
Automatic Generation of Parallel Programs
with Dynamic Load Balancing
for a Network of Workstations

Bruce S. Siegell
May 5, 1995

CMU-CS-95-168

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical and Computer Engineering

Thesis Committee:
H. T. Kung, Chair

Allan Fisher
Peter Steenkiste
Jaspal Subhlok

Copyright c1995 by Bruce S. Siegell.

Supported in part by the Defense Advanced Research Projects Agency, Information Science and Technology Office, under the title
“Research on Parallel Computing,” ARPA Order No. 7330. Work furnished in connection with this research is provided under prime
contract MDA972-90-C-0035 issued by DARPA/CMO to Carnegie Mellon University and under its subcontract, No. 334918-58792
with Networks Systems Corporation.
The views and conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of Network Systems Corporation, DARPA or the U. S. Government.

Keywords: dynamic load balancing, parallelizing compilers, network of workstations, self-scheduling,
grain size, Nectar

Abstract

Because of their high availability and relatively low cost, networks of workstations are now often considered

as platforms for applications that used to be relegated to dedicated multiprocessors. Parallelizing compilers

have simplified the programming of shared and distributed memory multiprocessors. However, with

networks of workstations, which are more loosely coupled, additional problems of heterogeneity, varying

resource availability, and higher communication costs must be addressed in order to maximize utilization of

system resources. Computational capabilities may vary with time due to other applications competing for

resources, so dynamic load balancing is very important.

Our research explores issues in retargeting a parallelizing compiler for a network of workstations. In

this dissertation, we describe a system that supports dynamic load balancing of distributed applications

consisting of parallelized DOALL and DOACROSS loops. We outline the added compiler functionality

needed to generate parallel programs with dynamic load balancing and demonstrate how parameters for

dynamic load balancing can be selected and controlled automatically at run time with cooperation between

the compiler and runtime system. We have implemented a prototype runtime system on the Nectar system

at Carnegie Mellon University and have evaluated its performance using hand-parallelized applications

running in various environments.

Key performance parameters under our control include the grain size of the application, the frequency

of load balancing, and the amount and frequency of work movement. The optimal grain size is selected

based on computation and communication costs of the application on the particular system on which it is

run. Selecting an appropriate load balancing frequency requires information about communication costs

and process scheduling by the operating system. The frequency must be adjusted as loads on the processors

change, and controlling the frequency requires the cooperation of the compiler. Making correct decisions

regarding work movement is a difficult problem because of high work movement costs and the unpredictable

i

nature of the loads on the processors. Our measurements show that dynamic load performance improves

system utilization and reduces execution times in some cases, but is ineffective for others, largely due to the

costs of moving work.

ii

Acknowledgements

I would like to thank my advisor, H. T. Kung, for his advice, support, and encouragement. I am grateful

to him for allowing me to follow my interests in both hardware and software within the contexts of the

Nectar and iWarp projects. I would also like to thank Peter Steenkiste for advising me after Kung left for

Harvard. Peter is a good sounding board and encouraged me to write papers to help organize my ideas. He

also read my manuscript several times, identifying problem areas and giving useful suggestions about ways

to strengthen its presentation. Thanks also to the other members of my thesis committee—Allan Fisher and

Jaspal Subhlok—for their invaluable comments and suggestions regarding my dissertation.

Many other people in the ECE1 and SCS2 communities have helped me with my research and helped

to make my life enjoyable during my time at CMU. I am indebted to the people who listened to and gave

constructive feedback on the practice talks for my defense and to the attendees of the iWarp/Nectar seminars

who listened attentively to my other talks over the years. I thank the members of the Nectar project who

developed and maintained the Nectar hardware and software. Michael Gillinov deserves special thanks for

helping me keep the prototype Nectar system running after everyone else went off to do other things. I also

thank the SCS Facilities staff for keeping everything else running. My officemates and the SCS Zephyr

community3 have also helped me with many day-to-day questions and problems. Finally, I’d like to thank

my friends and family for being supportive during the ups and downs of my graduate studies.

Portions of the work described here have been published previously [54].

1Department of Electrical and Computer Engineering.
2School of Computer Science.
3The people who use the Zephyr Notification Service.

iii

iv

Contents

1 Introduction 1
1.1 Features of target system : 3
1.2 Application domain and compiler model : 3

1.2.1 Notation used in this thesis : 5
1.2.2 DOALL loops : 6
1.2.3 DOACROSS loops : 7
1.2.4 Dealing with recurrences : 8
1.2.5 Example applications : 8

1.3 Our load balancing approach : 12
1.4 Control theory model of dynamic load balancing : 14
1.5 Evaluating parallel performance : 17
1.6 Summary of experimental results : 21
1.7 Related work : 21

1.7.1 Compiler support for load balancing : 22
1.7.2 Self-scheduling : 22
1.7.3 Diffusion methods : 24
1.7.4 Use of prior performance as estimate of future performance : : : : : : : : : : : : : 24

1.8 Organization of this dissertation : 25

2 Load balancing architecture 27
2.1 Application considerations : 27

2.1.1 Position of distributed loop in loop structure : 28
2.1.2 Loop carried dependences : 28
2.1.3 Dependences outside loop : 29
2.1.4 Loop bounds : 30
2.1.5 Iteration sizes : 31
2.1.6 Data size : 32

2.2 Environmental considerations : 32
2.2.1 Hardware configuration : 32
2.2.2 Communication costs : 33
2.2.3 Dynamicness of system : 33

2.3 Load balancing design space : 34

v

2.4 Load balancing architecture : 36
2.4.1 Global information : 37
2.4.2 Work distributed among slave processors : 37
2.4.3 Use of application knowledge : 37

2.5 Load balancing strategy : 39
2.6 Master-slave interactions : 39

2.6.1 Pipelined Load Balancing : 40
2.6.2 Asynchronous load balancing : 42
2.6.3 Granularity of work movement : 44

2.7 Summary : 46

3 Automatic selection of grain size 47
3.1 Synchronization types : 48
3.2 Compile-time control of grain size : 49

3.2.1 Loop splitting : 50
3.2.2 Message aggregation : 51
3.2.3 Strip mining : 51
3.2.4 Loop tiling : 51

3.3 Unidirectional synchronizations : 53
3.3.1 Controlling grain size at run time : 53
3.3.2 Communication costs : 55
3.3.3 Pipeline fill and drain times : 55
3.3.4 Selecting the optimal block size : 56
3.3.5 Evaluation of grain size model : 59
3.3.6 Optimal grain size vs. fixed grain size. : 61
3.3.7 Effect of competing loads : 62

3.4 Bidirectional (barrier) synchronizations : 64
3.4.1 Synchronization overhead : 65
3.4.2 Effect of competing loads : 67

3.5 Summary : 72

4 Automatic selection of load balancing frequency 75
4.1 Cooperation between compiler and runtime system : 76
4.2 Compiler placement of load balancing code : 77

4.2.1 Possible hook locations : 78
4.2.2 Selecting from among possible hook locations : 79
4.2.3 Code restructuring to create better hook locations : : : : : : : : : : : : : : : : : : 81
4.2.4 Hook placement algorithm : 82
4.2.5 Timing code : 86

4.3 Selection of load balancing frequency at run time : 88
4.3.1 Interaction overhead : 88
4.3.2 Cost of work movement : 89
4.3.3 Interaction with time quantum : 90

vi

4.3.4 Target load balancing period : 93
4.3.5 Effect of load balancing frequency on performance : : : : : : : : : : : : : : : : : 96
4.3.6 Effectiveness of frequency selection in limiting overhead : : : : : : : : : : : : : : 97

4.4 Summary : 99

5 Load balancing process 101
5.1 High-level design : 101
5.2 Computing the optimal distribution : 103
5.3 Imbalance detection : 103

5.3.1 Quantifying load imbalance : 104
5.3.2 Effect of imbalance threshold on performance : 105

5.4 Filtering rate information : 108
5.4.1 Effect of filtering on performance : 112

5.5 Instruction generation : 114
5.5.1 Unrestricted work movement : 114
5.5.2 Restricted work movement : 116

5.6 Profitability determination : 119
5.6.1 Estimating costs of work movement : 120
5.6.2 Estimating benefits of work movement : 121
5.6.3 Effect of Profitability Determination on Performance : : : : : : : : : : : : : : : : 123

5.7 Summary : 123

6 Compiler support for load balancing 127
6.1 Code structure : 128
6.2 Changes to distributed loop bounds and distributed data structures : : : : : : : : : : : : : 129

6.2.1 Basic data structure : 131
6.2.2 Efficient access to data : 131
6.2.3 Selecting the data structure : 137

6.3 Dealing with varying loop bounds : 137
6.4 Work movement routines : 140

6.4.1 Identifying data to be moved : 141
6.4.2 Moving distributed data between processors. : 142

6.5 Work update routines : 143
6.6 Modifications to communication code : 144
6.7 Summary : 146

7 Evaluation 147
7.1 Experimental setup : 147

7.1.1 Target environment : 148
7.1.2 Application versions : 149
7.1.3 Performance with load balancing : 150

7.2 Load balancing overhead in a dedicated homogeneous environment : : : : : : : : : : : : : 151
7.3 Load balancing with a constant competing load : 156

vii

7.4 Load balancing in a dynamic system : 159
7.5 Modeling performance with oscillating loads : 165

7.5.1 Static load balancing : 166
7.5.2 Dynamic load balancing : 167
7.5.3 Improving the model/Improving the system : 181

7.6 Limits of dynamic load balancing approach : 182
7.7 Summary : 183

8 Conclusions 185
8.1 Contributions : 185
8.2 Areas for future work : 187

viii

List of Figures

1.1 Distribution of output matrix by columns. : 4
1.2 Matrix and vector notation for figures and equations. : 5
1.3 Representations for program examples. : 6
1.4 Distribution of DOALL loop. : 7
1.5 Distribution of DOACROSS loop. : 8
1.6 Replacement of recurrence with reduction operation. : 9
1.7 Sequential code for matrix multiplication (MM). : 10
1.8 Sequential code for successive overrelaxation (SOR). : 11
1.9 Dependences and execution order for single SOR phase : : : : : : : : : : : : : : : : : : : 11
1.10 Sequential code for LU decomposition (LU). : 13
1.11 Redistribution of output matrix to balance load : 14
1.12 Simplified model of load balancer as a digital feedback control system. : : : : : : : : : : 15
1.13 Dynamic load balancing control system. : 16

2.1 Communication requirements for different mappings of loop iterations. : : : : : : : : : : : 29
2.2 Communication for load balancing. : 38
2.3 Interactions for load balancing in a stable balanced system. : : : : : : : : : : : : : : : : : 40
2.4 Interactions for load balancing in a system where available computation resources vary. : : 43
2.5 Pipelined vs. asynchronous load balancing for 500� 500 MM. : : : : : : : : : : : : : : : 45

3.1 Communication pattern determines synchronization type. : : : : : : : : : : : : : : : : : : 48
3.2 LU decomposition row elimination loop. : 50
3.3 Strip mining transformation. : 51
3.4 Parallelization options for SOR. : 52
3.5 Modeling execution time for pipelined application. : 57
3.6 Upper bound on efficiency for pipelined loop. : 58
3.7 Efficiency of pipelined loop in SOR as a function of block size. : : : : : : : : : : : : : : : 60
3.8 Fixed grain size vs. automatically selected grain size for pipelined application. : : : : : : : 62
3.9 Model of pipelined execution with competing load. : 63
3.10 Simulation results for pipelined execution with competing loads. : : : : : : : : : : : : : : 65
3.11 Parallelized code with barrier synchronizations. : 66
3.12 Interaction between barrier synchronizations (grainsize = 70 msec) and competing load. : 69
3.13 Interaction between barrier synchronizations (grainsize = 140 msec) and competing load. 70
3.14 Simulation results for parallel execution with barrier synchronizations with competing loads. 71

ix

4.1 Code for load balancing hook. : 77
4.2 Time line showing computation and load balancing periods. : : : : : : : : : : : : : : : : : 77
4.3 Pseudocode for SOR showing possible locations for load balancing hook. : : : : : : : : : : 79
4.4 Pseudocode for MM showing possible locations for load balancing hook. : : : : : : : : : : 82
4.5 Using strip mining and loop interchange to increase control of load balancing hook frequency. 83
4.6 Placement of timing code. : 87
4.7 Periods affecting selection of load balancing period. : 89
4.8 Sampling of oscillating performance information. : 92
4.9 Scale factor for amplitude of oscillations for different sampling periods. : : : : : : : : : : 93
4.10 Effect of sampling period on stability of measurements. : : : : : : : : : : : : : : : : : : : 94
4.11 Lower bounds on load balancing period. : 95
4.12 Effect of load balancing period on efficiency. : 97
4.13 Fraction of CPU used on master processor for 500� 500 MM. : : : : : : : : : : : : : : : 98

5.1 The load balancing decision process. : 102
5.2 Effect of threshold on work allocation in response to changes in measured rate on processor

with constant competing load. : 105
5.3 Effect of using threshold to detect load imbalance. : 106
5.4 Effect of threshold on work allocation in response to changes in rate on processor with

oscillating load (period = 60 seconds). : 107
5.5 Performance assessment for a constant competing load. : : : : : : : : : : : : : : : : : : : 110
5.6 Performance assessment for an oscillating competing load. : : : : : : : : : : : : : : : : : 111
5.7 Effect of filtering of rate information on efficiency. : 113
5.8 Effect of filtering on work allocation in response to changes in rate on processor with

oscillating load (period = 60 seconds). : 113
5.9 Unrestricted work movement using Algorithm 5.1. : 116
5.10 Load balancing of loop with dependences. : 119
5.11 Effect of filtering of rate information on efficiency. : 124

6.1 Code structure for master and slave processes for SOR. : : : : : : : : : : : : : : : : : : : 129
6.2 Common regular distributions. : 130
6.3 Sequential version of code used in comparing representations of irregular distributions. : : 130
6.4 Basic (scattered) data structure for storing distributed data. : : : : : : : : : : : : : : : : : 132
6.5 Scattered data structure with index array. : 134
6.6 Packed data structure. : 135
6.7 Packed data structure with reverse index array. : 136
6.8 Data structure for applications with restricted work movement. : : : : : : : : : : : : : : : 138
6.9 Code for deactivating data slices when distributed loop bound decreases. : : : : : : : : : : 140
6.10 Steps in load balancing of SOR example. : 145

7.1 The Nectar system. : 148
7.2 500� 500 MM running in dedicated homogeneous environment. : : : : : : : : : : : : : : 153
7.3 1000� 1000 SOR running in dedicated homogeneous environment. : : : : : : : : : : : : 154

x

7.4 2000� 2000 SOR running in dedicated homogeneous environment. : : : : : : : : : : : : 155
7.5 Measured performance and work movement on processor with constant competing load. : : 157
7.6 500� 500 MM running in environment with constant load on first processor. : : : : : : : : 157
7.7 1000� 1000 SOR running in environment with constant load on first processor. : : : : : : 158
7.8 2000� 2000 SOR running in environment with constant load on first processor. : : : : : : 158
7.9 Performance in environment with oscillating load (period = 60 sec.) on one processor. : : : 161
7.10 Performance in environment with oscillating load (period = 20 sec.) on one processor. : : : 162
7.11 Performance in environment with oscillating load (period = 6 sec.) on one processor. : : : : 163
7.12 Performance in environment with oscillating load (period = 2 sec.) on one processor. : : : : 164
7.13 Measured performance and work movement on processor with oscillating load. : : : : : : : 164
7.14 Static allocation of work. : 167
7.15 Performance of static load balancing approaches. : 167
7.16 Dynamic load balancing model for predicting performance. : : : : : : : : : : : : : : : : 168
7.17 Fraction of total distributed matrix moved with each transition of oscillating load. : : : : : 171
7.18 Work movement patterns for restricted work movement. : : : : : : : : : : : : : : : : : : 172
7.19 Predicted efficiency in environment with oscillating load (period = 60 sec) on first processor. 175
7.20 Predicted efficiency in environment with oscillating load (period = 20 sec) on first processor. 176
7.21 Predicted efficiency in environment with oscillating load (period = 60 sec), assuming unre-

stricted work movement and higher response time estimates. : : : : : : : : : : : : : : : : 177
7.22 Predicted efficiency in environment with oscillating load (period = 20 sec), assuming unre-

stricted work movement and higher response time estimates. : : : : : : : : : : : : : : : : 177
7.23 Predicted efficiency in environment with oscillating load (period = 60 sec), assuming re-

stricted work movement and higher response time and work movement cost estimates. : : : 178
7.24 Predicted efficiency in environment with oscillating load (period = 20 sec) on first processor,

assuming unrestricted work movement. : 179
7.25 Decrease in work movement as number of processors increases. : : : : : : : : : : : : : : : 181
7.26 Measured performance and work allocation on processor with rapidly oscillating load. : : : 183

xi

xii

List of Tables

2.1 Application properties. : 28

5.1 State table for computing h. : 112
5.2 All possible ordered sets of instructions sent to each slave for restricted work movement. : 118
5.3 Derivation of average number of hops in linear array of processors. : : : : : : : : : : : : : 121

6.1 Restructuring transformations. : 127
6.2 Summary of data access costs for different data structures. : : : : : : : : : : : : : : : : : 139

7.1 Elapsed time measurements for sequential versions of applications. : : : : : : : : : : : : : 150
7.2 Application and load balancing parameters selectable at startup time. : : : : : : : : : : : : 150
7.3 Parameters used for load balanced versions of applications. : : : : : : : : : : : : : : : : : 152
7.4 Modeling performance with static allocation of work. : : : : : : : : : : : : : : : : : : : 166
7.5 Work movement costs used in modeling performance. : 170

xiii

xiv

Chapter 1

Introduction

There has been a lot of success in developing parallel languages [48, 51, 52, 66] and parallelizing compilers

[25, 62, 67, 79] for MIMD distributed memory machines. These tools have simplified the distribution of

applications on tightly-coupled machines, such as the Thinking Machines CM-5 [66], the Intel iWarp [7, 62],

and the Cray T3D [1, 44]. Workstation clusters, in which independent workstations are connected by a

high-speed network, are emerging as a new type of loosely-coupled multicomputer. However, the tools for

managing the distributed resources on these network-based multicomputers are in a primitive state. Many

message passing libraries exist for networks of workstations, such as PVM [63], Nectarine [57], and Express

[18], but it is not straightforward to port tools such as parallelizing compilers to workstation clusters because

of the much higher communication costs and the heterogeneity and variability of the available resources.

On workstation clusters, both computation and communication capabilities may vary with time due to other

applications competing for resources. High speed networks, such as FDDI [49], Nectar [3], Gigabit Nectar

[59], or the more recent ATM networks (e.g., [13]), only partially address the high communication costs

because throughput is limited by software overhead for protocol processing [58] and message assembly and

disassembly on the sending and receiving hosts. Thus, dynamic load balancing and careful management of

communication are essential for efficient parallel execution on workstation clusters. Our research explores

these issues in retargeting parallelizing compilers for workstation clusters.

On networks of workstations, load balancing tools have been developed on an ad-hoc basis for specific

applications and require tuning by the programmer to perform well on specific systems [21, 39, 55]. More

general load balancing packages must be developed so that a wider range of applications can be run efficiently

1

2 CHAPTER 1. INTRODUCTION

on a range of systems. Switching between applications and systems should require minimal interaction

with the programmer. Ideally, the programmer would only need to specify a small set of parameters for the

system so that applications can use available resources efficiently. In this thesis, we show that it is possible

for a parallelizing compiler to generate efficient code that can dynamically shift portions of an application’s

workload between processors to improve performance. By using a parallelizing compiler as our starting

point, we can handle many load balancing decisions automatically for a large range of applications. A

parallelizing compiler can also restructure programs to increase grain size and, thus, reduce communication

overheads. Dynamic load balancing does not always improve application performance. The performance

with dynamic load balancing is limited by incomplete knowledge in the load balancer, delay in responding

to changes in processor performance, and costs of shifting work between processors. The thesis describes

several optimizations which help to address these limiting factors and provides analysis identifying when

load balancing can be profitable for certain types of applications.

We have developed a load balancing system for applications consisting of parallelized DOALL and

DOACROSS loops [54]. The system involves both the compiler and runtime system in selecting load

balancing parameters, with minimal involvement by the programmer. Key performance parameters that can

be controlled at run time include the grain size of the application, the frequency of load balancing, and the

amount and frequency of work movement.

The rest of this chapter is organized as follows. In Section 1.1, we describe in more detail our assumptions

regarding our target system, a cluster of workstations. Then, in Section 1.2, we describe the application

domain for our load balancing system and describe how it is parallelized. Section 1.2 also describes notation

used in this thesis and presents several example applications. In Section 1.3, we introduce our approach

to load balancing. Section 1.4 maps our approach into a control model and identifies areas where control

theory provides insight regarding selection of load balancing parameters. Section 1.5 describes how the

performance of parallel programs is evaluated in this thesis, and Section 1.6 summarizes our measurements

taken on the Nectar system [3]. Section 1.7 discusses related load balancing research. We describe the

organization of the remainder of the thesis in Section 1.8.

1.1. FEATURES OF TARGET SYSTEM 3

1.1 Features of target system

The environment targeted by our research is a set of workstations connected by a network. We do not

assume that we have a dedicated set of workstations, but rather a possibly heterogeneous set of independent,

personal workstations. The competing loads on the processors can not be determined until run time. The

processors may be shared with other users, but we assume that there is no other load balanced application

running on the system. Much of our analysis assumes that the workstations run operating systems where

CPU scheduling is based on a fixed time quantum and the scheduling mechanism derives from a round-robin

approach; this is typical of multitasking operating systems, such as Unix [4, 32]. For simplicity, we assume

that a message passing library for the target system is provided that hides the underlying topology of the

network.

Our research does not address fault tolerance, either for the processors or the network. Both network

and processor performance are expected to vary, but we assume that communication is reliable and that all

processors are available throughout the computation. We assume that communication costs are high relative

to access to local memory (or access to shared memory on a shared memory machine) and, thus, direct

much effort to reducing communication overhead. Our system attempts to hide communication latencies

by overlapping communication costs with computation, but if the network is near saturation, latencies may

be too high to be hidden.

The specific system targeted by our prototype implementation is the Nectar system [3] at Carnegie

Mellon University. Nectar consists of a high-speed crossbar network connecting a set of Unix workstations.

Details of the Nectar environment will be presented in Chapter 7.

1.2 Application domain and compiler model

Our target application domain is loop-based code operating on array and scalar data units. Numerical code

operating on matrices (e.g., LINPACK [16]) often fits this description. The applications are parallelized by

distributing the iterations of one or more loops in the loop nest among the processors in the target system;

this thesis considers the case where only one loop is distributed. The application code is replicated on all

processors, but loop bounds of the distributed loop are modified so that the processors operate on mutually

exclusive subsets of the distributed iterations. Aggregate data structures, e.g., arrays, referenced by the

4 CHAPTER 1. INTRODUCTION

iterations may be replicated on all processors or may be distributed in the same manner as the iterations,

possibly with some overlap at the boundaries, according to the owner computes rule [24, 36]: each processor

performs the computations that write to the data locations assigned to it (and vice versa). Figure 1.1 shows

the distribution of a matrix by columns. In this example, the problem is partitioned so that each processor

computes the same number of outputs. The distribution is called a block distribution because each processor

is assigned a contiguous block of columns of the matrix.

Figure
1.1:

D
istribution

of
outputm

atrix
by

colum
ns.

Tw
o

types
of

distributed
loops

are
distinguished

by
the

literature
[15,

42,
43,

45]:
D

O
A

L
L

and

D
O

A
C

R
O

S
S

.
D

O
A

L
L

loops
have

independent
iterations

(i.e.,
there

is
no

data
dependence

betw
een

it-

erations)
so

their
execution

order
is

not
constrained;

all
iterations

of
the

loop
m

ay
execute

in
parallel.

D
O

A
C

R
O

S
S

loops
have

loop-carried
flow

dependences,and
a

partialordering
of

the
loop

iterations
m

ust

be
m

aintained
in

executing
the

loop;
parallelism

can
be

obtained
by

pipelining
m

ultiple
executions

of
the

distributed
loop.

S
om

etim
es,e.g.,forloopsw

ith
false

outputdependences,restructuring
ofcode

is
necessary

to
convertloops

to
a

form
am

enable
to

parallelization
as

D
O

A
L

L
or

D
O

A
C

R
O

S
S

loops.
For

exam
ple,in

som
e

cases,a
recurrence

can
be

replaced
w

ith
a

parallelreduction
operation

to
rem

ove
an

outputdependence

from
the

loop;
severalresearchers

[8,17,31,50]
have

addressed
parallelization

of
loops

w
ith

recurrences

w
ith

certain
properties.

T
here

are
m

any
tools

to
aid

in
distributing

D
O

A
L

L
and

D
O

A
C

R
O

SS
loops

on
distributed

m
em

ory

m
ultiprocessors.

Parallel
languages

[48,
51,

52]
and

parallelizing
com

pilers
[25,

62,
67,

79]
relieve

the

program
m

erof
the

burden
of

m
anaging

tasks,distributed
data

structures
and

com
m

unication.
W

ith
parallel

languages,the
program

m
er

m
ust

think
about

how
the

application
is

to
be

parallelized
and

m
ust

explicitly

1.2. APPLICATION DOMAIN AND COMPILER MODEL 5

specify the decomposition of the problem for parallelism. With parallelizing compilers, ideally, existing se-

quential code is translated into parallel code without user intervention. However, with existing parallelizing

compilers, such as AL [67], Fx [62], or Fortran D [25], the programmer must help the compiler by inserting

data alignment and distribution directives into the sequential code. Our research is concerned with changes

that must be made to the parallel code produced by the compiler to support load balancing and is applicable

whether the input is a parallel language or a sequential language. For simplicity, we assume that the input

language has a FORTRAN-like syntax (e.g., Figure 1.3a).

1.2.1 Notation used in this thesis

Because numerical problems are in our target application domain, there will be much discussion of vectors

and matrices in describing our example applications. These aggregate structures will be represented in

several ways in the text, figures and program examples. In figures, equations, and accompanying text, entire

matrices are represented by a bold capital letter, e.g., A, vectors are represented by a bold lower-case letter,

e.g., x, and elements of matrices and vectors are represented by name of the aggregate structure in lower

case (not bold) with the indices of the elements given as subscripts, e.g., ai;j or xi. (See figure 1.2.) Scalar

values are represented in italics in either upper or lower case and may have subscripts as well.

A

a1 1, a1 n,

am 1, am n,

=x

x1

xm

=

a)
m

atrix
notation

b)
vector

notation

Figure
1.2:

M
atrix

and
vector

notation
for

fi
gures

and
equations.

In
m

ostcases,program
exam

ples
w

illbe
show

n
in

a
Fortran-like

language
(Figure

1.3a)
or

F
ortran-like

pseudocode
(Figure

1.3b)
for

sequentialversions
of

the
applications

and
in

C
(Figure

1.3c)
for

parallelized

versions
because

our
assum

ed
input

language
is

F
ortran-like

(e.g.,
A

L
[67]

or
F

ortran
D

[25])
and

the

language
of

our
parallelim

plem
entations

is
C

.M
atrices

are
represented

as
arrays

in
allcases,w

ith
m

atrix

elem
ents

specifi
ed

by
low

er
case

letters
follow

ed
by

individually
bracketed

subscripts,
e.g,

a[i][j].
T

he

array
nam

e
foran

n

-dim
ensionalarray

follow
ed

by
a

single
subscriptrepresents

an
entire

n
�

1-dim
ensional

6 CHAPTER 1. INTRODUCTION

subarray. For example, for two-dimensional matrix A, with element (row,col) referenced as a[row][col],

a[row] is a pointer to a subarray containing an entire row of A. Note that this is not how arrays are defined

in Fortran, although it is consistent with C. In some parallelized versions, the order of indices may be

reversed from that of the sequential version; this representation indicates that the matrix has been transposed

for reasons of locality or ease of work movement. Thus, a[row][col] is an element of a matrix stored in

row-major form, and a[col][row] is an element of a matrix stored in column-major form.

a[i] = (a[i-1] + a[i+1]) / 2
END DO

compute a[i]
END DO

a[i] = (a[i-1] + a[i+1]) / 2;
}

a)
Fortran-like

language
b)

Fortran-like
pseudocode

c)
C

language

F
igure

1.3:
R

epresentations
for

program
exam

ples.

1.2.2
D

O
A

L
L

loops

L
oops

w
ith

independent
iterations

(no
flow

dependences,
output

dependences,
or

anti-dependences)
can

be
parallelized

by
assigning

the
iterations

to
processors

in
any

fashion.
To

m
inim

ize
com

m
unication

requirem
ents,the

data
on

w
hich

the
iterations

operate
is

distributed
in

the
sam

e
fashion,according

to
the

ow
nercom

putes
rule.

A
lso,to

reduce
com

m
unication

atrun
tim

e,inputdata
required

by
m

ultiple
iterations

of
the

distributed
loop

m
ay

be
replicated

on
allprocessors

thatreference
the

data.

T
he

easiestw
ay

to
parallelize

a
D

O
A

L
L

loop
is

to
assign

blocks
ofconsecutive

iterations
to

processors.

O
n

a
hom

ogeneous,dedicated
system

,each
processoris

assigned
the

sam
e

num
berofiterations.

M
anaging

the
parallelism

w
ith

a
block

distribution
sim

ply
requires

adjusting
loop

bounds
so

thatthe
appropriate

subset

of
iterations

is
executed

on
each

processor(F
igure

1.4b).

In
som

e
applications,the

D
O

A
L

L
loop

is
executed

m
ultiple

tim
es,butw

ith
m

onotonically
increasing

or

decreasing
loop

bounds.
Forthese

applications,the
initialequaldistribution

ofw
ork

by
a

block
distribution

w
illcause

load
im

balance
as

the
application

executes
on

a
hom

ogeneous,dedicated
system

.
In

these
cases,

the
loop

iterations
are

distributed
to

the
processorsin

a
round-robin,orcyclic,fashion

so
thatprocessorshave

equalw
orkloads

throughoutthe
com

putation.
T

he
stride

and
offsetfor

the
loop

bounds
m

ustbe
adjusted

so

thateach
processorgets

the
appropriate

setof
iterations

(F
igure

1.4c).

S
om

etim
es,

block
and

cyclic
distribution

m
ethods

are
com

bined
to

create
block-cyclic

distributions.

1.2. APPLICATION DOMAIN AND COMPILER MODEL 7for (i = 0; i < n; i++) {
compute iteration;

}

a)
S

equentialloop.

for (i = p * blocksize; i < (p + 1) * blocksize && i < n; i++) {
compute iteration;

}

for (i = p; i < n; i += P) {
compute iteration;

}

b)
B

lock
distribution

c)
C

yclic
distribution

F
igure

1.4:
D

istribution
of

D
O

A
L

L
loop.

A
lso,

for
nested

D
O

A
L

L
loops,

w
here

the
distribution

is
m

ulti-dim
ensional,

the
choice

of
distribution

m
ethod

m
ay

be
m

ade
independently

for
each

D
O

A
L

L
loop.

O
ur

presentation
w

ill
not

explicitly
address

block-cyclic
distributions

or
nested

D
O

A
L

L
loops.

1.2.3
D

O
A

C
R

O
SS

loops

If
the

iterations
of

a
loop

to
be

distributed
have

fl
ow

dependences,e.g.,
in

the
inner

loop
in

F
igure

1.5a,

the
iterations

can
not

be
run

independently.
T

he
partial

order
of

execution
of

the
iterations

required
by

the
dependences

m
ust

be
m

aintained.
If

the
data

for
the

loop
is

distributed
and

iterations
are

assigned

to
processors

according
to

the
ow

ner
com

putes
rule,

a
single

instance
of

the
loop

executes
sequentially.

H
ow

ever,w
hen

the
distributed

loop
is

nested
inside

anotherloop,parallelism
can

be
obtained

by
pipelining

the
execution

of
the

outer
loop.

T
he

distributed
loop

retains
the

order
required

by
its

dependences,
but

portions
of

different
instances

of
the

loop
are

com
puted

in
parallel.

W
hen

a
processor

finishes
w

ith
its

portion
ofthe

loop
itsends

its
results

to
the

processorhandling
the

nextportion
ofthe

loop.
T

hen
the

sender

proceeds
w

ith
its

portion
of

the
nextinstance

of
the

loop.

A
gain,

the
sim

plest
distribution

of
the

iterations
is

a
block

distribution
as

show
n

in
Figure

1.5b,

although
other

distributions
are

possible.
T

he
distribution

is
chosen

to
m

inim
ize

com
m

unication
costs.

For
short

dependence
distances,a

block
distribution

is
usually

the
m

ost
efficient

because
it

only
requires

com
m

unication
betw

een
logically

adjacentprocessors
atthe

boundaries
of

the
blocks.

8 CHAPTER 1. INTRODUCTION
DO count = 0, 10

DO i = 1, n-2
a[i] = (a[i-1] + a[i+1]) / 2

END DO
END DO

receive_left(a[locallo-1]);
for (i = locallo; i < localhi; i++) {

a[i] = (a[i-1] + a[i+1]) / 2;
}
send_right(a[localhi]);

}

a)
S

equentialloop
b)

B
lock

distribution

F
igure

1.5:
D

istribution
of

D
O

A
C

R
O

S
S

loop.

1.2.4
D

ealing
w

ith
recurrences

L
oops

that
have

output
dependences

betw
een

iterations,
i.e.,

have
recurrences,

can
not

be
parallelized

as

D
O

A
L

L
oras

D
O

A
C

R
O

S
S

loops.
H

ow
ever,in

som
e

cases,they
can

be
restructured

so
thatthe

dependence

is
rem

oved
from

the
loop.

M
uch

research
has

been
directed

tow
ards

recognizing
parallelizable

recurrences

in
sequentialloops

[8,17,50].
T

he
basic

process
is

to
recognize

recurrences
(e.g.,using

pattern
recognition)

and
then

to
testw

hether
the

recurrence
operators

have
the

required
properties

for
parallelization

[50].
For

exam
ple,

if
the

recurrence
operation

is
associative,

it
can

be
replaced

w
ith

a
parallel

reduction
operation

(Figure
1.6)

w
ith

tim
e

com
plexity
nP

+
log

P

[8,17,50].
T

he
globaloutputvariable

is
replaced

by
a

local

private
variable

on
each

processor,and
each

processor
com

putes
a

portion
of

the
recurrence

using
the

data

from
the

iterations
itexecutes

(in

O
(
nP

)

tim
e

if
w

ork
is

distributed
to

processors
equally).

T
hen,w

hen
the

loop
term

inates,the
partialresults

from
the

processorsare
com

bined
to

com
pute

the
output(in

O
(log

P
)

tim
e

ifa
com

bining
tree

is
used).

W
hen

allrecurrences
have

been
rem

oved
from

the
loop,the

loop
can

be
treated

as
a

D
O

A
L

L
or

D
O

A
C

R
O

S
S

loop
depending

on
the

rem
aining

dependences
in

the
loop.

If
the

recurrence

is
associative

and
com

m
utative,a

cyclic
distribution

can
be

used,butif
the

recurrence
is

justassociative,a

block
distribution

m
ustbe

used.
To

avoid
com

plicated
analysis,som

e
com

pilers
(e.g.,A

L
[67])provide

the

program
m

erw
ith

w
ays

to
specify

sim
ple

parallelreductions
such

as
addition,m

ultiplication,m
inim

um
,and

m
axim

um
.

H
ow

ever,autom
atic

m
ethods

m
ake

itpossible
to

parallelize
m

any
other

types
of

recurrences
if

an
effi

cientassociative
operator

can
be

extracted
from

the
source

code
[17].

1.2.5
E

xam
ple

applications

W
e

discuss
load

balancing
issues

using
three

applications
as

exam
ples:

m
atrix

m
ultiplication

(M
M

),

successive
overrelaxation

(SO
R

),
and

L
U

decom
position

(L
U

).
T

hese
applications

are
com

m
only

used

1.2. APPLICATION DOMAIN AND COMPILER MODEL 9

r = 0
DO i = 0, n-1

r = r + x[i]
END DO

r_local = 0;
for (i = locallo; i < localhi; i++) {

r_local = r_local + x[i];
}
/* combine the values from all processors. */
r = reduce_plus(r_local); a)

Sequentialloop
w

ith
recurrence

b)
P

arallelized
loop

w
ith

reduction

F
igure

1.6:
R

eplacem
entof

recurrence
w

ith
reduction

operation.

routines
in

num
erically

intensive
scientifi

c
codes

and
dem

onstrate
the

differenttypes
ofparallelizable

loops

described
above.

In
this

section,w
e

describe
the

three
exam

ple
applications

and
how

they
are

parallelized.

M
atrix

m
ultiplication

(M
M

)

O
ur

m
atrix

m
ultiplication

routine
m

ultiplies
tw

o

n
�

n

m
atrices,A

and
B

,to
produce

a
third

n
�

n

m
atrix,

C
:

C

=

A

�

B

Sequentialcode
for

m
atrix

m
ultiplication

is
show

n
in

F
igure

1.7.
E

ach
elem

entof
the

C
m

atrix
is

the
dot

productofa
row

ofthe
A

m
atrix

and
a

colum
n

ofthe
B

m
atrix.

B
ecause

each
iteration

ofthe

j

loop
com

putes

independentresults,the
loop

can
be

treated
as

a
D

O
A

L
L

loop.
To

parallelize
the

application,w
e

replicate

the
A

m
atrix

and
distribute

the
colum

ns
of

the
B

m
atrix.

T
he

output
m

atrix
has

the
sam

e
distribution

as

the
B

m
atrix.

T
his

parallelization
is

suggested
to

the
com

piler
using

distribution
directives.

U
sing

this

inform
ation,the

com
pilerm

odifi
es

the
loop

bounds
forthe

j

loop
and

generates
code

to
distribute

the
data.

B
ecause

the
loop

is
a

D
O

A
L

L
loop,the

com
piler

is
free

to
distribute

the
iterations

in
any

fashion
and,at

run
tim

e,for
load

balancing,the
iterations

m
ay

be
redistributed

in
any

fashion
as

w
ell.

In
this

exam
ple,the

distributed
loop

is
executed

m
any

tim
es,and

the
distributed

inputdata
is

reused
w

ith
each

invocation
ofthe

loop.
A

lliterations
of

the
distributed

loop
do

the
sam

e
am

ountof
w

ork
each

tim
e

they
are

executed.

10 CHAPTER 1. INTRODUCTION
DO j = 1, n

c[i][j] = 0
DO k = 1, n

c[i][j] = c[i][j] + a[i][k] * b[k][j]
END DO

END DO
END DO

Figure
1.7:

S
equentialcode

for
m

atrix
m

ultiplication
(M

M
).

Successive
overrelaxation

(SO
R

)

S
uccessive

overrelaxation
(S

O
R

),also
called

S
im

ultaneous
overrelaxation

[47],is
an

iterative
m

ethod
used

to
solve

L
aplace’s

equation,the
partialdifferentialequation

@

2U
(x
;y
)

@

2x

+

@

2U
(x
;y
)

@

2y

=

0

on
a

square
region

w
ith

know
n

boundary
values.

T
he

region
is

described
as

an

n
�

n

m
esh,represented

as

a
m

atrix
and

initialized
to

an
approxim

ation
of

the
solution.

For
each

relaxation
phase,each

elem
entof

the

m
esh

is
recom

puted
as

a
w

eighted
average

of
the

elem
ent

and
its

horizontal
and

vertical
neighbors.

T
he

changes
betw

een
the

original
and

recom
puted

values
are

accum
ulated

to
com

pute
an

error
value

w
hich

is

com
pared

to
the

convergence
condition.

T
he

orderofcom
putation

ofthe
elem

ents
ofthe

m
esh

can
affectthe

rate
of

convergence
for

the
com

putation
[30].

D
epending

on
the

order
of

com
putation

of
the

m
esh

points,

new
m

esh
valuesm

ay
depend

entirely
on

old
m

esh
values(e.g.

red/black
S

O
R

[30]),orm
ay

depend
partially

on
values

com
puted

during
the

currentrelaxation
phase.

W
e

have
selected

a
version

(from
[67])

w
here

each

m
esh

pointis
com

puted
as

a
w

eighted
average

ofits
old

value,the
new

values
ofits

leftand
upperneighbors,

and
the

old
values

of
its

rightand
low

er
neighbors

(F
igure

1.8).
T

he
exam

ple
dem

onstrates
recurrences

for

the
accum

ulation
of

the
error

and
norm

values.
W

hen
the

recurrence
is

replaced
by

a
reduction

operation,

the
loop

still
has

loop-carried
dependences,so

it
is

treated
as

a
D

O
A

C
R

O
SS

loop.
Figure

1.9a
show

s
the

dependences
and

order
of

execution
for

the
sequential

version
of

a
single

relaxation
phase

for
an

8

�

8

m
atrix;each

row
of

the
m

atrix
is

com
puted

from
leftto

right.

In
our

parallelization
of

S
O

R
,the

input/output
m

atrix
is

distributed
to

processors
by

colum
ns

(F
igure

1.9b).
P

arallelism
is

extracted
by

pipelining
the

loop
surrounding

the
distributed

loop
(Figure

1.9c).
A

t

the
end

of
each

stage
of

the
pipelined

loop,
boundary

data
m

ust
be

com
m

unicated
betw

een
the

adjacent

processors.
To

m
inim

ize
com

m
unication,contiguous

blocks
of

colum
ns

are
assigned

to
each

processor
so

1.2. APPLICATION DOMAIN AND COMPILER MODEL 11
error = 1.0
WHILE error < zeta && iter < maxiter

DO i = 1, n
DO j = 1, n

prev = b[i][j]
b[i][j] = 0.493 * (b[i][j-1] + b[i-1][j] + b[i][j+1] + b[i+1][j])

+ (-0.972) * prev
norm = norm + prev^2
error = error + (b[i][j] - prev)^2

END DO
END DO
error = error / norm
iter = iter + 1

END WHILE

F
igure

1.8:
S

equentialcode
for

successive
overrelaxation

(S
O

R
).

6362616059585756

5554535251504948

4746454443424140

3938373635343332

3130292827262524

2322212019181716

15141312111098

76543210

57

49

41

33

25

17

9

1

59

51

43

35

27

19

11

3

61

53

45

37

29

21

13

5

6362605856

5554525048

4746444240

3938363432

3130282624

2322201816

151412108

76420

P0 P1 P2 P3

15

13

11

9

7

5

3

1

17

15

13

11

9

7

5

3

19

17

15

13

11

9

7

5

2120

18

16

14

1918

16

14

12

1716

14

12

10

1514

12

10

8

1312

10

8

6

1110

8

6

4

98

6

4

2

76

4

2

0

P0 P1 P2 P3

(a)
Sequentialexecution

(b)
D

istributed
(sequential)

execution
(c)

P
ipelined

execution

F
igure

1.9:
D

ependences
and

execution
order

for
single

successive
overrelaxation

(S
O

R
)

phase
for

8

�

8
m

atrix.
A

rrow
s

indicate
dependences

betw
een

iterations.
N

um
bers

indicate
execution

order.

thatcom
m

unication
is

only
needed

atblock
boundaries.

L
U

decom
position

(L
U

)

O
ur

third
application

exam
ple

is
L

U
decom

position,a
type

of
G

aussian
elim

ination.
G

aussian
elim

ination

is
the

first
step

in
solving

the
equation

A

�

x

=

b
for

x.
(T

he
other

step
is

backw
ard

substitution.)
L

U

decom
position

determ
ines

an
uppertriangularm

atrix
U

and
a

low
ertriangularm

atrix
L

such
thatL

�

U

=

A
.

