
Machine learning in metrical task systems
and other on-line problems

Carl Burch

CMU-CS-00-135

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee
Avrim Blum, chair

Allan Borodin
Bruce Maggs
Daniel Sleator

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

This research was sponsored by the National Science Foundation (NSF) under various grants and fellowship
awards. The views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of the NSF or the U.S.
government.

Copyright 2000, Carl Burch. All rights reserved.

Abstract

We establish and explore a new connection between two general on-line scenarios deriving from two
historically disjoint communities. Though the problems are inherently similar, the techniques and questions
developed for these two scenarios are very different. From competitive analysis comes the problem of
metrical task systems, where the algorithm is to decide in which state to process each of several sequential
tasks, where each task specifies the processing cost in each state, and the algorithm must pay according to
a metric to move between states. And from machine learning comes the problem ofpredicting from expert
advice— that is, of choosing one of several experts for each query in a sequence without doing much worse
than the best expert overall.

The dissertation includes four results touching on this connection. We begin with the first metrical task
system algorithm that can guarantee for every task sequence that the ratio of its expected cost to the cheapest
way to process the sequence is only polylogarithmic in the number of states. Then we see how we can use
expert-advice results to combine on-line algorithms on-line if there is a fixed cost for changing between the
on-line algorithms. The third result establishes new expert-advice algorithms deriving from metrical task
system research; in addition to establishing theoretical bounds, we compare the algorithms empirically on a
process migration scenario. Finally, we investigate a modified version of paging, where we want to do well
against an adversary who is allowed to ignore a paging request cheaply.

iii

Acknowledgments

Of course there are many people whom I would like to acknowledge for their help in the writing of this
thesis — friends and family, students and teachers, mentors and colleagues. I restrict myself to mentioning
three, for fear of leaving out people were I to mention more.

The first two are my parents, Charles and Cheri Burch, who taught me much of the background I learned
before graduate school, and who persistently motivated me to get back to writing the words (and, more
often, the formulas) that appear on these pages.

The third is my advisor Avrim Blum, who has been a model advisor, teaching me most of what I learned
as a graduate student and working with me to accomplish that which appears in this thesis. His advice, never
peppered with self-interest, has proven very valuable.

iv

Contents

Abstract iii

Acknowledgments iv

1 Introduction 1
1.1 Summary . 1
1.2 The metrical task system problem . 3
1.3 Competitive ratio . 4
1.4 Previous results . 6

2 HST approximation 9
2.1 Probabilistic approximation .. 9
2.2 Approximation with HSTs . 10
2.3 RecursiveMTS construction . 13
2.4 Bounding a competitive ratio. 14

3 The expert prediction problem 19
3.1 Classical formulation . 19
3.2 Decision-theoretic formulation . 21
3.3 Partitioning bound. 22
3.4 Translating toMTS . 26

4 A general-metricMTS algorithm 29
4.1 Linear . 29
4.2 Odd-Exponent . 31
4.3 Two-Region . 34
4.4 Building thepolylog(n) algorithm . 35
4.5 Extensions . 39

v

vi CONTENTS

5 Combining on-line algorithms 41
5.1 Simulating all algorithms . 42
5.2 Running only one algorithm .. 43

6 RelatingMTS and Experts 47
6.1 General relation . 47
6.2 Direct analysis ofLinear . 49
6.3 Process migration experiments . 51

7 The unfair paging problem 55
7.1 Motivation . 56
7.2 A universe ofk + 1 pages . 57
7.3 The general case: Phases and the off-line cost . 58
7.4 The on-line algorithm . 59

8 Conclusion 65
8.1 Themes . 65
8.2 Open questions . 66

Bibliography 67

Index 71

Chapter 1

Introduction

1.1 Summary

Beginning in the mid-1980s, researchers of theoretical computer science began investigating the analysis
of on-line algorithms — that is, algorithms that commit to actions as they receive events. Anon-line
problem defines the types of events and actions that the on-line algorithm can use. Computer technology
inspires a wide variety of problems that fall into this framework, including caching, dynamic lists, real-time
compression, and call routing.

Researchers soon became interested in abstractions to encompass a variety of on-line problems. Among
these were two very prominent problems: themetrical task system(MTS) problem [BLS92] and thek-
server problem[MMS90]. This thesis begins with the metrical task system problem — the simpler of the
two — where the algorithm is to decide in which state to process each of several sequential tasks, where
each task specifies the processing cost in each state, but changing states also has a cost according to a metric.
In particular, we are concerned with how we can use randomization so that regardless of the event sequence,
our on-line algorithm’s expected cost is not too many times the optimal cost for servicing the sequence.

Independently, in the mid-1990s, researchers interested in machine learning became interested in the
following scenario: The on-line learner sees a sequence of examples and wants to predict each example’s
label before seeing the true label. The hope is that the learner will make few mistakes as it sees more and
more examples with their corresponding labels. This is termed theExperts problem.

This thesis demonstrates how one particular problem arising from metrical task systems is intertwined
with another particular problem arising from theExperts problem. This connection forms the foundation
of this dissertation, on which we build four primary results.�

�Most of the work appearing in this thesis originally appeared in papers by Blum and Burch [BB97]; Bartal, Blum, Burch, and
Tomkins [BBBT97]; and Blum, Burch, and Kalai [BBK99]. The author would like to recognize his coauthors, Avrim Blum, Yair
Bartal, Andrew Tomkins, and Adam Kalai, who share equally in the development of these concepts. Besides this chapter, Sections
2.1, 2.2, 3.1, and 3.2 describe background material to put this work in context.

1

2 Introduction

A polylogarithmic MTS algorithm

Using on-line learning algorithms, we construct an algorithm guaranteeing that the ratio of its expected
cost to the optimal cost (were we to know the entire sequence in advance) is only polylogarithmic in the
number of states. In particular, our algorithm guarantees that the on-line algorithm’s expected cost is no
more thanO(log7 n log logn) times the optimal cost knowing the sequence in advance. Using a much
less intuitive technique originating from more traditional on-line algorithms research, we can guarantee an
O(log5 n log logn) bound. These represent the historically first polylogarithmic guarantees for the met-
rical task system problem. (By refining these techniques further, Fiat and Mendel describe an algorithm
guaranteeing an expected cost of at mostO(log2 n log2 logn)) times optimal [FM00].)

This result — and its incorporation of the concepts of metric space approximation, unfairness, and con-
nections to machine learning — form the launching point of the dissertation. Understanding these concepts
and their connection to the metrical task system problem is the goal of the first part of the thesis, Chapters 2–
4.

In Chapter 2, we learn how any metric space can be approximated by what are called HST spaces, a
recent result from Bartal [Bar96, Bar98]. We also view a generalized form ofMTS, called the unfairMTS
problem, that allows us to build recursive algorithms for HSTs. This analysis indicates what sort of guarantee
we want from our unfairMTS algorithm. We immediately see that this guarantee implies a substantial first
step toward thepolylog(n) result.

Chapter 3 explains the machine learning problem calledpredicting from expert advice[LW94, FS97].
This problem is closely related to the unfairMTS problem, as we demonstrate by taking an expert-advice
algorithmShare and using it for the unfairMTS problem to get the bound desired from Chapter 2.

Chapter 4 picks up from Chapter 2 again, describing an alternative algorithmOdd-Exponent achieving
this same bound, and showing how to useOdd-Exponent in a more complicated way to get thepolylog(n)
ratio. We observe that the same techniques work withShare, although at the loss of anO(log2 n) factor.

The second part of the dissertation, Chapters 5–7, extends the concepts for the polylogarithmic bound
(especially the connection to machine learning) to get the other three main results of the thesis.

Combining on-line algorithms

Chapter 5 discusses a problem calledcombining on-line algorithms on-line, where we, as the on-line al-
gorithm, have a number of on-line algorithms which we might follow, but changing our current on-line
algorithm has a cost. This algorithms might, for example, incorporate a number of heuristics which do well
on particular event sequences, in case the actual event sequence matches one of our heuristics. UsingEx-
perts results, we see how we can guarantee that our on-line combination algorithm can do almost as well as
the best of several on-line algorithms whose performance we can see.

We also see how an on-line algorithm might do if it can only see the performance of its current heuristic.
For example, this might happen in process migration: We can have a heuristic for each computer, telling the
process to stay at that computer. But if the process can only read the load average at its current location,
it sees only its current heuristic’s performance. Even if it can see only its current selection, our on-line
algorithm can guarantee that it does not pay much more than if it knew in advance which heuristic pays
least.

Relating metrical task systems and expert advice

In Chapter 6, we extend Chapter 3 by looking at the converse direction — using unfairMTS algorithms for
the expert advice problem. In particular, while Chapter 3 explains that someExperts algorithms also make
good unfairMTS algorithms, Chapter 6 proves thatanyalgorithm with anMTS guarantee implies a similar
algorithm with anExperts guarantee.

1.2 The metrical task system problem 3

q0 q1

q2 q3

3

5

2

4

�
�
�
�
�
�

6

@
@
@
@
@
@

5 q0 q1 q2 q3
T
1 = h3; 1; 1; 0 i

T
2 = h7; 0; 4; 3 i

Figure 1.1: A metric space and task sequence.

To get a feel for the variety of algorithms this implies forExperts, we look at the results of a small
experiment comparing how differentMTS algorithms perform on a sample of process migration data.

The unfair paging problem

The final direction we take is to extend the notion of unfairness, which we employed in our analysis of the
MTS problem, to paging. In particular, we compare the on-line algorithm’s performance against the cost of
servicing the request sequence if we increase the power of the off-line algorithm by allowing it to ignore the
request at a cost of1=r. We see an on-line algorithm that guarantees that it pays no more thanO(r+ log k)

times the best off-line cost computed with this added power. (Herek represents the cache size.)
In Chapter 7, we see the significance of the problem and how machine learning can be used to achieve

improved results for it. Besides the significance of this problem to paging, this work can also be seen as
a first effort at using the techniques used for the polylogarithmic guarantee for metrical task systems to
achieve similar guarantees for the much more challengingk-server problem.

1.2 The metrical task system problem

The initial problem motivating this work, and a major focus of this thesis, is themetrical task system
(MTS) problem due to Borodin, Linial, and Saks, designed to abstract a wide variety of on-line problems
[BLS92].

Problem MTS ([BLS92]) We live in a system ofn stateswith a distance metricd separating the
states. This distance metric is nonnegative (d(u; v) � 0), is symmetric (d(u; v) = d(v; u)), and has
the triangle inequality (d(u; v) + d(v; w) � d(u; w)). At all times we occupy a single state. At the
beginning of each time step, we receive atask vector, specifying a nonnegative cost for each state
(representing our cost if we process the task in that state). When we receive a task vectorT, we
choose whether to stay at our current state or to move to a different state. We pay both for moving
between states (according tod) and for processing the task (according toT at our new state). Our
goal is to minimize our total cost over the task sequence.

Example 1.1Consider the metricd and task sequenceT illustrated in Figure 1.1. OnT1,y we may
choose to process the task in stateq2 and so payT1

2 = 1 to process. Then say we choose to process
T
2 in stateq3. We payd(q2; q3) = 5 to move andT2

3 = 3 to process the task. Our total cost on this
sequence, then, is1 + (5 + 3) = 9. (We have chosen sub-optimally: The optimal choice is to start
at q1 and remain there, for a total cost of1 + (0 + 0) = 1.)

yThis dissertation uses superscripts not only for exponentiation but also for indexing time. To relieve ambiguity, time-indexed
variables appear in boldface.

4 Introduction

The importance of metrical task systems lies in the fact that they generalize many natural on-line prob-
lems. The following three examples illustrate this.

Example 1.2 Laptop computer power management inspires the following very simple task system.
The states areq0, representing that the laptop’s hard drive is not spinning, andq1, representing that it
is. The distance between the states is half the amount of power required to begin spinning the disk.
(We use half because to be a metric the distance function must be symmetric. We are optimizing on
the total cost: Each time we move fromq0 to q1, we will later move fromq1 to q0; by using half
each time, we add the full amount to the total.) On all time steps, the cost toq1 is the amount of
power to keep the disk spinning. For time steps where there is no disk access, the cost toq0 is 0, but
when there is a disk access, the cost toq0 is infinite to prevent an on-line player from being inq0 for
the task. (Helmbold, Long, and Sherrod consider laptop disk management as a practical problem to
be approached using machine learning theory [HLS96]. We relate machine learning theory to task
systems in Chapter 3.)

Example 1.3 Say we have a computational process that can move on a network between computers
with varying loads. In metrical task systems, the costs should represent the quantity we want to
minimize, and in this case we want to avoid lost computation time. So the metric gives the lost time
involved in transporting the process from one computer to another. And on each time step, the task
vector tells us for each computer how much time would have been lost were we at that computer.
(Section 6.3 describes an experiment comparing differentMTS algorithms using computer load
data.)

Example 1.4 Paging can be formulated in the metrical task system framework. If we have a cache
that can holdk pages, and there aren pages in the universe, then the task system would include a
state for each of the

�
n
k

�
choices ofk pages from the universe. Our current state tells us what we

should hold in our cache. We represent a request to a pagei as a task with a cost of0 for those states
wherei is in the state’s corresponding cache and1 elsewhere. The distance between two states is
the number of page loads required to move between the two states’ corresponding sets. (TheMTS
results in this thesis unfortunately say nothing useful aboutPaging, as the number of states is much
too large to generate useful bounds. But Chapter 7 describes how the techniques used for theMTS
results of this thesis can apply toPaging.)

Some definitions will help us discuss task systems. Anevent sequence(or task sequence)T is the time-
indexed sequence of task vectors. Anaction sequenceis a time-indexed sequence of states specifying where
each task is processed; in Example 1.1, the action sequencev is hq2; q3i. Themovement costmove(v) is
the total cost incurred according to the metric,

P
t d(v

t�1;vt). The local cost (or task-processing cost)
local(T;v) is the total cost incurred according to the task vectors,

P
tT

t
vt

. Thus the total costcost(T;v)
for v onT ismove(v) + local(T;v).

1.3 Competitive ratio

In theMTS problem, as with other on-line problems, thecompetitive ratio proves a useful performance
measure of an algorithm. Informally, this is the maximum, over all event sequencesT, of the ratio of the
algorithm’s cost onT against the best possible cost for servicingT. In Example 1.1, this ratio is9=1. (But
of course, since we looked at only one event sequence (and not all possible event sequences), this is not
really a competitive ratio.) Sleator and Tarjan proposed this competitive ratio as a general technique for
analyzing on-line algorithm performance [ST85a].

Example 1.5A tourist visiting New York City for a day can pay $1.50 for a single subway trip and

1.3 Competitive ratio 5

$4.00 for an all-day pass. A simple strategy employed by many tourists is to simply buy the $4.00
pass at the first subway ride, at a cost of $4.00. This has a poor competitive ratio, since if it is also
the last ride, the ratio is4=1:5 = 2:667. An alternative strategy is to buy single-trip tokens for the
first two rides and the all-day pass for the third. For this, the worst-case ratio is7=4 = 1:75, which
occurs if the tourist takes three rides.

Example 1.5 illustrates that the competitive ratio is not always the most intuitive way of looking at the
problem. If our tourist were quite sure she would use the subway more than twice, perhaps she should
have bought the all-day pass initially. Or if our tourist brought only $5.00, she may want the all-day pass.
The advantage of the competitive ratio bound is that it applies to many on-line problems without requir-
ing additional input requirements (like a probability distribution) to the problem. Additionally, theoretical
comparisons using competitive ratios often agree with empirical comparisons in how they rank algorithms.
(Empirically, the ratios tend to be much lower since inputs generally are not adversarial).

Additional research refined the notion of competitive ratio slightly to incorporate randomization and to
provide an additive fudge factor. We say randomized algorithmA is �-competitive if for any task sequence,
the expected cost toA is at most� times the best achievable cost for the task sequence (plus a constant
independent of the sequence). More formally, given a metric spaced, an on-line algorithmA has competitive
ratio� if for some constantb, for each event sequenceT,A outputs an action sequencevA (a random variable
if A is randomized) so that for all action sequencesv, the cost toA obeys the inequality

E[cost(T;vA)] � � cost(T;v) + b : (1.1)

The additive part b proves to be an important (and irritating) detail. Thus we frequently speak ofA as
having “ratio� with additiveb.”

The way the quantifiers are ordered in this definition assumes anoblivious adversary; an adversary
choosing the worst-caseTmust choose the entire sequence without knowingA’s particular choices. This is
appropriate in circumstances where the algorithm has a negligible effect on the environment — such as in
paging (usually) and in small-quantity stock investing. An alternative is to use anadaptive adversarywho
can choose each task vector knowingA’s random choices so far [BDBK+94]. But throughout this thesis we
use an oblivious adversary for all our on-line problems.

One very nice aspect of analyzing algorithms against oblivious adversaries is the simplicityof expressing
the cost in the uniform metric (where all interstate distances are1). If pt�1 is our current probability
distribution, and we move to distributionpt in order to process the taskTt, defined

�
p
t�1;pt

�
to be

X
i:pt�1

i >pti

�
p
t�1
i � pti

�
=

X
i:pt�1

i <pti

�
p
t
i � pt�1i

�
:

(Since bothpt�1 andpt are probability distributions and so sum to1, these quantities are equal.) For the task
T
t, our expected cost is exactlyd

�
p
t�1;pt

�
+
P

i p
t
iT

t
i. It is convenient to think of probability as a fluid

being moved between states as time progresses, where the movement cost between time steps is the amount
of fluid being transferred. Indeed, we can redefine theMTS problem as the on-line algorithm choosing a
probability distribution, with the costs as just described, and so avoid the intricacies of probabilityaltogether.

Theorem 1.1 Say we are in the uniform metric. We can change our state probability distribution
frompt�1 to pt at an expected cost ofd

�
p
t�1;pt

�
.

Proof. If the probability we are at our actual current statei should increase (i.e.,pt�1i � p
t
i),

then we do not move. But if that probability decreases (p
t�1
i > p

t
i), then we remain ati with

probabilitypti=p
t�1
i and otherwise choose randomly from among the statesj whose probabilities

increase, choosing with probabilities
�
p
t
j � pt�1j

�
=d
�
p
t�1;pt

�
.

6 Introduction

The new probability distribution with this strategy ispt. For decreasing-probability statesi, the
probability we are there is the product of the chance we were already there (p

t�1
i) and the chance

we remain there given we were already there (p
t
i=p

t�1
i), and this product ispti. There is no chance

that we move toi. For increasing-probability statesi, we are there if we move toi or if we were
at i already. The probability we move there from a decreasing-probability statej is the product of
the chance we were atj (which ispt�1j), the chance we move fromj given we were there (which

is
�
p
t�1
j � ptj

�
=pt�1j), and the chance we move toi given that we are moving fromj (which is�

p
t
i � pt�1i

�
=d
�
p
t�1;pt

�
). This product is

�
p
t�1
j � ptj

��
p
t
i � pt�1i

�
=d
�
p
t�1;pt

�
. Summing

over all suchj gives uspti � pt�1i . We could also have already been at statei (and remained there)
with probabilitypt�1i , for a total probability ofpti.

To get the total probability we move, we sum the chances that we move toeach state. For
decreasing-probability states, this chance is0. For increasing probability statesi, we have already
seen that the chance we move there isp

t
i � pt�1i . Summing over all states gives usd

�
p
t�1;pt

�
.

A major open problem in competitive analysis is, “How small a competitive ratio can one guarantee
for metrical task systems on arbitrary distance metrics?” A primary goal of this dissertation is to present a
substantially improved answer to this question.

1.4 Previous results

Uniform metric

The simplest, most important, and best-understood metric for task systems is theuniform metric , where
d(u; v) = 1 whenu 6= v (andd(u; u) = 0 for all u).

TheMarking algorithm of Borodin, Linial, and Saks is a simple and useful algorithm for the uniform
metric [BLS92]. (This algorithm is similar to theMarking algorithm used forPaging, which we review in
Chapter 7 [FKL+91].)

Algorithm Marking ([BLS92]) The algorithm proceeds in phases. At the beginning of each phase
all states are unmarked, andMarking chooses a uniform-random state to occupy. As tasks are
received,Marking increases counters on each state, keeping track of the total processing cost for
the state in this phase. (This counter will increase when the state incurs a cost, whether or not the
algorithm occupies it.) When a state’s counter reaches1, we say that this state ismarked. When the
current state becomes marked, the algorithm moves to a random unmarked state. When all states are
marked,Marking resets all marks and counters and begins a new phase.

Example 1.6 Consider3 statesq0, q1, andq2, whereMarking begins atq0, with the task sequence
q0 q1 q2

T
1 = h0:5;0:2; 0:0i

T
2 = h0:2;0:3; 2:0i

T
3 = h0:0;1:0; 1:0i

T
4 = h1:0;0:0; 0:0i

Marking initially chooses a random state — say it choosesq1 and so pays0:2 for T1. The counters
are nowh0:5; 0:2; 0i. OnT2, the counters becomeh0:7; 0:5; 2i; q2 is now marked, butMarking is
at q1 and so remains there, at a cost of0:3. OnT3, the counters becomeh0:7; 1:5; 3i. The current
stateq1 is now marked; the algorithm chooses randomly from the unmarked statesfq0g, soMarking
must chooseq0, at a cost of1 + 0. OnT4, all states become marked;Marking clears all counters

1.4 Previous results 7

and chooses a random state, sayq2. The cost is1 + 0; Marking’s total cost for these four tasks is
0:2 + (0 + 0:3) + (1 + 0) + (1 + 0) = 2:5.

The following theorem bounds the competitive ratio ofMarking. Achlioptas, Chrobak, and Noga
demonstrate the best possible bound forMarking, 2Hn � 1 [ACN96].z

Theorem 1.2 ([BLS92]) Marking has competitive ratio2Hn for uniform metric spaces.

