Machine learning in metrical task systems
and other on-line problems

Carl Burch

CMU-CS-00-135

School of Computer Science
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA

Thesis Committee
Avrim Blum, chair
Allan Borodin
Bruce Maggs
Daniel Sleator

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

This research was sponsored by the National Science Foundation (NSF) under various grants and fellowship
awards. The views and conclusions contained in this document are those of the author and should not

be interpreted as representing the official policies, either expressed or implied, of the NSF or the U.S.
government.

Copyright 2000, Carl Burch. All rights reserved.

Abstract

We establish and explore a new connection between two general on-line scenarios deriving from two
historically disjoint communities. Though the problems are inherently similar, the techniques and questions
developed for these two scenarios are very different. From competitive analysis comes the problem of
metrical task systemsvhere the algorithm is to decide in which state to process each of several sequential
tasks, where each task specifies the processing cost in each state, and the algorithm must pay according to
a metric to move between states. And from machine learning comes the probteeditting from expert
advice— that is, of choosing one of several experts for each query in a sequence without doing much worse
than the best expert overall.

The dissertation includes four results touching on this connection. We begin with the first metrical task
system algorithm that can guarantee for every task sequence that the ratio of its expected cost to the cheapest
way to process the sequence is only polylogarithmic in the number of states. Then we see how we can use
expert-advice results to combine on-line algorithms on-line if there is a fixed cost for changing between the
on-line algorithms. The third result establishes new expert-advice algorithms deriving from metrical task
system research; in addition to establishing theoretical bounds, we compare the algorithms empirically on a
process migration scenario. Finally, we investigate a modified version of paging, where we want to do well
against an adversary who is allowed to ignore a paging request cheaply.

Acknowledgments

Of course there are many people whom | would like to acknowledge for their help in the writing of this
thesis — friends and family, students and teachers, mentors and colleagues. | restrict myself to mentioning
three, for fear of leaving out people were | to mention more.

The first two are my parents, Charles and Cheri Burch, who taught me much of the background | learned
before graduate school, and who persistently motivated me to get back to writing the words (and, more
often, the formulas) that appear on these pages.

The third is my advisor Avrim Blum, who has been a model advisor, teaching me most of what | learned
as a graduate student and working with me to accomplish that which appears in this thesis. His advice, never
peppered with self-interest, has proven very valuable.

Contents

Abstract iii
Acknowledgments iv
1 Introduction 1
1.1 SUMMAIY . . . o o e e e e e 1
1.2 The metrical task systemproblem L. 3
1.3 Competitiveratio e 4
1.4 Previousresults 6
2 HST approximation 9
2.1 Probabilisticapproximation 9
2.2 ApproximationwithHSTs 10
2.3 RecursivdMTS construction 13
2.4 Bounding acompetitiveratia 14
3 The expert prediction problem 19
3.1 Classical formulation 19
3.2 Decision-theoretic formulation L 21
3.3 Partitioningbound 22
3.4 TranslatingtdTS 26
4 A general-metricMTS algorithm 29
4.1 Linear 29
4.2 Odd-EXponent 31
4.3 TWO-Region 34
4.4 Buildingthepolylog(n) algorithm 35
45 EXIENSIONS 39

CONTENTS

5 Combining on-line algorithms 41
5.1 Simulating all algorithms 42
5.2 Runningonlyonealgorithm.. 43
6 RelatingMTS and Experts 47
6.1 Generalrelation e 47
6.2 Directanalysisofinear 49
6.3 Process migration experiments 51
7 The unfair paging problem 55
7.1 Motivation e 56
7.2 Auniverse ok + 1pages 57
7.3 The general case: Phases and the off-linecost 58
7.4 Theon-linealgorithm 59
8 Conclusion 65
8.1 Themes 65
8.2 0Openquestions 66
Bibliography 67

Index 71

Chapter 1

Introduction

1.1 Summary

Beginning in the mid-1980s, researchers of theoretical computer science began investigating the analysis
of on-line algorithms — that is, algorithms that commit to actions as they receive eventsorline

problem defines the types of events and actions that the on-line algorithm can use. Computer technology
inspires a wide variety of problems that fall into this framework, including caching, dynamic lists, real-time
compression, and call routing.

Researchers soon became interested in abstractions to encompass a variety of on-line problems. Among
these were two very prominent problems: thetrical task systerfMTS) problem [BLS92] and thé:-
server problerfMMS90]. This thesis begins with the metrical task system problem — the simpler of the
two — where the algorithm is to decide in which state to process each of several sequential tasks, where
each task specifies the processing cost in each state, but changing states also has a cost according to a metric.
In particular, we are concerned with how we can use randomization so that regardless of the event sequence,
our on-line algorithm’s expected cost is not too many times the optimal cost for servicing the sequence.

Independently, in the mid-1990s, researchers interested in machine learning became interested in the
following scenario: The on-line learner sees a sequence of examples and wants to predict each example’s
label before seeing the true label. The hope is that the learner will make few mistakes as it sees more and
more examples with their corresponding labels. This is termeéxiperts problem.

This thesis demonstrates how one particular problem arising from metrical task systems is intertwined
with another particular problem arising from tB&perts problem. This connection forms the foundation
of this dissertation, on which we build four primary results.

*Most of the work appearing in this thesis originally appeared in papers by Blum and Burch [BB97]; Bartal, Blum, Burch, and
Tomkins [BBBT97]; and Blum, Burch, and Kalai [BBK99]. The author would like to recognize his coauthors, Avrim Blum, Yair
Bartal, Andrew Tomkins, and Adam Kalai, who share equally in the development of these concepts. Besides this chapter, Sections
2.1,2.2, 3.1, and 3.2 describe background material to put this work in context.

1

2 Introduction

A polylogarithmic MTS algorithm

Using on-line learning algorithms, we construct an algorithm guaranteeing that the ratio of its expected
cost to the optimal cost (were we to know the entire sequence in advance) is only polylogarithmic in the
number of states. In particular, our algorithm guarantees that the on-line algorithm’s expected cost is ho
more thanO (log” n loglog n) times the optimal cost knowing the sequence in advance. Using a much
less intuitive technique originating from more traditional on-line algorithms research, we can guarantee an
O(log® nloglogn) bound. These represent the historically first polylogarithmic guarantees for the met-
rical task system problem. (By refining these techniques further, Fiat and Mendel describe an algorithm
guaranteeing an expected cost of at ni@dbg* n log?® log 7)) times optimal [FM00].)

This result — and its incorporation of the concepts of metric space approximation, unfairness, and con-
nections to machine learning — form the launching point of the dissertation. Understanding these concepts
and their connection to the metrical task system problem is the goal of the first part of the thesis, Chapters 2—
4,

In Chapter 2, we learn how any metric space can be approximated by what are called HST spaces, a
recent result from Bartal [Bar96, Bar98]. We also view a generalized forlh1, called the unfaiMTS
problem, that allows us to build recursive algorithms for HSTs. This analysis indicates what sort of guarantee
we want from our unfaiMTS algorithm. We immediately see that this guarantee implies a substantial first
step toward theolylog(n) result.

Chapter 3 explains the machine learning problem cailedlicting from expert advick W94, FS97].

This problem is closely related to the unfdiTS problem, as we demonstrate by taking an expert-advice
algorithmShare and using it for the unfaiMTS problem to get the bound desired from Chapter 2.

Chapter 4 picks up from Chapter 2 again, describing an alternative algdditttrExponent achieving
this same bound, and showing how to @#d-Exponent in a more complicated way to get thelylog(n)
ratio. We observe that the same techniques work Sitare, although at the loss of ail(log® n) factor.

The second part of the dissertation, Chapters 5-7, extends the concepts for the polylogarithmic bound
(especially the connection to machine learning) to get the other three main results of the thesis.

Combining on-line algorithms

Chapter 5 discusses a problem caltaxinbining on-line algorithms on-linavhere we, as the on-line al-
gorithm, have a number of on-line algorithms which we might follow, but changing our current on-line
algorithm has a cost. This algorithms might, for example, incorporate a number of heuristics which do well
on particular event sequences, in case the actual event sequence matches one of our heuristieg: Using
perts results, we see how we can guarantee that our on-line combination algorithm can do almost as well as
the best of several on-line algorithms whose performance we can see.

We also see how an on-line algorithm might do if it can only see the performance of its current heuristic.
For example, this might happen in process migration: We can have a heuristic for each compntgthée
process to stay at that computer. But if the process can only read the load average at its current location,
it sees only its current heuristic’s performance. Even if it can see only its current selection, our on-line
algorithm can guarantee that it does not pay much more than if it knew in advance which heuristic pays
least.

Relating metrical task systems and expert advice

In Chapter 6, we extend Chapter 3 by looking at the converse direction — using Miifaialgorithms for
the expert advice problem. In particular, while Chapter 3 explains that Eoqmerts algorithms also make
good unfaiMTS algorithms, Chapter 6 proves thatyalgorithm with anMTS guarantee implies a similar
algorithm with anExperts guarantee.

1.2 The metrical task system problem 3

q0 4 Ul
S 90919293
3 2 T!=(3,1,1,0)
6 T2:<7,0,4,3>
92 5 qs

Figure 1.1: A metric space and task sequence.

To get a feel for the variety of algorithms this implies féxperts, we look at the results of a small
experiment comparing how differemMTS algorithms perform on a sample of process migration data.

The unfair paging problem

The final direction we take is to extend the notion of unfairness, which we employed in our analysis of the
MTS problem, to paging. In particular, we compare the on-line algorithm’s performance against the cost of
servicing the request sequence if we increase the power of the off-line algorithm by allowing it to ignore the
request at a cost df/r. We see an on-line algorithm that guarantees that it pays no moréthahn log &)

times the best off-line cost computed with this added power. (Heepresents the cache size.)

In Chapter 7, we see the significance of the problem and how machine learning can be used to achieve
improved results for it. Besides the significance of this problem to paging, this work can also be seen as
a first effort at using the techniques used for the polylogarithmic guarantee for metrical task systems to
achieve similar guarantees for the much more challengisgrver problem.

1.2 The metrical task system problem

The initial problem motivating this work, and a major focus of this thesis, isntle&rical task system
(MTS) problem due to Borodin, Linial, and Saks, designed to abstract a wide variety of on-line problems
[BLS92].

Problem MTS ([BLS92]) We live in a system of: stateswith a distance metrid separating the
states. This distance metric is nonnegatiie:(v) > 0), is symmetric {(u, v) = d(v, u)), and has

the triangle inequalityd(u, v) + d(v, w) > d(u,w)). At all times we occupy a single state. At the
beginning of each time step, we receiveaak vector, specifying a nonnegative cost for each state
(representing our cost if we process the task in that state). When we receive a tasklestr
choose whether to stay at our current state or to move to a different state. We pay both for moving
between states (accordingdpand for processing the task (accordingltcat our new state). Our

goal is to minimize our total cost over the task sequence.

Example 1.1Consider the metrid and task sequence illustrated in Figure 1.1. O, we may
choose to process the task in stat@nd so payl'} = 1 to process. Then say we choose to process
T? in stategs. We payd(qz, ¢3) = 5 to move andl'3 = 3 to process the task. Our total cost on this
sequence, then, is+ (5 + 3) = 9. (We have chosen sub-optimally: The optimal choice is to start
atg; and remain there, for a total costb#- (0 4 0) = 1.)

TThis dissertation uses superscripts not only for exponentiation but also for indexing time. To relieve ambiguity, time-indexed
variables appear in boldface.

4 Introduction

The importance of metrical task systems lies in the fact that they generalize many natural on-line prob-
lems. The following three examples illustrate this.

Example 1.2 Laptop computer power management inspires the following very simple task system.
The states arg,, representing that the laptop’s hard drive is not spinninggangepresenting that it

is. The distance between the states is half the amount of power required to begin spinning the disk.
(We use half because to be a metric the distance function must be symmetric. We are optimizing on
the total cost: Each time we move frogm to ¢;, we will later move fromg; to go; by using half

each time, we add the full amount to the total.) On all time steps, the cagstisothe amount of

power to keep the disk spinning. For time steps where there is no disk access, the;g@s0idut

when there is a disk access, the cosjites infinite to prevent an on-line player from beinggnfor

the task. (Helmbold, Long, and Sherrod consider laptop disk management as a practical problem to
be approached using machine learning theory [HLS96]. We relate machine learning theory to task
systems in Chapter 3.)

Example 1.3 Say we have a computational process that can move on a network between computers
with varying loads. In metrical task systems, the costs should represent the quantity we want to
minimize, and in this case we want to avoid lost computation time. So the metric gives the lost time
involved in transporting the process from one computer to another. And on each time step, the task
vector tells us for each computer how much time would have been lost were we at that computer.
(Section 6.3 describes an experiment comparing diffekéh$ algorithms using computer load
data.)

Example 1.4 Paging can be formulated in the metrical task system framework. If we have a cache
that can hold: pages, and there arepages in the universe, then the task system would include a
state for each of th¢}) choices ofi pages from the universe. Our current state tells us what we
should hold in our cache. We represent a request to ajega task with a cost dffor those states
wherei is in the state’s corresponding cache aadelsewhere. The distance between two states is
the number of page loads required to move between the two states’ corresponding sek$TElhe
results in this thesis unfortunately say nothing useful aBaging, as the number of states is much
too large to generate useful bounds. But Chapter 7 describes how the techniques uselll T the
results of this thesis can apply Raging.)

Some definitions will help us discuss task systemseent sequencéor task sequencgT is the time-
indexed sequence of task vectors. &ation sequences a time-indexed sequence of states specifying where
each task is processed; in Example 1.1, the action sequeiscgy., ¢3). Themovement costmove(v) is
the total cost incurred according to the meti¥c, d(v'~!, v'). Thelocal cost(or task-processing cost
local(T, v) is the total cost incurred according to the task vectdisT! .. Thus the total costost(T, v)
for v onT is move(v) + local (T, v).

1.3 Competitive ratio

In the MTS problem, as with other on-line problems, tb@mpetitive ratio proves a useful performance
measure of an algorithm. Informally, this is the maximum, over all event sequéhaafsthe ratio of the
algorithm’s cost orfiT' against the best possible cost for servicihgin Example 1.1, this ratio i8/1. (But

of course, since we looked at only one event sequence (and not all possible event sequences), this is not
really a competitive ratio.) Sleator and Tarjan proposed this competitive ratio as a general technique for
analyzing on-line algorithm performance [ST85a].

Example 1.5A tourist visiting New York City for a day can pay $1.50 for a single subway trip and

1.3 Competitive ratio 5

$4.00 for an all-day pass. A simple strategy employed by many tourists is to simply buy the $4.00
pass at the first subway ride, at a cost of $4.00. This has a poor competitive ratio, since if it is also
the last ride, the ratio i$/1.5 = 2.667. An alternative strategy is to buy single-trip tokens for the
first two rides and the all-day pass for the third. For this, the worst-case ratid is 1.75, which

occurs if the tourist takes three rides.

Example 1.5 illustrates that the competitive ratio is not always the most intuitive way of looking at the
problem. If our tourist were quite sure she would use the subway more than twice, perhaps she should
have bought the all-day pass initially. Or if our tourist brought only $5.00, she may want the all-day pass.
The advantage of the competitive ratio bound is that it applies to many on-line problems without requir-
ing additional input requirements (like a probability distribution) to the problem. Additionally, theoretical
comparisons using competitive ratios often agree with empirical comparisons in how they rank algorithms.
(Empirically, the ratios tend to be much lower since inputs generally are not adversarial).

Additional research refined the notion of competitive ratio slightly to incorporate randomization and to
provide an additive fudge factor. We say randomized algorithisip-competitive if for any task sequence,
the expected cost td is at mostp times the best achievable cost for the task sequence (plus a constant
independent of the sequence). More formally, given a metric shageon-line algorithmi has competitive
ratio p if for some constari, for each event sequente A outputs an action sequeneg (a random variable
if A is randomized) so that for all action sequeneegthe cost ta4 obeys the inequality

E[cost(T,va)] < p cost(T,v)+b. (1.1)

The additive part b proves to be an important (and irritating) detail. Thus we frequently speak af
having “ratiop with additiveb.”

The way the quantifiers are ordered in this definition assumesblwvious adversary, an adversary
choosing the worst-cask must choose the entire sequence without knowirggparticular choices. This is
appropriate in circumstances where the algorithm has a negligible effect on the environment — such as in
paging (usually) and in small-quantity stock investing. An alternative is to uselaptive adversarywho
can choose each task vector knowitig random choices so far [BDBK94]. But throughout this thesis we
use an oblivious adversary for all our on-line problems.

One very nice aspect of analyzing algorithms against oblivious adversaries is the simplicity of expressing
the cost in the uniform metric (where all interstate distancesljrelf p'~! is our current probability
distribution, and we move to distributigsi in order to process the tadk, defined (p'~!, p) to be

o o(pt-p)= D (pi-pi7Y) .

i:p; ' >p! i:p; ' <p}
(Since bothp’~! andp? are probability distributions and so sumlitadhese quantities are equal.) For the task
T?, our expected cost is exactly(p' ™', p’) + >, p/T!. Itis convenient to think of probability as a fluid
being moved between states as time progresses, where the movement cost between time steps is the amount
of fluid being transferred. Indeed, we can redefineNtiS problem as the on-line algorithm choosing a
probability distribution, with the costs as just described, and so avoid thednoigis of probalbty altogether.

Theorem 1.1 Say we are in the uniform metric. We can change our state probability distribution
fromp~! to p’ at an expected cost df(p’~*, p).

Proof. If the probability we are at our actual current statshould increase (i.ep’™" < p!),
then we do not move. But if that probability decreaspgs‘{ > p!), then we remain at with
probabilityp;?/pf‘1 and otherwise choose randomly from among the statghose probabilities

increase, choosing with probabilitiép} — p;_l) /d (p"™',pf).

6 Introduction

The new probability distribution with this strategypé. For decreasing-probability stateghe
probability we are there is the product of the chance we were already tlnfér]e) @nd the chance
we remain there given we were already thgsg/p! '), and this product ip!. There is no chance
that we move ta. For increasing-probability statéswe are there if we move toor if we were
at: already. The probability we move there from a decreasing-probability siatthe product of
the chance we were at(which is p;_l), the chance we move fromgiven we were there (which

is (p§‘1 — p;) /p5~"), and the chance we move taiven that we are moving fronj (which is

(p! = pi™") /d (p'=*,p)). This product is(p! ™" — p}) (p! — p!™") /d (p'~",p'). Summing
over all suchj gives usp! — p:~'. We could also have already been at stg@nd remained there)
with probabilityp?~*, for a total probability ofp?.

To get the total probability we move, we sum the chances that we mogado state. For
decreasing-probability states, this chance.is-or increasing probability statéswe have already
seen that the chance we move therp'is- pf‘l. Summing over all states gives tﬂsépt—l, pt). =

A major open problem in competitive analysis is, “How small a competitive ratio can one guarantee
for metrical task systems on arbitrary distance metrics?” A primary goal of this dissertation is to present a
substantially improved answer to this question.

1.4 Previous results

Uniform metric

The simplest, most important, and best-understood metric for task systemsuisifdren metric , where
d(u,v) = 1 whenu # v (andd(u, v) = 0 for all u).

The Marking algorithm of Borodin, Linial, and Saks is a simple and useful algorithm for the uniform
metric [BLS92]. (This algorithm is similar to théarking algorithm used foPaging, which we review in
Chapter 7 [FKLF91].)

Algorithm Marking ([BLS92]) The algorithm proceeds in phases. At the beginning of each phase

all states are unmarked, amdarking chooses a uniform-random state to occupy. As tasks are
received,Marking increases counters on each state, keeping track of the total processing cost for
the state in this phase. (This counter will increase when the state incurs a cost, whether or not the
algorithm occupies it.) When a state’s counter readh&ge say that this state marked When the

current state becomes marked, the algorithm moves to a random unmarked state. When all states are
marked Marking resets all marks and counters and begins a new phase.