T
hen,

A

�

x

=

(L

�

U

)
�

x

=

L

�

(U

�

x

)
=

b

12 CHAPTER 1. INTRODUCTION

can be replaced with two simpler equations: L � y = b can be solved for y by forward substitution; then,

U�x = y can be solved for x by backward substitution. L and U need only be computed once when solving

A � x = b with multiple b input values. We have selected a version of LU decomposition (Figure 1.10)

based on the SGEFA routine in the LINPACK benchmark set [16]. (In our version, the BLAS operations

have been inlined and simplified.)

Our LU example is parallelized by distributing the rows of the A matrix. The “row elimination” loop,

the most computation-intensive portion of the application, is split into two loops so that communication for

interchanging values is isolated from the actual elimination computation. The resulting elimination loop

is distributed as a DOALL loop; because it has no loop-carried dependences the execution order of the

iterations is not a concern. However, communication is necessary between executions of the distributed

loop, requiring the processors to synchronize. Also, because the loop bounds of the distributed loop and on

the loop it contains depend on the indices of outer loops, the number of iterations of the distributed loop and

the size of each iteration change with each execution of the loop.

1.3 Our load balancing approach

Load balancing attempts to minimize the execution time of an application by maximizing the utilization

of available resources for productive work. When poor utilization is detected, our load balancing system

redistributes work by redistributing the distributed aggregate data structures (Figure 1.11); by the owner

computes rule, the distributed loop bounds are modified on each of the processors to correspond with the

data local to the processor. This approach to load balancing is beneficial because it keeps communication

costs for the application low: since data and loop iterations are assigned to processors according to the

owner computes rule, most data accessed by the iterations is local; and, in cases where iterations share data

(i.e., applications with DOACROSS loops), work movement can be constrained so that the iterations are

usually assigned to the same processor. Also, the units of work for load balancing are loop iterations so, by

maintaining the original loop structure of the application, the overhead of switching between tasks is kept

to a minimum, i.e., just incrementing a loop counter.

Load balancing works as follows. At predetermined points in the parallelized application code, the

processors performing the distributed computation—the slave processors—assess their recent performance

and send the performance information to a central load balancing process on the master processor which

1.3. OUR LOAD BALANCING APPROACH 13

/* find the pivot index. */
pidx = k
dmax = abs(a[k][k])
DO i = k+1, n

IF abs(a[i][k]) > dmax THEN
pidx = i
dmax = abs(a[i][k])

END IF
END DO
ipvt[k] = pidx
/* zero pivot implies this column already triangularized. */
IF dmax == 0.0 THEN

info = k
ELSE

/* put the pivot in the pivoting position. */
w = a[pidx][k]
a[pidx][k] = a[k][k]
a[k][k] = w
/* compute multipliers. */
t = -1.0 / w
DO i = k+1, n

a[i][k] = t * a[i][k]
END DO
/* row elimination with column indexing. */
DO j = k+1, n

t = a[pidx][j]
a[pidx][j] = a[k][j]
a[k][j] = t
DO i = k+1, n

a[i][j] = a[i][j] + t * a[i][k]
END DO

END DO
END IF

END DO
ipvt[n] = n
IF a[n][n] == 0.0 THEN

info = n

Figure
1.10:

S
equentialcode

for
L

U
decom

position
(L

U
).

decideshow
to

redistribute
w

ork.
P

erform
ance

assessm
entis

based
on

m
easurem

entsofrates
ofcom

putation

forrecently
com

puted
w

ork.
T

he
centralload

balancercom
putes

a
new

distribution
w

here
w

ork
is

allocated

to
the

slaves
in

proportion
to

their
relative

capabilities
and

com
putes

instructions
for

the
slaves

w
hich

specify
the

m
ovem

entnecessary
to

attain
the

new
distribution.

S
laves

then
shift

w
ork

am
ong

them
selves

according
to

the
instructions.

T
he

costofinteractions
betw

een
the

slaves
and

the
load

balancerare
rem

oved

from
the

critical
path

of
the

application
by

pipelining
the

interactions
to

decouple
sending

of
perform

ance

inform
ation

from
receiving

of
instructions.

Severaladditional
optim

izations
are

perform
ed

at
run

tim
e

to

14 CHAPTER 1. INTRODUCTION

F
igure

1.11:
R

edistribution
of

outputm
atrix

to
balance

load.
D

istribution
m

ustbe
changed

w
hen

relative
execution

rates
of

processors
(indicated

in
parentheses)change.

ensure
thatw

ork
m

ovem
entresults

in
reduced

execution
tim

e.

T
he

com
piler

is
responsible

for
setting

up
the

parallelized
application

code
to

facilitate
load

balancing

and
for

supplying
inform

ation
needed

for
load

balancing
to

the
runtim

e
system

.
T

he
com

piler
and

runtim
e

system
cooperate

in
severalaspects

of
the

load
balancing

decision-m
aking

process:

�

T
he

com
pilernotifiesthe

load
balancerregarding

dependencesin
the

loop
nestso

thatthe
load

balancer

can
restrictw

ork
m

ovem
entto

m
inim

ize
com

m
unication.

�

Forapplications
w

ith
D

O
A

C
R

O
SS

loops,the
com

pilerand
run-tim

e
system

cooperate
in

selecting
an

appropriate
grain

size.

�

T
he

com
pilerplacesconditionalcallsto

load
balancing

code
atappropriate

locationsin
the

parallelized

code
so

thatthe
runtim

e
system

can
controlthe

frequency
of

load
balancing.

1.4
C

ontroltheory
m

odelof
dynam

ic
load

balancing

T
he

load
balancing

system
can

be
looked

atas
a

digitalfeedback
controlsystem

w
hich

uses
the

difference

betw
een

the
percentutilization

of
available

resources
and

1.0
as

its
actuating

or
error

signal.
A

sim
plified

block
diagram

of
the

system
is

show
n

in
Figure

1.12.
T

he
central

load
balancer

is
the

controller
for

the

system
,

and
the

slaves
are

the
controlled

system
or

the
plant.

T
he

central
load

balancer
m

anipulates
the

w
ork

assignm
ent,w

,to
controlthe

utilization,u,ofthe
slave

processors.
T

he
disturbances

in
the

system
are

the
com

peting
loads,l,on

the
slaves.

T
he

frequency
of

load
balancing

is
the

sam
pling

rate
for

the
system

.

1.4. CONTROL THEORY MODEL OF DYNAMIC LOAD BALANCING 15

Controller
(Load Balancer)

Plant+

-

e w

l

u c*u*

u*

r

r reference input (1.0)
e actuating signal (1.0 - utilization of slaves)
w manipulated variable (work assignment)
l disturbance (competing load on slaves)
u controlled variable (utilization of slaves)
u* sampled controlled variable (utilization of slaves)

(Slaves)

F
igure

1.12:
S

im
plifi

ed
m

odelof
load

balancer
as

a
digitalfeedback

controlsystem
.

F
igure

1.13
show

s
the

control
system

in
m

ore
detail.

T
he

total
tim

e
for

the
com

putation
perform

ed

by
the

slaves
during

one
cycle

of
the

control
loop

is
the

m
axim

um
tim

e
taken

by
any

of
the

slaves.
T

he

utilization
of

each
slave,

u
i ,is

com
puted

by
dividing

the
com

putation
tim

e
for

the
slave

by
the

m
axim

um

tim
e;

thus,the
slave

(or
slaves)

w
ith

the
m

axim
um

com
putation

tim
e

is
100%

utilized
(u

i

=

1

:0)
and

the

other
slaves

are
underutilized

(u
i

<

1
:0).

T
he

error
that

is
input

to
the

controller
is

e
i ,

the
fraction

of

each
slave

thatis
underutilized

(1

:0

�

u
i).

T
he

controller
shifts

w
ork

from
m

ore
utilized

processors
to

less

utilized
processors

untilallprocessors
are

fully
utilized,i.e.,load

is
balanced.

If
w

e
can

create
a

sim
ple

controlm
odelfor

our
system

,w
e

m
ightbe

able
to

derive
optim

alparam
eters

for
the

system
(for

som
e

defi
nition

of
optim

ality).
U

sing
controlsystem

techniques,w
e

m
ightalso

be
able

to
accurately

characterize
the

system
.

W
e

m
ightbe

able
to

develop
proofs

regarding
the

perform
ance

of
the

system
,e.g.,identifying

the
range

offrequencies
overw

hich
the

system
w

orks
w

ell,how
quickly

the
system

responds
to

changes
in

perform
ance,and

how
quickly

the
w

ork
distribution

converges
to

the
desired

result.

H
ow

ever,severalfactors
m

ake
m

odeling
and

analysis
of

our
system

diffi
cult.

T
he

system
is

a
m

ultiple

input
m

ultiple
output

(M
IM

O
)

system
and

can
not

be
uncoupled

into
sim

pler
system

s.
M

IM
O

system
s

do
not

have
unique

solutions,and
trial

and
error

approaches
m

ustbe
used

in
their

design
due

to
the

extra

degrees
of

freedom
.

In
addition,the

system
is

non-linear,m
aking

fi
nding

exactsolutions
to

the
differential

equations
for

the
system

unlikely;
m

ost
m

ethods
for

solution
of

nonlinear
system

s
involve

engineering

approxim
ations

[20].

S
everalotherfactors

com
plicate

the
m

odeling
ofoursystem

.
In

ourload
balancing

system
,the

sam
pling

16 CHAPTER 1. INTRODUCTION

F
igure

1.13:
D

ynam
ic

load
balancing

controlsystem
.

period
is

based
on

am
ounts

of
w

ork
com

puted
rather

than
on

fi
xed

tim
e

intervals.
T

hus,
the

differential

equations
describing

the
system

should
use

derivatives
w

ith
respectto

the
am

ountof
w

ork
rather

than
w

ith

respectto
tim

e.
T

he
sam

pled
data

is
the

average
perform

ance
over

the
m

ostrecentsam
pling

period
rather

than
a

snapshotatthe
sam

pling
tim

e;this
adds

delay
to

the
system

and
m

ay
have

other
ram

ifications.
A

lso,

in
our

actualload
balancing

system
,the

com
putation

rates,rather
than

the
utilizations,are

used
to

com
pute

the
new

w
ork

distribution
so

that
quantities

of
w

ork
to

m
ove

can
be

m
ore

easily
com

puted.
T

his
m

akes

the
picture

of
the

m
odelm

uch
m

ore
com

plicated
and

m
akes

identification
of

the
com

ponents
of

the
control

system
m

ore
difficult.

T
he

m
odeling

of
our

system
is

further
com

plicated
by

the
costs

of
sam

pling
the

data
and

of
m

oving

w
ork,

w
hich

are
not

included
in

the
fi

gures.
W

ork
m

ovem
ent

costs
have

a
large

im
pact

on
perform

ance

of
applications

w
ith

load
balancing.

W
e

have
added

several
optim

izations
to

our
system

to
lim

it
w

ork

m
ovem

entcosts.
T

hese
optim

izations
should

also
be

included
in

the
system

m
odel.

C
ontrol

theory
does

provide
som

e
insight

into
severalaspects

of
the

problem
.

T
he

sam
pling

rate
of

a

controlsystem
determ

ines
w

hich
frequencies

of
change

the
system

can
identify

and
w

hich
frequencies

m
ay

be
aliased.

T
he

sam
pling

theorem
requires

the
sam

pling
rate

to
be

atleasttw
ice

the
frequency

of
the

signal

thatw
e

w
ish

to
track.

T
he

sam
pling

rate
also

lim
its

how
quickly

the
system

can
respond

to
disturbances.

If

1.5. EVALUATING PARALLEL PERFORMANCE 17

a control system’s response time is too long, its inputs and outputs will be out of phase, and even greater

deviations from the desired output (processor utilization in our case) can result [6]. Often, to reduce the

response time, digital control systems sample at several times the frequencies that are of interest [20]; digital

filters can be used to eliminate the undesired higher frequencies. In our system, performance is sampled as

frequently as possible to reduce the response time, but the frequency is bounded by other factors, such as

the sampling cost.

Another “benefit” of high sampling frequencies is that they make the response to changes smoother

and reduce the magnitude of the control steps [20]. However, in our system, we wish to minimize work

movement costs. Because the fixed, per message costs of sending work between processors are high, we

wish to decrease the smoothness of the response and move work in fewer, larger messages/steps. These

goals are considered in the selection of the sampling period for our system. Also, the sampled data is an

average of the performance over the sampling period rather than the performance at the sampling times; the

averaging results in implicit filtering that can reduce the amount of work moved by the system. Additional

filtering is also used in our system to attenuate high-frequency disturbances and to minimize the impact of

error. To further reduce the number of work movement messages, hysteresis has also been added to the

system. Both filtering and hysteresis can cause the work assignment to lag behind changes in performance

[56], increasing the response time of the system. The filters and hysteresis must be designed to minimize

the added lag.

Although many aspects of the system can be modeled by control theory, because of the nonlinearity

and complexity of the control system, we investigate components of the system separately in this thesis,

and in some cases present only intuitive arguments and/or empirical results to describe the impact of the

components on system performance.

1.5 Evaluating parallel performance

The goal of parallelization and of load balancing is to reduce the execution time—the elapsed time, rather

than CPU time—of the application. We use several additional criteria to evaluate the performance of

different versions of the parallelized application to get an idea of how close the observed performance is to

the best possible performance given the available computing resources. Speedup relative to the sequential

version of the application is often used to evaluate performance on different numbers of processors, but is

18 CHAPTER 1. INTRODUCTION

most useful when the processors are homogeneous and are running no competing applications. To evaluate

performance in dynamic and/or heterogeneous environments, we have designed an efficiency measure that

measures how well a parallelized application is using available resources. In this section we’ll describe

these measures in detail.

Elapsed time measurements

The elapsed time (telapsed) of an application is used for comparing different versions of the application and

in computing speedup and efficiency values. Since dynamic load balancing only addresses the computation

portion of the application, the elapsed time measurements used in evaluating load balancing do not include

times for initializing tasks, generating and distributing input data, or unloading output data, which are

common to all parallelized versions of the application. These omitted times, while not a negligible portion

of the parallel execution time, are determined by the distribution of the application and are only slightly

affected by the addition of dynamic load balancing.

Speedup

The goal of parallelization is to reduce the computation time relative to the sequential time of the application.

Thus, to evaluate parallelization, we use measures that compare the parallel execution time to the sequential

execution time. The speedup of a parallel version is the elapsed time for the sequential version divided by

the elapsed time for the parallel version:

speedup =
tsequential

telapsed
(1:1)

Again, telapsed only includes the computation portion of the application. For the experiments presented

in this thesis, tsequential is determined by measuring the execution time of an efficient single-processor

implementation of the same algorithm as the parallel version; however, the sequential version is not the

parallel version run on one processor.

The speedup of an application run is often compared to the number of processors involved in the

parallel computation to get an idea of how well the processing resources are being used. We count only

the slave processors when making this comparison. For a dedicated homogeneous environment with each

processor providing the same performance as that used for the sequential version, when graphing speedup

1.5. EVALUATING PARALLEL PERFORMANCE 19

vs. processors, a linear speedup with slope 1 is generally accepted as the best speedup parallelization can

produce, not counting memory effects. The slope of the speedup curve is often used as an efficiency measure

for parallel programs on dedicated homogeneous systems [36, 42]:

efficiency =
speedup

P
=

tsequential

P � telapsed
(1:2)

where P is the number of processors.

In a heterogeneous or dynamic environment, speedup and the efficiency measure based on it do not

include enough information about the system to determine how well resources are being used. For example,

if work is distributed equally to a heterogeneous set of processors, the best possible speedup curve will have

a slope of 1 when calculated using the sequential time measured on the slowest processor, but will have a

smaller slope when the sequential time is measured on a faster processor.

Parallelization efficiency

A deficiency of the efficiency measure based on speedup (Equation 1.2) is that it assumes that the parallel

application can use all of the computing resources of the processors. This is not the case if the processors

are shared with other users. When the processors are shared, Equation 1.2 produces an efficiency value

that is too low because it does not account for the resources used by the competing applications. A better

measure of efficiency would take into account only the resources actually available to the application:

efficiency =
cproductive

cavailable
(1:3)

where cproductive is the amount of computational resources (i.e., CPU resources) required to execute the

application, and cavailable is the amount of computational resources that were available to the application

during its execution.

In a homogeneous environment, computation times may be used in computing the measures of productive

and available resources. The productive computation time, tproductive, is the time required to execute the

application on a single, dedicated processor, i.e., the sequential execution time. The computation time

available to the application, tavailable, is more difficult to determine accurately. However, it can be estimated

as the total of the elapsed times on all processors minus time spent on competing applications during the

20 CHAPTER 1. INTRODUCTION

execution of the application. The elapsed time, telapsed, is the same on all processors. Thus,

efficiency
homo

=
tproductive

tavailable
=

tsequential

P � telapsed �
PX
i=1

compete
i

(1:4)

In a heterogeneous environment, computing the efficiency is more complicated because times must

be scaled by the relative processing capabilities of the different processors. For example, the processing

capability of each processor might be the maximum computations per second (cps) measured in computing

some benchmark program:

efficiency
hetero =

cproductive

cavailable
=

tsequential;s � cpss
pX

i=1

(telapsed � cpsi)�
pX

i=1

(competei � cpsi)

(1:5)

where the additional subscripts on the time variables indicate the processor on which the measurement

was taken. Selecting a universal measure of processing capabilities for different processors is difficult,

especially if the architectures of the processors in the system vary greatly (e.g., some are RISC and some are

CISC). The system on which we performed our measurements was homogeneous so we use Equation 1.4

to compute efficiencies. For our experiments on the Nectar system [3], competing processes were spawned

by the parallelized application code, and their CPU usage was measured using the getrusage function [12]

provided with Unix.

In the presence of competing loads, the measure of tavailable used in Equation 1.4 may be inaccurate

because resources that are available to the application but not used by the application may be used pro-

ductively by the competing loads. Thus, in some cases, Equation 1.4 may give a high estimate of the

efficiency. Equation 1.4 can be treated conservatively as an upper bound on the efficiency, or, with sufficient

knowledge about the interactions in the system, can be treated as an approximation of the efficiency. For

the measurements and analysis in this thesis, competing loads are only added on one of the processors, and

the competing loads use at most half of the resources of the processor. Thus, the error in tavailable should be

small, and, since the competing load uses less of the total computation time as more processors are added to

the system, the error decreases as the number of processors is increased. Therefore, the efficiency indicated

by Equation 1.4 should closely approximate the actual efficiency. Also, measurements of the CPU usage

of the artificial competing tasks used in our experiments indicate that, in most cases, the competing tasks

do not consume more resources than expected given the artificially generated loads so the competing tasks

1.6. SUMMARY OF EXPERIMENTAL RESULTS 21

are not consuming significant amounts of resources that should be included in tavailable. The efficiency

measure based on speedup, Equation 1.2, uses the most conservative measure of tavailable, assuming that

all computing resources are available to the parallelized application, so Equation 1.2 is a lower bound on

the actual efficiency. For reference, efficiency values produced by Equation 1.2 are included along with

the efficiency values produced by Equation 1.4 when presenting our data. For a dedicated homogeneous

system, Equations 1.2 and 1.4 produce the same results because no time is spent on competing processes.

1.6 Summary of experimental results

To demonstrate the feasibility of our approach, we implemented a load balancing run-time system and

two example applications on the Nectar system [3]. We measured performance in several controlled

environments. In a dedicated homogeneous environment, we demonstrated that dynamic load balancing

decisions do not add much overhead to the execution of the application. In an environment with a constant

load added to one of the processors, we demonstrated that the load balancing system redistributes load

correctly and improves application performance relative to the parallelized application running without load

balancing. We added oscillating loads of varying frequency to one of the processors to give an indication

of the performance of the system in more dynamic environments. Dynamic load balancing improved

performance for slowly changing loads for applications with small work movement costs. In other cases,

the performance of the load balanced applications in the dynamic environments was limited by the reaction

time of the system and the costs of work movement. We created a model of the system’s performance with

an oscillating load to show the limits of the approach. In some cases the measured performance was better

than that predicted by the model due to optimizations to prevent excessive work movement, included in the

system, but not in the model. Our experiments will be explained in detail in Chapter 7.

1.7 Related work

General taxonomies for load balancing can be found in [10] and [71]. We focus on dynamic load balancing

for distributed loops.

22 CHAPTER 1. INTRODUCTION

1.7.1 Compiler support for load balancing

Existing parallelizing compilers often assume a dedicated, homogeneous environment, and distribute work

equally to all processors. Many compilers [11, 24, 67] support cyclic distribution of iterations so that

when loop bounds vary, as in the LU decomposition example, each processor still gets approximately

the same amount of work. For heterogeneous and dynamic environments, however, equal distribution of

work does not balance the load. Some languages, such as Fortran-D [24], allow irregular distributions,

which could be used for static load balancing in a heterogeneous environment if the characteristics of the

environment are known when the program is written. Fortran-D [24] and Vienna Fortran [11] also include

directives for redistribution so that data can be rearranged to balance load and reduce communication

requirements as data access patterns change. However, these optimizations are performed at compile time

according to annotations by the programmer and do not address load imbalances due to a dynamic processing

environment.

Express [18], a message passing library and application toolkit that can be targeted by a parallelizing

compiler, supports dynamic load balancing by providing routines that automatically distribute data according

to specified weights for the processors. For static load balancing, the weight for each processor is a “figure

of merit” provided by the user. For dynamic load balancing, Express includes a function that automatically

determines weights for the processors; however, the user or compiler must explicitly place the code for

recalibrating weights and redistributing data.

1.7.2 Self-scheduling

Many of the approaches for dynamic scheduling of iterations of distributed loops are task queue models,

in which work units are kept in a logically central queue and are distributed to slave processors when the

slave processors have (nearly) finished their previously allocated work. In these models, both control and

work are centralized, and the measure of performance is task completion. Knowledge about the interactions

between work units is often lost due to the desire to have a single list of tasks (e.g., [28, 46]), and most of the

approaches assume that iterations are independent, requiring no communication, and target a homogeneous,

shared memory target architecture.

The different task queue approaches differ mainly in the granularity of work movement. In self-

scheduling [64], work is allocated to processors a single iteration at a time; this approach has high overhead

1.7. RELATED WORK 23

due to the interaction between the processors and the queue for each iteration. Chunk scheduling addresses

the overhead problem by allocating work a fixed number of iterations at a time, at the risk of increasing

the skew in the finishing times of the processors [45]. Guided Self Scheduling (GSS) [46] attempts to

minimize scheduling overhead and minimize the skew in execution times by allocating a fixed fraction of

the remaining work to a processor when the processor requests more work; this reduces the size of the

work allocation unit as the execution progresses. GSS still has the potential for execution time skew if too

much work is allocated to processors early in the computation so that the remaining smaller chunks do not

constitute enough work to smooth over the finishing times of the initial chunks [28]. Factoring [28] takes

the number of processors into account as well as the amount of remaining work; it schedules a fixed fraction

of the remaining work in batches of P equal-sized chunks (where P is the number of processors) and uses

probabilistic analysis is used to select the optimal number of iterations per batch. Trapezoid Self-Scheduling

(TSS) [69] is a simpler approach which linearly decreases the chunk size at run time; although and because

GSS is more elaborate, TSS gets better speedups, due to its flexibility in selecting chunk sizes and its lower

scheduling overhead. Tapering [36] is another variation on GSS that handles tasks with varying execution

times. Tapering selects chunk sizes based on the mean and variance of the task execution times so that the

inefficiency of execution has high probability of staying within a specified bound. All of these approaches

were originally designed for shared-memory architectures.

Recent research [33, 37, 38] has added consideration for processor affinity to the task queue models so

that locality and data reuse are taken into account: iterations that use the same data are assigned to the same

processor unless they need to be moved to balance load. In Affinity Scheduling [37, 38], data is moved to the

local cache when first accessed, and the scheduling algorithm assigns iterations in blocks. In Locality-based

Dynamic Scheduling [33], data is initially distributed in block, cyclic, etc. fashion, and each processor first

executes the iterations which access local data. Both of these approaches still assume a shared memory

environment.

The Tapering approach [36] has also been implemented on a distributed memory machine. Because

scheduling overhead is higher in a distributed memory environment, the data is initially distributed according

to some data decomposition, and tasks are initially assigned to processors according to the owner computes

rule; the data decomposition is refined as information is gained about the work distribution. (This is similar

to our approach.) Communication locality is preserved by maintaining a minimum chunk size. For load

24 CHAPTER 1. INTRODUCTION

balancing, the processors are logically connected as a binary tree, with each processor serving as a leaf node

and some processors also serving as internal nodes; information about progress on the different processors is

passed up through the tree, and instructions regarding redistribution of tasks are broadcast to all processors.

A hybrid approach that selects from among several load balancing algorithms is proposed by [41] for

distributed memory machines. It uses a distributed version of Factoring [28] for independent, homogeneous

tasks that works in a way similar to the distributed version of tapering.

1.7.3 Diffusion methods

Numerous other approaches have been proposed for scheduling loop iterations, especially if the iterations

are independent. In diffusion models, all work is distributed to the processors, and work is shifted between

adjacent processors when processors detect an imbalance between their load and their neighbors’. In these

models, control is based on near-neighbor information only [72]. Work movement may be initiated by the

sender (Sender Initiated Diffusion) or by the receiver (Receiver Initiated Diffusion) [72]. The Gradient

Model method [34] also passes information and work by communication between nearest neighbors, but

uses a gradient surface which stores information about proximity to lightly loaded processors so that work

can be propagated through intermediate processors, from heavily loaded processors to lightly loaded ones;

global balancing is achieved by propagation and successive refinement of local load information.

1.7.4 Use of prior performance as estimate of future performance

The approaches described so far use either workload or progress to determine how to allocate more work

or redistribute workload. An alternative, used by our approach, is to use rates of computation of previous

work to describe the performance capabilities of different processors [40, 41].

For the implementation of Dataparallel C on a network of workstations [40], loop iterations are mapped to

virtual processors, and virtual processors are shifted between processors to balance load. As in our approach,

relative computation rates are assessed periodically, and work is redistributed to processors in proportion

to their rates. However, Dataparallel C requires the programmer to handle the program partitioning and

communication explicitly; this makes pipelined execution of loops complicated to implement. Also, the

virtual processor abstraction may add run-time overhead, and all processors communicate for load balancing

so load balancing communication is in the critical path for the computation.

1.8. ORGANIZATION OF THIS DISSERTATION 25

1.8 Organization of this dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we discuss the features of

our application domain and run-time environment that have an impact on load balancing and describe

the architecture of our load balancing system. Chapter 3 describes the effects of grain size on parallel

performance and describes ways to control the grain size of an application. Chapter 4 describes selection of

an appropriate load balancing frequency to minimize load balancing overheadand maximize the effectiveness

of the load balancer. Chapter 5 presents the details of the load balancing decision making process. Chapter

6 describes the changes that must be made to a parallelizing compiler to support dynamic load balancing.

In Chapter 7, we present performance results for an implementation of our load balancing system on the

Nectar system [3]. Chapter 7 also includes a model of the performance of the load balancing system in an

environment with an oscillating load on one of the processors. We conclude in Chapter 8.

26 CHAPTER 1. INTRODUCTION

Chapter 2

Load balancing architecture

This chapter presents the architecture of our load balancing system and the motivations for the design

choices we made. We begin with discussion of the features of the application and execution environment

that must be considered when designing a load balancing system. Then we describe major decisions that

must be made to design a load balancing system. This is followed by a description of the high-level choices

we made when designing our load balancing system. Load balancing decisions that can take advantage of

information about the specific application being executed or the dynamic characteristics of the environment

are delayed until compile time or run time, and are discussed in later chapters.

2.1 Application considerations

Several application features impose constraints on the design of an efficient load balancing system. Table

2.1 summarizes the presence or absence of several features affecting load balancing for the three applications

described in the previous chapter. The goal of dynamic load balancing is to minimize the elapsed time of

an application in a multiprocessor system with varying performance characteristics. This goal is attained

by moving work to match the performance characteristics of the processors. This section discusses how the

application features listed in Table 2.1 affect the load balancer’s ability to attain its goal.

27

28 CHAPTER 2. LOAD BALANCING ARCHITECTURE

Property of distributed loop MM SOR LU

repeated execution of loop yes yes yes
loop-carried dependences no yes no
dependences outside loop no yes yes
index-dependent loop bounds no no yes
data-dependent loop bounds no no no
index-dependent iteration size no no yes
data-dependent iteration size no no no

Table 2.1: Application properties.

2.1.1 Position of distributed loop in loop structure

The position of distributed loops within the overall loop structure of the application determines the impact

of work movement. If a distributed loop is an inner loop, then the repeated execution of the loop may result

in reuse of locally stored data. Moving the distributed data (or data slices) referenced by a loop iteration to a

different processor may actually move the corresponding iterations from all instances of the loop due to the

owner computes rule. This allows the costs of moving work to be amortized over a longer period. However,

as computation progresses, fewer loop instances remain over which to amortize the costs of moving the data

and to gain benefits, so it can be more beneficial to move work earlier in the execution of the program than

later. When the distributed loop is the outermost loop, the ratio of work movement to data movement is no

more than one-to-one, and reuse of distributed data elements does not occur.

The position of the distributed loop in the loop nesting also affects which loop iterations can be moved

to balance load. If a distributed loop is an outermost loop, then load balancing must be done during the

execution of the loop, and the only loop iterations that can be moved to balance processing times are those

that have not yet been executed. However, if the loop is an inner loop, load balancing may be done either

during execution of the loop or between executions, and any of the loop iterations can be moved to balance

future processing times.

2.1.2 Loop carried dependences

Distributed loops with flow dependences between iterations (DOACROSS loops) are parallelized by pipelin-

ing the execution of an outer loop. Communication is needed to handle the dependences that cross processor

2.1. APPLICATION CONSIDERATIONS 29

boundaries. This communication adds overhead to program execution and synchronizes the processors at the

ends of the pipeline stages. To minimize the execution time of the application, load balancing must balance

the computation times of all the processors between the synchronization points. If the synchronizations in

the pipelined application are infrequent, fluctuations in performance on the processors can average out so

that the total skew between processing times is small, but with frequent synchronizations, skew times will

accumulate.

Also, when there are loop-carried dependences in the distributed loop, the mapping of iterations to

processors affects the amount of communication required by the parallelized application. For example, with

a block distribution (Figure 2.1a), only the iterations near the boundaries of the blocks need to communicate

with iterations on other processors. However, with other mappings (e.g., Figure 2.1b), all iterations may

need to communicate with other processors, increasing the communication costs and making pipelined

execution of the application unmanageable. When a load balancer makes work movement decisions, it

should use the dependence information and attempt to maintain mappings that minimize communication.

(a)
B

lock
distribution.

(b)
R

andom
m

apping.

F
igure

2.1:
C

om
m

unication
requirem

ents
for

different
m

appings
of

loop
iterations.

A
rrow

s
indicate

dependences
and

com
m

unication.

2.1.3
D

ependences
outside

loop

D
ependences

involving
distributed

array
elem

ents
m

ay
also

existoutside
the

distributed
loop,e.g.,if

there

are
assignm

ent
statem

ents
involving

distributed
array

elem
ents.

A
gain,

dependences
crossing

processor

30 CHAPTER 2. LOAD BALANCING ARCHITECTURE

boundaries require communication. Work movement due to load balancing can complicate the handling of

this communication in a distributed memory environment. With a regular distribution, such as a block or

cyclic distribution, processors owning distributed values on the right hand side of an assignment statement

can compute the owner of the destination value based on the array indices on the left hand side of the

statement. In this case, only compile-time information is needed to determine the sending and receiving

processors for the assignment statement and the data transfer can be done in one communication step.

However, if the distribution changes at run time due to dynamic load balancing, each processor must use

run-time information to determine its involvement in the communication, i.e., whether it is involved in

the communication and whether it is the sender or receiver; and several communication steps may be

required to implement the assignment statement. To handle dynamic distributions, a compiler must generate

communication code to identify processors involved in moving data, as well as the communication code for

the data movement itself.

2.1.4 Loop bounds

The number of iterations in a loop may be large or small and may change with the indices of outer loops or

with other data values. The bounds of the distributed loop and the loops enclosing it affect load balancing

in several ways.

For load balancing, we consider iterations of distributed loops to be atomic execution units. Thus, load

can only be balanced to within one iteration. When the number of iterations in a distributed loop is small,

one iteration can be a significant portion of the total execution time for the loop, and it may be difficult

to control the skew in the execution times between processors. For matrix problems, the distributed loops

often have iteration counts as large as the problem size, the size of the matrices. Since problem sizes must be

large for parallelism to be practical, the loops that are load balanced will usually have enough iterations that

the skew problem described above will not occur. If the number of iterations of the loops surrounding the

distributed loop is small—i.e., the distributed loop is executed a small number of times—then work moved

by moving data may be small, as in the case when the distributed loop is the outermost loop (Section 2.1.1).

We call distributed data for which there are no future references inactive. When the loop bounds of a

distributed loop are not fixed, the load balancer must be careful not to move inactive data. Whether the

bounds of the distributed loop are index-dependent (vary with indices of surrounding loops, as in the LU

2.1. APPLICATION CONSIDERATIONS 31

decomposition example) or data-dependent (depend on other data, e.g., WHILE loops), the load balancing

system must keep track of which distributed data is active. Also, the distribution of work should not be

such that data always becomes inactive on the same processor because work would have to be moved to

that processor again and again to balance the load adding unnecessary overhead. Using a cyclic distribution

addresses this problem.

Another concern is that if the number of iterations of a distributed loop or a surrounding loop is data-

dependent, it may be necessary to pass around global information so that all processors handle the loop exit

conditions properly. For example, the outer loop of the SOR example is a WHILE loop, and processors

must communicate to determine the termination condition; this is implicit in the reduction operation.

2.1.5 Iteration sizes

The size of distributed loop iterations may be fixed, may be dependent on loop indices, or may be data-

dependent. If load balancing incorrectly assumes equal sized work units when distributing work, variations

in iteration sizes may prevent the load balancer from correctly balancing the load.

When there is a detectable trend in the iteration size, as when the size depends on loop indices, the

load balancer may be able to correctly adjust its assumptions regarding equal-sized work units. In the

LU decomposition example, the amount of work associated with the iterations of the distributed loop

decreases each time the loop is invoked. The load balancer can still correctly handle this case because, for

each invocation of the distributed loop, all of the iterations require the same amount of computation, and

proportional allocation of iterations still works. However, as the computation progresses, the ratio of the

cost of invoking the load balancer to the cost of executing a loop iteration increases; to compensate, the

frequency of load balancing should be reduced as the size of work units decreases.

The amount of work associated with iterations of a distributed loop may also vary if the loop contains

conditional code. In general, it will not be possible to predict the cost of different iterations and load

balancing mechanisms that rely heavily on predicting the cost of future work are unlikely to do well. This

difficulty also exists with static distributions on dedicated systems. However, if the number of iterations is

large and the iteration size has a random distribution, variations may average out so that the load balancer’s

predictions are correct.

32 CHAPTER 2. LOAD BALANCING ARCHITECTURE

2.1.6 Data size

For efficient execution of a program with load balancing, the communication costs of the application and

the communication and computing costs of the load balancer must be kept to a minimum. Maximum

benefits of work movement are attained when the time spent moving data is small compared to the time

spent computing the work associated with the data. The size of data slices and the amount of computation

associated with the slices is determined by the distribution.

2.2 Environmental considerations

Features of the run-time environment determine the need for load balancing, and affect load balancing costs

and the accuracy with which a load balancer can balance load. For example, dynamic load balancing is

necessary if the available processing capabilities of the system or the processing requirements of the appli-

cation vary with time; otherwise, efficient use of resources can be achieved with a static work distribution.

This section discusses how the hardware configuration, communication costs, and dynamic properties of

the environment impact load balancing decisions.

2.2.1 Hardware configuration

Several features of the hardware configuration affect the load balancer design and load balancing decisions,

including the types of processors, the number of processors, and the topology of the interconnection network.

Types of processors. On a dedicated homogeneous system, work can be distributed equally to all proces-

sors. However, if the system is heterogeneous, then the work must be distributed in proportion to the relative

capabilities of the processors. A measure of performance is needed for comparing the processors. Different

application requirements regarding CPU time, memory, and I/O make use of measures such as MFLOPS

or SPECmarks impractical. Task queue approaches work around this difficulty by not directly comparing

processor performance; instead, completion of assigned work is used as the measure of performance. Our

approach uses rate of completion of work as the relative measure.

Number of processors. If load balancing is based on global information, the cost of collecting the infor-

mation increases with number of processors; interacting with the load balancer could become a bottleneck

2.2. ENVIRONMENTAL CONSIDERATIONS 33

for the computation, especially if load balancing is in the critical path. Also, as the number of processors

increases, work movement decisions can become more complicated, and more messages may be required to

move work between the increased number of destinations and sources. However, with more processors, if

data is distributed among the processors, less data may need to be shifted to balance the load because each

processor will have a smaller share of the total distributed data.

Network topology. The way processors are connected in a distributed memory system affects communi-

cation costs. The latency and bandwidth of the physical connections is a strong indicator of communication

costs, but the number of physical connections a message must traverse multiplies these factors. Commu-

nication costs increase with the number of intermediate processors, which is determined by the topology

of the system. If the system is not fully connected, collection of global information for load balancing can

become very costly. To avoid this problem, diffusion methods (Section 1.7.3) are often used for locally

connected topologies such as arrays or hypercubes.

2.2.2 Communication costs

Several hardware factors in the cost of communication have already been mentioned. It is also necessary to

select appropriate communication protocols so that unnecessary hand-shaking and data copies are avoided.

The best way to reduce communication costs, however, is to reduce the amount of communication.

To track performance changes as closely as possible, load balancing should be done as frequently as

possible. However, there is overhead associated with collecting the information to make the load balancing

decisions, and there is overhead associated with moving work, mostly due to communication. The frequency

of load balancing should be selected to keep the cost of interactions with the load balancer to an acceptable

level and to limit the opportunities for work movement between processors so that the costs of movement do

not exceed the benefits. Also, each decision regarding work movement should consider the costs of shifting

the work between the processors.

2.2.3 Dynamicness of system

Dynamic load balancing is only necessary if either system performance or application requirements vary

with time. Otherwise, static load balancing will suffice to balance load. From the point of view of the

34 CHAPTER 2. LOAD BALANCING ARCHITECTURE

environment, the available performance only varies if there are competing loads on the system.

The effect of competing loads on resources available to the application depends largely on the scheduling

granularity used by the operating system—the time quantum. The scheduling interacts with the synchro-

nizations in the application and can interfere with performance measurements used for load balancing. For

example, if application performance on a processor is measured over too short a period, the application

may appear to be getting 100% of the CPU time because its use of the processor is uninterrupted; or it may

appear to be getting a small fraction of the CPU time because control of the CPU is passed to other processes

during the measurement period. However, if performance is evaluated over a longer period of time, then

these cases will average out, giving a better view of the actual load on the system. If load balancing is based

on measured performance, the frequency of measurement should be selected so that scheduling effects are

averaged out.

2.3 Load balancing design space

This section describes major load balancing design choices that must be made based on the application and

environment features described in the previous sections. Several researchers [71, 10] have presented more

general taxonomies for load balancing, but here we emphasize choices applicable to our application domain

where units of work are iterations of distributed loops.

Global vs. local information. The first decision that must be made is whether the entity making load

balancing decisions uses global or local information. In most cases, use of global information implies a

centralized controller which combines information from all slave processors, and use of local information

implies distributed control. (Exceptions are possible, such as the Gradient Model [34] where global

information is encoded in a distributed gradient surface.) Use of global information allows the system to

respond quickly and accurately to changes in performance [70]. However, collection of information from

all processors can be expensive, and a central load balancer may become a bottleneck. Task queue methods

generally use global information; and diffusion methods use local information. For other approaches, such

as hierarchical algorithms [72], the dichotomy is less clear.

2.3. LOAD BALANCING DESIGN SPACE 35

Work location. Data for unfinished work may be stored in a central location, or it may be distributed

among the processors. If the data is stored in a central location, as in many task queue approaches, the same

data may need to be shifted back and forth between the central location and the processors many times. In

the shared memory systems for which the task queue approaches were designed, the cost of moving data

between the memory and the processors is low, but with distributed memory systems the cost can be much

higher. However, if the data is kept distributed among the processors, assignment of work to processors

according to the owner computes rule can improve locality, reducing communication costs.

Use of application knowledge. Another important decision is the degree to which application-specific

information is used to control the load balancing. If the load balancing system takes advantage of information

about reuse of data by the application and sharing of data by different tasks, it can place tasks on processors

so that communication costs are minimized. For example, this distinguishes Affinity Scheduling [37, 38]

and Locality-based Dynamic Scheduling [33] from earlier task queue approaches. In most other task

queue approaches (e.g., [28]), loops are unrolled to create a single list of tasks, so this application-specific

information is lost.

Load balancing strategy. Load balancers generally attempt to minimize execution time by maximizing

productive utilization of processors. This can be done either by giving processors more work when they

become idle or by attempting to predict how much work each processor can handle and distributing the

work to the processors in advance. Thus, for dynamic load balancing, the load balancer can be invoked

whenever a processor finishes its work, or the load balancer can be invoked periodically while the processors

are computing to redistribute work based on assessments of processor capabilities. As discussed in Section

2.2.1, the latter case requires a performance measure that allows the load balancer to determine the relative

processing capabilities of the slaves.

Control mechanism. The load balancing entities—the load balancer(s) and the computation processes—

must interact to collect performance information, to distribute control information, and to move work.

Decisions must be made regarding the conditions that trigger these interactions and the selection of the

frequency of evaluating these conditions (e.g., to minimize costs or to minimize response time).

Some of these decisions may involve low-level details of the environment. For example, the decisions

36 CHAPTER 2. LOAD BALANCING ARCHITECTURE

involved in collecting performance information include choosing when each computation process will

evaluate its performance and how much information is necessary to trigger the load balancing computations.

Distribution of control information involves deciding whether instructions will be sent and whether the

computation processes will block waiting for instructions. Movement of work involves deciding when and

how to follow received instructions; if instructions are inexact or are based on outdated information, the

slave processors may modify or ignore received instructions.

Granularity of work movement. Granularity of work movement, i.e., the minimum and maximum

amounts of work that may be moved between processors during a load balancing phase, has strong effects

on the overhead added by load balancing. The granularity may be implied by the threshold used to decide

whether a system needs to be rebalanced. Thus it can affect how sensitive load balancing is to fluctuations

in loads in a dynamic system. Work movement granularity is the feature that distinguishes many of the task

queue algorithms.

2.4 Load balancing architecture

The entities in our load balancing system are a central load balancer (the master) and the computation

processors (the slaves). The computation processors run the application code, periodically send performance

information to the load balancer, and follow instructions sent by the load balancer. The load balancer

combines information from the slaves to generate instructions for work movement to balance load.

Both the master and the slaves alternate between a computation phase and a load balancing phase. The

two phases compose a load balancing cycle. Slave code is similar to that generated by existing parallelizing

compilers (e.g., AL [67]), except that load balancing code is added to collect performance information,

send information to the load balancer, receive instructions, and move work. The master code imitates the

structure of the slave code to the extent necessary to test loop termination conditions. Calls to the central

load balancing code are inserted into the master code at points matching the insertion points in the slave

code so that the load balancer is called the appropriate number of times. Details regarding code insertion

are presented in Chapter 6.

2.4. LOAD BALANCING ARCHITECTURE 37

2.4.1 Global information

Load balancing is based on global information since it allows the load balancer to respond to fluctuations

in system performance more quickly than a load balancer based on local information [70]. The global

information is collected by a central load balancing process which can communicate directly with each of

the computation processes. The central load balancer can respond quickly to performance changes because

it can instruct overloaded processors to move load directly to processors with surplus processing resources in

a single step. The load balancing process, the master, periodically interacts with the computation processors,

the slaves, but the frequency of interaction is controlled (Section 4.3) so that the central load balancing does

not become a bottleneck. Also, load balancing can be taken out of the critical path of the application by

overlapping the load balancing costs with the useful computation (Section 2.6). If necessary, the “central”

load balancer could be distributed with minimal effect on the slaves’ view of the system.