Proof. We analyze by phases. Any action sequence taken by an off-line algorithm must pay at least
1 in each phase (either1 to move or1 if it stays in the same state); we argue thatMarking’s expected
cost is at most2Hn. Consider the first state to become marked. The probability thatMarking ever
goes to this state during the phase is1

n
, and if so thenMarking pays at most2 for this state (at most

1 to move there, and at most1 in local costs). Thus the expected cost toMarking at this state is at
most 2

n
. Now consider the second state to become marked. The probability thatMarking ever goes

to this state is at most1
n�1 , and if so thenMarking pays at most2 for this; thus the expected cost

to Marking at this state is at most2
n�1 . Generally, at theith state to become marked in the phase,

Marking expects to pay at most 2
n�i+1 at that state. We sum over all states to get2Hn.

On the other side, we know that no algorithm can guarantee a competitive ratio of less thanHn . Irani
and Seiden nearly match this lower bound with an algorithm achieving the ratioHn +O(

p
logn) [IS98].

Theorem 1.3 ([BLS92]) Every on-line algorithm for the uniform metric has a competitive ratio of
at leastHn.

Proof. Consider the following sequence constructed by an adversary who maintains the probability
distribution on states used by the on-line algorithmA. The sequence proceeds in phases. The first
task vector of the phase is0 on all but the most-probable stateq1, where it is infinite. SinceA is atq1
with probability at least1n , and it will pay1 to move fromq1 to avoid the infinite cost, the expected
cost toA is at least1

n
. The second task vector is0 everywhere except forq1 and the most-probable

stateq2. The expected cost on this task is at least1
n�1 . We continue this until we reachn� 1 tasks,

each time using task vectors that are0 everywhere except atq1; : : : ; qi�1 and the most-probable
stateqi. The total cost toA after these tasks is at leastHn�1. For the final task vector of this phase,
we give a cost of1 to the remaining stateqn and0 elsewhere; sinceA must be atqn, the cost is1 for
a total cost of at leastHn toA.

An off-line algorithm knowing the sequence would be atqn for the firstn � 1 tasks, at no cost;
on thenth task, it would move to the next phase’sqn, at a cost of1. Since the algorithm can repeat
these phases indefinitely, the competitive ratio ofA is at leastHn.

General metrics

The situation for arbitrary metrics is more challenging. In the metric space of Figure 1.2, for example,
Marking does very poorly — it will likely pay at least100 in most phases. A more promising alternative for
metric spaces like that of Figure 1.2 is to mergeq0 andq1 somehow and to combine thisq0–q1 combination
with q2 using some algorithm likeMarking — that is, to useMarking to combineq0 andq1 in isolation,
and then to useMarking again to incorporateq2 into the mixture. Karlinet al. consider the case of such
an unbalanced3-point space [KMMO90]; for larger unbalanced spaces, Blumet al. apply this principle of
building from algorithms for subspaces [BKRS92]. This decomposition of a space into subspaces is also the
inspiration behind the approach followed in this dissertation.

Many of the known algorithms, including many seen in this dissertation, use thework function . The
work functionOPTt

v, indexed by a timet and a statev, represents the optimal off-line cost for servicing

zBy Hn, we mean thenth harmonic number,
Pn

i=1
1

i
.

8 Introduction

q1

q0

q2

((((
((((

((((

100

hhhhhhhhhhhh

100

1

Figure 1.2: A decidedly nonuniform metric space.

the firstt tasks and ending in statev. We can computeOPTt
v as follows. InitiallyOPT0

v is 0 for all v.
Given a task vectorTt we update each state’s work function to

OPT
t
v = min

u

�
OPT

t�1
u +Tt

u + d(u; v)
�
:

Notice thatOPTu andOPTv can never differ by more thand(u; v). We say that stateu pins statev when
OPT

t
v = OPT

t
u + d(u; v).

Besides introducing the problem and presentingMarking, Borodin, Linial, and Saks also demonstrate a
deterministic algorithm for general metric spaces.

Algorithm Work-Function ([BLS92]) We maintain the work function. When the state we occupy
becomes pinned, we move to the pinning state.

Example 1.7We return to Example 1.1. The work function values are initiallyOPT
0 = h0; 0; 0; 0i.

We initially occupy stateq0, and receiveT1 = h3; 1; 1; 0i. We update our work function values
to OPT1 = h3; 1; 1; 0i. Nobody yet pins stateq0, so we remain there, at a cost of0 to move
and3 to process. Our second task vectorT2 is h7; 0; 4; 3i, so our work function values become
OPT

2 = h5; 1; 5; 3i. Now stateq1 pins statesq0 andq2. We are at stateq0, so we move to the
pinning state,q1, at a cost of4 to move and0 to process. Our total cost on this sequence, then, is
3 + (4 + 0) = 7.

Borodin, Linial, and Saks show the following, not proven in this thesis.

Theorem 1.4 ([BLS92]) Work-Function has competitive ratio2n� 1 for any metric space.

They complement this by showing thatdeterministicalgorithms cannot guarantee less than2n� 1.
How much better can one do with randomized algorithms? This remains a major open question in com-

petitive analysis. It was not even clear thatany improvement was possible until Irani and Seiden demon-
strated a randomized algorithm with a mildly improved competitive ratio,1:58n � 0:58 [IS98]. On the
lower-bound front, Blumet al. show that regardless of the metric, every algorithm must have a competitive
ratio of at least
(

p
logn=log log n) [BKRS92].

In the absence of any satisfying bounds closing this gap for arbitrary metrics, researchers developed
algorithms for some natural metrics beyond the uniform metric. These include anO(logn) ratio for “highly
unbalanced spaces” [BKRS92], anO(log2 n) ratio for a star space [Tom97], and a2O(

p
logn log logn) ratio

for equally-spaced points on a line [BBF+90, BRS97]. (In a star space,d(u; v) is du + dv for some choices
dv of values for states.)

These examples in other metrics led to the somewhat daring conjecture that a general algorithm exists
achievingO(logn) on every metric, and that no metric exists whereo(logn) is possible. ThisO(logn) al-
gorithm remains elusive, but an algorithm, presented in this dissertation, achieves ratioO(log5 n log log n).
Fiat and Mendel subsequently refine this toO(log2 n log2 logn) [FM00]. These polylogarithmicguarantees,
coupled with the
(

p
log n=log logn) lower-bound result of Blumet al. [BKRS92], gives strong evidence

for the randomizedMTS conjecture.

Chapter 2

HST approximation

Bartal’s probabilistic approximation of arbitrary metric spaces withh-HSTs is a major new tool in
optimization algorithm research [Bar96, Bar98]. TheMTS problem was a major motivation behind this
result, and theMTS result presented in this dissertation remains an important application. In this chapter
we explore this result and its application to theMTS problem.

2.1 Probabilistic approximation

The notion of probabilistic approximation dates from Karp [Kar90]. A metric spaced is probabilistically
approximated with ratio� by a classeC of metric spaces with an associated distribution if, for every pair of
pointsu andv in d,

1: For all metrics~d 2 eC, we have~d(u; v) � d(u; v) :

2: E ~d2eC
h
~d(u; v)

i
� � � d(u; v) :

That is, every edge expands (regardless of our choice of~d, no edge becomes shorter than ind) but its
expected expansion factor is not more than�.

Example 2.1Karp uses a simple example of probabilistically2-approximating ann-node cycle
space by a set ofn-node line spaces: Choose a random edge of the cycle and split it there. (See
Figure 2.1.) No matter which edge we pick, no distance shrinks using this approximation. But for
any adjacent pair of nodesu andv, the edge connecting them is split with probability1

n
; otherwise

a

b

c
d

e

f

g h

A

�
�H

A

�

� H

a
a
a

HH
��

c d e f g h a b

Figure 2.1: Approximating a cycle by a line.

9

10 HST approximation

it remains intact. Thus the expected distance is

E ~d

h
~d(u; v)

i
�
�
1� 1

n

�
1 +

1

n
(n� 1) = 2� 2

n
� 2 :

For any nonadjacent pair of nodes, their expected distance in~d is at most the sum of the expected
lengths along edges in the shortest path between them, and we know that these edges expand by
2� 2

n
in expectation.

The following straightforward theorem relates the concept of probabilistic approximation to theMTS
problem. Coupled with Example 2.1, for example, it says that anMTS algorithm that is�-competitive on
line spaces implies a2�-competitive algorithm for cycle spaces.

Theorem 2.1 Say that we can probabilistically�-approximate a metric spaced with a distribution
on a classeC of metric spaces, and say we can find anr-competitiveMTS algorithm ~A for metrics
from eC. Then we have an(r�)-competitive algorithmA for d.

Proof. Our algorithmA probabilistically approximatesd by a metric~d 2 eC and then runs~A on ~d

using the identical task sequence. On each stept, A chooses to occupy whichever statevt~A that ~A

occupies within~d.
Consider any action sequencev in d. LetE ~d[� � �] represent the expected cost ofA relative to its

choice of ~d, and letE ~A[� � �] represent the expected cost of~A given the choice of~d. The expected
cost toA is

E ~d

"
E ~A

"X
t

d(vt�1~A
;vt~A) + T

t
v
t
~A

##
� E ~d

"
E ~A

"X
t

~d(vt�1~A
;vt~A) + T

t
v
t
~A

##
:

(The inequality holds becaused(u; v) � ~d(u; v) necessarily.) The amount insideE ~d[� � �] on the right
is exactly the expected cost to~A on ~d. Using the fact that~A is r-competitive, we continue.

E ~d

"
E ~A

"X
t

~d(vt�1~A
;vt~A) +T

t
v
t
~A

##
� E ~d

"
r
X
t

�
~d(vt�1;vt) +Tt

vt

�
+ b

#

= r
X
t

�
E ~d

h
~d(vt�1;vt)

i
+ Tt

vt

�
+ b

� r
X
t

�
�d(vt�1;vt) +Tt

vt

�
+ b

� r�
X
t

�
d(vt�1;vt) +Tt

vt

�
+ b

Since this inequality holds for any sequencev,A is (r�)-competitive.

2.2 Approximation with HSTs

Bartal’s contribution is to develop a technique for approximating arbitrary metrics by a special type of space
particularly amenable to constructing algorithms, theh-hierarchical well-separated tree(h-HST). Define
the diameter of a metric space to be the maximum distance separating any two points in it. A metric
space with diameter� is anh-HST metric if it can be partitioned into subspaces that are recursivelyh-HST
metrics with diameters at most�=h, where the distance between any two points in different subspaces is

2.2 Approximation with HSTs 11

d�
�
�
�
�
�
�
�
��

d�
�
dC
C

1�
��

d�
�
d dA
A
1T

TT2
�
�
�
�
�

d�
�
�
��

dD
D
D
DD

2

T
T
T
T
T

dS
S

S
S

S
S

S
S

SS4

Figure 2.2: An example of a2-HST. (The circles are points, and the numbers indicate diameters of subtrees.)

�.� The easiest way to draw anh-HST is as a tree; see Figure 2.2. In this drawing, the distance between
the second point and fifth points from the left is2, since this is the diameter of the lowest subtree containing
both points.

Theorem 2.2 ([Bar98]) For any h � 1, any metric space ofn nodes can be probabilistically
approximated with ratioO(h logn log logn) by a distribution onh-HSTs.

Some of our less sophisticated results rely on the number of levels in theh-HST; in this theorem, the depth
of each tree isO(logh�), where� is the ratio of the longest distance to the shortest nonzero distance ind.

This theorem has many applications to approximation algorithms and on-line algorithms. For many of
these cases, the value ofh is irrelevant and soh is taken to be simply1. But in theMTS result we will find
it necessary to takeh to be a larger value (likeO(logn)).

Rather than look at the proof of Theorem 2.2, for intuition we look at a simplified result applying only
to `1 metrics, and then we briefly discuss how the same approach applies to arbitrary`p metrics. (In an
`1 space, points have coordinates, and the distanced(u; v) between two pointsu andv is maxi jui � vij,
whereui is theith coordinate of pointu.)

Theorem 2.3 For anyh > 1, anyk-dimensional̀ 1 space ofn nodes can be probabilistically
approximated with ratioO(hk logh n) byh-HSTs.

Algorithm Approx- `1 Say our metric spaced has diameterD. We construct ourh-HST by select-
ing, for each dimension, a partition of the axis into pieces of widthD

h
. Independently for each axis,

we choose the offset of this partition by choosing a number uniformly from[0; Dh] so that no pair
of nodesu; v 2 d with d(u; v) < D

n2h
is divided. (That is, we continue choosing new offsets until

no such pair is split by our choice. Finding such a partition is always possible; there are at mostn2

2

pairs of points, so at mostn
2

2
D
n2h

= D
2h of the range[0; D

h
] is disallowed.) This produces a partition

of thek-dimensional space into at most(h + 1)k nonempty regions, which we calldivisions. Our
h-HST will have a recursively-computed subspace for each division. We choose the diameter (that
is, the distance between points in different divisions) to beD. Because each division has diameter
at mostD

h
(and so the recursively-computed subspace has diameter at mostD

h
), we get anh-HST.

Figure 2.3 illustrates this technique on a2-dimensional̀ 1 space withh = 2.

Proof. Consider any pair of nodesu andv in our original space. This pair will be separated on some
level of the tree; since the diameterD on that level is at leastd(u; v), we satisfy the first requirement

�Bartal’s definition of the distance between two pointsu andv is different: Whereas we define it to be the diameter of the lowest
subspace containingu andv, he defines it as the sum of this “diameter” and half the sum of the “diameters” of the subspaces in
each lower level containingu or v [Bar96]. (Bartal’s definition comes from mapping the space to a tree with lengths assigned to
the edges and points at the leaves. The distance fromu to v is the sum of edge lengths on the path fromu to v in the tree.) Since
we always useh � 2, the two definitions differ by only a constant factor.

12 HST approximation

d

d

d

d

d

d

dd

d

HH
��

d�
�
�
�
�
�
�
�
��

d�
�
dC
C

1�
��

d�
�
d dA
A
1T

TT2
�
�
�
�
�

d�
�
�
��

dD
D
D
DD

2

T
T
T
T
T

dS
S

S
S

S
S

S
S

SS4

Figure 2.3: Constructing a2-HST for an`1 space. (Circles are points; on the left, distances are based on
the two-dimensional coordinates in the diagram, and lines represent the partitions.)

of a probabilistic approximation,d(u; v) � D = ~d(u; v). Now we consider the upper bound on the
expected~d(u; v). The nodesu andv will be split on a level of the recursion where the diameter is
betweend(u; v) andn2hd(u; v). There are at most1+ logh(n

2h) = O(logh n) of these. For a level
of recursion with a diameterD, for each coordinate the probability that the partition splitsu andv is
at mostd(u;v)

D=2h , and in this case~d(u; v) isD. So the expected contribution to the distance is at most
2hd(u; v). We sum over all coordinates to get2hkd(u; v), and sum over allO(logh n) levels to get

E

h
~d(u; v)

i
= O(hk logh n)d(u; v) :

This approach generalizes naturally to arbitrary`p metrics.

Theorem 2.4 For anyh > 1 and integerp � 1, anyk-dimensional̀ p metric space ofn nodes can
be probabilisticallyO(hk logh(nk

1=p))-approximated byh-HSTs.

Proof. We follow the method of Theorem 2.3, with a few differences. When the diameter isD,
we partitioneach axis into pieces of widthD

hk1=p
so that the diameter of each division isDh , but we

choose the offset so that no point pair(u; v) with d(u; v) � D
n2hk1=p

is separated. Consider any
pair of pointsu andv. For each coordinatei, let `i = jui � vij. The chance the pair is split by the
partition on coordinatei when the diameter isD is at most `i

D=2hk1=p
. Summing overi, since (as

shown below)
P

i `i � k1�1=pd(u; v), we get at most a2hkd(u; v)=D chance that~d(u; v) = D.
Thus the expected value of~d(u; v) is at mostO(hk logh(nk

1=p))d(u; v).

To show
P

i `i � k1�1=p (
P

i `
p
i)

1=p, we show(
P

i `i)
p � kp�1

P
i `

p
i by induction onp. It

trivially holds forp = 1. Given the fact forp� 1, we have by induction

 X
i

`i

!p

� kp�2
 X

i

`
p�1
i

! X
i

`i

!

= kp�2
X
i

X
j

`
p�1
i `j

� kp�1
X
i

`
p
i

2.3 RecursiveMTS construction 13

The last step follows sincèp�1i `j+`
p�1
j `i � `

p
i+`

p
j (this is equivalent to(`p�1i �`p�1j)(`i�`j) � 0).

2.3 RecursiveMTS construction

Bartal’s probabilistic approximation of general metrics by HSTs suggests a definite program for achieving
improved probabilisticMTS algorithms: We find an algorithm for HSTs and apply Theorem 2.1. Because
of their structure, a very natural approach for tackling HSTs is to inductively apply an algorithm. The
polylog(n) result described in this dissertation follows exactly this program.

A major hurdle is to conceive of a good scenario to abstract the details of algorithms for subtrees of an
HST, so that we can define simple techniques to combine these into an algorithm for the entire tree using
recursion. The remainder of this chapter describes this abstraction and demonstrates how to apply it.

To inductively construct our algorithm for the entire HST, we imagine that we already haver-competitive
subalgorithms for each subtree of the root, and we construct an algorithm to combine these into an algorithm
for the entire tree. We can abstract ther-competitiveness of the subalgorithms by imagining thateach time
the task vector says we pay�, in fact our on-line algorithm paysr�. We will compare it to a player who does
not incur this factor ofr. We call thisr thecost ratio; typically r = polylog(n).

A complication that arises is that different subtrees can have different cost ratios. For the moment,
though, we concentrate on the much simpler problem of finding an algorithm when the cost ratios are equal.

In using cost ratios, we speak ofunfair competitiveness, a notion introduced by Blumet al. and
formalized by Seiden [BKRS92, Sei99]. We say algorithmA hasr-unfair competitive ratio� with additive
b if for all event sequencesT, algorithmA outputs an action sequencevA so that for all action sequencesv,

E[move(vA) + r local(T;vA)] � �(move(v) + local(T;v)) + b : (2.1)

The only difference between this definition and the definition of the competitive ratio is the appearance ofr

on the left-hand side.
The first approach to consider, as Bartal did, is to analyzeMarking in this unfair setting [Bar96].

Theorem 2.5 Marking hasr-unfair competitive ratio(r + 1)Hn for a uniform metric space ofn
nodes.

Proof. We analyze by phases. Any action sequence must pay at least1 in each phase; we argue that
Marking’s expected unfair cost is at most(r + 1)Hn. Consider the first state to become marked.
The probability thatMarking ever goes to this state is1

n
, and if so thenMarking pays at mostr + 1

for this state (at mostr in local costs, and1 in movement cost after it becomes marked). Thus the
expected cost toMarking at this state is at mostr+1n . Now consider the second state to become
marked. The probability thatMarking ever goes to this state is1

n�1 , and if so thenMarking pays at
mostr + 1 for this; thus the expected cost toMarking at this state isr+1n�1 . Generally, at theith state
to become marked in the phase,Marking expects to pay at mostr+1

n�i+1 at that state. We sum over
all states to get(r + 1)Hn.

It is not too difficult to imagine what happens when we applyMarking recursively to a tree. Because
of therHn term to the competitive ratio, what effectively happens is that theHn terms multiply so that for
anL-level h-HST, the competitive ratio is roughlyO(HL

n). The1-level subtrees have ratioO(Hn), but to
construct the algorithm for the2-level subtrees, we must taker = O(Hn) to account for the performance
of the1-level subtrees below, giving a ratio ofO(H2

n) overall. Likewise, the3-level subtrees have a ratio
of O(H3

n), and so on. We have neglected some details (notably, we have ignored details about exactly how

14 HST approximation

q0 q1 q2

�
�

@
@
�
�
�
�
�
�

A
A
A
A
A
A
A
A

A2

A1
3

1

q0 q1 q2
T
1 = h12 ; 0; 0 i

T
2 = h12 ; 12 ; 0 i

T
3 = h3; 3; 2 i

T
4 = h0; 0; 3 i

Figure 2.4: A very simple2-HST and task sequence.

we combine the subalgorithms, and we have ignored the additiveb), but this is roughly what happens in
recursively applyingMarking to an HST.

By choosingh to balance the metric-space approximation ratioh against the number of levelsO(logh�),
Bartal proves the following theorem.

Theorem 2.6 ([Bar96]) Given a metric space with� as the ratio of longest to shortest distance, we
chooseh = 2

p
lg� lgHn . By recursively applyingMarking to anh-HST probabilistically approxi-

mating the original metric space, we get a competitive ratio of2O(
p
log� log logn).

In many cases (such as a shortest-path metric in an unweighted graph) this bound is an improvement on the
earlier linear bounds [BLS92, IS98], but it is still much worse than the conjecturedO(logn) possibility.

2.4 Bounding a competitive ratio

The key problem with theMarking approach is thatMarking’s unfair competitive ratio multiplies the ratior
by2Hn = O(logn). A ratio ofr+O(logn)would be much more useful, as we could potentially add merely
O(logn) for each level of the HST. In this section, we see how we can rigorously use such an algorithmA

with anr-unfair competitive ratio ofr + �(n) to recursively construct an algorithm for anL-level h-HST
with a (fair) competitive ratio ofL�(n), for h sufficiently large.

The techniques used here are later reused with less description in thepolylog(n) result. For that result,
we must work around the fact that anh-HST could have many levels. For example, the space defined by
placing points at1; 2; 4; : : : ; 2n�1 on the number line will give an HST of
(logh 2

n�1) levels. It turns out,
though, that by being more careful with how we combine subspaces if one is much larger than others, we
can get thepolylog(n) result. We will see this approach in Theorem 4.8.

