
A Formal Approach to Software Architecture

Robert J. Allen

May 1997
CMU-CS-97-144

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee

David Garlan (chair)
Daniel Jackson

Mary Shaw
Barry Boehm (USC)

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy.

Copyright c
 1997 Robert Allen

This research was sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel
Command, USAF, and the Defense Advanced Research Projects Agency (DARPA) under grant number
F33615-93-1-1330; by the Defense Advanced Research Projects Agency, and Rome Laboratory, Air Force
Materiel Command, USAF, under agreement number F30602-97-2-0031; by the Defense Modeling and
Simulation Office; and by National Science Foundation Grant No. CCR-9357792. Views and conclusions
contained in this document are those of the author and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the US Department of Defense, Wright Laboratory, Rome
Laboratory, the United States Government, or the National Science Foundation. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes, notwithstanding any copyright
notation thereon.

Keywords: Software Architecture, Formal Specification, Architecture Description
Languages, Software Architectural Style, WRIGHT

Abstract

As software systems become more complex, the overall system structure—or software
architecture—becomes a central design problem. A system’s architecture provides a model
of the system that suppresses implementation detail, allowing the architect to concentrate
on the analyses and decisions that are most crucial to structuring the system to satisfy its
requirements.

Unfortunately, current representations of software architecture are informal and ad
hoc. While architectural concepts are often embodied in infrastructure to support specific
architectural styles and in the initial conceptualization of a system configuration, the lack
of an explicit, independently-characterized architecture or architectural style significantly
limits the benefits of software architectural design in current practice.

In this dissertation, I show that an Architecture Description Language based on a formal,
abstract model of system behavior can provide a practical means of describing and analyzing
software architectures and architectural styles.

This dissertation demonstrates this claim through WRIGHT, an architectural description
language based on the formal description of the abstract behavior of architectural com-
ponents and connectors. WRIGHT provides a practical formal basis for the description of
both architectural configurations and of architectural styles. It is distinguished by the use
of explicit, independent connector types as interaction patterns, the ability to describe the
abstract behavior of components using a CSP-like notation, the characterization of styles
using predicates over system instances, and a collection of static checks to determine the
consistency and completeness of an architectural specification. We introduce techniques to
support the analysis of large-scale systems, and demonstrate WRIGHT’s expressiveness and
practicality through three case studies.

iii

iv

To Katrina and William

vi

Acknowledgements

It hardly seems possible to me that I have finally reached the end of this long process, and
that it only remains to thank the people who have helped me along the way. Even beyond
the formal aspects of my education, I have learned much and gained much from the people
around me over the last seven years, and I know that I will never be able to truly express
my appreciation. I can only say: Thank you!

To David, I say: Thank you! You have taught me about research, about teaching,
speaking, and writing, about software architecture, and about life. You have supported me
at every stage, from my first arrival here at CMU to the final completion of my dissertation.
You have supported me when I was coasting along not getting much accomplished and
when I was pushing hard to do more than seemed possible; when I was here in Pittsburgh
and when I was away in Durham. You have truly gone beyond the call of duty.

To Mary, Daniel, and Barry, I say: Thank you! You have helped make my dissertation
the best that I can make it. You have been patient with me when I had nothing to give you
and responsive when I gave you too much all at once. Your feedback and your example
have enriched my experience as well as my work.

To the ABLE group, I say: Thank you! You put up with my half-baked ideas and my
buggy prototypes and turned them into something real and even useful.

To the SSSG, I say: Thank you! You have made CMU a rich, exciting environment in
which to do research in software engineering. Your insightful and constructive feedback
has helped to improve all of the work I have done here. I know that if you like it, every
audience will be easy.

To the CMU SCS community, I say: Thank you! Your caring, openness, and support
has made my tenure here a pleasant one. You have always been there to help make
things possible and have bent over backwards to smooth my path. You have always been
reasonable, and often more than reasonable.

To my office mates, past and present, I say: Thank you! You have tolerated my
muttering and teasing and aggressive work-avoidance tactics. You have helped me to know
that it can be done, and to remember that there is more to computer science than my little
corner of it.

To Lynette, Heather, and Matthew, I say: Thank you! You have always, and especially
during my visits from out of town, been welcoming and accommodating.

To my family, and especially Katrina, I say: Thank you! Your support has kept me
going when I thought I couldn’t go on. You have kept me in perspective, and helped me
keep my priorities straight. You are what makes it all worthwhile.

Thank you all! — Rob

vii

viii

Contents

1 Introduction 1
1.1 Motivation : 1
1.2 Problems with State of the Art : 3
1.3 Partial Solutions : 5
1.4 A Balanced Approach: Formal Basis for Architectural Description : : : : 8
1.5 Requirements for Description and Analysis of Architecture : : : : : : : : 9
1.6 The WRIGHT Architecture Description Language : : : : : : : : : : : : : 9
1.7 Summary of Contributions : 13
1.8 Plan of Dissertation : 14

2 Related Work 17
2.1 Introduction : 17
2.2 Conceptual Background : 17
2.3 Formalization of Architecture : 18
2.4 Architecture Description Languages : 22
2.5 Programming Languages, MILs, and IDLs : : : : : : : : : : : : : : : : 27
2.6 Object-Oriented Design : 31
2.7 Other Support for Software Architecture : : : : : : : : : : : : : : : : : : 34
2.8 Possible Formal Bases : 36

3 Introduction to WRIGHT 39
3.1 Introduction : 39
3.2 The Goals of an Architectural Description Language : : : : : : : : : : : 39
3.3 The Structure of WRIGHT : 40
3.4 Specifying Behavior : 53
3.5 The Behavior of WRIGHT Configurations : : : : : : : : : : : : : : : : : 59
3.6 Semantic Style Constraints : 65
3.7 Validating Descriptions : 66

4 Case Study: AEGIS 81
4.1 Introduction : 81
4.2 The AEGIS “Problem” : 83
4.3 The Naive Specification : 85
4.4 Analyzing and Changing the Specification : : : : : : : : : : : : : : : : : 91
4.5 Discussion : 101

ix

5 Case Study: Justo-Cunha Style 105
5.1 Introduction : 105
5.2 The Justo-Cunha Style : 107
5.3 A Formal Description of the JC Style : : : : : : : : : : : : : : : : : : : 109
5.4 Generalizing the JC Style : 118
5.5 Discussion : 126

6 Case Study: HLA 129
6.1 Introduction : 129
6.2 Motivation and Overview of HLA : 130
6.3 Overview of the WRIGHT Specification of the HLA : : : : : : : : : : : : 132
6.4 Analysis of HLA using the WRIGHT specification : : : : : : : : : : : : : 137
6.5 Review of Techniques : 144
6.6 Discussion : 151

7 Tools for WRIGHT Checks 153
7.1 Introduction : 153
7.2 Automating Standard Checks : 153
7.3 Providing General Analysis Automation : : : : : : : : : : : : : : : : : : 162

8 Data Models for HLA 163
8.1 Introduction : 163
8.2 State Model of Attribute Ownership : 164
8.3 Combining State Model with Behavior Model : : : : : : : : : : : : : : : 169
8.4 Analysis of the Combined Specification : : : : : : : : : : : : : : : : : : 171
8.5 Discussion : 172

9 Discussion and Evaluation 173
9.1 Description of Configurations : 174
9.2 Description of Styles : 183
9.3 Analysis of Configurations and Styles : : : : : : : : : : : : : : : : : : : 187
9.4 Relevance to Practice : 190

10 Conclusion 197
10.1 Summary : 197
10.2 Contributions : 198
10.3 Future Work : 201
10.4 Epilogue: The Software Architecture Question : : : : : : : : : : : : : : 207

A Semantics of CSP 209
A.1 A Model of CSP: Alphabets, Traces, and Refusals : : : : : : : : : : : : : 209
A.2 Refinement : 210
A.3 Auxiliary Definitions : 211
A.4 A Note Regarding x and the ’;’ Operator : : : : : : : : : : : : : : : : : : 212

x

B Details of WRIGHT Specification of HLA 219
B.1 Simulation Interface : 219
B.2 RTI Glue Specification : 224

xi

xii

Chapter 1

Introduction

1.1 Motivation

An important problem facing software developers is the increasing size and complexity of
software systems. As the expectations of users of software increase, software developers
are expected to produce software to handle more difficult problems on a larger scale.

As the complexity of software systems increases, the overall system structure—or
software architecture—becomes a central design problem. Software architecture provides
a model of the large scale structural properties of systems. These properties include
the decomposition and interaction among parts as well as global system issues such as
coordination, synchronization, and performance.

The software architecture of a system often appears in system descriptions as a “boxes
and lines” diagram. This diagram structures the system in terms of particular kinds of
computations and their composition. For example, the architecture of a payroll system
might decompose it into three parts: a database, a report generator, and a data entry front
end. These parts appear as boxes in an architectural diagram. Lines connecting them
indicate the use of queries and updates supported by the database. (See figure 1.1.)

Software architecture raises the level of abstraction at which developers can reason
about their systems. A system’s architecture provides a model of the system that suppresses
implementation detail and increases the independence of system components, permitting
many issues to be localized. By suppressing these details at the architectural level, the
architect can concentrate on the analyses and decisions that are most crucial to the system
structure.

Architectural Interaction

A critical issue in software architecture is composition. Once a system has been decomposed
into components, they must be re-composed to define the structure of the system as a whole.
An important class of composition in software architecture is active interaction between
components based on discrete actions. Components each carry out some part of the
total computation and interact to combine their behaviors, resulting in a behavior for the
system as a whole. Interactions can be quite simple, such as in a batch model where each
component acts separately, one executing to completion, its output providing the input to

1

2 A Formal Approach to Software Architecture

Data Entry

Payroll

Database

Report

Generator

Figure 1.1: Boxes and lines diagram: A payroll system.

another component, which executes in a separate phase. Interactions can also be quite
complex, such as network protocols of distributed systems, where each component can
initiate communication, generate messages, and respond to other components’ messages,
where buffering, reliability, and authentication of information passed between components
must be taken into account.

In order for components participating in these interactions to achieve overall system
goals, not only must the interfaces of components be consistent, but components must agree
on the ordering of actions, what party is responsible for what part of the interaction, whether
a component’s behavior is optional or required, and so on. Further, it must be clear whether
any mechanisms external to the components are required to support the interaction.

At the same time, particular patterns of interaction tend to recur in a given system,
and across different, but similar, systems. Whether it be batch processing with shared
files, parallel systems with shared data, signal processors with streams of continuous data,
or reactive components with event broadcasts, different components are composed into a
functioning system using the same kinds of interactions again and again. The goal of an
architectural model of a system is to exploit these and other patterns in the system structure—
if we can take advantage of these patterns, recognizing where commonalities exist in a
system’s structure and behavior while making the distinctions necessary to understand the
critical properties of the architecture, the effective complexity of the system can be reduced
while at the same time our ability to analyze and manipulate the system’s design is increased.

Architectural Style

Another important aspect of software architecture is the extension of design to exploit com-
monalities across families of systems. When developing a particular system, designers tend
not to explore all possible alternatives for its architecture. Instead, they use specific patterns
and idioms that are effective for the domain in which they are working. These patterns
and idioms constrain the design space, permitting developers to ignore complications and
alternatives that are not relevant to the system that they are developing. This exposes the
issues that are most important and thus helps the developer make effective choices and
locate the best solution more easily. We term such a collection of patterns and idioms an
architectural style.

To motivate the idea of style, consider the familiar example of a compiler. The first
compiler required years of development effort by a substantial team. Many alternatives had
to be considered for the system because no one had built anything like it. Today, however,

Chapter 1. Introduction 3

the principles of compiler construction are well understood. In particular, a compiler’s
structure is expected to include a lexical analyzer, a parser, a collection of semantic checks
(such as a type checking), and a code-generating back end. The problem has been focused
on these specific pieces, construction techniques have been standardized, and tools have
automated many routine aspects of compiler implementation. As a result, a compiler can
now be developed by one undergraduate in a single semester. Elements such as code
optimizers can be developed, often separately from the rest of the compiler, and added
easily. New techniques and technology are made available with a minimum of additional
development effort.

Although the compiler is an unusually well-developed example, use of architectural
style is ubiquitous in software development. Most high level design descriptions include
some characterization of the architectural style of the system, using phrases such as “it is
a pipe and filter system,” “we use a client-server architecture,” “the system is based on a
blackboard.”

Using a style has many benefits. A style focuses the design problem on techniques that
are effective for a specific class of systems. By recognizing that, for example, real-time
considerations are not of interest to a payroll database, developers can instead concentrate on
developing a flexible and general set of queries for the database. A collection of components
and connectors that work within a style enhances flexibility and reuse. Chimera [SVK93],
for example, enables the developer of a robot controller to reuse many components by
providing standard mechanisms for combining them while maintaining effective real-time
performance. The use of particular models supports higher-level design abstractions. If a
style guarantees that a set of properties hold, it can lead to more powerful analyses than a
general architecture permits.

1.2 Problems with State of the Art

Unfortunately, with few exceptions current exploitation of software architecture and ar-
chitectural style is informal and ad hoc. While architectural concepts are exploited in
infrastructure to support architectural styles and in the initial conceptualization of a system
configuration, the lack of an explicit, independently characterized architecture or architec-
tural style significantly limits the extent to which software architecture can be exploited
using current practices.

Currently, architectural configurations are typically described using informal box and
line diagrams in design documentation, providing little information about the actual com-
putations represented by boxes, their interfaces, or the nature of the interactions between
them (represented by lines).

This lack of information severely limits the usefulness of these diagrams. Without
specific informationabout the interfaces that are expected between components, and without
enough information to determine the meaning of a composition of different elements,
implementors are forced either to guess the intentions of the architect, essentially redoing
the design work, or to continually consult with the original designer, making that person a
bottleneck in the development effort and creating significant source of risk.

One way that developers have attempted to provide more precise descriptions of archi-

4 A Formal Approach to Software Architecture

tectures is through the use of implementation constructs such as objects or shared com-
munications infrastructure. An architecture might be realized, for example, as a “layered”
implementation, where lower layers implement infrastructure to support particular kinds
of interactions, while higher layers correspond to architectural components. In this model,
the module structure, defined in a programming language such as Standard ML [HMM86]
or Ada [DoD83] can be taken to represent the “architecture” of the system. However,
when interpreted this way, calls that appear to communicate with modules at lower layers
of the infrastructure may actually represent indirect, abstract communications with other
components at the same level as the caller.

The absence of an abstract definition of the interactions within a layer means that overall
system behavior presented in the architecture is difficult, if not impossible, to analyze.
Abstract behaviors must first be extracted from the many concrete details of the lower
layers of infrastructure, and only then can system behavior be meaningfully considered.
The abstract behavior of components and their interactions is still not explicitly defined,
and so analysis can not be carried out at an abstract level.

For example, suppose we have a system that performs a series of data transformations,
and that the details of the system’s interactive behavior are described in terms of calls to
an input/output implementation library. If the abstract architectural description provides a
throughput figure for each of the components, what can we determine about overall system
throughput? Unfortunately, we can say nothing more than that it is probably no better than
the worst single component in the system. There are so many different interpretations and
implementations of data input/output systems that a composition of the individual figures
to construct an aggregate throughput can not be justified without extensive analysis of the
actual code underlying the architecture.

When component interactions are, at most, informally specified, it is also more difficult
to reuse high-level design effort in other systems. There is no way to determine whether an
architecture or pattern of composition may be appropriate in a different context, because
it is not clear which properties of a system are intrinsically part of its architecture and
which properties are incidental to the architecture, arising from how the architecture is
interpreted in the implementation. When the architecture is bound into an implementation
structure it becomes more difficult to extract and consider the architecture independent of
the full details of the system in which it was constructed. The architectural assumptions of
a component or communication infrastructure element are not explicit and so it is risky and
often impossible to move that element to another system.

Current approaches to architectural style are also informal and ad hoc. The architectural
style of a system, if one is identified at all, often appears as a simple phrase characterizing
the system. A system description might include a catch-phrase such as “pipe-and-filter”
or “centralized database.” These descriptions appeal to the developer’s (or other reader’s)
intuitive understanding of a style and do not have any precise definition behind them.

A style might be known by a prototypical example or a recognizable topology. For
example, many data transformation systems have a “pipeline” topology. The architecture
of these systems might be considered examples of the pipeline style.

Sometimes a specialized notation supports a style. These notations include ways of
composing a system from parts or of specifying a component or connector. For example,
CORBA’s Interface Definition Language [OMG91] has been developed to specify inter-

Chapter 1. Introduction 5

faces to distributed objects. CORBA IDL can be viewed as a language for specifying
connectors in distributed object systems. Other examples of style-specific models of sys-
tem construction include the POLYLITH Software Bus [Pur94] and FIELD’s event-based
tool integration [Rei90].

Styles also appear as a library of routines or other run-time system. For example,
the Task Control Architecture [SLF90] provides a collection of procedures to support
communication in a robot controller.

For individual styles, some progress has been made on combining notations and tool
support specifically at the architectural level. Examples include architectures and tools
developed under the Domain Specific Software Architecture program [DAR90].

All of these approaches to style are informal. Although they may have well-defined
tools (such as a notation or run-time system), the architectural implications of the style lack
a precise characterization.

This lack of a precise characterization means that communicating the meaning of the
style to others is difficult. Often, only the originators of a style or a few “gurus” understand
the style in depth. This limitation reduces the utility of the style. In the absence of a well
defined style the architecture of a system drifts away from that style and becomes difficult
to understand or support.

The lack of a precise formal basis for style also limits the analytic leverage of a style. It is
essentially impossible to prove properties of an informal style or of a system architecture that
refers to such a style. In addition, there is no way to confirm that a system’s implementation
corresponds to an informal architectural description.

1.3 Partial Solutions

As we have seen, the current informal practice of the description of configurations and styles
limits the extent to which we can take advantage of software architecture in the design and
analysis of software systems. Analysis of configurations and component interaction is
hampered either by the absence of a precise specification of a system’s architecture or by
having it encoded in terms of implementation details. Exploitation of style is hampered by
the inability to precisely characterize a style and to reason about the relation of individual
systems to that style.

Progress has been made on providing a more sound, practical basis for describing and
reasoning about software architecture. Current suggested solutions to this problem fall
into two categories, which we will consider in this section. The first kind of solution
is to apply existing formal methods to architectural design, and the second is to develop
notations, architecture description languages, to supplement or replace informal boxes-and-
lines diagrams. Each of these approaches has important benefits. At the same time, each
has weaknesses that mean that the approach cannot, alone, provide a sufficient basis for
architectural description and analysis.

6 A Formal Approach to Software Architecture

1.3.1 Formal Methods

One possible solution to the ad hoc state of the practice in architecture is to apply general
formal methods to modelling and analyzing architectures and architectural styles. By
providing a precise semantics for the system at the abstract level of architecture, a formal
model of the system can provide the basis for rigorous, justifiable analysis of critical system
properties. If formal modelling is applied at the level of style, analyses can be extended
to any system that conforms to the style. For example, in [AG92], we used Z to formally
prove that any system in the pipe-filter style can be encapsulated as a filter in another, larger
pipe-filter system.

A formal model of the architecture can also be used as a basis for verification of an
implementation. Because the constraints that must be met by a system are precisely defined,
it is possible to determine whether a system conforms to an architecture and whether a
given architecture conforms to a style. Also, a formal model can expose exactly the
abstractions that are of importance, without binding other implementation details, and thus
the implementation can retain the flexibility to alter non-architectural decisions without
violating the architecture or requiring that all analyses (from the architectural level) be
redone.

By raising the level of abstraction at which the semantics of a system are defined,
a formal description of an architecture has the potential to increase the architecture’s
effectiveness as a vehicle for communication about a system’s design. The nature of the
compositions and the role of each component in a system’s functionality are highlighted by
reducing the amount of detail in the description. Thus, a properly structured and abstract
formal description can retain much of the simplicity of a “box-and-line” description while
providing much more information about the actual character of the system.

Unfortunately, the application of a general formal method to the description of software
architecture and architectural styles is not a trivial undertaking. The very generality of
formal methods means that, at a given level of abstraction, all of the architectural structures
and semantics must be laid out before a system or family of systems can be analyzed.

The lack of pre-defined structure of a general formalism means that the architectural
abstractions must be defined from first principles for each new description. For example,
architectural descriptions are based fundamentally on the principle of localization, but a
formalism such as CSP provides no means of localizing the effect of an interaction so that
it is independent of the global context in which it is placed. Also for example, a formalism
such as Z provides little in the way of a computational model; thus, to provide a model of
the communication patterns of a system or style, one must be constructed from basic sets
and relations.

At best, a formal model of a system or style “reuses” the intuitions of the model’s
developers from their previous experience. There is no common framework upon which
the structural patterns and abstractions of an architectural description can be based.

Because there is no common framework, each style developer must invent his or her
own models and tools to support architectural abstractions. Developing these models is
costly. As a result, the models are often elaborated only as much as the original developer
needs. This means that the abstractions used to structure the system may be ill-understood,
inadequately supported, and, worse, lost or forgotten as the implementation of a system

Chapter 1. Introduction 7

evolves. The use of these ad hoc formalizations does not provide the abstraction and
understanding of the system for which it was developed.

1.3.2 Purely Structure-based Architecture Description Languages

Another approach to supporting architectural description and analysis is through Architec-
ture Description Languages, or ADLs. These languages provide notations for decomposing
a system into components and connectors and specifying how these elements are combined
to form a configuration.

By providing a direct realization of architectural abstractions as constructs in a descrip-
tive notation, ADLs permit architects to expose and define the structure of their systems.
This provides a means of communicating more effectively for the purposes of evaluating
the design, for considering how it might be adapted to another use, and for guiding detailed
design and implementation of the system.

ADLs, through the use of large scale constructs and the encapsulation of different parts
of a system, are well-suited to the description of real systems. They permit the architect
to select the level of granularity at which the system will be described and to encapsulate
different parts of the system in separate, hierarchically structured descriptions.

As a central, abstract description of the system that can be tied directly to implementa-
tions, an explicit architectural description can serve as a central focus for tracing different
aspects of the system. These aspects include allocation of requirements, division of de-
velopment responsibility and effort, changes to the system over time, and incremental or
dynamic construction.

If tools are provided to support the notation, a description of a system or style in an
ADL can be used to generate more reliable implementations at lower cost, by reducing the
amount of new code that must be developed and increasing reuse (through the selection of
appropriate implementations by the tools). Also, style-specific analysis can be exploited
when a system configuration is described using style-specific vocabulary and tools. For
example, the MetaH notation provides a complete environment to support the development
and implementation of avionics control systems [WKE93].

Typically, however, ADLs provide no direct means of specifying properties of individual
elements such as the behavior of a component or the pattern of interaction represented by
a connector.1 This means that there is little or no analytic leverage to be gained from these
notations.

A particular ADL may support system construction (i.e., compilation and runtime
instantiation) by making implementation units correspond to components and the use of
particular infrastructure for interaction. However, this does little to inform the architect
about what properties his or her system will have, whether it will meet its requirements, or
even if the description is internally consistent.

Some ADLs do provide significant analytic leverage (e.g., MetaH). But they do so by
fully defining certain aspects of the system (typically interaction semantics). These con-
straints mean that the range of systems that can be described in the notation is significantly
limited. In effect, these ADLs actually define one particular style, allowing configurations

1There are some exceptions, such as Rapide. These are discussed in chapter 2.

8 A Formal Approach to Software Architecture

in that style to be described, but not permitting the description of configurations outside that
style or the description of any style. Thus, while they provide significant leverage when
that particular style is appropriate and the design is known, from the beginning, to be in that
style, they can not provide any support outside the domain for which they were developed.
It also is not possible to use the notation to describe and analyze families of systems, rather
than a single system at a time.

1.4 A Balanced Approach: Formal Basis for Architectural
Description

These two approaches to software architecture have complementary strengths and weak-
nesses. Formal methods provide strong analytic power, abstraction, and independence
from implementation details, but they have the weakness that they fail to provide basic
architectural constructs and abstractions, such as connectors and styles, directly. This leads
to the separate development of these concepts for each new description and an inability to
get results in a cost-effective manner.

ADLs, on the other hand, provide a much better match to architecture by defining nota-
tions for components and connectors that are ready to apply to the problem of constructing
complex real-world systems. Currently, however, ADLs are weakened by exactly those
things that make formal methods attractive: The ADLs are either weak in analytic power,
overly-specific to a subset of systems of interest, tied to specific implementations, or express
the architecture at an overly concrete level of detail.

What we need instead is a way of combining these two approaches: To proceed by
recognizing the structure and abstractions of architecture, to make the description tractable
while providing a formal basis for reasoning about the properties of the system. This avoids
the problem of intractability and impracticality of a general formal method while providing
the benefits that are unavailable in a semantics-free or implementation oriented architecture
description language.

In this dissertation I show that:

An Architecture Description Language based on a formal, abstract model of
system behavior can provide a practical means of describing and analyzing
patterns of discrete, asynchronous interaction in software architectures and
architectural styles.

Our demonstration of this claim will be through the example of a particular formal
architecture description language, WRIGHT, which models connector types as abstract pat-
terns of interaction using a CSP-like notation, and defines architectural styles by predicates
constraining configurations. WRIGHT connector types define an abstract model of the rela-
tion between discrete, asynchronous component actions, modelling patterns of interactions
independent of particular component instances. In addition to showing the utility and prac-
ticality of WRIGHT, we will further suggest how this model can be extended to other kinds of
interactions and architectural connections such as synchronous communication and global
data-dependent properties.

Chapter 1. Introduction 9

1.5 Requirements for Description and Analysis of Archi-
tecture

In order to provide a practical basis for description and analysis of architecture, a notation
or model must support the following:

� Description of architecture configurations: The ultimate goal of architectural de-
scription is to capture and exploit a system’s structure at a high level of abstraction.
It must be possible to define the components that will occur in a system and the
interactions between them.

� Description of architectural styles: Beyond describing single systems, architects
should be able to delineate the members of a family of systems. These architectural
styles provide a means of exploiting commonalities between systems and for leverag-
ing analyses and implementation efforts. Additionally, the two kinds of description
should be able to be combined — given a configuration, we want to know if it is a
member of a given style.

� Analysis of properties of interest: An important goal of the descriptive activity is to
use the description to understand properties of the system that has been or will be
constructed. The architect must be able to use a description to analyze the system or
style to determine whether it satisfies its requirements. Note that it is important to
analyze both individual configurations and architectural styles. Ultimately, it is the
properties of individual systems that are important, but analysis of styles provides
important leverage by applying to more than one architectural configuration.

� Application to practical problems on real systems: While some analytic leverage is
arguably an improvement over no ability to analyze a description, a notation is not
generally practical if it can only be applied in tightly constrained circumstances or
only on small systems. A practical notation must address this by scaling to apply to
complex, real-world problems.

By exhibiting a language that meets these requirements, we can demonstrate the utility
of our approach, combining the power of formal methods with the utility of Architectural
Description Languages.

1.6 The WRIGHT Architecture Description Language

In the remainder of this dissertation we introduce WRIGHT, an architectural description
language based on the formal description of the abstract behavior of architectural compo-
nents and connectors, to show how it can meet the above requirements. WRIGHT provides
a practical formal basis for the description of both architectural configurations and of ar-
chitectural styles. It is distinguished by the use of explicit, independent connector types
as interaction patterns, the ability to describe the abstract behavior of components using a
CSP-like notation, the characterization of styles using predicates over system instances, and

10 A Formal Approach to Software Architecture

PAT_Bus

(VehicleModel)

Pittsburgh

(TerrainModel)

UpdateValue

Figure 1.2: Diagram of example architecture.

a collection of static checks to determine the consistency and completeness of an architec-
tural specification. Because the semantics of WRIGHT specifications are formally defined,
an architecture characterized in WRIGHT provides a sound basis for reasoning about the
properties of the system or style described.

1.6.1 Architectural Configurations

To give a sense of WRIGHT and its capabilities, we now now illustrate the main ideas using
a simple example. The example is a simplification of the case study described in chapter 6.

Consider a simple system to simulate a bus driving through Pittsburgh. One possible
architecture is shown in figure 1.2. One component models the bus and its movements, while
another maintains information about the environment through which the bus travels. The
two components communicate by transmitting updates of the values of objects’ attributes.
Figure 1.3 shows the outline of how this would be expressed in WRIGHT. This figure
shows the main elements of a configuration description: the use of explicitly described
components and connectors, and the delineation of instances and their attachments. The
basic configuration corresponds to the diagram of figure 1.2, but provides constructs for the
definition of computational elements and their combination via connectors. In our example,
the terrain model Pittsburgh is accessed by the vehicle PAT Bus, using the UpdateValues
interaction pattern.

In WRIGHT, the description of a component has two important parts, the interface and
the computation. A component interface consists of a number of ports. Each port defines
a separate interaction in which the component will participate. Both components in our
example have only a single interaction. The Pittsburgh component will provide map value
updates via the ProvideMap port, while the PAT Bus component will interact with its
environment via the Environment port.

A connector represents an interaction among a collection of components. For example,
a pipe represents a sequential flow of data between two filters, while an RPC connector
represents one component requesting a service of another. A WRIGHT description of a
connector consists of a set of roles and the glue. Each role defines the behavior of one
participant in the interaction. A pipe has two roles, the source of data and the recipient.
In our example system, the C connector has two roles, one for each Model that it will
coordinate. The connector glue defines how the roles will interact with each other.

Each part of a WRIGHT description – port, role, computation, and glue – is defined using

Chapter 1. Introduction 11

Configuration SimpleSimulation
Component TerrainModel(map : Function)

Port ProvideMap = [Interaction Protocol]
Computation = [provide terrain data]

Component = VehicleModel
Port Environment = [Interaction Protocol]
Computation = [compute vehicle movement]

Connector UpdateValues(nsims : 1..)
Role Model1::nsims

= [Interaction Protocol]
Glue = [Data travels from one Model to another]

Instances
Pittsburgh : TerrainModel([map of Pittsburgh])
PAT Bus : VehicleModel
C : UpdateValues(2)

Attachments
Pittsburgh.ProvideMap, PAT Bus.Environment as C.Model

End SimpleSimulation.

Figure 1.3: A simple simulation.

a variant of CSP [Hoa85]. For example, the Model role of UpdateValues might be defined
by:

Role Model = update!x !Model
u request !newValue?y !Model
u x

This defines a participant in an interaction that repeatedly either provides an updated value
(update!x) or requests a new value (request). If it requests a new value, it will be provided
one (newValue?y). It may also choose to terminate successfully at any time (x).

Simply by making the meaning of an architectural description precise, WRIGHT can
help the architect communicate his or her ideas to others. For example, the Model role
defines exactly what actions a component may or may not take if it is to participate in an
UpdateValues interaction. While this precision is valuable simply in terms of description,
it also provides a basis for analyzing architectures. As we will discuss in later chapters,
descriptions of connectors can also be used to determine whether the connector satisfies
certain critical properties. These properties include the internal consistency of the protocol
and whether the roles are sufficiently constrained to ensure proper behavior by participants.
In considering the UpdateValues connector above, for example, we notice that, as it is
described, if both PAT Bus and Pittsburgh were to choose to request a value before providing
an update, a conflict will occur. Both expect a value and there is no value available. In
addition to analyzing connectors, components can be analyzed to determine, for example,
whether they conform to their interface specifications.

WRIGHT further structures the description of an architectural configuration by distin-
guishing between component or connector types and specific instances of them in the
configuration. In our example, UpdateValues is a connector type: it is defined by a set of
potential participants, the Models, and constrains how they may behave, via the Glue. C is

12 A Formal Approach to Software Architecture

an instance of this type: it has two particular participants, Pittsburgh and PAT Bus, which
are associated with the protocol in the attachments (PAT Bus through port Environment,
will play one of the Model roles in the interaction, for example).

The global behavior of a WRIGHT architecture system instance is constructed from the
processes introduced by the component and connector types. This is done by suitable
renaming of events so that a component’s events are communicated via the connectors
to which it is attached. In particular, renaming causes the glue of a connector to medi-
ate the interactions between the components – effectively enforcing its protocol on the
communication.

By deriving the global system behavior from the architectural structure and behavior
descriptions of types, WRIGHT provides a means of extending the type-level guarantees to
system instances. At the configuration level, WRIGHT provides checks to confirm that a
given component port properly fulfills the obligations of any role to which it is attached. If
the appropriate constraints are met, then any analyses at the type level automatically apply
to instances.

1.6.2 Architectural Style

In addition to describing and analyzing system configurations, WRIGHT permits the designer
to describe and analyze entire families of systems, or architectural styles. As we discussed
above, by formalizing a style the architect is able to leverage analysis across many systems
and thus reduce the effort to produce individual systems.

A WRIGHT style has two parts: (1) vocabulary and (2) constraints on configurations.
Vocabulary is introduced by defining component and connector types, just as in a con-
figuration. Constraints define predicates which must be true of any configuration in that
style.

For example, the simple simulation of a bus in Pittsburgh shown above can be viewed
as one member of a general class of simulations that are coordinated via an UpdateValues
connector. We can define a style to delineate this family as shown in figure 1.4. This style
provides the UpdateValues connector, so that it can be used in all configurations in this
style, as well as a generic interface definition that potential models may use. In addition,
the style indicates that there will be exactly one form of interaction, and that it will be via
an UpdateValues connector. Because there are no constraints placed on components, a
configuration in the style is free to use any collection of components that can participate in
the UpdateValues connector. Both the number and the computation of the components can
vary.

In later chapters we will show how WRIGHT supports the practical analysis of styles both
for consistency and for special properties of interest to architects that might use the system.
For example, we will show in a fuller elaboration of the simulation style that the omission
of a parameter from the start-up routines of individual simulations leads to situations where
there can be no consistent global notion of a “paused” simulation.

Using the Simulation style, we can restate the original simple simulation configuration.
This new description, shown in figure 1.5, is simpler because it doesn’t need to redefine

Chapter 1. Introduction 13

Style Simulation
Interface Type SimInterface = [Interaction of one simulation]
Connector UpdateValues(nsims : 1..)

Role Model1::nsims = SimInterface
Glue = [Data travels from one Model to another]

Constraints
9C : Connectors j fCg = Connectors

^ Type(C) = UpdateValues
End Style.

Figure 1.4: A simulation style.

Configuration SimpleSimulation2
Style Simulation

Component TerrainModel(map : Function)
Port ProvideMap = SimInterface
Computation = [provide terrain data]

Component = VehicleModel
Port Environment = SimInterface
Computation = [compute vehicle movement]

Instances
Pittsburgh : TerrainModel([map of Pittsburgh])
PAT Bus : VehicleModel
C : UpdateValues(2)

Attachments
Pittsburgh.ProvideMap, PAT Bus.Environment as C.Model

End SimpleSimulation2.

Figure 1.5: A simple simulation (revised).

the vocabulary introduced by the style.2 Also, because its relation to the larger family of
systems is now explicit, architects can take advantage of results for the style when analyzing
the individual system.

1.7 Summary of Contributions

Beyond the overall contribution of demonstrating the practicality of a formal approach
to architectural description and analysis, the contributions of this thesis fall into four
main categories: the general foundations of software architecture, description and analysis
of software architectures, the value of WRIGHT specifically, and contributions to formal
methods generally. In each category, the contributions are as follows:

2While this example is not much simpler, because of its small size, we can see that the relative amount of
simplification grows with the size and complexity of the system being described.

14 A Formal Approach to Software Architecture

� To Architectural Foundations

– Explicit connectors – an improved understanding of connector types as patterns
of interaction;

– Notion of style as a predicate over configurations;

– Example of providing alternate architectural semantics based on architectural
structure.

� To Architectural Analysis/Description

– Abstract behavior as a semantic basis for architectural description – beyond
structure, but using structure;

– Technique of encapsulation/structural induction as a reasoning principle in fam-
ilies of systems;

– Coverage of both instances and styles in the same formalism.

� Specific Benefits of WRIGHT

– An Architecture Description Language that provides precise, practical, archi-
tecture descriptions and the ability to analyze them;

– Consistency/completeness checks beyond syntax and name matching, with au-
tomated tools to check them;

– Results of “HLA” case study are useful to developers of that style.

� To Formal Methods in General

– An example of domain specialization;

– Consideration of families of systems.

1.8 Plan of Dissertation

The next chapter of this dissertation surveys research related to this dissertation. Then,
in chapter 3 we introduce WRIGHT in detail. This is the key chapter for those who want
an introduction to WRIGHT and the standard checks, as it explains the language and its
constructs as well as discussing the intuitions behind its use.

The next three chapters demonstrate the value of WRIGHT through three case studies.
The first, chapter 4, describes the AEGIS system and shows an extended description and
analysis of a configuration. The second, through the “Justo-Cunha” style, demonstrates
the analytic leverage to be gained by considering styles. The third, chapter 6, explores
the “High Level Architecture for Simulations” and shows how WRIGHT can be applied to
large-scale systems. It will also provide some specific techniques for handling the need
to balance the amount of effort against the benefit of achieving a given level of analytic
leverage.

Chapter 1. Introduction 15

In chapter 7 we discuss the automation of WRIGHT’s consistency and completeness
checks using commercial model checking tools. Chapter 8 shows an example of extending
WRIGHT descriptions for analysis using semantic models not based on CSP.

In chapter 9 we provide a critical evaluation of WRIGHT, asking whether it does indeed
meet the requirements described above. We will thus show the practical applicability
of a formal architectural description language to the task of analyzing and describing
architectural interconnections and styles.

Finally, we conclude in chapter 10 with a summary of contributions and a discussion of
future work.

16 A Formal Approach to Software Architecture

Chapter 2

Related Work

2.1 Introduction

In this chapter we present an overview of related work. We begin with a brief overview
of the origins of the field of software architecture, and then discuss work in two categories
that are most closely related to our work: The application of general formal methods to
architectural analysis and the development of Architecture Description Languages. We
include such tools as Aesop, which provide the means of describing architectures but are
not strictly languages, in Architecture Description Languages. We will further discuss
work in programming languages as well as other kinds of system description languages
such as Module Interconnection Languages that relates to the work of this dissertation.
Additionally, we will discuss object-oriented design notations, as well as some efforts to
support architectural analysis that are not tied to a specific representation.

2.2 Conceptual Background

A conceptual basis for software architectural was originally laid out by two groups, Shaw
and Garlan, and Perry and Wolf. In this early work, the main issues and conceptual building
blocks, such as components, connectors, configurations, and styles, are described. These
motivational papers [PW92, GS93, SG94, SG95] introduce the concept through informal
examples, and do not attempt to supply specific mechanisms or notations. Rather, they
identify an emerging field and call for research in the area.

Shaw and Garlan [GS93, SG94, SG95] describe software architecture as a necessary
step in raising the level of abstraction at which software is conceived and developed. They
explain that, just as the informal development of knowledge about data types in the sixties
led to its codification as abstract data types in the seventies, so developers are starting to
achieve an informal notion of module integration and architectural design, and this will
lead to its codification as software architecture. They describe a collection of architectural
styles, such as pipe-filter systems and blackboards, to show that this kind of abstraction is
found informally in practice and to provide an example of design trade-offs in the selection
of styles.

Shaw and Garlan present a model of architecture based on two abstractions: the com-

17

18 A Formal Approach to Software Architecture

ponent, an independent unit of computation, and the connector, an interaction among
components. Shaw and Garlan suggest that architectural styles form around component
and connector types, repeating patterns of computation and interaction, together with rules
for how these are used in specific configurations.

Perry and Wolf [PW92] describe an overall view of software architecture as a mediator
between requirements and design. They espouse an abstract view of architecture as a triple:
(Elements ;Form;Rationale). They justify this through a view of the architectural process
as the successive application of constraints to a design. They also introduce the idea of
style as constraints on a class of architecture; however, they do not make a clear distinction
between instances and styles. For them an architectural configuration also consists of a
collection of constraints, and so the division between a configuration and a style is blurred.

While our model of style as constraints on configurations is compatible with Perry
and Wolf’s view of style, our model of configurations is more closely aligned with that
of Garlan and Shaw. We will make a clear distinction between styles, which are defined
via constraints on architectures, and configurations, which instantiate architectural types in
a specific topology. Variability within a single configuration, rather than begin modelled
via sets (as is a style’s variability), appears as non-deterministic behavior or abstraction of
details.

2.3 Formalization of Architecture

Efforts to formalize software architecture began with efforts to apply formal methods
directly to individual systems or styles. More recently, there have been some more general
treatments of architectural description and analysis. Our discussion of formalization begins
with the characterization of individual systems and styles.

2.3.1 CHAM

Most uses of general formal notations in architectural description have focussed on the
description and characterization of architectural styles.1 One exception is the work of
Inverardi and Wolf [IW95].

In this work, the CHAM (Chemical Abstract Machine) model [BB92] is applied to the
description of the architecture of a compiler. This formalization describes the structure and
abstract behavior of a single configuration, rather than a class of systems. Inverardi and
Wolf argue that CHAM provides a useful basis for the description of architecture because
of its ability to compose specifications from parts and to explicitly describe computation
rules.

However, because this work has, to date, been presented in the context of a small set
of example systems, it does not provide a general means of formalizing architectures. Any
structuring that takes place in a system model must be constructed from scratch for that
system, with little or no means of extending analysis beyond the individual system and the
properties of that system that are originally laid out. Further, because the formalization

1This is probably because efforts on characterizing individual configurations have primarily taken an ADL
approach.

Chapter 2. Related Work 19

is unique and hand-crafted, there are no clear criteria for analyzing the consistency or
completeness of the configuration description.

2.3.2 Formalizations of Individual Styles

There have been a number of efforts to apply formal methods to the characterization of
architectural styles. These efforts have used Z [Spi92] as their notation, and describe the
structure and semantics of a single class of system. Examples include formalization of
a class of signal processing applications [DG90], event systems [GN91], the pipe-filter
style [AG92], and an object-composition standard [SSM97].

These formalizations have the advantage of applying to a class of systems rather than a
single system, and thus have the potential to apply their analysis to multiple systems. They
establish properties that systems in the described style share as well as precisely delineating
membership in the style.

However, these stand-alone efforts have significant shortcomings that limit the prac-
ticality of this approach: First, each is described in isolation, and the abstractions and
techniques that they share by virtue of describing architectures must be re-invented for each
formalization effort. Thus the cost of developing such a formalization is increased and the
availability of tools is limited. Second, because they develop the semantics of a style from
scratch, these formalizations provide no direct means of characterizing a specific system
configuration. This means that there are only informal means of comparing any configu-
ration description with the style and thus taking advantage of the style’s properties. Third,
again because they are developed independent of a general architectural model, it is not
clear how to establish important properties such as the style’s consistency or completeness.

Our approach differs from these efforts in providing a single, common architectural
framework in which to model the semantics of a style. By providing an architectural
framework and vocabulary, we make it easier to describe and analyze a new style. This is
because the common architectural abstractions are already available, and only the unique,
style-specific definitions must be introduced. Additionally, by using an architectural nota-
tion, we provide a more natural means of expressing the architectural concepts that form a
style.

2.3.3 Generalization of Style in Z

Observing that many individual style formalization efforts shared a common set of charac-
teristics, Abowd et al. [AAG93, AAG95] define a common framework in Z for the definition
of an architectural style. This framework specifies that a style is defined by three parts:
A concrete, style-specific vocabulary for the description of instances, a semantic model
for reasoning about systems, and a set of interpretation mappings from the configuration
syntax into the semantic model. These mappings provide interpretations for component,
connector, and configuration descriptions.

By providing a common framework for formalizing style, Abowd et al. are able to
compare styles that share a common semantic model and to provide guidance to developers
regarding the steps that are necessary to formalize a style. Thus, while the effort to formalize
a style has not necessarily been reduced, it is at least clear what is involved.

20 A Formal Approach to Software Architecture

Their common model has a number of advantages over stand-alone style characteriza-
tions: It clarifies the relationship between a configuration and style, by showing how a style
defines a semantic model (i.e. a collection of related Z schemas) and a configuration is an
element of that model (i.e. an instance of one of the schemas). It provides an interpretation
of configuration consistency (its description must be in the domain of an interpretation
mapping). It permits some styles to be related to each other (if they share a semantic model,
then their intersection can be computed). In effect, this work contributes to the theory of
software architecture by providing a possible model for what a style is, and how a style
model relates to descriptions of configurations.

However, this approach has three main disadvantages that limit its practical application:
(1) The cost of developing a style, (2) the use of unique semantic models, and (3) the depen-
dence on style-specific syntax. The first disadvantage arises directly from disadvantages
(2) and (3). Because there is no common framework for semantics, there is no less effort
involved in describing a style using the techniques of Abowd et al. than there is for the
stand-alone efforts described above.

The use of unique, style-specific syntax and semantics leads to two difficulties: First,
there is no way to describe and analyze a system that is not a member of a style. Because all
decisions about descriptive form and semantics are tied to a style, it is necessary to decide
what style is to be used for a system before it can be described. Because the semantics are
style specific, if a system is not a member of a style, it cannot be assigned any meaning in
the given framework. It is not feasible to develop a style by generalizing from a collection
of system examples, because the examples can not be precisely characterized without the
style.

Our approach is consistent with the theory of Abowd et al. but with a crucial difference:
We allow a style to introduce new vocabulary for use in configurations, within the framework
of a common notation. That is, we permit a style developer to augment an existing syntax and
semantics. Thus, while Abowd et al. provide a framework for understanding the relation of
an architectural style to description and analysis of configurations, we provide more direct
support for style specific description and analysis. Our notation does this by starting with
a common syntactic and semantic basis, and providing notations for characterizing a style
and its configurations. The style developer is not required to construct special interpretation
mappings or underlying semantic models, because our model provides them already.

2.3.4 Moriconi et al.

The style model of Moriconi et al. [MQ94, MQR95] is similar to that of Abowd et al.
with two main differences: They use first-order logic for the definition of both configura-
tion and style structures, and they provide a specific model of style-based refinement of
configurations.

Like Abowd et al., they define a style through style-specific vocabulary and semantics,
and also like Abowd et al., the definition of a configuration is in terms of that style-specific
vocabulary. Instead of providing interpretation mappings that map distinct configuration
entities into a style’s semantic space, however, they define a configuration as a collection
of predicates in first order logic, which refer to the atomic predicates defined and related by
a style. Thus, Moriconi et al. view a configuration as a logical theory that includes a style’s

Chapter 2. Related Work 21

theory. Like Abowd et al., however, a configuration can not be interpreted independent
of the axioms provided by the style, as the style gives meaning to the terms used in the
configuration’s axioms.

The most important difference between the work of Abowd et al. and Moriconi et al.
is the latter’s focus on a regular model of refinement. Moriconi et al. define refinement
through interpretation mappings from one logical theory (i.e. a configuration or a style) to
another. They use semantic mappings to relate styles and then reuse the semantic mappings,
together with name mappings between instances, to relate configurations.

In this model, a refinement mapping is considered legal if the image of the concrete
theory under the mapping is exactly equivalent to the abstract theory. That is, all properties
that are provable in the abstract theory must be provable in the concrete theory, and all
properties that are expressible but not provable in the abstract theory must not be provable
in the concrete theory, as mapped into the vocabulary of the abstract theory. This strict rule
defines a refinement relation, rather than true equivalence, because the concrete theory is
allowed to add additional properties as long as they occur only in vocabulary that is not
mapped into the vocabulary of the abstract theory (and thus can not be used in any proofs
in the abstract theory).

Because they use a similar style definition model, where a unique syntax and semantics
are developed for every style, Moriconi et al’s model suffers from the same weaknesses as
that of Abowd et al. Each style must re-define its own constructs for structuring configura-
tions and provide compositional rules for the meaning of configurations of elements.

Additionally, because a style must define a complete, self-contained theory, and because
configurations are also interpreted as theories, reasoning about configurations and their
conformance to a style is complicated. Moriconi et al require a completeness assumption
about their specifications. The completeness assumption states that all properties not
provable in a theory are false. This assumption means that all proofs of refinement or style
membership are required to make an argument about the weakness of their specification as
well as the much simpler demonstration of property satisfaction. This further means that if
an architect wishes to permit a property to be un-specified in a given system description,
he or she must select a semantic theory in which it is impossible to state that property.
Otherwise, failure to specify a property supplies a default answer. It is simpler, and more
typical, in formalization to select a fixed specification language and to use non-determinism
to indicate when a given property is not constrained. This is the approach we have taken.
In this approach, if a property cannot be proved either to be true or false in a specification, it
is assumed that a refinement may make either choice. Moriconi’s completeness assumption
complicates reasoning because the language used must be modified whenever the specifier
wishes to leave a given decision unbound. The distinction between these approaches is
similar to the distinction between initial, terminal, and loose semantic interpretations in
algebraic specification, as discussed in, for example [Wir90].

2.3.5 Reflexion Model

Another technique that can be used to study the relation between different specifications
has been developed by Murphy et al. [MNS95]. Given a pair of graphs, one representing an
“abstract” specification and another a “concrete” specification, and a mapping between them

22 A Formal Approach to Software Architecture

(of nodes to nodes), they compute a “reflexion model.” The reflexion model identifies the
relation between edges in the two graphs. For any pair of nodes, there are four situations: An
edge is present in the abstract graph but not the concrete, an edge is present in the concrete
graph but not the abstract, an edge is in both graphs, or there is no edge in either graph.
Examples of abstract graphs include architectural configurations, object-class diagrams,
entity-relation diagrams, etc. Examples of concrete graphs include module dependency
graphs and data- and control-flow graphs automatically derived from source code.

Murphy’s reflexion model does not provide a model of architecture, but can be used
to take advantage of one if it is defined. For example, a reflexion model could be used to
consider the relation of an abstract architectural description (in our notation, for example)
and a system’s implementation.

2.4 Architecture Description Languages

Recently there have been proposed a number of Architecture Description Languages. These
languages provide notations for describing the structure of software systems in terms of
hierarchical configurations of interacting components. These languages provide an explicit
and common basis for describing architectural configurations. Thus they do not suffer
from the problems discussed in the previous section that arise from the requirement that
structures be re-invented for each new system. However, as we will see, current ADLs
have three major weaknesses: Lack of support for style, lack of a basis for architectural
analysis, and insufficient ability to describe architectural interactions (connectors).

2.4.1 Darwin

Darwin [MDEK95, MK96] is an architectural description language developed by Magee and
Kramer. It describes a component type by an interface consisting of a collection of services
that are either provided (i.e. declared by that component) or required (i.e. expected to occur
in the environment). Configurations are developed by component instantiation declarations
and bindings between required and provided services. Darwin supports the description of
dynamically reconfiguring architectures through two constructs — lazy instantiation and
explicit dynamic constructions. Using lazy instantiation, a logically infinite configuration
is described and components are instantiated only as the services they provide are used by
other components. Explicitly dynamic structure is provided through the use of imperative
configuration constructs. In effect, the configuration declaration becomes a program that is
executed at run-time, rather than a static declaration of structure.

Darwin provides a semantics for its structural aspects through the �-calculus [MPW92].
Each provided service is modelled as a channel name, while each binding declaration is a
process that transmits the name of that channel to a component that requires the service.
Magee and Kramer have used this model of structural elaboration to analyze the distributed
algorithm that they use in the implementation of Darwin configurations.

In a Darwin-generated implementation, each primitive (non-hierarchical) component
is assumed to be implemented in some programming language, and platform specific glue

Chapter 2. Related Work 23

component pipeline (int n) f
provide input;
require output;

array F[n]:filter;
forall k:0..n-1 f

inst F[k];
bind F[k].output -- output;
when k<n-1 bind

F[k].next -- F[k+1].prev;
g
bind
input -- F[0].prev;
F[n-1].next -- output;

g

Figure 2.1: A pipeline in Darwin[MK96, p. 5].

code is generated for each service type. The elaboration algorithm acts, essentially, as a
name-server that provides the location of provided services to any executing components.

Despite the presence of a �-calculus model for Darwin’s structural descriptions, Darwin
does not provide an adequate basis for analysis of the behavior of an architecture. This
is because the model does not provide any means of describing the properties of either
a component or its services. Component implementations are uninterpreted black boxes,
while the collection of service types is a platform-dependent collection whose semantics is
also uninterpreted in the Darwin framework.

Darwin’s support for architectural style is limited to the description of parameterized
configurations. For example, a Darwin pipeline description is shown in figure 2.1. This
description indicates that a pipeline is a linear sequence of filters, where each filter’s output
is bound to the input of the next filter in line.2

Using parameterization to describe families of systems means that only systems that can
be described constructively can be effectively characterized. That is, in order to delineate
membership in an architectural style it is essentially necessary to construct an algorithm that
can construct exactly those members of the style. In our approach, a style’s membership is
explicitly defined via the properties that are shared by all members.

Darwin’s support for architectural styles is further limited by its weak notion of con-
nectors. The provides/requires model of connection enforces an asymmetrical model of
interaction. It implies that there is always one party in an interaction that is responsible for
definition of the protocol. Thus, interaction patterns can not be described independent of
the component that provides it. This is a serious weakness for styles, since it is common to
introduce and support new models of interaction in a style while leaving the definition of
components to architects at the configuration level.

2Darwin does not define the semantics of its bindings however, so it is not clear what kind of interaction
occurs between filters. That is assumed to be defined by the filter that provides the interface point and the
underlying implementation platform.

24 A Formal Approach to Software Architecture

Darwin is also limited by its lack of an explicit means of introducing new service types.
Darwin assumes that the collection of service types is supplied by the platform on which
the implementation is to be developed, and relies on the existence of service type names
that are used, without interpretation, for compatibility checking. Thus, it can only provide
relatively restricted consistency checks on configurations.

In the next chapter we will show how our approach, which provides an explicit means
of defining the semantics of new connector types, supports a general form of consistency
checking.

2.4.2 UniCon

UniCon [SDK+95] is an Architecture Description Language developed by Shaw et al.
UniCon provides a configuration tool for constructing executable configurations based on
component types and implementations and “connection experts” that support particular
connector types. UniCon is similar to Darwin in that it provides tools for constructing
executable configurations based on black-box implementations and that it has a fixed
collection of interaction types, but it differs in its model of connectors.

Where Darwin provides interactions via asymmetrical provide/require declarations of
implicit connectors, UniCon supports explicit, symmetrical and asymmetrical connectors.
That is, an architectural configuration contains connector declarations that logically define
an interaction. Each connector has a collection of roles that define what participants are
expected in a given interaction. Component interfaces, rather than providing or requiring
services, are defined by players which have a type (indicating the nature of the interaction
expected) and a set of properties (providing details of the component’s interaction at that
interface). At the configuration step, players on components are associated with roles on
connectors.

While UniCon’s model of explicit connectors seems to provide promise for architectural
style, by creating a place where new interactions might be defined and compositional rules
elaborated, UniCon currently provides limited mechanisms for defining new connector
types. New types can only be added by hand-implementing new connection experts. This
adds to the collection of built-in, atomic types. Further, UniCon provides no means of
describing or delineating families of systems. Thus, analysis of architectures in UniCon is
limited to those tools supplied with the given connector types (which depend on specific
implementations of components and connectors) and there is no way to describe architectural
styles.

However, UniCon’s model of architectural description is fully compatible with ours,
and provides tools for implementation of systems that we do not. Thus, as we discuss in
chapter 10, if we describe the semantics of UniCon’s connector and component types in
our notation, the advantages of both can be gained. Our abstract formal model provides
analysis and consistency checking of configurations and styles, while UniCon provides
tools for construction of executable systems within the architectural framework.

Chapter 2. Related Work 25

2.4.3 Rapide

Rapide [LAK+95] was developed by Luckham et al. It is an Architectural Description
Language based on modelling computations and interactions as partially ordered event sets
(or “posets”) [Pra86]. Unlike Darwin and UniCon, which define the behavioral semantics
of components via their implementations, Rapide defines component types (called “inter-
faces”) in terms of a collection of communication events, which are either observed (Rapide
calls these “extern actions”) or initiated (“public actions”). Rapide interfaces define the
computational behavior of a component by relating the observation of extern actions to the
initiation of public actions.

Interaction between components is described for a particular configuration in one of
two ways: First, events can be “connected,” in which case they are aliased to the same
event. Second, an architecture can declare “constraints,” which specify causal relationships
between events on different components. Given a constraint, the initiation of one event will
result in the generation of another event following it in all event orderings, but they are not
considered the same event.

Rapide’s connections are similar to Darwin bindings in that they define an asymmetrical,
primitive relation between two components. The type language of actions permits the
definition, essentially, of function calls between components. (Events have parameters
and possibly return values.) As such, they, like Darwin bindings, are not adequate for the
introduction of new interaction types and do not support symmetric interaction patterns.

Rapide’s constraints might appear to provide better support for an explicit connector
mechanism, since related constraints can generate quite complex interactions between
components. However, these constraints can only be declared at the global configuration
level and therefore do not permit the localization of analysis of interactions. Further,
because the language does not permit them to be explicitly bundled as connectors, complex
interaction patterns (sets of constraints) can not effectively be reused in multiple contexts.
As we will show, the ability to localize and reuse both interaction descriptions and analysis
is critical to the practical characterization of architectural styles.

Rapide permits a form of consistency checking and analysis through architectural
simulation. In essence, the architecture is simulated, generating a partially ordered set
of events that is compatible with the interface, behavior, and constraint specifications.
Because the generated set explicitly defines causal relations between events rather than
simply providing one possible sequence of the events, simulation is useful for detecting
execution alternatives such as race conditions.

However, a given simulation execution will provide only one possible poset, rather than
all permitted posets. This means that alternatives due to non-determinism in a behavior
specification are not captured by architectural simulation.

Suppose, for example, that a component is specified as in figure 2.2. This component
has two different possible responses to the A event: either B and C will be generated (but
be independent), or C and D will be generated (again, independently). This results in
two different possible posets, shown in figure 2.3. On any given simulation execution,
only one of these posets will be generated. This means that using simulation to check for
architectural consistency is essentially testing the architecture, rather than an exhaustive
analysis. Failure to locate a problem provides no guarantee that the inconsistency will not

26 A Formal Approach to Software Architecture

type RapideComp is interface
extern action A();
public

action B();
action C();
action D();

constraint match
A() -> ((B() and C()) or (C() and D()));

end RapideComp;

Figure 2.2: A non-deterministic Rapide component.

A()

B() C()

A()

C() D()

Figure 2.3: Two alternative posets.

arise on a different execution.
In our approach, we define consistency checks that can be applied statically to an ar-

chitecture, rather than through simulation. Thus, our checks provide a stronger assurance
of consistency than Rapide’s. On the other hand, Rapide also provides a toolkit for in-
strumenting system implementations and then testing its conformance to the architectural
specification by simulating the architecture in parallel with the execution of the implementa-
tion. Further, Rapide supports the description and simulation of dynamic reconfigurations.

2.4.4 Aesop

The Aesop family of architectural design environments [GAO94] was developed by Garlan
et al. Aesop provides a vocabulary for architectural description through an object-oriented
framework of types. An architectural configuration is represented as an interconnected
collection of object instances, while the vocabulary of an architectural style is described
by defining subtypes of the basic architectural types: Component, Connector, Port, Role,
Configuration, and Binding. By default, an architectural configuration in Aesop is an un-
annotated hierarchical structure of components, connectors, and configurations. A style
provides attributes for representing the semantics of individual elements, tools for analyzing
and exploiting those specialized representations, and modifies the manipulation methods of
the base types to enforce style-specific constraints.

For example, a pipe-filter style would define a “filter” subtype of component, a “pipe”
subtype of connector, and appropriate port and role subtypes. The “insert port” method of
a filter, for example, would require that the inserted port be either a data input or output.
Additionally, tools could be introduced into the environment to generate implementations
of pipe-filter systems from the architectural representation.

Chapter 2. Related Work 27

Unlike the other ADLs we have discussed, Aesop does provide an explicit mechanism
for describing styles. However, Aesop, like much of the formal work, assumes that the
semantics of an architecture may be arbitrarily different for any style. As a result, it provides
no built in support for the description of a style’s or a configuration’s semantics. Rather, it is
left to the tools and the subtypes’ method definitions to provide this information implicitly.
Thus, Aesop can be used to support the analysis techniques of a particular formal method
or some other ADL (such as ours), but it provides no direct support.

2.4.5 ACME

ACME [GMW97] is another Architecture Description Language. Developed as a joint
effort of several architectural research groups, ACME is intended to serve as a least-
common-denominator interchange language for architectural descriptions. Like Aesop,
ACME defines a basic, un-interpreted vocabulary of components, connectors, ports, roles,
bindings, and configurations. These elements may have specifications associated with
them through property lists. In ACME properties may be specified in any language. The
semantics of the properties and, even, of the overall architectural specification are supplied
by these auxiliary languages. The goal is that a specification written in one language,
say UniCon, could share a common architectural structure with a specification in another
language, say Rapide, and thus the architect will be able to take advantage of the descriptive
and analytic tools of multiple Architecture Description Languages or formalisms. While
the languages we have previously discussed focus on providing rich notations and tools for
the kinds of architectural description and models that they support, ACME has focussed on
providing a common skeleton through which the benefits of other languages and tools can
be combined.

Thus, ACME is consistent with the ability to describe and analyze software architecture,
but it does not, in itself, provide a sufficient basis. It is only through mappings to other
languages that ACME descriptions can be interpreted and analyzed. As we discuss in
chapter 10, a mapping between WRIGHT and ACME is currently being developed.

2.5 Programming Languages, MILs, and IDLs

2.5.1 Programming Language Module Facilities

A number of programming languages have facilities for describing the composition of
systems at the module level. Examples include Ada packages [DoD83], Modula-3 mod-
ules [CDG+89] and Standard ML structures and functors [HMM86]. These provide a
means of developing components semi-independently of each other and composing them
based on their interfaces.

Ada packages provide a means of limiting the visibility of the definitions of a program
and for structuring the naming of constructs (such as types and procedures) in terms of
the module structure. By creating a package with separate specification and body, the
specification provides a boundary of abstraction and of information hiding, because the
language enforces the restriction that there may be no dependency by one package of any

28 A Formal Approach to Software Architecture

information that is contained in another package and not exported via its specification.
This facilitates the structuring of programs by limiting the inter-dependence of components
and by reducing the extent to which name-conflicts will result in the inability to reuse
a component in a particular context. However, the package facility has three important
limitations that make it insufficient for use as an architecture description language.

First, the structure of a program is not separated from the components, but rather
distributed throughout the packages. If one package uses, or depends on, another package,
it refers to that other package explicitly, by name. The overall structure of the system can
not be separated from the packages that make it up. If a package is to be used in multiple
systems, then either all of the packages that it uses must be brought along, or the package
must be modified to refer to the components in the new system.

Second, packages provide a means of limiting visibility of implementation constructs,
not of supplementing those constructs with abstract characterizations. In particular, pack-
ages do not provide a means of capturing abstract patterns of interactions between packages.
They define static interfaces and dependencies, but do not provide a basis for analysis of
interactions.