2.4.2 Work distributed among slave processors

Because the target is a distributed memory system, the cost of moving work and its corresponding data back

and forth from a central location to the slaves would make dynamic load balancing unprofitable. Thus,

the work is distributed among the slave processors, and load balancing is done by shifting work directly

between the slaves (Figure 2.2a). In some cases, work movement is constrained by characteristics of the

application (Figure 2.2b).

The work units in our application domain are iterations of distributed loops. A set of distributed array

elements is associated with each loop iteration. By the owner computes rule, each processor stores the

distributed data elements referenced by the loop iterations assigned to it.

2.4.3 Use of application knowledge

In our approach, the loop structure of the sequential code is retained to take advantage of data reuse and

data dependences and to minimize administrative costs. Loop bounds of the distributed loop are modified

so that each processor computes its assigned subset of the iterations, and calls to load balancing code are

inserted at appropriate locations. Application information is preserved implicitly in the loop structure.

Preserving application information in this manner pays off in a number of ways. First, data locality

is maximized since iterations that operate on the same data, e.g., iterations of a loop that is executed

38 CHAPTER 2. LOAD BALANCING ARCHITECTURE

0

1

2

3

M

Master Slaves
Status

Instructions

Work

0

1

2

3

M

Master Slaves
Status

Instructions

Work

(a)
U

nrestricted
(b)

R
estricted

by
dependences

F
igure

2.2:
C

om
m

unication
for

load
balancing.

(T
he

m
aster

is
the

centralload
balancer.)

m
ultiple

tim
es,

w
ill

be
executed

on
the

sam
e

processor.
Second,know

ledge
about

the
loop

structure
and

data
dependences

m
akes

it
possible

to
reduce

com
m

unication
since

w
ork

m
ovem

ent
can

be
restricted

to

m
inim

ize
the

num
berof

data
dependences

thatspan
processorboundaries

(F
igure

2.1).
A

lso,for
loops

that

are
parallelized

by
pipelining,the

synchronizations
added

by
the

restructuring
caused

by
unrestricted

w
ork

m
ovem

entcould
reduce

parallelexecution
so

restricted
w

ork
m

ovem
entis

m
ore

than
justa

com
m

unication

optim
ization.

(W
hen

there
are

no
restrictions

due
to

dependences,
an

alternate,
unrestricted

approach
is

used
thatattem

pts
to

m
inim

ize
w

ork
m

ovem
entcosts.)

F
inally,w

e
exploitthe

factthattasks
consistofloop

iterations
to

m
inim

ize
the

costof
bookkeeping

and
task

sw
itching.

S
pecifi

cally,m
anaging

a
task

queue
on

a
processor

requires
keeping

track
of

a
range

of
loop

indices
(i.e.,tw

o
values),and

task
sw

itching
consists

ofincrem
enting

a
loop

index.
T

here
is

no
realcontextsw

itch
since

the
entire

contextis
captured

in
the

loop

structure
and

is
autom

atically
in

place
w

hen
proceeding

from
one

iteration
to

the
next.

2.5. LOAD BALANCING STRATEGY 39

2.5 Load balancing strategy

In our load balancing system, the slave processors periodically exchange information with the load balancer

at predetermined points in the application code. At these points, the slaves send information about their

performance since the last information exchange and receive instructions on how to redistribute work.

Slave performance is specified in work units executed per second, where the work units are iterations of

the distributed loop; this computation rate is recomputed at each load balancing point. This provides the

load balancer with a measure that implicitly takes into account both the relative static capabilities of the

processors and the dynamic effects of competing loads on processor performance. However, the measure

assumes temporal locality in the load on the slaves.

Using the rate information provided by the slaves, the load balancer calculates the aggregate computation

rate of the entire system and computes a new work distribution where the work assigned to each processor

is proportional to its contribution to the aggregate rate. The load balancer then compares the new work

distribution to the current work distribution and computes instructions for redistributing the work. For

applications with loop-carried dependences, the instructions only move work between logically adjacent

slaves so intermediate processors may be involved in a shifting of load (Figure 2.2b); this restriction

minimizes the communication created by the loop-carried dependences. For applications without such

restrictions, work may be moved directly between the source slave and the destination slave (Figure 2.2a).

Each slave receives instructions specifying the slaves with which it must exchange work and the number of

iterations it should execute before exchanging information with the load balancer again. After exchanging

work, the slaves continue computing their assigned iterations until the next information exchange.

2.6 Master-slave interactions

It is important to minimize the cost of interactions between the load balancer and the slaves, since this

overhead is incurred even if the system is well balanced. The simplest mechanism for the interactions

between the load balancer and slaves is a synchronous mechanism in which all slaves send performance

information, status, to the load balancer at each predetermined load balancing point and block waiting

for instructions based on that information (Figure 2.3a). If necessary, work is moved upon receipt of the

instructions (Figure 2.4a). This mechanism responds immediately to measured changes in performance but

40 CHAPTER 2. LOAD BALANCING ARCHITECTURE

puts the load balancing costs in the critical path for the application. Moreover, the load balancing adds a

barrier synchronization to the application if no synchronization was present in the original parallel code.

The load balancing cost can be reduced by reducing the frequency of load balancing or by removing load

balancing costs from the critical path. Load balancing costs may be hidden by doing the communication and

computation for the load balancing in parallel with the computation required by the application. This can be

accomplished by pipelining the load balancing interactions or by removing load balancing synchronizations.

(a)
Synchronous

load
balancing

(b)
P

ipelined
load

balancing

F
igure

2.3:
Interactions

forload
balancing

in
a

stable
balanced

system
.

W
ith

pipelined
load

balancing,m
ore

usefulcom
putation

is
done

in
the

sam
e

am
ountof

tim
e.

2.6.1
P

ipelined
L

oad
B

alancing

W
ith

synchronous
load

balancing,at
each

load
balancing

point,
the

slaves
send

perform
ance

inform
ation

and
w

ait
for

instructions
based

on
that

inform
ation.

W
ith

pipelined
load

balancing,
slaves

still
w

ait
for

instructions
ateach

load
balancing

point,butthe
instructions

received
by

the
slavesare

based
on

perform
ance

inform
ation

senta
fixed

num
berofload

balancing
cycles

earlier,ratherthan
on

the
perform

ance
inform

ation

from
the

m
ost

recent
com

putation
phase.

W
ork

is
still

m
oved

upon
receipt

of
instructions.

T
he

pipeline

depth
is

the
num

ber
of

load
balancing

cycles
that

the
receipt

of
instructions

follow
s

the
sending

of
the

perform
ance

inform
ation

on
w

hich
the

instructions
are

based.

2.6. MASTER-SLAVE INTERACTIONS 41

Pipelining’s advantage is that it removes load balancing latencies—transferring status from the slaves,

computing instructions, and transferring instructions to the slaves—from the critical path. If load balancing

is infrequent enough, a single load balancing cycle is greater than these latencies so a pipeline of depth 1 is

sufficient to hide them (Figure 2.3b). The load balancing frequency should be low enough that fluctuations

in the performance of the load balancing processor or in the latencies of the network are hidden as well.

For example, without pipelining, a single competing load on the master processor can cause added delays

of up to one time quantum (the period of processor allocation used by the operating system’s scheduler) or

more each time the load balancer is called. With pipelining and an appropriate load balancing frequency,

the delays can be completely hidden.

The main disadvantage of pipelining is that it delays the effects of load balancing instructions: load

remains unbalanced for an extra load balancing phase (Figure 2.4b), and loads on the slaves could change

again before the instructions take effect. The delay is minimized by making the pipeline depth as small as

possible, i.e., 1, and keeping the load balancing frequency as high as possible. (Frequency tradeoffs will be

discussed in Section 4.3.)

An additional disadvantage of pipelining is that it requires the load balancer to keep track of more state.

In synchronous load balancing, the amount of work assigned to each processor can be sent to the load

balancer along with its rate information. This is not the case for pipelined load balancing because there

are pending instructions on the slave, and the slave does not yet know its work assignment. Therefore, the

load balancer must keep track of the work distribution valid at the time instructions take effect, based on

the instructions already sent. Also, if there are limited communication resources for work movement, e.g.,

limited fan-in on receiving processors due to a limited number of ports, the load balancer must keep track

of resources assigned to pending instructions so that new instructions do not interfere.

Pipelining is most beneficial in a static environment because once work has been distributed appro-

priately to balance the load, the response time of the load balancer is irrelevant. This was confirmed

experimentally in a dedicated homogeneous environment; in that environment, pipelined load balancing

produced higher efficiencies than load balancing without pipelining. In dynamic environments, if the load

balancing frequency is too low, pipelining can be detrimental because of the delayed response to changes

in performance. However, for the load balancing frequencies selected by our system (described in Chapter

4), pipelining did not hurt performance relative to load balancing without pipelining, although pipelining

42 CHAPTER 2. LOAD BALANCING ARCHITECTURE

did not improve the performance either. Since a static or slowly changing environment is a common

case—in effect, made to appear even more common by optimizations used in our system to avoid excessive

work movement—pipelining is preferable over synchronous load balancing, in spite of pipelining’s added

implementation complexity.

2.6.2 Asynchronous load balancing

In the synchronous and pipelined mechanisms described above, load balancing synchronizes the slaves at

the point where they receive instructions from the load balancer. Most of these synchronizations can be

removed if the load balancer only sends instructions to the slaves when work needs to be moved. In this

asynchronous load balancing mechanism, load balancing only causes the slaves to synchronize when they

must shift work (Figure 2.4c). Like pipelined load balancing, asynchronous load balancing hides load

balancing latencies, but asynchronous load balancing can be more efficient than synchronous approaches

(pipelined or not) because fewer messages must be sent and processors can continue doing useful work

until instructions to move work arrive. However, also like pipelining, asynchronous load balancing delays

the reaction to changes in performance, but asynchronous load balancing has greater complexity. Also,

for applications in which synchronizations occur frequently, independent of load balancing, there is little

opportunity for processors to keep working if they complete their work sooner than other processors, so

asynchronous load balancing can provide little additional benefit over pipelined load balancing in this case.

Thus, asynchronous load balancing is applicable to fewer applications—i.e., only applications requiring no

or infrequent synchronizations—than pipelined load balancing.

In addition to needing more state in the load balancer (like the pipelined case), asynchronous load

balancing requires more state to be sent with moved work. The sender of work may not have proceeded as

far into the computation as the receiver, so the data sent may not be in a state consistent with the data on the

receiver. To manage inconsistent data, slaves must either keep track of the state of each distributed data slice

or update data upon receipt so that it is in a state consistent with the data already resident. By the time work

is received, data needed to update the received data may have been modified by later computation phases

so updating received data may sometimes require storage of state information from earlier computations.

For asynchronous load balancing, redistribution of work in proportion to processing rates prevents

processors from falling further behind other processors, but does not necessarily eliminate the lag that

2.6. MASTER-SLAVE INTERACTIONS 43

(a)
Synchronous

load
balancing

(b)
Pipelined

load
balancing

(c)
A

synchronous
load

balancing

F
igure

2.4:
Interactions

for
load

balancing
in

a
system

w
here

available
com

putation
resources

decrease
on

one
processor(P

0).

44 CHAPTER 2. LOAD BALANCING ARCHITECTURE

already exists. The existing lag could be corrected by overcompensating when moving work, but this will

eventually cause the processors that were ahead to lag behind. Also, if the faster processors continue to

work ahead, the sending processor might be delayed waiting for the faster processors to be ready to receive

the work movement messages, especially if the work movement messages are too large to be buffered. To

avoid these problems, slaves block when instructed to receive work, as in Figure 2.4c. (Note that, even

though processors P1, P2, and P3 stop computing after they receive instructions to receive work, they are

still ahead of processor P0 when the work movement is completed.)

The applicability of asynchronous load balancing is limited by the synchronizations already present in

the parallelized code. A processor can only work ahead of other processors until a synchronization point

is reached; then it must wait for the other processors to catch up. Thus, for applications that synchronize

frequently, such as SOR and LU decomposition, asynchronous load balancing is not practical.

Figure 2.5 shows performance measurements for pipelined load balancing and asynchronous load balanc-

ing for the matrix multiplication application executed in several environments—both static and dynamic—on

the Nectar system.1 Asynchronous load balancing is more efficient than pipelined load balancing in some

cases, and less efficient in others. (Note that Equation 1.4 is used to compute efficiencies for the graphs.

However, the ordering of the no balancing, pipelined balancing, and asynchronous balancing efficiency

values is the same if Equation 1.2 is used.) Since asynchronous load balancing does not provide signifi-

cant performance improvement and is only applicable for applications with infrequent synchronizations, its

added complexity is not worth the additional effort. Therefore, our system uses pipelined load balancing.

2.6.3 Granularity of work movement

The granularity of work movement in our prototype system is determined by the distribution of the data.

The unit of work in the system is a single loop iteration, but the unit of work movement is the work

associated with an entire slice of the distributed data. Shifting entire data slices is advantageous in that

future computation is balanced and future references to the slice remain local, but when slices are large,

work movement can become very expensive. The load balancer (Chapter 5) includes several optimizations

to ensure that work movement will be profitable.

1 The load balancing parameters for the data presented are as follows: load balancing target period is 1 second; 10% predicted
improvement is required for work movement; rate information is filtered using a state machine; cost-benefit analysis is enabled.
The meanings of these parameters will be described later in the thesis.

2.6. MASTER-SLAVE INTERACTIONS 45

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
No balancing
Pipelined balancing
Asynchronous balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
No balancing
Pipelined balancing
Asynchronous balancing

a) Dedicated homogeneous environment b) Constant load on one processor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
No balancing
Pipelined balancing
Asynchronous balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
E

ff
ic

ie
n

cy

0 1 2 3 4 5 6 7
Processors

Sequential
No balancing
Pipelined balancing
Asynchronous balancing

c) Oscillating load (period = 60 seconds) d) Oscillating load (period = 20 seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
No balancing
Pipelined balancing
Asynchronous balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
No balancing
Pipelined balancing
Asynchronous balancing

e) Oscillating load (period = 6 seconds) f) Oscillating load (period = 2 seconds)

Figure 2.5: Pipelined vs. asynchronous load balancing for 500� 500 MM in different environments.1

46 CHAPTER 2. LOAD BALANCING ARCHITECTURE

2.7 Summary

In this chapter, we discussed application and environment features that affect load balancing decisions and

described the major decisions that must be made in designing a dynamic load balancing system. Then we

described the high-level features of our proposed load balancing system for automatically parallelized code

running on a network of workstations:

� The tasks to be load balanced are distributed loop iterations, and the units of work movement are

slices of the distributed data structures.

� The work and data are distributed on the processors to avoid the high cost of access to a centralized

task queue.

� The sequential loop structure of the application is preserved to maximize data reuse, to minimize

communication, and to minimize the overhead of switching between tasks.

� For rapid response to changes in performance, decisions are made by a central load balancer using

global information.

� Work is allocated in proportion to measured processing rates.

� Periodic, pipelined interactions between the slave processors and the load balancer occur at preselected

points in the application code so that all processors will be in a consistent state when load balancing

occurs.

Experiments were conducted to compare the performance of pipelined load balancing with synchronous

(unpipelined) and asynchronous load balancing. We showed that both the pipelined and asynchronous

approaches hide the costs of interactions between the slaves and the load balancer. Also, in some cases,

asynchronous load balancing allows fast processors to work ahead of slower (overloaded) processors. We

found performance with pipelining to be as good as (in dynamic systems) or better than (in stable systems)

performance with synchronous load balancing. Asynchronous load balancing had no clear performance

benefits over pipelined load balancing. Because asynchronous load balancing is more complicated to

implement and is applicable to fewer applications, we chose not to investigate it further. Thus, we selected

the pipelined approach.

Chapter 3

Automatic selection of grain size

We define the grain size of a parallel application to be the amount of computation between the synchro-

nizations required by the application. Selection of an appropriate grain size is a prerequisite for efficient

execution of a parallel application, whether load balanced or not. Generally, a large grain size is considered

desirable to minimize communication overhead [61, 65], but in some cases, parallelism is reduced by in-

creasing the grain size, possibly increasing the execution time. Also, in the presence of competing loads, the

grain size can interact with the scheduling of processes by the operating system, affecting the performance

of the application in some cases. This chapter discusses the tradeoffs involved in the selection and control

of the grain size of parallelized applications.

The synchronizations in a parallelized application result from its communication requirements, which

are determined by the distribution of the loop iterations and the dependences and loop structure of the original

sequential code. Often, the computation between synchronizations, i.e., the grain size, can be increased by

increasing the problem size, but that is not a practical option when solving a problem of a particular size.

In some cases, however, the loop structure of the parallelized code can be modified to change and control

the grain size. The communication patterns in the parallelized code determine how easily the grain size can

be controlled and how the grain size interacts with operating system scheduling. We distinguish different

types of synchronizations based on the different communication patterns, and we distinguish parallelized

applications by their most frequent synchronizations.

In the next section, we identify the types of synchronizations that may be present in a parallelized

application. Then we describe loop restructuring transformations that can be used to control grain size.

47

48 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

The remainder of the chapter describes how an appropriate grain size is determined and, when possible,

controlled for each type of synchronization. Analysis and simulation is used to predict performance with

different grain sizes, using simplified models to estimate computation and communication costs.

In this chapter, performance with different grain sizes is compared using the efficiency measure defined

by Equation 1.4. For the measurements and much of the analysis in this chapter, a dedicated environment

is assumed (i.e., Equation 1.4 reduces to Equation 1.2) so there is no difficulty in determining the available

computation time accurately. For the remainder of the analysis, we control the system model, so the available

computation time can be accurately determined.

3.1 Synchronization types

We classify applications based on their most frequent synchronizations. The simplest case is applications

that require no synchronizations, such as the matrix multiplication example.1 For these applications, there

is no interaction between the processors so grain size is not an issue. For other applications, we distinguish

two types of synchronizations: communication resulting from the pipelining of DOACROSS loops causes

unidirectional synchronizations between the processors; and communication outside of distributed loops

may cause bidirectional synchronizations between some or all of the processors.

communicate

compute

a)
U

nidirectionalsynchronization
b)

B
idirectionalsynchronization

F
igure

3.1:
C

om
m

unication
pattern

observed
on

one
of

the
slave

processors.
T

he
com

m
unication

pattern
determ

ines
the

synchronization
type.

W
e

m
odelapplications

as
alternating

betw
een

com
putation

and
com

m
unication/synchronization

phases.

In
the

case
ofunidirectionalsynchronizations(F

igure
3.1a),i.e.,pipelined

applications,data
iscom

m
unicated

1A
pplications

that
can

execute
in

parallel
w

ithout
requiring

com
m

unication
are

som
etim

es
called

em
barrassingly

parallel
applications

because
they

are
so

easy
to

parallelize.

3.2. COMPILE-TIME CONTROL OF GRAIN SIZE 49

in only one direction through the processors during a communication phase of the application. The

communication enforces a partial ordering on the computation: processors earlier in the pipeline must

generate data before the later processors can proceed, but processors early in the pipeline can work ahead

of processors later in the pipeline as much as buffering of intermediate data between the processors will

allow. Often, this allows computation to occur in parallel with the communication. We take advantage of

the flexibility of the partial ordering to control the grain size.

In the bidirectional case, a communication phase does not end until a message based on data sent during

the same phase is received (Figure 3.1b). This does not permit much overlap between computation and

communication for the processors involved in the communication. When all processors are involved in the

synchronization, i.e., none of the processors can exit the synchronization point until all processors have

reached it, the bidirectional synchronization is a barrier synchronization. Barrier synchronizations impose

a total ordering on the computation phases, making control of grain size difficult. An example of a bidirec-

tional/barrier synchronization is the global combination step [67] of a parallel reduction operation because

each processor must contribute its portion of the result and then must receive the combined result. With

dynamic load balancing, even a single assignment statement involving distributed data elements results in a

barrier synchronization because global communication is needed to identify the processors owning the source

and destination elements. (This will be described in detail in Section 6.6.) Bidirectional synchronizations

involving only a subset of the processors are not likely to occur in automatically parallelized data parallel

code. Therefore, in our analysis, we treat all bidirectional synchronizations as barrier synchronizations.

3.2 Compile-time control of grain size

Loop restructuring transformations can be used to increase parallelism [29, 43, 74], to increase data locality

[29, 53, 73, 74, 77], and to reduce communication overhead [61, 65]. Here we limit our discussion

to transformations used to control grain size and communication overhead, especially those that can be

parameterized for control at run time. Grain size is increased by restructuring loops so that communication

is moved out of inner loops. We do not discuss transformations such as loop interchange [2, 25, 43, 76, 78]

and loop skewing [75, 78] because they are difficult to parameterize and are not always applicable. (E.g.,

loop interchange can be parameterized by conditionally selecting different copies of the loop nest [76] but

does not provide a continuum of grain size choices.)

50 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

3.2.1 Loop splitting

Loop splitting [35] is a transformation that splits the loop body into two or more pieces, each in its own

copy of the loop bounds. Loop splitting can move communication from a loop into a separate loop so that

grain size is increased. It is useful for parallelization because it can be used to remove communication from

the loop to be parallelized. For example, in the LU decomposition routine (Figure 1.10), the grain size is

increased by splitting the “row elimination” loop (Figure 3.2a) into two loops (Figure 3.2b): in the first loop,

the body references multiple columns of the matrix to be distributed so the loop requires communication

when distributed; the body of the second loop (the BLAS SAXPY operation) accesses only one row of

the matrix, so no communication or synchronization is required when the second loop is distributed. The

inverse transformation of loop splitting is called loop fusion [35, 43]; for our purposes, loop fusion is usually

not necessary because we usually wish to maximize the grain size, not decrease it.

t = a[pidx][j]
a[pidx][j] = a[k][j]
a[k][j] = t
DO i = k+1, n

a[i][j] = a[i][j] + t * a[i][k]
END DO

END DO

a)
O

riginalloop

t = a[pidx][j]
a[pidx][j] = a[k][j]
a[k][j] = t

END DO

DO j = k+1, n
DO i = k+1, n

a[i][j] = a[i][j] + t * a[i][k]
END DO

END DO

a[pidx][k+1:n] = a[k][k+1:n]
a[k][k+1:n] = t[k+1:n]

DO j = k+1, n
DO i = k+1, n

a[i][j] = a[i][j] + t[j] * a[i][k]
END DO

END DO

b)
A

fter
loop

splitting
c)

Preparation
for

m
essage

aggregation

Figure
3.2:

L
U

decom
position

row
elim

ination
loop.

3.2. COMPILE-TIME CONTROL OF GRAIN SIZE 51

3.2.2 Message aggregation

Once communication has been grouped together by loop splitting, messages with common destinations can

be combined into one or more larger messages to reduce the communication overhead [9, 25, 26, 27, 61, 65].

This optimization is called message aggregation [25, 26, 27]. For example, the first loop in Figure 3.2b

could be replaced with array assignments (i.e., vector notation, Figure 3.2c) so that when parallelized, each

communication moves a section of the row rather than just a single element. Scalar expansion [42, 43] of

the t variable into an array of temporaries is necessary so that the assignments can be expressed in vector

notation.

3.2.3 Strip mining

Strip mining [35] replaces a single loop with two nested loops, keeping the total number of iterations

of the loop body constant (Figure 3.3). The number of iterations of the inner loop is the block size of

the computation. Strip mining provides additional opportunities for loop splitting so that communication

can be moved out of the innermost loop without moving it completely out of the loop and serializing the

computation. For example, for applications such as SOR (Figure 3.4a) parallelized by pipelining multiple

instances of DOACROSS loops (Figure 3.4b), strip mining is combined with loop splitting to increase the

grain size and then messages are combined to reduce the communication overhead (Figure 3.4c). (A similar

example is presented in [25].) The grain size is controlled by setting the blocksize variable.

. . .
END DO

DO i = i0 * blocksize, min((i0+1)*blocksize, n)
. . .

END DO
END DO

a)
O

riginalloop
b)

S
trip-m

ined
loop

F
igure

3.3:
Strip

m
ining

transform
ation.

3.2.4
L

oop
tiling

Tiling
the

iteration
space

of
loop

nests
[29,76,77]

is
another

transform
ation

thatcan
be

param
eterized

to

controlthe
grain

size
of

D
O

A
C

R
O

SS
loops.

T
iling

com
bines

strip
m

ining
of

one
or

m
ore

loops
w

ith
loop

52 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

(a)
Sequential

drain
drain

2 2

2

22

2

if (pid != 0) send(lef t, &b[fi rstcol][0] , n);
if (pid != pcount-1) receive(right, &b[lastcol][0], n);
for (i = 1; i < n - 1; i++) {

if (pid != 0) receive(left, &b[firstcol-1][i], 1);
for (j = firstcol; j < lastcol; j++) {

b[j][i] = 0.493 * (b[j][i-1] + b[j-1][i] + b[j][i+1] + b[j+1][i])
+ (-0.972) * b[j][i];

}
if (pid != pcount-1) send(right, &b[lastcol-1][i], 1);

}
}

if (pid != 0) send(lef t, &b[fi rstcol][0] , n);
if (pid != pcount-1) receive(right, &b[lastcol][0], n);
for (i0 = 0; i0 < n / blocksize; i0++) {

if (pid != 0) receive(left, &b[firstcol-1][i0*blocksize], blocksize);
for (i = i0 * blocksize; (i < (i0+1) * blocksize) && (i < n-1); i++) {

for (j = firstcol; j < lastcol; j++) {
b[j][i]= 0.493 * (b[j][i-1] + b[j-1][i] + b[j][i+1] + b[j+1][i])

+ (-0.972) * b[j][i];
}

}
if (pid != pcount-1) send(right, &b[lastcol-1][i0*blocksize], blocksize);

}
}

(b)
Pipelined

(c)
B

locked
and

pipelined

F
igure

3.4:
Parallelization

options
for

S
O

R
(sim

plifi
ed

version;
error

com
putation

not
show

n).
F

igures
show

pipelined
execution

of
a

single
relaxation

phase.
C

ode
portions

affected
by

strip
m

ining
and

m
essage

aggregation
are

shaded.

interchange
so

that
m

em
ory

references
by

the
resulting

inner
loops

are
localized.

T
he

size
of

the
tiles

is

controlled
by

the
block

sizes
of

the
strip-m

ined
loops.

T
iling

is
frequently

used
to

increase
data

locality,

especially
on

uniprocessors
and

shared-m
em

ory
m

ultiprocessors,
so

that
m

ost
m

em
ory

references
are

to

data
in

the
cache

[29,53,73,77].
H

ow
ever,on

a
distributed

m
em

ory
m

ultiprocessor,w
hen

com
bined

w
ith

loop
splitting

and
m

essage
aggregation,

tiling
can

also
be

used
to

control
grain

size
and

com
m

unication

overhead
[65].

In
oursystem

,w
here

data
is

only
distributed

in
one

dim
ension

and
w

ork
is

m
oved

by
shifting

distributed
data

slices,the
generaltiling

transform
ation

m
akes

data
m

anagem
entm

ore
com

plicated,so
w

e

lim
itour

discussion
of

controlling
the

grain
size

of
D

O
A

C
R

O
SS

loop
nests

to
the

less
generalcase

of
strip

m
ining,

as
in

the
SO

R
exam

ple
in

S
ection

3.2.3.
M

uch
of

our
analysis

regarding
grain

size
should

be

3.3. UNIDIRECTIONAL SYNCHRONIZATIONS 53

applicable to the more general case.

3.3 Unidirectional synchronizations

For applications with loop carried flow dependences, i.e., with DOACROSS loops, parallelism can be

obtained by pipelining multiple instances of the distributed loop. There are two main factors influencing the

efficiency of parallelization by pipelining: the time spent on communication of intermediate values due to

the loop carried dependences; and the time spent filling and draining the pipeline. For a given application,

the minimum execution time is attained with a grain size that is a compromise between parallelism and

communication overhead. We begin this section with a discussion of how grain size is controlled for

applications with DOACROSS loops and then discuss how an appropriate grain size is selected.

3.3.1 Controlling grain size at run time

For applications with DOACROSS loops, the compiler strip mines the loop surrounding the distributed loop

and moves communication out of the inner loop, combining messages when possible. The grain size can

then be controlled at run time by setting the block size of the strip-mined loop. The grain size (tgrain) is

related to the block size as follows:

tgrain = blocksize� titeration (3:1)

or

blocksize =
tgrain

titeration

where titeration is the longest of the execution times for the local portion of the distributed DOACROSS

loop on all of the processors. Once execution of a strip-mined loop has begun, it is very complicated to

modify the block size; thus, the desired block size or grain size must be selected before entering the loop. If

the strip-mined loop is executed multiple times, the block size can be changed between the executions of the

loop, based on measurements taken during previous executions of the loop. The next few sections describe

how the optimal block size is selected, but first we describe how block size is selected given a desired fixed

grain size.

Given a desired grain size, an accurate estimate of titeration, the cost of the portion of the loop body

executed on each processor, is required to select the appropriate block size. Since this estimate is needed

54 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

before entering the loop, the cost can not be measured as the loop is executed. If the compiler has an

accurate model of execution times for the processor, the compiler can determine titeration. If not, titeration

can be estimated when the application is started by measuring the execution time of a copy of the loop

body (operating on dummy data). If the strip-mined loop is executed multiple times, the estimates of the

loop body costs can be updated between the executions of the loop, based on measurements of the actual

times for executing the loop body during previous executions. In our implementation of SOR, we just use

measurements from executing a copy of the loop body at startup time.

In our implementation of the SOR example, we initially computed an average titeration from measure-

ments of a fixed number of iterations of the dummy loop body. However, we found inconsistencies in

the values determined with different numbers of slave processors. These inconsistencies are explained and

corrected with some analysis. Assuming a dedicated, homogeneous system, the number of iterations, Ni,

assigned to each processor is

Ni =
n

P
(3:2)

where n is the problem size (the number of iterations in the distributed loop), and P is the number of slave

processors. The titeration measured on processor i is proportional to Ni, and, thus, varies with the problem

size and number of processors. However, because the total amount of work is constant, we expect the

total of the measurements of titeration on all the slave processors to be constant, no matter how many slave

processors there are:
P�1X
i=0

titeration;i| {z }
average measurement

� titeration| {z }
max titeration;i

�P � k � n| {z }
constant

If titeration;i is measured on each processor by averaging the time over a fixed number of iterations of the

dummy loop body, there is a lot of variability in titeration � P because of the different ratios between loop

overhead and computation for different numbers of processors. The variability is eliminated by averaging

the execution time of the loop body for a number of iterations proportional to the number of processors so

that each average involves the same amount of computation and has the same ratio of computation and loop

overheads. Experiments verified that with the corrected approach, titeration � P was much more stable as

the number of processors was varied. Another way to verify the accuracy of the titeration measurements is

to use them to extrapolate the sequential execution time for the problem and compare the predicted times

with actual measurements. If there are m executions of the distributed loop and the problem is distributeed

3.3. UNIDIRECTIONAL SYNCHRONIZATIONS 55

on P processors, the sequential time should be

tsequential = m� P � titeration (3:3)

For SOR, we found that the predictions of the sequential execution time using this approach are consistent

over different numbers of processors and are quite close to measurements of the sequential time. Therefore,

our measurements of titeration must be accurate.

3.3.2 Communication costs

Communication is necessary when dependences exist between loop iterations that are assigned to different

processors. If this communication is too frequent, communication costs can dominate the execution time,

eliminating benefits due to parallelism. The frequency of communication depends on the computation

associated with each iteration and the number of loop iterations, Ni, assigned to each processor. The

latter value depends on the problem size, n, and the number of processors, P , for equal distribution of

work (Equation 3.2). The former value can be changed by loop restructuring transformations, such as strip

mining, performed during compilation. Strip mining the pipelined loop and moving communication out

of the resulting inner loop provides a way to control the frequency of communication. Communication

overhead can then be reduced using message aggregation. Increasing the block size reduces the frequency

of communication and increases the number of messages that can be combined. Thus, the larger the block

size, the smaller the communication overhead.

3.3.3 Pipeline fill and drain times

However, if communication of intermediate values is made too infrequent, a large fraction of the execution

time will be spent filling and draining the pipeline, resulting in reduced parallelism. From Figure 3.5, it can

be observed that, for a m iteration loop divided into M blocks (M = m

b
, where b is the block size), the

elapsed time for the application, ignoring communication costs, is M +P � 1 times the time to execute one

block, tblock:

telapsed = (M + P � 1) � tblock (3:4)

56 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

The time to fill and drain the pipeline, (P � 1)� tblock, increases with the block size and with the number

of processors. The total number of blocks to be executed is P �M so

tsequential = P �M � tblock (3:5)

We can now compute an upper bound on efficiency for a homogeneous environment with no competing

loads, using Equation 1.4:

efficiency =
P �M � tblock

P � (M + P � 1)� tblock

=
M

M + P � 1
(3.6)

This upper bound on efficiency is graphed as a function of the number of blocks in Figure 3.6. The efficiency

approaches 1:0 as M approaches infinity. However, M can be no more than the number of iterations, m, in

the pipelined loop.

3.3.4 Selecting the optimal block size

The total execution time for the pipelined loop is the sum of the times for the pipelined phases plus the sum

of the communication costs. The loop is executed in M + P � 1 computation phases, and communication

of boundary values occurs between the computation phases (Figure 3.5). Not all processors shift boundary

values when the pipeline is filling or draining, but to simplify the analysis, we assume that all communication

phases take the same amount of time, tshift. Thus, the total execution time is modeled as follows:

ttotal = (M + P � 1)� tblock + (M + P � 2)� tshift (3:7)

To use this model, we need values for M , tblock, and tshift.

M and tblock are related by Equation 3.5. If the compiler has an accurate model of execution times for

the processors, it can predict the sequential execution time. Otherwise, at run time, if all iterations of the

pipelined loop require the same amount of computation, the sequential execution time can be estimated by

measuring the cost of executing several iterations of a copy of the loop and extrapolating, as described in

Section 3.3.1. Our implementation uses the latter approach. Thus, for a given number of processors, P , we

can eliminate tblock as an unknown by replacing it with tsequential

P�M
and using the estimate of tsequential.

3.3. UNIDIRECTIONAL SYNCHRONIZATIONS 57

processors

blocks communication
phases

M P 2−+M

P 1−

P

drain
phases

P 1−
fill

phases
b

m
M

=

Np
n
P

≅

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

P1P0 PP-1

F
igure

3.5:
Pipelined

execution
of

a
distributed

loop
show

ing
param

eters
for

m
odeling

execution
tim

e.
D

istributed
loop

has

n

iterations
and

pipelined
loop

(enclosing
distributed

loop)
has

m

iterations.

t
s
h
i
f
t

can
be

estim
ated

by
m

easuring
com

m
unication

costs
w

hen
the

application
is

started.
A

t
each

com
m

unication
point,com

m
unication

is
m

odeled
as

follow
s:

t
s
h
i
f
t

=

t
f
i
x
e
d

+
t
i
n
c
r

�

elem
ents

(3

:8

)

w
here

t
f
i
x
e
d

is
the

fixed
overhead

of
sending

m
essages

betw
een

processors,and

t
i
n
c
r

is
the

cost
per

data

elem
entsent.

elem
ents

is
the

num
ber

of
data

elem
ents

thatm
ustbe

sentateach
com

m
unication

pointand

58 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
ff

ic
ie

n
cy

0 50 100 150 200 250 300 350 400 450 500
Number of blocks

P=1
P=4

P=16

P=64

Figure 3.6: Upper bound on efficiency for the pipelined loop in the SOR example (1000x1000 matrix, 10
iterations) as a function of the number of blocks.

is equal to the block size, b:

elements = b =
m

M
(3:9)

tfixed is estimated by measuring the time to shift empty messages through the processors. tincr is estimated

by measuring the cost of sending fixed length messages through the processors, subtracting tfixed, and

dividing by the length of the messages.

Substituting for tblock and tshift in Equation 3.7,

ttotal = (M + P � 1)�
tsequential

P

M

+(M + P � 2)� (tfixed + tincr �
m

M
)

=
tsequential

P
+
tsequential

M
�
tsequential

P �M

+M � tfixed + P � tfixed � 2� tfixed

+tincr �m+ P � tincr �
m

M
� 2� tincr �

m

M
(3.10)

All values on the right hand side of Equation 3.10 can be determined when the application is started

except for M , the number of blocks. We wish to select M to minimize the total execution time. The value

3.3. UNIDIRECTIONAL SYNCHRONIZATIONS 59

of M that minimizes ttotal is computed by setting the derivative of ttotal with respect to M equal to zero:

dttotal

dM
= 0�

tsequential

M 2 +
tsequential

P �M 2

+tfixed + 0� 0 + 0�
P � tincr �m

M 2 +
2� tincr �m

M 2

= 0 (3.11)

Solving for M , the shortest execution time and the highest efficiency are attained when

M =

vuut tsequential � (1� 1
P
) + tincr �m� (P � 2)

tfixed
(3:12)

The optimalM is computed at application startup time using the known values of P andm and the estimates

of tsequential, tfixed, and tincr determined by executing copies of small portions of the computation. From

this, we determine the optimal block size, b = m

M
(Equation 3.9).

3.3.5 Evaluation of grain size model

Figure 3.7 shows the efficiency of parallelization for the SOR example (1000x1000 matrix, 10 iterations)

predicted by our model and measured on the Nectar system with 4 slave processors. We ran the SOR example

with a range of block sizes and with the block size automatically selected using the computations described

above; artificial delays were added in Figures 3.7b and 3.7c to show how our execution model responds to

different communication costs. Estimates of tsequential based on measurements of several iterations of the

pipelined loop are consistent over several measurements and are quite close to measurements of the actual

time for the application running on a single processor (listed in Table 7.1). However, the communication

costs are more variable and are more difficult to measure. To predict the efficiency and to compute the

optimal block size, we use a conservative estimate of the communication costs: the time between the start

of the first communication and the end of the last communication in a communication phase. This estimate

tends to increase tfixed, reduce tincr and increase the optimal grain size prediction. (The predicted and

measured efficiency curves move closer together if the tincr estimate is increased.) Although this cost

estimate may include some time spent on computation, a less conservative estimate, such as measuring the

communication time from the point of view of a single processor, could result in shifting the optimal grain

size prediction to the left where the slope of the efficiency curve is much greater.

Similar analysis will be done within the Fortran D compiler to select the appropriate block size for

pipelined computations [26, 27]. As in our approach, the optimal block size is determined by setting

60 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
ff

ic
ie

n
cy

0 50 100 150 200 250 300 350 400 450 500
Blocksize (iterations)

Measured
Predicted
Upper bound

Values used in computing M :
tsequential = 8478720�sec
tfixed = 1716�sec
tincr = 4:8�sec

a) No added delays.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
ff

ic
ie

n
cy

0 50 100 150 200 250 300 350 400 450 500
Blocksize (iterations)

Measured
Predicted
Upper bound

Values used in computing M :
tsequential = 8496640�sec
tfixed = 16633�sec
tincr = 4:8�sec

b) 5 millisecond delay added to each message.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
ff

ic
ie

n
cy

0 50 100 150 200 250 300 350 400 450 500
Blocksize (iterations)

Measured
Predicted
Upper bound

Values used in computing M :
tsequential = 8500480�sec
tfixed = 152360�sec
tincr = 4:8�sec

c) 50 millisecond delay added to each message.

Figure 3.7: Efficiency of the pipelined loop in the SOR example (1000x1000 matrix, 10 iterations) on a 4
slave system as a function of the block size. Vertical lines indicate automatically selected block size and
correspond with the peaks of the “Predicted” curves.

3.3. UNIDIRECTIONAL SYNCHRONIZATIONS 61

the derivative of a model of the execution time for the application equal to zero. However, unlike our

approach, their estimates of computation and communication times for the program are determined by a

static performance estimator which runs a training set of kernel routines to characterize costs in the system

[23]. The static performance estimator matches computations in the given application with kernels from

the training set. Their approach requires a separate characterization for each machine configuration that

might be used when running the application. Our approach is more flexible in that it measures the costs for

the specific application code being executed on the specific machine configuration being used and could be

extended to update the costs as the application is executed. However, by delaying our characterization of

costs until run time, we add the characterization time to the cost of executing the application.

3.3.6 Optimal grain size vs. fixed grain size.

To show the effectiveness of considering both communication overhead and parallelism in selecting grain

size, we compared the performance of a version of SOR with a fixed grain size, controlled as described

in Section 3.3.1, with the performance of a version with the automatically-selected “optimal” grain size,

selected using the method described in Section 3.3.4. Figure 3.8 shows efficiency measurements (see Section

1.5) taken on the Nectar system with homogeneous, dedicated processors for two different problem sizes. (In

this case, since there are no competing processes on the system, the efficiency measure defined by Equation

1.4 is the same as the traditional, lower bound efficiency measure, Equation 1.2, so the measurements are

neither optimistic nor pessimistic.) We selected a fixed grain size of 1:5 time quanta2 (150 milliseconds) so

that the communication overhead would be small. The efficiency with the fixed grain size was approximately

the same as that with automatically-selected grain size when the number of processors was small, but as

the number of processors was increased, the total execution time for the problems decreased, increasing

the effect of filling and draining the pipeline, so the automatically-selected grain size, which takes both

communication costs and parallelism into account, resulted in higher efficiency.

2The time quantum or time slice is the unit of scheduling used by the operating system. For Unix systems, the time quantum is
100 milliseconds [32].

62 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
E

ff
ic

ie
n

cy

0 1 2 3 4 5 6 7
Processors

Sequential
Automatically selected
Fixed (1.5 quanta)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Automatically selected
Fixed (1.5 quanta)

a) 1000� 1000 (40 iterations) b) 2000� 2000 (10 iterations)

Figure 3.8: Parallel versions of SOR without load balancing in a dedicated homogeneous environment.
Fixed grain size (1:5 quanta = 150 milliseconds) vs. automatically selected grain size.

3.3.7 Effect of competing loads

For pipelined applications, when a competing load is added to one of the processors, intermediate results

are delayed for all processors following that processor in the pipeline. A bubble of inactivity (idle waiting)

passes through the pipeline each time the competing load is given the CPU (Figure 3.9a). However, if the

load is balanced, the processor with the competing load is allocated less work so that during its allocation of

the CPU, it generates enough data to keep the processors that follow it busy when the competing load has

control of the CPU (Figure 3.9b). The communication required by the application aligns the processors so

that efficiency is not affected adversely by competing loads and pipelined execution can continue without

stalling. This is true for any grain size, as long as there is enough buffer space to store the intermediate data.

We confirmed that grain size has little effect on the efficiency of a pipelined application in a load balanced

environment with competing loads by simulating the interactions between the scheduling of processes by the

operating system and the communication between the slave processors, as in Figure 3.9. Our model of the

system assumes that the operating system allocates equal portions of the CPU time to all running processes in

a round-robin fashion with a fixed time quantum. The simulations do not consider communication costs, but

do model time spent filling and draining the pipeline; therefore the predicted upper bound on efficiency for

a dedicated system is M

M+P�1 . Figure 3.10 shows the parallelization efficiencies resulting from simulating

different grain sizes under different conditions. In all of the environments simulated, the efficiencies stay

very close to the predicated upper bound, regardless of the grain size. On systems with competing loads, the

3.3. UNIDIRECTIONAL SYNCHRONIZATIONS 63

CPU allocated to competing process
CPU allocated to application process

Application process waiting for data
Communication point

a)
E

qualdistribution
b)

L
oad

balanced

F
igure

3.9:
Pipelined

execution
w

ith
com

peting
load

on
firstprocessor.

64 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

efficiency sometimes exceeds the predicted upper bound because the length of the blocks varies with each

pipeline stage as the phase difference between the start of the competing load and the start of the pipeline

stage changes. There may be slight degradations in efficiency (most noticeable in Figure 3.10d) due to time

spent by the slaves aligning themselves with each other in the early stages of the pipeline. In real systems,

process scheduling is more complicated than round-robin and competing loads may vary over the course of

the application so the slaves may have to realign themselves more than once; however, the natural tendency

for communication to align the processors should prevent efficiency from being affected too adversely.