To runA recursively on an HSTT with each point of the space representing a subtree ofT , we must
decide when a point representing a subtree incurs a task-processing cost. We accomplish this by maintaining
the work functionOPT for the pointsin that subtree alone. (That is, points in other subtrees cannot pin any
points in the subtree.) The point representing a subtree incurs a loss each time the minimum work function
within that subtree increases. The amount of the loss is scaled down by the diameter ofT (technically, a
little less) and fed intoA.

AsA progresses at the root level of the tree, it will occasionally move from one subtree to another. When
this occurs, the overall algorithm continues runningA at that level, but for the lower levels of the HST (which
have now changed subtrees)A begins anew. Restarting the algorithm in this way does not affect the work-
function computation for the level where the movement occurs, but the work-function computation at the
lower levels does begin from scratch.

Example 2.2 To get a handle on the subtleties of this scheme, we consider an example. We work
with runningMarking recursively on the HST and task sequence of Figure 2.4. (The choice of

2.4 Bounding a competitive ratio 15

Marking is inappropriate: It does not have the requiredr + �(n) competitive ratio. ButMarking
suffices for this illustration.)

Initially algorithmA1 chooses between the left subtree and right subtree with equal probability;
say it chooses the left subtree. Then algorithmA2 runs and chooses between its left subtree and right
subtree equally; say it chooses the left, so that the algorithm for the HST is initially at nodeq0.

On receivingT1 = h12 ; 0; 0i, the status ofA1 does not change; although the work function foru

increases by12 , the minimum work function within the subtree rooted atA2 is still 0. However, the
work function for left subtree ofA2 has increased by12 . ThusMarking atA2 increases the counter
for the left subtree by1

2 (we divide the increase by the diameter of the spaceA2). AlgorithmA2

does not move fromq0, and so we remain atq0 to process the first vector.
On receivingT2 = h1

2
; 1
2
; 0i, the work function for both subtrees ofA2 increases by1

2
; thus now

the counters forA2 are at1 and 1
2 . Now its left subtree (q0) is marked, soA2 will move to the right

subtree (q1). At the root level, the left subtree’s minimum work function is now1, and soA1’s left
counter increases from0 to 1

6 (remember that we scale by the space’s diameter);A1 does not move.
So the algorithm processes the second vector atq1.

For taskT3 = h3; 3; 2i, the work function forA1’s left subtree increases by3, so thatA1’s left
subtree counter increases from16 to 7

6 . Meanwhile,A1’s right subtree’s work function increases by
2, soA1’s right subtree counter increases from0 to 2

3 . ThusA1’s left subtree becomes marked, and
it moves to the right subtree. The algorithm processesT

3 at nodeq2.
Finally, consider the taskT4 = h0; 0; 3i. This increases the work function forA1’s right subtree

by 3, so thatA1’s right subtree counter becomes53 . Now the right subtree ofA1 is marked, and so
Marking resets the counters and begins at a random space. Say it randomly chooses the left subtree.
ThenA2 begins anew with work function and counters at0; say it chooses the left also. Then the
algorithm processesT4 at nodeq0.

In this example, we treated the tree as an entire entity. We now look at whatA1 saw. It saw the
following task sequence.

T
1
A = h0, 0i
T
2
A = h16 , 0i
T
3
A = h1, 23i
T
4
A = h0, 1i

As aMarking algorithm usingr = 1, A1 is in either tree with equal probability for tasksT1
A and

T
2
A. The left subtree becomes marked withT3

A, and soA1 processesT3
A in the right subtree. With

T
4
A, the right subtree becomes marked also, and soA1 clears its marks and chooses a random subtree

for T4
A.

To bound the performance of our recursive application, we must have a bound on the magnitude of the
additive part (theb of our definition of competitive ratio in (2.1)). We needh to be about as large asb, so
that when the subtree algorithm restarts, the additive part (which we may pay) will be only a constant factor
more than it cost us to move into the subtree. We will see this in the mathematics of the formal proof.

Theorem 2.7 Say algorithmA hasr-unfair competitive ratior + �(n) with additive�(n) � 2 on
the uniform metric. The competitive ratio of runningA recursively on anL-level (2:5�(n))-HST
with diameterD is at most1 + 4�(n)L with additive5�(n)D.

Remark. In runningA, we taker to be 1
4 times the maximum ratio of the subtrees’ algorithms;

�(n) is computed using this value.

Proof. We prove this by induction onL. The trivial single-point space handles the base caseL = 0.
Say we have anL-level HST of diameterD, and let� be the maximum competitive ratio of

the subtrees’ algorithms, at most1 + 4�(n)(L� 1). The additive part is5�(n) times the subtree’s

16 HST approximation

diameter of at most D
2:5�(n)

, for a product of2D.

To bound the overall performance, we will want to use our inductive hypothesis and ther-unfair
competitive ratio ofA. To discussA’s performance, we defineTA as the task sequence thatA sees.
That is,Tt

A;i is 4
3D times the change in minimum work function in subtreei as a result of the actual

task vectorTt, where we compute the minimum work function in subtreei considering only those
states in the subtree (i.e., in this computation, states in other subtrees cannot pin states in subtreei).
We divide the change in work function by3

4
D rather than simplyD because of the effect which will

soon appear of the additive part of the subalgorithms’ ratios.

To bound the competitive ratio for our complete algorithm (which combinesA with the subtrees’
algorithms), consider an arbitrary action sequencev on the entire space ofn points. This implies
an action sequencevb specifying in whichsubtree(not state) to process each task. To useA’s
competitive ratio, we want to bound from below the total off-line cost tov in terms oflocal(TA;vb)
andmoveU(vb), since their sum is whatA can compete against. (We usemoveU to represent the
movement cost on the diameter-1 uniform space thatA uses.) The first apparent (but flawed) answer
is local(3

4
DTA;vb) +D moveU(vb). To understand this, consider a segment of time wherev stays

within the same subtree. The algorithm must move into the subtree, at a cost ofD. And because the
work function within the subtree increases according to3

4DTA within the segment, the off-line cost
increases with3

4DTA. Summing over all segments, we getlocal(34DTA;vb) +D moveU(vb).

But local(34DTA;vb) is not accurate: The minimum cost for processing a segment ofv remain-
ing in the same subtree should be computed using work-function values starting at0, but the work-
function values used to computeTA are not all equal (except for the first segment). In fact, for each
of thesemoveU (vb) segments, the actual optimal cost within the segment and the cost represented
byTA may differ by as much as the diameter of the subtree, which is at mostD

2:5�(n) . So the first ap-

parent answerlocal(34DTA;vb) +D moveU(vb) may be wrong by as much asD2:5�(n)moveU (vb).
Thus the total cost forvb is at least

local(34DTA;vb) +

�
D � D

2:5�(n)

�
moveU(vb) � local(3

4DTA;vb) +
3
4D moveU (vb) :

Now we look at what algorithmA does. LetvA represent the sequence of moves thatA makes at
the top level of the HST. Within a single segment ofvA staying within a single subtree, the expected
cost (according to the inductive hypothesis) is at most� times the optimal cost for servicing this
segment, plus2D. Again, it is tempting to useTA to bound the optimal cost for servicing the
segment, but work-functiondiscrepancies mean this estimate may be off: The proper way to compute
the optimal cost is with the work function zero at all states at the beginning, while when the algorithm
moves into the subtree, the work function varies between states. In this case, however, the perceived
cost (that is, whatTA indicates) is at most the actual cost, since the computation usingTA only
happens to believe that some of the states have incurred more cost than the minimum among the
states, whereas in fact they have not. Thus within each of themoveU (vA) + 1 segments ofvA, our
expected cost is at most� times the local cost (according to the task sequenceTA thatA sees) plus
2D. Adding anotherD for each time we move between segments, our total cost is at most

� local

�
3
4DTA;vA

�
+ 3D moveU(vA) + 2D :

Of coursevA is actually a random variable based onA’s random choices. SinceA has com-
petitive ratior + �(n), we know that for an arbitrary action sequencevb, A’s expected cost is at

2.4 Bounding a competitive ratio 17

most

E

�
� local

�
3
4
DTA;vA

�
+ 3D moveU (vA) + 2D

�
= 3D E

h�
4
local (TA;vA) +moveU (vA)

i
+ 2D

� 3D
���

4
+ �(n)

�
(local (TA;vb) +moveU (vA)) + �(n)

�
+ 2D

= (�+ 4�(n))
�
local

�
3
4
DTA;vb

�
+ 3

4
D moveU (vA)

�
+ 3�(n)D+ 2D

� (1 + 4�(n)L)
�
local

�
3
4
DTA;vb

�
+ 3

4
D moveU (vA)

�
+ 5�(n)D

� (1 + 4�(n)L) (local(T;v) +move(v)) + 5�(n)D

Thus we conclude that our overall competitive ratio for the HST is1 + 4�(n)L, plus an additive
5�(n)D.

Our goal now is to demonstrate an algorithm with anr-unfair competitive ratio ofr + O(logn). One
way to this goal is to detour into machine learning theory. We pursue this now.

18 HST approximation

Chapter 3

The expert prediction problem

As theMTS problem is foundational to competitive analysis, so the problem of prediction from expert
advice is foundational to on-line machine learning theory. It has several specific formulations. In this
chapter we first look at one of the more traditional formulations,Experts-Predict, and then we examine
more closely a “decision-theoretic” formulation. From there we can derive new analyses of algorithms in
the decision-theoretic formulation that do well with a particular goal calledpartitioning bounds, and we can
attempt to translate these bounds to ther-unfair MTS problem.

3.1 Classical formulation

Littlestone and Warmuth proposed the initialExperts-Predict problem.

Problem Experts-Predict ([LW94]) We see a set ofn experts. For each time step, each expert
makes a Boolean prediction. We decide on a Boolean prediction, and then we learn the correct
answer. Our goal is to minimize the number of mistakes we make relative to the most accurate
expert.�

For example, we might think of the experts as meteorologists predicting whether it will rain tomorrow.
We want to predict well relative to the most talented among them without too many mistakes along the way.

From a learning perspective, this question models a situation where we have a set of hypotheses (termed
experts), one of which predicts fairly accurately how the world operates. The question is how quickly we
can converge on a good predictor. Thus, our goal is to bound how much worse we do relative to the best
single expert.

Themistake bound of an algorithm bounds the number of mistakes the algorithm makes [Lit88]. In
contrast to much of machine learning, mistake bounds do not employ distributional assumptions. That is,
the experts need not perform uniformly over time in any sense. Despite the absence of such assumptions,
the theoretical bounds obtained are surprisingly good.

If one of the experts predicts perfectly, then theHalving algorithm does optimally for deterministic
algorithms.

�The algorithms actually extend to bounded real-valued predictions, with a loss function (such as square loss or log loss)
assigning the penalties. With the square loss function, for example, if an expert predictsx and the true answer isy, the loss is
(x� y)2.

19

20 The expert prediction problem

Algorithm Halving ([Mit82]) We keep track of a setP of experts, initially including all of them.
Each time step, we predict whatever the majority of experts inP predict. Once we receive the true
answer, we remove fromP all experts who predicted wrong.

Obviously, each timeHalving predicts wrong, the size ofP goes down by at least half. Thus the mistake
bound ofHalving is blg nc.

When none of the experts predict perfectly, the problem becomes harder. One simple approach (as we
saw withMarking) is to proceed in phases: In each phase, we runHalving until P becomes empty. If the
best expert makesm mistakes, then this phased version ofHalving makes at mostm blg nc mistakes.

Littlestone and Warmuth’s weighted-majority algorithmWM does significantly better.

Algorithm WM ([LW94]) We use a parameter� 2 (0; 1) and maintain a weightwi with each
expert, initiallyw0

i = 1. At time stept, we predict according to a weighted majority of the experts,
where each expert gets a weight ofwt�1

i . Once we learn the correct answer, we update the weight
of each expert who was mistaken to becomew

t
i w

t�1
i �.

Example 3.1 Take� = 1
3 . Say we have four experts,x0, x1, x2, andx3. Our weights are initially

w
0 = h1; 1; 1; 1i.

Say thatx0 predictsfalse on the first time step while the others predicttrue . Then we predict
true , since it has weight3 while false has weight1. We then learn the true answer,false in
this example. We update the weights to becomew

1 = h1; 13 ; 13 ; 13i.
Say thatx0 andx1 predicttrue on the second time step, andx2 andx3 predictfalse . Then

true has weight43 while false has 2
3 ; our algorithm predictstrue . If this is correct, then the

weights are updated to becomew2 = h1; 13 ; 19 ; 19i.
On the third time step, ifx0 predictsfalse and the others predicttrue , then we predict

false , sincefalse has weight1 andtrue has weight5
9
.

The beauty ofWM lies in the fact that, despite its simplicity, its bound is quite strong. The proof is cute;
we repeat its technique several times in this chapter.

Theorem 3.1 ([LW94]) For any expertk, WM has mistake bound

mWM �
1

ln
�

2
1+�

� �mk ln

�
1

�

�
+ ln n

�
;

wheremk is the number of mistakes made by expertk.

Remark. To make better sense of this bound, let� = 1� 2" for small". Then the bound translates
to approximately2(1 + ")mk +

1
"
ln n. Intuitively, this is an explicit trade-off between how quickly

we settle on a particular expert (the1" lnn term) and how quickly we are able to adapt if that expert
is actually bad but happens to do well for the first several rounds (the2(1 + ")mk term).

Proof. [LW94] DefineWt =
P

iw
t
i to be the total weight at timet and saymWM is the number of

mistakesWM makes. IfWM makes a mistake at timet, then, since at leastWt�1=2 weight is on the
experts that err, the total weight decreases by at least(1 � �)(Wt�1=2). Thus whenWM makes a
mistake,Wt is at mostWt�1� (1��)(Wt�1=2) = 1+�

2 W
t�1. SinceWM makesmWM mistakes,

and sinceW0 = n, the final total weightW�nal is at most(1+�2)mWMn.

On the other hand,W�nal is at least the final weightw�nal

k of expertk, which is exactly�mk .
Thus we have

�mk �W�nal �
�
1 + �

2

�mWM

n :

From here we take logarithms and solve formWM to get the result.

3.2 Decision-theoretic formulation 21

This bound is very close to twice the best expert’s loss. Moreover, it says that we can double the number
of experts (refining the hypothesis space by a factor of two) with very little increase in worst-case loss. A
major strength of the theory of expert advice is how tight a bound we get with the very simple algorithm
WM.

Both Halving andWM are deterministic. A randomized version ofWM, which chooses experts ran-
domly based on the weight distribution, roughly halves the bound on the expected loss to(1 + ")mk +
1
2"
ln n [LW94]. We see a proof of this in theExperts problem, an alternative formulation ofExperts-

Predict.

3.2 Decision-theoretic formulation

Freund and Schapire abstract away the aspect of combining expert predictions to arrive at what they term
a “decision-theoretic” formulation ofExperts-Predict [FS97]. We use this formulation throughout the
remainder of this dissertation, so we refer to this problem simply asExperts.

Problem Experts ([FS97]) We see a set ofn experts. For each time stept, we choose an expert
v
t. Then we learn theloss vector, `t, which specifies the loss̀ti 2 [0; 1] of each expert for that time

step. We incur the loss of the chosen expert,`t
vt

. Our goal is to minimize the total loss we incur.

Any deterministic algorithm forExperts does at leastn times worse than the best expert in the worst
case. An adversary can construct a worst-case sequence by simulating the algorithm and each time step
giving a loss of1 to the expert that the algorithm will choose and a loss of0 to the other experts. Thus after
T time steps, the algorithm’s cost isT , while the best expert’s loss is at mostT=n. SinceO(n) bounds are
undesirable, we restrict our attention to randomized algorithms.

Given that one of the experts is perfect (that is, if for somei, at all timest we have`ti = 0), we can
use the following algorithmRand-Halving, a randomized version ofHalving and a degenerate instance of
Hedge (discussed later). It has a loss of at mostHn.

Algorithm Rand-Halving Let P be a set of experts, initially including all experts. Each time step,
we pick our an expert uniformly at random fromP . Once we receive the loss vector, we remove
fromP all experts who incur some nonzero loss.

When all experts incur some loss, the problem becomes more complicated. TheHedge algorithm
is Freund and Schapire’sExperts adaptation ofWM [FS97]. (In fact, the coefficients of Theorem 3.2’s
guarantee are optimal for on-line algorithms [Vov95, FS97].)

Algorithm Hedge ([FS97]) We use a parameter� 2 (0; 1) and maintain a weightwi with each
expert, initiallyw0

i = 1. At time stept, we choose experti with probability proportional to its
weight,wt�1

i =
P

jw
t�1
j . Given the loss vector, we update the weight of each expert to become

w
t
i w

t�1
i �`

t
i .

Theorem 3.2 ([FS97]) If an expertk incurs total losslossk, thenHedge incurs expected loss at
most

E[lossHedge] �
ln 1=�

1� �
lossk +

1

1� �
ln n :

Remark. Again, to get a feel for the tradeoff, we make better sense of this bound by letting
� = 1� 2" for small". Then the mistake bound translates to approximately(1+ ")lossk +

1
2" ln n,

roughly a factor of2 less thanWM’s bound.

22 The expert prediction problem

Proof. [FS97] LetWt be the total weight
P

iw
t
i at timet, and letLt be the expected loss toHedge

at timet. Note that

L
t =

X
i

w
t�1
i

Wt�1`
t =

1

Wt�1
X
i

w
t�1
i `t :

As in the proof of Theorem 3.1, we boundW�nal . We boundWt in terms ofWt�1.

W
t =

X
i

w
t
i =

X
i

w
t�1
i �`

t
i

�
X
i

w
t�1
i

�
1� (1� �)`ti

�
=Wt�1 �1� (1� �)Lt

�
� W

t�1e�(1��)L
t

We can now boundW�nal .

W
�nal �Winit

Y
t

e�(1��)L
t

= ne�(1��)
P

t L
t

:

For the lower bound onW�nal , we know it is at leastw�nal

k , which is exactly�lossk . Thus we have
the inequality

�lossk � ne�(1��)
P

tL
t

;

which we solve forE[lossHedge] =
P

tL
t.

3.3 Partitioning bound

Until this point, we have contented ourselves with bounding performance against the best single expert over
all time steps. Thepartitioning bound is a more ambitious goal. Here we try to do well against all partitions
of time into intervals, where we pick the best expert within each time interval of the partition. Being able to
do well against all partitions includes, for example, scenarios where one expert does very well for the first
half of time, whereas another expert does best on the last half of time. For a good partitioning bound, an
algorithm must adapt particularly quickly to changed expert performance.

Formally, given a partitionP of time into intervals, letkP be the number of intervals. We letLjP be the
loss of the best expert within thejth interval, and we letLP be the total loss over all intervals,

PkP
j=1 L

j
P .

The partitioning bound of algorithmA will be some bound on its expected loss of the form

E[lossA] � aLP + bkP

for some coefficientsa andb.
We hope to find a generalized bound similar to Theorem 3.2’s bound forHedge, a bound of the form

E[lossA] � (1 + ")LP + 1
"
kP lnn :

We examine two variants ofHedge, Thresh andShare, that achieve this type of bound. In Section 7.2, we
see another variant calledPhased-Hedge.

3.3 Partitioning bound 23

Thresh

The first of these algorithms,Thresh, is an adaptation of Littlestone and Warmuth’sWML algorithm to the
Experts problem [LW94].

Algorithm Thresh We use parameters� 2 (0; 1) and� 2 (0; 1
2
], and maintain a weightwi for

each expert, initially w0
i = 1. At time stept, we compute the total weightWt�1 =

P
iw

t�1
i , and

we letSt�1 be the set of expertsi withwt�1
i � �

n
W

t�1. DefinecWt�1 as the total weight inSt�1,P
i2St�1w

t�1
i . We choose experti with probabilitywt�1

i =cWt�1 if i 2 St�1 and with probability
0 otherwise. Given the loss vector`t, for each experti 2 St�1, we update its weight to become
w
t
i w

t�1
i �`

t
i ; we do not change weights fori 62 St�1.

Theorem 3.3 Givenn experts,Thresh incurs expected loss at most�
ln(1=�)

(1� �)(1� �)

�
LP +

�
ln(n=��)

(1� �)(1� �)

�
kP

for any partitionP .

Remark. For small", let � = 1
n

and� = 1 � 2". As n becomes very large, the bound of
Theorem 3.3 translates to approximately

(1 + ")LP +
�
1 + " + 1

" ln n
�
kP :

If we restrict our attention tokP = 1 (the case considered in Theorem 3.2), we see that this effec-
tively generalizes the bound ofHedge, at the loss of only a factor of2 in the coefficient toln n.

Proof. [LW94] Note thatcWt � (1 � �)Wt for all t, and letLt be the expected loss toThresh at
time t,

L
t =

X
i2St�1

w
t�1
icWt�1 `

t
i :

As in Theorem 3.2’s proof, we bound how a single step alters the total weight.

W
t =

X
i2St�1

�`
t
iw

t�1
i +

X
i62St�1

w
t�1
i

�
X

i2St�1

(1� (1� �)`ti)w
t�1
i +

X
i62St�1

w
t�1
i

= W
t�1

0
@1� (1� �)

X
i2St�1

w
t�1
i

Wt�1`
t
i

1
A

� W
t�1

0
@1� (1� �)(1� �)

X
i2St�1

w
t�1
icWt�1 `

t
i

1
A

= W
t�1 �1� (1� �)(1� �)Lt

�
(3.1)

Consider any partitionP , and examine segmentj of the partition, where the best expert (call it
k) incurs lossLjP . Say that the total weight at the segment’s beginning isW

init and the total weight
at the segment’s end isW�nal . BecauseThresh never allows a weight to fall below� �

n
W

t, the

24 The expert prediction problem

initial weight of expertk in the segment is at least� �
n
W

init . Thus at the segment’s end, expertk’s

weight, and henceW�nal , is at least�L
j
P � �

n
W

init . Applying bound (3.1), we have

�L
j
P �

�

n
W

init �W�nal �Winit
Y
t

�
1� (1� �)(1� �)Lt

�
:

So we have

L
j
P ln � + ln

��

n
� �(1� �)(1� �)

X
t

L
t ;

which gives us bound on the segment’s expected loss of

X
t

L
t � ln(1=�)

(1� �)(1� �)
L
j
P +

ln(n=��)

(1� �)(1� �)
:

Summing over segments, we get the desired bound.