Third, packages provide no means of explicitly capturing a family of systems. While it
is obvious that in one sense, any collection of type definitions define a family of systems,
(namely, those that use the types legally), this is a limited way of capturing the essential
commonality between systems in an architectural style. An architectural style captures more
than simply any legal configuration in a particular vocabulary. For example, in chapter 5
we describe a style which captures a class of distributed message-passing systems. An
important problem in these systems is the possibility of system deadlock, in which the
system ceases to make progress because every component is waiting for an action by some
other component in the system. Our analysis of the style reveals that there are particular
topologies of components that will deadlock even though they are are type-safe and carry out
a well-defined computation. Thus, we define an explicit constraint on the use of the style’s
vocabulary that ensures that systems will not deadlock. This constraint is not possible to
express using the Ada package facility, but it is desirable to provide this kind of explicit
analysis and guidance to designers of this class of systems.

The functors of Standard ML [HMM86] provide a means of increasing module’s in-
dependence, removing explicit references to other modules (termed structures in ML) via
parameterization. A functor is essentially a structure with parameters. Parameters are
supplied when the structure is to be instantiated, and hence reuse is increased by permitting
a functor to be used in more contexts than a fully elaborated structure. This increase in
flexibility overcomes some of the limitations of Ada packages, by providing a means of
localizing composition information so that the topology of a configuration is described in a
single structure that instantiates components, specified as functors.

However, ML, like Ada, provides no means of specifying the dynamic behavior of
interactions between components independent of those components’ implementations, or
of specifying a family of systems that share a particular property.

Chapter 2. Related Work 29

2.5.2 MILs

A number of Module Interconnection Languages (MILs) have been developed to support the
description of large-scale program structure independent of any particular programming lan-
guage or system. These include languages such as MIL75 [DK76] and INTERCOL [Tic79],
and are surveyed by Prieto-Diaz and Neighbors [PDN86]. These languages define program
structure through definition/use bindings that associate definitions of program constructs
such as data structures and functions with uses of those constructs. Like the module facili-
ties of programming languages discussed above, these languages increase the independence
of system components by creating visibility boundaries around modules. In addition, MILs
provide an explicit and separable description of a system’s structure by explicitly binding
definitions to uses. However, also like current programming languages, these languages do
not provide a means of specifying abstract patterns of interaction or of delineating families
of systems. It is interesting to note that in their survey, Prieto-Diaz and Neighbors describe
the limitations of MILs as follows:

MILs are not concerned with what the system does (specification information),
how the major parts of the system are embedded into the organization (analysis
information), or how the individual modules implement their function (detailed
design information). [PDN86, p. 307]

In this dissertation, on the other hand, we are concerned with the problem of architectural
specification and analysis. In order to provide these capabilities, we must go beyond the
structure-only framework of MILs to capture the behavior and interactions of software
architectures.

2.5.3 MIFs and IDLs

2.5.3.1 MIFs

A number of systems have been developed to support the composition of software mod-
ules based on mechanisms other than definition/use bindings. One might call these Module
Interconnection Formalisms (MIFs), because they extend the MILs with interconnection se-
mantics. Examples of MIFs include Polylith [Pur94], FIELD [Rei90], and Durra [BWW88].

Each of these systems provides a particular interaction abstraction as the basis for system
composition. Polylith provides run-time support for message passing between components
based on a software bus abstraction. All communication is mediated by this bus, and thus
data transformations and physical distribution are isolated from component implementation
details. FIELD provides a software development tool integration model based on event
broadcast. A tool registers a set of events (or messages) to which it can respond, and
also broadcasts a set of events, without specifying the name of the recipient of that address.
Communication is mediated by an event broadcast server that routes messages from senders
to registered recipients. Durra provides a model of point-to-point buffered message passing.
Interaction topologies, data-transformations, and clustering of components in threads are
each described orthogonally and independent of component implementations.

In each case, these systems support the flexible implementation of systems that use
the specific interaction mechanisms provided. However, they can not be used to build

30 A Formal Approach to Software Architecture

systems that use other communication patterns. Thus, they are not general mechanisms for
describing interactions in software architectures.

2.5.3.2 IDLs

A common problem for the integration of systems is the potential for inconsistency in
data representations, whether arising from the use of different programming languages or
independent design and implementation. In order to address this issue, Interface Definition
Languages (IDLs) have been developed to define abstract data interfaces and mappings
from programming language constructs into intermediate representations that mediate the
transformation between incompatible low-level formats. Examples of these languages
include IDL [Lam87], UTS [HS87], and CORBA’s IDL [OMG91].

Using these languages, incompatibilities between modules arising from data structure
representations and differences in implementation platform can be resolved. Like MIFs,
these systems define a single, restricted model of interaction, typically procedure call or
object-method invocation. They define the data that is passed between components, but not
the dynamics of the interactions. Rather, the dynamic constraints are implicit in the language
mechanisms assumed to underly the IDL, or ignored, as when constraints between method
calls on an object are not specified. Thus, like the MIFs, they do not provide a sufficient
general basis for the description and analysis of interactions in software architectures.

2.5.4 Coordination Languages

Another approach to the combination of diverse computations is through coordination
languages such as Linda [GC92]. These languages attempt to provide general mechanisms
for the coordination of sequential components. Linda, for example, models an ensemble of
computations as a bag of tuples, or a tuple-space, where a computation can read or consume
tuples based on matching patterns in the tuple’s data, and provides results by creating new
tuples.

The premise of coordination languages is that the issues of coordination of components
are orthogonal to those of sequential computation, and that by providing an explicit and
separate language for coordination, generality and conceptual simplicity can be enhanced.
The focus of coordination language research has been on showing how different kinds
of coordination, such as fine-grain parallel computation, large-scale distributed systems,
and uniprocessor task synchronization, can be cleanly and efficiently supported in a single
model.

Our work similarly focusses on the description and analysis of system coordination
independent of computations. However, we have taken a different approach, considering
especially the analysis of interactions and the way in which patterns of interaction can be
captured and exploited across multiple systems.

2.5.5 Wide-Spectrum Languages

While coordination languages seek to divide the development task, others have sought to
provide greater levels of integration. Wide-spectrum languages such as REFINE [SKW83]

Chapter 2. Related Work 31

provide a single notation supporting specification of systems at differing levels of abstrac-
tion, from very high-level specifications to executable, procedural representations.

To develop an executable program in REFINE, the developer begins by specifying the
system using REFINE’s high-level notations. This part of the language is similar to formal
specification languages such as Z [Spi92] or VDM [Jon86]. This high-level description
is then transformed through step-wise refinement, until it is expressed in the executable-
sublanguage of REFINE. This is then compiled by traditional means, and executed.

The idea of this approach is to take advantage of explicit representations of the design
knowledge (also represented in REFINE) to select and justify each transformation of the
specification. In theory, development and maintenance is made simpler because the system’s
knowledge base provides suggestions about what transformations to apply and the use of
explicit justifications increases both confidence in the resulting system and traceability from
the original specification to the executable end-result.

The goal of a smooth development path, from high-level, non-implementation con-
straining specifications, through intermediate representations in which some but not all
implementation decisions have been bound, to fully instantiated programs, is completely
consistent with our approach to architectural design. Further, the idea of using explicitly
represented design knowledge to guide the refinement by binding implementation deci-
sions is fully consistent with our approach. Indeed, we believe that the effectiveness of
architectural style in the design process is exactly due to the fact that a style represents the
distillation of design knowledge: A style defines a particular solution to a problem together
with constraints on when and how that solution can be applied.

In order to be effective, however, these wide-spectrum languages must include the
ability to express systems at every different level of abstraction, and to represent all critical
aspects of design, whether made explicitly by a developer or selected based on an automated
knowledge-base, and to justify those decisions as valid refinement steps. Our work can thus
contribute to the development of effective, usable wide-spectrum languages by providing
a model for the representation of system structure and patterns of interaction (a critical
design decision, needing to be represented and analyzed) and of architectural styles (a kind
of design knowledge, representing a solution pattern to a problem, together with permitted
contexts of use).

2.6 Object-Oriented Design

2.6.1 Object-Oriented Design Notations

A class of design notation that is related to software architectural description is that
of object-oriented notations. Recently, several prominent object-oriented design no-
tations [RBP+91, Boo93, Jac92] have been combined into a “Unified Modeling Lan-
guage” [UML]. This notation provides a family of graphical notations for describing
the attributes of and relations between objects in a design. These diagrams fall into two
categories: Static structure diagrams and behavior diagrams. Static structure diagrams
include class and object diagrams, while behavior diagrams include use case, sequence,
collaboration, and activity diagrams.

32 A Formal Approach to Software Architecture

Shape

Polygon

GraphicsBundle

color

texture

density

Point

1

1

1 3..*

Figure 2.4: A UML static structure diagram.

Static structure diagrams capture the definitional and referential relationships between
types, classes, and objects. Definitional relationships include objects which are instances
of types or classes, classes which implement types, and types which are subtypes of
other types. Referential relationships define objects that either composed from or contain
references to other object instances. For example, figure 2.4 indicates that Polygon is a
subtype of Shape and is composed of exactly one GraphicsBundle and three or more Points.
A GraphicsBundle attribute has color, texture, and density attributes.

These diagrams do capture one kind of structure of a software system, namely, the
dependencies between components in terms of their meaning (if one component is modified,
the meaning of others is changed). However, it does not capture the behavior of the
components or how they interact. Thus, they do not provide a sufficient basis for the
description or analysis of patterns of interaction.

UML does provide diagrams intended to capture the behavior of a system. A col-
laboration diagram, for example, indicates sequences of communication actions between
participants in a collaboration. Each box represents an object, while a line represents a
pathway of communication. These lines are annotated with the names of messages or op-
erations, with sequence numbers to indicate their ordering. For example, figure 2.5 shows
the sequence of actions involved in redisplay of a collection of wires in a visual diagram. It
indicates that when a user invokes redisplay() on a controller object, the following sequence
of actions is the result: First, the Controller invokes drawPositions on the wire
object. Next, wire invokes drawSegment on itself n times. For each of those invo-
cations, wire calls create and then display on a new Line object. When a Line
object receives display, it calls add on the window object, with itself (the Line) as a
parameter.

These collaboration diagrams can be combined with state-machine representations of
components based on Harel’s Statecharts [Har87]. The state-machine diagrams provide
additional structure to event orderings, providing the ability to indicate multiple possible

Chapter 2. Related Work 33

:Controller :Window

:Line{new}

window

<<parameter>>window

redisplay()

wire:Wire

1:displayPositions(window)

<<self>>

1.1*(i=1..n):drawSegment(i)

1.1.1: create(r1,r2)

1.1.2: display(window)

1.1.2.1: add(self)

Figure 2.5: A UML collaboration diagram.

event sequences.
There are two important aspects of our approach to interaction patterns and architectures

that these notations do not capture, however. First, the diagrams in UML do not distinguish
between a pattern of interaction and the behavior of the participants in that interaction. Thus,
it is difficult to reason about a protocol of interaction and a component’s conformance to
it, because the interaction is defined in terms of a given collection of components. If the
components exactly match the overall behavior of the state machines, then they trivially
obey the protocol. If they do not, then there is no clearly-defined way of separating out
the parts of the components’ behavior that are relevant to one particular interaction and
analyzing that.

Second, the UML diagrams do not distinguish between descriptions of system config-
urations and families of systems. While there are constructs for describing conditions or
alternatives within a single diagram, these mean that the system being described is free
to bind these decisions at lower level of abstraction, not that there are multiple, different
systems captured by the single diagram. When describing object-oriented patterns, object
diagrams represent an exemplar of the pattern, rather than capturing the full variability
inherent in a class of systems.

2.6.2 Extending Object-Oriented Models

In addition to the basic object-oriented notations described above, there has been research
on extending object-oriented models in ways that relate to the description of architecture.
For example, Nierstrasz [Nie93] extends object class definitions to include a finite-state
process over the methods of the object. He uses these constraints relating the use of the
methods of the object to define stronger subtyping relation and instantiation rules. While the
motivation is similar to ours, Nierstrasz considers only one kind of component interaction:
method invocation. This means that the semantics of his models, including the refinement
relations that define subtyping and instantiation are specific to a single class of interaction.

Yellin [YS97] also defines a model of object composition based on protocols. He
provides a restrictive definition of object compatibility and then increases the flexibility of

34 A Formal Approach to Software Architecture

the model using software adaptors. These adaptors have some of the flavor of architectural
connectors, but are not fully general, since the purpose is to increase the flexibility of object
composition—not to provide a separable and explicit definition of an interaction.

Recently, there has been an increasing interest in extending object-oriented design
through patterns [GHJV95, BMR+96, CS95]. A pattern captures design expertise by
relating a specific problem in a particular context with a solution. The solution is commonly
expressed as a framework of objects and informal text describing constraints and special
semantic considerations.

Patterns are similar to software architectural styles in that they define a family of software
systems that share common characteristics, but they differ in two important respects: First, a
style specifically represents an architectural family, constructed of the architectural building
blocks of components and connectors. Patterns span a range of levels of abstraction and
parts of the software lifecycle from domain analysis, through software architecture, and
down to the level of programming idioms. Second, the patterns community has focussed,
to date, on the problem of how to tie solutions to problem contexts and how to select
appropriate patterns, rather than on the description and analysis of prospective solutions.
Thus, they have relied on informal, handbook-style, representations of system families,
rather than on precise, semantically rich descriptions of systems. Also, any patterns of
interaction are typically left implicit in the pattern of system composition, rather than called
out as a separable concept. As we discuss in chapter 9, our techniques and notations can
be applied to the solution part of patterns, thus enriching their precision and potential for
analysis.

2.7 Other Support for Software Architecture

In addition to research efforts focussed specifically on description of software architecture,
there have been efforts to address validation or evaluation of architectures. These models
provide methods or criteria for the evaluation of architectures that are independent of
particular formal notations or models. As such, they complement more formal approaches,
but do not replace them. Each either assumes the existence of notations for describing
architectures or lays out requirements for such notations without indicating how they are to
be filled.

2.7.1 Architectural Review

AT&T Bell Labs have developed checklists and methods for the formal review of architec-
tures in development organizations [ATT93]. The checklists capture issues that AT&T have
found to be the most common, critical issues for systems that they develop. These issues
include system integration, error recovery, administration and maintenance, and overall
system performance. The methods define how these issues can be raised and addressed
in the context of an entire development effort. In particular, they propose two formal
architectural reviews, a “discovery” review to air issues that need to be addressed before an
architecture is developed, and a “validation” review to discover problems with a proposed
architecture before continuing to detailed design and implementation.

Chapter 2. Related Work 35

AT&T’s review of development projects suggests that there are many issues, both
functional and extra-functional, that must be addressed by a system in development. For
our work, it is especially interesting to note the following item in their checklist:

10. Is the data being sent between systems in a consistent unit of information?
(More than 50% of the trouble reports in some systems are related to
communications interfaces within them.) [ATT93, p. 30]

In our vocabulary, this means that failure to properly define the connectors in a system’s
architecture is the source of more than half of the system’s problems. This strongly supports
our approach, by demonstrating the need for explicit description of connectors and their
use in a configuration.

2.7.2 SAAM

Kazman et al. have developed a model, called SAAM, of architectural evaluation based
on the development of scenarios [KBAW94]. Each of the scenarios is designed to capture
what they term a “quality attribute,” an extra-functional characteristic such as modifiability.
The idea is that the term “modifiability” is too vague to be measured directly, but that a
scenario can capture a specific aspect of modifiability, such as the ability to adapt to a new
operating environment.

Like the AT&T work, Kazman et al. provide evaluation guidance through a method
rather than a notation or model, relying on the informal expertize of architects both to
describe the architecture to be evaluated and to determine how SAAM should be applied to
it. They explicitly acknowledge that the validity of their techniques depend on the existence
of a precise, well-defined architectural description. Thus, SAAM represents a technique
that would benefit from the formalization of architectural description and that can be applied
to formal descriptions.

2.7.3 Stakeholder Model

Gacek et al. have explored the extension of architectural models to better support the soft-
ware lifecycle [G+95]. They argue that an architectural description, describing the structure
of a configuration, in isolation is insufficient to support evaluation of an architecture and
the use of that architecture in development. For example, they note that, in addition to its
structure, the rationale for an architecture must be captured so that later modifications do
not violate key properties.

This view of architecture is consistent with our approach. While our particular architec-
tural notation will only capture the architecture itself, and not the surrounding context such
as requirements or rationale, it is certainly necessary to precisely define what the design is,
as well as to capture other concerns. As we argue in chapter 10, both formal and informal
approaches to architecture are necessary, and a formal architecture description language
can serve as a centerpiece of a complete software process.

36 A Formal Approach to Software Architecture

2.7.4 Aspect-Oriented Programming

Recently, Gregor Kiczales and others at Xerox PARC have begun to explore the possibilities
of what they term “Aspect-Oriented Programming” [KLM+97, LK97]. They argue that
much of the complexity in programs results from the “tangling” of different aspects of
the design of software systems. For example, control of synchronization and remote
access issues cut across the functional aspects of a typical distributed system. They argue
for the development of special-purpose “aspect languages” that separate the description of
different issues from the “component language” appropriate for describing the functionality
of a system. Different views of a system are then combined by an “Aspect Weaver” tool
that generates combined code in a conventional programming language.

As we discuss in chapter 10, the decomposition of system description into views is
an important part of architectural specification, and this work is a promising approach to
understanding how to combine views effectively in an implementation. Currently, however,
this work provides support only for specific views on a case-by-case basis, and will require
further exploration before it can be applied, for example, to description of interaction
protocols.

2.7.5 Law-Governed Architecture

Naftaly Minsky has proposed a model of system protocol enforcement based on his work
in “law-governed systems” [Min91]. According to his model, a protocol is specified by a
global collection of “laws,” or constraints on how components may act depending on the
actions that have occurred previously in the system. Each component is controlled by an
enforcer, which ensures that no action is taken unless it is permitted by the law.

This mechanism provides support for the implementation of protocols in the context
of open, evolving distributed systems. Because, in these systems, it is not possible to
assume that all components have been explicitly and correctly implemented to obey a given
protocol, enforcers are placed between untrusted components and the rest of the system.

This approach of runtime enforcement complements our own, specification-oriented
approach. While we concentrate on the specification of protocols and checking whether
components’ specifications are consistent with a given protocol, Minsky’s law-governed
architecture represents an implementation mechanism by which the cost of a component
diverging from its specification is limited. While a component can not be forced to do
something that is expected of it, it can be prevented from doing something that it should
not.

2.8 Possible Formal Bases

Our goal in this thesis is to provide a notation in which architectural patterns of asyn-
chronous, discrete interaction and families of systems can be described and analyzed.
There are a number of formalisms based on discrete actions, including state-machines, Petri
nets, and process algebras, as well as tools for analysis of these systems. In this section, we
discuss a selection of these models.

Chapter 2. Related Work 37

2.8.1 State Machines

A number of formal models have been proposed to extend basic finite-state machines to the
description and analysis of interacting systems. Prominent among these is the Statecharts
model, proposed by Harel [Har87]. This model extends basic finite-state automata to
permit interactions between machines via shared actions. Transitions in the state graph are
labelled with pairs of actions. The first action indicates an input to the automaton that is
recognized and triggers the transition. The second action is an output of the automaton,
that will result in other automata carrying out transitions. Thus, complex behaviors can be
constructed by composing smaller state machines that synchronize on actions. Statecharts
further provide hierarchical composition mechanisms, in which a “state” of one machine
can actually be another state machine. In this case, transitions into the lower-level machine
go to a designated start-state and transitions out of the lower-level machine are represented
as transitions to a final state of the machine.

Another state-machine model is the I/O automaton model of Lynch and Tuttle [LT88].
I/O automata are similar to Statecharts. State transitions are triggered by input actions and
may result in output actions. Like Statecharts, I/O automata are composed by matching the
names of input and output actions.

Petri nets [Pet77] can be thought of as a variation on the state-machine model. Rather
than having a single active state at a given point in its execution, a Petri net models the
activation of states by having zero or more tokens present in the system. The multiple-token
model is exploited by having transitions be from sets of states (the input states) to sets of
states (the output states), rather than between single states. A transition is enabled when
every input state has a token. The effect of a transition is to remove the tokens from each
input state and to add a token to each output state.

Each of these models defines the executions of an automaton as a set of possible
execution traces. Each trace represents a possible path through the state graph, alternating
states (sets of states for Petri nets) and actions. These systems can be analyzed to ensure,
for example, that there is always a transition possible for any input, and that selected
undesirable states are not reachable.

For the purposes of modelling interaction patterns in architectures, however, the basic
“sets of traces” model of execution omits a key property: The locus of decision in a system.
It is common in a system to have a given trace where one of two different things will
happen at a given point. If we are to analyze a pattern of interaction or to try to decide if a
component conforms to that pattern, it is critical to understand where the decision is made
about which of the alternatives will occur. It is important to distinguish between the case
where a component is free to choose either alternative (or, say, only to provide one of the
alternatives) and the case where the component is required to handle both alternatives. If
we simply model the collection of possible executions, this can not be distinguished.

2.8.2 CSP

CSP [Hoa85] provides a different model of behavior from the state-machine models. Rather
than describing a machine as a collection of states composed into a graph of transitions, a
behavior is described through an algebraic model of processes, in which complex behaviors

38 A Formal Approach to Software Architecture

are constructed from simpler ones via a small set of operators. These operators include
sequencing (one behavior occurs after another), alternative (one of two behaviors will
occur), and interaction (two behaviors are combined by synchronizing on shared events).

For our purposes, an important property of CSP is its handling of choice. CSP provides
two forms of choice: Internal choice, in which the object described by the process controls
which behavior will occur, and external choice, in which the decision is made by the
environment.

This distinction is key to the description of certain critical properties of architectural
interactions. These properties include the ability to characterize the dynamic behavior of
inter-component communication, to specify which components are responsible for making
decisions during interaction, and to detect mismatched assumptions that could cause a
component to get “stuck” midway through its interaction with another component.

FDR: Automated Analysis for CSP

Another piece of work related to our use of CSP is the development of FDR. One of the
most successful forms of automated analysis for formal methods is exhaustive checking of
a finite model [B+90]. There are two kinds of exhaustive checker. One kind determines
whether a given property holds in every state of a model, and the other determines whether
two state machines are related in a particular way. Both kinds of tool exhaustively search
the state space of a finite-state model and either conclusively determine that the check is
satisfied or provide a counterexample (such as an execution of the state machine after which
the property does not hold).

This technology is available for a variant of CSP through the tool FDR. FDR (which
stands for “Failures, Divergence, Refinement”) automates the test of whether one process
refines another. A process P refines a process Q (written QvP) if the behaviors of P are
consistent with (but possibly less general than) the behaviors of Q. The refinement test
provides strong analytic capability for CSP in two ways: First, it provides a guarantee of
substitutability of one process for another, much like subtyping between abstract datatypes.
That is, if a process P refines a process Q, then, in any context in which Q appears, P can
safely be substituted for Q.

Second, many properties can be expressed as an abstract “specification” process, such
that any process that refines the specification process is guaranteed to have that property.
This is because refinement permits a process to guarantee both the presence of a given
behavior and the absence of others. If a given trace is not allowed, then the specification
process omits that trace, and no process that includes the trace will be a legal refinement of
it. If a given trace is required, then the specification process omits all other options from
its refusals, and any process that refuses to engage in that trace will not be a refinement.

Chapter 3

Introduction to WRIGHT

3.1 Introduction

WRIGHT is designed to support the formal description of the architectural structure of
software systems. In order to do so, it permits the description of both architectural styles,
or families of systems, and architectural instances, or individual systems.

In this chapter, we present the elements of WRIGHT. The presentation will begin with
a general discussion of the goals of an explicitly architectural description language. Then,
we will show how WRIGHT meets these goals concretely. We start with the language of
architectural types and instances and proceed to WRIGHT’s use of architectural style. The
intent of these initial sections is to convey a sense of how WRIGHT can be used.

Once all of the elements of the language have been described, we show in section 3.7 how
tests can be applied to WRIGHT descriptions to determine both whether they are internally
consistent and whether they are complete.

3.2 The Goals of an Architectural Description Language

Before describing WRIGHT it will be helpful to look at the general goals of any formal
architectural description language. When an architect turns to a formal description language,
he or she seeks two things: definition and analysis. In order to support definition of
architecture, a notation must provide a precise semantics. Informal, ad-hoc notations
such as box-and-line diagrams may be quite good at communicating the basic ideas and
intuitions of the designer to others on the team. Trouble arises, however, when these
intuitions must be translated into details. Then, the imprecision of the notation results
in differing interpretations caused by unstated assumptions and omissions. This in turn
means that inconsistencies can arise as the parts are refined towards implementation or
as modifications are made. Thus, an architect or development team may turn to a formal
description language in order to resolve ambiguity in the informal description, resulting in
a shared understanding that can be used as a reference when questions come up.

Another goal of a formal description is to support analysis. In order to aid analysis, a
notation must support reasoning about how the individual parts affect properties in an overall
system and provide reassurances that the analysis made based on the abstract description

39

40 A Formal Approach to Software Architecture

will actually have validity in the implemented system. By describing a software system
at a high level of abstraction, decomposing the computation into independent parts, the
architect hopes to be able to understand how the whole system will behave and whether
it meets the requirements that have been placed on it. A formal architecture description
language hopes to aid in this goal by providing tools and techniques that can be applied
to descriptions of the architecture. These tools and techniques give information about the
system to be constructed based on that description. The description language should help
not only to discover properties of the architecture, but also to realize the architecture as an
implemented system.

To be useful, then, an architecture description language must at least provide two things:
a precise semantics that resolves ambiguity and aids in the detection of inconsistencies, and
a set of techniques that support reasoning about system properties. In an ideal setting, there
would be automated tools available for common consistency checks and for generation of
“routine” implementation details, while the notation would also support formal analysis of
more complex or specialized properties.

This is not enough, however. In order to be usable, an ADL must fit the architect’s
own vocabulary. That is, the constructs in the language must match those that the architect
uses in informal descriptions; if the notation requires too much effort to translate from the
designer’s intuition, then the designer will not find the notation worthwhile. It is important
that the notation permit the designer to describe the abstractions that are important to the
structuring of that system, and that the distinctions that matter to the architect can be made
without laborious work-arounds.

Our notion of software architecture is based on the abstractions of the component,
an independent computational entity, and the connector, a composition pattern among
components. A software architecture language must expose these abstractions and provide
means for the architect to use them in structuring the software system.

Because these abstractions are fundamental to the notion of software architecture, it
is important that the language provide them directly, and not require that each architect
build them from first principles for each new system. The abstractions of component and
connector serve as the basic conceptual unit of an architecture; their absence can only
obscure the very things that are most important to expose. To omit these constructs from
the language is comparable to calling a programming language object-oriented but not
providing data abstraction boundaries.

3.3 The Structure of WRIGHT

As an architectural description language, WRIGHT is built around the basic architectural
abstractions of components, connectors, and configurations. WRIGHT provides explicit
notations for each of these elements, formalizing the general notions of component as
computation and connector as pattern of interaction. In this section we describe the basic
structural notations and show how they are combined to describe the software architecture
of a system in a precise way. To emphasize these structural aspects of WRIGHT, we defer
a discussion of specific notations for computation and interaction until section 3.4. In
addition to simplifying the presentation, deferring the details of behavior specification also

Chapter 3. Introduction to WRIGHT 41

UpperCase

Split Merge

Figure 3.1: Box-Line drawing of example system.

reminds us that the structures are independent of the specific information attached to them;
if there are critical issues not easily captured using WRIGHT’s behavior specifications, the
structuring provided by WRIGHT is still useful. This issue of alternative internal descriptions
will be explored further in chapter 8.

Throughout the following introduction to WRIGHT, we use a simple example architecture
to illustrate our ideas. This architecture, shown informally in figure 3.1, is a pipe-filter
system that reads a stream of characters from its input, outputting the same stream of
characters but with every other character capitalized. To do so, three components are used:
SplitFilter, UpperCase, and Merge. In SplitFilter, the input stream is divided into two
streams. The first stream is sent through UpperCase, which capitalizes every character,
and the second is left unchanged. The two streams are recombined into the final output
by Merge. Each of the streams is transmitted from one component to another via a pipe
connector.

3.3.1 Components

A component describes a localized, independent computation. For example, in a pipe-and-
filter system, a typical component might read all its input and convert each letter to upper
case, or divide a single input stream into two, passing every other data element to a different
output. Components in a database system might include a repository that provides access
to its data and a client that summarizes the data in a report when it is requested by the user.

In WRIGHT, the description of a component has two important parts, the interface and
the computation. An interface consists of a number of ports. Each port represents an
interaction in which the component may participate. For example, a filter component might
have three ports, one for input and two for output, as the SplitFilter in figure 3.2. A map
database server component might have two ports, one to respond to clients’ queries about
the map, and another that an administrator would use to update the map.

The computation section of a description describes what the component actually does.
The computation carries out the interactions described by the ports and shows how they are
tied together to form a coherent whole. The Split filter divides its input into two streams.

A port specification, which defines the interface of a component, indicates two aspects
of a component. First, it indicates some aspect of the component’s behavior. In this view,
the port specification indicates the properties that the component must have if it is viewed
through the lens of that particular port. The port becomes, in effect, a partial specification
of the component. The Computation provides a more complete description of what is

42 A Formal Approach to Software Architecture

Component SplitFilter
Port Input [read data until end-of-data is reached]
Port Left [output data repeatedly]
Port Right [output data repeatedly]
Computation [repeatedly read from Input, then output, alternating between Left and Right ports.]

Figure 3.2: The structure of a component description.

done.
The second aspect of a port is that it indicates the expectations of a component about the

system with which it interacts. Although it is an informal specification, SplitFilter shows
this aspect of a port as well. We can see that the SplitFilter expects to be able to read data on
Input until it is notified of end-of-data. This aspect of a port specification will be clarified
through our discussion of roles, attachments, and more precise behavior specifications.

In SplitFilter, notice how each port specification tells us something about the Compu-
tation. The Input port shows how data is read, and each of the Left and Right ports indicate
part of the output behavior. Notice however that the port specifications do not combine to
make a full specification of the computation. They are unable to relate the behaviors at
different ports. There is no indication outside the Computation, for example, that Left and
Right alternate. In WRIGHT, the Computation is itself the full specification, upon which
analysis of the component’s properties will be based; the purpose of the ports is to structure
analysis of the component’s interaction and to provide an additional level of abstraction,
not to be redundant with the Computation.

This use of ports is similar to how abstract datatype declarations are used in a pro-
gramming language. The run-time behavior of the type is completely determined by the
body of the declaration; the method bodies and internal representation are sufficient for
computations to be carried out. The abstract type declaration acts as an interface to the
type, allowing consistency checks to be performed statically and to guide programmers’
use of the type. An abstract datatype declaration provides a means of simplifying checks
that the type will be used appropriately throughout the program. Similarly, we will see that
the port and role declarations are needed for consistency checks even though they do not
directly contribute to the system’s meaning.

Note that, also like the elements of an abstract datatype’s interface, the ports provide
a means of referring to only part of the component (in the case of a port, part of the
computation’s behavior) rather than only discussing the whole component en masse, and
each port refers to a different aspect of the component. Thus each port’s name on a given
component type must be unique within that component. This is also true of connector roles,
introduced below.

3.3.2 Connectors

A connector represents an interaction among a collection of components. For example, a
pipe represents a sequential flow of data between two filters. A procedure call is a simple
kind of connector that indicates a call-and-return pattern of control. More complex con-

Chapter 3. Introduction to WRIGHT 43

nectors include database protocols such as two-phase commit and reliable, secure network
message passing.

By making connector types explicit, WRIGHT seeks to achieve two important purposes:
First, to extend the applicability of analysis, and second, to increase the independence of
components. By drawing out a pattern of interaction in a connector type, and then using
the pattern repeatedly in connector instances, WRIGHT makes explicit the commonality that
typically occurs throughout a software architecture. The “pipe” interaction is used multiple
times in a pipe-filter system, carrying data between different pairs of components. If each
pair of components specifies the interaction independently, then there is no simple means
of verifying that there is indeed only one kind of interaction throughout the system. If we
analyze the pipe connector and demonstrate a property (that no data is lost, for example),
then that property holds everywhere the pipe connector is used in the system. If we are
forced to do the analysis in the context of a specific interaction, between the Left output
of Split and the Input of UpperCase, for example, then we must repeat the analysis for
every pair of components. The explicit description of connector types is valuable in the
larger context of a development process as well. By specifying explicitly that each use of
the connector instance uses an identical interaction pattern, management of change and the
structuring of implementation are simplified. If we use a runtime library, for example, to
implement a communication pathway (such as stdio to implement pipes), how can we
tell where the library can be used to connect components? If the library corresponds to a
connector type, the architecture makes the answer clear. If there is no such correspondence,
a potentially difficult verification task lies ahead.

An importantbenefit of the use of explicit connectors is that it increases the independence
of components by structuring the way a component interacts with the rest of the system. A
connector provides, in effect, a set of requirements that the component must meet, and an
information-hiding boundary that clarifies what expectations the component can have about
its environment. This means that a component specification is always explicitly described
so that it can be used in multiple contexts. In the Split filter, for example, the Left port
refers not to the UpperCase filter, which is the target of data in our example system, but
to a general interaction pattern. The SplitFilter specification does not indicate whether the
output is delivered to UpperCase, some other filter, several other filters, a file, or even if
that output is dropped from the system and ignored. The component specification need
only indicate what that component will do, because the connector specifications are there
to describe how the component is combined with others in an actual context of use.

A WRIGHT description of a connector divides it into a set of roles and the glue. Each
role specifies the behavior of a single participant in the interaction. For example, a pipe
has two roles, the source of data and the sink (the component that receives the data). A
procedure call has a caller and a definer. An event broadcast connector has an announcer
and zero or more listeners. A shared variable has one or more readers and writers.

Since a connector type is an abstract interaction, which will be used in different contexts
with different components, there must be some indication of what the expectations are on
any potential participants. Just as the ports of a component indicate how the component
expects to interact in any connection, the roles indicate what is expected of any component
that will participate in that interaction. Each role indicates what one of the components
will do. In figure 3.3, for example, the Sink role indicates how that participant is expected

44 A Formal Approach to Software Architecture

Connector Pipe
Role Source [deliver data repeatedly, signalling termination by close]
Role Sink [read data repeatedly, closing at or before end of data]
Glue [Sink receives data in same order delivered by Source]

Figure 3.3: The structure of a connector description.

to behave: Any component that acts as a Sink is permitted to read data and is responsible
for closing the connection. This role might, for example, be filled by the Input port of the
SplitFilter. The SplitFilter does indeed read data and will not continue beyond end-of-data.
Because the behavior specifications are currently informal, we don’t know if the SplitFilter
obeys the constraint that it must close the connection or not.

The Glue of a connector describes how the participants work together to create an
interaction. In the case of a pipe (shown in figure 3.3), the glue describes how the data from
the source is delivered to the sink. A procedure call would indicate that the caller initiates an
invocation, followed by a return from the procedure definer. The connector Glue specifies
how the computations of the components are composed to form a larger computation.

Like the Computation of a component, the Glue of the connector represents the full
behavioral specification. As we will see when we define the semantics of a WRIGHT

configuration, it is the Glue processes that will coordinate the components’ behavior to
create an interaction. In effect, we interpret a connector specification to mean that if the
actual components obey the behaviors indicated by the roles, then the different computations
of the components will be combined as indicated by the Glue.

3.3.3 Configurations

In order to describe a complete system architecture, the components and connectors of a
WRIGHT description must be combined into a configuration. A configuration is a collection
of component instances combined via connectors.

Instances

Because there may be more than one use of a given component or connector in a system,
we think of the descriptions described above as representing types of components and
connectors. That is, they represent the properties of components, rather than actual examples
of them in use. Thus “Pipe” is a type of connector, while there may be many instances of
a pipe in a given system. In order to distinguish the different instances of each component
and connector type that appear in a configuration, a WRIGHT description requires that
each instance be explicitly and uniquely named. An example configuration with instance
declarations is shown in figure 3.4. The same system is represented graphically in figure 3.1.

Chapter 3. Introduction to WRIGHT 45

Configuration Capitalize
Component UpperCase

. . .
Connector Pipe

. . .
. . .

Instances
Split : SplitFilter
Upper : UpperCase
Merge : MergeFilter
P1, P2, P3 : Pipe

Attachments
Split.Left as P1.Source
Upper.Input as P1.Sink
Split.Right as P2.Source
Merge.Right as P2.Sink
Upper.Output as P3.Source
Merge.Left as P3.Sink

End Capitalize.

Figure 3.4: The structure of a configuration.

Attachments

Once the instances have been declared, a configuration is completed by describing the
attachments. The attachments define the topology of the configuration, by showing which
components participate in which interactions. This is done by associating a component’s
port with a connector’s role. For example in figure 3.4, the attachment declaration “Split.Left
as P1.Source” indicates that the component Split will play the role of Source in the
interaction P1. It will fill this role through the port Left. That is, all of the data that
Split outputs to port Left will be delivered to whichever component is the sink of pipe P1.
In figure 3.4, the matching declaration “Upper.Input as P1.Sink” indicates that it is the
component Upper that will receive the data from Split.

The attachment declarations bring together each of the elements of an architectural
description. The component carries out a Computation, part of which is a particular
interaction, specified by a Port. That port is attached to a Role, which indicates what rules
the port must follow in order to be a legal participant in the interaction specified by the
connector. If each of the components, as represented by their respective ports, obeys the
rules imposed by the roles, then the connector Glue defines how the Computations are
combined to form a single, larger computation.

Hierarchy

WRIGHT supports hierarchical descriptions. In particular, the computation of a component
(or the glue of a connector) can be represented either directly by a behavior specification
(to be described in section 3.4) or by an architectural description itself. In the latter case,
the component serves as abstraction boundary for a nested architectural subsystem.

46 A Formal Approach to Software Architecture

Client Server

MajorDomo

Security

Database

Figure 3.5: Hierarchical architecture.

An architectural subsystem is described as a configuration in the same way as indicated
above. In addition, however, for a component the nested architectural description has an
associated set of bindings, which define how the unattached port names on the “inside” are
associated with the port names of the enclosing component. (Similarly for connectors: role
names on the “inside” are identified with role names on the “outside”.)

Figures 3.5 and 3.6 illustrate the use of hierarchy on a simple example. At the top level,
the system consists of two components, a client and a server. The server is realized by a
sub-architecture consisting of three components: A coordinator, that provides the service
interface, a security manager, and a database.

This completes the structural portion of a WRIGHT instance description. It shows how
the architectural abstractions of components and connectors are specified in WRIGHT. But
we have yet to address the important questions of how we associate semantics with each
of the elements, and how these semantic descriptions are combined, using the structuring
notations, to model the system as a whole. We have also, so far, left open the question of
when a WRIGHT description is legal: How can we detect inconsistencies or other problems
with the architecture? These questions will be answered below, but first we complete our
discussion of structure by extending these notions to the realm of architectural style.

3.3.4 Style

So far we have discussed how the structure of a single system can be defined: The archi-
tect introduces component and connector types and then uses these to create instances of
components and connectors. Then, the topology of the configuration is specified through
attachments of ports to roles.

Chapter 3. Introduction to WRIGHT 47

Configuration HierServer
Connector CSConn

. . .
Component ClientType

. . .
Component ServerType

Port Service . . .
Computation

Configuration SecureData
Component Coordinator
. . .

Instances
C : Coordinator
Security : SecurityManager
. . .

Attachments
C.Secure as S1.Client
Security.Service as S1.Service
. . .

End SecureData
Bindings

C.Combined = Service
End Bindings

Instances
. . .

Attachments
. . .

end HierServer

Figure 3.6: Hierarchical specification in WRIGHT.

48 A Formal Approach to Software Architecture

Often, however, an architect is concerned not with a single system in isolation, but rather
with a system in the context of an entire family of systems. Before beginning a design,
an architect commonly searches for an existing software system that has solved a problem
similar to the one he is facing, or for tools and techniques that address the issues that are of
particular concern. Also, an architect must address the probability that any software system
will exist for a long time, requiring modifications to meet other challenges, thus, in effect,
creating an entire family of similar systems.

Thus, an architect seeks not merely to develop an arbitrary architecture, but to select
that architecture from a particular style, a family of systems. Using a style may guarantee
that the architecture will have some set of desirable properties or allow the architect to use a
vocabulary that is natural to the problem domain and supports reasoning and analysis about
critical aspects of the system.

For example, if an architect is faced with a problem of transforming a sequential stream
of input or a file in a regular way, the pipe-filter style permits the architect to decompose
the transformation into a collection of simpler transformations. By using the pipe-filter
style, the architect knows that the simple transformations can be combined easily without
worrying about declaring complicated interfaces or control sequences. If the system has
performance constraints, there are known techniques for analyzing the critical computation
path and for distributing a pipe-filter system across several processors [Che88].

If, on the other hand, the system must maintain a complex data store and keep it
up-to-date in a concurrent, potentially unreliable environment, the architect will instead
look for a database-transaction style such as X/Open [XOp93]. This style of system
construction permits the architect to make assumptions about the so-called ACID data
properties: Atomicity, consistency, integrity, and durability. Other styles range from the
domain-independent layered system style to very domain-specific styles for everything
from robotic controllers to employee payroll systems.

In this section we show how WRIGHT can be used to define architectural styles. A style
defines a set of properties that are shared by the configurations that are members of the
style. These properties can include a common vocabulary and restrictions on the ways this
vocabulary can be used in configurations.

In WRIGHT, common vocabulary is introduced by declaring a set of component and
connector types, using the declaration constructs introduced above for instance descriptions.
The pipe-filter style, for example, would include a declaration of connector type Pipe. Then
when a configuration is declared in the pipe-filter style, Pipes are automatically available
for use.

3.3.4.1 Interface types

In addition to declaring complete component and connector types, a style’s properties may
constrain only part of a component or connector. For example, in the pipe-filter style all
components are filters, which use only dataflow for input and output. This commonality of
filters needs to be stated, while the computation itself will differ between different filters.
Also, the names and numbers of input and output ports will differ from filter to filter. the
SplitFilter has one input and two outputs, while the UpperCase filter has one of each.

To describe these kinds of patterns and to simplify definition, a WRIGHT description can

Chapter 3. Introduction to WRIGHT 49

Interface Type DataInput = [read data repeatedly, closing the port at or before end-of-data]
Interface Type DataOutput = [write data repeatedly, closing the port to signal end-of-data]

Figure 3.7: Interface type declarations.

introduce interface types. For example the pipe-filter style would introduce DataInput and
DataOutput interface types for use by filters. This new vocabulary is shown in figure 3.7.
Interface types can then be used either as the port of a component (the most obvious use), or
as the role of a connector. In the latter situation, the interface represents a constraint on the
port interfaces that may be used in the role. Details of interface types will become clearer in
section 3.4, when the specific behavior notations are introduced, and section 3.7.1.5, when
the tests for attaching a port to a role are discussed.

3.3.4.2 Parameterization

In order to expand our descriptions from single systems to families of systems, we need
to have the descriptions cover more situations. That is, they must be more flexible so that
they can be used in more places in a description. In WRIGHT, we do this by parameterizing
our type descriptions. We permit a description of a type to leave “holes” in the description
that will be filled in when the type is instantiated.

For example, in the Unix pipe-filter style, all components have one input, named Stdin,
and two outputs, named Stdout and Stderr. The interface to all Unix filters is the same. This
is a pattern that we would like to describe in the Unix pipe-filter style. But the computation
performed by each Unix filter is different. In order to describe this, we must leave a hole
in the description so that the computation can be specified for the particular filter. We can
describe the Unix filter as a parameterized component type, as follows:

Component Unix-filter(C : Computation)
Port Stdin = DataInput
Port Stdout = DataOutput
Port Stderr = DataOutput
Computation = C

We can then use this description to describe any number of Unix filters:

Upper : Unix-filter([pass output, translating to uppercase])
Lower : Unix-filter([pass output, translating to lowercase])
LaTeX : Unix-filter([translate input in .tex form to .dvi form; error messages are sent to Stderr])

WRIGHT permits any part of the description of a type to be replaced with a placeholder,
which is then filled with a parameter when the type is instantiated. So the type of a port or
role, a computation, the name of an interface, etc. are all parameterizable. In addition, as
we will see when we discuss formal behavior descriptions, part of a description of a port,
role, computation, or glue can be a placeholder. These types are interpreted by substituting
actual parameters for placeholders in the definition.

50 A Formal Approach to Software Architecture

In addition to leaving simple holes in type descriptions, another way of parameterizing a
type description is by number. Suppose, for example, that a particular class of filter system
uses many filters that split their input among a number of outputs. SplitFilter, in figure 3.2,
is an example of this kind of filter. But it has exactly two outputs. What if we want three,
or four? In order for a style to explicitly list all of the possible Split filters with any number
of outputs, we would need infinitely many descriptions. Instead, we make the number of
outputs a parameter to the description:

Component SplitFilter(nout : 1..)
Port Input = DataInput
Port Output1::nout = DataOutput
Computation = [read from Input repeatedly, writing to Output1, Output2, etc.

in succession]

A parameter accepting a range of integers is written “hmini..hmaxi.” hmini indicates
the smallest acceptable integer, and hmaxi indicates the largest. If one of the bounds is
omitted (as is the case with hmaxi in the SplitFilter), this indicates that there is no limit in
that direction. Thus, the SplitFilter can accept any positive integer as its parameter.

In the body of the WRIGHT description, the number parameter can be used to control
the number of particular kinds of ports or roles that can appear. A port or role description
that can have multiple copies is indicated by specifying a range of integers as a subscript
to its name. In the SplitFilter example, there can be more than one Output port, depending
on the value of the nout parameter. In ranges appearing in port or role name subscripts,
both minimum and maximum bounds must be defined. (We can’t have an infinite number
of ports, after all!)

Thus, the number of ports on a component is set at instantiation time and can not be
changed during the execution of the system. This reflects the static nature of a WRIGHT

description. As we will discuss in chapter 9, WRIGHT assumes that, at run time, the set
of components and the interaction topology do not change. As we will elaborate, many
kinds of “dynamic” architectures (where components appear and disappear, or where the
topology of a configuration changes during an execution) can be modelled in one of two
simple ways. First, one may include all potential elements in the system description, and
then ignore those that do not currently exist. Second, one may describe each possible
configuration as a different architecture – in effect, use a mini-style to describe a single
system. In each case, the number of ports, roles, components, and connectors will be finite
at any instant.

3.3.4.3 Constraints

Clearly the new constructs of interface types and parameterization could equally well be
used in the definition of a single configuration. If a system is large enough to contain
repetitions, or if the architect wants to emphasize commonalities between different parts of
a single architecture, these elements of the language will be useful even if the system does
not refer to a separate style definition.

But a style is more than just a vocabulary that may be used to define configurations. It
isn’t enough for the pipe-filter style to have pipes and data inputs and outputs available to

Chapter 3. Introduction to WRIGHT 51

be used. In order for a system to be in the pipe-filter style, it must use only these elements.
In a more restrictive pipeline style, even this may not be enough: The components of a
pipeline must be strung together by pipes in a single line.

When an architect constructs a system as a member of a larger family of systems, using
the analytic techniques of that family, or modifies an existing system that has been validated
based on a specific set of assumptions, the architect will wish to refer to an explicit statement
of what constraints apply. If a system contains only pipes and filters, is this a coincidence
because no other constructs turned out to be necessary, or is it an intrinsic property of the
style that is used to simplify the implementation while retaining a high level of abstraction?

In order to specify these kinds of constraints, a WRIGHT style description may declare
properties that must be obeyed by any configuration in the style. For example, the WRIGHT

definition of the pipe-filter style would indicate that all connectors must be pipes as follows:

8 c : Connectors � Type(c) = Pipe

In addition, the style would require that all components in the system use only DataInput
and DataOutput ports:

8 c : Components ; p : Port j p 2 Ports(c)
� Type(p) = DataInput _ Type(p) = DataOutput

Each of the constraints declared by a style represents a predicate that must be satisfied by
any configuration declared to be a member of the style. The notation for constraints is based
on first order predicate logic. The constraints refer to the following sets and operators:

� Components: the set of components in the configuration.

� Connectors: the set of connectors in the configuration.

� Attachments: the set of attachments in the configuration. Each attachment is repre-
sented as a pair of pairs ((comp, port), (conn, role)).

� Name(e): the name of element e, where e is a component, connector, port, or role.

� Type(e): the type of element e.

� Ports(c): the set of ports on component c.

� Computation(c): the computation of component c.

� Roles(c): the set of roles of connector c.

� Glue(c): the glue of connector c.

In addition, any type that has been declared as part of the style’s vocabulary may be
referred to by name. As we saw in the examples above, the pipe-filter style introduces Pipe,
DataInput, and DataOutput, and the constraints of the style refer to these types by name.

Here is a more complex example of a constraint. It indicates that a configuration must
have a “star” topology.

52 A Formal Approach to Software Architecture

Style Pipe-Filter
Connector Pipe

Role Source [deliver data repeatedly, signalling termination by close]
Role Sink [read data repeatedly, closing at or before end of data]
Glue [Sink will receive data in same order delivered by Source]

Interface Type DataInput = [read data repeatedly, closing the port at or before end-of-data]
Interface Type DataOutput = [write data repeatedly, closing the port to signal end-of-data]
Constraints

8 c : Connectors � Type(c) = Pipe
^ 8 c : Components; p : Port j p 2 Ports(c) � Type(p) = DataInput _ Type(p) = DataOutput

Figure 3.8: The pipe-filter style.

9 center : Components �
8 c : Connectors � 9 r : Role ; p : Port j ((center ; p); (c; r)) 2 Attachments

^ 8 c : Components � 9 cn : Connectors; r : Role; p : Port
j ((c; p); (cn; r)) 2 Attachments

The first predicate indicates that there must be a component “center” that is attached
to every connector in the system. The second predicate indicates that every component
must be attached to some connector, thus guaranteeing that every component is connected
to “center”.

The complete pipe-filter style specification is given in figure 3.8.

3.3.5 Extending Styles

An important way of defining new styles is as a sub-style of another style. We define a style
to be a sub-style of another if it has all of the constraints of the other style. For example, we
might define the pipeline style to consist of linear sequences of filters interacting via pipes.
This style has all of the constraints of the pipe-filter style (all connectors are pipes and all
components are filters), and so it is a sub-style of the pipe-filter style. We define sub-styles
by giving the name of the super-style after the name of the sub-style. This has the effect
of including all of the super-style’s defined vocabulary (by inclusion) and constraints (by
and-ing them with the sub-style’s constraints). For example, we could define a pipeline as
follows:

Style Pipeline : Pipe-Filter
Constraints

#Components = #Connectors + 1
^ 8 c : Components � 9 p : Ports(c); cn : Connectors; r : Roles(cn) �

((c; p); (cn; r)) 2 Attachments

^ 9 s: seqComponents j ran s = Components ^ #s = #Components

� 8 cn : Connectors; i ; j :
; p1 : Ports(s(i)); p2 : Ports(s(j)) j
f((s(i); p1); (cn; Sink)); ((s(j); p2); (cn; Source))g � Attachments

� i = j � 1

Chapter 3. Introduction to WRIGHT 53

3.4 Specifying Behavior

So far, we have seen how to specify the structure of an architecture, and how an architectural
style can be used to describe a family of similar structures. But our specifications of the
meaning of the architectural types and of the behavior of the elements has been informal.
What precisely do we mean when we say that the pipe ensures that “Sink will receive data
in the same order delivered by Source?” How does a component signal end of data on a
DataOutput port? How can we specify which participant in an interaction is in control at
any point? What restrictions are there on the order in which things happen?

The behavior and coordination of components is specified in WRIGHT using a notation
based on CSP [Hoa85]. CSP is a notation for specifying patterns of behavior and interaction.
For historical reasons, a pattern of behavior is termed a process in CSP.

3.4.1 Events

The basic unit of a CSP behavior specification is an event. An event represents an important
action. For example, end-of-data is an event for the Sink of a pipe. Similarly, the write
event represents the delivery of data by the Source. The same event can occur many times
in a complete behavior. For example, the source of a pipe can write data many times.

Because we are interested in how different components control interactions, we add a
notation to CSP to distinguish between initiating an event and observing an event. An event
that is initiated by a process is written with an overbar within that process’ definition: The
specification of the DataOutput port would use the event write to indicate that it initiates this
event. The DataInput port, on the other hand, observes end of data, so in its specification this
event would be written without an overbar: end-of-data. We also refer to initiated events as
signalled events: The pipe mechanism, for example, signals end of data, so its event would
be written end-of-data. A special event in WRIGHT is

p
, which indicates the successful

termination of the entire system. Because this event is not actually a communication event
(it represents the ending of all further communication), it is not considered either to be
initiated or observed. When we refer to an event but don’t care whether it is initiated or
observed, we will say that a process engages in the event. Thus, processes indicate correct
termination by engaging in

p
.

An important property of events is that they can carry data. If a process supplies data,
this is considered output, and written with an exclamation point: the source of data for a
pipe supplies data when it writes to the pipe: write!x. If a process receives data, this is
input, and written with a question mark: e?x. Notice that output is usually signalled (e!x)
and input is usually observed (e?x).1

3.4.2 Processes

Given the basic element of behavior, the event, it is possible to construct patterns of
behavior, or processes. Processes are described by combining events and other, simpler

1This is not always the case, however. Consider a component that reads data from a variable. While the
component initiates this event, it receives data. Similarly, the glue of the variable connector represents the
delivery of the value as an observed output event (i.e., an output event that it does not initiate).

54 A Formal Approach to Software Architecture

processes. The simplest process is STOP, the process that does nothing.
The simplest way of constructing a new process is sequencing. Given a process P and

an event e, the process e!P is the process that first engages in the event e and then behaves
as P. For example, we define the success process, x, to be

p!STOP, the process that
successfully terminates immediately.

Another form of sequencing is the “;” operator. This combines two processes in
sequence. P ; Q is the process that behaves as P until P terminates successfully and then
behaves as Q. For example (e!f!x) ; (g!x) = e!f!g!x.2 If the process P does not
terminate, then P ; Q acts as P forever.3

If sequencing were the only operator, it would not be possible to describe very interesting
behaviors. The only processes would be those that engage in a single string of events, of a
fixed length, and then stop. In order to describe more complex behaviors, we need naming,
state, and alternatives.

By naming particular processes, we can describe behavior patterns that occur over and
over. For example, consider the following process definition:

P = e!P

The process named P performs the event e and then acts as the process P. This is a recursive
definition. The overall behavior of this process is to do e over and over again, without ever
stopping. Named processes can also be introduced into other processes using where:

f!P where P = e!P

This process does a single f and then repeats e over and over.
We add state to a process definition by adding subscripts to the name of a process: Pi

is a process with a single state variable, i . For example,

P1 where Pi = count!i!Pi+1

is a process that counts: count!1, count!2, count!3, etc.
Sometimes, however, we want a process to have different behavior depending on the

value of its state variables. For example, we might want a circular counter that counts to
three and then resets: 1, 2, 3, 1, 2, ... A state dependency is introduced with a conditional
definition, written by adding a test on the state variables:

PV = Q, when p(V)

defines a process P over variables V only when the boolean expression p(V) is true.
Multiple alternatives are indicated by stacking them with a large curly-brace. For example:

P1 where Pi=

(
count!i!Pi+1; when i < 3
count!i!P1; otherwise

2We use the convention that! associates to the right: e!f!P = e!(f!P).
3Note that we use “;” in a slightly different fashion than it is often interpreted in CSP. See appendix A for

a discussion.

Chapter 3. Introduction to WRIGHT 55

defines the circular counter.
Another important way of extending the behavior of a process is through alternatives.

The first kind of alternative is a process that recognizes the possibility of two behaviors in
its environment. We call this deterministic or external choice and use the operator . The
process e!P f!Q is the process that will behave as the process P if it first observes the
event e and will behave as the process Q if it first observes the event f. This form of choice
is called deterministic because the behavior of the process is entirely determined by what
the environment does.4 Deterministic choice is typically made between observed events.

The second kind of alternative is a process that makes an internal choice about which
of two behaviors to perform. We call this non-deterministic or internal choice and use the
operator u. The process e!P u f!Q is the process that will either output e and then act as
P or output f and then act as Q.5 The process itself decides which to do, without consulting
the environment. Thus, non-deterministic choice is typically made between initiated events.

To make processes more flexible, the sequencing and choice operators can also be
quantified over a set: hopix : S � P(x). This operator constructs a new process based on
a process expression and the set S , combining its parts by the operator hopi. For example,

(i : f1; 2; 3g � Pi) = P1 P2 P3:

If the sequencing operator ‘;’ is used, “; x : S � P(x)”, we must take into account the fact
that it is not symmetric (P; Q 6= Q; P). The meaning of quantification over sequence is
some unspecified sequencing of the processes:

(; x : S � P(x)) = (u x : S � (P(x) ;
(; y : S n fxg � P(y)))):

Thus,

(; i : f1; 2; 3g � Pi) = (P1; P2; P3) u (P1; P3; P2)
u (P2; P3; P1) u (P2; P1; P3)
u (P3; P1; P2) u (P3; P2; P1).

Three forms of this operator are typically used:

� x : S � P(x) indicates an external choice between different P(x),

� u x : S � P(x) indicates an internal choice between different P(x), and

� ; x : S � P(x) indicates the execution of all of the different P(x) in some order.

4Technically, the process is only deterministic when the guarding events (e and f in our example) are
different.

5Both alternative operators bind more closely than sequencing. Thus, e!P f!Q = (e!P) (f!Q).

56 A Formal Approach to Software Architecture

3.4.3 Examples

Given these notations, we can now specify the behavior of architectural elements precisely.
As a simple example, consider the basic procedure call connector.

The basic idea of a procedure call is that there is one party, the Caller, that initiates the
procedure call invocation. The other party, the Definer, carries out the defined computation,
and then returns. This pairing can be carried out multiple times.

A formal WRIGHT specification of this interaction (ignoring data) is as follows:

Connector Procedure-call
Role Caller = call!return!Caller u x
Role Definer = call!return!Definer x
Glue = Caller.call!Definer.call!Glue

Definer.return!Caller.return!Glue
x

There are three elements of this definition worth noting. First, the Caller and the Definer use
different alternatives to indicate their different roles. The Caller decides whether to initiate
a procedure call or not, and so it uses the non-deterministic choice operator. The Definer,
on the other hand, offers the option of a procedure call, so it uses deterministic choice. It is
up to the other parties (in this case the Caller) to determine whether a call will occur or not.

Second, because the Glue mediates the interaction between multiple participants, its
specification must indicate which role’s event is indicated in any situation. This is done by
prefixing each event by the name of a role. So Caller.call indicates the Caller component
executing the call, and Definer.call indicates the Definer component being notified of the
call.6

Third, the Glue indicates how the behavior of the roles corresponds to form a complete
interaction. Each of the two main branches of the Glue process indicate how an event of
one participant triggers another event in the other participant. Where a role represents the
behavior of a component, the Glue represents the composition of different components.
Thus, the Glue’s use of initiate and observe events is complementary to that of the roles: If
a role initiates an event, it is observed in the Glue. If a role is to observe an event, it must
be initiated by the Glue.

Thus, “Caller.call!Definer.call!Glue” indicates that the Definer will observe a call
event following its initiation by the Caller. “Definer.return!Caller.return!Glue” indicates
that the Caller will process a return following the signal by Definer.

This particular glue structure, where an event that is initiated by one role (thus, observed
by the glue) is always echoed at another role, is quite common in connector interactions.
In fact, it is so common that many architecture description languages do not permit any
other form of glue. We do not wish to restrict the kinds of interaction patterns that can
be described in WRIGHT to just this simple class, but we can, as we discuss in chapter 9,
provide “syntactic sugaring” to simplify glue descriptions for common cases.

6In practice, these events actually occurrence simultaneously in the software system, but for various
technical reasons (discussed in chapter 9) WRIGHT considers all events in different roles to be distinguishable
events.

Chapter 3. Introduction to WRIGHT 57

Suppose we wanted to define a more complicated form of procedure call, in which there
was more than one possible caller. In this case, the connector would need to specify how
the different callers are coordinated with the definer so that the result from one caller’s
request is not sent to a different caller. One possible definition is as follows:

Connector MultiCallers(nc:1..)
Role Caller1::nc = call!return!Caller u x
Role Definer = call!return!Definer x
Glue = (i : 1::nc � Calleri.call!Definer.call

! Definer.return!Calleri.return!Glue)
x

The definition of MultiCallers provides only one interpretation of how multiple callers can
be coordinated. It indicates that all calls are handled in sequence, so that the definer is only
dealing with one at a time. Alternative definitions might permit nested calls, or arbitrary
interleaving of calls (in which case the definer would need to know about and supply handles
identifying which result went with which request). Thus, we can not, in general, ignore the
glue and provide a default interpretation.

As a more interesting example, consider how we might complete the formalization of
the pipe-filter style. The earlier specification of a DataOutput port was informal: hwrite
data repeatedly, closing the port to signal end-of-datai. This can be formalized as follows:

Interface Type DataOutput = (write!x ! DataOutput) u (close ! x)
A DataOutput port has two events with which it communicates, write and close. Both of
these events are initiated by the component, and so they are written with an overbar. The
component decides between the two events, indicated by the u operator. If the component
chooses to write, it provides a data element (indicated by the !x), and then makes the choice
again (it behaves as DataOutput). If the component chooses to close, then it must terminate
without writing again (x is the only option following close).

Formalizing the DataInput port is slightly more complicated. Informally, we said hread
data repeatedly, closing the port at or before end-of-datai. This seems to indicate a similar
kind of choice between reading and closing. But when we attempt to read, there might not
be any data available (the writer may have signalled end-of-data). In this case, we must
close. All of these situations are covered in the formal definition:

Interface Type DataInput = (read!(data?x!DataInput
end-of-data!close!x))

u (close!x)

Initially, DataInput has an internal choice between the events read and close. This indicates
that the component may choose which of these to initiate. Once read has been initiated,
DataInput has an external choice between data?x and end-of-data. This indicates that a
component must be able to accept either of these occurrences. The event end-of-data is
followed immediately by close without any choice operators, indicating that the component
is required to initiate close whenever it observes end-of-data.

In order to fully define the interaction represented by the Pipe connector, we need to
specify three behaviors: The Source role, the Sink role, and the Glue. Not surprisingly, since

58 A Formal Approach to Software Architecture

they were designed to go together, the Source and Sink role definitions use the DataOutput
and DataInput definitions respectively. The Glue, which indicates how the behaviors of
the two sides are combined to form a complete interaction, is more complicated. It must
constrain the read and write events so that the Sink receives exactly the data that the Source
has produced. Furthermore, the Glue must coordinate the closing of the pipe by the Source
with signalling end-of-data to the Sink. The following definition accomplishes this:

Glue = Openhi where

Opens =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Source.write?x!Openhxi

Source.close!Closedhi

Sink.close!Capped ; when s = hi

Sink.read!Sink.data!x!Opens0

Source.write?y!Openhyi�s0�hxi

Source.close!Closeds0�hxi

Sink.close!Capped; when s = s 0
� hx i

Closeds =

8>>>>>><
>>>>>>:

Sink.read!Sink.data!x!Closeds0

Sink.close!x; when s = s 0
� hx i

Sink.read!Sink.end-of-data!Sink.close!x
Sink.close!x; when s = hi

Capped = Source.write?x!Capped
Source.close!x

This definition recognizes three main situations in the interaction: Both ends of the pipe are
open (represented by the process Open), the Source has closed (represented by Closed),
or the Sink has closed (represented by Capped). Once both parties have closed, no further
interaction is possible, so the Glue becomes x. While there is a possibility of data flow
(i.e., the Sink has not closed), the data available is kept as state associated with the process
(either Open or Closed). A write event by the Source adds to the queue of data, and a read
event by the Sink removes from it. Once the Source has closed, and there is no more data
available, the Glue will be in the state Closedhi. In this situation, the Sink will be informed
of end-of-data, and then only close is possible. In the state Capped, the Sink has closed
before the Source. In this case, there is no need to remember any data values, but the
Source is free to continue until it closes of its own accord.

