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Abstract

The study of complex social and technological systems, such as organizations,
requires a sophisticated approach that accounts for the underlying psycholog-
ical and sociological principles, communication patterns and the technologies
within these systems.

Social Network Analysis and link analysis have since inception operated
on the cutting edge bringing together mathematical analysis of social struc-
tures and qualitative reasoning and interpretation.

As available computing power grew, social network-based models have
become not only an analysis tool, but also a methodology for building new
theories of social behaviour and organizational evolution, frequently through
the creation of simulation models.

This work examines the past approaches of creating Social Network-based
semantically consistent and interpretable models of social structure and social
networks, as well as social simulation tools.

I propose the creation of a multi-theory, multi-level simulation model of
social structure that relies on social network theory and Artificial Intelligence
algorithms. I further propose the creation of a robust and scalable social
structure semantic that facilitates interpretable reasoning about evolution of
social structure.
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Chapter 1

Foreword

The study of complex social and technological systems, such as organizations,
requires a sophisticated approach that accounts for the underlying psycholog-
ical and sociological principles, communication patterns and the technologies
within these systems.

Since inception, Social Network Analysis and link analysis have operated
on the cutting edge bringing together mathematical analysis of social struc-
tures and qualitative reasoning and interpretation.

As available computing power grew, social network-based models have
become not only an analysis tool, but also a methodology for building new
theories of social behaviour and organizational evolution. This was frequently
done through the creation of simulation models that allowed researchers to
test theoretical constructs in a safe and ethical manner. Simulations also
facilitate large-scale experiments and Monte-Carlo simulations - which were
all but impossible in the qualitative analysis world due to cost, time and
ethical constraints.

This work can be though of as three functionally independent, yet inter-
locking parts. Part 1 is centered on issues of simulation of complex organiza-
tional networks in general, and covert terrorist networks in particular. The
simulation methodologies employed draw heavily on lessons learned from a
number of subfields of artificial intelligence - planning, knowledge represen-
tation, design of multi-agent systems, and optimization techniques such as
simulated annealing and randomized search.

Part 2 goes to the source of modern artificial intelligence – symbolic
reasoning and object-oriented knowledge representation – and adapts these
techniques to apply to qualitative machine reasoning on social structure and
social network data. As result of application of AI techniques, I propose a
solution to a long-standing problem of social network analysis — the problem
of representing the multi-faceted and complex world of human interactions
in a consistent, yet flexible way — and defining rigorous metrics that can be
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applied to such data.
Part 3 is essentially an exercise in software engineering. It presents a set

of software tools that address numerous inconsistencies currently present in
treatment of social network data, from the day it is gathered to the day it is
published. The first tool is a design for a common and consistent toolchain
for integration of social network data gathering, analysis, simulation and
visualization tools. Further, I present an XML-based data interchange lan-
guage, which addresses the need for software tools to communicate rich social
network datasets consistently and efficiently. The final tool is an enhanced
SQL database designed specifically for handling, manipulating, merging and
searching massive graph and social network datasets.

While the three parts present work on essentially independent projects,
they carry a common underlying theme: the future of science of social net-
work analysis depends on mining large amounts of attribute-rich, multi-
modal, multi-plex, time-dependent data — and this can be successfully ac-
complished using lessons learned in the field of Artificial Intelligence.

1.0.1 Simulation of Complex Organizational Networks

These problems suggest the need for a new methodological approach. In
chapter 2, I provide an approach based on the use of a multi-agent network
model of the co-evolution of “observer” network (the blue network) and the
“terrorists” (the red network) in which the observers can capture only par-
tial data on the underlying covert network and the covert network evolves
both naturally and in response to attacks by the observers. This approach
builds off of organization theory and social network theory, as well as machine
learning and dynamic network analysis. Specifically, I have developed a com-
putational model of dynamic cellular organizations and used it to evaluate a
number of alternative strategies for destabilization of cellular networks.

Chapter 3 builds upon the findings in social network modelling, multi-
agent system engineering, and artificial intelligence to create an advanced
multi-agent model of terrorist networks and their evolution. I continue to
discuss techniques for sampling communications of a group of agents and
building a network representation of an adversarial team. A number of al-
gorithms and heuristics are tested through a set of virtual experiments, with
results presented. I further outline deficiencies in simple communication sam-
pling strategies such as snowball sampling, and present a new strategy based
on simulated annealing.

1.0.2 Inference in Semantic Social Networks

On March 11, 2004, a series of bombs went off in commuter trains in Madrid.
A few days later, I was poring over printouts of newspaper articles and work-
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ing to extract the network of connections between suspected terrorists, and
link it to the existing data on Al Qaeda that I already possessed. Shortly
into the endeavor, I realized that most of the work I was doing consisted of
consciously throwing away information that was very relevant to the types
of people that were the terrorists, and to the types of connections they had
between each other and to the larger organization. Yet, most of that infor-
mation was not useable — the social network analysis paradigm simply had
no place for qualitative descriptions of nodes and edges. I then attempted
to design a consistent taxonomy of assigning weights to edges depending
on qualitative relationships, and realized that assigning weights to the the
edges was akin to comparing apples and oranges – the relationships were too
different to be encoded on the same numerical scale.

It is there that I realized that social network analysis can benefit from
a means to deal with social relational data in a qualitative, yet machine-
interpretable manner.

Most mathematical analysis and social simulation tools operate on ab-
stract numerical representations of social structures, such as graphs, matrices
and time series. However, the concrete semantics behind these numbers was
frequently only part of the researcher’s mental model. Its communication
to the outside world was largely a function of the researcher’s writing skills.
This, and the level of abstraction required by early computer models has
resulted in datasets and models that are very difficult to interpret, especially
by non-specialists.

In chapter 5, I describe creation of a language for modelling the semantics
behind social networks. The language incorporates object-oriented semantics
for expressing knowledge about complex social networks and builds upon
this semantics to create a robust system for searching and inference in social
networks.

A semantic approach to social network analysis essentially attempts to
capture and recreate qualitative reasoning in a machine-driven context. This
is done through modeling social networks as collections of interdependent
objects. Each of the objects is defined as a semantic term — i.e., contains
not only the data but also rules and methods for interpretation of the data.

The chief advantage of taking a semantic approach to reasoning about
social networks is the ability to consistently describe the interactions of nodes
and edges in multi-modal and multi-plex networks. Since the differences
of node edge types in such networks are semantic in nature, the semantic
encoding of the network structure allows the user to resolve combinatorial
closures across edge types, and decompose complex interactions into sets or
sequences of simpler ones.

For example, a long-standing problem in the field of social network analy-
sis concerns integration of data in a dual-mode network, incorporating friend-
ship and advice links. At this point, the notion of centrality in such a network
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is undefined both mathematically and semantically. However, by decompos-
ing the notions of friendship and advice into more basic semantic notions of
information transfer, affinity, respect and authority, a NetInference ontology
can be constructed to analyze the dual-mode network as a unit.

1.0.3 Enabling Technologies

To complete large-scale projects using sets of disparate tools such as data
collection, simulation, analysis and visualization software, an issue of software
interoperability must be addressed. Chapters 7 and 8 introduce the notions of
software toolchain and interoperability enhancing data interchange language.
Chapter 9 describes a relational database system used for accumulating large
datasets consisting of rich social network data.
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Artificial Intelligence and
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Chapter 2

NetWatch: Simulating and Reasoning
about Dynamic Covert Networks

Know your enemy and know
yourself; in a hundred battles,
you will never be defeated.

Sun Tzu, “The Art of War”,6th
cent. B.C.

2.1 Background

For reasons of national security it is important to understand the properties
of terrorist organizations that make such organizations efficient and flexible.
Based on this understanding, strategies can be devised to destabilize such
organizations or curtail their efficiency, adaptability, and ability to move
knowledge and resources. The assessment of destabilization strategies poses
a number of key challenges. What does the underlying organization look
like? Does it evolve? How can the evolution of its structure be mapped
through observation? What strategies could be used to destabilize such an
organization? In this chapter, I provide an approach to assessing destabi-
lization strategies that draws on work in organization science, knowledge
management and computer science.

Terrorist organizations are often characterized as cellular — composed
of quasi-independent cells and featuring a distributed chain of command.
This is a non-traditional organizational configuration; hence, much of the
knowledge in traditional organizational theory, particularly that focused on
hierarchies or markets, is not directly applicable. Some lessons can be learned
from previous work on distributed and decentralized organizations. This
work demonstrates that such structures are often adaptive, useful in a volatile
environment, and capable of rapid response [Lin and Carley, 2003][Lawrence
and Lorsch, 1967]. In other words, one should expect terrorist organizations
to adapt, and adapt rapidly.

Organizational form or structural design profoundly influences its perfor-
mance, adaptability, and ability to move information [Baligh, Burton, and
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Obel, 1990]. It follows that organizations can be destabilized by altering their
structure. One caveat being that organizations, particularly more distributed
and decentralized ones, evolve continuously [Aldrich, 1999].

Terrorist organizations are often characterized as dynamic networks where
the connections among personnel define the nature of that evolution. This
suggests that social network analysis will be useful in characterizing the un-
derlying structure and in locating vulnerabilities in terms of key actors. Un-
fortunately, the dynamic nature of these networks makes it unclear whether
the actors identified as key using standard network analysis will remain key
long enough for destabilization tactics based on standard network analysis
to be effective.

A further complication relates to the fact that the only way to obtain
information about terrorist networks is by gathering intelligence — via signal
interception (SIGINT) or human intelligence (HUMINT) means. By their
nature, SIGINT and HUMINT techniques provide incomplete and frequently
inaccurate data, and the heuristics for learning shapes of covert networks
need to take this uncertainty into account. A cost factor is present as well
- each piece of information comes with a price and it would be prudent to
maximize its utility.

Organizations evolve as they face unanticipated changes in their envi-
ronment, along with rapidly evolving technologies and intelligent, adaptive
opponents. Over the past decade, progress has been made in understanding
the set of factors that enable adaptation and partially validated models of
adaptive networks now exist [Carley, 2002a]. A key result is that in the
short run, there appears to be a tradeoff between adaptivity and extremely
high performance in organizations [Carley and Ren, 2001].

Since the destabilization of terrorist networks could inhibit their ability
to effect harm, there is a profound need for an approach that would allow
researchers to reason about dynamic cellular networks and evaluate the po-
tential effect of destabilization strategies. To be useful, such an approach
must account for the natural evolution of cellular networks. This situation is
further complicated by the fact that the information available on the terrorist
network is liable to be incomplete and possibly erroneous. Hence, destabi-
lization strategies need to be compared and contrasted in terms of their ro-
bustness under varying levels and types of information error. In other words,
it would be misleading to judge destabilization strategies in terms of their
impact on a static network [Carley, Lee, and Krackhardt, 2002].

In this chapter, I provide an approach based on the use of a multi-agent
network model of the co-evolution of the “observer” network (the blue net-
work) and the “terrorists” (the red network) in which the observers can
capture only partial data on the underlying covert network and the covert
network evolves both naturally and in response to attacks by the observers.
This approach builds off organization theory and social network theory, as
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well as machine learning and dynamic network analysis. Specifically, I have
developed a computational model of dynamic cellular organizations and have
used it to evaluate a number of alternative strategies for destabilization of cel-
lular networks. A detailed description of the design decisions and techniques
that comprise the NetWatch methodology can be found in chapter 3.

It is important at the outset to note that this examination of destabiliza-
tion strategies is highly exploratory. I make no claims that the examination
of destabilization strategies is comprehensive, nor that the types of “error”
in the data that intelligence agencies can collect is completely described.
Further, our estimate of the structure of the covert network is based on pub-
licly available data much of which is qualitative and requires interpretation.
This work should therefore be read as a study in the power of an empirically
grounded simulation approach and a call for future research.

I restrict my analysis to a structural or network analysis and focus on what
the covert network looks like, how its structure influences its performance and
its ability to pass information, how it evolves, and how its path of evolution
can be altered (its behavior destabilized) through interventions focused on the
nodes. Admittedly, in this complex arena there are many other factors that
are critical but they are beyond the scope of this study. Thus, from a straight
social network perspective, this study suggests the types of methodological
issues that will emerge when working with dynamic large scale networks
under uncertainty.

To ground the ideas modelled by NetWatch, a short case description of
Al Qaeda is provided with the focus on the network structure. This is fol-
lowed by a discussion of the intelligence agencies engaged in anti-terrorist
activity and their intelligence-gathering methodologies. My intent here is to
demonstrate, at a fairly high level, the context and the resultant information
and modelling problems and not provide a full analysis for intelligence or
military operations. As good science often emerges from attacking hard real
world problems we are trying to provide sufficient detail to understand the
basis for the problems that research must address rather than simply provide
a high theoretical description of general data problems. This is followed by a
brief discussion of the applicability of traditional social network analysis and
the need to take a dynamic network perspective. I then describe a compu-
tational model of terrorist organizations as dynamic evolving networks and
anti-terrorist bodies with emphasis on their information collection and desta-
bilization strategies. A virtual experiment used to examine destabilization
strategies and the results are then discussed.
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2.2 Covert Terrorist Networks - the Al Qaeda

Terrorism is a modus operandi through which targeted violence is used
against non-combatants in order to achieve political objectives or strate-
gic goals [Ruby, 2002]. Terrorist organizations can be classified as state-
sponsored or extra-national. State-sponsored terrorist organizations receive
direct support from their host countries. This support can manifest in var-
ious ways: financial aid to terrorists or terrorist organizations, training of
terrorist operatives, up to direct involvement of governmental units of the
state in terrorist attacks. Often such organizations serve as extensions of the
intelligence or secret service agencies of the host countries.

Activity of such organizations can often be effectively curtailed by po-
litical or military pressure upon the sponsoring countries. State-sponsored
organizations that receive direct assistance from the sponsor states also tend
to be organized in a hierarchical fashion similar to the rank structure of the
supporting army and essentially comprises an extension of one — and can
be fought with traditional military techniques.

Extra-national terrorist groups generally serve to advance the interests
of their leaders or direct backers (whether political, religious or commercial)
and span multiple nations in their search for operatives and resources. They
may enjoy support of one or several states whose political agendas coincide
with the goals of the organization - but ultimately are not dependent on
state support due to their ability to find independent financial backing from
wealthy sympathizers. Generally such groups are structured in a way similar
to organized crime syndicates and employ networks of quasi-independent
cells scattered through the operational region of the organization as well as
other countries that could be used as resource bases, recruiting and training
centers.
Al Qaeda, arabic for “The Base”, is the largest known extra-national

terrorist organization. In 2002, it was estimated to have the support of six
to seven million radical Muslims worldwide, of which 120,000 are willing to
take up arms [Gunaratna, 2002]. Its reach is global with outposts reported in
Europe, Middle East, East Asia and both Americas. In the Islamic world, its
task is to purify societies and governments according to a strict interpretation
of the Koran and to use religion as a unification force for the creation of an
Islamic superpower state.

In the non-Islamic world, its task is to compel governments to withdraw
their cultural influences and military ties from the Islamic world. While Al
Qaeda enjoys support of wealthy individuals in a number of countries, it
does not have direct support of any government. The Taliban government of
Afghanistan directly supported Al Qaeda by allowing them to create train-
ing centers and bases on their territory. The involvement of the Afghan
government was not crucial for the strength of the Al Qaeda organization.

9



In fact, the relationship between al Qaeda and the Taliban was more of an
exchange with the Taliban hosting the training bases and recruiting centers
and Al Qaeda providing the Taliban with trained soldiers and officers as well
as serving as a domestic security service within the country [Berry, 2001].

As Goolsby[Goolsby, 2003] stated, Al Qaeda extends its reach and re-
cruits new member cells via the adoption of local Islamic insurgency groups.
Beginning with provision of operational support and resources to facilitate
growth, Al Qaeda representatives work to transform an insurgency group
such as Jemaah Islamiyya (Indonesia) from a group seeking political change
to a full-fledged terrorist organization executing multi-casualty attacks such
as the Bali bombing in 2002[Group, 2002].

Al Qaeda’s global network, as we know it today, was created while it was
based in Khartoum, from December 1991 to May 1996. To coordinate its
overt and covert operations as Al Qaeda’s ambitions and resources increased,
it developed a decentralized, regional structure. Al Qaeda pursues its objec-
tives through a network of cells, associate terrorist and guerilla groups and
other affiliated organizations. For instance, the Sudanese, Turkish and Span-
ish nodes ran clandestine military activities in Europe and North America.

The worldwide cells appear to have no formal structure and no hierarchy.
Assignments are often carried out by individuals and small groups designated
for the purpose as “the person responsible”. The regional nodes appear not
to have a fixed location and move quickly when dictated by the political
situation in the region. Al Qaeda operatives share expertise, provide re-
sources resources, discuss strategy and eventually conduct joint operations
with regional terrorist groups.

Although themodus operandi of Al Qaeda is cellular, familial relationships
play a key role. As an Islamic cultural and social network, Al Qaeda members
recruit from among their own nationalities, families and friends. What gives
Al Qaeda its global reach is its ability to appeal to Muslims irrespective
of their nationality, enabling it to function in East Asia, Russia, Western
Europe, Sub-Saharan Africa and North America with equal facility.

Unlike conventional military forces which are hierarchical and centralized,
terrorist militant units are generally small, geographically dispersed and, at
the first glance, disorganized. Nevertheless, they have been able to effectively
counter much larger conventional armies. Large terrorist organizations oper-
ate in small, dispersed cells that can deploy anytime and anywhere [Ronfeldt
and Arquilla, 2001]. Dispersed forms of organization allow these networks to
operate elusively and secretly.

The apparent structure of the Al Qaeda is not exclusive to such militant
or terrorist groups. Indeed, they bear a familiar resemblance to the struc-
ture of other resistance groups. For example, a study published in 1970 by
L. Gerlach and V. Hine [L.P.Gerlach and V.H.Hine, 1970] concluded that
U.S. social movements, such as the environmental and anti-war movements
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in the 1960s, were structured as “segmented, polycentric, and ideologically
integrated networks” (SPINs):

“By segmentary I mean that it is cellular, composed of many dif-
ferent groups... . By polycentric I mean that it has many different
leaders or centers of direction... . By networked I mean that the
segments and the leaders are integrated into reticulated systems or
networks through various structural, personal, and ideological ties.
Networks are usually unbounded and expanding... . This acronym
[SPIN] helps us picture this organization as a fluid, dynamic, ex-
panding one, spinning out into mainstream society.”

The dynamics exhibited by SPINs appear to exist in both these social
movement groups as well as in various terrorist, criminal and fundamentalist
networks around the world [Ronfeldt and Arquilla, 2001].

However, unlike many protest movements, terrorist and criminal networks
must remain covert. The need for security dictates that terrorist organiza-
tions must be structured in a way that minimizes damage to the organization
from arrest or removal of one or more members [Erickson, 1981]. This dam-
age may be direct - making key expertise, knowledge or resources inaccessible
for the organization, or indirect - exposing other members of the organiza-
tion during interrogations. There are several factors that allow a terrorist
organization to remain covert, including:

• Strong religious (in case of Islamic groups) or ideological (in case of
Sendero Luminoso and other South American guerilla groups) views
that allow members to form extremely strong bonds within a cell.

• Physical proximity among cell members, often to the extent of sharing
living quarters, working and training together.

• Lack of rosters on who is in which cell.

• Cell members being given little knowledge of the organizational struc-
ture and the size of the organization.

• Inter-cell communication on as-needed basis only.

• Information about tasks issued on a need-to-know basis so very few
people within the organization know about the operational plans in
their entirety.

A need-to-know information policy can be counterproductive when an or-
ganization needs to complete a task that is larger than any one cell. Further,
such policies tend to lead to duplication of effort and reduce the ability of one
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cell to learn from another. To fix these inefficiencies, terrorist organizations
have been known to employ “sleeper links” - where a small number of mem-
bers of each cell have non-operational ties (such as family ties, ties emerging
from common training, etc) to members of other cells [Krebs, 2001]. These
links are rarely activated and are used mainly for coordinating actions of
multiple cells in preparation for a larger operation.

To remain covert, the Al Qaeda has structured itself as a leaderless de-
sign characterized by its organic structure, horizontal coordination, and dis-
tributed decision making. However, the need to maintain a strong ideo-
logical foundation and resolve coordination issues has led to the need for
strong leadership. One apparent solution has been to have multiple lead-
ers diffused throughout the network and engaged in coordinating activities
without central control or a hierarchy among the cells. Whether the leaders
are themselves hierarchically organized, even though the cells are not, is less
clear.

Under constant pressure from various world governments, terrorist or-
ganizations have evolved a structure that appears to be resilient to attacks.
However, information on these terrorist organizations, their membership, the
connections among the members is, at best, incomplete. Available informa-
tion is often obtained during post-factum investigations of terrorist acts and
may offer little insight into the “main body” of the organization or the way
in which it is evolving.

Substantial intelligence effort is needed to piece together the massive
amount of often misleading information, both post-factum and “logs” of ac-
tivity, to generate a picture of the entire organization. Nevertheless, the
picture that is emerging suggests that terrorist organizations are organized
at the operational level as cellular networks rather than as hierarchies [Carley,
2003a].

2.3 Open-Source Data on Terrorist Networks

Until recently, social network datasets were extremely difficult to obtain and
limited in size and scope. The prevailing methodology for collecting social
network data was by survey, either administered to an entire group of people
or collected in a snowball fashion. Collection of social network data was done
in a way reminiscent of anthropological data collection - by a human observer
embedded into an organization to be studied.

This presented a number of problems. First of all, it was very costly
to collect all but the smallest of datasets. While a number of sampling
strategies were investigated, it was difficult or infeasible to canvass a larger
organization or population. Furthermore, presence of an observer or a survey
instrument in an organization inevitably altered the behaviour of individuals
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Figure 2.1: Data on Hamas collected by AutoMap

in the organization.
Finally, for some networks, especially terrorist networks, it is physically

impossible to collect a dataset via direct survey administration. The modus
operandi of such networks is covertness and this necessarily limits the data
that can be collected on them.

Thus, for study of terrorist organizations, one must obtain information
via indirect means. One approach to gathering indirect social network data
is via analysis of texts. Originally used as manual coding technique, text
analysis has now been automated to extract network structure from corpora
of text based on co-appearance of people, organizations and other entities.

Between September 14, 2001 and November, 2001 Valdis Krebs[Krebs,
2001] assembled a corpus of texts regarding events preceding September 11th
attacks. Manual analysis of these texts yielded a dataset (see figures 2.1
and 2.2) which became one of the definitive sources of data on terrorist
organizations and structure of a terrorist plot.

Since 2001, much larger datasets on covert networks are available due to
both increased interest in the research and improvements in tools for machine
collection of network data.

Some of the newer more complete datasets include these collected by
IntelCenter[IntelCenter.com, 2003], R. Renfro[Renfro, 2003] and M. Sage-
man[Sageman, 2004]

In the aftermath of the September 11th attacks, it was noted that coher-
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Figure 2.2: Data on September 11th hijackers collected by Valdis Krebs
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ent information sources on terrorism and terrorist groups were not available
to researchers[Gruenwald, McNutt, and Mercier, 2003]. Information was ei-
ther available in fragmentary form, not allowing comparison studies across
incidents, groups or tactics, or made available in written articles - which are
not readily suitable for quantitative analysis of terrorist networks. Data col-
lected by intelligence and law-enforcement agencies, while potentially better
organized, is largely not available to the research community due to restric-
tions in distribution of sensitive information.

To counter the information scarcity, a number of institutions developed
unified database services that collected and made available publicly accessible
information on terrorist organizations. This information is largely collected
from open source media, such as newspaper and magazine articles, and other
mass media sources.

Such open-source databases include:

• RAND Terrorism Chronology Database[Corporation, 2003] - including
international terror incidents between 1968 and 1997

• RAND-MIPT (Memorial Institute for Prevention of Terrorism) Terror-
ism Incident Database[Houghton, 2002], including domestic and inter-
national terrorist incidents from 1998 to the present

• MIPT Indictment Database[Smith and Damphousse, 2002] - Terrorist
indictments in the United States since 1978.

Both RAND and MIPT databases rely on publicly available informa-
tion from reputable information sources, such as newspapers, radio and
television.

• IntelCenter Database (ICD)[IntelCenter, 2005] includes information on
terrorist incidents, groups and individuals collected from public sources,
including not only traditional media outlets and public information
(such as indictments), but also information learned from Middle East-
based news wire services. Separately, IntelCenter also collects informa-
tion from Arabic chat-rooms and Internet-based publications - although
value of such data is questionable and data may be tainted by propa-
ganda.

2.4 Terrorist Organizations and Scale-Free Net-

works

An argument has been made[Robb, 2004] that terrorist networks may exhibit
features of scale-free networks and can thus be treated as such in analysis
and derivation of attack scenarios.
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Scale-free networks have been observed in many contexts ranging from
networks of airline traffic to sexual networks and Web link patterns. The
high probability of emergence of scale-free networks, as opposed to evenly
distributed random networks, is due to a number of factors, including:

• Rapid growth confers preference to early entrants. The longer a node
has been in place the greater the number of links to it. First mover
advantage is very important.

• In an environment of too much information people link to nodes that are
easier to find - thus nodes that are highly connected. Thus preferential
linking is self-reinforcing.

• The greater the capacity of the hub (bandwidth, work ethic, etc.) the
faster its growth.

It has also been observed that scale-free networks are extremely tolerant of
random failures. In a random network, a small number of random failures can
collapse the network. A scale-free network can absorb random failures up to
80% of its nodes before it collapses. The reason for this is the inhomogeneity
of the nodes on the network – failures are much more likely to occur on
relatively small nodes.

However, scale-free networks are extremely vulnerable to intentional at-
tacks on their hubs. Attacks that simultaneously eliminate as few as 5-15% of
a scale-free network’s hubs can collapse the network. Simultaneity of an at-
tack on hubs is important. Scale-free networks can heal themselves rapidly if
an insufficient number of hubs necessary for a systemic collapse are removed.

Scale-free networks are also very vulnerable to epidemics. In random net-
works, epidemics need to surpass a critical threshold (a number of nodes in-
fected) before it propagates system-wide. Below the threshold, the epidemic
dies out. Above the threshold, the epidemic spreads exponentially. Recent
evidence[Pastor-Satorras and Vespignani, 2001] indicates that the threshold
for epidemics on scale-free networks is zero.

However, the reality of terrorist networks does not fit neatly into the
scale-free network model. It has been observed[Rothenberg, 2002] that non-
state terrorist networks are not only scale-free but also exhibit small world
properties. This means that while large hubs still dominate the network, the
presence of tight clusters (cells) continue to provide local connectivity when
the hubs are removed.

For example, attack on Al Qaeda’s Afghanistan training camps did not
collapse its network in any meaningful way. Rather, it atomized the network
into anonymous clusters of connectivity until the hubs could reassert their
priority again. Many of these clusters will still be able to conduct attacks
even without the global connectivity provided by the hubs.
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Furthermore, critical terrorist social network hubs cannot be identified
based on the number of links alone. For example, Krebs observed[Krebs,
2001] that strong face-to-face social history is extremely important for trust
development in covert networks. Of similar importance is the relevance of
skills and training of agents inside a cell to the task at hand. Thus, im-
portance of any individual within the network should be rated on a vector
of factors pertaining to its qualities as an individual as well as types and
qualities of its links.

Rothenberg[Rothenberg, 2002] notes that postulating a path of a set
length from everyone in the global network to everyone else (i.e. scale-free
nature of a terrorist network) runs contrary to the instructions for communi-
cation infrastructure set forth in the Al Qaeda training manual[Al-Quaeda,
2001]. Thus, if a terrorist network was observed to be scale-free, it can be
argued that its scale-free nature is not a matter of design and can possi-
bly be an artifact of the data collection routines. For example, snowball
sampling[Granovetter, 1976] is biased toward highly connected nodes, so ex-
tensive use of this technique may result in observation of scale-free core-
periphery structures where none exist[Biernacki and Waldorf, 1981].

2.5 Developing the Formalism of a Cellular

Network

Given the case studies of Al Qaeda and other terrorist networks, it is clear
that terrorist organizations cannot be adequately described as random graphs
or as scale-free networks. Therefore, a different model of terrorist networks
has emerged, namely cellular networks [Rothenberg, 2002][Carley, Dombroski,
Tsvetovat, Reminga, and Kamneva, 2003][Carley, Lee, and Krackhardt, 2002].
While this model may not fit a simple mathematical definition such as scale-
free or small-world network, its base is in empirical and field data[Goolsby,
2003]. In section 6.0.1, I will show that cellular networks in fact are not
characterized by a lack of a formal representation but are defined through a
more complex process which takes as a goal improvement of fit between the
model network and empirical data.
Cellular networks[Carley, 2003a] are different from traditional organiza-

tional forms as they replace a hierarchical structure and chain of command
with sets of quasi-independent cells, distributed command, and rapid abil-
ity to build larger cells from sub-cells as the task or situation demands. In
these networks, the cells are often small and are only marginally connected to
each other. The cells are distributed geographically, and may take on tasks
independently of any central authority[Carley, 2003b].

Rothenberg[Rothenberg, 2002] observed a number of properties of a cel-
lular network:
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• The entire network is a connected component.

...It is likely that on the local level, individual ties are very
strong...On the higher level, individual ties are likely to be
weaker but the strength of association [people known in com-
mon, doctrine] is likely to remain high...

• The network is redundant on every level: Each person can reach other
people by multiple routes - which can be used for both transmission of
information as well as material. On the local level, there will be a con-
siderable structural equivalence[Tsvetovat and Carley, 2005], which will
ameliorate the loss of an individual. The redundancy in communication
channels may also be mirrored in the redundance of groups engaged in
a particular task.

• On the local level, the network is small and dynamic, consisting of
small cells (4-6 people) that operate with relative independence and
little oversight on the operational level.

• The network is not managed in a top-down fashion. Instead, its com-
mand structure depends on vague directives and religious decrees, while
leaving local leaders the latitude to make operational decisions on their
own.

• The organizational structure of a terrorist network was not planned,
but emerged from the local constraints that mandated maintenance of
secrecy balanced with operational efficiency.

Each cell is, at least in part, functionally self-sufficient and is capable of
executing a task independently. Cells are loosely interconnected with each
other for purposes of exchanging information and resources. However, the
information is usually distributed on a need-to-know basis and new cell mem-
bers rarely have the same exact skills as current members. This essentially
makes each individual cell expendable. The removal of a cell generally does
not inflict permanent damage on the overall organization or convey signifi-
cant information about other cells. Essentially, the cellular network appears
to morph and evolve fluidly in response to anti-terrorist activity[Sageman,
2004].

This leads to a hypothesis that cells throughout the network contain
structurally equivalent[F.Lorrain and White, 1971] and essential roles, such
as ideological or charismatic leaders, strategic leaders, resource concentrators
and specialized experts.

Given this hypothesis, one can further reason that operations of a partic-
ular cell will be affected in a negative way by the removal of an individual
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filling one of these roles. I further posit that a further development of a cellu-
lar network formalism as an empirically driven and yet mathematically sound
concept, is necessary for creation of computational models that combine face
validity towards real-world data as well as veridicality towards formal models
of organizational evolution.
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2.6 Robust Representation of Organizational

Data

Traditional social network analysis (SNA) techniques have focused on anal-
ysis of communication networks between individuals. Moreover, most SNA
studies have been conducted on single-mode networks (i.e. relationships be-
tween people) with binary data (i.e. presence or absence of a connection).
Also, most studies have been concerned with analysis of a single network.

Krackhardt and Carley [Krackhardt and Carley, 1998] proposed concen-
trating knowledge about an organization in a format that could be analyzed
using standard network methods, called the MetaMatrix. The MetaMatrix
approach treats organizations as evolving networks. Actors in these net-
works actively engage in processes defined as task performance, knowledge
exchange and resource transfer. This conceptualization made it possible to
link organizational performance to social networks.

Carley [Carley, 1999] [Carley, 2002c] generalized this approach and ex-
tended the perspective into the realm of knowledge networks enabling the
researcher to question how changes in the social network could effect changes
in the distribution of information and the resultant impact of knowledge dis-
ruption strategies on organizational performance. By taking an information
processing perspective we are explicitly linking knowledge management and
social networks[Carley and Hill, forthcoming] and enabling network evolution
through learning mechanisms. From a conceptual and data perspective this
means that we examine the co-evolution of all networks in the meta-matrix
as described in table 2.1.

2.6.1 MetaMatrix Measures

A number of metrics have been defined on the MetaMatrix models. These
metrics can be used to estimate the likelihood of a new link being formed
between two agents, and find critical or redundant nodes in the network and
locate emergent leaders based on their cognitive demand.

Homophyly and Relative Expertise

The following two measures are used to estimate the probability of creation
of a new communication link in the social network or the motivation to
communicate. Empirical studies of human communication behavior suggest
that, without any external motivation, individuals will spend about 60% of
the time interacting on the basis of homophyly and 40% on the basis of need.

Carley has defined homophyly[Carley, 2002c] to be based on a measure of
relative similarity RS between agent i and agent j: the amount of knowledge
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People Knowledge
and Skills

Resources Tasks

People Structural
knowledge:
command
structures
and rela-
tionships
between
agents

Knowledge
Network:
who has ac-
cess to what
knowledge

Resource
Network:
who can
use what
resources

Task Assign-
ment: who
does which
tasks

Knowledge Knowledge
Precedence:
types of
skills that go
together

Resource
Skills: skills
needed to use
a resource

Skill Re-
quirements:
skills needed
to accom-
plish a task

Resource Resource
Precedence:
which types
of resources
go together

Resource Re-
quirements:
Which re-
sources are
needed to
accomplish a
task

Task Task Prece-
dence: the
sequencing
and prece-
dence of
tasks.

Table 2.1: Meta-Matrix of Organizational Knowledge

that i and j have in common divided by the amount i shares with all other
agents (including self), or

RSi,j =

∑K

k=0(SikSjk)
∑I

l=0

∑K

k=0(SikSlk)
(2.1)

where Sik is 1 if agent i knows fact k and 0 otherwise.
In contrast, relative expertise is defined from a purely knowledge perspec-

tive: how much agent i thinks j knows that i does not know divided by how
much i thinks all others know that i does not know, or

REij =

∑K

k=0((1− Sik) ∗ Sjk)
∑I

l=0

∑K

k=0((1− Sik) ∗ Slk)
(2.2)
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Cognitive Demand: Finding emergent leaders

Cognitive demand, described by Carley [Carley and Ren, 2001], measures the
amount of effort each person expends in performing actual tasks using the
knowledge, resource, task and communication networks of the MetaMatrix.

Cognitive demand is a notion similar to the task load measure developed
at NASA [Hart and Staveland, 1988]. It measures the extent to which the
person has to engage in mental activity to do the assigned tasks, defined as:

1. number of people person i interacts with / total number of people in
the group

2. number of tasks person i is assigned to / total number of tasks

3. sum of number of people who do the same tasks person i does / (total
number of tasks * total number of people)

The cognitive demand measure combines static measures of centrality
with dynamic measures of information flow, task performance and resource
distribution. These measures are based on the meta-matrix knowledge about
the organization and have been shown to accurately detect emergent leaders
in an organization.

Key players: Task and Knowledge Exclusivity

Understanding the relative criticality of employees is important in manag-
ing turnover and security risks associated with human capital in organi-
zations. Traditional social network analysis measures are based on static,
survey-based assessments of centrality and other sociometric aspects of or-
ganizations. This limits their effectiveness in fully evaluating human capital
criticality, particularly criticality that may be ”hidden” in the non-social
dimensions of an organization.

M. Ashworth and K. Carley [Ashworth and Carley, 2002][Ashworth, 2003]
introduced new task- and knowledge-based measures based on the MetaMa-
trix[Krackhardt and Carley, 1998] designed to overcome such limitations.
Their results suggest that while each class of measures provides useful in-
sight on criticality of organization actors, knowledge-based measures provide
the most robust predictions of each actor’s contribution to organizational
performance.

Ashworth and Carley[Ashworth, 2003] proposed a number of new task-
and knowledge-based measures, the first of which is a Task Exclusivity In-
dex(TEI) that essentially measures the extent to which each actor is the only
one who can do certain tasks.

The second proposed measure, The Knowledge Exclusivity Index (KEI),
measures the extent to which each actor is the only one who possesses certain
skills, knowledge or expertise.
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The study found that no single measure or class of measures perfectly
identifies all critical employees but that a heuristic application of the pro-
posed knowledge-based measures results in the highest overall accuracy.