3.4 Bidirectional (barrier) synchronizations

If at a communication point, data must be exchanged rather than just shifted in a single direction, a barrier is

created; none of the processors involved in the communication may continue executing until all processors

have reached the barrier. We call these synchronization points bidirectional or barrier synchronizations.

Since DOALL loops require no communication, the grain size of applications with DOALL loops is

determined by the barrier synchronizations outside the distributed loop. Barrier synchronizations may be

caused by reduction operations, by distributed loops that just shift data between processors, or by assignment

statements that involve data on multiple processors; the LU decomposition example (Figure 1.10) exhibits

all of these features. Barrier synchronizations with no computation between them can be treated as a single

barrier. With bidirectional synchronizations, grain size can be changed using transformations such as loop

splitting (e.g., Figure 3.2), loop interchange, or loop skewing, but these transformations are difficult to

parameterize. For limited control of the grain size, the compiler could generate several versions of the

code which could be selected at run time [76], but a continuum of grain sizes is not possible as it was in

the case of unidirectional synchronizations. Because of this limitation, our research does not investigate

options for modifying the grain size of problems with bidirectional synchronizations; we leave it to the

programmer or the compiler to decide on the best way to parallelize the application. In the remainder of this

section, we analyze the overhead of bidirectional synchronizations and examine the effects of bidirectional

synchronizations on program performance in the presence of competing loads.

3.4. BIDIRECTIONAL (BARRIER) SYNCHRONIZATIONS 65

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Grain size (quanta)

Upper bound

Simulated

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Grain size (quanta)

Upper bound

Simulated

a) Competing load on P0 b) 2 competing loads on P0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Grain size (quanta)

Upper bound

Simulated

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Grain size (quanta)

Upper bound

Simulated

c) 3 competing loads on P0 d) Competing loads: 1 on P0, 2 on P1,
3 on P2, 4 on P3

Figure 3.10: Parallelization efficiency determined from simulation of pipelined execution on a 4 processor
system. Upper bound (M

M+P�1) is included on all graphs. The sequential execution time of the simulated
problem is 200 time quanta.

3.4.1 Synchronization overhead

Figure 3.11 shows the basic structure of parallelized code with barrier synchronizations. The barrier

synchronizations are on the critical path of the application because they impose a total order on the

66 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

processors. Thus the communication costs for the synchronizations add to the parallelization overhead for

the program. Also, if there is any load imbalance between synchronizations, the processors that finish their

computation first remain idle while the other processors finish, reducing the parallelization efficiency.

For a dedicated homogeneous system, we can model the total execution time for the program as follows:

ttotal = tbarrier �m+
n

P
� titeration �m

where n is the total number of iterations of the distributed loop and m is the number of times the distributed

loop is executed. In the sequential version of the program, the execution time is approximately

tsequential = n� titeration �m

Thus, the efficiency of parallelization in a dedicated homogeneous system is

efficiency =
tsequential

P � ttotal

=
n� titeration �m

P � (tbarrier �m+ n

P
� titeration �m)

=
n� titeration

P � tbarrier + n� titeration

In this simple model, all parallelization overhead is due to barriers, and the number of barriers is irrelevant.

The overhead can only be reduced by reducing the cost of each barrier. With a good implementation of

barriers, this is not an option. Thus, to reduce synchronization overhead, the compiler must restructure the

program so that it can be modeled differently; this requires distributing the problem in a different manner, a

problem that we do not address.

DO j = locallo, localhi
compute iteration

END DO
global synchronization

END DO

Figure
3.11:

Parallelized
version

of
D

O
A

L
L

loop
follow

ed
by

globaloperation.

3.4. BIDIRECTIONAL (BARRIER) SYNCHRONIZATIONS 67

3.4.2 Effect of competing loads

When multiple processors have competing loads, the scheduling of processes on different processors may

not be synchronized, and the application may be inactive on different processors at different times. At each

barrier synchronization, the elapsed time will be the worst case of the times on all the processors, and the

barriers will cause the skews between execution times to accumulate and show up in the total execution

time. Even when work is allocated to processors in proportion to their available resources, on a system with

competing loads, the application may not be able to use its share of the processing resources productively

due to the interactions between the grain size and the scheduling of processes by the operating system. The

inefficiency is even worse if the work assignment is not proportional (i.e., the load is left unbalanced) or if

the system is dynamic resulting in varying grain sizes. For effective utilization of resources, the computation

assigned to each processor during the period between barrier synchronizations must correspond with the

amount of CPU allocated to that processor during that period. This section identifies the grain sizes that

make this match more likely.

Modeling scheduling interactions

To evaluate the effects of the barrier synchronizations on performance in the presence of competing loads,

we model the scheduling of processes using the round-robin scheduling model described in Section 3.3.7.

Barriers work as follows: each application process enters the barrier after completing a computation phase,

and none of the process may exit the barrier until all processes have entered. Each process must be active,

i.e., have control of its CPU, both when entering and when leaving a barrier, but not all processes must be

active at the same time.3

Figures 3.12 and 3.13 show time lines for a four processor system with a single competing load on one

processor, with different work assignments and grain sizes. The time lines identify the different CPU states

(working, waiting, or inactive with respect to the load balanced application) and show the interactions for

the barrier synchronizations. In the figures, the thick horizontal lines indicate the times when the application

3This model for barrier synchronizations requires that the communication needed for the synchronization is buffered. We could
use a more restrictive, possibly more realistic, model of the synchronizations, such as requiring all processes to be active at the
synchronization point; however, with the simple, but inflexible, round-robin scheduling model, performance predictions would be
too pessimistic. To compensate, the round-robin scheduling model would have to be replaced with a more complicated model, e.g.,
having the application process yield the CPU when waiting for communication and having incoming communication interrupt the
competing processes to return the CPU to the application.

68 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

processes enter a barrier synchronization, and the arrows indicate the times when the processes exit the

barrier. In Figure 3.12, the grain size for the case without load balancing (Figure 3.12a) is 0.7 time quanta.

After load balancing (Figure 3.12b), the grain size on the loaded processor (P0) is 0.4 quanta, and on the

dedicated processors (P1, P2, and P3) the grain size is 0.8 quanta. With load balancing, there is still quite a

bit of time spent waiting at the synchronization points, and the execution time is not reduced much relative

to the case without load balancing; load balancing only increases the efficiency from 60.9% to 76.5%.

However, grain sizes (after balancing) closer to multiples of the time quantum result in higher utilization of

the available CPU time because only occasional small corrections (i.e., small waiting periods) are needed to

keep the synchronizations and scheduling in phase. In Figure 3.13 where the grain sizes after load balancing

are closer to multiples of the time quantum (0.8 quanta on P0, and 1.6 on the other processors), the time

reduction with load balancing is much greater than in Figure 3.12, where the grain size is 0.4 time quanta (on

processor 0). The efficiency increases from 58.9% without load balancing to 94.6% with load balancing.

Better CPU utilization also results from increasing the grain size. With round-robin scheduling, after

the application process executes for one time quantum, each competing process also executes for one time

quantum. Between consecutive computation phases, the number of times the application is interrupted by

the scheduler may differ by one due to the phase difference between the computation and the scheduling.

Thus, on a processor with constant competing loads, execution times for consecutive computation phases

may differ by a factor of dge=bgc where g is grain size (based on dedicated use of the CPU) measured in

time quanta. When g is less than one time quantum, consecutive execution times can vary by any factor

depending on the load on the system, but when g is greater than one time quantum, the variability factor is

bounded, e.g., by 2 for 1 < g < 2, by 3
2 for 2 < g < 3, etc. Thus, if grain size can be controlled, a grain

size as large as possible, but at least one time quantum (on the loaded processors after balancing), should be

selected.

Simulation of scheduling interactions

To show the effects of varying the grain size on performance, we simulated the interactions between different

grain sizes and the scheduling of processes by the operating system. The simulations model the interactions

between the grain size and scheduling in the same manner used in Figures 3.12 and 3.13, but run for 1000

synchronizations. At the start of the simulations, the parallel application is active and at the beginning

3.4. BIDIRECTIONAL (BARRIER) SYNCHRONIZATIONS 69

CPU allocated to competing process
CPU allocated to application process

Application process waiting for data
Communication point

a)
E

qualdistribution
(efficiency

=

0

:609)
b)

L
oad

balanced
(efficiency

=

0
:765)

F
igure

3.12:
A

pplication
w

ith
bidirectional

synchronizations
executing

w
ith

com
peting

load
on

first
pro-

cessor.
G

rain
size

for
equaldistribution

case
is

70
m

illiseconds.
R

ound
robin

scheduling
ignoring

com
m

u-
nication

costs.

of
a

tim
e

quantum
on

allprocessors.
Figure

3.14
show

s
parallelization

efficiencies
attained

w
ith

different

grain
sizes

under
different

load
conditions.

T
he

sim
ulation

results
confirm

our
hypotheses:

efficiency

increases
w

ith
grain

size,but
not

m
onotonically;

peaks
w

ith
100%

effi
ciency

occur
w

here
the

grain
sizes

70 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

a)
E

qualdistribution
(efficiency

=

0

:589)
b)

L
oad

balanced
(efficiency

=

0

:946)

F
igure

3.13:
A

pplication
w

ith
bidirectional

synchronizations
executing

w
ith

com
peting

load
on

first
pro-

cessor.
G

rain
size

for
equal

distribution
case

is
140

m
illiseconds.

R
ound-robin

scheduling
ignoring

com
m

unication
costs.

and
scheduling

are
in

phase.

W
e

can
predictthe

locations
ofthe

peaksin
the

sim
ulation

results.
W

ith
constantloads

on
the

processors,

3.4. BIDIRECTIONAL (BARRIER) SYNCHRONIZATIONS 71

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Grain size (quanta)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Grain size (quanta)

a) Competing load on P0 b) 2 competing loads on P0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Grain size (quanta)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Grain size (quanta)

c) 3 competing loads on P0 d) Competing loads: 1 on P0, 2 on P1,
3 on P2, 4 on P3

Figure 3.14: Parallelization efficiency for varying grain sizes on a 4 processor system. Simulation results
for round-robin scheduling ignoring communication costs.

the CPU allocation schedule for the whole system repeats every lcm quanta, where lcm is the greatest

common multiple of the loads (loadi) on each processor (including the load balanced application). For

100% utilization during one repetition of the schedule, each processor must be allocated wi = lcm

loadi

quantum units of work. The total work during each lcm quanta period is thus wtotal =
P

i=P�1
i=0 wi. Since

72 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

the x axes of the graphs in Figure 3.14 are the grain sizes before load balancing, the grain sizes with 100%

efficiency are multiples of grainpeak =
wtotal

P
. The first 100% efficiency peak on each of the graphs in

Figure 3.14 occurs when the grain size on the most heavily loaded processor after balancing equals one time

quantum: grainpeak = 1:75 for Figure 3.14a, 2:50 for 3.14b, 3:25 for 3.14c, and 19:25 for 3.14d. Additional

peaks may occur if the schedule for the system can be divided into two or more equal segments for which

each segment has the same amount of active time on each processor as each other segment. E.g., for the

examples with competing loads on only one of the processors, peaks can also occur at multiples of
grainpeak

2

(efficiencies near 100% can be observed in Figures 3.14a, 3.14b, and 3.14c. However, for 100% efficiency

to result with these grain sizes, the computation and the scheduling of the processes must be in precisely the

correct phase.

The simulation results confirm that efficiency improves as the grain size is increased, and also show

that the sensitivity of the efficiency to fluctuations in grain size decreases as the grain size increases. In

actual systems, scheduling algorithms more complicated than round-robin are used, making it more difficult

to predict the grain sizes where efficiency peaks occur. Also, normal system activity may cause variations

in the schedule so it is desirable to be out of the range of grain sizes where efficiency fluctuates greatly.

Therefore, the grain size should be as large as possible for applications with barrier synchronizations if they

are to be run in the presence of competing loads.

3.5 Summary

This chapter presented several ways grain size can be controlled using loop restructuring transformations

and investigated the interactions between the grain size and scheduling of processes by the operating system.

The selection of an appropriate grain size for applications distributed over networks of workstations requires

both compile-time and run-time information. The ability to control grain size and the factors that must be

considered in selecting an appropriate grain size are determined by the type of synchronizations in the

application.

For applications with unidirectional synchronizations (i.e., with DOACROSS loops), we presented and

evaluated a method for automatically selecting and controlling the grain size based on close cooperation

between the compiler and the runtime system. For an application to use resources efficiently, its grain size

must be selected by evaluating a tradeoff between communication overhead and parallelism. However,

3.5. SUMMARY 73

all the information needed to evaluate the tradeoff is not available until run time. Because our automatic

selection approach takes into account the features of both the application (such as problem size) and the

system on which it is run (such as the number of processors), it selects the optimal grain size for varied

application and system parameters. Our experimental results demonstrate that our automatic selection

approach is effective in selecting an appropriate grain size for an application. Using simulations, we also

showed that, for applications with unidirectional synchronizations, interactions between the grain size and

scheduling by the operating system do not significantly affect performance; therefore the interactions need

not be considered in selecting grain size.

For applications with bidirectional (barrier) synchronizations, grain size is more difficult to control at run

time. Simulations showed that, to reduce undesirable interactions between bidirectional synchronizations

and scheduling by the operating system, the grain size should be made as large as possible.

74 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

Chapter 4

Automatic selection of load balancing

frequency

The frequency at which the slaves evaluate their performance and interact with the load balancer affects

the overhead of load balancing and the responsiveness of the system to fluctuations in performance on the

slave processors. Load balancing must be performed often enough that fluctuations in performance on the

processors can be tracked, but if load balancing occurs too often, the added overheads of interacting with the

load balancer and moving work may exceed the benefits of balancing the load. Also, because the frequency

of load balancing determines the period over which performance is measured, if the frequency is too high,

measurements may fluctuate greatly due to interactions with the scheduling of processes by the operating

system rather than due to actual changes in load on the processors; this could cause excessive, unnecessary

work movement resulting in excessive overhead.

The load balancing system must be able to select an appropriate load balancing frequency and must

be able to modify the frequency as system and application characteristics change. Control of the load

balancing frequency involves both the compiler and the runtime system because the compiler must specify

points in the code where work can be moved without disrupting the computation or corrupting data. This

is most easily coordinated if load balancing interactions occur only at points in the parallelized code where

the compiler has inserted load balancing hooks, conditional calls to the load balancing code. The runtime

system determines when the hooks call the load balancing code.

The next section describes how the compiler and runtime system cooperate in controlling the load

75

76 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

balancing frequency. Section 4.2 describes how the compiler places the load balancing hooks into the

application code. Section 4.3 describes the factors considered when selecting the load balancing frequency

and how the frequency is controlled at run time.

4.1 Cooperation between compiler and runtime system

The compiler places conditional calls to the load balancer into the application code in the form of load

balancing hooks. The hooks test conditions for calling the load balancing code so that the frequency of load

balancing can be controlled at run time. When conditions for load balancing are met, a hook calls the load

balancing code, which measures the time spent on the computation, sends performance information to the

load balancer, receives instructions, and, if necessary, shifts work between the processors. The granularity

at which frequency can be controlled at run time is determined by the placement of the load balancing hooks.

A simple implementation of a load balancing hook is shown in Figure 4.1a. Each time the hook is

executed, a counter, count, is incremented. Load balancing is triggered when the counter reaches a specified

value, nexthook. The counter is reset each time the load balancing code is called. To control the load

balancing frequency, the count that triggers load balancing, nexthook, can be changed each time instructions

are received from the load balancer, according to specifications contained in the instructions. The hook

shown in Figure 4.1a implements synchronous load balancing. If the interactions between the slaves and

load balancer are pipelined (Section 2.6.1), the hook is modified slightly so that two (or more) status

messages are sent before the first set of instructions is received (Figure 4.1b); after the interaction pipeline

has been filled (i.e., phase > 1), the modified hook code performs the same functions as the code in Figure

4.1a. For asynchronous load balancing (Section 2.6.2), the hook must be modified so that the hook only

attempts to receive instructions if an instruction message has been detected (Figure 4.1c); otherwise, the

hook just sends status to the load balancer and returns control to the application code.

The run time system determines when the hooks will call the load balancing code, based on a target

load balancing period (periodtarget) and the length of the computation periods between the load balancing

hooks (periodcompute):

nexthook =
periodtarget

periodcompute
(4:1)

Both periodtarget and periodcompute may vary at run time. periodtarget is selected by the runtime system

4.2. COMPILER PLACEMENT OF LOAD BALANCING CODE 77
IF (count > nexthook) THEN

send_status()
nexthook = receive_instructions()
count = 0

END IF

IF (count > nexthook) THEN
phase = phase + 1
IF (phase < phases) THEN

send_status()
END IF
IF (phase > 1) THEN

nexthook = receive_instructions()
END IF
count = 0

END IF

count = count + 1
IF (count > nexthook) THEN

send_status()
IF (message_arrived()) THEN

nexthook = receive_instructions()
END IF
count = 0

END IF

a)
S

ynchronous
load

balancing
b)

P
ipelined

load
balancing

c)
A

synchronous
load

balancing

F
igure

4.1:
C

ode
for

load
balancing

hook.

based
on

tradeoffs
betw

een
responsiveness

and
overhead.

T
he

value
of

period
com

pute
used

to
com

pute
n
ex
th
o
o
k

is
estim

ated
based

on
m

easurem
ents

ofprevious
com

putation
periods

and
depends

on
the

num
ber

of
processors,the

com
peting

loads
on

the
processors,the

sizes
of

the
distributed

iterations,and
the

num
ber

of
distributed

iterations
in

the
currentexecution

of
the

distributed
loop.

T
he

actualload
balancing

period,

period
lb ,defi

ned
to

be
the

actualtim
e

betw
een

interactions
betw

een
the

slaves
and

the
load

balancer,m
ay

differ
from

the
targetload

balancing
period

because
of

variations
in

the
com

putation
periods

and
due

to
the

requirem
ent

that

n
ex
th
o
o
k

have
an

integral
value.

F
igure

4.2
show

s
the

relationships
betw

een
som

e
of

these
periods.

F
igure

4.2:
T

im
e

line
show

ing
com

putation
and

load
balancing

periods
from

pointof
view

of
single

slave.

4.2
C

om
piler

placem
entof

load
balancing

code

L
oad

balancing
hooksm

ustbe
inserted

atappropriate
pointsin

the
parallelized

code
so

thatload
balancing

can

occurperiodically
during

the
distributed

com
putation.

F
or

the
system

to
be

able
to

respond
to

perform
ance

fl
uctuations

quickly,
hooks

m
ust

be
placed

as
deep

in
the

loop
nest

as
possible

so
that

they
are

executed

frequently.
H

ow
ever,ifa

hook
is

placed
too

deep
in

the
loop

nestitcan
add

too
m

uch
overhead

because
the

tim
e

spentexecuting
the

hook
m

ay
be

ofthe
sam

e
orderofm

agnitude
orgreaterthan

the
tim

e
to

execute
the

com
putation

betw
een

tw
o

executionsofthe
hook,even

ifthe
hook

nevercalls
the

load
balancing

code.
T

hus,

78 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

placement of load balancing hooks must consider both responsiveness and overhead. A load balancing hook

need only be placed at one level of the loop nest because the deepest hook determines the frequency of hook

execution. Therefore, we describe the hook placement decision in two steps: identification of possible hook

locations, and selection of a single location from among the possible locations. If none of the possible hook

locations meets the selection criteria, code may be restructured to create new hook locations. We conclude

this section with a hook placement algorithm that merges the two decision steps.

4.2.1 Possible hook locations

The iterations of the distributed loop are treated as atomic units of execution. In the parallelized code, hooks

can be placed anywhere outside the body of the distributed loop. However, all possible hook locations at

the same level of a loop nest are equivalent with regard to frequency of execution. Therefore, we only

identify one potential hook location at each level of a loop nest. Our load balancing only addresses the

distributed portion of the computation—i.e., only the execution time of the distributed portion of the code

is measured—so, as a starting point, we select locations as closely following the distributed computation as

possible. Therefore, the initial set of possible hook locations is at the end of the body of the distributed loop,

immediately following the distributed loop, and immediately following each loop enclosing the distributed

loop (e.g., Figure 4.3a). The outermost position is immediately eliminated from consideration because load

balancing can not reduce execution time after the distributed computation has been completed. Thus, if

the distributed loop is an outermost loop, the load balancing hook can only be placed at the end of the

distributed loop body. Also, if the hook is placed at the innermost position, between iterations of the

distributed loop (e.g., lbhook0 in Figure 4.3a), controlling the frequency is more complicated because the

number of iterations of the distributed loop on each processor may vary. In this case, the value of nexthook

(Figure 4.1) sent to each processor must be different and must be based on the relative computation rates of

the processors so that all slaves interact with the load balancer at the same frequency.

Because interacting with the load balancer requires communication, when possible, we shift the potential

hook locations to points next to existing communication at the same nest level so that additional synchro-

nization points are not created. Thus, when the application requires communication at some nest level, the

hook location at that level is shifted to the point immediately preceding the first communication following

the distributed loop. If the first such location is the receive operation for a unidirectional synchronization

4.2. COMPILER PLACEMENT OF LOAD BALANCING CODE 79
update boundary information
DO i=1, n

receive from left
DO j=firstcol, lastcol /* distributed */

compute b[j][i]
lbhook0 /* high overhead */

END DO
lbhook1 /* ok */
send to right

END DO
lbhook2 /* poor response */

END DO
lbhook3 /* useless */

update boundary information
DO i0=1, n/blocksize

receive block from left
DO i=BKLO(i0), BKHI(i0)

DO j=firstcol, lastcol /* distributed */
compute b[j][i]
lbhook0 /* high overhead */

END DO
lbhook1 /* ok */

END DO
lbhook1a /* controllable */
send block to right

END DO
lbhook2 /* poor response */

END DO
lbhook3 /* useless */

(a)
O

riginalcode
(b)

S
trip-m

ined
code

F
igure

4.3:
Pseudocode

for
S

O
R

show
ing

possible
locations

for
load

balancing
hook.

T
he

com
m

ents
indicate

the
evaluation

of
each

of
the

hook
locations

for
S

O
R

,know
ing

thatcom
puting

b
[j
][i]only

requires
a

few
operations.

(an
unlikely

situation),
the

hook
is

shifted
to

the
point

im
m

ediately
preceding

the
fi

rst
send

operation
so

that
the

load
balancing

com
m

unication
does

not
interrupt

the
com

m
unication

required
by

the
application,

possibly
creating

a
deadlock

situation.

4.2.2
Selecting

from
am

ong
possible

hook
locations

A
com

piler
can

use
sim

ple
rules

to
selectthe

location
of

the
load

balancing
hook

from
the

listof
possible

locations.
T

he
potentialhook

locationsare
evaluated

from
the

m
ostdeeply

nested
location

to
the

leastdeeply

nested.
To

m
inim

ize
the

tim
e

for
the

load
balancerto

detectand
respond

to
perform

ance
changes,the

hook

is
inserted

atthe
innerm

ostlocation
thatadds

a
negligible

am
ountofoverhead

(e.g.,less
than

orequalto
1%

)

to
the

com
putation,assum

ing
thatthe

hook
never

calls
the

load
balancing

code.
(C

ontrol
of

the
overhead

w
hen

load
balancing

code
is

called
is

handled
atrun

tim
e.)

E
ach

hook
location

is
evaluated

by
com

paring

the
estim

ated
execution

tim
e

for
a

hook
(thatdoes

notcallthe
load

balancing
code)

w
ith

an
estim

ate
of

the

execution
tim

e
for

the
com

putation
betw

een
executions

of
a

hook
atthatlocation.

If
the

costof
a

hook
is

a

significantfraction
(e.g.,greater

than
1%

)
of

the
cost

of
the

code
executed

betw
een

run-tim
e

instances
of

the
potentialhook

location,then
the

location
is

elim
inated

from
consideration.

B
ecause

this
decision

is
only

concerned
w

ith
orders

ofm
agnitude,operation

counts
can

be
used

to
estim

ate
execution

tim
e,or,ifdesired,

m
ore

accurate
m

ethods,
e.g.,

using
training

sets
[5,

23],
could

be
used.

S
ince

a
hook

consists
of

several

operations,the
com

putation
betw

een
executions

of
the

hook
m

ustconsistof
severalhundred

operations
to

80 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

keep hook overhead negligible. The innermost possible hook location that satisfies this criterion is selected

as the location for the hook. If none of the possible hook locations satisfy the criterion, the outermost hook

location is selected, although, in this case, dynamic load balancing is less likely to improve performance. If

the code between hook executions includes loops with bounds that can not be determined at compile time,

the compiler can make assumptions about the number of iterations in the loop and/or use hints from the

programmer to estimate the operation count for the code. Or, the compiler can generate multiple copies of

the loop nest, each with the hook placed at a different nest level; at run time, the values of the loop bounds

can be used to select the appropriate version of the loop nest.

In the SOR example in Figure 4.3a, lbhook0 would create too much overhead because computing an

element of the B matrix only requires several multiplication and addition operations. For problems of

reasonably large size, lbhook1 meets the overhead constraints, so the compiler would select it as the location

for placing the hook. If lbhook2 were selected, the hook would be executed much less frequently, so the

system could not be very responsive to performance changes on the processors.

In addition to determining the maximum frequency at which load balancing can occur, the hook location

determines the granularity at which frequency can be controlled at run time. For example, if the minimum

computation period due to the hook location is larger than the target load balancing period, the load

balancing period can not be controlled, and the system is likely to be unresponsive to variations in processor

performance. If the minimum computation period is of the same order of magnitude as the target period, it

may be possible to control the load balancing period, but not with much accuracy. Ideally, the minimum

computation period should be a small fraction of the target load balancing period (e.g., 10% or less) so that

the load balancing period can be controlled with reasonable accuracy.

A further consideration is that load balancing may add synchronizations to the application and may affect

the grain size of the application. If load balancing code is executed more frequently than the communication

inherent in the application, the grain size for the computation will be reduced. However, load balancing

hooks can be placed so that they are executed more frequently than the inherent communication without

affecting grain size, as long as the hooks are called less than once per computation phase (with respect to

the application’s grain size) and, preferably, are placed adjacent to existing communication. Because load

balancing interactions are likely to be more expensive than the communication required by the application

at each of its synchronization points, the control of the load balancing frequency to limit load balancing

4.2. COMPILER PLACEMENT OF LOAD BALANCING CODE 81

overheads will prevent the load balancing interactions from interfering with the grain size of the application

in cases where grain size small enough to be critical to performance (e.g., the unidirectional cases where

grain size is controlled by the system).

4.2.3 Code restructuring to create better hook locations

In some cases, due to large loop bounds, the compiler may have to choose between a possible hook

location with high overhead and a possible hook location that is executed very infrequently. In the matrix

multiplication example shown in Figure 4.4a, the two most promising choices are after each iteration of the

distributed loop (lbhook0) and after the distributed loop (lbhook1). For some problem sizes, lbhook0 has

too much overhead, but many thousands of operations may be executed between executions of lbhook1.

Thus, placing the hook at the deepest level of the loop nesting with low overhead does not always address

responsiveness requirements. In situations where the compiler must choose between locations with high

overhead and poor response time, the compiler can use strip mining (Section 3.2.3) to create an intermediate

choice. When a large loop is split into two nested loops, the bounds of the inner of the loops and thus the

frequency of execution of the new location (lbhook0a) can be controlled by the block size at run time to

give the proper balance of hook overhead, system responsiveness, and granularity in controlling the load

balancing period at run time. (Again, note that it is complicated to control load balancing frequency using

location lbhook0 or lbhook0a because these hooks occur between the iterations of the distributed loop. In

our implementation of MM, we placed the hook at lbhook1, in spite of the fact that it makes control of

frequency less accurate and makes the system less responsive to performance fluctuations.) In the SOR case

(Figure 4.3b), strip mining is already used to control grain size so, while the possible hook location added

by strip mining (lbhook1a) may be the best location for the load balancing hook, the block size should not

be used to control hook frequency at run time because controlling the grain size for the application is more

important. To avoid dealing with this potential conflict, restructuring to improve grain size should precede

placement of load balancing code.

Strip mining can also be beneficial in the case where loop bounds are unknown at compile time. The

compiler can set the bounds of the inner loop so that it can count the number of statements in the inner

loop and thus evaluate the new possible location for the load balancing hooks. When there are multiple

loops with unknown bounds (Figure 4.5a), in some cases, each of the loops could be strip mined (Figure

82 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY
DO j = locallo, localhi

c[j][i] = 0
DO k = 1, n

c[j][i] = c[j][i] + a[i][k] * b[j][k]
END DO
lbhook0 /* high overhead */

END DO
lbhook1 /* poor response */

END DO
lbhook2 /* useless */

DO j0 = locallo, (localhi - locallo) / blocksize
DO j = BKLO(j0), BKHI(j0)

c[j][i] = 0
DO k = 1, n

c[j][i] = c[j][i] + a[i][k] * b[j][k]
ENDDO
lbhook0 /* high overhead */

END DO
lbhook0a /* controllable */

END DO
lbhook1 /* poor response */

END DO
lbhook2 /* useless */

a)
O

riginalcode
b)

S
trip-m

ined
code

F
igure

4.4:
Pseudocode

for
M

M
show

ing
possible

locations
for

load
balancing

hook.
T

he
com

m
ents

indicate
the

evaluation
of

each
of

the
possible

locations
for

M
M

.

4.5b),and
loop

interchange
(Figure

4.5c)could
be

used
so

thatallofthe
innerloops

created
by

strip
m

ining

are
inside

all
of

the
outer

loops,allow
ing

the
com

piler
to

evaluate
severalnew

locations
by

setting
block

sizes.
In

F
igure

4.5c,the
frequencies

ofpossible
hook

locations
lbhook0a,lbhook1,lbhook1a,lbhook2,and

lbhook2a
can

allbe
controlled

using
the

block
sizes

xsize,ysize,and
zsize.

A
trun

tim
e,if

one
of

the
loops

has
few

er
iterations

than
expected,the

block
sizes

of
the

other
loops

can
be

adjusted
to

com
pensate

so
that

m
ostof

the
com

piler’s
estim

ates
of

statem
entcounts

rem
ain

correct.
In

fi
gure

4.5b,w
here

loops
have

been

strip
m

ined
butnotinterchanged,only

the
frequencies

of
locations

lbhook0a,lbhook1a,and
lbhook2a

can

be
controlled

by
the

block
sizes

(zsize,ysize,and
xsize,respectively)and

w
ith

few
er

degrees
of

freedom
.

4.2.4
H

ook
placem

ent
algorithm

A
lgorithm

4.1
is

a
rudim

entary
algorithm

for
placing

a
load

balancing
hook

in
a

loop
nest,assum

ing
know

n

loop
bounds.

T
he

algorithm
selects

the
nest

level
w

here
the

hook
w

ill
be

placed,
using

strip
m

ining
to

create
an

additionalnestlevelw
hen

the
given

structure
does

notgive
a

good
balance

of
responsiveness

and

overhead.
T

he
algorithm

assum
es

that
the

cost
of

the
executing

the
load

balancing
hook

and
the

costs
of

executing
each

level
of

the
loop

nest
can

be
estim

ated
reasonably

accurately.
(W

ith
know

n
loop

bounds,

it
should

notbe
difficult

for
a

com
piler

to
calculate

the
num

ber
of

operations
executed

at
and

below
each

level.)
O

nce
A

lgorithm
4.1

identifies
the

levelfor
hook

placem
ent,itcalls

A
lgorithm

4.2
to

place
the

hook

atan
appropriate

pointin
the

levelso
thatload

balancing
does

notcreate
additionalsynchronization

points

unnecessarily.
A

lgorithm
4.2

places
the

hook
at

the
first

location
follow

ing
the

distributed
loop

(or
loop

4.2. COMPILER PLACEMENT OF LOAD BALANCING CODE 83
DO j = 0, y

DO k = 0, z
compute
lbhook0

END DO
lbhook1

END DO
lbhook2

END DO
lbhook3

a)
O

riginalcode

DO i = i0 * xsize, (i0 + 1) * xsize - 1
DO j0 = 0, y/ysize

DO j = j0 * ysize, (j0 + 1) * ysize - 1
DO k0 = 0, z/zsize

DO k = k0 * zsize, (k0 + 1) * zsize - 1
compute
lbhook0

END DO
lbhook0a

END DO
lbhook1

END DO
lbhook1a

END DO
lbhook2

END DO
lbhook2a

END DO
lbhook3

DO j0 = 0, y/ysize
DO k0 = 0, z/zsize

DO i = i0 * xsize, (i0 + 1) * xsize - 1
DO j = j0 * ysize, (j0 + 1) * ysize - 1

DO k = k0 * zsize, (k0 + 1) * zsize - 1
compute
lbhook0

END DO
lbhook0a

END DO
lbhook1a

END DO
lbhook2a

END DO
lbhook1

END DO
lbhook2

END DO
lbhook3

b)
S

trip-m
ined

code
c)

S
trip-m

ined
code

w
ith

loops
interchanged

F
igure

4.5:
U

sing
strip

m
ining

and
loop

interchange
to

increase
controlof

load
balancing

hook
frequency.

body)
in

the
given

level,
unless

there
is

com
m

unication
in

the
level.

If
the

level
has

com
m

unication,the

hook
is

placed
im

m
ediately

preceding
the

fi
rstsend

or
barrier

synchronization
thatfollow

s
the

distributed

loop.
A

lgorithm
4.1

fails
to

place
a

hook
if

the
problem

is
so

sm
all

that
the

hook
w

ill
create

too
m

uch

overhead
if

placed
anyw

here
in

the
loop

nest.

In
A

lgorithm
4.1,

strip
m

ining
is

considered
if

a
given

nest
level

m
eets

the
overhead

constraints
but

does
notallow

the
load

balancing
period

to
be

controlled
to

allow
the

desired
responsiveness,as

determ
ined

by
the

target
load

balancing
period

(ta
r
g
et)

and
the

responsiveness
fraction

(respf).
H

ow
ever

the
strip

m
ining

is
not

perform
ed

unless
the

new
hook

location
betw

een
the

tw
o

loops
resulting

from
strip

m
ining

can
still

m
eet

the
overhead

constraints
w

ith
at

least
tw

o
iterations

of
the

resulting
outer

loop
(the

0

:5
in

the
algorithm

).
In

m
aking

this
additionalrestriction,w

e
are

giving
the

requirem
entto

m
inim

ize
overheads

higher
priority

over
the

desire
for

responsiveness
w

hen
the

tw
o

goals
are

in
confl

ict.

T
he

inputparam
eters

for
A

lgorithm
4.1

are
chosen

heuristically.
targetis

a
rough

approxim
ation

of
the

targetload
balancing

period
based

on
a

prioriknow
ledge

ofthe
system

on
w

hich
the

application
is

run;e.g.,

84 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

Algorithm 4.1: InsertHook – Place load balancing hook in loop nest.

Input:
Loop nest including distributed loop.
ovhf: overhead fraction allowed for hooks.
respf: responsiveness fraction for setting granularity of frequency control.
target: estimate of target load balancing frequency.

Output: Inserts hook in loop nest.
Assumptions: Loop bounds are known.

Method:

1. Number nested loops from distributed loop outwards. The distributed loop is loop 0. The
outermost loop is loop outermost� 1.

2. Number nest levels from the distributed loop outwards. The body of the distributed loop is
level 0. The outermost level is level outermost.

3. Estimate hook cost (hookcost) by counting operations in load balancing hook, assuming that
the load balancer is not called.

4. Loop through nest levels selecting innermost level at which hook will add negligible overhead.

Cost(level number) returns estimate of total cost of current level, including lower levels.
Estimate cost by counting the operations executed at the current level and all lower levels.

StripMine(loop) strip mines specified loop creating outer loop loop and inner loop loop0.
Block size (blocksize) of inner loop is set at compile time.

InsertHookLevel(level number) inserts hook at appropriate location in specified level. (See
Algorithm 4.2.)

placed = FALSE;
for (loop = 0; loop < outermost; loop++) {

/* Decide whether to place hook at level loop+1. Also, */
/* look at level loop+1 to decide whether to strip mine. */
level = loop + 1;
/* check whether level meets overhead constraint. */
if (Cost(level) * ovhf > hookcost) {

/* strip mine to maximize ability to control frequency */
/* at run time. Body of outer loop of strip-mined loop */
/* must meet overhead constraint. */
if ((Cost(level) > respf * target)

&& (0.5 * target * ovhf > hookcost)) {
StripMine(loop);
blocksize = Max(hookcost / ovhf, respf * target)

/ Cost(loop);
InsertHookLevel(loop’);
placed = TRUE;

}
else {

InsertHookLevel(level);
placed = TRUE;

}
break;

}
}
if (placed == FALSE) {

Message("Problem too small");
}

4.2. COMPILER PLACEMENT OF LOAD BALANCING CODE 85

Algorithm 4.2: InsertHookLevel – Insert load balancing hook at given level.

Input: Level number.
Output: Inserts hook at specified level.

Method:

1. Number statements at current level. Compound statements (e.g. conditionals and loops) are
treated as single statements.

2. Identify boundaries of current level.

first: first statement at current level.
precede: last statement at current level preceding loop header for surrounded level.
follow: first statement at current level following end of loop for surrounded level.
last: last statement at current level.

3. Loop through statements at current level to pick hook location either as early as possible or as
close as possible to existing communication code.

IsSend(statement number) returns true if the statement is a send operation or a compound
statement containing send operations, but no receive operations.

IsReceive(statement number) returns true if the statement is a receive operation or a compound
statement containing receive operations, but no send operations.

IsBarrier(statement number) returns true if the statement is a barrier synchronization or a
compound statement containing both send and receive operations.

PlaceHook(statement number) places the hook code following the specified statement.

current = follow - 1;
stop = FALSE;
for (s = follow; s <= last; s++) {

if (IsSend(s) || IsBarrier(s)) {
current = s - 1;
stop = TRUE;
break;

}
else if (IsReceive(s)) {

current = s;
}

}
if (stop == FALSE) {

for (s = first; s <= precede; s++) {
if (IsSend(s) || IsBarrier(s)) {

current = s - 1;
stop = TRUE;
break;

}
else if (IsReceive(s)) {

current = s;
}

}
}
PlaceHook(current);

the scheduling quantum is 100 millisecond, so the target estimate is set to 1 second. (This estimate is made

86 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

based only on information known at compile time, but its rationale is the same as that used in selecting the

target load balancing period at run time, described in Section 4.3.3.) The value of ovhf should be around

1% so that executing the hooks does not result in excessive overhead. respf is set to 10% so that the load

balancing period can be controlled within 10% of the target period.

For applications with infrequent synchronizations, load balancing interactions may be the most frequent

communication in the application, and thus may determine the grain size. In placing load balancing hooks,

Algorithm 4.1 does not explicitly consider the effects of communication added by the hooks on the grain

size of the application. However, the selection of the load balancing frequency at run time considers some of

the same constraints considered in selecting grain size; and these constraints should prevent the placement

of load balancing code from interacting with the grain size of the application in cases where the application

has a grain size that makes parallelization practical. Also, to make the implementation of the load balancer

easier, we avoid placing the hooks between iterations of the distributed loop so that each slave can receive

the same value of nexthook. Algorithm 4.1 must be modified if it is to consider this additional constraint.

4.2.5 Timing code

In addition to placing code for calling the load balancing routines, the compiler must place code for timing

the computation so that rates of execution can be computed. Timing routines must be inserted before and

after the portion of the code to be timed. If multiple segments of code are to be included in computing the

rate of execution, each segment is surrounded by timing routines and the times from all segments are added

together. Because timing routines can be expensive1, the code should be divided into as few segments as

possible to minimize the number of calls to the timing routines. Also, if too large a portion of the code is

not timed, the timing measurements may not capture load information needed for load balancing because

much of the process switching may occur when the timer is off.

Computing processing rates requires at least one timing measurement per load balancing period. The

measurements should at least include the time spent on the distributed loop iterations because they are the

work units used in computing the rate. Loop overheads can also be included in the measurements because

they are added on a per iteration basis and do not change the relative rates of the different processors.

1The Unix gettimeofday routine takes 30–40 microseconds per call on a Sun 4/330 processor because the routine requires system
calls. Using the Nectar system, the time can be read in 3–4 microseconds because the timer values can be read directly from memory
mapped registers on the Communication Accelerator Board.

4.2. COMPILER PLACEMENT OF LOAD BALANCING CODE 87

Communication times should not be included in the timing measurements for a processor because the

communication costs depend on the performance of the network and on the performance of other processors.

Thus, if the application requires communication between load balancings, the measured time must be the

sum of measurements of two or more code segments. However, sequential portions of the code (see Figure

4.6), replicated on all slaves, should be included in the timing measurements used to compute the processing

rates and, thus, do not further segment the timed code. As more work is allocated to a processor, the

fraction of the total time between load balancings taken by the replicated portion of the code decreases for

that processor, leaving more resources to the distributed portion of the code so that a larger fraction of the

distributed work can be allocated to the processor. If the replicated portion of the code is not included in the

timing measurements, this effect will not be evident in the measured rates so the load balancer can not take

advantage of the added resources. When the replicated portion of the code is included in the measurements,

the time per work unit decreases as work units are added, increasing the measured rate so that more work

will be allocated to the processor, as desired. Therefore, the only code between interactions with the load

balancer that should not be included in the timing measurements is communication code. For convenience,

however, we insert timing code so that at least one segment of code is timed per computation period. If the

load balancing period consists of more than one computation period, the measured times for the included

computation periods are accumulated.

starttime
DO j = locallo, localhi /* distributed */

<compute iteration>
END DO
<replicated code> /* sequential */
stoptime
lbhook

END DO

F
igure

4.6:
Placem

entof
tim

ing
code.

R
eplicated

sequentialcode
is

included
in

the
tim

ing
m

easurem
ents.

88 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

4.3 Selection of load balancing frequency at run time

To respond quickly to changes in performance on the processors, load balancing should occur as often

as possible. However, load balancing overheads limit the frequency at which load balancing is practical.

Several factors in the execution environment contribute to load balancing overhead. Communication costs

are the main factor in the overhead, as they influence the cost of interactions between the slaves and load

balancer and the cost of work movement. Frequent interactions between the slaves and load balancer can

make the overhead unacceptable, so their cost puts an upper limit on the load balancing frequency. Moreover,

the overhead associated with moving work means that it is impractical to trace load changes that happen very

quickly, and trying to do so will result in unnecessary overhead. Another factor influencing the overhead

is the scheduling granularity—the time quantum—used by the operating system; process scheduling by the

operating system interacts with the measurements performed by the slaves for performance evaluation and

with the synchronizations performed by the application. All of these factors (summarized in Figure 4.7)

place lower limits on the load balancing period and, thus, upper limits on the load balancing frequency.

(The load balancing frequency is approximately the inverse of the load balancing period as defined in

Section 4.1.) In this section, we will discuss each of these factors separately, and then describe how they

are combined in selecting a target load balancing period and controlling the period at run time. The target

period is used to set the count (nexthook in Figure 4.1) that determines when the load balancing hook calls

the load balancing code.

4.3.1 Interaction overhead

Collecting performance information and interacting with the load balancer adds overhead, even if the system

is balanced. The cost of each interaction increases with the number of slaves due to increased computation

on the load balancer, and the total overhead is proportional to the number of times the interactions occur.

The load balancing period should be long enough that the total interaction costs are a small fraction, kinteract ,

e.g., less than 5 percent, of the total computation time. For synchronous load balancing, the time for a load

balancing interaction is the sum of the times to collect and send performance information to the load balancer,

to compute instructions, and to deliver the instructions to the slave processors. The average time for an

interaction with the load balancer, tinteract, can be determined at the start of the computation by passing

dummy load balancing information back and forth between the slaves and load balancer. However, during

4.3. SELECTION OF LOAD BALANCING FREQUENCY AT RUN TIME 89

10 3− 10 2− 10 1− 100 101

cost per movement

interaction cost

load balancing period

time quantum

Seconds

?
F

igure
4.7:

Periods
affecting

selection
ofload

balancing
period.