Share

We also examineShare, an alternative toThresh. This is an adaptation of Herbster and Warmuth’s
Variable-Share algorithm to theExperts environment [HW98].

Algorithm Share We use parameters� 2 (0; 1) and� 2 (0; 1
2], and maintain a weightwi for

each expert, initially w0
i = 1. At time stept, we choose experti with probability proportional to

its weight,wt�1
i =

P
j w

t�1
j . Given the loss vector, we update the weight of each expert to become

w
t
i w

t�1
i �`

t
i + �

n�
t, where�t is

P
i

�
w
t�1
i �wt�1

i �`
t
i

�
.

The update rule used by this algorithm can be viewed as follows. We first update as usual:w
t
i w

t�1
i �`

t
i .

This reduces the sum of the weights by some amount�
t. We then distribute an� fraction of this�t evenly

among then experts (�
n
�

t each).

Theorem 3.4 Givenn experts,Share incurs expected loss at most�
ln(1=�)

(1� �)(1� �)

�
LP +

�
ln(n=�)

(1� �)(1� �)

�
kP

for any partitionP .

Remark. For small", let � = 1
n

and� = 1 � 2". As n becomes very large, the bound of
Theorem 3.4 translates to approximately

(1 + ")LP + 1
"
lnn kP :

That is, we get about the same tradeoff we saw withHedge andThresh.

Proof. Given a partitionP , we consider segmenti of the partition. LetLt be the expected loss to
Share at time stept within the segment. Say expertk is the best expert of the segment (with loss
L
i
P). Our goal is to show that the algorithm’s expected loss

P
t L

t is at most

ln(1=�)LiP + ln(n=�)

(1� �)(1� �)
(3.2)

3.4 Translating toMTS 25

Such a bound, summed over segments, implies the theorem’s bound.
Using the typical multiplicative-update analysis (Theorem 3.2) we get

W
t �Wt�1 �1� (1� �)(1� �)Lt

�
:

So, ifWinit is the sum of weights at the segment’s beginning andW
�nal is the sum of weights at

the segment’s end, thenW�nal is bounded by

W
�nal �Winit

Y
t

�
1� (1� �)(1� �)Lt

�
: (3.3)

Now consider the weight of expertk. At time t, we haveWt =Wt�1��t+ ��t, and so�t

is 1
1��(W

t�1 �Wt). Thus the amount added towt�1
k due to the share update is�(1��)n(W

t�1 �
W

t). In the entire segment, therefore, the total amount added towi due to the share updates is
�

(1��)n(W
init �W�nal). Thus, even ifwinit

k is zero, by the end of the segment we have

w
�nal

k � �L
i
P

�
�

(1� �)n
(Winit �W�nal)

�
; (3.4)

since the worst case forw�nal
k is if the penalties for the expert’s losses come after the sharing.

For convenience, define

� =
Y
t

�
1� (1� �)(1� �)Lt

�
:

Combining (3.3) and (3.4) we get

�L
i
P

�

(1� �)n
(Winit �Winit�) � �L

i
P

�

(1� �)n
(Winit �W�nal) � w�nal

k �W�nal �Winit� :

We can now solve for�.

� � �L
i
P �

(1� �)n+ �L
i
P �
� �L

i
P �

n

This gives us

� ln � � ln

�
1

�

�
L
i
P + ln

�n
�

�
:

Recalling the definition of�, we notice that

� ln � � (1� �)(1� �)
X
t

L
t ;

so

X
t

L
t � ln(1=�)LiP + ln(n=�)

(1� �)(1� �)

as we desired in (3.2).

26 The expert prediction problem

3.4 Translating to MTS

TheExperts andMTS problems have deep similarities: The experts correspond closely toMTS states, and
the loss vectors correspond closely to task vectors. This gives us some hope thatThresh andShare can
also be used asMTS algorithms. But there are some important differences between the problems.

� TheMTS problem includes a cost for switching between states/experts.

� An MTS algorithm hasone-step lookahead. That is, first the cost vector is announced, then the
algorithm chooses whether to move, and finally the algorithm pays according to the entry in the cost
vector for the new state. In contrast, theExperts algorithm haszero lookahead, in that it first pays
and then moves.

� Because of the lookahead,MTS algorithms can deal with unbounded cost vectors. Large losses are
actually advantageous to an on-lineMTS algorithm in that they are essentially equivalent to allowing
the algorithm to “see further into the future.” That is, an adversary trying to defeat anMTS algorithm
might as well use several small task vectors instead of a single large task vector, so that the algorithm
is not sure which state is best. (Theorem 4.1 formalizes this observation.)

� The Experts goal of doing well with respect to the best expert is a much weaker goal than the
competitive-ratio goal of doing well against all sequences. Of course, because the goal is weak, the
Experts bounds are very good (1 + " times the best expert), whereas theMTS bounds are relatively
poor (O(logn)).

In this section we examine how our twoExperts algorithms do in the unfair uniform-metricMTS
problem. Later (Chapter 6) we look at the other direction — howMTS algorithms apply to theExperts
scenario.

Thresh

Thresh, unfortunately, does not translate well in the unfairMTS setting. In fact,Thresh does not have
a bounded ratio at all. Consider the two-expert case. Say that expert2 incurs a loss large enough for its
weight to drop to slightly below �

2�� . At this point, the algorithm has all probability on expert 1. Now
suppose expert1 incurs a tiny loss, just sufficient to bringw2 to equal�

n
W . (Again,W stands for the total

weight
P

i wi.) This forces the algorithm to move�2 probability over to expert2. Now suppose expert2
incurs an infinitesimal loss so thatw2 <

�
n
W . This forces the algorithm to move�

n
W probability back to

expert1. This situation can repeat indefinitely, causing the algorithm to incur unbounded movement cost
with insignificant increase in the off-line optimal cost, giving an unbounded competitive ratio.

Share

The problem withThresh is that it does not control its movement costs very smoothly.Share, however,
does. In fact, we can show that it is good as a uniform-metricMTS algorithm. The bound for theMTS
setting is exactly what we want from our discussion closing Section 2.3. (A newlog r term appears, but
this is not problematic since we can assumer = O(n); if the ratio is higher, we can simply applyWork-
Function to get the same guarantee.)

Theorem 3.5 We useShare for ther-unfair uniform-metricMTS setting as follows: Given a task
vectorTt, we giverTt to Share and use the resulting probability distribution to choose a state.
Given any
 � 2, we can configure� and� in Share so that itsr-unfair competitive ratio is

� = r + 3:2
 ln(n(r + 1)) + 4

3.4 Translating toMTS 27

with an additive�

.

Remark. In the proof, we choose� to be(r + 1)�1. For�, we choose it to be
�
1 +

r
ln n

�

��1
if

r �
 ln(n(r + 1)) and 1
e

otherwise.

Proof. Consider any off-line strategyv. This corresponds to a partitionPv with move(v) + 1

segments. The lossLP of the partition islocal(T;v). We consider the local cost and the movement
cost incurred byShare in turn. Theorem 3.4 shows that the task-processing cost satisfies

E[r local(T;vA)] = E[local(rT;vA)]

�
�

ln(1=�)

(1� �)(1� �)

�
local(rT;v) +

�
ln(n=�)

(1� �)(1� �)

�
(1 +move(v)) : (3.5)

(In fact, theMTS problem allows one-step lookahead; this only decreases the algorithm’s cost.)
To analyze the movement cost, note that the total weightW

t only decreases with time. We show
that for any time stept, the movement cost is at mostln(1=�) times the local cost.

d(pt�1;pt) =
X

i:pt�1

i >pti

w
t�1
i

Wt�1 �
w
t�1
i �`

t
i + �

n
�

t

Wt

!

�
X

i:pt�1
i >pti

w
t�1
i

Wt�1 �
w
t�1
i �`

t
i

Wt

!

�
X

i:pt�1

i >pti

w
t�1
i

Wt�1 �
w
t�1
i �`

t
i

Wt�1

!

�
X
i

w
t�1
i

Wt�1 �
w
t�1
i �`

t
i

Wt�1

!

�
X
i

w
t�1
i

Wt�1 `i ln
�
1

�

�

Thus the totalr-unfair cost toShare is at most�
1 + ln

1

�

���
ln(1=�)

(1� �)(1� �)

�
r local(T;v) +

�
ln(n=�)

(1� �)(1� �)

�
(1 +move(v))

�

� 1 + ln(1=�)

(1� �)(1� �)
max

�
r ln

1

�
; ln

n

�

�
cost(T;v) +

1 + ln(1=�)

(1� �)(1� �)
ln

n

�
:

We must choose the values of� and� appropriately.
If r �
 ln(n(r+1)), we choose� = (r+1)�1 and� =

�
1 +

r
ln n

�

��1. Sinceln 1
�
�

r
ln n

�
,

and(1� �)�1 = 1 + r=
�

 ln n

�

�
, the competitive ratio is

1 + ln(1=�)

(1� �)(1� �)
max

�
r ln

1

�
; ln

n

�

�

� 1 +

r ln(n=�)

1� �

�
1 +

r

 ln n
�

�
max

n

 ln

n

�
; ln

n

�

o

=
1

1� �

�
2 +

r

 ln n
�

+

 ln n

�

r

�

 ln

n

�
:

28 The expert prediction problem

We continue, using the fact thatr �
 ln(n(r+ 1)).

1

1� �

�
2 +

r

 ln n
�

+

 ln n

�

r

�

 ln

n

�
�

�
1 +

1

r

�
(r + 3
 ln(n(r + 1)))

� r + 3
 ln(n(r + 1)) + 4

The additive part is identical to this derivation, except thatmaxf� � �g is replaced byln n
� , a factor of

 less.
If r <
 ln(n(r+1)), then we choose� = (r+1)�1 and� = 1

e . The competitive ratio, then, is

1 + ln(1=�)

(1� �)(1� �)
max

�
r ln

1

�
; ln

n

�

�

� 2

1� 1=e

�
1 +

1

r

�
maxfr; ln(n(r+ 1))g

=
2

1� 1=e
max

�
(r+ 1);

�
1 +

1

r

�
ln(n(r+ 1))

�
:

We can continue, using the facts thatr �
 ln(n(r + 1))) andr � 1.

2

1� 1=e
max

�
(r+ 1);

�
1 +

1

r

�
ln(n(r+ 1))

�

� 2

1� 1=e
max f
 ln(n(r + 1)) + 1; 2 ln(n(r+ 1))g

=
2

1� 1=e
(
 ln(n(r + 1)) + 1)

� 2

1� 1=e
(
 ln(n(r + 1)) + 1)

� 3:2
 ln(n(r+ 1)) + 3:2

The additive part is identical except that themaxf� � �g is replaced byln n
�

, a factor of
 less.

Thus, usingShare, we can achieve ourpoly(L; logn) ratio for L-depth HSTs. But we reach our
O(log5 n log logn) bound using a different unfairMTS algorithm calledOdd-Exponent. We turn to ex-
aminingOdd-Exponent and using it to build aMTS algorithm with apolylog(n) competitive ratio.

Chapter 4

A general-metric MTS algorithm

This chapter presents thepolylog(n)-competitive algorithm for metrical task systems. We begin by
examining a different algorithmOdd-Exponent for ther-unfair uniformMTS problem. Interestingly, al-
thoughOdd-Exponent andShare are radically different in approach, they share similar guarantees.Share
is the simpler and more intuitive algorithm, butOdd-Exponent is an interesting alternative with slightly
more efficientMTS guarantees. In particular, withOdd-Exponent we can guarantee aO(log5 n log logn)

competitive ratio on general metric spaces, whereas usingShare gives us insteadO(log7 n log logn). (The
difference is thatOdd-Exponent has a smaller additive part in its guarantee.)

4.1 Linear

For intuition, we first consider what we should do for two regions. One very good strategy (in fact, the
optimalr-unfair strategy) is to allocate to region1 the probability

p1 =
1

2
+
OPT2 �OPT1

2
:

and to region2 the remainder. This is the strategy that Blumet al. use for equal-ratio regions [BKRS92].
Its r-unfair competitive ratio isr + 1; the derivation, analysis, and proof of optimality is identical to the
approach we later see in Theorem 4.7.

For more than2 regions, the natural approach is to generalize the2-region equation. We call this algo-
rithm Linear to emphasize the linear movement of probability as the work function changes.

Algorithm Linear We allocate to regionj the probability

pj =
1

n
+

1

n

X
i6=j

(OPTi �OPTj) :

The following analysis ofLinear is simpler than the laterOdd-Exponent analysis, but it follows the same
basic method.

To simplify our analysis of these algorithms, we employ two assumptions. The first is to assume that
each task vector is0 in all components, except one component which is bounded by�. We can choose� to

29

30 A general-metricMTS algorithm

be as small as we want. Such a task is called anelementary taskor a �-elementary task. The following
theorem, not proven here, justifies this assumption.

Theorem 4.1 ([Tom97, BEY98]) For any metric space and any� > 0, if we have a�-competitive
MTS algorithm assuming�-elementary task vectors, then we can construct a�-competitiveMTS
algorithm.

We use the notation(j; �) to represent a task wherej is the state incurring a cost of�.
Our second assumption is the following.

Assumption 4.1For an elementary task giving a cost of� to a statev so that all probability onv is
removed, we can assume that� is the least value causing the algorithm to do this.

This is because a larger� does not alter the on-line cost, although it may increase the off-line cost. The
end of Section 6.3 (which presents results of an empirical comparison of several unfairMTS algorithms
includingOdd-Exponent andShare) discusses how an implementation can efficiently incorporate these
assumptions.

Theorem 4.2 Ther-unfair competitive ratio ofLinear is at mostr + (n� 1).

Proof. We use a potential function

� =
r

2n

X
i;j:i6=j

(OPTi �OPTj)
2 ;

and our analysis competes against the average work-function value,1
n

P
iOPTi, which is at most

1 from the true optimum,miniOPTi.
Say we receive an elementary task vector where only a statek incurs a cost�. Let pk andp0k

represent the probability in regionk before and after the task vector, and let� and�0 represent the
potential before and after. Then the on-line strategy’s amortized cost is

p0kr� + (pk � p0k) + �0 � � :

Assumption 4.1 implies thatOPTk will rise by exactly�. Becausepk decreases as a function of
OPTk, we can upper-bound this cost using an integral.Z y+�

y

�
pkr�

@pk

@OPTk

+
@�

@OPTk

�
dOPTk

We compute the integrand.

pkr �
@pk

@OPTk

+
@�

@OPTk

=

0
@ r

n
+

r

n

X
i6=k

(OPTi �OPTk)

1
A�

0
@ 1

n

X
i6=k

(�1)

1
A+

r

n

X
i6=k

(OPTk �OPTi)

=
r + n� 1

n

Thus the total cost is Z y+�

y

r + n� 1

n
dOPTk =

�

n
(r+ n� 1) ;

which isr + (n� 1) times the change in1
n

P
iOPTi of �

n
.

4.2Odd-Exponent 31

4.2 Odd-Exponent

Althoughr + (n � 1) is an interesting alternative to the(r + 1)Hn guarantee ofMarking, it falls short of
what we need. By adding a parametert to Linear in a peculiar way, it turns out that we get the best of both
worlds.

Before discussing the strategy, we first define theodd exponent function, notatedx[t] for anyx 2 R
andt � 0.

x[t] =

�
xt if x � 0

�(�x)t if x < 0

In our analysis, we use the relationship in the derivatives ofx[t] and jxjt (which we could term theeven
exponent function) for t > 1.

d

dx
jxjt = tx[t�1]

d

dx
x[t] = t jxjt�1

Note also that

x[t] + jxjt =

�
2xt if x > 0

0 if x � 0
(4.1)

x[t] + (�x)[t] = 0

Algorithm Odd-Exponent The strategy uses a parametert � 1. (Think t = O(logn).) We
allocate to regionj the probability

pj =
1

n
+

1

n

nX
i=1

(OPTi �OPTj)
[t] : (4.2)

Lemma 4.3 Odd-Exponent maintains legal probability distributions (
P

j pj = 1 and eachpj is
nonnegative).

Proof. It maintains
P

j pj = 1, since becausex[t] is an odd function,
P

j

P
i(OPTi�OPTj)

[t] =

0. Becausepj is a decreasing function of onlyOPTj among theOPT values, Assumption 4.1
implies that eachpj remains nonnegative. (Requests toi 6= j only increasepj . Say we receive a
request(j; �) that would makepj negative ifOPTj increased by�. Since the distribution (4.2) is
continuous, there is an�0 < � for which the algorithm setspj to zero. Assumption 4.1 implies that
we can use(j; �0) instead so thatpj becomes exactly zero.)

In the remainder of this section we analyze the strategy’sr-unfair competitive ratio and then its additive
part.

To analyze the performance we require a simple general lemma.

Lemma 4.4 Considern nonnegative realsx1; : : : ; xn and two numbers1 � s � t. If
P

i x
t
i � 1,

then
P

i x
s
i � n(t�s)=t.

This lemma, presented here without proof, is not difficult to understand. The value of
P

i x
s
i is maximum

when all the terms are equal.

Theorem 4.5 Ther-unfair competitive ratio ofOdd-Exponent is at mostr + 2n1=tt.

Remark. If we chooset to belnn, this ratio translates tor + 2e lnn.

32 A general-metricMTS algorithm

Proof. We use two potential functions�` and�m. The potential function�` amortizes thelocal
cost within each region.

�` =
r

2(t+ 1)n

X
i

X
j

jOPTi �OPTj jt+1

The other potential,�m, amortizes themovementcost between regions.

�m =
1

2n

X
i

X
j

jOPTi �OPTj jt

The potential� for the strategy is simply�` + �m.
Justified by Theorem 4.1 and Assumption 4.1, we assume that, for a request(k; �), OPTk

increases from some valuey to y + �. In this analysis the strategy competes against the average
OPT value, 1

n

P
iOPTi. So the off-line cost is�

n
.

Let pk andp0k represent the probability in regionk before and after the task vector, and let�`

(�m) and�0
` (�0

m) represent the local (movement) potential before and after the task vector. Then
the on-line strategy’s cost is

p0kr� + (pk � p0k) + �0
` + �0

m � �` � �m :

Becausepk decreases as a function ofOPTk, we can upper-bound this cost using an integral.Z y+�

y

�
pkr +

@�`

@OPTk

� @pk

@OPTk

+
@�m

@OPTk

�
dOPTk (4.3)

We examine the first two terms, representing the local cost, and the last two terms, representing the
movement cost, separately. In particular, we show that the amortized local cost is at mostr=n, while
the amortized movement cost is at most2n1=tt=n.

For the local cost, notice that, for anyj,

@�`

@OPTj

= � r
n

X
i

(OPTi �OPTj)
[t] = �

�
pj �

1

n

�
r :

Thus the local cost terms are equal tor=n.

pkr +
@�`

@OPTk
= pkr �

�
pk �

1

n

�
r =

r

n
: (4.4)

Analyzing the movement cost requires more work.

� @pk

@OPTk
+

@�m

@OPTk
=

t

n

X
i6=k
jOPTi �OPTkjt�1 +

t

n

X
i6=k

(OPTk �OPTi)
[t�1]

=
2t

n

X
OPTi<OPTk

(OPTk �OPTi)
t�1 (4.5)

The last step follows from equation (4.1). We would like to simplify the summation. Say thatOPTa

is currently the maximumOPT value. Observe using the probability allocation (4.2) that, sincepa
is not negative, the following holds.X

i6=a
(OPTa �OPTi)

t =
X
i6=a

(OPTa �OPTi)
[t] � 1 (4.6)

4.2Odd-Exponent 33

BecauseOPTa is maximum, each term of the summation is positive. Thus it follows from Lemma 4.4
that X

i6=a
(OPTa �OPTi)

t�1 � (n� 1)1=t < n1=t :

Using the definition ofa again we continue from equation (4.5) to finish approximating the move-
ment cost.

2t

n

X
OPTi<OPTk

(OPTk �OPTi)
t�1 � 2t

n

X
i6=a

(OPTa �OPTi)
t�1 <

2n1=tt

n
(4.7)

The estimates of the local cost (4.4) and movement cost (4.7) bound the total cost (4.3) byZ y+�

y

�
pkr+

@�`

@OPTk
� @pk

@OPTk
+

@�m

@OPTk

�
dOPTk

�
Z y+�

y

r + 2n1=tt

n
dOPTk

=
�

n
(r+ 2n1=tt)

The off-line cost (according to1
n

P
j OPTj) is �

n
, so the amortized competitive ratio isr + 2n1=tt

as desired.

To applyOdd-Exponent recursively on ak-HST, we must also bound the additive part for itsr-unfair
ratio. We see when we do this that we may want to choose a large value fort since it reduces the maximum
potential.

Lemma 4.6 The additive part to the ratio in Theorem 4.5 is bounded byr
t+1 + 2.

Proof. The additive part is the maximum change in potential from the beginning, plus1 because
the proof of Theorem 4.5 competes relative to1

n

P
iOPTi, which may be as much as1 away from

miniOPTi. First, we bound�`. Let a be the index of the maximumOPT value.