Example 1.6 Consider statesy,, ¢, andq., whereMarking begins aty,, with the task sequence
do q1 42

T! = (0.5,0.2,0.0)

T2 = (0.2,0.3,2.0)

T3 = (0.0,1.0,1.0)

T4 = (1.0,0.0,0.0)
Marking initially chooses a random state — say it choageand so pay$.2 for T'. The counters
are now(0.5,0.2,0). OnT?, the counters becom@.7, 0.5, 2); ¢z is now marked, buMarking is
atq; and so remains there, at a costiof. OnT?, the counters becom@.7, 1.5, 3). The current
stateg; is now marked; the algorithm chooses randomly from the unmarked $tatessoMarking
must choosey, at a cost ofl +- 0. OnT*, all states become markehbtarking clears all counters

1.4 Previous results 7

and chooses a random state, gay The cost isl + 0; Marking’s total cost for these four tasks is
024 (04+03)+(1+0)+(1+0)=25.

The following theorem bounds the competitive ratio Mérking. Achlioptas, Chrobak, and Noga
demonstrate the best possible bound\iarking, 2H,, — 1 [ACN96].¥

Theorem 1.2 ([BLS92]) Marking has competitive rati@ H,, for uniform metric spaces.

Proof. We analyze by phases. Any action sequence taken by an off-line algorithm must pay at least
1 in each phase (eithérto move orl if it stays in the same state); we argue thtrking's expected
costis at mos2 H,,. Consider the first state to become marked. The probabilityMaaking ever

goes to this state during the phas%isand if so therMarking pays at mos? for this state (at most

1 to move there, and at mostin local costs). Thus the expected cosMarking at this state is at
most%. Now consider the second state to become marked. The probabilitVititking ever goes

to this state is at mosgi—l, and if so therMarking pays at mos® for this; thus the expected cost

to Marking at this state is at mosntf—l. Generally, at théth state to become marked in the phase,

Marking expects to pay at mo%tjﬁ at that state. We sum over all states to2jgt,. u

On the other side, we know that no algorithm can guarantee a competitive ratio of leg$,thdrani
and Seiden nearly match this lower bound with an algorithm achieving theHatip O (/log n) [IS98].

Theorem 1.3 ([BLS92]) Every on-line algorithm for the uniform metric has a competitive ratio of
at leastH,,.

Proof. Consider the following sequence constructed by an adversary who maintains the probability
distribution on states used by the on-line algoritAimThe sequence proceeds in phases. The first
task vector of the phasefison all but the most-probable state where it is infinite. Sincel is atq,
with probability at least, and it will pay1 to move fromg; to avoid the infinite cost, the expected
costtoA is at Ieast%. The second task vectorliseverywhere except far; and the most-probable
stateg;. The expected cost on this task is at legst. We continue this until we reach— 1 tasks,
each time using task vectors that @reverywhere except at, ... , ¢;_; and the most-probable
stateyg;. The total cost tol after these tasks is at leddt, — 1. For the final task vector of this phase,
we give a cost of to the remaining statg, and0 elsewhere; sincd must be ay,,, the cost gl for
a total cost of at leadt/,, to A.

An off-line algorithm knowing the sequence would beiafor the firstn — 1 tasks, at no cost;
on thenth task, it would move to the next phase;s at a cost ofi. Since the algorithm can repeat
these phases indefinitely, the competitive ratiold$ at leastH . u

General metrics

The situation for arbitrary metrics is more challenging. In the metric space of Figure 1.2, for example,
Marking does very poorly — it will likely pay at lead)0 in most phases. A more promising alternative for
metric spaces like that of Figure 1.2 is to metggeandg, somehow and to combine thjs—¢; combination
with ¢z using some algorithm lik&larking — that is, to useMarking to combineg, and¢; in isolation,
and then to usdarking again to incorporate; into the mixture. Karliret al. consider the case of such
an unbalanced-point space [KMMO90]; for larger unbalanced spaces, Beiral. apply this principle of
building from algorithms for subspaces [BKRS92]. This decontmmsof a space into subgges is also the
inspiration behind the approach followed in this dissertation.

Many of the known algorithms, including many seen in this dissertation, usedhefunction. The
work functionOPT?, indexed by a time¢ and a state, represents the optimal off-line cost for servicing

no1
=1 ¢

By H,,, we mean thexth harmonic numbe#

8 Introduction

QO“

1 q2

(]1%

Figure 1.2: A decidedly nonuniform metric space.

the firstt tasks and ending in state We can comput®©@PT! as follows. Initially OPT? is 0 for all v.
Given a task vectdI'* we update each state’s work function to

OPT!, = min (OPT, ' + T/ + d(u,v)) .

Notice thatOPT, andOPT, can never differ by more thaf(«, v). We say that state pins statev when
OPT! = OPT!, + d(u,v).

Besides introducing the problem and presenbfegking, Borodin, Linial, and Saks also demonstrate a
deterministic algorithm for general metric spaces.

Algorithm Work-Function ([BLS92]) We maintain the work function. When the state we occupy
becomes pinned, we move to the pinning state.

Example 1.7We return to Example 1.1. The work function values are initi@iy T° = (0, 0, 0, 0).

We initially occupy stateys, and receivel'! = (3,1,1,0). We update our work function values
to OPT! = (3,1,1,0). Nobody yet pins statey,, so we remain there, at a cost ®to move
and3 to process. Our second task vec®t is (7,0, 4, 3), so our work function values become
OPT? = (5,1,5,3). Now stateq; pins states, andq,. We are at statg,, so we move to the
pinning stateg;, at a cost oft to move and) to process. Our total cost on this sequence, then, is
3+(4+0)=T7.

Borodin, Linial, and Saks show the following, not proven in this thesis.
Theorem 1.4 ([BLS92]) Work-Function has competitive rati@n — 1 for any metric space.

They complement this by showing thdgterministialgorithms cannot guarantee less than- 1.

How much better can one do with randomized algorithms? This remains a major open question in com-
petitive analysis. It was not even clear tlaaly improvement was possible until Irani and Seiden demon-
strated a randomized algorithm with a mildly improved competitive ratiogn — 0.58 [IS98]. On the
lower-bound front, Blunet al. show that regardless of the metric, every algorithm must have a competitive
ratio of at leasf2(/log n/loglog n) [BKRS92].

In the absence of any satisfying bounds closing this gap for arbitrary metrics, researchers developed
algorithms for some natural metrics beyond the uniform metric. These inclu@élagn) ratio for “highly
unbalanced spaces” [BKRS92], &r{log® ») ratio for a star space [Tom97], and28(VIosnleglosn) ratig
for equally-spaced points on a line [BBBO, BRS97]. (In a star spacéu, v) is d,, + d, for some choices
d, of values for states.)

These examples in other metrics led to the somewhat daring conjecture that a general algorithm exists
achievingO (log n) on every metric, and that no metric exists whefleg ») is possible. Thi®(log n) al-
gorithm remains elusive, but an algorithm, presented in this dissertation, achieve3(tation log log n).

Fiat and Mendel subsequently refine thigxtog® n log* log n) [FM0O0]. These polylogarithmic guarantees,
coupled with the2(/log n/loglog n) lower-bound result of Blunet al.[BKRS92], gives strong evidence
for the randomized/ TS conjecture.

Chapter 2
HST approximation

Bartal’'s probabilistic approximation of arbitrary metricaggs withh-HSTs is a major new tool in
optimization algorithm research [Bar96, Bar98]. TH&S problem was a major motivation behind this
result, and theViITS result presented in this dissertation remains an important application. In this chapter
we explore this result and its application to &S problem.

2.1 Probabilistic approximation

The notion of probabilistic approximation dates from Karp [Kar90]. A metric spaisgorobabilistically
approximated with ratio p by a clasg’ of metric spaces with an associated distribution if, for every pair of
pointsu andv in d,

1. Forall metricsd € C, we haved(u, v) > d(u, v).

2. E

Jeg{d(u, v)} <p-du,v).

That is, every edge expands (regardless of our choicé ob edge becomes shorter thandinbut its

expected expansion factor is not more than
Example 2.1Karp uses a simple example of probabilisticathapproximating armm-node cycle
space by a set af-node line spaces: Choose a random edge of the cycle and split it there. (See
Figure 2.1.) No matter which edge we pick, no distance shrinks using this approximation. But for
any adjacent pair of nodesandwv, the edge connecting them is split with probabi&{yothemise

— [eHaHeHrHoHrHeHo

~

Figure 2.1: Approximating a cycle by a line.

9

10 HST approximation

it remains intact. Thus the expected distance is

~ 1 1 2
E-|d <|[1l—-—=)14—-(n-1)=2—-—=—<2.
lawo)] < (1- 1) 14 to-n =2- 2 <
For any nonadjacent pair of nodes, their expected distan¢ésrat most the sum of the expected
lengths along edges in the shortest path between them, and we know that these edges expand by
2 — 2 in expectation.

The following straightforward theorem relates the concept of probabilistic approximation kTiBe
problem. Coupled with Example 2.1, for example, it says thatldi$ algorithm that isp-competitive on
line spaces implies 2p-competitive algorithm for cycle gres.

Theorem 2.1 Say that we can probabilistically-approximate a metric spagéwith a distribution
on a clasg of metric spaces, and say we can findranompetitiveM TS algorithm A for metrics
fromC. Then we have afrp)-competitive algorithnd for d.

Proof. Our algorithmA probabilistically approximates by a metricd € ¢ and then runsi ond
using the identical task sequence. On each stepchooses to occupy whichever st&%thatfl
occupies withind.

Consider any action sequeneén d. LetE ;|- - -] represent the expected costbfelative to its
choice ofd, and letE ;[- - -] represent the expected cost.#fgiven the choice ofl. The expected
costtoA is

ng fi+Tt ng vi) + Ty

A

(The inequality holds écausel(u, v) < d(u, v) necessarlly)Theamountms@g -] on the right

is exactly the expected cost tbon d. Using the fact thatl is r-competitive, we contlnue

Zd A E—I—Tt T‘Z(J(Vt_17vt)—|—Tit)—|—b
t
- E;|dv™Lv)| + T) +b
3 it 1)
< Z(pd(TLV) T 4

< rpz vl +TL.) +0

IN

E;

Since this inequality holds for any sequenced is (rp)-competitive. n

2.2 Approximation with HSTs

Bartal’s contribution is to develop a technique for approximating arbitrary metrics by a special type of space
particularly amenable to constructing algorithms, thbierarchical well-separated tre:-HST). Define

the diameter of a metric space to be the maximum distance separating any two points in it. A metric
space with diameteh is anh-HST metric if it can be partitioned into sukees that are recursivelyHST
metrics with diameters at most/h, where the distance between any two points in different subspaces is

2.2 Approximation with HSTs 11

Figure 2.2: An example of 2HST. (The circles are points, and the numbers indicate diameters of subtrees.)

A The easiest way to draw dnrHST is as a tree; see Figure 2.2. In this drawing, the distance between
the second point and fifth points from the lefRissince this is the diameter of the lowest subtree containing
both points.

Theorem 2.2 ([Bar98]) For any s > 1, any metric space of nodes can be probabilistically
approximated with rati@ (h log n log log n) by a distribution orh-HSTSs.

Some of our less sophisticated results rely on the number of levels irt&T; in this theorem, the depth
of each tree i®) (log;, A), whereA is the ratio of the longest distance to the shortest nonzero distarice in
This theorem has many applications to approximation algorithms and on-line algorithms. For many of
these cases, the value/ofs irrelevant and sé is taken to be simply. But in theMTS result we will find
it necessary to takk to be a larger value (lik&(logn)).
Rather than look at the proof of Theorem 2.2, for intuition we look at a simplified result applying only
to (-, metrics, and then we briefly discuss how the same approach applies to arbjtraggrics. (In an
(., space, points have coordinates, and the distdteger) between two points andv is max; |u; — v,
whereu; is theith coordinate of point.)

Theorem 2.3 For anyh > 1, any k-dimensional., space ofn nodes can be probabilistically
approximated with rati@ (hk log;, n) by h-HSTSs.

Algorithm Approx- /., Say our metric spacéhas diameteP). We construct ouk-HST by select-
ing, for each dimension, a g#ion of the axis into péces of Width% Independently for each axis,
we choose the offset of this partition by choosing a number uniformly ﬂmn@] so that no pair
of nodesu, v € d with d(u,v) < n% is divided. (That is, we continue choosing new offsets until

no such pair is split by our choice. Finding such a partition is always possible; there are éf—most

pairs of points, so at mo&f -2~ = L of the rangd0, 2] is disallowed.) This produces a partition

of the k-dimensional space into at magt 4 1)* nonempty regions, which we callvisions. Our

h-HST will have a recursively-computed subspace for each division. We choose the diameter (that
is, the distance between points in different divisions) td’heBecause each division has diameter

at most% (and so the recursively-computed subspace has diameter al%moste get am-HST.

Figure 2.3 illustrates this technique og-@limensional,, space withh = 2.

Proof. Consider any pair of nodesandv in our original space. This pair will be separated on some
level of the tree; since the diametlron that level is at least(«, v), we satisfy the first requirement

*Bartal’s definition of the distance between two poimtsndv is different: Whereas we define it to be the diameter of the lowest
subspace containing andv, he defines it as the sum of this “diameter” and half the sum of the “diameters” of the subspaces in
each lower level containing or v [Bar96]. (Bartal's definition comes from mapping the space to a tree with lengths assigned to
the edges and points at the leaves. The distancedréon is the sum of edge lengths on the path frarto v in the tree.) Since
we always usé > 2, the two definitions differ by only a constant factor.

12 HST approximation

Figure 2.3: Constructing 2HST for an{,, space. (Circles are points; on the left, distances are based on
the two-dimensional coordinates in the diagram, and lines represent the partitions.)

of a probabilistic approximationi(u, v) < D = d(u, v). Now we consider the upper bound on the
expectedi(u, v). The nodes: andv will be split on a level of the recursion where the diameter is
betweeni(u, v) andn®hd(u, v). There are at most+ log;, (n*h) = O(log;, n) of these. For a level
of recursion with a diametdp, for each coordinate the prolility that the partition splits: andv is

at mostcg%”}?, and in this casé(u, v) is D. So the expected contribution to the distance is at most
2hd(u,v). We sum over all coordinates to g¥tkd(u, v), and sum over alD (log, n) levels to get

E{dN(u7 v)} = O(hklogy, n)d(u,v) .

This approach generalizes naturally to arbitrgsynetrics.

Theorem 2.4 For anyh > 1 and integerp > 1, anyk-dimensional, metric space of. nodes can
be probabilisticallyO (hk log), (nk'/?))-approximated by.-HSTSs.

Proof. We follow the method of Theorem 2.3, with a few differences. When the diamefer is
we partitioneach axis into pieces of Widtﬁ% so that the diameter of each divisionks but we

choose the offset so that no point péir, v) with d(u,v) < % is separated. Consider any
pair of pointsu andv. For each coordinatg let ¢; = |u; — v;|. The chance the pair is split by the

partition on coordinaté when the diameter i® is at mostm. Summing ovet, since (as

shown below)>", ¢; < k'~'/7d(u, v), we get at most @hkd(u, v)/D chance thatl(u,v) = D.
Thus the expected value dfu, v) is at mosiO (hk log), (nk'/?))d(u, v).

To showS™, (; < k'=1/7 (X, ¢/)"/7, we show(3>, £;)" < kP~'Y, ¢ by induction onp. It
trivially holds forp = 1. Given the fact fop — 1, we have by induction

() <z (e)
= kP2 ZZ@?—%
< gt Zﬂj

2.3 RecursivéTS construction 13

The last step follows sinaé ™' ¢;+(2~"¢; < (?+(” (thisis equivalentt¢(? " —2~1) ((;—(;) > 0).
]

2.3 RecursiveMTS construction

Bartal’s probabilistic approximation of general metrics by HSTs suggests a definite program for achieving
improved probabilistitMTS algorithms: We find an algorithm for HSTs and apply Theorem 2.1. Because
of their structure, a very natural approach for tackling HSTs is to inductively apply an algorithm. The
polylog(n) result described in this dissertation follows exactly this program.

A major hurdle is to conceive of a good scenario to abstract the details of algorithms for subtrees of an
HST, so that we can define simple techniques to combine these into an algorithm for the entire tree using
recursion. The remainder of this chapter describes this abstraction and demonstrates how to apply it.

To inductively construct our algorithm for the entire HST, we imagine that we already-haampetitive
subalgorithms for each subtree of the root, and we construct an algorithm to combine these into an algorithm
for the entire tree. We can abstract theompetitiveness of the subalgorithms by imagining &eath time
the task vector says we payin fact our on-line algorithm paysy. We will compare it to a player who does
not incur this factor of-. We call thisr thecost ratio; typically » = polylog(n).

A complication that arises is that different subtrees can have different cost ratios. For the moment,
though, we concentrate on the much simpler problem of finding an algorithm when the cost ratios are equal.

In using cost ratios, we speak ahfair competitiveness a notion introduced by Blunet al. and
formalized by Seiden [BKRS92, Sei99]. We say algoritirhasr-unfair competitive ratip with additive
b if for all event sequences, algorithmA outputs an action sequeneg so that for all action sequences

E[move(va4) + r local(T,v4)] < p(move(v) + local(T,v))+b. (2.1)

The only difference between this definition and the definition of the competitive ratio is the appearance of
on the left-hand side.
The first approach to consider, as Bartal did, is to anadWaeking in this unfair setting [Bar96].

Theorem 2.5 Marking hasr-unfair competitive ratiqr + 1) H,, for a uniform metric space of
nodes.

Proof. We analyze by phases. Any action sequence must pay atl lgastch phase; we argue that
Marking’s expected unfair cost is at mogt + 1) H,,. Consider the first state to become marked.
The probability thaMarking ever goes to this state j;s and if so therMarking pays at most + 1

for this state (at most in local costs, and in movement cost after it becomes marked). Thus the
expected cost tdarking at this state is at mosttL. Now consider the second state to become
marked. The probability tha#larking ever goes to this state ;;sl—l and if so therMarking pays at
mostr + 1 for this; thus the expected costhMarking at this state i%. Generally, at théth state

to become marked in the phaséarking expects to pay at most+— at that state. We sum over

n—1+1
all states to getr + 1) H,,.]

It is not too difficult to imagine what happens when we apilgrking recursively to a tree. Because
of ther H,, term to the competitive ratio, what effectively happens is thattheéerms multiply so that for
an L-level h-HST, the competitive ratio is roughty (/). Thel-level subtrees have rati@(H,,), but to
construct the algorithm for thz-level subtrees, we must take= O(H,,) to account for the performance
of the 1-level subtrees below, giving a ratio 6f(H?2) overall. Likewise, the3-level subtrees have a ratio
of O(H?2), and so on. We have neglected some details (notably, we have ignored details about exactly how

14 HST approximation

qo0 91 42
T! =(3,0,0)
T2:<%7%7 0>
T = (3,3, 2)
T* = (0,0, 3)

q0 q1 92

Figure 2.4: A very simpl@-HST and task sequence.

we combine the subalgorithms, and we have ignored the additivaut this is roughly what happens in
recursively applyingiarking to an HST.

By choosingh to balance the metric-space approximation ratamainst the number of level¥(log;, A),
Bartal proves the following theorem.

Theorem 2.6 ([Bar96]) Given a metric space with as the ratio of longest to shortest distance, we
chooseh = 2VIs2lefln By recursively applyind/arking to an h-HST probabilistically approxi-
mating the original metric space, we get a competitive ratiptf/log 2 oglog)

In many cases (such as a shortest-path metric in an unweighted graph) this bound is an improvement on the
earlier linear bounds [BLS92, 1S98], but it is still much worse than the conjectkg; ») possibility.

2.4 Bounding a competitive ratio

The key problem with th#larking approach is tha¥larking’s unfair competitive ratio multiplies the ratio
by2H, = O(logn). Aratio of r4+-O (log n) would be much more useful, as we could potentially add merely
O(logn) for each level of the HST. In this section, we see how we can rigorously use such an algérithm
with anr-unfair competitive ratio of + «(n) to recursively construct an algorithm for dnlevel h-HST
with a (fair) competitive ratio of.a(n), for h sufficiently large.