2.6.2 Applications of MetaMatrix Analysis

The measures detailed above have found a number of uses in both analysis
of corporate structure and adversarial networks.

Schreiber and Carley[Craig Schreiber, 2004] link the concepts of the Meta-
Matrix and measures based on MetaMatrix data with personnel data from
NASA Jet Propulsion Laboratory. The paper shows that measures of cogni-
tive demand and knowledge exclusivity are accurate predictors of turnover
risk posed by key employees. The study used the collected data to inform
simulation and project the impact of turnover within the subject teams.

Further, the Organizational Risk Analyzer (ORA) tool developed by
J.Reminga and K.Carley[Carley and Reminga, 2004] frames the multitude
of social network and MetaMatrix measures into a framework of a consistent
risk report. The risk reports issued by ORA point out critical personnel,
measure turnover risk as well as incongruities in information and resource
distribution.

While the main use of ORA is to improve performance of organizations
and corporate networks, the tool can be also used to point out vulnerabilities
in adversarial and covert networks - thus finding effective and convenient
avenues of attack against them.

Another organizational analysis tool, DyNet[Carley, Dombroski, Tsve-
tovat, Reminga, and Kamneva, 2003] enables reasoning about dynamic net-
worked organizations by adding a simulation component to MetaMatrix anal-
ysis. The core tool is DyNet - a reasoning support tool for reasoning under
varying levels of uncertainty about dynamic networked and cellular organiza-
tions, their vulnerabilities, and their ability to reconstitute themselves. Using
DyNet the analyst would be able to see how the networked organization was
likely to evolve if undisturbed, how its performance could be affected by
various information warfare and isolation strategies, and how robust those
strategies were in the face of varying levels of information assurance.

Finding key players in a dynamic organizational network is of top impor-
tance for analysis of covert networks. Covert networks often exhibit informal
or highly spread out command structures that make emergent leaders (such
local operational chiefs) pivotal for day-to-day operation of the organization.
Elimination of these emergent leaders has proven an effective strategy for
decreasing the operational capacity of terrorist organizations.

NetWatch (see chapter 2.7) has been implemented as a simulation test-
bed for detecting key players in dynamically evolving covert networks. One
of the major findings in NetWatch is the emergence of a recovery behaviour
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in a dynamic network, as key players were eliminated[Tsvetovat and Carley,
2003].

None of static key player detection algorithms predicted this recovery and
while using Knowledge Exclusivity Index to detect and eliminate emergent
experts was effective, it suffered greatly from lack of data (knowledge data
is more difficult to find through signal intelligence then simpler connection
data).

Using domain knowledge and symbolic reasoning, as I propose, will en-
able researchers to define and search for patterns in the network structures,
such as patterns of succession in event of contingencies. Moreover, results ob-
tained from a symbolic reasoner are more interpretable by human users then
these from a statistical measure - and thus more effective in mixed initiative
scenarios.

2.6.3 Caveats

Meta-matrix data for the entire organization affords a birds-eye view of the
organization at a point in time, similar to a static snapshot. Moreover, if
collected in the real world, it provides a picture of the entire organization,
which is quite distinct from what a single person is likely to know. A set of
such matrices over time represent the change trajectory for an organization.
Boundedly rational individuals make decisions and operate in a climate of un-
certainty with incomplete and inaccurate knowledge of the world. In essence,
they make decisions using their perception of the meta-matrix - their per-
sonal knowledge and their knowledge of other’s relations (transactive memory
[Wegner, 1987]).

This distinction between the actual meta-matrix and the agent’s percep-
tion is at the heart of the difference between social network analysis, agent
modelling, and multi-agent network simulation.

Social network and MetaMatrix analysis affords researchers considerable
power at representation of social structure. Social network data can be used
to analyze organizations in terms of information flow and structural inconsis-
tencies. Furthermore, findings in social network theory have some predictive
power, allowing one to make estimates regarding further evolution of a net-
work given its current state.

However, static social network analysis does not capture the dynamic
trends in organizations and does not provide rigorous semantic framework
for such analysis. To fully capture dynamism inherent in human networks,
one must turn to computer-enabled approaches of simulation models. In the
next chapters, I discuss creation of such models and their descriptive power.
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2.7 Simulating Covert Networks

While shifts from analyzing single-mode networks to working with complex
multi-mode and multi-plex networks such as the MetaMatrix resulted in a
significant increase in the fidelity of representation of human relations, one
important aspect remained un-addressed: the dimension of time. While
static analysis may be adequate for slow-changing interpersonal networks,
covert networks are characterized by their fluidity and dynamism. Thus,
analysis of covert networks needs to be approached from a dynamic perspec-
tive, tracking change inside the network as well as its static parameters.

Human networks evolve continuously and rapidly. Understanding the
dynamics of network evolution under different circumstances is paramount
to being able to predict effects of policies and management strategies.

A number of approaches at introducing dynamic qualities to network
analysis have been proposed including analytical models, artificial-life based
models and multi-agent network models.

Analytical and statistical models, are generally designed to study effects
of a number of distinct variables on an observable or measurable outcome.
Relationships between causes and outcomes are generally established via sta-
tistical analysis. While analytical and statistical models provide valuable
insights into causal relationships, they do fairly poorly at representing com-
plex systems. This is mainly due to weak scalability of statistical models
in relation to growth of dimensionality of the problems space. As number
of independent variables (i.e. complexity of representation of individual ac-
tors), and number of dependent variables (i.e. complexity of representation
of the resulting system) increases, the analysis quickly becomes mathemati-
cally intractable. This growth in mathematical complexity forces researchers
to take a reductionist view of the phenomena or the outcomes, thus limiting
the ability to study interactions between local rules and global behaviours.

Other analytical models such as Blanche[Contractor and Monge, forth-
coming], combines modelling of social structure and individual attributes.
However, application of analytical models to real world problems have been
shown to be computationally intractable, resulting in over-simplified models.

A different class of models based on equations of system dynamics[Karnopp,
Margolis, and Rosenberg, 1990] or expert system technologies [Burton and
Obel, 1998][Laird, Newell, and Rosenbloom, 1987] strives toward maximum
veridicality of the phenomena, albeit by very different means.

The goal of System Dynamics[Karnopp, Margolis, and Rosenberg, 1990]
is study of overall system behaviour by means of systems of differential equa-
tions modeling processes and flows in the system. Thus, system dynamics
models can achieve very high degree of veridicality on the overall system
level. However, the complexity of design of such models hinders their under-
standability on the level of an individual actor.
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Richard Burton, in his OrgCon system[Burton and Obel, 1998] approxi-
mates overall system behaviour by creating a complex rule-based system that
is rooted in literature of management science and organizational behaviour.
While the expert system is capable of making verifiable and understand-
able statements about the subject organization, its main limitation lies in
the fact that rules at the heart of the system have been developed through
top-down observation of organizational behaviour as opposed to a bottom-up
emergence of organizational-level behaviours from individual-level decisions.

SOAR[Laird, Newell, and Rosenbloom, 1987] achieves high veridicality,
but at the other end of the spectrum. SOAR individual-level models are
so complete and accurate for some of the domains, that it can outperform
human actors in some of the tasks (e.g. piloting a plane in a flight sim-
ulator). However, SOAR (as many other AI systems) is designed to be a
“better human then humans” - faster, more accurate, unaffected by emotion
and discomfort. This quality makes SOAR-based simulations of social phe-
nomena prone to under-estimation of the variables that make humans vague
and unpredictable - often the very things that make us human. However,
SOAR rule bases can be rewritten for simulation, rather then emulation (i.e.
replicating the subject matter with all of its imperfection rather then striving
to achieve the task perfectly).

Artificial life and cellular automata models have been shown to reflect
some of the complexity and dynamics exhibited by social systems. However,
artificial life simulations generally do not operate on empirical data, are con-
strained to grid based structure, and represent cognition at a high level of
abstraction. This results in an oversimplified view of the phenomena.

Multi-agent systems can serve as effective tools for reasoning about hu-
man and group behavior. Their effectiveness is enhanced when the algorithms
lead the simulated agents to behave as humans behave, rather than doing
what is optimal for the task. Such systems are even more effective when the
model’s input is real data and the generated outputs are comparable to the
actual data files in the real world. Such systems can be created by combining
sophisticated planning and learning algorithms with extensive knowledge of
human behavior and underlying networks.

Elliot and Kiel2002 propose treatment of terrorist organizations a system
of ”fluids” combined as a complex adaptive system. They create a complex-
system model of information flows within a terrorist organization based on
principles of fluid dynamics and finite element analysis.

In traditional social network analysis, behavioral interpretations are drawn
from the actual network, which is viewed as constraining and enabling be-
havior. In agent modeling systems, agents are designed to act optimally for
the task at hand.

In multi-agent network simulations, agents act in a boundedly rational
fashion on the basis of their personal perception by emulating what people
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might do. In order to produce a high-fidelity model of a dynamic organiza-
tion, it is necessary to simulate the world of the agents, including all imper-
fections. We enable this by affording every agent a belief structure, which is
essentially the agent’s private meta-matrix structure populated as the agent
interacts with others, learns and performs tasks. In the simplest case, the
meta-matrix contains binary values whose meaning is simply existence or
lack of connection between two nodes. However, this can be extended with
weights assigned to every edge. For example, edge weights in the interper-
sonal network can be interpreted as trust or frequency of communication, as
opposed to the existence of a connection.

While studying real-world networks, and specifically covert networks such
as terrorist organizations, data can be collected for each cell of the meta-
matrix, but it is very difficult to obtain a complete and accurate snapshot
of the organization. A key difficulty is in discerning whether a change in
the networks is due to better intelligence or actual changes in the network.
Thus, analysis algorithms and simulation systems must be able to operate
under uncertainty, provide confidence estimates for results, and approach the
domain from a satisficing rather then optimization perspective.

Networks can be defined by a number of interdependent levels of analysis:
personal, group, organizational, inter-organizational and community[Stohl
and Stohl, 2002]. Historically, network research was conducted at the indi-
vidual or small-group level and rarely approached from several of the levels
simultaneously[Contractor and Monge, forthcoming].

However, at every level networks are dynamic and a significant propor-
tion of the links are in flux while the overall shape of the network remains
somewhat stable across time. Carley, Lee and Krackhardt[Carley, Lee, and
Krackhardt, 2002] state ”Whether the topic is terrorism, the global economy,
or the nature of the Internet, we are dealing with complex socio-technical sys-
tems that are large, multi-lex, multi-modal and adaptive. It is critical that
we ... develop a new set of tools ... to meet this challenge of understanding,
predicting and explaining behaviour of multi-agent networks”.

In the case of terrorist networks, through computational models scholars
now possess the new ability to look at multiple levels over multiple time
points and to explore how communication processes constitute and shape
the organization. This is yielding important results in understanding the
way such networks develop and operate in the social settings of their host
countries or span national boundaries.

One of the emerging research approaches within the field of social sim-
ulation is agent-based modeling (ABM). The goal of ABM is creation of
computer-based micro-worlds in which heterogenous agents interact on the
world with both reacting to the surrounding conditions and effecting change.
Agent-based models of complex adaptive systems are frequently based on the
following principles[Langton, 1989]:
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1. The model consists of a population of simple agents.

2. There is no single agent that directs all of the other agents.

3. Each agent details the way in which a simple entity reacts to local
situations in its environment, including encounters with other agents.

4. There is no rule in the system that dictates global behaviours.

5. Any behaviour at levels higher then individual agents is therefore emer-
gent.

While the above principles produce many interesting multi-agent models
of social and organizational behaviour, the main strength of the agent-based
methodology outlined by Langton is also its main weakness.

Langton’s first principle emanates from the general assumption within the
sciences of complexity that ”simple rules can generate complex behaviours
and structures”. However, this mandates the practitioner of the art of agent-
based modeling to create, for each studied domain, sets of rules that fulfill
two seemingly contradictive requirements.

First and foremost, the rules must adequately represent the subject of
study. This can be formalized by maximizing the behavioral likeness of the
individual agent and the subject of study (e.g. a terrorist).

However, the above rules need to also be simple and reliant on a fully
myopic view represented in Langton’s third principle.

The pressures of reconciling simplicity and veridicality in general produce
a tendency towards simplicity, thus sacrificing face validity of the emergent
behaviours or the model itself[Carley, 2002b]. Furthermore, the temptation
upon the practitioner to create “interesting” emergent behaviours can result
in local rules within each agent that are designed to implicitly generate or
alter a global rule - thus also tainting the validity of the simulation.

A solution to this dilemma may require a rethinking of Langton’s prin-
ciples and acceptance of universal complexity, or existance of complexity at
every level of study - individual, group, orgniazational and systemic.

Figure 2.3 illustrates the relationship of existing methodologies for mod-
eling of social systems in regards to their place in the spectrum of individual
and system-level complexity.

Axtell and Epstein[Axtell and Epstein, 1994], have summarized the levels
of agent-based model performance and analysis as follows:

Level 0: the model is a caricature of reality, as established with simple
graphical devices (e.g. allowing visualization of agent motion).

Level 1: the model is in qualitative agreement with empirical macro-structure,
as established by plotting the distributions of some attributes of the
agent population.

28



Unit Complexity
Low
 High


H
ig

h

L

ow



Sy
st

em
 C

om
pl

ex
ity




System

Dynamics


SOAR


Automata

Models


Analytical

Models


Game
 -
Theoretic

Models


OrgCon


Construct


NetWatch


DyNet


MA
 -
 SOAR


BioWar


Blanche


???
???


Figure 2.3: Spectrum of Complexity in Agent-Based Simulation

Level 2: the model produces quantitative agreement with empirical macrostruc-
ture, as established through statistical estimation routines.

Level 3: the model exhibits quantitative agreement with empirical micro-
structures, as determined from cross-sectional and longitudinal analysis
of the agent population.

Until mid-1990s it was considered impossible to create symbolic reason-
ing systems such as SOAR that could operate in packs - i.e. collections of
complex agents in a complex world - as even one of such agents required
immense amounts of computational power. The advent of cheap and plenti-
ful computation allows modelers of social systems to accept such multi-level
complexity, and build models that do not sacrifice individual-level veridicality
for system-level accuracy.

I posit that the creation of high-fidelity models of socio-technical systems
requires the combination of analytical models with empirically grounded sim-
ulation.

In the next chapter, I present NetWatch, a multi-agent model designed
to combine high individual-level complexity and individual-level strategic
reasoning with high system-level and organization-level complexity through
the use of social network analysis and artificial intelligence techniques.

As table 2.2 shows, NetWatch combines the advantages of simulations
that accentuate fidelity of an individual agent with advantages of simulations
that accentuate fidelity of the agent’s environment and networks.

While NetWatch is highly dependent on network topologies, it does not
require a preset or constant network topology. In fact, in NetWatch the
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topology is viewed as a result of cumulative agent interactions - and thus
evolves continuously. This sets NetWatch apart from other multi-agent sim-
ulation tools where the network topology is constant, pre-set as a parameter,
or a part of design assumptions. Such fluid network configuration allows us
to model emergence of novel network topologies in response to stress or task
pressures, as well as study self-healing behaviours in dynamic networks. I
demonstrate such emergent behaviours in NetWatch in sections3.12 and 4.13.

NetWatch combines the ability to simulate complex, large organizational
networks with the ability to realistically model individual agents and their
interactions. Such realism is rooted in the use of artificial intelligence tech-
niques and robust knowledge representation - as a backbone of every agent.
Using realistic (or empirically derived) specifications of complex tasks, agents
plan their actions according to their goals and their resource and information
requirements.

Literature shows[Krackhardt and Hanson, 1993] that informal networks
are often more important and more effective then formal organizational struc-
tures. NetWatch models emergence of such informal networks via non-task-
related social interactions between agents.

Many simulations that accentuate the fidelity of individual agents are
computationally expensive and thus limited to a small number of agents in
simple organizational structures. While each of the agents in NetWatch is
autonomous and intelligent, the agents are implemented in a highly efficient
manner - which allows users to set up large-scale simulations without sacri-
ficing agent fidelity.
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NetWatch Construct/DyNetMulti-SOAR Blanche Cellular
Automata

System
Properties

Number of
Agents

10-2000 10-5000 1-10 10-100 10-1000000

Network
topology

Arbitrary net-
works, includ-
ing empirical

Implicit from
interactions

Simple pre-set
topology

Arbitrary pre-
set networks

Pre-set grid
topology

Networks
evolve

Yes (based on
interactions)

Yes (based on
interactions)

No (all-to-all
connectivity
assumed)

No (pre-set
topology is
constant)

Yes (if agents
can move)

Agent
Properties

Autonomy Autonomous,
asynchronous
agents

Central con-
trol

Autonomous,
asynchronous
agents

Central con-
trol

Central con-
trol

Knowledge Local knowl-
edge of self,
others and
environment,
learning from
experience

Global knowl-
edge in the
environment

Local knowl-
edge of self
and environ-
ment

Global nu-
merical state

Local numeri-
cal state, per-
ception of en-
vironment

Intelligence Strategic
Reasoning,
Planning,
Behaviour
switching

Behaviour
switching

Strategic Rea-
soning, Plan-
ning

Computation,
state switch-
ing

State switch-
ing

Interaction Direct in-
teraction
with other
agents and
environment

Simulated in-
teraction with
other agents

Direct in-
teraction
with other
agents and
environment

Simulated
interaction
with other
agents and
environment

Direct inter-
action with
other agents

Table 2.2: Comparison of Techniques for Social Simulation
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Chapter 3

Technical Description of NetWatch

3.1 Modeling Dynamic Networks

Based on the conceptual framework of multi-agent simulations, we have de-
veloped NetWatch, a multi-agent network model for reasoning about the
destabilization of covert networks such as organized crime or terrorist orga-
nizations under conditions of uncertainty.

NetWatch is built to simulate the communication patterns, information
and resource flows in a dynamic organizational network based on cognitive,
technological and task based principles. In addition, the model is grounded
using information about surveillance technologies and intelligence operations
(e.g. [Alberts, Garstka, and Stein, 1999]) and the covert networks (e.g.
[Berry, 2001]).

The process of gathering intelligence on an organization is simulated en-
abling the evaluation of diverse heuristics and technologies for data gathering.
Using NetWatch, the user can conduct a vulnerability analysis and examine
potential emergent reactions of covert networks in response to attacks as well
as evaluate diverse destabilization strategies.

In this chapter, I introduce NetWatch and both technical and theoretical
foundations that underlie its construction.

3.2 NetWatch Simulation of Covert Networks

The design of NetWatch simulation of covert networks and anti-terrorist
activity is based on the concept of red teaming, a war-gaming approach in
which a population of participants is divided into two or more adversarial
teams. The teams then are empowered to use any techniques at their disposal
to achieve their goals. The main objective of red-teaming is learning the
mind-set and modus operandi of the adversary and development and testing
of strategies fielded against said adversary. Real-world red-teaming is most
common in the fields of military training, war-gaming and computer security
and has recently received renewed attention as a useful counter-terrorist tool.

It is postulated that the true value of red teaming emerges with capture,
documenting, and application of insights gained across individual events and
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Figure 3.1: NetWatch Simulation Design

studies. A comprehensive method of red-teaming[Mateski, 2003] has been
described as

...the ability to explore the conceptual space of all potential ter-
rorist attacks -quickly, systematically, and thoroughly. Given the
immediacy of the threat, the method employed should be simple,
flexible, reusable, and scalable.

NetWatch is designed to follow the comprehensive method of red-team
modeling by using high-fidelity representations of both the covert network
and the entities responsible for prevention of terrorist activity.

For the purposes of simulation, the covert network is designated as the
Red Team and the network of anti-terrorism forces as the Blue Team (see
figure 3.1). Both of the teams consist of a number of autonomous, intelligent
agents, designed to simulate with highest possible fidelity the activity of
individuals and groups present in the subject networks.

The agents of the Red Team are intelligent, knowledge-driven planning
agents that model the process of execution of a logistically complex terror-
ist attack - complete with gathering required resources, obtaining knowledge
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and training, and tactical planning. Section 3.5 describes in detail the design
and construction of Red Team agents including design of agent communica-
tion language (sec. 3.6), design of communication protocols for knowledge
exchange and resource transfer (sec. 3.8). Task planning and execution by
Red Team agents are described in section 3.9.

Red Team network is modelled upon organizational structure of a terrorist
organization and constructed to fit a statistical profile of such an organiza-
tion. The statistical profile mechanism (described in chapter 6) allows for
manipulation of both social network topologies and distribution of informa-
tion and resources, which leads to robust capabilities for testing of theories of
organizational design in covert networks. Section 3.4 describes the construc-
tion of social networks within the Red Team and evolution of the networks
due to group formation, homophyly and operational needs is described in
section 3.7.

The Blue Team (described in section 4) represents a set of agencies engag-
ing in anti-terrorist activity and pursues two interconnected goals. The blue
team conducts signal intelligence-based information gathering and uses col-
lected information to build a MetaMatrix representation (see sec. 2.6) of the
Red Team. I describe multiple signal intelligence strategies in section 4.0.2.
Needless to say, signal intelligence does not produce complete information on
communication patterns and Blue Team agents must deal adequately with
the uncertainty introduced by such incomplete information. A number of
algorithms for improving the performance of signal intelligence strategies is
described in section 4.4.

The second goal of the Blue Team is to destabilize or decrease performance
of the Red Team. The Red Team performance metrics are described in
section 3.10 and various destabilization strategies are outlined in section 4.12

The organizational structure of the Blue Team mimics the information
sharing regimes defined by intelligence and law enforcement agencies. In such
information sharing regimes, the agencies can divulge limited information to
their peers but the rules for what information can be shared are defined by
the agency’s charter and rules of engagement. Construction of the Blue Team
network and implementation of information sharing policies is described in
section 4.11.

To conduct large-scale experiments within the NetWatch framework, I
have designed the Observer Agent - a modular system for instrumentation
of virtual experiments. The system uses a combination of communication
traffic analysis and instrumentation taps within each agent to build a co-
herent ”bird’s-eye view” of the entire simulation, and compute a number of
statistical metrics using this knowledge. The Observer Agent is described in
detail in section 3.11.
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3.3 Agent-based Modeling of Dynamic Net-

works

NetWatch agents are intelligent adaptive information processing systems,
constrained and enabled by the networks in which they are embedded. These
networks evolve as individuals interact, learn and perform tasks. The design
of the NetWatch multi-agent model is based on the principles of agent-based
models of complex adaptive systems outlined by Langton[Langton, 1989]
(also see section 2.7 for a detailed discussion).

To reiterate, Langton’s principles of agent-based modeling are:

1. The model consists of a population of simple agents.

2. There is no single agent that directs all of the other agents.

3. Each agent details the way in which a simple entity reacts to local
situations in its environment, including encounters with other agents.

4. There is no rule in the system hat dictates global behaviours.

5. Any behaviour at levels higher then individual agents is therefore emer-
gent.

However, I make an important distinction from Langton’s ABM tech-
niques. In NetWatch and related models, agents are not defined as simplistic
automata following a small set of deterministic rules. Instead, an agent can
be viewed as a representation of a human actor involved in the the simu-
lated activities. Using artificial intelligence techniques, the agents can plan
and reason about task completion and formation of their social networks and
make strategic moves to maximize their utility.

In effect, each agent within NetWatch is built in the same manner as
an autonomous robot (sans the hardware) designed to survive on its own
in a hostile environment. In greater detail, the methodology of multi-agent
network modeling is based on the following principles:

• Agents are independent, autonomous entities endowed with some intel-
ligence, though cognitively limited and boundedly rational. Agents can
utilize both deterministic or stochastic rules.

• Agents and the networks in which they are embedded co-evolve. While
the initial topology of agent network can be used as an independent
variable, the community of agents will create a very different topology
at the end of a simulation.

• Agents do not have accurate information about the world or other agents
and are limited by their perception.
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• Agents can learn the state of the world through interaction. Note that
while agents do not have access to a global world-view, they can learn
about their non-immediate neighbors through communication and col-
laboration with other agents.

• Agents can be strategic about their communication. They can use rule-
based, decision-theoretic, optimization or other techniques to maximize
their utility.

• Agents do not use predefined geometrical locations or neighborhoods.
Instead, their choice of communication partners depends on the topol-
ogy of their social network and evolves over time.

Note the importance of networks in the design of the simulation. Agent-
based models comprised of cellular-automata frequently overlook the fact
network topology is as important to the fidelity of a model as the rules govern-
ing the behaviours of individual agents. The topology of a flat or toroid grid
with communication through Manhattan or Minsky neighborhoods[Minsky,
1967], while providing a useful test-bed for cellular automata models, is not
grounded in social theory and thus is not very suitable for modeling complex
social systems.

3.4 Social Networks in NetWatch

In NetWatch, agents communicate on the basis of network membership.
Agents learn of other agents outside their ego network via interaction with
agents in their ego network and a process of introduction. Therefore, net-
works are represented as a directed graph structure representing the prob-
ability of communication (social proximity) pij between two agents ai and
aj:

Net = AG,P

AG = ai : Set of agents (3.1)

P = pij : ∀ai, aj ∈ AG

The directed nature of the graph Net allows the user to specify one-way
relationships and chain-of-command relationships. While the formal network
is generally pre-specified at the start of the simulation, the informal network
evolves through interaction.

The agents do not have access to full information about the network, but
every agent ak can only access a probability vector Pk = pki where pki is a
probability of agent ak communicating with all agents ai ∈ A. Hence, each
agent may only know who it may interact with or is close to, but does not
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Figure 3.2: NetWatch Agent Architecture

know the complete interaction patterns of other agents. Each agent possesses
a belief matrix that it uses to store any information it learns about interre-
lationships of other agents within the network. However, this information is
typically incomplete and inaccurate.

Agents obtain information via interaction with other agents. The accu-
racy of an agent’s perception of another decreases with the distance between
them in the social network. This corresponds with the empirical reality
where people’s knowledge of each other decreases exponentially as the social
distance between them [Krackhardt, 1990] increases.

3.5 Agents in NetWatch

In keeping with cognitive science research, NetWatch agents representing hu-
mans are both cognitively and socially constrained [Simon, 1955]. Thus, their
decision-making ability, actions, and performance depend on their knowledge,
structural position, procedures and abilities to manage and traverse these
networks. Each agent’s perception of the meta-matrix consists of the agent’s
ego network (the set of agents it is directly connected to), its own knowledge,
resources and task assignments. It is augmented by the agent’s perception
of other agents’ ego networks, knowledge, resources and task assignments
(Fig. 3.2, 1). An agent also tries to form beliefs about the networks of other
agents (Fig. 3.2, 2).

The agents implement a layered behavior model inspired by Rodney
Brooks’ subsumption architecture for robot control [Brooks, 1985]. On the
lower levels of control lie primitive communication behaviors (Fig. 3.2, 3) ,
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based on cognitive models of human communication.
Intelligent task-directed behaviors are facilitated by a hierarchical decom-

position planner (Fig. 3.2, 4), adapted for goal-directed interaction and dis-
tributed task execution via delegation of subtasks. The planner is described
in section 3.10.1.

Execution of distributed tasks is monitored by an independent execution
monitoring process (Fig. 3.2, 6), which watches results of delegated tasks,
handles exceptions and triggers replanning in case of failure.

Finally, production rules (Fig. 3.2, 7) governs the agent’s strategic rea-
soning, triggering tasks or high-level behaviors.

Such a layered architecture allows a social modeler to isolate strategic
and tactical performance of the agents from their lower-level interaction and
build experiments where any one of the levels is manipulated.

3.6 Agent Communication

out−queue in−queue

Agent Logic

KQML Semantics

XML Parser

Communication
Abstraction Layer

out−queue in−queue

Agent Logic

KQML Semantics

XML Parser

Communication
Abstraction Layer

Transmission Layer

Figure 3.3: Communication Architecture of NetWatch Agents

Agent communication in NetWatch is designed as a layered construct (see
figure 3.3). On the lowest level, the agents use a communication abstraction
layer that isolates the internal agent logic from the details of actual network or
shared memory communication. It also implements agent name lookup and
provides robust message sending and receiving functions. A simple notion of
time-outs helps prevent deadlocks between communicating processes.

After being received by the communications abstraction layer, the mes-
sage is parsed using a SAX XML parser[XML.org, c]. This provides for both
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rigorous grammar checking and simplicity in the syntax and parsing of the
agent communication language.

3.6.1 Agent Communication Language (ACL) in Net-
Watch

NetWatch implements a simple ACL based on the simplified semantics of
KQML[Finin, Fritzson, McKay, and McEntire, 1994]. Each mesage is con-
structed as follows:

message := {performative(string), (NameV aluePair)∗}

NameV aluePair := {name(string), value}

value := [number|string|message]

KQML was conceived as both a message format and a messagehandling
protocol to support run time knowledge sharing among agents. KQML mes-
sages are opaque to the content they carry. KQML messages do not merely
communicate pieces of information but communicate an attitude about the
content (e.g. assertion, request, query).

The language’s primitives are called performatives. As the term suggests,
the concept is related to speech act theory. Performatives denote permissible
actions that agents may attempt in communicating with each other. In
NetWatch ACL, only a limited number of performatives are supported based
on the design of the knowledge exchange and task execution protocols. A
list of performatives and their descriptions can be found in table 3.1.

A performative is followed by a set of name-value pairs that contain the
actual information transmitted in the message. A value of such name-value
pair can be numeric, string or contain a nested message (which is similar to
passing a C-language struct).

A canonical form for a NetWatch message is following:
¨ ¥

<per fo rmat ive
sender="name-of-sender-agent"
r e c e i v e r="name-of-receiving -agent">
<content>

<conten t pe r f o rmat ive [ content−s p e c i f i c f i e l d s ]/>
</content>

</per format ive>
§ ¦

3.7 Formation of Homophyly Groups via Com-

munication

The first agent behaviour to be discussed is that of Idle Chatter. Despite
the unassuming name, Chatter is one of the most important steps towards
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Chatter say,ask used by agents in the idle
state and represents social-
psychological concepts of
homophily-based group cre-
ation (see section 3.7)

Knowledge

Transfer

knowledge-query,
knowlege-transmit

used in the knowledge-
seeking behavior.

Resource

Transfer

resource-query, resource-
transmit

used in the knowledge-
seeking behavior.

Classification

Task

classification-task,
classification-task-result

used to transmit classifica-
tion task assignments and
results

Planning

Task, Delega-

tion

task, task-result used by agents to transmit
planning task assignments
and results. Note: for-
mat for a delegated task is
the same as the format for
system-assigned task

Reporting and

Instrumenta-

tion

attribute-report,stats-
report

facilitate experiment in-
strumentation and logging
through agent self-reporting
of state

Table 3.1: Design of NetWatch ACL: Message Types and Performatives

forming of groups in the agent population, thus propagating information and
facilitating task performance.

Agents engage in Chatter at their leisure - i.e. when they are not occupied
with planning tasks and between regularly arriving classification tasks (de-
scribed in sections 3.9 and 3.10.1, respectively). When the Chatter behaviour
is enabled, an agent chooses a partner to communicate with and engages in
a round of conversation. In this conversation, information is exchanged and
strength of network ties between the two agents increased.

The choice of a communication partner at every time period is based on
two factors: social proximity of the agents and their motivation to commu-
nicate. Social proximity is defined as closeness of a relationship between two
agents, scaled between 0 and 1 where 0 means ”no relationship” and 1 is
”very close relationship”.

Motivation to communicate is computed on the basis of homophyly (rel-
ative similarity) and need (relative expertise). Empirical studies of human
communication behavior suggest that, without any external motivation, in-
dividuals will spend about 60% of the time interacting on the basis of homo-
phyly and 40% on the basis of need.

We defined homophyly to be based on a measure of relative similarity RS
between agent i and agent j: the amount of knowledge that i and j have
in common divided by the amount i shares with all other agents (including
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self), or

RSi,j =

∑K

k=0(Sik ∗ Sjk)
∑I

l=0

∑K

k=0(Sik ∗ Slk)
(3.2)

where Sik is 1 if agent i knows fact k and 0 otherwise.
In contrast, we defined need from a purely knowledge perspective. Rela-

tive expertise REij defined as how much agent i thinks j knows that i does
not know divided by how much i thinks all others know that i does not know,
or

REij =

∑K

k=0((1− Sik) ∗ Sjk)
∑I

l=0

∑K

k=0((1− Sik) ∗ Slk)
(3.3)

Agents operate on their beliefs about what the other agents know. Thus,
their calculations can be inaccurate. However, as interaction progresses and
agents learn more and more about each other, the accuracy of the agents’
perception of the world increases.

3.8 Inter-agent Knowledge Exchange

Tracing back its roots with the Construct [Carley, 1999] model, the NetWatch
model is a cognitive model focusing on knowledge manipulation and learning.
Each agent’s knowledge is represented by a bit string. A value of 1 in the
position n means that the agent knows fact n and the value of 0 means that
it does not.

Both homophyly and need for information, as used in the knowledge
exchange protocol, are abstract measures and do not weigh facts in regards
to their importance to a task. More complex behaviors, such as task-directed
information seeking, is accomplished using the planner (see section 3.9).

At the start of the simulation, the agents are endowed with some initial
knowledge (typically within 2%-10% range), distributed randomly between
agents or based on empirical profile of the organization.

To learn new facts, the agents execute the Construct Knowledge Ex-
change Protocol. For ease of description, we shall refer to the parties in
knowledge exchange as Alice (agent aa ∈ AG) and Bob (agent ab ∈ AG).

1. Determine who to communicate with: Alice does this by evalu-
ating relative similarity (Eqn. 3.2) or relative expertise (Eqn. 3.3) of
every agent accessible through its social network (i.e. pa,i > 0 ∀ai ∈ AG
(Eqn. 3.1)). Then, aa throws a dice that reflects the computed proba-
bility vector and picks an agent to communicate with (e.g. ab).
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2. Determine what to communicate: This is done by weighing infor-
mation seeking vs. similarity-driven communication. If aa is in informa-
tion seeking mode, it chooses at random a part of the knowledge string
that is not known and queries the agent chosen in step 1. In similarity-
based communication, aa chooses a part of the known knowledge string
and sends it to that agent. Two example queries follow:
¨ ¥

<ask sender="Alice" r e c e i v e r="Bob">
<content>

<knowledge index="12"/>
</content>

</ask>

<say sender="Alice" r e c e i v e r="Bob">
<content>

<knowledge index="12" value="128"/>
</content>

</ask>
§ ¦

3. Determine proper response: On receipt of a query, ab determines if
it should answer by checking whether the sender of the query is part of
its network. If yes, ab sends a reply - otherwise, he discards the message.
If ab does not know the facts requested, he may respond to aa with a
name of another agent (“Clare”) that may be better suited to answer
the question, known as referential data. On receipt of knowledge, ab
determines if the knowledge is useful and whether it came from one
of the agents in its network (and thus can be trusted), chooses some
knowledge from its knowledge base and send it in return. Two example
replies follow:
¨ ¥

<!−− I f Bob knows the answer to A l i c e s ques t i on −−!>
<say sender="Bob" r e c e i v e r="Alice">
<content>

<knowledge index="12" value="253"/>
</content>

</say>

<!−− I f Bob does not know the answer −−!>
<!−− but can r e f e r to another agent −−!>
<say sender="Bob" r e c e i v e r="Alice">
<content>

<knowledge index="12" value="unknown"/>
<r e f e r−to r e c e i v e r="Clare"/>

</content>
</say>

§ ¦

4. Update internal knowledge base: On receipt of the reply, aa deter-
mines the usefulness of the answer and uses that to update its internal
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knowledge of ab (“Bob knows fact n”) as well as its knowledge base (“I
now also know fact n”).

If aa received referential data, found it useful and it came from one of
the agents in its network (and thus can be trusted), aa chooses some
knowledge from its knowledge base and sends it in return. He then uses
the referential data to update its knowledge of ab (“Bob does not know
n” and “Bob knows Clare”) and ac (“Clare may know n”). This may be
followed by a query to Clare (ac), which may or may not be answered,
depending on the strategic position of ac.

Clare may not have been originally a part of Alice’s network - but now
through Bob, Alice has learned about her existence. Thus, agents within
the organization use referential data about each other to form an informal
network.