�` =
r

2(t+ 1)n

X
i

X
j

jOPTi �OPTj jt+1

=
r

(t+ 1)n

X
i

X
OPTj<OPTi

(OPTi �OPTj)
t+1

� r

(t+ 1)n

X
i

X
OPTj<OPTi

(OPTa �OPTj)
t+1

� r

t+ 1

X
j

(OPTa �OPTj)
t+1

� r

t+ 1

X
j

(OPTa �OPTj)
t (4.8)

� r

t+ 1
(4.9)

Inequality (4.8) follows because, sinceOPTa � OPTj + 1, each term of the summation is at
most one, so reducing the term’s exponent increases the term’s value. Inequality (4.9) comes from
equation (4.6).

34 A general-metricMTS algorithm

Bounding�m is similar. Again, leta be the index of the maximumOPT value.

�m =
1

2n

X
i

X
j

jOPTi �OPTj jt

=
1

n

X
i

X
OPTj<OPTi

(OPTi �OPTj)
t

� 1

n

X
i

X
OPTj<OPTi

(OPTa �OPTj)
t

�
X
j

(OPTa �OPTj)
t

� 1

Adding this to the bound for�` in equation (4.9) gives the total bound on the potential. To bound
the additive part, we add1 more because1n

P
iOPTi may differ fromminiOPTi by as much as

1.

4.3 Two-Region

Currently we have a technique (actually, two) for guaranteeing apoly(L; logn) ratio for HSTs, whereL is
the depth of the tree. It would be nice if we could guarantee thatL = polylog(n), and indeed for many
restricted sets of metric spaces we can; but such a guarantee for general metric spaces is impossible to
make. For example, if we lay points at1; 2; 4; : : : ; 2n�1 on an axis, the resultingh-HST must have depth

(logh 2

n). Thus, although we have made solid progress toward thepolylog(n) ratio, we need new ideas to
achieve it. These appear in the remainder of this chapter.

The main remaining idea is more of a convoluted hack than an elegant, final answer. The idea is simple:
A tree with more thanpolylog(n) levels must have nodes whose subtrees are very unbalanced — one subtree
has many more leaves than any of the others. Or, since competitive ratios are strongly tied to the tree size,
we can reword it in the jargon of unfairness: We want to handle the case where the cost ratios are different
for different points in the space. (We have until now always assumed they are equal for all points.)

Having different cost ratios for different points appears to be a complex issue. But there is one par-
ticularly simple case that we can tackle: the case of having only two points with separate cost ratios. We
can utilize this in building a strategy for the HST: Where the subtrees are all roughly the same size, we can
still useOdd-Exponent profitably; but where one is much larger, we can combine all but the largest using
Odd-Exponent and then applyTwo-Region to combine this combination with the largest subtree.

We first look at the unusual two-point unfair scenario and presentTwo-Region as our algorithm. In this
problem, one point has unfairnessr1 while the other has unfairnessr2. Blumet al.consider this scenario, but
their analysis does not have to worry about the additive constant [BKRS92]. Seiden [Sei99] independently
develops the same algorithm.

Algorithm Two-Region ([BKRS92, Sei99]) Without loss of generality, sayr1 > r2. Let �
representer1�r2 , and definep1(y) as follows.

p1(y) =
� � �

1

2
+ y

2

� � 1
(4.10)

After computing the work functionOPT, we placep1(OPT1 � OPT2) probability in the first
region and the rest in the second.

4.4 Building thepolylog(n) algorithm 35

While the strategy is hardly intuitive, the analysis will make the reason for the selection clear.

Theorem 4.7 The competitive ratio ofTwo-Region is

r1 +
r1 � r2

er1�r2 � 1

The additive part is at mostr2 + 2.

Proof. Becausep1(1) = 0 andp1(�1) = 1, this algorithm does not have the problem of allocating
nonnegative probability to a pinned state.

What we will show is that for a given potential�, for any taskt, the cost toTwo-Region is
bounded by

costTwo�Region +
�
�
t ��t�1� � �r1 + r1 � r2

� � 1

��
OPT

t
1 �OPTt�1

1

�
:

This means that to achieve the ratio, the potential must entirely absorb the cost any time the second
state incurs some cost. We define the potential, therefore, as

�(y) = (1� p1(y)) + r2

Z y

�1
(1� p1(y)) dy ;

and the potential�t as�(OPTt
1 � OPTt

2). This potential completely absorbs all increases to
OPT2.

Let us consider a request that increasesOPT1 from z to z + �. The strategy’s amortized cost
for this request is at mostZ z+�

z

�
p1(y)r1 �

dp1

dy
+
d�

dy

�
dy �

Z z+�

z

�
p1(y)r1� 2

dp1

dy
+ (1� p1(y))r2

�
dy

(The integral approximates the cost becausep1 is a decreasing function.) By setting this to a constant
we obtain a first-order differential equation inp1, which can be solved with the boundary conditions
p1(1) = 0 andp1(�1) = 1. The solution is as in equation (4.10). It is easy to verify that this results
in a constant integrand.Z z+�

z

�
p1(y)r1 � 2

dp1

dy
+ (1� p1(y))r2

�
dy =

Z z+�

z

�
r1 +

r1 � r2

� � 1

�
dy

=

�
r1 +

r1 � r2

� � 1

�
�

Since the off-line player pays�, the competitive ratio for the strategy is as advertised.
To bound the additive part, we note how widely the potential can vary. Because alwaysy � �1,

the potential is always nonnegative. The potential is largest wheny = 1. In this case the first term
is 1 and (using some straightforward calculus) the second term is at mostr2. Thus the potential is
at mostr2 + 1. SinceOPT1 differs from the optimal cost by at most1, the additive part is at most
r2 + 2.

4.4 Building the polylog(n) algorithm

As in Theorem 2.7, we build our algorithm for the HST inductively. In building the algorithm, we modify
the HST so that the distance between any two points does not decrease but may increase to twice the initial
distance. This costs us only a factor of2 in the overall ratio.

36 A general-metricMTS algorithm

Theorem 4.8 For anh-HST withh � 8000 ln2 n, we can modify the HST so that distances at most
double and for the modification we have an on-line MTS algorithm with a competitive ratio of at
most1000 ln2 n with an additive2000D ln2 n, whereD is the diameter of the modified tree.

Remark. The following proof draws heavily on the technical details already discussed in Theo-
rem 2.7. Understanding that proof is essential to understanding the following.

To avoid complications, this theorem employs intentionally generous constants.

Proof. We prove this inductively on the tree, with the base case being the trivial single-node tree. For
the induction step, we letri be the ratio for subtreei, with the subtrees ordered sor1 � � � � � rb. We
defineni as the number of points in subtreei. Finally,n is the total number of points in all subtrees.

The induction step has two cases, depending on whetherr1 is below1000 ln2 n � 50 lnn (in
which case the subtrees are balanced enough to simply applyOdd-Exponent) or above (in which
case the subtrees are very unbalanced) .

Case 1. If r1 < 1000 ln2 n � 50 lnn, then our strategy is to first mutate the tree by doubling the
distances from the root node to the points. We applyOdd-Exponent to combine the subtrees using
t = lnn.

To bound the competitive ratio, we observe that for an arbitrary action sequencev, implying an
action sequencevb for moving between subtrees, the off-line cost is at least

local(TA;vb) +

�
D � D

h

�
move(vb) = local(TA;vb) + �Dmove(vb) ;

where we define� as1� 1
h
. Meanwhile, given the action sequencevA used by the on-line algorithm,

the expected cost is at most

�
1000 ln2 n� 50 lnn

�
local(TA;vA) +

�
D + 2000

D

h
ln2 n

�
move(vA) + 2000

D

h
ln2 n

�
�
1000 ln2 n � 50 lnn

�
local(TA;vA) +

5D

4
move(vA) +

D

4
:

We can useOdd-Exponent’s unfair competitive ratio to bound the on-line cost in expectation over
Odd-Exponent’s random choices.

E

��
1000 ln2 n� 50 lnn

�
local(TA;vA) +

5D

4
move(vA) +

D

4

�

=
5D

4
E

��
800� ln2 n � 40� ln n

�
local

�
1

�D
TA;vA

�
+move(vA)

�
+
D

4

� 5D

4

��
800� ln2 n� 40� lnn + 5:5 lnn

��
local

�
1

�D
TA;vb

�
+move(vb)

�

+
800� ln2 n� 40� ln n

ln n+ 1
+ 2

�
+
D

4

�
�
1000 ln2 n

�
(local(TA;vb) + �Dmove(vb)) + 1000�D lnn +

D

4

Thus we have satisfied our inductive hypothesis.

4.4 Building thepolylog(n) algorithm 37

�
�
A
A
1 �

�
A
A
2 � � �

�
�
A
A
b

�
�
�
�

Z
Z

Z
Z
D

�
�
A
A
1 �

�
A
A
2 � � �

�
�
A
A
b

�
�
�
�
�
�
�
��

A
A
A
A
A

J
J
JJ
z

y

D

2D

HH

��

Figure 4.1: Transformation for Case 2 of Theorem 4.8.

Case 2. If r1 � 1000 ln2 n � 50 lnn, then our strategy is to first mutate the tree by splitting the
root node into two nodesy andz, where subtrees2 throughb are subtrees ofz, while the subtrees of
y are subtree1 and the tree rooted atz. (Figure 4.1 illustrates this.) The distances in the tree rooted
atz remain the same, buty is lifted so that its distance from the leaves doubles. Atz, the ratio of the
largest subtree’s diameter to the overall tree’s diameter is at mosth

2 (since we doubled the diameter
of the subtrees in the inductive step); aty, this ratio is2.

Our algorithm is to useOdd-Exponent to combine the subtrees ofz (choosingt = 2 lnn),
and to useTwo-Region to combine the subtrees ofy. To analyze the competitive ratio, we first
analyze the tree rooted atz and then the tree rooted aty. We assignx so thatn1 = (1� 1

x
)n; since

r1 � 1000 ln2 n� 50 lnn andr1 � 1000 ln2 n1, we can deduce that40 � x � n.
For the tree rooted atz, we observe that for an arbitrary action sequencev, implying an action

sequencevb for moving between subtrees, the off-line cost is at least

local(TA;vb) +

�
D � 2D

h

�
move(vb) = local(TA;vb) + �Dmove(vb) ;

where we define� as1� 2
h
. Meanwhile, given the action sequencevA used by the on-line algorithm,

the expected cost is at most

�
1000 ln2

n

x

�
local(TA;vA) +

�
D + 2000

2D

h
ln2

n

x

�
move(vA) + 2000

2D

h
ln2

n

x

�
�
1000 ln2

n

x

�
local(TA;vA) +

3D

2
move(vA) +

D

2
:

We can useOdd-Exponent’s unfair competitive ratio to bound the on-line cost in expectation over
Odd-Exponent’s random choices.

E

��
1000 ln2

n

x

�
local(TA;vA) +

3D

2
move(vA) +

D

2

�

=
3D

2
E

��
2000�

3
ln2

n

x

�
local

�
1

�D
TA;vA

�
+move(vA)

�
+
D

2

� 3D

2

 �
2000�

3
ln2

n

x
+ 6:6 lnn

��
local

�
1

�D
TA;vb

�
+move(vb)

�
+

2000� ln2 n
x

6 lnn
+ 2

!
+
D

2

�
�
1000 ln2

n

x
+

10

�
lnn

�
(local(TA;vb) + �Dmove(vb)) + 500�D lnn +

7

2
D

Thus the competitive ratiorz for the tree rooted atz is at most1000 ln2 n
x +

10
� lnn, with an additive

part of at most500�D lnn + 7
2D.

38 A general-metricMTS algorithm

For an arbitrary action sequencev, implying an action sequencevb moving between the two
subtrees ofy, the off-line cost is at least

local(TA;vb) +
D

2
move(vb) :

For the on-line algorithm, given that it uses the action sequencevA, the expected cost is at most

r1local1(TA;vA) + rz local2(TA;vA) +

�
D +

1

2

�
500�D ln n+

7

2
D + 500

D

h
ln2 n

��
move(vA)

+ 500�D ln n+
7

2
D + 500

D

h
ln2 n

� r1local1(TA;vA) + rzlocal2(TA;vA) +

�
250D ln n+

11

4
D

�
move(vA) + 500D ln n+

7

2
D :

Here local1(TA;vA) represents the total cost incurred at point1 with the task sequenceTA using
the action sequencevA. (The peculiar movement cost comes from the fact that half of the move-
ments involve the additive cost of500D

h
ln2 n and half involve the additive cost500�D ln n+ 11

4 D.)
We can find the expectation overTwo-Region’s selection ofvA by using the competitive ratio of
Two-Region. In the following, we let� represent250 lnn+ 11

4 .

E

�
r1local1(TA;vA) + rzlocal2(TA;vA) + �Dmove(vA) + 500D ln n+

7

2
D

�

= �DE

�
r1

2�
local1

�
2

D
TA;vA

�
+

rz

2�
local2

�
2

D
TA;vA

�
+move(vA)

�
+ 500D ln n+

7

2
D

� �D

��
r1

2�
+

r1
2� � rz

2�

e
r1
2�
� rz

2� � 1

��
local1

�
2

D
TA;vA

�
+ local2

�
2

D
TA;vA

�
+move(vA)

�
+
�
2
rz

2�
+ 1
��

+ 500D ln n+
7

2
D

=

r1 +

r1 � rz

e
r1�rz
2� � 1

!�
local1(TA;vA) + local2(TA;vA) +

D

2
move(vA)

�

+ (rzD + �D) + 500D ln n+ 2D

Thus our computed competitive ratio isr1 + (r1 � rz)=(e
(r1�rz)=2� � 1). We want to bound this

by 1000 ln2 n. To do this, we first boundr1 � rz from below (sincex=(ex=2� � 1) decreases asx
increases beyond2�).

r1 � rz � (1000 ln2 n� 50 lnn)�
�
1000 ln2

n

x
+

10

�
ln n

�

= 2000 lnx lnn � 1000 ln2 x� 50 lnn� 10

�
lnn

� 900 ln x lnn

We use this to bound the ratio.

r1 +
r1 � rz

e
r1�rz

500 ln n+4 � 1
� 1000 ln2

��
1� 1

x

�
n

�
+

900 ln x lnn

e
900 ln x ln n
500 ln n+4 � 1

� 1000 ln2 n� 2000

x
lnn +

1000

x2
+

900 lnx lnn

e1:8 lnx � 1

� 1000 ln2 n

4.5 Extensions 39

Likewise, we can bound the additive part�
rz + 250 lnn+

11

4
+ 500 lnn+

7

2

�
D ;

which is less than2000D ln2 n.

4.5 Extensions

We can extend Theorem 4.8 in two ways: We can try usingShare instead ofOdd-Exponent, and we can
look at what happens in specific metric spaces.

An alternative algorithm

Theorem 4.8 did not rely on any specific properties ofOdd-Exponent. But if we were to applyShare
instead, the ratio would suffer due to the additive part:Share has an additiver, while Odd-Exponent has
an additiver=logn. Ther=logn additive part is necessary in Case 2 to get a manageable additive part for
the tree rooted atz.

When we adaptedShare to MTS (Theorem 3.5), we had a parameter
, and in fact the additive part was
r

 . Taking
 = logn, the unfair competitive ratio isr+ log2 n. So if we useShare in proving anO(log3 n)

bound on an
(log3 n)-HST, we can get a working theorem. The net result is anO(log7 n log logn) bound
for general metric spaces.

Alternative spaces

For many restricted sets of metric spaces, the bound improves by usingOdd-Exponent (or Share, with
a penalty due to the additive part) on Theorem 2.7. For example, if the metric between states comes
from the shortest-path metric on an unweighted graph on states, we know the depth of the HST must be
O(logh n), so we can get a ratio ofO(log2 n=log logn) on an
(logn)-HST. Since we can probabilistically
O(log2 n log logn)-approximate unweighted graphs by
(logn)-HSTs, we get a result ofO(log4 n) for
unweighted graphs.

We can do even better for HSTs that are “roughly balanced” in the sense that, at any node withb subtrees
covering a total ofn nodes, the largest subtree contains1:4n

b
nodes. In this case, we can use the inductive

hypothesis that the ratio is4e lnn: The largest subtree has a ratior of at most4e ln 1:4n
b
, and soOdd-

Exponent combining theb subtrees has ratior + 2e ln b � 4e lnn. The additive part isO(logn), so we
require an
(logn)-HST for this to work.

This “roughly balanced” property arises in mesh spaces, like a line space: We canO(log2 n=log logn)-
approximate such a space with roughly balanced
(logn)-HSTs [Bar96]. Thus for mesh spaces, we get a
ratio ofO(log3 n=log logn).

40 A general-metricMTS algorithm

Chapter 5

Combining on-line algorithms

Now we switch away from the general-metricMTS problem; instead we pick up on the theme of Sec-
tion 3.4 and extend the application ofExperts algorithms to competitive analysis. Ineach of Chapters 5,
6, and 7, we extend the result in a different way; in this chapter, we examine applications to the problem of
combining on-line algorithms on-line.

Problem Combine-Online Given are a variety of on-line algorithmsA1; A2; : : : ; An, each in-
curring losses during each time step. At all times, our on-line algorithm chooses to follow one of
these algorithms, incurring that algorithm’s losses, but between time steps the on-line algorithm may
choose to switch between algorithms at aswitching costof d. Our hope is that on any sequence the
algorithm will not do too much worse than the best of theAi for that sequence.

Example 5.1Say we have a variety of paging algorithms likeLRU, Marking, andMRU. On any se-
quence of page requests, we want to do about as well as the best among them in hindsight. One way
of doing this is to follow algorithms’ internal caches, allowing the on-line algorithm to switch be-
tween caches. The cost to switch between caches is at most the size of the cache (usually represented
by k).

This problem is similar to one arising in Azar, Broder, and Manasse, with the difference that they do
not incorporate a fixed switching costd [ABM93]. Instead, in their problem, when theCombine-Online
algorithm switches from one algorithmAi to anotherAj , the algorithm may pay as much as the total cost
paid so far byAi and byAj . This is because they are primarily concerned with combining algorithms for
thek-server problem, where the algorithms are moving within an unbounded metric space, and so in moving
between algorithms theCombine-Online algorithm may have to move all the way back to the initial point
of the space (which is at most the total cost paid byAi) and then to the point currently occupied byAj . The
guarantee they achieve for this more difficult scenario is that their algorithm can guarantee it pays no more
thanO(logn) times the best of the on-line algorithms it is combining. (If the metric space has a bounded
diameterD, then we could alternatively apply the results of this chapter to the problem usingd = D.)

What we will see is that in our formulation, an algorithm (usingExperts algorithms) can do nearly as
well as the best single algorithm. In particular, if the best algorithmAk incurs a total cost ofL, then our
combination algorithm will pay at most(1 + ")L+ (1 + 1

"
)d logn.

Example 5.2Another application is to theList-Update problem [BM85, ST85a]. In this problem,
our algorithm maintains a listL overn elements. Each time step, the algorithms receives a request to

41

42 Combining on-line algorithms

one of then elements and pays1 for each step that must be made in the list to find the element. The
algorithm also pays1 each time it transposes two adjacent elements in the list, unless that transpose
moves the element of the current access forward in the list.

List-Update is a classical problem in competitive analysis.Move-To-Front is one of the sim-
plest algorithms: On each time step,Move-To-Front moves the just-accessed item to the head of the
list. This algorithm has a competitive ratio of2 � 2

n+1
[BM85, ST85a, Ira91]. Karp and Raghavan

show that no deterministic algorithm can guarantee less, even against a static adversary (who is not
allowed to alter the list ordering) (reported in [Ira91]).

The situation for randomized algorithms is less certain. The best-known algorithm isComb,
with a competitive ratio of 1.6 against dynamic adversaries [AvSW95]. No algorithm can achieve a
ratio of less than1:5� 5

n+5 [Tei93]. For static adversaries, no lower bound for randomized algorithms
is known, nor is there a better bound than that forComb.

By demonstrating a (massively inefficient) algorithm, the results of this chapter imply that no
such lower bound is possible for static adversaries. We can have an algorithm for each of then!

possible lists; the algorithm for listL statically keepsL as its list. The switching cost between
algorithms is at most

�
n
2

�
. From this, we get a ratio of(1 + ") for any fixed". (This algorithm,

as stated, is extraordinarily impractical. We are taking advantage of the fact that the on-line model
does not count the time spent deciding which item to move. A simpler and more efficient algorithm
achieving a similar guarantee would be an interesting result.)

This observation extends naturally to theDynamic-Tree problem, where the on-line algorithm
is permitted to rearrange a binary search tree by rotations along the path to theaccessed node.
Sleator and Tarjan demonstrate that theirSplay-Tree algorithm isO(1)-competitive against a static
adversary [ST85b]. But by having a separate algorithm for each possible tree, the results of this
chapter demonstrate that one can in fact be(1 + ")-competitive if we do not count the time spent
deciding how to rearrange the tree. (ForDynamic-Tree against dynamic adversaries, the lowest
known bound isO(logn); for example, a static balanced tree achieves the bounddlgne.)

5.1 Simulating all algorithms

If our on-line algorithm can afford to simulate alln algorithms, then we can applyHedge in the straight-
forward way: We follow the probabilities thatHedge uses. When we get an event and see how the different
algorithms will process it, we give those same losses to the algorithms’ corresponding experts forHedge.
We then change our probability distributionaccording toHedge, moving to a new algorithm asHedge
directs.

Theorem 5.1 Say that the best algorithm has a total loss ofL. Then the loss ofHedge is at most

E[lossHedge] �
1 + d ln 1=�

1� �

��
ln

1

�

�
L+ lnn

�
:

Remark. Say we choose� = 1 � "
d

for some" > 0. Then the above bound translates to
approximately(1+ ")L+(1+ 1

"
)d lnn. That is, we are(1+ ")-competitive with respect to the best

on-line algorithm.