Notice how in this connector, the Glue does more than simply match up events in the
various roles. Anywhere a pipe is used in an architecture, there is an additional buffer that
is added to the system, containing the data that has been written by the source but not yet
read by the sink. At the same time, the connector retains its abstract task of showing how
the computations of the various participants are combined to form a larger computation:
The purpose of the pipe connector is to allow the architect to ignore this buffering of data
and concentrate on finding or constructing the filters necessary to achieve the desired data
transformations.

Chapter 3. Introduction to WRIGHT 59

The SplitFilter can also be completed using formal behavior specifications and the
pipe-filter style:

Component SplitFilter(nout: 1..)
Port Input = DataInput
Port Output1::nout = DataOutput
Computation = Transfer1 where

Transferi =

8>>>>>><
>>>>>>:

Input.read! (Input.data?x!Outputi.write!x!Transferi+1

Input.end-of-data!Close);
when 1 � i ^ i � nout

Transfer1; when i = nout + 1

Close = Input.close!(; i : 1::nout � Outputi.close!x)

3.5 The Behavior of WRIGHT Configurations

Now that we can describe the structure of an architecture and assign behaviors to each of
the elements, we need to address two important questions: What do the behavior patterns
of the different elements imply about the system as a whole? and, How can we decide if a
description is valid? This section addresses these questions by showing how the descriptions
are combined and by giving rules that must be obeyed by legal WRIGHT descriptions. Details
of the underlying CSP model that we use are given in appendix A.

As we saw in the previous section, behaviors are specified by combining events into
patterns called processes. There is a process for each of the elements of a WRIGHT

description, one for each port, role, computation and connector glue. Of these, the port
and role specifications represent the interfaces to the components and connectors, while
the computation and glue represent the overall, complete behavior of the components and
connectors, respectively. In this section we explain how these distinct processes work
together to define the behavior of the configuration and help us to determine whether the
configuration contains inconsistencies that mean the system cannot operate correctly.

3.5.1 Parallel Composition

Abstractly, we think of the behavior of an architectural configuration as consisting of each of
the behaviors of the individual components, each operating independently except that they
are coordinated by the glue of the connectors to which they are attached. The computation
of each component forms a part of the overall behavior, where the order in which the
computations occur and the transfer of data from one to the other is coordinated by the
connectors.

The basic technique used in CSP to model the combination of coordinated processes
is parallel composition. Two processes are composed in parallel (indicated in CSP with

60 A Formal Approach to Software Architecture

the operator k) by having both processes control which events can occur. If both processes
agree on an event then the event can occur. For example, consider two processes, P and Q:7

P = (e !f !P) (g!P), and
Q = e!(f !Q h !Q).

What will happen if we combine these in parallel, as PkQ? At first, P permits either e or g.
But Q may only engage in e, so this is what will happen. Once e has occurred, Q may now
engage in either f or h. But now P is only capable of f, so f occurs. After the he; fi sequence,
both P and Q are in their original states, so the sequence repeats. Thus, the process PkQ is
equivalent to the process R = e!f!R.8

3.5.2 Alphabets

Sometimes, we use a process to describe only some of the events that may occur in a larger
computation. This process does not make any reference to some of the possible events
and should not therefore control whether they occur or not. For example, if we have a
system with two filters in a pipeline (see figure 3.9), then the first component (labelled A)
should not have any control over the computation to be performed by the second (labelled
B). A’s only influence on B should be via its use of the connector, C. So we can’t simply
put the computations in parallel and give each computation full control over the events
in the system. Let’s look at a simple example to clarify this problem. Consider three
CSP processes, A, B, and C, and think of them as the two components and connector in
figure 3.9.9

A = a!A u x

C = a!c!C x

B = c!b!B x

The intent of this system is as follows: the component A will engage in the event a some
number of times and then decide to terminate. The component B is capable of executing
the event sequence hc; bi any number of times, or terminating. B will execute b whenever it
observes c. The connector C is responsible for ensuring that whenever a occurs, c follows.
Thus, for each a, the connector transmits a c, and this triggers a b event in B. The overall
effect should be that there will be exactly one b for each a. This models a kind of connector
where one component triggers a particular behavior in another component; for example, in
a component that reacts to the receipt of a message from another component.

But what if we combine these processes in parallel: AkCkB?
If every process controls every event, then nothing can happen! Initially, process A

wants to do the event a. This is fine with C, but B wants to do the event c first. So a can’t
happen first. But neither can c, because neither A nor C agrees to this.

7In this example, we assume that the alphabets of all processes are identical.
8In CSP, two processes are equivalent when they represent exactly the same pattern of behavior. Details

of equivalence and its more flexible cousin, refinement, appear in appendix A.
9Because this is a simple example to show the properties of CSP, and not really a full WRIGHT example,

we are ignoring the initiate/observe distinction for events.

Chapter 3. Introduction to WRIGHT 61

A B
C

{a} {b,c}{a,c}

Figure 3.9: A and B should interact only via C.

To address this issue, CSP uses the concept of an alphabet. The alphabet of a process
(written �P) is the set of events over which it has an influence. In a parallel composition, a
process controls the events that are in its alphabet and ignores the others. In our example,
the alphabet of A is the set fag, the alphabet of B is fb; cg, and the alphabet of C is fa; cg.
Thus, in the composition AkCkB, the event a can occur first, because B doesn’t have it in
its alphabet. Both A and C react to it occurring, but B ignores it. Once a has occurred, then
B and C can agree on c, and A ignores it. After that, either a or b can occur, since none of
the processes will prevent them. A and C agree on a, and B can do b on its own.

The problem of process alphabets in CSP is quite similar to the problem of scoping
often encountered in system design. When we consider a particular aspect of a software
system, a procedure call or the state of some variable, say, how do we determine how much
of the system we have to look at in order to consider all of the influences on the part we are
interested in? In some programming languages there is no easy way to avoid looking at the
code of the entire system. If we use techniques such as data abstraction or have a software
architecture that is specified and followed, then there are clear scoping boundaries that we
can use to limit the potential effect on a local element. Note, however, that unlike scoping
in programming languages, we define the scope of an event to be an interaction. We do not
require that scoping be hierarchical, where it is either visible to all or no components at a
given level.

3.5.3 Application to WRIGHT

Let us now apply the notion of parallel composition to WRIGHT specifications.
We want to set up the formal interpretation so that the component Computations interact

only according to the constraints of the connectors’ Glue. That is, each computation should
proceed independently of the other components, except that the events published in the
interface (the ports) should be coordinated via the glue processes of the attached connectors,
just as we expect from section 3.3.

Basically, we combine the behavior specifications of each instance of an architectural
element in the system via parallel composition, as we discussed above. That is, there will
be a process for each component instance and one for each connector instance. But there
are two main difficulties here:

1. Behavior specifications are associated with a type, not an instance: How can we
combine multiple uses of a type in single system?

2. The types’ specifications are context-independent: How can the attachment declara-
tions be used to ensure that the right interactions take place? If we look at the way
behaviors are specified in a component’s Computation and a connector’s Glue, none
of the event names match up. The Glue will refer to an event with a role name, and

62 A Formal Approach to Software Architecture

the Computation will refer to it by a port name. Recall from the pipe-filter example
(section 3.4) that in the Pipe Glue, the events describing the output of a filter are
Source.write and Source.close. But in a Computation, the events describing the
output of one particular filter, say the SplitFilter, are Outputi.write and Outputi.close.
If we just combine these using k, they won’t match up.

Both of these are problems that are common whenever types are used in software
engineering, and whenever any attempt is made to reuse elements, either within a single
system or across multiple systems. In object-oriented definitions, for example, one must
distinguish between class and instance variables, depending on whether the value is to be
shared by the objects in a class or there is a separate variable for each individual object.
By the same token, if we wish to replace one runtime library with an other in a program,
either the two libraries must be forced to use exactly the same set of procedure names, or
the program must be changed to incorporate the new library. Either solution can be costly
or even impossible. By using local names in the WRIGHT specification these problems are
avoided.

WRIGHT’s local event names are converted into CSP’s global events using renaming
functions. A renaming function takes a process and changes all of the names of its events.
For example, consider a function shift that shifts each event by one letter, a to b, b to c,
etc. When shift is applied to a process, P = a!b!P, the result is a process with the same
structure, but with different event names: shift(P) = b!c!shift(P).

We use two different kinds of renamings to combine the types’ behavior specifications
into an overall behavior of a WRIGHT configuration. The first is used to make multiple
copies of the specifications for instances. These functions add the names of the instances to
each event name, and are called labelling functions. They are written L : P to indicate the
process P with its events prefixed by the label L. Thus, an instance of the SplitFilter named
Splitter would refer to its events with the name Splitter: Splitter.Left.write, Splitter.Left.close,
etc. This way, there can be multiple instances of a type and they will not interfere.

Relabelling is sufficient to construct processes to represent each component instance.10

We simply use a relabelled version of the Computation associated with the component
type. For a declaration “N : CT,” where the component type CT has a computation process
P, we will use the relabelled process N:P. This has the effect of giving each event of
component instance N a three leveled structure: The component name, the port name, and
the local event name (N.P.e). If the computation uses any internal events (not associated
with any port) these will have two level names: the component name and then the event
name (N.e).

The second kind of renaming matches up the names of attached ports and role. If we
have an attachment declaration,

Splitter.Left as P1.Source

for example, these functions make sure that all of the events for the Left port in the
Splitter’s computation match up with the events from the Source role of the P1 glue.
Thus Splitter.Left.close would be the same event as P1.Source.close after the attachment
renaming functions are applied.

10We will, however, require the full power of renaming when we discuss attachments, below.

Chapter 3. Introduction to WRIGHT 63

To achieve this, we use another special form of renaming function:

Definition 1 For any names N,N’,M, M’, not necessarily distinct,

R
(N;M)
(N’;M’)(e) =

(
N’.M’.e’ if e = N.M.e’
e otherwise

In the case of the attachment above, we would thus use R(P1;Source)
(Splitter;Left). We will call this

function an attachment function. In the next section we show how these functions are
applied to the connector instance processes to ensure that the behavior model of a WRIGHT

configuration uses the communication pathways laid down by the connector instances and
attachment declarations.

3.5.4 Configuration

How does this all work out in practice? Let’s look at a simple example. Suppose we want
to make the three processes A, B, and C from above into actual WRIGHT components and
connectors. Then they would look something like this:

Configuration ABC

Component A-type

Port Out = a!Out u x

Computation = Out.a!Computation u x
Component B-type

Port In = c!In x

Computation = In.c!b!Computation x

Connector C-type

Role Origin = a!Origin u x

Role Target = c!Target x

Glue = Origin.a!Target.c!Glue x

Instances
A:A-type
B:B-type
C:C-type

Attachments
A.Out as C.Origin
B.In as C.Target

End ABC.

The resulting CSP process is the following:11

11In fact, the CSP interpretation removes the initiate/observe markings on events so that they will synchro-
nize. They have been left in here to make the connection to the WRIGHT description clearer.

64 A Formal Approach to Software Architecture

A = A.Out.a!A u x
k C = A.Out.a!B.In.c!C x

k B = B.In.c!B.b!B x

Formally, we define a configuration behavior as follows:

Definition 2 (Configuration Behavior) If a configuration declares component instances
Cp1:CpT1 ... Cpn:CpTn, where each component type CpTi has computation process CpPi,
connector instances Cn1:CnT1 ... Cnm:CnTm, where each connector type CnTi has glue
process CnPi, and attachment declarations with attachment functions R1 ... Rk, let R =
R1 � ::: � Rk. Then the behavior of the configuration is the CSP process (ki : 1::n � Cpi :
CpPi) k (kj : 1::m � R(Cnj : CnPj)).

In this definition, it is worth noting the definitionR = R1 � :::�R
k
. This indicates that

the attachment functions are composed to form a single function. Recall that the definition
of the attachment functions made it a total function over events, but that only the relevant
events (of the specific role on the connector) are changed by the definition. The requirement
that all connector names be unique and all roles be attached to at most one port ensures that
there will be no conflicts when composing attachment functions in a configuration.

Hierarchy

As we discussed previously, an important way of describing the computation of a component
is by hierarchical decomposition. A component is decomposed by describing it as a full
configuration. In order to achieve this, it is necessary to provide bindings that define the
correspondence between parts of the configuration and the ports of the component. Thus,
it is shown how the configuration interacts with its environment. The technique of using
bindings ensures that the component truly encapsulates the architectural structure, because
there is no way for any user of the component type to tell whether there is an atomic
Computation specified or whether there is a configuration.

In this section we show how a configuration, in conjunction with bindings, can be used
as a component type.

According to definition 2, the WRIGHT interpretation of a configuration is a CSP process
which includes a process for each component and each connector. In the behavior process,
each event that is mentioned in a port is given a three-level name of the form C.P.e, where C
is the name of the component instance and P is the name of the port on that component. We
used renaming functions to map the connector glue events into this same naming structure.

A component type that uses an event in its port gives the event a two-level name, using
the name of the port. Thus, in a component type, events are of the form P.e, rather than
C.P.e. We must thus once again rename the events so that they are of this two-level form.
The bindings guide us in this.

We must also ensure that any events that are not used in a port do not interfere with
interpreting the behavior at that port later. For example, recall that in our example of
section 3.5.3 we had a configuration with two components A and B. B had an internal event
b, that when we used it in an instance, was renamed to have a two level structure B.b. This
was not a problem, because in a component instance, every event on a port has a three

Chapter 3. Introduction to WRIGHT 65

level structure, for example B.In.c. But in a component type (as we now intend to use the
configuration), port events once again have a two level structure. What if the component
type has a port named B? Then the event B.b might be misinterpreted as belonging to that
port. Thus, we will want to expose only events that are properly renamed via bindings.
This projection will occur before renaming so that we avoid capturing the events.

The relabelling is simple enough to accomplish using theR renaming function. Instead
of using a Connector.Role to Component.Port mapping, we simply use Component.Port
to NewPort: Each binding “C.P to P’” has a corresponding renaming function RC.P

P’ . The
binding also defines a keeping event set C.P:� which is all events of the form P’.e. These
are the events that are exposed at the port of the outer component. All others will be hidden
when the configuration is enclosed hierarchically.

These are combined to make a complete transformation as follows:

Definition 3 (Hierarchy) If a component C declares its computation as a configuration
with behavior process Conf and a set of bindings with renaming functions R1..Rn and
keeping event sets S1..Sn, let R = R1 � ::: �Rn and S = S1 [:::[Sn. Then its computation
process is R(Conf � S).

3.6 Semantic Style Constraints

In section 3.3.4 we introduced the concept of style-specific constraints in WRIGHT. These
are used to control the properties of any system in that style, and can be used to guarantee that
a system has particular properties or that it can be constructed using specialized techniques.
The constraints that we have so far discussed are syntactic: They refer to the topology of
instances and attachments or constrain elements based on the named types.

Using the underlying CSP model, we can extend our notion of style to permit semantic
constraints on systems. For example, some styles may depend on a particular relationship
existing between two different ports on each component. A database component might
have a logging port that records all incoming communication, for example. We could
certainly describe a database component type that logs all transactions by providing a
particular database protocol and enumerating all of the messages that would go into the
log. However, this constrains the components too much: The style may not care about
the specific database protocol, but only about the fact that logging will occur. The style
specifier should be able simply to require that data be logged, without indicating how it is
achieved. A possible specification could look like this:

8C : Components ; e : �oC; t : Traces(C) j e = last(t)

� ff : �C j t � hf i 2 Traces(C)g = fLog.log!eg

This specification states that whenever a component C observes an event e, it will immedi-
ately record that event on port Log. It does not constrain the component in any other way:
The component may have any number of other ports, and the alphabets on those other ports
are unconstrained.12

12The freedom to apply a constraint to components with varying alphabets highlights the fact that these

66 A Formal Approach to Software Architecture

In order to support these semantic constraints, we add the following predicates to the
constraint language described in section 3.3.4. In each case, we use an element (component,
connector, port, or role) and its behavior process interchangeably. Constraints refer to
processes before renaming.

� �P: the alphabet of process P.

� �iP: the subset of �P that is initiated.

� �oP: the subset of �P that is observed.

� Traces(P): the traces of process P.

� Failures(P): the failures of process P.

� Refusals(P): f(hi; r) : Failures(P) � rg (the immediate refusals of P).

� System: the behavior process of the configuration.

The use of semantic constraints will be illustrated in chapter 5.

3.7 Validating Descriptions

We have seen how WRIGHT can be used to express the structure and behavior of a software
architecture, as well as to describe the constraints on a family of systems that form an
architectural style. For example, we have seen how WRIGHT allows us to describe con-
nectors explicitly, distinguishing different connectors with different protocols over events,
clarifying what parties are responsible for initiating those events, and showing what parts
of an interaction are visible to each participant. We have also seen that WRIGHT permits
the computation of each component to be described in terms of significant communication
events and to divide the interface of each component into several distinct interactions. Fi-
nally, the parameterization and style constraint facilities permit individual descriptions to be
generalized to a pattern of interaction or computation, and to place more global restrictions
on how systems can be assembled.

As a formal specification language, however, WRIGHT has value beyond enabling
architects to write down an architectural description. Another important aspect of the
language is its support for analysis and reasoning about the described system.

There are many kinds of analysis that one might consider at the architectural level
of design. These analyses include functional correctness of the system, potential for
expansion to meet increasing demands, contention for critical resources, and probable
cost to implement subsystems, among many others. Each of these analyses rests on
different properties of the described system, and would be suitably supported by different
architectural formalisms.

constraints are not representable directly in CSP: There is no process such that every process that obeys the
constraint is a refinement of it. This is because a CSP process must have a fixed alphabet, but the constraints
apply to processes which may have different alphabets than each other.

Chapter 3. Introduction to WRIGHT 67

Two criteria for an architectural description that underly all of these analyses are consis-
tency and completeness. Informally, consistency means that the description makes sense;
that different parts of the description do not contradict each other. Completeness is the
property that a description contains enough information to perform an analysis; that the
description does not omit details necessary to show a certain fact or to make a guarantee.
Thus, completeness is with respect to a particular analysis or property.

Consistency and completeness are fundamental to architectural analysis because without
them, no other analysis makes sense. Consistency is necessary before the description can
be said to describe an actual system. If one part of an architectural description indicates
one thing, and another part the opposite, surely one of them is wrong? Which part is to be
used in an analysis? An inconsistent description can only lead to trouble.

Because the architectural level of design is fundamentally concerned with questions of
structuring and composition, consistency among parts is especially critical at this level of
design. The principles that ensure that a system will function as a coherent entity must
be built in as part of the overall structure; if the abstract description is inconsistent, any
refinement or implementation of it must necessarily retain that inconsistency.

Completeness is important to an architectural description because an analysis can only be
based on what we actually know about a system. If an architect analyzes the communication
behavior of a component, but the description used leaves out part of the interface, what
good is the analysis? An analysis of contention for a resource can only be applied if all of
the parts that access that resource are known. How can we decide the timing behavior of a
system if the components don’t indicate how long they take to compute? We can’t.

The problem of completeness is especially critical for the architect because of the
importance of abstraction at this level of design. There is always a tension between the need
to include critical information that is necessary to guarantee important system properties
and the risk of cluttering the architecture with constraints and details that can make the
architecture unwieldy and difficult to work with. Thus, our discussion of completeness will
center on the question of whether a description is complete with respect to a property or
analysis of interest.

In the next sections, we discuss the questions of the consistency and completeness of
a software architecture instance description. For each of these properties, we show how
WRIGHT addresses these issues and structures analysis of an architectural description to
highlight inconsistency or incompleteness, and how simple tests can be applied to guarantee
that an architectural description is both consistent and complete. The WRIGHT tests are
summarized in figure 3.10. In parentheses, we have indicated the language construct to
which each test applies.

3.7.1 Consistency

The property of consistency is important for each element of an architectural description:
the components, the connectors, and the configurations. For each of these elements we
must ask ourselves how we can tell if a description is consistent.

68 A Formal Approach to Software Architecture

1. Port-Computation Consistency (component)

2. Connector Deadlock-free (connector)

3. Roles Deadlock-free (role)

4. Single Initiator (connector)

5. Initiator Commits (any process)

6. Parameter Substitution (instance)

7. Range Check (instance)

8. Port-Role Compatibility (attachment)

9. Style Constraints (configuration)

10. Style Consistency (style)

11. Attachment Completeness (configuration)

Figure 3.10: Summary of tests.

3.7.1.1 Components

When we say that a description is internally consistent, we mean that none of the parts
of the description contradicts any of the other parts. That is, whenever two parts of the
description overlap, describing the same property or behavior, the two parts must agree. If,
however, one part of the description describes something not covered by another part, there
is no possibility of contradiction.

As we have seen, for a component description the parts consist of an interface, decom-
posed into a number of ports, each of which describes an interaction in which the component
participates, and a computation, which describes the full internal behavior of the compo-
nent. To determine the consistency of a component description, we must determine whether
the computation violates the interface. That is, to the extent that a computation is involved
in carrying out a particular interaction, the computation must obey the rules of interaction
defined by the port.

In CSP this informal notion, of one process “obeying the rules” of another process, is
captured formally by means of a “refinement relationship” between processes. Formally,
refinement is based on the characterization of a processes as the triple (A;F ;D) of alphabet,
failures and divergences. A process P is refined by process Q, written P v Q, if their
alphabets are the same, the failures of P are a subset of the failures of Q, and the divergences
of P are a subset of the divergences of Q. The failures model of CSP, as well as refinement,
is discussed in more detail in appendix A.

For the purposes of the WRIGHT checks, the most important property of refinement is
that if P v Q, then Q must respect all of P’s obligations to interact with its environment.

Chapter 3. Introduction to WRIGHT 69

However, where P permits an internal choice among several alternatives, Q may further
constrain those choices.

So, for example, suppose P and Q are processes with alphabet fe; fg:

1. if P = (e!P u f!P) and Q = (e!Q) then P v Q

2. if P = (e!P f!P) and Q = (e!Q) then P 6v Q.

In the first example, process Q does not exercise the internal choice of engaging in f, but
is otherwise consistent with the behavior of P. In the second, Q is not a refinement of P,
because it refuses f when P does not.

Returning to the question of port-computation consistency, recall that we do not view
the collected ports as representing a full specification of the component, which must then
be verified. The component will define relations between events at different ports and may
also define its behavior in situations that are not expected to arise, due to restrictions defined
by the ports. The purpose of the ports is to ensure that the component’s behavior in an
interaction meets the requirements of the interaction, and therefore we only care that the
computation is consistent with the ports: If the computation is consistent with the port, and
the port is compatible with the role, then the computation is compatible with the connector.

Recall that a port specification indicates two aspects of a component. First, it indicates
some aspect of the component’s behavior, and second, it indicates the expectations of a
component about the system with which it interacts.

In WRIGHT we can compare the behavior of the component with the behavior implied
by the port by checking whether the port represents a projection of the component’s overall
behavior. A port is a projection of the component if the component is a refinement of
the port when we ignore all events not in the port’s alphabet. For example, consider the
following specification:

Component Double
Port In = read?x !In close!x
Port Out = write!x !Out u close!x
Computation = (In.read?x !Out.write!(2*x) !Computation)

(In.close!Out.close!x)

In this specification, the port In is a projection of the Computation over the events that are
prefixed with the name In (i.e., In.read and In.close). Out is a projection of the Computation
over the events that are prefixed with the name Out (i.e., Out.write and Out.close). When we
say we ignore a given set of events, we really mean that we hide them from the external envi-
ronment, treating them as internal choices: If we hide In.close and In.read, then the external
choice between them in the Computation becomes an internal, or non-deterministic choice
between the visible events that follow them: (Out.write!Computation)u (Out.close!x).
This, of course, matches the port Out.

The second aspect of a port, indicating expectations about the environment, is illustrated
by the following example. What if we attempt to attach Double’s In port to an interaction
that might initiate events other than read and close? For example, a role might state:

Role FailingIn = read?x!FailingIn close!x fail!x

70 A Formal Approach to Software Architecture

This specification indicates that a component filling this role might also be informed of
a failure, after which it would be expected to stop using the port. The Computation of
Double doesn’t handle the fail event, and the system would break if Double found itself in
a situation where the fail event occurred.

Fortunately, the interface of Double (port In) clarifies the situation. It indicates that
Double may not be used in the interaction represented by FailingIn, because the port
specification shows that Double expects either In.read or In.close, while the role indicates
that In.fail should also be handled. So, as we will see in the section on attachments,
FailingIn does not meet the expectations of Double, and can not be attached to the In port:
The specification of Double is not required to deal with the fail event.

So if a port specification does not refer to an event, the component is not required to
handle it. But there are situations in which it might be appropriate to have a component
specification describe behaviors that it does not expect to occur. Such situations occur
with generalized computation or reuse. It might be simpler to describe a computation by
including all cases, not just those that are covered by the interface. Or, we might want
to reuse a more general computation specification. For either of these reasons, the port
specification might only cover a subset of the situations that the component can actually
handle.

For example, suppose we have a server that calculates square-roots over all integers —
including negatives. If we want to use it in a situation where complex answers are not
acceptable, we would need to change the interface to indicate that only positive integers
may be delivered by the client. It doesn’t make sense to have to change the algorithm used
internally by the server just to match the new, more restrictive interface.

Another reason a computation description might cover situations that don’t appear in
the interface is bullet-proofing. We might want to describe the behavior of the component
Double in the face of failure, even though the interface specifies that the system must avoid
it. This might be useful, for example, if there is a risk that the implementation of another
component is broken. Here is an extended specification of Double:

Component Double
Port In = read?x !In close!x
Port Out = write!x !Out u close!x
Computation = (In.read?x !Out.write!(2*x) !Computation)

(In.close!Out.close!x)
(In.fail!x)

In this specification, Double promises that if it observes a fail event on port In, then it will
terminate immediately, and neither attempt to use In nor send any more output to Out.

But wait! Now the Computation process doesn’t project into the Out port as we expect.
Consider the computation ignoring In events, which we will name CompOut:

CompOut = (Out.write!(2*x) !CompOut) u (Out.close!x) u x

In the projection CompOut, the non-deterministic choice of x means that Double may
terminate without sending a close event on Out. The port specification Out, on the other
hand, indicates that termination must be signaled with close.

Chapter 3. Introduction to WRIGHT 71

But of course this isn’t really a fair test. The whole point of leaving fail out of the
In port specification was to indicate that the component doesn’t have to worry about it
happening. That is, the simple projection CompOut can only terminate without closing if
the environment violates the assumption of port In that In.fail events will not occur. The
behavior of the Computation of Double after the event In.fail is not relevant to whether
the component is consistent, with either Out or In, because the port In specifies that any
interaction on port In must guarantee that fail will not occur. This is an assumption of
component Double.

How can we test the requirement aspect of a port while taking advantage of the assump-
tions? If we ignore the assumptions in the requirements test, many reasonable computations
will be excluded; the test will be too strict. We must separate out the assumptions indicated
by the ports and allow the computation to take advantage of them.

The key to this separation is that the assumptions that a component makes about event
behavior at its ports are based on the observed events in the port process. Any initiated
events are declarations about what the component will do, not assumptions about the
environment. Thus, if our test limits its comparison of the behavior of the component and
the port to those traces that match the observed event patterns of its ports, we will have
covered all of the requirements of the port while taking advantage of its assumptions. Any
trace that contains observed events not permitted by the port violates the expectations of
the port and need not be considered.

Formally, we can use a deterministic version of a process to restrict one process to the
traces of another. If we have two processes (with identical alphabets), P and Q, which
operate in parallel — PkQ — then the combined process will have no trace that is not also
a trace of Q. If Q is deterministic, then any non-determinism in the combined process will
correspond to non-determinism in P. That is, any internal choices that are made by P will
still be present in the combined process, except those that would have resulted in a trace that
is prevented by Q, and no internal choices will be introduced as a result of the interaction
with Q.

Thus, for any process Q, if we can construct a process det (Q) that has exactly the same
traces as Q but that is deterministic, then a process P kdet(Q) will have at most the traces
of Q, but all of the decisions will be made by P.

So, to model the component’s Computation process computing in the environment
indicated in the ports assumptions, we must do two things: First, we must take the ports
and construct a process that is restricted to the pattern of observed events. This extracts out
the assumptions portion of the port specification. Second, we must take this new process
and make it deterministic. This ensures that we are testing the decision-making of the
Computation specification, not the non-determinism of the ports.

Extracting the observed events is achieved by the CSP project operator (P � A). This
operator indicates the same process as P, but with all events not in A hidden. The result
is an internal (non-deterministic) choice whenever two events, one of them not in A, are
possible.

A process is made deterministic via the function det(P). det(P) has the same traces as
P, but it has fewer refusals. In fact, it has only those refusals that are necessary to make
it a consistent process (i.e., it refuses events that do not correspond to permitted traces).
Thus, what event occurs at any point is fully controllable by the environment: det(P) is

72 A Formal Approach to Software Architecture

deterministic. Formally:

Definition 4 For any process P = (A;F;D), det(P) = (A;F0
;�) where F0 = f(t; r) j t 2

Traces(P) ^ 8 e : r � t � hei =2 Traces(P)g.

We use the projected, deterministic port processes to interact with the Computation.
We can then test this restricted form against each port, to see if the Computation meets
the requirements of the port. The refinement test ensures that the internal decisions (as
modelled by non-determinism) match those indicated by the port process specification.

Test 1 (Port/Computation Consistency) For a Component with computation process C
and ports P and P1. . . Pn, C is consistent with P if:

P v (Ck(ki : 1 . . . n � det(Pi � �oPi))) � �P

Informally, this means that:

A port specification must be a projection of the Computation, under the assumption that
all other port interfaces are obeyed by the environment.

3.7.1.2 Connectors

A connector represents a potential interaction among components. While the Glue indicates
how the participants will be coordinated, the roles describe how the participants are expected
to behave. Thus, the connector description must ensure that the coordination of the Glue
is consistent with the expected behavior of the components, as indicated by the roles. We
must ensure that the participants in the interaction will not become disastrously out of synch
so that they are no longer truly communicating.

Suppose, for example that there are two components in a system, a client and a server.
The server provides a necessary value for the computation of the client, but it must receive
an initialization signal before it can begin computation. The client, unaware of this,
immediately requests the value from the server. A connector that specifies this “interaction”
might be as follows:

Connector Faulty
Role Client = (request!result!Client) u x
Role Server = initialize !Operate ...
Glue = Client.initialize!Server.initialize ! Glue

Client.request!Server.request ! Glue
...

Inevitably, this will result in disaster for the system: The server might return a bogus value,
compromising the client’s calculations, it might crash, disrupting other computations in
progress, or it might simply ignore the client, leaving it stranded waiting for a return value.
In any case, it is clear that we cannot say that the client and server are communicating in
any meaningful way.

Chapter 3. Introduction to WRIGHT 73

Because WRIGHT is based on CSP, this kind of error, where participants in an interaction
cannot agree on the next appropriate event, can be detected as deadlock. A CSP process is
said to deadlock when it may refuse to participate in all events, but has not yet terminated
successfully (by participating in the

p
event). Conversely, a process is deadlock-free if it

can never get into a deadlock situation. Formally, we define a deadlocking process as one
that is not deadlock-free. A deadlock-free process must always either be willing to continue
its computation or be in a condition of successful termination.13 Formally:

Definition 5 (Deadlock-Freedom) A process P = (A;F; D) is deadlock-free if for every
trace t such that (t;A) 2 F, last(t) =

p
.

The situation described between the client and server would be detected in the WRIGHT

situation as deadlock in the overall interaction between the client and server components,
because the server is waiting for an initiate event, while the client is only willing to provide
a value request: Since neither participant is flexible and they don’t agree, deadlock is the
result.

While this could be detected in the behavior of the overall WRIGHT configuration, using
the Computation processes of two actual component instances together with the Glue of
the client-server connector, we can use the structure of WRIGHT to detect it using only
the information of the connector type specification. This is because the roles represent
the behavior of a potential component participant: If we use the roles as stand-ins for
the components, (i.e., put them in parallel with the Glue) then they will deadlock, just as
the components will. If they do not, but the components do, then there must be either
an incompatibility between the roles and the ports on the components (indicating that the
restrictions of the roles are not met by the component), or an inconsistency between the
component’s port and its computation, which is detected by test 1. Thus, inconsistencies
between the participants in an interaction and the coordination of the Glue are detected by
the following rule:

Test 2 (Connector Deadlock-free) If a connector has glue G and roles R1 ... Rn with
processes P1 ... Pn, then the process G k(ki : 1 . . n � Ri:Pi) must be deadlock-free.

Another kind of inconsistency is also detectable as deadlock: if a role specification is
internally inconsistent. In a complicated role specification, there may be errors that lead to
a situation in which no event is possible for that participant, even if the Glue is willing to
take any event. This is avoided by another test:

Test 3 (Roles Deadlock-free) Each of the roles in a connector must be deadlock-free.

Notice that while this additional check is necessary for roles, the fact that the Glue is
involved in every event in an interaction means that no separate rule is necessary for it:
If the Glue deadlocks then the composition of the Glue with its roles will deadlock, and
therefore test 2 is sufficient to check internal Glue consistency.

13Recall that x =
p
!STOP, and so in effect we require that the only stopped process is x.

74 A Formal Approach to Software Architecture

Initiator Tests

Another kind of inconsistency can arise when we consider control of the interaction. What
if all of the participants agree on what should happen next, but they can’t agree on which
component should do it? This kind of problem might occur, for example, if two components
must communicate a value. Suppose the developers agree that they will use a procedure
call to pass the value between two components. Everything is fine, right? But what if they
both choose to declare a procedure that can be used to communicate the value? One of the
components declares a procedure that will deliver the value as a result, expecting the other
party to “pull” the value, and the other declares a procedure that will accept a new value as
a parameter, expecting the first component to “push” the value. The system will compile
just fine, but when the system is executed, neither procedure will ever be called, because
they will both wait for the other component to initiate the action.

A similar problem occurs if both components assume the other component will declare
a procedure and so they attempt to invoke a procedure. In this case, there will be no
procedure available to call. The full system will not even link properly (although each
individual component will compile).

While our example here is detected in the implementation as the common definition-use
problem, this kind of conflict about initiation is not limited to cases in which one party must
define an interaction and the other uses it. If there is a more complicated infrastructure in
the connector (such as an event broadcast system or a networking protocol), it may be the
case that neither party defines the interface, and they must determine which of them uses
which part of the mechanisms available. If two components use an event mechanism to
send a message, and neither ever registers a callback the same problem as two declared
procedures will arise, but the linker will be unable to detect the problem.

To detect these conflicts, it must be possible to distinguish between a component that
controls an activity and one that simply observes, or reacts to, it. WRIGHT distinguishes
between initiated and observed events precisely to avoid this problem. Recall that in
section 3.4, we introduced an annotation on events to distinguish initiated events (with
an overbar) from observed events (without an overbar). Initiated events are intended to
represent those events where the described process takes some action, such as sending a
message or invoking a procedure. Observed events represent situations where the process
expects some other party in the environment to take action, and expects to react to the action
(e.g., they might receive a message from some other party, or be invoked as a procedure).

A given event only makes sense, avoiding control conflicts, if there is exactly one
process for which the event represents an action, and all other processes are observers of
the event. Thus, there must be a single initiator of every event: For every event in a
connector type specification, exactly one of the roles or the Glue must initiate the event.
All other processes must either observe it or omit it from their alphabet. Formally:

Test 4 (Single Initiator) A connector with glue process G and role processes R1 . . . Rn has
single initiators if �iG; �iR1; . . . ; �iRn partition the set (�G [�R1 [. . . [�Rn) � fpg.
Further, it must be the case that �iG \ �oG = � and 8 j : 1::n � �iRj \ �oRj = �.

A final rule for connectors ensures that the initiate and observe notations on events are
used consistently: we require that the initiator commits to an event. To explain this idea,

Chapter 3. Introduction to WRIGHT 75

consider the following extract from a possible WRIGHT specification:

Role Invalid = e!P f!Q....

In this specification the fact that e and f are initiated indicates that Invalid is the cause of these
events. The component filling this role is responsible for making sure that they occur. But
the operator indicates that the environment decides which of them will occur. How can this
be? How can the environment control whether they happen while the component ensures
that they do happen? In our view, this doesn’t make sense, and the “initiator commits” rule
ensures that such specifications do not arise: If a process initiates an event, then whenever
it does so, it must commit to that single event without influence by the environment. By
committing to the event, the process ensures that refusal by the environment to accept this
event can be detected as a potential deadlock.

Test 5 (Initiator Commits) A process P = (A;F; D) obeys initiator commits if for every
trace t and event e 2 �iP such that t � hei 2 Traces(P), (t;A n feg) 2 F. 14

The problem of initiator-commitment, and this formal statement of the rule, is complicated
by the possibility of internal concurrency. Suppose that a component (for example) is
implemented as two independent threads. One of the threads carries out a computation and
then initiates an event at one port. Meanwhile, the other thread is waiting to respond to an
event that it will observe on another port. In this case, the component does not really control
which of the two events will occur first. There is a race condition between the computation
of the one component thread and the observation of the event in the other. It should therefore
be considered reasonable for a component to violate the strictest form of initiator-commits
described above, provided that each sequential sub-process of the computation does obey
it.15

Concurrent components with a clear substructure that can be analyzed for initiator-
commits will arise, for example, when the architecture of a system is described hierarchi-
cally, as in section 3.3.3.

3.7.1.3 Configurations

Now that we have a notion of consistency for component and connector types, how can we
determine if an architectural configuration is consistent? Essentially, we must determine
whether the instance declarations and attachments combine to use the type declarations in
meaningful ways.

3.7.1.4 Instance Declarations

Since the only information added to a type by an instance declaration is the name of
the instance and the value of the actual parameters, the question of consistent instance
declaration boils down to two questions: Is the name of the instance unique? and, have

14Note that this rule applies to components as well as connectors.
15This issue will be discussed further in chapter 9.

76 A Formal Approach to Software Architecture

we supplied reasonable actual parameters? If a type declaration leaves a placeholder in its
definition, then the instance declaration that supplies the element to be filled in must result
in a reasonable declaration. For syntactic placeholders (such as role/port names) the only
possible conflicts are the introduction of naming clashes (we don’t want a connector to have
two different roles with the same name, for example). For process placeholders (such as
parameters that stand in for the Computation declaration, for example), conflicts can arise
because the definition supplied with the instance declaration conflict with the fixed part of
the type definition, or because two different parameters result in a conflict. These can be
checked by substituting the actual parameters for their placeholders and then applying the
type-based checks described above.

Test 6 (Parameter Substitution) An instance declaration of a parameterized type must
result in a valid non-parameterized type when the actual parameters are substituted for the
formal parameters.

In the case of numeric parameters, there is a special obligation for the type definer.
Since there may be limits placed on the values that are permitted (by the range declarations)
we require the type to guarantee that these limits are adequate to simplify the previous test
to the following:

Test 7 (Range Check) A numeric parameter must be no smaller than the lower bound, if
declared, and no larger than the upper bound, if declared.

What this means is that a type parameterized by number represents a family of types, one
type for each possible parameter value. Every member of the family must be a consistent
type. The reason that we can make this requirement for numeric parameters but not, in
general, for other parameters is that there is no simple syntactic way of restricting the
values that may be supplied for these other parameters. We will have to defer limits on, for
example, process parameters to section 3.6 when we can use styles to achieve this effect.

3.7.1.5 Attachments

As we discussed above, an important reason to provide definitions of role protocols is to
answer the question “what ports may be used in this role?” At first glance it might seem
that the answer is obvious: simply check that the port and role protocols are equivalent.
But we also want to be able to attach a port that is not identical to the role.

The reason for this is that ports specify the interaction patterns of a single, concrete
communication, and therefore are quite specific about what will occur, while roles specify
the constraints on a general, abstract set of communications, and therefore specify a range
of interactions.

Consider, for example, the output interaction port of the component Double described
earlier:

Port Out = write!x !Out u close!x

Chapter 3. Introduction to WRIGHT 77

This interface indicates that the component will provide data via the write event some
unspecified number of times, and then close. It might be used to feed another part of the
system in an interaction that covers exactly that situation:

Role Source = write!x !Source u close!x

So far so good. But what if we want to use another component, Gen3, instead of Double?

Component Gen3 =
Port Output = write!1 !write!2 !write!3 !close!x

Computation = write!1 !write!2 !write!3 !close!x

The port Output and the role Source are not an exact match (i.e., they are not the same
process). But we should be able to use Gen3 in this interaction because it does supply data
using write some (now specified) number of times and then close. So we can’t use a rule of
simple substitution.

On the other hand, we do need to make sure that the port fulfills its obligations to the
interaction. For example, we wouldn’t want to use a component as Source if it didn’t ever
send the close event. For example the port

Port BadOut = write!x !BadOut u x

should not be acceptable.
We would like to be able to guarantee that an attached port process always acts in a way

that the corresponding role process is capable of acting.
Recalling that trace restriction is handled through the deterministic version of a process,

we therefore test the process Pkdet (R) for compliance to the role specification. There is
only one additional complication before we can apply the refinement test: The refinement
test only applies over processes with identical alphabets. To solve this, we augment each
process with the missing events:

Definition 6 For any process P and event set A, P+A = PkSTOPA.

We can now define compatibility with complete precision:

Test 8 (Compatibility) A port P is compatible with a role R, written “P compat R,” if

R+(�P��R) v P+(�R��P)kdet(R):

This means that the port must handle all of the observed events that the role specifies,
but may possibly handle more, and that when choosing among events to initiate, the port
must select from the set specified by the role, but may disallow options permitted by the
role.

78 A Formal Approach to Software Architecture

3.7.1.6 Satisfying Style Constraints

So far, we have discussed tests that apply to WRIGHT descriptions independent of what style
is selected for the architectural description, or even if the configuration has no declared
style. As we noted in section 3.3.4.3, however, a style description can impose additional
constraints on any instance descriptions that are declared to be in that style. Recall that
these are described as predicates over the instances.

A system configuration is consistent with its declared style if it obeys each of these
constraints. That is, the style constraints represent a proof obligation on the architect, who
must show that they are true for the described system:

Test 9 (Style Constraints) The predicates for a style must be true for a configuration
declared to be in that style.

There is, of course, a much more outrageous form of inconsistency that can arise
from the style constraints: If the constraints contradict each other or describe only illegal
systems, there will not be any legal instances of the style! For example, suppose we have
two constraints that contradict each other:

8 c : Components ; p : Ports(c) � Type(p) = DataOutput

^ 9 c : Components ; p : Ports(c) � Type(p) = DataInput

The first predicate states that every component has only DataOutput ports, and the second
predicate states that at least one component has a DataInput port. Since no port can have
both types, there can not be any system that obeys both these constraints: The style is
inconsistent.

When the constraints are complex, it is easy to generate contradictory constraints. Thus,
we highlight the potential for this problem by making an explicit test:

Test 10 (Style Consistency) There must be at least one configuration that satisfies the
style’s constraints.

In this section, we have shown how WRIGHT deals with the issue of consistency in an
architectural description by using a series of tests to detect potential inconsistencies. These
inconsistencies include misuse of initiated and observed events, deadlocks among interac-
tion participants, interfaces that do not correctly represent the computation of a component,
and use of invalid parameters in types, among others.

3.7.2 Completeness

As we discussed in the introduction to this section, completeness is considered to hold with
respect to particular properties or analyses. While a description may be complete with
respect to one analysis, such as freedom from deadlock, it may be incomplete along another
dimension, such as timing or datatype consistency.

WRIGHT handles completeness in different ways, depending on what property is being
considered. For some properties, such as communication dependencies between compo-
nents, WRIGHT builds completeness into the semantics of the language: All communications

Chapter 3. Introduction to WRIGHT 79

dependencies in an architecture are covered in a WRIGHT description by definition. If a
dependency is omitted, then it does not exist in the system.16

For other properties, an incomplete description appears as an inconsistency in the
architecture: If a glue description omits state values that are necessary to guarantee freedom
from deadlock, then the connector, as described, will have the potential to deadlock (which
is defined as an inconsistency in test 2 above). In the Pipe connector, for example, if the
glue did not keep track of whether the Source role had signalled a close event, a deadlock
could arise when the Sink role requests a data value that can never be delivered. The Sink
will block forever, since the glue does not not have the information to deliver an end-of-data
signal. This kind of completeness check differs from the completeness that is built into the
language, because a check is necessary, but it is covered by the tests already described.

With respect to some properties, WRIGHT is inherently incomplete. The CSP formalism
on which WRIGHT is based does not contain any information about the timing of events, for
example. Because there is no information about this in the description, the formalism must
necessarily be considered incomplete with respect to any analysis that depends on it. If this
kind of information is critical to an application, then it could be added as annotations to
the WRIGHT structure, but WRIGHT as it exists does not include this information. A further
discussion of how these additions might be handled appears in chapters 8 and 10.

Another category of completeness is intermediate between properties that are completely
covered by the consistency checks and those that cannot be described in WRIGHT at all.
These are properties of completeness that can be detected using the WRIGHT formalism but
that are not covered by the consistency checks.

One important kind of completeness that falls into this category is the completeness
of a configuration. When we describe a collection of components and connectors, how
do we determine if the described system is capable of functioning without the addition of
more parts? It may be that while all of the instances and attachments that are present are
consistent, there is a critical attachment that has not been made. In this case, a component
might depend on observing events that will never occur, or an interaction might fail because
there is a participant missing.

On the other hand, there are often ports on components that do not need to be attached,
such as a monitoring or logging interface on a database, and there are interactions that
can continue even when one of the participants is missing. So we can not simply prohibit
unattached ports or roles.

To detect this kind of incompleteness while maintaining as much flexibility as possible,
we introduce another test on a configuration. If a port or role is unattached then it must
not depend on observing particular events, and it must not expect to be able to initiate any
events. In effect, in order to be left unattached in a complete configuration, it must be able
to behave as the process that simply halts, i.e., x.

Test 11 (Attachment Completeness) Every unattached port or role in a configuration
must be compatible with, respectively, the role or port x.

16Of course, there can still be an inconsistency between the architectural description and the implementation
of the system as it is built. In this case, we would say that the implementation and the architecture describe
different systems; practically, it may simply be that the architecture has omitted a detail.

80 A Formal Approach to Software Architecture

As with configuration descriptions, there are many forms of completeness that can be
considered for a style description. The most important form of style completeness can
obviously not be tested entirely within the WRIGHT formalism, because it depends on
information that cannot be captured in any formalism: Does the style description, type
definitions and predicates, completely cover the intentions of the style developer? That is,
do the constraints exactly include desired systems and exclude undesired systems? This
question corresponds roughly to the question of whether a program is “correct.” It can only
be answered formally in terms of some other requirements specification, and even then it is
only as good as that other document.

There is another, simpler, form of completeness that can be addressed within WRIGHT.
We can ask whether the style constraints are sufficient to guarantee consistency. That is, can
we prove that whenever the style constraints hold (test 9), all other consistency properties
also hold (tests 1-8)? If so, then users of the style will find their task greatly simplified.
We will call such a style a safe style. We will not define an explicit test for this property,
however, because, while it is desirable, it is not necessary.

Chapter 4

Case Study: AEGIS

4.1 Introduction

In this chapter we show how WRIGHT can be applied to a significant system. This formal-
ization will provide a complete example of the formal specification of the architecture of a
software system.

The software architecture describes the structure of the system, decomposing it into
independently described components and permitting the analysis of how those components
will contribute to achieving the requirements of the overall system. By structuring the
system architecturally, the developer hopes to be able to analyze the system at a high level
of abstraction and, by increasing independence between components, to provide a means of
reducing the complexity of solving each of the parts of the problem. To do so, the architect
must specify how the components interact, so that, just as the components are combined to
form the overall system, the properties of the components can be combined in analysis to
understand the overall system. On a more concrete level, the architecture can also act as a
guide to integration of the implementation, where the components represent independently
coded entities that are combined by compile- or run-time structures to support the specified
interactions.

In a typical software architectural description, the structure of the system is decomposed
into a collection of components, each of which is allocated a particular responsibility in the
system. This responsibility usually includes a functional component, i.e., what it is required
to compute, and some kind of other constraints on its behavior and characteristics. These
components, drawn as boxes in an architectural diagram, are combined into a configuration
via connectors, drawn as arrows in the diagram. Each of the connectors is given a brief
description of what kind of interaction it represents: “dataflow,” “client-server,” “message
passing,” etc. This description may be used as the basis of some kind of analysis of the
system, to justify the design of the system, and to provide a guide to designers of each
component and to those responsible for integrating the implemented components.

In our case study, for example, the original architectural description consisted of a
diagram of seven components such as “Display Server” and “Doctrine Reasoning,” and
arrows representing “client-server” interactions. The components were divided among
several research teams, each having the responsibility to implement their components.
These modules would then be combined into an executing prototype.

81

82 A Formal Approach to Software Architecture

While even an informal software architecture description can provide a means of di-
viding responsibilities for design and implementation, and may be used for “back-of-the-
envelope” analysis of the eventual system, as well as system understanding, the imprecision
and lack of semantic basis for the description inherently limits how much it can achieve.
When the exact requirements for participation in the interactions are not spelled out, it
is likely that integration will require significant alteration of components to meet global
assumptions. When the semantics of each component and the interactions is not precise,
any analysis of the final system is tentative pending delivery of actual code. The benefits
of the high level of abstraction of the architectural description is undermined by the fact
that rigor can only be achieve by abandoning the architectural level in favor of less abstract
representations.

By formalizing the description of software architecture, WRIGHT permits the software
architect to be precise about the meaning of components and connectors while retaining
a high level of abstraction. The consistency checks allow the designer to catch problems
in the design early, before the components and infrastructure are elaborated in full detail.
Further, because the semantics of the description are precisely defined, it is possible to
analyze the architecture and ensure that critical properties are obeyed and requirements
are met. The activity of careful formalization can also provide opportunities for insight,
allowing the designer to recognize opportunities for reuse by exposing commonalities, while
highlighting important distinctions that must be made in order for the system to operate
successfully. It can also (although we do not discuss it here) provide criteria for acceptance
for an implementation of the system.

This case study provides an example of how these benefits can be achieved by carrying
out the exercise of formalizing an informal software architecture description and exploring
its properties. To do this, we followin the footsteps of the developers of the AEGIS Prototech
demonstration. Our first step is to capture, formally, their initial informal architecture. With
this architectural description, now made formal, we will see how analysis in WRIGHT reveals
problems that the developers found during the implementation and integration phases. By
exposing the problems at an earlier step, formalization reduces the cost of correcting the
problems and also means that there are more options in terms of avoiding the problem
without unduly complicating the system design.

We will also see how, when formalize the terms that the AEGIS developers used
informally, we gain insight into the alternatives that they should have considered explicitly
and the trade-offs in selecting between them.

In a second step, we continue to follow the AEGIS developers, considering how we
might formalize the architecture that the AEGIS developers used to solve the problems of
the initial architecture. We will further show how the formalism elucidates the difference
between the first and second systems, and how our formalization of the second system
gives confidence that the problems have indeed been resolved. We thus increase the level
of confidence in the developer’s solution and provide assurance that yet a third redesign
phase will not be necessary.

In a third step, we will consider what kind of solutions might have been found if the
developers had been able to detect the critical problems at the architectural level. In their
final solution, the developers changed a single, simple interaction kind into a collection
of four connectors, and a simple pair of component categories into five different special

Chapter 4. Case Study: AEGIS 83

cases (for seven components!). We discuss how the formalization suggests simplifications
to this solution that could have provided reuse of infrastructure (both for construction and
integration of components) as well as a simpler conceptual model of the system.

Finally, we will revisit the techniques used in the formalization at a more abstract level,
showing how we must consider issues such as what information to ignore in order to raise
the level of abstraction while retaining critical distinctions (such as between blocking and
non-blocking interactions). We will also discuss the idea of how parameterization can be
used to increase the generality of descriptions and thus improve the expressive power of
the notation.

4.2 The AEGIS “Problem”

The AEGIS Weapons System is a large, complex software system that controls many of the
defense functions of modern US Navy ships. As described in one DoD report:

The AEGIS Weapons Systems (AWS) is an extensive array of sensors and
weapons designed to defend a battle group against air, surface and subsurface
threats. These weapons are controlled through a large number of control
consoles, which provide a wide variety of tactical decision aids to the crew.
To manage complexity, the crew can preset conditions under which automated
or semi-automated responses occur. This capability is generally referred to as
doctrine.

The motivation for using AEGIS as a challenge problem arose through a demonstration
exercise of the ARPA Prototyping Technology Program in 1993.1 Engineers on the real
AEGIS system provided a proposed redesign for a part of the system that takes monitored
sensor data about moving objects near the ship, and decides what actions to take. To do
this the system must resolve the “tracks” of moving objects against its geometrical model
of the ship and nearby entities.

An informaldescription of the proposed architecture of the system is shown in Figure 4.1.
The system consists of seven modules. The Experiment Control module provides simulated
input from the operator and sensors, as well as a “heartbeat” signal indicating the passage
of simulation time. Tracking data is sent to the Track Server, which maintains a record of
the currently-monitored moving objects (missiles, other planes, submarines, etc.) within
its tracking region. The Doctrine Authoring module receives input describing rules of
engagement and activation. The GeoServer module takes doctrine information (from the
Doctrine Authoring module), and track information (from the Track Server) and, based on
its own geometric models, determines which tracks intersect which geometric regions. This
information (together with track and doctrine information) is fed to the Doctrine Reasoning
module, which determines what action should take place. For the purposes of the prototype
these actions, as well as other status information is displayed to the user via a Display
Server module. The arrows in the figure indicate the direction of information flow.

1The problem was initially presented by Bob Balzer at an ARPA program meeting in Fall 1994. It was
later re-presented as a challenge problem at the 1995 Dagstuhl Workshop on Software Architecture [GPT95].

84 A Formal Approach to Software Architecture

GeoServer

Display

Server

Doctrine

Reasoning

Server

Track

Validation

Doctrine

Authoring

Doctrine

CS1

Control

Experiment

CS2

CS4 CS5

CS7 CS8

CS10

CS6 CS9

CS3

Figure 4.1: The AEGIS prototype architecture.

In the Prototech demonstration, each of the research teams in the program was assigned
the task of implementing one or more modules of the system. The modules were to be
integrated into a running system that could then be demonstrated for the program sponsors.
To make this integration possible the teams had to agree on the nature of the architectural
connection that they would use. For implementation reasons (they were building on top
of Unix with sockets) they initially agreed to use a uniform client-server organization, in
which clients requested data from the servers. Thus information would be “pulled” from
the top to the bottom of the figure: i.e., clients at the tip of the arrows, and the servers at the
tails. Components that have both incoming and outgoing arrows would act both as a client
and a server.

Putting aside internal details of the individual modules, this sounds like a relatively
straightforward task. Unfortunately, it turned out to be anything but trivial. First, there
were some serious ambiguities about the meaning of client-server interactions. Which party
initiated the connection? Was it reestablished after each request? Was the data transferred
synchronously? Moreover, the developers discovered, during integration, that there were
restrictions induced by implementation choices within modules making it infeasible for
certain modules to act both as clients and as servers. Furthermore, the basic design did
not account for some advanced monitoring capabilities of the inter-module communication.
The net result was that (according to one of the participants) the final integration was
something of a nightmare, and the resulting system considerably more complex than had
been originally envisioned.

In the remainder of this chapter we use WRIGHT to explore some of these problems.
We will focus on a few key problems – primarily those relating to the potential for lost
messages. We start by characterizing the naive architectural design. Then we show how
this specification must be modified to characterize the “as-built” system.

Chapter 4. Case Study: AEGIS 85

4.3 The Naive Specification

As noted earlier, the initial model of the AEGIS system proposed by the Prototechdevelopers
was to use a client-server model. In this informal client-server model, a client initiates a data
request from a server, which fills the requests of each of its clients as they arrive. But this
simple, informal description brushes a lot of important information under the rug, and does
not provide enough details even to begin a more detailed design. The abstraction doesn’t
resolve issues such as what protocols are used to make the data request and reply, how
termination is signalled, and whether servers must handle multiple requests simultaneously.
By expressing this “naive” architectural description in WRIGHT, we will see how these
issues come to the fore.

In WRIGHT we begin an architectural description by characterizing the architectural
vocabulary with which the system is developed. We will develop each of the elements of
the architecture as a type, either of port or role, component, or connector. Each of the type
definitions will provide a building block from which each particular system instance can be
developed.

4.3.1 Interface Types

The smallest building block in a system is an interface type, used to describe either the
interface of a component (port) or the constraints on a participant in an interaction protocol
(a connector role).

Interface Type ClientPullT = open !Operate u x
where Operate = request!result?x!Operate

u Close
Close = close!x

Interface Type ServerPushT = open !Operate x
where Operate = request!result!x!Operate

Close
Close = close!x

The ClientPullT is the basic type used for the ports of a client component (and for the role in
a connector which will be played by such a component). The ClientPullT process indicates
that a client will begin by establishing the connection with the open event. (Recall that
the overbar notation (open) indicates that the client initiates the event.) Note how the
formal specification already provides important information about the system’s behavior.
ClientPullT includes in its initial state an internal choice (indicated by u) of the process x.
Thus, the interface type specifies that a client is not required to open a connection if it does
not plan to use a given server.

After opening the connection, an operational phase is begun, in which the client can
repeatedly choose to request data. The client expects to receive exactly one result for
each request. At any time the client may choose to close the connection, after which the
interaction ceases (as indicated by the x process). Again, the use of internal choice between

86 A Formal Approach to Software Architecture

request and close indicates that it is the client that controls how many times a request is
made.

The ServerPushT process is the complement of the ClientPullT. The server expects
another party to open the connection (it observes this event, as indicated by the absence
of an overbar). Then, it will repeatedly provide responses to requests until it recognizes
a close event, after which it is free to terminate. Use of external choice () indicates that
a server is required to handle either alternative. Thus, while the client had the option of
either requesting or closing, the server is required to handle both requests and closes.

Consistency

As we discussed in chapter 3, WRIGHT defines checks that can locate inconsistencies in a
specification. Thus, for each of the definitions that we use in this case study, we will indicate
what checks apply at each stage of the specification. Although none of the definitions in this
chapter is, in fact, inconsistent, consistency checking is an important step in any WRIGHT

specification effort. We used the checks to locate problems in earlier drafts of our AEGIS
specification, and in chapter 6 we will see how they provide a powerful analytic tool.

To be used as a role, each interface type must be shown to be deadlock-free (test 3).
Both ClientPullT and ServerPushT are deadlock-free. Both also obey “initiator-commits”
(test 5).

4.3.2 Connectors

In combination (or even singly), the ClientPullT and ServerPushT interface processes would
seem to be adequate to define the client-server interaction; each initiated event in one process
corresponds to an observed event in the other. The ClientServer connector specification
confirms this relation between events; each line of the Glue specification indicates the
correspondence between a pair of events – when the client initiates an open, the server will
subsequently observe an open, and so on.2 This is a very common case in architectural
connectors, and many descriptive notations specialize their connector descriptions to it
(e.g., [LAK+95, YS97]). As we will see later, however, there are other cases where
there may be more complex relationships, involving partial visibility of events or run-time
mechanisms (that are not part of the abstract computation) that require a more complex
Glue. WRIGHT requires that even the “trivial” glue be spelled out in full, although it could
easily be generated automatically. (See chapter 9 for a discussion of this issue.)

Connector ClientServer =
Role Client = ClientPullT
Role Server = ServerPushT
Glue = Client.open!Server.open!Glue

Client.close!Server.close!Glue
Client.request!Server.request!Glue
Server.result?x!Client.result!x!Glue
x

2Remember, the roles specify component behavior, while the Glue specifies the connector behavior. Thus,
initiated events in roles appear as observed events in the Glue, and vice versa.

Chapter 4. Case Study: AEGIS 87

Because ClientServer is such a simple connector, it is easy to check that it obeys each of the
consistency constraints on a connector: deadlock-freedom (test 2), single-initiator (test 4),
and initiator-commits (test 5).

However, this connector also illustrates the importance of the consistency checks.
Suppose that we had specified the ClientPullT and ServerPushT interface types separately
and made different choices about them. For example, an alternate client interface might
have omitted the requirement that a client signal the close of the connection:

Interface Type AltClientPullT = open !Operate u x
where Operate = request!result?x!Operate

u Close
Close = (close!x) u x

This is a seemingly small change, and might be reasonable: If the client is about to terminate
anyway, how much trouble can be caused by not closing? But replacing ClientPullT with
AltClientPullT in the ClientServer connector reveals a problem: If the client does not close
the connection, the server has no information about when it can terminate, and thus must
remain in existence indefinitely. The ServerPushT role indicates that the server can not
terminate until after a close event, but this will never be supplied by the AltClientPullT.
This is detected by WRIGHT’s consistency check for deadlock (test 2). In particular, the
check would indicate that after the event sequence hClient.open; Server.openi, the Client
may accept only the

p
event while the Server expects to be supplied with Server.close or

Server.request. The Glue can not supply either of those events until the Client permits it,
and so a deadlock may occur.

Our specification of the ClientServer connector type also answers several important
questions left unanswered by the developer’s informal description of the AEGIS architec-
ture. It indicates that clients and servers interact by passing data from clients to servers,
but that clients control when connections are initialized (by the open event) and how many
times requests are made. It further specifies key constraints on clients. For example, if a
client is not going to make any more requests, it must close the connection so that a server
may terminate. The connector also indicates important properties beyond the basic data-
passing functionality. For example, requests and results are paired one-to-one: message
delivery in AEGIS is assumed to be reliable, with no dropped messages.

4.3.3 Components

In a client-server system such as AEGIS, there are three kinds of components: those that
act as clients (e.g., DoctrineValidation), those that act as servers (e.g., ExperimentControl),
and those that combine the two functions (e.g., GeoServer). Components of each of these
kinds can have different numbers of ports, and so we represent them in WRIGHT using
parameterized types.