3.9 Planning and Execution of Complex Tasks

The design of task structures in NetWatch is based on the premise that or-
ganizations are fundamentally information-processing entities. In this view,
voiced in Max Weber’s work in the early 1900s and elaborated by March
and Simon[March, 1988][March and Simon, 1958], an organization is an
information-processing and communication system structured to achieve a
specific set of tasks and comprised of limited individual information proces-
sors.

In such organizations, tasks are described as sequences of interdependent
communications and actions[Thomson, 1967], meaning that the output of
a given task is the input for a succeeding tasks. Such tasks are distributed
across the individuals within the organization according to the organizational
structure. Thus, the subtasks can be represented in a precedence network.

This view of the organization coincides with the work in the Artificial
Intelligence community on creating algorithmic representations of planning
tasks. In a 1977 paper, A. Tate[Tate, 1977] describes the organizational task
completion as being composed of two stages:

1. The consitutent “jobs” of a plan are specified together with
their precedence relationships ... This information defines a
graph, termed a project network.

2. Various operations are performed on the project network to
establish schedules and allocate resources.

The project network thusly generated can be used not only for predictions
of how the project will be done but also as a tool to aid in monitoring the
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progress of tasks and identification of bottlenecks. However, in the Opera-
tions Research literature, as well as in recent organizational modeling tools
(e.g. VDT[Levitt, Cohen, Kunz, Nass, Christiansen, and Jin, 1994], MAG-
NET[Collins, Tsvetovat, Mobasher, and Gini, 1998]), the task structures are
manually constructed, at a considerable effort.

A formalism referred to as a Hierarchical Task Network (HTN has been
developed in the AI planning community[Erol, Hendler, and Nau, 1994][Young,
Pollack, and Moore, 1994] to encapsulate the process of automatic decompo-
sition of hierarchical task-subtask structures into an executable precedence
networks.

A task network in HTN representation is a collection of tasks that need
to be carried out, together with constraints on the order in which the tasks
can be performed and resources required. A task network that contains only
primitive tasks - tasks which can be immediately carried out if their resource
constraints are met -is called a primitive network. Such a network might
occur, for example, in a scheduling problem.

In the more general case, a task network can contain non-primitive tasks,
which cannot be executed directly because they represent activities that may
involve performing several other tasks.

HTN Planning works by expanding non-primitive tasks and resolving
conflicts iteratively until a conflict-free plan consisting of primitive tasks
only can be found. Erol,Hendler and Nau generalize the algorithm of HTN
planning[Erol, Hendler, and Nau, 1994] as:
¨ ¥

1 . Input a planning problem $P$
2 . IF $P$ conta in s only p r im i t i v e tasks ,
THEN Resolve the c o n f l i c t s in $P$ and return RESULT
ELSE i f the c o n f l i c t s can be re so lved , return FAILURE

3 . Choose a non−p r im i t i v e task $t$ in $P$
4 . Choose an expansion for $t$
5 . Replace $t$ with the expansion
6 . Check plan for c on s t r a i n t s a t i s f a c t i o n and c o n f l i c t s
7 . Resolve the c o n f l i c t s that can be r e s o l v ed immediately
8 . Go to 2

§ ¦

In NetWatch, agents follow the generalized algorithm above. However,
the planning problem is further complicated by the fact that planning is done
in distributed fashion and none of the agents involved in task completion have
access to the complete HTN specification. Furthermore, agents may not have
access to the knowledge and resources required for accomplishing even the
primitive tasks. All of the above requirements must be satisfied purely by
interaction with other agents.

In the meta-matrix representation, the agents possess a definition of their
hierarchical task structures — an acyclic directed graph specifying the prece-
dence of tasks. The skill requirements and the resource requirements are also
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Figure 3.4: Planning in NetWatch Agents

specified in the meta-matrix.
The planner operates with five basic behaviours:

• EXPAND: Find subtasks of a given non-primitive task

• EXECUTE: Executes a subtask if its knowledge and resource con-
straints are satisfied. Return RESULT or FAILURE

• KNOWLEDGE-SEEKING: Sends series of queries to agents re-
questing information that would satisfy a knowledge constraint of a
primitive task

• RESOURCE-SEEKING: Sends series of queries to agents requesting
information that would satisfy a resource constraint of a primitive task.
There is a cost associated with transferring resources

• DELEGATION: If an agent lacks sufficient information plan a non-
primitive task expansion, it will attempt to delegate the planning and
execution of the task to other agents.

The planner starts with a top-level task and performs an expansion by
finding its subtasks, resource and knowledge constraints. If one of the sub-
tasks requires knowledge or resource that the agent doesn’t possess, the agent
sends out request messages. The requests are handled by the Knowledge Ex-
change protocol (see section 3.8).

Similarly, if the agent does not have the ability to execute a task, a task
delegation message would be sent to an agent determined likely to execute
the task.

3.9.1 Execution Monitoring

In traditional multi-agent planning systems, an assumption is made that
agents are cooperative[Wagner, 2000]. This assumption cannot be true in
simulation of adversarial networks. Thus, failure of delegated subtasks or
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Failure Mode Action

Subtask Failure (not ex-
ecutable)

Record failure (decrease capabilities of delegee)
and re-plan subtask

Subtask Failure (rejec-
tion)

Record rejection (decrease relationship strength to
the delegee) and delegate to another agent

Knowledge or Resource
Request Failure (not
available)

Record failure and attempt another request

Knowledge of Resource
Request Failure (rejec-
tion)

Record rejection (decrease relationship strength to
the delegee) and query another agent

Communication Time-
out (no response)

Query another agent or re-plan

Number of retries ex-
ceeded

Return failure, abort non-primitive task

Table 3.2: Reactions of Execution Monitor to Failure Modes

knowledge requests is not only possible, but expected. Delegated operations
can fail due to lack of appropriate information at the receiver or level of busy-
ness of the receiver. Alternatively, delegated operations can be strategically
rejected by the receiver due to its internal constraints and rules[Wooldridge].

NetWatch addresses this problem via the use of an Execution Monitor
process within each agent. Execution Monitor consists of a stack which
contains delegated subtasks and requests and a set of rules covering the
instances of subtask or request failures, timeout conditions and strategic
rejections, as shown in table 3.2.

Performance in planning tasks is measured as (a) time that it takes,
(b) amount of re-work or replanning needed to complete the task, and (c)
percentage of tasks that have failed.

3.9.2 Task Triggering Mechanisms - When and Why
Do the Agents Plan and Execute Tasks

The planner, in conjunction with the task specifications, and data structures
accumulating knowledge and resources, govern how the agents execute their
tasks. However, the questions of when and why to start planning and
executing a task remain unanswered.

In the Autonomous Agnets/Artificial Intelligence communities it is as-
sumed that agents need to only be given a capability to execute a task and a
human user will command the agent to start. This condition is not realistic
in the world of agent-based simulations, as the human user is absent from
the loop. Moreover, the goal of the task itself is not to accomplish a concrete
piece of work (i.e. retrieving information, negotiating a deal) but to model
the way the work is performed in the real world.
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Listing 3.1: ”Resource-based Task Triggering”
¨ ¥

FOR Every time per iod DO
Run CHATTER to obta in new in fo rmat ion and r e s ou r c e s
FOR every non−p r im i t i v e task in task graph DO
Evaluate f e a s i b i l i t y o f task , based on given knowledge and

r e s ou r c e s
IF a task i s f e a s i b l e
TRIGGER TASK EXECUTION

END IF
END FOR
END FOR

§ ¦

Periodic Task Triggering

The simplest strategy for triggering of planning-based tasks is to allow some
agents (e.g. cell leaders) to trigger them periodically with period between
tasks controlled as a parameter of the simulation. For example, it is known
that Al Qaeda in the past has attempted a major terrorist attack approxi-
mately every two years.

It is then possible to vary the frequency of incoming complex tasks to
test the robustness of the organizational network in response to increased
workload and cognitive demand on leader agents (who bear most of the
planning burden in their respective cells)

However, periodic task triggering is not a realistic way to model the func-
tioning of an organization. The periodicity of attacks by Al Qaeda is an
effect of the political climate, resource constraints, and morale of members -
rather then a pre-set parameter.

Periodic task triggering is implemented in NetWatch as a baseline test
strategy, as well as a way to hold a complex task planning mechanism as a
constant when other variables are being evaluated.

Resource-driven Task Triggering

Resource-driven task triggering is an opportunistic strategy based on knowl-
edge and resource exchange behaviours that are a part of the CHATTER
protocol and follows the algorithm in listing 3.1.

While resource-driven task triggering is more realistic given the context
of the simulation, it assumes that agents are purely opportunistic and do not
have endogenous or exogenous factors (morale, doctrine, political situation)
contributing to the decision to start the task.
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Figure 3.5: Attribute Contagion in Agent Networks

Attribute-driven Task Triggering

A multitude of theories on causes of terrorism have been proposed linking
political situation, poverty, religious extremism and other factors with an
individual’s decision to become a terrorist. Many of these theories can be
generalized in a following framework:

T =
∑

(ai ∗ yi)

where T is a tension function, ai is a quantifiable attribute of an agent, and
yi is a weight or relative importance of attribute ai. The weights can be
derived from analysis of empirical data through regression-based methods.
The attributes dynamically change as follows:

a
(t+1)
i = f(a

(t)
i , x)

where ai(t+1) is a value of the attribute at time t+1, computed as a function
f of the previous value of attribute and x - a set of exogenous factors.

For example of a specific case of attribute change, let us consider an
attribute contagion model. Social influence network theory[Friedkin, 1998]
describes an attribute contagion process in a group of N persons in which
members’ attitudes and opinions (expressed by attribute values) change as
they revise their positions by taking weighted averages of the influential po-
sitions of other members (see figure 3.5):

a
(t+1)
i = αi(wi1a

(t)
1 + wi2a

(t)
2 + wiNa

(t)
N ) + (1− αi)a

(t)
i

for each of the N persons in the group (i = 1, 2, ..., N). The attribute

values of persons at time t are a
(t)
1 , a

(t)
2 , ..., a

(t)
N . The set of influences of the

group members on person i is {wi1, wi2, ..., wiN}, where 0 ≤ wij ≤ 1, and
∑

j wij = 1. The susceptibility of a person i to the influence of others is ai,
where 0 ≤ ai ≤ 1.

In view of this analytical model, a task triggering algorithm would be
quite simple:
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¨ ¥

FOR each time per iod t DO
FOR every a t t r i b u t e a ( i ) DO
compute new value o f a ( i ) ( t ) based on the o ld value a ( i ) ( t

−1) , i n t e r n a l and ex t e rna l f a c t o r s
END FOR

Compute T( t ) : the cur rent t en s i on func t i on
IF T( t ) > t en s i on th r e sho ld DO
TRIGGER TASK EXECUTION

END IF
END FOR

§ ¦

While the attribute-based task triggering model presents possibly the
most realistic view of when and why tasks may be triggered within a terrorist
network, its accuracy depends on a number of parameters which may be
difficult to estimate.

First of all, it is important to determine which attributes of the agent
should be a part of the tension function, and what their relative weights
should be. This can be done by building regression models of empirical data;
however, in the context of terrorist organizations, a large number of such
studies would make choosing a realistic set of attributes difficult.

In light of this observation, one can view NetWatch’s task triggering mech-
anism as a way to test multiple empirically derived theories and compare their
performance in simulation to real-world results.

A further difficulty arises from the need to set a tension threshold. There
is virtually no empirical data that would provide a methodological way to
reach a firm value for the threshold; thus it will remain a parameter of the
simulation to be tested using parameter space exploration rather then em-
pirical grounding.

3.10 Classification Tasks

Another measure of organizational performance in NetWatch is based on the
binary classification task, a general representation of organizational perfor-
mance involving elements of pattern matching and determination of statisti-
cal relationships.

The classification task is a generalized version of the RADAR Task[Ye
and Carley, 1995]. In the RADAR task, the organization is presented with
bit patterns representing a radar signature of an aircraft (such as position,
altitude, speed, friend-or-foe identification, etc). The goal of the organization
is to analyze the radar signature to determine whether the incoming aircraft
is friendly, neutral or hostile.

The task is represented by a vector of binary values supplied by a task
generator (described in 6.0.4) and an outcome. The goal for each agent is to
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Listing 3.2: ”Execution of Classification Task”
¨ ¥

// I t e r a t e through a l l s ub ta s k in the complex t a s k
FOR EACH subtask node t ( i ) DO
P( i ) =0; k=0;
//Find a l l edges between t h i s sub ta s k and knowledge r equ i r ed
// to accompl ish the sub ta s k
FOR EACH e = edge betweeen t ( i ) and the knowledge subgraph DO
k=k+1;
IF e . t a r g e t !=0
// I f the agent knows the r equ i r ed f a c t
THEN P( i )=P( i ) +1; // increment the p r o b a b i l i t y f a c t o r

END IF
END FOR

// P r o b a b i l i t y o f f u l l acces s to the sub ta s k i s the r a t i o o f
the knowledge

// t ha t the agent a l r eady has and the knowledge r equ i r ed f o r
the sub ta s k

Prob ( i )=P( i ) /k ;
END FOR

§ ¦

determine which configuration of 1’s and 0’s in the vector represents which
value of the outcome (friendly/neutral/hostile).

Task complexity[Carley, 1992b] is defined as the length of the task vector
(N), or number of subtasks in a non-primitive task. For a given level of task
complexity there are potentially 2n possible configurations. Thus, as task
complexity increases the likelihood of encountering identical task configura-
tion in two tie periods decreases exponentially.

Furthermore, each agent can only access segments of the task vector that
are determined by its knowledge string. The probability of access to elements
of task vector is calculated using the algorithm in listing 3.2

The actual access to the subtasks in the vector is determined with a roll
of uniformly distributed dice. The task is then decided by a “majority rule””.
Each agent’s decision accuracy is computed by taking a series of classification
tasks and comparing the agent’s decisions to “true answers” - computed by
applying a majority rule to each task given complete information and access.

Task complexity[Carley, 1992a] is defined as the length of the task vector
(N). For a given level of task complexity there are potentially 2n possible
configurations. Thus, as task complexity increases, the likelihood of encoun-
tering identical task configuration in two tie periods decreases exponentially.
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Figure 3.6: Experiment Instrumentation: Observer Agent

3.10.1 Performance Measurement

An agent can only access bits in the task vector that correspond to non-zero
values in the its knowledge vector. The task is then decided by a “major-
ity rule”. An agent’s decision accuracy is computed by taking a series of
classification tasks and comparing the agent’s decisions to “true answers” -
computed by applying a majority rule to each task given complete informa-
tion and access. Task performance is measured as a percentage of correctly
decided tasks.

Overall performance of the organization is measured as the percentage
of correct decisions made by the organization[Ye and Carley, 1995][Lin and
Carley, 1997]. A second measure is the severity of the error. An organization
can make an “off-by-one” error (e.g. classifying a neutral aircraft as friendly)
or an “off-by-two” error (e.g. classifying a hostile aircraft as friendly). The
severity of the error is defined as percentage of total errors that are severe
(“off-by-two”).

While appearing simplistic, performance in classification tasks have been
shown [Lin and Carley, 2003] to correspond to organizational performance
in real cases, thus making classification tasks a suitable substitute for more
complex tasks for purposes of simulation modelling.

3.11 Observer Agent: Instrumentation for Vir-

tual Experiments

Conducting useful experiments using a simulation as complex as NetWatch
requires a fairly complex system for experiment instrumentation and obser-
vation.

In NetWatch, the instrumentation system is designed in a manner similar
to IRIS Explorer[Numerical Algorithms Group, 2004] and other scientific
visulialization applications. It also provides full integration with the CASOS
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Figure 3.7: Instrumentation Modules

toolchain, described in chapter 7.
The Observer Agent (shown in figure 3.6) is designed using modular

dataflow architecture and consists of a number of reusable modules that
perform data collection, filtering, storage and analysis. Each module is de-
fined as having input and output ports that allow modules to be connected
to each other in analysis chains. Both input and output ports allow multiple
connections - thus facilitating building complex analysis scripts.

3.11.1 Message Source

A message source module taps message traffic of any group of agents (either
Red or Blue Team). It outputs a raw message stream that can be parsed
and filtered by other modules.

3.11.2 Message Filtering

A message filter of the Observer Agent selectively intercepts messages from
the message stream and routes them to the data accumulator or discards
them.

The filter can be configured by the Strategy Module to intercept messages
based on

• random criteria,

• message sender or recipient,

• message type (knowledge, task, resource, chatter),

• message content, or

• any combination of the above.
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Both input and output of a message filter are message streams, thus
multiple message filters can be used sequentially or in parallel

3.11.3 MetaMatrix Aggregator

A MetaMatrix aggregator receives a stream of messages and stores their
header and contents in a MetaMatrix structure. It inputs a message stream
and outputs a set of graph structures comprising the MetaMatrix.

• Header information (Sender and Recipient of the message) is stored as
Person-to-Person edge

• Knowledge contents are stored as a Person-to-Knowledge edge

• Resource contents are stored as a Person-to-Resource edge

• Task contents are stored as Person-to-Task edge

3.11.4 Vector Aggregator

A Vector Aggregator receives a stream of messages and stores values of a
field in a message in a vector of numbers. The output of the aggregator is a
vector that can be analyzed with the statistics module

3.11.5 Network Analysis

The Social Network Analysis (SNA) module uses metrics implemented in
ORA[Carley and Reminga, 2004]. These metrics include both standard SNA
metrics (such as network density, degree centrality, betweenness and eigen-
vector centrality), as well as MetaMatrix measures such as cognitive demand
and task and knowledge exclusivity.

Metrics computed on graphs are stored as node and edge attributes in
the graph data structure or can be output as vectors.

3.11.6 Storage Modules

Storage modules allow the Observer Agent to output collected data in a
variety of file formats, ranging from raw text files and UCINET’s DL format,
to DyNetML input/output streams (described in chapter 8).

A second storage module provides integration with the NetIntel databases
(described in chapter 9).
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3.11.7 Summary

As I have shown in this section, NetWatch is designed as a multi-agent system
incorporating autonomous, asynchronous and intelligent agents embedded in
complex social networks. By employing a full-featured agent communication
language (ACL) and a combination of a set of basic behaviours and AI-based
planning subsystems, each agent can produce a high-fidelity approximation
of behaviour expected of a human actor in a similar organizational situation.
The next section describes a virtual experiment aimed at demonstrating the
potential of NetWatch as a model of organizational evolution and grounding
it by comparing results of the simulation with these from previous models.
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3.12 Virtual Experiment 1: Structural Evo-

lution in Covert Network

The first virtual experiment showcases NetWatch’s ability to model the pro-
cesses of task-related and social communication among agents and their effect
on the structural properties of the network. Of particular interest is a ques-
tion of whether or not task-based activities preserve the original network
topology - or result in creation of a new, different topology that is better
suited to the task at hand.

A further purpose of this experiment is to ground NetWatch’s perfor-
mance as a model of organizational performance and evolution by docking
its results with these of Construct[Schreiber and Carley, 2004].

3.12.1 Experimental Design

The experiment is framed using the following parameters:

Parameter Value
Number of Agents 100
Total number of facts in knowledge network 200
Total number of available resources 20
Number of subtasks in task structure 20

The network of agents is built using the cellular network construction
routine discussed in section 6.0.1, using the following profile:

Parameter Value
Mean Cell Size 6
Cell Size St. Deviation 1.7
Internal Cell Density 0.9
Probability of Random Connections 0.01
Density of cell leaders 0.16
Probability of connection between leaders 0.6
Probability of triad closure within cells 0.9
Probability of triad closure outside cells 0.17

The knowledge network of agents was generated using a routine described
in section 6.0.3, using the following parameters:

The task precedence network was generated using the Critical Path Method
(section 6.0.4) with the Average Connectivity (sum of predecessors and suc-
cessors) of 4.0 and Average Branching Factor of 1.7.
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Parameter Value
Proportion of shared knowledge 0.15
Proportion of specialist knowledge 0.65
Proportion of privileged knowledge 0.2
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Figure 3.8: Time-series measurements: change in (a) average degree central-
ity, (b) average closeness centrality, (c) betweenness centrality, (d) cognitive
demand, (e) network density and (f) knowledge diffusion;(Cellular network,
100 agents, 20 repetitions)

For each experimental configuration, I generated 20 initial network topolo-
gies and repeated the experimental run with each network. While the pa-
rameters given to the network generator stay the same, stochastic nature of
network generation results in generation of different initial topologies. Dif-
ferences in initial topologies thus result in larger variance in some of the
dependent variables. All experiments are run for 500 time periods.

3.12.2 Observations

Change in Average Node Degree Over Time

Figure 3.8(a),(b) and (c) show change in agent centralities over the course
of the simulation. Average betweenness and closeness centralities stay fairly
constant throughout the run, while average degree centrality drops slightly as
agents solidify their local networks. Network density (fig. 3.8(e)) also drops
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Figure 3.9: Agent Communication Patterns at the beginning and end of
simulation

slightly.

Change in Knowledge Diffusion

Knowledge diffusion[Carley, 1995] occurs when an idea or fact known by
one individual becomes known by others in the society. Average level of
diffusion is determined by tracking several facts that are originally known by
one agent only, and assessing the number of agents that report knowing this
fact at every time period.

In random networks, Carley[Carley, 1995] shows the knowledge diffusion
function to monotonically increase with time with an asymptote at or near
100% diffusion. The functional form of knowledge diffusion is close to

d = 1−
1

t

where d is the information diffusion ratio and t is a time period.
Experiments with cellular networks (figure 3.8(f)) show a slower knowl-

edge diffusion ratio with mean diffusion showing near-linear progression. This
is expected due to the fact that cellular networks are designed precisely for
slowing information diffusion - a necessary precondition for maintaining se-
crecy of covert plans. The large standard deviation shows that despite linear
growth of the mean diffusion, the precise configuration of the initial network
and knowledge distribution affects speed of knowledge distribution as well.

3.12.3 Changes in Network Topology Over Time

Figure 3.9 shows that while the topology of the network changes through the
simulation and overall network density increases, the cellular nature of the
network is maintained through the interactions.
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Figure 3.10: Change in degree distribution over time; (Cellular network, 100
agents, 20 repetitions)

However, average degree centrality of individual nodes does increase and
its distribution changes from a sparse pattern corresponding to cells and
leadership structures originally generated into a pattern more closely resem-
bling a normal distribution, and thus signalling creation of a more egalitarian
structure (figure 3.10.

3.12.4 Task Performance

Figure 3.11 shows that learning that occurs in agents as they communi-
cate and accomplish tasks contributes to organization’s average task perfor-
mance. The graph shows performance on classification tasks only, which has
been shown as a good estimate of organizational performance in knowledge-
intensive tasks.

The monotonic increase of task performance over time demonstrates that
the organization learns and optimizes its arrangements of knowledge and
resources. However, the organization is faced with tasks of varying com-
position. Thus, until a clearer model of the task structure emerges, the
performance on each individual task varies significantly – within 10% range
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Figure 3.11: Time-series measurements of classification task performance
(Cellular network, 100 agents, 20 repetitions)

of the mean.

3.12.5 Discussion

The results of this experiment indicate that, while overall structure of the
organization remains the same, processes of information exchange and pres-
sures of task performance force the organization to become more egalitarian.
As knowledge becomes more distributed throughout the organization, the
amount of knowledge exclusive to a small group of agents also decreases,
providing for a structure that is more resilient to attack.

Essentially, the organization adapts to increase task performance. This
optimization process is not without bounds, as the maximum task perfor-
mance is shown to be limited by formal organizational structure and its
power to prevent information and resources from crossing large distances
through the network.

In order to provide face validity for studying performance of signal intel-
ligence heuristics as well as the effects of destabilization strategies, a baseline
model of organizational evolution and performance must be established.

The purpose of this experiment is to provide such a baseline by examining
the performance of an organization constructed based on studies of covert
networks and built of intelligent agents.

Results of this preliminary experiment can be summarized as follows:

• Organizational models constructed with use of intelligent agents evolve
in patterns similar to these observed in empirical data[Carley, 2002c].
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• Simulated organization exhibits patterns in growth of performance and
knowledge diffusion as these established by Carley in [Carley and Hill,
forthcoming], [Carley, 1995].

• Simulated organization evolves structurally by building a network topol-
ogy that improves performance in knowledge-intensive tasks. However,
this structural change preserves the character of a network as a cellular,
covert organization. Organizational evolution happens through both
link addition and link deletion.

• If left unchecked, the covert organization will gain efficiency in task per-
formance by moving resources where they are needed, and disseminating
knowledge useful to task completion.

3.13 Example: Four Days in The Life of a

Terrorist Cell

To simulate evolution of social networks and organizations, NetWatch imple-
ments a multi-level complex system that involves a large number of simulta-
neous processes. These processes range from socializing in groups to strategic
interactions to distributed planning and execution of tasks. To maintain re-
alism of the system and a level of face validity, it is thus important to not
only examine overall outcomes of simulation scenarios, but to also examine
individual interactions and processes that occur within the simulated orga-
nization.

Doing so on a large-scale basis (e.g. an organization with hundreds of
agents, over a long period of time) is impossible due to sheer quantity of
generated data, but it is possible to trace interactions, tasks and information
flow over a short period of time, with a confined group of agents engaged in
a focused task.

The initial data for this example comes from encoding of news stories and
legal documents related to the bombing of the U.S. Embassy in Tanzania
in 1998. The data has been encoded in MetaMatrix form and includes a
person-to-person network with 16 agents, 5 areas of knowledge (religious
extremism, weapons training, driving training, bomb preparation knowledge
and media relations), resources such as truck, bomb material and building for
bombmaking and a precedence graph containing the main task (bombing) and
a number of auxiliary tasks (training exercises and bomb preparation).

In this example, I have triggered the organization to plan and execute
a terrorist attack using a truck bomb. Each of the steps described in the
trace below is an agglomeration of activities that have occurred in 1 day
(i.e. 4 time periods of the simulation). Thus, in a relatively short space,
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the simulation can cover execution of a terrorist attack from beginning to
completion.

People

Knowledge and Resources

Tasks

Figure 3.12: Legend for plots 3.13-3.16

Figure 3.13 shows the state of the organization before planning and exe-
cution of a terrorist attack starts1. Before planning phase was triggered, the
agents were allowed to run freely for 60 time periods (i.e. 15 days). Thus,
a certain level of information exchange and attribute contagion has been al-
ready achieved. Note, for example, the prominence of religious extremism
and the number of people connected to it.

Triggering of the terrorist attack occurred in the beginning of this day,
with a broadcast message to all agents. Only agents that were able to produce
a hierarchical decomposition of the complex task and find out the subtasks
and resource requirements were able to start planning the task. Some of the
resources (money and a building for bombmaking) have been already located
by the end of the day, and people with access to these resources will likely
become anchors to the planning process of the terrorist attack.

Figure 3.14 shows the organization in the midst of planning. Note agents
Abdullah Ahmed Abdullah (Saleh) and Mohammed Rashed Daoud al-Owhali.
A day ago they had access to the building for bomb preparation and money.
Now they also have purchased a truck from Abouhalima — i.e. a resource
exchange process — with the money that they had during Day 1. At the
end of the day, Saleh and al-Owhali engaged in weapons training and bomb
preparation (subtasks on the critical path of execution of a bombing), and
enlisted help of a weapons export Khalfan Khalis Mohamed.

During Day 2, preparations were well under way, but explosive material
has not been yet procured. Transactive memory prompted al-Owhali to come
back to Abouhalima as he was able to procure resources. Abouhalima was a
familiar person to al-Owhali as al-Owhali bought a truck from him during
Day 2.

However, he did not have explosives. The closest place to obtain them was
from Wadih al Hage, at a network distance of 2. al-Owhali was introduced

1This example is fully simulated. While names of actors and initial distribution of skills
and resources have been obtained from real-world information, the events described below
are a product of a computer simulation and should not be construed to indicate the course
of historical events or any legal implications thereof
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Figure 3.13: Day 1: Start of planning
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Figure 3.14: Day 2: Planning and Resource Marshalling

Figure 3.15: Day 3: Final Preparations
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Figure 3.16: Day 4: The Bombing

to al Hage in the beginning of Day 3 (figure 3.15), and procured explosives
by the end of the day.

Meanwhile, Saleh has been engaged in weapons training. There he met
Mohammed Sadiq Odeh who has had driving training and recruited him to
drive the truck bomb.

The bombing itself happened on Day 4 (figure 3.16). It was perpetrated
by al-Owhali, Saleh and Odeh. The model used for NetWatch does not let
us find out whether the perpetrators survived and got away or died in the
blast.

This ”dramatic reading” of the scenario illustrates in human terms how
a set of intelligent agents goes about accomplishing a complex task - via
planning, resource acquisition and knowledge exchange. While most of the
simulation scenarios do not read like a paperback novel, the processes behind
them stay as complex as the ones illustrated above. While we may only look
at the top-level results, and condense dozens of runs into a single diagram,
we must keep in ming this underlying complexity.
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Chapter 4

Learning Network Structures from
Observed Communications

As I have discussed in section 3.2, the Blue Team represents a set of agencies
engaging in anti-terrorist activity, and pursues two interconnected goals. The
blue team conducts signal intelligence-based informaiton gathering and uses
collected information to build a MetaMatrix representation (see sec. 2.6) of
the Red Team, e.g. learn the structure, task assignments and knowledge
distribution of the Red Team.

However, the Blue Team has no access to the actual information about
the Red Team. Its only source of information is a set of wiretaps on the com-
munication network of the Red Team, which are (a) noisy and (b) incomplete
sources of information. The Blue Team must therefore cope adequately with
the uncertainty introduced by incomplete information obtained from wire-
taps.

The second goal of the Blue Team is to destabilize or decrease performance
of the Red Team by isolating agents on the Red Team through use of various
destabilization strategies as outlined in section 4.12.

This section is organized as follows: after overview of design of blue team
agents (sec. 4.0.1), I proceed to define and evaluate a number of wiretapping
methods and heuristics. First, a baseline performance is established through
implementation and testing of random sampling algorithms with control for
signal-to-noise ratio (section 4.0.2). Section 4.2 defines metrics of wiretap
performance and means for comparison of different algorithms and presents
a virtual experiment to study performance of random sampling algorithms
under various signal-to-noise ratio conditions.

Capture and analysis of each message has associated costs. Therefore, a
signal-to-noise ratio — i.e. the amount of messages captured vs. the total
amount of message traffic — can be established as a measure of cost of run-
ning a wiretap. The goal in this case is to achieve the maximum accuracy of
estimating the nodes and edges in the subject network at the lowest possible
cost.

Section 4.3 discusses snowball sampling - a common technique for ob-
taining social network data. Snowball sampling starts with a small initial
population and follows the links of every actor to find who they commu-
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Figure 4.1: Design of the Blue Team Agent

nicate with. The population expands as new agents are found, thus search
progressing radially from a small initial sample. In this section, I also discuss
a common problem with snowball sampling and introduce a simple algorith-
mic solution, which is used to implement snowball sampling in NetWatch.

Section 4.4 discusses a set of sampling strategies that utilize social net-
work analysis of known structure of the subject network to guide a targeted
wiretap. These strategies, further referred to as socially intelligent wiretaps,
improve upon snowball sampling by achieving a higher degree of learning of
the subject network at a lesser signal-to-noise ratio (e.g. at a lower cost).

Section 4.5 puts snowball sampling and four socially intelligent sampling
strategies to the test against the baseline random sampling and discusses its
performance and limitations in study of dynamic social networks.

Sections 4.6 and 4.7 discuss and test a new approach to sampling dynamic
social networks based on simulated annealing. By improving breadth of
coverage of the search space and eliminating problems with local maxima, the
annealing-based algorithms achieve the highest performance of all strategies
discussed in this dissertation.

Section 4.11 discusses the means for sharing information among agents in
the blue team and provisions for implementation of such sharing strategies.

4.0.1 Design of the Blue Team Agents

A Blue Team agent is built on a similar base as the Red Team agents but with
a number of key differences regarding its tasks and behaviours (see figure 4.1).
Blue Team agents have a capability of observing message traffic on the Red
Team network while performing traffic filtering and traffic analysis. Signal
intelligence thus obtained is accumulated to form a representation of the Red
Team and analyze behaviours and structure of the Red Team.

Each Blue Team agent consists of the following modules:

• Message Filter module receives raw message traffic from wiretaps placed
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by the Blue Team agent into the Red Team network.

• Data Accumulator is a MetaMatrix structure that is used to accumu-
late information on sources and destinations of messages, as well as
their content (such as knowledge or resource transfer information or
reports of task assignments and accomplishments). The Data Accumu-
lator module also performs aging of network data while discounting old
or infrequently activated nodes and links.

• Analysis Module performs MetaMatrix and Social Network analysis on
data accumulated in the graph structures of Data Accumulator and
reports to the Strategy Module.

• Strategy Module uses results of analysis of gathered social network data
to reconfigure the message filter in ways that may increase the quantity
or quality of captured information.

If a wiretap could capture all communication, the Blue Team would be
able to create a full and accurate picture of the Red Team network. However,
a wiretap is not able to capture all relevant messages due to its placement in
the Red Team network or the signal-to-noise ratio. Thus, it is a goal of each
Blue Team agent to maximize the effectiveness of its data gathering through
capturing higher amounts of relevant messages. Since placement of wiretaps
and capture of messages have costs, the Blue Team also needs to minimize
costs by operating at lower signal-to-noise ratios.

4.0.2 Message Filtering

A message filter of a Blue Team agent selectively intercepts messages from
the message stream and routes them to the data accumulator or discards
them.

The filter can be configured by the Strategy Module to intercept messages
based on

• random criteria,

• message sender or recipient,

• message type (knowledge, task, resource, chatter),

• message content (messages containing new information get higher pri-
ority), or

• any combination of the above.

67



4.1 Signal Intelligence Strategies

The strategy module of the Blue Team agent implements a number of con-
figurable strategies for tapping and filtering message traffic data.

The baseline strategy is based on random selection of messages as they
come through the the wiretap. Any message in the stream has an equal
probability of being intercepted and recorded. Signal-to-noise ratio is di-
rectly related to the probability of interception and can be treated as an
independent variable, ranging from 5% useful signal to 25% useful signal -
thus enabling study of the effect of signal-to-noise ratio on the quality of
collected data.

4.2 Learning Network Structure though Sig-

nal Intelligence: Random Sampling

Random sampling of communications can be considered a baseline against
which performance metrics of other network sampling strategies can be com-
pared. While random sampling of wire (or wireless) traffic is rarely used in
the real world, in simulation it can be used to provide a robust notion of
signal-to-noise ratio and its effect on acquisition of knowledge about network
structure.

As the true goal of intelligent wiretapping heuristics is to ”do more with
less” — i.e. produce a maximally correct result given a certain amount of
captured traffic — it is prudent to compare quality of network structure dis-
covered via intelligent heuristics with results of similarly configured random
sampling systems.

In this experiment, I establish such a baseline by comparing performance
of random sampling techniques across networks of different size and topology,
while controlling for signal-to-noise ratio of the sampling apparatus.

4.2.1 Experimental Design

This experiment is based on a matrix design and tests performance of a num-
ber of simple wiretapping strategies on simulated organizations of different
size and initial topology:

Network Topology

S
iz
e Uniform, 100 agents Scale-Free, 100 agents Cellular, 100 agents

Uniform, 250 agents Scale-Free, 250 agents Cellular, 250 agents
Uniform, 500 agents Scale-Free, 500 agents Cellular, 500 agents
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The density of uniform random network is set at 0.2 - i.e. probability Pi,j

of an edge existing between agents i and j is 20%. The method for generating
such networks is described in section 6.0.1

The scale-free network are grown using the Barabasi-Albert method of
preferential attachment[Barabási and Albert, 1999], with parameters:

k = 0.25

γ = 2

More details on growing scale-free networks can be found in section 6.0.1
The cellular networks are generated using the mechanism outlined in sec-

tion 6.0.1, using the following profile:

Parameter Value
Mean Cell Size 6
Cell Size St. Deviation 1.7
Internal Cell Density 0.9
Probability of Random Connections 0.01
Density of cell leaders 0.16
Probability of connection between leaders 0.6
Probability of triad closure within cells 0.9
Probability of triad closure outside cells 0.17

Each cell of the experiment was repeated 20 times, generating 20 random
networks with the same parametric signature. Results of the experimental
repetitions were averaged.