Proof. Say algorithmAk is the best algorithm. We consider separately the local cost (that is, the
amount spent by our on-line algorithm due to the algorithm it currently occupies) and the switching
cost incurred by our on-line algorithm. Theorem 3.2 shows that the local cost satisfies

E[lossHedge] �
1

1� �

��
ln

1

�

�
L+ lnn

�
:

5.2 Running only one algorithm 43

(In fact, we get one-step lookahead; this only decreases the algorithm’s cost.)
We now show that the movement cost is at mostd ln 1

�
times the local cost. At stept, we expect

to payd
P

i:pt�1

i >pti
(pt�1i � pti) for movement, wherepi is the probability the on-line algorithm is

following algorithmi at time stept.

d
X

i:pt�1

i
>pt

i

(pt�1i � pti) = d
X

i:pt�1

i
>pt

i

w
t�1
i

Wt�1 �
w
t�1
i �`

t
i

Wt

!

� d
X

i:pt�1

i >pti

w
t�1
i

Wt�1 �
w
t�1
i �`

t
i

Wt�1

!

� d
X
i

w
t�1
i

Wt�1 �
w
t�1
i �`

t
i

Wt�1

!

= d
X
i

w
t�1
i

Wt�1
�
1� �`

t
i

�

� d
X
i

p
t�1
i

�
`ti ln

1

�

�

Since
P

i p
t�1
i `ti is the expected local cost, we have achieved our goal.

5.2 Running only one algorithm

The problem becomes more intricate when we can run only one of then algorithms at a time. Such may be
the case, for example, if we are combining several paging algorithms but the system cannot afford the time
required to simulate all of the algorithms in order to maintain their losses.

This is a version of theBandits problem studied by Auer, Cesa-Bianchi, Freund, and Schapire [ACBFS95,
ACBFS98]. Bandits is a variant ofExperts, where each time step the algorithm can see the loss of only
the expert chosen. (The problem’s name derives from slot machines.) Aueret al. show that, by mixing
the Hedge distribution appropriately with the uniform distribution, they can guarantee a loss of at most
O(
p
Tn log n) more than the best expert’s loss, whereT is the number of time steps.

To mesh better with the phrasing of Aueret al.’s, we consider the scenario where each time step every
expert incurs areward in [0,1], and we wish to maximize ourgain. Our scenario adds to theirs the concept
of a switching costd, which works as follows: In time roundt, experti has atrue gainxtj in [0; 1], but the
gain the algorithm actually sees is an approximation to this called theobserved gainextj (also in[0; 1]). The
true gain and the observed gain are related in that, if the algorithm remains at a single expert fromt0 to t1,
then the total observed gain

Pt1
t=t0

extj is at mostd less than the total actual gain
Pt1

t=t0
x
t
j . (This somewhat

convoluted way of incorporating the switching cost comes from the paging case in Example 5.1. When we
switch from one algorithm to another, we do not know the actual cost incurred by the new algorithm, since
we have not kept track of where it is. Our model assumes that all the algorithms have the property that,
regardless of the request sequence, the initialcache cannot affect the total cost by more thand.)

This switching cost removes the luxury (which Aueret al. enjoy) of choosing an expert independently
each time round, because switching as often as this implies is quite expensive. One possible solution to
this problem, which we pursue, is to divide time into segments ofs steps. (We chooses later.) We choose
independently from the distribution at the beginning of each time segment, and we stay there for the duration
of the segment. Behaving in this way is equivalent to running Aueret al.’s algorithm forT

s
time steps, where

in each step an expert’s maximum loss is at mosts, rather than only1.

44 Combining on-line algorithms

Algorithm Hedge-Bandit The algorithm has two parameters,s and�. For each time segment of
s steps, the algorithm does the following.

1. We choose one expertit for the time segmentt (time stepsts through(t+ 1)s) based on the
probabilities

p
t�1
j = (1�
)bpt�1j +

n
;

wherebpt�1 is the probability distribution used byHedge.

2. We observe the gainext
it

for the segment. (Forj 6= it, we takeextj to be0.)

3. We letbxtj = extj=pt�1j , and give this vectorbxt to Hedge in order to computebpt for the next
time segment.

Analyzing this algorithm requires the following theorem of Aueret al. generalizing the bound on
Hedge’s performance (Theorem 3.2) to the case when an expert’s gain may be as much asM per time
step.

Theorem 5.2 If each of a set ofn experts experiences a sequencexj of gains in[0;M], thenHedge
configured with� 2 (0; 1) has expected gain

P
t

P
j p

t
jx

t
j of at least

TX
t=1

x
t
k �

lnn

ln �
� �M � 1�M ln �

M2 ln �

TX
t=1

nX
j=1

p
t
j

�
x
t
j

�2
;

for all expertsk.

We use this in the following theorem bounding the performance ofHedge-Bandit.

Theorem 5.3 The expected gain ofHedge-Bandit is at least

G� (1�
)
T

s
d� 1�

sn lnn � (e� 1)
G ;

whereG is the largest total actual gain acquired by any single expert, and where� = e
=sn.

By choosing appropriate values for
 ands as described in the following corollary, we bound our gain
relative to the best of the algorithms.

Corollary 5.4 The expected gain ofHedge-Bandit is at least

G� 3:6
3
p
dnT 2 lnn ;

whereG is the largest total actual gain acquired by any single expert, if we choose the parameters

 = 0:7
3

r
dn lnn

T
; s = 0:8

3

r
Td2

n lnn
:

The proof of Theorem 5.3 closely follows the technique used by Aueret al. [ACBFS98].

Proof of Theorem 5.3. Let k be the expert acquiring the largest total actual gain. Becausep
t
j �

n

for any expertj in any time segmentt, the scaled observed gainbxtj = extj=ptj is at mostsn=
. So we

takeM to besn=
 (and recall� = e
=sn) in applying Theorem 5.2 for the following bound.

T=sX
t=1

nX
j=1

bptjbxtj �
T=sX
t=1

bxtk � lnn

ln �
� �M � 1�M ln �

M2 ln �

T=sX
t=1

nX
j=1

bptj �bxtj�2

=

T=sX
t=1

bxtk � sn lnn

� (e� 2)

sn

T=sX
t=1

nX
j=1

bptj �bxtj�2 (5.1)

5.2 Running only one algorithm 45

Now, becauseptj � (1�
)bptj, we can observe the following.

nX
j=1

bptjbxtj = bpt
it

ext
it

p
t
it

� ext
it

1�

nX
j=1

bptj �bxtj�2 = bpt
it

ext
it

p
t
it

bxt
it
� s

1�

bxt
it
=

s

1�

nX
j=1

bxtj
We use both of these facts, along with (5.1) and the relationship of the observed gainsex to the actual
gainsx, to bound the total gain,

PT=s
t=1 x

t
it

.

T=sX
t=1

x
t
it
�

T=sX
t=1

ext
it
� (1�
)

T=sX
t=1

nX
j=1

bptjbxtj
� (1�
)

T=sX
t=1

bxtk � 1�

sn lnn � (e� 2)(1�
)

sn

T=sX
t=1

nX
j=1

bptj �bxtj�2

� (1�
)

T=sX
t=1

bxtk � 1�

sn lnn � (e� 2)

n

T=sX
t=1

nX
j=1

bxtj (5.2)

To get the expected gainE
�P

t x
t
it

�
, we first observe thatE

hbxtji equalsE
h
x
t
j

i
:

E
�bxtj� = Ei1;::: ;it�1

�
Eit
�bxtj �� i1; : : : ; it�1 ��

= Ei1;::: ;it�1

"
Eit

"
p
t
j �
extj
p
t
j

+ (1� ptj) � 0
##

= Ei1;::: ;it�1

�
Eit

�extj�� = extj :
We continue from (5.2), using the fact that the observed gainextj is between the actual gainxtj and
x
t
j � d.

E

2
4T=sX
t=1

x
t
it

3
5 � (1�
)

T=sX
t=1

extk � 1�

sn ln n� (e� 2)

n

T=sX
t=1

nX
j=1

extj
� (1�
)

T=sX
t=1

(xtk � d)� 1�

sn ln n� (e� 2)

n

T=sX
t=1

nX
j=1

x
t
j

� (1�
)G� (1�
)
T

s
d� 1�

sn ln n� (e� 2)
G

46 Combining on-line algorithms

Chapter 6

Relating MTS and Experts

A second way of extending the results of Section 3.4 is to consider the converse question: How do
MTS algorithms perform on theExperts problem? Besides the academic and historic interest in such a
question, the work-function approach used in metrical task systems — a very different approach from the
multiplicative weight-updating technique studied forExperts up to now — may prove more useful in some
learning situations.

In this chapter, we first look at a generic theorem translating anyr-unfair MTS algorithm into anEx-
perts algorithm. Then we illustrate an analysis of one particularMTS-derived algorithm (Linear on two
points/experts) in theExperts problem. And finally we look at a small empirical comparison of how our
large set ofExperts/MTS algorithms performs on real data inspired by process migration.

6.1 General relation

As Section 3.4 illustrates, achieving an unfair competitive ratio for the uniformMTS problem is similar to
achieving a partitioning bound in theExperts setting. The parameterr allows us to trade off theLP andkP
coefficients, similarly to� in Thresh andShare.

Conversion from MTS to Experts

The following theorem makes the relationship formal.

Theorem 6.1 LetA be a randomized algorithm for theMTS problem on then-point uniform space
that, givenr, achieves anr-unfair competitive ratio of�n;r. Then this implies an algorithmA0 for
theExperts setting has expected loss at most

�n;r

r
LP + �n;rkP + b ;

for any partitionP , for some constantb that may depend onr andn (typically,b � r).

Remark. Note that if�n;r = r + log n and" = 1
r
logn, then this partitioning bound translates to

(1+")LP+(1+ 1
")kP logn, analogous to the bound thatThresh andShare achieve (Theorems 3.3

and 3.4).

47

48 RelatingMTS andExperts

Proof. At each time step, our algorithmA0 uses whatever distributionA currently has. When it
receives loss vector̀t, it gives a scaled version1

r
`t toA so thatA can modify its distribution forA0

to use in the next time step.
Consider any sequence of loss vectors` and any partitionP . Let pt represent the probability

vector on states thatA uses for thetth time step (and whichA0 uses for the(t + 1)st time step).
So, given a loss vector̀, A0 has expected losspt�1 � `t. ButA “believes” it is payingd(pt�1;pt)
for movement andpt � (1r `t) for processing. (Because we use anr-unfair ratio, in another senseA
believes it payspt � `t for processing while its adversary pays onlypt � (1

r
`t).)

We will show that the expected loss toA is at most

E[lossA] �
X
t

�
d(pt�1;pt) + pt � `t

�
= E

�
move(vA) + r local(1

r
`;vA)

�
: (6.1)

Once we have this, we can letv be the action sequence corresponding to partitionP . This sequence
remains at a single expert within each interval ofP , so thatmove(v) � kP andlocal(1

r
`;v) = 1

r
LP .

Continuing from (6.1), becauseA hasr-unfair ratio�, the expected loss is at most

�n;r
�
move(v) + local(1

r
`;v)

�
+ b � �n;r

�
kP +

1

r
LP

�
+ b ;

as the theorem states.
To show (6.1), consider a specific trial`t. The expected loss toA ispt�1 � `t. We bound this by

d(pt�1;pt) + pt � `t, and (6.1) follows.X
i

p
t�1
i `ti =

X
i

�
p
t�1
i � pti

�
`ti +

X
i

p
t
i`
t
i

�
X

i:pt�1

i >pti

�
p
t�1
i � pti

�
`ti +

X
i

p
t
i`
t
i

�
X

i:pt�1

i >pti

�
p
t�1
i � pti

�
+
X
i

p
t
i`
t
i

= d(pt�1;pt) + pt � `t

The next-to-last step follows because loss vectors are bounded by1.

Corollaries to our conversion

This theorem immediately results in newExperts algorithms with approaches very different from estab-
lished multiplicative-updatealgorithms likeThresh andShare. The first comes from applying Theorem 6.1
to our unfair analysis ofMarking (Theorem 2.5).

Corollary 6.2 For theExperts problem,Marking has a partitioning bound of at most

(1 + ")Hn LP +

�
1 +

1

"

�
Hn kP +Hn ;

where" = 1
r .

Because theLP coefficient here approachesHn, this bound is much worse than the bound provided by the
multiplicative-update algorithms (where theLP coefficient approaches1).

But if we instead use ourr-unfair analysis ofOdd-Exponent (Theorem 4.5), we get a bound comparable
to that ofThresh andShare.

6.2 Direct analysis ofLinear 49

Corollary 6.3 For theExperts problem, if we chooset = ln n, thenOdd-Exponent has a parti-
tioning bound of at most

(1 + ")LP +

�
1 +

1

"

�
2e lnn kP +

2e

"
+ 2 ;

where" = 2e
r
lnn.

This is very comparable to theShare bound; the difference is that thekP coefficient is about2e times what
Share achieves.

At least some of this2e factor is likely an artifact of our analysis. Based on thet = 1 case (Theorem 4.2),
we might suppose that the2n1=tt term of Theorem 4.5 is twice the possible guarantee. But also, using
Theorem 6.1 to convert theMTS unfair competitive ratio to anExperts partitioning bound can involve
some loss. This is illustrated by our direct analysis ofLinear on two experts.

6.2 Direct analysis ofLinear

Of course, we can analyze an algorithm directly in theExperts environment rather than use Theorem 6.1.
We illustrate this with theLinear algorithm on two experts.

To review: TheLinear algorithm on two points maintains the work functionOPT1 andOPT2 for the
two points and allocates probability

p1 =
1

2
+
OPT2 �OPT1

2

to the first point and the remainder to the second. That is,Linear moves probability linearly between experts,
so that an expert’s probability is zero when it is pinned. This strategy is optimal for the two-point unfair
MTS problem, achieving a ratio ofr + 1 (Theorem 4.2).

Before we analyzeLinear in theExperts problem, notice that if we use Theorem 6.1 on ther-unfair
analysis in Theorem 4.2, we get the following.

Corollary 6.4 For theExperts problem with two experts,Odd-Exponent has a partitioning bound
of at most

(1 + ")LP +

�
1 +

1

"

�
kP +

1

2"
+

1

2
;

where" = 1
r
.

We now analyzeLinear directly; this analysis effectively halves thekP coefficient.

Theorem 6.5 For theExperts problem, the partitioning bound ofLinear is at most

(1 + ")LP +

�
1 +

1

"

�
1

2
kP ;

where" = 1
2r , providedr is an integer.

Proof. Consider segmenti of the partition with lossLi. Assume without loss of generality that the
better expert for the segment is expert 1. (SoLi represents the total loss to expert 1 in the segment.)
Let � represent the fractional component ofOPT2 � OPT1 (that is,� = (OPT2 � OPT1) �
bOPT2 � OPT1c): (If we can assume the losses are always either0 or 1, then the proof can be

50 RelatingMTS andExperts

simplified by ignoring� (it is always0) and ignoring cases2 and4 below (which occur only when
p1 or p2 is 0).)

We will use a potential function over this segment of

� = rp22 +
1

2
p2 +

�(1� �)

4r
:

Notice that� is always between0 andr + 1
2 . (If OPT2 � OPT1 = �r + � for � 2 [0; 1], then

p2 = 1� �
2r

and so� = r + 1
2
� �.)

Say the algorithm receives loss vectorh`1; `2i. Our goal is to show that the algorithm’s cost plus
potential change is at most`1(1 + 1

2r
). If we know this, then the total cost for segmenti is at most

(1+ 1
2r)L

i plus the maximum potential change between segments,r+ 1
2 . Thus the total cost for the

partition is at most

kX
i=1

��
1 +

1

2r

�
L
i + r +

1

2

�
=

�
1 +

1

2r

�
LP +

�
r +

1

2

�
kP :

We can assume thath`1; `2i is 0 in one of its components for the following reason. Let^̀ =

minf`1; `2g and divide the vector into two pieces
D
^̀; ^̀
E

and
D
`1 � ^̀; `2 � ^̀

E
. On the first piece the

algorithm’s cost iŝ̀ with no effect on probability or potential; and on the second the cost is (as we
will show) at most(`1� ^̀)(1+ 1

2r). So for both pieces the total cost plus potential change is at most
^̀+ (`1 � ^̀)(1 + 1

2r) � `1(1 +
1
2r). We split the remaining possibilities into four cases.

Case 1:The vector ish`; 0i andOPT2 � OPT1 � �r + `. ThenOPT2 �OPT1 increases by
` and sop1 loses̀ =2r probability top2. Notice that the last term of the potential function increases
most when� is initially 0. The amortized cost, then, is

p1` +�� � p1`+
�
p2`+

`2

4r +
`
4r +

`(1�`)
4r

�
= `

�
1 + 1

2r

�
:

Case 2:The vector ish`; 0i and for some~̀2 [0; `) we haveOPT2 � OPT1 = �r + ~̀. Thenp2
increases from1� ~̀=2r to 1, and� drops from~̀ to 0. The amortized cost is

p1`+�� =
~̀

2r`+
�
~̀� ~̀2

4r +
~̀

4r �
~̀(1�~̀)
4r

�
� `

�
1 + 1

2r

�
:

Case 3:The vector ish0; `i andOPT2 � OPT1 � r � `. Thenp2 loses`=2r probability top1.
The last term of the potential function increases by at most`(1� `)=4r. The amortized cost is

p2`+�� � p2`+
�
�p2`+ `2

4r � `
4r +

`(1�`)
4r

�
= 0 :

Case 4:The vector ish0; `i and for some~̀ 2 [0; `) we haveOPT2 � OPT1 = r � ~̀. Thenp2
drops from~̀=2r to 0, and, becauser is integral,� drops from1� ~̀ to 0. The amortized cost is

p2`+ �� =
~̀

2r `+
�
� ~̀2

4r �
~̀

4r �
(1�~̀)~̀

4r

�
� 0 :

In all cases, the algorithm’s cost is at most`1(1 +
1
2r).

6.3 Process migration experiments 51

6.3 Process migration experiments

We now examine some brief experimental results comparing several algorithms, includingmanyExperts/MTS
algorithms, on data representing a process migration problem. Process migration has aspects of both the
MTS problem and theExperts settings. There is a cost to move between machines, but there is also zero
lookahead.

For process migration data, we collected load averages collected from 112 machines around the CMU
campus. We queried each machine every five minutes for 6.5 days. From these machines, we selected 32
that were busy enough to be interesting for this analysis.

Each five-minute interval corresponds to a trial with loss vector`t. For machinei, we set̀ t
i = 1 if the

machine had a large load average (more than 0.5), and`ti = 0 if it had a small load average. The intent of this
is to model the decision faced by a “user-friendly” background process that suspends its work if someone
else is using the same machine.

We took the distance between the machines to be 0.1, indicating that 30 seconds of computation would
be lost for movement between machines. In research process migration systems, the time for a process to
move is roughly proportional to its size. For a 100-KB process, the time is about a second [Esk90]. Our
distance corresponds to large but reasonable memory usage.

Our simulations compared the performance of nine algorithms, including four simple control algorithms:

Uniform The algorithm picks a random machine and stays there for all trials.

Greedy After each trial the algorithm moves to the machine that incurred the least loss in that trial (with
ties broken randomly).

Least-Used After each trial the algorithm moves to the machine that has incurred the least total loss so
far.

Recent The algorithm moves to the machine that has incurred the least loss over the lastk trials.

We implementedWork-Function, Marking, Odd-Exponent (with t = 3), Thresh, andShare. (Efficiently
implementingOdd-Exponent to compensate for Assumption 4.1 is a challenge; we discuss this at the end
of this section.

Because these algorithms have tunable parameters, we divided the data into a training set and a test
set,936 trials each. We optimized parameters on the training set and report the performance with these
parameters on the test set. We also present the performance of each algorithm with a “naive” parameter
setting, to give a sense of the dependence of the behavior of the algorithm on the tuning of its parameters.

For each algorithm we determined the expected loss for the probability vectors they calculated. One valid
criticism of using probabilistic algorithms in practice is the variance between runs; so we also calculated the
standard deviation over 200 trials of each algorithm. To get a feel of how each algorithm behaves, we finally
computed the expected number of moves.

This data is summarized in Table 6.1 where costs are given relative to the optimal off-line sequence,
which suffered a loss of3:8 and moved8 times in the test sequence.

We also tried an inter-machine distance of 1.0. Table 6.2 summarizes these results. For an inter-machine
distance of 1.0, the optimal off-line sequence suffered a loss of11 and moved6 times during the936 trials.
(As one would expect, the loss is higher but there are fewer movements.)

Comparing these algorithms to the simpler control algorithms indicates that their added sophistication
does indeed help. The numbers seem to indicate that theMTS-based algorithms are less sensitive to pa-
rameter settings. The specific experiments summarized here show that theMTS algorithms performing
somewhat better; if the parameters are set based on thetestdata, this difference decreases.