Consider the Client component type, shown in figure 4.2. The Client component type
is straightforward. It has complete control over its actions at any time, as long as it obeys
the ClientPullT protocol on each of its ports. For simplicity, we assume that it begins by
opening each of its connections, and finishes by closing each of them. During the middle

88 A Formal Approach to Software Architecture

Component Client(numServers : 1..) =
Port Service1::numServers = ClientPullT
Computation = (; x :1::numServers � Servicex.open!x) ; UseOrExit
where UseOrExit = UseService u Exit

UseService = u x :1::numServers
� Servicex.request !Servicex.result?y !UseOrExit

Exit = (; x : 1::numServers � Servicex.close!x) ; x

Figure 4.2: Component Client.

Component Server(numClients : 1..) =
Port Client1::numClients = ServerPushT
Computation = WaitForClientfg;fg

where WaitForClientO;C = x : ((1::numClients) n (O [C))
� Clientx.open! DecideNextActionO[fxg;C

DecideNextActionO;C =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

WaitForClientO;Cu (u x : O � ReadFromClientx;O;C);
when O 6= fg ^ O [C 6= (1::numClients)

u x : O � ReadFromClientx;O;C;

when O 6= fg ^ O [C = (1::numClients)

WaitForClientfg;C;

when O = fg ^ C 6= (1::numClients)

x; when O = fg ^ C = (1::numClients)

ReadFromClientx;O;C = Clientx.request!Clientx.result!y!DecideNextActionO;C

Clientx.close!DecideNextActionOnfxg;C[fxg

Figure 4.3: Component Server.

phase, the process UseService selects from among its connections to request a new data
item. The choice is entirely up to the client, as indicated by the use of internal choice.

Now consider the specification of the Server component type (shown in figure 4.3).
A Server component provides data services to one or more clients. With each client, the
server uses the ServerPushT protocol. At any point in the protocol, each client is in one
of three states: “Open” (represented by the set O), “Closed” (represented by the set C), or
“not yet Open” (all others).

The Computation specification illustrates a number of critical issues about the AEGIS
architecture. What mechanisms are available for the server to locate new connections that
should be opened? To receive a client’s request? When can a newly closed client connection
be recognized, and what action should be taken? The Server specification provides answers
to these questions.

The Computation, shown in figure 4.3, describes a server that can handle at most
one client request at a time. This is indicated by the internal choice, in the definition of

Chapter 4. Case Study: AEGIS 89

DecideNextAction, among versions of the process ReadFromClient. The server may also
choose to wait for an open request from any of a set of clients. This interaction pattern, of
selecting a single client for a request or a set of clients for an open, is characteristic of the
Unix socket mechanism, which the developers selected as an implementation base. Our
formalization permits us to see the consequences of this choice, while abstracting other
implementation details, in its effects on the server component type.

Because of the blocking open and request protocol, as well as the requirement that
the server eventually handle all requests, the server must keep track of the statuses of the
different clients. Some have not yet opened, and the server can wait for them to open;
some have opened but not closed, and the server can expect either a request or a close
from them; and some have closed, and the server must not expect any further action from
them. In our WRIGHT specification, the open and the closed clients are represented by the
state variables O and C respectively (those that have never opened are members of the set
(1::numClients) n (O [C)). Given these different statuses, there are four distinct cases for
the server, requiring different choices of action: The least constrained case is when there are
both open and unopened clients; in this case, the server is free to make any choice of action.
If every client has already opened, the server must not wait for a client to open. If no client
is open, then the server does not have the option of waiting for a request. Once every client
has closed, the only possible action by the server is to terminate. Each of these different
statuses is represented concisely in WRIGHT using a conditional process definition. There
is a different definition of DecideNextAction for each case, guarded by a predicate over its
state. For example, the case where there are no clients that have not yet opened and at least
one client still open is indicated by the predicate O 6= fg ^ O [C = (1::numClients).

A number of components in the AEGIS architecture combine the properties of a Client
and a Server. We formalize this case in the component type MixedComp (figure 4.4). It
must deal with open, close, and request events from its clients, but it also has the option of
requesting a service from one of its servers at any time.

Note that, when specifying a component formally, we define all of its interactions, not
just those that are considered “primary.” If a component acts as a server, we specify not
only what its protocol is with its clients (which is important), but also whether it depends on
the existence of other components to carry out its computation (which is equally important
to the success of the system). In AEGIS, we have shown how a “server” component in the
informal specification (e.g., the TrackServer) may actually be a “client” of another part of
the system. In this way, a formal specification reveals properties of the architecture that an
informal specification may leave implicit.

Consistency

As for connectors, we can apply WRIGHT’s consistency checks to the component types.
There is one consistency check that applies to a parameterized component type: we must
show that port-computation consistency (test 1) holds for any legal integer parameters.
Also, we can observe a property of using Interface Types to specify both components and
connectors: They greatly simplify attachment checks in configurations. In particular, at
this point we know that any use of a Client’s or a MixedComp’s Service port as the Client
role in a ClientServer connector will be compatible (test 8). Similarly, any use of a Server’s

90 A Formal Approach to Software Architecture

Component MixedComp(numServers : 1..; numClients : 1..) =
Port Service1::numServers = ClientPullT
Port Client1::numClients = ServerPushT
Computation = OpenServices ; WaitForClientfg;fg

where
WaitForClientO;C = x : ((1::numClients) n (O [C))

� Clientx.open! DecideNextActionO[fxg;C

DecideNextActionO;C =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

WaitForClientO;Cu (u x : O � ReadFromClientx;O;C)
u (UseService; DecideNextActionO;C);

when O 6= fg ^ O [C 6= (1::numClients)

(u x : O � ReadFromClientx;O;C)u (UseService; DecideNextActionO;C);
when O 6= fg ^ O [C = (1::numClients)

WaitForClientfg;Cu (UseService; DecideNextActionfg;C);
when O = fg ^ C 6= (1::numClients)

(UseService; DecideNextActionfg;(1::numClients))u Exit;
when O = fg ^ C = (1::numClients)

ReadFromClientx;O;C = Clientx.request!(OptionalUseService ;
Clientx.result!y!DecideNextActionO;C)

Clientx.close!DecideNextActionOnfxg;C[fxg

UseService = u x : (1::numServers) � Servicex.request!Servicex.result?y!x

OptionalUseService = (UseService ; OptionalUseService) u x

OpenServices = ; x : (1::numServers) � Servicex.open!x

Exit = ; x : (1::numServers) � Servicex.close!x

Figure 4.4: Component MixedComp.

Chapter 4. Case Study: AEGIS 91

or MixedComp’s Client port in a Server role will be compatible.

4.3.4 Configuration

Now that we have described the basic vocabulary of the naive AEGIS architecture, we can
describe the configuration of the testbed system.3 It is shown in figure 4.5. The instantiation
and attachment declarations are a direct textual transcription of the informal architectural
diagram in figure 4.1, and that diagram can be still be used. However, as we will see
in the next section, the additional information in the WRIGHT specification (namely the
component and connector type specifications) will permit us to analyze the architecture
initially proposed by the AEGIS developers and discover problems that they found only
late in the process of implementation.

Consistency and Completeness

For the instances, there is one consistency check required: the parameter range check
(test 7). Each of the component types requires that its parameters be positive integers, and
we have supplied these. As we noted earlier, the attachments are all between identically
defined ports and roles, and so port-role compatibility is satisfied (test 8). There are no
dangling ports or roles in the configuration, and so the configuration is complete (test 11).

4.4 Analyzing and Changing the Specification

The WRIGHT specification described in the previous section is a reasonable and useful
description of the architecture of the AEGIS system as it was initially envisioned by the
developers. The protocol described in the ClientServer connector and the computation
patterns covered by the connectors Client, Server, and MixedComp describe the high level
design of the system, defining the computation model and the requirements on the run-time
infrastructure for the proposed system. By making precise the abstractions and intuitions of
the informal specification, our WRIGHT specification clarifies the meaning of the architecture
and ensures consistency between different parts of the specification.

As we will now see, we can use the specification to discover a number of shortcomings
of the initial design, shortcomings that led the developers to a major reworking of the
system and that seriously complicated the final product. The system as it was eventually
constructed bore little resemblance to the simple client-server system described above. In
this section, we look at some of the issues that arose in the AEGIS design, show how they
are exposed by the preceding WRIGHT description, and further show how the solutions
found by the AEGIS team can be expressed in WRIGHT, thus ensuring that the architectural
description matches the system as built.

3For reasons that will become clearer later this initial description excludes the DisplayServer. In the next
section we include it in the specification.

92 A Formal Approach to Software Architecture

Configuration Testbed
[..Type definitions..]

Instances
ExperimentControl : Server(3)
DoctrineAuthoring : MixedComp(1,3)
DoctrineValidation : Client(3)
TrackServer : MixedComp(1,3)
GeoServer : MixedComp(2,1)
DoctrineReasoning : Client(3)
CS1::10 : ClientServer

Attachments
ExperimentControl.Client as CS1.Server
DoctrineAuthoring.Service as CS1.Client
ExperimentControl.Client as CS2.Server
DoctrineValidation.Service as CS2.Client
ExperimentControl.Client as CS3.Server
TrackServer.Service as CS3.Client
DoctrineAuthoring.Client as CS4.Server
DoctrineValidation.Service as CS4.Client
TrackServer.Client as CS5.Server
DoctrineValidation.Service as CS5.Client
DoctrineAuthoring.Client as CS6.Server
DoctrineReasoning.Service as CS6.Client
DoctrineAuthoring.Client as CS7.Server
GeoServer.Service as CS7.Client
TrackServer.Client as CS8.Server
DoctrineReasoning.Service as CS9.Client
TrackServer.Client as CS9.Server
GeoServer.Service as CS9.Client
GeoServer.Client as CS10.Server
DoctrineReasoning.Service as CS10.Client

End Testbed.

Figure 4.5: The testbed configuration.

Chapter 4. Case Study: AEGIS 93

Interface Type ClientPushT = open!Operate u x
where Operate = request!x!result!Operate

u Close
Close = close!x

Interface Type ServerPullT = open !Operate x

where Operate = request?x!result!Operate
Close

Close = close!x

Connector ClientServerPush =
Role Client = ClientPushT
Role Server = ServerPullT
Glue = Client.open !Server.open!Glue

Client.close!Server.close!Glue
Client.request?x!Server.request!x!Glue
Server.result!Client.result!Glue
x

Figure 4.6: The ClientServerPush connector.

4.4.1 Issue: Direction of Data Flow

One of the issues that is highlighted by the formal description of the AEGIS system is
directionality of dataflow. The AEGIS system contains a component, the “Display Server,”
that the initial informal architecture described as a server. However, this component does
not match the Server component type because it does not supply data, but instead receives
it. It is also not a Client, because it does not initiate the interchange of data but instead waits
until data is available. By formalizing one intuitive notion of client-server interaction in the
ClientServer connector type, we reveal an ambiguity: Usually, data flows from server to
client, but sometimes it flows in the opposite direction, from client to server. The informal
specification does not make this clear.

To describe the less common situation, of data flow from client to server, we specify
a second connector, ClientServerPush, together with corresponding new port/role decla-
rations (see figure 4.6). (The term Push is used to indicate that the client pushes data
toward the server, rather than pulling it from the server.) This new connector clarifies how
DisplayServer interacts with the rest of the system.

4.4.2 Issue: Potential for Deadlock in Servers

A more serious issue, that created significant problems for the AEGIS developers, is the
issue of how servers handle requests from multiple clients. During the integration of their
components, they discovered a subtle flaw: While they were using a supposedly reliable
message passing protocol, servers were not responding to client’s requests. It appeared that
messages were being lost.

In fact, the problem is a result of their selection of an implementation platform. During

94 A Formal Approach to Software Architecture

their architectural design, the developers selected a Unix socket mechanism to carry requests
and results between clients and servers. By relying on an informal characterization of the
client-server interaction and the effect of the Unix socket mechanism on their components,
they failed to recognize the interact between two parts of the architecture that lead to a
problem: Unless it is internally concurrent, a server can only wait for one socket request at
a time. In effect, the server must guess which of the clients will be the next one to make a
request.

The informal specification of the architecture provided no information about how a
server can use the client-server connector, and so the developers were unable to locate
this problem until testing, where they discovered that clients were not being served. In
our WRIGHT specification, by formalizing the nature of the interaction between clients and
servers, and by specifying the effects of the implementation platform choice on the servers’
computations, we discover this problem at the architectural phase, before the choice of
platform has been committed and implementation effort has begun.

In our specification, the nature of a server’s interaction with its clients is described in its
Computation and the client-server connector type. The fact that a server may not satisfy
a client’s request, despite the requirement that it do so, is detected as a potential deadlock
in a system that uses the Server component as described above. The WRIGHT specification
shows the property of blocking requests to the socket mechanism by the use of an internal
choice over the set of request events in the Server (and MixedComp) specification. This
indicates that the servers are free to handle any of their clients, excluding the other clients
while doing so.

A server does not, however, deadlock on its own: If the clients are able to fulfill their
obligation either to request or close, then no problems occur. Deadlock can be a problem,
however, when more than one client and server are involved. Consider a simplified system
topology with two servers, S1 and S2, and two clients C1 and C2, in which both clients
interact with both servers. (One such pattern occurs in the system with components
DoctrineAuthoring, TrackServer, GeoServer, and DoctrineReasoning.) What happens if
client C1 plans to make a request first to S1 and then S2, while client C2 makes a request
first to S2 and then S1? If S1 and S2 both guess wrong about which component will make
the first request (i.e., S1 guesses C2 and S2 guesses C1), then the system will deadlock.
Neither service can proceed before the other, since each is waiting for the other client,
which is itself waiting for the other server.

The informal specification provided no information about how a server handles multiple
clients; it is only by formalizing the architecture that we can discover the problem at this
stage. By providing a precise characterization of the architecture, we can detect what turned
out to be a difficult problem to fix during implementation at a stage where it is still easy to
repair.

4.4.2.1 Using Dynamic Connections

The AEGIS designers took three approaches to solving the server deadlock problem. The
first takes advantage of the fact that it is possible to wait for a set of clients to open
connections. The protocols are changed so that an open event precedes every client

Chapter 4. Case Study: AEGIS 95

Interface Type DClientPullT = open !request
!result?x!close
!DClientPullT

u x

Interface Type DServerPushT = open !request
!result!x!close
!DServerPushT

x

Figure 4.7: Interface types for dynamic interaction.

Component DynamicServer (numClients : 1..) =
Port Client1::numClients = DServerPushT
Computation = WaitForClient x

where WaitForClient = 8 i :1::numClients
Clienti.open
!Clienti.request
!Clienti.result!x
!Clienti.close!Computation

Figure 4.8: The DynamicServer component.

request (see figure 4.7).4 These protocols are used to make a DynamicServer that waits for
open events rather than request events, as in figure 4.8. What this does, in effect, make
initialization of the connection implicit in the first open, and change a client’s request for
data contain three events, open then request then close. (The result still consists of a single
action.) There can still be ongoing state kept by a server about the client, because the server
knows that a close event does not, anymore, mean that the client is never going to request
again.

This problem can also arise with the service request portion of a MixedComp, and this
is solved by serverizing a mixed computation. That is, instead of using a ClientPullT to
wait for data, the component uses a ServerPullT port to receive notification when data is
available. A serverized component is shown in figure 4.9.

By precisely specifying alternative interaction patterns, we can consider their effect
on a proposed configuration. If we change a server to use dynamic connections, then the
WRIGHT checks show us that we must also change any clients, because the role of the
default ClientServer and the new DClientServer connector has changed from ClientPullT to
DClientPullT. By using precise definitions and applying the standard consistency checks,
we ensure that the effect of a change is predictable and does not result in new inconsistencies
of the system.

Further, we can analyze the new DynamicServer and DynamicServerized components
to show that they do not have the problem that prompted the change: servers do not need

4Similar definitions for DClientPushT and DServerPullT are not shown. Also, connectors
DClientServer and DClientServerPush are straightforward but omitted for brevity.

96 A Formal Approach to Software Architecture

Component DynamicServerized (numServers : 0..; numClients : 0..) =
Port Service1::numServers = DServerPullT
Port Client1::numClients = DServerPushT
Computation = WaitForService WaitForClient x

where WaitForService =
8 i :1::numServers

Servicei.open!Servicei.request?x
!Servicei.result!Servicei.close
!Computation

WaitForClient =
8 i : 1::numClients Clienti.open

!Clienti.request
!Clienti.result!x
!Clienti.close
!Computation

Figure 4.9: The DynamicServerized component.

Connector OpenLoopBuffer =
Role Source = ClientPushT
Role Target = ClientPullT
Glue = OpenPhase ; Operatehi

where OpenPhase = Source.open !Target.open!x Target.open!Source.open!x

Operatehi = Source.request?x!Source.result!Operatehxi

Target.request!WaitForData
OperateS+hxi = Source.request?y!Source.result!Operatehyi+S+hxi

Target.request!Target.result!x!OperateS

WaitForData = Source.request?x!Target.result!x!Source.result!Operatehi

Figure 4.10: An Open-loop buffer.

to guess what client will make a request, and thus deadlock is not a problem. The WRIGHT

specification helps us be confident that this is indeed a viable solution.

4.4.2.2 Avoiding Unnecessary Synchronizations

A second approach to avoiding a server blocking on a request is to permit the server to
provide the data asynchronously, in anticipation of a request. This is achieved through the
use of an OpenLoopBuffer connection (figure 4.10), which guarantees that the source of
data will never block waiting for the target to become ready. The buffer stores data until
the target requests it, or blocks the target until the source makes new data available. (Such
a connection is essentially a pipe.)

Notice how the WRIGHT Glue mechanism permits this interaction to be described
without modifying the component interfaces. Unlike the DClientServer connector, this
connector can replace a ClientServer connector without modifying the data target, or a
ClientServerPush connector without modifying the data source.

Chapter 4. Case Study: AEGIS 97

Component ThreadedMixedComp (numPushServers :0..; numPullServers : 0 .. ;
numDPushServers :0..; numDPullServers :0..;
numPullClients : 0..; numPushClients : 0..;
numDPullClients : 0..; numDPushClients : 0..;
) =

Port PushServer1::numPushServers = ServerPushT
Port PullServer1::numPullServers = ServerPullT
Port DPushServer1::numDPushServers = DServerPushT
Port DPullServer1::numDPullServers = DServerPullT
Port PushClient1::numPushClients = ClientPushT
Port PullClient1::numPullClients = ClientPullT
Port DPushClient1::numDPushClients = DClientPushT
Port DPullClient1::numDPullClients = DClientPullT
Computation = 8 i : 1::numPushServers k PushServeri:ServerPushT
k 8 i : 1::numPullServers k PullServeri:ServerPullT
k 8 i : 1::numDPushServers k DPushServeri:DServerPushT
k 8 i : 1::numDPullServers k DPullServeri:DServerPullT
k 8 i : 1::numPushClients k PushClienti:ClientPushT
k 8 i : 1::numPullClientsk PullClienti:ClientPullT
k 8 i : 1::numDPushClients k DPushClienti:DClientPushT
k 8 i : 1::numDPullClientsk DPullClienti:DClientPullT

Figure 4.11: A multi-threaded solution.

4.4.2.3 Multi-threading Components

The third and final approach used by the Prototech team to avoid server deadlocks is
perhaps the most flexible: to alter the server’s implementation mechanism so that it can
handle multiple connections at once. If we use a multi-threaded implementation (easily
represented in CSP using the k operator), a single component type can use all of the possible
interface protocols (see figure 4.11).5 We represent this in WRIGHT by parameterizing a
component by the number of each type of port. Then, for each port the Computation has
a parallel thread to carry out the interaction at that port.

This solution is used for two of the components, TrackServer and ExperimentControl.
The instance declarations for these are as follows:

TrackServer : ThreadedMixedComp (3,0,1,0,1,0,0,0)
ExperimentControl : ThreadedMixedComp (1,0,0,0,0,0,0,2)

TrackServer has three static push server ports, one dynamic push server port, and one static
pull client port. Thus, its Computation will have five sub-processes executing in parallel,
one for each port. ExperimentControl has one static push server port and two dynamic push
client ports, implemented by three independent processes.

By precisely specifying the three solutions to the server deadlock problem, we can
see how each of the solutions has benefits and drawbacks. The “dynamic connection”

5While CSP makes this look like the simplest solution of all, depending on the implementation base it
may require a complex implementation.

98 A Formal Approach to Software Architecture

solution has the advantage of allowing system developers to continue to use the original
infrastructure platform, but this solution means that a change to one component requires
a change in each of the components with which it interacts. Using an OpenLoopBuffer
requires changes to only one of the component’s interfaces, but moves away from the
client-server model. In addition, it requires the development of infrastructure to support
buffering and may have unfortunate consequences if synchronization of components is a
concern (data may be arbitrarily delayed between components). The approach of multi-
threading is the most flexible, retaining the simple client-server model and not requiring
the “serverization” of components. But, it may be difficult to implement since it requires
the use of concurrency within the component.

Capturing these different solutions at the architectural level provides the opportunity
to select the best solution for the entire system. If the infrastructure is available, multi-
threading can be used throughout to retain a close correspondence with the original solution.
If not, but delays in data delivery can be tolerated, buffering can be used (thus in effect
converting the system to a pipe-filter style). There are also situations where dynamic
connections and serverized components are the right choice.

The actual Prototech solution is shown in figures 4.12 and 4.13. Note that it incorporates
all of the three solutions in different places, rather than only one. Because the Prototech team
only discovered these problems at the implementation phase of their development lifecycle,
after responsibility for different components had already been divided and implementation
platform decisions bound, they were not able to realize that a common solution might
have been better than the hybrid approach that they took. Because the specification of the
architecture was informal, each team chose to interpret it in a different way. This resulted in
inconsistencies of approach and significant roadblocks to the system’s eventual integration.

Their non-uniform approach, resulting from the failure to precisely specify the archi-
tecture and analyze it for problems that they would later encounter, also meant that it was
difficult to handle concerns such as instrumentation of the testbed in a uniform way.

4.4.3 Issue: Instrumenting Communication

An important issue for the AEGIS testbed is that it is an experimental system. As such, there
is a requirement that the interactions of the system be monitored. This monitoring must
not, of course, alter the components as designed, or the data collected would be invalid.
This results in the need for instrumented connectors.

WRIGHT can represent these easily by adding a new Listener role to each connector spec-
ification and altering the Glue to copy data to the new participant. For example, an instru-
mented ClientServer connector could be described as in figure 4.14. The same Listener can
also be added to any of the other connectors. For example, InstrumentedDClientServerPush
is shown in figure 4.15.

This method of adding a Listener role to each connector type both supports the need for
instrumentation and retains the simplicity of the un-instrumented architecture. By altering
the connector specifications, we indicate the need for this functionality in the system and
provide a basis for analyzing alternatives for how it is to be supplied. Perhaps a single,
centralized monitoring database component is best, or perhaps a distributed approach, where
there is a monitor for each component, is preferable. By including the specification of the

Chapter 4. Case Study: AEGIS 99

Configuration Testbed2
[..Type definitions..]

Instances
ExperimentControl : ThreadedMixedComp (1,0,0,0,0,0,0,2)
DoctrineAuthoring : DynamicServerized(1,3)
DoctrineValidation : DoctrineValidationT
TrackServer : ThreadedMixedComp (3,0,1,0,1,0,0,0)
GeoServer : GeoServerT
DoctrineReasoning : DoctrineReasoningT
DisplayServer : DisplayServerT
CS1::4 : ClientServer
DCS1::5 : DClientServer
DCSPush1::4 : DClientServerPush
OpenLoop : OpenLoopBuffer

Attachments
ExperimentControl.DPushClient as DCSPush1.Client
DoctrineAuthoring.Service as DCSPush1.Server
ExperimentControl.DPushClient as DCSPush2.Client
DoctrineValidation.ExCtrl as DCSPush2.Server
ExperimentControl.PushServer as CS1.Server
TrackServer.PullClient as CS1.Client
DoctrineAuthoring.Client as DCS1.Server
DoctrineValidation.DoctAuth as DCS1.Client
TrackServer.PushServer as DCS2.Server
DoctrineValidation.TrSrv as DCS2.Client
DoctrineAuthoring.Client as DCS3.Server
DoctrineReasoning.DoctAuth as DCS3.Client
DoctrineAuthoring.Client as DCS4.Server
GeoServer.DoctAuth as DCS4.Client
TrackServer.PushServer as CS2.Server
DoctrineReasoning.TrSrv as CS2.Client
TrackServer.PushServer as CS3.Server
GeoServer.TrSrv as CS3.Client
GeoServer.DoctReas as OpenLoop.Source
DoctrineReasoning.GeoSrv as OpenLoop.Target
DoctrineAuthoring.Client as DCS5.Server
DisplayServer.DoctAuth as DCS5.Client
TrackServer.PushServer as CS4.Server
DisplayServer.TrSrv as CS4.Client
DisplayServer.DoctVal as DCSPush3.Server
DoctrineValidation.DispSrv as DCSPush3.Client
DisplayServer.DoctReas as DCSPush4.Server
DoctrineReasoning.DispSrv as DCSPush4.Client

End Testbed2.

Figure 4.12: Revised AEGIS configuration.

100 A Formal Approach to Software Architecture

GeoServer

Display

Server

Doctrine

Reasoning

Server

Track

Validation

Doctrine

Authoring

Doctrine

CS1

Control

Experiment

CS2

CS4 CS5

CS7
CS8

CS10

CS6 CS9

CS3

Dynamic:

Buffered:

Push:

Static: Serverized

Threaded

Ad Hoc

Figure 4.13: Actual AEGIS prototype architecture.

Connector InstrumentedClientServer =
Role Client = ClientPullT
Role Server = ServerPushT
Role Listener = data?x !Listener x

Glue = Client.open !Server.open!Glue
Client.close!Server.close!Glue
Client.request!Server.request!Glue
Server.result?x!Client.result!x
!Listener.data!x!Glue
x

Figure 4.14: An instrumented connector.

Connector InstrumentedDClientServerPush =
Role Client = DClientPushT
Role Server = DServerPullT
Role Listener = data?x!Listener x

Glue = Client.open !Server.open !Glue
Client.request?x !Server.request!x
!Listener.data!x!Glue
Server.result !Client.result !Glue
Client.close !Server.close !Glue
x

Figure 4.15: Another instrumented connector.

Chapter 4. Case Study: AEGIS 101

Listener in the architecture, we ensure that this concern will be addressed by all parts of the
implementation, avoiding inconsistencies where some data is collected and other data not,
perhaps presenting unrealistic or even misleading information to analysts.

At the same time, the basic client-server interaction remains clear, and the core com-
ponent specifications are unchanged (there will, of course, be additional monitoring com-
ponents that are introduced). Thus, WRIGHT provides an effective means of introducing
concerns at the architectural level, precisely defining alternative solutions, and analyzing
those solutions to determine which is best for a given situation.

4.5 Discussion

In this chapter we have seen, through the example of the AEGIS prototype architecture,
that WRIGHT can be used to provide a formal specification of a non-trivial architectural
configuration. As we have illustrated, this specification illuminates many of the issues left
unresolved in a less formal treatment.

The primary benefit of this specification has been its precision and its attention to
detail. We note, however, that although we have been quite specific about the protocols
of interaction, the specification is considerably more abstract than the actual functional
behavior of the components in the system. Thus, the specification provides a basis for
reasoning about the system and at the same time may be used as a basis for more concise
descriptions of the functioning system. In effect, the WRIGHT specification gives meaning
to informal descriptions such as shown in figure 4.1.

In the formalization of AEGIS, we have introduced a number of techniques for the
abstract description of software architecture, including:

� Separating Interaction Patterns: In describing our connectors, we were careful to keep
separate interactions separate. Both the client-server interaction pattern described by the
ClientServer connector and the buffered data interaction described by OpenLoopBuffer
are implemented via a single operating system library, stdio. However, they represent
different abstract interaction patterns, and so we keep them separate. By recognizing the
different usage patterns, we can consider the different effects that a single infrastructure
platform can have on the computation, depending on its use.

� Separating Interaction from Computation: WRIGHT promotes the separation of com-
ponent descriptions into interface and computation, and of configurations into connectors
and components. By distinguishing the servers abstract behavior at a single interface
point from its overall behavior, we can raise the level of abstraction of the system, show-
ing how it matches the informal “client-server” characterization while at the same time
discovering properties based on the specifics of how an individual computation combines
its interfaces. By separating, for example, the ClientPullT and ServerPushT interface
types from the Client and Server specifications, we can show how MixedComp truly is a
combination of the client and server computations, and be sure that it can be used in any
context where either is expected. Had we not made this separation, the relation between
the component types would have been much more difficult to establish.

102 A Formal Approach to Software Architecture

� Focussing on Patterns of Control: In each part of the AEGIS specification, we described
an abstract pattern of control. The very first specification, of the ClientPullT interface type,
shows that a client in the client-server interaction repeatedly decides whether to make
a request or to close the connection. The ClientServer connector type indicates that all
control mechanisms are located in the components, while the OpenLoopBuffer provides
additional control mechanisms through its buffer. The Server component type indicates
that, surprisingly, it requires control over observed events. This latter observation is
really only possible because of careful adherence to this technique: At each point in a
computation or an interaction protocol where there is more than one possible action, it
must be determined whether a given party (such as component) decides what to do or
accepts the occurrence of either possibility. If the component decides, it is an internal
choice, and is represented via u. If the component has no influence on what can happen
and is capable of dealing with either possibility, then an external choice is made, via .

� Using Parameters to Generalize and Abstract: Another important aspect of a focus
on patterns of control is that what we describe are patterns, not specifics. We chose to
describe a Server component type, showing a general pattern of responding to clients’
requests, rather than to describe the detailed computations of the TrackServer, GeoServer,
etc. By recognizing the commonality and by parameterizing our descriptions of the
component types, we were able to raise the level of abstraction of our description
and increase our ability to consider general solutions to the problems with the initial
architecture. This approach is most obvious in the ThreadedMixedComp , in which we
capture a fully general threaded client-server.

� Showing All Interfaces: A critical aspect of software architectural description is that
all interactions in a system be described. If we hope to ensure the consistency of the
system and to be able to reason abstractly about alternatives, we must be sure that there
are no hidden dependencies between elements that are abstractly independent. Thus,
when we describe what is abstractly a “server” in the architecture, we must also consider
whether it acts as a “client” to other components. Similarly, if monitoring of interactions
is a key function of the system, we must provide interfaces for that, as new roles in the
connectors, so that we can describe and analyze the alternative approaches to that aspect
of the system. If we omit an interface between components that do interact, we lose our
ability to reason about the behavior of those components independently and to consider
changes to that interaction.

� Separating Different Roles: When we consider an issue such as instrumentation at the
architectural level, we have the ability to separate it from the details of core functionality
and implementation. We show this separation by providing a separate role for the
Listener from the Clients and Servers. One possible implementation of instrumentation
is to have each component record its own outgoing messages in a log. This could have
been described by including a logging function in each component type. But this would
have restricted our ability to analyze the system in two ways: First, it describes only
one possible solution to the monitoring problem, and removes our ability to consider
alternatives at the architectural level. Second, it fails to separate the abstract issue of
computation of data values and their communication and the issue of monitoring in an

Chapter 4. Case Study: AEGIS 103

experimental system. Combining the two would have obscured the client-server relation
by adding additional details in the middle of that part of the computation, while also
obscuring the monitoring function by distributing it across the entire computation. If
we do end up constructing a combined implementation, that can be represented in our
separated model by adding a listener port to each component type and attaching the
listener roles to the appropriate components. We still retain the abstract separation of
these issues while correctly describing the chosen solution.

Although we have concentrated on describing AEGIS as a single configuration, our formal-
ization of interface, component, and connector types would permit us to reason about an
architectural style based around this vocabulary. In effect, the AEGIS developers’ efforts
at architectural design were based on an informal understanding of a “client-server” style.
They decided on the style and then used infrastructure, Unix sockets, that they believed to
support the style. Had there been a formal specification of clients, servers, and client-server
connectors, such as we have shown in this chapter, it is possible that they would not have
made the choices they did, which resulted in a complex, ad hoc solution. Style constraints
could have indicated, for example, that if static client-server connectors are to be used with
single-threaded servers, no two clients may make requests to the same two servers. This
constraint would have informed the AEGIS developers that the choices they made, based on
their informal understanding, were not suitable, and led them to a simpler, more successful
solution.

We will see in the next chapter how arguments about, for example, absence of deadlock
and substitutability of one connector or component type for another can be made in a
rigorous fashion. In the context of an architectural style, these results become general rules
that can be applied to all instances of the style. Hence the architectural level specification
becomes cost effective through amortization of its results across a wide variety of systems.

104 A Formal Approach to Software Architecture

Chapter 5

Case Study: Justo-Cunha Style

5.1 Introduction

In this chapter we shift our attention from the architecture of individual systems to consider
families of systems that share common characteristics. These families of systems are
architectural styles. By considering styles, the developer shifts his or her attention and
analysis from the task of locating potential problems in the architecture of single systems to
reasoning about the properties that are shared by all configurations in a style. The designer
of a style hopes to reduce the effort of system developers by carrying out important analysis
in general, so it can be applied directly to systems in the style. That is, by establishing that
a system’s architecture is in a particular style, the system developer can be sure that the
system will have all of the properties that have been demonstrated for the style.

For example, in our case study we will show that all systems in the style are globally
deadlock-free (i.e., that they will never stop sending messages because every component
is waiting for some other component). In general, global deadlock-freedom is a difficult
property to establish about a system, requiring exhaustive consideration of all states of the
system. Establishing that a system is in our example style, on the other hand, is relatively
easy: there must be no cycles in the architecture’s configuration. Thus, a system developer
can reduce his or her effort by using the style: the difficult deadlock test is replaced by the
simple style membership test.

A typical informally-described style consists of a set of connectors with a rough descrip-
tion of how they behave, some examples of components that might appear in the style, again
with some description of the behavior, some rules of thumb for combining the components
and connectors into a configuration that fits the style, and a description of the desirable
properties that systems will have if the style rules are properly followed. The justification
of the style by its properties (an informal proof) also serves as a guide to the developer in
trying to figure out more subtle points of system construction.

For example, our case study is based on a style originally described by Justo and
Cunha [JC94]. The purpose of the style is to support the development of message-passing
systems that are known to be deadlock-free. They provide a semi-formal description of
the style using informal connectors, code templates for components, and English language
constraints on how configurations can be constructed. Justo and Cunha provide informal
proofs that, when these constraints are obeyed, the constructed systems will be globally

105

106 A Formal Approach to Software Architecture

deadlock-free.
While use of these informal styles can save developers considerable effort both in the

design and analysis of their systems, particularly if the developer is experienced in the use
of the style, there are several weaknesses to this informal approach. First, it is not clear
exactly where the boundaries of the style’s family of systems is. That is, there will be
systems that cannot be shown either to fit the style, or not to fit the style. This means that
the developer of that system does not know whether the analyses performed for the style
apply or not. Further, because the justifications are informal, it may be the case that they
contain exceptions or errors that are not made obvious in the informal description. Also,
because the reasoning behind the justification and analyses may not be spelled out, it will be
impossible to know whether a weaker form of the properties applies if the exact constraints
of the style are not met, or whether they have been completely voided: The analysis must
be redone.

By formalizing a style in WRIGHT, we provide important benefits to the software
architect that are not achieved by this informal technique. First, we are able to be much
more precise in understanding what it is that the style actually covers. That is, the family of
systems represented by the style is delineated precisely. Second, we provide a rigorous basis
for analysis of the style’s properties. The informal justifications can be made into formal
guarantees that critical properties hold, and the rule-of-thumb tests are turned into precisely
bounded constraints. Third, by exploring the precise boundaries of the constraints imposed
by the rules of thumb, we can generalize the property justifications, thus establishing the
critical guarantees over a wider range of systems. This makes it easier for the developer to
build a system that serves his purpose while still using the style constraints to simplify the
analysis task.

Our case study will begin with the introduction of vocabulary for the description of
configurations. To create an initial vocabulary, we will simply formalize the description
provided in [JC94]. We will use this as a starting point to explore how we might formalize
the informal constraints described by Justo and Cunha. Through this attempt we will see that
the informal descriptions are in fact ambiguous: Depending on how they are considered,
they don’t guarantee deadlock-freedom at all! We therefore realize that the constraints must
be considered in a particular way in order to guarantee the desired property.

Given the new, more restrictive constraints, we will show how the property of global
deadlock-freedom can then be formally proven to hold for any instance of the JC style.
Using the architectural structure provided by the style as a guide, we are able to apply
the standard technique of inductive reasoning over the traces of a CSP process. The
architectural structure reduces the complexity of the proof, making it tractable. We thus
justify the use of the vocabulary and constraints imposed by the style, by showing how they
make it easier to establish an important semantic property of the systems constructed. This
property is established for every configuration that obeys the style constraint; the developer
knows that his or her system is deadlock-free without repeating the proof.

By formalizing the informal description, however, we realize that the proofs as specified
only apply over a fairly restricted set of systems. While the vocabulary seemed flexible
at first, and the constraints reasonable, the formalization reveals that the style as originally
specified didn’t cover many systems that we would like to construct, and which we believe
to have the property of interest: global deadlock-freedom. We will capitalize on the insights

Chapter 5. Case Study: Justo-Cunha Style 107

from the initial formalization to further generalize the style, extending the deadlock-freedom
result to cover a wider family of systems.

To prove global deadlock-freedom in the more general style, we introduce the technique
of encapsulation. In this technique, we demonstrate that the behavior of any configuration
in the style is equivalent to the behavior of some individual component. Thus, any con-
figuration can be encapsulated (have an interface boundary drawn around it) and treated
as a component in another, larger configuration in the same style. The way we will use
this in our proof of deadlock freedom is that, if we can show that all single components
are deadlock-free, and every configuration can be viewed as a component, then all con-
figurations must be deadlock-free. The encapsulation result is a powerful technique for
analysis of architectural styles, because it means that any property that is guaranteed for
the component types is automatically extended to all configurations. Thus, by establishing
that the (relatively simple) style constraints are met by a system, the software developer
can immediately use any result that has been proven for the component types.

Further, the encapsulation property provides a justification for the hierarchical structur-
ing of the system architecture during design. By permitting the developer to hide details
of the structure at each level of consideration, hierarchical decomposition can provide im-
portant benefits in terms of simplifying exposition of the system and raising the level of
abstraction at which it is described. It simplifies exposition by reducing the complexity of
each level in the hierarchy and making it clear where subsystems are independent, and it
raises the level of abstraction by hiding the details of how subsystems are constructed.

Finally we will step back and summarize the key ideas and techniques introduced in this
chapter, showing how the ideas generalize from the case study to the more general problem
of style specification and analysis.

5.2 The Justo-Cunha Style

In the case study described in this chapter, we formalize and analyze the architectural style
informally described by Justo and Cunha in [JC94]. This style, which we term the Justo-
Cunha, or JC, style, is designed to simplify the determination of global-deadlock freedom
in distributed message-passing systems. Buffered message-passing is a common way of
configuring systems [BWW88, Kra90]. An important problem that arises in these systems
is global deadlock of systems. Deadlock arises because components must wait for messages
from other components before they may proceed with their own computation and output
messages. If it occurs that all processors are waiting for messages and none are capable of
outputting messages, then the system deadlocks.

Justo and Cunha describe their style as a single connector type, a pair of component
templates, and a set of configuration rules. The connector type is a message buffer. Justo
and Cunha describe it as follows:

The send primitive in CL does not block the sender. The sent messages are
usually stored in a circular buffer. If the buffer is full, then the first messages
received in the buffer are overwritten. The size of the buffer can be specified
by the user [JC94, p. 149]

108 A Formal Approach to Software Architecture

task <name.SR> (entryport in:ArrayOfPorts1;
exitport out:ArrayOfPorts2)

<declarations>
begin

<initialization>
repeat

send message[1] to out[1];
...

send message[m] to out[m];
<compute>
receive message[1] from in[1];
...

receive message[n] from in[n];
<compute>

until true
end <name.SR>.

Figure 5.1: A component template from the JC Style.

All components in the style represent processes that send and receive messages via
message buffers. Justo and Cunha define the set of permitted components by providing two
component templates that developers of systems in the style must copy and then modify
in specific ways. An example of such a template is shown in figure 5.1. Justo and Cunha
describe them as follows:

TheS-R template can send its messages and then it may block waiting to receive
its messages. The hcomputei part correspond [sic] to a block of statements that
should not include communication and should terminate...

[The R-S] template is the dual of the S-R template. In this case, the tem-
plate first receives its message, performs some computation and then sends
messages. [JC94, p. 149]

In order to use these templates effectively, Justo and Cunha provide three configuration
rules [JC94, p. 152]:

Rule 1 A cycle of R-S template processes always deadlocks.

Rule 2 A cycle of S-R template processes never deadlocks.

Rule 3 A cycle of R-S and S-R template processes never deadlocks.

Intuitively, we can see that these rules hold because deadlock can occur only when all
components are waiting for a message. While R-S components may block immediately,
causing a potential deadlock, S-R components begin by sending a message. These messages
then travel through the system, ensuring that progress is always possible somewhere in the
system.

While the application of these rules is clear in the simple case of systems consisting of
exactly a single cycle of components, it is not as clear how or whether these rules can be

Chapter 5. Case Study: Justo-Cunha Style 109

applied to more complex system configurations. For example, does this rule mean that a
cycle of R-S components will cause deadlock regardless of the context in which it appears?

Thus, we can see a number of weaknesses in this informal exposition of an architectural
style. The informal configuration rules are not sufficiently specific about what systems are
or are not included in the style. We don’t know whether there are exceptions to the rules,
so that some more complicated systems might deadlock even though they seem to obey the
rules. The coding templates provide examples of permitted components, but there might
be other, more flexible patterns that could be used and still retain the property of deadlock
freedom. For example, the JC style as described doesn’t seem to permit a component to
vary the order in which the messages are sent. Is this a critical property of the style, or only
coincidental to the way that the templates are written? The informal description does not
clarify this point.

5.3 A Formal Description of the JC Style

We now show how the informal description of the JC style provided by Justo and Cunha
can be formalized using WRIGHT. Our initial formalization will simply make precise the
semantics of the templates and connector description provided in [JC94]. This formaliza-
tion, defined as WRIGHT component and connector types, will serve as a starting point to
explore how we might formalize the informal constraints described in [JC94]. Through this
exercise will show that the informal descriptions are in fact ambiguous: Certain reasonable
interpretations of the constraints are not correct; if a developer simply reads the rules and
follows them without mentally reconstructing the proof of global deadlock-freedom for his
particular system, he can’t be sure that his system will operate without deadlock. In effect,
the rules could actually result in more trouble for the developer: if they are interpreted in
ways that Justo and Cunha didn’t expect, then a system may in fact deadlock, while the
developer believes that it doesn’t, because of the “guarantees” provided by use of the style.

By formalizing the constraints, we will see under what situations they do or don’t
apply, and will show how, given a restrictive form of the constraints, the property of global
deadlock-freedom can be formally proven to hold for any instance of the JC style. Using the
semantics of the component and connector types, and the formal style constraints as a guide,
we apply the standard technique of inductive reasoning over the traces of a CSP process.
The architectural structure reduces the complexity of the proof, making it tractable. We thus
justify the use of the vocabulary and constraints imposed by the style: They make it easier
to establish an important semantic property of the systems constructed. The developer who
uses the formalized JC style knows that his or her system is deadlock-free without repeating
the proof, because we have established this property for every configuration that obeys the
style constraint.

5.3.1 Interface Types

The first element of a style description is the introduction of interface types. There are two
interfaces in the JC style: Receiver and Sender:

Interface Type ReceiverType = receive ! ReceiverType

110 A Formal Approach to Software Architecture

Connector Message(n:1..)
Role Sender = SenderType
Role Receiver = ReceiverType
glue = buf0 where

bufi =

8<
:

Sender.send! buf1; when i = 0
Sender.send! bufn Receiver.receive! bufn�1; when i = n
Sender.send!bufi+1 Receiver.receive! bufi�1; otherwise

Figure 5.2: The Message buffer connector in WRIGHT.

Interface Type SenderType = send! SenderType

Because Justo and Cunha only consider non-terminatingcomputations, the interfaces shown
are simple repetitions of a single event. In general, however, an interface type might show
how termination is achieved, and whether users of that interface control the decision about
termination. For example, if we wanted to indicate that the SenderType is not obligated
to send an infinite number of times, we would add a choice of termination:

Interface Type AlternativeSenderType = send ! AlternativeSenderType u x

5.3.2 Connector Types

The second element of a style description is the introduction of connector types. These
types describe the kinds of interactions that can occur in systems developed using the style.

Justo and Cunha describe the interactions of their style informally as follows: “.. the
send primitive in CL does not block the sender. The sent messages are usually stored in a
circular buffer. If the buffer is full, then the first messages received are overwritten. The
size of the buffer can be specified by the user.”

To formalize this interaction WRIGHT provides the connector type. A connector type
specification is divided into three parts, each of which gives different information about the
interaction. The connector type of the Justo-Cunha style, the Message connector, is shown
in figure 5.2.

In the Message connector we see how the connector uses the signature to provide a
single dimension of variability, as specified by Justo and Cunha: the size of the finite buffer.
The buffer size is indicated by the parameter n in the connector specification.

The second part of the specification, the role specifications, indicates the participants
in the interaction and the constraints on those participants. These use the interface types
defined above.

The third part of the connector specification is the glue specification, which indicates
how the participants are combined to create an interaction. In the message connector, the
interaction is mediated by a circular buffer that permits a single receive for each send, unless
the buffer is full, in which case it drops any further sent messages until a receive releases
space in the buffer.

Chapter 5. Case Study: Justo-Cunha Style 111

Component S-R(r:1..;s:1..)
Port In1::r = ReceiverType
Port Out1::s = SenderType
Computation = S1 where

Si =

8>>>>>><
>>>>>>:

Outi.send! Si+1;

when 1 � i � s
Ini�s.receive! Si+1;

when s < i < r+ s
Inr.receive! S1;

when i = s+ r

Component R-S(r:1..;s:1..)
Port In1::r = ReceiverType
Port Out1::s = SenderType
Computation = R1 where

Ri =

8>>>>>><
>>>>>>:

Ini.receive! Ri+1;

when 1 � i � r
Outi�r.send! Ri+1;

when r < i < r + s
Outs.send! R1;

when i = s + r

Figure 5.3: S-R and R-S templates.

Consistency of the Message Connector

As in our previous case study, we must apply WRIGHT’s checks for consistency before
we can use the connector. In this case, the simplicity of the interfaces makes it easy
to demonstrate that the connector obeys the rules for connectors. The roles are clearly
deadlock-free, since they never terminate and have only one event (test 3). The connector
is deadlock free because it never refuses the send event (test 2). receive is initiated only
by Receiver and send only by Sender, so there is a single initiator for each event (test 4).
The Glue has no initiated events, and each role has only one, so initiator commits is obeyed
(test 5).

5.3.3 Component Types

Beyond the description of the interactions in the JC style, Justo and Cunha provide two
component templates to be used. These correspond to the third element of a WRIGHT style
description, the component types. The WRIGHT formalization of the JC templates, termed
S-R and R-S templates, are shown in figure 5.3.

In the R-S and S-R templates, the number of inputs and outputs can be varied, as
indicated by the parameters r and s . In the J-C message passing style, an In port will fill
a Receiver role and an Out port will fill a Sender role. Thus in this example, they use the
same interface types as the corresponding role. In general, as we discussed in chapter 3,
they need not.

In a component specification, the Computation indicates how the component’s inter-
actions are combined to form a distinct computation. It is in the Computation that the S-R
and R-S component templates differ. The S-R template begins by sending messages on each
of its Out ports and then waits to receive messages on each of its In ports. The R-S template
reverses this pattern of events, first waiting for messages and then sending. Because we
are only interested in the pattern of messages, and because the JC component templates do
not permit components to alter the ordering of events, we have not shown the data that is
transmitted with the send and receive events. Of course, any implementation of a system
using this style would carry data with the messages, and instances of these templates would
carry out different calculations in order to provide specific data values. The purpose of the
formalization of this style is to analyze systems for global deadlock-freedom, and so we
abstract away from the parts of the computation (namely, the computation of data) that do

112 A Formal Approach to Software Architecture

not influence that issue. It is the responsibility of the developer using the style to show
that any concrete components obey the abstract pattern of messages described by these
component types. If the code templates provided by Justo and Cunha are used directly, this
follows in a straightforward manner.

Consistency of the Component Types

As with the connector type, we must confirm that the component types pass the WRIGHT

checks before we can use them. The tests that apply to component types are port/computation
consistency (test 1) and initiator commits (test 5). Each of the computations is capable of
exactly one event at a time, so the computation commits to that event: Initiator commits
is clearly obeyed. Further, the computation cycles through each event before repeating an-
other, and the computation does not terminate, so each event is produced an infinite number
of times. This is exactly the pattern of events represented by the ports, so port-computation
consistency is also obeyed.

5.3.4 An Initial Analysis

As we saw in the previous case study, the introduction of vocabulary is sufficient to
construct architectural configurations. We could stop here, and already have provided an
aid to developers who wish to formalize and analyze their systems, by making it easier
for them to describe the semantics of their systems through the use of our pre-defined
vocabulary.

However, in this case, as we usually will, we want to take the style further. We want
to provide both guidance in how the vocabulary should be used and perform analyses that
will benefit potential users of the style. We need to indicate such things as: Does the style
permit the use of additional vocabulary, or are these types to be used exclusively? Are there
specific component or connector instances that must appear in every configuration, or is the
developer free to introduce or exclude any given element? Can elements be combined in
any way that the developer sees fit, or are there rules on the topology of attachments that
must be obeyed?

Some of these constraints can be determined directly to reflect the intent of the style
designer, but others are better considered in terms of potential analysis of the style. In our
case study, we are concerned with questions of global-deadlock freedom, and so we will
want to use constraints that ensure this property, excluding any configurations from the
style that have the potential to deadlock, and proving that any system that obeys the style’s
constraints must be deadlock free.

The first constraint for the JC style is a common one: Justo and Cunha only consider
systems in which all components and connectors use the vocabulary that they introduce.
This kind of constraint makes sense, because the introduction of new vocabulary means
that the semantics of those elements is unconstrained, and it is difficult, if not impossible,
to analyze systems with unconstrained semantics as a class. The first constraints, which we
will refer to as JC Constraints 1a , are:

8 c : Component � Type(c) = S-R _ Type(c) = R-S
^ 8 c : Connector � Type(c) = Message

Chapter 5. Case Study: Justo-Cunha Style 113

These are constraints that help to define the style. By placing these in the Constraints
section of a style definition, we indicate that every system that is in the JC style must obey
these constraints. If an architecture does not obey these constraints, they are not in the JC
style, by definition.

This contrasts with another property that we want to consider, deadlock-freedom.
We will define deadlock-freedom as a predicate that appears similar to the constraints
of JC Constraints 1a, and in fact the semantics of the predicate are defined in the same
way, by evaluating a given system architecture. However, we don’t want to apply deadlock-
freedom as part of the definition of the style, because this wouldn’t simplify the task of
a system developer. By making deadlock-freedom a constraint of the style, we make it a
proof-obligation on any user of the style. That is, before we can do anything with a system
based on it being in the style, the developer must prove that it is deadlock-free. Instead,
we want to provide deadlock-freedom as a style property. That is, the developer uses other
constraints that define the style (such as JC Constraints 1a) to prove that his system is in
the style. Then, because of the properties of the style, he knows, without further analysis
by the developer, that the system must therefore be deadlock-free.

We will now define the property of deadlock-freedom, and then show how different
constraints may be defined as part of a potential JC style. We will use these constraints to
analyze the style and show that some of the sets of constraints guarantee deadlock freedom
and some do not.

Recall that deadlock is a situation where a system can neither make progress nor
terminate successfully. In order to formalize this property, we must refer to the overall
behavior of the architecture, which is the CSP process System (as defined in chapter 3). We
can use the traces and refusals of System to define global deadlock and deadlock-freedom
formally as follows:

Deadlock b= 9 t : Traces(System)
j (t ;�System) 2 Failures(System) ^ last(t) 6=

p

Deadlock Free b= : Deadlock

As for our definitions of local deadlock in chapter 3, this indicates that deadlock occurs
when the system cannot make progress (it refuses every event, in the first half of the
condition) and has not terminated successfully (the final event is not

p
, which represents

success). Any process that cannot deadlock is deadlock-free.
It is easy to see why it is not useful to simply apply Deadlock Free as a constraint: By

relying on the unstructured semantics of the system to define the property, the predicate
provides little or no guidance on how it may be achieved by an actual system architecture,
and it is not clear how this property can be established without exhaustive analysis of the
detailed semantics of a system. It is exactly to make the proof of this property easier that
Justo and Cunha set out to define their style. To include it as a proof obligation before the
style’s analysis can begin defeats the purpose of the exercise.

We therefore turn to the constraints that Justo and Cunha define. The idea of these
constraints is that (a) they will be easy to establish for a given configuration, and (b) we
can prove that if they are established, deadlock-freedom is guaranteed. This will make the
job of the system developer much easier, because our analysis establishes (b) once and for
all: the difficult deadlock-freedom proof is carried out once, proving a theorem of the form

114 A Formal Approach to Software Architecture

Figure 5.4: Two configurations: cycle, non-cycle.

“JC Constraints) Deadlock Free .” In order to gain the benefits of deadlock-freedom
for any system, only the easier-to-demonstrate style constraints must be shown.

5.3.4.1 Basis for JC Constraints: Dependency and Cycles

Justo and Cunha’s configuration rules are all based on the idea of cycles of components.
Their idea is that the graph of connectors attached to components defines dependencies
between components, and that any deadlock that occurs will be because of a cycle of
dependencies.

But what exactly constitutes a “cycle” of components? Already we can see that the
informality of the original style definition presents problems. Consider two systems, shown
in figure 5.4. Both have two connectors between two components, but from the way the
connectors are drawn, we deduce that the first has a cycle and the other does not.

The difference in the drawings is in the arrows: The arrowheads indicate that the
connectors have a “direction.” In the JC Style, the direction of the connectors that is used in
determining cycles is based on the roles. Connector arrows are drawn from the Sender role
to the Receiver role. We represent this as a relation between components, ConnectsTo:

8 c1; c2 : Components � ConnectsTo(c1; c2) b=
9 conn : Connectors; p1 : Ports(c1); p2 : Ports(p2) j

f((c1; p1); (conn ; Sender)); ((c2; p2); (conn; Receiver))g � attachments

This predicate indicates that a component c1 “ConnectsTo” another component c2 if
they share a connector such that c1 plays the Sender role and c2 plays the receiver role in
the connector. The reason that we use this particular definition of ConnectsTo (rather than
a non-directed version, or one where the roles are reversed) will become clear when we
start to analyze the system for deadlock.

With this notion of directedness, we can now define a cycle of components. A set of
components is a cycle if they form a sequence of components where each component is
connected to the next in the sequence, and the last connects to the first:

8C : �Components � Cycle(C) b=
9S : seqC j ranS = C �

8 i : 1::#S � 1 � ConnectsTo(S (i);S (i + 1))
^ ConnectsTo(S (#S);S (1))

5.3.4.2 Justo and Cunha’s Configuration Rules

Now that we have the concepts of a cycle and of deadlock-freedom formalized, we can
consider how to formalize the three configuration rules presented by Justo and Cunha.
Recall their statement by Justo and Cunha:

Chapter 5. Case Study: Justo-Cunha Style 115

R-S

R-S

S-R

S-R

Figure 5.5: Counter example to deadlock claim, rule 1.

1. A cycle of R-S template processes always deadlocks.

2. A cycle of S-R template processes never deadlocks.

3. A cycle of R-S and S-R template processes never deadlocks.

As we can see, these “rules” are not actually constraints on systems, but rather theorems
about particular topologies constructed in the JC style. While these rules are reasonable as
informal design guidelines, they illustrate some of the ambiguities that must be resolved
when formalizing an informal description. For example, we must ask ourselves in what
situations the rules apply. How can we use these results on cycles to constrain our construc-
tion of entire systems? Consider the following (perhaps overly naive) potential rephrasing
of the first theorem:

Any system containing a cycle of R-S components will eventually deadlock.

This statement can be formalized as follows:1

(9C : �Components j Cycle(C) ^ 8 c : C � Type(c) == R-S)) Deadlock

This interpretation of the rule turns out to be incorrect, as the system in figure 5.5 shows.
This system will continue to make progress (in the S-R cycle) even though the R-S cycle
never executes. This observation leads us to a more accurate interpretation of rule 1:

No component in a cycle of R-S components will ever send.

This is formalized as (JC Theorem 1a):

8C : �Components j Cycle(C) ^ (8 c : C � Type(c) = R-S)
� 8 t : Traces(System); c : C � last(t) 6= Name(c).send

This rule is now provable: Consider the behavior of an R-S component, which we will
call r . In order to send, r must first carry out a receive on each of its Receive ports.
Because there is a cycle, one of these ports is attached to a Message connector as the
Receiver role. Initially, the Receiver.receive event is refused — it must be preceded by a
send in the Sender role. But, again because of the existence of the cycle, we know that

1In this section, all of the theorems assume that JC Constraints 1a hold, since these will be part of the
eventual complete style constraints.

116 A Formal Approach to Software Architecture

R-S R-S S-RS-R

Figure 5.6: Counterexample to rule 2.

the Sender component of this connector, s , is also in the cycle. Therefore, because s must
send before r finishes receiving, r cannot be the first component in the cycle to send. But
this argument applies for any component in the cycle, so none of them can be first to send.
Therefore no component in the cycle will ever send.

As with rule 1, the informality of the other rules present difficulties when we attempt
to interpret them more precisely. If we assume that the rules are intended in their fullest
generality, that they indicate that an S-R cycle will never deadlock regardless of the context
in which it appears, we again discover a weakness in the rule. Figure 5.6 shows a system
where the additional presence of an R-S cycle will cause the system as a whole to deadlock,
even though there is an S-R cycle present. In this system, each of the S-R components will
send once, but then the left-hand S-R component will block forever waiting for a send from
the R-S cycle (which we know from JC Theorem 1a will never happen).

Again we can ask if there is a reasonable restriction of rules 2 and 3 that is correct. One
such restriction is the following:

A system consisting only of a single cycle of S-R and R-S components will not deadlock.

This is formalized as (JC Theorem 2a):

Cycle(Components) ^ #Connectors = #Components

^ 9 c : Components j Type(c) = S-R
) Deadlock Free

In this predicate Cycle(Components) indicates that there is a cycle consisting of all of the
components. #Connectors = #Components together with the cycle property ensures that
there are no connections except those participating in the cycle, and the existence of at
least one S-R component guarantees that there is a component that will introduce an initial
message into the system, after which progress can always be made.

Briefly, this property can be proved by induction on the traces of the system. Each
S-R component initially introduces an active message into the system. Every subsequent
event is either a send event, moving a message into a message buffer, or a receive event,
activating a blocked component. The fact that the system consists of exactly a cycle ensures
that each component has exactly one input that comes from within the system, and hence
that whenever it receives on that input port it is subsequently able to send an output before
it is blocked again. The only way messages can be lost is by having a full message buffer.
This can never reduce the number of messages to zero. Since progress is always possible
whenever there is at least one message active in the system, deadlock cannot occur. A more
formal proof follows.

Proof: By induction on the length of a trace.

Chapter 5. Case Study: Justo-Cunha Style 117

Let Prog(P) = the number of components that can send (Progs) + the number of messages
pending in the system (Progm).

We will show that if System is an S-R/R-S cycle, then for all tr 2 Traces(System),
Prog(System=tr) � 1.

Base case: tr = hi: Start state.

All S-R components are ready to send and none of the R-S components are ready, so
Progs(System) = the number of S-R components � 1.
There are no messages outstanding, so
Progm(System) = 0.
Prog(System) = the number of S-R components � 1.

Induction: tr = tr 0
� hei.

e is one of send or receive.

If e is receive, then
Progs(System=tr) = Progs(System=tr 0) + 1 (one more sender active),
Progm(System=tr) = Progm(System=tr 0)� 1 (one less message pending).
Therefore Prog(System=tr) = Progs(System=tr 0) + 1 + Progm (System=tr 0) � 1 =
Prog(System=tr 0) � 1.

If e is send, then Progs(System=tr) = Progs(System=tr 0)� 1 (one less sender active).

There are two cases for Progm(System=tr).

If the message connector over which the message is to be sent is not full, then
Progm(System=tr) = Progm(System=tr 0) + 1.
In this case, Prog(System=tr) = Progs(System=tr 0)� 1 + Progm (System=tr 0) + 1

= Prog(System=tr 0) � 1.

If the message connector is full, then the message is dropped and
Progm(System=tr) = Progm(System=tr 0).
But in this case, we know that Progm(System=tr 0) � 1, since there must be at least one
message pending (to fill the buffer), and
Prog

s
(System=tr) � 0, since there can never be a negative number of ready processes,

and therefore
Prog(System=tr) = Progs(System=tr) + Progm (System=tr) � 1.

Since progress can be made whenever Prog(System=tr) is non zero, this means that
deadlock will not occur. Q.E.D.

Notice how this proof proceeds using a standard CSP proof technique: induction over the
traces of the process System . The structure of the induction step is guided, however by the
structure of the architecture, using the property that the total process, System , is constructed
only of R-S and S-R components and Message connectors.

This proof allows us to define an initial deadlock free style. It defines the inter-
face, component, and connector types, as above, and defines the following constraints
(JC Constraints 2a):

118 A Formal Approach to Software Architecture

JC Constraints 1a
^ Cycle(Components)
^ #Components = #Connectors
^ 9 c : Components j Type(c) = S-R

Any system constructed in this style (i.e., where we can show that the vocabulary and
topological constraints hold) is guaranteed to be globally deadlock-free by the theorem
JC Theorem 2a .

Unfortunately, this analysis, and hence the style derived from it, does not cover many of
the systems that we would like to construct. In particular, it only covers systems consisting
exactly of a cycle of components. We will have to defer a more general style to the next
section.

5.4 Generalizing the JC Style

In the previous section we saw how formalizing a style provides three important benefits
to users of the style. First, it clarifies the semantics of the style. By describing both the
connector and component types formally, the semantics of systems that use that vocabulary
is made precise, and the system descriptions can be checked for consistency as well as
analyzed for behavioral properties. Second, formalizing a style clarifies exactly what
systems are members of the style. By providing precise constraints on membership in
the style, it can be precisely determined whether a given system description obeys those
constraints or not. Third, formalizing a style provides a basis for analysis. By considering
properties that are shared by all systems in the style, the style designer can reduce the effort
of developers of individual styles and provide design guidance to those developers. In the
previous section, we showed how it could be proved that all systems in the JC Style are
deadlock-free, by virtue of the semantics of the vocabulary used and the constraints on
topology imposed by the style. Any developer who uses the style can now be assured that
his or her system has this property.

As we also learned from our exercise, formalizing an existing style can reveal limitations
of the style. In the case of the JC style, we saw that the analyses performed by Justo and
Cunha only considered systems consisting exactly of a cycle of components. Thus, the
style, in order to provide guarantees of global deadlock-freedom, must exclude systems that
a developer might reasonably like to build, and which are undoubtedly deadlock-free. A
system consisting of a sequence of components that does not cycle, for example, is deadlock-
free because the first component in the sequence is never prevented from receiving input
by anything within the system.