The techniques used here are later reused with less descriptionjol#ig () result. For that result,
we must work around the fact that aAHST could have many levels. For example, the space defined by
placing points al, 2,4, ... ,2"~! on the number line will give an HST &t(log, 2"~ !) levels. It turns out,
though, that by being more careful with how we combine subspaces if one is much larger than others, we
can get thevolylog (n) result. We will see this approach in Theorem 4.8.

To run A recursively on an HST' with each point of the space representing a subtreg, afe must
decide when a point representing a subtree incurs a task-processing cost. We accomplish this by maintaining
the work functionOPT for the pointdn that subtree alongThat is, points in other subtrees cannot pin any
points in the subtree.) The point representing a subtree incurs a loss each time the minimum work function
within that subtree increases. The amount of the loss is scaled down by the diamEté&ecknically, a
little less) and fed intod.

As A progresses at the root level of the tree, it will occasionally move from one subtree to another. When
this occurs, the overall algorithm continues runnihgt that level, but for the lower levels of the HST (which
have now changed subtreesbegins anew. Restarting the algorithm in this way does not affect the work-
function computation for the level where the movement occurs, but the work-function computation at the
lower levels does begin from scratch.

Example 2.2 To get a handle on the subtleties of this scheme, we consider an example. We work
with runningMarking recursively on the HST and task sequence of Figure 2.4. (The choice of

2.4 Bounding a competitive ratio 15

Marking is inappropriate: It does not have the require¢t «(n) competitive ratio. BuMarking
suffices for this illustration.)

Initially algorithm 4, chooses between the left subtree and right subtree with equal probability;
say it chooses the left subtree. Then algorithyruns and chooses between its left subtree and right
subtree equally; say it chooses the left, so that the algorithm for the HST is initially agfode

On receivingT! = <%, 0, 0), the status ofi; does not change; although the work functiondor
increases b%, the minimum work function within the subtree rooted4tis still 0. However, the
work function for left subtree oft, has increased by ThusMarking at A, increases the counter
for the left subtree by (we divide the increase by the diameter of the spage Algorithm A,
does not move fromy, and so we remain @t to process the first vector.

On receivingI'? = (1, 1, 0), the work function for both subtrees df, increases by; thus now
the counters fori, are atl and%. Now its left subtreeq,) is marked, sod, will move to the right
subtree ¢;). At the root level, the left subtree’s minimum work function is noyand soA;’s left
counter increases fromto é (remember that we scale by the space’s diametiroes not move.

So the algorithm processes the second vectgy.at

For taskT? = (3, 3, 2), the work function ford;’s left subtree increases I3y so that4;’s left
subtree counter increases frgnto Z. Meanwhile,A;’s right subtree’s work function increases by
2, S0 A4's right subtree counter increases fréno % ThusA;'s left subtree becomes marked, and
it moves to the right subtree. The algorithm proceggéat nodeys,.

Finally, consider the task* = (0, 0, 3). This increases the work function fdy 's right subtree
by 3, so thatA,'s right subtree counter becomés Now the right subtree ol is marked, and so
Marking resets the counters and begins at a random space. Say it randomly chooses the left subtree.
Then A; begins anew with work function and counterd)asay it chooses the left also. Then the
algorithm processeE* at nodey,.

In this example, we treated the tree as an entire entity. We now look atAyhedw. It saw the
following task sequence.

T = (0,0)
T: = (10}
T = (1,2)
Tj =(0,1)

As aMarking algorithm using: = 1, 4, is in either tree with equal probability for tasks; and

TZ. The left subtree becomes marked wif}, and so4; processed; in the right subtree. With
Tj, the right subtree becomes marked also, and sdears its marks and chooses a random subtree
for T3.

To bound the performance of our recursive application, we must have a bound on the magnitude of the
additive part (thé of our definition of competitive ratio in (2.1)). We neédo be about as large asso
that when the subtree algorithm restarts, the additive part (which we may pay) will be only a constant factor
more than it cost us to move into the subtree. We will see this in the mathematics of the formal proof.

Theorem 2.7 Say algorithmA hasr-unfair competitive ratio- + «(n) with additive3(n) > 2 on
the uniform metric. The competitive ratio of runnidgrecursively on an’-level (2.55(n))-HST
with diameterD is at mostl + 4«a(n) L with additive53(n) D.

Remark. In running A, we taker to be {1 times the maximum ratio of the subtrees’ algorithms;
B(n) is computed using this value.

Proof. We prove this by induction oh. The trivial single-point space handles the base ¢ase0.
Say we have arl-level HST of diameterD, and letp be the maximum competitive ratio of
the subtrees’ algorithms, at maist 4a(n) (L — 1). The additive part i§3(n) times the subtree’s

HST approximation

diameter of at mosg%(n), for a product oRD.

To bound the overall performance, we will want to use our inductive hypothesis aneutifair
competitive ratio ofd. To discussd’s performance, we defin€, as the task sequence thasees.
That is,T}, ; is 55 times the change in minimum work function in subtfess a result of the actual
task vectorT'!, where we compute the minimum work function in subti@ensidering only those
states in the subtree (i.e., in this computation, states in other subtrees cannot pin states if)subtree
We divide the change in work function By rather than simplyD because of the effect which will
soon appear of the additive part of the subalgorithms’ ratios.

To bound the competitive ratio for our complete algorithm (which combihesth the subtrees’
algorithms), consider an arbitrary action sequenamn the entire space of points. This implies
an action sequence, specifying in whichsubtree(not state) to process each task. To use
competitive ratio, we want to bound from below the total off-line cost to terms oflocal(Ty4, vy)
andmove;(vy), since their sum is what can compete against. (We us@uver; to represent the
movement cost on the diameterniform space thatt uses.) The first apparent (but flawed) answer
is local(3DT4,v) + D movey (vy). To understand this, consider a segment of time whestays
within the same subtree. The algorithm must move into the subtree, at a dostafd because the
work function within the subtree increases accordinéHﬂ‘A within the segment, the off-line cost
increases wit DT4. Summing over all segments, we detal(2DT4, v;) + D movey (vy).

But local(%DTA, vy) is not accurate: The minimum cost for processing a segmentefain-
ing in the same subtree should be computed using work-function values stamirguathe work-
function values used to compulg, are not all equal (except for the first segment). In fact, for each
of thesemouver; (vy) segments, the actual optimal cost within the segment and the cost represented
by T4 may differ by as much as the diameter of the subtree, which is atﬂg%. So the first ap-

parent answekocal($ D4, vy) + D movey (vs) may be wrong by as much 8855y moveu (Vo).
Thus the total cost fov; is at least

local(%DTA,vb) + (D — ﬁin)) movey (vy) > local(%DTA,vb) + %D mover (vp) .

Now we look at what algorithmt does. Letv, represent the sequence of moves thabakes at
the top level of the HST. Within a single segmenwgfstaying within a single subtree, the expected
cost (according to the inductive hypothesis) is at motimes the optimal cost for servicing this
segment, plugD. Again, it is tempting to us&'4 to bound the optimal cost for servicing the
segment, but work-function discrepancies mean this estimate may be off: The proper way to compute
the optimal cost is with the work function zero at all states at the beginning, while when the algorithm
moves into the subtree, the work function varies between states. In this case, however, the perceived
cost (that is, whafl'4 indicates) is at most the actual cost, since the computation @ingnly
happens to believe that some of the states have incurred more cost than the minimum among the
states, whereas in fact they have not. Thus within each ofithe;(v4) + 1 segments of4, our
expected cost is at mogttimes the local cost (according to the task sequéhgehat A sees) plus
2D. Adding anothetD for each time we move between segments, our total cost is at most

p local (%DTA7 VA) + 3D move(va) + 2D .

Of coursevy is actually a random variable based dfs random choices. Sincé has com-
petitive ratior + «(n), we know that for an arbitrary action sequengg A’s expected cost is at

2.4 Bounding a competitive ratio 17

most

E[p local (%DTA7 VA) + 3D movey (va) + QD]
= 3DE {g local (T4, v4) + moveU(vA)} +2D

IN

3D ((g + a(n)) (local (T4, vy) + moverr(va)) + ﬁ(n)) +2D
= (p+4a(n)) (local (3DT4,vs) + 2D movey (va)) + 33(n)D + 2D
(14 4a(n)L) (local (3DT4,vs) + 2D movey (va)) + 558(n)D

<
< (1+4a(n)L) (local(T,v) + move(v)) + 55(n)D

Thus we conclude that our overall competitive ratio for the HST s 4a(n) L, plus an additive
56(n)D. L

Our goal now is to demonstrate an algorithm withrannfair competitive ratio of- + O(log n). One
way to this goal is to detour into machine learning theory. We pursue this now.

18

HST approximation

Chapter 3

The expert prediction problem

As theMTS problem is foundational to competitive analysis, so the problem of prediction from expert
advice is foundational to on-line machine learning theory. It has several specific formulations. In this
chapter we first look at one of the more traditional formulatidbsperts-Predict, and then we examine
more closely a “decision-theoretic” formulation. From there we can derive new analyses of algorithms in
the decision-theoretic formulation that do well with a particular goal cadatitioning boundsand we can
attempt to translate these bounds toithenfair MTS problem.

3.1 Classical formulation

Littlestone and Warmuth proposed the init&dperts-Predict problem.

Problem Experts-Predict ([LW94]) We see a set of experts For each time step, each expert
makes a Boolean prediction. We decide on a Boolean prediction, and then we learn the correct
answer. Our goal is to minimize the number of mistakes we make relative to the most accurate
expert:

For example, we might think of the experts as meteorologists predicting whether it will rain tomorrow.
We want to predict well relative to the most talented among them without too many mistakes along the way.

From a learning perspective, this question models a situation where we have a set of hypotheses (termed
expert3, one of which predicts fairly accurately how the world operates. The question is how quickly we
can converge on a good predictor. Thus, our goal is to bound how much worse we do relative to the best
single expert.

The mistake bound of an algorithm bounds the number of mistakes the algorithm makes [Lit88]. In
contrast to much of machine learning, mistake bounds do not employ distributional assumptions. That is,
the experts need not perform uniformly over time in any sense. Despite the absence of such assumptions,
the theoretical bounds obtained are surprisingly good.

If one of the experts predicts perfectly, then tHalving algorithm does optimally for deterministic
algorithms.

*The algorithms actually extend to bounded real-valued predictions, with a loss function (such as square loss or log loss)
assigning the penalties. With the square loss function, for example, if an expert predictsthe true answer ig, the loss is

(z—y)”.

19

20 The expert prediction problem

Algorithm Halving ([Mit82]) We keep track of a s€t of experts, initially including all of them.
Each time step, we predict whatever the majority of expert8 predict. Once we receive the true
answer, we remove frorR all experts who predicted wrong.

Obviously, each timélalving predicts wrong, the size df goes down by at least half. Thus the mistake
bound ofHalving is [lg n .

When none of the experts predict perfectly, the problem becomes harder. One simple approach (as we
saw withMarking) is to proceed in phases: In each phase, weHalving until P becomes empty. If the
best expert makes mistakes, then this phased versiorHaflving makes at most: |lg | mistakes.

Littlestone and Warmuth’s weighted-majority algorithkfM does significantly better.

Algorithm WM ([LW94]) We use a parametet € (0, 1) and maintain a weightv; with each
expert, initiallyw? = 1. At time step, we predict according to a weighted majority of the experts,
where each expert gets a Weightvoj“l. Once we learn the correct answer, we update the weight
of each expert who was mistaken to becowfe«— wf‘l g.

Example 3.1 Take = % Say we have four expertsy, =1, 2, andzs. Our weights are initially
wl = (1,1,1,1).

Say that:, predictsfalse on the first time step while the others predice . Then we predict
true , since it has weight while false has weightl. We then learn the true answéalse in
this example. We update the weights to becomte= (1, 1,1, 1).

Say thatzg andz; predicttrue on the second time step, amgd andx3 predictfalse . Then
true has weight} while false hasZ; our algorithm predictsrue . If this is correct, then the
weights are updated to becomé = (1,1, %, 1).

On the third time step, if;y predictsfalse and the others predid¢tue , then we predict
false , sincefalse has weight andtrue has weight.

The beauty ofWM lies in the fact that, despite its simplicity, its bound is quite strong. The proofis cute;
we repeat its technique several times in this chapter.
Theorem 3.1 ([LW94]) For any expert:, WM has mistake bound

m <;(m In (l)—l—lnn)
WM_IH(Q) k ﬁ 3

+8
wheremy, is the number of mistakes made by expert

Remark. To make better sense of this bound,det 1 — 2¢ for smalle. Then the bound translates
to approximately2(1 +)my, + % In n. Intuitively, this is an explicit trade-off between how quickly
we settle on a particular expert (t%\én n term) and how quickly we are able to adapt if that expert
is actually bad but happens to do well for the first several round2(the- <)m,, term).

Proof. [LW94] DefineW’ = 3. w! to be the total weight at timeand saymwwm is the number of
mistakesVM makes. WM makes a mistake at tintethen, since at lea3%!~! /2 weight is on the
experts that err, the total weight decreases by at [gast3)(W'~!/2). Thus wherWWM makes a
mistake, W is at mostW*~! — (1 — 3)(W'~1/2) = L W*-1, SinceWM makesnywm mistakes,
and sincéW® = n, the final total weighWW/" is at most 112)mwwy,

On the other handW/"! is at least the final weight”/"* of expertk, which is exactly3™.
Thus we have

WM
ﬂmkgwﬁnal§(1‘|‘ﬂ) n

2
From here we take logarithms and solve foy\ to get the result.]

3.2 Decision-theoretic formulation 21

This bound is very close to twice the best expert’s loss. Moreover, it says that we can double the number
of experts (refining the hypothesis space by a factor of two) with very little increase in worst-case loss. A
major strength of the theory of expert advice is how tight a bound we get with the very simple algorithm
WM.

Both Halving andWM are deterministic. A randomized version\WM, which chooses experts ran-
domly based on the weight distribution, roughly halves the bound on the expected [dss$ t9m +
5 Inn [LW94]. We see a proof of this in thExperts problem, an alternative formulation &xperts-
Predict.

3.2 Decision-theoretic formulation

Freund and Schapire abstract away the aspect of combining expert predictions to arrive at what they term
a “decision-theoretic” formulation oExperts-Predict [FS97]. We use this formulation throughout the
remainder of this dissertation, so we refer to this problem simpBEx@erts.

Problem Experts ([FS97]) We see a set of experts For each time stefy we choose an expert
v’. Then we learn thioss vector £, which specifies the los ¢ [0, 1] of each expert for that time
step. We incur the loss of the chosen expéjt, Our goal is to minimize the total loss we incur.

Any deterministic algorithm foExperts does at least times worse than the best expert in the worst
case. An adversary can construct a worst-case sequence by simulating the algorithm and each time step
giving a loss ofl to the expert that the algorithm will choose and a los8 wf the other experts. Thus after
T time steps, the algorithm’s cost1§ while the best expert’s loss is at md@stn. SinceO(n) bounds are
undesirable, we restrict our attention to randomized algorithms.

Given that one of the experts is perfect (that is, if for saimat all timest we havel’ = 0), we can
use the following algorithnRand-Halving, a randomized version ¢falving and a degenerate instance of
Hedge (discussed later). It has a loss of at méist.

Algorithm Rand-Halving Let P be a set of experts, initially including all experts. Each time step,

we pick our an expert uniformly at random from Once we receive the loss vector, we remove
from P all experts who incur some nonzero loss.

When all experts incur some loss, the problem becomes more complicatedHetOge algorithm
is Freund and SchapireExperts adaptation oWM [FS97]. (In fact, the coefficients of Theorem 3.2’s
guarantee are optimal for on-line algorithms [Vov95, FS97].)

Algorithm Hedge ([FS97]) We use a parameter € (0, 1) and maintain a weightv; with each
expert, initiallyw? = 1. At time stept, we choose expert with probability proportional to its
weight,wf‘l/ Zj vv;‘l. Given the loss vector, we update the weight of each expert to become

t t—1 gt
w; w35,

Theorem 3.2 ([FS97]) If an expertk incurs total losSloss;,, thenHedge incurs expected loss at
most

Inn.

In1 1
E[lossHedge] < %/glossk + 3
Remark. Again, to get a feel for the tradeoff, we make better sense of this bound by letting
B =1 — 2¢ for smalle. Then the mistake bound translates to approximdtely) lossi + 5= In n,
roughly a factor of less thaWM’s bound.

22

The expert prediction problem

Proof. [FS97] LetW' be the total weigh} _, w! at timet, and letL’ be the expected loss tedge
at timet. Note that

-1

t
o Wi e 1 t—1pt
L _Zwt—le Wil Zwi €.
As in the proof of Theorem 3.1, we bouMsl”*. We boundW* in terms of W~
W= Y wi= 3w

< D Wi (- (1=9L) =W (1 - (1= AL)

< Wi le—(1-p)L

We can now boun®v/inal

Whinal < yyinit He—(1_g)Lt — pe—(1-8) X, L*
€

For the lower bound o#V/"*/, we know it is at leastv/"*', which is exactly3'***s. Thus we have
the inequality

ﬁlossk < ne—(l—ﬁ) >, Lt

9

which we solve foE[lossHedge] = D, L. n

3.3 Partitioning bound

Until this point, we have contented ourselves with bounding performance against the best single expert over
all time steps. Theartitioning bound is a more ambitious goal. Here we try to do well against all partitions

of time into intervals, where we pick the best expert within each time interval of thikigarBeing able to

do well against all partitions includes, for example, scenarios where one expert does very well for the first

half of time, whereas another expert does best on the last half of time. For a good partitioning bound, an

algorithm must adapt particularly quickly to changed expert performance.

Formally, given a partitior of time into intervals, letp be the number of intervals. We mg; be the

loss of the best expert within thih interval, and we lef p be the total loss over all intervalk; ‘> L.
The partitioning bound of algorithm will be some bound on its expected loss of the form

J=

E[losss] < aLp + bkp

for some coefficients andb.

We hope to find a generalized bound similar to Theorem 3.2's boundddge, a bound of the form

Ellosss] < (1+¢)Lp + %kp Inn.

We examine two variants ¢fedge, Thresh andShare, that achieve this type of bound. In Section 7.2, we
see another variant call&hased-Hedge.

3.3 Partitioning bound 23

Thresh

The first of these algorithm3hresh, is an adaptation of Littlestone and WarmuttML algorithm to the
Experts problem [LW94].
1

Algorithm Thresh We use parameter$ ¢ (0,1) anda € (0, 5], and maintain a weighw; for
each expert, itially w? = 1. At time stept, we compute the total weighv'~! = 3. wf‘l, and
we letS’~! be the set of expertswith wi™' > 2Wi=1, DefineW'~! as the total weight i$!—?,

Y iesi-1 Wi, We choose expeitwith probabilityw! ™' /W= if i € $~! and with probability
0 otherwise. Given the loss vectéf, for each expert ¢ S'~!, we update its weight to become
w! < w!™13%; we do not change weights forz S'~".

Theorem 3.3 Givenn experts,Thresh incurs expected loss at most
In(1/8)) (In(n/fa))
— | Lp+ | —F—— | k
((1—ﬂ)(1—a) EANTEITEr Y

Remark. For smalls, let o = % andg = 1 — 2s. As n becomes very large, the bound of
Theorem 3.3 translates to approximately

for any partitionP.

(14+e)Lp+(1+ec+Llnn)kp.

If we restrict our attention té&p = 1 (the case considered in Theorem 3.2), we see that this effec-
tively generalizes the bound éfedge, at the loss of only a factor afin the coefficient tdn n.

Proof. [LW94] Note thatW* > (1 — o)W for all ¢, and letL¢ be the expected loss &hresh at
timet,

t—1

L=y Zi ¢
——; .
ics Wi

As in Theorem 3.2’s proof, we bound how a single step alters the total weight.