4.2.2 Performance Measurement

Techniques for measurement of effectiveness of signal intelligence strategies
can be broken down into two classes of metrics. Employment of one set
of metrics vs. the other is a choice to be made depending on goals of the
measurement. All of the below techniques assume the existence of two Meta-
Matrix structures: one of the True Network — network collected through
direct observation of the simulated organization and the Learned Network
— network collected by the Blue Team agent in the course of application of
the wiretapping strategy.

The first technique is based on the assumption that the goal of discover-
ing nodes and connection patterns between them is to achieve a maximally
complete picture of the overall network structure. The concern in this case
is the surveillance technique needs to not only uncover highly visible actors
in the network but also discover the breadth of the network structure and
minimize the number of undiscovered nodes and edges.
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If this assumption is true, the best simple measure of quality of network
is hammingdistance[Sanfeliu and Fu, 1983], a sum of differences between
two graph structures, in this case, the True and Learned Networks. The
significance of hamming distance in this particular case is that it illustrates
the overall number of errors made by the Blue Team agents. However, to
compare performance of an algorithm on networks of different size, the raw
hamming distance needs to be normalized:

Dnorm
hamming =

Dhamming

numberOfPossibleEdges
=

Dhamming

numberOfNodes2

Lower normalized hamming distance signifies higher performance.
The second measurement technique is a strict assessment of an algorithm’s

ability to zero in on a core members of a network. The definition of a core
member of the network is based on results of applying a number of social
network measures to the network, including degree and betwenness central-
ities[Freeman, 1979], cognitive demand[Carley and Ren, 2001] (also section
2.6.1, task and knowledge exclusivity[Ashworth, 2003](also section 2.6.1.

Agents are thought to be a part of the core group in an organizational
network if they exhibit high values in one or more of these social network
metrics. Practically, one can think of these individuals as members of the
”Top 10” actors in the network, however mathematically it would be more
prudent to describe these actors as

centralityi ≥ max(centrality)− σ2(centrality)

or actors whose centrality falls within 1 standard deviation of the top cen-
trality value.

Performance of the wiretapping strategy can then be measured as the
probability of learning correctly the members of the core group or cardinality
of the intersection of learned core group with the true core group divided by
the cardinality of the true core group:

P =
cardinality(coretrue

⋂

corelearned)

cardinality(coretrue)

This measure of performance is most useful under the assumption that finding
the core group through SNA metrics is an acceptable compromise to mapping
the entire network.

This presents us with a trade-off. If an intelligence gathering strategy is
designed to achieve optimal hamming distance performance, it will inevitably
miss some of the structural properties related to the core structure. However,
if a technique is optimized to achieve optimal core-group estimates, it may
not be able to adequately map the peripheral structure of the network. In the
context of terrorist groups, that would mean that the first technique would
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Figure 4.2: Time-series: Effect of network size on Hamming Distance with
Random sampling (10% signal/noise ratio), Cellular Networks. (a) 100
agents, (b) 250 agents, (c) 500 Agents, (d) normalized hamming distance
for 100, 200 and 500 agents; (all results averaged over 20 runs)

be bad at finding the leadership of the group. The second technique would
not be able to find peripheral groups of operatives – which are more likely
to become future perpetrators of terrorist attacks.

In this experiment, we study performance of a number of simple network
observation strategies in terms of both normalized hamming distance and
core-group metrics.

4.2.3 Observations and Discussion

Effects of Network Size on Hamming Distance

Figure 4.2 shows, as a time series, the process of learning the shape of the
True Network through a simple uniform-probability wiretapping strategy (see
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section 4.0.2). In this portion of the experiment, the signal-to-noise ratio was
set at 0.1 - i.e., any message exchanged by Red Team agents has a 10% chance
of being intercepted by the Blue agents.

Plots 1,2,and 3 on figure 4.2 show that in each of the cases the amount of
information collected by the Blue agents gradually improves the knowledge
that the Blue Team possesses about the Red Team (i.e. the hamming distance
decreases). However, plot 4 on the same figure shows that in context of the
absolute scale of hamming distance such improvement is fairly small.

How could this occur? Agents in the Red Team communicate continu-
ously, therefore releasing information about structure of the Red Team to
the Blue agents. The Blue agent collects this information and continuously
works on improving its picture of the Red Team.

The problem lies in the fact that the Red Team network evolves as agents
create new connections and let old connections expire once they are no longer
needed. Thus, as the Blue Team agents monitor the Red Team, they must
force their representation of the Red Team network to follow the changing
communication landscape.

In general, the Red Team will change faster then the Blue Team can follow
due to the fact that not every message is captured. The hamming distance
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between the True network and the Learned network becomes a measure of
how well the Blue Team can match the speed of evolution of the Red Team.

Effects of Network Topology on Wiretap Performance

Figure 4.3 shows effect of initial network topology on effectiveness of wiretaps.
All of these tests were conducted on networks of 100 agents, 10% signal/noise
ratio. The most pronounced gain in hamming distance is for Erdös random
graphs with scale-free and cellular networks approximately equivalent.

4.2.4 Effects of Signal-to-Noise Ratio on Wiretap Per-
formance

This portion of the experiment combines data collected for all initial topolo-
gies of the experimental design sampled at different levels of signal-to-noise
ratio.

Figure 4.4 shows the effect of signal-to-noise ratio of the random sampling
wiretap on the quality of acquisition of network data. The conclusion drawn
from this figure on its own is fairly obvious — greater signal-to-noise ratio
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has a significant impact on the quality of learned network. However, this
dataset is used in the experiments that follow as a point of reference and a
baseline that other results are compared to.

The baseline results show a near-linear dependence of accuracy of network
mapping on signal-to-noise ration, in case of purely random sampling of
communications. This is expected due to the fact that random sampling has
an equal chance of discovering all edges of the network, whether they belong
to a highly connected agent or to a near-isolate agent. The probability of
discovery of an edge at any given time is thus proportional to the ratio of
messages that are captured and overall message traffic - which comprises the
effective signal-to-noise ratio.

4.3 Snowball Sampling

A Snowball Sampling strategy is based on work of Biernacki andWaldorf[Biernacki
and Waldorf, 1981] and Granovetter[Granovetter, 1976]. A snowball sam-
pling strategy captures traffic originating from one agent and targets every
agent with which it communicated. This essentially is a breadth-first search
of the network. In NetWatch the snowball sampling strategy targets agents
sequentially, one at a time.

While snowball sampling can quickly map communication in smaller so-
cial networks, it exhibits a number of problems. First of all, it can only
discover agents that reside inside a single component of the network. This
problem is compounded by the fact that cellular networks consist of semi-
isolated groups of agents where frequency of communication inside the group
is much greater then frequency of communication outside the group. Map-
ping out multiple components of the network requires snowball strategy to
use multiple, randomly selected entry points.

Further, as agents are targeted sequentially, a problem of oscillation
arises. In a sub-network resembling a star topology, a snowball sampler
has to return to the center of the star before it can continue to sample com-
munications from other agents. This can be resolved by using a queue to
manage a list of unexplored targets and a taboo list to prevent the search
algorithm from revisiting the targets that it has already explored.

Figure 4.5 and listing 4.1 illustrates how the snowball sampling algorithm
explores a simple graph.

As I have established experimentally in section 4.5, snowball sampling
shows a considerable bias towards highly connected nodes. While it is ef-
fective at learning network structures at a higher efficiency than baseline
methods, it does not discover the breadth of the network by avoiding nodes
with low communication rates.

Next section presents a number of strategies that improve upon perfor-
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Figure 4.5: Snowball Sampling with Taboo List

mance of snowball sampling on dynamic networks via use of socially intelli-
gent traffic analysis and multi-point sampling.

4.4 Socially Intelligent Traffic Analysis

As the Blue Team agents receive messages from the wiretap agents, they use
their address information to build a representation of the network of the Red
Team, or the Learned Network.

Thus, while Snowball sampling is myopic (i.e. can only see and survey
small portions of the network at each time), a more intelligent Blue Team
agent can use its accumulated knowledge of the target network to make
intelligent decisions about locations of future wiretaps and configuration of
their message filters.

The Analysis Module (see figure 4.1) of Blue Team agents implements
an analysis toolkit containing a number of common social network analy-
sis algorithms including degree centrality, betweenness centrality and close-
ness centrality [Freeman, 1979]. Also accessible to the agents are methods
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Listing 4.1: Snowball Sampling Algorithm
¨ ¥

CurrentTarget = a random s t a r t i n g po int (A) .

REPEAT:
Add the CurrentTarget to the Taboo L i s t (B)
Add a l l agents that CurrentTarget communicates with to the

Sampling Queue
REPEAT
NewTarget = deque from Sampling Queue

UNTIL NewTarget i s NOT on the Taboo L i s t (C)
UNTIL Sampling Queue i s empty

§ ¦

Listing 4.2: Simple Socially Intelligent Sampling
¨ ¥

CurrentTarget = random s t a r t i n g po int
REPEAT
Add CurrentTarget to TabooList
Capture a l l t r a f f i c TO and FROM Current Target for a per iod o f

time
Store captured messages in MetaMatrix accumulator
Run Measure o f cho i c e on MetaMatrix
CurrentTarget = agent h i ghe s t in Measure
FOREVER

§ ¦

of MetaMatrix analysis including cognitive demand (see section 2.6.1, [Car-
ley and Ren, 2001]), and knowledge and task exclusivity metrics (see sec-
tion 2.6.1,[Ashworth and Carley, 2002],[Ashworth, 2003]).

In its simplest implementation, the socially intelligent wiretap algorithm
function is presented in listing 4.2.

In this form, the socially intelligent traffic analysis presents a number of
problems.

The main problem is rooted in the nature of both traditional SNA metrics
and most of MetaMatrix. To be exact, the root of the problem is the fact that
centrality metrics such as degree, betweenness and cognitive demand exhibit
poor robustness to incomplete data[Borgatti, Carley, and Krackhardt, 2004].

Figure 4.6 illustrates this effect. Let node A represent the node picked
randomly in the beginning of the algorithm. After listening to message traffic
to and from node A, the Blue Team agent will discover nodes B, D, and E.
At this point, the Blue Team agent has accumulated enough information to
assume that the topology of A’s network is a star. Computing any of the
centrality measures mentioned above will produce the same result: the top
Red Team agent in all of the measures will invariably be A. Thus, the simple
algorithm never has a chance to discover nodes C and F because they do not
communicate to A directly.
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Figure 4.6: Simple Socially Intelligent Traffic Sampling Does Not Capture
the Entire Network

4.5 Non-Random Signal Intelligence Strate-

gies: First Approach

The goal of this experiment is explore performance of a number of different
wiretapping strategies that utilize the knowledge of structure of the Red
Team network to direct their efforts of data capture.

The wiretap heuristics that I evaluate in this experiment are:

Snowball Sampling strategy is based on work of Biernacki andWaldorf[Biernacki
and Waldorf, 1981] and Granovetter[Granovetter, 1976]. A snowball
sampling strategy captures traffic originating from one agent and tar-
gets every agent with which it communicated. This essentially is a
breadth-first search of the network. In NetWatch, the snowball sam-
pling strategy targets agents sequentially, one at a time, and switches
targets periodically. Snowball sampling is described in detail in section
4.3.

Simple SNA-based Sampling uses a social network analysis toolkit con-
taining a number of common social network analysis algorithms, in-
cluding degree centrality, betweenness centrality and closeness centrality
[Freeman, 1979], as well as methods of MetaMatrix analysis, includ-
ing cognitive demand (see section 2.6.1, [Carley and Ren, 2001]), and
knowledge and task exclusivity metrics (see section 2.6.1,[Ashworth and
Carley, 2002],[Ashworth, 2003]). This experiment uses socially intelli-
gent sampling algorithm as described in section 4.4.

I evaluate performance of each of these strategies based on normalized
hamming distance metric defined in section 4.2.2. The evaluation is done
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against the baseline of random sampling experiments established in section
4.2.4.

4.5.1 Experimental Design

The goal of this experiment is to evaluate performance of several simple
algorithms and heuristics for learning network structure based on captured
communications. For this initial evaluation, I conduct the experiment using
cellular networks.

The size of networks is kept constant throughout the experiment:

Parameter Value
Number of Agents 100
Total number of facts in knowledge network 200
Total number of available resources 20
Number of subtasks in task structure 20

The cellular networks are generated using the mechanism outlined in sec-
tion 6.0.1, using the following profile:

Parameter Value
Mean Cell Size 6
Cell Size St. Deviation 1.7
Internal Cell Density 0.9
Probability of Random Connections 0.01
Density of cell leaders 0.16
Probability of connection between leaders 0.6
Probability of triad closure within cells 0.9
Probability of triad closure outside cells 0.17

4.5.2 Observations

Snowball Sampling

Snowball sampling strategy (see figures 4.7,4.8) performs at a level compa-
rable to the random sampling baseline at signal-to-noise ratio of 25%. How-
ever, the measured signal-to-noise ratio of snowball sampling strategy (i.e.
the ratio of number of captured messages to number of rejected messages) is
markedly lower - 16.3%.

However, as histogram on figure 4.8 shows, snowball sampling shows a
considerable bias towards highly connected nodes. While it is effective at
learning network structures at a higher efficiency then baseline methods, it

78



0 10 20 30 40 50 60 70 80 90
650

660

670

680

690

700

710

720
Random Sampling (Baseline), SNR=25%

Snowball Sampling

&('
)*)*+ ,
-*.(+ /
0�'
,
1
e

Time
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does not discover the breadth of the network by avoiding nodes with low
communication rates.

Simple Socially Intelligent Methods

Socially intelligent sampling methods exploit the partial knowledge of net-
work topology in a heuristic of guiding the sampling algorithms. The heuris-
tics are based on well-known social network analysis metrics and can be
summarized as the following conjecture:

If one samples communication traffic of individuals considered well-
connected or powerful, the sampling mechanism will produce a
high-fidelity representation of the subject network.

The algorithm for socially-intelligent sampling is discussed in detail in
section 4.4. In this experiment, I evaluated performance of metrics of degree
centrality, betweenness centrality, cognitive demand and knowledge exclusiv-
ity.

Figure 4.9 demonstrates performance of socially intelligent wiretap meth-
ods in terms of hamming distance between learned network and true network.
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Heuristics based on pure SNA metrics of degree and betweenness centrality
produce essentially identical performance over time and several times reach
the best performance among all techniques. However, on average they do
not perform as well.

MetaMatrix-based metrics of cognitive demand and knowledge exclusivity
track closely to each other in the first half of the run but diverge as knowledge
diffusion increases. The explanation of this divergence lies in the fact that
with time, knowledge becomes diffused among the agents. When agents send
knowledge requests to other agents, with knowledge diffusion these requests
will be sent across a larger group of agents — and thus, cognitive demand at
time t becomes a worse predictor of who will communicate at time t+ 1.

Overall, socially intelligent strategies performed significantly better then
baseline established for signal-to-noise ratio of 0.25 (see figure 4.10) and
slightly worse then baseline at signal-to-noise ratio of 0.5 (figure 4.11. At the
same time, the measured signal-to-noise ratios of socially intelligent strategies
were significantly lower then those needed to achieve same performance in
the baseline strategies.

Socially intelligent sampling strategies as a whole perform significantly
better than baseline strategies at the same signal-to-noise ratio as well as
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rnd-0.05 rnd-0.1 rnd-0.25 rnd-0.5 snwbll btwns cog.dem. deg. kn.exc
mean 969.98 905.75 729.1 463.3 721.43 582.98 590.99 583.4 580.54
st.dev 166.24 153.165 125.58 77.51 120.48 158.83 157.53 159.12 152.66
s-n ratio 0.05 0.1 0.25 0.5 0.16 0.21 0.18 0.23 0.17

snowball sampling strategy. The highest performance on average comes from
strategies that take advantage of knowledge content of communications —
cognitive demand and knowledge exclusivity.

However, a significant problem remains in the design of the simple heuris-
tics. Essentially, these heuristics can be described as a hill-climbing algorithm
where the sampling point (i.e. the wiretap) moves in the direction of high-
est value of the metric. However, these algorithms are generally unable to
discern local maxima from globally optimal solutions. Once such local max-
imum is discovered, the hill-climber is unlikely to sample any other area of
the network.

Figure 4.12 illustrates the occurrence of local maximum in one of the
experiments (cellular network, degree centrality heuristic). The histogram
shows frequency with which each of the nodes was targeted by the wiretap.
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Figure 4.10: Mean Performance of Socially Intelligent Strategies (3x3 cells,
20 runs/cell)

In this particular case, the local maximum is located near Agents 92 and 93
- which together account for close to half of messages captured.

A further complication to the above problem is the fact that initially the
Blue Team agents know very little about the Red Team — thus the accuracy
of their estimations of centrality metrics is bound to be low[Borgatti, Car-
ley, and Krackhardt, 2004],[Costenbader and Valente, 2003]. Therefore, the
heuristic can fall into a local maximum within one or two time periods from
the start.

While problems of local maxima are serious, they are not unsolvable. One
of the best solutions for navigating parameter spaces with local maxima is to
use an algorithm similar to simulated annealing with a measure of random-
ization in the beginning to serve as a bootstrapping mechanism. The next
section describes such an algorithm, and shows its performance advantages
over simple hill-climbing heuristics.

4.6 Socially Intelligent Traffic Sampling with

Probabilistic Targeting

A notion of a Taboo List can be added to the algorithm to force it to sample
agents that do not get top centrality measures.
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Figure 4.11: Mean Signal-Noise Ratio of Socially Intelligent Strategies (3x3
cells, 20 runs/cell)

However, I propose a more robust solution: a traffic sampling algorithm
with probabilistic targeting. This algorithm allows the much greater cover-
age of the network and is less prone to finding local maxima. The algorithm
maintains a set of nodes that comprise its region of interest (ROI). After
random initialization and a period of traffic capture, the captured MetaMa-
trix is analyzed and a new ROI is constructed based on the results of this
analysis. However, nodes to comprise the new ROI are not picked deter-
ministically. Rather they are picked by an exponentially distributed random
variable. The distribution is composed in a way such that the most promi-
nent nodes (i.e. these highest in the measure of interest) have the highest
probability of being included in the ROI - but there is non-zero probability
of the least well-connected nodes included as well.

The algorithm is illustrated on figure 4.13 and listing 4.3.
The exponentially distributed random variable is initialized as follows:

P (x) = λe−λx

Where parameter λ dictates the speed of fall-off of the probability distribu-
tion function. Thus, λ dictates how ”adventurous” the algorithm would be
in including little-known agents in the ROI.

Furthermore, manipulation of the λ parameter during the running of
the algorithm results in behaviour similar to that of simulated annealing -
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Figure 4.12: Histogram: frequency of capture of messages per agent; demon-
strates adherence to local maximum in simple soc.int. heuristics (single run)

the ROI becomes more constrained as more information on the network is
obtained.

Results of evaluation of this algorithm as well as a parameter sensitivity
study are presented in the next section.

4.7 Intelligent Network Sampling Heuristics

In the previous experiment, I have shown that well-understood sampling
mechanisms of snowball sampling and hill-climbing socially intelligent sam-
pling outperform the baseline strategies but still perform sub-optimally. This
sub-optimal performance is due to existence of local maxima and degrading
accuracy of social network metrics in environments with incomplete knowl-
edge of the network.

In this experiment, I use the probabilistic sampling algorithm described
in the previous section in conjunction with a number of common social net-
work analysis algorithms. These social network algorithms include degree
centrality, betweenness centrality and closeness centrality [Freeman, 1979],
and MetaMatrix metrics of cognitive demand (see section 2.6.1, [Carley and
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Figure 4.13: Socially Intelligent Traffic Sampling with Probabilistic Targeting

Listing 4.3: Socially Intelligent Sampling with Probabilistic Targeting
¨ ¥

ROI = a smal l random se t o f nodes
Let Exp = Exponent ia l ly D i s t r ibu t ed Random Var iab le ( lambda )

REPEAT
Capture t r a f f i c TO and FROM nodes in CurrentTargets
Store captured messages in MetaMatrix accumulator

Run Measure o f cho i c e on MetaMatrix
I n s e r t a l l nodes in to an Array SORTED by value o f Measures

ROI = empty l i s t
FOR i = 0 to number o f nodes
Probab i l i t y ( i ) = Exp( i )
r = 0 < random number < 1
IF ( Probab i l i t y ( i ) < r )
ADD Array ( i ) to ROI

END IF
END FOR
FOREVER

§ ¦

Ren, 2001]) and knowledge exclusivity metrics (see section 2.6.1,[Ashworth
and Carley, 2002],[Ashworth, 2003]).

I also test a heuristic targeted at achieving the maximum breadth of cov-
erage of nodes on the network - perhaps at the expense of depth of knowledge
or number of undiscovered edges.

Performance is evaluated on the basis of hamming distance between the
learned network and true network and in terms of effective signal-to-noise
ratio. I further introduce a wiretap effectiveness metric that embodies the
”get more from less” philosophy by combining the two metrics to study in-
cremental efficiency of each of the algorithms.
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4.7.1 Experimental Design

The experiment follows a matrix design. The independent variables are initial
network topology (uniform, scale-free and cellular) and wiretap heuristic.
The table below defines experimental cells; each of the cells specifies a name
of a data series that will be referred to in the observations and graphs.

Uniform Scale-Free Cellular
Snowball u-snowball sf-snowball c-snowball
Soc.Int: Degree Cen-
trality

u-degree sf-degree c-degree

Soc.Int: Betweenness
Centrality

u-btw sf-btw c-btw

Soc.Int: Cognitive
Demand

u-cd sf-cd c-cd

Soc.Int: Knowledge
Exclusivity

u-kex sf-kex c-kex

The size of networks is kept constant throughout the experiment:

Parameter Value
Number of Agents 100
Total number of facts in knowledge network 200
Total number of available resources 20
Number of subtasks in task structure 20

The density of uniform random network is set at 0.2 - i.e. probability Pi,j

of an edge existing between agents i and j is 20%. The method for generating
such networks is described in section 6.0.1

The scale-free network are grown using the Barabasi-Albert method of
preferential attachment[Barabási and Albert, 1999], with parameters:

k = 0.25

γ = 2

More details on growing scale-free networks can be found in section 6.0.1
The cellular networks are generated using the mechanism outlined in sec-

tion 6.0.1 using the following profile:
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Figure 4.14: Performance of Probabilistic Sampling Socially Intelligent
Strategies, cellular networks. (a)100 agents, single run

Parameter Value
Mean Cell Size 6
Cell Size St. Deviation 1.7
Internal Cell Density 0.9
Probability of Random Connections 0.01
Density of cell leaders 0.16
Probability of connection between leaders 0.6
Probability of triad closure within cells 0.9
Probability of triad closure outside cells 0.17

4.7.2 Performance of Probabilistic Sampling

Figure 4.14 shows that annealing-based sampling strategy clearly outper-
forms the simpler SNA-based algorithms described in section 4.5. At signal-
to-noise ratios similar to the simple strategies (figure 4.15) the annealing-
based strategies achieve a mean hamming distance of about 50% of simple
strategies.

Simulated Annealing algorithm as described above is a probabilistic method,
where probability of capture varies depending on value of a cost function.
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Figure 4.15: Performance of Probabilistic Sampling Socially Intelligent
Strategies, cellular networks, mean of 100,200,500 agents, 20 runs per cell

This method achieves its low hamming distance metric by sampling more
efficiently. Every agent that has been discovered has a chance of being sam-
pled in a particular period as opposed to only agents with high levels of SNA
metrics. The heuristic does not get stuck in local maxima and the random-
ization of search allows the heuristic to bootstrap itself efficiently. The level
of randomization goes down slowly thus focusing the search and preventing
waste of resources on agents that don’t communicate a lot.

4.8 Estimating Cost-Effectiveness of Sampling

Algorithms

In the course of experiments, I have observed that effective signal/noise ratio
(i.e. the ratio of number of messages captured to the overall amount of
traffic) is indicative of the cost of running a particular sampling algorithm.
To elaborate, each captured message must be evaluated by the Blue agents
and stored within its data structures. When a message is captured, and
proves to provide duplicate data or data that is not within the current scope
of interest, the processing time and storage space is wasted.

This leads me to a design of a combined incremental-cost metric that
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Figure 4.16: Incremental Costs of Sampling Strategies (mean/st.dev. of 180
runs)

evaluates every strategy and algorithm no only on the basis of its raw effect
(i.e. the hamming distance produced as a result of running the algorithm),
but also in terms of the cost of providing the needed level of accuracy. I have
defined such incremental cost metric as:

CE = norm(Dhamming) ∗ SNR =
Dhamming

n2
∗ SNR

or a multiplication of a normalized hamming distance (e.g. hamming distance
divided by the maximum number of edges in the graph) by the effective
signal-to-noise ratio.

Values of CE should be interpreted as a cost of incremental improvements
in the hamming distance, and thus lower values indicate better performance.

Figure 4.16 illustrates how different strategies reviewed in this document
compare on the basis of cost effectiveness. The winners in terms of incre-
mental cost are strategies based on simulated annealing. These algorithms
have been designed from the start in terms of lowest incremental costs and
”doing more with less”, and thus produce a very low incremental cost value.

A non-obvious result on figure 4.16 describes a very low-fidelity random
sampling strategy as having an incremental cost as advantageous as the most
sophisticated algorithms. However, while the incremental cost is low, the
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best possible performance from this strategy is also very low (see sec. 4.0.2)
- which severely limits the usefulness of this technique.

4.9 How to Improve the Accuracy of Ham-

ming Distance Metric

In experiments presented throughout this chapter, I have evaluated perfor-
mance of intelligence gathering strategies in terms of Hamming distances
between ”True Network” - a network structure created by a perfect observer,
and a ”Learned Network” - a network structure created by a cognitively
limited observer utilizing one of the many sampling strategies. Hamming
distance provides a good estimate of accuracy of the mapping at a given
point of time.

However, in context of dynamic networks this metric is limited due to
the fact that it does not discriminate between Type I and Type II errors (i.e.
false negatives and false positives), and provides no means for finding other
possible error states. Meanwhile, a number of different error conditions occur,
and each carries different significance in terms of the intelligence gathering
capability. The classic error conditions are:

Error of Omission (Type I Error) : an edge that exists in the True Net-
work is omitted from the Learned Network

False Positive (Type II Error) : an edge that does not exist in the True
Network, but exists in the Learned Network

However, in a dynamic network, we can classify a number of other errors
as well:

Late Removal : an edge that has been removed from the True Network
due to its age (e.g. a connection that has not been activated for a long
time), but has not been removed from the Learned Network.

The Late Removal error is commonly treated as a False Positive - as
mechanism to detect this type of errors is unclear.

Incorrect Weighting : a mismatch in edge weights, in a valued network.

A future research scenario in evaluation of dynamic network data gather-
ing techniques would include creation of ROC curves specifying the trade-off
between false-positive and false-negative rates. As a first approach to the
topic, I would like to propose a metric of estimating accuracy of network
predictions that would be more descriptive then Hamming distance.

To define the alternative distance metric, let us first revisit the notion of
edges and edge weights. In NetWatch, the edges of both True Network and
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Learned Network should be viewed as a product of agent communication,
rather then a separate entity. This is operationalized as follows: when com-
munication between two agents i and j occurs at time t (and is observed),
the edge Ei,j is set to 1. At time t + 1, the value of Ei,j decays. The decay
function in NetWatch is given as Ei,j =

1
α∗4t

where α is the decay rate and
4t is the amount of time elapsed since last communication before i and j.

In short, the value of Ei,j is not discrete - rather, it is continuous in
the range of 0 to 1. Normally, if Ei,j reached a value less then a threshold
parameter ε ≈ 0.05, the edge was considered extinct and removed from the
network.

To instantiate the new metric of network matching, the threshold opera-
tion should be excluded, in favour of treating all edge values as continuous
variables.

Then, the metric can be written as follows. Let G1 and G2 be two graphs
under comparison. Let us assume that both graphs contain the same collec-
tion of nodes. Let us also adopt a notation where E1 is an edge in G1 and
E2 is an edge in G2:

NetDistance(G1, G2) =
∑

i,j∈G1,G2

{

Ei,j
1 < Ei,j

2 : wtype1 ∗ E
i,j
2 − Ei,j

1

Ei,j
2 < Ei,j

1 : wtype2 ∗ E
i,j
1 − Ei,j

2

where wtype1 and wtype2 are weights of Type I and Type II errors, respec-
tively.

To restate, type I and type II errors are thus quantified as continuous
functions and weighed separately. Setting of the weights then emphasizes
priority of the evaluator to minimize false positives in a trade-off against
decreasing the errors of omission. Furthermore, the error conditions of Late
Removal and Incorrect Weighting thus become special cases of the exist-
ing error conditions and present a less severely penalized instances of Type
I and Type II errors.

Due to treatment of errors as continuous variables, it also becomes pos-
sible replace constant weights of Type I and Type II errors with non-linear
functions reflecting the true response of the experimenter to severity of er-
rors. For example, if the weighting function of the error conditions are set to
quadratic or higher degree polynomial functions, large errors will be severely
penalized while smaller errors will receive lesser penalties.

While it was not possible to test this algorithm within the scope of this
dissertation, it is a viable way to increase accuracy of error measurement in
comparison of two networks and will be evaluated in future research.
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Figure 4.17: Information Sharing in the Blue Team

4.10 Summary

In this set of experiments (sections 4.2, 4.5, 4.7), I have discussed various
algorithms and heuristics for learning a network representation of a set of
communicating agents by observing their communication patterns.

As a main performance metric, I have used hamming distance. However,
hamming distance alone does not capture the philosophy of maximizing effec-
tiveness of network mapping or doing more with less. Thus, to estimate costs
of running each of the strategies, I evaluated effective signal-to-noise ratios
of Blue agents — ratios of messages captured to overall message traffic.

4.11 Consensus and Information Sharing in

the Blue Team Network

While Blue Team agents collect and store their private representations of the
observed Red Team network, it is also important to model how information
sharing among intelligence agencies affects the accuracy of collected data.

NetWatch implements a capability (shown in figure 4.17) of modeling in-
formation sharing among Blue Team agents by means of information sharing
rules and common databases for accumulating consensus knowledge.

The Blue Team agents implement information sharing by means of a filter
object similar to the Message Filter described in section 4.0.2. The filter is
configured using a set of rules that govern what information can be released
and to whom:

Full Sharing: All data collected by the agent is shared,
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Figure 4.18: Performance of information sharing regimes

Recipient Filtering: Data can be shared only with a small set of agents

Content Filtering: Only data of certain type (e.g. person-to-person links)
can be shared; data can be further filtered by attribute values.

Furhtermore, the data sharing rules can combined to form complex data
sharing regimes, for example:

Share only Person-To-Person data where Source or Target is
U.S. Citizen with FBI or ATF

Share only Task data with Local Police

Information sharing regimes enable modeling of complex intelligence and
law enforcement community infrastructure as it pertains to gathering and
analyzing information on covert and terrorist networks.

4.11.1 Preliminary Experiment in Information Shar-
ing among Blue Agencies

In this experiment, I tested the effect of sharing some of the information
obtained through wiretapping among four agents of the Blue Team. Each
of the four agents used an annealing message capture strategy based on (a)
degree centrality, (b) betweenness centrality, (c) cognitive demand and (d)
knowledge exclusivity.

In the experiment, each of the agents shared between 10% and 20% of
captured messages picked randomly among all captured messages and passed
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them along to the shared data accumulator, which in turn was accessible to
the rest of the group.

Figure 4.18 shows that amount of shared information only slightly affected
the overall value of hamming distance. In comparison with performance of a
single agent (see 4.7), the mean hamming distance dropped by ≈ 30 points,
or 10%. However, information sharing drastically reduces volatility of the
network predictions.

4.11.2 Future Studies

The main objective of future study of information sharing among intelligence
agency is to realistically model the information sharing regimes that exist
in the intelligence and law enforcement communities. While the facilities
to implement such regime are already in place, data regarding information
sharing rules among members of the intelligence community is difficult to
obtain in public domain literature.

4.12 Network Destabilization Tactics

In this experiment, the Blue Team agents not only collect information about
the Red Team but also attempt to influence the performance of the Red
Team by finding vulnerabilities in the covert network and attacking them by
isolating or terminating agents within the covert network.

However, in the real world isolation of an agent is very difficult. Arrests
of individuals within the United States require significant legal proceedings
before a court order can be obtained and isolations that span national borders
are even more difficult because they require cooperation of a country where
an individual is located. To simulate this in NetWatch, we have introduced
significant cost incurred by a Blue Team agent every time it attempts to
isolate an agent on the Red Team.

Removal of key nodes of a covert network, arguably, is the only effective
mode of combating terrorist organizations. Thus, agents on the Blue Team
must do a significant cost-benefit analysis before attempting isolation and be
as precise as possible in locating the Red Team individual to be isolated.

4.12.1 Experimental Design

In this experiment, I simulated a set of 20 cellular networks allowing members
of the Blue Team to isolate one of the agents within the Red Team network.
Each network was used 4 times using different destabilization strategies. The
four strategies examined are:

• no attacks on the Red Team.
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• isolate a member of the Red Team at random.

• isolate the Red Team agent with the highest degree centrality.

• isolate the Red Team agent with the highest cognitive load.

The Blue Team attempted to isolate one agent after wiretapping the Red
Team for 100 time periods.

The size of networks is kept constant throughout the experiment:

Parameter Value
Number of Agents 100
Total number of facts in knowledge network 200
Total number of available resources 20
Number of subtasks in task structure 20

The density of uniform random network is set at 0.2 - i.e. probability Pi,j

of an edge existing between agents i and j is 20%. The method for generating
such networks is described in section 6.0.1

The effectiveness of isolation strategy is measured as the difference be-
tween baseline performance of the Red Team (i.e. without any action by the
Blue Team) and performance of the Red Team in presence of an anti-terrorist
task force of the Blue Team.

One must note, however, that the networks in question are dynamic and
there can not be an absolute and static performance metric for any of the
teams outside the time series data.

4.12.2 Observations

wiretapping strategies
Random Snowball Degree Cog.Demand

attack
s

Random -5.4% -13.4% -3.9% -18.3%
Degree -21.2% -24.0% -21.5% -21.1%
Cog.Demand -5.7% -11.0% -13.5% -3.0%

Table 4.1: Reduction in Organizational Performance of the Red Team due
to Anti-Terrorist Activity

Table 4.1 presents results indicating the change in performance for each
of the analyzed strategies. The performance of the Red Team is measured as
a ratio of numbers of successfully completed tasks to the number of assigned
tasks. Each cell in this table shows the percentage difference in performance
from the 50 time periods prior to when the first agent is isolated and 50 time
periods after the isolation. This shows the immediate impact of the various
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destabilization strategies. Note, in general, that any of these strategies does
lead to a performance reduction indicating that there has been some desta-
bilization. Second, there is an interaction between the type of wire-tapping
strategy and the type of destabilization strategy.

4.13 Emergent Network Recovery Behaviour
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Figure 4.19: Recovery of a Cellular Network After Disconnection of a Gate-
keeper Node

One of the notable results of this experiment has been the discovery of the
mechanism that the network uses to recover after removal of one of its key
members. Figure 4.19 demonstrates this process on a small cellular network

1. In the original configuration, the network consists of 2 fully intercon-
nected cells and one gatekeeper agent. As the organization goes about
its business, information flows from cell 1 (agents 30-35) to cell 2 (agents
37-42) through the gatekeeper agent 36. In process of passing knowl-
edge and requests, small amount of referential data (such as ”Agent X
knows fact Y”) are passed from one cell to another and stored by the
agents. Relevancy or immediate usefulness of this information is low
due to the fact that all needed information can be easily obtained from
querying the gatekeeper agent.

2. Agent 36 is identified by the Blue Team as being important to the
network due to its degree centrality, betweenness centrality and large
amount of messages that it processes (cognitive demand).
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3. The Blue Team proceeds to remove Agent 36 disconnecting the two cells.
Due to the cellular structure of the organization, information transfer
between cells is impossible and the performance of the organization is
greatly degraded.

4. As information becomes unavailable from the central source, agents use
the referential data accumulated in previous transactions to attempt to
find information in the other cell. For the connection from Agent X to
Agent Y to succeed, both agents have to have knowledge of each other.
However, referential data is asymmetric and most of these connection
attempts fail.

5. One of the connection attempts (Agent 31 to Agent 39) succeeds, thus
opening a single pathway between cells

6. Referential information about Agent 39 spreads throughout the cell and
more connections between agents in Cell 1 and Agent 39 are created.
Within a short period of time, Agent 39 emerges as the new gatekeeper
between the two cells.