Another limitation of the style as described in the previous section is the rigidity of the
R-S and S-R templates. While many components can be forced into those patterns, it might
be reasonable to consider alternatives where the pattern of mixing sends and receives is
more complicated.

In this section we consider how the R-S and S-R component types can be generalized
into a single form. We then show that this new form leads to a guarantee of globally
deadlock-free configurations in a more general JC style.

Chapter 5. Case Study: Justo-Cunha Style 119

By looking at the proof of global deadlock-freedom in the previous section, we observe
that the way in which deadlock occurs (or is avoided) is based on the fact that the R-S
and S-R templates control the dependency of a component’s sending ports on its receiving
ports. That is, once a component has completed its initialization (possibly including some
preliminary sends), a component can only send on each of its output ports after it has
received on all of its input ports. The difference between an R-S and an S-R component
is simply whether its initialization includes output messages or is immediately blocked
waiting for input. The templates expose these input-output dependencies in a clear way.

Unfortunately, the templates also enforce gratuitous dependencies on the ordering of
receives and of sends. That is, the templates specify that they must always send their
messages in the same order and receive them in the same order. Logically, there is no good
reason to force a component to be structured this way, and there are two important reasons
to remove this rigid structure.2

First, the details of the ordering constraint do not affect the overall deadlocking behavior
of a configuration. The benefits of the style could be extended to many more systems if
the ordering limitation were removed. Second, by limiting the potential concurrency of a
component, it limits the extent to which a component can be decomposed within the style.
A configuration of multiple templates does not fix the order in which its input and output
messages will be dealt with, and so maintaining the constrained ordering would not permit
the encapsulation of a configuration as a component in another system (or, conversely, the
decomposition of a component into a more structured configuration).

The benefits of encapsulation, and its related activity, decomposition, are well known to
designers of complex systems, permitting clean top-down design, separation of concerns,
and abstraction. If a system designer can cleanly separate parts of the design and perform
analysis on aggregates without worrying about the internal structure of each element,
this greatly simplifies the tasks of design and analysis. Similarly, it frees the designer
of individual components to consider more alternatives without having many constraints
imposed on them by the context in which the component will occur in the total system.

If a style obeys the principle of encapsulation, there is another important benefit for the
designer of the style. Styles that permit the free encapsulation of configurations are closed
under composition. This means that any combination of components and connectors in the
style is equivalent to some individual component in the same style. For the purposes of
analysis, this means that any property that is shown to hold for individual components in
the style also holds for every configuration in the style.

5.4.1 General Form of Component Type

We now consider a general form of the R-S and S-R components that is closed under
composition via the Message connector. This will permit us to establish the constraints
necessary to guarantee global deadlock-freedom for a less restrictive form of the JC style.

2It is likely that Justo and Cunha chose this structure for implementation reasons. That is, they provided
rigid code templates because these are easier to use and test than a more flexible rule.

120 A Formal Approach to Software Architecture

Component JCM(r:1..;s:1..;F : ((1::r) � (1::s))� ((0::)� (� j 1::))) =
Port In1::r = ReceiverType
Port Out1::s = SenderType
Computation = k (i; j; k; m) : F � Cm

k (Ini.receive,Outj.send)

Figure 5.7: General Message Style component.

5.4.1.1 New Component Type

Focussing on the issue of dependencies between send and receive ports, we will construct
the general component from simple building blocks that represent such a dependency.
These simple building blocks will then be combined to represent the full complexity of a
component, with dependencies of collections of send ports on collections of receive ports.
The R-S and S-R components are simple cases of this, where each send port depends on
every receive port. The basic building blocks are defined as follows:

Cmax
i (r,s) =

8><
>:

r!Cmax
1 ; when i = 0

r!Cmax
i+1 s!Cmax

i�1 ; when 0 < i < max

s!Cmax
max�1; when i = max

C�

i (r,s) =

(
r!C�

1; when i = 0
r!C�

i+1 s!C�

i�1; otherwise

The process Cmax
i ensures that there is a receive for each send, possibly excepting a fixed

number of initial sends. Initial sends are permitted by using a subscript other than 0 as the
initial process. The superscript max indicates that the process can only store that many
messages before it must send. C�

i represents the case where an arbitrary number of messages
can be stored.

The generic component (JCM, shown in figure 5.7) is a collection of these in parallel,
one for each pair of receive and send ports that have a dependency. The JCM component
takes as its parameter a function that maps pairs of receive and send ports (indicated by the
set ((1::r)� (1::s))) into zero or more sends that are permitted (0::) and either a maximum
number of received messages that can be buffered or �, indicating that buffering is unlimited
(indicated by the set (� j 1::)). By combining individualCmax

i building blocks, more general
m � n dependencies are constructed.

For example, if an output port S depends on two input ports R1 and R2, this would be
represented using two Ci processes: Cm

i (R1.receive,S.send) kCn
j (R2.receive,S.send). The

start state (what subscript k is selected for the initial process Cmax
k) shows whether it is an

R-S or an S-R template (see figure 5.7). The generalized version of the R-S component
template would use a fixed value of 0 for k , and an S-R component would use a fixed value
of 1 for k . In both cases a fixed value of 1 is used for max .

Thus, the following definitions apply in the generalized style:

Component R-S(r:1..; s:1..) = JCM(r,s,1::r � 1::s 7! (0; 1))
Component S-R(r:1..; s:1..) = JCM(r,s,1::r � 1::s 7! (1; 1))

Chapter 5. Case Study: Justo-Cunha Style 121

Other simple component types include a trivial component that has no dependencies between
any components and one that is similar to R-S in that it must have a receive for every send,
but that can buffer its sends arbitrarily.

Component Trivial(r:1..; s:1..) = JCM(r,s,�)
Component Buffering(r:1..; s:1..) = JCM(r,s,1::r � 1::s 7! (0; �))

5.4.1.2 Generalized Constraints

With the new, general, component type we can reconsider what constraints to use to define
the new, general, style. Just as JC Constraints 1a defined the constraints that all compo-
nents had to be R-S or S-R components and that all connectors were Message connectors,
we need equivalent constraints using JCM, which we will refer to as JC Constraints 1b:

8 c : Components � Type(c) = JCM
^ 8 cn : Connectors � Type(cn) = Message

We also need to consider what additional constraints are now appropriate, since we want
to permit more systems than the restrictive JC Constraints 2a permitted. To propose
these rules, we must analyze systems that obey JC Constraints 1b to figure out when
they might deadlock. First, let’s consider when a single JCM component might deadlock.

We observe that Cmax
i (receive,send) refuses events in two situations: if i = 0, then

send will be refused. If i = max , then receive will be refused. We must therefore ensure
that there will never be a collection of C processes where one set refuses the send events
(by having i = 0) and the other refuses the receive events (by having i = max). Here is
one sufficient rule (JCM Legal):

8 c : Components ; r ; s : 1::; F : ((1::r)� (1::s))� ((0::)� (� j 1::))
j Type(c) = JCM(r ; s;F)

� 8 i : 1::s � : 9 j ; k : 1::r; m : (� j 1::); m 0 : 1::
� F (j ; i) = (0;m) ^ F (k ; i) = (m0;m0

)

This states that no send event may have both a receive that must precede it (F (j ; i) =

(0;m)) and a receive event that may not occur until after the send (F (j ; k) = (m 0;m 0

)).
Thus, there can be no cycles of events where each must be preceded by another.

Now that we have established a rule that guarantees that a component is deadlock-free,
we can use this to develop a rule for deadlock-free configurations. In order to do so, we will
show that, with one significant exception, the JCM component is closed under composition
via the Message connector.

What we mean by “closed under composition” is that any configuration of JCM compo-
nents and Message connectors can be encapsulated as an equivalent JCM component. That
is, if we hide all of the attached interfaces (i.e. ports on components that are attached to a
Message connector), the process defined by a configuration has the form of a Computation
for some JCM component.

122 A Formal Approach to Software Architecture

JCM
Component

JCM
Configuration

Figure 5.8: Composition of two components.

5.4.1.3 Proof of Encapsulation

The proof that any configuration can be viewed as a component is by induction on the size
of the configuration. There are two steps in the inductive proof. First we consider the case
of adding a new component to a configuration, and second we consider adding a connector
to a configuration.

For adding a component, refer to figure 5.8. In this case, because there is no connector
between the system and the component, the meaning of the new configuration is simply the
old system in parallel with the new component:

JCM ConfigkJCM Comp

By the induction assumption, both of these processes have the form Cm
i kCn

j k:::, so the new
configuration is also:

Cm
i kCn

j k:::kCl
k

To show that this is a legal JCM component under the configuration rule JCM Legal , note
that all of the send events in the component and the configuration are distinct, and therefore
there can be no conflicting dependencies.

The second case is adding a connector. By the induction hypothesis, the rest of the system
is equivalent to a single JCM component, and so adding a connector to a configuration
is the same as as adding a connector between two ports on the same component. This is
illustrated in figure 5.9 where the two ports to be connected are r and s . The question in
this case is whether the behavior at the ports that remain (e.g., ports r 0 and s 0 in figure 5.9)
have the correct form of parallel dependencies. The essence of the proof is to show that the
original dependencies, labelled d1, d2, d3, and d4, together with the new connector M result
in a proper dependency between the ports r 0 and s 0 in the new system. This is true except
when d1 is Cm

0 (r ; s).
The reason for this is that the pathway d3 ! M ! d2 defines a single dependency of

the correct form. Thus, the total dependency is simply the more restrictive of that pathway
and d4. The only problem that would arise is when d1 prevents the pathway from being
initialized. In effect, if d1 is too restrictive, two dependencies create a problem analogous
to a violation of JCM Legal .

There are two cases to consider. First, if there is no dependency between r and s , and
second, if there is a dependency Cm

k (r ; s), where k > 0.

If Ma(s; r) is a message buffer connector from s to r containing a messages, we show that

Chapter 5. Case Study: Justo-Cunha Style 123

(Cm
i (r0,s)k Cn

j (r,s0) k Cl
k (r,s) k M0(s,r)) nfr; sg

= Cm+n+k
i+j (r0,s0)

and

(Cm
i (r0,s)k Cn

j (r,s0) k M0(s,r)) nfr ; sg
= C�

i+j (r
0,s0)

where �+ x = � for any x .

To prove this, we will show that the failures of each process are identical.

First, we need a useful lemma:

Lemma 1 After any trace of Cm
k (r,s) kM0(s,r), in the new state Cm

k
0(r,s) kMa(s,r), k0+a = k.

Proof of lemma: Observe the state change for each of the events s and r. If we begin in a
state Cm

i kMa and proceed via s to Cm

i
0 kM

a
0 , then i 0 = i � 1 (one less extra message in the

component) and a 0 = a+1 (one more message in the connector). Thus i 0+a0 = i+a = k .
If we proceed via an r event, then i 0 = i + 1 (one more message in the component) and
a 0 = a � 1 (one less in the connector). Thus again, i 0 + a0 = i + a = k . Q.E.D.

We now consider the failures of the full composition, by induction on the length of a trace.
Let t be a trace, (Cm

i (r0,s) kCn
j (r,s0)kCl

k (r,s) kM0(s,r)) =t = Cm
b (r0,s)kCn

d (r,s0)kCn
c (r,s)kMa (s,r),

and Cm+n+k
i+j (r0,s0) =(t � fr 0

; s 0g) = Cm+n+k
u (r0,s0). We will show that for any t 2

fr ; s; s 0
; r 0g�, u = b + d + a and that the refusals of the two processes are identical.

Base Case: t = hi.

For trace t = hi, b = i ^ d = j ^ a = 0 ^ u = i + j) u = b + d + a .

Induction: t = t 0 � hei.

Let (Cm
i (r0,s) kCn

j (r,s0)kCl
k (r,s) kM0(s,r)) =t 0 = Cm

b0 (r0,s)kCn
d 0(r,s0)kCn

c 0(r,s)kMa 0(s,r), and
Cm+n+k
i+j (r0,s0) =(t 0 � fr 0

; s 0g) = Cm+n+k
u 0 (r0,s0). By induction hypothesis, b 0 + d 0 = u 0.

If e = r0 then b = b 0+ 1, d = d 0, a = a 0, and u = u 0+ 1 = (b0+ 1)+ d 0+ a0 = b+ d + a .
If e = s0 then b = b 0, d = d 0�1, a = a 0, and u = u 0�1 = b 0+(d 0�1)+a 0 = b+d +a .
If e = r then b = b 0, d = d 0+1, a = a 0�1, and u = u 0 = b0+d 0+1+a0�1 = b+d +a .
If e = s then b = b 0�1, d = d 0, a = a0+1, and u = u 0 = b 0�1+d 0+a 0+1 = b+d+u .

So b + d + a = u after any trace t .

We must now show that the refusals are the same after any trace, and thus that the set of
traces are the same. Suppose that after trace t we have the processes
Cm
b (r0,s)kCn

d (r,s0)kCn
c (r,s)kMa (s,r) and Cm+n+k

u (r0,s0) respectively. Cm+n+k
u (r0,s0) refuses s0

exactly when u = 0, and r0 exactly when u = m + n + k .
If u = 0, by our previous argument, b + d + a = 0. This means that b = 0 ^ d = 0 ^

a = 0. Because d = 0, s0 may not be accepted immediately. This means that there must
be an r before it. But since a = 0, r must be preceded by an s. But since b = 0, s must be
preceded by r0, and so s0 is refused until r0 occurs.

If u > 0, then one of b, d or a > 0. Suppose d > 0. Then s0 is not refused.
Suppose a > 0. Then Ma does not refuse r. Also, by our lemma, c = k � a < l , and
so Cl

c(r,s) does not refuse r. Thus, if Cn
d (r,s0) does not refuse r, it can occur, after which

124 A Formal Approach to Software Architecture

r

r’

s

s’

d1

d2

d3

d4

M

Figure 5.9: Composition of a component and a connector.

d 0 = d + 1 > 0, and therefore s0 is not refused.
If Cn

d (r,s0) does refuse r, then d = n > 0, and therefore s0 is not refused. If a = 0, d = 0,
and b > 0, then c = k > 0, so s is possible, after which a 0 = a + 1, which case has already
been discussed. Thus, the refusals of the event s0 are identical.

If u = m + n + k , then b = m, d = n , and a = k . b = m implies that no immediate
r0 is possible, an s must precede it. but a = k) c = 0 which implies no immediate s is
possible, an r must precede it. But d = n implies that no immediate r is possible, but an s0

must precede that, and therefore r0 is refused, just as for Cm+n+k
u (r0,s0)

If u < m + n + k , then b < m or d < n or a < k .
If b < m , then an immediate r0 is possible.
If b = m ^ a < k , then c = k � a > 0 and an s event is possible, after which
b 0 = m � 1 < m .
If b = m ^ a = k ^ d < n then an r event is possible, after which b 0 = m ^ a0 = a� 1 <

k .

Thus the refusals of the event r0 are identical, which concludes our proof that

Cm
i (r0,s)k Cn

j (r,s0) k Cl
k (r,s) k M0(s,r) nfr ; sg

= Cm+n+k
i+j (r0,s0):

The proof that

Cm
i (r0,s)k Cn

j (r,s0) k M0(s,r) nfr ; sg
= C�

i+j (r
0,s0)

proceeds similarly with the difference that there is no process Cl
c (r,s) to refuse s events. Thus,

r0 is never refused, because whenever b = m, an s event can occur so that b 0 = m�1 < m .

It now remains to show that the resulting parallel composition of Cm
i processes is a legal

JCM component. There are two aspects of this: First, we must show that there is at most a
single dependency between each receive-send port pair, and second, we must show that the
configuration obeys JCM Legal .

To handle the case where there is already a dependency between r0 and s0, we need
simply observe that for any i ; j ;m;n:

Cm
i (r,s) kCn

j (r,s) = Cl
k (r,s) where k = min(i ; j) and l = min(m � i ;n � j) + k .

Chapter 5. Case Study: Justo-Cunha Style 125

The resulting process is defined whenever l > 0. This is always the case because we know
(by hypothesis) that for the constructed process Cm

i , m > i , and thus m � i > 0. Thus, the
encapsulating component can be represented using the JCM template.

To show JCM Legal , we must consider whether, when the constructed dependency is
Cm

0 (r0,s0), there can be another dependency Cn
n (r00,s0) or, when the dependency is Cm

m (r0,s0)
there can be a dependency Cn

0 (r00,s0).
The first situation, Cm

0 (r0,s0), can only arise if either the dependency d4 or the dependency
d2 was C0. In this case, by JCM Legal for the original component, there can be no other
dependency Cn

n (r00,s0), and so JCM Legal holds for the encapsulation. The second situation,
Cm
m (r0,s0), arises only when the dependency d4 is of this form. Again, this precludes any

other dependencies Cn
0 (r00,s0) in the original and thus the encapsulated component.

This concludes the proof of the following theorem about JC style configurations:

Any configuration of JCM components and Message connectors not containing a cycle
of C0 processes is equivalent to a single JCM component.

To state this formally, we define a cycle of C0 processes:3

8CN : seqConnectors � C0 Cycle(CN) b=
8d : 1::#S � 1 � 9 c : Components ; i ; j ; k ; l : 1::; n : (� j 1::) j
((c; Ini); (S (d);Receiverj)) 2 attachments

^ ((c;Outk); (S (d + 1);Senderl)) 2 attachments

^ (i ; k ; 0;n) 2 F (c)
^ 9 c : Components ; i ; j ; k ; l : 1::; n : (� j 1::) j

((c; Ini); (S (#S);Receiverj)) 2 attachments

^ ((c;Outk); (S (0);Senderl)) 2 attachments

^ (i ; k ; 0;n) 2 F (c)
where F (c) is the dependency function of JCM component c

Using this definition, we can state the theorem formally:

(8 c : Components � Type(c) = JCM ^ JCM legal (c)
^ 8 cn : Connectors � Type(cn) = Message
^ : 9S : seqConnectors j C0 Cycle(S))
) 9 r ; s : 1::; F : �(1::r � 1::s)� (0::� (� j 1::)); f : �System� �JCM(r ; s;F)

� f (System) = JCM(r ; s;F) ^ JCM legal (f (System))

5.4.1.4 New Style Definition

This result justifies a new recasting of the constraint JC Constraints 2a in the more
general style (JC Constraints 2b):

: 9S : seqConnectors j C0 Cycle(S)

The full constraints for a general, JCM based style (JCM Style), now consist of:

3We can’t reuse Cycle here because we need to identify the dependencies on the specific ports used to
connect the cycle. Thus, we identify the connectors used and thus the ports.

126 A Formal Approach to Software Architecture

8 c : Components � Type(c) = JCM
^ 8 cn : Connectors � Type(cn) = Message ^ 8 c : Components � JCM Legal

^ : 9S : seqConnectors j C0 Cycle(S)

and the following theorem holds about the style:

JCM Style) Deadlock Free

If we wish to consider only systems consisting of R-S and S-R components (for implemen-
tation reasons, perhaps), we can define a style JC Style with this set of constraints:

JC Constraints 1a
^ 8C : �Components j Cycle(C) � 9 c : C � Type(c) 6= R-S

This is a substyle of JCM Style , meaning that JC Style) JCM Style . Thus, we know
that

JC Style) Deadlock Free:

These results justify and extend the configuration rules proposed by Justo and Cunha in
their informal treatment of the style. While including the special cases that they proved
informally, of systems consisting only of a single cycle, it also covers the more complex
cases that violated their simple rules. This generalized model also has the advantage of
extending to cover other templates besides the simple S-R and R-S cases. It would handle,
for example, a component in which only some of the output ports were initialized by sending
before receives were necessary, or cases where only some of the inputs were needed before
sending could begin.

In their paper, Justo and Cunha discuss ways to use their rules and templates to avoid
deadlock, and in their example they are forced to introduce extra dummy messages to
convert one of the R-S components into an S-R template so that they break a cycle. In
the more general system, deadlock could be avoided by recognizing that the component in
question only has to wait for a message that is not relevant to the cycle, and so there is no
need either for deadlock or for dummy messages.

5.5 Discussion

In this chapter we have shown, through the JC case study, how using WRIGHT to formalize
a family of systems as an architectural style can provide important benefits for software
architects. First, the formalization clarifies the semantics of the style. The meaning
of specialized vocabulary is made precise as component and connector types. Second,
formalizing a style clarifies what configurations are members of the style. It can be
precisely determined whether a configuration obeys the constraints that define the style.
Third, formalizing the style provides a basis for analysis. We have shown how it can be
proven that a property holds for every member of a style.

We further showed how, once a style has been formalized, this can reveal weaknesses
in the previously informal style, either because it does not after all guarantee the hoped-
for properties or because it does not include systems of interest. By discovering these

Chapter 5. Case Study: Justo-Cunha Style 127

weaknesses, we showed how a style can be tightened to guarantee critical properties and
extended to make those guarantees for more systems.

In the course of the case study, we introduced a number of techniques that are generally
applicable to the formalization of architectural styles:

� Separation of Vocabulary and Topological Constraints: A common form of constraint
is one that restricts the vocabulary of types that can be used in configurations of a given
style. A particular vocabulary is often the starting point for the development of a style,
and it is worth calling out the restrictions on the vocabulary right at the beginning. This
can guide users of the style in construction of systems as well as serving as a starting
point for analysis. Then, once more is known about systems constructed using the given
vocabulary, topological constraints can be added depending on what is discovered.

� Separation of Style Constraints from Style Properties: For any style to have value to
architects, it must define two different things. First, the constraints that define the style
must be defined, so that an architect can determine whether a configuration is a member
of the style. Second, the properties that the style developer has proved about the style
need to be explicitly stated, so that the architect can use them as assumptions about a
configuration. An example of a style constraint in the JC style is “no cycles of R-S
components.” These are predicates that an architect must prove about a configuration.
An example of a style property is “the system is deadlock-free.” These are predicates
that a configuration developer may assume about a configuration. It is easy to see that
the value of a style to architects depends on having weak constraints (that are easy to
prove) and strong properties (that provide a lot of information).

� Trace and Structural Induction: In proving global deadlock-freedom for various forms
of the JC style, we relied on two powerful kinds of induction: trace induction, a general
technique from CSP, and structural induction, an architecture-specific technique. In trace
induction, we consider all possible states of a CSP process by extending an event trace
by a single event. In structural induction, we consider all possible configurations in a
style by building up larger configurations using small, discrete steps. Each of these can
be applied in a variety of settings and aid the architect in establishing style properties.

� Encapsulation: An especially powerful form of structural induction is a proof of en-
capsulation, when any configuration in the style can be shown to be equivalent to a
single component in the style. Once encapsulation is established, any proof regarding
individual components applies immediately to all configurations in the style.

� Formalize, then Generalize: We followed a particular method in our formalization of
the JC style: First, we formalized an existing, informal style, attempting to be faithful
to the informal description. Next, we considered how the power of that style could be
extended by generalizing the vocabulary and weakening the constraints. This led us to
be able to demonstrate the same, strong result (global deadlock-freedom) over a much
wider range of systems. We also used this formalize-then-generalize approach in our
treatment of the Aegis system in the previous chapter. There, we formalized the “naive”
client-server interaction model and applied it to the initial architectural design. Then,

128 A Formal Approach to Software Architecture

we used that formalization to expose potential problems and to suggest general solutions
to the issues raised. In each case, this approach lets us get started on the formalization
relatively easily, by using the informal description as a template for the formalization, and
then deepen our insight based on analysis of the more tractable, precise formalization.

Chapter 6

Case Study: HLA

6.1 Introduction

In the previous two chapters we have seen how WRIGHT can be used to describe and analyze
both architectural configurations and architectural styles. By formalizing a configuration,
we expose critical issues about the system and enable the architect both to locate poten-
tial problems and to consider design alternatives. By formalizing a style, we support the
effective application of architectural design techniques to multiple systems. We can under-
stand the membership of a defined family of systems and provide analyses that apply to all
members of the family.

Our configuration case study, AEGIS, also showed how WRIGHT could be applied to
complex, real-world systems. We also need to consider how WRIGHT’s facilities for the
description and analysis of style support analysis of problems that are of an industrial scale.
To do so, we will demonstrate, in the context of an actual development effort, the use
of a number of techniques to show how the formalization and analysis effort can remain
tractable even as the system complexity increases.

These techniques include:

� Architectural structure: By mimicking the structure of the software system, WRIGHT

partitions the description and analysis of the system into manageable, separable elements.

� Architectural style: By focussing on families of systems rather than on individual
systems, the benefits of the analysis are leveraged across many systems. This increases
the total benefit of the effort by allowing many development efforts to take advantage
of each result. The total cost of the formalization is amortized over the entire family of
systems, reducing the effective cost to any individual system development project.

� Abstraction: While a typical software system contains a huge amount of detail, it is often
possible to ignore some parts of that detail while focussing on others. This abstraction
of the behavior of the system can lead to marked increases in both the comprehensibility
of the specification and in the ability to analyze the system.

� Automated analysis: By ensuring that an architectural abstraction is finite state, it is
possible to apply automatic commercial tools such as symbolic model checkers to carry

129

130 A Formal Approach to Software Architecture

out analysis for us. Thus, the level of effort (and inspiration) required by the human
developer is vastly reduced. The automatic tools locate problems in the system, and the
developers’ level of confidence in the results is vastly increased.

� Incrementality: Many formal methods require complete specification of the entire
system before useful analysis can take place. Thus, as the complexity of a software
system increases, so does the cost of achieving any benefit from the formal effort. We
will show that it is possible to develop an architectural specification in stages, each stage
modelling a new facet of the overall system. At each step, the overall model is augmented
with new details about architectural behavior that can be checked in combination with
what has already been specified. Since incremental efforts yield incremental payoffs, the
benefits of formalization become commensurate with the costs of formalization.

� Traceability: In order for architectural analysis to have value, it must be possible
to relate the properties discovered in the abstract specification to the system under
consideration. We will show how to structure WRIGHT behavior specifications to maintain
a correspondence with the structure of the informal document from which they are
constructed. In this way, issues uncovered by analysis lead directly to insight into the
original, informal specification.

This chapter demonstrates the use of these techniques through a case study, the “High
Level Architecture for Simulations (HLA),” [DMSO95] developed through the Defense
Modeling and Simulation Office (DMSO). We undertook the formalization described in
this case study as part of the early development of this standard, which has recently been
released as an official standard [DMSO]. This work is continuing as part of DMSO’s
efforts to improve the standard, to define acceptance test criteria for implementations, and
to develop supplemental documentation of the interface.

In the next section we provide an informal overview of the HLA. Then we will show how
the above techniques can be applied to use WRIGHT to analyze a large-scale specification
such as HLA. This presentation will begin with an overview of the WRIGHT specification of
HLA in section 6.3. Then, the techniques will be illustrated in section 6.4 through a series
of example analyses of parts of the HLA. (A “full” WRIGHT specification of HLA is given
in appendix B.) In section 6.5 we discuss how the techniques we have seen here can be
applied in general to support the analysis of other large software systems.

6.2 Motivation and Overview of HLA

Simulation is an important tool for the military, both in preparing for and in carrying out its
various missions throughout the world. Simulations are used in personnel training, design
and testing of equipment, and analysis of both past and future actions. The U.S. DoD
has made a considerable investment in equipment and software for simulation – one effort
alone, directed at army training, cost $2 billion [Bro96].

Given the number and complexity of these simulations, developers are faced with a
daunting task: to provide software that meets the challenges posed by the high-fidelity,
real-time, physically distributed, mission-critical simulation domain, and yet to minimize

Chapter 6. Case Study: HLA 131

RTI

federate federate

SimInterface

...

Figure 6.1: A federation.

redundancy of effort across applications and maximize flexibility of the software to be used
for new, possibly unanticipated tasks.

With the potential benefits of a well-defined common architecture in mind, the Defense
Modelling and Simulation Office (DMSO) has undertaken the development of the “High
Level Architecture for Simulations” (HLA) [DMSO]. The HLA is intended to support the
coordination of different simulations. The goal is to simplify the integration task, encourage
modularization of simulations, and increase quality of simulations and potential for reuse.

The HLA defines a standard for the coordination of individual simulations through the
communication of data object attributes and events. In HLA, members of a federation —
the HLA term for a distributed simulation — coordinate their models of parts of the world
through sharing objects of interest and the attributes that define them. Each member
of the federation (termed a federate) is responsible for calculating some part of the larger
simulation and broadcasting updates using the facilities of the Runtime Infrastructure (RTI).
Messages both from the federates, e.g., to indicate new data values, and to the federates,
e.g., to request updates for a particular attribute, are defined in the “Interface Specification”
document [DMSO95]. Each message is defined by a name, a set of parameters, a possible
return value, pre- and post-conditions, and a set of exceptions that may occur during
execution of the message.

The interface is divided into five parts: Federation management, declaration manage-
ment, object management, ownership management, and time management.

� Federation messages are used by federates to initiate a federation execution, to join or
leave an execution in progress, to pause and resume, and to handle saves of execution
state.

� Declaration messages are used to communicate about what kinds of object attributes
are available and of interest.

� Object messages communicate actual object values.

� Ownership messages are used in situations when one federate has been responsible
for calculating the value of an object attribute but for some reason another federate
should now take over that responsibility. (Example situations include when the
original federate must drop out of a simulation or when some property of the object
indicates that the new federate is better able to support that object. For example, if

132 A Formal Approach to Software Architecture

a unit moves from one geographic region to another, then simulators responsible for
modelling troops in each region might hand off ownership of the unit’s representation
object.)

� Time messages are used to keep each member of the federation synchronized, either
by maintaining correspondence of wall-clock time, by lock-step advancement of a
logical time, or by other means.

The intent of the interface specification is that the general standard be refined into multi-
ple implementations depending on the various needs of particular simulation domains. For
example, different simulations would have different performance constraints, requirements
for physical distribution, and models of time-synchronization, depending on the scale and
use of the simulation. In addition, each federation needs to augment the standard with
its own detailed object-model to ensure semantically consistent exchange of data between
federates.

For example, as part of the current standard development effort, several implementation
efforts, each termed a proto-federation, are underway. One proto-federation effort is
described in [GG95].

6.3 Overview of the WRIGHT Specification of the HLA

As we described above, an HLA federation consists of a number of federates communicating
via the RTI. This view of a federation is shown in boxes-and-lines form in figure 6.1.

In order to apply our architectural abstractions to the description of this system, we
observe two things. First, we observe that we are attempting to describe a family of
systems; that is, the intent of the interface specification (IFSpec) is to provide a standard
that applies to many different federations, not just a single federation. Thus, we will
describe HLA as an architectural style, rather than as a configuration.

Second, we observe that there are two architectural elements that are captured in the
IFSpec and in the diagram of figure 6.1. These are, first, the interface that must be satisfied
by any federate in order to participate in interaction via an RTI, and second, the way in
which different messages to and from different federates are combined to form a single,
coherent simulation via the RTI.

These two elements can be formalized using WRIGHT. The first, the interface, is
formalized as an Interface Type, which we name SimInterface. The second element, the
way that messages are combined to form an interaction, is exactly a connector Glue. Thus,
we will formalize this as the RTI connector in our style. The RTI formalization will use the
SimInterface to describe the roles of the connector, but because of the way that we can use
the architectural structure of WRIGHT, the descriptions of the federates’ requirements and
how federates are combined remain separate. The overall WRIGHT specification of the HLA
style (without details) is shown in figure 6.2. In this specification, the fact that we do not
constrain the type or number of components in a configuration indicates that components
may be varied freely in the style, as long as they communicate solely via the RTI connector.

By separating the SimInterface and RTI descriptions we gain important advantages.
First, we can consider them separately. If the IFSpec is to be useful to developers of a

Chapter 6. Case Study: HLA 133

Style HLA
Interface Type SimInterface = ...
Connector RTI(nsims: 1..)

Role Fed1::nsims = SimInterface
Glue = ...

Constraints
9 r : Connectors j frg = Connectors ^ Type(r) = RTI

End Style.

Figure 6.2: The HLA Style.

single federate, then it is important to have it made explicit exactly what that federate is
required to do and when, and what the federate can expect from the federation as a whole.
This is important because one of the goals of the IFSpec is to provide a better means of
acquiring simulations from multiple vendors. The idea is that each vendor can build just a
single federate that will then be combined into a larger federation. The WRIGHT separation
supports this by separating the description of the interaction from the point of view of a
single federate into a separate Interface Type description.

Separating SimInterface and RTI also simplifies the description of the combined behav-
ior. This description doesn’t have to re-describe all of the preconditions of each message—
that is handled by the SimInterface. Instead, it can focus its description on how messages
are related to each other. For example, our description of how an object attribute value is
communicated from one component to another is quite simple; it simply specifies that an
update message from the owning component is followed by a notification message to each
subscribing component. An unstructured description would have to complicate this with
constraints such as that this must only occur when federates are joined and when there is
no pause in effect. We are thus free to vary these conditions or to perform analysis on the
system without these additional complications getting in the way.

6.3.1 Overview of SimInterface

Structuring our description of the HLA as an architectural style, with two main architectural
elements, has given us an initial way of attacking the problem of formalizing a large system.
Now we must consider how a WRIGHT formalization of each of the two main elements of the
description, the SimInterface and the RTI can be approached to provide practical benefits.
Our description of the SimInterface is summarized in figure 6.3.

The overall behavior description is divided into six parts. The first four parts correspond
to four of the five management groups, while the last two represent relationships among
events in different management groups.1

We have structured the description as a collection of processes in parallel for two
reasons: First, in order to separate different concerns in the specification. Because there are
so many different tasks that are undertaken by a federate, we need to break these down into

1As we will see below, our specification is a partial specification of the HLA, and deliberately ignores the
time management group. Thus, there is no process TimeMgmt in our specification.

134 A Formal Approach to Software Architecture

Interface Type SimInterface = FedMgmt k DeclMgmt k ObjMgmt k OwnMgmt
FedJoined k ControlPause

where
FedJoined = joinFedExecution !RUNFedEvents ;

resignFedExecution !x

ControlPause = RUNNotPausedEvents ; pauseAchieved !resumeAchieved !ControlPause
RUNS = x (e : S � e !RUNS)

Figure 6.3: WRIGHT description of SimInterface.

different constraints that can be handled separately. Otherwise, it would be too difficult to
understand and analyze the specification.

For example, consider the process FedJoined shown in figure 6.3. This process specifies
that a federate may only perform certain operations when it is joined to the federation
execution.

A sub-process controls certain aspects of how an event can occur by including it in
the process’ alphabet. Recall that the alphabet of a process is the set of events that are
mentioned in the process’ specification. A sub-process controls an event in the overall
specification because every process that mentions that event must synchronize before the
given event can occur. So for example, FedJoined indicates that the first event it permits is
joinFedExecution. That means that no other event in FedJoined’s alphabet may occur before
joinFedExecution. The alphabet of FedJoined is joinFedExecution, resignFedExecution,
and all of the events in the set FedEvents .2 Thus, no event in FedEvents can occur before
the federate joins or after it resigns, and certainly the federate may not resign if it is not
joined.

Once the federate has joined the federation execution, FedJoined acts as RUNFedEvents.
This means that any event in FedEvents is free to occur (according to this specification).
Because RUN is deterministic, FedJoined does not constrain which of these events will
occur. That is left to other parts of the specification. FedMgmt will control when pauses
and resumes occur, ObjMgmt will control when updates occur, etc.

FedJoined also specifies that resignFedExecution is the last event (in FedJoined’s
alphabet) that will occur. It does this by placing it after (via ‘;’) RUN and becoming x after
it occurs. Because RUN terminates with an external choice, FedJoined specifies that some
other part of the specification controls when resignFedExecution will occur; FedJoined
only specifies what may not happen after it occurs.

Because we have separated this constraint into a single sub-process, none of the other
processes need to worry about this constraint. If we had not done this, we would have had
to include the joinFedExecution and resignFedExecution events in each of the processes
for the management groups. This way, they can be separated. FedJoined ensures that
joinFedExecution will occur before any of the FedEvents , without the intervention of every
other part of the specification.

The second reason to structure the specification via interacting sub-processes is to

2The definition of FedEvents and all other definitions omitted in this chapter are found in appendix B.

Chapter 6. Case Study: HLA 135

provide traceability from the WRIGHT specification to the IFSpec document from which
we are working. We have chosen to keep the structure of the WRIGHT specification the
same as that of the IFSpec. The IFSpec is divided into management groups; our WRIGHT

specification is divided into management groups. The IFSpec considers the constraints
between different messages in separate sections; the WRIGHT specification breaks out the
constraints between messages into separate sub-processes. What this means is that if we
discover a behavior in the WRIGHT specification, we can see how the different sub-processes
contribute to that behavior, and thus how those behaviors arise because of descriptions
found in the original IFSpec; each sub-process relates back to a particular part of the IFSpec
document.

By placing each of these sub-processes together in a single, composed specification, on
the other hand, we can discover interactions that result from the combination of properties
that appear at widely separated points in the IFSpec. In an informal specification, this
kind of interaction is very difficult to locate and understand, because only one part of the
specification is visible at a time, and different terms may be applied to overlapping concepts.
By using a formal specification where we can apply automated analysis tools, we are able
to discover these emergent properties.

Another aspect that is visible from the structuring of SimInterface is how we have
abstracted from the full HLA specification. Note that we have provided only four of the five
management groups in our specification. This is an important property of the specification
for a number of reasons. First, the fifth group, time management, is probably the most
complex group of the IFSpec. If we had to include all of the elements of time management
in our specification before we could get any results, we would have significantly increased
the cost of performing the formalization. Second, the specification is not invalidated by
the absence of these messages. Any issues or behaviors that we discover from the current
specification are valid in the full specification; we just can’t discover properties that relate
directly to the presence of the time management messages. Third, a full specification
of the HLA that included time management would include the current specification as a
subset. We could add the time related messages as an add-on without redoing the rest of
the specification.

Thus, our WRIGHT specification of the HLA permits an incremental approach to for-
malizing the system. We can specify some of the HLA and get immediate, valid results,
without incurring the cost of a full specification. Then, if we choose, we can add more to the
specification and get more results without having to redo what we’ve already accomplished.
Again, we get more results for a proportionate additional effort.

6.3.2 Overview of RTI Glue

In this section we provide an overview of the RTI Glue. The glue is shown in figure 6.4.
Like SimInterface, our description of the RTI glue uses sub-processes to separate differ-

ent elements of the glue’s behavior description. As for the SimInterface the sub-processes
can be divided into local concerns (represented by HandleSims) and global constraints
(represented by FedExists and WhatSims).

In this case however, because the Glue is concerned with how federates are combined
rather than how a single federate operates, the “local” concerns are different. Rather than

136 A Formal Approach to Software Architecture

Glue = FedExists k WhatSimsS k HandleSims
where

WhatSimsS = checkSims!S!WhatSimsS

(i : 1::nsims � Fedi.joinFedExecution !WhatSimsS[fig)
(i : 1::nsims � Fedi.resignFedExecution !WhatSimsS�fig)

HandleSims = HandlePause k HandleResume k SaveFed k RestoreFed
k NewObject k OwnDivestiture ...

Figure 6.4: The RTI Glue.

representing the structure of the interface, each element of HandleSims represents a separa-
ble “mini-protocol” that shows how a single event initiated by a federate is communicated
to other federates, and how those other federates must respond. That is, each mini-protocol
shows the relationship between the different components and how their individual actions
are combined to create a single, coherent simulation. For example, consider the process
NewObject:

NewObject = i : 1::nsims � Fedi.instantiateObj !checkSims?S
! (u J : � S �

(; j : J � Fedj.instantiateDiscoveredObj!x));
NewObject

This mini-protocol specifies what happens when a federate creates a new object. Whenever
a federate sends the message instantiateObj, some set of the currently joined federates will
be informed of the new object by the message instantiateDiscoveredObj.

Notice again how we have carefully abstracted from the full details of the IFSpec. The
specification of NewObject indicates (via the internal choice of the set J) that some subset
of the joined federates will be notified of the new object’s existence, in some order. In fact,
the IFSpec indicates that there is a particular set of federates that must be notified: Those
that subscribe to that class of object and whose “discovery predicates” are satisfied by the
new object.

This is another example of how we have simplified the specification by focussing
on a particular aspect while ignoring others. In this case, we have chosen to represent
the relationship between events (that instantiateObj causes the sending of zero or more
instantiateDiscoveredObjs) while ignoring the complex data-state that must be maintained
by an actual RTI implementation. The size of the state of declarations and discovery
predicates would be quite large and could make it impossible for automated analysis tools
to be applied to this specification. This is because there must be an element of state for
each federate for each object class (whether the federate subscribes to that class). This is
a potentially unbounded amount of information, and thus we must abstract away from this
complexity in order to provide tractable analysis.

Further, this kind of structured data-intensive property is more easily specified in for-
malisms other than CSP. It makes sense to carve off that part of the problem, indicating

Chapter 6. Case Study: HLA 137

how different data structures are related and ensuring that state invariants are maintained
consistently, for specification and analysis in a different view of the architecture, based on
a different underlying semantics such as Z [Spi92]. We will show an example of how this
might be done in chapter 8.

Using non-determinism to elide details provides a nice balance between complexity
and fidelity. It reduces complexity because no state must be maintained to indicate which
subset is chosen, but it indicates that a choice is made. The correct choice will be a
refinement of this abstract specification, and could be specified and analyzed in a more
detailed specification. As with the omission of the time management messages, any results
of analysis on this simpler specification will still hold true of the more faithful, more
complex specification.

Each of the mini-protocols is similar to NewObject. First, some event is initiated by
a federate. Then, some of the other federates are notified of this occurrence, and there is,
possibly, a response required of those federates, which may be communicated to some other
set of federates.

The two “global” processes serve different purposes in the specification. FedExists
represents a constraint that must be maintained globally by the federates working together.
It specifies that the execution must be created exactly once, and that there must be no activity
unless the execution exists. This property can not be guaranteed by any single federate, so
it is not appropriate to be placed in the SimInterface. It represents a recognizable constraint
that must hold at all times during the protocol, so it should not be spread out across the mini-
protocols. FedExists localizes this constraint in the same way that FedJoined localized its
constraint for an individual federate.

The second “global” process, WhatSims, rather than representing a constraint that must
be maintained by each of the components, represents an element of state that must be
kept outside of any federate. Each of the mini-protocols depends on this information: No
message must ever be sent to any federate that is not joined. By separating this concern,
we can simplify each of the mini-protocols since they don’t have to maintain this state on
their own.

WhatSims contains a feature that might be somewhat surprising: an event that is not
associated with any federate. Usually we think of events as representing messages in the
interaction of the software system. In this case, the event checkSims occurs but does not
have any corresponding message in the actual system. This is indicated by there being no
prefix on the event even though it occurs in the Glue. This is a standard CSP technique
for broadcasting state information within a structured specification. In CSP, these events
are typically hidden. In WRIGHT this is handled automatically as part of the configuration
process, because after instantiation the renamed event will never occur in the alphabet of
any other process.

6.4 Analysis of HLA using the WRIGHT specification

In the previous section we showed how the architectural structure of WRIGHT helps us
structure our formalization of HLA, and how we can describe both the federate interface
and the RTI using collections of simple, traceable processes. By abstracting from the

138 A Formal Approach to Software Architecture

details present in the IFSpec and separating different concerns, the specification supports
an incremental approach to formalizing a complex architectural style.

In this section we will present examples of the analyses that we performed using
WRIGHT as part of the development of the HLA standard. We will show how these insights
are enabled by the formalization and how the structure of the WRIGHT specification ensures
that our insights can be tied to properties of the IFSpec itself.

Our first two examples represent discoveries based on the use of an automated analysis
tool. This tool is based on a commercial tool, FDR [FDR93]. FDR provides a means
of performing refinement tests on CSP. In particular, it is capable of detecting potential
deadlocks in CSP processes. Our tool converts a WRIGHT specification into a collection
of CSP processes that can be checked using FDR. This permits us to locate and describe
potential execution traces of a federate that would lead to conflicts, such as violation of
preconditions and inconsistent states in different federates (or in the RTI). Automation of
WRIGHT analysis is discussed further in chapter 7.

The third and fourth examples are of a slightly different kind. Rather than representing
discoveries that result from analysis of an existing specification, they are discoveries that
we made during the process of formalization. Our examples show how, by attempting to
make an informal description precise, ambiguities or omissions in the original document
are revealed.

Before proceeding with the examples it is important to note the following: For expository
reasons our WRIGHT extracts will not be exact renditions of the behavior specifications
as written in the full specification. Instead, we will freely use a rewriting that has the
same behavior but more simply illustrates the point we are making. These recastings are
equivalent processes, and the automated tools find the behavior in the original. We have
simply restructured them, based on the discoveries of the tool, to make it easier for the
reader. We did not need to “guess” this representation in order to make the discoveries that
we did.

6.4.1 Creation of the Execution

Our first example discovery rests in the start up behavior of a federation execution. A
federate must, when starting, decide whether to create the execution, and then, before
sending any other messages, it must join the federation. This is represented by the following
extract of the SimInterface:

Interface Type SimInterface = JoinFed u createFedExecution !JoinFed
where JoinFed = joinFedExecution !ContFed

This extract shows how the first action of any federate is to decide (internally, represented
by u) between an initial createFedExecution or joinFedExecution. The corresponding part
of the RTI Glue is as follows:

Glue = i : 1::nsims � Fedi.createFedExecution !WaitForSimfg

where WaitForSimS = i : 1::nsims � Fedi.joinFedExecution !WaitForSimS[fig

Chapter 6. Case Study: HLA 139

RTI

(1) createFedExecution (2) createFedExecution

federate federate

Figure 6.5: Oops! Deadlock when two federates create.

This specification states that the first event must be a createFedExecution from any one
of the federates. After this message is received, the RTI Glue is in the state WaitForSim,
in which it is possible for any of the federates to send joinFedExecution. Note how
after createFedExecution the process’ control state changes (to WaitForSim) but after
joinFedExecution it stays the same (although the data state changes). This indicates that
there must be exactly one create, but there can be many joins.

Trouble arises with the trace represented in figure 6.5. Each federate has to make the
decision about whether to create internally, without any information from outside itself. If
the execution has not been created, then it is not permitted to join, but if it has been created,
it must join. This problem is detected as deadlock between the RTI and the second federate.
It is also detected as a deadlock with the first federate, because it may choose to join without
creating.

By formalizing the specification in WRIGHT, this problem is detected immediately and
automatically. This problem also exists in the official standards document, because it
defines a precondition, that a federate must not create the execution if it already exists, but
does not provide any way for a federate to discover the information it needs to satisfy the
precondition. Recall that the interface is intended to be the only communication mechanism
between federates, and so the omission of this facility in the interface is a serious problem.

The structure of the WRIGHT specification leads us directly back to the source of
the problem in the IFSpec. In its description of the createFedExecution, the IFSpec
states “The named federation execution does not exist” as a precondition. The message
joinFedExecution has a corresponding precondition “The named federation execution ex-
ists.” Thus, the WRIGHT structure described is directly traced to the informal specification.
What the IFSpec does not state is how a federate discovers whether the execution exists or
not.

Because WRIGHT structures an interaction into roles and glue, the specification must
take into account the point of view of a single federate. The general IFSpec document, on
the other hand, does not make this distinction clean, and so sometimes it fails to account
for global knowledge, available to an omniscient observer, that is not available to a single
federate.

140 A Formal Approach to Software Architecture

6.4.2 Paused on Join

In our previous example, we saw how the WRIGHT analysis reveals potential problems in
the IFSpec. By locating a deadlock in the formal specification and providing an example
scenario in which it might occur, the analysis tools pinpoint trouble spots in the informal
documentation.

For the particular example above, in which deadlock occurs immediately, or after at
most two events, it might be argued that this isn’t a very deep insight; any development
effort could not get very far without stumbling across this situation. Perhaps it isn’t worth
the effort of formalizing the specification, since the problem would have been found and
solved anyway. This is not true for two reasons. First, it is not unreasonable to believe that
an implementation effort, such as a prototyping effort, would simply solve the problem in
its own system (perhaps by selecting one of the federates to be the creator) and continue
without ever realizing it was an intrinsic part of the specification. To our knowledge, none of
the prototyping efforts raised this issue as a problem with the interface specification. Thus,
it might only be recognized as a problem after many of these systems have been built and
people start to realize that every one of them had to develop their own, possibly different,
workaround. In an informal specification direct to implementation strategy, the multiple
creation problem might only become significant, and thus problematic, when efforts are
made to integrate separately developed federates, which would occur relatively late in the
prototyping life-cycle. Through WRIGHT it has been detected earlier, before the interface
is published as a full standard on which procurement decisions are based.

The second reason that this insight should not be dismissed as trivial is that it only
represents the simplest example of an entire class of problem that can be located by
the automated tools. Consider now the following extract of the WRIGHT SimInterface
specification:

JoinFed = joinFedExecution !ContFed
ContFed = requestPause !ContFed

u WaitForEvent
WaitForEvent = schedulePause !pauseAchieved!FedPaused

FedPaused = requestResume !FedPaused
u PauseWait

PauseWait = scheduleResume !resumeAchieved !ContFed

This extract focusses on the pause and resume behavior of a federate. It indicates that in
the ContFed state, the federation is “running.” That is, it can carry out normal events (not
shown), it is permitted to request a pause, and it should expect the possibility that a pause
may be scheduled. Once a pause is scheduled, the federate pauses itself, notifies the RTI of
its success, and is then in the state FedPaused. This is the inverse of ContFed — in this
state, it does not carry out normal events, but instead may request a resume (but not another
pause), and should expect that a scheduleResume will occur. Once it does, the federation
is running again.

The RTI glue shows how these events are combined in different federates through
mini-protocols such as HandlePause:

Chapter 6. Case Study: HLA 141

(6) requestPause (!)

(5) joinFedExecution

federate federate

RTI

(2) requestPause

(3) schedulePause

(4) pauseAchieved

(1) joinFedExecution

(7) schedulePause (!!)

Figure 6.6: Another deadlock: Federates are confused about pausing.

HandlePauseS = i : S � Fedi.requestPause !(; i : S � Fedi.schedulePause !x) ;
HandlePauseS

HandlePause indicates that whenever a federate requests a pause, all federates will receive
a notification via the message schedulePause. Corresponding mini-protocols (not shown)
handle resume requests and recognize pauseAchieved and resumeAchieved to keep track
of whether the federation as a whole is paused or running.

This protocol of pause and resume results in a problem as depicted in figure 6.6.
Deadlock arises because after event (6), Fed2.requestPause, the next event according to the
RTI will be Fed1.schedulePause, but according to Fed1 it must be Fed1.scheduleResume.
The problem with this sequence is that when it joins the federation execution, Fed2 doesn’t
know the system is paused.

What is worth noting about this scenario is: It requires enough complication to be
difficult to locate by reading the informal documentation. It would be even more difficult
to locate this problem by executing prototype implementations, since a normal execution
of a federation would involve many more messages than just those for joining and pausing.
Under normal operation, the join-then-pause behavior is a race condition between Fed2

joining and Fed1 pausing, which would make it even more difficult to detect through trial-
and-error. The WRIGHT tools found this property even though we weren’t looking for it in
particular and we didn’t know it was there.

Once we have found it, however, the WRIGHT specification leads us back to the IFSpec
document and the source of the problem. The message joinFedExecution contains a returned
parameter “federation state information (to be defined later).” Our analysis indicates that
whether the system is paused or not must be included in this information in order for the
federate to obey its constraints.

6.4.3 What’s in NotPausedEvents?

In this section we explore another kind of insight that can be gained through formalizing
an informal architecture specification. Sometimes a document contains ambiguities or

142 A Formal Approach to Software Architecture

omissions that must be resolved before a formal specification can even be attempted, before
there is any way of exploring the properties of the formalization.

While the previous examples showed how issues could be raised through the use of
automated analysis tools, in this and the next section we explore how the discipline required
to formalize what had been informal can lead us to other kinds of insights.

Recall the process ControlPause from our earlier definition of SimInterface:

ControlPause = RUNNotPausedEvents ; pauseAchieved !resumeAchieved !ControlPause

This process controls what a federate is permitted to do during a pause, and what messages it
can expect to receive during a pause. Recall how RUNS in a process specification indicates
that any of those event may occur without constraint until the event following RUN happens.
After that, there are constraints on what can occur until the state RUN re-occurs. Thus,
ControlPause indicates that none of the events in the set NotPausedEvents is permitted
during a pause (i.e., after a pause is achieved but before a resume).

The issue this specification raises is a follows: What events are in the set NotPaused -
Events? Intuitively, we would expect quite a few events. If a pause means that the
simulation is not advancing, then it doesn’t make sense for a federate to continue with
object attribute updates, time advance requests, etc.

However, according to the documentation as written, only requestPause and schedule-
Pause are in the set NotPausedEvents . That is, the only events that are affected by a pause
are those directly relating to pausing. A pause has no concrete effect on the execution
of the simulation at all! This is certainly worth noting about the IFSpec, since it is so
unexpected. The structure of that document (using pre- and post-conditions to represent
constraints from states of the system) makes it difficult to recognize this; the events directly
related to pausing discuss “the federation is paused” and “the federation is advancing,” so
one expects that this will have some effect on other events, but it isn’t mentioned anywhere
else. By attempting to make precise the concept of a pause, mentioned in the IFSpec, we
realize just how imprecise it is.

This observation gets at a more subtle kind of discovery than the deadlock examples
above, in that it shows something one discovers simply by trying to formalize the informal.
It isn’t that we wrote the specification down and then analyzed it, it’s that we couldn’t write
down what we expected because the necessary information wasn’t present at all.

This kind of discovery is important to a standards effort because it highlights potential
points of divergence between different implementations as well as situations where the
intentions of the designers have not been made explicit, and thus could be misinterpreted
by users of the specification.

6.4.4 Exceptions

Another issue we discovered through the process of formalization is the handling of ex-
ceptions. In the initial IFSpec, it wasn’t clear whether the exceptions mentioned in the
document indicated messages that could be signalled or whether they were simply sign-
posts for the implementer of a federate or RTI. Some possible alternatives regarding how
the RTI could handle one protocol, that for resignation of a federate from the execution, are
shown in figure 6.7.

Chapter 6. Case Study: HLA 143

HandleResignS = i : S � Fedi.resignFedExecution!HandleResignS�fig

HandleResignS = i : S � Fedi.resignFedExecution!HandleResignS�fig

(i : (1::nsims)� S � Fedi.resignFedExecution
!Fedi.notJoinedException!HandleResignS)

HandleResignS = (i : S � Fedi.resignFedExecution!HandleResignS�fig)
(i : (1::nsims)� S � Fedi.resignFedExecution!HandleResignS)

HandleResignS = i : 1::nsims � Fedi.resignFedExecution!HandleResignS�fig

Figure 6.7: Some alternative representations of HandleResign.

The first alternative “ignores” the exceptions, describing the protocol as it occurs when
pre- and post-conditions are obeyed. Only federates that are currently joined (represented
by the set S) are permitted to resign. This representation views exceptions as “bad things
that might happen;” the specification describes only valid behavior, and analysis using the
standard tests will discover if it is possible for a federate to disobey this precondition. If a
federate might resign when it hasn’t joined, deadlock will occur, since HandleResign will
refuse the resignFedExecution event in this case. If this can never occur, then no deadlock
is possible, and the exception will never arise.

The second alternative also exposes valid versus invalid behavior, but by highlighting the
invalid behavior as an explicit exception message notJoinedException. This specification
differs in two ways from the previous. First, it requires that the specifier predict this
possibility ahead of time and explicitly recognize it as a possibility. The first approach
simply describes the desired behaviors, whereas to be effective the second must predict and
cover all deviations from that behavior as well. Second, unlike the first approach, the second
indicates what will actually occur after the exception. In this case, the federation continues
as if the invalid resignation had not happened, indicated by the return to HandleResignS

without any change in state.
Although the first alternative specification does have an actual behavior if an invalid

resignFedExecution is attempted, deadlock, this can’t be seen as defining the actual behavior
of any RTI implementation. In WRIGHT, deadlock is used simply to indicate some kind of
problem in the specification and cannot be taken to mean that the system will actually halt.
For example, in a networked message passing environment, a dropped message, where the
receiving party must be waiting for a message but isn’t, would be detected as deadlock, but
in an implementation it would result in some unpredictable, not-quite-right, behavior, not
in an immediate system lock-up.

By using explicit exceptions in the specification the second alternative has clarified
how an RTI is expected to behave if this bad thing does happen, but it does so at the
expense of making it more difficult to detect the problem during a priori analysis. The
analyst must predict the problem and explicitly construct a check for the possibility of a
notJoinedException event, rather than depending on the standard deadlock test.

The third and fourth alternatives have been included to illustrate another point: Because
of the event oriented nature of a WRIGHT behavior specification, if one permits undesired

144 A Formal Approach to Software Architecture

behaviors, one must use events to flag them or they can not be detected during analysis.
The third example, like the second, describes two behaviors for the RTI, one normal and
one exceptional. If a joined federate resigns, fine; the federate is removed from S . If, on
the other hand, a non-joined federate attempts a resign, this behavior is described by the
other branch of the choice: In this case, the event is ignored.

In effect, this third alternative treats a non-joined resignation as a legal behavior by a
federate. A test for illegal activity will not detect this behavior, since it is not distinguished
by either events or refusals (i.e., the inability to perform an event) in the process. This is
made clear by noting that the third and fourth alternatives are in fact equivalent processes.
It is just that on the surface the third appears to distinguish the two cases, when in fact it
treats them identically.

The point here is that this WRIGHT specification is undertaken for a specific reason:
to facilitate the analysis of the HLA and to detect potential problems in the IFSpec. If
we are to accomplish this goal, we depend on the semantics of the specification and how
it relates to the tools we have available. A WRIGHT specification is not just a piece of
documentation to give a sequence-of-events view of the computation; it carries a precise,
powerful semantic model that is used to locate problems and to prove properties of the
systems to be constructed.

6.5 Review of Techniques

In the previous section, we saw how the WRIGHT specification of HLA led to the exposure
of important issues in the interface specification. Through the exercise of formalizing what
had been informal, it became clear that there were many ambiguities in the specification,
such as the effect of a “pause” on the execution, and that several concepts, including
“exceptions,” used in the interface specification document were not fully specified as to
how they would be realized in an implementation.

We also showed how the formalization in WRIGHT, by providing a standard set of
consistency checks, led us to locate potential trouble-spots in the protocol described. An
automated test for deadlock in a connector led us to two examples of problems in the
specification, one involving creation of the execution and the other related to the interaction
between start-up and pausing.

In this section we will revisit the specification with a slightly different view. We will
consider how specific techniques used in this specification can be useful in general in
the formalization of a system in WRIGHT. We will consider techniques at two levels of
description: first, those related to the architectural structuring of systems, and second, those
related to the specification of behaviors in WRIGHT’s CSP notation.

6.5.1 Architectural Structure

WRIGHT provides mechanisms for making architectural distinctions that must be considered
when developing an architecture. In this section we discuss three of those: The distinction
between a single system and a family of systems, the distinction between components and
connectors, and the distinction between different parts of those architectural elements.

Chapter 6. Case Study: HLA 145

The first distinction we will discuss is between a single system, represented in WRIGHT

as a configuration, and a family of systems, represented as a style. Depending on which
of these is to be considered, the issues are different and the elements to be described are
different.

For a style, the issues relate to the kinds of elements (to formalize as types) and the
constraints that will be applied to the use of those elements. These decisions are based on
the properties that we want the systems to share, the analyses that will be important, and
the kind of infrastructure support that are to be developed.

A single system, on the other hand, leads us to look for the elements of an architec-
tural configuration, individual computation boundaries (components), kinds of interactions
(connectors), and specific pathways of communications (attachments).

In HLA, we recognized that the description was of a family of systems, covering more
than one potential configuration. This led us to consider the federates uniformly, in terms of
a shared interface type, and to look for a description of the common elements that will span
systems. In this case, the composition of federates via the RTI led us to a single connector
type with the constraint that all communication is brokered by a single connector instance.

Other specifications (say of a prototype federation implementation) might be recognized
as describing a single system, which would lead us instead to consider the actual pathways
of communication and the specific computations. In this case, the architectural specification
would distinguish different federates based on the actual computations that they carry out,
and consider the specifics of how they communicate.

A second question is how to divide the elements of the architecture into distinct entities.
For example, when do we distinguish different component types from each other, and does
a given part of the specification describe a component or a connector?

One consideration in viewing a specification of a style is that, typically, the component
types are taken as constraining but not fully defining the components that will appear in a
system, while the connectors types are viewed as abstract definitions of a fixed pattern of
interaction. While there are exceptions (e.g., reusable component frameworks and data-
dependent connectors), it is typical for a configuration that instantiates a style to use a
set of predefined connectors, while it defines a set of instance-specific components. That
is, we think of an architectural style’s connectors as defining a set of operators over the
components that are provided by a configuration.

The definition of RTI as a connector fits into this pattern, as it provides a means of
composing simulation fragments (federates) into a complete simulation. We recognized
that the abstraction presented by the IFSpec to a developer was that of a set of interacting
federates rather than of federates interacting with the RTI. This led us to describe the RTI
behavior as the glue of a single connector, and to specify the relations between different
federates’ messages as a first class entity in the architecture.

As an alternative to treating it as a connector, one might have considered describing the
RTI as another kind of component in addition to the federates. In this case, the SimInterface
would have been a simple “bundle-of-messages” type connector, and the details of how
these messages are combined would be hidden inside the RTI component specification.
While this would, perhaps, clarify the task faced by an RTI implementer, it hides the
relationships between different federates that someone constructing a complete simulation
would need to understand.

146 A Formal Approach to Software Architecture

This kind of distinction is an essential element of the architect’s task — to select the set
of abstractions that both provide the properties that are desired and help other developers
to understand and reason about systems they are developing. In our case, the developers of
the HLA made these decisions based on the simulation domain; they present an abstraction
of interacting federates, and the WRIGHT specification reflects that.

A third issue when specifying an architecture is how to structure the description of each
of the identified component and connector types. When formalizing a connector, WRIGHT’s
architectural structure guides our analysis. By looking for the roles in the specification, we
can structure the specification to take into account different points of view. In the RTI, each
individual federate, described as a role, is one point of view, and the overall computation,
coordinated by the glue, is another.

A similar, but more commonly recognized, structuring of an architectural entity is the
distinction between the computation and the interface of a component. WRIGHT requires
all interactions to be specified, as ports, rather than only the primary interaction. This
contrasts with, for example, an object specification, where only the incoming method calls
are specified in the interface, ignoring out-bound messages and global data references.
Specifying all interactions helps ensure that a component can be understood in isolation
and that it is clear what information is available to it.

When specifying a system, it is easy to forget the different points of view in the system,
and what information each potential computation has or does not have. The problems
detected in the HLA regarding creation of the execution is an example of a point-of-view
problem; the draft specification provides a precondition on the create message that refers to
a global concept – whether the execution exists. It is only through analysis that we could
determine whether this information is available locally – in an individual federate.