Wt — Z ﬁef.wf—l_l_ Z W;;—1

;eSt—1 igSt—1
< Y- -phwiTt+ > wi
iest—1 igsSt—1
wi™l
= W 1-(1-8)) Wt
Z’est—l
< WM - (1-8)(1-a) Xv\fl ;
iesio1 Wit
= W (1-(1-p)(1-a)L) (3.1)

Consider any partitiol’, and examine segmentof the partition, where the best expert (call it
k) incurs losdL’,. Say that the total weight at the segment’s beginnifyi$’’ and the total weight
at the segment’s end ¥ /%, BecauseThresh never allows a weight to fall below2W*, the

24 The expert prediction problem

initial weight of expertk in the segment is at leag2 W™, Thus at the segment’s end, exple
weight, and henc&/ "¢ is at least3™» 32 Wi, Applying bound (3.1), we have

ﬁypﬁ%wm < Whndl < yyinit H (1-(1-8)1-aL) .
t

So we have

Sa

Lg;lnﬁ+1n7§ —(1-B8)(1-a)) L,

t

which gives us bound on the segment’s expected loss of

L W(/p) ;. In(n/pa)
D i IRy e Ty

Summing over segments, we get the desired bound. n

Share
We also examineShare, an alternative torhresh. This is an adaptation of Herbster and Warmuth’s
Variable-Share algorithm to theExperts environment [HW98].
Algorithm Share We use parameters € (0,1) anda € (0, 3], and maintain a weigh; for
each expert, itially w? = 1. At time stept, we choose expeitwith probability proportional to
its weight,vvf‘l/ Zj vv;‘l. Given the loss vector, we update the weight of each expert to become
wi wimlgh + 2 A% whereAtis Y, (vvf‘1 — wf‘lﬁ‘“’f‘).
The update rule used by this algorithm can be viewed as follows. We first update asmgfsualwf‘lﬁff.

This reduces the sum of the weights by some amdiintWe then distribute an fraction of thisA’ evenly
among the: experts %At each).

Theorem 3.4 Givenn experts Share incurs expected loss at most
In(1/5)) (In(n/a))
—) Lp+ | ——— | k
(u—mu—ﬂ> EANCEOITErTY
for any partitionP.

Remark. For smalls, let o = % andg = 1 — 2s. As n becomes very large, the bound of
Theorem 3.4 translates to approximately

(1—|—€)Lp—|—%lnnkp.

That is, we get about the same tradeoff we saw Wigldlge andThresh.

Proof. Given a partition”, we consider segmentof the partition. Lefl.! be the expected loss to
Share at time step within the segment. Say expértis the best expert of the segment (with loss
L%). Our goal is to show that the algorithm’s expected [pSsL! is at most

In(1/5) L + In(n/a)
(1-A)l-a)

(3.2)

3.4 Translating taMTS 25

Such a bound, summed over segments, implies the theorem’s bound.
Using the typical multiplicative-update analysis (Theorem 3.2) we get

W <WTH (1 - (1-8)(1-a)Lf) .

So, if W™ is the sum of weights at the segment’s beginning Wf** is the sum of weights at
the segment’s end, th&V /7! is bounded by

whm < W TT (1= (1= B)(1 - o)L) . (3.3)

t

Now consider the weight of expelt Attime ¢, we haveW! = W1 — A" 4 o A’, and saA’
is = (W'~! — W'). Thus the amount added to; ' due to the share update s (W' —
W), In the entire segment, therefore, f[he total amount added tdue to the share updates is
m(wmf — W/inaly Thus, even ifwi"i! is zero, by the end of the segment we have

W]];inal > ﬁL’P (o (szt _ Wﬁnal)) 7 (34)

(1—a)n
since the worst case fcw],j”“’ is if the penalties for the expert's losses come after the sharing.
For convenience, define

m=J[0-0-8)01-aL).

Combining (3.3) and (3.4) we get

[a%

(Wim't B Wﬁnal) < W]]jnal < Wﬁnal < sztH]

(0%
(1—a)n
We can now solve foll.

Fra ptra

> >
(1—a)n+ s¥ra n

This gives us

1 i n
—lnﬂgln(ﬁ) P—I—ln(a).
Recalling the definition ofl, we notice that

—InIl > (1-p)(1-a)> L',
SO
¢ o In(1/B)LY + In(n/a)
2V ST

as we desired in (3.2). [

26 The expert prediction problem

3.4 Translating to MTS

TheExperts andMTS problems have deep similarities: The experts correspond closkly ®states, and
the loss vectors correspond closely to task vectors. This gives us some hopargstt and Share can
also be used ad TS algorithms. But there are some important differences between the problems.

e TheMTS problem includes a cost for switching between states/experts.

e An MTS algorithm hasone-step lookaheadThat is, first the cost vector is announced, then the
algorithm chooses whether to move, and finally the algorithm pays according to the entry in the cost
vector for the new state. In contrast, tBeperts algorithm haszero lookaheagdin that it first pays
and then moves.

e Because of the lookahead TS algorithms can deal with unbounded cost vectors. Large losses are
actually advantageous to an on-liMd'S algorithm in that they are essentially equivalent to allowing
the algorithm to “see further into the future.” That is, an adversary trying to defédT@algorithm
might as well use several small task vectors instead of a single large task vector, so that the algorithm
is not sure which state is best. (Theorem 4.1 formalizes this observation.)

e The Experts goal of doing well with respect to the best expert is a much weaker goal than the
competitive-ratio goal of doing well against all sequences. Of couesguse the goal is weak, the
Experts bounds are very good ¢ = times the best expert), whereas &S bounds are relatively
poor O (logn)).

In this section we examine how our twExperts algorithms do in the unfair uniform-metrigl TS
problem. Later (Chapter 6) we look at the other direction — WMWS algorithms apply to th&xperts
scenario.

Thresh

Thresh, unfortunately, does not translate well in the unfdifS setting. In fact,Thresh does not have

a bounded ratio at all. Consider the two-expert case. Say that expetirs a loss large enough for its
weight to drop to slightly below>—. At this point, the algorithm has all probability on expert 1. Now
suppose expeit incurs a tiny loss, just sufficient to bring; to equal2W. (Again, W stands for the total
weight} . w;.) This forces the algorithm to movg probability over to exper2. Now suppose expent

incurs an infinitesimal loss so that, < 2WW. This forces the algorithm to movelW probability back to
expertl. This situation can repeat indefinitely, causing the algorithm to incur unbounded movement cost
with insignificant increase in the off-line optimal cost, giving an unbounded competitive ratio.

Share

The problem withThresh is that it does not control its movement costs very smootSlyare, however,
does. In fact, we can show that it is good as a uniform-me#1S algorithm. The bound for thMTS
setting is exactly what we want from our discussion closing Section 2.3. (Almewterm appears, but
this is not problematic since we can assume O(n); if the ratio is higher, we can simply appWork-
Function to get the same guarantee.)

Theorem 3.5 We useShare for the r-unfair uniform-metricMTS setting as follows: Given a task
vectorT!, we giverT' to Share and use the resulting probability distribution to choose a state.
Given anyy > 2, we can configurer and $ in Share so that itsr-unfair competitive ratio is

p=r+32yln(n(r+1))+4

3.4 Translating taMTS 27

with an additive%.

Remark. In the proof, we choose to be(r + 1)~!. For 3, we choose it to bé¢l + 2 In 2)_1 if
r > yIn(n(r 4+ 1)) and® otherwise.

Proof. Consider any off-line strategy. This corresponds to a partitiaR, with move(v) + 1
segments. The lodsp of the partition islocal (T, v). We consider the local cost and the movement
cost incurred byShare in turn. Theorem 3.4 shows that the task-processing cost satisfies

E[r local(T,va)] = E[local(rT,v4)]

: ((1—ﬂ)(1—oe))l T,)+((1_ﬂ)(1_a))(1+ (v)). (35

(In fact, theMTS problem allows one-step lookahead; this only decreases the algorithm'’s cost.)
To analyze the movement cost, note that the total welhbnly decreases with time. We show
that for any time step, the movement cost is at mdst(1//3) times the local cost.

_ t—1 t
dipt—1 p) — Wf ! Wi ﬁe""%At
(PP = Z wi-1 Wt

i:p§_1>p§

t—1 t—1 o6t

< Y (§=Twe
= Wi-1 Wi
pt 1>plt.

t—1 t—1 et

< ¥ (§= S
= Wi-1 Wi-1
i:p§_1>pf

IN

W?_l W?_lﬁ‘ezt
Z V\;t—l - \Z;Vt—1

t—1
w, 1
< Y e (5)
Thus the totat-unfair cost toShare is at most

(vo105) (e i+ (i) o o)

Mm{ L+In(1/8)
T (1-81-a) (1-8)1-a)

We must choose the values®@fand appropriately.
If > yIn(n(r+ 1)), we chooser = (r+1)~' andj = (1 + 21n 2) ™", Sinceln
and(1 — 3)~' =1+ r/(yIn Z), the competitive ratio is

_1+In{1/B) max rnl nZ
- Ao { ! a}

1+ 21
+ 2In(n/a) (1_|_ rn)max{’ylnﬁvlnﬁ}
11—« yIn 2 o o

In 2
= ! (2—|— r —|—7na)'ylnﬁ.
11—« yIn 2 r o

1
rln 3 In ﬁ} cost(T,v) +

n
In —.
o o

<ZXlpZ,
— 7 [0}

28 The expert prediction problem

We continue, using the fact that> ~ In(n(r + 1)).

1 r ~In 2 n 1
= In — 1+ - 1 1
1—a(2+71n§+ r)711& B (+T‘)(r+37n(n(r+)

< r4+3yln(n(r+1))+4

A

The additive part is identical to this derivation, except thak{- - - } is replaced byn 2, a factor of

~ less.
If r < yIn(n(r+1)), then we choose = (r+1)~! ands = 1. The competitive ratio, then, is
(1=5)(1-«a) B a

< _21/6 (1 + %) max{r, In(n(r + 1))}

- - _21/6 max{(r—l— 1, (1 + %) In(n(r+ 1))} .

We can continue, using the facts taf v In(n(r + 1))) andr > 1.

1 _21/6 max{(r + 1)7 (1 + %) ln(n(r + 1))}
< ! _21/6 max {yIn(n(r+ 1))+ 1,2In(n(r + 1))}

=)+ D)

< o i+ 1)+ 1)

< 32yIn(n(r+1))+3.2

The additive part is identical except that thex{- - - } is replaced byn =, a factor ofy less. u

Thus, usingShare, we can achieve oupoly(L,logn) ratio for L-depth HSTs. But we reach our
O(log® nloglogn) bound using a different unfaM TS algorithm calledOdd-Exponent. We turn to ex-
aminingOdd-Exponent and using it to build MTS algorithm with apolylog(n) competitive ratio.

Chapter 4

A general-metric MTS algorithm

This chapter presents thelylog(n)-competitive algorithm for metrical task systems. We begin by
examining a different algorith®dd-Exponent for the »-unfair uniformMTS problem. Interestingly, al-
thoughOdd-Exponent andShare are radically different in approach, they share similar guarangeare
is the simpler and more intuitive algorithm, bOdd-Exponent is an interesting alternative with slightly
more efficientMTS guarantees. In particular, withdd-Exponent we can guarantee@(log” n log log n)
competitive ratio on general metricages, whereas usir@hare gives us instead (log” n log log n). (The
difference is thaOdd-Exponent has a smaller additive part in its guarantee.)

4.1 Linear

For intuition, we first consider what we should do for two regions. One very good strategy (in fact, the
optimalr-unfair strategy) is to allocate to regidrthe probability

1 OPT; - OPT,

p1:§—|- 5

and to regior2 the remainder. This is the strategy that Bletal. use for equal-ratio regions [BKRS92].
Its r-unfair competitive ratio is + 1; the derivation, analysis, and proof of optimality is identical to the
approach we later see in Theorem 4.7.

For more thar? regions, the natural approach is to generalize2thegion equation. We call this algo-
rithm Linear to emphasize the linear movement of probability as the work function changes.

Algorithm Linear We allocate to region the probability
1 1
pj=—+-> (OPT; - OPT;).

n n—
i#]

The following analysis ot.inear is simpler than the lateDdd-Exponent analysis, but it follows the same
basic method.

To simplify our analysis of these algorithms, we employ two assumptions. The first is to assume that
each task vector i8 in all components, except one component which is bounded bye can choosé to

29

30 A general-metridMTS algorithm

be as small as we want. Such a task is calleélamentary taskor aé-elementary task The following
theorem, not proven here, justifies this assumption.

Theorem 4.1 ([Tom97, BEY98]) For any metric space and ardy> 0, if we have g-competitive
MTS algorithm assuming-elementary task vectors, then we can construgt@mpetitiveMTS
algorithm.

We use the notatiofy, ¢) to represent a task wheyds the state incurring a cost 6f
Our second assumption is the following.

Assumption 4.1For an elementary task giving a cost®dfo a statev so that all probability orv is
removed, we can assume tlds the least value causing the algorithm to do this.

This is because a largérdoes not alter the on-line cost, although it may increase the off-line cost. The
end of Section 6.3 (which presents results of an empirical comparison of severalMmfaialgorithms
including Odd-Exponent and Share) discusses how an implementation can efficiently incorporate these
assumptions.

Theorem 4.2 Ther-unfair competitive ratio oLinear is at most- + (n — 1).

Proof. We use a potential function

r 2
¢=_- Z 4(0PT¢ —- OPT;)?,
1,J0F]
and our analysis competes against the average work-function vajue OPT;, which is at most
1 from the true optimummin; OPT;.
Say we receive an elementary task vector where only a stateurs a cos®. Let p; andp),

represent the probability in regidnbefore and after the task vector, anddeand®’ represent the
potential before and after. Then the on-line strategy’s amortized cost is

s+ (pu —pp) + @' — @.

Assumption 4.1 implies thadPT;. will rise by exactlys. Becausep;, decreases as a function of
OPT;, we can upper-bound this cost using an integral.

y+4é
/ (pkr— opr 0)dOPTk
Y

00OPT;. OOPT,
We compute the integrand.
Opr: 0P

PE T 50PT, T 90OPT,
r r 1 r
= |+ 2 (OPTi=OPTy) | — | =3 (1) | + -3 (OPT, - OPT;)
1%k 1#k 1#k
_r+n-1
o n

Thus the total cost is
n n

y+é -1 5
/ ldOPTk: (r+n-1),
y

whichisr + (n — 1) times the change i >°, OPT; of % L

4.2 Odd-Exponent 31

4.2 Odd-Exponent

Althoughr + (n — 1) is an interesting alternative to tije 4 1) H,, guarantee oMarking, it falls short of
what we need. By adding a parametéo Linear in a peculiar way, it turns out that we get the best of both
worlds.

Before discussing the strategy, we first definedtld exponent function notatedz[for anyz € R
andt > 0.

at if x>0
—(—2)t ifz<0

In our analysis, we use the relationship in the derivativesléfand |z|* (which we could term theven
exponent functioyfor ¢ > 1.

di 2|t = talt=]
x
%x[t] = t]z|"7t

Note also that

x[t] + |$

;o
|t _ {296 ifz >0 (4.1)

0 if z <0
LS (_96)[75] B

Algorithm Odd-Exponent The strategy uses a parametep 1. (Thinkt = O(logn).) We

allocate to region the probability

L1
_ § ’ . N

Lemma 4.3 Odd-Exponent maintains legal probability distribution(. p; = 1 and eachp; is
nonnegative).

Proof. It maintainsy " p; = 1, since because!'l is an odd functiony_, >°,(OPT; - OPT;)ll =
0. Becausep; is a decreasing function of on@PT; among theOPT values, Assumption 4.1
implies that eaclp; remains nonnegative. (Requests tg j only increasep;. Say we receive a
request(j, §) that would makey; negative ifOPT; increased by. Since the distribution (4.2) is
continuous, there is aff < § for which the algorithm sets; to zero. Assumption 4.1 implies that
we can us€j, §') instead so thagt; becomes exactly zero.) n

In the remainder of this section we analyze the strategysfair competitive ratio and then its additive
part.
To analyze the performance we require a simple general lemma.

Lemma 4.4 Considerr nonnegative reals,, ..., z, and two numbers < s < ¢. If >, xf <1,
thend_. zf < nlt=2)/1,
This lemma, presented here without proof, is not difficult to understand. The valug ©f is maximum
when all the terms are equal.

Theorem 4.5 Ther-unfair competitive ratio oDdd-Exponent is at most- + 2n'/tt.

Remark. If we choose to beln r, this ratio translates to+ 2eln n.

32 A general-metridMTS algorithm

Proof. We use two potential functiong, and®,,,. The potential functionb, amortizes thdocal
cost within each region.

r t+1
)= ——— OPT, - OPT;
ST j
The other potentiatp,,,, amortizes thenovementost between regions.
1 ¢
®,, = %ZZ |OPT; — OPT;|
t g

The potentiafb for the strategy is simplyp, + &,,,.

Justified by Theorem 4.1 and Assumption 4.1, we assume that, for a reguést OPT),
increases from some valyeto y + 4. In this analysis the strategy competes against the average
OPT value,1 3, OPT;. So the off-line cost is .

Let p, andp), represent the probability in regidnbefore and after the task vector, and det
(¢,,) and®, (7)) represent the local (movement) potential before and after the task vector. Then
the on-line strategy’s cost is

Perd + (o — p) + @p+ @), — Op — @y

Becausey, decreases as a function©@fP T, we can upper-bound this cost using an integral.

y+4é
/ (pkf‘—|- Al Opr _, 0%n)dOPTk 4.3)
Yy

dJOPT, OOPT, ' OOPT,

We examine the first two terms, representing the local cost, and the last two terms, representing the
movement cost, separately. In particular, we show that the amortized local cost is af maesghile
the amortized movement cost is at mast /!t /n.

For the local cost, notice that, for any

8@[r [t] 1
= —— OPT; - OPT)} = — p—— .
JOPT; n XZ: (3) P n g

Thus the local cost terms are equaton.
0P, 1 r
— = — ——r=—. 4.4
Pt SopT, = P (Pk n) r= (4.4)
Analyzing the movement cost requires more work.

0OPT; OOPT,

t t
- ;Z |IOPT; — OPT,|""! + - Y (oPT) - OPT;)!
itk itk
2t t—1
= — > (OPT:- OPT)) (4.5)
OPT;<OPT,

The last step follows from equation (4.1). We would like to simplify the summation. Sagpaat,
is currently the maximun®PT value. Observe using the probability allocation (4.2) that, sjnce
is not negative, the following holds.

> (OPT, - OPT;)' = (OPT, - OPT)l1 <1 (4.6)
i£a 1#a

4.2 Odd-Exponent 33

Becaus@®©PT, is maximum, each term of the summation is positive. Thus it follows from Lemma 4.4
that

> (OPT, — OPT)' ™" < (n— 1)/ <!/t

i£a
Using the definition of: again we continue from equation (4.5) to finish approximating the move-
ment cost.

%y (ormopr)t < ¥y opr, o)< 2

n n <
OPT,;<OPTy 1#a

4.7

The estimates of the local cost (4.4) and movement cost (4.7) bound the total cost (4.3) by

yto P, Ok O
— "~} JOPT
/y (p’“”r JOPT, ~0OPT; & 80PTk) k

/y+5 r+2nt/t
y

< dOPTy,

n

5
= —(r+ 2n1/tt)
n
The off-line cost (according té Zj OPT,)is % so the amortized competitive ratioris+ 2n'/%t
as desired. [

To applyOdd-Exponent recursively on &-HST, we must also bound the additive part forsitanfair
ratio. We see when we do this that we may want to choose a large valusifae it reduces the maximum
potential.

Lemma 4.6 The additive part to the ratio in Theorem 4.5 is boundedgy+ 2.
Proof. The additive part is the maximum change in potential from the beginning,lpbecause

the proof of Theorem 4.5 competes relative:td”, OPT;, which may be as much dsaway from
min; OPT;. First, we boundb,. Leta be the index of the maximu®PT value.

_ r . 1
T
= OPT, — OPT)it
i OPT,;<OPT,
,
< OPT, - OPT,)'*!
— (t‘|’ 1)%2 Z (])
i OPT,;<OPT,
r t+1
< OPT, — OPT.
<)
< ti1§:(OPTG—OPTﬂt (4.8)
j
,
< P (4.9)

Inequality (4.8) follows lecause, sincOPT, < OPT; + 1, each term of the summation is at
most one, so reducing the term’s exponent increases the term’s value. Inequality (4.9) comes from
equation (4.6).