Information flows easily between the two cells and organizational perfor-
mance is restored to levels similar to these before the removal of Agent
36.

A priority in research on destabilization of covert networks has been find-
ing key individual’s removal of which will separate a cellular network into
subparts. However, the recovery process we demonstrate illustrates that
even if the Blue Team achieves separation of the covert network into dis-
connected cells, the network will use its latent resources and quickly recover
from damage.

The goal of network destabilization techniques should be to cause per-
manent damage to the covert network and not allow it to recover from the
attack.

This finding also prompts us to not just study the effectiveness of removal
of certain individuals but to look at the performance of these measures over
time.
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4.14 Scalability

NetWatch simulation is a complex software system. It consists of hundreds of
independent processes, each storing large amounts of information and run-
ning multiple computations, planning and reasoning algorithms. Thus, to
make the system useable in real-world scenarios, attention must be paid to
scalability of all subsystems.

Low-level Subsystems Low-level subsystems of NetWatch consist of a
custom lightweight threading library and a message passing subsystem.

The threading library (MThreads) is designed to be independent of the
underlying operating system, and allows for a large number of simultane-
ous threads to reside within one system-level process. While MThreads was
designed primarily to assure fully randomized time-slice allocation (which is
required to run asynchronous agents within one process image) and to bypass
kernel-level limitations on number of simultaneous threads, an important side
effect of the design is its ultra-low overhead. The memory overhead of run-
ning a C++ object as MThread is ≈ 16 bytes, and processor overhead is
limited to speed of two function calls - which can be considered negligible.
Due to its independence of operating system peculiarities (e.g. Posix compli-
ance), MThreads library has been compiled on all major operating systems.
MThread library has been tested by running up to 500,000 simultaneous
threads on a single-core Pentium IV processor.

The messaging subsystem can be thought of as a collection of queues.
Each agent has two queues - its in-box and its out-box. The queues store
pointers to messages, which are located in shared heap memory. As a result,
no time or memory is wasted copying and sending around large message
structures - a 4-byte pointer is all that is required to pass an entire message
structure between two agents.

While appearing as XML to the outside world, internally the messages
are stored as hash-tables. Thus, no extra parsing is required and access of
data members inside messages is near-constant-time.

Agent Mental State The mental state of each agent consists of a Meta-
Matrix structure, essentially a set of sparse graphs representing the social
network, knowledge network and transactive memory of each agent. The
sparse representation of the graphs is economical in terms of memory re-
quirements, but presents a number of bottlenecks in the processing stages.

The single most computationally complex part of NetWatch is the compu-
tation of relative similarity and relative expertise. Both of these metrics re-
quire matrix multiplication, and have a computational complexity of O(n3).
This computational complexity previously was a major factor limiting the
maximum size of a system that could be simulated with NetWatch.
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However, I have observed that each agent’s individual network does not
change very fast. Thus, recomputing the entire metric is not necessary at
every time period. Only affected rows and columns are recomputed, thus
reducing the average case complexity of the computation to O(n2).

The relative similarity/expertise calculations have to be repeated by ev-
ery agent, every time period. Thus, I can estimate average computational
complexity to O(n3 ∗ t) where t is the number of time periods.

Agent Planning The hierarchical decomposition planner utilized by Net-
Watch agents is fairly efficient. Its average-case computational complexity
can be estimated as

O(log(t) ∗ (
1

σk
∗ k +

1

σr
∗ r))

where t is the number of tasks, k is the number of facts in the knowledge
structure, r is the number of resources in the system, and σk and σr are den-
sities of knowledge and resource networks, respectively. The complexity of
planning grows as the density of constituent networks falls, as it becomes in-
creasingly more difficult to for agents to locate and acquire needed resources.

It should be noted that planning is not done in one step, but is divided
into iterations. Each iteration of the planner can do one of the following:

• Execute an atomic task

• Seek and obtain one fact or resource

• Do one round of decomposition.

Thus, the planning process is distributed in time and occurs simultaneously
with other processes, including socializing (”Chatter”) and execution of clas-
sification tasks. Complexity of a single iteration of planning thus is negligible,
in comparison with SNA metrics discussed above.

NetWatch is fairly efficient in terms of usage of computer resources and
time, given the complexities involved. The real and projected timings, per
time period, can be found in figure 4.20.

4.15 Summary

The results presented here show the potential power of multi-agent network
simulations for addressing real world issues. Agent-based simulation frame-
works enable a more realistic and extendable architecture for addressing pol-
icy issues in a manner comparable to human behavior. Such work moves
us from the realm of building agents to act more or less independently on
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Figure 4.20: Measured and Projected timings of NetWatch runs on a 3GHz
Pentium IV processor

behalf of people to the realm of using collections of agents to reason about
how people as groups behave.

The advantage of an agent approach is that it enables the simulated
actors to behave like humans — they are cognitively and socially bounded
with knowledge of themselves and others dependent on their personal history.
When such agents are embedded in dynamically evolving networks, the entire
simulated system takes on the social and technological constraints consistent
with empirical findings. The advantage of using AI planning, reasoning and
decision making techniques is that complex intelligent agents are extensible
to multiple tasks and scenarios.

Such models enable the researcher to examine the nature, not just of
cognition but of social cognition, and to explore policy and managerial issues.
In doing so, the goal is not to ”predict” specific events, but to decrease
uncertainty in detecting trends. As such, these tools are valuable assets to
decision makers.

4.15.1 Objects of Further Study

Additional work planned on NetWatch includes a number of new experiments
using the existing system as well as additional model components to enhance
realism of NetWatch models.
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Efficacy of Agent Isolation

The literature on network-centric warfare frequently concentrates on destabi-
lization and dismantling of terrorist networks via isolation (arrest or liquida-
tion) of key agents. However, history of targeted elimination raids conducted
against Hamas[Wimisberg, 2004] shows that this tactics may not always be
effective, and their costs (human, financial and political) may not always jus-
tify the achieved results. Moreover, history of operations against high-level
operatives shows that elimination of one key actor is generally not enough.

Future studies involving NetWatch should consider alternate strategies of
destabilization of terrorist operations, including cutting of resource pathways
and financial channels, disrupting training and recruiting of new members.
Furthermore, studies dealing with agent elimination should concentrate on
locating and isolating entire groups of actors that engage in planning of
attacks, or are close to executing an attack.

It has been observed that information warfare attacks on certain key
actors in terrorist networks may be as effective as physical attack on the
same[Alberts, Garstka, and Stein, 1999]. Thus, a model of information war-
fare included as part of NetWatch would be a useful tool for researching
effects of information warfare on growth and effectiveness of terrorist orga-
nizations.

Second-Order Effects of Anti-Terrorism Policies

In the simulated world, the agents of the Red Team learn, obtain knowledge
and resources, and execute tasks. Strategies applied against them by the
Blue Team will succeed or not succeed over time, and thus hypotheses will
be accepted or rejected. The real world is much more complex. Any action
taken in an adversarial world is bound to force a counter-action from the the
opponent. If strategy of the Blue Team (e.g. its use of simulated annealing)
is known to the Red Team, in the real world this would result in change of
strategies on Red Team’s behalf that would diminish the utility of the Blue
Team. In an adversarial situation, this cycle of actions and reactions can
occur indefinitely, prompting innovation and adaptation on behalf of both
adversaries.

While full study of second-order adaptation is beyond the scope of this
thesis, a number of models addressing this very problem have been proposed.
Dalvi and Domingos[Dalvi, Domingos, Mausam, Sanghai, and Verma, 2004]
have addressed the notion of second-order adaptation in the realm of spam
detection and classification. They have reduced the adaptation cycle to a
game-theoretic construct, where optimization of adversarial strategy allows
the ”good guys” to increase quality of their spam classification and automat-
ically adapt the classifier to to the adversary’s evolving manipulations. In
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the context of terrorist network, a similar problem has been approached by
Jensen[Jensen, Rattigan, and Blau, 2001].

Additional Experiments

Response to Annealing Parameters The simulated annealing algo-
rithm presented in section 4.6 produces results that are significantly improved
in comparison to those of simpler algorithms. However, tuning parameters
of a simulated annealer still remains somewhat of a black art. To fully un-
derstand the response of the system to change in annealing parameters an
additional set of experiments needs to be performed.

Configuration Space Exploration NetWatch simulation accepts a large
number parameters as its input. While experiments outlined in this dis-
sertation explore response to parameters most important in the simulation
domain, the full configuration space of NetWatch is largely unexplored. How-
ever, the configuration space of a complex multi-agent simulation is very large
and full exploration may not be feasible due to high dimensionality of the
configuration space. Using a tool such as WIZER[Yahja, 2003], a multi-
dimensional configuration space can be explored using intelligent heuristics,
which should cut down significantly on the computational cost of exploring
the configuration space.

Model Enhancement

A number of additional features have been planned for NetWatch:

Human Intelligence NetWatch at this point solely focuses on gathering
and processing of signal intelligence. However, human intelligence (HUMINT)
is generally considered a much more valuable and reliable source of informa-
tion on terrorist networks. Human Intelligence models would include re-
cruitment of double agents from within the Red Team and infiltration of
clandestine agents from the outside. The clandestine agents would have to
possess a very different set rules governing their actions and may be difficult
to model reliably without resorting to either classified data or paperback
fiction.

Recruitment Model Terrorist organizations are not static. Their mem-
berships grow and wane depending on many factors ranging from political
situation to design of the educational system to economic conditions. Build-
ing a realistic model of terrorist recruitment would present NetWatch with a
number of challenges, including ways to monitor who gets recruited, where

102



and by whom. The Blue Team will be further challenged to keep its repre-
sentation of the Red Team synchronized with its growth.
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Part II

Symbolic Reasoning about
Social Structure
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Chapter 5

Reasoning about social networks: a
robust semantic language

We used to think that if we
knew one, we knew two, because
one and one are two. We are
finding that we must learn a
great deal more about ‘and.’

Sir Arthur Eddington
(1882-1944)

5.1 Introduction

The study of complex social and technological systems, such as organizations,
requires a sophisticated approach that accounts for the underlying psycholog-
ical and sociological principles, communication patterns and the technologies
within these systems.

Since inception, Social Network Analysis and link analysis have oper-
ated on the cutting edge of bringing together mathematical analysis of social
structures and qualitative reasoning and interpretation.

However, one facet of research methodology has largely remained unad-
dressed. Most mathematical analysis and social simulation tools operate on
abstract numerical representations of social structures, such as graphs, matri-
ces and time series. However, the concrete semantics behind these numbers
frequently was only a part of the researcher’s mental model. Its communi-
cation to the outside world was largely a function of the researcher’s writing
skills. This and the level of abstraction required by early computer mod-
els, have resulted in datasets and models that are very difficult to interpret,
especially by non-specialists.

This chapter examines the past approaches of creating interpretable and
semantically consistent models of social structure and social networks, as
well as social simulation tools. I further propose the creation of a robust
and scalable social structure semantic that facilitates interpretable reasoning
about evolution of social structure.
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The chief advantage of taking a semantic approach to reasoning about
social networks is the ability to consistently describe the interactions of nodes
and edges in multi-modal and multi-plex networks. Since the differences
of node edge types in such networks are semantic in nature, the semantic
encoding of the network structure allows the user to resolve combinatorial
closures across edge types, and decompose complex interactions into sets or
sequences of simpler ones.

For example, a long-standing problem in the field of social network analy-
sis concerns integration of data in a dual-mode network, incorporating friend-
ship and advice links. At this point, the notion of centrality in such a network
is undefined both mathematically and semantically. However, by decompos-
ing the notions of friendship and advice into more basic semantic notions of
information transfer, affinity, respect and authority, a NetInference ontology
can be constructed to analyze the dual-mode network as a unit.

This chapter is organized as follows: after discussion of issues and short-
falls of several graph-based models of social interactions, I proceed to con-
struct a semantic of social interaction starting from the basic constructs of the
human language (section 5.4), and review appropriate techniques borrowed
from the fields of expert systems (sec. 5.8) and object-oriented modeling
(sec. 5.9).

In section 5.12, I discuss the design of the language for specifying on-
tologies for social structure data. I further discuss representation of graph
structures (sec. 5.14), design and execution of graph rules (sec. 5.15). The de-
vices presented to this point are sufficient to address the issue of integration
of friendship and advice networks, which is discussed in detail in section 5.16.

Section 5.17 introduces a facility for querying and manipulating graphs
as a database, and builds upon this capability to recreate a set of traditional
SNA metrics through the language of NetInference (sec. 5.18). Finally, I
present an example of a complex ontology for reasoning about terrorist net-
works utilizing all capabilities of NetInference to facilitate question answering
and inference of edges in a semantic context.

5.2 Issues in Representation of Social Net-

work Knowledge

Traditional social network analysis operates on a simple set of concepts:
nodes of a social network are a homogenous set of people or groups of people
and links between nodes represent connections or relationships between these
people. Semantically, the existence of an edge signifies that a relationship of
some sort exists between two constituent nodes:
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Figure 5.1: Simple Social Network

G =

{

{A,B,C,D} ∈ People

w1..n = ConsistentWeightMetric
(5.1)

In a weighted network (figure 5.1), the weight of an edge takes a variety
of semantics, including frequency of communication, distance between nodes
or closeness of relationships.

wi =

{

{0, 1} in a binary network

∈ IR in a weighted network
(5.2)

While weight wi can be any real number, in hand-collected social network
data[Krackhardt, 2003] these values are often limited to a 5-point scale, rating
the strength of a relationship between two nodes:

wi =































1 : A has never met B

2 : A and B have met once

3 : A and B meet occasionally

4 : A and B meet regularly

5 : A and B are close friends

(5.3)

Thus, computing simple graph-theoretic measures upon the resultant
graph produces interpretable results that allow detection of powerful or im-
portant nodes, communication gatekeepers, etc.

It is important to note that the semantics of edge weights must be firmly
set before any data collection efforts are undertaken and kept consistent
throughout the entire life cycle of the resultant dataset. This presents few
problems if the constituent population is fairly small and the study itself
is restricted in time. However, growth of the scale of the study makes it
significantly more difficult to maintain this consistency.

While the simple and consistent semantics of binary and homogenous val-
ued edges allows for fairly easy data collection, it does not capture the full
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Figure 5.2: Stacked Graphs Metaphor

richness of human experience. The fact that real-world social networks do
not generally fit into a mold of a valued graph was acknowledged by Krack-
hardt[Krackhardt, 1990] in studying overlaps and connections that cross the
boundary between different person-to-person networks (i.e. friendship, ad-
vice, money-lending, subordination, etc).

We can view analysis of multiple overlapping networks through a metaphor
of stacked graphs (figure 5.2). A stacked graph metaphor consists of a single,
consistent set of nodes N , connected with multiple sets of edges Ei. Each
of the edge sets represents a semantically distinct notion of an edge (e.g.
friendship, advice, or money − lending) and (in hand-collection methods)
is collected with a separate set of questions on the questionnaire.

Cross-layer distance between actors can be calculated by three approaches.
In a cross-layer graph traversal, the stacked graphs are viewed as a single n-
dimensional adjacency matrix, which allows one to use any standard graph-
traversal algorithm to find the shortest path between two actors, even if such
path crosses boundaries of a single layer[Breiger and Mohr, 2004] [White,
Boorman, and Breiger, 1976]. In this case, a hop between two layers of a
stacked graph is considered a costless operation. However, that may not be
the case in every situation. For example, crossing the boundary between
professional and personal network layers may entail conflict of interest - in
which case such a path may be shortest in distance but not lowest-cost.

Another approach to analyzing stacked graphs aggregates the stacked
graphs into a single graph via weighted edge summation - at which point any
standard SNA algorithm can be applied. However, values of individual edges
will be lost, as they are impossible to infer from the resulting dataset. Thus,
when a lowest-cost path is found through a summed graph, it may not be
possible to recreate such a path in a traversal of the stacked networks.

Finally, one can define distances across multiple layers in terms of Eu-
clidean geometry. This approach is useful for calculating closeness of actors
but does not result in sets of useable paths for a graph traversal.

Unfortunately, the notion of centrality is undefined for stacked graphs.
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Person Knowledge Task
Person Person

interactsWith

Person

Person knows

Fact
Person
participatesIn

Task
Knowledge Fact relatedTo

Fact
Fact
requiredFor

Task
Task Task precedes

Task

Table 5.1: Semantics of MetaMatrix Edges

Given the fact that centrality is a major component of many social network
analysis studies, this is a major detriment to use of a stacked-graph model.

Due to purely operational difficulties of analyzing a stacked-graph dataset
with more then a small number of layers, this approach only allows for anal-
ysis of a limited number of datasets.

5.3 Expansion of SNA Node Types

The stacked-graph approach to SNA presumes that there is a multitude of
edge types — but only one type of node (i.e. a person). However, the real
world networks consist of number of actors of different types — e.g., people,
organizations, resources, information, events.

Krackhardt and Carley [Krackhardt and Carley, 1998] proposed concen-
trating knowledge about an organization in a format that could be analyzed
using an expansion of standard network methods called the MetaMatrix (de-
scribed in detail in section 2.6). The MetaMatrix expanded the notion of a
node in a network to include a large number of possible entities. In its origi-
nal shape, the MetaMatrix encompassed nodes of types Person, Knowledge,
and Task and introduced the concept of semantically loaded edges.

A semantically loaded edge such as those used in the MetaMatrix do not
merely imply that a connection exists between two nodes. Depending on the
types of source and target nodes, each edge carried a meaning. For example,
an edge between Personi and Knowledgej carries the implied semantics of
Person →KNOWS→ Factj. A full MetaMatrix semantics is illustrated in
table 5.1.

At a later time, the MetaMatrix semantics has been expanded to ac-
commodate more node types including Resource and Organization, and
corresponding edge semantics.

However, with the expansion of the number of node types that take part
in the analysis, the concept of a node or an edge increasingly becomes over-
loaded with a plethora of meanings. For example: an edge between nodes
A3 ∈ Agent and O1 ∈ Organization has an ambiguous meaning of “agent is
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connected to organization” or “agent is a part of the organization”. In this
particular case, it becomes impossible to distinguish between a customer and
an employee of an organization - which are significantly different relation-
ships.

Of even more importance is a semantic ambiguity of edge direction, i.e.
- does it mean the same thing if an Agent is connected to an Organization
or an Organization is connected to an Agent?

Since the MetaMatrix contains many sub-matrices with heterogeneous
node types (e.g. Person → Task) and the MetaMatrix model traditionally
only includes edges in the Upper Triangular portion of the matrix, the di-
rectionality of heterogeneous edges was either lost completely or potentially
misinterpreted (e.g. does reversal of an edge’s direction change the meaning
of an edge when the source and target are of a different node type?).

A further problem with the ever-expanding MetaMatrix is the fact that
the expansion process does not scale well. Let us suppose that a MetaMatrix
includes N types of nodes; expansion of the model to deal with N + 1 types
of nodes will require definition of meaning and measures upon (N + 1)2 −
N2 = 2N + 1 sub-matrices, which places an unnecessary burden upon the
implementer.

The expansion trend has resulted in the creation of semantic holes - areas
in datasets where an edge may exist but there is no adequate explanation for
the meaning or any measures that may take that edge into account.

We also cannot overlook the fact that some edges have different properties
than others. For example, subordination edges (“isSuperiorTo”) for people
or inclusion edges (“isPartOf”) for organizations (as well as a number of
others) are transitive — i.e., the boss of my boss is also my boss. A number
of other special properties can be defined as well. Graph models to date do
not offer sufficient reasoning capabilities to resolve transitive closure of edges,
especially in a context where nodes and edges of multiple types coexist.

As a result, graph-theoretic analysis of the resultant networks is no longer
a sufficient means of reasoning about social structure and must be supple-
mented with exogenous domain knowledge in order to derive meaning behind
numeric measures. However, the graph semantics does not readily allow for
machine-interpretable encoding of such domain knowledge.

The purpose of this chapter is to offer an alternative to graph-based
models of social networks. This alternative structure offers an increase in
expressive power over stacked-graph and MetaMatrix network models, en-
ables automated reasoning and inference of network properties. In the same
time, it is backward-compatible with existing SNA models and thus allows
cross-validation using well-researched datasets.
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5.4 Mapping Structures of Meaning

By structure-mapping, DiMaggio[DiMaggio, 1998] refers to as “the existence
of some form of content-related domain specificity”. Structure exists not only
as sets of ties between actors but as networks among cognitive and cultural
entities and study of these entities by means of network analysis is just as
important as study of interpersonal relations.

Carley[Carley, 1994] uses network analysis techniques to map the struc-
ture of relations between conceptual items used in science fiction narratives
and maps these structural representations of meaning to compare cultural
phenomena through times. Mohr[Mohr, 1998] elaborates a framework for
uncovering semantic structures that emphasizes relations among lexical and
semantic terms in a classification system and application of formal network
analysis models or pattern matching techniques.

The implications of these lines of research is creation of a link between
network analysis and “understanding of the relationship between culture and
social structure built upon careful integration of micro and macro, and of
cognitive and material perspectives”[DiMaggio, 1998].

The further implication of this work is that semantically sound network
analysis of human relations has entered a phase of maturity where sets of well-
known techniques can be applied to reason on not only the structure implied
in the network datasets, but also on the meaning of this structure[Breiger,
2004].

Further in this chapter, I introduce a concept of qualitative machine rea-
soning on social structures and show how integration of semantic reasoning
with network analysis produce a powerful combination to create a new un-
derstanding of interplay of cultural and societal concepts.

5.5 Networks and English Grammar

To begin the process of definition of a regular ontology for expressing social
network knowledge, let us first look a how interpersonal relationships might
be described in English:

Alice likes Bob very much.

Bob and Carol study together.

Carol fights with Alice in school.

The high-school love triangle described above could be a classic example of
the way in which social network representation of relational knowledge fails to
address the complexities of human relationships. It is impossible to represent
the three relationships within one graph - and it would be impossible to trace
the love triangle if they were represented in a stacked-graph model.
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However, humans can readily express and understand such relationships
with the aid of language.

Let us then de-construct the above phrases. The phrase

Alice likes Bob very much.

consists of:

• Two nouns (Alice and Bob) representing the actors - or nodes of a social
network

• A verb (likes) signifying (a) the existence of an edge between Alice and
Bob and (b) the semantics of this edge.

• A value qualifier (very much) that adds emphasis to the verb

Thus, we can view a social network as a collection of English phrases
consisting of nouns, verbs and adjectives and describing the relationships
within such a network.

To elaborate, Alice likes Bob can be thought of as a representation of a
directed edge Alice →likes→ Bob. Bob and Carol study together would
represent an undirected edge Bob←studiesWith→ Carol. Carol ←studiesWith→
Alice has a different implication - it is an edge that denotes an active conflict.
Encoding the fightsWith edge as a negative value is one way to do so — but
then there is no way to distinguish between a passive dislike and an active
act of conflict. Edges like these need to be addressed on a set-by-set basis,
as there is not universal semantics that would adequately describe negative
edges.

Further elaborations would allow complex qualifying statements, attribute
strings (adjectives), time and precedence constraints, and so on, up to the
full expressiveness of English or any other human language.

However, full machine understanding on human languages is an unsolved
(and possibly unsolvable) problem. Thus, let us only use English grammar
as a trampoline towards mapping semantics of human relationships via a
machine-understandable mechanism.

5.6 Taxonomies and Social Networks

Perhaps, a combination of linguistic constructs (i.e. nouns and verbs) and
graph-theoretic analysis would present a sufficient boost to expressiveness of
social network data? A number of approaches have been proposed to address
this question.

For example, Relationship[Ian Davis, 2004] is an RDF[Eric Miller,
2004] schema that defines a vocabulary for describing social interactions and
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friendOf acquaintanceOf parentOf siblingOf
childOf grandchildOf spouseOf enemyOf

antagonistOf ambivalentOf lostContactWith knowsOf
wouldLikeToKnow knowsInPassing knowsByReputation closeFriendOf

hasMet worksWith colleagueOf collaboratesWit
employerOf employedBy mentorOf apprenticeTo
livesWith neighborOf grandparentOf lifePartnerOf
engagedTo ancestorOf descendantOf participantIn

Figure 5.3: Vocabulary of the Relationship taxonomy

relationships between people (see figure 5.3). However, definition of a vocab-
ulary falls short of rigorously specified social relationship semantics.

While a vocabulary set can be negotiated and agreed to by a community of
researchers, it will remain incomplete as the richness of human relationships
presents more nuances that is possible to express in a finite vocabulary.

However, a more serious complication of a purely vocabulary-based speci-
fication of relationships is that a social network defined using this vocabulary
is merely a labelled graph. While such graphs are widely used to communi-
cate relationship information to human users, it is not possible for computers
to reason about such labelled graphs without an understanding of natural
language.

Thus, a further extension of language-based paradigm for expression of
social structure data needs to be developed.

5.6.1 A Grammar for Expressing Relationships Be-
tween Entities

Use of a regular grammar provides us with a mechanism for expressing com-
plex language-based concepts in a machine-understandable way. At first
glance, such a regular grammar might be defined as:
¨ ¥

network := ( r e l a t i o n s h i p ) ∗
r e l a t i o n s h i p := ( re l a t i onsh ipVerb , fromNode , toNode )
r e l a t i on sh ipVerb isA ontologyVerb
ontologyVerb := ( verb , ( attributeName , a t t r ibuteVa lue ) ∗)
fromNode , toNode isA ontologyNoun
ontologyNoun := ( noun , ( attributeName , a t t r ibuteVa lue ) ∗)

§ ¦

Thus, a network is defined as a collection of relationships which consist of
two nodes (represented by nouns) and a verb. The concept of isA specifies
that an entity is an instance of another entity or class of entities already
present in the ontology - thus allowing inheritance of properties from entity
to entity.
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Shapiro[Shapiro, 1982] has published a grammar-based means for inter-
pretation of semantic networks. The methodology uses Augmented Transi-
tion Networks (ATNs)[A.Woods, 1970] to interpret a tree or a graph of the
semantic network and transform it into natural language sentences.

The advantages of the grammar notation have been summarized as “(1)
clearness and perspicuity, (2) generative powers, (3) efficiency of represen-
tation, (4) ability to capture representation regularities and generalizations,
and (5) efficiency of operation”[Shapiro, 1982]. ATN Grammars have been
used as both parsing and generative tools for machine understanding in re-
lational contexts[Woods, 1980].

5.7 From Grammars to Object Systems

A regular grammar for specification of network data is necessary but by no
means sufficient for reasoning about social structure. While the grammar
provides a structured framework for specifying entities and relationships be-
tween them, it does nothing to specify the meaning of these relationships -
as well as rules or procedures that affect these relationships.

This mechanism is provided by the isA construct specified as a part of the
grammar above. isA allows a simple yet robust inheritance of object prop-
erties and enables construction of robust hierarchical taxonomies of social
structure objects.

The notions of inheritance and object orientation first appeared in Sim-
ula[Dahl and Nygaard, 1966]. In Simula, objects are grouped into classes and
classes can be organized into a subclass hierarchy and elements of a class can
appear wherever elements of the respective superclasses are expected — thus
implementing notions of inheritance and polymorphism.

Cardelli[Cardelli, 1988] formalized the semantics of inheritance and multi-
ple inheritance by building a grammar structure that united the requirements
of building a strong typing system with requirements of keeping a consistent
semantics that allows object orientation and inheritance on all levels, includ-
ing ability to nest objects and compute polymorphic operations on sets of
objects.

NetInference derives its hierarchical inference model from object-oriented
semantics while superimposing them with reasoning mechanisms of symbolic
reasoning.

5.7.1 Object-oriented Semantic Networks and Social
Network Data

The main idea behind semantic networks is that the meaning of a concept
comes from the ways in which it is connected to other concepts. In a semantic
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net, information is represented as a set of nodes connected to each other by
a set of labelled arcs which represent relationships between nodes.

This view is consistent with the views of traditional social network analy-
sis, i.e., the idea that attributes of an individual actor are less important then
the structural properties of the graph structure that the actor is embedded
in.

However, semantic networks do not reduce the network structure to a
binary graph - instead edge values matter as they convey the semantics of
relationships between nodes. Semantic networks only treat structures as
labelled graphs and do not allow consistent derivation of more complex node
and relation types from basic types. Further, semantic networks are built
with a top-down view of the network and thus do not allow for mixing of
heterogenous edge semantics within the same network.

5.8 Ontology Languages and Social Networks

An ontology is an explicit specification of a body of formally represented
knowledge[Gruber, 1993]: the objects and concepts in an area of interest and
relationships that hold them together. The term is borrowed from philosophy,
where an ontology is a systematic account of Existence. The ontology is
defined on a finite domain by defining a set of representational terms. These
definitions include entities in the subject of discourse (e.g., classes, relations,
functions or other objects) and the formal axioms and rules that constrain
the interpretation and well-formed use of data.

5.8.1 DAML and OWL

At this point of time, only a few ontological tools are developed explic-
itly for representing and reasoning with social relational data. Semantic
Web efforts such as DARPA Agent Modeling Language(DAML)[Ankolekar,
Burstein, Hobbs, Lassila, Martin, McIlraith, Narayanan, Paolucci, Payne,
Sycara, and Zeng, 2001] are intended for representation of network resources
and their interdependencies as well as organizational structures. Each node
in DAML representation is an active agent, human or computational, and
DAML records are used to locate and reason about resources needed for
planning and accomplishing a task. However, DAML is designed for opera-
tions centered at vertices of the network, and is poorly suited for analysis of
network topologies and rules that govern communication among nodes from
a top-level perspective.

OWL is a general-purpose language for expression of ontologies. While
not designed specifically for expression of social network-related knowledge,
it is general enough to be adapted to express some of the information in
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the social network context. Deaton[Deaton, Shepard, Klein, Mayans, Sum-
mers, Brusseau, Witbrock, and Lenat, 2005] has adapted OWL for use as
an interchange language between end-user knowledge acquisition tools, anal-
ysis tools and Cyc - a large repository of knowledge and reasoning system.
However, OWL does not have a ready facility for expression of executable
rules and is not Turing-complete, thus having inherent limitations in expres-
sion of object-oriented ontologies. Further, in Deaton’s adaptation of OWL,
relationships between nodes are not first-class objects but methods that con-
nect objects together. Expression of semantics of edges and nodes are done
through significantly different mechanisms and thus results in an awkward
implementation.

5.8.2 Cyc

CYC corporation[Lenat, 1995] is in the midst of an effort toward building
an ontology for reasoning on social network concepts and data, particularly
in the field of modelling terrorist networks and organizations. CYC has
contracted a team of subject matter experts (SMEs) in the field of terror-
ism. Using a specialized fact entry tool, the experts construct facts and
rules that govern construction and evolution of terrorist networks[Deaton,
Shepard, Klein, Mayans, Summers, Brusseau, Witbrock, and Lenat, 2005].
These facts are interpreted by CYC reasoning engine and stored as assertions
in CycL. CycL is CYC’s representation language which is a form of higher
order predicate calculus[Reed and Lenat, 2002].

CYC can reason over these assertions by using a variety of special purpose
reasoning modules as well as by using general theorem proving. For instance,
if someone enters the fact that Person− 1 is a member of terrorist group A,
then CYC can conclude that Person − 1 is a terrorist, based on a domain
rule that states that anyone who is a member of a terrorist organization is a
terrorist.

CYC can also do a variety of subsumption based reasoning. For instance,
#$hasLeaders represents a two place relation that relates an organization
to one of its leaders. CycL allows to assert that #$hasLeaders is a special-
ization of the #$hasMembers relation thereby licensing the inference from
”X is a leader of Y” to ”X is a member of Y”.

One of the main benefits of CYC’s is the fact that over about 15 years,
CYCorp has accumulated a large knowledge base of facts about human be-
haviour and relationships, thus using its knowledge bases to further supple-
ment the knowledge entered by the SMEs.

However, CYCorp’s approach has a number of shortcomings based on the
history of CYC’s knowledge base. The knowledge base developed by CYCorp
is essentially a “flat” expert system with facts and relationships about facts
given approximately the same priority in reasoning. CycL language is thus
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not attuned to the idea of building object-oriented taxonomies. CYC treats
relations between objects as rules rather then first-class objects - thus limiting
its potential for implementation of social network analysis techniques.

5.8.3 Knowledge Engineering and Ontology Design

CYCorp has approached an important and difficult problem is working with
data in ontological form. The problem relates to the fact that much of what
people know about the semantics of the world is in the realm of “common
sense” — which is at best difficult to describe in formal terms, and at worst
could be even difficult to describe in a human language, thus passing into
the realm of poetry. Donald Knuth has once said “...anything we can think
of can be automated. The things we do without thinking are much more
difficult”.

CYCorp’s approach to describing common-sense knowledge — about net-
works as well as other aspects of human life — is centered on creation of a
massive knowledge base of facts, rules and inferences. This knowledge base
is populated by sets of human subject-matter experts in fields from English
literature to military strategy. This approach essentially creates islands of
knowledge within the knowledge base that are described in high detail, po-
tentially with large gaps between them. It is not clear whether such unified
approach will eventually lead to creation of a true artificial intelligence, but
CYCorp currently possesses the largest knowledge base in existence.

A different approach to creation of ontologies is rooted in the realization
that creation of a knowledge base that encompasses all knowledge in the
universe is probably impossible. Thus, an ontology writer must create a
reduced subset of this knowledge — based on subject matter or data at hand
— and create a set of ontological objects to adequately describe this subset.

In NetInference, I take the second approach, and resolve to define min-
imum sufficient amount of semantics needed given the domain or data at
hand. As I show in the next several sections, even the minimal approach
brings powerful results in reasoning about social systems and relationships.

5.9 Requirements for Representing Relational

Knowledge

The Artificial Intelligence research community has developed a number of
approaches for representing entities and relationships between them in the
way that could be extended to represent social network data.

A good system for the representation of knowledge in a given domain
should possess the following four properties[Frakes and Gandel, 1989]:
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• Representational Adequacy: the ability to represent all of the kinds of
knowledge that are needed in this domain.

• Inferential Adequacy: the ability to manipulate the representational
structures in such a way as to derive new structures corresponding to
new knowledge inferred from items already known.

• Inferential Efficiency: the ability to incorporate into the knowledge
structure additional information that can be used to focus the attention
of the inference mechanisms in the most promising directions. Tech-
niques for enhancing inferential efficiency may include search heuristics,
dataset pruning and definition of Regions of Interest (ROI).

• Acquisitional Efficiency: the ability to acquire new information easily.
Ideally, the inference mechanism should also guide machine acquisition
of new knowledge.

5.10 Representational Adequacy - Atomic Se-

mantic Units

Objects and object-oriented modeling are commonplace in modeling complex
data flows and business processes. However, the current dominant object
oriented modeling technique — the Unified Modeling Language(UML), is
ill equipped for modeling of organizational modeling[Castro, Mylopoulos,
Alencar, and Filho, 2001]. Instead, UML is suitable for later phases of model
refinement which usually focus on completeness, consistency, and verification.

This problem derives from the fact that object-oriented modeling relies
on the assumption that concepts, entities and relationships among them can
be arranged in a hierarchical taxonomy and concrete concepts deriving from
abstract. Entity relationships in a social network context are much more
complex and encompass a graph-oriented, non-hierarchical view of the world.

While hierarchical taxonomies are too restrictive for representation of
social network knowledge, an elaboration of the object-oriented paradigm
can serve well as a meta-language for representation of concepts present in a
network structure.

The goal of such a meta-language is not to express and describe nodes
and edges that comprise a social-network model but rather to facilitate ma-
chine derivation of such definitions by means of semantic inference. Thus,
a meta language is a structure of meaning that underlies every object of
a model and facilitates descriptive, qualitative reasoning about objects and
their relationships.

Figure 5.4 illustrates the role of ontological or meta-structures in de-
scribing a network. In this illustration person A is a friendOf person B

118



B

C

A

Person

Org.

Res.

D

isA

isA

isA

isA

Node

isA

isA

isA

Object

isA

worksFor isA

friendOf isA

customer
Of

isA

has
Resource

isA

Edge

isA

isA

isA

isA

isA

Figure 5.4: Network is just the tip of the iceberg: from complex taxonomy
to simple networks

and hasResource D. Person B worksFor company C and person A is a
customerOf C. While the network itself only consists of 4 nodes and 4
edges, it is only the tip of the iceberg.