52 RelatingMTS andExperts

parameter cost std expected naive cost
algorithm setting ratio dev moves setting ratio
Uniform 206.69 29.03 0.00
Greedy 55.11 4.33 265.34
Least-Used 117.71 0.00 5.00
Recent k : 6 17.92 0.00 103.00 k : 5 24.37
Work-Function r : 1:0 5.66 0.00 17.00 r : 1:0 5.66
Marking r : 1:0 5.97 0.72 20.54 r : 1:0 5.97
Odd-Exponent t : 3; r : 10:0 5.96 0.79 15.84 t : 3; r : 1:0 6.05
Thresh � : 9:5� 10�6; � : 10�4 7.16 0.66 14.53 � : 0:5; � : 0:01 20.89
Share � : 5:2� 10�7; � : 10�8 6.55 0.63 14.58 � : 0:5; � : 0:01 19.44

Table 6.1: Performance relative to optimal off-line sequence (d = 0:1) on process migration data.

parameter cost std expected naive cost
algorithm setting ratio dev moves setting ratio
Uniform 71.40 10.90 0.00
Greedy 40.75 2.91 265.34
Least-Used 41.07 0.00 5.00
Recent k : 11 6.62 0.00 41.00 k : 5 19.71
Work-Function r : 1:0 3.34 0.00 13.00 r : 1:0 3.34
Marking r : 0:4 3.74 0.40 20.54 r : 1:0 4.27
Odd-Exponent t : 3; r : 1:0 3.36 0.51 15.84 t : 3; r : 1:0 3.36
Thresh � : 0:027; � : 10�8 5.52 0.34 10.66 � : 0:5; � : 0:01 8.20
Share � : 0:044; � : 10�8 5.59 0.39 11.56 � : 0:5; � : 0:01 7.68

Table 6.2: Performance relative to optimal off-line sequence (d = 1:0) on process migration data.

algorithm competitive ratio partitioning bound

Two-Region (n = 2) r + 1 (Th 4.2) (1 + ")LP +
�
1 + 1

"

�
1
2kP (Th 6.5)

Marking (r + 1)Hn (Th 2.5) (1 + ")HnLP +
�
1 + 1

"

�
Hn kP (Cor 6.2)

Odd-Exponent r + 2e lnn (Th 4.5) (1 + ")LP +
�
1 + 1

"

�
2e lnn kP (Cor 6.3)

Thresh unbounded
�

ln(1=�)
(1��)(1��)

�
LP +

�
ln(n=��)

(1��)(1��)
�
kP (Th 3.3)

Share r + 6:4 ln (n(r + 1)) + 4 (Th 3.5)
�

ln(1=�)
(1��)(1��)

�
LP +

�
ln(n=�)

(1��)(1��)
�
kP (Th 3.4)

Table 6.3: Summary of theoretical results.

6.3 Process migration experiments 53

The numbers indicate thatWork-Function slightly outperforms the randomized algorithms, despite its
worse theoretical guarantee. This is not too surprising because a randomized algorithm is essentially using
its probability distribution to hedge its bets, placing probability on states that do not necessarily appear
optimal. This is somewhat analogous to a stock market, in which the main reason to diversify is to minimize
the downside risk more than to maximize expected gain. In these experiments, all the algorithms performed
better than their worst-case guarantees. In practice,Odd-Exponent follows Work-Function very closely,
although it smooths the transitions between states.

Implementing Odd-Exponent

In an implementation ofOdd-Exponent, usingOPT values strictly as defined introduces a problem: The
algorithm could allocate negative probability to an expert. (Consider the case where expert1 hasOPT1 = r

while the rest are at zero.) The analysis of Theorem 4.8 skirts the issue by assuming Assumption 4.1.
If we wish to implementOdd-Exponent, we must confront the possibility that tasks observed will not

obey this condition. We can address this by using a modification of the work function,̂OPT, in computing

the probability distribution of the strategy. ThiŝOPT is computed as follows. Say the strategy receives a

loss vector̀ . We will changeÔPTi to become, notminfÔPTi + `i;minj ÔPTj + `j + rg as for the

work function, butminfÔPTi+`i; xg, wherex is the greatest value such that no probabilities are negative.
(In an implementation one can computex by considering the function returning the minimum probability
for a givenx and using numerical techniques to find where this function reaches zero.) This avoids negative
probabilities because each probability that would have become negative with the unmodified work function
becomes zero instead.

This modification maintains the same competitive ratio because we can think of it as dividing each cost

vector into two pieces,~̀and`� ~̀, where~̀= ÔPT
t+1
� ÔPT

t
. For ~̀, the algorithm is competitive with

respect to the off-line player’s cost on~̀ (which itself is less than the off-line player’s cost on`). For `� ~̀,

the algorithm will pay nothing, since the vector is nonzero only at states wherêOPT = x, and these states
have no probability.

54 RelatingMTS andExperts

Chapter 7

The unfair paging problem

One of the strands running beneath this thesis is the usefulness of the notion ofunfairnessin on-line anal-
ysis. This is most apparent in our development of apolylog(n) MTS algorithm, but the machine-learning
notion of a partitioning bound (in the related but differentExperts problem) is also actually a question of
unfairness. What unfairness allows us to do is to build more sophisticated bounds than a straight competi-
tive ratio allows, essentially by parameterizing the relative importance of different costs. This prevents an
algorithm from ignoring one part of the costs. For example, standard algorithms for theMTS algorithm can
be sloppy with local costs as long as they are only a constant factor more than the movement cost. Adding
unfairness to the model forces us to be careful with both aspects.

One can naturally ask if this advantage can be extended to other problems. In this chapter, we see that it
can, in particular to thePaging problem.

Problem Paging An on-line algorithm controls a cache ofk pages and sees a sequence of memory
requests�1;�2; : : : . When an item outside the current cache is requested, the algorithm incurs a
page fault and must load the requested page into the cache, evicting some other page of its choice.
The goal of the algorithm is to minimize the number of page faults.

Fiat et al. describeMarking, a randomized algorithm forPaging (similar to the eponymousMTS
algorithm by Borodin, Linial, and Saks), with a competitive ratio ofO(log k) [FKL+91, BLS92]. (Fiatet al.
also show that everyPaging algorithm must have a competitive ratio of at least
(logn).)

Algorithm Marking ([FKL +91]) For each of thek cache locations, we have space for a mark,
initially empty. When a page in thecache is requested, we mark its location. When a page outside
the cache is requested, we pick a random unmarked location, eject its page, and mark the location.
If all locations are marked, we clear the marks and begin a new phase.

Theorem 7.1 ([FKL+91]) Marking has a competitive ratio of2Hk for Paging.

How to incorporate unfairness intoPaging is not obvious. Our approach is the following: Suppose that
on a page fault, theoff-linealgorithm is allowed the additional power to “rent” the requested page at a cost
of only 1

r
(think of r = log k), compared with the cost of 1 for actually loading the page into the cache.

Renting means that the memory request is serviced but the requested page isnotbrought into the cache and
the off-line cache isnotmodified. So, for instance, if the off-line algorithm rents a page and then the same
page is requested again, the off-line algorithm incurs another page fault. Theon-linealgorithm has no such

55

56 The unfair paging problem

privilege. (Technically, it is convenient to allow the on-line algorithm to rent for a cost of 1; at best, this
helps the on-line algorithm by a factor of two.) The question we examine is, what competitive ratio can be
achieved in this scenario? This question can be thought of as the unfair version ofPaging, because we have
split the cost into renting and loading, with the off-line algorithm having an unfair advantage on renting.

For this harder unfair problem, no algorithm can achieve anr-unfair competitive ratio less thanr (con-
sider a sequence where each request is to a new page), nor can any algorithm achieve a competitive ratio
less thanO(log k). Marking achieves competitive ratioO(r log k). We consider the question of whether
one can achieve ratioO(r+ log k). The main result of this paper is that we can, usingHedge together with
a notion of phases similar toMarking.

7.1 Motivation

Because the problem stated above is not obviously self-motivating, we begin by presenting two motivations,
one from paging and another from thek-server problem.

Finely-competitive paging Request sequences in practice often consist of a core working set of frequently
requested pages, together with occasional assorted memory requests, where this working set slowly changes
over time. Suppose that, in hindsight, the request sequence can be partitioned into time periods containing
working setsW1;W2; : : : ;Wm respectively, where within each time period the number of requests to
pagesoutsidethe current working set iso1; o2; : : : ; om. Furthermore, suppose that each working set is
small enough to fit within the memory cache (jWij � k). In this scenario, one off-line strategy in our
“unfair” model is to load the current working set into the cache and to rent the requests outside the current
working set, at a cost of

1

r
(o1 + � � �+ om) + jW1j+ jW2 nW1j+ � � �+ jWm nWm�1j :

Takingr = log k, an algorithm with unfair competitive ratioO(r+ log k) must pay at mostO(log k) times
this, or

O
�
(o1 + � � �+ om) + (log k)(jW1j+ jW2 nW1j+ � � �+ jWm nWm�1j)

�
:

So, if the sequence involves only a few working sets or if their differences are small compared to theo
i, the

on-line algorithm is only a small (constant) factor from the optimal service sequence.
Here is a simple concrete example. Suppose that the request sequence repeatedly cycles over a fixed

set ofk + 1 pages. In that case, the deterministicLRU algorithm has competitive ratiok (it faults on
every request) andMarking has competitive ratioO(log k) (in expectation, it makesO(log k) page faults
per cycle). However, our algorithm in this case is required to have anO(1) ratio because we can view
this sequence as having a single fixed working set of sizek, with one additional request per cycle. In other
words, in the unfair model, the off-line algorithm could simply incur a cost of1

r
= 1

logk per cycle by renting.
In a sense, this goal can be viewed as follows. The motivation of the competitive ratio measure itself

is to allow the on-line algorithm to perform worse on “harder” sequences but to require it to perform better
on “easier” ones. Unfairness provides a more fine-grained measure, in which we split the off-line cost into
an “easy” component (the rentals) and a “hard” component (the loads). We require the algorithm to be
constant-competitive with respect to the easy component and allow anO(log k) ratio only with respect to
the hard component.

Because of the working set phenomenon, researchers have tried designing cache systems that in a certain
sense add such a renting ability. One practical implementation is to reserve the maincache for the supposed
working set while adding a second, smaller cache of potential working-set candidates [JS97].

7.2 A universe ofk + 1 pages 57

The k-server problem The question of the best possible competitive ratio for thek-Server problem of
Manasse, McGeoch, and Sleator [MMS90] remains a major open question.

Problem k-Server The algorithm is given a metric space and an initial selection ofk points where
it hasservers. It faces a sequence of requests to points in the space. When it receives a request, the
algorithm must choose a server to move to the requested point. The goal is to minimize the total
distance traveled by the servers.

Notice that ak-Server instance on a space ofk + 1 points is easily modeled as anMTS problem instance
with k + 1 points. In particular, each of thek + 1 points corresponds to a page that isnot in the cache —
the cache holds all other pages but the state’s corresponding page.

Koutsoupias and Papadimitriou’s proof that theWork-Function algorithm achieves anO(k) competitive
ratio was a breakthrough result, especially given the
(k) lower bound for deterministic algorithms [MMS90,
KP95]. It is conceivable, however, that a randomized algorithm could achieve apolylog(k) ratio. Hope that
this might be possible comes from thepolylog(n) MTS result in Theorem 4.8. At the core of Theorem 4.8
is an algorithm for achieving anO(r+ log n) ratio for ther-unfairMTS problem. Our goal ofO(r+ log k)

for r-unfairPaging can be thought of as an extension of theO(r+ logn) r-unfairMTS bound. This could
potentially be one step toward achieving apolylog(k) bound fork-Server. (Of course, there are many
additional issues involved in attempting to construct such a recursivek-Server algorithm.)

7.2 A universe ofk + 1 pages

Before we look at the general case where there can be arbitrarily many pages requested, we first restrict our
attention to the simpler case where the request sequence can only include one more page than can be held
in the cache (although any of these pages can of course be requested arbitrarily many times, in any order).
This restricted case illustrates some of the ideas that appear in our general result.

Because of the close relationship of the(k + 1)-point case and metrical task systems, our result here
can be seen as being an alternative to the two good algorithms for theMTS problem we have already seen,
Share andOdd-Exponent. This new algorithm is simpler to describe and to analyze than the others, though
the constants are slightly worse. It is a combination ofMarking andHedge.

Algorithm Phased-Hedge Each phase proceeds until every one of thek + 1 pages has hadr
requests. At the beginning of the phase, we associate to each page a weightwi, initialized to 1. The
weightswi define a probability distributionpi = wi=W , whereW =

P
j wj ; this is our probability

over pagesnot to have in the cache. (For example, initially all weights are1 and so each page is
equally likely to be the one outside the cache.) When a page is requested, we multiply the page’s
weight by� (a parameter of the algorithm) and readjust our probability distributionaccordingly.
(This effectively increases the probability that the page is in thecache.)

In the terminology of the machine learning literature, we could think of having an “expert” associated
to each of thek + 1 subsets ofk pages advocating that the cache contain thesek pages, and we could think
of Phased-Hedge asHedge with the small modification that we reinitialize the algorithm periodically at
phase boundaries.

Theorem 3.2 states that the expected loss incurred byHedge is at most

ln 1=�

1� �
L+

1

1� �
lnn ;

whereL is the loss of the best expert in hindsight andn is the number of experts. In our context, this implies
that the expected cost of thePhased-Hedge algorithm per phase is at most1+(r ln(1=�)+ln(k+1))=(1�
�). (The “1+” is the initialization cost for choosing a random page at the phase’s beginning.) Now, noting

58 The unfair paging problem

that the off-line algorithm must pay at least 1 per phase, either to evict a page or to rent a pager times, we
have the following theorem.

Theorem 7.2 The competitive ratio of thePhased-Hedge algorithm for ther-unfair (k+1)-page
Paging problem is at most

ln 1=�

1� �
r +

1

1� �
ln(k + 1) + 1 :

For� = 3
4
, the bound of Theorem 7.2 is approximately1:15r+4 ln(k+ 1)+ 1. As� approaches1, the

bound approaches
�
1 + "

2

�
r + 1

" ln k + 1 for " = 1� �.
For Paging on more thank + 1 pages, we extend thePhased-Hedge algorithm to have one “expert”

for everysubsetof pages marked in the previous phase, which the expert predicts should be kept in the cache
during the current phase. (A page is marked in a phase if it is requested at leastr times, and a phase ends
whenk pages are marked.) Ignoring implementation issues, the two difficulties that this approach entails
are first, that there are now many more experts, and second, that the possible cost for switching between two
different experts increases from1 to k. We deal with the first issue by giving a nonuniform initial weighting
to the experts. The second issue involves substantially more effort.

7.3 The general case: Phases and the off-line cost

We begin our analysis of the general case by defining the notion of “phase” that the on-line algorithm uses
and proving a lower bound for the off-line cost based on this notion. Then in Section 7.4 we describe how
the algorithm behaves within each phase and prove an upper bound on the expected on-line cost. Because
our on-line algorithm is not a “lazy” algorithm, we separately analyze its expected number of page faults
(the easier part of the analysis) and its expected cost for modifying its probability distribution overcaches
(the harder analysis). To define the initial state of our problem, we assume thecache is empty before the
first request occurs.

Like theMarking algorithm, we divide the request sequence into phases. We say that pagej is marked
when it has accumulated at leastr requests within the phase. The phase reaches its end when anyk pages
become marked.

LetMi denote the set of pages marked in phasei. (DefineM0 to be the empty set.) Also, let`ij denote
the number of requests to pagej in phasei. We definemi as the number of pages marked in phasei but not
in the previous phase (jMi nMi�1j). Finally, we defineoi as the total off-line cost for renting pages outside
M

i�1 [Mi; that is,oi = 1
r

P
j 62Mi�1[Mi `

i
j .

As in the standard analysis ofMarking, this use of phases gives a convenient lower bound on the off-line
player’s cost.

Lemma 7.3 If costOPT(�) is the optimal off-line cost for the task sequence, then we have

costOPT(�) �
1

2

X
i

�
m

i + oi
�
:

Proof. Consider two phasesi � 1 andi together. Notice that for all but thek pages in the off-line
cache at the beginning of phasei� 1, the off-line algorithm must either load the page into its cache,
at a cost of at least1, or service all requests to that page (if any) by renting, at a cost of at least
(`i�1j + `ij)=r. Therefore, any off-line algorithm must pay at least

costOPT(�
i�1�i) �

0
@X

j

min

(
1;
`i�1j + `ij

r

)1A� k

7.4 The on-line algorithm 59

in these two phases. For pagesj marked in phasesi � 1 or i, we know`i�1j + `ij � r; for other

pagesj, we know`ij < r (and sò i
j=r � 1) sincej is not marked in phasei. These facts imply

0
@X

j

min

(
1;
`i�1j + `ij

r

)1
A� k �

0
@ X

j2Mi�1[Mi

1

1
A+

0
@ X
j 62Mi�1[Mi

`ij

r

1
A� k

= (k +mi) + oi � k =mi + oi :

Also note that any off-line player must pay at leastm
1 + o1 in the first phase. Let�i represent

the sequence of requests in phasei. Then we get the following.

2costOPT(�) � costOPT

�
(�1�2)(�3�4) � � �

�
+ costOPT

�
�1(�2�3)(�4�5) � � �

�
�

��
m

2 + o2
�
+
�
m

4 + o4
�
+ � � �

�
+
��
m

1 + o1
�
+
�
m

3 + o3
�
+ � � �

�
=

X
i

�
m

i + oi
�
:

7.4 The on-line algorithm

We now describe a randomized on-line algorithm whose expected cost in each phasei isO(r+ log k) more
than the off-line bound of1

2(m
i + oi) given in Lemma 7.3. To describe the algorithm, we usep

t
j to denote

the probability that pagej is in the cache after servicing thetth request. For ease of analysis, our algorithm
may throw out (invalidate) pages in its cache even when there is no immediate need to do so, so

P
j p

t
j may

be less thank for some timest.
We divide the description and analysis of the algorithm into two parts. First, we describe how the

algorithm determines the probabilitiesptj , and we use this to bound the expected number of page faults
incurred by the algorithm. We then describe how the algorithm loads and ejects pages to maintain these
probabilities, and we bound the additional cost incurred by those operations.

The on-line cache probabilities and expected number of page faults

The algorithm determines the probabilitiesptj based on a weighted average over a collection of “experts”.

In phasei, we define an expert for each subsetA (Mi�1 and give it an initial weight of1=kk�jAj. The
pages in the cache for this “expert” are the pages in the setA, plus up to the firstk� jAj pages not inMi�1

marked so far. Equivalently, we can think of the expert representing the following deterministicPaging
algorithm:

� Initially, eject all pages in the setMi�1 nA from the cache.

� On a page fault, rent the requested page if any of the following hold:

1. the page is in the setMi�1 nA,

2. the page has not yet become marked (it has received fewer thanr requests in this phase),

3. the cache is full.

� Otherwise, on a page fault, load the requested page into the cache.

60 The unfair paging problem

To determine the probabilitiesptj , we use theHedge algorithm to update experts’ weights, and we
compute a weighted average of the experts’ caches. Specifically,p

t
j is the result of dividing the total weight

on experts having pagej in their cache by the total weight on all the experts. We update the weights on the
experts as inHedge by penalizing them by a factor� = 1

2
whenever they incur a page fault. If we select

a cache according to a distribution matching these probabilities, then our algorithm’s expected number of
page faults will match the expected cost toHedge.

One final addendum to the algorithm: Ifmi = 0 (i.e., the pages marked in this phase match the pages
marked from the previous phase), then the off-line bound iso

i in this phase but some of the experts pay
more thanroi because they foolishly eject pages from their cache at the start for no reason. Therefore
our algorithm also expects to pay more thanroi and thus is not competitive. To handle this problem, our
algorithm simulates the experts in a somewhat lazy manner. In particular, if an expert it is following says
to eject a page but does not indicate a page to fill that slot, then the algorithm notes the recommendation
but does not evict it until required. Nonetheless, we define the probabilitiesp

t
j as if we were immediately

following the advice of the experts. The only case in which this turns out to be important is the casem
i = 0.

Lemma 7.4 By combining these experts usingHedge, the on-line algorithm’s expected number of
page faults in phasei is at most(mi + oi)(2:8r+ 2 ln k + 1:1).

Proof. The casemi = 0 (whenMi =Mi�1) is a special case so we handle it first. In this case we
use the fact that our algorithm is lazily following the experts’ advice and that form

i = 0, no expert
will recommend loading any pages into the cache. Therefore, the algorithm will haveM

i�1 = M
i

in its cache throughout the phase, paying a total ofroi, meeting the desired bound. In the following,
then, we assumemi > 0.

One of the experts will do quite well, in particular the expert withA =Mi�1 \Mi. This expert
“knows” which of the marked pages from the previous phase should remain for the current phase,
and it will not eject these. Note that this expert’s initial weight is1=km

i
.

This good expert makes at most2rmi+roi page faults in the phase: For each of thek�mi pages
j 2Mi \Mi�1, it incurs0 page faults becausej 2 A. For each of themi pagesj 2Mi nMi�1,
it incurs a total ofr page faults until the page is finally marked and brought into the cache. For each
of themi pagesj 2Mi�1 nMi, the renting cost is̀ij , which we know is less thanr sincej is not
marked in phasei. Finally, the expert always rents pagesj 62Mi�1 [Mi, and the total renting cost
for these isroi.

Theorem 3.2 for the loss of theHedge algorithm can be generalized to the case of experts with
unequal initial weights. In this case, the bound becomes

ln 1=�

1� �
L+

1

1� �
ln
W

w
; (7.1)

wherew is the initial weight of the best expert in hindsight (and, as before,L is the loss of that
expert) andW is the sum of the initial weights. In our case, if we choose� = 1

2 and maintain
probabilitiesptj according to the expert weights as above, then the total expected number of page
faults is at most

1:4(2rmi+ roi) + 2 ln
W

wA
; (7.2)

whereW is the total of the experts’ initial weights andwA = 1=km
i

is the weight for expertA.
Since for eachm between1 andk, there are

�
k
m

�
experts of weightk�m, the total weightW is at

most
Pk

m=1
1
m! � e� 1. Thus (7.2) is at most

2:8r(mi + oi) + 2(mi ln k + ln(e� 1))

� (mi + oi)(2:8r+ 2 lnk + 1:1) :

7.4 The on-line algorithm 61

One additional nonobvious fact about our use of theHedge algorithm is the following.

