,
so the proof of progress contains essentially the same information as the progress proof in appendix A. The proofs
of the substitution property and preservation are obviated by the representation, since every term (and value) is
intrinsically indexed with its type and world. Twelf type-checking can therefore guarantee the type preservation
theorem.

%%% Version 1: straightforward, big-step

%%% Using intrinsically typed terms

%%% Avoids run-time artefacts

%%% Definitions for term syntax

lam = =>I.

app = =>E.

box = !I.

unbox = !E.

fetch = ([W’] !G : ! A @ W’ -> ! A @ W).

here = ?I.

letd = ?E.

get = ([W’] ?G : ? A @ W’ -> ? A @ W).

%%% Values

value : {W:world} A @ W -> type. %name value Q.

%mode value +W +V.

val_lam : value W (lam [x] M x).

val_box : value W (fetch W’ (box [o] M o)).

val_here : value W (get W’ (here V’))

<- value W’ V’.
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%%% Evaluation (big-step)

eval : {W:world} A @ W -> A @ W -> type. %name eval D.

%mode eval +W +M -V.

ev_lam : eval W (lam [x] M x) (lam [x] M x).

ev_app : eval W (app M1 M2) V

<- eval W M1 (lam [x] M1’ x)

<- eval W M2 V2

<- eval W (M1’ V2) V.

ev_box : eval W (box [o] M o) (fetch W (box [o] M o)).

ev_unbox : eval W (unbox M1) V

<- eval W M1 (fetch W’ (box [o] M1’ o))

<- eval W (M1’ W) V.

ev_fetch : eval W (fetch W’ M’) (fetch W’’ (box [o] M’’ o))

<- eval W’ M’ (fetch W’’ (box [o] M’’ o)).

ev_here : eval W (here M1) (get W (here V1))

<- eval W M1 V1.

ev_letd : eval W (letd M1 ([o] [x:A1 @ o] M2 o x)) V

<- eval W M1 (get W’ (here V1’))

<- eval W (M2 W’ V1’) V.

ev_get : eval W (get W’ M’) (get W’’ (here V’’))

<- eval W’ M’ (get W’’ (here V’’)).

%worlds () (eval W M V).

%covers eval +W +M -V.

%%% Value soundness

%%% (evaluation returns a value)

vs : eval W M V -> value W V -> type.

%mode vs +D -Q.

vs_lam : vs (ev_lam) (val_lam).

vs_app : vs (ev_app D1’ D2 D1) Q

<- vs D1’ Q.

vs_box : vs (ev_box) (val_box).

vs_unbox : vs (ev_unbox D1’ D1) Q

<- vs D1’ Q.

vs_fetch : vs (ev_fetch D’) (val_box)

<- vs D’ (val_box).

vs_here : vs (ev_here D1) (val_here Q1)

<- vs D1 Q1.

vs_letd : vs (ev_letd D2 D1) Q

<- vs D2 Q.

vs_get : vs (ev_get D’) (val_here Q’’)

<- vs D’ (val_here Q’’).

%worlds () (vs D Q).

%total D (vs D Q).

%%% Version 2

%%% Small-step semantics

%%% Values, frames, and continuations as run-time artefacts

%%% No tables (using substitution instead)

%%% Final answer type and world is not (yet) represented.

% Values

# : prop -> world -> type. %name # V.

%infix none 1 #.
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vlam : (A @ W -> B @ W) -> A => B # W. % lam ([x] M x)

vbox : ({o:world} A @ o) -> ! A # W. % fetch _ (box [o] M o)

vhere : {W’:world} A # W’ -> ? A # W. % get W’ (here V)

% Inclusion of values in expressions

val : A # W -> A @ W.

% Frames

% frame A W C W’ maps values A # W to continuations C at W

frame : prop -> world -> prop -> world -> type. %name frame F.

app1 : A @ W -> frame (A => B) W B W. % app1 M2 ~ [v1] app v1 M2

app2 : A => B # W -> frame A W B W. % app2 V1 ~ [v2] app V1 v2

unbox1 : frame (! A) W A W. % unbox1 ~ [v] unbox v

fetch1 : {W’:world} frame (! A) W’ (! A) W. % fetch1 W’ ~ [v’] fetch W’ v’

here1 : frame A W (? A) W. % here1 ~ [v] here1 v

letd1 : ({o:world} A @ o -> C @ W) -> frame (? A) W C W.

% letd1 ([o][x] M2 o x) ~ [v1] letd v1 ([o] [x] M2 o x)

get1 : {W’:world} frame (? A) W’ (? A) W. % get1 W’ ~ [v’] get W’ v’

% Continuations

cont : prop -> world -> type. %name cont K.

finish : cont A W.

; : cont C W’ -> frame A W C W’ -> cont A W.

%infix none 1 ;.

% Instructions

inst : prop -> world -> type. %name inst I.

ev : A @ W -> inst A W.

ret : A # W -> inst A W.

% States

state : prop -> world -> type. %name state S.

st : {W:world} cont A W -> inst A W -> state A W.

% Single step

% Only fetch, fetch1 and get, get1 change current world

step : state A W -> state A’ W’ -> type.

%mode step +S -S’.

st_val : step (st W (K) (ev (val V)))

(st W (K) (ret V)).

st_app : step (st W (K) (ev (app M1 M2)))

(st W (K ; app1 M2) (ev M1)).

st_app1 : step (st W (K ; app1 M2) (ret V1))

(st W (K ; app2 V1) (ev M2)).

st_app2 : step (st W (K ; app2 (vlam [x] M1’ x)) (ret V2))

(st W (K) (ev (M1’ (val V2)))).

st_lam : step (st W (K) (ev (lam [x] M x)))

(st W (K) (ret (vlam [x] M x))).
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st_box : step (st W (K) (ev (box [o] M o)))

(st W (K) (ret (vbox [o] M o))).

st_unbox : step (st W (K) (ev (unbox M)))

(st W (K ; unbox1) (ev M)).

st_unbox1 : step (st W (K ; unbox1) (ret (vbox [o] M o)))

(st W (K) (ev (M W))).

st_fetch : step (st W (K) (ev (fetch W’ M’)))

(st W’ (K ; fetch1 W’) (ev M’)).

st_fetch1 : step (st W’ (K ; fetch1 W’) (ret (vbox [o] M’ o)))

(st W (K) (ret (vbox [o] M’ o))).

st_here : step (st W (K) (ev (here M)))

(st W (K ; here1) (ev M)).

st_here1 : step (st W (K ; here1) (ret V))

(st W (K) (ret (vhere W V))).

st_letd : step (st W (K) (ev (letd M1 ([o] [x] M2 o x))))

(st W (K ; letd1 ([o] [x] M2 o x)) (ev M1)).

st_letd1 : step (st W (K ; letd1 ([o] [x] M2 o x)) (ret (vhere W’ V1’)))

(st W (K) (ev (M2 W’ (val V1’)))).

st_get : step (st W (K) (ev (get W’ M)))

(st W’ (K ; get1 W’) (ev M)).

st_get1 : step (st W’ (K ; get1 W’) (ret (vhere W’’ V)))

(st W (K) (ret (vhere W’’ V))).

% Last case to verify progress

st_halt : step (st W (finish) (ret V))

(st W (finish) (ret V)).

% Allow world parameters, otherwise totality is trivial

%worlds (lo) (step S S’).

%total [] (step S S’).
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