To understand the meaning behind the nodes and edges while being able
to infer knowledge about the network, a complex hierarchy of ontological
entities must be set up. In this simple example, we only define three layers
of ontological hierarchy. Abstract nodes (pink on the figure) and abstract
edges (beige) are derived from obejcts Node and Edge (yellow and purple),
which, in turn, inherit properties from a universal Object type. In studying
real datasets, such hierarchies will be much more complex and involve many
layers of inheritance.

5.10.1 Object Orientation - Mandatory Feature Set

Atkinson, et al[Atkinson, Bancilhon, DeWitt, Dittrich, Maier, and Zdonik,
1989] outline a set of basic features for manipulating and storing object-
oriented data. The minimal feature set consists of eight qualities: complex
objects, object identity, encapsulation, types or classes, inheritance, overrid-
ing combined with late binding, extensibility and computational complete-
ness.
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Complex Objects

Complex objects are built from simple objects through use of collection pat-
terns — set, list and tuple. Collections must be orthogonal and applicable
to both atomic units (e.g. integers, strings) as well as other objects.

NetInference implements objects through the use of associative sets, or
sets of property-value pairs. An associative set can substitute for any of
the collection patterns: a set is a simple collection of values, while a list
uses property identifiers to specify an ordering and a tuple identifies indi-
vidual values with a semantically significant handle. A value portion of the
associative pair can be any of basic variable types, or another object.

Object Identity

The concept of object identity is the following: in a model that implements
object identity, an object has an existence that is independent of its value.
NetInference implements object identity through a global object − store
database, and (gensym) - a mechanism for generating globally unique object
handles.

Encapsulation

NetInference objects encapsulate data and methods that act on data in a
consistent manner. Moreover, due to Scheme’s ability to manipulate exe-
cutable objects (#PROCEDURE objects) as data, the storage mechanism
for data and methods is exactly identical. NetInference objects encapsulate
resolution rules that maintain object’s self-consistency (e.g. value ranges
of parameters) and its consistency with its surroundings (e.g. maintaining
reference lists).

Classes

NetInference classes are defined implicitly: any object can serve as a concrete
instance and then be converted into an abstract node and used as a parent for
derivation of child objects through inheritance. This corresponds to the dy-
namic nature of NetInference objects - where the objets may be manipulated
through their parent objects at runtime of the system. This corresponds
to the view of classes taken in the data-warehousing community[Schaffert,
Cooper, Bullis, Killian, and Wilpolt, 1986].

Inheritance and Overriding

NetInference implements object inheritance by specification of parent object
at the time of object definition. Moreover, multiple inheritance is supported
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as well. Properties and methods can be overridden by child objects both at
the time of object creation as well as at runtime.

Extensibility and Computational Completeness

NetInference is based on Scheme, which is a Turing-complete language. Thus,
any function that is not a part of NetInference may be implemented within
the Scheme environment and processed by NetInference at runtime without
further modifications to the code.

Extensibility of the object system can come from two approaches. New
data types or data structures may be defined within the Scheme environment
and manipulated by NetInference routines through their Scheme interfaces.
Data types whose implementation for efficiency or other reasons cannot be
done inside Scheme (e.g. images and multimedia data) can be implemented
in C or C++ using a specialized API to create an interface between the
NetInference environment and the custom objects.

Implementation details of the NetInference object system are described
in section 5.13.

5.11 Summary

In this chapter, we introduce NetInference - a language designed for represen-
tation, searching and reasoning about network data. A concise comparison
of NetInference and other languages for semantic data interchange and infer-
encing is given in table 5.2.

The rest of the chapter is organized as follows: section 5.13 describes the
design and properties of object-oriented metaphor that underlies design of
NetInference. Section 5.14 defines semantics of a graph or network based on
the design of the object system. A system for declaring and resolving graph-
based semantic rules is described in section 5.15. A graph query language
based on rules and constructs of NetInference is specified in section 5.17

Section 5.16 illustrates the power of NetInference by adding semantics to
existing social network data. In this example, I derive semantics of friendship
and advice networks through decomposition of their edges into components of
information flow, authority relationships and affinity connections and define a
set of centrality measures that take this semantic decomposition into account
to arrive at a new set of conclusions based on the combination of friendship
and advice networks.

Section 5.19 introduces more complex semantics for reasoning about ter-
rorist networks. The terrorist network ontology is based on a social network
dataset compiled from investigation of the bombing of U.S. embassy in Tan-
zania.
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RDF CyCL OWL Clips NetInference

Semantic
Structure

Object-
Oriented

Flat Object-
Oriented

Flat Object-
Oriented

Object Ori-
entation

Single Inher-
itance

Simulated
with collec-
tions

Single Inher-
itance

Simulated
with rules

Multiple In-
heritance

Turing-
Complete

No Yes No Yes Yes

Extensibility External
Logic

Fully Exten-
sible

External
Logic

Fully Exten-
sible

Fully Exten-
sible

Graph rep-
resentation

Intrinsic Simulated
with collec-
tions

Intrinsic Implemented
with exten-
sions

Intrinsic

Object
query capa-
bility

External Fully imple-
mented

External Implemented
with exten-
sions

Fully imple-
mented

Graph query
capability

External External External External Fully imple-
mented

Reasoning
on graph
structures

External Fully imple-
mented

External Implemented
with exten-
sions

Fully imple-
mented

Regions of
Interest

No Yes (collec-
tions)

No No Yes (intrin-
sic)

Table 5.2: Comparison of features of inference and semantic representation
languages

5.12 Design of the Social Network Semantic

Language

Social Network Semantic Language — NetInference — is designed as an
extension of Scheme[Abelson, Sussman, and Sussman, 1985]. There are a
number of essential reasons for choosing a Scheme-based interpreted language
for implementation:

• Scheme is a relatively simple yet Turing-complete programming lan-
guage. Scheme interpreters are small and easily embeddable in other
software tools. This feature can be used to create multi-agent simu-
lations where each agent uses semantic reasoning to infer and plan its
next action.

• Scheme implements the lambda-calculus paradigm that allows manipu-
lation of procedures and code segments as data, and storage thereof in
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data structures.

• Scheme is simpler and faster then Common Lisp, while providing all
of the essential features required for implementation of the semantic
reasoning systems.

Despite all of the advantages of using Scheme for implementation of Net-
Inference, there was a significant obstacle: Scheme lacks means for an efficient
implementation of hash tables as it does not support direct memory block
manipulation. However, efficient hash table implementation is essential for
building a fast object manipulation system. This obstacle was removed by
implementing a fast hash table in C and linking it with a modified Guile
Scheme interpreter. The hash table has been exposed to the Scheme inter-
preter as a data type and hash table objects can be stored and manipulated
in the same way as any Scheme objects.

The following sections document the challenges and solutions present in
design of NetInference as well as present examples and API documentation
for usage of NetInference.

5.13 Object System

NetInference implementation is based on a custom, class-less object system
built on top of Guile[Foundation, 2005]. The principles of object-orientation
are derived from these specified by Atkinson[Atkinson, Bancilhon, DeWitt,
Dittrich, Maier, and Zdonik, 1989] and Cardelli[Cardelli, 1988].

An object is defined as follows:

Object :=































ObjectID :

ParentID :

Attributes := ListOf{attributeID, value}

Methods := ListOf{methodID, value}

Rules := ListOf{rule}

(5.4)

where ObjectID is a globally unique identifier (with the exception of
temporary objects (see section 5.13.1)), ParentID is an identifier of an object
that the current object inherits attributes and rules from (see section 5.13.3),
Attributes is a list of attribute-value pairs, Methods is a list of method-
procedure pairs, and Rules is a set of rules to be executed during object-
resolution procedure (see section 5.15).

Objects are defined by using the defobject macro:
¨ ¥

(defobject <object−id> // op t i ona l ; d e f a u l t s to a random
unique id
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#:as #$ParentObject
#:with−a t t r ’((<name> <value>) (<name> <value>) )
#:with−methods ’((<name> <procedure>) (<name> <value>) )
#:with−r u l e s ( l i s t ( defrule . . . ) ( de f range . . . )

§ ¦

Standard Object Methods

Objects include a number of standard methods, including:

getID : Return the current object ID

getField/setField : return or set the value of a named object property

getMethod : return an executable object (function) that can be called

resolve : trigger local rule resolution (see section 5.15)

These functions are discussed in detail in section 5.13.2.

5.13.1 Object Storage

By default, objects are stored in an object-store collection. Object-store is
implemented as an instance of Object as well, which allows for greater code
reuse. For example, the graph query operators (section 5.17) can operate on
the entire database of objects as well as on individual objects or user-defined
collections of objects — in exactly the same manner.

For ease of use, direct operations on the object − store are hidden from
the user. To allow easy access to objects inside the object − store, I have
defined a special object-reference notation, from now on referred to as the
hash− buck notation. The use of hash− buck notation is illustrated below:
¨ ¥

; ; Re t r i eve an o b j e c t in s tandard Scheme no ta t i on
( getObject object−s t o r e objectID )

; ; Re t r i eve an o b j e c t in hash−buck no ta t i on
#$objectID

§ ¦

5.13.2 Object Properties, Methods and Rules

Attributes of an object are defined as a list of attributeID-value pairs where
attributeID is a locally unique identifier, and value is an instance of a simple
type (number, string, symbol, list or any other type allowed in Scheme), or
a reference to another Object.

To get and set values of Attributes, one should use the following API:
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¨ ¥

; ; Get va lue o f a f i e l d
( g e tF i e l d ob j e c t a t t r ibute ID )

; ; Set va lue o f a f i e l d
( setField ob j e c t a t t r ibute ID value )

§ ¦

To further simplify access to object fields and methods, a dot− notation
is implemented
¨ ¥

; ; Re t r i eve a f i e l d o f an o b j e c t in s tandard Scheme no ta t i on
( g e tF i e l d ( getObject object−s t o r e objectID ) f i e l d ID )

; ; Re t r i eve a f i e l d o f an o b j e c t in hash−buck and dot no ta t i on s
#$objectID . f i e l d ID

§ ¦

Methods are defined similarly to Attributes as a list of name-value pairs.
However, the value portion of method’s name-value pair must be a Scheme
procedure:
¨ ¥

; ; Get and execu te a method
( ( getMethod ob j e c t methodID ) <arguements>)

§ ¦

Similarly, Methods can be accessed using the dot− notation:
¨ ¥

; ; Run a method o f an o b j e c t us ing standard Scheme no ta t i on
( ( getMethod ( getObject object−s t o r e objectID ) methodID )

argument1 argument2 )

; ; Run a method o f an o b j e c t us ing hash−buck and dot no ta t i on s
(#$objectID . methodID argument1 argument2 )

§ ¦

Rules of an object is a list of Scheme expressions that compile into a
Resolve function. A detailed description of the Resolve functions can be
found in section 5.15.

5.13.3 Inheritance

An object system must implement property and method inheritance as a
means of defining one object in terms of another.

NetInference does not make a distinction between class and instance.
Every object in the system can be manipulated as a unit of data, or used as
a prototype for creation of new objects.
¨ ¥

(defobject "person"

#:with−a t t r ’ ( ( "name" "" ) ( "age" 0 ) ("location" "unknown" ) )
#:with−methods ’ ( ( "print" ( method ’ ( begin ( d i sp l ay a ) ( newl ine )

) ) ) )
)

(defobject "jonny"
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Listing 5.1: ”Multiple inheritance in NetInference”
¨ ¥

(defobject "child"

#:with−a t t r ’ ( ( "name" "" ) ( "age" 10 )
("shoe-size" "5" ) ("location" "unknown" ) )

#:with−methods ’ ( ( "print"
(method ’ ( begin ( d i sp l ay a ) ( newl ine ) ) ) ) )

)

(defobject "student"

#:with−a t t r ’ ( ( "studentID" "" ) ("location" "school" ) )
)

(defobject "jonny"

#:as ’ ( (# $ch i l d #$student ) )
#:with−a t t r ’ ( ( "name" "jonny" ) ("age" 10 ) )
)

> #$jonny
( ob j e c t
id="jonny"
parent=(#$ch i l d #$student )
name="jonny"
age="10"
l o c a t i o n="school"
studentID=""

)
§ ¦

#:as #$person
#:with−a t t r ’ ( ( "name" "Jonny" ) ("age" 10 ) )
)
§ ¦

In this example, jonny is defined as an instance of object person. Jonny
overrides the name and age properties of person, but inherits the location
property and print method of the parent object.

Multiple inheritance is allowed by specifying a list of objects in the #:as
clause of the object definition. In multiple inheritance, order in which parent
objects are specified matters: the objects specified later get priority over
objects specified earlier, thus earlier values in overlapping fields (e.g. location
field in the next example) will be overwritten by later values (see listing 5.1).

In this example, jonny is defined as instance of both child and student.
Object jonny overrides the name and age properties of child but inherits
shoe−size and location from child, and studentID from student. However,
the multiple inheritance rule overrides the value of location field of child with
the value of location field of student.
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Listing 5.2: ”Typing Mechanism”
¨ ¥

(defobject "child"

#:with−a t t r ’ ( ( "name" "" ) ("location" #$ lo c a t i on ) ) )

(defobject "school" as #$ l o c a t i on )
(defobject "apple" as # $ f r u i t )

; ; Only va l u e s t ha t are de r i v ed from # $ l o c a t i on are a l l owed
; ; as va lued o f the ’ l o ca t i on ’ proper ty

; ; This i s a l e g a l o b j e c t
(defobject "jonny"

#:as #$ch i l d
#:with−a t t r ’ ( ( "location" #$schoo l ) ) )

; ; This s ta tement w i l l produce an error due to type system
v i o l a t i o n

(defobject jimmy"
ÃÃ#:asÃ#$child

ÃÃ#:with-attrÃ’((" l o c a t i o n "Ã#$apple)))
§ ¦

5.13.4 Typing Mechanism

NetInference uses a “medium-strength” typing mechanism: “simple types”
(number, string, etc) are weakly typed, Lisp style; objects are strongly typed
with an enforced parent hierarchy. An example of typing mechanism at work
can be found in listing 5.2.

5.13.5 Abstract and Concrete Objects

In NetInference, there are no classes - any object can play a role of a concrete
instance and in the same time serve as a parent object for a set of other
objects. This allows for rapid propagation of changes throughout the object
system without having to iterate over large sets of instances.

However, because of the ability to easily modify a significant object (e.g.
Person or even Object itself), care must be taken by the user to consider all
implications of such wide-ranging changes.

To ease the modeling process and allow for immutable truths to become a
part of the system, the NetInference object system allows the user to specify
some objects as abstract. In this case, the properties and methods of the ob-
ject are considered read-only and cannot be modified without redefining the
entire object. The only permitted operations on abstract are getF ield and
getMethod, and derivation of a child object. Note that the child object may
override a property of an abstract object through polymorphic inheritance:
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¨ ¥

> (defobject "person" #:with−a t t r
’ ( ( "disposition" "kind-spirited" ) ) )

> ( setField #$person "abstract" t rue )

> #$person . d i s p o s i t i o n
kind−s p i r i t e d

> ( setField #$person "disposition" "evil" )
∗∗wr i t i ng to abs t r a c t ob j e c t s not permitted ∗∗
NIL

> (defobject "evil-person" #:as #$person
#:with−a t t r ’ ( ( "disposition" "evil" ) ) )

> #$person . d i s p o s i t i o n
e v i l
§ ¦

The main role of abstract objects is to convey a small set of ground truths
about the ontology or model under development. They should not be used
as a part of any executable structure other then as parent objects for the
purpose of inheritance.

In the design spirit of NetInference, abstract objects are designated by
setting an abstract property to true. After this point, no other modifications
to the object will be permitted, including unsetting the abstract property.
By default, all objects in NetInference except Object are created as concrete
(i.e. lacking the abstract property), with full permissions on all fields.

As higher-level models are loaded into NetInference, the number of de-
fined abstract objects will increase, but the general philosophy is still the
same: abstract objects represent the basic instances that the model operates
on and derives from. The graph model, described in the next section is a
primary example of such a higher-level model.

5.14 Graph Representation

The object system of NetInference provides a foundation upon which a robust
graph representation scheme is designed.

A graph is traditionally defined as a set of nodes or vertices V connected
by a set of edges E. NetInference adapts this definition to fit the constraints
of the object system by creating two abstract objects - Node and Edge.
Nodes and edges of each graph represented in NetInference are defined as
child objects of these abstract objects.
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A Node object is defined as:

Node =











nodeID : uniqueID

edges : setOf(E ⇒ Edge)

properties, methods and rules : inherited from Object

An Edge is defined as:

Edge =











edgeID : uniqueID

from : N1⇒ Node

to : N2⇒ Nodeproperties, methods and rules : inherited from Object

Note that the definition of Node contains a list of edges emanating from
it and the definition of Edge contains two objects of type Node. Such cir-
cular definition is permissible in NetInference due to delayed instantiation of
properties (i.e., abstract object Edge will not be referenced until a concrete
edge emanating from a concrete Node needs to be instantiated). However,
it affords a remarkable convenience: in a graph traversal or calculation of
graph-based metrics all required information for each node and edge is con-
tained directly within the object and is accessible in constant time.

Of course, such savings of time come with a memory penalty, as each of the
object references requires storage. The implementation of object references
is quite memory-efficient and the penalty thus is fairly small. Moreover, such
representation of graph elements does not require an external data structure
other then what is provided by the object system - which counteracts or at
least partially counteracts the memory penalty of maintaining circular data
structures.

NetInference provides convenience macros defnode and defedge to ease
creation and derivation of graph nodes (see listing 5.3).

5.14.1 Subgraphs

At this point, the object system and graph representation of NetInference
resembles a primordial soup. It is a giant collection of various objects, such as
nodes and edges, loosely tied together by means of references between objects
— but with no overarching structure. The only mechanisms for manipulating
objects provided in the object system are these of robust retrieval of an object
by its handle, and of object inheritance.

Such chaotic representation of knowledge is not extremely useful, as users
need mechanisms to effectively prune datasets and control the focus of search
or reasoning algorithms. However, installing a permanent overarching struc-
ture is too restrictive since it forces the objects into a configuration that may
or may not be efficient for the problem at hand.
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Listing 5.3: ”Node and Edge Definition”
¨ ¥

(defnode <nodeID> #:as <parent node>
#:with−a t t r ’(< l i s t o f a t t r i bu t e−value pa i r s >)
#:with−edges ’ (
(<edge−name> <edge−object >)
. . . l i s t o f edges . . .

)
)

(defedge <edgeID> #:as <parent−edge>
#:with−a t t r ’(< l i s t o f a t t r i bu t e−value pa i r s >)
#:from < source−node>
#:to < target−node>
)

§ ¦

However, properties of NetInference objects can contain any data type
supported by the language, including other objects. The implication of this
is that one can trivially define compound objects that contain nodes and
edges of a graph.

This yields to a ready definition of such important and useful notions such
as subgraphs and regions of interest. These notions serve as a lens through
which views of large datasets can be focused. Moreover, as objects can be
members of multiple subgraphs, this allows for an unlimited number of views
to be defined based on structure of the model and conditions presented by
the data.

A subgraph is defined as

Gsub = vsub ∈ V, esub ∈ E

where vsub and esub are subsets of the vertex and edge sets, respectively. In
NetInference, a subgraph is defined as a compound object whose properties
contain all objects in Gsub:
¨ ¥

> #$subgraph1
( ob j e c t id="subgraph1"
n137=(ob j e c t id="n137" parent=#$Node . . . )
. . .
n42=(ob j e c t id="n42" parent=#$Node . . . )

e1= ( ob j e c t id="e1" parent=#$Edge . . . )
. . .
e24= ( ob j e c t id="e24" parent=#$Edge . . . )

§ ¦

If one wishes to manipulate multiple graphs at the same time within
NetInference, he should define them using this method - as the format of
a subgraph is the same as the format of the object-store and elements of
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a subgraph can be manipulated in the exact same manner as elements of
the object-store. Moreover, the object-store itself can be thought of as a
subgraph that encompasses every object defined in the system.

5.14.2 Regions of Interest (ROIs)

A region of interest (ROI) represents a set of nodes and edges selected in
process of - or for the purpose of - running a data manipulation routine.
While an ROI can be created by hand, most commonly the ROIs are returned
as a result of running a query or applying a set of conditions to graphs or
subgraphs - e.g. select and select− subgraphs operations described in detail
in section 5.17.

An ROI is defined as an object that contains a collection of subgraphs:

ROI = (v1 ∈ V, e1 ∈ E, v2 ∈ V, e2 ∈ E...vn ∈ V, en ∈ E)

The subgraphs are indexed by randomly generated unique IDs. A map−
ROI function iterates over ROI’s and performs user’s choice of operation (or
any λ− expression allowed in Scheme). ROIs can be also used as arguments
to the select function - which allows for nested queries.

5.14.3 Hypergraphs

Formally, a hypergraph G can be defined as a pair (V , E), where V is a set
of vertices and E is a set of hyperedges between the vertices. Each hyperedge
connects a set of vertices: E = u, v, ... ∈ V . (Hyperedges are undirected.)

An HyperEdge is defined as:

HyperEdge =











edgeID : uniqueID

nodes : setOf(N ⇒ Node)

properties, methods and rules : inherited from Object

Hyperedges are child objects of Edge and can be manipulated using the
same routines as other edges and freely mixed with edges of other types.
However, hyperedges should be treated differently for a number of graph-
theoretic concepts.

5.15 Inference in Social Networks

NetInference implements two types of inference on social network data. Ob-
ject structure (sec. 5.13) and system of property inheritance facilitate hier-
archical inference, where properties of objects within the social network can
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be determined by inspecting their semantic predecessors within the object
structure.

The second inference mechanism is that of graph-oriented rule resolution.
In this mechanism, every object has a set of routines (rules) for checking
its own self-consistency - i.e. the consistency of the internal state of the
object with its external connections. The rules also provide for computing
closures upon objects in the network (e.g. the transitive closure) and inferring
existence of nodes and edges based on generalizable domain rules.

5.15.1 Rule Definition

A NetInference rule is specified using defrule macro:
¨ ¥

( defrule < r u l e name>
( i f [ c ond i t i o na l exp r e s s i on or query ]

( then [ a sequence o f statements to be executed i f

cond i t i on i s t rue ] )
( else [ a sequence o f statements to be executed otherw i s e ] )

)
)
§ ¦

Rules can be placed into an object at the time of object creation through
inheritance or at arbitrary times as specified by the user, e.g.:
¨ ¥

; ; r u l e s are s p e c i f i e d at the time o f o b j e c t c r ea t i on
(defobject obj1
. . . . .
#:with−r u l e s ’ ( ( defrule r u l e 1 < r u l e s p e c i f i c a t i o n >)

( defrule r u l e 2 < r u l e s p e c i f i c a t i o n >) ) )

; ; r u l e s are i n h e r i t e d from obj1
(defobject obj2 #:as obj1
. . . . .

)

; ; r u l e s are added to the o b j e c t a t runtime
(addRule obj2 ( defrule r u l e 3 < r u l e s p e c i f i c a t i o n >) )

§ ¦

5.15.2 Example

As a simple example, let me define a set of rules on domain of locations and
places. The rules specify information about possible ranges of parameters,
and a transitive closure of nested locations.

First, let us define the notion of location as a node with two attributes
— latitude and longitude — and some constraints on the values of the at-
tributes:

−90 ≤ latitude ≤ 90
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Figure 5.5: Inference of inherited properties and transitive closure

−180 ≤ longitude ≤ 180
¨ ¥

(defnode "location"

#:with−a t t r ’ ( ( "name" "" ) ( "latitude" 0 ) ( "longitude" 0 ) )
#:with−r u l e s ’ (
( defrule l a t r ang e
( i f (and (< this . l a t i t u d e −90) (> this . l a t i t u d e 90 ) ) ( then (

e r r o r ) ) ) )
( defrule l on range
( i f (and (< this . l ong i tude −180) (> this . l ong i tude 180) ) (

then ( e r r o r ) ) ) ) )
)

§ ¦

This definition provides us an ability to define a multitude of physical
locations which can be placed on a map. However, of more interest is the
notion of a logical location. We can define a logical location with arbitrary
granularity - it can be a table in a cafe, a street corner, a city, or the entire
planet:
¨ ¥

(defnode "logical-location" #:as #$ lo c a t i on )
(defedge "isIn" ( from #$ l o g i c a l−l o c a t i o n ) ( to #$ l o g i c a l−

l o c a t i o n )
#:with−r u l e s ’ (
( defrule coords (and ( setField from . l a t i t u d e to . l a t i t u d e )

( setField from . l ong i tude to . l ong i tude ) ) ) ) ) $
§ ¦

The definition of isIn edge type allows for inference of a physical location
(i.e. latitude and longitude) from a nesting series of logical locations. (see
figure 5.5)

However, nested location hierarchy exhibits one more property - transi-
tivity. For example, if a table isIn a cafe isIn Pittsburgh it can be inferred
that the table also isIn Pittsburgh, i.e., there is not only an edge from a node
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Listing 5.4: ”Object Resolution Algorithm”
¨ ¥

DO

DEQUEUE ob j e c t O from the eva lua t i on queue
RUN r e s o l u t i o n r u l e s o f O and i t s parent ob j e c t s
IF an ob j e c t other then O i s a l t e r ed , c r ea ted or de l e t ed by the

r u l e s
THEN set the a l t e r e d object ’ s d i r t y b i t to TRUE;

add ob j e c t to the eva lua t i on queue
END IF

SET O’ s d i r t y b i t to FALSE
UNTIL eva lua t i on queue i s empty
§ ¦

table to node cafe to node Pittsburgh but also an edge from node table to
node Pittsburgh. Computing transitive closure can be done by defining isIn
as a transitive edge:
¨ ¥

(defedge "transitive -edge"

#:with−r u l e s ’ (
( defrule t r a n s i t i v e−c l o s u r e
( i f ( exists ( this . to ) ( i sParent ? this . to . edge t r a n s i t i v e−

edge ) )
( then ( defedge #:as t r a n s i t i v e−edge

( from this . from) ( to this . to . edge ) ) ) ) )
)

§ ¦

The edge transitivity rule examines the edges connected to the target of
the edge and if one of these edges is transitive (i.e. is a child object of a
transitive edge) the transitive closure is computed by adding another edge.
An edge can then be declared to be transitive by inheriting the rule from the
transitive− edge object.

While a set of rules declaring transitive closure relations between locations
is fairly simple, it illustrates the mechanism by which NetInference can infer
values of attributes of nodes and edges, and create new entities based on sets
of rules.

5.15.3 Rule Resolution Mechanism

The rule resolution mechanism in NetInference is decentralized and based on
the idea of lazy evaluation – the notion that at every moment of time only
objects that change need to be watched and re-evaluated by the rule resolver.

Every NetInference object is tagged with a dirty bit – a flag that signals
whether an object’s attributes have been changed recently or whether edges
that connect the object to other objects have been added or dropped. If a
change has been made, the object’s dirty bit is set to true and the object is
added to a queue of unresolved objects.

134



C


D


F


E


B


A


A


Evaluation Queue


C


D


F


E


B


A


Evaluation Queue


D
 E


C


D


F


E


B


A


Evaluation Queue


B
 D


(A)


(B)


(C)


A
D
 Dirty
 Clean
 F
 Untouched


Figure 5.6: Inference of inherited properties and transitive closure

The rule resolution algorithm (see figure 5.6) can be described in the
pseudo-code in listing 5.4.

Note that a node that has been already resolved by the algorithm may be
changed again by another node’s rules and thus will be re-added to the eval-
uation queue. This produces the distinct possibility that this algorithm may
not converge for all graphs but instead may produce an oscillating behaviour.

Oscillations are undesirable if the goal is to produce a stable state where
every object has been resolved and marked as clean. However, if the intention
is to model dynamic systems, oscillation is a valid behaviour and must be
studied as such - instead of being considered a property of the evaluation
algorithm.

The algorithm then should be modified to achieve a double goal: within
each iteration of the algorithm, convergence should be achieved. In the same
time, oscillations should be possible in space of multiple iterations. This dual
goal can be achieved by maintaining a taboo − list of nodes that have been
visited. If a node on the taboo list is referenced by another node, it does not
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Listing 5.5: ”Object Resolution Algorithm with Taboo List”
¨ ¥

FOR de s i r ed number o f i t e r a t i o n s DO
REPEAT

DEQUEUE ob j e c t O from the eva lua t i on queue
ADD O to the taboo l i s t
RUN r e s o l u t i o n r u l e s o f O and i t s parent ob j e c t s
IF an ob j e c t O1 i s a l t e r ed , c r ea ted or de l e t ed by the r u l e s
THEN set O1’ s d i r t y b i t to TRUE;

IF O1 i s not on taboo l i s t
THENADD O1 to eva lua t i on queue
END IF

END IF

SET O’ s d i r t y b i t to FALSE
UNTIL eva lua t i on queue i s empty

/∗ Next i t e r a t i o n o f r e s o l v i n g w i l l s t a r t with nodes marked
d i r t y
but not r e s o l v ed i n t he prev ious i t e r a t i o n ∗/

FOR a l l nodes on the taboo l i s t
IF node ’ s d i r t y b i t i s set to TRUE
THENADD node to the eva lua t i on queue
END IF

END FOR

END FOR
§ ¦

get inserted into the evaluation queue but is still marked as dirty; it will be
re-evaluated at the next iteration of the algorithm in listing 5.5.

If the system is convergent, this algorithm will converge after a finite
number of iterations. However, if the system is not convergent, breaking the
process into a set of iterations allows the users to capture dynamic state of
the system and trace it through the use of time series.

5.15.4 Rule Resolution and Discrete Event Simulation

The multi-iteration property of the taboo-list object resolution algorithm
(listing 5.5) lends itself to an application of NetInference as an engine for
running discrete-event simulations of dynamic social systems.

Doing so requires an addition of an event queue, where events are rep-
resented as changes in state of objects (e.g. change of an object property,
addition of a node or edge), occurring in time. At each time-step a set of
events is removed from the event queue and applied to an object in the sim-
ulated network. Then one iteration of the rule resolution algorithm is run,
propagating the state changes introduced by current events and continuing
to resolve state changes introduced by previous events — thus producing a
cumulative value.
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State of the entire system can be then evaluated at every time step pro-
ducing time-series data of an evolving dynamic network.

5.16 Domain Representation in NetInference:

Friendship and Advice Networks

A classic example of two semantically significant networks is friendship and
advice network[Krackhardt, 1990][Krackhardt, 1999]. The distinguishing fea-
ture of the friendship-advice dataset is the fact that, while the basic concepts
of friendship and advice-giving are immediately understandable by a human
observer, a meaningful SNA analysis of the combination of the two networks
cannot be done using traditional methods.

The difficulty in combining friendship and advice networks is the fact
that, semantically, edges in each of these networks represent fundamentally
different concepts. Friendship is a reciprocal relationship between two hu-
mans that implies some shared beliefs, a degree of cooperation, and a degree
of selflessness or willingness to sacrifice some self-interest in order to help a
friend. Friendship is an intensely personal, emotional concept and in profes-
sional life can be a boost or a detriment to productivity in the workplace,
depending on the circumstances.

On the other hand, advice networks are essentially information flows[Cross,
Borgatti, and Parker, 2001] and can form in a professional, completely imper-
sonal context as well as a context of personal affinity. Advice relationships
are directed and may not be reciprocal. In this case, an advice relationship
may also imply a degree of superiority. Furthermore, advice relationships
may emerge from a friendship and friendships may evolve from a long-lasting
advice relationships.

Cross, et. al. [Cross, Borgatti, and Parker, 2001], further decompose
edges of advice networks into a number of subtypes. Specifically, people
tended to provide: (1) solutions; (2) meta-knowledge; (3) problem reformu-
lation; (4) validation and (5) legitimation. Such decomposition does not
provide a useful insight into how advice networks are related to friendship
or other personal networks – but it does point out the fact that semantics of
advice edges is also is not uniform.

Thus, while collection of friendship and advice data on social networks is a
standard practice and each of the networks can be analyzed and interpreted
independently, the fundamental differences in semantics of friendship and
advice edges prevent researchers from recognizing interdependence of the
two networks and analyzing them as co-occurring complex phenomena.

In this section, I would like to propose an approach to treating such
networks as semantically weighted constructs - which may open the door to
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creation of combinatorial metrics spanning multiple networks.1

5.16.1 Construction of Friendship and Advice Seman-
tics

Let us then construct a first-approach semantics for analyzing friendship and
advice networks. Beginning with basic entities, let us assume that the only
entities in this network are people and information. Let us also define two
basic edge entities - personal affinity and a flow (see listing 5.6).

Let us then make a following set of conjectures to decompose the edges
of an advice network:

1. If Alice gives unsolicited advice to Bob, the action can be decomposed
as (a) an information transfer (infoTransfer) from Alice to Bob and
(b) an assertion of authority (asserts− authority) edge: 2

Alice →infoTransfer→ Bob

Alice →asserts−authority→ Bob

2. If Bob solicits advice from Alice, the implication is:

Bob →respects→ Alice

Alice →infoTransfer→ Bob

3. If Alice and Bob routinely exchange advice, we can assert mutual −
respect - by combining results of a previous rule applied in both direc-
tions:

Alice ←infoTransfer→ Bob

⇓

Bob ←respects→ Alice

4. Existence of asserts − authority edge between two actors results in a
greater probability of an information transfer in the direction of the
edge.

Alice →asserts−authority→ Bob

⇓

Alice →infoTransfer→ Bob

1Please note that, at the risk of producing a work of pop-psychology, this example
is grossly over-simplified. Yet, the chief goal of this section is demonstrating expressive
capabilities of NetInference and not providing an exhaustive ontology describing friendship,
advice and their implications

2Based on type of other relationships established in the group (e.g. formal vs. informal
networks), assertion of authority may be accepted or contested. However, this level of
detail is beyond the scope of this example.
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Listing 5.6: ”Basic Assertions on Advice Networks”
¨ ¥

(defnode "person" )
(defnode "information" )

(defedge "likes"

#:as #$emotion
#:from #$person
#:to #$person )

(defedge "respects"

#:as #$emotion
#:from #$person
#:to #$person )

(defedge "asserts-authority"

#:as #$emotion
#:from #$person
#:to #$person )

; ; This edge i s e q u i v a l e n t to say ing ” Person A t o l d Person B
about Fact C”

(defedge "infoTransfer"

#:from #$person
#:to #$person
#:with−a t t r ’ ( ( "subject" #$in format ion ) )
#:with−r u l e s ’ (
( defrule "validity"

( i f ( not ( ex i s t sEdge ? #: from this . from #: to this . s ub j e c t ) )
( e r r o r ) ) )

( defrule "transfer"

(defedge #:from this . to #: to this . s ub j e c t ) )
) )

§ ¦
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5. Existence of respect edge between two actors results in a greater prob-
ability of an information transfer against the direction of the edge:

Bob →respects→ Alice

⇓

Alice →infoTransfer→ Bob

All of these rules can be encoded as NetInference rules operating on con-
cepts defined in listing 5.6.

Friendship is a much more complex concept, involving both a degree of
cooperation, a degree of respect and a degree of emotional affinity. Fortu-
nately, as basic units of reasoning have been already defined, we can express
this interdependence:

1. If both Alice and Bob report a friendship relationship, we can infer
existence of edges representing mutual respect and emotional affinity
(like). We can also infer the lack of asserts− authority edge:

Alice ←isFriendOf→ Bob

⇓

Alice ←respects→ Bob

Alice ←likes→ Bob

Alice ←/ asserts−authority →/ Bob

Using rules enumerated for advice networks, we can also infer that some
information transfers will also occur between the actors.

5.16.2 Inferences on Friendship and Advice Networks

By using a set of rules described above and running the rule resolution algo-
rithm until convergence, one can decompose the data collected as friendship
and advice networks into more basic units - a directed networks of respect
and authority, an undirected network of emotional affinity, and a set of in-
formation flows.

Thus, we can approach the problem of defining centrality[Freeman, 1979],
on the friendship-advice diplex network by decomposing it into separate com-
ponents as well:

• Out-degree of nodes on the authority network signifies actual position
of the actor on the authority ladder (if it coincides with the formal
network) or locates actors who are trying to assert authority beyond
their means (i.e., “social climbers” or “problem children”).
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• Information flow centrality identifies experts and can predict diffusion
of information through the organization. In this case, betweenness is
probably a more important metric then degree centrality - as actors with
high information flow betweenness are ”information hubs” - collectors
and disseminators of knowledge.