34 A general-metridMTS algorithm

Bounding®,,, is similar. Again, letz be the index of the maximu®PT value.

1
d, = %ZZmPTi—OPTﬁ
i
1
= - Y (OPT,-OPT))
K ¢+ OPT;<OPT,
1
< => > (OPT,-OPT;)
L OPT,;<OPT,;

<) (oPT, - OPT;)’

J
< 1

Adding this to the bound fo®, in equation (4.9) gives the total bound on the potential. To bound
the additive part, we add more becaus% >, OPT; may differ frommin; OPT; by as much as
1. [

4.3 Two-Region

Currently we have a technique (actually, two) for guaranteeipg/@ L, log n) ratio for HSTs, wherd. is

the depth of the tree. It would be nice if we could guarantee that polylog(n), and indeed for many
restricted sets of metric spaces we can; but such a guarantee for general metric spaces is impossible to
make. For example, if we lay points at2,4,...,2"~! on an axis, the resulting-HST must have depth

Q(log;, 2™). Thus, although we have made solid progress towargdhgog (n) ratio, we need new ideas to
achieve it. These appear in the remainder of this chapter.

The main remaining idea is more of a convoluted hack than an elegant, final answer. The idea is simple:
A tree with more thamolylog(n) levels must have nodes whose subtrees are very unbalanced — one subtree
has many more leaves than any of the others. Or, since competitive ratios are strongly tied to the tree size,
we can reword it in the jargon of unfairness: We want to handle the case where the cost ratios are different
for different points in the space. (We have until now always assumed they are equal for all points.)

Having different cost ratios for different points appears to be a complex issue. But there is one par-
ticularly simple case that we can tackle: the case of having only two points with separate cost ratios. We
can utilize this in building a strategy for the HST: Where the subtrees are all roughly the same size, we can
still useOdd-Exponent profitably; but where one is much larger, we can combine all but the largest using
Odd-Exponent and then applyiwo-Region to combine this combination with the largest subtree.

We first look at the unusual two-point unfair scenario and preb&ntRegion as our algorithm. In this
problem, one point has unfairnesswhile the other has unfairness Blumet al. consider this scenario, but
their analysis does not have to worry about the additive constant [BKRS92]. Seiden [Sei99] independently
develops the same algorithm.

Algorithm Two-Region ([BKRS92, Sei99]) Without loss of generality, say; > ro. Letj
represent™ "2, and definep; (y) as follows.

_p-prtt
-5

After computing the work functio®@ PT, we placep; (OPT; — OPTy) probability in the first
region and the rest in the second.

p1(y) (4.10)

4.4 Building thepolylog(n) algorithm 35

While the strategy is hardly intuitive, the analysis will make the reason for the selection clear.
Theorem 4.7 The competitive ratio ofwo-Region is

rn — T2
ern—rz —]

r1+

The additive part is at most, + 2.

Proof. Becausep; (1) = 0 andp; (—1) = 1, this algorithm does not have the problem of allocating
nonnegative probability to a pinned state.

What we will show is that for a given potentid, for any task:, the cost toTwo-Region is
bounded by

r —rg
0—1

€081 Two—Region + (B — ') < (m +) (OPT| - OPT!™) .
This means that to achieve the ratio, the potential must entirely absorb the cost any time the second
state incurs some cost. We define the potential, therefore, as

Y

®) = (1= n)+r: [(1-m()dy.
-1
and the potentia’ as®(OPT!, — OPT}). This potential completely absorbs all increases to
OPT;.
Let us consider a request that increa®®RT; from z to z 4+ 4. The strategy’s amortized cost
for this request is at most

246 d d® 246 d
/Z (Pl(y)f‘l— diyl-l-@) dy < /Z (Pl(y)f‘l—QdLyl—l-(l—Pl(y))f‘z) dy

(The integral approximates the cost becausis a decreasing function.) By setting this to a constant
we obtain a first-order differential equationgn, which can be solved with the boundary conditions
p1(1) = 0andp;(—1) = 1. The solution is as in equation (4.10). It is easy to verify that this results
in a constant integrand.

246 d 246 _
P1 L — 72
—2— +(1- dy = d
/Z (pl(y)m 1 +(pl(y))rz) y /Z (r1+ 1) y
rn —-r
- ()
Since the off-line player pays the competitive ratio for the strategy is as advertised.
To bound the additive part, we note how widely the potential can vary. Because ajwaysl,
the potential is always nonnegative. The potential is largest whenl. In this case the first term
is 1 and (using some straightforward calculus) the second term is atimo$tus the potential is

at mostrs + 1. SinceOP T, differs from the optimal cost by at most the additive part is at most
T2 —|— 2. u

4.4 Building the polylog(n) algorithm

As in Theorem 2.7, we build our algorithm for the HST inductively. In building the algorithm, we modify
the HST so that the distance between any two points does not decrease but may increase to twice the initial
distance. This costs us only a factor2ah the overall ratio.

A general-metridMTS algorithm

Theorem 4.8 For an h-HST withz > 8000 In% n, we can modify the HST so that distances at most
double and for the modification we have an on-line MTS algorithm with a competitive ratio of at
most1000 In? » with an additive2000D In? », whereD is the diameter of the modified tree.

Remark. The following proof draws heavily on the technical details already discussed in Theo-
rem 2.7. Understanding that proof is essential to understanding the following.
To avoid complications, this theorem employs intentionally generous constants.

Proof. We prove this inductively on the tree, with the base case being the trivial single-node tree. For

the induction step, we let be the ratio for subtreg with the subtrees ordered sp> - - - > r;,. We

definen; as the number of points in subtred=inally, » is the total number of points in all subtrees.
The induction step has two cases, depending on whethisrbelow10001n? n — 501In 7 (in

which case the subtrees are balanced enough to simply &uuyExponent) or above (in which

case the subtrees are very unbalanced) .

Case 1. If r; < 10001n?»n — 50 1n n, then our strategy is to first mutate the tree by doubling the
distances from the root node to the points. We ajgudgl-Exponent to combine the subtrees using
t = Inn.

To bound the competitive ratio, we observe that for an arbitrary action sequemplying an
action sequence, for moving between subtrees, the off-line cost is at least

local (T4, vy) + (D — %) move(vy) = local (T4, vy) + CD move(vy)

where we defin€ as1 — ;. Meanwhile, given the action sequenceused by the on-line algorithm,
the expected cost is at most

(1000 In?n — 501n n) local (T4, v4) + (D + 2000% In? n) move(va) + 20002 In?n

=Y =

D
< (10001n* n — 501nn) local(Ta, v4) + 5Tmove (va) +

We can usédd-Exponent’s unfair competitive ratio to bound the on-line cost in expectation over
Odd-Exponent’s random choices.

D D
E [(10001112 n — 501nn) local(T4, va) + 5Tmove (va) + —]

4
= %E [(800(In? n — 40¢ In n) local (CLDTA7 VA) + move(vA)] + %
5D , 1
< e (800C In“n —40CInn +5.51n n) local C—DTA7 vy | + move(vy)

800¢ In*n — 40¢In n) +Q
Inn+1 4

D
< (10001n% n) (local(Ta,vs) + (D move(vy)) + 1000{DInn + T

Thus we have satisfied our inductive hypothesis.

4.4 Building thepolylog(n) algorithm 37

Figure 4.1: Transformation for Case 2 of Theorem 4.8.

Case 2. If r; > 10001n? n — 501n 7, then our strategy is to first mutate the tree by splitting the
root node into two nodegandz, where subtreesthroughb are subtrees of, while the subtrees of

y are subtreé and the tree rooted at (Figure 4.1 illustrates this.) The distances in the tree rooted
atz remain the same, bytis lifted so that its distance from the leaves doubles: Abe ratio of the
largest subtree’s diameter to the overall tree’s diameter is at fngsihce we doubled the diameter
of the subtrees in the inductive step)yathis ratio is2.

Our algorithm is to us®©dd-Exponent to combine the subtrees of(choosingt = 21n n),
and to usefwo-Region to combine the subtrees gf To analyze the competitive ratio, we first
analyze the tree rooted atand then the tree rooted @t We assigre: so thatn; = (1 — 1)n; since
r1 > 100010 n — 50 In n andr; < 1000 In? ny, we can deduce thdd < = < n.

For the tree rooted at, we observe that for an arbitrary action sequencanplying an action
sequencer;, for moving between subtrees, the off-line cost is at least

2D
local (T4, vy) + (D — T) move(vy) = local (T4, vy) + (D move(vy)

where we defin€ as1 — 2. Meanwhile, given the action sequenceused by the on-line algorithm,
the expected cost is at most

2D 2D
(1000 In2 ﬁ) local(T4, v4) + (D +2000==In’ ﬁ) move (v4) + 2000== In? L

T T T
3D D
< (10001n2 E) local (T4, va4) + Tmove(vA) + 5
T
We can usé@©dd-Exponent’s unfair competitive ratio to bound the on-line cost in expectation over

Odd-Exponent’s random choices.

E [(10001n2 z) local(Ta,va) + %move (va) + 2]

" 2
3D _ /2000 ,n ! :
2] (23500 o)]
o 2000¢ In? 2
< 37 ((%Ochﬁ g +6.61n n) (local (C%TA7V5) + mOUe(Vb)) + ﬁ i 2) " g

1
< (1000 m? 24 ?Oln n) (local(T4, vy) + CDmove(vy)) + 500¢D Inn + ;D
x

Thus the competitive ratio. for the tree rooted at is at mostl 000 In? 2+ % In =, with an additive
part of at mos600¢DInn + ID.

A general-metridTS algorithm

For an arbitrary action sequenege implying an action sequenocg, moving between the two
subtrees of}, the off-line cost is at least

D
local(Ty, vy) + - move (vp) .

For the on-line algorithm, given that it uses the action sequencthe expected cost is at most

1 D
rilocaly (T4, va) + rolocaly(Ta, va) + (D + 3 (500(D Inn+ ;D + 500ﬁ In? n)) move(vy)

7 D
+500CD1In 0+ 5D + 500 In?n
11 7
< rylocaly (Ta, va) + rolocaly(Ta, va) + (250D1n n+ ZD) move(v4) + 500D Inn + §D .
Herelocal; (T4, v4) represents the total cost incurred at pdiwith the task sequencg&, using
the action sequences. (The peculiar movement cost comes from the fact that half of the move-
ments involve the additive cost 600% In? n and half involve the additive co500¢DInn+ 1 D.)

We can find the expectation ovéwo-Region’s selection ofv4 by using the competitive ratio of
Two-Region. In the following, we letn represen250 In n + %.

E [rllocall(TA, v4) + r.localy(Ta, va) + aDmove(va) + 500D 1n n + gD]

_ ri 2 r, 2 7
= oDE [%locall (BTA7 VA) + %localg (BTA7 VA) + move(vA)] +500D1Inn + §D

r1 oL - = 2 2 r,
< D — e o localy | =T localy | =T 2=+ 1
< « ((2a+62r_;_;_2_1) (OCGI(D A7VA)‘|‘ Ocaz(D "4, V4 | + move(vy) —I—(2a+)

+500D1Inn + %D

o D
= (rl + #) (locall(TA7 v4) + localy(Ta, va) + ~ move (VA))

€ 2a —1

+ (r.D+aD)+500DInn+2D

Thus our computed competitive ratiorig 4 (r, — r.)/(eU"1=72)/2% — 1), We want to bound this
by 1000 In? . To do this, we first bound;, — r, from below (sinceyc/(el’/2CY — 1) decreases as
increases beyorith).

1
ri—r, > (10001n2n —501nn) — (10001112 y ?Oln n)
z

10
= 2000Ilnzlnn —1000In’z — 50Inn — ?lnn
> 900lnzlnn
We use this to bound the ratio.

. 1 900 In 2 1
Mt < 10001112((1—;)71)4‘#

e300lnntd — | e 500Innt+d — |

A

Inn
T 22 61.81nx -1

< 1000 InZn — 2000 n 1000 900Inzlnn

< 10001n%n

4.5 Extensions 39
Likewise, we can bound the additive part
11
(rz—|—2501nn—|— Z—|—5001nn—|— ;) D,

which is less thar000D 1n? n.

4.5 Extensions

We can extend Theorem 4.8 in two ways: We can try us§lhgre instead ofOdd-Exponent, and we can
look at what happens in specific metric spaces.

An alternative algorithm

Theorem 4.8 did not rely on any specific propertieafd-Exponent. But if we were to applyShare
instead, the ratio would suffer due to the additive p&hare has an additive, while Odd-Exponent has
an additiver /log n. Ther/log n additive part is necessary in Case 2 to get a manageable additive part for
the tree rooted at.
When we adapte8hare to MTS (Theorem 3.5), we had a parameteand in fact the additive part was
z. Takingy = log n, the unfair competitive ratio is+ log® n. So if we useShare in proving anO (log® n)
bound on a2 (log® n)-HST, we can get a working theorem. The net result i©dhg” 7 log log) bound
for general metric spaces.

Alternative spaces

For many restricted sets of metric spaces, the bound improves by Qslididexponent (or Share, with

a penalty due to the additive part) on Theorem 2.7. For example, if the metric between states comes
from the shortest-path metric on an unweighted graph on states, we know the depth of the HST must be
O(log;, n), so we can get a ratio 6¥(log? n/log log n) on an2(log n)-HST. Since we can probabilistically
O(log® nlog log n)-approximate unweighted graphs Blog n)-HSTs, we get a result ad(log® n) for
unweighted graphs.

We can do even better for HSTs that are “roughly balanced” in the sense that, at any nddeubitiees
covering a total of» nodes, the largest subtree containk; nodes. In this case, we can use the inductive
hypothesis that the ratio ik In »: The largest subtree has a ratiomf at mostde In 1.4%, and soOdd-
Exponent combining theb subtrees has ratio+ 2elnb < 4elnn. The additive part i) (logn), so we
require arf(log n)-HST for this to work.

This “roughly balanced” property arises in mesh spaces, like a line space: \W&(kayi n/log log n)-
approximate such a space with roughly balan@¢ibg n)-HSTs [Bar96]. Thus for mesh spaces, we get a
ratio of O (log” n/log log n).

40

A general-metridMTS algorithm

Chapter 5

Combining on-line algorithms

Now we switch away from the general-metNETS problem; instead we pick up on the theme of Sec-
tion 3.4 and extend the application Bkperts algorithms to competitive analysis. #ach of Chapters 5,
6, and 7, we extend the result in a different way; in this chapter, we examine applications to the problem of
combining on-line algorithms on-line

Problem Combine-Online Given are a variety of on-line algorithms;, A5, ..., A,,, each in-
curring losses during each time step. At all times, our on-line algorithm chooses to follow one of
these algorithms, incurring that algorithm’s losses, but between time steps the on-line algorithm may
choose to switch between algorithms aveitching costof d. Our hope is that on any sequence the
algorithm will not do too much worse than the best of thefor that sequence.

Example 5.1Say we have a variety of paging algorithms IldeU, Marking, andMRU. On any se-

guence of page requests, we want to do about as well as the best among them in hindsight. One way
of doing this is to follow algorithms’ internal caches, allowing the on-line algorithm to switch be-
tween caches. The cost to switch between caches is at most the size of the cache (usually represented
by k).

This problem is similar to one arising in Azar, Broder, and Manasse, with the difference that they do
not incorporate a fixed switching cosfABM93]. Instead, in their problem, when th@ombine-Online
algorithm switches from one algoritha; to another4;, the algorithm may pay as much as the total cost
paid so far by4; and byA;. This is because they are primarily concerned with combining algorithms for
thek-server problem, where the algorithms are moving within an unbounded metric space, and so in moving
between algorithms theéombine-Online algorithm may have to move all the way back to the initial point
of the space (which is at most the total cost paiddpyand then to the point currently occupied Hy. The
guarantee they achieve for this more difficult scenario is that their algorithm can guarantee it pays no more
thanO(log n) times the best of the on-line algorithms it is combining. (If the metric space has a bounded
diameterD, then we could alternatively apply the results of this chapter to the problemdising.)

What we will see is that in our formulation, an algorithm (uskExperts algorithms) can do nearly as
well as the best single algorithm. In particular, if the best algorithyrincurs a total cost of,, then our
combination algorithm will pay at most +)L + (1 + 1)dlogn.

Example 5.2Another application is to theist-Update problem [BM85, ST85a]. In this problem,

our algorithm maintains a ligt overn elements. Each time step, the algorithms receives a request to

41

42

Combining on-line algorithms

one of then elements and payisfor each step that must be made in the list to find the element. The
algorithm also pay$ each time it transposes two adjacent elements in the list, unless that transpose
moves the element of the current access forward in the list.

List-Update is a classical problem in competitive analysidove-To-Front is one of the sim-
plest algorithms: On each time stépove-To-Front moves the just-accessed item to the head of the
list. This algorithm has a competitive ratio n?? [BM85, ST85a, Ira91]. Karp and Raghavan
show that no deterministic algorithm can guarantee less, even against a static adversary (who is not
allowed to alter the list ordering) (reported in [Ira91]).

The situation for randomized algorithms is less certain. The best-known algoritGonid,
with a competitive ratio of 1.6 against dynamic adversaries [AvSW95]. No algorithm can achieve a
ratio of less than.5— % [Tei93]. For static adversaries, no lower bound for randomized algorithms
is known, nor is there a better bound than thatGomb.

By demonstrating a (massively inefficient) algorithm, the results of this chapter imply that no
such lower bound is possible for static adversaries. We can have an algorithm for each:bf the
possible lists; the algorithm for list statically keepd. as its list. The switching cost between
algorithms is at most}). From this, we get a ratio ofL + <) for any fixeds. (This algorithm,
as stated, is extraordinarily impractical. We are taking advantage of the fact that the on-line model
does not count the time spent deciding which item to move. A simpler and more efficient algorithm
achieving a similar guarantee would be an interesting result.)

This observation extends naturally to thgnamic-Tree problem, where the on-line algorithm
is permitted to rearrange a binary search tree by rotations along the path acdbssed node.
Sleator and Tarjan demonstrate that ti&ptay-Tree algorithm isO(1)-competitive against a static
adversary [ST85b]. But by having a separate algorithm for each possible tree, the results of this
chapter demonstrate that one can in fac{ bg- <)-competitive if we do not count the time spent
deciding how to rearrange the tree. (F@ynamic-Tree against dynamic adversaries, the lowest
known bound ig) (log n); for example, a static balanced tree achieves the boignd|.)

5.1 Simulating all algorithms

If our on-line algorithm can afford to simulate allalgorithms, then we can applyedge in the straight-
forward way: We follow the probabilities thatedge uses. When we get an event and see how the different
algorithms will process it, we give those same losses to the algorithms’ corresponding expeles det

We then change our probability distributiaccording toHedge, moving to a new algorithm adedge
directs.

Theorem 5.1 Say that the best algorithm has a total losd.ofThen the loss affedge is at most
1+dinl/p ((1))
EllossHedoe] < ———————— In—)L+Inn) .
[H dg] 1 _ ﬁ ﬁ

Remark. Say we choos¢g = 1 — £ for somes > 0. Then the above bound translates to
approximately(1+4 <)L + (1+ 1)dIn n. Thatis, we aré1 4 =)-competitive with respect to the best
on-line algorithm.

A

Proof. Say algorithmAj is the best algorithm. We consider separately the local cost (that is, the
amount spent by our on-line algorithm due to the algorithm it currently occupies) and the switching
cost incurred by our on-line algorithm. Theorem 3.2 shows that the local cost satisfies

E[lossHedge] < ﬁ ((ln %) L+1n n) .

5.2 Running only one algorithm 43

(In fact, we get one-step lookahead; this only decreases the algorithm’s cost.)

We now show that the movement cost is at mbl&t% times the local cost. At step we expect
to payd Zi:p;—1>p¢(pf_1 — p!) for movement, wherg; is the probability the on-line algorithm is

following algorithm: at time step.

~ W;;—1 W;;—lﬁef.
R IID S =

ip!T'>pt i:p;~ >p!