T
he

ovals
show

the
approxim

ate
ranges

(in
seconds

on
a

logarithm
ic

scale)forthe
periods

forthe
application

exam
ples

w
hen

run
on

the
N

ectarsystem
.

V
alues

are
m

ore
likely

tow
ard

the
centers

of
the

ovals.

the
com

putation,the
interaction

tim
e

m
ay

vary
w

ith
loadson

the
processorsand

delaysin
the

com
m

unication

netw
ork.

W
ith

synchronous
load

balancing,it
is

convenientto
update

the
estim

ate
of

interaction
costs

as

the
program

executes.
H

ow
ever,forpipelined

orasynchronous
load

balancing,m
uch

ofthe
interaction

cost

is
hidden

so
it

is
diffi

cult
to

m
easure.

F
ortunately,

because
the

costs
are

hidden,the

t
i
n
t
e
r
a
c
t

m
easured

at

startup
tim

e
is

actually
a

high
estim

ate
for

the
pipelined

and
asynchronous

cases
so

variations
in

loads
and

delays
are

unlikely
to

affectthe
overhead.

T
he

low
erlim

iton
the

load
balancing

period
due

to
the

interaction

costs
is

com
puted

as
follow

s:

period

i
n
t
e
r
a
c
t

=

tinteract
k

interact

(4

:2

)

4.3.2
C

ostof
w

ork
m

ovem
ent

T
he

costofw
ork

m
ovem

entshould
also

be
considered

in
selecting

the
frequency

ofinteraction
w

ith
the

load

balancer.
H

ow
ever,forresponsiveness,itis

usefulto
track

perform
ance

m
ore

frequently
than

itis
profi

table

to
m

ove
w

ork,assum
ing

thatw
ork

w
illnotbe

m
oved

every
tim

e
load

balancing
interactions

occur.
T

he
w

ork

m
ovem

entcosts
can

be
distributed

over
severalload

balancing
periods.

A
lso,the

average
w

ork
m

ovem
ent

costperload
balancing

period
need

notbe
lim

ited
to

be
a

sm
allfraction

ofthe
load

balancing
period

because

the
w

ork
m

ovem
enthas

benefits—
load

balancing
resulting

in
im

proved
utilization

ofresources—
as

w
ellas

costs.
T

herefore,the
selection

of
the

load
balancing

period
allow

s
the

typical
w

ork
m

ovem
ent

cost
to

be

90 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

several times the load balancing period:

periodmovement =
tmovement

workscale
(4:3)

tmovement is an estimate of the average work movement costs determined by averaging the costs of the

previous few work movements. (tmovement can not be estimated at startup time because the work movement

costs depend on the load imbalance in the system.) workscale is a scaling factor which accounts for the

typical period over which work movement costs are distributed and is determined by averaging the measured

times between recent work movements. Because rapid response to performance changes is important and

because work movement costs are difficult to determine accurately, workscale is chosen so that the work

movement costs are rarely the critical factor in selection of the target load balancing period; the work

movement costs should only affect the target load balancing period when the costs are so high that work

should not be moved at all.

4.3.3 Interaction with time quantum

Finally, the load balancing period determines the period over which performance is measured and should be

selected so that the scheduling mechanism used by the operating system does not interfere with performance

measurements. In particular, if the time quantum used for scheduling is small and the loads on the processors

are stable, work should not be redistributed in response to the context switching between processes. For

example, if the load balancing period is smaller than the time quantum and a processor has competing loads,

some measurements on that processor will show the load balanced application getting the full performance

of the CPU and others will show the application getting a fraction of the CPU. Thus, performance will appear

to oscillate, resulting in work being moved back and forth between processors. To avoid oscillations in the

measurements, the load balancing period must be large enough that performance variations due to context

switching average out. The load balancing period must be several times as large as the time quantum for

performance measurements to appear stable on a processor with constant competing loads. Thus, the time

quantum (tquantum) sets another lower bound on the load balancing period:

periodscheduling = tquantum � quantumscale (4:4)

To determine an appropriate value for quantumscale, we analyze the effects of the sampling period on

the amplitude of fluctuations in performance. The amplitude of the fluctuations in computation rate due

4.3. SELECTION OF LOAD BALANCING FREQUENCY AT RUN TIME 91

to scheduling by the operating system is the difference between the maximum rate for the application, hi,

observed when the application has dedicated use of the CPU, and the minimum rate of execution, lo = 0,

when other processes have control of the CPU:

amplitude = hi� lo (4:5)

Sampling over periods higher than the time quantum results in averaging of periods including both the maxi-

mum and minimum rates. To determine the effect of sampling on the amplitude of observed fluctuations, we

subtract an estimate of the minimum rate with sampling, samplemin, from an estimate of the maximum rate

with sampling, samplemax, assuming simple, round-robin scheduling by the operating system. samplemax

is observed when the sampling period, s, begins with the end of the measured application’s time quantum

(Figure 4.8a), and samplemin is observed when the sampling period begins with the start of the application’s

time quantum (Figure 4.8b).

samplemin =

8><
>:

1
s
� ((q � d)� hi+ (q � c+ r)� lo) if r � c

1
s
� ((q � d+ (r � c))� hi+ (q � c+ c)� lo) if r � c

(4:6)

samplemax =

8><
>:

1
s
� ((q � d+ r)� hi+ (q � c)� lo) if r � d

1
s
� ((q � d+ d)� hi+ (q � c+ (r � d)) � lo) if r � d

(4:7)

d is the duration of the portion of the oscillation period (p) dedicated to the measured application, and c is

the remaining portion of the period:

p = d+ c (4:8)

q is the number of full oscillations that are contained in the sampling period (b s
p
c), and r is the remaining

time in the sampling period (s � q � p). Subtracting samplemin from samplemax and dividing by the

oscillation amplitude (hi� lo) yields the scaling factor due to the sampling period:

scale =

8>>>>>>>><
>>>>>>>>:

r

s
if r � d and r � c

d

s
if d � r � c

c

s
if c � r � d

p�r

s
if r � d and r � c

(4:9)

Figure 4.9 shows the scale factor for different sampling periods with different numbers of competing

loads. (We assume that each process is allocated the CPU in full time quantum units.) Independent of the

92 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

a)
M

axim
um

sam
ple

b)
M

inim
um

sam
ple

Figure
4.8:

Sam
pling

of
oscillating

perform
ance

inform
ation.

load
on

the
system

,the
scale

factor
is

bounded
by

u
p
p
er
bo
u
n
d
=

8><>:
ds

if

d
�

c

cs

if
c
�

d

(4

:10

)

W
hen

there
are

one
orm

ore
com

peting
loads

on
the

system
,d

�

c,and
the

scale
factoris

atm
ost

ds .
W

ith
no

com
peting

loads,there
is

no
oscillation,and

sam
pling

has
no

effecton
the

range
of

m
easurem

ents.
B

ecause

m
easured

rates
can

fallanyw
here

betw
een

s
a
m
p
le
m

i
n

and

s
a
m
p
le
m

a
x ,observed

oscillation
am

plitudes
w

ill

usually
be

even
sm

aller.
W

e
have

chosen
to

lim
it

the
m

agnitude
of

oscillations
in

m
easured

perform
ance

to
at

m
ost

10%
of

the
m

axim
um

am
plitude

so
that

variations
in

the
m

easured
rates

due
to

scheduling
by

the
operating

system
w

ill
notexceed

the
threshold

level
required

for
load

balancing
(described

in
S

ection

5.3).
T

he
desired

scaling
factor

(s
ca
le
=

0

:1)
is

attained
w

hen
the

sam
pling

period
is

atleast10
tim

es
the

tim
e

quantum
,i.e.,

q
u
a
n
tu
m
s
ca
le
=

10.
F

igure
4.10

show
s

norm
alized

perform
ance

m
easurem

ents
w

ith

differentsam
pling

periods
fora

system
w

ith
one

com
peting

load.
A

s
expected,the

m
agnitude

ofoscillations

decreases
as

the
sam

pling
period

is
increased

and
is

in
agreem

entw
ith

our
m

odel.

If
the

tim
e

quantum
is

very
large,

it
m

ay
not

m
ake

sense
for

the
load

balancing
period

to
be

several

tim
es

the
length

of
the

tim
e

quantum
;applications

m
ay

notrun
long

enough
for

load
balancing

to
have

any

positive
effect.

If,due
to

a
large

tim
e

quantum
,the

load
balancing

period
m

ust
be

aboutthe
sam

e
size

as

4.3. SELECTION OF LOAD BALANCING FREQUENCY AT RUN TIME 93

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
ca

le
 f

ac
to

r

0 2 4 6 8 10 12 14 16 18 20
Sampling period (time quanta)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
ca

le
 f

ac
to

r
0 2 4 6 8 10 12 14 16 18 20

Sampling period (time quanta)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
ca

le
 f

ac
to

r

0 2 4 6 8 10 12 14 16 18 20
Sampling period (time quanta)

a) 1 competing load b) 2 competing loads c) 9 competing loads

Figure 4.9: Scale factor for amplitude of oscillations for different sampling periods.

the time quantum or smaller, measured computation rates during one load balancing period will no longer

be a useful measure for making estimates of the processing capabilities for later load balancing periods.

The actual loads on the processors combined with intimate knowledge of how the loads will be scheduled

by the operating system will give much better indications of performance in future load balancing periods.

In this case, the load balancer will have to be aware of the context switching between processes and will

have to do much more detailed analysis to determine what resources will be available at any given time.

The load balancer will also need to be given measures of the relative computational capabilities of the

processor hardware. To have access to the necessary information regarding scheduling, the load balancer

may have to be integrated into the kernel of the operating system rather than running as a user process.

This approach could be used on systems that use small time quanta as well, but the complexity of the

approach is prohibitive. Fortunately, scheduling on Unix systems is based on small (100 millisecond) time

quanta so that response times for interactive jobs will be acceptable [32]. The increasing trend in processor

speeds indicates that if the length of time quanta will be changed in the future, it will be made smaller, not

larger. Thus, we expect the lower bound on the period given by Equation 4.4 to be valid in most (if not all)

workstation environments.

4.3.4 Target load balancing period

To minimize the time to respond to changes in performance, we set the target load balancing period,

periodtarget to be the maximum of the lower limits:

periodtarget = max(periodinteract; periodmovework; periodscheduling) (4:11)

94 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 r
at

e

0 2 4 6 8 10 12 14 16 18 20
time (seconds)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 r
at

e

0 2 4 6 8 10 12 14 16 18 20
time (seconds)

(a) period = 0.1 quanta (b) period = 0.2 quanta

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 r
at

e

0 2 4 6 8 10 12 14 16 18 20
time (seconds)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 r
at

e

0 2 4 6 8 10 12 14 16 18
time (seconds)

(c) period = 0.5 quanta (d) period = 1.0 quanta

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 r
at

e

0 2 4 6 8 10 12 14 16 18
time (seconds)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 r
at

e

0 2 4 6 8 10 12 14 16 18
time (seconds)

(e) period = 2.0 quanta (f) period = 5.0 quanta

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 r
at

e

0 2 4 6 8 10 12 14 16
time (seconds)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 r
at

e

0 2 4 6 8 10 12 14 16
time (seconds)

(g) period = 10.0 quanta (h) period = 20.0 quanta

Figure 4.10: Effect of sampling period on stability of measurements. The rate of computation of matrix
multiplication iterations is measured with a single competing computation intensive load on the processor.
Rates are normalized against the maximum computation rate for the application on the processor. The
application should receive approximately 50% of maximum computation rate.

For our measurements on the Nectar system, periodscheduling was usually the maximum of the limits due to

the small number of processors in the system. The processors in the system are Unix workstations with

4.3. SELECTION OF LOAD BALANCING FREQUENCY AT RUN TIME 95

100 millisecond time quanta. A measurement period of at least 10 time quanta (1.0 seconds) is necessary

to reduce the apparent fluctuations on a stable loaded system to the extent that they will be ignored by the

load balancer (Figure 4.10). Thus, a target load balancing period of approximately 1:0 seconds is usually

selected, although the target period could increase if work movement costs become very high. Figure 4.11

shows the approximate values of each of the factors used in determining the load balancing period for our

implementation on the Nectar system. The arrows indicate the approximate bounds on the load balancing

period due to each factor: 5% overhead is allowed for interactions between the slaves and load balancer;

work movement costs must be able to be 100% amortized over the period between detected fluctuations

(which may be several load balancing periods); and the period must be at least 10 times the time quantum.
10 3− 10 2− 10 1− 100 101

cost per movement

interaction cost

load balancing period

time quantum x 10+

x 20+

x 0.1+

Seconds

F
igure

4.11:
L

ow
er

bounds
on

load
balancing

period.

A
chieving

the
targetload

balancing
period

requiresconverting
the

period
from

secondsto
the

appropriate

num
ber

of
com

putation
phases

to
execute

betw
een

calls
to

the
load

balancing
routines.

T
he

am
ount

of

com
putation

betw
een

executions
of

the
load

balancing
hook

m
ay

vary
due

to
varying

loop
bounds

in
the

application,and
the

elapsed
tim

e
for

the
com

putations
varies

w
ith

the
load

on
the

processors.
T

he
num

ber

of
com

putation
phases

per
load

balancing
period

m
ust

also
change

to
track

these
variations.

T
hus,

each

tim
e

the
load

balancer
is

invoked,the
average

tim
e

for
a

com
putation

phase,period
com

pute ,is
recom

puted.

T
hen

the
num

berof
com

putation
phases

betw
een

calls
to

the
load

balancing
code,nexthook

(Figure
4.1),is

com
puted

using
E

quation
4.1:

nexthook

=

period
target

period
com

pute

If
the

iteration
space

is
notrectangular,period

com
pute

w
illvary,even

on
a

static
system

;if
itis

know
n

how

loop
bounds

vary
(e.g.,increasing

or
decreasing

linearly),the
com

putation
of

nexthook
can

be
m

odifi
ed

to

96 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

compensate. New values of nexthook are sent to the slaves as part of their load balancing instructions. If

hooks are placed between iterations of the distributed loop,nexthook must be scaled appropriately for each

processor so that all processors interact with the load balancer the same number of times and with the same

frequency.

Because periodcompute varies, the actual load balancing period fluctuates around the target period. In our

implementation on Nectar, to reduce the magnitude of the fluctuation, changes in periodcompute are damped

using a recursive discrete-time filter called the exponential smoothing forecast [22]:

period0compute = 0:5� period0compute + 0:5� periodcompute (4:12)

The target and actual periods may also differ because nexthook must have an integral value, especially if

period
compute

is a substantial fraction of or greater than periodtarget. Thus, it is important that the load

balancing hook be placed so that it is executed as often as possible.

4.3.5 Effect of load balancing frequency on performance

The length of the period between load balancings has large effects on performance of applications with

load balancing. Fluctuations in performance average out if the period is long enough, resulting in less

work movement. Thus, increasing the load balancing period can improve performance as long as load

balancing is still frequent enough to track significant changes in the computation rate. Figure 4.12 shows

how increasing the load balancing period improves parallelization efficiency for the SOR example. The

load balancing parameters were selected to isolate the effect of changing the load balancing period.2 The

period is controlled by changing the value of quantumscale (Section 4.3.3), the dominant factor in selecting

the period for our target environment. For most of the measurements presented in this thesis, a 1.0 second

period (the middle curve) was used, to allow the system to be responsive to fluctuations in more dynamic

environments; optimizations in the load balancing decision making process raise the efficiency close to the

level attained with quantumscale = 2:0.

2 The load balancing parameters for the data presented are as follows: load balancing interactions are not pipelined; 0% predicted
improvement is required for work movement; raw (unfiltered) rate information is used; cost-benefit analysis is disabled. I.e., no
optimizations are included over the basic load balancing system described in Section 2.5. The grain size for the application is
selected automatically as described in Section 3.3.

4.3. SELECTION OF LOAD BALANCING FREQUENCY AT RUN TIME 97

0

50

100

150

200

250

300

350

400

450

500

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

0 1 2 3 4 5 6 7
Processors

5 quanta
10 quanta
20 quanta

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

5 quanta
10 quanta
20 quanta

a) Computation time b) Efficiency

Figure 4.12: Effect of load balancing period on efficiency for 1000 � 1000 SOR (40 iterations) with
oscillating load (period = 60 seconds) on one processor.2

4.3.6 Effectiveness of frequency selection in limiting overhead

The cost of interaction with the central load balancer increases as the number of slave processors is increased.

However, the frequency selection mechanism described above prevents the load balancer from becoming

a bottleneck by limiting the interaction costs to a small percentage, 5%, of the total execution time. To

evaluate the effectiveness of the frequency selection mechanism, we measure the CPU time used by the

master process and divide it by the elapsed time for the application. This measure is a good indicator of the

effectiveness of the frequency selection mechanism because it takes into account all of the load balancing

computation costs and part of the communication costs for the load balancing interactions. (It does not

include the transit time or the portions of the send and receive operations that take place on the slaves.) If

the frequency selection mechanism is working correctly, the CPU used by the master process should be less

than 5% of the elapsed time.

In Figure 4.13, the CPU usage by the master process is presented as a fraction of the elapsed time,

with the lower limit on the load balancing period due to interactions with process scheduling set to 5 time

quanta.3 The CPU usage is measured using the getrusage function [12] provided with Unix. Receives on

the master processor are done using interrupts, because, with polling, CPU usage by the master process

3 The load balancing parameters for the data presented are as follows: pipelined load balancing interactions; load balancing
target period is 0:5 second; 10% predicted improvement required for work movement; rate information filtered with simple filter
(h = 0:8); cost-benefit analysis enabled. A high load balancing frequency is used and all portions of the load balancer are enabled,
so the data should be on the conservative side.

98 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

expands to fill the time given.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

F
ra

ct
io

n
 o

f
C

P
U

 u
se

d
 o

n
 M

as
te

r

0 1 2 3 4 5 6 7
Processors

Load balanced

No balancing

0.000

0.005

0.010

0.015

0.020

0.025

0.030

F
ra

ct
io

n
 o

f
C

P
U

 u
se

d
 o

n
 M

as
te

r

0 1 2 3 4 5 6 7
Processors

Load balanced

No balancing

0.000

0.005

0.010

0.015

0.020

0.025

0.030

F
ra

ct
io

n
 o

f
C

P
U

 u
se

d
 o

n
 M

as
te

r

0 1 2 3 4 5 6 7
Processors

Load balanced

No balancing

a) dedicated system b) constant load on one
processor

c) oscillating load
(period = 20 seconds)

Figure 4.13: Fraction of CPU used on master processor for 500� 500 matrix multiplication.3

Figure 4.13 shows that load balancing uses only a small fraction of the available cycles—always less

than 5%—for up to the maximum number of slaves in our system. In the graphs, the master CPU usage

increases with the number of processors because interactions with the time quantum (Section 4.3.3) are the

dominant factor in frequency selection for the small number of slaves used in the measurements. The trends

in the data indicate that the master process could handle many more slaves before the central load balancer

would become a limiting factor in system performance. Extrapolating from the data, a 5% overhead would

be observed with about 10–12 slaves. At around that number of slaves, the load balancing interaction

cost will become the dominant factor in frequency selection, and the period between load balancings will

begin to increase as more slaves are added. The CPU usage will level off at about 5%, but eventually, as

the number of processors increases, the frequency will become too low for the system to be responsive to

trackable changes in the processing rates. At that point, distributing the load balancer will be necessary to

keep the system responsive. However, Figure 4.12 indicates that the load balancing frequency can still be

reduced substantially (e.g., from a period of 5 quanta to a period of 20 quanta) with beneficial results.

Also, the similarity of the three graphs in Figure 4.13 indicates that the fraction used by the master

process is affected only slightly by the loads on the slave processors. In our Nectar implementation, used

for the measurements in the graphs, the computation done by the load balancer is mostly independent of the

loads on the slaves. The main exception is the case where no imbalance is detected and the generation of

load balancing instructions can be skipped; however, the fixed portions of the load balancing computation

(that depend on the number of slaves but not their loads) are the dominant cost.

4.4. SUMMARY 99

As explained in Section 2.6.1, pipelining of the interactions takes most of the costs of interacting with

the load balancer out of the critical path for the application. This does not affect the CPU usage by the load

balancer on the master processor—in fact, the data in Figure 4.13 is for pipelined load balancing—but it

can make the system immune to competing loads on the master processor, as long as the load balancing

period is long enough that both the load balancing and the competing applications on the master all get a

share of the CPU during the period. The lower bound on the load balancing period due to interactions with

scheduling (Section 4.3.3) should ensure that this is true for reasonable loads (e.g., less than 5 competing

processes for a 5 quantum lower bound) on the master processor.

4.4 Summary

This chapter described selection of an appropriate frequency for load balancing and described how the

compiler and runtime system cooperate in controlling the load balancing frequency. The compiler places

a load balancing hook as deep in the loop nest as possible without causing substantial overhead, and the

runtime system selects which executions of the hook call the load balancer, based on a target load balancing

period.

The target load balancing period is selected to minimize load balancing overhead and to minimize

the effects of scheduling by the operating system on measurements of performance on the slaves. The

target period is the maximum of lower bounds set by the cost of interactions between the slaves and load

balancer, the cost of work movement, and the time quantum used by the operating system. Because work

movement costs are distributed over several load balancing periods and often result in better resource

utilization, the costs are scaled so that they rarely affect the selection of the load balancing period. Analysis

of the interactions between scheduling by the operating system and observed computation rates was used in

selecting the lower bound on the target period due to the time quantum. For an environment with a small

number of slaves, the lower bound due to the time quantum determines the target period. As the number

of slaves increases, the cost of interactions between the slaves and load balancer increases, and the target

period is reduced to keep load balancing overhead at a desired level. This adaptation limits the interaction

overhead and prevents the central load balancer from becoming a bottleneck, but increases the response time

of the system; for systems with very large numbers of processors, the load balancer should be distributed

to reduce the interaction costs. Measurements showed that the automatic frequency selection approach is

100 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

effective in keeping the overhead of load balancing interactions low and in reducing the load balancing

system’s response to performance fluctuations due to scheduling of processes by the operating system.

Chapter 5

Load balancing process

The responsibility of the load balancer is to collect performance information from the slaves and to generate

instructions for the slaves for redistributing remaining work so that computation times on the slaves are

balanced. Each time the load balancer is invoked, it computes a new work distribution that allocates work to

the processors in proportion to their available processing resources. The available processing resources for

each processor are specified as a computation rate, in work units computed per second, so that heterogeneous

processors with varying resource availability can be compared on an equal basis. Using the rate information,

information about the amount of remaining work currently allocated to each slave, and information about

constraints due to the application and environment, the load balancer generates an ordered set of work

movement instructions for each slave. Each instruction specifies the slave to send to or receive from and

the quantity of work to move.

5.1 High-level design

The decision making process used by the load balancer is shown in Figure 5.1. Upon receipt of performance

information from the slaves, the load balancer evaluates the imbalance in the system using a threshold

function. If the imbalance is significant enough to warrant work redistribution, the raw rate information

from the slaves is filtered to reduce the effects of undesirable fluctuations in the measurements and a new,

optimal distribution is computed. Work movement instructions are generated based on the new distribution.

The current distribution is subtracted from the optimal distribution to determine the quantity of work

101

102 CHAPTER 5. LOAD BALANCING PROCESS

Compute
Target

Distribution

Update
State

Compute
Instructions

Send Work
Movement
Instructions

Update

Cost /
Benefit

Analysis

too costly

F
igure

5.1:
T

he
load

balancing
decision

process.

each
slave

should
m

ove,
and

instructions
are

generated
by

pairing
senders

of
w

ork
w

ith
receivers

using

algorithm
s

thattake
into

accountw
ork

m
ovem

entconstraints,w
hile

attem
pting

to
m

inim
ize

com
m

unication

costs.
Finally,estim

ated
costs

ofexecuting
the

instructions,i.e.,the
costs

ofm
oving

the
specified

quantities

ofw
ork,are

com
pared

to
estim

ated
benefi

ts
to

determ
ine

w
hetherthe

instructions
should

actually
be

sentto

the
slaves.

T
he

internalstate
of

the
load

balancer
includes

history
inform

ation
regarding

pastcom
putation

rates
and

pastw
ork

m
ovem

entand
the

load
balancer’s

idea
of

the
currentdistribution

of
w

ork.

5.2. COMPUTING THE OPTIMAL DISTRIBUTION 103

5.2 Computing the optimal distribution

Given the measure of available resources—the computation rate—for each processor and the total number

of work units distributed among the processors, we can compute the “optimal” distribution of work, where

the work allocated to each slave is proportional to its contribution to the aggregate rate. This computation

is used in quantifying the load imbalance in the system (Section 5.3) and in computing work movement

instructions (Section 5.5).

To compute the optimal work distribution, wopt

i
(0 � i < P , where P is the number of slaves), the load

balancer first sums the computation rates, ri, provided by the slaves and divides the portion contributed by

each slave by the sum, R, to determine the fraction of the total performance that each slave is expected to

provide during the next load balancing period. Each slave’s fraction is multiplied by the total number of

iterations to be computed in the next computation phase to determine the number of iterations that should

be allocated to that slave. The total number of iterations, W , is computed from the current distribution, wi.

R =

P�1X
i=0

ri (5:1)

W =

P�1X
i=0

wi (5:2)

w
opt

i
=

ri

R
�W (5:3)

Because the work units, iterations of the distributed loop, are atomic, the results,wopt

i
, must be converted

to positive integers, but the results still must be consistent with

W =

P�1X
i=0

w
opt

i
(5:4)

5.3 Imbalance detection

The slaves are instructed not to move work if redistributing work into the optimal distribution can not

reduce the projected execution time by a specified threshold fraction, tfract (e.g., 0.1, a 10% reduction).

This provides the system with hysteresis so that small performance fluctuations do not cause work to be

moved back and forth between processors.

The threshold check, which is done based on the raw performance measurements from the slaves,

determines the fraction by which the elapsed time for the computation would be reduced if the assessments

104 CHAPTER 5. LOAD BALANCING PROCESS

of performance for the slave processors match the actual performance for the next computation phase.

This reduction fraction, rfract, is compared to the threshold fraction, tfract, to determine whether load

balancing should be attempted. If rfract < tfract, load is considered to be balanced, and null instructions

(synchronous/pipelined load balancing) or no instructions (asynchronous load balancing) are sent to the

slaves. Otherwise, the generation of instructions continues.

In our system, we set tfract to 0.1 (10%). Although the choice was somewhat arbitrary, there is also

some intuition behind it. In Section 4.3.3, we set a lower bound on the target load balancing period so

that amplitude of oscillations in performance due to scheduling would be less than 10% of the maximum

possible amplitude; with the threshold fraction set at 10%, these limited amplitude oscillations are unlikely

to result in work movement.

5.3.1 Quantifying load imbalance

To compute the reduction fraction, elapsed times for execution of the work units are estimated for the current

distribution and for the optimal distribution. For either distribution, the last processor to finish determines

the elapsed time. Thus, the elapsed time is the maximum of the execution times for the individual slaves.

However, for the optimal distribution, the load is balanced so all processors should be fully utilized and

should take the same amount of time (within the computation time for one work unit):

topt = max
i2P

w
opt

i

ri
=

W

R
� � (5:5)

When W is large and the computation time of a single unit is small, �! 0, and computation of the optimal

distribution can be omitted when determining the load imbalance. With the current distribution, the elapsed

time is

tcurr = max
i2P

wi

ri
(5:6)

The reduction fraction is computed as follows:

rfract =
tcurr � topt

tcurr
(5:7)

rfract is computed based on the raw performance measurements received from the slaves, rather than

on the measurements after filtering. If, instead, the filtered measurements were used to compute rfract, the

low-pass filtering used to reduce undesirable fluctuations would also tend to reduce rfract, and tfract would

5.3. IMBALANCE DETECTION 105

have to be reduced to compensate. We selected the former ordering because, when tuning our system, we

found that performance was slightly better with rfract based on the raw measurements. In our system, both

tfract and the filtering parameters were selected intuitively and empirically. Further analysis is needed to

select ideal parameters for imbalance detection and filtering and to determine the ordering of filtering and

imbalance detection that is most effective.

5.3.2 Effect of imbalance threshold on performance

Figure 5.2 shows the motivation for using an imbalance threshold to decide when to redistribute work. In

the figure, the raw rate is normalized against the maximum rate measured on the processor, and the allocated

work is normalized against the work that would be allocated to the processor if work were distributed

equally to the processors. The competing load on the processor is constant, consuming about half of the

computing resources of the processor, but small variations in performance (the raw rate) are still observed.

Redistributing work in response to these small fluctuations would not be beneficial due to high fixed costs

of moving work. Figure 5.2 demonstrates that the threshold (along with other optimizations1) prevents

work movement from occurring in this case: after an initial period of instability, the work allocated to the

processor remains constant.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 v
al

u
e

0 20 40 60 80 100 120
time (seconds)

Work
Raw rate

Figure 5.2: Measured performance and resulting work allocation on loaded slave for 1000 � 1000 SOR
(40 iterations) running on a 4 slave system with a constant computation-intensive load on one slave.1 The
imbalance threshold helps reduce work movement in response to small fluctuations.

We executed the SOR example with an imbalance threshold of 10% (an anticipated 10% improvement

is required for redistributing work) and without an imbalance threshold (work is redistributed whenever the

1 The load balancing parameters for the data presented are as follows: load balancing interactions are pipelined; target load
balancing period is 10 quanta (1 second); 10% predicted improvement is required for work movement; filtering is enabled;
cost-benefit analysis is enabled.

106 CHAPTER 5. LOAD BALANCING PROCESS

observed computation rates change). The load balancing parameters were selected to isolate the effects of

the imbalance threshold.2 Figure 5.3 shows that using a threshold fraction to detect load imbalance improves

efficiency in some cases, but not in others. Figure 5.4 shows that the goal of eliminating movement of small

amounts of work is achieved: in Figure 5.4a the work allocation curve is smooth, but in Figure 5.4b work is

moved in larger chunks. However using the threshold sometimes allows the system to remain unbalanced,

as in Figure 5.4c.

0

50

100

150

200

250

300

350

400

450

500

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

0 1 2 3 4 5 6 7
Processors

Sequential
No Threshold
10% Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

No Threshold
No Threshold (lower bound)
10% Threshold
10% Threshold (lower bound)

a) Computation time b) Efficiency

Figure 5.3: 1000 � 1000 SOR (40 iterations) running on 4 slave system with oscillating load (period = 60
seconds) on one slave. Effect of using threshold to detect load imbalance.2

In some cases, using an imbalance threshold is not advantageous because imbalance at almost the

threshold level may remain. In Figure 5.4b, the performance changes are such that work movement tracks

performance well; the efficiency in this case was 77.7%. However, in Figure 5.4c, generated from a different

run in the same environmental conditions, work movement does not track the computation rate as well. The

measured performance jumped to a point just within the threshold fraction of the maximum performance

before reaching the maximum performance, so load was not redistributed when the performance later

reached the maximum performance level, and imbalance led to a reduction in efficiency, to 75.6%. Note

that although in Figure 5.4c it appears that a 20–25% improvement in throughput might be attained by

shifting more work to the processor at about the 35 second point, the improvement would only be observed

2 The load balancing parameters for the data presented are as follows: load balancing interactions are not pipelined; target
load balancing period is 10 quanta (1 second); raw (unfiltered) rate information is used; cost-benefit analysis is disabled. I.e., no
optimizations are included over the basic load balancing system described in Section 2.5 other than the addition of the threshold
check.

5.3. IMBALANCE DETECTION 107

on one of the four processors in the system, so the total improvement would not exceed the 10% threshold.

Figures 5.4b and 5.4c are based on data from two runs with the same parameters under the same conditions;

the difference in how the load balancing system responded in the two runs is just due to random timing

variations.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
n

o
rm

al
iz

ed
 v

al
u

e

0 20 40 60 80 100 120
time (seconds)

Work
Raw rate

a) No improvement required.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 v
al

u
e

0 20 40 60 80 100 120
time (seconds)

Work
Raw rate

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

n
o

rm
al

iz
ed

 v
al

u
e

0 20 40 60 80 100 120
time (seconds)

Work
Raw rate

b) 10% improvement required. c) 10% improvement required.

Figure 5.4: Measured performance and resulting work allocation on loaded slave for 1000� 1000 SOR (40
iterations) running on a 4 slave system with an oscillating load (period = 60 seconds) on one slave.1 The
imbalance threshold reduces work movement but may result in suboptimal work distribution.

In Figure 5.3, the difference in performance is small between cases with and without imbalance detection,

but there is still reason to believe that imbalance detection is beneficial. Figures 5.2 and 5.4b demonstrate

that imbalance detection provides the desired hysteresis, preventing small fluctuations from resulting in

work movement; but Figure 5.4c identifies a deficiency in the approach used. Also, in measurements (data

no longer available) using a higher load balancing frequency, we observed more substantial improvements

with imbalance detection. Further research and analysis of the tradeoffs between responsiveness and work

movement costs is needed to maximize the performance improvements attained when an imbalance detection

phase is included. A dynamic threshold that periodically allows the system to make minor adjustments

to the work distribution, preventing the unresponsiveness demonstrated in Figure 5.4c, might improve

108 CHAPTER 5. LOAD BALANCING PROCESS

performance.

5.4 Filtering rate information

The raw measure of available processing resources on each slave is the number of work units computed

per unit time during the most recent load balancing period. Depending on the frequency of measurement,

this measure may include several effects: the load on the system; the context switching between processes;

and normal periodic system activity. Of these effects, work movement should track only the load on the

system. Also, it is undesirable to try to track short-term fluctuations in the load because the cost of moving

work could exceed the benefits. Decreasing the load balancing frequency reduces many of the undesirable

effects, but the frequency still must be high enough to track the load on the system. Much of the remaining

instability in the measurement of available resources can be eliminated by filtering out the high frequency

component of the raw measure. Thus, in computing a new work distribution, the raw measure is replaced

with a weighted average of the raw computation rate and previous computation rate measurements. There

is still no guarantee that the system will not make errors in redistributing work, but the averaging reduces

the degree and impact of bad predictions.

We replace the raw computation rate with a simple filtering function that combines recent and old

information:

r0i = (1� h)� ri + h� r0i�1 (5:8)

Like Equation 4.12, Equation 5.8 is a recursive discrete-time low pass filter called the exponential smoothing

forecast [22]. r0
i

is the filter output, the adjusted rate for the most recent computation phase, ri is the raw

rate for the most recent computation phase, and r0
i�1 is the adjusted rate for the previous computation phase

and incorporates all previous measurements. h (0 � h < 1), the history fraction, is the contribution of the

old information to the new adjusted rate. A recursive filter was chosen over a nonrecursive filter because

a recursive filter can include more history with fewer terms, thus requiring less computation time and less

memory.

The selection of an appropriate value for h is a difficult task. We wish the filter to average out oscillations

and short term fluctuations in the load, but we do not want the filter to delay the response to fluctuations for

which tracking by the load balancer is profitable. Also, it is more important to respond quickly to decreases

5.4. FILTERING RATE INFORMATION 109

in performance than increases because a decrease in the performance of one processor causes all other

processors to wait when the processors synchronize, while an increase in the performance of one processor

has no effect on the productivity of the other processors. Thus, a constant value for h is inadequate to model

the fluctuations that must be attenuated. Instead, a function that incorporates recent performance trends is

used to compute the weights for the filter.

h can be arbitrarily complicated, ranging from a constant value to a function taking all previous measured

values as inputs. With h equal to a fixed value, changes in performance are attenuated without regard to

performance trends (Figures 5.5c and 5.6c); for some values of h, response is too slow, and for others,

fluctuations in performance are not attenuated enough. A first step in addressing these problems is to

use two values for h (Figures 5.5d and 5.6d): one for increasing performance, and one for decreasing

performance. More weight is given to recent information if performance decreases than if performance

increases because penalties are greater if the system moves work toward a processor erroneously, increasing

idle time on all processors, compared with moving work away from a processor erroneously, only increasing

the idle time on that processor. However, a single increase or decrease in performance does not constitute a

trend; thus, we can not have much confidence in the two-valued h function. Therefore, we compute h using

a state machine (Table 5.1) which encodes past trends in its state bits and takes the most recent information

about changes in performance as input (Figures 5.5e and 5.6e):

(hnext; statenext) = f(input; state) (5:9)

The state keeps track of the direction and duration of the performance trends. The state machine described

in Table 5.1 uses 3 bits of state to store trend information from approximately 3 measurement periods. The

amount of history incorporated in the trend information could be increased by increasing the number of

state bits. As with the two-valued h function, in our state machine, we trust downward trends sooner than

upward trends. New information gets greater weight when it is consistent with past trends and when there is

confidence in the trends. The output values, h, in Table 5.1 are consistent with these specifications and were

selected empirically. Figure 5.6 indicates that the filter based on the state machine responds more quickly

to real load changes than the simpler filters, while still eliminating or attenuating most of the undesirable

fluctuations. In the case of a processor with constant load, the attenuation of undesirable fluctuations is

slightly less with the filter based on the state machine than with the other filters, but the state machine filter

eliminates some fluctuations completely because it considers longer term trends (Figure 5.5).

110 CHAPTER 5. LOAD BALANCING PROCESS

0.00

0.50

1.00

1.50

2.00

lo
ad

0 20 40 60 80 100 120 140 160 180 200
time (seconds)

(a) total load on processor (including application)

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

n
o

rm
al

iz
ed

 r
at

e

0 20 40 60 80 100 120 140 160 180 200
time (seconds)

(b) raw rate

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

n
o

rm
al

iz
ed

 r
at

e

0 20 40 60 80 100 120 140 160 180 200
time (seconds)

(c) adjusted rate: h = 0:8

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

n
o

rm
al

iz
ed

 r
at

e

0 20 40 60 80 100 120 140 160 180 200
time (seconds)

(d) adjusted rate: hincrease = 0:8, hdecrease = 0:2

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

n
o

rm
al

iz
ed

 r
at

e

0 20 40 60 80 100 120 140 160 180 200
time (seconds)

(e) adjusted rate: h determined by state machine

Figure 5.5: Performance assessment for a constant competing load. Target load balancing period is 1.0
seconds. Raw rate (b) is used as input to filters in (c), (d), and (e).

5.4. FILTERING RATE INFORMATION 111

0.00

0.50

1.00

1.50

2.00

lo
ad

0 20 40 60 80 100 120 140 160 180
time (seconds)

(a) total load on processor (including application)

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

n
o

rm
al

iz
ed

 r
at

e

0 20 40 60 80 100 120 140 160 180
time (seconds)

(b) raw rate

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

n
o

rm
al

iz
ed

 r
at

e

0 20 40 60 80 100 120 140 160 180
time (seconds)

(c) adjusted rate: h = 0:8

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

n
o

rm
al

iz
ed

 r
at

e

0 20 40 60 80 100 120 140 160 180
time (seconds)

(d) adjusted rate: hincrease = 0:8, hdecrease = 0:2

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

n
o

rm
al

iz
ed

 r
at

e

0 20 40 60 80 100 120 140 160 180
time (seconds)

(e) adjusted rate: h determined by state machine

Figure 5.6: Performance assessment for an oscillating competing load with 60 second period. Target load
balancing period is 1.0 seconds. Raw rate (b) is used as input to filters in (c), (d), and (e).

112 CHAPTER 5. LOAD BALANCING PROCESS

Input State Next State History fraction (h)
increase DOWN3 DOWN1 1.0 (all history)
increase DOWN2 CONSTANT 1.0 (all history)
increase DOWN1 UP1 1.0 (all history)
increase CONSTANT UP1 0.8
increase UP1 UP2 0.6
increase UP2 UP3 0.4
increase UP3 UP3 0.2
decrease DOWN3 DOWN3 0.1
decrease DOWN2 DOWN3 0.1
decrease DOWN1 DOWN2 0.2
decrease CONSTANT DOWN1 0.3
decrease UP1 DOWN1 0.4
decrease UP2 DOWN1 0.5
decrease UP3 CONSTANT 0.6

Table 5.1: State table for computing h. The input is increase if raw performance increases or stays the same
relative to the previous adjusted performance. The input is decrease if raw performance decreases relative
to the previous adjusted performance.

Because filtering of rate information is done independently for each slave, the filtering computations

can be performed either on the slaves or on the master. If performed on the slaves, the computations are

distributed, but remain in the critical path for the application. If performed on the master, the computations

for the different slaves are performed sequentially, but can be removed from the critical path by pipelining

the load balancing interactions. Since pipelining is used and the load balancer is not a bottleneck for the

small number of processors in our target system, the filtering computations are performed on the master for

our implementation on Nectar.

5.4.1 Effect of filtering on performance

Figure 5.7 shows how the filtering, based on Equation 5.8 and the state machine described in Table 5.1,

improves the efficiency of a load balanced program. The load balancing parameters were selected to isolate

the effects of filtering.3 The run in Figure 5.8a uses the filtered rate information; the work allocation curve

has the same shape as the filtered rate curve (except for minor differences due to small rate fluctuations on

other processors), but it is shifted to the right. In Figure 5.8b, a run without filtering, the system responds

3 The load balancing parameters for the data presented are as follows: load balancing interactions are not pipelined; target
load balancing period is 10 quanta (1 second); 0% predicted improvement is required for work movement; cost-benefit analysis is
disabled. I.e., no optimizations are included over the basic load balancing system described in Section 2.5 other than the addition
of filtering.

5.4. FILTERING RATE INFORMATION 113

to all fluctuations on the loaded processor, and the work allocation curve has the same shape as the raw

computation rate curve; the efficiency is lower due because there is more unnecessary work movement.

The effect of filtering on efficiency is very similar to that of increasing the load balancing period (see

Figure 4.12) because both filtering and increasing the period cause performance to be averaged over a longer

period of time (although, in this case, the filtering is a weighted average) so that fluctuations in performance

can cancel each other out. Thus, with filtering, a shorter load balancing period can be used to allow the load

balancing system to respond to changes in performance more quickly.

0

50

100

150

200

250

300

350

400

450

500

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

0 1 2 3 4 5 6 7
Processors

Sequential
Without filtering
With filtering

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Without filtering
Without filtering (lower bound)
With filtering
With filtering (lower bound)

a) Computation time b) Efficiency

Figure 5.7: 1000 � 1000 SOR (40 iterations) running with oscillating load (period = 60 seconds) on one
slave. Effect of filtering of rate information on efficiency.3

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

n
o

rm
al

iz
ed

 v
al

u
e

0 20 40 60 80 100 120
time (seconds)

Work
Adjusted rate
Raw rate

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

n
o

rm
al

iz
ed

 v
al

u
e

0 20 40 60 80 100 120 140
time (seconds)

Work
Raw rate

a) With filtering (efficiency = 0:769) b) Without filtering (efficiency = 0:715)

Figure 5.8: Measured performance and resulting work allocation on loaded slave for 1000� 1000 SOR (40
iterations) running on a 4 slave system with an oscillating load (period = 60 seconds) on one slave.3 Low
pass filtering reduces work movement in response to short term performance fluctuations.

114 CHAPTER 5. LOAD BALANCING PROCESS

5.5 Instruction generation

If load imbalance has been detected, the optimal distribution is computed using the filtered rates and is

compared to the current distribution to determine which processors have too much work and which have too

little. The difference between the optimal and current distribution is the amount of work that must be moved

to and from the various processors. Instruction generation matches processors that need to offload work with

processors that can handle more work. Instructions are generated for both sending and receiving processors.

Separate instruction generation algorithms are needed for work movement restricted by dependences in the

application and unrestricted work movement. Because the cost of the computation by the load balancer

affects load balancing frequency selection and thus limits the responsiveness of the system (Sections 4.3.1

and 4.3.6), we include analysis of time complexity with respect to the number of processors in our discussion

of the algorithms.