• Respect centrality is an in-degree of the respect network and signifies
the position an actor holds in terms of respect.

• Degree of nodes in the affinity network signifies a social position of an
actor - which may or may not coincide with his worthiness as a source
of information, authority or respect.

While we can further define a “Superman Centrality” by combining the
notions specified above, it would be a lossy preposition as these concepts
hold different semantics and signify concepts that may not be combinable in
a single actor (e.g. a person high in authority centrality may be respected
but not a good source for information - and probably not well-liked as well).

5.17 Graph Query Language

As I have mentioned before, social network datasets have recently under-
gone significant change in their nature. Most classic SNA datasets have been
small, self-contained, manually collected, and consisted of simple entities (e.g.
binary graphs). Current state of the art of SNA employs large agglomera-
tions of rich, machine-collected data encompassing open-ended data on large
networks with often ill-defined boundaries.

In short, SNA has graduated from the ability to create reductionist theo-
ries from limited empirical data to the necessity of mining large, amorphous
data spaces for confirmation of existing conclusions and derivation of new
ones. A NetInference data space can be characterized as such an amorphous
structure, and thus is a candidate for development and testing of data mining
techniques that would allow efficient navigation and machine derivation of
answers about actors and their correspondent social structures.

Navigating large, semantically loaded graph structures is a difficult prob-
lem. If a graph structure is treated as a collection of database tuples[Abiteboul,
Quass, McHugh, Widom, and Wiener, 1997], it becomes easy to locate ver-
tices and edges of the graph. However, in graphs, the structural attributes
of an entity (i.e., pattern of connections related to a particular object) are
frequently as important as a determinant of a role of the entity - and thus
just as important for the purpose of data mining[McKay, Finin, and O’Hare,
1990].
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Blau, Immerman and Jensen[Blau, Immerman, and D.Jensen, 2002] de-
signed a system called QGraph that enables mining of graphs based on struc-
tural attributes of their nodes, edges and subgraphs - as well as properties
of individual entities. A QGraph query is a labelled graph in which the ver-
tices correspond to objects and edges to links. The query may place boolean
conditions on the attribute values of objects and links, as well as global con-
straints relating one object or link to another. The query specifies the desired
structure of vertices and edges, including types of links, existential and car-
dinal quantifier constraints that can be placed on extracted subgraphs. A
QGraph query outputs a set of subgraphs - in NetInference terms, an ROI
(sec. 5.14.2).

Of further interest is the QGraph’s specification of what constitutes an
entity of a graph. Without imposing a rigid taxonomy upon nodes and edges,
QGraph uses semantically loaded concepts such as (in the film example out-
line in the paper) film, peron, actorIn and directorOf . Specification of
QGraph does not define any structure behind these concepts or their deriva-
tion. Thus, while providing significant power to the queries, the concepts of
nodeType and edgeType are still essentially labels - which makes QGraph
queries incapable of generalization.

For example, QGraph defines a concept of an Oscar - a prestigious film
award. However, there is a multitude of possible Oscar awards - Oscar for
Best Picture, Best Actor, etc. As source data is coded, the designer of
QGraph object taxonomy must make a trade-off: either every Oscar award
is treated as a node to type Oscar, thus losing specificity — or a new node
type has to be defined for every possible Oscar award, thus losing the ability
to generalize.

NetInference addresses this problem by using the object inheritance mech-
anism to define node and edge type taxonomies. Thus, a query can specify
properties as general or as specific as required by the user.

5.17.1 Design considerations

NetInference query system is built to satisfy a number of requirements:

• Queries must be able to efficiently find and return any object or collec-
tion of objects based on (a) an arbitrary boolean constraint on object’s
attributes, or (b) result of execution of an arbitrary expression on the
object

• Queries must be able to find objects based on absolute, existential and
cardinal quantifiers upon object’s structural properties:

• Queries may return subgraphs and ROIs; the selection constraint may
or may not match the return constraint, e.g. “return all subgraphs of
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actors that are related to each other, and have been in films together”

5.17.2 Basic Queries

The NetInference query functions are designed to evoke similarity to SQL
semantics, which would provide a familiar point of grounding to the user.

The select statement is defined as follows:
¨ ¥

( select
( from < source graph>)
[ ( r e turn < c on s t r a i n t expres s i on >) ]
(where < c on s t r a i n t expres s i on >)

)
§ ¦

where <source> graph is any object containing a graph - object − store, a
subgraph or an ROI.

Constraint expressions are arbitrary Scheme expressions that return true
or false. The object that the query is currently examining is referred to as
“this”. The return constraint is optional; if it is missing, select will return
only nodes or patterns that have matched the where constraint.

For example, a simple query to select all actors in the actor-film graph
would be written as:
¨ ¥

( select
( from object−s t o r e )
(where ( i sParent ? this #$Actor ) )

)
§ ¦

A more complex query to return an ROI consisting of actor, film pairs
can be written as:
¨ ¥

( select
( from object−s t o r e )
( re turn ’ ( ( g e tF i e l d this "from" ) ( g e tF i e l d this "to" ) this ) )
(where ( i sParent ? this #$actedIn ) )

)
§ ¦

The return constraint is a Scheme list of objects derived from the selected
object (this); select will place them in a new subgraph structure and add
the subgraph to the ROI.

Note that the query is written not to select pairs of actor,film), but
rather to select the type of edge that commonly connects actors and films -
actedIn. This simplifies the query by reducing the amount of indirection.

5.17.3 Quantifiers

NetInference can query graph entities based on a number of logical quantifiers
described below:
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Absolute quantifier: return a node ⇐⇒ it exhibits an exact set of edges
as specified in the query.

Example: ”return a subgraph of all actors that acted in
Casablanca”

¨ ¥

( select ( from object−s t o r e )
(where (and ( i sParent ? this #$actedIn )

( equal ? this . to . name "Casablanca" )
( i sParent ? this . from #$Actor ) ) ) )

§ ¦

Existential quantifier: return a node if there exists at least one instance
where the query pattern is satisfied.

Example: ”return all films that have had at least one re-
make”

¨ ¥

( select ( from object−s t o r e )
(where (and ( i sParent ? this #$f i lm )

( exists ( from this . edges )
(where ( i sParent ? this #$remakeOf ) )

) ) ) )
§ ¦

Cardinal quantifier: return a node if the query pattern is satisfied a given
number of times.

Example: ”return all actors who have been in 5 or more
films”

¨ ¥

( select ( from object−s t o r e )
(where (and ( i sParent ? this #$Actor )

(< 5 ( c a r d i n a l i t y ( from this . edges )
( i sParent this . edges . to #$Film ) ) ) ) ) )

§ ¦

5.17.4 Summary

The semantics-based graph querying capabilities allow the user of NetInfer-
ence to find and extract portions of a large graph structure based on a simple
yet powerful query language that takes into account both attributes of in-
dividual objects and structural properties of subgraphs that the objects are
embedded in.

Further, the query mechanism allows for building of generalized queries
that use the object-oriented taxonomy of social network concepts to match
a wide variety of related entities. The ability to create generalizable queries
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based on the semantics of the data sets NetInference apart from labelled
graph-based query systems such as Laurel and QGraph.

However, extraction of exact subgraphs is computationally expensive, and
the main limitation of NetInference’s query mechanism is its lack of facilities
for inexact matching of subgraph structures. A logical first step in allowing
inexact graph matching in NetInference is to allow fuzzy matches within the
conditional statements inside select. It is also possible to define in NetInfer-
ence the notion of fuzzy sets which would allow the search space of the query
system to be pruned through pre-computation of potential matches.

Creating such extensions will not put a significant strain on the system
as NetInference is based upon a complete Scheme interpreter. Thus, exten-
sions can be implemented in a high-level language and dynamically loaded
as needed.

5.18 Implementing Standard SNA Metrics in

NetInference

As I have discussed earlier, the intent of NetInference is not to supplant the
findings, algorithms and metrics of Social Network Analysis, but to build
upon their structure and to add a layer of meaning to the mathematical
constructs of SNA.

In this section, I demonstrate capabilities of NetInference as a tool for
social network analysis through providing definitions and algorithms for com-
puting standard SNA metrics within the NetInference data-space.

An interesting special feature of the NetInference object structure is the
locality of definitions. In general, a node or an edge is defined as an object
with attributes, and a set of attached rules or methods. The upshot of
this property is the fact that methods of an object are unlikely to have
direct access to (or even know of existence of) other objects - unless they
are adjacent to them in graph terms - i.e. if the two objects are connected
with an edge. Thus, global information, even as simple as number of nodes
in the graph, is not available to rules embedded inside a node or edge object.
Furthermore, not all objects in the data-space are necessarily graph objects
— the object system does not restrict mixing an arbitrary number of object
types within the object-store.

Global-level routines that operate on the entire object-store and compute
global metrics can certainly be built. However, doing so violates the design
philosophy of the object system, and specifically the properties of locality and
late binding — and thus should be considered harmful[Dijkstra, 1968]. Keep-
ing the properties of the object system in mind, I shall design a mechanism
for implementation of social network metrics through purely object-oriented
means.
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5.18.1 Robust Graph Handling

In order to instantiate this design, let us return to the basic formalism of a
graph, and redefine it through purely object-oriented means. In section 5.14,
I defined a graph in NetInference as a set of nodes or vertices V connected
by a set of edges E — or objects Node and Edge. Nodes and edges of
each graph represented in NetInference are defined as child objects of these
abstract objects.

A Node object is defined as:

Node =











nodeID : uniqueID

edges : setOf(E ⇒ Edge)

properties, methods and rules : inherited from Object

An Edge is defined as:

Edge =



















edgeID : uniqueID

from : N1⇒ Node

to : N2⇒ Node

properties, methods and rules : inherited from Object

Moreover, I defined a subgraph as A subgraph is defined as

Gsub = vsub ∈ V, esub ∈ E

where vsub and esub are subsets of the vertex and edge sets, respectively.
However, at that point, all elements were in place, but graphs only existed

in an amorphous object-store collection and were recreated through edge
traversals.

The need for graph-level computations dictates the fact that graph han-
dling must be changed at least partially to support the notion of global
calculation. However, assignment of a node to a particular graph need not
be permanent, thus keeping with the spirit of amorphous object storage and
late binding.

A NetInference graph class thus extends the notion of a subgraph as

Graph =



















graphID : uniqueID

nodes : setOf(n⇒ Node)

edges : setOf(e⇒ Edge)

methods : setOf graph− level calculations

and thus is easily implemented as a NetInference abstract object:
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¨ ¥

(defobject "graph"

#:with−a t t r ’ ( ( "graphID" "" ) )
#:with−nodes ’((< l i s t −of−nodes ) )
#:with−edges ’((< l i s t −of−edges ) )
#:with−methods ’((< l i s t −of−methods ) )
)
( setField #$graph "abstract" "true" )

§ ¦

Note that both nodes and edges are represented as references (i.e. point-
ers), thus a particular node or edge can be a part of an arbitrary number
of graphs. This design decision essentially turns Graph into a short-lived
construct that can be created for the purpose of running a set of measures
(e.g. through use of the query mechanism (see sec. 5.17)) and destroyed with
no remorse moments later.

This temporary nature of the graph is a radical shift from the standard
technique, and is a way to preserve properties of late binding and locality
while implementing graph-level computations.

Furthermore, any object that is declared to inherit from graph, will im-
mediately gain access to all of the functionality specified for graphs — thus
any dataset returned by a query function is immediately analyzable.

5.18.2 Centrality Metrics

As I show in this section, it is possible to calculate virtually any graph-based
centrality metric using NetInference graph representation. However, when
nodes and edges are semantically loaded, any action that collapses them into
a single-mode graph needs to be justified in terms of the semantics, lest
further calculations on the resulting graph produce meaningless results.

For example, if the original data-space contains nodes of type person and
knowledge, the data must be filtered to either single-mode person→ person
or knowledge → knowledge graph, or a bi-modal person → knowledge
graph.

Using the query operator (select), a user can extract a subgraph that
satisfies this condition, and then use any standard graph-theoretic measure
to analyze it. In the remainder of this section, I discuss a number of anal-
ysis routines to calculate values of degree and closeness centrality, and a
MetaMatrix measure of cognitive demand.

Degree

The degree of a point is viewed as important as an index of its potential
communication activity Freeman[1979] defines degree centrality as

CD(Pk) =

∑n

i=1 a(pi, pk)

n− 1
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where Pi, Pk are nodes in the graph, n is the number of nodes in the

graph and a(pi, pk) =

{

1 if an edge pi → pk exists

0 otherwise
. A given point, pk

can at most be adjacent to n − 1 other points in a graph. The range of
CD(Pk), therefore, is

0
n−1

= 0 ≤ CD ≤
n−1
n−1

= 1. Furthermore, this figure is
normalized with respect to the number of nodes in the graph, so comparison
of graphs of different sized is possible.

In terms of NetInference, the easiest way to implement degree centrality
is by use of a cardinal quantifier defined in the graph query subsystem
(sec. 5.17:

CD(Pk) =
cardinality(edges(Pk))

cardinality(nodes)− 1
¨ ¥

(defobject "graph"

. . .
#:with−methods ’ (
(defmethod "degree"

( foreach ( let node ( this . nodes ) )
( setField node . f reeman degree
( \ ( c a r d i n a l i t y ( node . edges ) )

(− ( c a r d i n a l i t y ( this . nodes ) ) 1 ) ) ) )
)
) )

§ ¦

This algorithm calculates Freeman degree centrality on nodes of a graph
and assigns the values as an attribute of each node of the graph. While it
calculates correct values of centrality, the assignment of the value as a node
attribute violates the principles of late binding — e.g. values of centrality
will persist with the nodes long after the graph object has been destroyed.

Thus, a slightly different storage mechanism is needed, which will asso-
ciate values of metrics computed on nodes of a graph with these nodes, but
only within the scope of this single graph. A simple solution is to use an
associative table, such as:

Degree Betweenness Closeness
1 0.75 0.1 0.4
2 0.23 0.2 0.314
The table associates values of two keys: nodeID and measureID with

the value — and thus can store results of every per-node calculation done on
the graph inside the graph structure. Degree centrality code modified to use
the associative table looks like this:
¨ ¥

(defobject "graph"

#:with−a t t r ’ ( ( "measures" (make−assoc−t ab l e ) ) )
. . .
#:with−methods ’ (
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(defmethod "degree"

( foreach ( let node ( this . nodes ) )
( set−tab le−c e l l this . measures ( node . nodeID ) "degree"

( \ ( c a r d i n a l i t y ( node . edges ) )
(− ( c a r d i n a l i t y ( this . nodes ) ) 1 ) ) ) )

)
) )

§ ¦

This code preserves the locality and late-binding properties of the graph
structure. Thus, if a particular node is a member of more then one graph, it
can have a distinct centrality value associated with each of the graphs.

While the formula for computing Freeman degree centrality is simple,
this example demonstrates the way a graph-based measure can be calculated,
stored and referred to within NetInference. The next examples will use the
associative-table storage mechanism by default.

Closeness

Closeness centrality was defined by Sabidussi in 1966 [Sabidussi, 1966]. He
proposed that the centrality of a point be measured by summing the geodesic
distances from that point to all other points in the graph. Actually, this is a
measure of inverse centrality since it grows as points are far apart, and cen-
trality in this context means closeness. Mathematically, this can be defined
as following:

If we let d(pi, pk) = the number of edges in the geodesic linking pi and
pk, then Sabidussis measure of the ”farness” of a point pk is

C−1
c (pk) =

n
∑

i=1

d(pi, pk)

C−1
c (pk) grows with increasing distance between pk and other points; it is

an inverse of centrality for point pk.
The algorithm for calculating closeness centrality for point pk is essentially

a breadth-first search of the graph. A full BFS of the graph will compute
the shortest distances from pk to every other node. However, one iteration
of this process is O(n2) in computational complexity, so computation for the
entire graph is O(n3) - which is a very computationally expensive process.

However, a shortcut can be made. LetDj=1..n
i=1..n be a matrix of real numbers,

each cell i, j of the matrix containing the shortest distance between nodes pi
and pj. Then, a full iteration of the BFS will only need to be run once. On
any subsequent iteration, only cells that remained blank on the previous runs
(i.e. corresponding to the edges that did not lie on a shortest path during a
traversal from another starting point) will have to be filled in.

In NetInference, the distance table can be implemented as an associative
table as well, so a more efficient algorithm can be implemented (see listing 5.7.
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Listing 5.7: ”Computing closeness centrality in NetInference
¨ ¥

(defnode "graph"

. . . . .
#:with−a t t r ’ ( ( "distance -table" (make−assoc−t ab l e ) ) )
#:with−method ’ (

; ; BFS procedure t a k e s a
( d e f i n e ( b f s current−node , s t a r t−node )

; ; i t e r a t e through every node t ha t t h i s node i s connected
to
( foreach ( let edge current−node . edges )
; ; I f t h i s edge has not been t r a v e r s ed yet , t r a v e s e i t

and recurse
( i f ( eq ? ( get−tab le−c e l l d i s tance−t ab l e s ta r t−node .

nodeID edge . to . nodeID ) 0 )
( begin

; ; Set the l i n k as t r a v e r s ed ; d i s t ance=1
( set−tab le−c e l l d i s tance−t ab l e current−node . nodeID

edge . to . nodeID 1 )
; ; Distance from s t a r t−node to the next node i s d (

s t a r t , curren t )+1
( set−tab le−c e l l d i s tance−t ab l e s ta r t−node . nodeID

edge . to . nodeID
(+ ( get−tab le−c e l l d i s tance−t ab l e s ta r t−node .

nodeID current−node . nodeID ) 1 ) )
( b f s edge . to , s t a r t−node )

) ) ) )

("closeness -centrality"
( foreach ( let node this . nodes )
( b f s node node ) ; ; run the t r a v e r s a l wi th r e s u l t caching
( foreach ( let node2 this . nodes )

; ; compute the va lue o f c l o s en e s s c e n t r a l i t y and i n s e r t
i t

; ; i n t o the a t t r i b u t e t a b l e
( set−tab le−c e l l this . measures node "closeness -centrality

"

(+ ( get−tab le−c e l l this . measures node . nodeID "

closeness -centrality" )
( get−tab le−c e l l d i s tance−t ab l e node . nodeID node2 .

nodeID ) ) )
)

)
)
)
)

§ ¦
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5.18.3 MetaMatrix Measures: Cognitive Demand

Cognitive demand, described by Carley [Carley and Ren, 2001], measures the
amount of effort each person expends in performing actual tasks using the
knowledge, resource, task and communication networks of the MetaMatrix.

Cognitive demand is a notion similar to the task load measure developed
at NASA [Hart and Staveland, 1988]. It measures the extent to which the
person has to engage in mental activity to do the assigned tasks, defined as:

1. number of people person i interacts with / total number of people in
the group

2. number of tasks person i is assigned to / total number of tasks

3. amount of information person i possesses / total amount of knowledge

Algorithmically, this is very similar to the calculation of degree centrality,
and uses the cardinality operator:
¨ ¥

(defmethod "cognitive_demand"

( foreach ( let node ( this . nodes ) )
( set−tab le−c e l l this . measures ( node . nodeID ) "cognitive -

demand"

(+ (\ ( c a r d i n a l i t y ( node . edges ) (where ( i sParent ? node .
edges . to #$person ) ) )
(− ( c a r d i n a l i t y ( this . nodes ) where ( i sParent ? node

. edges . to #$person ) ) ) 1 )
( \ ( c a r d i n a l i t y ( node . edges ) (where ( i sParent ? node .

edges . to #$task ) ) )
( c a r d i n a l i t y ( this . nodes ) (where ( i sParent ? node .

edges . to #$task ) ) ) )
( \ ( c a r d i n a l i t y ( node . edges ) (where ( i sParent ? node .

edges . to #$knowledge ) ) )
( c a r d i n a l i t y ( this . nodes ) (where ( i sParent ? node .

edges . to #$knowledge ) ) ) )
)

)
)

)
§ ¦

5.19 Reasoning about Terrorist Networks

The following example illustrates use of DyNetML for representing simple
social network datasets. The data in this example is derived from the in-
dictments against perpetrators of a terrorist bombing of the U.S. Embassy
in Tanzania.

I will describe the example — which is a small but semantically dense
dataset — in sections by introducing more complex concepts as they derive
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from simpler concepts. At each step, I will demonstrate how rule resolution
and ontological inference enable NetInference to answer questions that are
not addressable with standard SNA techniques. At the end of this section,
I will list complete source code for the ontology related to the Tanzania
Bombing dataset.

5.19.1 Specifying Task Structures

Let us start by defining the notion of a task. In this ontology, a task is a
node of a precedence graph; precedence relations specify what subtasks need
to be accomplished before a given task can be started. A task occurs at a
point of time and at a location. The notions of logical location and transitive
closure of logical locations are defined in section 5.15.2.
¨ ¥

(defnode "task"

#:with−a t t r ’ ( ( "time" 0 ) ( "location" #$ lo c a t i on ) )
#:with−edges ’ (
("precededBy" #$precededBy )

)
)

; ; This edge d e f i n e s precedence between t a s k s
(defedge "precededBy" #:from #$task #: to #$task
#:with−r u l e s ’ (

; ; This r u l e f o r c e s t a s k s t ha t precede each o ther in
r e l a t i o n s

; ; to a l s o precede each o ther in time .
( defrule "time-precedence" ( i f (> this . from . time this . to .

time ) ( e r r o r ) ) )
)
)

§ ¦

The following example defines a number of distinct tasks from the Em-
bassy Bombing dataset and specifies their precedence relationship.
¨ ¥

(defnode "surveillance" #:as #$task )
(defnode "weapon_training" #:as #$task )
(defnode "driving_training" #:as #$task )
(defnode "bomb_preparation" #:as #$task )
(defnode "bombing" #:as #$task )

(defedge ( genid ) #:as #$precededBy #:from #$bomb preparation #:
to #$weapon tra in ing )

(defedge ( genid ) #:as #$precededBy #:from #$bombing #: to #
$d r i v i n g t r a i n i n g )

(defedge ( genid ) #:as #$precededBy #:from #$bombing #: to #
$bomb preparation )

(defedge ( genid ) #:as #$precededBy #:from #$bombing #: to #
$su r v e i l l a n c e )

§ ¦
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A task is also defined to require knowledge and resources, and accom-
plished by a person:
¨ ¥

; ; These node d e f i n i t i o n s w i l l be e l a bo ra t e d on l a t e r .
(defnode "knowledge" )
(defnode "resource" )
(defnode "person" )

; ; Redef ine t a s k wi th in format ion and resource requirements
(defnode "task"

#:with−a t t r ’ ( ( "time" 0 ) ( "location" #$ lo c a t i on ) )
#:with−edges ’ (
("precededBy" #$precededBy )
("requiresResource" (defedge "requiresResource" #:from #

$task #: to #$re source ) )
("requiresKnowledge" ( defedge "requiresKnowledge" #:from #

$task #: to #$knowledge ) )
("accomplishedBy" ( defedge "accomplishedBy" #:from #$task #:

to #:person )
)
)

§ ¦

A person is a more complex concept to define. Besides demographic in-
formation, a person possesses information and resources and can be involved
in tasks:
¨ ¥

(defnode #$person
#:with−a t t r ’ ( . . . demographic a t t r i b u t e s . . . )
#:with−edges ’ (
("connectedTo" ( de fedege "connectedTo" #:from #$person #:

to #$person ) )
("hasKnowledge" ( defedge "hasKnowledge" #:from #$person #:

to #$knowledge ) )
("hasResource" ( defedge "hasResource" #:from #$person #: to #

$re source ) )
("involvedIn" ( defedge "assignedTo" #:from #$person #: to #

$task ) )
)
)

§ ¦

5.19.2 Edge Derivation

Some of the tasks defined above are described as “training” - e.g. driver training,
weapons training. We can define training as a task where some knowledge
is transferred to a person undertaking the training; another person teaches
at this training session:
¨ ¥

(defnode t r a i n i n g as #$task
#:with−edges ’ (

153



("knowledgeGiven" ( defedge "knowledgeGiven" #:from #
$t r a i n i n g #: to #$knowledge ) )

("taughtBy" ( defedge "taughtBy" #:from #$t r a i n i n g #: to #
$person ) )

("taughtTo" ( defedge "taughtTo" #:from #$t r a i n i n g #: to #
$person ) )

)
#:with rules ’ (

; ; Af ter t a k ing the t ra in ing , the s tuden t w i l l know the
s u b j e c t t augh t

( defrule "knowledgeTransfer"

(defedge ( g e t i d ) #:from this . taughtTo . to #:as hasKnowledge
#: to this . knowledgeGiven . to ) )

; ; Af ter t a k ing t ra in ing , the s tuden t w i l l know the t eacher
and r e s p e c t him

( defrule "respect"

(defedge ( g e t i d ) #:from this . taughtTo . to #:as #$re sp e c t s
#:to this . taughtBy . to ) )

; ; And the t eacher w i l l a s s e r t some au t ho r i t y in regards to
s tuden t

( defrule "authority"

(defedge ( g e t i d ) #:from this . taughtBy . to #:as #
$as s e r t sAutho r i t y #:to this . taughtTo . to ) )

)
)

§ ¦

5.19.3 Question Answering

The ontology defined here is an incomplete, yet functional specification of
an organization engaged in some set of interdependent tasks, complete with
knowledge and resource requirements.

One example of questions that can be answered using the reasoner mech-
anism is a process referred to by military analysts as Capability Assessment.
It can be thought of as a determination whether a particular task is feasible
and can be completed by the organization at hand.

In terms of entities defined so far, a task can be deemed feasible if and
only if: (a) person assigned to the task possesses knowledge and resources
required for the task, and (b) all subtasks of this task are also feasible or
already completed. This can be decomposed into:
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isFeasible(Task) ⇐⇒

∀taski ∈ subtasks(Task) : isFeasible(taski)∧

∀resourcei ∈ requiredResources(Task) : obtainable(resourcei)

obtainable(resourcei) ⇐⇒

∃personi ∈ accomplishedBy(Task) : personihasResourceresourcei

¨ ¥

(defnode "task"

. . . .
( defrule "isFeasible?"

(and
; ; Apply f e a s i b i l i t y r u l e s to a l l o f the su b t a s k s
( foreach this . precededBy ( i s F e a s i b l e ? this . precededBy . to ) )

; ; Apply resource congruence
( foreach
( let r e s this . r equ i r e sRe sou r c e s )
( exists
( from ( let ac to r this . accomplishedBy )
(where ( exists ( from ( let r e s2 ac to r . hasResource ) )
( equal ? r e s2 r e s ) ) ) ) )

)
; ; . . . r epea t f o r knowledge requirements . . .

)
)

§ ¦

At this point, the feasibility analysis does not take into account social
networks between people. Let us use definition of friendship networks in
section 5.16 and conjecture the following rule:

can− obtain(personi, knowledgei) ⇐⇒

∃personj ∈ infoTransfer(personi) : personjhasKnowledgeknowledgei

or, a person can obtain some knowledgei if he is in a relationship that permits
information transfer with another person that has the required knowledge. To
reiterate, the edge type infoTransfer is an whose existence can be derived
from collected friendship and advice networks through use of the reasoner
rules, so collection of simple social network data is actually sufficient to fill
the requirements of the above rules.
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5.20 Example: Inference of Edges in a Ter-

rorist Network

This section illustrates use of NetInference in a number of examples based
on the dataset described in the previous section, and provides a set of in-
struction for usage of the tool to reason about MetaMatrix-based domains.
The example also contains a number of examples of rule derivation.

The dataset for Tanzania Embassy Bombing is listed in section 5.21).
The original dataset contains agents, resources and tasks, as well as edges:

• linking agents to each other (social network),

• agents to resources (resource network),

• agents to tasks (task assignment),

• tasks to resources (requirement network), and

• tasks to tasks (precedence network).

In the intelligence community, human or signal intelligence allows ”Blue
Team” to collect data on the social network (who knows whom) and the
resource network (who has what resources)[Ronfeldt and Arquilla, 2001].
The precedence network and resource requirement network are generally well-
known, as this information can be approximated from analyzing post-factum
information on past terrorist events as well as from available terrorist training
manuals.

The goal of an intelligence analyst would then be to determine if the
terrorist cell or network has current capabilities for execution of attacks,
and if not, how difficult would it be for the cell to obtain these capabilities.
Then, if nodes capable of planning and executing an attack are found, it is
very important to find the individuals behind the potential attack and target
them for arrest or isolation.

The following scenario illustrates use of NetInference in this intelligence
analysis scenario. For the purpose of demonstrating inference and query
capabilities, I have deleted all edges linking agents to tasks. Thus, the goal
of the system is to re-infer this information and determine if the terrorist cell
in question is capable of executing a truck bomb attack.

The rules are set up as follows:

• A task can be decomposed into subtasks using precededBy edges.

• Any task or subtask has resource requirements, given by requiredFor-
Task edges

• Agents have resources; given by hasResource edges.
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• An agent canObtain a resource if he knows somebody that has this
resource

• An agent isCapable of executing a task if and only if the agent has
or canObtain all resources needed for the task and isCapable of
executing all sub-tasks of a task.

After all task assignment edges have been removed from the dataset, the
rules were invoked with a set of queries as specified below. In this dataset,
NetInference is capable of recovering 16 out of 23 task-assignment edges
— re-inferring 88% of task assignments that could be accomplished by one
person, and 69% of all task assignments.

A further enhancement consists of a rule that specifies that an agent
canDelegate a task assignment to another agent if said agent isCapable
of accomplishing the task. With this additional rule, NetInference uncovers
3 out of 5 edges that require group cooperation - i.e. 3 out of 5 people that
participate in planning of a large-scale terrorist attack.
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unix > ./ n e t I n f e r en c e
S ta r t i ng Gui le . . . Done
Loading Net In f e r ence . . . Done

Guile Interpreter and Net-
Inference have been loaded

(defnode "agent" )
(defnode "task" )
(defnode "resource" )

(defedge "knows" #:from #$agent #: to #$agent )
(defedge "hasResource " #:from #$agent #: to #$re sourc e )
(defedge "requiredForTask " #:from #$re sourc e #: to #$task )
(defedge "precededBy" #:from #$task #: to #$task )

Give basic definitions of
nodes and edges (can be also
loaded from file as shown be-
low)

(defedge "canObtainResource " #:from #$agent #: to #$re sourc e )
(defedge "capableOf" #:from #$agent #: to #$task )

These edges are not present
in the data file but will be
inferred in the course of the
demonstration

gu i l e > ( load "metamatrix.scm" )
gu i l e > ( load "data/embassy.scm" )

Load the MetaMatrix defini-
tions and the data file (see
next appendix for full list-
ing)
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; ; ; ; Do a h i e r a r c h i c a l decomposit ion o f a ta sk by f i nd in g

; ; ; ; a l l i t s precedence r e l a t i o n s and recur s ing through them

; ; ; ; u n t i l a l l dependencies are found .

( d e f i n e ( checkPrecedents obj )
( i f ( not ( i sParent ? obj #$task ) )

( e r r o r "argumentÃisÃnotÃaÃtaskÃobject" )
)

( newl ine )
( d i sp l ay "HierarchicalÃdecomposition Ãof" )
( d i sp l ay obj )
( newl ine )

( let ( ( precedence−edges
( select ( g e tF i e l d obj "edges" )

(where ’ ( i sParent ? this #$precededBy ) ) ) ) )
( begin
(map− f i e l d s precedence−edges
( lambda ( obj2 )

( begin
( d i sp l ay obj2 )
( i f ( not ( equal ? ( g e tF i e l d obj2 "to" ) obj ) )

( checkPrecedents ( g e tF i e l d obj2 "to" ) )
#f ) ) )

) ) ) )

gu i l e > ( checkPrecedents #$bombing )

H i e r a r c h i c a l decompos it ion o f #<ob j e c t <bombing edges="" edges "" parent="" task "" />>
#<ob j e c t <246 from=""bombing"" parent=""precededBy"" to="" d r i v i n g t r a i n i n g "" />>

Hi e r a r c h i c a l decompos it ion o f #<ob j e c t <d r i v i n g t r a i n i n g edges="" edges "" parent="" task "" />>
#<ob j e c t <246 from=""bombing"" parent=""precededBy"" to="" d r i v i n g t r a i n i n g "" />>
#f

#<ob j e c t <249 from=""bombing"" parent=""precededBy"" to=""bomb prep"" />>
Hi e r a r c h i c a l decompos it ion o f #<ob j e c t <bomb prep edges="" edges "" parent="" task "" />>
#<ob j e c t <243 from=""bomb prep"" parent=""precededBy"" to=""weapon tra in ing "" />>

Hi e r a r c h i c a l decompos it ion o f #<ob j e c t <weapon tra in ing edges="" edges "" parent="" task "" />>
#f

Do a hierarchical decompo-
sition of a task by finding
out its precedents and re-
cursing through them. This
function also checks for ille-
gal cycles in the precedence
structure.
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( d e f i n e ( hasResource ? agent r e s )
( i f ( not ( i sParent ? agent #$agent ) )

( e r r o r "argumentÃisÃnotÃanÃagent" )
)

( i f ( not ( i sParent ? r e s #$re sourc e ) )
( e r r o r "argumentÃisÃnotÃaÃresource" )
)

( i f ( exists ( edges agent ) ( lambda ( this ) ( equal ? ( g e tF i e l d this "to" ) r e s ) ) )
#t )

)

Find out if an agent has di-
rect access to a resource

( d e f i n e ( canObtainResource ? agent r e s )
( i f ( not ( i sParent ? agent #$agent ) )

( e r r o r "argumentÃisÃnotÃanÃagent" )
)

( i f ( not ( i sParent ? r e s #$re sourc e ) )
( e r r o r "argumentÃisÃnotÃaÃresource" )
)

( i f ( hasResource ? agent r e s ) #t )

( let ( ( f r i end−edges ( select ( edges agent ) (where ’ ( i sParent ? this #$knows ) ) ) ) )
( i f ( exists f r i end−edges
( lambda ( this ) ( hasResource ? ( g e tF i e l d this "to" ) r e s ) ) )

#t # f )
)

)
gu i l e>

An agent can obtain a re-
source if he already has it
- or it he knows somebody
that does.
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( set−r e s o l v e−func #$agent
( lambda ( this )

; ; For each resource , f i nd out i f the agent can ge t i t

(map− f i e l d s ( select object−s t o r e (where ’ ( i sParent ? this #$re sourc e ) ) )
( lambda ( r e s )

( begin
( d i sp l ay r e s )
( i f ( canObtainResource ? this r e s )

( begin
( d i sp l ay "CreatingÃedge" )
(defedge ( edge id ) #:as #$canObtainResource #:from this #: to r e s ) ) ) ) )

)
)

)

Now lets us add a rule to
the ”agent” class to support
inference of ”canObtainRe-
source” edges. Essentially,
the rule says ”for every re-
source that can be obtained
by this agent, add the appro-
priate edge to the system
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gu i l e >( r e s o l v eOb j e c t #$al−Fawwaz)
al−Fawwaz
#<ob j e c t <bomb material edges="" edges "" parent="" r e s ou r c e "" />>
Creat ing edge

#<ob j e c t <bui ld ing for bombmaking edges="" edges "" parent="" r e s ou r c e "" />>
Creat ing edge

#<ob j e c t <media consu l tant edges="" edges "" parent="" r e s ou r c e "" />>
Creat ing edge

#<ob j e c t <money edges="" edges "" parent="" r e s ou r c e "" />>
Creat ing edge

#<ob j e c t <r e l i g i ou s ex t r em i sm edges="" edges "" parent="" r e s ou r c e "" />>
Creat ing edge

gu i l e > ( select object−s t o r e (where ’ ( i sParent ? this #$canObtainResource ) ) )
#<ob j e c t <r e s u l t 5 23 edge492="" edge492"" edge496="" edge496"" edge500="" edge500"" edge504="" edge504"

" edge508="" edge508"" edge512="" edge512"" edge516="" edge516"" edge520="" edge520"" />>

Run resolution on one ob-
ject, then run a query to see
which new edges have been
created; These edges can be
accessed by their IDs from
the object-store or by saving
query results to a variable

gu i l e >( r e s o l v e−a l l )

Now we can run resolution
on all nodes and create all
missing edges of this type
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( d e f i n e ( isCapableOf ? agent task )

; ;

( d i sp l ay "EvaluatingÃCapabilityÃofÃ" )
( d i sp l ay agent )
( d i sp l ay "toÃperformÃ" )
( d i sp l ay task )
( newl ine )

This function will evaluate
an agent and a task and
find out through hierarchical
decomposition whether the
agent in question can accom-
plish the task. The agent is
deemed capable of perform-
ing the task if and only if
all required resources can be
located, and the agent can
also accomplish all subtasks
of the task.