6.5.2 Behavior Specification

In the remainder of this section we will describe techniques that we can use to structure the
description of behaviors in WRIGHT. There are a number of challenges to describing and
analyzing the behavior of an architectural style, several of which we faced in the HLA case
study. In this section we discuss how our use of a formal model, CSP, as the basic notation
for WRIGHT provides techniques that we can apply to the task of architectural description.
We will discuss four particular CSP specification techniques that we can apply in WRIGHT:
Mini-protocols, macro-processes, selective omission, and internal state processes.

One kind of challenge is dealing with the gap between the informal and formal spec-
ifications. When attempting to develop a formal specification, it may be the case that the
form of the informal description does not match the notation of the formal description. We
must find ways of representing the concepts of the informal specification in the notation
to be used in the formal specification. In our case, the messages were described in the
IFSpec using pre- and post-conditions and exceptions. WRIGHT provides a process algebra
(patterns of traces) model of behavior. There may be an impedance mismatch between the
forms of the description.

At the same time as we shift from the informal to the formal, we must be able to get
from the formal specification back to the informal, to capitalize on any insights gained.
There must be traceability between the specifications. While the change in notation may

Chapter 6. Case Study: HLA 147

ease analysis, the insight gained about the formal description must be brought back to the
informal description so it can show how the actual abstractions or documentation can be
improved.

Another kind of challenge has to do with handling the scale and level of detail in a
complex specification. The scale of the system being described may make a full, exhaustive,
formalization prohibitive; analytic results must be obtainable with a partial specification.
At the same time, while describing only part of the system, or some aspects of the system,
we must not invalidate our results by ignoring an interaction or the possibility of expanding
the description to cover more issues.

Thus, we seek an incremental description, meaning that we can gain analytic leverage
with a minimum effort and at the same time our initial effort also contributes to an eventual,
more complete description. As we cover more of the details of the system, each new
description must add to the whole at only a small additional cost.

Additionally, we want the formal description to raise the level of abstraction at which
we consider the system. The intent of analysis is to focus on those aspects that are of
paramount importance, making them tractable, while suppressing the complexities that can
be considered separately. Thus, even if a formal description covers every part of the system,
it does so by highlighting certain aspects of the system, rather than exhaustively recording
every possible property of it.

In order to achieve these goals, we use four techniques to structure our behavior de-
scriptions in WRIGHT:

1. Mini-protocols encapsulate one distinct aspect of the overall protocol in a separate,
identifiable process.

2. Macro-processes aggregate collections of events into building blocks so that the
collection can be treated as a single unit.

3. Selective omission of details permits us to keep the description tractable.

4. Internal state processes record pieces of information that are needed in many parts
of the description but can be maintained locally.

The first three techniques can be illustrated by one of the processes that form a part of
the SimInterface interface type. Recall the definition of FedJoined:

FedJoined = joinFedExecution !RUNFedEvents ; resignFedExecution !x

Mini-protocols

FedJoined is one of many mini-protocols in the WRIGHT specification of HLA. It describes
only one small aspect of the behavior of a federate, that of joining and resigning from
the execution. Other examples of mini-protocols in SimInterface are ControlPause, which
describes pausing, and ObjMgmt, which describes what messages are used to control at-
tributes on individual objects. Mini-protocols are also used in the RTI Glue. We showed
one example in the discussion of pausing and joining, HandlePause. In the RTI Glue there

148 A Formal Approach to Software Architecture

is a mini-protocol for each event that a federate initiates independent of other events and
that results in RTI messages to other federates.

While each of the mini-protocols describes only a part of the total behavior, they combine
to encompass all of the behaviors that are allowed by the interface specification. This is
because the mini-protocols are tied together by shared events. FedJoined, for example,
describes how all of the events in the set FedEvents are related to joinFedExecution and
resignFedExecution , but does not show how the members of FedEvents relate to each
other. The mini-protocol OwnMgmt shows how two of these events, reqAttrOwnDivestiture
and attrOwnDivestitureNotifyRelease are related, while ignoring all behavior related to
join and resign. By sharing events in their alphabets, the two mini-protocols together
describe a larger behavior, combining both the join/resign behavior and the ownership
request/response behavior, that can be analyzed as a whole.

Thus, mini-protocolsprovide a mechanism to achieve incrementality in the specification.
By separating out a small portion of the total protocol, the effort to provide formal analytic
leverage is reduced. By tying the mini-protocols together with shared alphabets, a larger
specification can be built up from several smaller units.

The use of mini-protocols also supports traceability and provides a means of bridging
the impedance mismatch. Each of the mini-protocols is derived from a small set of the pre-
and post-conditions described in the source interface specification document.

For example, the message joinFedExecution has two pre-conditions, “The named fed-
eration execution exists” and “The federate ID is not joined.” It has one post-condition,
“The federate is a member of the named federation execution.” The FedJoined process
deals with a specific concept exposed in these pre- and post-conditions, membership in the
federation. There are exactly two messages whose post-condition mentions membership
in the federation, namely, joinFedExecution and resignFedExecution . These are the events
that are called out in FedJoined as critical to this mini protocol. As described by the pre-
and post-conditions, a federate is not a member either before a join or after a resign. Any
event that is not permitted unless the federate is a member (as described by that message’s
pre-conditions) is prevented from occuring except between the join and resign.

The other pre-condition on join, regarding the existence of the execution, is controlled
by a different mini-protocol, FedMgmt, shown in appendix B.

What we have done in this situation is to recognize critical state abstractions in the
described pre- and post-conditions. Key phrases (e.g., “is a member”, “is not a member”)
indicate that a message changes the abstract state of the overall computation. Other
messages are controlled by these states, as indicated by including references to them
in their pre-conditions. The mini-protocols can then represent these critical states by
collecting together the sets of events that are permitted in some states and denied in others.
The controlling events (those that change the state, as indicated by references in post-
conditions), are used to trigger changes in the processes that represent the mini-protocol.

Macro-processes

We use another technique, macro-processes, to represent the categories of events that are
controlled by the critical states. In the example, note how the process RUN is used to
indicate when events in the set FedEvents are permitted; as we indicated, this is only while

Chapter 6. Case Study: HLA 149

the federate is a member of the execution. The process RUN has an important property:
While it permits a set of events to occur, it does not further constrain which events will
occur, or how many events will occur. This is important because it means that we can
indicate a period outside of which the events will certainly not occur, but leave it to other
mini-protocols to indicate any constraints on how those events are selected or controlled.
Thus, using RUNFedEvents highlights FedEvents as a general category of events that are
constrained together by the mini-protocol. They can be lumped together here, while they
will be considered separately elsewhere.

To use RUN this way, it is fit into a larger process in a particular way. First, there are the
conditions that lead to the events being permitted. For example, the event joinFedExecution
marks a transition from non-membership to membership. These events are prefixed to the
RUN process: joinFedExecution!RUN. Next, the conditions that lead to the prohibition of
the events in the set are identified. In this case, it is the occurrence of resignFedExecution.
These conditions are used as a guard on the process describing behavior after the events
are no longer permitted, and this process is appended to the RUN using a semi-colon:
RUN;resignFedExecution!x.

We refer to this technique of bundling events as a macro because the form is somewhat
analogous to the way in which macros in programming languages create a simple-appearing
construct for a routine but relatively complex construction. When we use RUN in a process,
e!RUNS ; f !... we are bundling up a complex set of traces to appear somewhat like a
single event in the mini-protocol: e!S!f !...

Other macros besides RUN can be used in this manner. For example, the ObjMgmt
group, shown in appendix B, uses a macro WaitForEvent that permits a single event from a
set, rather than zero or more events.

Selective Omission

Another key technique in WRIGHT behavior specifications is the use of selective omission
to simplify the specification and increase the level of abstraction. In the HLA specification,
we have chosen to omit parameters to all messages whenever possible.

For example, the joinFedExecution message is specified as taking a simulation name, a
simulation ID, a federation execution name, connection parameters, an a value of federation
time when the join will occur. None of these affect the pattern of events that will follow, so
we have left them off.

In other cases, for example, the subscribeObjClass method, the parameters do affect
the details of the communication, but we have left them out anyway. In this case, we
use non-determinism to indicate that a decision must be made, but that the details of that
decision are not specified at this level of abstraction. This permits a conservative analysis
of the RTI, in the sense that our specification permits more behaviors than are actually
possible, so anything that is not possible in this specification is definitely not possible in a
correct RTI.

In the case of subscribeObjClass, the parameters indicate what attributes of an object
are of interest to the federate. This information would then be used by the RTI to control
what attribute value updates are transmitted to that federate.

The protocol as originally specified indicates a collection of “discovery predicates” that

150 A Formal Approach to Software Architecture

define what values of what attributes are to be transmitted. When the predicates become
true, an instantiateDiscoveredObj message is sent. Then new values are indicated by
reflectAttrValues whenever a new value is shown, until the discovery predicate becomes
false. At that point, a removeObj message is sent, informing the federate that it should no
longer track that attribute (or object).

Instead of reflecting the full complexity of discovery predicates (which are not defined in
the informal document), we have chosen to abstract away from this element of the informal
specification. This simplifies the attribute distribution protocol considerably. One part of
this protocol, the creation of a new object, was shown earlier. Another, more complicated
portion, is the attribute update mini-protocol:

NewAttrValue = i : 1::nsims � Fedi.updateAttrValues !checkSims?S
!(u J : � S � (; j : J � Fedj.removeObj!x);

(u K : � S n J � (; k : K � Fedk.instantiateDiscoveredObj!x);
(u L : � S n J nK � (; l : L � Fedl.reflectAttrValues!x))));

NewAttrValue

The NewAttrValue protocol indicates that following an updateAttrValues message from any
federate, the RTI makes three related choices of notifications. These three sets are J , the
set of federates that will need to remove the object from their representations, K , those that
will need to add it to their representations, and L, those that already know about the object
and need the new attribute value. Each of these sets are chosen non-deterministically in
this specification, indicating that the details of how this is calculated is omitted. We are
able to do this for two reasons.

First, the traces of this specification are a superset of the actual behavior specified in
the RTI, and it is fully non-deterministic in this situation. Any specification that more
precisely describes the RTI behavior regarding these events will be a refinement of this
specification. This means that most properties that we can prove about this specification
will necessarily be true of the actual RTI behavior. The only exception is a property that
describes the possibility, but not the necessity, of the RTI carrying out a particular trace.
For example, it is possible in this spec for the RTI to chose to send a removeObj without a
preceding instantiateDiscoveredObj. Because of the nature of CSP refinement properties,
these exceptions are not ones that could be counted on by any external observer – a federate,
for example. It is not possible to force the RTI to have any of the behaviors permitted by
the non-deterministic choice that are to be prevented by a refinement.

Second, it is reasonable for us to increase the number of options in this particular
instance (that of the specific attribute values and discovery predicates) because we aren’t, in
this specification, concerned with the exact calculations that a federate will make. Instead,
we are concerned with the overall pattern of interaction, and in detecting situations where a
federate would be unable to do the right thing; that is, we are free to assume that a federate
will be able to handle a certain amount of variation, and we look for situations where it
definitely can’t handle what is expected (such as not being able to know whether or not to
create). Thus, the exact object space isn’t of direct interest and it can be left to a different
specification to explore.

Chapter 6. Case Study: HLA 151

Another important kind of omission in this specification is that we haven’t described any
of the events in the Time Management group. We chose to do this for two reasons. First, it
isn’t necessary to include all events in order to discover properties about the specification.
Our observations regarding the federation management messages (join, pause, etc.) hold
regardless of the set of other messages available. Second, our use of mini-protocols with
shared alphabets makes it simple to add these later if we choose to explore that part of
the specification. There would need to be new mini-protocols to show how the time
management events relate to each other, and they would need to be added to any sets
involved in macros to indicate how they are controlled by the other events. For example,
they would be added to FedEvents because time can only be managed by a joined federate.
If any of the time events were to have a controlling influence over the other events (which
they don’t happen to), then mini-protocols could be developed to further constrain the
system.

Internal State Processes

The final technique for specifying behaviors that we will discuss here is the use of internal
state processes. This was illustrated above in the process WhatSims:

WhatSimsS = checkSims!S !WhatSimsS

(i : 1::nsims � Fedi.joinFedExecution !WhatSimsS[fig)
(i : 1::nsims � Fedi.resignFedExecution !WhatSimsS�fig)

WhatSims has two parts. One part observes interaction events, and alters the state of the
process WhatSims. The other part permits mini-protocols to query this state through an
event that is internal to the connector Glue (checkSims). The reason to separate out the
state maintenance is to simplify the other sub-processes in the Glue, which no longer have
to carry out the observation of events that are otherwise irrelevant to the mini-protocols.
If this calculation were not separated, every mini-protocol would have to include the
joinFedExecution and resignFedExecution events in their alphabets and maintain a set-of-
processes state variable. This would add two alternatives (for join and resign) to every state
in every mini-protocol. In short, the readability of the protocols would be much decreased,
and the opportunity for errors would be magnified.

By maintaining the simplicity of the mini-protocols, we increase the traceability of the
specification. It is easier to see how a mini-protocol relates directly to a small set of pre- and
post-conditions if it is not intertwined with other concerns. By localizing the maintenance
of a given global concept, we also improve the level of abstraction in the specification. The
abstract concept is both more precise and more easily understood in its direct form.

6.6 Discussion

This case study has shown how formalizing an architectural style in WRIGHT can provide
insight into potential problems with an informal description of the style. Our formalization
effort found issues in two ways: First, by requiring the rigorous consideration of definitions

152 A Formal Approach to Software Architecture

and structuring the document in terms of patterns of events, we found ambiguities and
omissions that needed to be resolved before the meaning of the style could be made
precise. Second, once we had a formal description, we were able to find inconsistencies
and weaknesses in the protocols through the application of automated analysis tools.

We have also shown, through the use of WRIGHT to support the development of a
complex, industrial scale architectural standard, how WRIGHT formalizations scale to prac-
tical problems. By scaling, we mean not that we can construct larger and larger WRIGHT

specifications, but that we can continue to provide significant, practical benefits to system
developers for a reasonable effort as the size and complexity of the problem increases.

To accomplish this goal, we have shown how we can gain insight into a large-scale
specification, the IFSpec of HLA, and how those insights can be tied to the specification
in such a way that they can reasonably be expected to influence and improve the efforts to
develop simulations in the future.

Chapter 7

Tools for WRIGHT Checks

7.1 Introduction

An important means of making the analysis of architecture practical is to automate that
analysis because, (1) it reduces the effort required to perform the analysis, and (2) it can
find problems or properties that a human analyst would have missed. We have developed
tools both to perform most of the standard WRIGHT consistency checks and to provide
access to a commercial tool for other system-specific analyses that can be described by the
architect.

By automating the standard checks, we provide a mechanism, much like type-checking
in a programming language, for locating trouble-spots in a WRIGHT specification. Once the
architect has developed a candidate specification, he or she can run a tool on the specification
which responds either with a guarantee that the consistency checks are satisfied or a precise
indication of where the problem is in the specification.

7.2 Automating Standard Checks

We have automated all of the compatibility checks described in chapter 3 except initiator-
commits and configuration conformity to a style’s constraints. Our primary means for doing
so has been to use the commercial specification-checker FDR [FDR93]. We have used FDR
as the core of the consistency checking tool. That is, our tool generates input to FDR from
a WRIGHT specification and then executes FDR on that input.1 A summary of our handling
of each test is given in figure 7.1.

7.2.1 FDR

One of the most successful forms of automated analysis for formal methods is exhaustive
checking of a finite model [B+90]. There are two kinds of exhaustive checker. One
kind determines whether a given property holds in every state of a model, and the other
determines whether two state machines are related in a particular way. Both kinds of tool

1As we will discuss in section 7.3, the architect can also use FDR directly to perform other analyses, using
our tools to provide FDR-compatible versions of the WRIGHT specification.

153

154 A Formal Approach to Software Architecture

� Handled via FDR:

1. Port-Computation Consistency (component)

2. Connector Deadlock-free (connector)

3. Roles Deadlock-free (role)

8. Port-Role Compatibility (attachment)

� Handled directly, or through another test:

4. Single Initiator (connector)

6. Parameter Substitution (instance)

7. Range Check (instance)

11. Attachment Completeness (configuration)

� Not currently handled:

5. Initiator Commits (any process)

9. Style Constraints (configuration)

10. Style Consistency (style)

Figure 7.1: Overview of test automation.

Chapter 7. Tools for WRIGHT Checks 155

exhaustively search the state space of a finite-state model and either conclusively determine
that the check is satisfied or provide a counterexample (such as an execution of the state
machine after which the property does not hold).

This technology is available for a variant of CSP through the tool FDR. FDR (which
stands for “Failures, Divergence, Refinement”) automates the test of whether one process
refines another. Recall that a process P refines a process Q (written QvP) if the failures of
P are a subset of the failures of Q. The refinement test provides strong analytic capability
for CSP in two ways: First, it provides a guarantee of substitutability of one process for
another, much like subtyping between abstract datatypes. That is, if a process P refines a
process Q, then, in any context in which Q appears, P can safely be substituted for Q.

Second, many properties can be expressed as an abstract “specification” process, such
that any process that refines the specification process is guaranteed to have that property.
This is because refinement permits a process to guarantee both the presence of a given
behavior and the absence of others. If a given trace is not to be allowed, then the specification
process omits that trace, and no process that includes the trace will refine it. If a given trace
is to be required, then the specification process omits all other options from its refusals, and
any process that refuses to engage in that trace will not be a refinement.

For example, consider the property of deadlock-freedom, which we have used exten-
sively in previous chapters, both as a consistency check on our types and more globally in
the JC case study of chapter 5. We defined deadlock-freedom directly in terms of the traces
and refusals of a process (a process is deadlock-free if it never refuses all events until afterp

has appeared in its trace), but it can also be cast as a refinement test: A process P with
alphabet A is deadlock-free exactly when it is a refinement of the process DFA:

DFA = (u e : A � e ! DFA) u x

To understand this, note that this process permits all possible traces over the set A, but that
it never refuses all events (the u operator always picks exactly one of the events). It does
permit processes to accept more than one event, because that simply reduces the number of
refusals.2

Thus, if we can translate WRIGHT specifications into the input format of FDR and
convert a property of the specification into a refinement test, then FDR can be applied to
confirm or deny that property for our specification.

7.2.2 Refinement Based Tests

Several of our tests have been directly defined as refinement tests, and so FDR’s refinement
check is directly applicable to their automation: Port-computationconsistency and port-role
compatibility (defined on pages 72 and 77 respectively). Further, as we described above,
deadlock-freedom can be framed as a refinement test, and thus both connector deadlock-
freedom and role deadlock-freedom (p. 73) are also clearly candidates for automation via
FDR.

2As long as the number of traces is not increased, refusals and acceptances are inversely related: more
acceptances, fewer refusals.

156 A Formal Approach to Software Architecture

There are three main complications to using FDR for this purpose: (1) ensuring that
the specifications to be checked are finite-state, (2) calculating det(P), the deterministic
version of P , and (3) calculating the alphabet of a process. Finite-stateness is an intrinsic
limitation of exhaustive checking technology. Calculating det is necessary because several
of the WRIGHT tests require it for the construction of one of the processes to be compared.
Alphabets must be calculated both because several of the checks use it directly and because
FDR uses an “alphabetized” version of the k operator. We’ll come back to these latter
questions after a brief discussion of the need for finiteness.

7.2.2.1 Exhaustive checking requires a finite-state model

A key limitation of automatic exhaustive checking of models is that the models are required
to be finite-state. This raises two concerns: First, whether the limitation to finite-state
processes is too restrictive a limitation, and second, how to deal with the possibility that
some specifications may not be finite-state.

Even when limited to finite-state process descriptions, WRIGHT provides an expressive
notation for characterizing architectures. In particular, it is important to note that finite-state
CSP processes can have infinite traces. For example, the process P = e ! P has an infinite
number of traces, but only one state. Indeed, quite complex processes can be described
within the finite-state limitation. For example, all of the descriptions in our three case
studies are finite-state.

However, any given WRIGHT specification may not be finite-state. For example, sub-
scripting can lead to a problem as follows:

P0 = (plus ! P1) x
Pi = (plus ! Pi+1) (minus ! Pi�1)
i > 0

This process has a state Pi for every non-negative integer.
Permitting infinite-state specifications would not be a problem if we could automatically

determine whether a given specification is finite- or infinite-state. In that case, we would
simply provide three answers to the check instead of two: Yes, the check is passed; no,
there is a problem; or don’t know, the specification is not finite-state. Unfortunately, it is
not decidable in general whether a process is finite- or infinite-state. Thus, if we want to
automate a check, we have two options.

First, we can restrict the syntax of WRIGHT to a subset known not to permit infinite states.
For example, one possible limitation is to omit all subscripts and prohibit the recursive use
of “;” and “k.” By restricting the process notation to exclude these constructs, the automated
checks can be guaranteed to terminate.

Second, we can leave the syntax unrestricted and accept that we can’t guarantee that our
checks will terminate. We have chosen this latter option because we feel that it is important
to provide as expressive and flexible a notation as possible. If architects need to be sure
that the tools will apply, then of course they can choose to use the restricted subset that is
guaranteed to be finite state. This will involve making tradeoffs in the description between
expressing the full details of the architecture and being able to use the automated tools.

Chapter 7. Tools for WRIGHT Checks 157

Finite but too big?

The inability of an exhaustive property checker to handle infinite-state systems is a the-
oretical limitation. There are other, practical limitations, however: (1) the model’s size
may be too large to construct within a given memory limitation, and (2) the amount of time
required to exhaust the state-space may be unacceptable.

This limit means that many analyses are not practical to attempt to automate for state-
spaces of the size and complexity of a realistic software system. However, by taking
advantage of the architectural structure of a specification, WRIGHT is able to localize checks
and thus keep the size of the models to be checked relatively small, even as the overall
size and complexity of the system increases. Thus, we use the architectural structure of the
specification to control the cost of automating analysis.

For example, the Message connector with a size 4 buffer has 5 states. An S-R component
with one input and one output has 2 states. Rings of S-R components, (all deadlock-free)
have the following numbers of states that must be traversed in order to exhaustively check
deadlock-freedom:

comps. # states
1 2
2 8
3 38
4 192
5 1447

7.2.2.2 Calculating det(P)

In addition to the general challenge of controlling the size of the state space, we must
address two specific issues for WRIGHT’s checks: Calculating a deterministic form of a
process and finding the alphabet of a process.

Recall the definition of det(P) from chapter 3:

For any process P = (A;F;D), det(P) = (A;F0;�) where F0 = f(t; r) j t 2
Traces(P) ^ 8 e : r � t � hei =2 Traces(P)g.

The reason that we are interested in this process is that it is useful for limiting the traces of
another process. It defines a set of traces without defining how they are selected. Thus, if
we place det(P) in parallel with another process Q, we know that there will be no traces
not in P, but that we haven’t otherwise restricted the refusals of Q.

There are two ways in which det(P) can be calculated. First, if P meets certain
syntactic constraints, then it can be calculated by simply replacing all occurrences of the
non-deterministic choice operator u with the deterministic operator . This is simple and
efficient, and it works under many circumstances. The current version of our tool uses this
technique.

The restriction on when this technique can be applied is that no processes that are
combined via choice share any initial events. For example, consider two possible processes:

158 A Formal Approach to Software Architecture

P = e ! P u f ! x
Q = e ! Q u e ! x

Process P can be modified by simply replacing u with :

det (P) = e ! det (P) f ! x

With Q, however, this will not work: a simple substitution of for u gives this:

Qwrong = e ! Qwrong e ! x

The problem is that when both sides of an expression have the same event, CSP defines it
to be non-deterministic. That is,

Qwrong = e ! (Qwrong u x)

To get a deterministic process, we must first move e and then change the u to :

det (Q) = e ! (det (Q) x)

While the transformations are usually fairly straightforward, we have not implemented a
fully general version because FDR calculates det (P) internally as a side effect of calculating
the state graph. Although it isn’t available to specifiers in the current version of FDR, it
should be made available soon (according to FDR’s developers).

7.2.2.3 Calculating alphabets

In addition to det (P), our tool must also calculate the alphabets of all CSP processes it uses.
There are two reasons for this: First, several of our checks use it directly. Second, FDR
uses an alphabetized version of the k operator. That is, rather than simply specifying PkQ,
FDR requires that the operator indicate what events are synchronized: Pk

A
Q for some set of

events A. The difficulty is that CSP as originally defined does not specify how the alphabet
of a process is to be determined. It is generally assumed that either the alphabet will be
“obvious” or that it will be explicitly and separately defined. WRIGHT takes the alphabet
of a process to be exactly those events that are named in its definition. To understand this,
consider the following processes:

P = e ! f ! P
Q = f ! g ! Q

What are the alphabets of P and Q? Because P names events e and f, they are assumed to
form the alphabet of P. Similarly, Q names f and g, so they are the alphabet of Q.

The alphabet of a process affects its behavior in one major way: when it is composed
via k with another process. What is the behavior of PkQ? The alphabets of P and Q share
the event f, so they synchronize on that event. On the other hand, events e and g are not
shared, so the two processes do not synchronize on those events.

Chapter 7. Tools for WRIGHT Checks 159

FDR has taken a different approach to alphabets. Rather than calculating the alphabets of
a process and then using them to find the meaning of k, FDR requires that the synchronizing
events be explicitly named whenever k is used: kA. So we would declare PkQ in FDR as
follows: PkffgQ.

Thus, our tool must calculate the alphabets of all processes that will be combined using
k. Fortunately, this is straightforward. The only complication occurs when processes are
defined with recursion. For example, consider the alphabets of P and Q in:

P = e ! Q
Q = f ! Q

P is capable of engaging in events e and f, so its alphabet includes both those events. Q,
on the other hand, can engage only in the event f, so if it is used directly (i.e., not as part
of P), its alphabet includes only f. Thus, we can not find the alphabet in a purely syntactic
manner: although P names only e directly, it includes f in its alphabet.

Fortunately, the alphabet of a process can be found by the simple expedient of calculating
the events explicitly named in defining expressions (e for P and f for Q, above), and then
finding the closure over the processes that are named by that process. In other words, we
start with the set of immediate events for every process. Then, for each process we add to
that set the event sets of all the processes named by the given process. Process P above
names Q, so we would add its events to P’s events. Q names no other processes, so its set
does not change. The new set is all events named with at most one level of indirection.
Then, we repeat the addition of events until none of the event sets have changed on an
entire iteration, indicating that the set is the transitive closure of the original set. This will
terminate because there must be at most a finite number of indirections that can be taken
without reaching all process definitions, or the process will not be finite state. If the process
is not finite-state, we don’t care what the alphabet is, since FDR will fail in any case (as we
discussed above).3

7.2.2.4 Example of FDR use

We now illustrate our use of FDR by showing how we would check compatibility for a
simple port and role. Consider the following two definitions:

Role DataUser = get !DataUser u set !DataUser u x
Port Reader = get !Reader u x

These are encoded in FDR’s ASCII notation as follows:

DataUser = ((get ->DataUser) |~| ((set ->DataUser) |~| TICK)
Reader = ((get ->Reader) |~| TICK)

In order to determine if these are compatible, we must verify that:

DataUser+(�Readern�DataUser) v Reader+(�DataUsern�Reader) k det(DataUser)

We encode the elements of this as:
3Of course, in this case our tool will loop forever, but this just moves the failure up: If we terminate and

then try to run FDR, FDR will run forever (or until it runs out of memory).

160 A Formal Approach to Software Architecture

DataUserplus = DataUser [jfgj] STOP
Readerplus = Reader[jfsetgj] STOP

detDataUser = ((get ->DataUser) [] ((set ->DataUser) [] TICK))

The latter two processes are combined to form ReaderplusDet:

ReaderplusDet = Readerplus [jfset,get,tickgj] detDataUser

The refinement test can then be applied in FDR by giving the command:

Check "DataUserplus" "ReaderplusDet";

A similar procedure is followed for the other tests based on refinement. In particular, to
carry out the deadlock-freedom based tests we compare the process against the most non-
deterministic deadlock-free process with the same alphabet as the process, as we described
above.

7.2.2.5 Feedback from FDR

Given two processes, FDR performs the refinement check and provides one of two re-
sponses. First, it may verify the refinement, in which case it indicates “Refinement
check succeeded.” This is what happens in our simple example above. Second, it
may locate a trace after which there is a failure of the “refining process” that is not a
failure of the “specification process,” indicating that the refinement test fails. In this case,
it informs the user of that trace and of the failure of the “refining” process, thus providing a
counterexample to the refinement property. This is how we generated our counterexamples
for the HLA case study in chapter 6.

As a simple example, consider a slight variation on the roles DataUser and Reader:

Role DataProvide = get !DataProvide set !DataProvide x
Port ReadOnly = get !ReadOnly x

If we attempt a port-role compatibility check with these definitions, we discover that
ReadOnly is not compatible with DataProvide. FDR returns the output below:

ReadOnlyplusDet
Interface=fjfjget,set,tickjgjg
has behaviour
After <> refuses fjfjset,tickjgjg

This output indicates that after the empty trace (hi) the process ReadOnlyplusDet has
as one of its refusals fset,

pg, but the process DataProvideplus does not. That is, the
trace hi is a counterexample to the refinement test. This counterexample leads us to the
reason for the incompatibility: DataProvide requires that the event set be handled at any
time, but ReadOnly assumes that only get will occur. Thus, ReadOnly is incompatible and
we must find a different port to fill this role.

Chapter 7. Tools for WRIGHT Checks 161

7.2.3 Other Automated Tests

Several of the compatibility and consistency checks are not directly expressed as refinement
tests. We have automated four of these.

� “Single initiator” (p. 74) requires that every event be treated as initiated by exactly one
process. This can be determined directly from the alphabet information as calculated
above.

� “Parameter substitution” (p. 76) requires that parameters supplied to a type result in
a consistent non-parameterized type. This is checked by substituting the parameters
into the type and then performing the other checks.

� “Range check” (p. 76) requires that any value supplied to a range parameter (min::max)
fall within the specified range. This is easily determined.

� “Attachment completeness” (p. 79) requires that any un-attached port or role be
compatible with x. This is found by applying the port-role compatibility test as
described above.

7.2.4 Tests Not Automated

Three of the basic WRIGHT checks are not currently automated. The first is “initiator-
commits” (p. 75). Recall that a process is “initiator-commits” if, whenever it can engage in
an initiated event, it refuses all other events.

The difficulty with automating this test is that it is not easily expressible as a test of
refinement, because it requires the inclusion of a particular set of failures, rather than their
exclusion. Thus, there is no process P’ such that P obeys initiator commits whenever P’vP.

In order to check initiator-commits, we need to check every state of the process and de-
termine that the failures match a certain pattern: whenever there are trace-extensions for an
initiated event and for another event, then the initiated event is chosen non-deterministically.
This is a straightforward exhaustive checking problem, in that it involves generating all of
the states of an automaton and checking that they obey a particular, well-defined property.
Thus, there are known techniques that can be used to implement this check (by looking at
every state of the process). In particular, we could use the internal state graph calculated by
FDR, and simply traverse it, checking every state. Implementation of this check is planned
for the near future.

The other tests we have not implemented are to determine whether a configuration obeys
its declared style constraints (p. 78) and whether a style has legal configurations (p. 78). As
we discuss later (chapter 9), for the general form of constraints that we have permitted, and
in particular for semantic constraints (on the behavior of components, connectors, and the
system as a whole), determining style conformance is undecidable. It is conceivable that
an automatic checker could be constructed for those cases where a system is finite-state.
However, an exhaustive check at the global level, as required by some style constraints, is
likely to be prevented by the practical limitations described earlier.

An alternative to automating these checks in their full generality is to automate a subset
of the language. One such subset is to cover topological constraints and use name-matching

162 A Formal Approach to Software Architecture

on type constraints (i.e., expressions of the form “Type(i)= t” where i is an instance variable
and t is the name of a declared type). This would provide quite a bit of help to architects
without being unduly complicated. All that would be needed to check a configuration’s
conformance to constraints is a boolean expression evaluator.4 Developing this restricted
checker is also short-term future work. To check style consistency for this restricted subset,
we could apply a predicate based exhaustive checker such as Nitpick [JD96].

7.3 Providing General Analysis Automation

Automated support for analysis of WRIGHT specifications is not limited to the standard
checks. FDR provides a much more general capability for analysis of CSP processes,
and users of WRIGHT can take advantage of this. Our automated tools, in addition to
applying the checks, generate the CSP process that is the meaning of an architectural type
or configuration as defined in chapter 3. These processes can be used by the architect to
have FDR perform any analysis that can be expressed as a refinement check. For example,
suppose we wanted to ensure that the RTI connector described in the HLA case study
requires that it be destroyed before the system terminates. We can check this in a way
similar to how we checked deadlock-freedom above. In FDR’s syntax, we describe a
process that always destroys before terminating:

DoesDestroy = (|~| i : NFEDS @ Fed.i.destroyFedExecution
-> TICK)

We then hide all of the events except destroyFedExecution and
p

in the RTI process:

RTIDestroy = RTI n setminus(setminus(ALPHARTI,

ftickg),
f i : NFEDS @ Fed.i.destroyFedExecutiong)

Then we can check whether the RTI is guaranteed to be destroyed:

Check "DoesDestroy" "RTIDestroy";

This fails, of course, because of the deadlocking problems described in chapter 6. However,
we only wanted to ensure that the RTI requires that destruction be handled correctly. The
deadlock problem can be avoided by ignoring refusals and looking only at matching traces.
This is checked by using CheckTrace instead of Check. In this case, a trace-refinement
of DoesDestroy ensures that if the system terminates without deadlocking (engages inp

), then destroyFedExecution must have occured previously. The RTI passes this test,
indicating that we have correctly specified the required use of destroyFedExecution.

As we discussed above, there are practical limits on the ability of FDR to check properties
on configurations, due to the complexity of the process corresponding to the full system.
However, this technique seems promising for component and connector types, which are
local and therefore simpler. Also, results on a type can be applied across all configurations
that use that type, further increasing the leverage of the analysis.

4Of course, there are efficiency issues surrounding the 8 and 9 operators that need to be addressed. There
are no difficult semantic issues, however.

Chapter 8

Data Models for HLA

8.1 Introduction

In the previous chapters we have seen how WRIGHT’s model of architectural structure and
abstract behavior provides an expressive, practical notation for the description of software
architecture configurations and styles. By providing a model of abstract behavior based
on CSP, WRIGHT supports the specification and analysis of properties such as interaction
and control. We have also seen how we can use commercial tools to automatically check
WRIGHT specifications for consistency and completeness based on those CSP specifications.

There are properties and issues for architecture that are not naturally captured in CSP,
however. For example, complex state invariants are not easily expressed in terms of events.
While it is possible to model state through a combination of subscripts on processes and
the “?” and “!” event operators, these are not explicitly part of the CSP semantics. Each
“?” operator, for example, introduces a family of separate events, rather than a single event
with parameters. Similarly, the CSP failures model (described in appendix A) does not
include the name of a process or its subscripts as part of its semantics, and so it is difficult
to use that information as part of an analysis.

This problem of focussing on some properties at the expense of others is fundamental
to any notation. The essence of abstraction is to promote some issues and properties by
ignoring others. That is, description and analysis of a given property is simplified by using
a notation that exposes that property as fundamental and ignores other properties. In the
HLA case study (chapter 6), for example, we deliberately ignored state information: this
allowed us to simplify our description of control and made our analysis tractable.

At the same time, any development activity will need to consider all of the critical
issues that affect the success or failure of a system. Thus, an architect will want to consider
multiple views of an architecture, each view exposing one or more issues while suppressing
others, thus supporting the abstract consideration of each issue.

As we discuss in chapter 10, the general problem of combining formalisms to provide
rich, multi-viewed descriptions of software architecture is a significant research challenge,
and one that is not a primary focus of this thesis. Approaches that have been taken include
defining mappings from multiple domains into a single, “least common denominator”
model [ZJ93], using a single paradigm but multiple views [Jac95a], and developing models
that combine multiple phenomena for specific domains [AD94] or for specific combinations

163

164 A Formal Approach to Software Architecture

of phenomena [Hav90].
Another possible approach is to use different notations for different abstractions, but to

structure the specifications so that simple correspondences (i.e., mappings) between the two
can be defined. For example, we can define a state model for an architecture but structure
it to match a WRIGHT model by having every state-change correspond to a specific event.
These are combined into sequences of state changes corresponding to each WRIGHT trace.

In this chapter we explore this approach. We will illustrate the approach using the
HLA style (described in chapter 6), and show how one state oriented property, expressed
in Z [Spi92] can be combined with the WRIGHT specification of the style.

By using the WRIGHT specification of HLA as a framework, we take advantage both
of that specification’s architectural structure and its model of a system’s dynamic behavior.
This allows us to simplify the Z model (by not repeating the structure and control models
contained in the WRIGHT specification), keep the level of abstraction high (by directly
expressing the properties of interest) and at the same time to relate the model to both the
architectural structure and the behavior of the systems.

We begin our description by characterizing an abstract system state that captures the
attribute ownership property. Then, we will describe some state-consistency properties as
desired invariants over the state model. Note that these are desired properties. The idea
of the model is to discover whether the protocols described in the WRIGHT specification,
together with state-specific preconditions described in the Z model, are adequate to ensure
that these invariants hold.

After modelling the system state and describing the desired invariants we will model
how the state can be changed by federates and the RTI. Each state change corresponds to
a single WRIGHT event, providing a basis for combining the two models. Each message
will be described separately. This will both simplify the specification and provide direct
traceability to the informal specification, because each (state-based) message transition can
be compared directly to the pre- and post-condition descriptions of that document.

The fourth and final step of creating the model will be to combine it with the WRIGHT

model of the HLA, developing a dynamic model where the effect of messages are combined
in sequences, matching the control behavior described in WRIGHT. Although we will not
carry out any specific formal proofs using the developed model, we will conclude with a
discussion of how that kind of analysis might be carried out, using a combination of the
automated tools available both for WRIGHT and for a subset of Z (i.e., Nitpick [JD96]) and
inductive techniques similar to those applied in the JC case study (chapter 5).

8.2 State Model of Attribute Ownership

In an HLA federation, a simulation state is modelled as a collection of objects, each of
which has a collection of attributes with particular values. Computation is divided among
federates by assigning each of the federates a subset of the attributes to calculate. A federate
that is calculating an attribute’s value and providing that value to other federates is said
to be “publishing” that attribute. A federate that needs to know the value of an attribute
“subscribes” to the attribute, indicating that any updates should be passed to that federate.
In addition, a federate can own an object, in which case it has the right to delete that object.

Chapter 8. Data Models for HLA 165

When an object is deleted, all federates are expected to stop publishing attributes for that
object, and all subscribers are notified.

8.2.1 Model of State

We begin by modeling the collection of objects that are part of a simulation: A collection
of objects, each of which have some named attributes.

[OBJECT ;ATTRIBUTE]

ObjectCollection

Objects : �OBJECT
ObjectAttrs : OBJECT# ATTRIBUTE

domObjectAttrs = Objects

Next we model the publication and subscription of attributes and object ownership.

[FEDERATE]

SimulationState

ObjectCollection

Federates : �FEDERATE
Publishing : FEDERATE# (OBJECT � ATTRIBUTE)
Subscribing : FEDERATE# (OBJECT � ATTRIBUTE)
DeletePriv : FEDERATE#OBJECT

domPublishing � Federates

domSubscribing � Federates

domDeletePriv � Federates

The SimulationState schema indicates that at any given point in a simulation execution,
there is a collection of objects (ObjectCollection) and a collection of federates (Federates).
Each federate publishes some collection of object attributes (Publishing), subscribes to
some collection of object attributes (Subscribing), and is permitted to delete some collection
of objects (DeletePriv).

There are two things worth noting about this definition: (1) it is a direct recasting of the
informal description, and (2) it does not contain many of the consistency constraints one
might expect. For example, it does not require that there be at most one federate publishing
a given object attribute.

This last point is important: We want to provide a model in which things can go wrong,
and then show that the architecture and its operations ensure that those things do not go
wrong.

166 A Formal Approach to Software Architecture

8.2.2 Desired Invariants

In order to locate potential inconsistencies in a system, we must define what we mean by a
consistent state. Here are a few examples of consistency constraints:

No federate subscribes to an object that does not exist.

GoodSubscribes

SimulationState

ranSubscribing � ObjectAttrs

Every object attribute is published by exactly one federate, and no federate publishes an
attribute that does not exist.

GoodPublishes

SimulationState

Publishing� 2 (ObjectAttrs" Federates)

Every existing object is deletable by exactly one federate, and no federate may delete any
non-existent object.

GoodDeletes

SimulationState

DeletePriv� 2 (Objects" Federates)

We combine these consistency invariants into a single schema for convenience:

GoodSimulation b= GoodSubscribes ^ GoodPublishes ^ GoodDeletes

8.2.3 Operations

Next we must define how a simulation state can change. Each message defined in the
HLA interface specification has the potential to change the system state (as defined by
SimulationState). Thus, we can define a state change for each message, indicating what
its effect on the state is. Each message has an Operation schema associated with it:

Operation

�SimulationState

fed? : FEDERATE

Here are some examples of how we might define the effect of messages:1

1Although we will only show a few key examples, every message defined in the HLA style would have
an Operation schema associated with it. Most would include �SimulationState to indicate that they do not
change the attribute ownership state.

Chapter 8. Data Models for HLA 167

CreateFedExecution

Operation

Objects 0 = �

Federates 0 = �

Until the createFedExecution message is sent by some federate, the simulation does not
logically exist. Therefore, this message defines the initial state. There are initially no
objects or federates.

JoinFedExecution

Operation

fed? =2 Federates

Federates 0 = Federates [ffed?g

ObjectAttrs = ObjectAttrs 0

Publishing = Publishing 0

Subscribing = Subscribing 0

DeletePriv = DeletePriv 0

When a federate joins the execution, it becomes part of the state, but does not otherwise
affect attribute ownership.

RequestAttrOwnDivestiture

Operation

�SimulationState
obj ? : OBJECT
attrs? : �ATTRIBUTE

ffed?g � (fobj ?g � attrs?) � Publishing

When a federate sends the message reqAttrOwnDivestiture, it provides an object and a
collection of attributes that it wishes to divest. The post-conditions described in the HLA
interface specification state that the federate should not stop publishing the object. It
will be a proof obligation to show that the protocol does indeed eventually result in an
attrOwnDivestNotify message, indicating that the federate may stop publishing:

AttrOwnDivestNotify

Operation

obj ? : OBJECT
attrs? : �ATTRIBUTE

ffed?g � (fobj ?g � attrs?) � Publishing

Publishing 0 = Publishing n (ffed?g � (fobj ?g � attrs?))

Subscribing = Subscribing 0 ^ DeletePriv = DeletePriv 0

ObjectAttrs = ObjectAttrs 0

168 A Formal Approach to Software Architecture

Join Federation Execution

Federate Initiated

..informal description text..

Supplied Parameters
Federate Name
Federate ID
a Federation execution name
Connection parameters, if required
Optional federation time when connection will occur

Returned Parameters
Current value of federation time
Federation state information (to be defined later).
Federation binding ID

Pre-conditions
The named federation execution exists.
The federate ID is not joined.

Post-conditions
The federate is a member of the named federation execution.

Exceptions
.. preconditions violated ..

Figure 8.1: A sample of the informal simulation definition.

Notice how in the schema AttrOwnDivestNotify , the condition GoodPublishes can not be
true in both its pre- and post-states. Thus, part of our analysis should consider whether the
RTI Glue ensures that divestitures will always be paired with acquisitions:

AttrOwnAcquisitionNotify

Operation

obj ? : OBJECT
attrs? : �ATTRIBUTE

Publishing 0 = Publishing [(ffed?g � (fobj ?g � attrs?))

Subscribing = Subscribing 0 ^ DeletePriv = DeletePriv 0

ObjectAttrs = ObjectAttrs 0

Each of these schemas are derived from the pre- and post-conditions of the message
specification in the official document. For example, JoinFedExecution is defined as in
figure 8.1 [DMSO95, p. 16]. Note how the informally specified pre- and post-conditions
match the formal conditions in our Z model.

Chapter 8. Data Models for HLA 169

8.3 Combining State Model with Behavior Model

So far we have described a model of the system state that exposes a particular issue of
interest: object attribute ownership. We have shown what the state elements are and how
that state is changed by individual messages. We also noted that we may need to reason
about sequences of messages in order to demonstrate that the desired invariants hold. Thus,
we must consider the dynamic behavior of the system.

We model a system execution as a sequence of system state changes, each one corre-
sponding to the effect of some message:

LegalOperation b= CreateFedExecution _ JoinFedExecution

_ RequestAttrOwnDivestiture _ AttrOwnDivestNotify

_ AttrOwnAcquisitionNotify

SimulationTrace : �(seqOperation)

8 s : SimulationTrace; i :
1 j i 2 1 . . #s �
i < #s)

(9�SimulationState �
(9SimulationState ; fed? : FEDERATE � s(i) = �Operation)
^ (9SimulationState 0; fed? : FEDERATE

� s(i + 1) = �Operation))
^ (9LegalOperation � s(i) = �Operation)

A SimulationTrace is a sequence of LegalOperations such that the post-state of each
operation is the pre-state of the operation following it.2

We could take the set of all possible SimulationTraces to be our architectural model,
and attempt to demonstrate consistency. This has one important drawback: The message
descriptions above do not capture enough information about what constitutes a legal execu-
tion. Many potential traces permitted above are not actually legal. For example, nothing in
the above definition requires that a simulation execution begin with aCreateFedExecution .
This means that there will be many inconsistent traces in the set SimulationTrace that are
prevented by the standard, and therefore not of concern.

One possibility would be to add constraints to SimulationTrace to try to capture these
other restrictions on traces. However, this would require considerable effort. Essentially,
we would need to construct trace constraints equivalent to the WRIGHT model described in
chapter 6. Instead, we can use the WRIGHT specification itself to provide this information.
We do this by defining a mapping between the Z schemas and events in the WRIGHT model.
Here we assume that there are functions transforming the (alphabet ; failures; divergences)
model of CSP so that it can be accessed in Z. To access this model, we define given types
for processes and events, and functions� and traces . These functions should be interpreted
as corresponding to the definitions in appendix A.

2The careful reader will notice that the obj? and attrs? parameters are hidden in a SimulationTrace. We
have done this because there is currently no part of the specification that shows how those parameters must
correspond across sequences of operations. A fuller model would, of course, have to take them into account.

170 A Formal Approach to Software Architecture

[PROCESS ;EVENT]

� : PROCESS "�EVENT

traces : PROCESS "�(seqEVENT)

In addition, for the HLA style as defined in WRIGHT, we define a process RTI that is
the meaning of the connector type RTI in the WRIGHT definition, and HLA, which is the set
of all configuration processes that obey the HLA style.

RTI : PROCESS
HLA : �PROCESS

Given these definitions, we can define a correspondence between Operations in the Z
and events in the WRIGHT.

WrightTrace : �(seqOperation)
WrightStep : Operation# �RTI

WrightStep = fd : CreateFedExecution � (d ;Fedd:fed?.createFedExecution)g
[fd : JoinFedExecution � (d ;Fedd:fed?.joinFedExecution)g
[fd : Operation j (9RequestAttrOwnDivestiture � �Operation = d)

� (d ;Fedd:fed?.requestAttrOwnDivestiture)g
[fd : Operation j (9AttrOwnDivestNotify � �Operation = d)

� (d ;Fedd:fed?.requestAttrOwnDivestiture)g
[fd : Operation j (9AttrOwnAcquisitionNotify � �Operation = d)

� (d ;Fedd:fed?.requestAttrOwnDivestiture)g

WrightTrace = fSystem : HLA; s : seqOperation; t : seqEVENT
j t 2 traces(System)

^ #s = #t ^ (8 i : 1 . . #s � (s(i); t(i)) 2WrightStep)
� sg

Each element of WrightStep defines a correspondence between a state change (Operation)
and a WRIGHT event (�RTI). The definition of WrightStep is constructed by providing
one set definition for each event in the set �RTI , of the form fd : OperationSchema �

(d ;Fedd:fed?:e)g. If the WRIGHT event abstracts away from some parameters of the opera-
tion, then those are hidden before the pair is constructed.

Once the set of WrightSteps is defined, they are built up into a trace by using the
behavior of a configuration in the HLA style as defined by WRIGHT (System).

We can now combine the information of the two models by ensuring that any trace we
consider is permitted by both:

BothLegalTrace : �(seqOperation)

BothLegalTrace = SimulationTrace \WrightTrace

Chapter 8. Data Models for HLA 171

8.4 Analysis of the Combined Specification

By creating a formal specification that describes a particular property (attribute ownership,
in our example), and defining correspondences with the WRIGHT specification, we have
created a model in which we can reason about whether and how systems in the HLA
style deal with the property. Above, we defined a set of desired invariants in the schema
GoodSimulation and a set of legal traces through the trace set BothLegalTrace . We can
relate these as defining a GoodTrace to be one that establishes the invariant, and BadTrace
as one that results in the violation of that invariant:

GoodTrace : �BothLegalTrace
BadTrace : �BothLegalTrace

GoodTrace = ft : BothLegalTrace j 9Operation � t(#t) = �Operation
^ GoodSimulation 0g

BadTrace = ft : BothLegalTrace j 9Operation � t(#t) = �Operation
^ : GoodSimulation 0g

One possible analysis is to consider whether all legal executions of the the architecture
maintain the desired invariants at all times:

BothLegalTrace = GoodTrace

As we discussed above, the messages do not maintain ownership atomically, so this hypoth-
esis is not what we want. We want instead to reason about whether the protocol ensures
that eventually consistency is re-established. One possible expression of this is as follows:

8 bad : BadTrace �
9 cont : seqOperation � bad � cont 2 GoodTrace

This hypothesis states that whenever the computation breaks the consistency invariants, it
is always possible to re-establish the consistency.

Here is an arbitrary, stronger hypothesis. It states that consistency is always re-
established in exactly three steps.

8 bad : BadTrace; cont : seqOperation
j bad � cont 2 BothLegalTrace ^ #cont = 3
� bad � cont 2 GoodTrace

In order to reason about the truth or falsity of these hypotheses, we can consider both
the possible traces of the WRIGHT specification and the pre- and post-conditions of the
Z specification. One way of considering these is through the use of automated property
checkers such as FDR, discussed in the previous chapter. For a subset of Z, there is a
checker called Nitpick. Nitpick considers relational expressions (such as Z schemas) and
searches for values of variables such that the expressions are false.

While one can not directly combine FDR and Nitpick, they can be used to generate
intermediate results in a combined proof. For example, we could use the Z specification

172 A Formal Approach to Software Architecture

and Nitpick to calculate two sets of messages: those that are capable of violating the
consistency invariant, and those that will re-establish the invariants. Then, we can use FDR
and the WRIGHT specification to show that whenever any event in the first set occurs it will
necessarily be followed by one in the second set.

8.5 Discussion

In this chapter we have explored a particular technique for combining alternative semantic
models with WRIGHT specifications. We have shown how a Z specification of an abstract
system state can be combined with a WRIGHT specification. To do this, we structured the
Z specification in a particular way: every possible state change (� schema) corresponds
to a single event in the WRIGHT model. This correspondence permits us to map the state
model into a system execution by constructing sequences of state changes that correspond
to a trace of the WRIGHT event model.

This technique has several advantages: It allows us to keep the WRIGHT specification
simple, by retaining pure event oriented abstractions. It simplifies the state model by
allowing us to omit sequence-of-event constructs. It means that we can reason directly in
the semantic domain of each separate notation (Z and CSP) and use tools such as Nitpick
and FDR. Through its correspondence to the WRIGHT style specification, the Z model also
provides a model of a family of systems.

This last point is important: Because we have set up the model to correspond to a
WRIGHT specification of a style, the Z model also describes a style. That is, the WRIGHT

structures that extend an analysis from a style to a configuration also apply to the state model
that we have developed. Any configuration that is shown to be in the HLA style can take
advantage of results of analyzing both the WRIGHT specification and the Z state-model.

Chapter 9

Discussion and Evaluation

In this chapter we review the requirements for a practical basis for architecture description
and analysis, and consider how WRIGHT fulfills them. In order to do so, we consider a
number of design decisions, and ask whether they might have been made differently, and
what the consequences of that would be. First, recall the requirements:

� Description of architecture configurations: The ultimate goal of architectural de-
scription is to provide an effective means of describing the architecture of a software
system. It must be possible to define the components that will occur in a system and
the interactions between them.

� Description of architectural styles: Beyond describing single systems, architects
should be able to delineate the members of a family of systems. These architectural
styles provide a means of exploiting commonalities between systems and for leverag-
ing analysis and implementation efforts. Additionally, the two levels of description
should be able to be combined — given a configuration, we want to know if it is a
member of a given style.

� Analysis of properties of interest: An important goal of the descriptive activity is to
use the description to understand properties of the system that has been or will be
constructed. The architect must be able to use a description to analyze the system or
style to determine whether it satisfies its requirements. Note that it is important to
analyze both individual configurations and architectural styles. Ultimately, it is the
properties of individual systems that are important, but analysis of styles provides
important leverage by applying to more than one architectural configuration.

� Application to practical problems on real systems: While some analytic leverage is
arguably an improvement over no ability to analyze a description, a notation is not
generally practical if it can only be applied in tightly constrained circumstances or
only on small systems. A practical notation must address this by scaling to apply to
complex, real-world problems.

We now consider each of these in turn, and show how WRIGHT fulfills them. By
showing that WRIGHT satisfies these requirements, we will have shown that a formally
based architecture description language can provide a practical means of describing and
analyzing software architectures and styles.

173

174 A Formal Approach to Software Architecture

9.1 Description of Configurations

In this section, we discuss three issues relating to WRIGHT’s description of architectural
configurations. We will discuss WRIGHT’s treatment of connectors, the question of whether
CSP might have been used directly to specify architectures, and the problem of dynamic
reconfiguration of configurations.

9.1.1 Connectors

Probably the most important aspect of WRIGHT is its treatment of connectors. By treating
connectors as explicit, abstract specifications of interaction patterns between components,
WRIGHT supports the description and analysis of the behavior of architectural configurations.
In this section, we address three questions relating to WRIGHT’s treatment of connectors:
First, whether explicit connectors are necessary; second, whether WRIGHT’s use of general
glue specifications could be simplified; third, whether and how WRIGHT could usefully be
extended to model synchronous interactions through its connectors.

9.1.1.1 Why have them?

One of WRIGHT’s most significant points of departure from most existing approaches to
system specification is its focus on connectors as explicit semantic entities. One might
well question the need for both components and connectors: why not instead have only
components, with connectors represented as special kinds of components?

Other architectural description languages have adopted this latter approach. For ex-
ample, Rapide [LVB+92] uses events to characterize component interaction, but, unlike
WRIGHT, provides a fixed set of connector types to characterize how events flow between
components. To model a new kind of connector, such as a pipe, in Rapide one would create
a new type of component that handles the pipe buffering.

Clearly the advantage of taking such an approach is that it simplifies the language.
Moreover, if there is only one form of abstraction in the language (namely that used to
define computational elements), the mapping to a semantic base (such as CSP, or, in the
case of Rapide, Posets) is simpler.

However, when designing a language (of any sort) it is important to be clear about
its intended purpose. If its primary function is to support general reasoning and formal
manipulation, then a language should generally strive for minimality. On the other hand,
if the primary function is to provide a vehicle of expression that matches the intuitions
and practices of users, then a language should aspire to reflect those intuitions and prac-
tices [SG95].

We view WRIGHT as fitting the latter mold. Although the ability to reason about an
architectural specification is key, our first concern has been to provide a good match to the
abstractions that are used by practitioners who routinely need to describe software archi-
tectures. As we argued in chapter 3, the use of new abstractions for component interaction
are central to architectural design. In particular, the “lines” connecting the computational
elements of such a design clearly have a different status than the computational elements

Chapter 9. Discussion and Evaluation 175

(the “boxes”), and further, those lines may often represent abstractions with their own
non-trivial semantics.

We believe that there are many cases, such as the RTI connector in chapter 6, where the
relation between the events of different components’ ports is complex enough to require
the kinds of descriptive power that WRIGHT offers through its general Glue mechanism. It
is precisely for these non-trivial connectors that the formal approach is most valuable. It is
therefore appropriate to include the ability to describe these general connectors.

We have attempted to provide a notation that is oriented around the explicit identification,
characterization, and reasoning about interactions. Although from a logical point of view
explicit connectors are not strictly necessary, from a practical point of view we feel they
are indispensable. Rather than force software architects to encode their designs into a
formalism that is good for theoreticians, we aim to provide them with a notation that allows
a direct expression of the abstractions needed for architectural design. We are willing to
pay for this convenience with a somewhat more complex mapping between the notation
and the underlying semantics.

Another important benefit from the approach that we have taken is its support for
architectural styles. Most styles are constructed around a small set of interaction types,
such as rpc, event broadcast, etc. By separating the relatively fixed specifications of
connectors from the relatively variable specifications of components, WRIGHT more easily
supports this kind of structure in a style. Moreover, the definition of port-role compatibility
is directly responsive to connector reuse, since it permits many different kinds of component
ports to be used with the same kind of connector role.

One particular example of a simple, but useful, application of explicitly described
interactions is the resolution of name-mismatch problems. When constructing a system
from pre-existing components, such as libraries, an architect is often faced with the problem
that two components that ought to be usable together use different names for the various
routines that are used to communicate. In order to use these components together, it becomes
necessary to modify one or both of the components to make the names match. Then, there
are multiple versions of that component, the original and the newly renamed versions,
and no explicit mapping from one to the other. By making the correspondence between
events in different components explicit and separate from the components’ definitions,
WRIGHT connectors provide a means of describing the correspondence between the different
versions explicitly, thus supporting the effective reuse and maintenance of the components
in question. There is still only one version of the component specification, and the necessary
modification for reuse is described separately as a connector for a specific reuse context.

9.1.1.2 Is Glue too cumbersome?

While we have argued above that it is appropriate to include the ability to describe connector
interactions generally, as we have in WRIGHT, many connectors could be expressed by a
simple mapping of one component’s events to another’s, often by simple name matching.
In these cases, the Role definitions by themselves completely characterize the protocol. So
why bother with the Glue at all?

For example, a procedure call connector has two roles, a definer and a caller, each of
which specifies the request-then-result pattern of interaction:

176 A Formal Approach to Software Architecture

Connector ProcedureCall
Role Definer = request! result!Definer

x

Role Caller = request! result!Caller
u x

Glue = Definer.request ! Caller.request ! Glue
Caller.result ! Definer.result ! Glue
x

As we can see, the Glue simply shuttles the request event from caller to definer and the
result from definer to caller. One might argue that it would simplify WRIGHT to include
structures for omitting or simplifying the Glue description in connectors where the correct
matching of events is “obvious.”

We have chosen not to include this kind of syntactic structure as primitives in WRIGHT

for two reasons: (1) These additions do not add analytic power or simplify reasoning in
WRIGHT, and (2) use of overly simple connector definitions can weaken the leverage gained
by using WRIGHT.

To elaborate, these simple cases are already expressible as in our example above, and so
clearly a special syntax for them would not add analytic power to WRIGHT. Further, adding
special semantic interpretations of an omitted glue would not simplify the underlying
semantic model or methods for reasoning about these connectors. The repetition of a
protocol in multiple places in a connector description (in Roles and Glue) does not result in
additional constructs at the semantic level in WRIGHT’s model. The Role protocols provide
descriptions that do not appear in the interpretation of a configuration. These specifications
need to occur anyway (as we argued in chapter 3) to ensure the independence of connectors
from their eventual context of use. The use of a default Glue mechanism simply means that
the underlying configuration model contains constructs that are not explicitly spelled out
in the description. The process described by the explicit Glue would still need be present
in the underlying semantics, to maintain the correspondence of events between different
component instances (which have different names to ensure the independence of component
type descriptions).

Further, the WRIGHT style description facilities can be used to define simple syntaxes for
basic correspondences. For example, consider the basic one-to-one event pairings that are
typical in simple interactions such as rpc or client-server connectors. In this case, when all
of the event names match up and there is no overlap in initiated events, WRIGHT’s existing
definition facilities can be used to describe the following utility process:

Process NameMatchRole1 ;Role2 =
(e : �iRole1 � Role1.e ! Role2.e)
(e : �iRole2 � Role2.e ! Role1.e)
x

Given two roles, NameMatch constructs a process that observes all of the initiated events
of both roles, transmitting them from one role to another. NameMatch can then be used to
define the Glue for a connector:

Chapter 9. Discussion and Evaluation 177

Connector ProcedureCall
Role Definer = request! result!Definer

x

Role Caller = request! result!Caller
u x

Glue = NameMatchDefiner;Caller

NameMatch can be used in any situation to describe a simple name-correspondence between
roles, and so it is not necessary to include this kind of construction as a primitive in WRIGHT.

The second reason we have not included these syntactic simplifications in WRIGHT’s core
language is that the benefits of WRIGHT arise from the precise definition of the semantics
of architectural entities, and overly simple connector definitions dilute the usefulness of
WRIGHT’s checks.

A very simple, common kind of connector, for example, is a definition/use connector,
where one component defines a collection of calls that it accepts, and another component
uses them, by requesting that they occur and receiving a result. These roles could be
constructed, for example, using these utility definitions:

DefineSetE = (e : E � e.request !e.reply !DefineSetE) x

UseSetE = (u e : E � e.request !e.reply !UseSetE) u x

The definition/use connector might then be:

Connector DefUse(E : ��)
Role Definer = DefineSetE
Role User = UseSetE
Glue = NameMatchDefiner;User

In the DefUse connector, one participant, Definer, provides a set of services, but does not
restrict how they are to be used. Another participant, the User, will request some or all of
these services, in some order, without any details about the protocol except that a reply is
expected. The Glue ensures that service requests and replies are properly communicated
between the parties.

This is, in fact, exactly the semantics that are attributed to connectors in many ADLs
and module interconnection languages. Further, the DefUse connector type satisfies the
consistency checks defined for WRIGHT connectors. (NameMatch is always prepared to
accept an event, and is therefore deadlock-free, and the construction of matching initia-
tions/observations ensures initiator commits and single initiation.) But if this connector is
used in a situation where there are, in fact, constraints on the ordering of requests, as is
typical, the problems that the WRIGHT checks are meant to prevent will still occur. That is,
it is still perfectly possible for the component that fills the Definer role to expect the requests
to occur in a particular order, and thus for the configuration to fail in execution when the
User doesn’t live up to that expectation. Also, the connector says essentially nothing about
what will happen, so any analysis of the properties of a configuration that use this connector

178 A Formal Approach to Software Architecture

type will have to be delayed until it is instantiated, i.e., at a global rather than local level of
the architecture.