5.5.1 Unrestricted work movement

To minimize the cost of work movement, work should be transferred in as few messages as possible. A

search could be used to determine how to move the data in the smallest number of instructions, but as

the number of slaves is increased, searching would take too much time. (The problem of mapping work

movement requirements to instructions is very similar to the bin packing problem, which is known to be

NP-hard [14].) Also, the input information from which the optimal distribution is computed is not precise,

so attempting to track it exactly is unlikely to be worth the added costs. Instead we use a greedy algorithm,

Algorithm 5.1, that matches the processors that need to send the most work with the processors that need to

receive the most work. To reduce communication costs, instructions for moving smaller amounts of work

may be omitted. An example of application of the algorithm is shown in Figure 5.9.

Time complexity. In Algorithm 5.1, if the sender and receiver lists are implemented as a binary heap, the

sorting of the lists can be performed in O(P logP) time; the Next routine, which extracts the maximum

value, can be performed in O(logP) time; and the Insert routine can be performed in O(logP) time [14].

With each iteration of the while loop, Next is called twice and Insert is called at most once; either a sender

or a receiver (or both) is removed from consideration. Therefore, since the total number of senders and

receivers is P , the total number of iterations of the loop is at most P , and the time complexity of the whole

5.5. INSTRUCTION GENERATION 115

Algorithm 5.1: Unrestricted work movement.

Input: Set of P processors, numbered from 0 to P � 1, with each processor’s current allocation of work
and the quantity of work to move to or from each processor.

Output: Ordered set of instructions for each processor. Each instruction specifies sender, receiver, quantity
to send, and destination port.

Assumptions: Each originator has separate input port on receiver. Limited number of input ports on
receivers.

Method:

1. Separate processors into senders and receivers. O(P)

2. Compute fraction of work each sender must move. O(P)

3. Sort senders by fraction of work to move (largest to smallest). O(P logP)

4. Sort receivers by quantity of work to move (largest to smallest). O(P logP)

5. Loop through receivers and match with senders. O(P logP)

Next(structure) returns and removes the maximum element from the specified structure
(senders or receivers).

Insert(structure, processor, quantity) inserts a processor and quantity of work to move into
the appropriate location in the sorted structure.

WorkToMove(processor) returns the quantity (unsigned) of work the specified processor must
move.

CreateInstructionPair(sender, receiver, quantity) adds an instruction to the instruction lists
for the specified sender and receiver, allocating an input port on the receiver.

FreePorts(receiver) returns the number of unallocated input ports for the given receiver.

while ((r = Next(receivers)) != NULL) {
if (FreePorts(r) == 0) continue;
s = Next(senders);
rqty = WorkToMove(r);
sqty = WorkToMove(s);
if (rqty > sqty) {
CreateInstructionPair(s, r, sqty);
Insert(receivers, r, rqty - sqty);

}
else if (sqty > rqty) {
CreateInstructionPair(s, r, rqty);
Insert(senders, s, sqty - rqty);

}
else {
CreateInstructionPair(s, r, rqty);

}
}

algorithm is O(P logP).

116 CHAPTER 5. LOAD BALANCING PROCESS

F
igure

5.9:
U

nrestricted
w

ork
m

ovem
entusing

A
lgorithm

5.1.

Im
plem

entation
concerns.

To
m

inim
ize

the
num

beroftim
es

data
is

copied,ourim
plem

entation
allocates

an
inputbufferon

the
receiverforeach

instruction;this
prevents

w
ork

m
ovem

entm
essages

forcarrying
out

differentinstructions
from

becom
ing

interleaved.
D

ue
to

lim
ited

m
em

ory
on

the
com

m
unication

processors,

the
num

ber
of

inputbuffers
is

lim
ited.

T
hus,in

A
lgorithm

5.1,no
additionalinstructions

to
receive

w
ork

are
generated

for
a

processor
once

allits
buffers

have
been

allocated.
A

lso,an
acknow

ledgem
entm

ustbe

sentto
the

load
balancer

w
hen

a
receive

buffer
is

no
longer

in
use

so
thatthe

load
balancer

can
return

the

buffer
to

the
free

pool.
T

he
acknow

ledgem
ents

are
received

by
the

F
reeP

orts
routine.

Fortunately,
the

instructions
thatare

notgenerated
due

to
the

lim
ited

num
berofbuffers

are
likely

to
be

those
thattransferthe

leastw
ork

because
the

instructions
thattransfer

the
m

ostw
ork

are
generated

first.
H

ow
ever,if

a
processor

thathas
very

few
w

ork
units

slow
s

dow
n

further,itm
ay

have
difficulty

offloading
m

ore
units.

T
he

resulting

distribution
is

stilllikely
to

approxim
ate

the
optim

aldistribution.

5.5.2
R

estricted
w

ork
m

ovem
ent

L
oop

carried
dependencesin

a
distributed

loop
require

com
m

unication
betw

een
w

ork
unitsifthe

dependences

cross
processorboundaries.

To
m

inim
ize

the
am

ountof
com

m
unication

required
for

applications
thathave

loop
carried

dependences
(D

O
A

C
R

O
SS

loops),
a

block
partitioning

is
m

aintained
by

restricting
w

ork

m
ovem

ent.
L

oad
balancing

instructions
are

constructed
so

that
w

ork
is

only
m

oved
betw

een
logically

adjacent
processors,i.e.,

processors
that

store
adjacent

portions
of

the
distributed

data.
H

aving
a

lim
ited

num
ber

of
input

buffers
on

each
processor

is
nota

problem
because

each
processor

receives
w

ork
from

a

lim
ited

num
ber

of
processors

(for
a

one-dim
ensionaldistribution,atm

ost2
processors).

H
ow

ever,if
w

ork

m
ustbe

m
oved

betw
een

non-adjacentprocessorsto
balance

load,interm
ediate

processors,allthe
processors

on
the

path
betw

een
the

non-adjacentprocessors,m
ustbe

involved
in

the
w

ork
m

ovem
ent.

5.5. INSTRUCTION GENERATION 117

Because work only moves between adjacent processors, no searches or heuristics are required to generate

the most efficient instructions. Instructions are generated using Algorithm 5.2, a simple, straightforward,

O(P) complexity algorithm. Figure 5.10b shows the result of application of Algorithm 5.2 for an application

with loop-carried dependences. Figure 5.10a demonstrates that use of Algorithm 5.1 for applications with

dependences is not practical due to the added communication it may cause for the application.

Algorithm 5.2: Restricted work movement.

Input: Set of P processors, numbered from 0 to P �1, with quantity of work to move to or from processor.
Output: Ordered set of instructions for each processor. Each instruction specifies sender, receiver, quantity

to send, and destination port.
Assumptions: Each processor can only exchange work with processors to its left and right.

Method: O(P)

WorkToMove(processor) returns the quantity of work the specified processor must move (positive
if receiving, negative if sending).

CreateInstructionPair(sender, receiver, quantity) adds an instruction to the instruction lists for the
specified sender and receiver. For each sender/receiver pair the same receiver input port is always
used.

surplus = 0;
for (i = 0; i < P; i++) {

delta = WorkToMove(i);
delta -= surplus;
if (delta > 0) { /* receive from right. */
CreateInstructionPair(i+1, i, delta);

}
else if (delta < 0) { /* send to right. */
CreateInstructionPair(i, i+1, delta);

}
surplus = -delta;

}

While instruction generation is simplified by adjacency constraints, instruction ordering is made more

complicated by the fact that an intermediate processor can be both a sender and receiver of work. To minimize

work movement time, parallel work movement must be maximized, but, at the same time, deadlock can

not be allowed to occur. To maximize parallelism, each processor’s instructions are ordered as follows:

118 CHAPTER 5. LOAD BALANCING PROCESS

Instructions Instruction 1 Instruction 2 net change

0 - - none
1 Send left - loss
1 Receive right - gain
1 Send right - loss
1 Receive left - gain
2 Send left Receive right gain/none/loss
2 Send left Send right loss
2 Receive right Receive left gain
2 Send right Receive left gain/none/loss

Table 5.2: All possible ordered sets of instructions sent to each slave for restricted work movement.

1. Send to left.

2. Receive from right.

3. Send to right.

4. Receive from left.

Each slave receives at most 2 instructions, and only the limited sets of instructions listed in Table 5.2

are possible. Parallelism is obtained in the case where work passes through intermediate processors (e.g.,

Figure 5.10b): the processors that must send work (e.g., to the right) can all send at the same time; then the

processors that must receive the work (from the left) can all receive at the same time. Assuming that there

is adequate buffering and flow control between processors, this ordering prevents deadlock because there

is always at least one processor in the system that can proceed. If there is inadequate buffering, senders

must block when the receive buffers are full, requiring flow control between the processors. If the system

does not provide adequate flow control, explicit handshaking, possibly mandating serial execution, may be

required to prevent loss of data. (Unfortunately, this was the case for Nectar, our target system.)

Another difficulty with the above ordering is that intermediate processors may be required to move

more work than they initially own. In this case, the processors must receive work before they can send it.

When a slave receives an instruction to send more than it owns, the slave delays execution of the instruction

until the corresponding receive instruction (which must exist) has been executed. This may result in loss of

parallelism, but deadlock is avoided.

5.6. PROFITABILITY DETERMINATION 119

a)
U

nrestricted
w

ork
m

ovem
entusing

A
lgorithm

5.1

b)
R

estricted
w

ork
m

ovem
entusing

A
lgorithm

5.2

F
igure

5.10:
L

oad
balancing

ofloop
w

ith
dependences.U

nrestricted
w

ork
m

ovem
entresults

in
m

uch
m

ore
com

m
unication

for
application.

5.6
P

rofitability
determ

ination

W
ork

should
notbe

m
oved

if
the

costs
of

m
oving

the
w

ork
exceed

the
benefi

ts.
T

he
instruction

generation

algorithm
s

(Section
5.5)

consider
the

im
balance

in
the

system
but

do
not

consider
w

ork
m

ovem
ent

costs.

A
lthough

the
use

of
thresholding

(Section
5.3)

and
the

filtering
of

raw
perform

ance
inform

ation
(S

ection

5.4)
have

reduction
of

w
ork

m
ovem

ent
costs

as
their

goals,
neither

explicitly
considers

the
actual

costs

of
w

ork
m

ovem
ent.

To
further

ensure
that

w
ork

m
ovem

ent
results

in
im

proved
perform

ance,
w

e
add

a

profitability
determ

ination
phase

(m
otivated

by
[72])

that
explicitly

considers
the

cost
of

executing
the

generated
instructions.

T
he

phase
estim

ates
the

costs
and

benefi
ts

of
w

ork
m

ovem
ent

and
cancels

the

instructions
if

the
costs

exceed
the

benefi
ts.

If
itw

ere
possible

to
predictthe

exactcosts
of

w
ork

m
ovem

entand
to

predictthe
am

ountby
w

hich
the

tim
e

spenton
productive

com
putation

w
illbe

reduced
as

a
resultof

the
m

ovem
ent,w

e
could

create
precise

m
odels

of
program

execution
to

decide
w

hen
w

ork
m

ovem
entis

profi
table

(although
the

com
putation

tim
e

for
the

decision
could

be
quite

high).
H

ow
ever,because

w
e

can
notpredictthe

future,the
bestw

e
can

do

is
to

estim
ate

w
ork

m
ovem

entcosts
and

benefits
based

on
past

inform
ation.

E
rroneously

cancelling
w

ork

120 CHAPTER 5. LOAD BALANCING PROCESS

movement instructions can delay the load balancer’s reaction to real performance changes in the system

and reduce the effectiveness of load balancing. Therefore, since the estimates of work movement costs

and benefits are based on inaccurate information, profitability determination is used only as a sanity check

for the work movement instructions. Instructions are only cancelled if their estimated costs, cmovement are

several times their projected benefits, tbenefit, i.e., if

cmovement > k � tbenefit

where k is a small number greater than or equal to 1. For our experiments where profitability determination

was enabled, k was set to 5. With more accurate projections for costs and benefits, k could be reduced.

5.6.1 Estimating costs of work movement

The time to transfer work between processors can be measured before starting the actual computation.

Work movement messages are sent back and forth between processors several times to compute average

transfer times. The cost of transferring empty work movement messages is measured to determine the fixed

cost of work movement, cfixed, and the cost of transferring known amounts of work is used to determine

incremental work movement costs, cincr (Section 3.3.4). The cost of an individual instruction can then be

estimated based on the amount of work being transferred. An estimate is needed for cmovement, the cost of

all work movement in a load balancing phase. If multiple processors move work, some work movement

may occur sequentially and some may occur in parallel. For the restricted and unrestricted work movement

cases, the total work movement cost must be estimated in different ways. Complete analysis could be used

to determine the critical paths for each of these cases, but simple estimates for the costs are sufficient due to

the even greater difficulty and inaccuracy in predicting the benefits of work movement. Below we describe

the estimates used in our implementation on Nectar. For other systems, other estimates may be more

appropriate, depending on the topology of the communication network and the sharing of communication

resources.

For unrestricted work movement, instructions involving different sets of processors can be executed

independently, and much of the movement can occur in parallel. The cost of work movement is estimated

based on the cost of movement to and from the processor which moves the most work:

cunrestricted = instructions� cfixed + workunits� cincr (5:10)

5.6. PROFITABILITY DETERMINATION 121

Added Added Total Total Hops
Processors paths hops paths hops per path

21 2P0 P1

1
1

1
1

1

=

33

3

P0 P1 P2

2
3

3
4

43

4
P3P0 P1 P2

3
6

6
10

106

=

53

P

P
�

1

P

�

1

Xi
=

1

i

P
Xi

=

1 (i
�

1

)

P
Xj

=

1 0@
j
�

1

Xi
=

1

i 1A

P
+

1
3

Table
5.3:

D
erivation

of
average

num
ber

of
hops

in
a

linear
array

of

P

processors.
E

ach
added

processor,
P

n

,adds
a

path
of

length

n
�

i
hops

to
each

of
the

n

other
processors,P

i.
(n

=

P
�

1
because

w
e

label
processors

starting
w

ith
0.)

T
he

average
num

ber
of

hops
betw

een
processors

is
com

puted
by

dividing
the

totalnum
ber

of
hops

for
allpaths

betw
een

processors
by

the
totalnum

berof
paths.

F
or

the
restricted

w
ork

m
ovem

ent
case,w

e
assum

e
that

no
w

ork
m

ovem
ent

occurs
in

parallel
for

the

w
orst

case
estim

ate.
(T

his
is

the
case

for
our

im
plem

entation
on

N
ectar

due
to

unreliable
hardw

are
flow

control.)
T

hus,forrestricted
m

ovem
ent,the

estim
ate

forunrestricted
m

ovem
entis

m
ultiplied

by
an

estim
ate

of
the

num
ber

of
interm

ediate
processors

thatw
illbe

involved
in

the
transfer.

T
he

average
num

ber
of

hops

betw
een

tw
o

processors
in

a

P

-processor
linear

array
is

P
+

1
3

.
(T

he
derivation

of
this

result
is

outlined
in

Table
5.3.)

T
herefore,c

restricted

=

P
+

1
3

�

(instructions

�

c

fixed

+

w
orkunits

�

c
incr)

(5

:11

)

c

m
ovem

ent is
either

c

unrestricted
or

c

restricted
depending

on
the

instruction
generation

algorithm
used

for
the

application.

5.6.2
E

stim
ating

benefits
of

w
ork

m
ovem

ent

T
he

benefitof
redistributing

w
ork

is
the

reduction
in

elapsed
tim

e
for

the
com

putation
due

to
elim

ination

of
idle

tim
e.

If,after
redistributing

w
ork,the

rates
of

the
processors

relative
to

each
other

rem
ain

stable
or

122 CHAPTER 5. LOAD BALANCING PROCESS

continue to change in the same direction as the changes that prompted the redistribution, the benefits accrue

over time. For example, if one processor slows down, the total computation rate is increased by moving

work away from that processor; if the processor slows down further, the new distribution, while no longer

optimal, is still an improvement over the original distribution. If the trends in computation rates continue

long enough, the cost of work movement can be amortized, and there can be a reduction in the overall

elapsed time. The potential benefits of work movement are limited by the end of program execution, but,

in general, the time until the end of the program can not be predicted; fortunately, this limit can be ignored

since the time to redistribute work one extra time is expected to be negligible relative to the total execution

time of the program.

We estimate the time saved due to redistributing work as

tbenefit = bfract� tstable (5:12)

where bfract is the expected benefit per unit time, and tstable is the expected length of time over which

benefits will accrue, i.e., the time period over which we expect system performance to remain stable. bfract

is computed the same way as the reduction fraction, rfract in Section 5.3.1, but, in this case, the new

distribution may not be optimal due to the constraints on instruction generation:

torig = max
i2P

w
orig
i

ri
(5:13)

tnew = max
i2P

wnew
i

ri
(5:14)

bfract =
torig � tnew

torig
(5:15)

Estimating tstable is more difficult because it is not possible to accurately predict future trends in system

performance. However, by examining many traces of past performance it may be possible to recognize

patterns in the loads on the system well enough to make a reasonable assessment of the system stability.

For example, if we can recognize that load changes are periodic and identify the frequency of change, we

can model the system to decide whether it is profitable to shift work in response to the changes. (We have

modeled a system with an oscillating load on one processor in Section 7.5.) If the frequency of change is

high, tstable will be small. In this case, if the system attempts to move work to track each change, work

movement costs will be high and will have little benefit. In this unstable system, better overall performance

is likely if work movement does not track the performance fluctuations. However, if the frequency of change

5.7. SUMMARY 123

is low, tstable will be larger, and moving work to track the changes will be less costly and more beneficial,

resulting in a net improvement in performance.

Lacking extensive traces and with the unlikeliness of encountering truly periodic loads in real systems,

we estimate system stability based on recent performance information collected during the current run of

the application, assuming that there is temporal locality in the stability of the system. A record is kept of

the number of times imbalance was detected over the last windowsize load balancing phases. The total

computation time for the windowsize corresponding computation phases is divided by the number of times

imbalance was detected (i.e., exceeded the imbalance threshold described in Section 5.3) to determine the

period between significant changes in system performance. The period over which work movement accrues

benefits, tstable, is estimated at twice the period between changes, assuming that only half of the changes

will be in unfavorable directions. This is a very rough estimate of stability, and the selection of windowsize

(to equal about 10 seconds in our implementation) is somewhat arbitrary.

5.6.3 Effect of Profitability Determination on Performance

The profitability determination phase is designed to be most beneficial when work movement costs are high

or when the loads on the processors are very unstable. For the 1000� 1000 SOR example (Figure 5.114),

dynamic load balancing without the profitability determination phase results in improved performance

relative to equal distribution of work so we know that tracking the loads on the processors is beneficial.

Thus, we do not expect the profitability determination phase to improve performance. In fact, the cancelling

of work movement instructions delays reaction to changes in load, resulting in a slight performance loss.

In Section 7.5.2, we will show a case where the profitability determination phase does substantially

improve performance with dynamic load balancing.

5.7 Summary

In this chapter we described the operations that are performed each time the slaves interact with the

load balancer. The load balancer generates instructions that redistribute work in proportion to measured

computation rates on the slaves. For applications with loop-carried dependences, a block distribution must

4 The load balancing parameters for the data presented are as follows: load balancing interactions are pipelined; target load
balancing period is 10 quanta (1 second); 10% predicted improvement is required for work movement; filtering is enabled.

124 CHAPTER 5. LOAD BALANCING PROCESS

0

100

200

300

400

500

600

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

0 1 2 3 4 5 6 7
Processors

Sequential
Without profit
With profit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

No balancing
Without profit
Without profit (lower bound)
With profit
With profit (lower bound)

a) Computation time b) Efficiency

Figure 5.11: 1000� 1000 SOR (40 iterations) running with oscillating load (period = 60 seconds) on one
slave. Effect of addition of profitability determination phase on efficiency.4

be maintained to minimize the communication required for the application. Thus, for these applications, we

use an instruction generation algorithm that restricts work movement so that work is only moved between

logically adjacent slaves; to move work between non-adjacent slaves, intermediate slaves are involved. For

applications without loop-carried dependences, communication required for the application is not a concern,

so we attempt to minimize the cost of work movement using an algorithm that generates instructions to

move work directly between the slaves that are overloaded and the slaves that can handle extra work.

Several optimizations are included in the load balancing process to prevent undesirable work movement.

An imbalance detection phase, which compares a measure of the imbalance between the processors to a

threshold, adds hysteresis to the system, eliminating the high per-message communication costs of moving

small amounts of work back and forth between slaves. Before the new distribution is computed, the rate

information from the slaves is filtered to reduce high frequency components, reducing the system’s response

to short term changes in load. Finally, after instructions are generated, a cost-benefit analysis is performed to

check whether it is profitable to execute the generated instructions. All of these optimizations are effective

in reducing work movement costs, but they also can delay the system’s reaction to changes in performance,

leaving the system unbalanced for longer than necessary; the inefficiency due to this imbalance sometimes

outweighs the benefits of the optimizations. Selection of good parameters and implementations for the

optimizations is difficult due to this tradeoff and due to the inability to accurately predict the loads on

the processors; many of the parameters for the optimizations were selected empirically. More analysis is

5.7. SUMMARY 125

needed, and a good characterization of typical loads on the processors would be useful. Although good

motivation for each of the optimizations has been presented, from the experimental results, it is difficult to

make definitive claims regarding their performance benefits. However, for each optimization, we were able

to demonstrate small performance benefits in some situations.

126 CHAPTER 5. LOAD BALANCING PROCESS

Chapter 6

Compiler support for load balancing

Our load balancing system consists of application-specific code generated by a parallelizing compiler and a

run-time library that supports functions common to all applications, such as task creation, communication,

and load balancing. In this chapter, we describe the changes that must be made to a typical parallelizing

compiler to support dynamic load balancing. Other than the restructuring transformations needed to support

control of grain size (Chapter 3) and load balancing frequency (Chapter 4) summarized in Table 6.1, the

modifications needed to the compiler to support dynamic load balancing are in its code generation portion

and require little analysis or restructuring of the program. These modifications will be the focus of this

chapter. Although these changes have not yet been implemented in a compiler, hand-parallelized versions

of the MM, SOR, and LU examples were used to motivate and to investigate the implementation details of

the changes.

To support our dynamic load balancing system, the parallelizing compiler must generate code for both

the master and the slave processes. The master process controls the central load balancer, and the slave

transformation used for

strip mining control of grain size
control of frequency of load balancing hooks

loop splitting removing communication code from distributed loops
message aggregation reducing communication overhead
loop interchange increasing grain size

control of frequency of load balancing hooks

Table 6.1: Restructuring transformations.

127

128 CHAPTER 6. COMPILER SUPPORT FOR LOAD BALANCING

processes perform the computation for the application and interact with the master process periodically

for load balancing. For effective load balancing, the compiler must notify the runtime system which type

of loop—DOALL or DOACROSS—has been distributed so that work movement can be restricted in the

DOACROSS case (Section 5.5.2). The compiler is also responsible for generation of application-specific

code to load input data, unload output data, and package and transfer portions of distributed data structures

to shift work between the processors. In addition, to support work movement, modifications must be made

to the distributed data structures, the distributed loop bounds, and the calls to the communication code.

The structure of the master and slave code is outlined in Section 6.1. Sections 6.2 and 6.3 describe

changes to the distributed data structures and loop bounds needed to facilitate work movement. Section 6.4

discusses the routines that must be generated to transfer work between processors. Then we discuss how

moved work must be handled so that it is consistent with the work on the destination processor. Finally,

we discuss how the irregular data distributions resulting from work movement complicate location and

communication of distributed data elements.

Parallelizing compilers usually translate a sequential source program into a parallel single-program

multiple-data (SPMD) source program and use native compilers of the target machine to generate the actual

object code [11, 62, 68]. In describing our system, we assume that the sequential source is written in a

Fortran-like language with annotations to aid in parallelization (e.g., Fortran D [25] or AL [67]) and that

the generated code has C syntax and semantics so that data structures can be moved around easily by

manipulating pointers.

6.1 Code structure

The compiler must generate code for the master and slave processes. The structure of the slave code is

the same as that of the sequential source code and of typical code generated by a parallelizing compiler:

the parallelized slave code has the same loop structure as the source code, but loop bounds are modified to

work on the subset of loop iterations allocated to the current processor. Additional code is added to support

load balancing, but the loop structure is not changed significantly. Although the master process performs

no useful computation, its loop structure must mimic that of the slave code to at least the depth of the load

balancing hooks placed in the slave code so that the load balancing code is called the correct number of

times and the application can terminate properly. The master code must have load balancing hooks placed in

6.2. CHANGES TO DISTRIBUTED LOOP BOUNDS AND DISTRIBUTED DATA STRUCTURES129

the same locations in the loop structure as in the slave’s loop structure, although the hooks on the slave call

client code and the hooks on the master call server code. Also, when there are loops with data dependent

bounds, e.g., WHILE loops, above the nest level of the load balancing hooks, the master, like the slaves,

must receive all data needed to test the loop conditions. This is not necessary at nest levels deeper than the

load balancing hooks because the communication required by the application can not interfere with the load

balancing communication.

In the SOR example, the outermost loop is a WHILE loop that tests error conditions and terminates

when either the error is low enough or when a maximum iteration count has been reached. The master must

keep track of the iteration count for the loop; and when a new error value is computed, it must be sent to

the master as well as being broadcast to all slaves because the load balancing hook is in a lower nest level.

Figure 6.1 outlines the master and slave code that would be generated for the SOR example.

error = 1.0;
while ((error > zeta) && (iter < maxiter)) {

for (i = 1; i < m - 1; i++) {

master_hook();

}

receive error;
iter = (iter + 1);

}

error = 1.0;
while ((error > zeta) && (iter < maxiter)) {

error = 0.0;
if (pid != 0) send leftmost column to left;
if (pid != pcount - 1) receive column from right;
for (i = 1; i < m - 1; i++) {

if (pid != 0) receive from left;
compute local portion of row and error;
slave_hook();
if (pid != pcount - 1) send to right;

}
collect local error values and compute total error;
if (pid == 0) send error to master;
iter = (iter + 1);

}

a)
M

aster
code

b)
S

lave
code

F
igure

6.1:
C

ode
structure

for
m

aster
and

slave
processes

for
S

O
R

.

6.2
C

hanges
to

distributed
loop

bounds
and

distributed
data

structures

L
oops

and
data

are
distributed

according
to

the
ow

ner-com
putes

rule
[24,36].

T
hatis,loop

iterations
are

com
puted

on
the

processorthatow
ns

(stores)the
distributed

data
locationsw

ritten
to

by
the

iterations.
(Som

e

data
m

ay
be

shared
betw

een
loop

iterations,and
therefore

m
ustbe

replicated
if

read-only
or

com
m

unicated

w
hen

updated
if

read-w
rite.)

T
herefore,w

hen
w

e
distribute

loops,w
e

also
distribute

the
associated

data,

and
vice

versa.

130 CHAPTER 6. COMPILER SUPPORT FOR LOAD BALANCING

Loops are distributed by modifying the bounds so that, on each processor, the bounds only include

the iterations that are allocated to that processor. The most commonly used static distributions—block,

cyclic, and block-cyclic—are regular, so the local set of iterations can be computed directly based on the

processor number (p, assuming processors are numbered sequentially starting from zero), the number of

processors (P), the original loop bounds (e.g., 0 to n� 1), and a block size (Figure 6.2). (Note that block

and cyclic distributions are equivalent to special cases of block-cyclic distributions where blocksize = d
n

P
e

and blocksize = 1, respectively. Sequential execution on a single processor is equivalent to a block-cyclic

distribution with blocksize = n.) In all of these distributions, (approximately) equal amounts of work are

allocated to all processors. If processors vary in performance, an irregular distribution is needed, and the

local set of iterations can no longer be computed directly. The distributed data must be stored in a manner

that makes both work movement operations (sending and receiving work units) and accesses to the data

required by the application (Figure 6.3) inexpensive.

for (i = 0; i < n; i++) {
compute iteration;

}

for (i = p * blocksize; i < (p + 1) * blocksize && i < n; i++) {
compute iteration;

}

a)
O

riginalloop
b)

B
lock

distribution

for (i = p; i < n; i += P) {
compute iteration;

}

for (i = i0; i < i0 + blocksize && i < n; i++) {
compute iteration;

}
}

c)
C

yclic
distribution

d)
block-cyclic

distribution

F
igure

6.2:
C

om
m

on
regular

distributions.

a[i][...] = ...
END DO

a)
A

ccess
particular

data
slice

b)
A

ccess
each

data
slice

Figure
6.3:

Sequentialversion
of

code
used

in
com

paring
representations

of
irregular

distributions.

6.2. CHANGES TO DISTRIBUTED LOOP BOUNDS AND DISTRIBUTED DATA STRUCTURES131

6.2.1 Basic data structure

There are many ways to implement irregular data distributions, such as arrays, linked lists, or tuples. In our

application domain, since applications are parallelized by distributing portions of arrays, it is convenient

to maintain the data in a structure based on arrays. To make shifting of distributed data slices easy and

efficient, data is stored as arrays of pointers to slices of the distributed data structure (Figure 6.4a), rather

than as contiguous areas in memory. The distributed data structure is stored in distribution-major order

(e.g., row-major order or column-major order for a 2-dimensional matrix, depending on how the matrix is

distributed). For example, since SOR is distributed by columns, the B matrix is stored in column-major

order: in the sequential version of the program, an element of the matrix is referenced as b[i][j], where i

is the row number and j is the column number; in the parallel version, the same element is referenced as

b[j][i] because of the column major storage. Figure 6.4a shows the basic structure used to store a matrix.

The array of pointers, which we call the data array, is large enough to point to all slices of the distributed

data structure. Each processor has a local version of the data array, but since each processor only stores part

of the distributed data structure, each element of the local version either points to a local data slice or is a

null pointer.

The basic data structure described above facilitates work movement because each data slice is stored in

a contiguous area of memory and can be copied efficiently for work movement. We call this data structure

a scattered implementation because, on each processor, the local data slices are scattered throughout the

data array. A slice of the data is local if its location in the data array contains a valid (non-null) pointer.

Figures 6.4b and 6.4c show the operations required on a processor to send or receive a distributed data slice.

Sending a slice stored in the scattered structure is inefficient because it requires searching through the data

array for a valid pointer. Similarly, a loop that accesses all local data slices (Figure 6.4e) must step through

the entire data array to locate the valid pointers. In the next section, we describe ways to augment and

modify the basic data structure so that access to the structure is more efficient.

6.2.2 Efficient access to data

Because the distributions are irregular and may change at run time, it is not possible to determine which

processors are responsible for particular loop iterations and distributed data at compile time. Therefore, we

compare different data structures by how processors identify and access their local data slices. The data

132 CHAPTER 6. COMPILER SUPPORT FOR LOAD BALANCING

a
[1

3
]

a
[1

4
]

a
[1

5
]

a
[2

2
]

a
[2

9
]

a)
D

ata
structures

while (a_data[i] == NULL) i++;
send(a_data[i], len);
free_mem(a_data[i]);
a_data[i] = NULL;

a_data[idx] = alloc_mem(len);
receive(a_data[idx], len);

b)
S

end
w

ork
c)

R
eceive

w
ork

a_data[k][...] = ...
}

if (a_data[i] != NULL) {
a_data[i][...] = ...

}
}

d)
A

ccess
particular

slice
e)

A
ccess

each
slice

Figure
6.4:

B
asic

(scattered)
data

structure
for

storing
distributed

data.
L

ocal
data

slices
are

stored
in

the
corresponding

locations
of

the
data

array.
O

ther
locations

contain
nullpointers.

structures
are

m
odifi

ed
by

operations
w

hich
transfer

w
ork

betw
een

processors,i.e.
sending

and
receiving

w
ork

units.
T

he
application

code
m

ay
reference

particular
slices

of
the

distributed
data

in
the

sequential

portion
of

the
code

(e.g.,Figure
6.3a)

or
m

ay
access

m
any

or
allslices

in
the

distributed
loop

(e.g.,Figure

6.3b).
T

he
code

in
F

igure
6.3

is
used

in
com

paring
the

effi
ciency

ofdifferentdata
representations;w

hen
the

sequentialcode
is

parallelized,

a

is
distributed

by
row

s.

In
the

basic
scattered

im
plem

entation
(F

igure
6.4)described

earlier,sending
w

ork
and

stepping
through

all
local

data
slices

is
ineffi

cient
because

each
processor

m
ay

perform
m

any
unnecessary

tests
to

identify

6.2. CHANGES TO DISTRIBUTED LOOP BOUNDS AND DISTRIBUTED DATA STRUCTURES133

local slices, especially when there is a large number of processors and the non-null elements of the data

array are very sparse. These tests can be eliminated by augmenting the scattered implementation with an

index array which stores only the set of local iterations (Figure 6.5a). Looping through the local indices

can then be done by looping through the index array, using the values as indices into the data array (Figure

6.5e). Also, sending a data slice no longer requires a search. The index array is managed as a stack, with

the stack pointer being the number of data slices stored on the processor; when work is moved (Figures 6.5b

and 6.5c), indices for data slices are added to or deleted from the end of the index array. A disadvantage of

the implementation using the index array is that an extra level of indirection is required to access the local

data (Figure 6.5d).

The extra indirection can be avoided by using a packed implementation for the data: the local slices

of the distributed data are packed into the beginning of the data array (Figure 6.6a). In this representation,

when looping through the local indices, the slices of the data array can be referenced directly (Figure

6.6e). However, to access a particular slice of the data, it is necessary to search through the index array to

determine whether the data is local and where the data is stored in the data array (Figure 6.6d). In the matrix

multiplication example, this is not necessary since the index value is not important to the calculation. Other

applications, such as the LU decomposition example, do reference particular data slices, and each processor

must search to determine whether referenced slices are local. If memory is not a limitation, adding an

additional reverse index array eliminates the need for searching (Figure 6.7).

In both scattered and packed representations, it is necessary to allocate enough memory to store the

pointer and index arrays and the local data slices. When work is moved to a processor, the processor allocates

more memory for the associated data slices, and when work is moved from a processor, the memory for

the associated data slices is freed. This memory allocation and deallocation is an expensive part of work

movement. The packed representations have an advantage in this regard because they can implicitly manage

a free list for data slices so that system calls requesting more memory occur less frequently. When work is

moved from a processor, the memory associated with the data slices is freed just by decrementing the count

of slices on the processor and modifying the index and reverse index arrays; the data array still points to the

memory. When more work is moved to the processor, the slice count is incremented. If the values of the

data array for the new slices are non-null, then they point to memory that can be reused; otherwise, a request

is made to the system for more memory. When memory is needed from the system, it can be allocated in

134 CHAPTER 6. COMPILER SUPPORT FOR LOAD BALANCING

a
[1

3
]

a
[1

4
]

a
[1

5
]

a
[2

2
]

a
[2

9
]

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Index array (a_idx)-17 29 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1 -1 -1 -1

alunits

a)
D

ata
structures

send(idx);
send(a_data[idx], len);
free_mem(a_data[idx]);
a_data[idx] = NULL;

a_data[idx] = alloc_mem(len);
receive(a_data[k], len);
a_idx[localunits++] = idx;

b)
S

end
w

ork
c)

R
eceive

w
ork

a_data[i][...] = ...
}

a_data[a_idx[i]][...] = ...
}

d)
A

ccess
particular

slice
e)

A
ccess

each
slice

F
igure

6.5:
Scattered

data
structure

w
ith

index
array.

L
ocal

data
slices

are
stored

in
the

corresponding
locations

of
the

data
array.

O
ther

locations
contain

nullpointers.

large
chunks,w

ith
excess

put
on

the
free

list
so

that
future

system
calls

can
be

avoided.
In

the
scattered

representation
w

ith
an

index
array,freed

data
can

also
be

leftin
place,butthe

m
em

ory
can

only
be

reused

if
the

sam
e

w
ork

unitis
m

oved
back

to
the

processor.

For
static

load
balancing,any

initial
distribution

can
be

specifi
ed

in
the

index
array.

A
t

run
tim

e,
the

m
ajority

of
the

iterations
rem

ain
in

the
originaldistribution

because
the

index
array

is
only

changed
atone

6.2. CHANGES TO DISTRIBUTED LOOP BOUNDS AND DISTRIBUTED DATA STRUCTURES135

a
[7

]

a
[2

9
]

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Index array (a_idx)-17 29 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1 -1 -1 -1

fr
ee

fr
ee

fr
ee

alunits

a)
D

ata
structures

send(a_idx[localunits]);
send(a_data[localunits], len);
if (a_data[localunits] == NULL) {

a_data[localunits] = alloc_mem(len);
}
receive(a_data[localunits], len);
localunits++;

b)
S

end
w

ork
c)

R
eceive

w
ork

if (a_idx[i] == k)
a_data[i][...] = ...
break;

}
}

a_data[i][...] = ...
}

d)
A

ccess
particular

slice
e)

A
ccess

each
slice

F
igure

6.6:
Packed

data
structure.

L
ocaldata

slices
are

packed
into

the
beginning

of
the

data
array.

O
ther

locations
contain

nullpointers.
Index

array
lists

localslices.

end.
For

the
L

U
decom

position
exam

ple,
the

triangular
iteration

space
for

executions
of

the
distributed

loop
is

statically
balanced

(approxim
ately)

using
a

cyclic
distribution

so
the

initial
distribution

is
cyclic;

otherw
ise,data

w
ould

constantly
be

shifted
tow

ard
the

leftm
ostprocessor.

136 CHAPTER 6. COMPILER SUPPORT FOR LOAD BALANCING

a
[7

]

a
[2

9
]

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Index array (a_idx)-17 29 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1 -1 -1 -1

fr
ee

fr
ee

fr
ee

alunits

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reverse index array (a_ridx)-1-1 -1 -1 -1 3 4 6 -1 -1 5 -1 -1 -1 -1 -1 -1 9 -1 -1-1 -1 -1 -1

a)
D

ata
structures

a_ridx[a_idx[localunits]] = -1;
send(a_idx[localunits]);
send(a_data[localunits], len);

if (a_data[localunits] == NULL) {
a_data[localunits] = alloc_mem(len);

}
receive(a_data[localunits], len);
a_ridx[a_idx[localunits]] = localunits;
localunits++;

b)
S

end
w

ork
c)

R
eceive

w
ork

a_data[a_ridx[k]][...] = ...
}

a_data[i][...] = ...
}

d)
A

ccess
particular

slice
e)

A
ccess

each
slice

F
igure

6.7:
Packed

data
structure

w
ith

reverse
index

array.
L

ocaldata
slices

are
packed

into
the

beginning
of

the
data

array.
O

ther
locations

contain
nullpointers.

Index
array

lists
localslices.

R
everse

index
array

m
akes

determ
ining

w
hether

a
slice

is
localeasier.

T
he

data
structures

described
so

far
all

assum
e

that
w

ork
m

ay
be

shifted
betw

een
any

processors.

6.3. DEALING WITH VARYING LOOP BOUNDS 137

However, for applications with DOACROSS loops, where work movement is restricted (Section 5.5.2),

adjacency of iterations is maintained using an irregular block distribution. Because all local slices with a

block distribution are contiguous, index arrays are not needed to aid in identifying local data. Local slices

of the distributed array are put in their actual locations in the data array, and the range of local slices is

specified by the indices of the lowest and highest (+1) local slices (Figure 6.8a). These indices become

the loop bounds when looping through all local slices of a distributed loop (Figure 6.8e). Testing whether

a particular data slice is local (Figure 6.8d) just requires testing whether the slice number (i) is in the local

range (locallo � i < localhi). The data array is managed as a bidirectional stack, with locallo and localhi as

the stack pointers. As with the packed implementations for unrestricted work movement, the stack pointers

also manage free lists at no extra cost.

6.2.3 Selecting the data structure

Table 6.2 summarizes the properties of the different data structures with respect to work movement and

data access costs. (The highest cost in sending and receiving work—actually transferring the data—is

not included in our assessment of costs because it is required for any implementation.) When generating

code, the compiler must select the data structure most appropriate for the given application. The restricted

data structure (Figure 6.8) is the most efficient for all the types of accesses. However, restricted work

movement is not used for all applications because it requires more work movement involving intermediate

processors and thus has a higher total cost. Thus, the restricted data structure is only used with applications

with DOACROSS loops that require restricted work movement. For applications without restricted work

movement, packed data structures should be used because of their memory management benefits. The

reverse index array should only be included for applications that access particular slices of the distributed

data because the extra array takes up space, and managing the extra array increases the processing required

to send and receive data slices.

6.3 Dealing with varying loop bounds

In some applications, the number of loop iterations in the distributed loop changes each time it is executed.

For example, in LU decomposition, the number of iterations decreases by one with each execution. When

138 CHAPTER 6. COMPILER SUPPORT FOR LOAD BALANCING

a
[1

0
]

a
[8

]

a
[9

]

a
[1

2
]

a
[1

3
]

a
[1

4
]

a
[1

5
]

a
[1

1
]

a
[1

6
]

fr
ee

fr
ee

fr
ee

a)
D

ata
structures

send(a_data[localhi], len);a_data[localhi] = alloc_mem(len);
}
receive(a_data[localhi], len);
localhi++;

b)
S

end
w

ork
(to

right)
c)

R
eceive

w
ork

(from
right)

a_data[k][...] = ...
}

a_data[i][...] = ...
}

d)
A

ccess
particular

slice
e)

A
ccess

each
slice

Figure
6.8:

D
ata

structure
for

applications
w

ith
restricted

w
ork

m
ovem

ent.

m
oving

w
ork

to
balance

load
in

applications
w

ith
varying

loop
bounds,

it
is

only
benefi

cial
to

m
ove

the

iterations
and

data
thatw

ill
be

executed
in

future
executions

of
the

distributed
loop;

and
w

hen
com

puting

new
distributions,the

load
balancershould

only
considerthe

num
berofiterations

in
future

executions
ofthe

loop,notthe
totalnum

berofdistributed
data

slices.
A

trun
tim

e,w
e

m
ustdistinguish

data
slices

thatw
illbe

used
in

future
executions

of
the

distributed
loop

from
those

for
w

hich
allw

ork
has

been
com

pleted.
T

his
is

done
by

labeling
slices

w
ith

future
w

ork
as

active
and

those
w

ithoutfuture
w

ork
as

inactive.
O

nly
active

data

slices
are

m
oved

betw
een

slaves
to

m
ove

w
ork.

W
ith

decreasing
loop

bounds,data
slices

are
initially

active

6.3. DEALING WITH VARYING LOOP BOUNDS 139

Data Structure send work receive work access each access particular

Basic (Scattered) expensive expensive expensive cheap
(free mem) (alloc mem) (search)

Scattered with expensive expensive cheaper cheap
index array (free mem) (alloc mem) (indirection)
Packed cheap usually cheap expensive

cheap (search)
Packed with cheap usually cheap cheaper
reverse index array cheap (indirection)
Restricted cheap usually cheap cheap

cheap

Table 6.2: Summary of data access costs for different data structures.

and are deactivated with each execution of the distributed loop; with increasing loop bounds, data slices

are initially inactive and are activated with each execution of the loop. For applications with unrestricted

work movement, active slices are stored in the data structures as described earlier (i.e., a data, a idx, a ridx,

localunits), and inactive slices are stored in separate, similar structures (a inact, a idxinact, a ridxinact,

inactunits). The compiler must generate slave code to move slices between the active and inactive data

structures as the bounds of the distributed loop vary (Figure 6.9b); it must also generate master code that

keeps the load balancer’s notion of the total number of work units up-to-date (Figure 6.9c). Placement of

this code can be done with the aid of directives from the programmer (Figure 6.9a) or can be determined

by the compiler from analysis of loop bounds; in either case, the code to activate or inactivate data slices

should be inserted in the same location in the generated code.