A\

=8
TN
2|z
T L
|

g
2%
AR
G
N—

A
=8
TN
| %ssu-

{0
|
5
5%
=
TS
N—

IN
=2
=T
-
TN
S
=
=]
N—

Since) , pf‘lff is the expected local cost, we have achieved our goal. u

5.2 Running only one algorithm

The problem becomes more intricate when we can run only one of #hgorithms at a time. Such may be
the case, for example, if we are combining several paging algorithms but the system cannot afford the time
required to simulate all of the algorithms in order to maintain their losses.

Thisis a version of thBandits problem studied by Auer, Cesa-Bianchi, Freund, and Schapire [ACBFS95,
ACBFS98]. Bandits is a variant ofExperts, where each time step the algorithm can see the loss of only
the expert chosen. (The problem’s name derives from slot machines.) eaér show that, by mixing
the Hedge distribution appropriately with the uniform distribution, they can guarantee a loss of at most
O(v/Tnlog n) more than the best expert’s loss, whéres the number of time steps.

To mesh better with the phrasing of Augtral.s, we consider the scenario where each time step every
expert incurs aewardin [0,1], and we wish to maximize owain. Our scenario adds to theirs the concept
of a switching cost/, which works as follows: In time round experti has atrue gainx!, in [0, 1], but the
gain the algorithm actually sees is an approximation to this calledliberved gaiﬁ@ (alsoin[0, 1]). The
true gain and the observed gain are related in that, if the algorithm remains at a single expésttrom
then the total observed gaE?:tO 32; is at mostd less than the total actual gaE?:tO x?. (This somewhat
convoluted way of incorporating the switching cost comes from the paging case in Example 5.1. When we
switch from one algorithm to another, we do not know the actual cost incurred by the new algorithm, since
we have not kept track of where it is. Our model assumes that all the algorithms have the property that,
regardless of the request sequence, the iridahe cannot affect the total cost by more thgn

This switching cost removes the luxury (which Awgdral. enjoy) of choosing an expert independently
each time round, because switching as often as this implies is quite expensive. One possible solution to
this problem, which we pursue, is to divide time into segmentsgieps. (We chooselater.) We choose
independently from the distribution at the beginning of each time segment, and we stay there for the duration
of the segment. Behaving in this way is equivalent to running Atiat’s algorithm for% time steps, where
in each step an expert’s maximum loss is at mosather than onlyt.

44 Combining on-line algorithms

Algorithm Hedge-Bandit The algorithm has two parametessand 3. For each time segment of
s steps, the algorithm does the following.
1. We choose one expéttfor the time segment(time stepgs through(z + 1)s) based on the
probabilities
_ ~ g
P? 1:(1—7)1’; 1+57
wherep’~! is the probability distribution used Byedge.
2. We observe the gaiq, for the segment. (Foi # i, we takex’ to be0.)
3. We letx’ = i;/p;_l, and give this vectok' to Hedge in order to computg’ for the next
time segment.

Analyzing this algorithm requires the following theorem of Awral. generalizing the bound on
Hedge’s performance (Theorem 3.2) to the case when an expert’s gain may be as muthpastime
step.

Theorem 5.2 If each of a set of. experts experiences a sequesgef gains in[0, A/}, thenHedge
configured with3 € (0, 1) has expected gaip_, >, pix/ of at least

d 1 M _ 1 Ml -
Z 122 M?1n 3 nﬁZZpﬁ (x})°

t=1 t=1 7=1

for all expertsk.

We use this in the following theorem bounding the performanddeufge-Bandit.
Theorem 5.3 The expected gain édfedge-Bandit is at least

Y sninn — (e — 1)vG,

T 1-
G- (1-7)2d-
s v

whereG is the largest total actual gain acquired by any single expert, and where:?/*".

By choosing appropriate values forands as described in the following corollary, we bound our gain
relative to the best of the algorithms.

Corollary 5.4 The expected gain ¢fedge-Bandit is at least
G —3.6VdnT?Inn,

whered is the largest total actual gain acquired by any single expert, if we choose the parameters

_ o072 dnlnn _083/Td2
- TR T

The proof of Theorem 5.3 closely follows the technique used by &tial. [ACBFS98].

Proof of Theorem 5.3. Let k be the expert acquiring the largest total actual gain. Becp}s_e%
for any expertj in any time segment, the scaled observed gatfy = X’ /p}, is at mostsn/y. So we

takeM to besn/v (and recalls = ¢/**) in applying Theorem 5.2 for the following bound.

T/s n T/s T/s n

N - Inn ﬁM—l—Mlnﬁ ot in 2
ZZ@? = t:1xz_m_ M2 3 Zzpﬁ(xﬁ)

t=1 j=1 t=1 j=1

T/s T/s n

_ ZXk_snlnn_ 6—27ZZAt At (5.1)

t=1 7=1

5.2 Running only one algorithm

Now, becausg’ > (1 — 7)ﬁ§, we can observe the following.

St St
Stxt — ot X;¢ < X;¢
p] i = P e ST
- P;: Y
n it s s n
~F (~E\2 ~ it~ ~ ~
> :P§ (X)" = Pu X< XK= X
- it 1- Y 1= Y 1

We use both of these facts, along with (5.1) and the relationship of the observed ¢aithe actual
gainsx, to bound the total gairEtT:/f xl,.

T/s T/s T/s n

DI

t=1 t=1 t=1 5=1

]
2
V

T/s 1 1 T/s n
> (1—7)2?{}’;— _vsnlnn—(— VZZAL‘ x")
=1 7 t=1 j=1
T/s T/s n
> Z Tsnlnn — 7 Z Z (5.2)

t=1 5=1
To get the expected gal[>", x!, |, we first observe thdk {?cﬂ equalsk xﬂ .

B[R] = Eu - [[®]P0

= By jp-1 | Eg

Xt |
1 J
p;-—r+(1-pj)-0
P;

= Ep - [Ex[X]] =%,

We continue from (5.2), using the fact that the observed @?iiﬂs between the actual gaiq and

x?—d.
T/s T/s T/s n
E fot > Zxk— snlnn— VZZ%
t=1 t=1 j=1
T/s T/s n
> (1—7)Z(xk d) — T snlnn — 6_2722
t=1 t=1 j=1
T —7
> (1—7)G—(1—7);d— > snlnn — (e = 2)vG

45

46

Combining on-line algorithms

Chapter 6

Relating MTS and Experts

A second way of extending the results of Section 3.4 is to consider the converse question: How do
MTS algorithms perform on th&xperts problem? Besides the academic and historic interest in such a
guestion, the work-function approach used in metrical task systems — a very different approach from the
multiplicative weight-updating technique studied Etperts up to now — may prove more useful in some
learning situations.

In this chapter, we first look at a generic theorem translatingrangfair MTS algorithm into anEx-
perts algorithm. Then we illustrate an analysis of one partictdrS-derived algorithm [{inear on two
points/experts) in th&xperts problem. And finally we look at a small empirical comparison of how our
large set oExperts/MTS algorithms performs on real data inspired by process migration.

6.1 Generalrelation

As Section 3.4 illustrates, achieving an unfair competitive ratio for the unifdir® problem is similar to
achieving a partitioning bound in th&xperts setting. The parameterallows us to trade off thé » andkp
coefficients, similarly tg7 in Thresh andShare.

Conversion from MTS to Experts

The following theorem makes the relationship formal.

Theorem 6.1 Let A be a randomized algorithm for the@ TS problem on the:-point uniform space
that, givenr, achieves am-unfair competitive ratio op,, .. Then this implies an algorithm’ for
the Experts setting has expected loss at most

p:‘—J,LP + pn,rkP +0)
for any partitionP, for some constaritthat may depend onandn (typically,b < r).

Remark. Note that ifp,, , = r 4+ logn ande = %log n, then this partitioning bound translates to
(14+e)Lp+(1+L)kplogn, analogous to the bound tHEtresh andShare achieve (Theorems 3.3
and 3.4).

47

48 RelatingMTS andExperts

Proof. At each time step, our algorithmd’ uses whatever distributioA currently has. When it
receives loss vectd, it gives a scaled versioh¢' to A so thatA can modify its distribution ford’
to use in the next time step.

Consider any sequence of loss vectd@and any partition”. Let p! represent the probability
vector on states that uses for theth time step (and whicht’ uses for thgt + 1)st time step).
So, given a loss vectdl, A’ has expected logs'~! - £'. But A “believes” it is payingd(p'~*, p?)
for movement ang’ - (%Et) for processing. (Because we useraanfair ratio, in another sensé
believes it payp’ - £ for processing while its adversary pays oply- (%Et))

We will show that the expected loss tbis at most

E[losss] < Z (d(Pt_17 p)+p' 'Et)

t

= E[move(v4) + r local(1€,v4)] . (6.1)

Once we have this, we can ketbe the action sequence corresponding to partiftoithis sequence
remains at a single expert within each intervalpfo thatnove (v) < kp andiocal(1,v) = L Lp.
Continuing from (6.1), becaus& hasr-unfair ratiop, the expected loss is at most

1
Py (move(v) + local(%f7 V)) +0<pu, (kp + —Lp) + b,
r

as the theorem states.
To show (6.1), consider a specific tri&dl The expected loss td is p’~! - £'. We bound this by
d(p'~1,p') +p’- £, and (6.1) follows.

Seite = Y el e+ Yonl

7

< > (Pt -pl e+ pie

s t—1 t
i 2P

p g
> (it -ph)+ > pit

i:p§_1>pf
= dp" " pH)+p' -2

IN

The next-to-last step follows because loss vectors are bounded by n

Corollaries to our conversion

This theorem immediately results in ndgxperts algorithms with approaches very different from estab-
lished multiplicative-update algorithms likéresh andShare. The first comes from applying Theorem 6.1
to our unfair analysis dflarking (Theorem 2.5).

Corollary 6.2 For the Experts problem,Marking has a partitioning bound of at most

1

wheres = 1.

r

Because thd p coefficient here approachésg,, this bound is much worse than the bound provided by the
multiplicative-update algorithms (where tig coefficient approaches.

But if we instead use out-unfair analysis oOdd-Exponent (Theorem 4.5), we get a bound comparable
to that of Thresh andShare.

6.2 Direct analysis ofinear 49

Corollary 6.3 For the Experts problem, if we choose = In n, thenOdd-Exponent has a parti-
tioning bound of at most

(14+¢)Lp+ (1+§) Qelnnkp+2€—e+2,

wheres = 2 In n.

This is very comparable to tighare bound; the difference is that tihe> coefficient is aboute times what
Share achieves.

Atleast some of thige factor is likely an artifact of our analysis. Based onthe 1 case (Theorem 4.2),
we might suppose that th!/?t term of Theorem 4.5 is twice the possible guarantee. But also, using
Theorem 6.1 to convert thEITS unfair competitive ratio to afExperts partitioning bound can involve
some loss. This isillustrated by our direct analysitiokar on two experts.

6.2 Direct analysis ofLinear

Of course, we can analyze an algorithm directly in Ehgerts environment rather than use Theorem 6.1.
We illustrate this with thé.inear algorithm on two experts.

To review: ThelLinear algorithm on two points maintains the work functi®®T; andOP T, for the
two points and allocates probability

1 OPT,-OPT,
P1 = 5 + 5

to the first point and the remainder to the second. Théatngar moves probability linearly between experts,
so that an expert’s probability is zero when it is pinned. This strategy is optimal for the two-point unfair
MTS problem, achieving a ratio of+ 1 (Theorem 4.2).

Before we analyz&inear in the Experts problem, notice that if we use Theorem 6.1 on thenfair
analysis in Theorem 4.2, we get the following.

Corollary 6.4 For the Experts problem with two expertQdd-Exponent has a partitioning bound
of at most

1 1 1
1 L 1+ -1k —+ =
(‘|‘5)P‘|‘(‘|‘€) Ptots,

wheres = 1.

We now analyzé.inear directly; this analysis effectively halves tle coefficient.
Theorem 6.5 For the Experts problem, the partitioning bound dfinear is at most

1\ 1
l+e)L 1+-) <k
(L+¢) p+(+€)2p7

1 - - .
wheres = -, providedr is an integer.

Proof. Consider segmeritof the partition with losd.’. Assume without loss of generality that the
better expert for the segment is expert 1. {Saepresents the total loss to expert 1 in the segment.)
Let 0 represent the fractional component@PT; — OPT, (thatis,§ = (OPT; — OPT,) —
|OPT, — OPT,|). (If we can assume the losses are always either 1, then the proof can be

RelatingMTS andExperts

simplified by ignorings (it is always0) and ignoring case® and4 below (which occur only when
Pp1 OF p2 is 0))
We will use a potential function over this segment of

1 5(1—4
(I>:rp§—|—§p2—|- (4r)

Notice that® is always betweefi andr + 3. (If OPT; — OPT; = —r + 6 for § € [0, 1], then
pp=1-2andsod=r+1-5)

Say the algorithm receives loss vectér, ;). Our goal is to show that the algorithm’s cost plus
potential change is at moét(1 + %). If we know this, then the total cost for segmeénsg at most
(1+ £)L¢ plus the maximum potential change between segmenits;. Thus the total cost for the
partition is at most

k
1 i 1 1 1

We can assume that,, () is 0 in one of its components for the following reason. Vet
min{(;, (;} and divide the vector into two piec«{ﬁ, €> and<€1 — 0,0y — €>. On the first piece the
algorithm’s cost ig with no effect on probability or potential; and on the second the cost is (as we
will show) at most(¢; — ¢)(1+ 7-). So for both pieces the total cost plus potential change is at most
(4 (6 — 0)(1 4 &) < 61(1 4). We split the remaining possibilities into four cases.

Case 1:The vector ig(¢,0) andOPT; — OPT; > —r + (. ThenOPT; — OPT; increases by

¢ and sop; loses//2r probability top,. Notice that the last term of the potential function increases
most wheny is initially 0. The amortized cost, then, is

plf—l-Aq)Splf—l—(pQK{—%{_ﬁ{_%):£<1_|_%) ‘

Case 2:The vectorjs(ﬁ, 0) and for somée € [Q, () we haveOPT; — OPT; = —r + L. Thenp,
increases from — ¢/2r to 1, ands drops from¢ to 0. The amortized cost is

mitae =L (-4 £ -) <0+)

Case 3:The vector is(0, /) andOPT; — OPT; < r — {. Thenp; loses(/2r probability top;.
The last term of the potential function increases by at mi@st- () /4r. The amortized cost is
Pl + A < pal+ (—pal 45—+ U2 =0,

Case 4: The vector is(0, ¢) and for somé € [0, () we haveOPT, — OPT; = r — . Thenp,
drops from¢/2r to 0, and, becauseis integral,é drops froml — ¢ to 0. The amortized cost is

P2€+A¢:%g+(_§_%_%)<o‘

In all cases, the algorithm’s cost is at méstl + 5-). L

6.3 Process migration experiments 51

6.3 Process migration experiments

We now examine some brief experimental results comparing several algorithms, includingxpanis/MTS
algorithms, on data representing a process migration problem. Process migration has aspects of both the
MTS problem and th&xperts settings. There is a cost to move between machines, but there is also zero
lookahead.

For process migration data, we collected load averages collected from 112 machines around the CMU
campus. We queried each machine every five minutes for 6.5 days. From these machines, we selected 32
that were busy enough to be interesting for this analysis.

Each five-minute interval corresponds to a trial with loss ve€toFor machine, we set¢! = 1 if the
machine had a large load average (more than 0.5)¢asd) if it had a small load average. The intent of this
is to model the decision faced by a “user-friendly” background process that suspends its work if someone
else is using the same machine.

We took the distance between the machines to be 0.1, indicating that 30 seconds of computation would
be lost for movement between machines. In research process migration systems, the time for a process to
move is roughly proportional to its size. For a 100-KB process, the time is about a second [Esk90]. Our
distance corresponds to large but reasonable memory usage.

Our simulations compared the performance of nine algorithms, including four simple control algorithms:

Uniform The algorithm picks a random machine and stays there for all trials.

Greedy After each trial the algorithm moves to the machine that incurred the least loss in that trial (with
ties broken randomly).

Least-Used After each trial the algorithm moves to the machine that has incurred the least total loss so
far.

Recent The algorithm moves to the machine that has incurred the least loss over thériak.

We implemente®Vork-Function, Marking, Odd-Exponent (with ¢ = 3), Thresh, andShare. (Efficiently
implementingOdd-Exponent to compensate for Assumption 4.1 is a challenge; we discuss this at the end
of this section.

Because these algorithms have tunable parameters, we divided the data into a training set and a test
set, 936 trials each. We optimized parameters on the training set and report the performance with these
parameters on the test set. We also present the performance of each algorithm with a “naive” parameter
setting, to give a sense of the dependence of the behavior of the algorithm on the tuning of its parameters.

For each algorithm we determined the expected loss for the pitithpabctors they calculated. One valid
criticism of using probabilistic algorithms in practice is the variance between runs; so we also calculated the
standard deviation over 200 trials of each algorithm. To get a feel of how each algorithm behaves, we finally
computed the expected number of moves.

This data is summarized in Table 6.1 where costs are given relative to the optimal off-line sequence,
which suffered a loss df.8 and moved times in the test sequence.

We also tried an inter-machine distance of 1.0. Table 6.2 summarizes these results. For an inter-machine
distance of 1.0, the optimal off-line sequence suffered a lo$$ ahd moved times during thé36 trials.

(As one would expect, the loss is higher but there are fewer movements.)

Comparing these algorithms to the simpler control algorithms indicates that their added sophistication
does indeed help. The numbers seem to indicate thatife-based algorithms are less sensitive to pa-
rameter settings. The specific experiments summarized here show thdT Si@lgorithms performing
somewhat better; if the parameters are set based dedtdata, this difference decreases.

52 RelatingMTS andExperts

parameter cost std expected naive cost
algorithm setting ratio dev moves setting ratio
Uniform 206.69 29.03 0.0(
Greedy 55.11 4.33 265.34
Least-Used 117.71 0.00 5.00
Recent k:6 17.92 0.00 103.0(k:b 24.37
Work-Function r:1.0 5.66 0.00 17.0C r:1.0 5.66
Marking r:1.0 5.97 0.72 20.54 r:1.0 5.97
Odd-Exponent t:3,r:10.0 5.96 0.79 1584 ¢:3,r:1.0 6.05
Thresh $:9.5%x107% a:107* 7.16 0.66 1453 $5:0.5,0:0.01 20.89
Share B:52x1077,a:1078 6.55 0.63 1458 $:0.5,a:0.01 19.44

Table 6.1: Performance relative to optimal off-line sequerce ().1) on process migration data.

parameter cost std expected naive cost
algorithm setting ratio dev moves setting ratio
Uniform 71.40 10.90 0.0d
Greedy 40.75 291 265.34
Least-Used 41.07 0.00 5.0Q
Recent k11 6.62 0.00 41.00 k:b 19.71
Work-Function r: 1.0 3.34 0.00 13.00 r:1.0 3.34
Marking r:04 3.74 0.40 20.54 r:1.0 4.27
Odd-Exponent t:3,r:1.0 3.36 0.51 15.84 t:3,r:1.0 3.36
Thresh 8:0.027,c: 1078 5.52 0.34 10.66 [3:0.5,a:0.01 8.20
Share (3:0.044, c: 1078 5.59 0.39 11.56 S:0.5,:0.01 7.68

Table 6.2: Performance relative to optimal off-line sequerce (1.0) on process migration data.

algorithm competitive ratio partitioning bound
Two-Region (n =2) r+1(Th4.2) (1+e)Lp+(1+1)1kp(Th6.5)

Marking (r+1)H, (Th2.5) (1+e)H,Lp+ (14 1) H, kp (Cor 6.2)
Odd-Exponent r + 2elnn (Th 4.5) (1+e)Lp+(1+1)2elnnkp (Cor6.3)
Thresh unbounded (%) Lp+ (%) kp (Th 3.3)
Share P+ 641 (n(r+ 1)) +4(Th35) (200) Lp+ (62) kp (Th 3.4)

Table 6.3: Summary of theoretical results.