Thus, we claim that WRIGHT has struck the appropriate balance between descriptive
power and simplicity regarding these kinds of connectors. If a simple, name-matching
connector is in fact the right connector for a given architecture, then it can be described in
WRIGHT either directly at the cost of some redundancy, or through the use of shorthand
process definitions such as those described above, without any additional cost. These
common cases could easily be collected together in a style, so that the architect could use
the vocabulary directly in a WRIGHT configuration definition. On the other hand, these
cases do not inappropriately dominate the syntax and semantics of WRIGHT, and so the
architect is encouraged to use the full richness of detail and analysis that is available.1

9.1.1.3 Is Glue too weak?

While many kinds of connectors can be specified using WRIGHT, there is an important
semantic property of all WRIGHT connectors: They are asynchronous. This is because
all components have disjoint event alphabets. The connector synchronizes with each
component, but there is no “atomic” operation involving two components.

Asynchrony is currently an intrinsic part of the WRIGHT semantics. From the point of
view of describing certain behaviors, where there are atomic, shared control abstractions
available to the underlying system (e.g., rendezvous in Ada), this is a drawback. While it
would be possible to encode (the implementation of) a synchronous operation directly as
a connector, this isn’t really suitable, since it lowers the level of abstraction, rather than
raising it. That is, Ada provides a synchronization as a single, abstract, concept. By forcing
the architect to break that concept out into multiple events (a hand-shake, for example),
we reduce the level of abstraction by including details (of Ada’s implementation!) in the
architectural specification that are not included in the supposedly more concrete description.

In order to alleviate this problem, we could have augmented the syntax and semantics
of WRIGHT to include a direct component-component synchronization. This has not been
done for a technical reason that will be described below.

The way that a synchronous connector might be handled is as follows. We would
change WRIGHT’s Glue construct to have two parts: First, as currently, a behavior process
that makes correspondences between events via ordering (!) and choice (, u). Second,
an additional set of event aliases. These would take events from different roles and declare
that they are actually the same event. For example, using this alternate syntax, we might
describe a synchronous procedure call:

Connector SynchroProcedureCall
Role Definer = request! result!Definer

x

Role Caller = request! result!Caller
u x

1Of course, no language can force someone to have or use good taste in a description. We merely suggest
that WRIGHT supports the architect’s efforts to find a good description by making it easy to consider alternative
levels of detail and abstraction.

Chapter 9. Discussion and Evaluation 179

Glue = RUN
aliases Definer.request = Caller.request

Definer.result = Caller.result

SynchroProcedureCall is similar to the ProcedureCall connector above, but it indicates that
the events are actually the same event, rather than being transmitted by a Glue mechanism.
This behavior is typical of the connectors that would be encoded with the NameMatch
process described above. In these situations, the intended semantics is usually that there is
no mechanism (asynchronous or otherwise) that is associated with the connector, but that
the components communicate without any intermediaries.

As an alternative to this synchronous mechanism, in situations where one of the compo-
nents is strictly in control of each event (as occurs in procedure call, for example), we can
approximate synchrony in WRIGHT’s current form by using matched events, one initiated
and one observed, and having the Glue prevent any events between them. Because no
event can occur between the two events there is no way to observe the asynchrony within
the context of a single interaction.

This approximation has two weaknesses, however. First, at a global (configuration)
level, no single Glue controls all events, and there can be race conditions where “syn-
chronous” events on two different connectors appear to occur in different orders for differ-
ent components. Second, mixed-control synchronizations (where both parties must agree
for rendezvous to take place) are not accurately described with a simple event pair.

Technical details

In order to add a true synchronous aliasing construct to WRIGHT, it would be necessary to
modify the semantics of the language. One possibility is to define a renaming function for
each connector instance that has such constructs. The renaming function would rename
the events of a component instance’s port (e.g., ProcUse.Procedure.request) to the events
of another component instance’s port (e.g., ProcDef.Definition.request). The renaming
function would be applied to the appropriate instance before it is placed in parallel with
the rest of the system, at which point it would synchronize with the other component.
The apparently simpler scheme of providing a renaming function per connector type will
not work because the port’s name is not known until instantiation. Thus, interpreting the
synchronous construct requires a more complicated model of instantiation than WRIGHT

currently has, since instantiation of types and attachments must be handled simultaneously.
The main technical difficulty with this approach, however, has to do with connector

self-loops. A self-loop is a connector instance that has one component that is attached to
the same connector more than once via different ports and roles.

The problem is that, in CSP, if one were to take a process such as

P = a ! R b ! Q,

and rename two events in the process so that they now have the same name, the result is
two events with the same name, not one event. For example, take P, and rename both a
and b to c. The resulting process is

180 A Formal Approach to Software Architecture

P0 = c ! R0 c ! Q0.

There isn’t any “synchronization” between the now aliased a and b events. If a was a
procedure call, and b guarded a procedure definition, the alias would not result in P calling
itself, as we would want.If there are two processes in parallel, one that initiates a procedure
call and one that executes the procedure body, we expect that once the procedure call
is initiated, the process initiating the procedure call will wait while the procedure body
is executed. Then, once that is complete, the initiating procedure will continue. If, in
the process P above, we consider a to be the initiation and b to be the signal to start
the procedure body executing, we would expect the event c (now the combined “start-of-
procedure” event) to lead to the execution of Q0, the procedure body, followed by R0, the
rest of the program. Instead, one of the two will occur (but we don’t know which, since
the choice is non-deterministic), and the other will not. Rather than the alternative between
R0 and Q0 above, we would rather have interpreted the aliasing of a and b in P with a
construction such as

P0 = c ! (Q0;P0)
or

P0 = c ! (R0kQ0)

However, it is not clear how to create a general form for synchronizing events within a
sequential process, which is why the construct has been omitted from the general language
definition. The problem of how to describe events separately in a sequential model and
then to combine them is similar to problems associated with describing different views of
the same event. The difficulties of structuring views and actions in a sequential model are
discussed in, for example [Jac95a].

While explicitly constructed self-loops (such as a recursive procedure call) may be
avoided in many styles (it is simple to define a constraint that prevents them), they factor
significantly in the intermediate forms of structural induction proofs such as those demon-
strated in chapter 5. Thus, we felt it was better to omit direct component-component
synchronization altogether, rather than to complicate reasoning in WRIGHT through the
frequent occurrence of special cases. An alternative might be to provide a completely dif-
ferent, explicitly synchronous semantics to connection. We discuss the issue of alternative
semantic models for architectural description in future work (chapter 10).

9.1.2 Why not CSP Directly?

As we saw in chapter 3 and in the case studies, WRIGHT makes heavy use of the semantics
of CSP. The question therefore arises, why not simply use CSP directly to describe archi-
tectures? Why do we need an explicitly architectural notion at all? We believe that there
are important methodological reasons why it makes sense to provide a specialized notation
for architectural specification.

First is the goal of elucidating the architectural abstractions: components, connectors,
configurations. Each of these plays a prominent role in architectural specification as it is
practiced, and so it is important to understand what purpose each serves in a specification

Chapter 9. Discussion and Evaluation 181

and how they are related. By providing a notation with explicit constructs for describing
these abstractions, we match the vocabulary of the architect’s informal design practices.
This means that it should be easier to map one into the other, both in terms of formalizing an
informal architectural specification and communicating the results of architectural analysis
to system developers.

In addition to the benefits of defining the architectural abstractions, regardless of how
well they can be simulated using abstractions of CSP, there are three aspects of architectural
specifications that make the additional notational structures of WRIGHT valuable in easing
the specifiers task. These are (1) localization, (2) the type/instance distinction, and (3) the
asymmetrical roles of components (as context-independent behaviors) and connectors (as
context-setting definitions).

As we saw earlier, a WRIGHT specification structures a system’s architecture definitionby
providing both local, interface specifications, such as the role specifications on a connector,
and overall behavior specifications, such as the connector’s glue. The role specifications
localize one aspect of the interaction behavior to simplify consistency-checking and other
analysis. In order to achieve this localization, the definition of a connector role (and of ports,
computations, and glue, for that matter) should not depend on elements of the specification
that are outside the local area of concern. The architectural specification thus encapsulates
each definition so that it can be analyzed independently of the rest of the architecture, and
can potentially be used in many different contexts. Because CSP uses global event names
(i.e., the k operator uses exact, unstructured name matching), there must be an additional
level of structuring to ensure that the descriptions are not falsely combined because of
name clashes, and that system parts are not prevented from being combined by not having
selected the same name for the same construct. This level of structuring, achieved here
by the systematic relabelling of events, can either be redone explicitly and individually for
every architectural specification using a base formalism such as CSP, or it can be provided
implicitly and automatically by an architectural language such as WRIGHT.

Closely related to the goal of localization is the important distinction between types and
instances. A common difficulty in understanding an architectural specification is to know
whether the specification represents a type of component or connector to be used in a class
of systems, or a specific instance of the structure of an individual system. If we read a
specification of a pipe, are we being informed of the interaction that will take place between
two particular filters in a particular system, or are we trying to understand a general pattern
of interaction that can occur many times in any given system? By reducing all descriptions
to the same construct, the process, CSP does not help us answer this question, and so we
must add this information to any specification.

An importantdistinction in architectural specification is between thecontext-independent,
encapsulated behaviors provided by components and the context-setting interaction patterns
provided by connectors. A result of this distinction is that the “interfaces” to the components
and connectors (ports and roles, respectively) both describe the behavior of the components.
Ports describe the component with which it is associated while roles constrain a component
which may participate in the interaction represented by the connector. Similarly, a compo-
nent’s Computation describes the behavior of the component independent of how it will
be used in the configuration. The connector’s Glue, on the other hand, describes a pattern
of use—that is, it describes how the components will be fit into the configuration. This

182 A Formal Approach to Software Architecture

distinction, between a context of use and a use independent of context, is not made in CSP:
By virtue of CSP’s uniform treatment of all entities as processes, all behavior descriptions
are equal.

9.1.3 Dynamism

A limitation of CSP is that it is inherently limited to systems with static process structure.
That is, the set of possible processes must be known at system definition time. In particular,
new processes cannot be created or passed as parameters in a running system. WRIGHT

inherits this limitation. However, it is clear that there are many architectures that are
fundamentally dynamic. For example, one might be developing an air traffic control
system in which airplanes become connected to the nearest tracking station as they fly
through space.

We believe that the choice to limit WRIGHT to static architectures is the right one. First,
the class of non-dynamic systems is both significant and complex. For these systems,
including dynamic features complicates analysis, because the structure of the architecture
cannot then be used to guide reasoning about the behavior of the system. If we cannot
assume that the structure is fixed, then we must consider all possible structural variations
as well as all possible behavior variations. We believe that separating these concerns
and focussing WRIGHT on abstract behavior in a fixed architectural configuration provides
significant leverage by reducing the complexity of analysis.

Second, many systems that are commonly thought of as a single, dynamic architectural
configuration can be treated as a specialized architectural style. The style would have tight
topological constraints and use parameterized components and connectors. For example, a
client-server system with a varying number of clients on different executions could be con-
sidered “dynamic,” with different clients arriving and departing unpredictably. However,
on any given execution of the architecture there will be a fixed number of clients. Thus, we
can define a server type that is parameterized by the number of client connections and define
a style that covers each of the topologies of interest. Then, any execution will have a static
configuration with a fixed number of clients. All of the mechanisms we have described
above for WRIGHT can be applied directly within this framework: Any given execution can
be analyzed as a configuration with a given behavior; if we wish to establish a property for
all possible configurations, we can reason about the style as a family of systems.

Third, a common case of dynamism is in systems with setup and take-down phases.
That is, many systems have three distinct execution phases. First, components are launched
and communications paths are initialized. Second, there is a “normal” execution phase,
during which the configuration of the system is fixed. Third, there is a final phase in which
communication is halted and components terminate.

These systems can be handled in WRIGHT. One way to handle these systems is to ignore
setup and take-down. Using this technique, only the normal execution phase is considered.
The normal execution phase is the phase during which consistency is most important. The
other phases are responsible for getting into and out of that consistent state. The bulk of
any complex computation will usually fall into the normal phase.

Another way of modelling setup and take-down in WRIGHT is to treat the architecture
as existing at all times, and to view setup and take-down activities as just more events on

Chapter 9. Discussion and Evaluation 183

the existing communication paths. This is how setup and take-down is handled in both the
AEGIS (chapter 4) and HLA case studies (chapter 6). In HLA, federates that join or resign
from a federation execution are treated as existing at all times, but use joinFedExecution
and resignFedExecution events to signal their start and finish. The protocol is defined so
that no normal activity is permitted when the component logically should not be executing.
Using this kind of model, we are able to analyze not just the activity of a configuration while
it is in a fixed state, but also during setup and take-down. In the HLA example, we were
able to show a race condition between creating the RTI connector and having a component
attempt to locate it.

Finally, we claim that WRIGHT can contribute to the analysis even of systems where the
dynamic character of the architecture is inseparable from its abstract behavior — when the
architecture must change during normal execution in order to achieve its goals, or where
there is no way of bounding the size of the architecture even on a single execution. Even
for these systems it is important to describe and analyze the behavior of components and
their interactions during those times when re-configuration is not taking place.

Finding an appropriate formal basis for describing the dynamic aspects of architecture,
as well as integrating the kinds of behavior analysis that WRIGHT supports with those
descriptions, is a significant possible avenue of future research (see chapter 10).

9.2 Description of Styles

9.2.1 Use of Constraints

A major feature of WRIGHT is its definition of architectural styles as predicates that must
be satisfied by all instances of that style. This differs from previous treatments of style
definition [AAG93, MQ94, GAO94] by focussing on properties that must be satisfied by
instances of the style rather than on the definition of unique vocabulary, semantic models,
and tools for a style.

To elaborate, the style definition models of Abowd et al. [AAG93] and of Moriconi et
al. [MQ94] are based on the idea that a style defines a collection of syntactic structures,
a semantic model for reasoning about systems, and a mapping between the two. While
Abowd et al. do define a generic abstract syntax for architectural configurations, they
emphasize that a significant element of a style is its unique concrete syntax. That is, syntax
is developed for each style with no necessary relation with the vocabulary of any other
style.

Additionally, the semantic model of an architecture (i.e., how meaning is assigned
to a component or connector, and how components and connectors are combined into a
configuration) must be constructed for each style. While Moriconi et al. do permit the
definition of axioms (i.e., constraints) that must hold of a configuration in a style, their
model is explicitly separated from any tie to a particular description language or semantic
model. Instead their model requires that a style definition include both a syntax and a
semantic theory in which reasoning about systems will occur. That is, in this model axioms
can restrict a style beyond the full scope of the semantic theory but do not form a sufficient
definition of the style.

184 A Formal Approach to Software Architecture

An Aesop architecture environment [GAO94] takes a somewhat different approach.
Rather than supply a semantic theory in which to reason about architectures in a given
style, a style definition consists of a collection of type definitions, which are subtypes of
the basic types of component, connector, configuration, etc. The semantics of the style are
embedded in the methods of the types. These methods are used to manipulate designs in
the process of being created, that is, for evolving an architecture description. Thus, the
scope of a style is defined by the closure of the operations that can be applied in sequence,
beginning with an empty (or other initial supplied) architecture description. The semantics
of these systems are not explicitly defined, but rather are implicit in special methods that take
advantage of the described systems properties. For example, a “build-me” method might be
defined for a configuration. This method would produce an executable implementation of
the architecture. Thus, the “build-me” method defines the behavior of a given architecture
description by converting the description into another artifact that has a defined behavior.
The approach of defining semantics through methods on types provides no explicit means of
determining whether a given configuration is a member of a style, making that information
implicit in the vocabulary used, and leaves the interpretation of that vocabulary up to
developers who build tools to take advantage of the style.

While a WRIGHT style can introduce vocabulary through the definition of types, it is
not required to do so. Further, the semantics of configurations are consistent across all
descriptions, regardless of style, and a configuration description may introduce and use its
own types beyond those provided by the style definition.

As we argue below, the advantage of our approach is two-fold: First, it means that a style
is characterized directly, rather than implicitly by the range of systems that are describable
using the mechanisms provided. Second, the use of a common language for the description
of configurations means that it is easier to define and use a new style.

9.2.1.1 Direct characterization of style

We have argued that an important benefit of formalizing architectural style is the ability to
reason about its members as a family of systems. In chapter 5, we showed how reasoning
about a style could provide important guarantees to users of that style. It was because of
a direct characterization of that style that we were able to do so; the constraint predicates
of the style provide a set of axioms for reasoning about the systems that are in the style. If
we are concerned about a given property, such as global-deadlock or data-consistency, we
can we can reason directly from the style definition to prove formally whether the property
must hold for all members of the style, does not hold for any member, or holds for some and
not others. Proving the property for a given system is then a simple matter of evaluating
the style’s defining constraints on the configuration: if the predicates are true, the system is
in the style and the general proof applies directly.

If, on the other hand, as is done in other approaches, a style is defined solely in terms of
a style-specific vocabulary and tools (either development tools or semantic models) that are
applied to systems in that style, it is much less straightforward to determine the common
properties of the style. It is generally not possible to directly characterize a system that
may or may not be a member of the style; rather, only those that are members of the style
can be characterized, and the inability to state something in the given vocabulary represents

Chapter 9. Discussion and Evaluation 185

“non-membership.” Proofs regarding the ability of a language to express something are
difficult, requiring the introduction of meta-languages and characterization of the power of
the reasoning system introduced by a given semantic theory.

The inability to distinguish the semantic theory of a vocabulary from a family of systems
leads to complications in reasoning models about systems and styles. For example, Moriconi
et al.’s models of architectural refinement require a completeness assumption about any
specification. That is, it must be assumed that not only are all provable properties true, but
all unprovable properties are false. The completeness assumption means that all proofs of
refinement or style membership are required to make an argument about the weakness of
their specification as well as the much simpler demonstration of property satisfaction. This
further means that if an architect wishes to permit a property to be un-specified in a given
system description, he or she must select a semantic theory in which it is impossible to state
that property. Otherwise, failure to specify a property supplies a default answer.

In the Aesop system, the use of vocabulary to delimit the coverage of a style means that
Aesop is forced to define a non-standard interpretation of subtyping. Typically, a subtype
of another type is required to preserve the semantics of any methods. That is, if two types
s and t share a method m, and s is a subtype of t , then the effect of applying the method
m to an object of type s is required to be the same as the effect of applying that method
to an equivalent object of type t . In Aesop, this requirement is weakened to include the
possibility that the method may do nothing even when there was an effect on the object of
type t . Thus, whenever a tool applies a method to any object, it must then check whether
an effect actually occured, in case a subtype was involved.

In each of these cases, reasoning about a system is significantly more complicated than
necessary. In the model of [MQ94], the architect is constantly forced to reason about
all of the things that may not be specified, as well as those that must be specified. In
Aesop, establishing that a system is in a given style does not provide sufficient information
about what can be done with it, because a sub-style might reduce the number of legal
manipulations. Further, establishing that a configuration is in a style consists of finding
a sequence of methods (of unknown effect) that will result in the construction of that
configuration.

9.2.1.2 Use of a common language and semantics for configurations

In this thesis, we have argued that an important goal is to provide a practical basis for
the definition and use of architectural styles. One way that we have achieved this goal is
by supplying an architecturally structured semantic model for configurations. That is, by
describing an architecture in WRIGHT, it becomes possible to reason about the properties
of that system, and to use the architectural structure of the description to structure analysis.
The achieve this, the semantics of WRIGHT defines mappings from local to global names (of
events), instantiation of multiple instances of a single type, and the compositional behavior
of interacting components.

A style definition in WRIGHT can take advantage of that architectural structure directly,
because all descriptions of architectures use that structure and the underlying semantics,
and the constraint predicates can refer to the structure directly.

If a style description provides its own semantic model, as is done in [AAG93] and [MQ94],

186 A Formal Approach to Software Architecture

then the style developer is forced to redo all of the architectural structuring of the semantics
provided by WRIGHT. This is a non-trivial undertaking and significantly increases the cost
of creating a style. Thus, a style would only be developed if there is a relatively high
potential payoff, and then none of the effort of developing one semantic model can be
reused in another style.

In WRIGHT on the other hand, the cost of specifying even a very specialized style
is relatively small. It is convenient to specify a style that is just constrained enough to
enable an analysis or to guarantee a property of interest. Further, simply by including
the vocabulary and defining predicates in another style, all of the analytic results of one
style can be transferred to another.2 Thus, architects can better take advantage of formal
definition and analysis of architectural styles.

9.2.2 Are Constraints at the Right Level of Power?

One property that the definition of styles through special-purpose vocabulary or types has
is that it is constructive. That is, the definition of the style includes directly the means
of building a configuration that will be guaranteed to be in the style. WRIGHT’s use of
constraint predicates, on the other hand, makes membership of a configuration in a style a
proof obligation. That is, one must first construct the configuration and then demonstrate
that it is a member of the style.

This is a potential problem because one can write constraints that are arbitrarily difficult
to satisfy. Consider, for example, the JC style described in chapter 5. In that chapter we
defined a predicate Deadlock , as follows:

Deadlock b= 9 t : Traces(System)

j (t ;�System) 2 Failures(System) ^ last(t) 6= p

We can legally define a style in which the sole constraint is : Deadlock , that is, that the
system must be globally deadlock free. But this provides no help whatsoever to developers
of systems. It is obvious on the face of it that we want to build a system that does not
contain global deadlocks — the hard question is how to accomplish that.

The question therefore arises: Is there a way in which we could simplify or restrict the
constraint language to guarantee that styles will be constructive, i.e., that the definition of
a style makes it clear how to construct a system that is a member of the style?

Unfortunately, it is not reasonable to expect that we can create a language of predicates
such that it covers only systems that are easy to construct without unduly limiting our ability
to define styles of interest in real-world situations. Indeed, balancing the architect’s desire
for construction guidance with the need for analytically powerful styles is the essence of the
style design problem. To discover or design a class of systems that share a given property
and that are easily constructed is fundamentally a creative task, and one that we do not
aspire to solve through formalism. Rather, we hope to provide the style designer and the
system architect with the means to express their solutions in such a way that they can be
checked for consistency and completeness and that formal tools can be applied to them.

2Of course, the two styles’ predicates must not contradict each other. In that case, the resulting style
contains no instances.

Chapter 9. Discussion and Evaluation 187

With the goal in mind of making available analytic and expressive tools, we have chosen
not to arbitrarily restrict the constraints that may be placed on a style. Instead, we have
included enough expressive power so that style designers can find their own solutions.

9.3 Analysis of Configurations and Styles

9.3.1 Why CSP?

An obvious question is: Why use CSP to specify architecture? Why not use an alternative,
possibly simpler, notation and model of concurrency?

We investigated several alternative approaches including several state machines mod-
els (I/O Automata [LT88], Statecharts [Har87], SMV [C+86], and SDL [Hol91]), Petri
Nets [Pet77], and regular expressions. While these systems have been used to model proto-
cols and have well-defined mechanisms for composition, we favor the use of CSP for three
reasons.

First is our concern with being able to capture certain critical properties of architectural
connection. These properties include the ability to characterize the dynamic behavior of
inter-component communication, to specify which components are responsible for making
decisions during interaction, and to detect mismatched assumptions that could cause a
component to get “stuck” midway through its interaction with another component.

CSP provides an ideal semantic basis for these properties. In particular, it is the only
formal notation for concurrent systems that has both external (deterministic) and internal
(non-deterministic) choice operators. These operators allow us to state precisely where
the responsibilities for action and reaction lie in a system. Moreover, to the extent that
deadlock provides a good model for what can go wrong when components interact, CSP
is provably the right semantic model, since formally, it is fully abstract with respect to
deadlock freedom of communicating processes [BR85].

Second is the need for a simple but powerful form of composition. Architecture is
inherently about putting parts together to make larger systems. CSP’s parallel composition
operator works particularly well in this regard. In particular, it has the desirable compo-
sitional property that the traces of a (parallel) composition must satisfy the specifications
of each of its parts. This means that one can reason about the behavior of a system’s
parts separately, confident that the resulting system will continue to respect the properties
established about the parts.

Third is the pragmatic concern for tools that can assist with automated analysis of
specifications. We believe that unless we can provide for formal specifications the kinds
of direct, automated feedback that compilers give current programming notations, there is
little hope of getting engineers to use our notations for real systems.

Possible alternative formal bases?

This is not to argue that CSP is the only notation that could have been used for WRIGHT.
Indeed, we recognize that the choice of CSP allows us to capture only a certain class of
properties. For example, WRIGHT does not handle properties such as timing behavior of
interactions or fairness because CSP’s semantic model is not rich enough. As we saw in

188 A Formal Approach to Software Architecture

chapter 8, it is possible to retain the general descriptive framework of WRIGHT, but replace
CSP with an alternative formalism. This argues that the notion of an ADL tied to a particular
formalism can be generalized beyond the specific example of WRIGHT, and used to support
other kinds of analysis of complex software systems. Further, by retaining a common
structural framework, we can compare and combine results from different formalisms.

9.3.2 Initiated v. Observed Events

9.3.2.1 Why make the distinction?

WRIGHT departs from the basic CSP notation through the addition of a distinction between
initiating and observing an event, which is indicated by adding an overbar (e) to initiated
events. Recall that, as we described in chapter 3, every event in WRIGHT has one party
(a component or a connector) that initiates the event, causing it to occur, while all others
observe the event. One might well ask whether this distinction is necessary.

As we argued previously (in section 9.1.1.1) regarding the need to explicitly and locally
describe connectors in WRIGHT, it is important to recognize that there are issues and
constructs, that, while general methods may omit them to achieve formal simplicity, are of
vital importance to the task of designing and analyzing a complex software system. One
of these is, we believe, the concept of locus of control. While CSP’s model is excellent
at describing the collection of possible sequences of events, and for locating conflicts
regarding the ordering of events, its model of compositionality deliberately hides the sub-
structure of a process. That is, once two processes have been composed via k, there is no
formal distinction between the composed process and one that has the same behavior but
was constructed solely using sequential operators (!, , etc). In fact, this equivalence is
the essence of a process-algebraic model of composition. There are rules for describing
the meaning of parallel composition in terms of the sequential operators. Thus, in CSP it
is not possible to distinguish what subprocess “caused” the event. In a composed process,
the event occurs globally, and represents an external observation of the interaction, rather
than an action by some party that is now internal to the process.

On the other hand, software architectural analysis is specifically focussed on how
different, identifiable parts behave when composed, and on the construction of components
that will cause a certain effect to occur. That is, when considering the behavior of an
architecture, we do not only care what happens. Rather, we also care what component is
responsible for any given event. We must distinguish between a component that ensures
that an event will occur and one that simply admits that an event might possibly occur.
Thus, we have chosen to add the initiated/observed distinction to the basic semantics of
WRIGHT. This has led to new opportunities for analysis and checking, as we discussed in
previous chapters.

9.3.2.2 Initiator commits too strong

Recall that one of the basic consistency checks in WRIGHT is the rule of initiator commits.
This check ensures that a process that claims to initiate an event does indeed treat the event
appropriately, not permitting outside control of the event at the moment of decision.

Chapter 9. Discussion and Evaluation 189

As we discussed in chapter 3, there are situations where a specification can be considered
consistent even if it does not obey the strict definition of the “initiator commits” rule. One
such situation is when a component contains internal concurrency. Another situation is
when the continuation of a protocol depends on distinguishing different return values from
a procedure call.

The first situation, internal component concurrency, can occur in two ways. First,
a component may be implemented directly using a threading mechanism, as we saw in
the AEGIS example of chapter 4. Second, whenever a WRIGHT component is decomposed
hierarchically, the process defining the composed component contains internal concurrency.
That is, each of the components contained within the larger component are represented as
distinct threads within the larger component. In each of these cases, race conditions between
different threads that initiate events will appear as violations of the basic initiator commits
rule. The rule can still be effectively applied, but it must be applied to each thread within
the component rather than to the complete computation. In the case of a hierarchical
decomposition, the rule applies only to the components at the lowest level of the hierarchy.
In the case of a non-hierarchical WRIGHT computation that contains concurrency directly,
the analysis must be tailored to the particular form that the concurrency takes.

The second situation is when a single logical interaction event is split into two different
events. For example, recall the Pipe connector that we used as an example in chapter 3.
The Sink role, when it chooses to receive data, must be aware of the possibility that it may
be notified of end-of-data instead. We are forced, under the initiator commits rule, to divide
the call and result of a pipe into two parts:

Role Sink = (read!(data?x!Sink end-of-data!close!x)) u (close!x)

The first part of the protocol is a notification to the Glue that a value is desired (via event
read), and the second is either a data value (data?x) or an end of file (end-of-data). The
problem with this specification is that we have, in effect, divided what should be a single
event, a procedure call, into multiple events. While this may be a perfectly accurate
characterization of the internal behavior of the system, it has the effect of lowering the
level of abstraction in this connector. The description now shows a single concept, the read
procedure, as two concepts, request and result.

What we would have preferred to see is the following:

Role Sink = (read?x!Sink read-end-of-data!close!x)) u (close!x)

In this formulation, the return value on the data is used to distinguish control paths,
by distinguishing a normal value (?x) from a special result (-end-of-data, which is now
effectively a value rather than a separate event). In this case, read is really thought of
as one event, which is appropriately initiated (and committed) by the role, but for which
the Glue will decide what data value it will take. If we permitted the use of embedded
conditionals, we could get a similar effect by treating eof as a special data value and making
the behavior conditional on x :

Role Sink = (close!x) u read?x!
(

close!x; when x = eof

Sink; otherwise

190 A Formal Approach to Software Architecture

Unfortunately, this solution is also not permitted by the current form of our initiator
commits rule. The problem here is that CSP treats all events as atomic entities, with no
data component. That is, read?x is really a family of events, read.1, read.2, etc., and
read-end-of-data is just another event. read-end-of-data has no formal tie to the other read
events, and in fact, there is no formal way of tying any of the events read.1 etc. to each
other. Thus, in our earlier definition of “initiator commits” there is no means of indicating
that the read events and read-end-of-data are really “one” event and that they should be
grouped together for the purposes of the test.

This is a real weakness of the initiator commits rule in WRIGHT. It means that a failure
of an architectural element to pass the initiator-commits test must be considered by the
architect on a case-by-case basis, taking into account the possibility of concurrency and
the need to balance level-of-abstraction with accuracy. However, we believe that there is
significant value in identifying situations where there might be a problem with an element
failing to treat an initiated event properly, and that this justifies including the test in the
standard suite of checks.

9.4 Relevance to Practice

Throughout this dissertation we have argued that WRIGHT represents a practical approach to
the description and analysis of software architecture. By providing abstractions that match
those used by architects, by defining simple, automatable checks that can locate common
and significant errors in architectures, by supporting the analysis of families of systems
through style, and by providing a precise, analyzable basis for characterizing the abstract
behavior of architectures, WRIGHT represents an important tool for the software architect.
We have also shown, in particular in chapter 6, how WRIGHT’s descriptive mechanisms can
be combined with specific abstraction and localization techniques to support the incremental
analysis of complex, real-world systems. Thus, we have demonstrated that WRIGHT scales
to support precise, formal, description and analysis of interaction patterns in large-scale
systems.

But the ability to scale is not sufficient to guarantee that WRIGHT can be applied in
practice. In addition, the use of WRIGHT must fit into the general context of software
engineering practice. It must be cost effective to apply WRIGHT in a resource-constrained
environment, the architectural effort must provide benefits at other stages of the software
lifecycle, and it must be possible to integrate the formal, architectural effort with existing
software design practices.

In this section we address three specific issues regarding WRIGHT’s relevance to software
engineering practice. These issues are the cost of using formalism in engineering, WRIGHT’s
relation to a system’s implementation, and the application of WRIGHT’s techniques to non-
architectural models of design.

9.4.1 Can Formalism be Effective in Software Engineering?

In the introduction to this dissertation and in section 9.1.2 we argued that basic, general-
purpose formal notations such as CSP and Z, in their raw form, are not well suited to

Chapter 9. Discussion and Evaluation 191

the problem of software architecture and analysis. It is too cumbersome to describe a
complex system in these general formalisms, requiring the reinvention of mechanisms for
localizing components and connectors and for their composition. Further (as we argued in
section 9.2.1.2), using a general formalism to describe styles does not avoid the problem
of re-inventing structures for configurations, because it is still necessary to invent a special
vocabulary and semantic model before any results can be applied to instances of the style.

We argue that WRIGHT overcomes these problems by structuring the formalization
task to be directly applicable to architectures, by increasing the applicability of analysis
through architectural style, and by supporting the incremental development and analysis of
architectural descriptions.

First, WRIGHT provides a notation in which the structure of the formalmodels of behavior
match the structure of large systems. Components and connectors are distinguished, and
they may be described by reusable, independent types that can be flexibly combined in
various configurations. Rather than requiring the analyst of a particular system to develop
special mechanisms for relating the local descriptions of individual computations and
interactions to the global behavior of a composed configuration, WRIGHT provides the
appropriate models directly. Thus, because WRIGHT is tailored to the task, it is easier to
describe and analyze an architecture in WRIGHT than in general purpose formalisms.

Second, by supporting the description of families of systems as styles, and by supporting
the application of style-based analyses to actual configurations, WRIGHT permits the local-
ization of formalization effort in a development enterprise. As we saw in the JC and HLA
case studies (chapters 5 and 6), it is possible to analyze entire classes of systems that share a
common vocabulary and obey simple topological rules. Once a style has been formalized,
the results from that style’s formalization can be applied directly to configurations that are
derived from the style. If the appropriate vocabulary is used, no further formal effort is
necessary beyond evaluating the topological predicates.

For example, any analysis performed on the HLA style of chapter 6 is directly applicable
to every federation developed. There is no need for any developer of a federation to
perform formal analysis, or even to understand the already-completed formalization. The
correspondence between the English language standard and the formal description has been
spelled out by the style analyst, and the federation developer can therefore refer solely to
the standard, while at the same time taking advantage of the results of formalization in
WRIGHT.

Third, WRIGHT’s support for incremental development of descriptions, partial descrip-
tions, and selection of the level of detail mean that some benefits of formalization can be
achieved at a low initial cost. If an architect does not want to take the time to fully define
the protocol of a particular interaction, the DefUse connector described in section 9.1.1.2
can be used immediately.3 Even with this simple connector, the architect can determine
whether the routines called by one component match up with those defined by another,
without needing to construct the entire system and to attempt to compile it.

Then, if the architect has more information about a particular interaction, or wishes to
explore a particular question regarding the interaction of different call orderings, he or she
can substitute another, more detailed connector for DefUse, and thereby deepen the analysis.

3But see that section for a discussion of its limitations.

192 A Formal Approach to Software Architecture

For example, if some of the routines in an interaction are specifically related to initialization,
the roles can be modified to require that those routines are used before the others, and, once
initialization is complete, the rest of the interaction can be left unconstrained. WRIGHT’s
analytic capabilities can be applied to this slightly more detailed protocol without requiring
a full elaboration of the protocols following initialization.

We have shown through the HLA case study how this incremental approach can be
pursued further, successively deepening the analysis through the elaboration of a protocol,
each elaboration requiring only a level of effort that is commensurate with the benefits to
be gained from the newly enabled analyses.

9.4.2 Relation to Implementation

One thing that distinguishes WRIGHT from many other architectural notations is that it does
not explicitly state how the architectural description is related to a system’s implementation.
Instead, WRIGHT provides an abstract description of system behavior without reference
to particular implementation constructs. An important question, therefore, is how an
architecture description in WRIGHT can be related to an implementation.

There are several techniques that may be used to relate a WRIGHT description to a more
concrete level of detail. These include automatic association of implementation constructs
with abstract descriptions and maintenance of a correspondence through style-specific
libraries and compilers.

9.4.2.1 Automating association to implementation

An existing body of work addresses the question of how, using special annotations, one can
extract a finite-state-automaton specification from a program written in Ada and perform
analysis on it [CA95]. There is currently work underway on automatically transforming
WRIGHT specifications into these FSA-machines for the purpose of verifying the corre-
spondence between a WRIGHT specification and an Ada program. This technique has
successfully been applied to specifications of some “model” problems, such as the gas
station pump [NACO97]. This work is closely related to the general question of refinement
in architecture, which is discussed in future work.

9.4.2.2 Maintenance of association through style

Another approach to associating implementations with WRIGHT specification is through
the recognition that many styles have specific implementation techniques associated with
them and, in particular, are often constructed around infrastructure to support particular
connectors. This kind of correspondence between abstract connectors and style-specific
infrastructure, that supports a one-to-one correspondence between abstract components and
implementation modules, is common. It is often, as we discussed in the introduction, a
motivating factor behind the description of an architectural style.

For example, the HLA case study discussed in chapter 6 is an analysis of a standard
that is specifically designed to support infrastructure for communication between elements
of a simulation. In this case, each event in the style’s single connector type, the RTI,

Chapter 9. Discussion and Evaluation 193

corresponds to a specific message that can be sent or received by the run-time infrastructure
of systems constructed to meet the standard. Thus, as we discussed in that chapter, there is a
clear correspondence between the structure of the WRIGHT architecture description and the
structure of any implementation using the High-Level Architecture, and a similarly clear
correspondence between abstract behavior described by the WRIGHT specification and the
actual behavior of the implementation.

While there might not be a formal definition of the relationship between a WRIGHT

specification and an implementation, for the simple reason that there is often no formal
definition of the implementation, we would argue that in most cases, especially when a
style is used, the results of a WRIGHT analysis are directly applicable to the implementation
of the described system.

9.4.3 Integration with Other Design Techniques

A significant issue for the effective use of WRIGHT in practice is its ability to integrate
with design models that are not explicitly architectural. There are many design practices,
such as object-oriented design, in common use, and if using WRIGHT involves discarding
these techniques and losing their benefits, there is little hope for the adoption of WRIGHT in
practice.

While we cannot, obviously, cover all existing models of design, in this section we
show how WRIGHT can be integrated with a particular, common method, object-oriented
design. We further show how use of WRIGHT’s descriptive mechanisms can enhance both
current models of object-oriented typing and emerging techniques such as object-oriented
design patterns. We show WRIGHT’s compatibility by describing how a particular kind
of architectural description can model object-oriented types, and thus an object-oriented
design.4

In our discussion of syntactic shortcuts in WRIGHT, we described a simple DefUse
connector, which defined a bundle of routines that would be provided by one party and
called by another (section 9.1.1.2). This is exactly the abstraction presented by an object-
oriented type. A slightly more complex version of DefUse can be interpreted to represent
an object-oriented type. This version would include parameter and return value types on
the request and reply events respectively.

We model data parameters in WRIGHT by extending DefUse to define sets of values that
are associated with parameter and return values. Data values are accepted by the Definer
through a deterministic choice over versions of request (v : T � request?v !:::). Return
values are chosen by a non-deterministic choice (u v : T � result!v !::). For the User,
parameter choice is modelled by non-deterministic choice and return value is modelled by
deterministic choice.

We can view the component playing the Definer role as the implementation of the type,
while the component playing the User role is a client of the type. According to WRIGHT’s
semantics, the behavior of the configuration is that each component that plays a User role
invokes the methods of the Definer based on the internals of its computation and on methods

4Of course, as we discussed earlier, WRIGHT is limited to systems that do not depend on arbitrary
reconfigurations. Many object-oriented designs are relatively static, however, and the techniques here apply
in those cases.

194 A Formal Approach to Software Architecture

that are invoked on it (through the component’s other ports, which play Definer roles in other
interactions). The component playing the Definer role responds to the requests, carrying
out a computation that changes the component’s internal state and calculates return values,
which are then sent back to the User via the result event. Thus, the behavior ascribed to the
WRIGHT configuration matches that of an object-oriented description of the system when
each component corresponds to an object instance and each DefUse connector corresponds
to a reference from one object to another.

Further, under this interpretation WRIGHT’s port-role compatibility checks match the
standard object-oriented type “compatibility” checks. Any component attached to the User
role has the opportunity to call any of the methods defined, and if it does so, it must provide
parameters (to the request event) that do not fall outside the range of permitted values.
Also, it must then respond to the result event, accepting all possible return values. In order
to be compatible with the User role, the component is not required to call any of the methods
that are offered, but it may not call any that are not offered. Thus, port-role compatibility
for the User role matches the type checks on proper use of a declared type.

The criteria for a port’s compatibility with the Definer role also corresponds to object-
oriented compatibility checks, in this case to subtype conformance. A component playing
the Definer must respond to all of the methods (via the request event), and handle all
possible parameter values supplied (i.e., all values of the parameter’s type). In responding
to the method invocation, the component must provide a return value (via the result event)
that is within the defined range, but need not cover the entire output range. That is, the type
of the result must conform to the declared type, but may actually be a subtype. However,
the component filling the Definer role may also offer additional methods, and further, may
accept parameter values on the request event that are not specified by the Definer role. The
Definer component is, only in situations where the parameters are outside the range of the
role, permitted to expand the range of possible return values beyond those defined by the
connector.

These conditions for when one type (the component’s port interface) is compatible
with another type (the connector’s role interface), are exactly the same as the constraints
defined for accepted models of contravariant subtyping in abstract datatypes (as discussed,
for example, in [CW85]). Thus, the combination of the DefUse connector and WRIGHT’s
port-role compatibility check quite naturally model object-oriented types.

Therefore it is possible to construct an architectural description (in WRIGHT) that is
directly comparable with an object-oriented design of the same system. Further, once an
equivalent architectural description has been established, we can use the incremental devel-
opment techniques discussed above (section 9.4.1 and chapter 6) to extend the architectural
description to take advantage of the full descriptive and analytic power of WRIGHT, while
retaining the correspondence with the object-based system design description. That is, the
dynamic information provided by WRIGHT’s descriptive mechanism can be used to extend
the basic static notion of typing.

There is current research in the object-oriented community to do similar kinds of things.
For example, Liskov and Wing [LW94] have presented a view of a type as defining a
behavior as well as an interface. They use this to extend the idea of subtyping from static
interfaces to “history” properties, requiring that a subtype’s new methods be defined in such
a way that they do not extend the possible time-sequences of states of the object. One way

Chapter 9. Discussion and Evaluation 195

of understanding the abstract state of an object is to restrict the allowable return values of
methods. That is, if we know an object’s state at a given time, we can predict how it will
respond to a given request, e.g., to provide the value of one of its attributes. Thus, if we
construct a specialized interface to describe how a given sequence of requests will alter the
permitted return values, we have defined how the methods alter the abstract state of the
object. Having made this extension to the interface, the port-role compatibility match also
supports a history-dependent model of subtyping, because the protocol defines permitted
sequences of states, and the protocol must be respected by any compatible port.

While one could use WRIGHT to construct such a default notion of permitted sequences,
WRIGHT also permits the architect to explicitly specify the allowable sequences of events.
Thus, one can explicitly state the constraints that any user of the type must obey and
the assumptions that a user is permitted to make about the object. That is, the use of
explicit history constraints (rather than the implicit constraint of Liskov and Wing) permits
the definer of a type to clarify exactly what constraints there are on the behavior of the
object. By modifying the constraints, one can permit more subtypes when there are weaker
constraints and fewer subtypes when there are stronger constraints.

The notion of treating object types as protocols has been pursued directly in the object-
oriented context, by Nierstrasz [Nie93]. In that work, Nierstrasz develops a model of
subtyping based on protocol conformance that is similar to port-role compatibility. (See
chapter 2 for more details.)

Beyond simply matching existing work based on a notion of an asymmetrical defini-
tion/use interaction, however, WRIGHT connectors also support a more symmetrical model
of interaction than that available through current object models. Although we do not directly
demonstrate it in this thesis, this kind of symmetry would be useful in the analysis of design
patterns, as defined, for example, in [GHJV95]. Patterns are intended to capture design
expertise in reusable frameworks by defining a pattern of object collaboration, constraints
on context of use, and a characterization of the problem solved by the pattern. In the object
patterns, multiple objects are described that each must use the other objects according to
the pattern of collaboration. Thus, the objects’ relation is symmetrical, because two (or
more) objects refer to each other, and calls back and forth must be coordinated to satisfy
the computation’s needs.

Currently, design patterns are defined informally, using OMT diagrams [RBP+91] of
one example of the pattern’s use, with additional text to explain which parts of the example
are variable and which fixed. It would be a valuable addition to the design pattern model to
be able to describe a “pattern of object collaboration” more precisely. Patterns could then
be presented as a set of systems, with an explicit, formal, specification of the variability in
the set as well as the ability to precisely constrain the permitted behavior of both the fixed
elements and variable elements of the pattern.

This is exactly what WRIGHT’s style definitions provide for software architecture, and
it seems reasonable to expect that WRIGHT’s models could be used as a starting point in
providing a more rigorous basis for design pattern description. In particular, the models of
interaction supported by WRIGHT connectors are both compatible with object-oriented typ-
ing (as we have discussed) and provide a more flexible means of describing the constraints
on the interaction between design elements.

196 A Formal Approach to Software Architecture

Chapter 10

Conclusion

10.1 Summary

In this dissertation, we have shown that:

An Architecture Description Language based on a formal, abstract model of
system behavior can provide a practical means of describing and analyzing
patterns of discrete, asynchronous interaction in software architectures and
architectural styles.

This was demonstrated through the example of a particular formal Architecture Description
Language, WRIGHT, which models connector types as abstract patterns of interaction as
relationships between discrete, asynchronous component actions, and defines architectural
styles by predicates constraining configurations. In chapter 3 we introduced WRIGHT,
its syntax, semantics, and consistency and completeness checks. This chapter laid the
groundwork for our demonstration, showing how a formal notation can be developed that
provides a direct model of architectural computations and interactions in a form that can be
used both to describe and to analyze configurations and styles.

Then, in chapters 4 through 6, we explored the expressiveness and practicality of
WRIGHT through three case studies. The first, AEGIS, demonstrated the utility of precise
definition of architectural configurations, and showed how the abstract description of be-
haviors exposes critical issues and contributes to the effective consideration of architectural
design alternatives.

The second case study presented the formalization in WRIGHT of an architectural style,
the Justo-Cunha Style, and showed how explicit characterization of an architectural style,
supported by WRIGHT’s formal basis, structures analysis of that style. Through the JC case
study, we showed how use of WRIGHT to characterize a style enables us both to simplify
reasoning about members of the style and to provide assurances that all members of the
style have specific, critical properties, such as global deadlock-freedom.

The final case study, of the “High-Level Architecture for Simulations” demonstrated
that WRIGHT’s descriptive and analytic facilities could be applied to complex, large-scale,
real-world systems. Through our formalization of the HLA style, which was part of the
effort to develop a draft standards document, we were able to find critical ambiguities

197

198 A Formal Approach to Software Architecture

and inconsistencies in the draft specification. In this case study we also introduced and
demonstrated specific techniques for the incremental description and analysis of large
systems, allowing us to balance the effort of formalization against the benefit to be gained.
Thus, we showed how WRIGHT provides a practical basis for the formalization of real
systems.

In chapter 7 we discussed the automation of analysis in WRIGHT. In chapter 8 we
provided an example of how properties that are not easily characterized in event oriented
notations such as CSP might be expressed within a WRIGHT-based framework, by creating
abstract specifications of those properties (in Z, in our example) and defining correspon-
dences between the alternate formalization and a WRIGHT specification. We thus showed
how the architectural structure of a formal ADL might help support formalization of prop-
erties even when those properties are not directly expressed in the underlying semantics of
that ADL.

Finally, in chapter 9, we considered WRIGHT in light of the question of whether it
satisfies the requirements for a practical basis for analysis of architectural configurations
and styles. We thus concluded that, while there are alternatives to the design decisions
made in this dissertation and ways in which it could profitably be extended, WRIGHT does
indeed provide a practical basis for description and analysis of interactions and styles in
software architecture.

10.2 Contributions

The primary contribution of this dissertation is its role as an existence proof for the practical
formalization of architecture. By providing an example of how a particular aspect of
software architecture, patterns of interaction, can be formalized and exploited through
an architecture description language, we have shown that a formal approach to software
architecture can be both valuable and practical.

Additionally, this thesis makes contributions in four main categories: the general foun-
dations of software architecture, description and analysis of software architectures, the
value of WRIGHT specifically, and formal methods in general.

10.2.1 Contributions to Architectural Foundations

There is a growing body of work on defining the foundational concepts of software archi-
tecture, including the abstractions of components, connectors, and style, and on the relation
between these elements and the properties of systems. Through our treatment of these
abstractions in a formal, coherent notation, we have contributed to the understanding and
precise characterization of foundations of software architecture.

� Explicit Connectors: Through our exploration of explicitly described connectors in
WRIGHT, we have contributed to an improved understanding of a connector as a pattern
of interaction. Connectors have been a key, but informal, element of the concept of
software architecture almost from the moment “software architecture” was introduced as
a term (see, for example [Sha88]). WRIGHT is the first notation to provide mechanisms

Chapter 10. Conclusion 199

for the explicit characterization of the semantics of a connector and to define the meaning
of that characterization in system composition.

� Style as Predicate Over Sets of Configurations: We have provided an analytical model
of architectural style as a set of configurations. Previous work on style has either been
informal, treating it in terms of shared idioms, or has taken either an implicit or an ad hoc
view of style. By characterizing an architectural style directly as a set of configurations
within a common semantic framework, this dissertation provides a better basis for direct
analysis of styles and their member configurations.

� Framework for Architectural Semantics Based on Structure: We have shown how a
semantic framework that is explicitly architectural can provide a basis for structuring a
model of a system. Recent workshops (e.g., [Gar95, KW96]) have addressed this issue,
debating the centrality of a structural view to architecture, and what architecture could
contribute beyond a syntactic notion of structure. By providing a structural framework to
which semantic models can be tied, we have shown how software architecture forms the
basis for modeling the meaning of a system description as the composition of the meaning
of its parts. Thus, we have shown how architecture provides a basis for controlling the
complexity of a system model by supporting the localization of reasoning when possible,
while contributing to an overall understanding of a system’s properties.

10.2.2 Contributions to Architectural Analysis and Description

� Architectural properties beyond structure: We have presented a model of architectural
description in which properties beyond simple structural descriptions can be specified.
While previous ADLs have allowed architects to indicate what components and con-
nectors are present in a system, WRIGHT provides mechanisms for describing semantic
properties of those structural elements and for analyzing the resulting properties of the
entire system. We have thus shown how architectural structure can provide a basis
for extending the high-level description of a system to other properties while retaining
architectural integrity.

� Encapsulation: We have shown how, by structuring the semantics of configurations in
terms of the architectural abstractions, we can use the structure of software architecture
as a basis for inductive reasoning about entire families of systems. By establishing the
property of encapsulation, that any configuration in a given style can be treated as an
equivalent component of the style, the analytic power of that architectural style is greatly
increased.

� Coverage of instances and styles in same formalism: We have shown how a single
notation can support the description of both architectural configurations and architectural
styles. By providing a uniform semantic model and defining styles in terms of sets of
configurations, we have shown how analysis can be performed over entire families of
systems and yet still be applied to actual systems that are to be constructed.

200 A Formal Approach to Software Architecture

10.2.3 Specific Benefits of WRIGHT

� Useful ADL: Beyond its role as a vehicle for exploring the nature and structure of archi-
tectural formalization, WRIGHT is itself a useful tool for architects wishing to describe
and analyze their systems. It provides a practical means of precisely characterizing the
abstract behavior of an architecture and of analyzing both individual systems and families
of systems.

We also presented techniques, such as localization of internal state, mini-protocols,
and selective omission, to support abstraction, traceability, and incrementality in the
analysis of large-scale systems. These techniques are generally applicable to WRIGHT

specifications and increase our ability both to effectively manage the cost of formalization
and to integrate a formalization with the overall development effort.

� Standard Automated Checks: In addition to WRIGHT’s general analytic capability we
have defined a specific collection of checks. These checks can automatically be applied
to any WRIGHT description to detect important classes of architectural errors.

� HLA: The results from the HLA case study in chapter 6 are directly useful both to
guide future revisions of the HLA standard and to help potential developers of systems
in that style. Our characterization of the behavior of the RTI provides an important
source of documentation both to developers of RTI infrastructure and to developers who
want to develop federates and need to understand what behavior they can expect from
the RTI. Our analysis also points to issues that need to be resolved either by particular
implementations or in future drafts of the standard.

10.2.4 Contributions to Formal Methods in General

While not a primary goal of this thesis, our development of WRIGHT does provide contri-
butions to formal methods in general:

� Example of Domain Specialization: WRIGHT is an example of how a general formal
method can be used as the basis for a more specialized, domain-specific notation. By
tailoring the notation to our domain, software architecture, we have defined analyses
that are appropriate to find common problems in the domain. We have further provided
a notation that matches the structure of abstractions familiar to domain experts, thus
allowing them to express a formal model of their systems in a way that is natural for the
domain. At the same time we have taken advantage of the power, expressiveness, and
sound basis of a general formal notation by defining our specialized notation in terms of
the more general one.

� Consideration of Families of Systems: We have shown how, by explicitly considering
families of systems, the benefits of a formal analysis can be increased. Once an analysis
has been performed, it applies to an entire class of systems, rather than just to a single
system. This supports reuse of a formalization, improving the relation of cost to benefit
in two ways: First, a given result for a given cost benefits a wider range of systems.
Second, expertise in formalization can be directed toward style development, and then

Chapter 10. Conclusion 201

the benefits can be enjoyed by system developers who do not need to expend the same
effort becoming experts in formal methods.

10.3 Future Work

While WRIGHT represents a significant benefit for software architects, it also suggests a
number of areas for possible future research.

10.3.1 Short Term

10.3.1.1 Experience with WRIGHT

Probably the most pressing short term need for research on WRIGHT is to gain experience
with its use. In this dissertation we have sampled a variety of different architectures that can
be characterized using WRIGHT. With these, we have explored the applicability of WRIGHT

and shown how WRIGHT’s facilities can be of benefit across a range of systems. However,
the case studies described here do not, obviously, exhaust the space of architectures of
interest, and they have been carried out by the author in an academic setting. While there
has been some use of WRIGHT by people other than the author (e.g., [RD95]), it remains
largely untested in actual practice.

The most significant effort currently underway in that regard is an extension of the HLA
case study of chapter 6. DMSO is now sponsoring the application of WRIGHT to the current
version of the standard along with the extension of the model to cover more details of HLA.
Without a doubt, this kind of use will shed further light on how the language can best be
evolved to suit the needs of practitioners.

10.3.1.2 Additional resources for WRIGHT users

In addition, developing a collection of syntactic shortcuts for WRIGHT and a library of
common architectural styles will greatly increase WRIGHT’s usefulness. As we discussed in
chapter 9, there are a number of common idioms for connectors (such as name matching on
events) for which it would be useful to supply syntactic shortcuts. These can be expressed
as process definitions and connector and component types, and it will be important for the
effective use of WRIGHT to elaborate these and make them generally available.

Another important resource is to define a library of common and useful styles that can
be used by architects developing configurations in those styles. This will greatly increase
the value of WRIGHT by making it easier to formalize those configurations.

More experience with WRIGHT is needed to develop these resources. Once these
resources are developed, in addition to being useful themselves, they can provide a basis,
as we discuss below, for the exploration of important issues such as understanding how to
select an architectural style for a given problem.

202 A Formal Approach to Software Architecture

10.3.1.3 More Automated Tools

As we discussed in chapter 7, there are a few of the WRIGHT consistency checks for which
there is currently no automated support. These are “initiator-commits,” style constraints,
and style consistency. We plan in the near future to develop tools that can provide automated
checking of these properties for at least a subset of the WRIGHT language.

10.3.1.4 Coordination with other architectural tools

Another short term need is to coordinate WRIGHT with other current efforts in software ar-
chitecture. For example, the Aesop [GAO94], UniCon [SDK+95], and Darwin [MDEK95]
systems are intended to aid in the construction of systems based on an architectural de-
scription. By developing correspondences between Aesop styles and WRIGHT styles, and
between WRIGHT connectors and Aesop, UniCon, or Darwin connectors, there would be
immediate benefits. WRIGHT would provide analysis tools for systems constructed in these
other systems, while they would provide assistance in constructing systems that correspond
to a WRIGHT description. Work on this has already been begun, using ACME [GMW97]
as a means of merging the different forms of architectural description [WG97].

10.3.2 Longer Term

Beyond using and improving WRIGHT there are several important avenues of long term
research suggested by the results of this dissertation. They include the application of
alternative semantic models to architecture, the role of architecture in a broader context,
the application of tailored formal notations to other problems, and the role of point-of-view
in effective large-scale software construction.

10.3.2.1 Alternative semantic models

We have already discussed (in chapter 9) our reasons for selecting CSP as a basis for
WRIGHT’s semantic model. However, as we also discussed in that chapter, this semantic
model limits both the architectures that can be directly expressed (they must be static and
asynchronous) and the properties that can be attributed to those architectures (only control
and event ordering properties are naturally captured).

We have begun to explore ways in which the descriptive power of WRIGHT can be
extended to capture abstractions and issues that are either difficult or impossible to express
in WRIGHT. For example, in chapter 8 we showed how Z schemas could be defined to
capture a state-oriented property (ownership of data attributes). We further showed how
correspondences could be defined between that alternate model and WRIGHT so that the
structuring and event-ordering definitions in WRIGHT could inform the analysis of state-
properties, while state-properties could inform the control abstractions defined in WRIGHT.

However, that single example goes only so far in answering the general question of
how alternative semantic models can be applied to software architecture. For any given
class of properties, perhaps for any given class of systems, the notations and models that
best suit them will be different. At the same time, it is important not to have to re-develop
the common aspects of those models, such as the structuring and compositionality that is

Chapter 10. Conclusion 203

provided by the architectural abstractions of components, connectors, configurations, and
styles. Issues for alternative semantics include:

� Semantic Foundations for Architecture: We chose to use an existing general formal
model on which to base WRIGHT not only because it seemed, mostly, to provide the
descriptive capabilities that we needed, but also for purely pragmatic reasons. Working
out how the architectural abstractions are combined and the kinds of descriptions to
provide was difficult enough without the additional task of developing process-algebraic
behavior models and automated analysis tools (such as FDR). Now that we have more
experience with architectural descriptions and abstractions through the development of
WRIGHT, it is worth asking whether there might be ways that an underlying general
formalism could be developed to better support architectural analysis. For example,
we needed to add the distinction between event initiation and observation to CSP. Also,
many of the nice algebraic properties of CSP are not automatically preserved by WRIGHT

descriptions. For example, a configuration of components can not always be treated
as equivalent to an atomically described component. (We discussed one difficulty, the
initiator commits rule, in chapter 9.) The corresponding property of a process in CSP is
that any composition of processes is another process. It is possible that an alternative basis
might simplify WRIGHT’s models, improve our ability to use architecture to structure
reasoning, and provide a more convenient basis for combining different architectural
models.

� Dynamism: A semantic model of particular interest would be one that would support the
description and analysis of dynamic architectures. Finding an appropriate formal basis
for dynamic architectures remains an open and active research topic. Some progress
has been made by others. Rapide allows the dynamic creation of components, much
as traditional object-oriented system can dynamically create new instances of objects.
Darwin [MDEK95] uses the Pi Calculus [MPW92] as its basis, a formalism specifically
designed to handle mobile processes. Architectural dynamism has also been modelled
using the Chemical Abstract Machine [IW95] and graph grammars [LeM96] as the
underlying formalism.

These efforts, however, have not provided the kind of descriptive and analytic support
for the non-dynamic aspects of architecture that WRIGHT has. We need to explore
ways to combine characterizations of dynamism with the description and analysis of
other aspects of a system. One possibility is to model a system’s re-configurations
as a sequence of distinct WRIGHT configurations, together with mappings between the
configurations. These mappings would, for example, relate the computational state of
components before and after the change.

� Time: A class of property that is often of critical concern for a software system is that
of time. That is, there are many systems for which it is necessary to know not just what
will occur in what order, as is modelled in CSP, but to determine when things will occur.
There are existing extensions to CSP to handle time [RR86] that might be applied by
substituting those models for CSP in WRIGHT. However, it is unclear what the effect
of this change would have on WRIGHT’s semantics (including, for example, how the

204 A Formal Approach to Software Architecture

consistency checks would need to be modified). Thus, research is needed to explore this
kind of change to WRIGHT.

� ArchitecturalRefinement: One especially important way of relating semantic models of
a system is through refinement. Consider two descriptions of a system, one “abstract” and
another “concrete.” The abstract specification might simplify analysis of some aspects
of a system while leaving other aspects unconstrained, and the concrete specification
provide more details. If the concrete model guarantees all of the properties of the
abstract model, and perhaps more, then we say that the concrete representation is a
refinement of the abstract representation. An example of this might be the relation
between a WRIGHT specification and an implementation of the same system. Clearly,
the WRIGHT specification is more abstract than the implementation. At the same time,
we want to show that there is a correspondence between the two such that any property
that we prove about the WRIGHT description must also be true of the implementation. In
formal specification, this task of relating an abstract specification to a more concrete one
is that of finding a valid refinement mapping.

While CSP does provide a compositional model of refinement (through the v relation),
it is not clear that this is an adequate basis for architectural refinement (see, for exam-
ple [Gar96] for a discussion of some of the complexities). It is certainly not an adequate
basis when one of the descriptions is not based on CSP.

10.3.2.2 Architecture in the broader context

In this dissertation we have focussed on how software architecture, through WRIGHT,
provides analytic and descriptive benefit to the software developer. In our evaluation
(chapter 9) we discussed the cost of using WRIGHT, as that can impact its effectiveness in
the context of engineering practice. However, another question is the appropriate use of
architectural analysis in a development method, and how it can be effectively used in a
larger software development context. Significant questions remain, including:

� Architectural Selection: How does the architect select an architectural style that is
appropriate for a given situation? While WRIGHT provides models so that an architect
can understand certain properties of styles, something more is needed to help the archi-
tect manage the tradeoffs between different styles. One style might provide the right
properties but no guidance on constructing a system, or it might lack support at the
implementation level. Another style might provide excellent support for implementation
and make it easy to construct systems in the style, but provide less support for analysis.
Shaw and Clements have carried out some preliminary work on classifying and selecting
architectural styles [SC96, SC]. They argue that effective architectural selection depends
on two factors, careful discrimination among candidates and design guidance on how to
make appropriate choices. WRIGHT provides a starting point for the first factor, discrim-
ination among styles, by allowing the architect to determine many properties of systems
that can be constructed in a style. However, it remains to extend this discrimination to
other properties and to provide design guidance.

Chapter 10. Conclusion 205

� Heterogeneous Systems: What happens when a system doesn’t match any given style,
but instead, some parts match one style, while other parts match another style? WRIGHT

has assumed that a given style description either applies, in its entirety, to a complete
configuration, or it doesn’t. The analytic leverage of a WRIGHT style is only available
to configurations that can be completely characterized within that style. There has
been some work on composing architectural configurations based on a shared set of
architectural attributes and styles [AA96]. Future research must address the question of
how, in general, a constraint can be bounded to apply to only part of a configuration and
at the same time provide information about the configuration as a whole. One possible
approach is to provide parameters to WRIGHT styles that would define the subset of the
full system to which the style’s predicates apply. While this would provide a means of
applying styles to only part of a system, significant issues remain, including proof models
for partially constrained configurations and consistency checks for combining styles in a
single configuration with some overlap in scope.