For simplicity, the load balancer does not keep track of the specific work units allocated to each slave. It

only knows how many work units are allocated to each slave. When a work unit is activated or deactivated,

the code inserted into the master informs the load balancer that the total number of work units has increased or

decreased, but the load balancer does not know which slave the change occurred on. The status information

sent by a slaves at each load balancing interaction includes the number of active work units currently

allocated to the slave, but with pipelined or asynchronous load balancing, this information is delayed. The

load balancer can only approximate the current distribution at a given time. Each time work is activated

or deactivated, the load balancer modifies its view of the current distribution assuming that changes are

distributed equally. Using its incomplete information, the load balancer provides the slaves with inexact

instructions specifying the target number of active data slices each slave should have, from which the slaves

140 CHAPTER 6. COMPILER SUPPORT FOR LOAD BALANCING
DO j = 0, i /* distributed */

a[i][j] = ...
END DO
DEACTIVATE(a, i)

END DO

a)
C

om
piler

directive
show

ing
w

hen
to

deactivate
a

data
slice

lidx = localunits - 1; /* last acti ve index */
iidx = inactunits; /* last inactive index + 1 */

/* move the slice to the inactive array. */
a_inact[iidx] = a_data[aidx];
a_idxinact[iidx] = i;
a_ridxinact[i] = iidx;
inactunits++; /* increase inactive count. */

/* repack the active array. */
a_data[aidx] = a_data[lidx];
a_idx[aidx] = a_idx[lidx];
a_ridx[a_idx[aidx]] = aidx;
a_data[lidx] = NULL;
a_idx[lidx] = -1;
a_ridx[i] = -1;
localunits--; /* decrease active count. */

b)
D

eactivation
code

on
slave

activeunits -= 1;

c)
D

eactivation
code

on
m

aster

F
igure

6.9:
C

ode
for

deactivating
data

slices
w

hen
distributed

loop
bound

decreases
assum

ing
packed

data
structures

w
ith

reverse
index

arrays.

can
determ

ine
am

ounts
of

w
ork

to
m

ove.

6.4
W

ork
m

ovem
entroutines

T
he

load
balancer

m
akes

w
ork

m
ovem

entdecisions
based

on
very

abstractinform
ation:

num
bers

of
w

ork

units
and

rates
ofcom

putation.
Itjustgenerates

instructions
to

m
ove

the
abstractw

ork
units

from
one

slave

6.4. WORK MOVEMENT ROUTINES 141

to another. However, from the point of view of the slaves, work units are iterations of a distributed loop,

and the slaves must determine which iterations and which portions of the distributed data must be moved

between the processors. The iterations moved are determined by the distributed data structures used and, for

applications with restricted work movement, the direction of work movement; the data moved is determined

by relations established at compile time between the distributed loop iterations and the distributed data slices.

Once data associated with the work is identified, the senders of work must pack the data into messages,

update the local data structures, and send the packaged data to the receiver specified by the load balancing

instruction. The receiver must receive and unpack the data and store the data in its local data structures.

6.4.1 Identifying data to be moved

Distributed data slices are linked to distributed loop iterations by the owner computes rule. At compile

time, possibly aided by hints from the programmer, a relation is established between the loop indices for the

distributed loop and the array indices for the distributed data accessed by the loop. Given an assignment of

iterations to processors, the relation defines the processors that own and store the master copy of the data

slices. The data slices modified by an iteration are owned and stored by the same processor as the iteration;

copies of data slices read, but not written to, by an iteration may also be stored on the same processor as the

iteration, but they may be owned by other processors. Existing parallelizing compilers (e.g., AL [67] and

Fortran D [24, 36]) already establish this type of ownership relation when they assign iterations and data to

processors for static distributions.

When work is moved between two processors, ownership of loop iterations and data slices is shifted

from the source processor to the destination processor. The data moved is identified using the relation

established between the iterations and the data. In some cases, neighboring data slices may also be sent

along with the slices changing ownership because the iterations related to the slices changing ownership also

reference the neighboring slices; the neighboring slices are still owned and stored by the sending processor,

but they are replicated to eliminate the need for communication when executing the moved iterations. The

AL compiler [67] identifies distributed data slices referenced (i.e., read) in the same loop iteration with the

aid of directives provided by the programmer: XREL (cross relation) declarations link slices from different

distributed arrays, and WREL (window relation) declarations link slices from the same distributed array.

The cross relations identify data which should be kept together; the window relations identify data slices

142 CHAPTER 6. COMPILER SUPPORT FOR LOAD BALANCING

for which replication might be beneficial. However, replicating slices is only beneficial if the slices are in

the appropriate state for use by the moved iterations. In the SOR example, each iteration of the distributed

loop depends on the result of the previous iteration and on the old value of the next iteration. When work is

moved to a processor from the processor on its left, the new values of the data to the left of the moved work

are not yet valid; however, when work is moved from the right, the slice to the right of the moved work

contains the old values needed for the computation. Therefore, for SOR, neighboring data slices should

only be copied when work is shifted to the left. Identifying the state of the data slices may be difficult for a

compiler so, in some cases, data may be copied unnecessarily.

6.4.2 Moving distributed data between processors.

The compiler must generate application-specific routines for sending and receiving distributed data structures

and for updating the local data structures on the sender and receiver. The compiler knows the layout of the

data in memory and can generate code to gather the necessary data when sending work and to scatter the

data across the data structures when receiving work. Work movement messages must contain the following

information:

� Number of data slices sent.

� Indices of data slices sent.

� Data slices owned by the moved work.

Since data slices from multiple distributed arrays may be owned by the moved loop iterations, the different

types of slices must also be indicated in the messages; this can be done implicitly by the ordering of the

data in the messages. Neighboring data slices also may be included in the messages. Because the number

of neighboring slices sent with work is known at compile time, receivers need no additional information to

distinguish neighboring slices from those that are actually owned by the transferred work units.

If load balancing is asynchronous, there may be differences in the amount of progress on different

slaves, so data transferred to move work may be in a different state from the data on the receiving slave.

Thus, work movement messages must also contain state information for the data slices indicating how far

the computation on the slices has progressed. This state can be specified by the values of the loop indices

of all loops surrounding the distributed loop. With synchronous or pipelined load balancing, the additional

6.5. WORK UPDATE ROUTINES 143

state information is usually unnecessary because the load balancing keeps the slaves synchronized so that

moved slices are in a state known to the receiver, except when the load balancing hooks have been inserted

between iterations of the distributed loop.

Each work movement instruction specifies a sender, a receiver, and the amount of work to be moved.

The sender and receiver each receive a copy of the instruction. Only active work units should be moved.

For the unrestricted work movement case, the last data slices listed in the active index array on the sender

are moved, and the number of active slices on the sender is decreased by the number of slices moved. On

the receiver, the indices of the received data slices are added to the end of the active index array, the data

is copied into the local data structures, and the number of active slices is increased by the number of slices

moved.

With restricted work movement, the work movement instruction specifies work movement either to the

left or to the right. Depending on the direction of work movement, data slices are moved to or from either

the right side or left side of the active range of slices, and the corresponding loop bound is modified.

6.5 Work update routines

In some cases, when load balancing occurs, slaves have made different amounts of progress on their local

computation. For applications with DOACROSS loops parallelized by pipelining, such as SOR, slaves early

in the pipeline are ahead of slaves later in the pipeline. To maintain the pipelined execution of the loops,

work movement is restricted so that work only moves between logically adjacent slaves. Synchronous or

pipelined load balancing is used for pipelined applications because of the frequent synchronizations inherent

in the applications. This constrains the progress on the slaves so that logically adjacent slaves differ by one

execution of the distributed loop (Figure 6.10a). When work is moved between processors in these cases,

the moved data slices are not consistent with data already resident on the destination, so the moved work and

data can not be inserted immediately into the computation loop and data structures with the resident work

and data. Work moved to a processor from its left is one pipeline phase ahead of its local work, and work

moved from its right is one phase behind the local work (Figure 6.10b). The received data must be handled

separately until it is made consistent with the rest of the data. Work shifted from the right is immediately

updated upon receipt using a copy of the main loop nest with bounds adjusted to work only on the received

work (Figure 6.10c). Work shifted from the left is set aside until the local work catches up (Figure 6.10d.

144 CHAPTER 6. COMPILER SUPPORT FOR LOAD BALANCING

Since for DOACROSS loops, work movement is restricted to be between adjacent slaves, only these two

cases need to be handled.

For DOALL loops, synchronous and pipelined load balancing keep the slaves synchronized so that all

data is in a consistent state whenever work is moved; received work needs no special handling and can be

merged into the local data structures immediately. However, with asynchronous load balancing, there can be

great disparity between the progress on different slaves. In this case, work is moved away from processors

whose computation rates have decreased relative to the rates of the other slaves so work transferred to a

slave is always behind the work already local to the slave. Received work is updated so that it is consistent

with local work using a copy of the main loop nest with adjusted bounds. With unrestricted work movement,

a slave may receive work from several other slaves during a single load balancing phase. Fortunately, each

work movement instruction can be handled independently as soon as it is received so there is no need to

buffer work received from multiple slaves.

The compiler is responsible for generating code to set work aside or catch work up. The routine for

catching work up has the same core computations as the routine for computing work. The loop body is

copied, but loop bounds must be changed. Work can be set aside by inserting the data slices into the data

structures, but not changing the loop bounds to work on the new data until the original data has reached the

same state of progress.

6.6 Modifications to communication code

Adding dynamic load balancing to parallelized code has an impact on how data updates are exchanged at

run time since the location of distributed data and work is no longer known at compile time. If statements

outside of distributed loops reference distributed data, communication may be required to access the data.

With a fixed data distribution, a compiler can generate code that can compute the location of any distributed

data element using information local to each processor [60]. However, with a data distribution that changes

at run time due to load balancing, processors cannot compute data locations using local information only;

additional communication may be necessary. This section describes the handling of several cases where

run-time information is necessary. The compiler must generate the described communication code.

If a replicated variable is to be copied into a location in a distributed data structure, each processor

determines whether it owns the target location as described in Section 6.2, and the owner of the target

6.6. MODIFICATIONS TO COMMUNICATION CODE 145

12 13 14 15

0 1 2 3

8 9 10 11

4 5 6 7

load
balancing

points

3 8

12

13 14 15

0 1 2

9 10 11

4 5 6 7

load
balancing

points

a)
B

efore
w

ork
m

ovem
ent

b)
A

fter
w

ork
m

ovem
ent

3 8

12

13 14 15

0 1 2

9 10 11

4 5 6 7

load
balancing

points

3 8

12

13 14 15

0 1 2

9 10 11

4 5 6 7

load
balancing

points

c)
A

fter
w

ork
update

d)
B

efore
nextload

balancing

F
igure

6.10:
S

teps
in

load
balancing

of
the

S
O

R
exam

ple.
S

hading
indicates

progress
on

com
putation.

(C
om

m
unication

and
replicated

data
notshow

n.)

location
does

a
localcopy.

If
an

elem
ent

of
a

distributed
data

structure
is

to
be

copied
into

a
replicated

variable,
each

processor

determ
ines

w
hether

it
ow

ns
the

elem
entas

described
in

S
ection

6.2,and
the

ow
ner

broadcasts
the

data
to

allother
processors.

If
an

elem
entof

a
distributed

data
structure

is
to

be
m

oved
into

another
distributed

data
location,then

the
data

m
uststillbe

broadcastbecause
the

senderdoes
notknow

w
hich

processorow
ns

the
targetlocation.

146 CHAPTER 6. COMPILER SUPPORT FOR LOAD BALANCING

The processors for which the data was not intended receive but discard the data. In a system with hardware

support for multicast, all processors can receive the broadcast information in parallel so the size of the data

to be transferred is usually not important. An alternative would be to have each slave determine whether it

owns the target location and send its processor identification number (pid) to the sender; however, broadcast

of the pid would be necessary because the processor owning the target location does not know which

processor owns the data to be sent. In a system that does not support multicast, this alternative may perform

better when the amount of data to be moved is large. Otherwise, the first approach is more efficient because

it only requires a broadcast, while the second approach requires a broadcast and another send.

Because reduction operations are associative, the implementation of reduction operations is not affected

by dynamic load balancing. Each processor’s contribution to the total value is computed as usual, although

each processor may operate on a different number of elements. The combination of the local portions is

computed in the same way as usual (e.g., using a combining tree).

6.7 Summary

This chapter described changes that must be made to the code generation phase of a parallelizing compiler to

support dynamic load balancing. The loop structure of the parallelized program does not have to be changed

for the slave processes, but must be duplicated on the master. Loop bounds and distributed data structures

must be changed to handle and facilitate work movement. We described several implementations for data

structures for irregular distributions; the compiler must select the most efficient implementation based on the

features of the given application. In addition, because of the dynamic, irregular data distributions resulting

from load balancing, the communication code generated by the compiler must be modified to locate the

distributed data slices involved in the communication. The compiler must also generate application-specific

code to send and receive work and to deal with received work that is inconsistent with work already resident

on the receiving slave. The compiler can make most decisions regarding code generation using simple rules

based on features identified in the application code.

Chapter 7

Evaluation

To evaluate the mechanisms for supporting dynamic load balancing described in this thesis, we implemented

a runtime system on the Nectar system [3], a set of workstations connected by a high-speed fiber optic

network. We hand-parallelized the matrix multiplication (MM) and successive overrelaxation (SOR)

examples described earlier (Section 1.2.5) and took measurements with varying parameters in several

controlled environments.

This chapter begins with a description of our experimental setup on the Nectar system. Then we present

measurements that show how dynamic load balancing affects performance in environments with different

load characteristics. Performance is evaluated using the measures described in Section 1.5. The remainder

of the chapter discusses models of the performance of applications with load balancing to give a frame of

reference for the performance measurements.

7.1 Experimental setup

This section describes our experimental setup on the Nectar system and includes descriptions of the target

system and its programming environment, the versions of the example applications used in the experiments,

and the criteria used to compare the performance of the different versions of the applications.

147

148 CHAPTER 7. EVALUATION

7.1.1 Target environment

Our target platform is the Nectar system [3] developed at Carnegie Mellon University. The system consists of

a fully-connected crossbar network connecting a set of workstations (Figure 7.1). Each workstation contains

a memory mapped Communication Accelerator Board (CAB) which is connected to the crossbar by 100

megabit per second fiber optic links in each direction. For our measurements, the host processors were Sun

4/330 workstations running SunOS (Release 4.1.3), and no other users were active while the measurements

were taken. Due to hardware limitations, the largest system used in our experiments consisted of a master

and six slaves.

HOST CAB

HOSTCAB

HOSTCAB

HOST CAB

HOST CAB

HOSTCAB

HOST CAB

NETWORK

F
igure

7.1:
T

he
N

ectar
system

.

T
he

program
m

ing
interface

provided
for

the
N

ectar
system

is
called

N
ectarine

[57].
T

he
N

ectarine

library
provides

low
-level

routines
for

task
m

anagem
ent

and
for

com
m

unication
using

several
different

protocols.
O

ur
im

plem
entation

used
N

ectarine’s
reliable

m
essage

protocol
for

com
m

unication.
W

e
spent

a
great

deal
of

tim
e

optim
izing

the
com

m
unication

code
in

our
load

balancing
runtim

e
system

and
in

the

application-specifi
c

code.
To

reduce
the

num
ber

of
tim

es
data

is
copied

for
com

m
unication,

w
e

selected

N
ectarine

com
m

unication
routines

that
allow

data
to

be
m

oved
directly

betw
een

user
m

em
ory

on
the

host

w
orkstation

and
system

buffers
on

the
C

A
B

,elim
inating

the
need

to
build

the
m

essages
in

userspace.
A

lso

to
reduce

the
need

to
copy

data,m
essages

to
a

processor
from

different
sources

w
ere

directed
to

different

buffers
so

pieces
of

large
m

essages
w

ould
not

be
interleaved

w
ith

other
m

essages.
In

the
cases

w
here

7.1. EXPERIMENTAL SETUP 149

copying data was necessary, when possible, data was copied in blocks to minimize loop overheads (using

the Unix bcopy routine [12]).

Measurements were taken in several controlled environments. Aside from processes created by the

application being measured, no other processes were active on the processors. Artificial competing loads

were generated by the application so that the computation resources used by the competing loads could

be easily measured. If a competing load is to be generated on a processor, the application process on

the processor forks off a new process that executes routines with desired load characteristics. The load

generation routines used for the experiments generate either a constant computation intensive load or a

discrete oscillating load of specified frequency. When the computation portion of the application program is

completed, the application kills the generated processes and measures their CPU usage using the getrusage

function [12] provided with Unix.

7.1.2 Application versions

The matrix multiplication (MM) and successive overrelaxation (SOR) examples used in our measurements

are described in Section 1.2.5. For MM, the input matrices contain single-precision floating point values

generated using simple functions. For SOR, elements of the input matrix are randomly generated, non-zero,

single-precision floating point values. (The same seed is always used so that runs are reproducible.) For

SOR, zeta is set to zero so that convergence conditions are never met and the WHILE loop always terminates

after maxiter iterations (see Figure 1.8). Table 7.1 lists problem sizes used in our experiments (in this and

previous chapters) and presents measurements of their sequential execution times on a single Sun 4/330

workstation running SunOS. Each sequential time presented is the minimum time measured over at least

six runs. The problem sizes selected all fit into the real memory of the workstations. (Each workstation has

at least 24 megabytes of memory.)

Each application has a sequential version, a parallel version with fixed, equal distribution of work, and

a parallel version with dynamic load balancing. For the parallel versions, with or without load balancing,

there is one master process—responsible for initialization, load balancing, and cleanup—and several slave

processes which do the useful computation. Each of these processes runs on a separate processor. The parallel

versions without load balancing use the same code as the parallel versions with load balancing, but the code

is compiled with as much of the load balancing-related code disabled as possible. In all parallel versions,

150 CHAPTER 7. EVALUATION

Application Problem size Iterations Time (seconds)

MM 100� 100 1 1.79
MM 250� 250 1 31.27
MM 500� 500 1 252.71
MM 1000� 1000 1 2068.84
SOR 500� 500 10 20.77
SOR 1000� 1000 10 84.19
SOR 200� 2000 100 334.84
SOR 500� 2000 40 334.40
SOR 1000� 1000 40 335.07
SOR 2000� 2000 10 353.24

Table 7.1: Elapsed time measurements for sequential versions of applications on Sun 4/330 workstation
running SunOS.

a small amount of overhead may be attributed to code added for instrumentation. Our implementations of

the applications and runtime system allow many application and load balancing parameters to be selected

when invoking the program. These parameters are summarized in Table 7.2.

Parameter Description

problemsize Problem size for application
slaves Number of slave processors
grainsize Grain size in time quanta (when controllable)
type Synchronous, pipelined, or asynchronous
depth Pipeline depth for pipelined load balancing
threshold Fractional improvement required for load balancing
filter Filter used for rate measurements
quantumscale Lower bound on load balancing period due to time quantum (in

quanta)
overhead Fraction of time allowed for interaction overhead; puts lower

bound on load balancing period
movement Restricted or unrestricted work movement
interrupts Use interrupts instead of polling for communication
delay Artificial delay added to communication

Table 7.2: Application and load balancing parameters selectable at startup time.

7.1.3 Performance with load balancing

We measured the execution times of the tuned MM and SOR applications in several environments for varying

numbers of slave processors. These measurements were used to generate execution time (elapsed time),

7.2. LOAD BALANCING OVERHEAD IN A DEDICATED HOMOGENEOUS ENVIRONMENT 151

speedup, and efficiency graphs. The efficiency graphs include both the efficiency computed using Equation

1.4 and the lower bound on efficiency computed using Equation 1.2. Although the actual efficiency in using

available resources may lie anywhere between the computed efficiency and the computed lower bound,

the measured execution times and measurements of the time spent on the artificially generated competing

processes indicate that the competing processes are not using more resources than expected and that the

actual efficiency is close to that computed using Equation 1.4.

For the parallel versions of the programs, each data point presented is the average of at least 3 runs.

For execution time and speedup graphs, vertical bars show the range of the raw measurements. In almost

all cases, the variation in the measurements between different runs is small and significantly less than the

difference between runs with and without dynamic load balancing. (Most of the vertical bars are so short

that they do not extend outside the symbols for the average measured values.) There is a slight horizontal

offset between the points for the sequential, parallel, and load balanced parallel versions so that the vertical

bars can be distinguished. To make trends clearer, lines are drawn connecting the data points for the different

numbers of processors, although, in reality, only integral numbers of processors are possible. Because of

the slight horizontal offset between the different types of runs, the lines may appear to be shifted slightly

upward or downward; closer examination of the data points is necessary in cases where the lines are close

together.

The values of key load balancing parameters used for the measurements presented in this chapter are

summarized in Table 7.3. (See Table 7.2 for a description of the parameters.) movement should be selected

automatically by the compiler based on properties of the application. grainsize is selected automatically

based on run-time measurements. The target load balancing period is selected at run time based on the

values of quantumscale and overhead and on run-time measurements.

7.2 Load balancing overhead in a dedicated homogeneous environment

In an environment consisting of a homogeneous set of dedicated machines, load is balanced if work is

distributed equally to the processors. Dynamic load balancing is not needed and can only add to the total

execution time. Since we can not predict when there will be competing processes, we would like for

the overhead added by dynamic load balancing in a dedicated homogeneous environment to be as small

as possible. For applications with non-varying loop bounds, e.g., MM and SOR, the default distribution

152 CHAPTER 7. EVALUATION

Parameter Value

grainsize automatically selected at run time
type pipelined
depth 1
threshold 10% improvement
filter state machine described in Figure 5.1
quantumscale 10 quanta (1 second)
overhead 0.05
movement unrestricted for MM, restricted for SOR

Table 7.3: Parameters used for load balanced versions of applications.

distributes work equally. Figures 7.2a, 7.3a, and 7.4a show the execution times for MM and SOR running

in a dedicated homogeneous environment with and without dynamic load balancing. For both applications,

dynamic load balancing adds little to the execution times of the applications. The speedup graphs (Figures

7.2b, 7.3b, and 7.4b) show that the speedup curves are close to the perfect linear speedup curve (the dashed

line) for the number of processors used in our experiments, so our distributions of the problems get good

parallelism. However, for SOR, which is parallelized by pipelining, the speedup curve drops off as the

number of processors is increased because time spent filling the pipeline increases with the number of

processors; communication costs for the application (independent of load balancing) also increase with the

number of processors. MM requires no communication so its speedup remains linear. In the dedicated

homogeneous case, because there are no competing loads, the efficiency graphs (Figures 7.2c, 7.3c and

7.4c) show the same information as the speedup graphs; the efficiency is just the speedup divided by the

number of processors. Also, the efficiencies computed using Equations 1.4 and 1.2 are the same. All of the

graphs in Figures 7.2, 7.3 and 7.4 indicate that the overhead added by dynamic load balancing in a dedicated

homogeneous environment is small.

The highest efficiencies should be attained in dedicated homogeneous environments because the only

load balancing overhead should be due to the interactions between the slaves and the load balancer, and

most of this overhead is eliminated by pipelining the interactions. At best, we hope that the efficiencies

measured in heterogeneous and dynamic environments will equal those measured in a dedicated homo-

geneous environment, and we therefore treat the dedicated homogeneous efficiencies as upper bounds for

other environments. (It is possible to describe a case where efficiency in a dynamic environment could

exceed that in a dedicated homogeneous case, e.g., if the competing loads used all of the pipeline fill and

7.2. LOAD BALANCING OVERHEAD IN A DEDICATED HOMOGENEOUS ENVIRONMENT 153

0

50

100

150

200

250

300

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

a) Computation time

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

S
p

ee
d

u
p

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

b) Speedup c) Efficiency

Figure 7.2: 500� 500 matrix multiplication running in dedicated homogeneous environment.

drain times productively for a pipelined application, but such a case is unlikely to occur with the simple

loads used in our experiments.) For reference, we will show the dedicated homogeneous efficiencies (with

smaller symbols and dashed lines) on the efficiency graphs for other environments.

154 CHAPTER 7. EVALUATION

0

50

100

150

200

250

300

350

400
E

xe
cu

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

a) Computation time

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

S
p

ee
d

u
p

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

b) Speedup c) Efficiency

Figure 7.3: 1000 � 1000 successive overrelaxation (40 iterations) running in dedicated homogeneous
environment.

7.2. LOAD BALANCING OVERHEAD IN A DEDICATED HOMOGENEOUS ENVIRONMENT 155

0

50

100

150

200

250

300

350

400
E

xe
cu

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

a) Computation time

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

S
p

ee
d

u
p

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

b) Speedup c) Efficiency

Figure 7.4: 2000 � 2000 successive overrelaxation (10 iterations) running in dedicated homogeneous
environment.

156 CHAPTER 7. EVALUATION

7.3 Load balancing with a constant competing load

When a constant competing load is added to one of the processors (processor 0), we expect the load balancer

to redistribute work immediately and then for the distribution to remain stable. We create a constant load

by running a computation-intensive loop as a competing process on one of the slaves. The load balanced

application should find a static work distribution where that slave is allocated half as much work as the other

slaves. Figure 7.5 shows how the work movement tracks the measured performance of the loaded processor,

and confirms that such a distribution is reached; there is an initial period of instability while the competing

application is starting up.1 (In Figure 7.5, the raw measured rates are normalized against the maximum rate

measured on the processor, and work allocated to the processor is normalized against the work that would

be allocated if work was distributed equally to all processors.) Since work is only redistributed once, the

efficiency of the load balanced version should be almost as high as in the dedicated homogeneous case.

Figures 7.6b and 7.7b show this to be the case. However, for the 2000 � 2000 SOR example, in Figure

7.8b, the efficiency for the load balanced case is substantially lower than that in the dedicated environment

because of the large amount of data (4 times as much as for the 1000� 1000 SOR example, and 8 times as

much as for the 500 � 500 example; see Table 7.5), especially for the smaller numbers of processors, that

must be shifted to do the initial balancing. Also, because the size of the data for the problem is so large, the

profitability determination phase is cancelling many more instructions than for the other examples, leaving

the load unbalanced for a larger portion of the time.

1It takes about 15 load balancing periods for the load to stabilize during the initial period of instability. However, for a transition
in load after the initial period of instability, it typically takes about 5 load balancing periods for the load to reach a stable value.

7.3. LOAD BALANCING WITH A CONSTANT COMPETING LOAD 157

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 v
al

u
e

0 10 20 30 40 50 60 70 80 90
time (seconds)

Work
Raw rate

a) 500� 500 MM

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 v
al

u
e

0 20 40 60 80 100 120
time (seconds)

Work
Raw rate

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 v
al

u
e

0 20 40 60 80 100 120
time (seconds)

Work
Raw rate

b) 1000� 1000 SOR (40 iterations) c) 2000� 2000 SOR (10 iterations)

Figure 7.5: Measured performance and resulting work allocation on loaded slave on a 4 slave system with
a constant computation-intensive load on one slave.

0

100

200

300

400

500

600

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

(a) Computation time (b) Efficiency

Figure 7.6: 500 � 500 matrix multiplication running in homogeneous environment with constant load on
first processor.

158 CHAPTER 7. EVALUATION

0

100

200

300

400

500

600

700

800

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

(a) Computation time (b) Efficiency

Figure 7.7: 1000 � 1000 successive overrelaxation (40 iterations) running in homogeneous environment
with constant load on first processor.

0

100

200

300

400

500

600

700

800

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

(a) Computation time (b) Efficiency

Figure 7.8: 2000 � 2000 successive overrelaxation (10 iterations) running in homogeneous environment
with constant load on first processor.

7.4. LOAD BALANCING IN A DYNAMIC SYSTEM 159

7.4 Load balancing in a dynamic system

To evaluate performance in a dynamic system, we added an oscillating load to one of the processors. With

the oscillating load, the rate of computation on the processor alternates between the maximum rate attainable

by the processor (i.e., the same rate attained in a dedicated system) and approximately half of the maximum

attainable rate. Figures 7.9, 7.10, 7.11, and 7.12 show data for 4 oscillation frequencies ranging from once

per minute to once every 2 seconds. Because of time constraints, data was not collected for the 2000�2000

SOR example for oscillation periods less than 20 seconds; it is presumed that performance for those periods

would be as bad as or worse than the performance with the 20 second oscillation period.

Without load balancing the expected efficiency (lower bound from Equation 1.2) is 0.75, independent

of the number of processors, because all processors are limited by the performance of the loaded, slowest

processor which oscillates between its maximum rate and half of its maximum rate. The measurements

produce lower results, but much of the difference can be attributed to the same causes as the inefficiency

in the dedicated environment. The measured efficiencies drop as the frequency of the oscillating load

increases, possibly due to operating system costs for creating and killing processes not included in the

getrusage measurements. The relatively high efficiencies without load balancing do not leave much margin

for improvement with load balancing.

Figures 7.9a and 7.9b demonstrate that dynamic load balancing results in significant performance

improvements when changes in load are infrequent and work movement costs are low. However, due to

the work movement costs and the periods of imbalance, the performance is substantially lower than that in

dedicated environments. As the oscillation frequency increases (Figures 7.10, 7.11, and 7.12), the efficiency

with dynamic load balancing drops due to increased work movement costs (work is moved more times)

and the increased significance of the lag between changes in rate and the redistribution of work. Figures

7.13a and 7.13b demonstrate that the period when load is balanced gets shorter as the oscillation frequency

increases. Because of the large size of its distributed data, the 2000� 2000 SOR example with dynamic

load balancing performs poorly, even in an environment with loads that change very infrequently (Figure

7.9c); performance gets much worse when the oscillation frequency is increased (Figure 7.10c). On the

other hand, because of its relatively small data size, the MM example is more immune to changes in the

oscillation frequency. The effects of the work movement costs and the load imbalance will be modeled in

the next section.

160 CHAPTER 7. EVALUATION

Dynamic load balancing is a difficult problem. The work movement costs and the response time of

the load balancing system limit the system’s ability to improve application performance, especially for

applications with large data sizes. One way to improve performance is to reduce the amount of data that

must be moved to shift work. To do this, the distributed data units must be decoupled from the problem

size, e.g., by partitioning the data in more than one dimension. However, the benefits of partitioning the

data in a different manner will be at least partially offset by the added complexity of managing the new data

structures.

7.4. LOAD BALANCING IN A DYNAMIC SYSTEM 161

0

50

100

150

200

250

300

350

400
E

xe
cu

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

a) 500� 500 MM

0

100

200

300

400

500

600

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

b) 1000� 1000 SOR (40 iterations)

0

100

200

300

400

500

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

c) 2000� 2000 SOR (10 iterations)

Figure 7.9: Execution time and efficiency in homogeneous environment with oscillating load (period = 60
sec, duration = 30 sec) on first processor.

162 CHAPTER 7. EVALUATION

0

50

100

150

200

250

300

350

400

450
E

xe
cu

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

a) 500� 500 MM

0

100

200

300

400

500

600

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

b) 1000� 1000 SOR (40 iterations)

0

100

200

300

400

500

600

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

c) 2000� 2000 SOR (10 iterations)

Figure 7.10: Execution time and efficiency in homogeneous environment with oscillating load (period = 20
sec, duration = 10 sec) on first processor.

7.4. LOAD BALANCING IN A DYNAMIC SYSTEM 163

0

50

100

150

200

250

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

a) 500� 500 MM

0

100

200

300

400

500

600

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

b) 1000� 1000 SOR (40 iterations)

Figure 7.11: Execution time and efficiency in homogeneous environment with oscillating load (period = 6
sec, duration = 3 sec) on first processor.

164 CHAPTER 7. EVALUATION

0

50

100

150

200

250

300

350
E

xe
cu

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

a) 500� 500 MM

0

100

200

300

400

500

600

700

800

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
No balancing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
E

ff
ic

ie
n

cy

0 1 2 3 4 5 6 7
Processors

Sequential
Load balanced
Load balanced (lower bound)
No balancing
No balancing (lower bound)

b) 1000� 1000 SOR (40 iterations)

Figure 7.12: Execution time and efficiency in homogeneous environment with oscillating load (period = 2
sec, duration = 1 sec) on first processor.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 v
al

u
e

0 20 40 60 80 100 120
time (seconds)

Work
Raw rate

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

n
o

rm
al

iz
ed

 v
al

u
e

0 20 40 60 80 100 120 140
time (seconds)

Work
Raw rate

a) Oscillation period = 60 seconds b) Oscillation period = 20 seconds

Figure 7.13: Measured performance and work movement on loaded slave for 1000 � 1000 SOR (40
iterations) running on a 4 slave system with an oscillating load on one slave.

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 165

7.5 Modeling performance with oscillating loads

In this section we model the performance of several load balancing schemes with an oscillating load on

one processor. We compare the performance predicted by the model for dynamic load balancing to the data

presented in Section 7.4. We also compare the model to a model of the performance with equal distribution

of work so that the conditions under which dynamic load balancing is beneficial can be determined. We

also present performance models for other static load balancing schemes to demonstrate how performance

can be improved with prior knowledge of the loads on the system.

To correspond with the data presented in this chapter, our models assume an oscillating competing load

with equal on and off durations on the first processor. In Figure 7.14a, for example, the period of oscillation

is periodosc, the competing load is off during ta and on during tb, and ta = tb. The observed computation

rate on the loaded processor is proportional to the inverse of the total load on the processor. For example,

when a single competing load is executing on a processor, the total load on the processor is 2 (including

the load balanced application), and the computation rate is 0.5 times the rate that would be observed on

the processor if it had no competing load. For convenience, we normalize rates against the rate that would

be observed on a dedicated processor. Thus, the rate on the first processor oscillates between a minimum

value, rmin, and the maximum value, 1.0. On the rest of the processors, which have no competing loads,

the rate is always 1.0. For the measurements presented in this chapter, where there is at most one competing

load, rmin = 0:5.

For all cases, the maximum amount of work that can be computed during one oscillation period is the

same:

cavailable =
ta � P + tb � (rmin+ P � 1)

periodosc

=
0:5� periodosc � P + 0:5� periodosc � (rmin+ P � 1)

periodosc

= 0:5� rmin+ P � 0:5 (7.1)

where the unit of measurement is the maximum performance provided by a single, dedicated processor

during one oscillation period. For each type of load balancing, we estimate cproductive , and determine the

efficiency using Equation 1.3:

efficiency =
cproductive

cavailable

166 CHAPTER 7. EVALUATION

cproductive

Distribution ta portion tb portion Efficiency

Equal distribution of work P P � rmin
0:5� P � (rmin+ 1)
0:5� rmin+ P � 0:5

Avoid tracking changing load rmin+ P � 1 rmin+ P � 1
rmin+ P � 1

0:5� rmin+ P � 0:5

Avoid loaded processor P � 1 P � 1
P � 1

0:5� rmin+ P � 0:5

Table 7.4: Modeling performance with static allocation of work.

The models presented in this section assume that the performance observed at any time is directly

related to the current load on the system (i.e., no averaging of performance occurs). This assumption fits

well with the SOR example because of its frequent synchronizations. For the MM example, which has no

synchronization, the models should still be reasonably accurate if the oscillation period is several times the

load balancing period so that the effects of performance averaging are minimized.

7.5.1 Static load balancing

There are many ways to allocate work to processors statically. Figure 7.14 shows boundary cases for the

allocation of work on the processor with oscillating load. For each case, the remaining work is allocated

equally to the other processors. The performance of these cases is summarized in Table 7.4 and graphed in

Figure 7.15. In Table 7.4, the productive computation is estimated separately for the ta and tb time periods

and combined to compute the efficiency during the whole oscillation period. The model for equal distribution

of work gives slightly better results than the measurements, but matches the trends in the measurements

quite well (Figures 7.19 and 7.20). Although static approaches such as those shown in Figures 7.14b and

7.14c are often more efficient than equal distribution of work, they are not generally applicable because they

require prior knowledge of the loads that will be on the processors.

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 167

tb

rmin

time
0.0

ta

a)
E

qualdistribution
of

w
ork

rmin

time
0.0

tbta

rmin

time
0.0

tbta

b)
A

void
tracking

changing
loads

c)
A

void
loaded

processor

F
igure

7.14:
S

tatic
allocation

of
w

ork.
H

eavy
dotted

line
is

com
putation

rate
on

processor
w

ith
com

peting
load,norm

alized
againstrate

on
dedicated

processor.
H

eavy
solid

line
is

w
ork

allocated
to

processor
w

ith
com

peting
load,norm

alized
againstw

ork
allocated

w
ith

equalw
ork

distribution.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Efficiency

0
2

4
6

8
10

12
14

16
18

20
P

ro
cesso

rs

E
qual distribution

A
void tracking

A
void processor

F
igure

7.15:
P

erform
ance

of
static

load
balancing

approaches.

7.5.2
D

ynam
ic

load
balancing

For
dynam

ic
load

balancing,w
e

divide
the

oscillation
period

up
into

several
tim

e
segm

ents,identified
in

F
igure

7.16,to
com

pute
the

overall
productive

use
of

resources.
T

he
tim

e
period

w
hen

all
processors

are

dedicated
to

the
application,

t
a ,is

divided
into

a
period

w
here

load
is

notbalanced,

t
c ,a

period
w

hen
w

ork

168 CHAPTER 7. EVALUATION

is being moved, td, and a period where load has been balanced, te. Similarly, the period when competing

loads are active, tb, is divided into tf , tg, and th. For each of these time segments, the amount of processing

resources used productively will be determined so that the total productive use of resources can be computed:

cproductive =
(tc � uc) + (td � ud) + (te � ue) + (tf � uf) + (tg � ug) + (th � uh)

tc + td + te + tf + tg + th
(7:2)

For each time segment, s, we must determine the length of the segment, ts, and the resources used

productively during the segment, us. The lengths of the segments are related as follows:

periodosc =
1

frequencyosc
= tc + td + te + tf + tg + th (7:3)

0:5� periodosc = tc + td + te = tf + tg + th (7:4)

rmin

time
0.0

tc td te thtgtf

tbta

F
igure

7.16:
D

ynam
ic

load
balancing

m
odelfor

predicting
perform

ance.

T
he

perform
ance

m
odel

presented
in

this
section

breaks
dow

n
w

hen

t
e

or

t
h

is
less

than
zero.

A
lso,

the
m

odeldoes
notinclude

the
effects

of
fi

ltering,use
of

a
threshold

for
im

balance
detection,or

cancelling

instructionsbased
on

a
cost-benefitanalysis.

B
ecause

the
m

odelassum
esan

idealinputw
ith

clean
transitions,

im
balance

detection
is

not
an

issue
unless

the
am

plitude
of

the
oscillations

is
less

than
the

im
balance

threshold.
A

t
about

the
sam

e
oscillation

frequencies
w

here
the

m
odel

breaks
dow

n
due

to
large

delays

or
high

w
ork

m
ovem

ent
costs,

the
fi

ltering
and

cost-benefi
t

analysis
start

having
signifi

cant
effects

on

perform
ance,so

these
optim

izations
m

ake
extending

the
frequency

range
covered

by
the

m
odeleven

m
ore

difficult.
O

ur
current

m
odelis

m
ostaccurate

w
hen

the
oscillation

period
is

atleastan
order

of
m

agnitude

greater
than

the
load

balancing
period.

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 169

Load imbalance (tc and tf)

On average, the load balancer is not notified of a change in performance until one half of a load balancing

period after the change occurs; during this period, the load remains unbalanced, and one or more of the

processors is not fully utilized. If the load balancing interactions are pipelined, there is an additional delay

of depth load balancing periods, where depth is the pipeline depth (= 1 for the measurements presented

in this chapter). Because the length of the load balancing period is determined by the amount of work

computed during the period, nexthook (Section 4.1), rather than clock time, the length changes when the

rate changes. The instruction to correct the period is received on the slaves at the same time as the work

movement instructions. Thus,

tc = (depth + 0:5)� rmin� periodtarget (7:5)

tf = (depth+ 0:5)�
1

rmin
� periodtarget (7:6)

For our analysis, we assume periodtarget = 1:0 seconds (from Section 4.3.4).

During tc, the processor with the oscillating load is underutilized and must wait for the other processors

to finish computing:

uc = rmin+ P � 1 (7:7)

During tf , the processor with the oscillating load has slowed down. All other processors must wait for the

loaded processor to finish computing and are thus limited to its slower rate:

uf = rmin� P (7:8)

Work movement (td and tg)

During work movement, no resources are used productively so ud = ug = 0. However, values for td and

tg are still needed so that te and th can be computed. The total size of the distributed data and the number

of processors involved in the work movement are the main factors in the cost of work movement. An

additional factor is restrictions on work movement which determine whether intermediate processors are

involved when work is moved: for applications with restricted work movement, the estimated costs must

be multiplied by the number of intermediate processors that must transfer the work.

170 CHAPTER 7. EVALUATION

Data size. Dynamic load balancing performance varies greatly between applications. The differences in

the efficiencies between the applications are largely due to the amount of data that must be moved when

shifting work. For the MM example, portions of two matrices (B and C) must be shifted, with the total size

of each matrix 500�500�4 = 1 megabyte. For SOR, there is only one matrix, but the 1000�1000 matrix

is 4 megabytes, and the 2000 � 2000 matrix is 16 megabytes. Table 7.5 summarizes the work movement

costs for the MM and SOR examples. mwholearray is an estimate of the time to move the whole distributed

array between two processors, extrapolated from measurements of the time to move a single work unit.

When shifting work, each slice is sent as a single message so the per unit cost, the total cost for sending one

slice of the data, includes both the initial (per message) and incremental (per byte) costs (Section 5.6.1).

Application total units total size (MB) per unit cost (msec) mwholearray (msec)

500� 500 MM 500 2 5.46 2730
1000� 1000 SOR 1000 4 6.91 6910
2000� 2000 SOR 2000 16 11.99 23980

Table 7.5: Work movement costs used in modeling performance. Average of measurements taken at startup
time for greater than 50 runs.

Number of processors. Work movement costs also vary with the number of slave processors. For a small

number of slaves, work movement costs are higher than with more processors because a larger fraction of

the distributed data is shifted each time the rate of computation changes. For example, in a two slave system

with a single oscillating load, the work allocated to the loaded processor alternates between one half and

one third of the total work; thus, 1
2 �

1
3 = 1

6 of the total work is shifted each time the rate changes. However,

for a three slave system, work allocated to the loaded processor alternates between one third and one fifth

of the total; only 1
3 �

1
5 = 2

15 of the total is shifted each time. The amount of work shifted each time the rate

changes continues to decrease as the number of processors is increased (Figure 7.17):

fractionmoved =
1
P
�

1
2� P � 1

(7:9)

Unrestricted work movement. Because unrestricted work movement can occur in parallel, we estimate

the time for unrestricted work movement based only on the processor that moves the most work (Section

5.6.1). Thus, each time the rate changes, the total cost of work movement for unrestricted work movement

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 171

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

F
ra

ct
io

n
 m

o
ve

d
 p

er
 t

ra
n

si
ti

o
n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Processors

Figure 7.17: Fraction of total distributed matrix moved to or from the loaded processor (the first processor
in the logical array) with each transition of the oscillating load.

is

tunrestricted
d = tunrestricted

g = (
1
P
�

1
2� P � 1

)�mwholearray (7:10)

Restricted work movement. For applications with restricted work movement, the work movement costs

must be adjusted to account for time spent shifting work through intermediate processors. Ideally, the work

would be shifted through the processors in parallel, using the ordering of messages described in Section

5.5.2, and the work movement cost would be determined by the processor shifting the most work, as in

the unrestricted case. Unfortunately, due to poor flow control in Nectar, each work movement message for

the SOR example required an acknowledgement, forcing work to be transferred sequentially. In Section

5.6.1, a multiplier for the work movement cost was computed by average number of hops between arbitrary

processors in a linear array (P+1
3). However, in this case, the actual work movement patterns are known

due to our knowledge of the load patterns and the implementation. The patterns are shown in Figure 7.18.