6.3 Process migration experiments 53

The numbers indicate th&lfork-Function slightly outperforms the randomized algorithms, despite its
worse theoretical guarantee. This is not too surprising because a randomized algorithm is essentially using
its probability distribution to hedge its bets, placing probability on states that doewasearily appear
optimal. This is somewhat analogous to a stock market, in which the main reason to diversify is to minimize
the downside risk more than to maximize expected gain. In these experiments, all the algorithms performed
better than their worst-case guarantees. In pradDdel-Exponent follows Work-Function very closely,
although it smooths the transitions between states.

Implementing Odd-Exponent

In an implementation o®dd-Exponent, usingOPT values strictly as defined introduces a problem: The

algorithm could allocate negative probability to an expert. (Consider the case wherelexge@P T, = r

while the rest are at zero.) The analysis of Theorem 4.8 skirts the issue by assuming Assumption 4.1.
If we wish to implemenOdd-Exponent, we must confront the possibility that tasks observed will not

obey this condition. We can address this by using a modification of the work funé%ﬁ, in computing
the probability distribution of the strategy. THBPT is computed as follows. Say the strategy receives a
loss vector!. We will changeOPT; to become, notmin{OPT; + {;, min; OPT; + ¢; + r} as for the

work function, bu‘['min{O/f’Ei +/;, 2}, wherez is the greatest value such that no probabilities are negative.
(In an implementation one can computdy considering the function returning the minimum probability

for a givenz and using numerical techniques to find where this function reaches zero.) This avoids negative
probabilities lecause each probiiity that would have become negative with the unmodified work function
becomes zero instead.

This modification maintains the same competitive rageduise we can think of it as dividing each cost
~ ~ ~ 41 t ~
vector into two pieceg, and? — ¢, where{ = OPT — OPT . For/, the algorithm is competitive with

respect to the off-line player's cost driwhich itself is less than the off-line player’s cost én For ¢ — ¢,
the algorithm will pay nothing, since the vector is nonzero only at states WhBfE = z, and these states
have no probability.

54

RelatingMTS andExperts

Chapter 7

The unfair paging problem

One of the strands running beneath this thesis is the usefulness of the natidaiofiessn on-line anal-
ysis. This is most apparent in our development gb&log(n) MTS algorithm, but the machine-learning
notion of a partitioning bound (in the related but differ&xperts problem) is also actually a question of
unfairness. What unfairness allows us to do is to build more sophisticated bounds than a straight competi-
tive ratio allows, essentially by parameterizing the relative importance of different costs. This prevents an
algorithm from ignoring one part of the costs. For example, standard algorithms fdMBelgorithm can
be sloppy with local costs as long as they are only a constant factor more than the movement cost. Adding
unfairness to the model forces us to be careful with both aspects.

One can naturally ask if this advantage can be extended to other problems. In this chapter, we see that it
can, in particular to thaging problem.

Problem Paging An on-line algorithm controls a cache bfpages and sees a sequence of memory
requests!, p?,.... When an item outside the current cache is requested, the algorithm incurs a
page faultand must load the requested page into the cache, evicting some other page of its choice.
The goal of the algorithm is to minimize the number of page faults.

Fiat et al. describeMarking, a randomized algorithm foPaging (similar to the eponymouMTS
algorithm by Borodin, Linial, and Saks), with a competitive ratidxtog k) [FKLT91, BLS92]. (Fiaket al.
also show that everlpaging algorithm must have a competitive ratio of at le@sgtog n).)

Algorithm Marking ([FKL T91]) For each of theé: cache locations, we have space for a mark,
initially empty. When a page in theache is requested, we mark its location. When a page outside
the cache is requested, we pick a random unmarked location, eject its page, and mark the location.
If all locations are marked, we clear the marks and begin a new phase.

Theorem 7.1 ([FKL*91]) Marking has a competitive ratio afH, for Paging.

How to incorporate unfairness inRaging is not obvious. Our approach is the following: Suppose that
on a page fault, theff-line algorithm is allowed the additional power to “rent” the requested page at a cost
of only 1 (think of r = log k), compared with the cost of 1 for actually loading the page into the cache.
Renting means that the memory request is serviced but the requested pag® @aight into the cache and
the off-line cache imotmodified. So, for instance, if the off-line algorithm rents a page and then the same
page is requested again, the off-line algorithm incurs another page fauloriFlirgealgorithm has no such

55

56 The unfair paging problem

privilege. (Technically, it is convenient to allow the on-line algorithm to rent for a cost of 1; at best, this

helps the on-line algorithm by a factor of two.) The question we examine is, what competitive ratio can be

achieved in this scenario? This question can be thought of as the unfair ver§laging, because we have

split the cost into renting and loading, with the off-line algorithm having an unfair advantage on renting.
For this harder unfair problem, no algorithm can achieve-anfair competitive ratio less than(con-

sider a sequence where each request is to a new page), nor can any algorithm achieveitiveorape

less tharO(log k). Marking achieves competitive rati© (r log k). We consider the question of whether

one can achieve ratio(r + log k). The main result of this paper is that we can, uditegige together with

a notion of phases similar tdarking.

7.1 Motivation

Because the problem stated above is not obviously self-motivating, we begin by presenting two motivations,
one from paging and another from theserver problem.

Finely-competitive paging Request sequences in practice often consist of a core working set of frequently
requested pages, together with occasional assorted memory requests, where this working set slowly changes
over time. Suppose that, in hindsight, the request sequence can be partitioned into time periods containing
working setsW!, W2 ... W™ respectively, where within each time period the number of requests to
pagesoutsidethe current working set ie', 0?,...,0™. Furthermore, suppose that each working set is

small enough to fit within the memory cach@\(’| < k). In this scenario, one off-line strategy in our
“unfair” model is to load the current working set into the cache and to rent the requests outside the current
working set, at a cost of

(0! e 0T W W2 AW [W AW
Takingr = log k, an algorithm with unfair competitive ratio (r + log k) must pay at mosd (log k) times
this, or

O ((o! + -+ +0™) + (log k) ([W'| + [W* \ W[4 [W™ \ W™ 1)) .

So, if the sequence involves only a few working sets or if their differences are small comparedtctiee
on-line algorithm is only a small (constant) factor from the optimal service sequence.

Here is a simple concrete example. Suppose that the request sequence repeatedly cycles over a fixed
set of k + 1 pages. In that case, the determinidtRU algorithm has competitive ratid (it faults on
every request) aniflarking has competitive ratié) (log k) (in expectation, it make® (log k) page faults
per cycle). However, our algorithm in this case is required to hav@) ratio because we can view
this sequence as having a single fixed working set oflsizeith one additional request per cycle. In other
words, in the unfair model, the off-line algorithm could simply incur a cost ef @ per cycle by renting.

In a sense, this goal can be viewed as follows. The motivation of the competitive ratio measure itself
is to allow the on-line algorithm to perform worse on “harder” sequences but to require it to perform better
on “easier” ones. Unfairness provides a more fine-grained measure, in which we split the off-line cost into
an “easy” component (the rentals) and a “hard” component (the loads). We require the algorithm to be
constant-competitive with respect to the easy component and alléwlag &) ratio only with respect to
the hard component.

Because of the working set phenomenon, researchers have tried designing cache systems that in a certain
sense add such a renting ability. One practical implementation is to reserve theatianfor the supposed

working set while adding a second, smaller cache of potential working-set candidates [JS97].

7.2 A universe of: + 1 pages 57

The k-server problem The question of the best possible competitive ratio foritferver problem of
Manasse, McGeoch, and Sleator [MMS90] remains a major open question.

Problem k-Server The algorithm is given a metric space and an initial selectiohmdints where

it hasservers It faces a sequence of requests to points in the space. When it receives a request, the
algorithm must choose a server to move to the requested point. The goal is to minimize the total
distance traveled by the servers.

Notice that ak-Server instance on a space #f+ 1 points is easily modeled as MiTS problem instance
with & + 1 points. In particular, each of the+ 1 points corresponds to a page thah@ in the cache —
the cache holds all other pages but the state’s corresponding page.

Koutsoupias and Papadimitriou’s proof that WWerk-Function algorithm achieves af¥ (k) competitive
ratio was a breakthrough result, especially giverf2ie) lower bound for deterministic algorithms [MMS90,
KP95]. It is conceivable, however, that a randomized algorithm could achipwigfag (%) ratio. Hope that
this might be possible comes from thelylog(n) MTS result in Theorem 4.8. At the core of Theorem 4.8
is an algorithm for achieving af (r + log n) ratio for ther-unfairMTS problem. Our goal o© (r + log k)
for r-unfair Paging can be thought of as an extension of € + log n) r-unfairMTS bound. This could
potentially be one step toward achieving@ylog(k) bound fork-Server. (Of course, there are many
additional issues involved in attempting to construct such a recuksB8erver algorithm.)

7.2 A universe ofk + 1 pages

Before we look at the general case where there can be arbitrarily many pages requested, we first restrict our
attention to the simpler case where the request sequence can only include one more page than can be held
in the cache (although any of these pages can of course be requested arbitrarily many times, in any order).
This restricted case illustrates some of the ideas that appear in our general result.

Because of the close relationship of ttie+ 1)-point case and metrical task systems, our result here
can be seen as being an alternative to the two good algorithms ftBeproblem we have already seen,
Share andOdd-Exponent. This new algorithmis simplerto describe and to analyze than the others, though
the constants are slightly worse. It is a combinatioMafking andHedge.

Algorithm Phased-Hedge Each phase proceeds until every one of the 1 pages has had
requests. At the beginning of the phase, we associate to each page aweightalizedto 1. The
weightsw; define a probability distributiop; = w; /W, whereW = Zj w;; this is our probability
over pagesiotto have in the cache. (For exampleitialy all weights arel and so each page is
equally likely to be the one outside the cache.) When a page is requested,ltigyntioe page’s
weight by 5 (a parameter of the algorithm) and readjust our probability distribizmordingly.
(This effectively increases the probability that the page is irctdehe.)

In the terminology of the machine learning literature, we could think of having an “expert” associated
to each of the& + 1 subsets of: pages advocating that the cache contain thgsages, and we could think
of Phased-Hedge asHedge with the small modification that we reinitialize the algorithm periodically at
phase boundaries.

Theorem 3.2 states that the expected loss incurrddeulge is at most

lnl/ﬁL_l_ 1 nn.

1-4 1-4
wherel is the loss of the best expert in hindsight anid the number of experts. In our context, this implies
that the expected cost of tRhased-Hedge algorithm per phase is at maist (r In(1/5)+1In(k+1))/(1—
#). (The “1+” is the initialization cost for choosing a random page at the phase’s beginning.) Now, noting

58 The unfair paging problem

that the off-line algorithm must pay at least 1 per phase, either to evict a page or to rentratipege we
have the following theorem.

Theorem 7.2 The competitive ratio of thBhased-Hedge algorithm for ther-unfair (k + 1)-page
Paging problem is at most
Ti/g,dr 1 ! Gk 1) +1

For 8 = 2, the bound of Theorem 7.2 is approximately5r + 4 In(k + 1) + 1. As 3 approaches, the
bound approached + §) r+ Llnk+ 1fore =1 — 4.

For Paging on more thark + 1 pages, we extend tHehased-Hedge algorithm to have one “expert”
for everysubsebdf pages marked in the previous phase, which the expert predicts should be kept in the cache
during the current phase. (A page is marked in a phase if it is requested at teast, and a phase ends
whenk pages are marked.) Ignoring implementation issues, the two difficulties that this approach entails
are first, that there are now many more experts, and second, that the possible cost for switching between two
different experts increases frohrto k. We deal with the first issue by giving a nonuniform initial weighting
to the experts. The second issue involves substantially more effort.

7.3 The general case: Phases and the off-line cost

We begin our analysis of the general case by defining the notion of “phase” that the on-line algorithm uses
and proving a lower bound for the off-line cost based on this notion. Then in Section 7.4 we describe how
the algorithm behaves within each phase and prove an upper bound on the expected on-line cost. Because
our on-line algorithm is not a “lazy” algorithm, we separately analyze its expected number of page faults
(the easier part of the analysis) and its expected cost for modifying its probability distributiooambes
(the harder analysis). To define the initial state of our problem, we assuneache is empty before the
first request occurs.

Like the Marking algorithm, we divide the request sequence into phases. We say that gagerked
when it has accumulated at leastequests within the phase. The phase reaches its end whénpages
become marked.

Let M denote the set of pages marked in phag®efineM? to be the empty set.) Also, Iéj; denote
the number of requests to page phase. We definem® as the number of pages marked in phalset not
in the previous phas¢M \ M. Finally, we define’ as the total off-line cost for renting pages outside
M=t UM'; thatis,of = 23 i €5

As in the standard anaIyS|s bfarking, this use of phases gives a convenient lower bound on the off-line
player’s cost.

Lemma 7.3 If costopr (o) is the optimal off-line cost for the task sequence, then we have
1 i i
costopr (o) > 3 Z (m +o) .

Proof. Consider two phases— 1 and: together. Notice that for all but thepages in the off-line
cache at the beginning of phase 1, the off-line algorithm must either load the page into its cache,
at a cost of at least, or service all requests to that page (if any) by renting, at a cost of at least
(Z;‘l + Z;)/r. Therefore, any off-line algorithm must pay at least

ez 1—|—£Z
costopr (o ot Z (Zmln{ }) —k

7.4 The on-line algorithm 59

in these two phases. For pagemarked in phases— 1 or ¢, we knoweé‘1 + Eé > r; for other
pages/, we know@é < r (and so@é/r < 1) sincey is not marked in phase These facts imply

ol 4 g £
3 g _ T _
(me{L r }) k (Z 1)+(Z , r) k
J jEM—1uM: jEM—1uM>®

= (k+m)+o —k=m'+o'.
Also note that any off-line player must pay at least + o! in the first phase. Let’ represent
the sequence of requests in phas€hen we get the following.

v

costopr ((e'a?)(a’a?)) + costopr (o' (00”) (0%a”) - - +)
(5 4.0%) ' +0%) --2) + (m' +00) (m+.07))

= Z(mi—l—oi) .

7

2costopr(0) >
>

7.4 The on-line algorithm

We now describe a randomized on-line algorithm whose expected cost in each ghase+ log k) more
than the off-line bound of (m’ + o) given in Lemma 7.3. To describe the algorithm, we pé¢o denote
the probability that pagg is in the cache after servicing tit request. For ease of analysis, our algorithm
may throw out (invalidate) pages in its cache even when there is no immediate need to d§)§(p§smay

be less thai for some times.

We divide the description and analysis of the algorithm into two parts. First, we describe how the
algorithm determines the probabilitip@, and we use this to bound the expected number of page faults
incurred by the algorithm. We then describe how the algorithm loads and ejects pages to maintain these
probabilities, and we bound the additional cost incurred by those operations.

The on-line cache probabilities and expected number of page faults

The algorithm determines the probabilitipj‘% based on a weighted average over a collection of “experts”.

In phasei, we define an expert for each subsetz Mi~! and give it an initial weight ofl /*~14I. The
pages in the cache for this “expert” are the pages in thd splus up to the first — | A| pages not itV ~*
marked so far. Equivalently, we can think of the expert representing the following determiragiitg
algorithm:

e Initially, eject all pages in the s@&1'~' \ A from the cache.
e On a page fault, rent the requested page if any of the following hold:

1. the page isin the sdl'~! \ A,
2. the page has not yet become marked (it has received fewer tiegnests in this phase),
3. the cache is full.

e Otherwise, on a page fault, load the requested page into the cache.

60 The unfair paging problem

To determine the probabilitigs’, we use theHedge algorithm to update experts’ weights, and we
compute a weighted average of the experts’ caches. Specif'p?ltyihe result of dividing the total weight
on experts having pagein their cache by the total weight on all the experts. We update the weights on the
experts as irHedge by penalizing them by a factgr = % whenever they incur a page fault. If we select
a cache according to a distribution matching these pritibab, then our algorithm’s expected number of
page faults will match the expected costtedge.

One final addendum to the algorithm:df’ = 0 (i.e., the pages marked in this phase match the pages
marked from the previous phase), then the off-line boundf i this phase but some of the experts pay
more thanro' because they foolishly eject pages from their cache at the start for no reason. Therefore
our algorithm also expects to pay more thas and thus is not competitive. To handle this problem, our
algorithm simulates the experts in a somewhat lazy manner. In particular, if an expert it is following says
to eject a page but does not indicate a page to fill that slot, then the algorithm notes the recommendation
but does not evict it until required. Nonetheless, we define the probabitias if we were immediately
following the advice of the experts. The only case in which this turns out to be important is thatasé.

Lemma 7.4 By combining these experts usifgdge, the on-line algorithm’s expected number of
page faults in phaséis at most(m* + 0)(2.87 4+ 2In k 4 1.1).

Proof. The casen’ = 0 (whenM® = M'~') is a special case so we handle it first. In this case we
use the fact that our algorithm is lazily following the experts’ advice and thakfor= 0, no expert
will recommend loading any pages into the cache. Therefore, the algorithm willVfave = M’

in its cache throughout the phase, paying a totabdf meeting the desired bound. In the following,
then, we assumm’ > 0.

One of the experts will do quite well, in particular the expert with= M*~' 0 M*. This expert
“knows” which of the marked pages from the previous phase should remain for the current phase,
and it will not eject these. Note that this expert’s initial weight j™".

This good expert makes at ma@stm'+ro’ page faults in the phase: For each ofthem’ pages
j € M'n M1, itincurs0 page faults becaugec A. For each of then® pagesj € M*\ M*~*,
itincurs a total of- page faults until the page is finally marked and brought into the cache. For each
of them’ pagesj € M‘~! \ M, the renting cost i€, which we know is less thansince; is not
marked in phasé Finally, the expert always rents pageg M'~! U M?, and the total renting cost
for these is-o'.

Theorem 3.2 for the loss of thiéedge algorithm can be generalized to the case of experts with
unequal initial weights. In this case, the bound becomes

Inl/g 1 1%

1_ﬁL+1_ﬁmEn (7.1)
wherew is the initial weight of the best expert in hindsight (and, as beférés the loss of that
expert) andi¥ is the sum of the initial weights. In our case, if we chogse- % and maintain
probabilitieSpf; according to the expert weights as above, then the total expected number of page
faults is at most

1.4(2rmi + roi) +21In K , (7.2)
w4

whereW is the total of the experts’ initial weights and; = 1/kmi is the weight for experti.
Since for eachn betweenl andk, there are() experts of weight:—™, the total weight¥ is at
mosty_" _, -1, < e — 1. Thus (7.2) is at most
2.87(m’ 4 o') + 2(m‘In k + In(e — 1))
< (m'40) (2.8 +2Ink 4 1.1).

7.4 The on-line algorithm 61

One additional nonobvious fact about our use oftdegige algorithm is the following.
Lemma 7.5 If there is a request to pageat timet, thenp’*' > p’ and foralli # j, p;*' < p!.

Proof sketch. The easy part of the lemma is the statement that when a request is made to page
7, the probability that pagg is in the cache increases. That happens beddaedge penalizes all
experts that do not havgin their cache and does not penalize those that do. The harder part is the
statement about pageés- j; in particular, perhaps some pages are correlated.

Consider any fixedn < k. LetW; be the weight on experts fer-sets containing , W be the
weight on experts fom-sets not containing, W ; be the weight on experts fen-sets containing
¢ andj, Wg; be the weight on experts far-sets containing but not;. We want to show that

Wi+ Wg, < Wi+ BWs,;
Wi+Wg — Wi+pWs

This follows if we can showV, ;W < W3 ;W,. Let M be the set of pages marked in the previous
phase. Consider the instant before the request, andiethe number of requests to pages outside
M and/;; be the number of requests to each pdge M. Observe that the expert for a séthas
accumulated 10s8+ . ¢y 4 (i @and so its weightu 4 is petZiematy The proof uses this fact
to show that each term on the left-hand siéie;1¥; corresponds to a term on the right-hand side
W@Z'Wl. u

Moving between probabilities

At any point in time, our algorithm maintains a probability distributipiover caches (experts), which
induces page probabilitigg over pages. The section above describes one distribytismg theHedge
algorithm. Notice, however, that for the purpose of computing the expected number of page faults (as
in Lemma 7.4), any two distributions over caches that induce the same pageilitiesare equivalent.
Therefore, we are free to deviate from the instructions given byHibdge algorithm so long as we are
faithful to the page probabilitigs;. This is important for the next part of our analysis, where we bound the
expected cost incurred by moving between probability distributions.