� Constructive Models of Style: How can we use a declarative model of a style to a derive
a constructive model of a style? As we discussed in chapter 9, WRIGHT’s model of style
is declarative, in that it defines what systems are in a style. Other current models of style
are constructive, in that they provide mechanisms to construct an instance of a style. We
argued that a declarative model of style provides increased benefits for description and
analysis of systems. However, it does require that the architect construct a system before
the style can be applied. An important question for future research is how construction
guidance for architects can be derived from a style declaration.

� Balancing Formalism and Informalism: When is it appropriate to formalize an ar-
chitecture, and when is an informal approach more appropriate? In this dissertation we
have shown how architectural configurations and styles can be formalized, and how this
provides both descriptive and analytic leverage. We must now ask ourselves: What are
the advantages and disadvantages of a formal characterization relative to an informal
one? When should one or the other be used? Up to now, there has been no practi-
cal, systematic means of taking a formal approach to software architecture. Now, with
WRIGHT, formalization of architecture is a choice. As we gain more experience in the
use of WRIGHT, we can begin to understand both the benefits that can be gained and an
empirical model of the costs associated with formalization efforts. That will enable us
to explore the question of when formalization is valuable relative to a more traditional
informal effort.

At the same time, we would argue that both kinds of characterization are useful, and that
we should not necessarily view one or the other as better for architectural design. Rather,
a complete exploration of a system or style should include both formal and informal
characterizations. The benefits of the two kinds of characterization are complementary:

Informal
� Easy to understand
� Shows how to build one
� Structures design

Formal
� Precise
� Provable properties
� Structures analysis

206 A Formal Approach to Software Architecture

As we can see from this list, a complete, fully-realized system of software architecture
should seek to achieve all of these goals. Both formal models and informal understanding
of software architecture are important to a successful engineering discipline, and we must
explore ways in which the two can be combined to create a complete, realistic, and useful
picture of a system’s design.

10.3.2.3 Tailored formal notations

This thesis has shown how, in a particular domain (software architecture), by developing
notations that directly reflect the abstractions of that domain, formal description and analysis
can be made practical and effective. We believe that this approach of developing special
models for particular domains is a fruitful one, and that it can and should be applied to
other parts of the development process, such as requirements analysis and detailed design.
It is unlikely, however, that WRIGHT itself will apply, because the abstractions that are
appropriate for architecture may not match those that are appropriate for, say, requirements
analysis. In that domain, for example, it is critical to distinguish between the existing
condition of a system’s environment and the desired condition while not specifying how
the system will be constructed [Jac95b]. WRIGHT’s success in formalization of architecture
was achieved by narrowing the focus of the effort, making explicit the abstractions of the
domain, and providing techniques for balancing formal effort against depth of analysis.
Perhaps these techniques can be applied to other arenas as well.

10.3.2.4 Point-of-view in software development

Much of the power of the connector abstraction in WRIGHT comes from the fact that it
requires the description be divided in terms of different points of view. That is, each of
the participants in the interaction is described separately from the description of the overall
effect of the interaction. Many of the inconsistencies that we have found through WRIGHT

have been traceable to the failure to distinguish between what a given component knows
and what is globally true. In the HLA case study, for example, it was stated as a requirement
that the RTI connector could only be created once, but there was no mechanism provided
for any component to find out whether the connector had already been created. Thus, no
individual component could know enough to ensure the proper global behavior.

This point-of-viewproblemhas also arisen elsewhere in the author’s experience [GAO95].
One example is when a component is implemented on the basis of assumptions about the
configuration in which it will occur. In effect, two points of view, that of a component
and of the configuration as a whole, have been mixed. As a result, components that are
supposed to be generally reusable are not, or can be reused only at the cost of considerable
modification to the component or to the system in which it is to be deployed.

Lack of genericity in components is a major barrier to the goal of effective reuse and
“component-level” programming, where architectural designs can be directly translated to
implementations by the methodical use of existing infrastructure and componentry. One
current research effort that attempts to decompose a specification in terms of different points
of view is “aspect-oriented programming” [K+]. The goal of that work is to permit the
programmer to decompose a program specification in terms of semi-orthogonal issues of

Chapter 10. Conclusion 207

concern (e.g., algorithm, distribution, data structure). The different specifications are then
automatically combined into a single implementation.

We believe that exploring the role of point-of-view in specification, and in particular
in architectural specification, has the potential to significantly improve our ability to sys-
tematically and effectively develop large-scale software systems. WRIGHT suggests several
point-of-view distinctions (e.g., between global and local, between a family of systems and
a single instance) that provide leverage to specifiers and analysts. It is worth exploring
whether there is some way that these distinctions can be systematized or otherwise more
generally exploited in software development.

10.4 Epilogue: The Software Architecture Question

Throughout this dissertation, we have taken as a premise that providing an explicitly
architectural approach to software development is the right thing to do. As we discussed
earlier, there is a considerable body of effort in the development of systems through this
approach, considering systems at a high level of abstraction as a composition of independent
elements combined via independently characterized patterns of interaction.

Since its emergence in the late 1980’s as an explicitly identified area of software
engineering, software architecture has held out considerable promise for those working
toward the goal of a true engineering discipline for software. By proposing a notation
that supports the abstract modelling of systems that both exposes properties for analysis
and ties directly to the implementation structure of systems, by promoting independence of
reusable elements, by increasing the flexibility to compose those elements, by focussing on
evolution of systems and on the reasoned development of multiple similar systems, the field
of software architecture seems to present an exciting and promising direction in software
development.

However, many of these benefits have yet to be realized. While there have been a
number of significant success stories, both in the development of tools to support software
development and in improved productivity through incorporation of architecture in the
software process, the most expansive vision of a unifying conceptualization of architectural
design that supports improved models of software and processes for software development
remains only a future hope.

Nor is it possible to realize, or even test, such a vision unless there are rigorous, defined
semantic foundations for the models and descriptions that people claim as the product of
an architectural effort. It is only through the pursuit of such a foundation for software
architecture that we can explore the possibilities of the area and begin to discover the
strengths and weaknesses of the approach.

By itself, WRIGHT will not be able to achieve the full promise of architecture, nor to
demonstrate that this promise is not achievable, but it does provide a more solid basis on
which to explore the abstractions that define software architectures and architectural styles.
In this respect, this work stands as a significant first step toward those larger goals.

208 A Formal Approach to Software Architecture

Appendix A

Semantics of CSP

In this appendix, we describe the failures model of CSP, as well as provide some definitions
of functions over CSP processes that we use in our definitions in previous chapters.

A.1 A Model of CSP: Alphabets, Traces, and Refusals

CSP is based on the concepts of alphabets, traces, and refusals. The CSP model used here
is as described by Hoare [Hoa85].

Formally, a CSP process is modelled as a triple, (A;F ;D), where A is the process’
alphabet, F is its failures, and D is its divergences.

We have seen in this dissertation how the alphabet of a process is important to under-
standing what behaviors a process controls. The alphabet of a process is the set of events
in which the process may engage. The alphabet of a process P is often written �P.

The second element of the CSP model of a process is its failures. The failures of a
process are pairs of traces and refusals. Each trace is a finite sequence of events, and each
refusal is a set of events. Thus, we write: Failures(P) � seq �P � ��P.

The traces of a process are those sequences of events that are permitted by the process.
The process P = a!P b!P, for example, can generate the traces hi; hai; hbi; haai; habi; hbai,
etc. The entire set of traces is indicated by Traces(P).

The behavior of a process is not fully determined by its traces. Recall that when
describing a process we were careful to distinguish between internal and external choice.
In the first case, the environment is expected to offer a set of events to the process, and the
process itself controls which of the events will occur. Because the environment can also
prevent any event from occuring (by excluding that event from the offered events), we say
that a process has the ability to refuse any of the alternatives by selecting a different one. If
the process uses external choice, on the other hand, it cannot refuse any of the alternatives,
because the environment can now force any one of them to happen.

Refusal of events is modelled by the process’ failure pairs. The first element of a single
failure pair is a trace of the process and the second element is a refusal of the process after
it has engaged in that trace.

Notice that a failure is a trace and a set of events. Also, there will typically be more
than one refusal for a given trace. This occurs because refusals are subset closed, meaning

209

210 A Formal Approach to Software Architecture

that if a component can refuse a set of events, it can also refuse any subset of those events.
Also, a process may be able to refuse some combinations of events separately, but not all
in combination. For example, the process Q = a!Q u b!Q can refuse the event a or the
event b, but not both at the same time. Thus, it has failures (hi; fg), (hi; fag), and (hi; fbg),
but not (hi; fa; bg). The process R = a!R u b!R u STOP, however, does have the failure
(hi; fa; bg) because the choice of STOP would mean that neither event can occur even if
both are offered.1

The final part of the CSP process model is its divergences. The divergences are those
traces after which the process is equivalent to CHAOS, defined as follows:

CHAOSA = STOP u (u x : A � x!CHAOSA)

This process is termed divergent because it is the most unconstrained, unpredictable
process: It can either refuse or accept any event at any time. The past behavior of the
process is no help in predicting its future behavior.

Divergences are used to represent catastrophic situations or completely unpredictable
programs (such as those containing infinite loops without any communication events).
For simplicity, we will not emphasize the possibility of divergence in our discussion of
WRIGHT. None of the definitions and proofs rely on an assumption of absence of divergence,
however, so this is not a major omission. For example, no divergent process is deadlock-
free and therefore we know that no consistent WRIGHT connector or component contains
any divergences.

Because we augmented the basic CSP notation with a special annotation for events, to
indicate whether they are initiated or observed, we must also augment the CSP model to
make this distinction about its alphabet. The subset of P’s alphabet which is initiated is
�iP, and the subset that is observed is �oP.2 This distinction has no effect on the behavior
of the process, however.

A.2 Refinement

When we describe tests that apply to WRIGHT specifications, we need a way to compare
two processes that are not identical. A CSP process describes a pattern of behavior, and we
would like to be able to substitute another behavior in its place if it matches that pattern.
We want, in effect, a refinement relationship that guarantees that one process satisfies all of
the properties of another, possibly as well as some other properties of its own.

One way of thinking about satisfaction of properties is to ask whether an external
observer could possibly tell that one process had been substituted for another. Consider
two processes P and Q. Let’s try to decide whether P is a refinement of Q. What can we,
as external observers, do with P to determine if it is different from Q? We can execute any
of the traces that are part of Q’s behavior pattern and then offer it different combinations of

1Formally, we define STOP to be the process that refuses all events in its alphabet: STOPA = (A; f(hi;X) j
X � Ag;�). The A subscript is omitted when the alphabet is obvious.

2Notice that these subscripts mark the locus of control (initiated/observed), not the direction of dataflow
(input/output), although, typically, input events are observed (and therefore appear in �o) and output events
are initiated (and therefore appear in �i).

Appendix A. Semantics of CSP 211

events. If we are dealing with Q we know that it can only refuse a set of events if it is in
the failure set of Q. Q can only accept an event (i.e, continue a trace) if the new, extended
trace is part of its trace set.

Now, suppose P always obeys these constraints, i.e., it never refuses a set of events
unless that set is in the failures of Q and it never accepts a trace unless it is in the traces of
Q. Then we will never, by observing P, be able to detect that the process is P and not Q.3

Hence, P has all of the properties of Q that we care about: P is a refinement of Q.
Thus, P is a refinement of Q whenever its failures are a subset of Q’s failures. Any

traces of Q appear in the first element of the failure pair, and so subsetting failures ensures
that P’s traces are a subset of Q’s. The refusals are the second element of the failure pair,
and so Q’s refusals are also respected by P.

Definition 7 (Refinement) A process P = (�P;FP;DP) is a refinement of Q = (�Q;FQ;DQ),
written Q v P, if �P = �Q and FP � FQ and DP � DQ.

In the following examples, it is assumed that the alphabet of both P and Q is fe; fg:

1. Q = e!Q u f!Q v P = e!P

2. Q = e!Q u f!Q v P = e!P f!P

3. Q = e!Q f!Q 6v P = e!P

In example 1, process P removes all of the traces involving f from Q. It may do so
because the non-deterministic choice in Q means that f is always in the refusal set, even
though it is also in the traces. That is,

Failures(P) = f(hi; fg); (hi; ff g); (hei; ff g); (hei; fg); (heei; ff g); :::g
� Failures(Q) = f(hi; fg); (hi; ff g); (hi; feg); (hei; ff g); (hei; feg); (hf i; feg); :::g:

In example 2, process P does not change the traces of Q, but it removes f from the refusals,
reducing non-determinism. In this case, Failures(P) = f(hi; fg); (hei; fg); (hf i; fg):::g.
In example 3, P is not a refinement of Q, because it refuses f when Q does not. (hi; ff g) 2
Failures(P) but (hi; ff g) =2 Failures(Q)

A.3 Auxiliary Definitions

In our formalization of WRIGHT, we used a number of standard functions over CSP pro-
cesses. These are defined in this section.

3We may, however, be able by observing Q to detect that it is not P.

212 A Formal Approach to Software Architecture

A.3.1 Renaming

A process is renamed by applying a function from events to events. This function must
be injective, so that undesired aliasing does not occur, and it must not rename

p
, so that

termination is properly modelled.

Definition 8 (Renaming) If f is an injective function from events to events, such that
p

is
not in the domain of f , and P = (A; F; D) is a CSP process, then f (P) = (A0

; F0
; D0

) where

A0
= f �A�

F0
= f(t0; r0

) j 9(t; r) 2 F j t0 = f � t ^ r0
= f �r�g

D0
= fd0 : seq A0 j (9 d : D j d0

= f � d)g:

In this definition, f � g is the composition of functions f and g . f �S � is the relational
image of the set S under f .

Relabelling is a simple case of renaming:

Definition 9 (Relabelling) For a process P and a name L, L:P = fL(P), where fL(e) = L.e
for all events e 6= p

.

A.3.2 Projection

Projection is actually defined in terms of hiding of events. We hide events as follows:

Definition 10 For any process P = (A;F;D) and event set E, Pn E = (A�E;F0
;D0

) where

F0
= f(t � (A � E);X) j (t;X [E) 2 Fg

[f(t;X) j t 2 D0g
D0

= f(s � t) � (A � E) j s 2 D
_ 8n � 9 u : E� � #u > n ^ (s � u;�) 2 Fg:

In this definition, a trace projection (t � E) indicates a trace which contains all of the
elements of t that are in the set E , in the same order, without any of the elements that are
not in E . Thus hacadbcbci � fa; bg = haabbi.

Process projection is simply the opposite of hiding:

Definition 11 For any process P and event set E, P � E = P n (�P� E).

A.4 A Note Regarding x and the ’;’ Operator

Our use of CSP in WRIGHT differs from other interpretations in one important respect: We
use the process x and, hence the

p
event to represent a willingness to terminate rather than

a decision to terminate. In particular, our interpretation of the expression “P x” is slightly
different from other interpretations, such as that proposed by Roscoe [Ros95] and used in
the implementation of FDR [FDR93].

Appendix A. Semantics of CSP 213

A.4.1 Non-standard Interpretation

The difficulty with the interpretation of sequencing arises because of an omission in the
original formulation of CSP, as described by Hoare in [Hoa85]. That treatment does not
define the meaning of “P x” and, in fact, explicitly prohibits it [Hoa85, p. 178].

The basic problem is that we need to understand the meaning of this construct as it
influences other CSP operators. The operator that obviously is most affected is sequencing.
The question is: how do we interpret the following process?

(P x); Q

According to some interpretations of sequencing, such as that found in [Ros95], this
process is equivalent to

(P; Q) u Q:

The problem with this definition is that it introduces non-determinism when combining
deterministic processes. Although this is always possible (due to the way external choice
models aternatives between the same event), it seems desirable to minimize the extent to
which this occurs. I would argue that we want it instead to be equivalent to

(P; Q) Q:

For example, suppose we are specifying a collection of possible interface specifications
such as those described in chapter 4. The core of the protocol is a pair of actions, request
then result. There is also a surrounding initialization and clean-up phase, just as we saw in
the AEGIS system. It would be desirable to build the protocol variants up out of simple
parts, as follows:

OneRequest = request!result!x
ManyRequests = (OneRequest ; ManyRequests) x
WrapperMany = init !ManyRequests ; close!x
WrapperOne = init !OneRequest ; close!x

WrapperMany represents the case where many request, result pairs are permitted before the
close event, while WrapperOne represents the case where only one such pair is permitted.
What we would like is to have:

WrapperMany = init !ContMany
ContMany = request !result !ContMany

close!x
WrapperOne = init !request!result!close!x

which describes the desired protocols, only without the structuring that exposes their
relationship. In order to achieve this effect, we must revise the definition of “P;Q” so
that it treats “(P x); Q” as a deterministic choice between P and Q. We therefore use the
following alternative definition of ’;’:

214 A Formal Approach to Software Architecture

Definition 12 (Sequence) If P = (A;F;D) and Q = (A;F0
;D0

), then P;Q = (A;F00
;D00

) s.t.

D00
= fs j s 2 D ^ hpi =2 sg

[fs � t j (s � hpi;�) 2 F ^ hpi =2 s ^ t 2 D0g

F00
= f(s;X) j (s;X [fpg) 2 F) ^ hpi =2 sg

[f(s;X) j (s � hpi;�) 2 F ^ (s;X � fpg) 2 F ^ (hi;X) 2 F0g
[f(s � t;X) j (s � hpi;�) 2 F ^ (t;X) 2 F0 ^ t 6= hig
[f(s;X) j s 2 D00g

Compare this to Hoare’s definition [Hoa85, p. 179]:

D 00
= fs j s 2 D ^ hpi =2 sg

[fs � t j (s � hpi;�) 2 F ^ hpi =2 s ^ t 2 D 0g

F 00
= f(s;X) j (s;X [fpg) 2 F) ^ hpi =2 sg

[f(s � t ;X) j (s � hpi;�) 2 F ^ (t ;X) 2 F 0g
[f(s;X) j s 2 D 00g

Our definition is the same as Hoare’s definition except in how it handles traces s where
s � hpi 2 traces(P) and

p
is not in the refusals of P after trace s . In this case, we require

that both P and Q refuse an event before it can be refused by the process.4 Thus, we interpret
termination as a deterministic rather than a non-deterministic action by a process.

A.4.2 Justification of Interpretation

In order to use this interpretation of the sequencing operator, we must ensure that it is
consistent with the rest of CSP and that it has certain desirable properties. There are three
steps to defining an operator for CSP [Ros95].

A.4.2.1 Operator is Total

First, we must show that the operator is total over well-defined processes. That is, we must
show that whenever P and Q are processes, P;Q is also a process. The following laws
define a well-formed process [Hoa85, p. 130]:
For a process P = (A;F ;D)

C0: (hi; fg) 2 F

C1: (s � t ;X) 2 F) (s; fg) 2 F

C2: (s;Y) 2 F ^ X � Y) (s;X) 2 F

C3: (s;X) 2 F ^ x 2 A) (s;X [fxg) 2 F _ (s � hx i; fg) 2 F

C4: D � domain(F)

C5: s 2 D ^ t 2 A�) s � t 2 D

C6: s 2 D ^ X � A) (s;X) 2 F

All of these laws hold for our definition, and thus the operator is well-defined.

4In our definition, if
p

is in the refusals then the first line of the failures definition dominates, and P alone
may refuse events.

Appendix A. Semantics of CSP 215

A.4.2.2 Continuity and Monotonicity

The second step in justifying a process is to show that the operator is continuous. This
ensures that the operator is well-defined in recursive definitions (because of the existence
of fixed-points) and that it is monotone with respect to recursion. That is, for any processes
P, P0, Q, such that P v P0, P; Q v P0; Q and Q; P v Q; P0. Together, the properties of
continuity and monotonicity ensure that all algebraic laws about processes that do not refer
to the operator in question are guaranteed still to hold.

In order to show that our definition is continuous, we must show that:

(P;
F

i�0 Qi) =
F

i�0(P; Qi)

and

(
F

i�0 Qi); P =
F

i�0(Qi ; P)

for any chain of Qi s.t.

8 i ; j j i < j � Qi v Qj

For a process, the limit
F

is defined as:

F
n�0(A;Fn;Dn) = (A;

T
n�0 Fn ;

T
n�0 Dn)

Because we depend on only a single trace or failure for each part of our definition, it
is easy to see that our operator is continuous. For example, consider one of the conditions
that we have changed, the case where a trace of P could terminate but does not (necessarily)
refuse

p
. Here, Failures(Pn) = Fn , and so Failures(

F
n�0 Pi) =

T
n�0 Fn .

(s;X) 2 ff(s;X) j (s � hpi;�) 2 Tn�0 Fn

^ (s;X � fpg) 2 Tn�0 Fn

^ (hi;X) 2 F 0g
, 8n � 0 � (s;X) 2 ff(s;X) j (s � hpi;�) 2 Fn

^ (s;X � fpg) 2 Fn

^ (hi;X) 2 F 0g
, (s;X) 2 Tn�0ff(s;X) j (s � hpi;�) 2 Fn)

^ (s;X � fpg) 2 Fn)

^ (hi;X) 2 F 0g
) (s;X) 2 Failures(

F
(Pi ; Q))

The other cases and directions proceed similarly.

A.4.2.3 Laws

The third step in defining a new operator is to define and prove algebraic laws involving the
operator. This ensures that the operator has any desired properties and that one can reason
effectively about processes defined using the operators.

216 A Formal Approach to Software Architecture

Common Laws

Roscoe [Ros95] and Hoare [Hoa85] define the following laws for ‘;‘:

(Pu Q); R = (P; R)u (Q; R)
P; (Qu R) = (P; Q)u (P; R)
P; (Q; R) = (P; Q); R

x; P = P
P; x = P

(a!P); Q = a!(P; Q) (for a 6=p
)

STOP; Q = STOP

These state that u distributes through sequencing, that sequencing is associative, that x
is a left and right unit of sequencing, that prefix and sequencing are associative, and that
STOP is a left zero of sequencing.

All of these laws hold for our operator definition. Here, we will show only an example
proof, that (Pu Q); R = (P; R)u (Q; R). We will further show only that the failures are
equivalent, since we did not change the definition of divergences.

LetFP = failures(P);FQ = failures(Q);FR = failures(R);FPQ = failures(PuQ);FPR =

failures(P; R);FQR = failures(Q; R). Further, let F = failures((PuQ); R), F 0
=

failures((P; R)u(Q; R)). Then:

(s � t ;X) 2 F

, (s;X [fpg) 2 FPQ) ^ h
pi =2 s ^ t = hi (A.1)

_ (s � hpi;�) 2 FPQ ^ (s;X � fpg) 2 FPQ

^ (hi;X) 2 FR ^ t = hi (A.2)

_ (s � hpi;�) 2 FPQ ^ (t ;X) 2 FR ^ t 6= hi (A.3)

_ s 2 D (A.4)

(A.1)) ((s;X [fpg) 2 FP ^ h
pi =2 s ^ t = hi) (A.5)

_ ((s;X [fpg) 2 FQ ^ hpi =2 s ^ t = hi) (A.6)

(A.2)) ((s � hpi;�) 2 FP _ (s � hpi;�) 2 FQ)

^ ((s;X � fpg) 2 FP _ (s;X � fpg) 2 FQ)

^ (hi;X) 2 FR ^ t = hi
) ((s � hpi;�) 2 FP ^ (s;X � fpg) 2 FP

^ (hi;X) 2 FR ^ t = hi) (A.7)

_ ((s � hpi;�) 2 FQ ^ (s;X � fpg) 2 FQ

^ (hi;X) 2 FR ^ t = hi) (A.8)

(A.3)) ((s � hpi;�) 2 FP ^ (t ;X) 2 FR ^ t 6= hi) (A.9)

_ ((s � hpi;�) 2 FQ ^ (t ;X) 2 FR ^ t 6= hi) (A.10)

Appendix A. Semantics of CSP 217

These result in the solution, since (recalling that failures(PuQ) = failures(P)[failures(Q)):

(A.5) _ (A.7) _ (A.9)) (s;X) 2 FPR � F 0

(A.6) _ (A.8) _ (A.10)) (s;X) 2 FQR � F 0

(A.4)) (s;X) 2 F 0

and thus F � F 0. The converse, that F 0 � F proceeds similarly, as do the proofs of the
other laws.

Laws that Change

But what laws are changed by our interpretation of
p

as a shared rather than a hidden event?
There is one difference, and it is in how the consistent use of

p
event is enforced. Roscoe

treats
p

as an event that is initiated, and thus requires the following:

s � hpi 2 traces(P)) (s; �P � fpg) 2 failures(P)

This basically states that whenever a process can terminate, it can always refuse to do
anything else. In Hoare’s less general treatment of termination, he appears to have a similar
interpretation, using the following law:

s � hpi 2 traces(P)) P=s v x

We rather view termination as a global behavior, and therefore weaken this condition.
We would rather indicate that if a process does terminate, then it does not do anything
afterwards:

s 2 traces(P) ^ hpi 2 s) 9 s 0 j s = s 0 � hpi ^ hpi =2 s 0

In Hoare’s notation, this would be stated:

s � hpi 2 traces(P)) P=(s � hpi) = STOP

This law holds for all processes that introduce
p

using only the x process, and ensures
that termination is properly modeled.

In addition to these laws, there is one more that holds for our definition and not for the
alternative, non-deterministic interpretation of sequence:

(P Q); R = (P; R) (Q; R)

This states that the operator distributes on the left-hand side of sequencing. This does
not hold if we interpret

p
as a hidden event, rather than a shared event. The right-hand

version of this law does not hold for either interpretation:

P; (Q R) 6= (P; Q) (P; R)

This is because moving P through the results in the repetition of the initial events in P
on both sides of the operator and hence a non-deterministic process.

218 A Formal Approach to Software Architecture

A.4.3 Possible Disadvantage to Interpretation

Given that this alternative interpretation of
p

and sequencing obeys at least some form of
all of the laws of the other interpretation as well as at least one useful additional law, one
might ask why the other interpretation would ever be used. The answer lies in the problem
of automating analysis. In constructing tools such as FDR, it is not the algebraic laws
that determine how difficult it is to analyze a system, but rather the size of the state-graph
representation and the complexity of generating one process’ state-graph from another.
Here, the non-deterministic interpretation wins, because it is much easier to manipulate the
state-graph representations for the non-deterministic interpretation than for the deterministic
interpretation. This is because in the non-deterministic version, one can generate the graph
“P;Q” from the graphs P and Q simply by moving all

p
transition edges in P to a �

(hidden) transition edge to the start state of graph Q. Calculating the new state-graph for
our interpretation of “P;Q” is much more complex, and can result in the need to generate
new transitions from states of P to arbitrary states of Q, rather than just to the start state.
In effect, the start state of Q has to be overlaid with the states of P, rather than simply
referenced from those states. Thus, the use of our interpretation makes it more difficult to
construct an exhaustive checker. Also, because it increases the number of transitions, it can,
in situations that were near the limit of the checker’s capacity, cause automated checking
to become impractical. It can not, however, result in an infinite number of states when the
other interpretation does not.

Appendix B

Details of WRIGHT Specification of HLA

This appendix provides details of the WRIGHT description of HLA. Chapter 6 provides an
overview of HLA and a discussion of the techniques used in this description.

B.1 Simulation Interface

B.1.1 Separate Parts of Interface

There are five sections to the RTI interface, Federation Management, Declaration Manage-
ment, Object Management, Ownership Management, and Time Management. Of these,
this specification ignores time management. The reason for this is that it is a complex issue
that is orthogonal to the others. That is, the events involved with time management do not,
for the most part, affect the pattern of the other events. Of course, Federation Management
events affect the time management events, but not the other way around.

We have also chosen mostly to abstract away from the parameters passed by the mes-
sages. This is again because the patterns of data are complicated and, for the most part,
the control patterns can be described without reference to the actual data values. When
we need to, such as when success or failure of a request matters, we have created a pair
of events to represent the two alternatives. For example, attrOwnAcquisitionNotifySecured
and attrOwnAcquisitionNotifyRejected represent two possible responses that are conveyed
by the same message in the actual specification.

The formal WRIGHT specification of the RTI has two main parts: the SimInterface
interface type, and the RTI connector. The SimInterface is used as the role of the connector,
and represents the protocol for interaction with the simulation from the point of view of a
single federate. The combined behavior of several federates interacting is specified in the
RTI’s Glue.

We begin by specifying the SimInterface. This specification is structured, to the extent
possible, to match the management categories that are described in the IFSpec. Thus,
there are four main processes that are combined in SimInterface: FedMgmt, DeclMgmt,
ObjMgmt, and OwnMgmt. Each has an independent alphabet and represents the constraints
that can be represented for each management group independently.

In addition to the constraints on each individual group, there are rules that cross group
boundaries. For example, although the pause controlling events are located under Federation

219

220 A Formal Approach to Software Architecture

Management, there are limits on all events during a pause. For example, the federate need
not be prepared to receive an object attribute update after a pause has been achieved.

Each of these “cross group” constraints is represented as a separate process that is part
of the total SimInterface. The reason for this is so that it is as clear as possible how they
correspond to the IFSpec document, either from the pre- and post-conditions of various
events or from the more general discussions that occur.

Note that the “exceptions” mentioned in the IFSpec are not represented here. There are
two reasons for this: first, the general goal of an interface is to avoid exceptional conditions.
Therefore, to the extent possible, we described patterns of events that prevented exceptions
rather than leading to them. Second, the status of exceptions as to whether they actually
generated communication events was only clarified as a result of the exercise of formalizing
the IFSpec in this WRIGHT specification. Therefore, this initial version made the assumption
that exceptions were anomalous conditions (that would be represented by undesirable states
or traces of events) rather than actual messages that are communicated from the RTI to a
federate, or vice versa. As a result of our formalization effort, later drafts of the IFSpec
indicate that an exception can generate message traffic, and so ought in some way to be
included in the specification. In that case, it would be desirable to show that, due to the
structure of the protocol, these exception events may never occur. This would be another
reasonable way of using WRIGHT. We chose instead to have the protocols only describe
desirable behaviors, and to detect as deadlocks situation where an undesirable behavior
would have occurred.

The first “group” process that forms part of SimInterface is FedMgmt. Its alphabet is as
follows:

�FedMgmt = f createFedExecution; destroyFedExecution;

joinFedExecution; resignFedExecution;

requestPause; schedulePause;pauseAcheived;

requestResume; scheduleResume; resumeAchieved;

scheduleFedSave; startFedSave;
fedSaveBegun; fedSaveCompete;

requestRestore; restore; restoreComplete;
submitQuery;query; queryResultg

The FedMgmt process is responsible for controlling events that lead to federation
creation and destruction, the federate joining an resigning from the federation, queries about
the state of the simulation (meta-queries), as well as pause/resume and checkpointing.

Initially, the federate may need to create the RTI execution (if it doesn’t exist). After
that, it must join the federation before it may do anything else (process StartFedMgmt).
After that, it is in the “normal” operating condition (ContFedMgmt). It may select from a
set of management events, or it may terminate its own execution (EndFedMgmt). Normal
execution includes both sending events and receiving events (FedWaitForEvent).

The process FedPaused represents the same state as ContFedMgmt, except that in this
state, the simulation is paused. Thus, resumes are expected rather than pauses, and the
federation is not permitted to request additional pauses.

In both FedWaitForEvent and PauseWaitForEvent there is an additional message that
is not in the IFSpec: noMessage. This event represents the case where the federate looks

Appendix B. Details of WRIGHT Specification of HLA 221

for an event and there is none waiting.

Process FedMgmt = (createFedExecution !StartFedMgmt) uStartFedMgmt
where
StartFedMgmt = joinFedExecution !ContFedMgmt
ContFedMgmt = EndFedMgmt

u requestPause !ContFedMgmt
u submitQuery !queryResult !ContFedMgmt
u scheduleFedSave !ContFedMgmt
u requestRestore !ContFedMgmt
u submitQuery !ContFedMgmt
u WaitForEvent

WaitForEvent = schedulePause !pauseAchieved !FedPaused
startFedSave !DoFedSave; ContFedMgmt
restore !restoreComplete !ContFedMgmt
query !ContFedMgmt
queryResult !ContFedMgmt
noMessage !ContFedMgmt

DoFedSave = fedSaveBegun !fedSaveComplete !x

FedPaused = requestResume !FedPaused
u submitQuery !queryResult !ContFedMgmt
u scheduleFedSave !FedPaused
u requestRestore !FedPaused
u submitQuery !FedPaused
u PauseWaitForEvent

PauseWaitForEvent = scheduleResume !resumeAchieved !ContFedMgmt
startFedSave !DoFedSave; FedPaused
restore !restoreComplete !FedPaused
query !FedPaused
queryResult !FedPaused
noMessage !FedPaused

EndFedMgmt = resignFedExecution !((destroyFedExecution !x) u x)

The second management group is DeclMgmt. Its alphabet is:

�DeclMgmt = f publishObjClass; publishObjAttr;
publishIntrClass; subscribeIntrClass;
subscribeObjClass; subscribeObjAttr;
controlUpdates; controlInteractionsg

DeclMgmt handles declaration management; namely, the controlling of what objects and
attributes the federate is capable of publishing and interested in receiving information about,
respectively. There is no mention of individual instances in this management group; that
is handled by the next two, ownership and object management. There are no significant
preconditions reflected in this group and this model, because what preconditions there are,
are related to consistency of data with the federation object model. The object model is,
obviously, ignored, since it affects parameter values rather than control state.

222 A Formal Approach to Software Architecture

Process DeclMgmt = publishObjClass !DeclMgmt
u publishObjAttr !DeclMgmt
u publishIntrClass !DeclMgmt
u subscribeIntrClass !DeclMgmt
u subscribeObjClass !DeclMgmt
u subscribeObjAttr !DeclMgmt
u WaitForEvent
u x

where
WaitForEvent = controlUpdates !DeclMgmt

controlInteractions !DeclMgmt
noMessage !DeclMgmt

The Object management group covers communication about specific object/attribute in-
stances. In this model, in order to maintain finite-state while approximating the precondi-
tions, we treat the state of the federate as falling into two broad categories: One in which
it is not possible to own objects and another in which it is possible. The difference in
this model is whether the federate has object IDs allocated to it. This is not quite the
correct distinction, since, for example, a federate could acquire ownership of an object (via
the ownership management functions) that it did create. It is accurate with respect to the
creation of objects, however. WaitForEvent does not need to distinguish the two states;
it is, in effect, a macro that represents a single observed event. The use of a terminating
process followed by ’;’ indicates that the continuation of the process is different based on
the context in which it is used.

�ObjMgmt = f idRequest;
instantiateObj; deleteObj;
instantiateDiscoveredObj; removeObj;
updateAttrValues; reflectAttrValue;
cancelObjReflection;
sendInteraction; receiveInteraction;

requestAttrValueUpdate; provideAttrValueUpdateg

Process ObjMgmt = idRequest !MayOwnObjs
u sendInteraction !ObjMgmt
u requestAttrValueUpdate !ObjMgmt
u WaitForEvent; ObjMgmt
u cancelObjReflection !ObjMgmt
u x

where
MayOwnObjs = idRequest !MayOwnObjs
u instantiateObj !MayOwnObjs
u sendInteraction !MayOwnObjs
u requestAttrValueUpdate !MayOwnObjs
u deleteObj !MayOwnObjs
u updateAttrValues !DoesOwnObjs

Appendix B. Details of WRIGHT Specification of HLA 223

u WaitForEvent; MayOwnObjs
u cancelObjReflection !MayOwnObjs
u x

WaitForEvent = instantiateDiscoveredObj !x

reflectAttrValue !x

receiveInteraction !x

provideAttrValueUpdate!x

noMessage !x

The ownership management group consists of a number of sub-protocols regarding transfer
of ownership of objects or attributes. Thus, it is one of the more complex groups. The
distinction between the different sub-protocols is whether the change is initiated by the
federate or some other federate, whether it is the entire object or only an attribute, and
whether the federate is receiving or releasing ownership. Each has essentially the same
initiation-response pattern.

�OwnMgmt = f reqAttrOwnDivestiture;attrOwnDivestitureNotifyRelease;
attrOwnDivestitureNotifyRetain; uncondAttrOwnDivestiture;
reqAttrOwnAssumption;
reqAttrOwnAcquisition; attrOwnAcquisitionNotifySecured;

attrOwnAcuisitionNotifyRejected; reqAttrOwnRelease;
queryAttrOwnership;
reqDeletePrivAcquisition; reqDeletePrivRelease;

deletePrivNotifySecured; deletePrivNotifyRejectedg

Process OwnMgmt = reqAttrOwnDivestiture !DivestResponse
u uncondAttrOwnDivestiture !OwnMgmt
u reqAttrOwnAcquisition !OwnAcquisitionResponse
u queryAttrOwnership !OwnMgmt
u reqDeletePrivAcquisition!DeleteAcquisitionResponse
u WaitForEvent
u x

where
DivestResponse = attrOwnDivestitureNotifyRelease !OwnMgmt

attrOwnDivestitureNotifyRetain !OwnMgmt
OwnAcquisitionResponse = attrOwnAcquisitionNotifySecured !OwnMgmt

attrOwnAcquisitionNotifyRejected !OwnMgmt
DeleteAcquisitionResponse = deletePrivNotifySecured !OwnMgmt

deletePrivNotifyRejected !OwnMgmt
WaitForEvent = reqAttrOwnAssumption !(OwnAcquisitionResponse u OwnMgmt)

reqOwnAttrRelease !OwnMgmt
reqDeletePrivRelease !OwnMgmt
noMessage

224 A Formal Approach to Software Architecture

B.1.2 Interface Type Specification

The process SimInterface will be the role specification for the RTI. It may also, therefore,
be used as a port spec for a federate, but individual federates might prefer to have more
refined interface specifications. For example, a "Federate (Manager)" might only use the
federation management functions, while a non-manager might only use the join/resign part
of the management functions.

�SimInterface = �FedMgmt [�DeclMgmt [�ObjMgmt [�OwnMgmt

NotPausedEvents = �OwnMgmt [�ObjMgmt

FedEvents = �SimInterface n f joinFedExecution; resignFedExecution;

createFedExecution; destroyFedExecutiong

NotPausedEvents are those events which are not permitted during a pause. This list
is a guess on our part, since this is not specified in the IFSpec document. The process
ControlPause enforces this condition.

FedEvents are those events which can only occur while the federate is a member of
the federation execution and do not affect whether the federate is joined. This is less of a
guess, since there are discussions in the IFSpec about what events are permitted while not
joined (i.e., one must obviously be permitted to join while not joined), but there are events,
specifically those relating to queries, which I believe must be permitted while not joined
in order to receive information. This contradicts the documentation, however. FedJoined
enforces the preconditions regarding execution membership.

Both ControlPause and FedJoined control their events in the same way: They have
marker events that delineate what state they are in, and when the events are permitted, they
act as RUNS, where S is the set of controlled events. The inclusion of RUN guarantees
that the alphabet of these processes contains the events of interest, and so when they are
placed in parallel with the other events, these events are constrained not to occur except
when permitted.

Process SimInterface =
FedMgmt k DeclMgmt k ObjMgmt k OwnMgmt
k FedJoined k ControlPause

where
RUNS = x (8 e : S e!RUNS)
ControlPause = RUNNotPausedEvents ; pauseAchieved !resumeAchieved !ControlPause
FedJoined = joinFedExecution !RUNFedEvents ; resignFedExecution !x

B.2 RTI Glue Specification

SimInterface represents the constraints on the RTI interaction from the point of view of
a single federate. The RTI connector specifies how the behavior of several federates is

Appendix B. Details of WRIGHT Specification of HLA 225

combined to create a complete federation execution. Thus, the RTI connector specifies one
or more participating federates, each of which plays a Fed role in the connector.

The RTI has one auxiliary process that uses non-communication events: WhatSims.
It uses an internal event, checkSims. This event is triggered internally to the RTI, and is
never observed by any federate. The purpose of the WhatSims process is to keep track of
the current membership of the federation, since this is a major factor in what events are
permitted. For example, it is critical that the RTI never send an event to a member that is
not joined. This creates the illusion of a “dynamic” system, since any federate that is not
mentioned in the state variable of WhatSims might as well not exist. When a federate is
created, it immediately sends a joinFedExecution event, after which it is included in the
active state.

The other processes defined for the RTI handle actual interactions by the federates. The
only protocol that affects the control state of the RTI is federation creation and destruction,
represented by FedExists. The other protocols are basically independent, because any
constraints on the RTI are either data-oriented or guaranteed by the behavior of the individual
federates.

An example data-oriented constraint is the requirement that only federates that subscribe
to an attribute are notified of its change. These constraints are represented in this model as
non-determinism in the RTI. A data model of the RTI could make these constraints explicit,
thus resolving the non-determinism.

An example of a constraint that is guaranteed by the individual federates is that there
will be no object updates after pause has been achieved. This holds even though the RTI
doesn’t pay attention to pauses (beyond notifying federates) because the federates won’t
initiate events during a pause, and the RTI only initiates events as a response to federates.

Connector RTI(nsims:1..)=
Role Fed1::nsims = SimInterface
Glue = FedExists

k WhatSimsfg k HandleSims
where
FedExists = (8 i : 1::nsims Fedi.createFedExecution!x);

((8 i : 1::nsims k RunFedi :FedEvents);
(8 i : 1::nsims Fedi.destroyFedExecution!x))

WhatSimsS = (checkSims!S!WhatSimsS)
(8 i : 1::nsims Fedi.joinFedExecution !WhatSimsS[fig)
(8 i : 1::nsims Fedi.resignFedExecution !WhatSimsS�fig)
x

PauseProtocol = 8 i : 1::nsims Fedi.requestPause !checkSims?S
!(8 i : S ; Fedi.schedulePause!x);PauseProtocol

ResumeProtocol = 8 i : 1::nsims Fedi.requestResume !checkSims?S
!(8 i : S ; Fedi.scheduleResume!x);ResumeProtocol

SaveFed = 8 i : 1::nsims Fedi.scheduleFedSave !checkSims?S
!(8 i : S ; Fedi.startFedSave!x);!SaveFed

RestoreFed = 8 i : 1::nsims Fedi.requestRestore !checkSims?S
!(8 i : S ; Fedi.restore!x);!RestoreFed

226 A Formal Approach to Software Architecture

FedQuery = 8 i : 1::nsims Fedi.submitQuery !checkSims?S
!8J : � Su (8 j : J ;Fedj.query!x); !Fedi.queryResult!FedQuery

HandleSubscribe = 8 i : 1::nsims; e : fsubscribeObjClass ; subscribeObjAttrg Fedi.e
!checkSims?S
!((8 i : Su Fedi.controlUpdates!x)ux); HandleSubscribe

HandleSubscribeInteraction = 8 i : 1::nsims Fedi.subscribeInteraction
!checkSims?S
!8J : �Su (8 j : J ;Fedj.controlInteractions!x);
HandleSubscribeInteraction

NewObject = 8 i : 1::nsims Fedi.instantiateObj !checkSims?S
!8J : � Su (8 j : J ;Fedj.instantiateDiscoveredObj!x);
NewObject

DeleteObject = 8 i : 1::nsims Fedi.deleteObj !checkSims?S
!8J : �Su (8 j : J ;Fedj.removeObj!x);
DeleteObject

NewAttrValue = 8 i : 1::nsims Fedi.updateAttrValues !checkSims?S
!8J : � Su (8 j : J ;Fedj.removeObj!x);
8K : �S n Ju (8k : K ;Fedk.instantiateDiscoveredObj!x);
8L : � S n J nKu (8 l : L;Fedl.reflectAttrValues!x);
NewAttrValue

CancelObj = 8 i : 1::nsims Fedi.cancelObjReflection !Fedi.removeObj!CancelObj
Interaction = 8 i : 1::nsims Fedi.sendInteraction !checkSims?S

!8J : � Su (8 j : J ;Fedj.receiveInteraction!x);
Interaction

RequestAttr = 8 i : 1::nsims Fedi.requestAttrValueUpdate !checkSims?S
!((8 i : SuFedi.provideAttrValueUpdate!x)u x); RequestAttr

OwnDivestiture = 8 i : 1::nsims Fedi.reqAttrOwnDivestiture!checkSim?S
!8J : � Su (8 j : J ; Fedi.reqAttrOwnAssumption!x);
((Fedi.attrOwnDivestitureNotifyRelease

!8 j : Ju Fedj.attrOwnAcquisitionNotifySecured!x)
u Fedi.attrOwnDivestitureNotifyRetain!x);

OwnDivestiture
UncOwnDivestiture = 8 i : 1::nsims Fedi.uncAttrOwnDivestiture!checkSim?S

!8J : � Su (8 j : J ; Fedi.reqAttrOwnAssumption!x);
((8 j : Ju Fedj.attrOwnAcquisitionNotifySecured!x)
u x);

UncOwnDivestiture
OwnAcquisition = 8 i : 1::nsims Fedi.reqAttrOwnAcquisition!checkSim?S

(8 j : Su Fedi.reqAttrOwnRelease!x);
(Fedi.attrOwnAcquisitionNotifySecured!x)
u Fedi.attrOwnAcquisitionNotifyRejected!x);

OwnAcquisition
DeleteAcquisition = 8 i : 1::nsims Fedi.reqDeletePrivAcquisition!checkSim?S

(8 j : Su Fedi.reqDeletePrivRelease!x);
(Fedi.deletePrivAcquisitionNotifySecured!x)

Appendix B. Details of WRIGHT Specification of HLA 227

u Fedi.deletePrivAcquisitionNotifyRejected!x);
DeleteAcquisition

OtherEvents = 8 i : 1::nsims; e : fpauseAchieved ; resumeAchieved ;

fedSaveBegun ;

fedSaveComplete ; restoreComplete

publishObjClass ; publishObjAttr ;

publishInteractionClass ;

idRequest ; queryAttrOwnership

g

Fedi.e!OtherEvents
HandleSims = PauseProtocol k ResumeProtocol

k SaveFed k RestoreFed k FedQuery
k HandleSubscribe k HandleSubscribeInteraction
k NewObject k DeleteObject
k NewAttrValue k CancelObj
k Interaction k RequestAttr
k OwnDivestiture k UncOwnDivestiture
k OwnAcquisitionk DeleteAcquisition
k OtherEvents

The process OtherEvents provides for all events that do not trigger other events. It
simply recognizes them. (These events would change the state of the RTI in a model that
used parameters.)

228 A Formal Approach to Software Architecture

Bibliography

[AA96] Ahmed A. Abd-Allah. Composing Heterogeneous Software Architectures.
PhD thesis, University of Southern California, August 1996.

[AAG93] Gregory Abowd, Robert Allen, and David Garlan. Using style to understand
descriptions of software architecture. In Proceedings of SIGSOFT’93: Foun-
dations of Software Engineering, Software Engineering Notes 18(5), pages
9–20. ACM Press, December 1993.

[AAG95] Gregory Abowd, Robert Allen, and David Garlan. Formalizing style to un-
derstand descriptions of software architecture. ACM Transactions on Software
Engineering and Methodology, 4(4):319–64, October 1995.

[AD94] Gregory D. Abowd and Alan J. Dix. Integrating status and event phenomena
in formal specifications of interactive systems. In Proceedings of the SIG-
SOFT ’94: 2nd ACM SIGSOFT Symposium on the Foundations of Sofware
Engineering, pages 44–52, New Orleans, LA, December 1994.

[AG92] Robert Allen and David Garlan. A formal approach to software architectures.
In Jan van Leeuwen, editor, Proceedings of IFIP’92, pages 134–41. Elsevier
Science Publishers B.V., September 1992.

[ATT93] AT&T. Best Current Practices: Software Architecture Validation. AT&T,
1993.

[B+90] J. Burch et al. Symbolic model checking: 1020 states and beyond. In Proc. 5th
Symposium on Logic in Computer Science, June 1990.

[BB92] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96:217–248, 1992.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture: A System of Patterns.
John Wiley and Sons, New York, NY, 1996.

[Boo93] Grady Booch. Object-Oriented Analysis and Design with Applications. Ben-
jamin/Cummings, Redwood City, CA, 1993.

[BR85] S.D. Brookes and A.W. Roscoe. An improved failures model for communicat-
ing processes. In Proceedings NSF-SERC Seminar on Concurrency. Springer
Verlag, Lecture notes in Computers Science, 1985.

229

230 A Formal Approach to Software Architecture

[Bro96] Peter Brooks. New directions in advanced distributed simulation, April 1996.
Presentation at CMU.

[BWW88] Mario R. Barbacci, C. B. Weinstock, and J. M. Wing. Programming at the
processor-memory-switch level. In Proceedings of the Tenth International
Conference on Software Engineering, March 1988.

[C+86] E. Clarke et al. Automatic verification of finite state concurrent systems using
temporal logic specifications. TOPLAS, 8(2), April 1986.

[CA95] J. C. Corbett and G. S. Avrunin. Using integer programming to verify general
safety and liveness properties. Formal Methods in System Design, 6(1):97–
123, January 1995.

[CDG+89] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow,
and Greg Nelson. Modula-3 report (revised). Technical Report 52, Digital
Systems Research Center, November 1989.

[Che88] C. H. Chen. Signal Processing Handbook. Marcel Dekker, Inc., New York,
1988.

[CS95] James O. Coplien and Douglas C. Schmidt, editors. Pattern Languages of
Program Design. Addison-Wesley, 1995.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data abstraction,
and polymorphism. Technical Report CS-85-14, Brown University, 1985.

[DAR90] Proceedings of the Workshop on Domain-Specific Software Architectures, Hid-
den Valley, PA, July 1990. Software Engineering Institute.

[DG90] Norman Delisle and David Garlan. Applying formal specification to industrial
problems: A specification of an oscilloscope. IEEE Software, 7(5):29–37,
September 1990.

[DK76] Frank DeRemer and Hans H. Kron. Programming-in-the-large versus
programming-in-the-small. IEEE Transactions on Software Engineering, SE-
2(2):80–86, June 1976.

[DMSO] DMSO. Web site, URL = http://www.dmso.mil/docslib/hla/.

[DMSO95] DMSO. Department of Defense High Level Architecture For Simulations
Interface Specification, October 1995. Version 0.2.

[DoD83] United States Department of Defense. Reference Manual for the Ada Pro-
gramming Language, January 1983.

[FDR93] Failures Divergence Refinement: User Manual and Tutorial. Formal Systems
(Europe) Ltd., Oxford, England, 1.3 edition, August 1993.

Bibliography 231

[G+95] Cristina Gacek, Ahmed Abd-Allah, Bradford Clark, and Barry Boehm. On
the definition of software system architecture. In Proceedings of the First
International Workshop on Architectures for Software Systems, pages 85–94,
Seattle, WA, April 1995.

[GAO94] David Garlan, Robert Allen, and John Ockerbloom. Exploiting style in ar-
chitectural design environments. In Proceedings of SIGSOFT ’94: 2nd ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pages
175–88, New Orleans, LA, December 1994. ACM Press.

[GAO95] David Garlan, Robert Allen, and John Ockerbloom. Architectural mismatch,
or, why it’s hard to build systems out of existing parts. In Proceedings of the
17th International Conference on Software Engineering, Seattle, Washington,
April 1995.

[Gar95] David Garlan, editor. First International Workshop on Architectures for Soft-
ware Systems, Seattle, WA, April 1995.

[Gar96] David Garlan. Style-based refinement for software architecture. In Second
International Software Architecture Workshop (ISAW-2), pages 72–75, San
Fransisco, October 1996. ACM SIGSOFT.

[GC92] David Gelernter and Nicholas Carriero. Coordination languages and their
significance. Communications of the ACM, 35(2):97–107, February 1992.

[GG95] Peter Green and Terry Griffin. Specification for the RTIS HLA/RTI imple-
mentation. Technical Report RTIS10951, The Real-Time Intelligent Systems
Corporation, Westborough, MA, October 1995.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Design. Addison-Wesley,
1995.

[GMW97] David Garlan, Robert T. Monroe, and David Wile. ACME: An architecture
description interchange language. submitted for publication, January 1997.

[GN91] David Garlan and David Notkin. Formalizing design spaces: Implicit invoca-
tion mechanisms. In VDM’91: Formal Software Development Methods, pages
31–44, Noordwijkerhout, The Netherlands, October 1991. Springer-Verlag,
LNCS 551.

[GPT95] David Garlan, Frances Newberry Paulisch, and Walter F. Tichy, editors. Sum-
mary of the Dagstuhl Workshop on Software Architecture, Feb 1995. Reprinted
in ACM Software Eng. Notes, July 1995.

[GS93] David Garlan and Mary Shaw. An introduction to software architecture. In
V. Ambriola and G. Tortora, editors, Advances in Software Engineering and
Knowledge Engineering, pages 1–39, Singapore, 1993. World Scientific Pub-
lishing Company.

232 A Formal Approach to Software Architecture

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–74, June 1987.

[Hav90] Klaus Havelund. An RSL Tutorial. Computer Resources International A/S,
1990.

[HMM86] Robert Harper, David MacQueen, and Robin Milner. Standard ML. Technical
Report ECS-LFCS-86-2, Edinburgh University, March 1986.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[Hol91] Gerald J. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall, 1991.

[HS87] Roger Hayes and Richard D. Schlichting. Facilitating mixed language pro-
gramming in distributed systems. IEEE Transactions on Software Engineering,
13(12):1254–64, December 1987.

[IW95] Paola Inverardi and Alex Wolf. Formal specification and analysis of software
architectures using the chemical, abstract machine model. IEEE Transactions
on Software Engineering, 21(4):373–386, April 1995.

[Jac92] Ivar Jacobson. Object-Oriented Software Engineering: A Use Case Driven
Approach. ACM Press, Reading, MA, 1992.

[Jac95a] Daniel Jackson. Structuring Z specifications with views. ACM Transactions
on Software Engineering and Methodology, 4(4):365–89, October 1995.

[Jac95b] Michael J. Jackson. Software Requirements and Specifications: A Lexicon of
Practice, Principles, and Prejudices. ACM Press, New York, 1995.

[JC94] G.R. Ribeiro Justo and P.R. Freire Cunha. Deadlock-free configuration pro-
gramming. In Proceedings of the Second International Workshop on Config-
urable Distributed Systems, March 1994.

[JD96] Daniel Jackson and Craig A. Damon. Elements of style: Analyzing a software
design feature with a counterexample detector. IEEE Transactions on Software
Engineering, 22(7):484–95, July 1996.

[Jon86] C.B. Jones. Systematic program development. In Proc. Symposium on Math-
ematics and Computer Science, 1986. (also in Software Specification Tech-
niques, pages 89-108).

[K+] Gregor Kiczales et al. Aspect-oriented programming. Position Paper.
http://www.parc.xerox.com/spl/projects/aop/position.htm.

[KBAW94] Rick Kazman, Len Bass, Gregory Abowd, and Mike Webb. SAAM: A method
for analyzing the properties of software architecture. In Proceedings of the 16th
International Conference on Software Engineering, pages 81–90, Sorrento,
Italy, May 1994.

Bibliography 233

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
Technical report, Xerox Palo Alto Research Center, Palo Alto, CA, 1997.

[Kra90] Jeff Kramer. Configuration programming – a framework for the development
of distributable systems. In Proc. IEEE Int. Conf. on Computer Systems and
Software Engineering (CompEuro 90), Israel, May 1990.

[KW96] Jeff Kramer and Alexander Wolf, editors. Eight International Workshop on
Software Specification and Design, Paderborn, Germany, March 1996.

[LAK+95] David C Luckham, Lary M. Augustin, John J. Kenney, James Vera, Doug
Bryan, and Walter Mann. Specification and analysis of system architecture
using Rapide. IEEE Transactions on Software Engineering, 21(4):336–355,
April 1995.

[Lam87] David Alex Lamb. IDL: Sharing intermediate representations. ACM Transac-
tions on Programming Languages and Systems, 9(3):297–318, July 1987.

[LeM96] Daniel Le Métayer. Software architecture styles as graph grammars. In Pro-
ceedings of the Fourth ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 15–22, San Fransisco, CA, October 1996.

[LK97] Cristina Vieira Lopes and Gregor Kiczales. D: A language framework for
distributed programming. Technical report, Xerox Palo Alto Research Center,
Palo Alto, CA, 1997.

[LT88] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.
Technical Report MIT/LCS/TM-373, MIT Laboratory for Computer Science,
1988.

[LVB+92] David C. Luckham, James Vera, Doug Bryan, Larry Augustin, and Frank Belz.
Partial orderings of event sets and their application to prototyping concurrent
timed systems, March 1992.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping.
ACM Transactions on Programming Languages and Systems, November 1994.

[MDEK95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed soft-
ware architectures. In Proceedings of the Fifth European Software Engineering
Conference, ESEC’95, September 1995.

[Min91] Naftaly H. Minsky. The imposition of protocols over open distributed systems.
IEEE Transactions on Software Engineering, 17(2):183–95, February 1991.

[MK96] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures. In
Proceedings of the Fourth ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 3–14, San Fransisco, CA, October 1996.

234 A Formal Approach to Software Architecture

[MNS95] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion models:
Bridging the gap between source and high-level models. In Proceedings of
SIGSOFT ’95: Third ACM SIGSOFT Symposium on Foundations of Software
Engineering, Software Engineering Notes 20(4), pages 18–28, Washington,
DC, October 1995. ACM Press.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Journal
of Information and Computation, 100:1–77, 1992.

[MQ94] Mark Moriconi and Xiaolei Qian. Correctness and composition of software ar-
chitectures. In Proceedings of SIGSOFT ’94: 2nd ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages 164–74, New Orleans,
LA, December 1994.

[MQR95] M. Moriconi, X. Qian, and R. Riemenschneider. Correct architecture refine-
ment. IEEE Transactions on Software Engineering, 21(4):356–372, April
1995.

[NACO97] Gleb Naumovich, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil.
Applying static analysis to software architectures. Submitted for Publication,
January 1997.

[Nie93] Oscar Nierstrasz. Regular types for active objects. In Proceedings of OOPSLA
’93, ACM Sigplan Notices, 28(10):1–15, October 1993.

[OMG91] Object Management Group. The Common Object Request Broker: Archi-
tecture and specification. OMG Document Number 91.12.1, December 1991.
Revision 1.1 (Draft 10).

[PDN86] Ruben Prieto-Diaz and James M. Neighbors. Module interconnection lan-
guages. The Journal of Systems and Software, 6(4):307–334, November 1986.

[Pet77] J.L. Peterson. Petri nets. ACM Computing Surveys, 9(3):223–252, September
1977.

[Pra86] V. R. Pratt. Modeling concurrency with partial orders. International Journal
of Parallel Programming, 15(1):33–71, February 1986.

[Pur94] James M. Purtilo. The POLYLITH software bus. ACM Transactions on
Programming Languages and Systems, 16(1):151–174, January 1994.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of
software architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–
52, October 1992.

[RBP+91] James Rumbaugh, Michael Blaha, William Premeriani, Frederick Eddy, and
William Lorenson. Object-Oriented Modeling and Design. Prentice Hall,
Englewood Cliffs, NJ, 1991.

Bibliography 235

[RD95] Jose Rivera and Alejandro Andres Danylyszyn. Formalizing the uni-processor
simplex architecture. Technical Report CMU-CS-95-224, Carnegie Mellon
University School of Computer Science, 1995.

[Rei90] S.P. Reiss. Connecting tools using message passing in the Field Environment.
IEEE Software, 7(4):57–66, July 1990.

[Ros95] A. W. Roscoe. Notes on CSP. Unpublished manuscript, 1995.

[RR86] G. M. Reed and A. W. Roscoe. A time model for communicating sequential
processes. In Thirteenth International Colloquium on Automata, Languages,
and Programming, pages 249–262, 1986. Published in Theoretical Computer
Science 58, 1988.

[SC] Mary Shaw and Paul Clements. A field guide to boxology: Preliminary
classification of architectural styles for software systems. Manuscript.

[SC96] Mary Shaw and Paul Clements. Toward boxology: Preliminary classification
of architectural styles. In Second International Software Architecture Work-
shop (ISAW-2), pages 50–54, San Fransisco, October 1996. ACM SIGSOFT.

[SDK+95] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M.
Young, and Gregory Zelesnik. Abstractions for software architecture and tools
to support them. IEEE Transactions on Software Engineering, 21(4):314–335,
April 1995.

[SG94] Mary Shaw and David Garlan. Characteristics of higher-level languages for
software architecture. Technical Report CMU-CS-94-210, Carnegie Mellon
University, School of Computer Science, 1994. Also printed as CMU Software
Engineering Institute Technical Report SEI-94-TR-23, ESC-TR-94-023.

[SG95] Mary Shaw and David Garlan. Formulations and formalisms in software
architecture. In Jan van Leeuwen, editor, Computer Science Today: Recent
Trends and Developments, Lecture Notes in Computer Science, Volume 1000.
Springer-Verlag, 1995.

[Sha88] Mary Shaw. Toward higher-level abstractions for software systems. In Proc.
Tercer Simposio Internacional del Conocimiento y su Ingerieria, pages 55–61,
October 1988.

[SKW83] Douglas R. Smith, Gordon B. Kotik, and Stephen J. Westfold. Research on
knowledge-based software environments at kestrel institute. IEEE Transac-
tions on Software Engineering, SE-11(11):1278–95, November 1983.

[SLF90] Reid Simmons, Long-Ji Lin, and Christopher Fedor. Autonomous task control
for mobile robots. In Proceedings of the 5th IEEE International Symposium
on Intelligent Control, Philadelphia, PA, September 1990.

236 A Formal Approach to Software Architecture

[Spi92] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd edition,
1992.

[SSM97] Kevin J. Sullivan, John Socha, and Mark Marchukov. Using formal methods to
reason about architectural standards. In Proceedings of the 19th International
Conference on Software Engineering, Boston, MA, May 1997. To appear.

[SVK93] David B. Stewart, Richard A. Volpe, and Pradeep K. Khosla. Design of dy-
namically reconfigurable real-time software using port-base objects. Technical
Report CMU-RI-TR-93-11, Carnegie Mellon University Robotics Institute,
July 1993.

[Tic79] Walter F. Tichy. Software development control based on module intercon-
nection. In Proceedings of the Third International Conference on Software
Engineering, pages 29–41. IEEE Computer Society Press, May 1979.

[UML] Rational Software Corporation. Unified modeling language (UML). available
at http://www.rational.com/uml/.

[WG97] Zhenyu Wang and David Garlan. A case study in architecture interchange. In
preparation, 1997.

[Wir90] Martin Wirsing. Algebraic specification. In J. van Leewen, editor, Handbook
of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 13, pages 675–788. MIT Press, Cambridge, MA, 1990.

[WKE93] J. Ward, J. Krueger, and E. Engstrom. ArchEd: A visual graph-based approach
to architecture specification. Technical Report CS-R93-008, Honeywell Tech-
nology Center, March 1993.

[XOp93] X/Open Company Ltd. Distributed Transaction Processing: Reference Model,
Version 2, November 1993.

[YS97] Daniel M. Yellin and Robert E. Strom. Protocol specifications and compo-
nent adaptors. ACM Transactions on Programming Languages and Systems,
19(2):292–333, March 1997.

[ZJ93] Pamela Zave and Michael Jackson. Conjunction as composition. ACM Trans-
actions on Software Engineering and Methodology, 2(4):379–411, October
1993.