Lemma 7.5 If there is a request to pagej at timet, thenpt+1j � ptj and for all i 6= j, pt+1i � pti.
Proof sketch. The easy part of the lemma is the statement that when a request is made to page
j, the probability that pagej is in the cache increases. That happens becauseHedge penalizes all
experts that do not havej in their cache and does not penalize those that do. The harder part is the
statement about pagesi 6= j; in particular, perhaps some pages are correlated.

Consider any fixedm < k. LetW1 be the weight on experts form-sets containingj ,W� be the
weight on experts form-sets not containingj, W1;i be the weight on experts form-sets containing
i andj,W�;i be the weight on experts form-sets containingi but notj. We want to show that

W1;i +W�;i

W1 +W�
� W1;i + �W�;i

W1 + �W�
:

This follows if we can showW1;iW� � W�;iW1. LetM be the set of pages marked in the previous
phase. Consider the instant before the request, and leto be the number of requests to pages outside
M and`i0 be the number of requests to each pagei0 2 M . Observe that the expert for a setA has
accumulated losso +

P
i02MnA `i0 and so its weightwA is �o+

P
i02MnA `i0 . The proof uses this fact

to show that each term on the left-hand sideW1;iW� corresponds to a term on the right-hand side
W�;iW1.

Moving between probabilities

At any point in time, our algorithm maintains a probability distributionq over caches (experts), which
induces page probabilitiespj over pages. The section above describes one distributionq using theHedge
algorithm. Notice, however, that for the purpose of computing the expected number of page faults (as
in Lemma 7.4), any two distributions over caches that induce the same page probabilities are equivalent.
Therefore, we are free to deviate from the instructions given by theHedge algorithm so long as we are
faithful to the page probabilitiespj . This is important for the next part of our analysis, where we bound the
expected cost incurred by moving between probability distributions.

In particular, we now examine the following question. Given a current distributionq over caches that
induces probabilitiespj over pages, and given a new target set of page probabilitiesp0j that satisfies

P
j p

0
j �

k, we want to move to some new distributionq0 over caches that inducesp0. At a minimum, any algorithm

must load an expected
P

p0j>pj

�
p0j � pj

�
number of pages to move from the page probabilitiesp to p0.

Achieving this is easily possible in a setting where
P

j pj = 1 (e.g., the case ofk + 1 pages total in which
pj represents the probability that pagej is not in the cache) but it is harder in our setting, where

P
j pj is as

large ask. In this section, we show a method for achieving an expected cost of at most2
P

p0j>pj

�
p0j � pj

�
.

A simple example will help illustrate the difficulty and the algorithm. Say thatk = 2 and initially our
cache is[A;B] with probability 1

2 and[C;D] with probability 1
2 . This induces page probabilitiesp; say we

want to convert this to a new distributionp0 as follows.

page A B C D

p 1
2

1
2

1
2

1
2

p0 3
4

1
4

1
2

1
2

If we momentarily forget about the cache capacity ofk, we can easily move to a new cache distribution
q̂ consistent withp0: we can simply evictB with probability 1

2 if our cache is[A;B] and loadA with
probability 1

2 if our cache is[C;D]. So q̂ is the following.

62 The unfair paging problem

cache [A] [A;B] [C;D] [A;C;D]

q̂ 1
4

1
4

1
4

1
4

The [A;C;D] possibility, unfortunately, exceeds the size limit ofk = 2. However, there is (and there must
be) a cache that has a vacancy, in this case[A]. We rebalance by adding pageD to the small cache and
evictingD from the large cache. This new cache distribution now includes only legal caches, and we use
this forq0.

cache [A;D] [A;B] [C;D] [A;C]

q0 1
4

1
4

1
4

1
4

In other words, the strategy in this case is: “if our cache is[A;B] then with probability1
2 do nothing

and with probability1
2 evictB and loadD; if our cache is[C;D] then with probability12 do nothing and

with probability 1
2

evictD and loadA.” This strategy seems a bit strange becausep0(D) = p(D) yet we
sometimes evict or loadD, but this is necessary in this situation. As you can see, the expected number of

page loads in this example is12 , which equals2
P

p0j>pj

�
p0j � pj

�
.

Our strategy, in general, is as follows. To move from a set of probabilitiesp to p0, for any pagej with
p0j < pj , we evictj from our cache (if present) with probability 1� p0j=pj . Next, for pages withp0j > pj , we
add them to a cache not containingj with probability(p0j � pj)=(1� pj). This gives us a cache distribution
q̂ with the correct probabilitiesp0 and loading cost

P
p0j>pj

(p0j � pj), but it may create caches that are too

large.
Fortunately, the expected number of pages in the cache is

P
p0j � k. Thus, if there are caches with

more thank pages, there must be caches with fewer thank pages. Take a cache with more thank pages
and one with fewer thank pages, and some page that is in the larger but not the smaller. We can evict the
page from the larger cache and load it to the smaller cache in such a way as to not changep0. If the two
caches do not have equal probabilities, we cannot immediately reduce the probability of both of the original
caches to 0. However, one of the two caches will end with probability 0, and thus we are always making
discrete progress in decreasing the total excess and shortage in cache sizes, over all caches with nonzero
probability. Furthermore, the total probability of performing a load in the rebalancing step is no more than
the probability of loading a page from in the increase step, sinceeach load required for a rebalance originates

from an increased probability. The expected number of loads is no more than2
P

p0j>pj

�
p0j � pj

�
.

Lemma 7.6 Given a probability distributionq on caches, this implies page probabilitiesp. Given
a new set of page probabilitiesp0, we can move to a new probability distributionq0 on caches with

expected cost2
P

p0j>pj

�
p0j � pj

�
.

Bounding the on-line movement cost

The final step to showing that our algorithm achieves the required bound is to bound what the algorithm
pays to load pages in maintaining the page probabilitiesp

t
j . We do this by employing Lemma 7.6 to bound

this cost in terms of the expected number of page faults analyzed in Section 7.4.

Lemma 7.7 Using the movement strategy given in Lemma 7.6, the expected loading cost for the
probability sequence used in Lemma 7.4 is at most(mi + oi)(2:8r+ 2 ln k + 1:1).

Proof. Consider the expert weights before receiving a request to pagej. Let p be the page prob-
abilities before the request andp0 be the page probabilities after the request. Sincej is the only
page whose probability of being in thecache increases (Lemma 7.5), the expected loading cost from

Lemma 7.6 is at most2
�
p0j � pj

�
.

7.4 The on-line algorithm 63

We want to boundp0j � pj . Letx be the total weight on experts who have probability1 onj and
let y be the total weight on experts who have probability0 onj. Since each expert in the first set has
a loss of0, the request will not alter their weights. Experts in the second set, however, experience a
loss of1, so their total weight decreases to�y = y=2.

p0j � pj =
x

x+ y=2
� x

x+ y

=
xy=2

(x+ y)(x+ y=2)

� 1

2

y

x+ y
=

1

2
(1� pj)

This1� pj is exactly the probability of faulting on the request. Thus our expected loading cost (at
most2(p0j � pj) is at most the expected number of page faults. The lemma follows from the bound
of Lemma 7.4.

Bounding the total expected on-line cost using Lemmas 7.4 (renting cost) and 7.7 (loading cost), and
bounding the off-line cost using Lemma 7.3, we conclude with our competitive ratio ofO(r+ log k).

Theorem 7.8 There is an algorithm whoser-unfair competitive ratio forPaging is8(2:8r+2 lnk+

1:1).

64 The unfair paging problem

Chapter 8

Conclusion

The metrical task system problem is one of the fundamental on-line problems in computer science. In
this thesis, we have seen how its applications include machine learning and process migration. The thesis
has neglected to mention its theoretical applications to other on-line problems like robot navigation and file
migration.

We have seen how one can achieve much-improved asymptotic guarantees for metrical task systems.
While the general-metric result is not immediately useful for actual systems, along the way we learned
about algorithms for the uniform metric that do have practical promise, likeShare andOdd-Exponent.
The process migration experiment (Section 6.3) bolsters the feeling that these can be useful alternatives to
Marking.

8.1 Themes

On our way to achieving improved results, we have seen three themes develop that may apply to more on-
line analysis. The first is the useful relationship between a fundamental machine learning theory problem,
Experts, and competitive analysis, especially with the unfairMTS problem. TheExperts results have much
promise as important tools to solving on-line problems; we have seen how it touches onMTS, Combine-
Online, andPaging, but it is likely to have uses elsewhere. TheExperts problem deserves to be included
with MTS andk-Server as foundations for on-line analysis of algorithms.

Another theme of this thesis is the use of unfairness to refine our on-line goals. Essentially, unfairness
gives us the opportunity to prioritize different types of costs by introducing a trade-off parameter. We have
seen applications toMTS, Experts, andPaging; in all cases, the tradeoff has been between moving between
selections and sticking with the current selection. Whether the unfairness concept can be applied naturally
to other problems remains to be seen.

Finally, we have seen the importance of metric space approximation in competitive analysis. The
polylog(n) metrical task system result is a significant, sophisticated illustration of the usefulness of HST
approximation to competitive analysis and approximation algorithms. Besides being historically one of the
first major results using Bartal’s HST approximation, metrical task systems are also likely to endure as an
instance where HST approximation allow us to do much better than we can without it.

65

66 Conclusion

8.2 Open questions

A number of open questions, touched on in the progress of this thesis, remain open.

Question 8.1 Can Bartal’sO(h logn log logn) approximation factor of an arbitrary metric space
byh-HSTs be improved toO(h logn) [Bar98]?

Question 8.2 Is there a metric space where one can achieve ano(logn) competitive ratio forMTS?
Blum et al. prove that for any algorithm on any particular space, the competitive ratio is at least

(
p
logn=log logn) [BKRS92].

Question 8.3 Can we improve on the competitive ratio for theMTS problem on general metric
spaces? This thesis provesO(log5 n log log n) (Theorem 4.8); building on this result, Fiat and
Mendel improve it toO(log2 n log2 logn) [FM00]. Both use the only known tractable approach to
achieving sublinear bounds: building an algorithm for an HST. This approach has the shortcoming
that the metric space approximation factor will not improve beyondO(logn), and the competitive
ratio for the HST will not improve beyondO(logn), giving an inherent limit ofO(log2 n).

Question 8.4 We have seen a number of algorithms for ther-unfair MTS problem on a uniform
metric, the best bound beingr + 2e lnn achieved byOdd-Exponent. Can one get anr + lnn

algorithm for this problem? And is there an intuitive explanation for whyOdd-Exponent, with its
peculiar structure, does so well?

Question 8.5 Example 5.2 shows that one can get arbitrarily close to a static adversary’s per-
formance for bothList-Update and Dynamic-Tree, but the algorithms to do this are massively
inefficient. Are there efficient algorithms to do the same?

Question 8.6 For theBandits problem with a switching cost, Corollary 5.4 shows an algorithm
that is an additiveO(

3
p
dnT 2 ln n) from the gain of the best bandit. Can this be improved to

O(
p
dnT ln n), as Aueret al. achieve for the problem with no switching cost [ACBFS98]?

Question 8.7 The paging algorithm of Chapter 7 requires exponential running time. Is there an
efficient method achieving the sameO(r + logn) guarantee?

Question 8.8 Can one achieve a guarantee ofr + O(logn) for r-unfair Paging? Or perhaps
(1 + ")r +O(1

"
logn)? And can such an algorithm for the unfair scenario be used fork-Server on

an HST space? We were able to abstract lower levels forMTS, but determining the proper way to do
this for k-Server is a challenging problem. For instance, it appears that such an abstraction would
have to to encourage multiple servers to be at a single point in the uniform space.

Question 8.9 For that matter, is there any way of using randomization to improve the2k � 1 ratio
for k-Server achieved by Koutsoupias and Papadimitrou [KP95]? The conjecture is thatO(log k)

is possible, but we appear very far from any sublinear guarantee.

Bibliography

[ABM93] Y. Azar, A. Broder, and M. Manasse. On-line choice of on-line algorithms. InProc ACM-
SIAM Symposium on Discrete Algorithms, pages 432–440, January 1993.

[ACBFS95] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. Gambling in a rigged casino: The ad-
versarial multi-armed bandit problem. InProc IEEE Symposium on Foundations of Computer
Science, pages 322–331, 1995.

[ACBFS98] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. Gambling in a rigged casino: The ad-
versarial multi-armed bandit problem.Submitted for publication, 1998. Based on [ACBFS95].

[ACN96] D. Achlioptas, M. Chrobak, and J. Noga. Competitive analysis of randomized paging algo-
rithms. In Proc 4th European Symposium on Algorithms, pages 419–430. Springer-Verlag,
1996.

[AvSW95] S. Albers, B. von Stengel, and R. Werchner. A combined bit and timestamp algorithm for the
list update problem.Information Processing Letters, 56:135–139, 1995.

[Bar96] Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In
Proc IEEE Symposium on Foundations of Computer Science, pages 183–193, October 1996.

[Bar98] Y. Bartal. On approximating arbitrary metrics by tree metrics. InProc ACM Symposium on
Theory of Computing, pages 161–168, May 1998.

[BB97] A. Blum and C. Burch. On-line learning and the metrical task system problem. InProc ACM
Workshop on Computational Learning Theory, pages 45–53, 1997.

[BBBT97] Y. Bartal, A. Blum, C. Burch, and A. Tomkins. A polylog(n)-competitive algorithm for met-
rical task systems. InProc ACM Symposium on Theory of Computing, pages 711–719, 1997.

[BBF+90] A. Blum, A. Borodin, D. Foster, H. Karloff, Y. Mansour, P. Raghavan, M. Saks, and
B. Schieber. Randomized on-line algorithms for graph closures. Personal communication,
1990.

[BBK99] A. Blum, C. Burch, and A. Kalai. Finely-competitive paging. InProc IEEE Symposium on
Foundations of Computer Science, pages 450–457, 1999.

67

68 BIBLIOGRAPHY

[BDBK+94] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the power of random-
ization in on-line algorithms.Algorithmica, 11(1):2–14, 1994.

[BEY98] A. Borodin and R. El-Yaniv.Online computation and competitive analysis. Cambridge Uni-
versity, 1998.

[BKRS92] A. Blum, H. Karloff, Y. Rabani, and M. Saks. A decomposition theorem and lower bounds for
randomized server problems. InProc IEEE Symposium on Foundations of Computer Science,
pages 197–207, 1992.

[BLS92] A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical task systems.J
of the ACM, 39(4):745–763, 1992.

[BM85] J. Bentley and C. McGeoch. Amortized analysis of self-organizing sequential search heuris-
tics. Communications of the ACM, 28(4):404–411, 1985.

[BRS97] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric terrain.SIAM J
Computing, 26(1):110–137, 1997.

[Esk90] M. Eskicioglu. Process migration in distributed systems: A comparative survey. Technical
Report TR 90-3, University of Alberta, January 1990.

[FKL+91] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and N. Young. Competitive paging
algorithms.J of Algorithms, 12:685–699, 1991.

[FM00] A. Fiat and M. Mendel. Better algorithms for unfair metrical task systems and applications.
In Proc ACM Symposium on Theory of Computing, 2000. To appear.

[FS97] Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting.J Comp Syst Sci, 55(1):119–139, 1997.

[HLS96] D. Helmbold, D. Long, and B. Sherrod. A dynamic disk spin-down technique for mobile com-
puting. InProc ACM/IEEE International Conference on Mobile Computing and Networking,
1996.

[HW98] M. Herbster and M. Warmuth. Tracking the best expert.Machine Learning, 32(2), August
1998.

[Ira91] S. Irani. Two results on the list update problem.Information Processing Letters, 38(6):301–
306, June 1991.

[IS98] S. Irani and S. Seiden. Randomized algorithms for metrical task systems.Theoretical Com-
puter Science, 194(1–2):163–182, March 1998.

[JS97] L. John and A. Subramanian. Design and performance evaluation of a cache assist to im-
plement selective caching. InProc International Conference on Computer Design, pages
610–518, October 1997.

[Kar90] R. Karp. A2k-competitive algorithm for the circle. Manuscript, August 1990.

[KMMO90] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki. Competitive randomized algorithms
for non-uniform problems. InProc ACM-SIAM Symposium on Discrete Algorithms, pages
301–309, 1990.

BIBLIOGRAPHY 69

[KP95] E. Koutsoupias and C. Papadimitriou. On thek-server conjecture.J of the ACM, 42(5):971–
983, September 1995.

[Lit88] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm.Machine Learning, 2:285–318, 1988.

[LW94] N. Littlestone and M. Warmuth. The weighted majority algorithm.Information and Compu-
tation, 108(2):212–261, 1994.

[Mit82] T. Mitchell. Generalisation as search.Artificial Intelligence, 18:203–226, 1982.

[MMS90] M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms for server problems.J Al-
gorithms, 11:208–230, 1990.

[Sei99] S. Seiden. Unfair problems and randomized algorithms for metrical task systems.Information
and Computation, 2:219–240, February 1999.

[ST85a] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules.Communica-
tions of the ACM, 28:202–208, February 1985.

[ST85b] D. Sleator and R. Tarjan. Self-adjusting binary search trees.J of the ACM, 32:652–686, 1985.

[Tei93] B. Teia. A lower bound for randomized list update algorithms.InformationProcessing Letters,
47:5–9, 1993.

[Tom97] A. Tomkins. Practical and Theoretical Issues in Prefetching and Caching. PhD thesis,
Carnegie Mellon University, October 1997. CMU-CS-97-181.

[Vov95] V. Vovk. A game of prediction with expert advice. InProc ACM Workshop on Computational
Learning Theory, pages 371–383, 1995.

70 BIBLIOGRAPHY

Index

Achlioptas, D., 7
action sequence,4
adaptive adversary,5
additive part,5
Albers, S., 42
Approx-`1, 11
Auer, P., 43, 44, 66
Azar, Y., 41

Bandits, 43, 66
Bartal, Y., 1, 9, 11, 13, 14, 39, 66
Ben-David, S., 5
Bentley, J., 41, 42
Blum, A., 1, 7, 8, 13, 29, 34, 66
Borodin, A., 1, 3, 5–8, 14, 30, 55
Broder, A., 41
Burch, C., 1

Cesa-Bianchi, N., 43, 44, 66
Chrobak, M., 7
Comb, 42
Combine-Online, 41, 65
competitive ratio,4
cost ratio,13

�-elementary task,30
diameter,10
Dynamic-Tree, 42, 66

El-Yaniv, R., 30
elementary task,30
Eskicioglu, M., 51
event sequence,4
experts,19, 21
Experts, 1, 2,21, 23, 24, 26, 41, 43, 47–49, 51,

55, 65
Experts-Predict, 19, 21

fault, 55
Fiat, A., 2, 6, 8, 55, 66
Foster, D., 8

Freund, Y., 21, 22, 43, 44, 66

Greedy, 51, 52

Halving, 19,20, 21
Hedge, 21, 22–24, 42–44, 56, 57, 60, 61
Hedge-Bandit, 44
Helmbold, D., 4
Herbster, M., 24

Irani, S., 7, 8, 14, 42

John, L., 56

k-Server, 57, 65, 66
Kalai, A., 1
Karlin, A., 7
Karloff, H., 7, 8, 13, 29, 34, 66
Karp, R., 5, 6, 9, 55
Koutsoupias, E., 57, 66

Least-Used, 51, 52
Linear, 29, 30, 31, 47, 49
Linial, N., 1, 3, 6–8, 14, 55
List-Update, 41, 42, 66
Littlestone, N., 19, 20, 23
local cost,4
Long, D., 4
loss vector,21
LRU, 41, 56
Luby, M., 6, 55

Manasse, M., 1, 7, 41, 57
Mansour, Y., 8
Marking, 6, 7, 8, 13–15, 20, 31, 41, 48, 51, 52,

55, 56–58, 65
McGeoch, L., 1, 6, 7, 41, 42, 55, 57
Mendel, M., 2, 8, 66
metrical task system,3
mistake bound,19
Mitchell, T., 20
Move-To-Front, 42

71

72 INDEX

movement cost,4
MRU, 41
MTS, 1–3, 4, 5, 8–11, 13, 19, 26–30, 39, 41, 47,

49, 51, 55, 57, 65, 66

Noga, J., 7

oblivious adversary,5
odd exponent function,31
Odd-Exponent, 2, 28–31, 33, 34, 36, 37, 39, 48,

49, 51–53, 57, 65, 66
on-line algorithms,1
on-line problem,1
Owicki, S., 7

page fault,55
Paging, 4, 6,55, 56–59, 63, 65, 66
Papadimitriou, C., 57, 66
partitioning bound,22
Phased-Hedge, 22,57, 58
pins,8
probabilistically approximated,9

Rabani, Y., 7, 8, 13, 29, 34, 66
Raghavan, P., 8
Rand-Halving, 21
Recent, 51, 52

Saks, M., 1, 3, 6–8, 13, 14, 29, 34, 55, 66
Schapire, R., 21, 22, 43, 44, 66
Schieber, B., 8
Seiden, S., 7, 8, 13, 14, 34
Share, 2, 22,24, 26–30, 39, 47–49, 51, 52, 57,

65
Sherrod, B., 4
Sleator, D., 1, 4, 6, 41, 42, 55, 57
Splay-Tree, 42
states,3
Subramanian, A., 56
switching cost,41

Tardos, G., 5
Tarjan, R., 4, 41, 42
task sequence,4
task vector,3
task-processing cost,4
Teia, B., 42
Thresh, 22,23, 24, 26, 47, 48, 51, 52
Tomkins, A., 1, 8, 30

Two-Region, 34, 35, 37, 38, 52

unfair competitiveness,13
Uniform, 51, 52
uniform metric,6

Variable-Share, 24
von Stengel, B., 42
Vovk, V., 21

Warmuth, H., 19, 20, 23, 24
Werchner, R., 42
Wigderson, A., 5
WM, 20, 21
WML, 23
work function,7
Work-Function, 8, 26, 51–53, 57

Young, N., 6, 55