In particular, we now examine the following question. Given a current distribytiover caches that
induces probabilitieg; over pages, and given a new target set of page probabﬁ}ttémt satisfie$ -, p; <
k, we want to move to some new distributignover caches that induces At a minimum, any algorithm
must load an expecteﬁjpppj (p; - p]‘) number of pages to move from the page probabilitigs p’.

Achieving this is easily possible in a setting whére p; = 1 (e.g., the case of + 1 pages total in which
pj represents the probability that pages notin the cache) but it is harder in ourttiag, where} . p; is as

large ast. In this section, we show a method for achieving an expected cost of aﬂ@;t}p] (p; - p]‘) .
J

A simple example will help illustrate the difficulty and the algorithm. Say that 2 and initially our
cache i A4, B] with probability; and[C, D] with probability ;. This induces page probabilitipssay we
want to convert this to a new distributighas follows.

page 4 B C D
101 1 1

p 2 2 2 2
3 1 1 1
o1 1 3 3

If we momentarily forget about the cache capacitycpfve can easily move to a new cache distribution
¢ consistent withp’: we can simply evictB with probability% if our cache is[A, B] and loadA with
probability if our cache iC, D]. Soq is the following.

62 The unfair paging problem

cache [A] [A,B] [C,D] [AC,D]
(j 1 1

=

1 1

W=

The[A, C, D] possibility, unfortunately, eceeds the size limit of = 2. However, there is (and there must

be) a cache that has a vacancy, in this dade We rebalance by adding pade to the small cache and
evicting D from the large cache. This new cache distribution now includes only legal caches, and we use
this for¢’.

cache [A,D] [A,B] [C,D] [A,C]
A R

In other words, the strategy in this case is: “if our cach¢4sB] then with probabilityl do nothing
and with probability} evict B and loadD; if our cache iSC, D] then with probability} do nothing and
with probability 1 evict D and loadA.” This strategy seems a bit strange becau$®) = p(D) yet we
sometimes evict or load, but this is necessary in this situation. As you can see, the expected number of
page loads in this example%swhlch equale prpj (p; - p]‘).

Our strategy, in general, is as follows. To move from a set of probabilittes)’, for any page/ with
P’ < pj, we evictj from our cache (if present) with probidity 1 — p’./p;. Next, for pages with; > p;, we
add them to a cache not containipigith probability (p’ — p;)/(1 — p;). This gives us a cache distribution
¢ with the correct probabilities’ and loading COSEp3>p] (p; — p;), but it may create caches that are too
large.

Fortunately, the expected number of pages in the cache$ < k. Thus, if there are caches with
more thank pages, there must be caches with fewer thgrages. Take a cache with more thapages
and one with fewer thah pages, and some page that is in the larger but not the smaller. We can evict the
page from the larger cache and load it to the smaller cache in such a way as to not Zhdhgfee two
caches do not have equal probaies, we cannot immediately reduce the probability of both of the original
caches to 0. However, one of the two caches will end with pritibad, and thus we are always making
discrete progress in decreasing the total excess and shortage in cache sizes, over all caches with nonzero
probability. Furthermore, the total probability of performing a load in the rebalancing step is no more than
the probability of loading a page from in the increase step, ®ach load required for a rebalance originates

from an increased probability. The expected number of loads is ho more ﬁ%]rgpj (p; - p]‘).
Lemma 7.6 Given a probability distributiory on caches, this implies page probabilitigsGiven
a new set of page probabilities, we can move to a new probability distributighon caches with
expected cost Zp3>pj (p; - p]‘).

Bounding the on-line movement cost

The final step to showing that our algorithm achieves the required bound is to bound what the algorithm
pays to load pages in maintaining the page probabiniEeQNe do this by employing Lemma 7.6 to bound
this cost in terms of the expected number of page faults analyzed in Section 7.4.

Lemma 7.7 Using the movement strategy given in Lemma 7.6, the expected loading cost for the
probability sequence used in Lemma 7.4 is at njast+ o') (2.87 +2In k + 1.1).

Proof. Consider the expert weights before receiving a request to paget p be the page prob-
abilities before the request apd be the page probabilities after the request. Sinégthe only
page whose probability of being in tbache increases (Lemma 7.5), the expected loading cost from

Lemma 7.6 is at most (p; - p]‘).

7.4 The on-line algorithm 63

We want to bounqb; — p;. Leta be the total weight on experts who have probabilin ; and
let y be the total weight on experts who have probabilign j. Since each expert in the first set has
a loss ofo, the request will not alter their weights. Experts in the second set, however, experience a
loss of1, so their total weight decreases/tg = y /2.

T T
v+y/2 w+y
xy/2
CEIEETE]

Y 1

S R Y
204y T2 P

pi—p; =

IN

This1 — p; is exactly the probability of faulting on the request. Thus our expected loading cost (at
most2(p’ — p;) is at most the expected number of page faults. The lemma follows from the bound
of Lemma 7.4. [

Bounding the total expected on-line cost using Lemmas 7.4 (renting cost) and 7.7 (loading cost), and
bounding the off-line cost using Lemma 7.3, we conclude with our competitive ratig:of- log k).

Theorem 7.8 There is an algorithm whoseunfair competitive ratio foPaging is 8(2.8r +2 In k+
1.1).

64

The unfair paging problem

Chapter 8

Conclusion

The metrical task system problem is one of the fundamental on-line problems in computer science. In
this thesis, we have seen how its applications include machine learning and process migration. The thesis
has neglected to mention its theoretical applications to other on-line problems like robot navigation and file
migration.

We have seen how one can achieve much-improved asymptotic guarantees for metrical task systems.
While the general-metric result is not immediately useful for actual systems, along the way we learned
about algorithms for the uniform metric that do have practical promise Share and Odd-Exponent.

The process migration experiment (Section 6.3) bolsters the feeling that these can be useful alternatives to
Marking.

8.1 Themes

On our way to achieving improved results, we have seen three themes develop that may apply to more on-
line analysis. The first is the useful relationship between a fundamental machine learning theory problem,
Experts, and competitive analysis, especially with the unfAlrS problem. Theexperts results have much
promise as important tools to solving on-line problems; we have seen how it touch&E®rCombine-

Online, andPaging, but it is likely to have uses elsewhere. THEeperts problem deserves to be included

with MTS andk-Server as foundations for on-line analysis of algorithms.

Another theme of this thesis is the use of unfairness to refine our on-line goals. Essentially, unfairness
gives us the opportunity to prioritize different types of costs by introducing a trade-off parameter. We have
seen applications td TS, Experts, andPaging; in all cases, the tradeoff has been between moving between
selections and sticking with the current selection. Whether the unfairness concept can be applied naturally
to other problems remains to be seen.

Finally, we have seen the importance of metric space approximation in competitive analysis. The
polylog(n) metrical task system result is a significant, sophisticated illustration of the usefulness of HST
approximation to competitive analysis and approximation algorithms. Besides being historically one of the
first major results using Bartal's HST approximation, metrical task systems are also likely to endure as an
instance where HST approximation allow us to do much better than we can without it.

65

66 Conclusion

8.2 Open questions

A number of open questions, touched on in the progress of this thesis, remain open.

Question 8.1 Can Bartal'sO(h log n log log n) approximation factor of an arbitrary metric space
by h-HSTs be improved t® (h log n) [Bar98]?

Question 8.2 Is there a metric space where one can achievglag n) competitive ratio foMTS?

Blum et al. prove that for any algorithm on any particular space, the caitiyeratio is at least
Q(y/logn/loglog n) [BKRS92].

Question 8.3 Can we improve on the competitive ratio for tNEI'S problem on general metric
spaces? This thesis provélog® nloglogn) (Theorem 4.8); building on this result, Fiat and
Mendel improve it taD (log? n log* log n) [FM0O]. Both use the only known tractable approach to
achieving sublinear bounds: building an algorithm for an HST. This approach has the shortcoming
that the metric space approximation factor will not improve bey@ifldg »), and the competitive

ratio for the HST will not improve beyon@ (log »), giving an inherent limit ot (log? n).

Question 8.4 We have seen a number of algorithms for thenfair MTS problem on a uniform
metric, the best bound being+ 2eIn n achieved byOdd-Exponent. Can one get am + Inn
algorithm for this problem? And is there an intuitive explanation for \@dd-Exponent, with its
peculiar structure, does so well?

Question 8.5 Example 5.2 shows that one can get arbitrarily close to a static adversary’s per-
formance for both.ist-Update and Dynamic-Tree, but the algorithms to do this are massively
inefficient. Are there efficient algorithms to do the same?

Question 8.6 For theBandits problem with a switching cost, Corollary 5.4 shows an algorithm
that is an additiveD (v/dnT?1nn) from the gain of the best bandit. Can this be improved to
O(vdnT Inn), as Aueret al. achieve for the problem with no switching cost [ACBFS98]?

Question 8.7 The paging algorithm of Chapter 7 requires exponential running time. Is there an
efficient method achieving the sardr + log n) guarantee?

Question 8.8 Can one achieve a guaranteerof- O(logn) for r-unfair Paging? Or perhaps
(1+2)r 4+ O(Llogn)? And can such an algorithm for the unfair scenario be uset-ferver on

an HST space? We were able to abstract lower levelSIToB, but determining the proper way to do

this for k-Server is a challenging problem. For instance, it appears that such an abstraction would
have to to encourage multiple servers to be at a single point in the unif@oe sp

Question 8.9 For that matter, is there any way of using randomization to improvekthe 1 ratio
for k-Server achieved by Koutsoupias and Papadimitrou [KP95]? The conjecture i©that k)
is possible, but we appear very far from any sublinear guarantee.

Bibliography

[ABMO3]

[ACBFS95]

[ACBFS98]

[ACNO6]

[AVSWO5]

[Bar96]

[Bar9g]

[BB97]

[BBBT97]

[BBF+90]

[BBK99]

Y. Azar, A. Broder, and M. Manasse. On-line choice of on-line algorithmsPromc ACM-
SIAM Symposium on Discrete Algorithrpages 432—-440, January 1993.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. Gambling in a rigged casino: The ad-
versarial multi-armed bandit problem. Rroc IEEE Symposium on Foundations of Computer
Sciencepages 322-331, 1995.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. Gambling in a rigged casino: The ad-
versarial multi-armed bandit problef@ubmitted for publicatior1998. Based on [ACBFS95].

D. Achlioptas, M. Chrobak, and J. Noga. Competitive analysis of randomized paging algo-
rithms. InProc 4th European Symposium on Algorithrpages 419-430. Springer-Verlag,
1996.

S. Albers, B. von Stengel, and R. Werchner. A combined bit and timestamp algorithm for the
list update problemlnformation Processing Letter§6:135-139, 1995.

Y. Bartal. Probabilistic approximations of metricasps and its algorithmic applications. In
Proc IEEE Symposium on Foundations of Computer Scigrages 183—-193, October 1996.

Y. Bartal. On approximating arbitrary metrics by tree metricsPioc ACM Symposium on
Theory of Computingpages 161-168, May 1998.

A. Blum and C. Burch. On-line learning and the metrical task system probleRPromACM
Workshop on Computational Learning Thegppges 45-53, 1997.

Y. Bartal, A. Blum, C. Burch, and A. Tomkins. A polylog(n)-conjtize algorithm for met-
rical task systems. IRroc ACM Symposium on Theory of Computipgges 711-719, 1997.

A. Blum, A. Borodin, D. Foster, H. Karloff, Y. Mansour, P. Raghavan, M. Saks, and
B. Schieber. Randomized on-line algorithms for graph closures. Personal communication,
1990.

A. Blum, C. Burch, and A. Kalai. Finely-competitive paging. Bmoc IEEE Symposium on
Foundations of Computer Sciengmges 450-457, 1999.

67

68

BIBLIOGRAPHY

[BDBK t94] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the power of random-

[BEY98]

[BKRS92]

[BLS92]

[BM85]

[BRS97]

[Esk90]

[FKL*91]

[FMOO]

[FS97]

[HLS96]

[HWOS8]

[Ira91]

[1S98]

[JS97]

[Kar90]

ization in on-line algorithmsAlgorithmica 11(1):2—-14, 1994.

A. Borodin and R. El-Yaniv.Online computation and competitive analysiiambridge Uni-
versity, 1998.

A. Blum, H. Karloff, Y. Rabani, and M. Saks. A decomposition theorem and lower bounds for
randomized server problems. Broc IEEE Symposium on Foundations of Computer Science
pages 197-207, 1992.

A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical task systdms.
of the ACM 39(4):745-763, 1992.

J. Bentley and C. McGeoch. Amortized analysis of self-organizing sequential search heuris-
tics. Communications of the ACM8(4):404—-411, 1985.

A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric teBbkM J
Computing26(1):110-137, 1997.

M. Eskicioglu. Process migration in distributed systems: A comparative survey. Technical
Report TR 90-3, University of Alberta, January 1990.

A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and N. Young. Competitive paging
algorithms.J of Algorithms12:685—-699, 1991.

A. Fiat and M. Mendel. Better algorithms for unfair metrical task systems and applications.
In Proc ACM Symposium on Theory of Computi2@00. To appear.

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting Comp Syst Scb5(1):119-139, 1997.

D. Helmbold, D. Long, and B. Sherrod. A dynamic disk spin-down technique for mobile com-
puting. InProc ACM/IEEE International Conference on Mobile Computing and Networking
1996.

M. Herbster and M. Warmuth. Tracking the best expéftachine Learning32(2), August
1998.

S. Irani. Two results on the list update probleimformation Processing Letter88(6):301—
306, June 1991.

S. Irani and S. Seiden. Randomized algorithms for metrical task systmsretical Com-
puter Sciencel94(1-2):163-182, March 1998.

L. John and A. Subramanian. Design and performance evaluation of a cache assist to im-
plement selective caching. IRroc International Conference on Computer Desigages
610-518, October 1997.

R. Karp. A2k-competitive algorithm for the circle. Manuscript, August 1990.

[KMMO90] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki. Competitive randomized algorithms

for non-uniform problems. IiProc ACM-SIAM Symposium on Discrete Algorithmpages
301-309, 1990.

BIBLIOGRAPHY 69

[KP95]

[Lit88]

[LW94]

[Mit82]
[MMS90]

[Sei9g]

[ST85a]

[ST85b]
[Teio3]

[Tom97]

[Vovo5]

E. Koutsoupias and C. Papadimitriou. On fheerver conjecturel of the ACM 42(5):971—
983, September 1995.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm.Machine Learning2:285-318, 1988.

N. Littlestone and M. Warmuth. The weighted majority algorithimformation and Compu-
tation, 108(2):212-261, 1994.

T. Mitchell. Generalisation as searchrtificial Intelligence 18:203-226, 1982.

M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms for server prohlefhs.
gorithms 11:208-230, 1990.

S. Seiden. Unfair problems and randomized algorithms for metrical task sybtémsmation
and Computation2:219-240, February 1999.

D. Sleator and R. Tarjan. Amortized efficiency of list update and paging l@Q@emunica-
tions of the ACM28:202-208, February 1985.

D. Sleator and R. Tarjan. Self-adjusting binary search tdeesthe ACM 32:652—-686, 1985.

B. Teia. A lower bound for randomized list update algorithm&rmation Processing Letters
47:5-9, 1993.

A. Tomkins. Practical and Theoretical Issues in Prefetching and CachinghD thesis,
Carnegie Mellon University, October 1997. CMU-CS-97-181.

V. Vovk. A game of prediction with expert advice. Rroc ACM Workshop on Computational
Learning Theorypages 371-383, 1995.

70

BIBLIOGRAPHY

Index

Achlioptas, D., 7 Freund, Y., 21, 22, 43, 44, 66
action sequencé,

adaptive adversar$, Greedy, 51, 52

additive part5

Halving, 19,20, 21

Hedge, 21, 22-24, 4244, 56, 57, 60, 61
Hedge-Bandit, 44

Helmbold, D., 4

Herbster, M., 24

Albers, S., 42
Approx-f.., 11
Auer, P., 43, 44, 66
Azar, Y., 41

Bandits, 43, 66

Irani, S., 7, 8, 14, 42
Bartal, Y., 1,9, 11, 13, 14, 39, 66

Ben-David, S., 5 John, L., 56
Bentley, J., 41, 42
Blum, A., 1,7, 8, 13, 29, 34, 66 k-Server, 57, 65, 66
Borodin, A., 1, 3, 5-8, 14, 30, 55 Kalai, A., 1
Broder, A., 41 Karlin, A., 7
Burch, C., 1 Karloff, H., 7, 8, 13, 29, 34, 66
Karp, R., 5,6, 9, 55
Cesa-Bianchi, N., 43, 44, 66 Koutsoupias, E., 57, 66
Chrobak, M., 7
Comb, 42 Least-Used, 51, 52
Combine-Online, 41, 65 Linear, 29, 30, 31, 47, 49
competitive ratiod Linial, N., 1, 3, 6-8, 14, 55
cost rati0113 LiSt-Update, 41,42, 66
Littlestone, N., 19, 20, 23
s-elementary tasi30 local cost4
diameter10 Long,D., 4
Dynamic-Tree, 42, 66 loss vector21
LRU, 41, 56
El-Yaniv, R., 30 Luby, M., 6, 55
elementary tasi30
Eskicioglu, M., 51 Manasse, M., 1, 7, 41, 57
event sequencd, Mansour, Y., 8
experts19, 21 Marking, 6, 7, 8, 13-15, 20, 31, 41, 48, 51, 52,
Experts, 1, 2,21, 23, 24, 26, 41, 43, 47-49, 51, 55, 56-58, 65
55, 65 McGeoch, L., 1, 6,7, 41, 42, 55, 57
Experts-Predict, 19, 21 Mendel, M., 2, 8, 66
metrical task systeng
fault, 55 mistake bound]9
Fiat, A., 2, 6, 8, 55, 66 Mitchell, T., 20
Foster, D., 8 Move-To-Front, 42

71

72

movement cosy

MRU, 41

MTS, 13, 4, 5, 8-11, 13, 19, 26-30, 39, 41, 47,
49,51, 55, 57, 65, 66

Noga, J., 7

oblivious adversaryb

odd exponent functior81

Odd-Exponent, 2, 28-31, 33, 34, 36, 37, 39, 48,
49, 51-53, 57, 65, 66

on-line algorithms1

on-line problem}1

Owicki, S., 7

page fault55

Paging, 4, 6,55, 56-59, 63, 65, 66
Papadimitriou, C., 57, 66
partitioning bound22
Phased-Hedge, 22,57, 58

pins,8

probabilistically approximated,

Rabani, V., 7, 8, 13, 29, 34, 66
Raghavan, P., 8
Rand-Halving, 21

Recent, 51, 52

Saks, M., 1, 3, 6-8, 13, 14, 29, 34, 55, 66

Schapire, R., 21, 22, 43, 44, 66

Schieber, B., 8

Seiden, S., 7, 8, 13, 14, 34

Share, 2, 22,24, 26-30, 39, 47-49, 51, 52, 57,
65

Sherrod, B., 4

Sleator, D., 1, 4, 6, 41, 42,55, 57

Splay-Tree, 42

states3

Subramanian, A., 56

switching cost41

Tardos, G., 5

Tarjan, R., 4, 41, 42

task sequencd,

task vector3

task-processing cost,

Teia, B., 42

Thresh, 22,23, 24, 26, 47, 48, 51, 52
Tomkins, A., 1, 8, 30

Two-Region, 34, 35, 37, 38, 52

unfair competitivenes4,3
Uniform, 51, 52
uniform metric,6

Variable-Share, 24
von Stengel, B., 42
\Vovk, V., 21

Warmuth, H., 19, 20, 23, 24
Werchner, R., 42

Wigderson, A., 5

WM, 20, 21

WML, 23

work function,7

Work-Function, 8, 26, 51-53, 57

Young, N., 6, 55

INDEX