Accurately modeling the time spent on copying data is complicated because of the possibility for overlap

between work movement and productive computation; thus, our estimates for the total work movement

costs will be conservative, i.e., high. However, the cost estimates for unrestricted work movement can be

considered as lower bounds on the costs for restricted work movement.

When the first processor (P 0 in Figure 7.18) slows down, work is passed sequentially from the first

processor through all the other processors, leaving 1
P�1 of the total moved work on each intermediate

172 CHAPTER 7. EVALUATION

s i
i 1=

P 1−

∑×

tc

td
+

te
-

tf

F
igure

7.18:
W

ork
m

ovem
entpatterns

for
restricted

w
ork

m
ovem

ent.

processor.
T

hus,the
w

ork
m

ovem
enttakesP

�

1

Xi
=

1

i
=

(P
�

1

)
�

P

2

steps
of

length

s
=

t unrestricted

dP
�

1

(7

:11

)

B
ecause

there
is

an
acknow

ledgem
entfor

each
m

essage,the
w

ork
m

ovem
entactually

fi
nishes

first
on

the

lastprocessorin
the

processing
pipeline.

W
hen

w
ork

is
passed

to
the

right,very
little

com
putation

can
occur

in
parallelw

ith
the

w
ork

m
ovem

entbecause
allprocessors

m
ustw

aitfor

P

0,the
processoratthe

beginning

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 173

of the pipeline, to send intermediate data through the pipeline. (It may be possible for the beginning of tg to

overlap with tf , but only during the last pipeline phase of tf . The size of the overlap depends on the grain

size for the application and is very complicated to model.) Therefore,

trestricted
g

=
(P � 1)� P

2
�
tunrestricted
d

P � 1

=
P

2
� tunrestricted

d

=
P

2
� (

1
P
�

1
2� P � 1

)�mwholearray (7.12)

The work movement during trestricted
d

takes the same number of steps and the same amount of time as

during trestricted
g

. However, when work is passed to the left, there is overlap between the work movement

and the following computation, te, because P0 is the first processor to finish with work movement. To

compensate for the overlap, we scale the estimate of the work movement costs:

trestricted
d

= trestricted
g � overlapscale (7:13)

overlapscale is computed by subtracting the total time spent on productive work (on all processors) from

the total CPU time (on all processors) computed for work movement assuming no overlap:

overlapscale =
cpunooverlap � cpuproductive

cpunooverlap
(7:14)

cpunooverlap = P � trestricted
g

(7:15)

cpuproductive = s�
P�2X
i=1

(

iX
j=1

j) (7:16)

where s is the time for each work movement step (Equation 7.11).

tunrestricted
d

and tunrestricted
g are used in modeling the efficiency of MM with dynamic load balancing, and

trestricted
d

and trestricted
g

are used in modeling the efficiency of SOR. tunrestricted
d

and tunrestricted
g

are also used in

computing an upper bound on the efficiency of the SOR example.

Balanced load (te and th)

Given the oscillation period and the values of tc, td, tf , and tg determined in the preceding paragraphs, the

lengths of segments te and th are computed using Equation 7.4:

te = 0:5� periodosc � tc � td (7:17)

174 CHAPTER 7. EVALUATION

th = 0:5� periodosc � tf � tg (7:18)

Since the load is balanced during te and th, all available resources are used productively:

ue = P (7:19)

uh = rmin+ P � 1 (7:20)

Efficiency

Once all components of Equation 7.2 have been determined, the efficiency can be computed. The only

run-time information required for the model (so far) is estimates of the time to move data slices between

processors (Table 7.5). Figures 7.19a,c,e and 7.20a,c,e show the computed efficiencies for two oscillation

periods for the MM and SOR examples. The predicted efficiencies with equal distribution of work are

also shown. (For the 2 and 6 second oscillation periods, te and/or th is less than zero, so the model is not

applicable.)

Figures 7.2, 7.3, and 7.4 indicate that there is inefficiency even when load is balanced. This inefficiency

is due to modifications to data structures, changes in access patterns, and communication required by the

parallelized application and, for the load balanced versions, the load balancing interaction costs. The

inefficiency only affects the times when the processors are actively working on the computation, i.e., not

the work movement costs. Thus, to account for this inefficiency, we multiply the estimates of uc, ue,

uf , and uh by the efficiencies measured for the parallel code with load balancing on the corresponding

dedicated homogeneous systems (from Figures 7.2c, 7.3c, and 7.4c). The model for performance with equal

distribution of work is multiplied by the dedicated homogeneous efficiencies measured for the parallel code

without load balancing. The recomputed efficiency results based on the modified models are shown in

Figures 7.19b,d,f and 7.20b,d,f. For comparison, these graphs also include the measured efficiency values

collected in the same environments. For reference, the measurements from the dedicated homogeneous

environment are also shown (with smaller symbols connected by dashed lines).

For all of the examples, the plots of the model for equal distribution of work parallel the plots of the

corresponding measurements, although the model predicts slightly higher efficiencies.

For the MM example, the slopes of the efficiency curves for the dynamic load balancing model and

the measurements are similar, but the model produces higher efficiencies. The efficiencies predicted by the

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 175

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Equal distribution model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Dynamic balancing measurements
Equal distribution model
Equal distribution measurements

a) 500� 500 MM b) 500� 500 MM offset by dedicated inefficiency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Equal distribution model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
E

ff
ic

ie
n

cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Dynamic balancing measurements
Equal distribution model
Equal distribution measurements

c) 1000� 1000 SOR d) 1000� 1000 SOR offset by dedicated inefficiency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Equal distribution model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Dynamic balancing measurements
Equal distribution model
Equal distribution measurements

e) 2000� 2000 SOR f) 2000� 2000 SOR offset by dedicated inefficiency

Figure 7.19: Efficiency predicted by dynamic load balancing model for homogeneous environment with
oscillating load (period = 60 sec, duration = 30 sec) on first processor.

176 CHAPTER 7. EVALUATION

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Equal distribution model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Dynamic balancing measurements
Equal distribution model
Equal distribution measurements

a) 500� 500 MM b) 500� 500 MM offset by dedicated inefficiency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Equal distribution model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
E

ff
ic

ie
n

cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Dynamic balancing measurements
Equal distribution model
Equal distribution measurements

c) 1000� 1000 SOR d) 1000� 1000 SOR offset by dedicated inefficiency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Equal distribution model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Dynamic balancing measurements
Equal distribution model
Equal distribution measurements

e) 2000� 2000 SOR f) 2000� 2000 SOR offset by dedicated inefficiency

Figure 7.20: Efficiency predicted by dynamic load balancing model for homogeneous environment with
oscillating load (period = 20 sec, duration = 10 sec) on first processor.

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 177

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
E

ff
ic

ie
n

cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Equal distribution model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Dynamic balancing measurements
Equal distribution model
Equal distribution measurements

a) 500� 500 MM b) 500� 500 MM offset by dedicated inefficiency

Figure 7.21: Efficiency predicted by dynamic load balancing model for homogeneous environment with
oscillating load (period = 60 sec, duration = 30 sec) on first processor. tc = tf = 2:5 load balancing periods.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Equal distribution model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Dynamic balancing measurements
Equal distribution model
Equal distribution measurements

a) 500� 500 MM b) 500� 500 MM offset by dedicated inefficiency

Figure 7.22: Efficiency predicted by dynamic load balancing model for homogeneous environment with
oscillating load (period = 20 sec, duration = 10 sec) on first processor. tc = tf = 2:5 load balancing periods.

model are higher partly because the model does not consider the filtering of the measured rate information.

As a result of the filtering, work is not shifted all at once to reach the balanced distribution. It takes at least

2 or 3 load balancing periods (on average, about 5 periods) after a rate change for the balanced distribution

to be reached. If the response times (tc and tf) in the model are increased by 1 load balancing period, the

model and the measurements move closer (Figures 7.21 and 7.22). There may also be some error in the

estimates of work movement costs.

For SOR, the accuracy of the efficiency model changes with the frequency of oscillation. For the 60

178 CHAPTER 7. EVALUATION

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Equal distribution model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Dynamic balancing measurements
Equal distribution model
Equal distribution measurements

a) 1000� 1000 SOR b) 1000� 1000 SOR offset by dedicated inefficiency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Equal distribution model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
E

ff
ic

ie
n

cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Dynamic balancing measurements
Equal distribution model
Equal distribution measurements

c) 2000� 2000 SOR d) 2000� 2000 SOR offset by dedicated inefficiency

Figure 7.23: Efficiency predicted by dynamic load balancing model for homogeneous environment with
oscillating load (period = 60 sec, duration = 30 sec) on first processor. tc = tf = 2:5 load balancing periods.
Work movement cost estimates 25% higher than values listed in Table 7.5.

second period, the model produces efficiency curves that parallel the measured efficiency curves (Figure

7.19d,f). The curves are almost coincident if the response time is increased by 1 load balancing period

and the estimates of the per slice work movement costs are increased by 25% (Figure 7.23). For the SOR

examples, because work movement costs are high due to the large size of the distributed data, a 25% change

in the cost estimates has a large effect on the efficiency predicted by the model. For the MM example, which

has a smaller data set, scaling the work movement cost estimates has a much smaller effect.

For the 20 second period, the slopes of the efficiency curves for the dynamic load balancing model

and the measurements are noticeably different (Figure 7.20d,f), especially for the 2000 � 2000 problem

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 179

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Equal distribution model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Dynamic balancing measurements
Equal distribution model
Equal distribution measurements

a) 1000� 1000 SOR b) 1000� 1000 SOR offset by dedicated inefficiency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Equal distribution model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
E

ff
ic

ie
n

cy

0 1 2 3 4 5 6 7
Processors

Dynamic balancing model
Dynamic balancing measurements
Equal distribution model
Equal distribution measurements

c) 2000� 2000 SOR d) 2000� 2000 SOR offset by dedicated inefficiency

Figure 7.24: Efficiency predicted by dynamic load balancing model for homogeneous environment with
oscillating load (period = 20 sec, duration = 10 sec) on first processor, assuming unrestricted work movement.

size. For the measurements, the efficiency curves stay level or slope upward as the number of processors

is increased, while for the model, the curves always slope downward. Changing the response time or the

estimate of the time to transfer one data slice do not correct the problem. In fact, the model for applications

using unrestricted work movement produces better approximations of the measured efficiencies (Figure

7.24). This indicates that work movement costs are not as high as expected.

A probable reason for the lower work movement costs is that less work is being moved than predicted by

the model. As the number of processors increases, because of the decreasing benefits of moving work onto

the loaded processor, the imbalance detection and profitability determination phases of the load balancer start

to have significant effects on the amount of work moved: the threshold for detecting load imbalance reduces

180 CHAPTER 7. EVALUATION

work movement by allowing the load to remain in an unbalanced state, and the profitability determination

phase cancels work movement instructions. The result of these optimizations is that only part of the work

for balancing the load gets moved before the competing load changes again.

The reduction in work movement due to the threshold depends on the timing of events in the system,

and is somewhat random. For cases where work movement costs are low, imbalance detection sometimes

results in decreased performance because the system is left unbalanced (e.g., Figure 5.4c), but in this case,

the results are beneficial because high work movement costs can be avoided.

To compute projected benefits, the profitability determination phase is determining the stability of the

system by estimating the frequency of substantial performance changes in the system. (This method of

estimating stability corresponds well with the oscillating loads on the system, but may not work as well

with systems with other load characteristics.) When the oscillation period is decreased from 60 seconds to

20 seconds, the estimate of system stability decreases, and the same high cost of shifting data slices may

exceed the smaller projected benefits. As the number of processors is increased, the benefit of moving work

back to the loaded processor decreases, and work movement instructions are more likely to be cancelled.

With enough processors, the system stops tracking the changing portion of the performance, as in the “avoid

tracking” static scheme. Figure 7.15 shows that with the “avoid tracking” static scheme, efficiency exceeds

90% for systems with greater than two processors, so if work movement costs are high, they are likely to

outweigh the small benefit of balancing the load. Figure 7.25 demonstrates how the amount of work shifted

decreases relative to the amounts predicted by Equation 7.9 as the number of processors is increased. The

dashed lines indicate the expected allocation of work on the loaded processor during the periods when the

competing load is active (lower line) and inactive (upper line). The difference between the actual allocation

and the expected allocation during periods when the competing load is not active increases as the number

of processors increases due to the threshold for detecting load imbalance. For the system with 6 slaves

(Figure 7.25e), some transitions in load are ignored completely because work movement instructions are

cancelled by the profitability determination phase. The reduction in work movement when benefits of

movement are small helps increase the efficiency in situations where performance is dominated by the load

balancing overhead, although not necessarily enough to result in a net improvement over the case with equal

distribution.

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 181

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

n
o

rm
al

iz
ed

 v
al

u
e

0 50 100 150 200 250 300 350 400
time (seconds)

Work
Raw rate

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

n
o

rm
al

iz
ed

 v
al

u
e

0 50 100 150 200 250
time (seconds)

Work
Raw rate

a) 2 slave system b) 3 slave system

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 v
al

u
e

0 20 40 60 80 100 120 140 160
time (seconds)

Work
Raw rate

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 v
al

u
e

0 20 40 60 80 100 120 140
time (seconds)

Work
Raw rate

c) 4 slave system d) 5 slave system

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 v
al

u
e

0 10 20 30 40 50 60 70 80 90 100
time (seconds)

Work
Raw rate

e) 6 slave system

Figure 7.25: Measured performance and work movement on loaded slave for 2000�2000 SOR (10 iterations)
running on systems with an oscillating load (period = 20 sec, duration = 10 sec) on one slave. Work movement
decreases relative to expectations as the number of processors increases because of imbalance detection and
profitability determination. Dashed lines show expected ranges for work allocation.

7.5.3 Improving the model/Improving the system

For more accurate modeling, the effects of imbalance detection, filtering, and the profitability determination

phase should be taken into account. However, these optimizations are difficult to model because they affect

both work movement costs and the degree of imbalance in the “unbalanced” and “balanced” portions of the

oscillation period. Simulation is probably an easier approach for including the effects of these optimizations

182 CHAPTER 7. EVALUATION

because the optimizations have some dependence on past events in the execution of the program. The model

should also be extended to handle higher frequency oscillations, where work allocations and changes in

performance are more than one half of the oscillation period out of phase, i.e., te or th is less than zero.

Work movement costs are very complicated and are implementation dependent, making them difficult

to estimate accurately. Measurements of the costs at the start of program execution may not be accurate

over the entire run of the program due to contention in the network or occasional unreliability (e.g., dropped

packets) of the network. An additional factor that was not included in the model is the effect of the loads

on the processors on the costs of work movement; to account for this, both the loads on the senders and the

receivers must be considered in the costs.

The modeling helped identify some deficiencies in the system. We discovered that imbalance detection

and profitability determination are having the desired effect of reducing work movement costs, but, in

some cases, they do not reduce the costs enough for dynamic load balancing to result in an overall gain in

performance. For applications with large data slices running on systems with rapidly changing performance,

work movement instructions should be cancelled (or altered) more aggressively. Further investigation

of the imbalance detection, filtering, and profitability determination optimizations and, possibly, other

optimizations for reducing unnecessary work movement is necessary.

7.6 Limits of dynamic load balancing approach

The same factors that limit the range of frequencies for which performance can be easily modeled also limit

the load balancing systems ability to deal well with high frequency changes in load. When te or th is less

than zero, work movement is completely out of phase with the changes in load and is unlikely to result in

good performance. Fortunately, selection of an appropriate load balancing frequency, adding hysteresis with

imbalance detection, filtering raw measurements, and doing a cost-benefit analysis to limit work movement

all help prevent the system from responding to high frequency changes. When the frequency of changes

is high, the system sees the average performance over a computation period and need not respond to each

change in load. These averaging effects are difficult to model and are limited by synchronizations required

by the application. These techniques do not completely eliminate the problems with rapidly changing

loads, as demonstrated in Figure 7.26, but Figures 7.11 and 7.12 indicate that in some cases, dynamic load

balancing using the techniques still results in performance improvements in rapidly changing environments.

7.7. SUMMARY 183

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

n
o

rm
al

iz
ed

 v
al

u
e

0 20 40 60 80 100 120 140 160 180
time (seconds)

Work
Raw rate

Figure 7.26: Measured performance and resulting work allocation on loaded slave for 1000 � 1000 SOR
(40 iterations) running on a 4 slave system with an oscillating load (period = 2 seconds, duration = 1 second)
on one slave.

7.7 Summary

In this chapter, we presented data collected for the SOR and MM applications run on the Nectar system

under different load conditions. The efficiency in using available resources is the primary measure of

performance used to evaluate and compare different runs. We compared performance with dynamic load

balancing to performance with a static, equal distribution of work. Runs in a dedicated homogeneous

environment showed that overhead added by load balancing is small and within the bounds expected with

our method of frequency selection (i.e, approximately 5% overhead, from Chapter 4). Runs with a constant

load on one of the processors showed that load is redistributed correctly and improves performance; the

efficiency is approximately the same as in the dedicated homogeneous environment. In more dynamic

environments, with an oscillating load on one of the processors, the performance improvements with

dynamic load balancing were smaller, and in some cases the performance dropped. For the MM example,

the parallelization efficiency was improved by load balancing in almost every case, but there still seems to

be room for significant improvement. For the SOR examples, load balancing was much less effective and

actually decreased performance in many of the environments.

To identify causes of inefficiency, we modeled the efficiency of our dynamic load balancing system

for systems with an oscillating load on one processor. For the MM example, both the work movement

costs and the delay in responding to changes in loads contributed to the inefficiency. However, for SOR,

work movement costs were the dominant factor. In our load balancing system, the work movement costs

increase with the size of the distributed data, so the larger data sizes used for the SOR example account for

part of its higher work movement costs. In addition, for applications with restricted work movement, like

184 CHAPTER 7. EVALUATION

SOR, intermediate processors are involved in moving work. In Section 5.5.2, we presented an algorithm

which maximized parallelism in work movement, but in our implementation, we were unable to obtain the

parallelism due to poor flow control in the network. Because the work is not shifted through the processors

in parallel, the work movement costs in the model must be scaled by a factor approximately proportional

to the number of processors (i.e., O(P)), and performance drops as the number of processors is increased.

With parallel work movement, however, performance increases as processors are added because the time

for the work movement is approximately proportional to 1
P

. This highlights the importance of parallelism

in moving work and the need for good flow control in the network to make implementing the parallel

movement possible (without significant effort).

We compared the model of dynamic load balancing performance with the measurements on the Nectar

system. The model matches the measurements when the competing load has a low oscillation period,

but for higher frequency load changes, especially for applications with high work movement costs, the

model produces lower efficiencies than the measurements due to the effects of the imbalance detection and

profitability determination optimizations not included in the model. These optimizations were successful in

reducing work movement costs, but did not always reduce the costs enough to result in net improvements

in performance for dynamic load balancing compared with a static, equal distribution of work. Further

investigation of optimizations to reduce work movement costs is needed.

Chapter 8

Conclusions

Parallelizing compilers for networks of processors that are shared with other users must generate efficient

code that supports dynamic load balancing. In this thesis we presented an architecture for a system that

supports the automatic generation of parallel programs with dynamic load balancing. In our system the

parallelizing compiler generates code that includes calls to a run-time load balancer. The load balancer

generates work movement instructions taking into account application-specific features so that data locality

and data reuse are maximized to minimize communication costs. The target application domain for the

compiler is applications consisting of parallelized DOALL and DOACROSS loops. We described how the

compiler and runtime system cooperate to automatically select parameters for dynamic load balancing and

control of grain size. We implemented a runtime system and described the additional code the compiler must

generate to support load balancing. Performance measurements based on two hand-parallelized applications

showed that dynamic load balancing can be effective in improving parallelization efficiency and reducing

execution time of applications in an environment with an oscillating load on one processor. However,

performance of dynamic load balancing is limited by the cost of work movement and the delay in reaction

to changing loads, especially for applications with large distributed data sizes.

8.1 Contributions

This thesis demonstrated the feasibility of having a parallelizing compiler generate efficient code that

supports dynamic load balancing on a network workstations. Application-specific knowledge provided to

185

186 CHAPTER 8. CONCLUSIONS

the runtime system by the compiler is used to aid in load balancing decisions so that load balancing can be

effective and have low overhead.

Dynamic loop scheduling. This thesis described a new approach to load balancing for automatically

parallelized applications on networks of workstations. Most prior approaches for scheduling of loop

iterations do not fully exploit locality in application programs, but our approach, by retaining the structure

of the application code and considering dependences in the code, improves data reuse and reduces the need

for communication. Also, our load balancing system automatically adjusts to the characteristics of the

application and target environment to maximize performance. In the thesis we identified and addressed

several performance issues, including grain size, load balancing frequency, the load balancing interaction

cost, and the cost of work movement. We demonstrated our approach with an implementation of a load

balancing runtime system, and we evaluated the performance of two hand-coded applications with load

balancing running in several environments. To evaluate the performance of programs with dynamic load

balancing, we designed an efficiency measure appropriate for a dynamic, heterogeneous environment. We

also presented a model for predicting the performance of a load balanced application in an environment

with an oscillating load on one processor; the model is consistent with our measurements.

Grain size on a loosely-coupled, shared system. For good performance on a distributed system, an

application must have an appropriate grain size. We described and demonstrated a method for selecting

the optimal grain size for DOACROSS loops based on both communication costs and parallelism. The

compiler and runtime system cooperate in selecting and controlling the grain size. At run time, grain size

is controlled by setting the block size of a strip-mined loop. A similar method for selecting grain size is

used in the Fortran D compiler [26], but with a less flexible method of estimating the computation and

communication costs for the application [23]. However, most previous methods for controlling grain size

[61, 65] only consider communication costs. Because our target system may have competing loads, grain

size may interact with the scheduling of processes by the operating system. We simulated this interaction

and found that it has little effect on the performance of pipelined, DOACROSS loops, but, for parallel,

DOALL loops, grain size should be as large as possible to maximize and stabilize performance.

8.2. AREAS FOR FUTURE WORK 187

Load balancing algorithms. Several of the ideas and techniques developed in this work can be used in

other load balancing systems. Our idea of using computation rate as a measure for comparing performance

on a dynamic, heterogeneous set of processors has been proposed before [40, 41], but we have introduced

ideas from control theory and signal processing, such as sampling frequency and filtering, to eliminate

undesirable fluctuations in the performance measurements, resulting in better total performance for the load

balanced application. We also described a method for quantifying load imbalance based on our performance

measure (or any other measure that quantifies the relative capabilities of the different processors) and the

current work distribution; this measure can be used to decide when load balancing should be performed.

Parallelizing compilers. We described the modifications to a parallelizing compiler needed to support

dynamic load balancing. Many of the necessary changes are due to having to deal with dynamic, irregular

data distributions. We described data structures that can be used to manage such distributions with various

application requirements and in different environments. We also described how communication code must

be modified to deal with the dynamic distributions.

8.2 Areas for future work

This work described the features that are needed in a parallelizing compiler to support dynamic load

balancing. The next step is to incorporate the features into a parallelizing compiler so that many more

applications can be run and evaluated with our load balancing system. Since the prototype Nectar system

[3] has been decommissioned (R.I.P., JUNE 29, 1994), the runtime system should be reimplemented on

a newer architecture, using a more portable message-passing interface, such as PVM [63] or MPI [19].

Because these interfaces are more portable, however, we expect communication latencies to be much higher

than with Nectarine [57], which was designed specifically for Nectar. The automatic calibration features

of our load balancing system, e.g., for grain size and frequency control, should be very helpful in moving

between different machines once the runtime system has been made more portable.

A shortcoming of our current load balancing model is that the cost of work movement is proportional

to the size of the distributed data structures; the unit of work movement is an entire slice of the distributed

data. Because of this problem, with load balancing, the performance of 2000 � 2000 (10 iterations) SOR

was much worse than that of 1000 � 1000 (40 iterations) SOR, even though both problems require the

188 CHAPTER 8. CONCLUSIONS

same amount of computation. This problem must be addressed for our load balancing approach to be more

generally applicable. Tiling of the iteration space may help reduce the problem, although the data structures

may become much more complicated and difficult to manage.

Our system relies heavily on its ability to predict future performance (i.e., computation rates) on each

of the slaves. This is an area where there is much room for improvement. Further investigation of control

theory and signal processing techniques may provide more effective ways of selecting sampling frequencies

(load balancing frequencies) and of filtering raw performance data so that load balancing is more effective in

reducing the execution time of parallelized applications. A more general model for predicting performance

with dynamic load balancing should be derived, possibly based on techniques from control theory.

Automatic selection of grain size is a very useful technique for distributed systems. For DOACROSS

loops, the technique we described for selecting the optimal grain size (also discussed in [26] and [27])

should be expanded to handle tiled loops. If the compiler provides the runtime system with simple models

of the computation and communication in a DOACROSS loop nest and sets up code for calibrating costs,

the runtime system should be able to select an appropriate grain size for the loop. Also, techniques for

controlling grain size for DOALL loops, e.g., using loop interchange, should be investigated.

Our work in this thesis addressed load balancing of a single loop nest distributed in a single dimension.

Although many applications consist of one or more phases, each containing a single loop nest that can be

load balanced independently (e.g., Gaussian elimination can be performed using LU decomposition, forward

substitution, and back substitution), some applications may also have sections where multiple loop nests

interact and share distributed data. The execution of loop nests could alternate so that load balancing of one

nest could undo the load balancing of the other. If applications with this type of structure are common, this

problem should be investigated and addressed.

For some loop nests, more parallelism may be available with multidimensional distributions so incor-

porating load balancing approaches for multidimensional distributions into a parallelizing compiler should

also be investigated. A dimensional exchange approach [70, 72], in which balancing is done successively

in each dimension, is an obvious choice for balancing of multidimensional distributions.

We presented several techniques for preventing the central load balancer from becoming a bottleneck

for the application: we use efficient algorithms in the load balancer, select the load balancing frequency to

keep the load balancing overhead low, and pipeline the interactions between the slaves and the load balancer.

8.2. AREAS FOR FUTURE WORK 189

As the number of processors becomes very large, the load balancer will not become a bottleneck because

the system will reduce the frequency of load balancing to compensate for the higher load balancing costs.

However, reducing the load balancing frequency makes the load balancer less responsive. To address this

problem, the load balancer should be distributed, and the cost of performance collection should be reduced.

Since we have made the “central load balancer” an abstract entity from the point of view of the slaves, it

should be possible to distribute the load balancer without changing the slaves’ view of the system.

190 CHAPTER 8. CONCLUSIONS

Bibliography

[1] D. Adams. Cray T3D system architecture overview. Revision 1.C. Cray Research Inc., September,
1993.

[2] John R. Allen and Ken Kennedy. Automatic Loop Interchange. In Proceedings of the ACM SIGPLAN
’84 Symposium on Compiler Construction, pages 233–246, Montreal, Canada, June 17–22, 1984.
ACM Special Interest Group on Programming Languages.

[3] Emmanuel Arnould, Francois Bitz, Eric Cooper, H. T. Kung, Robert Sansom, and Peter Steenkiste.
The Design of Nectar: A Network Backplane for Heterogeneous Multicomputers. In ASPLOS-III
Proceedings, pages 205–216. ACM/IEEE, April, 1989.

[4] Maurice J. Bach. The Design of the Unix Operating System. Prentice Hall Software Series. Prentice-
Hall, Inc., Englewood Cliffs, New Jersey 07632, 1986.

[5] Vasanth Balasundaram, Geoffrey Fox, Ken Kennedy, and Ulrich Kremer. A Static Performance
Estimator to Guide Data Partitioning Decisions. In Third ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 213–223, Williamsburg, VA, April, 1991. ACM Press.

[6] Richard Ernest Bellman. Adaptive Control Processes: a Guided Tour. Princeton University Press,
Princeton, NJ, 1961.

[7] Shekhar Borkar, Robert Cohn, George Cox, Sha Gleason, Thomas Gross, H. T. Kung, Monica Lam,
Brian Moore, Craig Peterson, John Pieper, Linda Rankin, P. S. Tseng, Jim Sutton, John Urbanski,
and Jon Webb. iWarp: An integrated solution to high-speed parallel computing. In Proceedings of
Supercomputing ’88, pages 330–339, Orlando, FL, November 14–18, 1988. IEEE Computer Society
and ACM SIGARCH.

[8] D. Callahan. Recognizing and Parallelizing Bounded Recurrences. In U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, editors, Languages and Compilers for Parallel Computing. Fourth Inter-
national Workshop., pages 169–185, Santa Clara, CA, August 7–9, 1991. Springer-Verlag.

[9] David Callahan and Ken Kennedy. Compiling Programs for Distributed-Memory Multiprocessors.
Journal of Supercomputing, 2(2):151–169, October, 1988.

[10] Thomas L. Casavant and Jon G. Kuhl. A Taxonomy of Scheduling in General-Purpose Distributed
Computing Systems. IEEE Trans. on Software Engineering, 14(2):141–154, February, 1988.

191

192 BIBLIOGRAPHY

[11] B. Chapman, H. Zima, and P. Mehrotra. Handling Distributed Data in Vienna Fortran Procedures. In
Languages and Compilers for Parallel Computing. 5th International Workshop Proceedings., pages
248–263, New Haven, CT, August, 1992. Springer-Verlag.

[12] Computer Systems Research Group, Computer Science Division, Department of Electrical Engineering
and Computer Science, University of California, Berkeley, CA 94720. UNIX Programmer’s Reference
Manual (PRM), 4.3 berkeley software distribution edition, April, 1986.

[13] Eric Cooper, Onat Menzilcioglu, Robert Sansom, and Francois Bitz. Host Interface Design for
ATM LANs. In Proceedings of the 16th Conference on Local Computer Networks, pages 247–258,
Minneapolis, MN, October 14–17, 1991. IEEE Computer Society Press.

[14] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. The MIT
Electrical Engineering and Computer Science Series. The MIT Press (McGraw-Hill Book Company),
Cambridge, MA, 1990.

[15] Ron Cytron. Doacross: Beyond Vectorization for Multiprocessors (Extended Abstract). In Kai Hwang,
Steven M. Jacobs, and Earl E. Swartzlander, editors, Proceedings of the 1986 International Conference
on Parallel Processing, pages 836–844, University Park, PA, August 19–22, 1986. IEEE Computer
Society Press.

[16] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, 1979.

[17] Allan L. Fisher and Anwar M. Ghuloum. Parallelizing Complex Scans and Reductions. In Proceedings
of the ACM SIGPLAN ’94 Conference on Programming Language Design and Implementation, pages
135–146, Orlando, FL, June 20–24, 1994. ACM Press.

[18] Jon Flower and Adam Kolawa. Express is not just a message passing system: Current and future
directions in Express. Parallel Computing, 20(4):597–614, April, 1994.

[19] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Technical report,
University of Tennessee, Knoxville, TN, May, 1994.

[20] Gene F. Franklin, J. David Powell, and Michael L. Workman. Digital Control of Dynamic Systems.
Addison-Wesley Series in Electrical and Computer Engineering: Control Engineering. Addison-
Wesley Publishing Company, Reading, MA, 1990.

[21] Christopher Giertsen and Johnny Petersen. Parallel Volume Rendering on a Network of Workstations.
IEEE Computer Graphics and Applications, 13(6):16–23, November, 1993.

[22] R. W. Hamming. Digital Filters (Second Edition). Prentice-Hall Signal Processing Series. Prentice-
Hall, Inc., Englewood Cliffs, New Jersey 07632, 1983.

[23] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C.-W. Tseng. An Overview of the Fortran
D Programming System. In U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors, Languages
and Compilers for Parallel Computing. Fourth International Workshop., pages 18–34, Santa Clara,
CA, August 7–9, 1991. Springer-Verlag.

BIBLIOGRAPHY 193

[24] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler Support for Machine-Independent
Parallel Programming in Fortran D. In J. Saltz and P. Mehrotra, editors, Languages, Compilers, and
Run-Time Environments for Distributed Memory Machines, Amsterdam, The Netherlands, 1992.
Elsevier Science Publishers B. V. (North-Holland).

[25] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMD Distributed-
Memory Machines. Communications of the ACM, 35(8):66–80, August, 1992.

[26] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Evaluation of Compiler Optimizations
for Fortran D on MIMD Distributed-Memory Machines. In Proceedings of the 1992 International
Conference on Supercomputing, pages 1–14, Washington, DC, July 19–23, 1992.

[27] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Evaluating Compiler Optimizations for
Fortran D. Journal of Parallel and Distributed Computing, 21(1):27–45, April, 1994.

[28] Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn. Factoring: A Practical and Ro-
bust Method for Scheduling Parallel Loops. In Supercomputing ’91 Proceedings, pages 610–619,
Albuquerque, NM, November 18–22, 1991. IEEE Computer Society Press.

[29] Ken Kennedy and Kathryn S. McKinley. Optimizing for Parallelism and Data Locality. In Proceedings
of 1992 International Conference on Supercomputing, pages 323–334, Washington, DC, July 19–23,
1992. ACM Press.

[30] C.-C.J. Kuo and T. F. Chan. Two-color Fourier analysis of iterative algorithms for elliptic problems
with red/black ordering. SIAM Journal on Scientific and Statistical Computing, 11(4):767–793, July,
1990.

[31] Richard E. Ladner and Michael J. Fischer. Parallel Prefix Computation. Journal of the Association for
Computing Machinery, 27(4):831–838, October, 1980.

[32] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman. The Design
and Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley Series in Computer
Science. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1989.

[33] Hui Li, Sudarsan Tandri, Michael Stumm, and Kenneth C. Sevcik. Locality and Loop Scheduling on
NUMA Multiprocessors. In Proceedings of the 1993 International Conference on Parallel Processing,
pages II-140–II-147. CRC Press, Inc., August, 1993.

[34] Frank C. H. Lin and Robert M. Keller. The Gradient Model Load Balancing Method. IEEE Trans. on
Software Engineering, SE-13(1):32–38, January, 1987.

[35] David B. Loveman. Program Improvement by Source-to-Source Transformation. Journal of the
Association for Computing Machinery, 24(1):121–145, January, 1977.

[36] Steven Lucco. A Dynamic Scheduling Method for Irregular Parallel Programs. In Proceedings of
the ACM SIGPLAN ’92 Conference on Programming Language Design and Implementation, pages
200–211, San Francisco, CA, June, 1992. ACM Press.

194 BIBLIOGRAPHY

[37] Evangelos P. Markatos and Thomas J. LeBlanc. Using Processor Affinity in Loop Scheduling on
Shared-Memory Multiprocessors. In Proceedings of Supercomputing ’92, pages 104–113, Minneapo-
lis, MN, November 16–20, 1992. IEEE Computer Society Press.

[38] Evangelos P. Markatos and Thomas J. LeBlanc. Using Processor Affinity in Loop Scheduling on
Shared-Memory Multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 5(4):379–
400, April, 1994.

[39] S. Mohan and Pinaki Mazumder. Wolverines: Standard Cell Placement on a Network of Workstations.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 12(9):1312–26,
September, 1993.

[40] Nenad Nedeljković and Michael J. Quinn. Data-Parallel Programming on a Network of Heterogeneous
Workstations. In Proc. of the First Int’l Symposium on High-Performance Distribution Computing,
pages 28–36. IEEE Computer Society Press, September, 1992.

[41] Hiroshi Nishikawa and Peter Steenkiste. A General Architecture for Load Balancing in a Distributed-
Memory Environment. In Proceedings of the 13th International Conference on Distributed Computing
Systems, pages 47–54, Pittsburgh, PA, May, 1993. IEEE, IEEE Computer Society Press.

[42] David A. Padua, David J. Kuck, and Duncan H. Lawrie. High-Speed Multiprocessors and Compilation
Techniques. IEEE Trans. on Computers, C-29(9):763–776, September, 1980.

[43] David A. Padua and Michael J. Wolfe. Advanced Compiler Optimizations for Supercomputers.
Communications of the ACM, 29(12):1184–1201, December, 1986.

[44] Douglas M. Pase, Tom MacDonald, and Andrew Meltzer. MPP Fortran Programming Model.
Technical report, Cray Research, Inc., 655F Lone Oak Drive, Eagan, Minnesota 55121, May
19, 1994. Internal document. Available on World Wide Web as “ftp://ftp.cray.com/product-
info/program env/program model.html”.

[45] Constantine D. Polychronopoulos. Toward Auto-scheduling Compilers. The Journal of Supercomput-
ing, 2(3):297–330, 1988.

[46] Constantine D. Polychronopoulos and David J. Kuck. Guided Self-Scheduling: A Practical Scheduling
Scheme for Parallel Supercomputers. IEEE Trans. on Computers, C-36(12):1425–1439, December,
1987.

[47] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes
in C – The Art of Scientific Computing. Cambridge University Press, Cambridge, 1988.

[48] Michael J. Quinn and Philip J. Hatcher. Data-Parallel Programming on Multicomputers. IEEE Software,
7(5):69–76, September, 1990.

[49] K. K. Ramakrishnan. Performance Considerations in Designing Network Interfaces. IEEE Journal on
Selected Areas in Communications, 11(2):203–219, February, 1993.

BIBLIOGRAPHY 195

[50] Xavier Redon and Paul Feautrier. Detection of Recurrences in Sequential Programs with Loops. In
Arndt Bode, Mike Reeve, and Gottfried Wolf, editors, PARLE ’93 Parallel Architectures and Lan-
guages Europe. 5th International PARLE Conference Proceedings, pages 132–145, Munich, Germany,
June 14–17, 1993. Springer-Verlag.

[51] John R. Rose and Guy L. Steele Jr. C�: An Extended C Language for Data Parallel Programming.
In Proceedings for the Second International Conference on Supercomputing, Volume 2, pages 2–16,
May, 1987.

[52] M. Rosing, R. B. Schnabel, and R. P. Weaver. The Dino parallel programming language. Journal of
Parallel and Distributed Computing, 13(1):30–42, September, 1991.

[53] Robert Schreiber and Jack J. Dongarra. Automatic Blocking of Nested Loops. Technical Report
CS-90-108, Computer Science Department, University of Tennessee, 107 Ayres Hall, Knoxville, TN
37996-1301, May, 1990.

[54] Bruce S. Siegell and Peter Steenkiste. Automatic Generation of Parallel Programs with Dynamic
Load Balancing. In Proceedings of the Third IEEE Symposium on High Performance Distributed
Computing, pages 166–175, San Francisco, CA, August 2–5, 1994. IEEE Computer Society Press.

[55] Steve Sistare and Mark Friedell. A Distributed System for Near-Real-time Display of Shaded Three-
Dimensional Graphics. In Proceedings. Graphics Interface ’89, pages 283–90, London, Ontario,
Canada, June 19–23, 1989. Canadian Man-Computer Communication Society, Morgan Kaufmann
Publishing, Palo Alto, CA.

[56] Otto Joseph Mitchell Smith. Feedback Control Systems. McGraw-Hill Series in Control Systems
Engineering. McGraw-Hill, New York, NY, 1958.

[57] Peter Steenkiste. Nectarine - A Nectar Interface. School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213, May 14, 1991. Internal Document.

[58] Peter A. Steenkiste. A Systematic Approach to Host Interface Design for High-Speed Networks.
Computer, 27(3):47–57, March, 1994.

[59] Peter A. Steenkiste, Brian D. Zill, H. T. Kung, Steven J. Schlick, Jim Hughes, Bob Kowalski,
and John Mullaney. A Host Interface Architecture for High-Speed Networks. IFIP Transactions C
(Communication Systems), C-14:31–46, 1993. 4th IFIP Conference on High Performance Networking,
Liege, Belgium, December, 1992.

[60] James M. Stichnoth. Efficient Compilation of Array Statements for Private Memory Multicomput-
ers. Technical Report CMU-CS-93-109, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, February, 1993.

[61] Pieter Struik. Techniques for Designing Efficient Parallel Programs. In Wouter Joosen and Elie
Milgrom, editors, Parallel Computing: From Theory to Sound Practice, pages 208–211. IOS Press,
1992.

196 BIBLIOGRAPHY

[62] Jaspal Subhlok, James M. Stichnoth, David R. O’Hallaron, and Thomas Gross. Exploiting Task
and Data Parallelism on a Multicomputer. In Fourth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 13–22, San Diego, CA, May, 1993.

[63] V. S. Sunderam. PVM: A Framework for Parallel Distributed Computing. Concurrency - Practice and
Experience, 2(4):315–339, December, 1990.

[64] Peiyi Tang and Pen-Chung Yew. Processor Self-Scheduling for Multiple-Nested Parallel Loops. In Kai
Hwang, Steven M. Jacobs, and Earl E. Swartzlander, editors, Proceedings of the 1986 International
Conference on Parallel Processing, pages 528–535, University Park, Pennsylvania, August, 1986.
IEEE Computer Society Press.

[65] Peiyi Tang and John N. Zigman. Reducing Data Communication Overhead for DOACROSS Loop Nests.
In 1994 International Conference on Supercomputing Conference Proceedings, pages 44–53. ACM
SIGARCH, ACM Press, July, 1994.

[66] Thinking Machines Corporation, Cambridge, MA. Connection Machine CM-5 Technical Summary,
November, 1992.

[67] Ping-Sheng Tseng. A Parallelizing Compiler for Distributed Memory Parallel Computers. Ph.D.
Thesis CMU-CS-89-148, ECE Department, Carnegie Mellon University, May, 1989.

[68] Ping-Sheng Tseng. Compiling Programs for a Linear Systolic Array. In Proceedings of the ACM
SIGPLAN ’90 Conference on Programming Language Design and Implementation, pages 311–321,
White Plains, NY, June, 1990. ACM Press.

[69] Ten H. Tzen and Lionel M. Ni. Trapezoid Self-Scheduling: A Practical Scheduling Scheme for Parallel
Compilers. IEEE Trans. on Parallel and Distributed Systems, 4(1):87–98, January, 1993.

[70] Reinhard v. Hanxleden and L. Ridgway Scott. Load Balancing on Message Passing Architectures.
Journal of Parallel and Distributed Computing, 13(3):312–324, November, 1991.

[71] Yung-Terng Wang and Robert J. T. Morris. Load Sharing in Distributed Systems. IEEE Trans. on
Computers, C-34(3):204–217, March, 1985.

[72] Marc Willebeek-LeMair and Anthony P. Reeves. Dynamic Load Balancing Strategies for Highly Par-
allel Multicomputer Systems. Technical Report EE-CEG-89-14, Cornell Univ. Computer Engineering
Group, December, 1989.

[73] Michael E. Wolf and Monica S. Lam. A Data Locality Optimizing Algorithm. In Proceedings of
the ACM SIGPLAN ’91 Conference on Programming Language Design and Implementation, pages
30–44, Toronto, Ontario, Canada, June 26–28, 1991. ACM Press.

[74] Michael E. Wolf and Monica S. Lam. A Loop Transformation Theory and an Algorithm to Maximize
Parallelism. IEEE Transactions on Parallel and Distributed Systems, 2(4):452–471, October, 1991.

[75] Michael Wolfe. Loop Skewing: The Wavefront Method Revisited. International Journal of Parallel
Programming, 15(4):279–293, August, 1986.

BIBLIOGRAPHY 197

[76] Michael Wolfe. Vector Optimization vs. Vectorization. Journal of Parallel and Distributed Computing,
5:551–567, 1988.

[77] Michael Wolfe. More Iteration Space Tiling. Technical Report CS/E 89-003, Oregon Graduate Center
Department of Computer Science and Engineering, 19600 N. W. von Neumann Drive, Beaverton, OR
97006-1999 USA, 1989.

[78] Michael Wolfe. Massive Parallelism through Program Restructuring. In Joseph JaJa, editor, The
3rd Symposium on the Frontiers of Massively Parallel Computation, pages 407–415, University of
Maryland, College Park, MD, October 8–10, 1990. IEEE Computer Society Press.

[79] H. Zima, P. Brezany, B. Chapman, P. Mehrota, and A. Schwald. Vienna Fortran – A Language
Specification Version 1.1. Technical Report ACPC/TR 92-4, Austrian Center for Parallel Computation,
March, 1992.