; ; check resource congruency

(and

( begin
( d i sp l ay "CheckingÃResourceÃCongruency ..." )
( let ( ( task−r e s ou r c e s
( select ( edges task ) (where ’ ( i sParent ? this #$r equ i r e s ) ) ) ) )
( a l l t r u e (map− f i e l d s task−r e s ou r c e s

( lambda ( requirement )
( begin

( d i sp l ay ( g e tF i e l d requirement "to" ) )
( newl ine )
( canObtainResource ? agent ( g e tF i e l d requirement "to" ) )
) )

)
) )
)

Check all resource require-
ments of the task and deter-
mine if the task is feasible.
If the resources are not avail-
able and cannot be obtained
from friends, return failure.
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( begin
( d i sp l ay "CheckingÃPrecedences" )
( let ( ( precedence−edges ( select ( edges task ) (where ’ ( i sParent ? this #$precededBy ) ) ) ) )

( a l l t r u e
(map− f i e l d s precedence−edges

( lambda ( obj2 )
( begin

( d i sp l ay obj2 )
; ; check f o r i l l e g a l c y c l e s

( i f ( not ( equal ? ( g e tF i e l d obj2 "to" ) task ) )
( isCapableOf ? agent ( g e tF i e l d obj2 "to" ) )
#f ) ) ) ) ) )

)

)
)

Check all subtasks of a task
and attempt to accomplish
them as well.
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gu i l e >(select object−s t o r e (where ’ (and ( i sParent ? this #$agent ) ( isCapableOf ? this #$bombing ) ) ) )

Query: which agents are ca-
pable of executing a terror-
ist attack This query will
return a list of all agents
that can muster resources
and capabilities to execute
a bombing. The query re-
turns ”false” - no agents are
capable of executing a truck
bomb attack on their own.
Given this scenario, a group
of 3 agents must come to-
gether before an attack is
possible.

gu i l e > (map− f i e l d s ( select object−s t o r e (where ’ ( i sParent ? this #$task ) ) )
( lambda ( task ) ( select object−s t o r e (where ’ (and ( i sParent ? this #$agent ) ( isCapableOf ? this

task ) ) ) ) )

This query will iterate
through all tasks and find
who is capable of executing
it. The query returns a list
of agent-task pairs.

5.21 Tanzania Embassy Bombing Dataset
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(defnode "Mohammed_Rashed_Daoud_al -Owhali" #:as #$agent )
(defnode "Khalfan_Khamis_Mohamed " #:as #$agent )
(defnode "Mohammed_Sadiq_Odeh " #:as #$agent )
(defnode "Ahmed_the_German" #:as #$agent )
(defnode "Fazul_Abdullah_Mohammed " #:as #$agent )
(defnode "Wadih_al_Hage " #:as #$agent )
(defnode "Usama_Bin_Ladin " #:as #$agent )
(defnode "Ali_Mohammed" #:as #$agent )
(defnode "Ahmed_Khalfan_Ghailani " #:as #$agent )
(defnode "Mohammed_Salim" #:as #$agent )
(defnode "al -Fadl" #:as #$agent )
(defnode "al -Fawwaz" #:as #$agent )
(defnode "Jihad_Mohammed_Ali_Azzam " #:as #$agent )
(defnode "abouhalima" #:as #$agent )
(defnode "Abdullah_Ahmed_Abdullah_Saleh " #:as #$agent )
(defnode "Abdal_Rahman" #:as #$agent )

People comprising
the organization

(defnode "surveillance" #:as #$task )
(defnode "weapon_training " #:as #$task )
(defnode "driving_training" #:as #$task )
(defnode "bomb_prep" #:as #$task )
(defnode "bombing" #:as #$task )

Tasks and subtasks
that the organization
attempts to accom-
plish
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(defnode "religious_extremism "#:as #$re sourc e )
(defnode "weapons_expertise "#:as #$re sourc e )
(defnode "surveillance_expertise "#:as #$re sourc e )
(defnode "media_consultant"#:as #$re sourc e )
(defnode "building_for_bombmaking "#:as #$re sourc e )
(defnode "money"#:as #$re sourc e )
(defnode "bomb_material "#:as #$re sourc e )
(defnode "truck"#:as #$re sourc e )

Types of material
and information
resources
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(defedge ( genid ) #:as #$knows #:from #$Mohammed Rashed Daoud al−Owhali #: to #$Usama Bin Ladin )
(defedge ( genid ) #:as #$knows #:from #$Mohammed Rashed Daoud al−Owhali #: to #$Jihad Mohammed Ali Azzam )
(defedge ( genid ) #:as #$knows #:from #$Mohammed Rashed Daoud al−Owhali #: to #

$Abdullah Ahmed Abdullah Saleh )
(defedge ( genid ) #:as #$knows #:from #$Mohammed Rashed Daoud al−Owhali #: to $Abdal Rahman )
(defedge ( genid ) #:as #$knows #:from #$Mohammed Sadiq Odeh #: to #$Wadih al Hage )
(defedge ( genid ) #:as #$knows #:from #$Ahmed the German #: to #$Abdullah Ahmed Abdullah Saleh )
(defedge ( genid ) #:as #$knows #:from #$Fazul Abdullah Mohammed #: to #$Wadih al Hage )
(defedge ( genid ) #:as #$knows #:from #$Fazul Abdullah Mohammed #: to #$Usama Bin Ladin )
(defedge ( genid ) #:as #$knows #:from #$Wadih al Hage #: to #$Mohammed Sadiq Odeh )
(defedge ( genid ) #:as #$knows #:from #$Wadih al Hage #: to #$Fazul Abdullah Mohammed )
(defedge ( genid ) #:as #$knows #:from #$Wadih al Hage #: to #$Usama Bin Ladin )
(defedge ( genid ) #:as #$knows #:from #$Wadih al Hage #: to #$Ali Mohammed)
(defedge ( genid ) #:as #$knows #:from #$Wadih al Hage #: to #$al−Fawwaz)
(defedge ( genid ) #:as #$knows #:from #$Wadih al Hage #: to #$abouhalima )
(defedge ( genid ) #:as #$knows #:from #$Usama Bin Ladin #: to #$Mohammed Rashed Daoud al−Owhali )
(defedge ( genid ) #:as #$knows #:from #$Usama Bin Ladin #: to #$Fazul Abdullah Mohammed )
(defedge ( genid ) #:as #$knows #:from #$Usama Bin Ladin #: to #$Wadih al Hage )
(defedge ( genid ) #:as #$knows #:from #$Usama Bin Ladin #: to #$Ali Mohammed)
(defedge ( genid ) #:as #$knows #:from #$Usama Bin Ladin #: to #$al−Fawwaz)
(defedge ( genid ) #:as #$knows #:from #$Ali Mohammed #: to #$Wadih al Hage )
(defedge ( genid ) #:as #$knows #:from #$Ali Mohammed #: to #$Usama Bin Ladin )
(defedge ( genid ) #:as #$knows #:from #$al−Fawwaz #: to #$Wadih al Hage )
(defedge ( genid ) #:as #$knows #:from #$al−Fawwaz #: to #$Usama Bin Ladin )
(defedge ( genid ) #:as #$knows #:from #$Jihad Mohammed Ali Azzam #: to #$Mohammed Rashed Daoud al−Owhali )
(defedge ( genid ) #:as #$knows #:from #$abouhalima #: to #$Wadih al Hage )
(defedge ( genid ) #:as #$knows #:from #$Abdullah Ahmed Abdullah Saleh #: to #$Mohammed Rashed Daoud al−

Owhali )
(defedge ( genid ) #:as #$knows #:from #$Abdullah Ahmed Abdullah Saleh #: to #$Mohammed Sadiq Odeh )
(defedge ( genid ) #:as #$knows #:from #$Abdullah Ahmed Abdullah Saleh #: to #$Abdal Rahman )
(defedge ( genid ) #:as #$knows #:from #$Abdal Rahman #: to #$Mohammed Rashed Daoud al−Owhali )
(defedge ( genid ) #:as #$knows #:from #$Abdal Rahman #: to #$Abdullah Ahmed Abdullah Saleh )

Who knows whom?
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(defedge ( genid ) #:as #$hasResource #:from #$Mohammed Rashed Daoud al−Owhali #: to #$re l i g i ou s ex t r em i sm )
(defedge ( genid ) #:as #$hasResource #:from #$Mohammed Rashed Daoud al−Owhali #: to #$weapons exper t i s e )
(defedge ( genid ) #:as #$hasResource #:from #$Mohammed Rashed Daoud al−Owhali #: to #

$ s u r v e i l l a n c e e x p e r t i s e )
(defedge ( genid ) #:as #$hasResource #:from #$Khalfan Khamis Mohamed #: to #$weapons exper t i s e )
(defedge ( genid ) #:as #$hasResource #:from #$Khalfan Khamis Mohamed #: to # $ s u r v e i l l a n c e e x p e r t i s e )
(defedge ( genid ) #:as #$hasResource #:from #$Khalfan Khamis Mohamed #: to #$bui ld ing for bombmaking )
(defedge ( genid ) #:as #$hasResource #:from #$Mohammed Sadiq Odeh #: to #$re l i g i ou s ex t r em i sm )
(defedge ( genid ) #:as #$hasResource #:from #$Mohammed Sadiq Odeh #: to #$weapons exper t i s e )
(defedge ( genid ) #:as #$hasResource #:from #$Mohammed Sadiq Odeh #: to # $ s u r v e i l l a n c e e x p e r t i s e )
(defedge ( genid ) #:as #$hasResource #:from #$Mohammed Sadiq Odeh #: to #$bui ld ing for bombmaking )
(defedge ( genid ) #:as #$hasResource #:from #$Fazul Abdullah Mohammed #: to #$re l i g i ou s ex t r em i sm )
(defedge ( genid ) #:as #$hasResource #:from #$Fazul Abdullah Mohammed #: to #$weapons exper t i s e )
(defedge ( genid ) #:as #$hasResource #:from #$Fazul Abdullah Mohammed #: to # $ s u r v e i l l a n c e e x p e r t i s e )
(defedge ( genid ) #:as #$hasResource #:from #$Fazul Abdullah Mohammed #: to #$bui ld ing for bombmaking )
(defedge ( genid ) #:as #$hasResource #:from #$Fazul Abdullah Mohammed #: to #$bomb material )
(defedge ( genid ) #:as #$hasResource #:from #$Wadih al Hage #: to #$re l i g i ou s ex t r em i sm )
(defedge ( genid ) #:as $hasResource #:from #$Wadih al Hage #: to #$weapons exper t i s e )
(defedge ( genid ) #:as #$hasResource #:from #$Wadih al Hage #: to #$bomb material )
(defedge ( genid ) #:as #$hasResource #:from #$Usama Bin Ladin #: to #$media consu l tant )
(defedge ( genid ) #:as #$hasResource #:from #$Usama Bin Ladin #: to #$money )
(defedge ( genid ) #:as #$hasResource #:from #$Ali Mohammed #: to #$re l i g i ou s ex t r em i sm )
(defedge ( genid ) #:as #$hasResource #:from #$Ali Mohammed #: to # $ s u r v e i l l a n c e e x p e r t i s e )
(defedge ( genid ) #:as #$hasResource #:from #$Ahmed Khalfan Ghailani #: to #$bui ld ing for bombmaking )
(defedge ( genid ) #:as #$hasResource #:from #$Ahmed Khalfan Ghailani #: to #$truck )
(defedge ( genid ) #:as #$hasResource #:from #$Mohammed Salim #: to #$re l i g i ou s ex t r em i sm )
(defedge ( genid ) #:as #$hasResource #:from #$Mohammed Salim #: to #$weapons exper t i s e )
(defedge ( genid ) #:as #$hasResource #:from #$Mohammed Salim #: to #$money )
(defedge ( genid ) #:as #$hasResource #:from #$al−Fadl #: to #$re l i g i ou s ex t r em i sm )
(defedge ( genid ) #:as #$hasResource #:from #$al−Fadl #: to #$weapons exper t i s e )
(defedge ( genid ) #:as #$hasResource #:from #$al−Fawwaz #: to #$media consu l tant )
(defedge ( genid ) #:as #$hasResource #:from #$Jihad Mohammed Ali Azzam #: to #$re l i g i ou s ex t r em i sm )
(defedge ( genid ) #:as #$hasResource #:from #$Jihad Mohammed Ali Azzam #: to #$weapons exper t i s e )
(defedge ( genid ) #:as #$hasResource #:from #$Abdullah Ahmed Abdullah Saleh #: to # $ s u r v e i l l a n c e e x p e r t i s e )
(defedge ( genid ) #:as #$hasResource #:from #$Abdullah Ahmed Abdullah Saleh #: to #$bui ld ing for bombmaking

)
(defedge ( genid ) #:as #$hasResource #:from #$Abdullah Ahmed Abdullah Saleh #: to #$bomb material )
(defedge ( genid ) #:as #$hasResource #:from #$Abdullah Ahmed Abdullah Saleh #: to #$truck )
(defedge ( genid ) #:as #$hasResource #:from #$Abdal Rahman #: to #$bomb material )

Who has access to
materials and infor-
mation?
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(defedge ( genid ) #:as #$r equ i r e s #:from #$weapon tra in ing #: to #$weapons exper t i s e )
(defedge ( genid ) #:as #$r equ i r e s #:from # $d r i v i n g t r a i n i n g #: to #$weapons exper t i s e )
(defedge ( genid ) #:as #$r equ i r e s #:from #$bomb prep #: to #$weapons exper t i s e )
(defedge ( genid ) #:as #$r equ i r e s #:from #$bomb prep #: to #$bomb material )
(defedge ( genid ) #:as #$r equ i r e s #:from #$bombing #: to #$re l i g i ou s ex t r em i sm )
(defedge ( genid ) #:as #$r equ i r e s #:from #$bombing #: to #$weapons exper t i s e )

Material and infor-
mation requirements
for subtasks

(defedge ( genid ) #:as #$precededBy #:from #$bomb prep #: to #$weapon tra in ing )
(defedge ( genid ) #:as #$precededBy #:from #$bombing #: to # $d r i v i n g t r a i n i n g )
(defedge ( genid ) #:as #$precededBy #:from #$bombing #: to #$bomb prep )

Precedence relations
between the main
task (bombing) and
its subtasks
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5.22 Getting Started with NetInference - Step

by Step

At this stage of development, NetInference does not have a graphical inter-
face; all interactions with the system are done via a command shell. While
command a command shell is not as user friendly, it affords immediate access
to all functionality of NetInference. Further, it diminishes system require-
ments for supporting NetInference. Currently, NetInference can be used on
any system that supports the GNU compiler suite (i.e. GCC, G++, libtool,
etc).

The command shell is started by typing in the terminal:
¨ ¥

unix > ./ n e t I n f e r en c e
S ta r t i ng Gui le . . . Done
Loading Net In f e r ence . . . Done
gu i l e>

§ ¦

The guile> prompt is the main interface to the system; any NetInference
or SCHEME commands can be given at this moment.

For the purpose of this example, let us walk through working with Meta-
Matrix data and enhancing the ontology and the dataset given in the previous
set of examples. First, load the MetaMatrix ontology:
¨ ¥

gu i l e > ( load "metamatrix.scm" )
§ ¦

As the previous example stated, the ontology defines the following cate-
gories of nodes and edges:
¨ ¥

(defnode "agent" )
(defnode "task" )
(defnode "resource" )

(defedge "knows" #:from #$agent #: to #$agent )
(defedge "hasResource" #:from #$agent #: to #$re source )
(defedge "requiredForTask" #:from #$re source #: to #$task )
(defedge "precededBy" #:from #$task #: to #$task )

§ ¦

However, the dataset has a number of nodes that my be treated differently
for purposes of inferencing:
¨ ¥

(defnode "driver_expertise" #:as #$re source )
(defnode "weapons_expertise" #:as #$re source )

§ ¦

These nodes, while classified as resource actually describe knowledge
or information resources. The difference between information resources and
physical resources is the fact that information can be copied, or passed from
person to person. In fact, the dataset also includes specification for tasks
specialized in procurement of knowledge - or training:
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¨ ¥

(defnode "weapon_training" #:as #$task )
(defnode "driving_training" #:as #$task )

§ ¦

In this example, the ontology will be enhanced to allow inference on the
notions of knowledge and training.

First, let us define knowledge as a special kind of resource, having knowl-
edge as a special case of having a resource, and change the parent class of
driver expertise and weapons expertise.
¨ ¥

gu i l e > (defnode "knowledge" #:as #$re source )
gu i l e > (defedge "hasKnowledge" #:as #$hasResource )
gu i l e > ( setField #$d r i v e r e x p e r t i s e "parent" #$knowledge )
gu i l e > ( setField #$weapons exper t i s e "parent" #$knowledge )

§ ¦

Then, let us define the notion of training: Training is a task that adds
knowledge to its participants. To do this, several other notions have to be
defined as well:
¨ ¥

gu i l e > (defnode "training" #:as #$task )
gu i l e > (defnode "weapon_training" #:as #$t r a i n i n g )
gu i l e > (defnode "driving_training" #:as #$t r a i n i n g )

gu i l e > (defedge "participatedIn" #:from #$person #: to #$task )
gu i l e > (defedge "subjectTaught" #:from #$t r a i n i n g #: to #

$knowledge )
§ ¦

Then, the following rule can be defined: Every student that participates
in a training session learns the subject taught:
¨ ¥

gu i l e > (addRule #$t r a i n i n g
( lambda ( t r a i n i n g )

; ; For every agent l i n k e d to a t r a i n i n g event
( mapFields ( select ( edges t r a i n i n g ) (where ’ ( i sParent ? this .

to #$agent ) ) )
; ; ;
( lambda ( student )

; ; add an edge from the s tuden t to the knowledge be ing
taugh t

(defedge #:as #$hasKnowledge #:from student
#:to ( select ( edges t r a i n i n g ) (where ’ ( i sParent ?

this #$subjectTaught ) ) ) ) ) ) ) )
§ ¦

The most mysterious to an outside user concept in above code is the
notion of lambda functions. Essentially, a lambda is a temporary function
that behaves like any SCHEME function but does not have a name. Lambda-
functions can be passed to other functions as arguments and stored inside
data structures, as well as inside NetInference objects. The first use of a
lambda-function in this code is to frame the rule as an executable object and
pass it to to the rule resolution mechanism of the object.
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The second use is in the mapFields function iterates over results of a
query, and applies a lambda function to them, in this case creating edges for
every iteration.

This rule is now a part of definition of training class, and will be applied
to all people involved in a training session at the next iteration of the rule
resolution algorithm. However, one more step of preparation is required
before this enhancement is fully functional.

The original MetaMatrix ontology did not formally link training events
with knowledge concepts defined in the dataset; these are merely represented
as textual features of the node labels. The formal links need to be defined
by creating several edges:
¨ ¥

gu i l e > (defedge #:as #$subjectTaught #:from #$weapon tra in ing
#: to #$weapons exper t i s e )

gu i l e > (defedge #:as #$subjectTaught #:from #$d r i v i n g t r a i n i n g
#: to #$d r i v i n g e xp e r t i s e )

§ ¦

Now the ontology enhancement is ready to be applied. Let us observe its
application on the following nodes and edges:
¨ ¥

(defnode "Khalfan_Khamis_Mohamed" #:as #$agent )
(defnode "Mohammed_Sadiq_Odeh" #:as #$agent )

(defedge #:as #$pa r t i c i p a t ed In #:from #$Khalfan Khamis Mohamed
#: to #$weapon tra in ing )

(defedge #:as #$pa r t i c i p a t ed In #:from #$Mohammed Sadiq Odeh #:
to #$weapon tra in ing )

§ ¦

Then, run one iteration of rule resolution by typing:
¨ ¥

gu i l e > ( r e so l v e−a l l )
§ ¦

The following edges will be created for two agents described above:
¨ ¥

(defedge #:as hasKnowledge #:from #$Khalfan Khamis Mohamed #:
to #$weapons exper t i s e )

(defedge #:as hasKnowledge #:from #$Mohammed Sadiq Odeh #: to #
$weapons exper t i s e )

§ ¦

This exercise provides a basic walk-through for adding a semantic concept
to an ontology and using the resolver to apply this concept to an existing
dataset with minimal manual intervention. It makes use of many capabilities
of NetInference, including object-oriented architecture, query system and rule
resolution algorithm.
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5.23 Inferencing Capabilities for the Meta-

Matrix

Sections 5.19, 5.20 and 5.22 detail portions of a larger ontology that builds
a qualitative machine understanding of MetaMatrix structures and datasets.
This ontology includes rules for inferring:

• Social network ties achieved through completion of tasks: for example,
if two people attend the same training, one can infer that they know
each other;

• Knowledge ties: knowledge can be communicated by acquaintances or
through training;

• Resource ties: resources can be obtained through acquaintances and
social ties;

• Task completion: ability to achieve an objective given a current state
of the network.

The ontology, as it stands now, depends heavily on nodes and edges that
comprise the tactical model of the task: the task precedence network, and
knowledge and resource requirements for every task. This is due to the fact
that inference rules for other networks depend on the tactical model data to
stay constant throughout the reasoning process.

To test inferential performance of the MetaMatrix ontology, I have re-
moved sets of edges from the Embassy Bombing dataset and allowed Net-
Inference to re-infer them based on the rules of the ontology. The measure-
ment was conducted as follows: after removing of a set of edges, one round
of rule resolution was run, and number of re-inferred edges counted, as well
as number of edges that were inferred by the ontology but were not a part of
the original dataset. During the tests, only edges of one type were removed,
other edge types were kept as constant.

The edge inferences for resource network include edges inferred as canOb-
tainResource and knowledge network includes edges inferred during par-
ticipation in training.

The ontology performed as follows:
The capability of NetInference to re-infer removed edges degrades with

removal of social network edges and resources edges, as these edges are used
as basic building blocks for reasoning about tasks and capabilities. In the
dataset described in section 5.21, knowledge and resource information was
confounded into a single set of edges. However, using participation in training
as a guideline, NetInference was able to uncover 6 edges related to knowl-
edge acquisition. Meanwhile, if all data on task capability was removed, the
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Original Dropped Re-Inferred New Inferences
Social Network 29 5 3 8

10 6 3
15 7 2

Resource Network 36 5 2 10
10 2 6
15 0 4

Knowledge Network 0 0 0 6
Task Capablity 23 23 16 2
(single agent)
Task Capability 5 5 3 1
(group)

ontology would enable recovery of 88% of tasks that could be accomplished
by a single agent.

5.24 Scalability and Computational Complex-

ity

NetInference is designed to be scalable, even though it frequently operates
on complex domain data.

Object-based inference (e.g. inferring transitive closure and similar con-
cepts) has a computational complexity proportional to the depth of the ob-
ject hierarchy, or close to < O(log(n)) where n is the number of objects in
the object-store. Through load-testing, inference in an artificially created
hierarchy 100,000 levels deep has taken ≈ 40 seconds.

The rule resolution algorithm operates by activating rules attached to a
node, and then following edges of the node to its neighbors. Thus, computa-
tional complexity of the rule resolution algorithm is on the order of number
of nodes plus number edges of the graph, or O(n + n2) where n is num-
ber of nodes. However, the real complexity of rule resolution depends on
the semantic interdependence of nodes and concepts. If the interdependence
factor is small, the propagation of change through the network will stop at
the immediate neighbors of the starting node; if the concepts are highly in-
terdependent, there is a possibility of oscillation which would cause the rule
resolution algorithm to not converge. The case of non-convergence is handled
by breaking up rule resolution into discrete iterations.

The query mechanism operates by matching a declarative model to the
nodes and edges in the object-store. The worst-case computational complex-
ity of queries is O(n ∗ k) where n is the number of objects in the object-store
and k is the size of the model. However, if the declarative models specify not
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only the shape of sought subgraph, but also its semantics, the query mecha-
nism prunes the dataset very quickly. As the model gets more semantically
specific, the average-case complexity of queries will approach O(n).

Measured and projected timings on the inference engine can be found in
figure 5.7. The timings were obtained by running the inference engine on
randomly generated structures with different interdependence levels. The
interdependence level is generated as density of isA edges, and is an Erdös
random graph structure.

It is difficult to conduct full scalability tests on model matching due to
the fact that generation of realistic declarative models for load-testing is
a non-trivial problem. Most likely, such models will have to be generated
using evolutionary programming techniques, and thus constitute a separate
research project beyond the scope of this dissertation.

5.25 Linking NetInference and NetWatch through

DyNetML

NetInference allows the user to infer existence of nodes and edges not present
in the original data but implied by the domain model and rule-set. Similarly,
NetWatch can be viewed as a means of inferring evolution of an organiza-
tional network, through the means of agent-based simulation. Given the
complimentary nature of the two tools, it is useful to provide a means for
their interoperation.

The two tools can coexist and exchange data by means of DyNetML,
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which I have designed and implemented specifically to facilitate data inter-
change between various social network analysis and simulation tools. DyNetML
is described in detail in chapter 8. In this section, I discuss the means of con-
version of DyNetML files (e.g. ones produced by NetWatch) for use with
NetInference, and conversion of NetInference data for use with NetWatch.

The main difficulty in round-trip conversion is the fact that NetWatch
(and DyNetML) rely on a flat type system, and NetInference is object-
oriented and thus implements a hierarchical type derivation system. The
typesystem employed by NetInference provides a considerably richer means
of description of nodes and edges in complex organizational systems, but it
should also interoperate with simpler representations.

Fortunately, the NetInference query mechanism provides a simple means
for ”flattening” of the object hierarchy. Thus, information can be output in
a DyNetML format through a simple mechanism:
¨ ¥

( d e f i n e people ( select ( from object−s t o r e ) (where ( i sParent ?
this "person" ) ) ) )

( d e f i n e knowledge ( select ( from object−s t o r e ) (where ( i sParent
? this

"knowledge" ) ) ) )
( d e f i n e ta sk s ( select ( from object−s t o r e ) (where ( i sParent ?

this

"task" ) ) ) )
( d e f i n e r e s ou r c e s ( select ( from object−s t o r e ) (where ( i sParent

? this

"resource" ) ) ) )
( d e f i n e o r gan i z a t i on s ( select ( from object−s t o r e ) (where (

i sParent ?
this "organization" ) ) ) )

( write−dynetml people knowledge r e s ou r c e s ta sk s o r gan i z a t i on s )
§ ¦

In the resultant DyNetML files, the class hierarchy will be preserved
through the Properties mechanism (described in detail in section 8.7). The
name of the parent object is output in DyNetML as a property of the node
named ”parent”. The parent object is similarly output as DyNetML, continu-
ing up the hierarchy until encountering a basic parent object (e.g. ”person”).
In this example, we have output a node of type media− consultant which is
derived from employee, and in turn, from person:
¨ ¥

<node id="media-consultant">
<prope r t i e s>
<property name="parent" type="string" value="employee"/>

</p rope r t i e s>
</node>

<node id="employee">
<prope r t i e s>
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<property name="parent" type="string" value="person"/>
</p rope r t i e s>

</node>
§ ¦

DyNetML input operates on similar principle. If the DyNetML node con-
tains a ”parent” property, the imported node will be interpreted as derived
from the stated parent-node:
¨ ¥

<node id="media-consultant">
<prope r t i e s>
<property name="parent" type="string" value="employee"/>

</p rope r t i e s>
</node>

i s i n t e r p r e t ed as :

(defnode "media-consultant" #:as #$employee
#:with−a t t r . . . the r e s t o f node p r op e r t i e s . . .
)

; i f "employee" has not been de f ined yet , a p l a c eho lde r node
w i l l be c r ea ted

(defnode "employee" #:as #$person )
§ ¦

Using the DyNetML conversion, NetInference can generate input files for
NetWatch, or read in and interpret NetWatch output files.

5.26 Conclusions and Future Work

The goals of NetInference are two-fold: provide a consistent means for speci-
fying semantics of nodes and edges in a multi-plex, multi-mode network, and
provide a means for inference on entities in the semantic structure.

NetInference accomplished these goals by defining a consistent language
where semantics of nodes and edges can be specified through object-oriented
mechanisms of encapsulation and inheritance. A number of provisions for
specifying inference rules, such as a existential, universal and cardinal quan-
tifiers, allow for quick implementation of complex relationships between peo-
ple, organizations or other entities. A graph query system makes use of the
quantifiers and rule resolution to quickly query graphs and extract subgraphs
and regions of interest that can be used for further exploration of the network
data space.

NetInference does not provide ready-made ontologies for reasoning about
any type of data that could be encountered. Creation of such comprehensive
ontologies is a time- and resource-consuming proposition. One of the chief
limitations of NetInference is that any dataset encoded in it would require
development of its corresponding ontology. However, this also means that the
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ontologies do not have to be comprehensive and a minimal set of rules and
assertions may be sufficient for datasets that do not exhibit high ontological
variability.

Future work on NetInference will be conducted in a several directions:

Fuzzy subgraphs and probabilistic edges At this point, NetInference
facilities do not expressly forbid but also do not facilitate implementation of
probabilistic edges. While edge objects can be assigned a probability value,
the rule resolution and graph query systems do not take probabilities into
account.

After changes to the rule resolution system are made, the existence of
probabilistic edges will allow Bayesian inferences on social network graphs.

With addition of probabilistic rules to the graph query system, it be-
comes possible to specify fuzzy rules for matching subgraphs - which is more
powerful and significantly more efficient way to query graph data.

Network model fitting The goal of this extension of NetInference is,
given a network and set of graph models (defined as sets of objects and rules),
to determine which of the given models best fits the network in question.
Drawing from work on computer vision and object recognition, I will develop
distance metrics that measure similarity between areas in the subject network
and models. The purpose of model fitting is, to given a number of theoretical
assumptions, determine which fit the empirical data and which are more
applicable as a description of the empirical network.

Evolution of network models Treating all a set of rules as a search
space, my goal is to create an evolutionary-programming solution that will
automatically develop descriptive models of empirical data. These rule-sets
can be then used to find other networks that exhibit similar properties - or
be used as an input to a natural language generation system that will create
verbal descriptions of these networks based on the inferred rules.
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Part III

Generation, Warehousing,
Manipulation and Interchange
of Large-Scale Social Structure

Datasets
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Chapter 6

Generation of Network Topologies for
Simulation Experiments

Testing large-scale dynamic network simulation packages such as NetWatch
requires a large quantity of test data to be available for each of the exper-
iments. The test data includes initial topologies of agents’ social networks
and specification of knowledge networks for each of the agents to fit an empir-
ically derived distribution of knowledge. Another task is creation of realistic
task structures that could be used to simulate performance of complex inter-
dependent projects by groups of agents.

The main concern in generation of artificial data is its realism. Based
on open-source empirical data (such as described in sec. 2.3), the artificial
datasets need to approximate certain qualities or parameters found in the
empirical data. However, it is unclear at the outset what parameters need
to be emulated to achieve highest fidelity simulation.

Frequently, theories of network topologies in a particular setting are pro-
posed. For example, large amount of social network research relies on as-
sumptions made by Erdös [Erdös and Rényi, 1960] regarding topology and
distances in random graphs. However, it is now clear that purely random
graphs are not a good approximation of topology of social networks. Other
proposed topologies include scale-free networks[Barabasi, 2002] and small
world networks[Watts and Strogatz, 1998].

While none of these theories has emerged as a clear winner and new ideas
of network topologies in large-scale social networks are frequently published,
it is important to make simulation tools independent of the models and theo-
ries of initial network topology. Furthermore, a simulation tool that is proven
and validated through docking and comparison with empirical results can be
used as a means to test validity of multiple theories of network topology - or
test its own assumptions against all possible networks.

Testing the software on machine-generated data, as opposed to empirical
data only, allows the user to conduct repeatable tests that stress certain
aspects of the software and help in debugging and optimization of software
performance.
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Figure 6.1: A Uniform Random Network

6.0.1 Generating Person-to-Person Networks

Uniform Random Graphs

The study of random graphs dates back to the work of Erdös and Rényi
whose seminal papers[Erdös and Rényi, 1960][Erdös and Rényi, 1961] laid
the foundation for the theory of random graphs.

There are three standard models for uniform random graphs[Alon and
Spencer, 1992]. Each has two parameters. One parameter controls the num-
ber of nodes in the graph and one controls the density, or number of edges.

For example, the random graph model G(n, e) assigns uniform probability
to all graphs with n nodes and e edges while in the random graph model
G(n, p) each edge is chosen with probability p.

Scale-Free Networks

One of the most interesting features of a large class of the complex networks
under study now is their scale-free behavior: each node of the network is
connected to some other k nodes. The number of connections obeys a power-
law distribution, i.e. P (k) ∼ kγ , 2 ≤ γ ≤ 3 for most networks considered.

Such networks are dubbed ”scale-free” because the fluctuations of the
distribution around the average value k are infinite (they do not possess
any particular scale). The difference between a scale-free network and a
random network (where every link between different nodes is present with a
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Figure 6.2: Distribution of centralities in a uniform random network:
(a)Degree, (b)Closeness, (c)Betweenness, and (d)Eigenvector

probability p, resulting in a Poisson degree distribution) hints towards some
mechanisms that generated the observed network features. One of the most
celebrated models that explains the emergence of scale-free networks is the
Barabasi- Albert (BA) model[Barabási and Albert, 1999].

According to the BA model, the two essential ingredients for the forma-
tion of scale-free networks are growth and preferential attachment. Growth
implies that new nodes are added to the network over time at a more or
less constant rate. Preferential attachment means that a newly added node
connects preferentially to nodes that already have a high degree: a new node
tries to attach to authoritative nodes and the degree of a node is an effective
representation of its authoritativeness. It has been shown that, if the proba-
bility to connect to a site is linearly proportional to its degree, then growth
and preferential attachment indeed generate scale-free networks[Krapivsky,
Redner, and Leyvraz, 2000].

Cellular Networks

The above-mentioned algorithms for generating simulated organizational data
can be summarized as creating an approximation of real social phenomena
(i.e., organizational structure) by means of an analytically solvable function
or a statistical mechanism.

Below we present an alternative approach, which relies on the observa-
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Figure 6.3: A Scale-Free Network generated by preferential attachment
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tions of organizational structure of extant covert networks via creation of a
network profile.

We define a generative network profile as a collection of observations
and measurements that, when taken together, can be used as a generative
function for creating networks similar to ones observed in the real world.

The method of generating simulated organizational structures from pro-
files should be generalizable to many different types of organizations. How-
ever, for every type of organization the components of a generative profile
would be different.

In this section we present a generative profile of a cellular covert network
based on the publicly available dataset on September 11th hijackers[Krebs,
2001].

Based on publicly available data collected by Krebs[Krebs, 2001], the
following profile of the structure of covert networks has been derived [Carley,
Lee, and Krackhardt, 2002]:

• The network consists of small cells (mean cell size of 6 members) with
very low interconnection between cells.

• Internally, the cells exhibit dense communication patterns.

• There is a very low probability of two individuals communicating by
chance (0.007).

• The probability of triad closure (link from x to y being more likely if
both x and y are linked to third party z) is 0.181.

• Senior members of each of the cells are often also parts of other cells
and interact with other senior members on the network.

• Cell leaders are more knowledgeable than other members.

• Cell members share an ideological doctrine but also specialized knowl-
edge (i.e. bombmakers, drivers, operatives).

• Cells use information technologies and electronic communication.

The aforementioned parameters form a statistical profile from which we
can generate simulated organizational networks. The plot on figure 6.5 shows
a covert network generated using parameters specified above.

The algorithm for generating a network based on the above profile is
represented in listing 6.1
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Listing 6.1: ”Generating Cellular Networks”
¨ ¥

//Generate Ce l l s
CREATE c e l l s with
c e l l s i z e ( )=normally d i s t r i b u t e d random va r i ab l e

(mean=average c e l l s i z e , s td . dev = 0.17∗mean) ;

//Assign agents to c e l l s
FOR a l l agents DO
c u r r e n t c e l l=random c e l l
IF c u r r e n t c e l l i s not f u l l THEN
a s s i gn an agent to c u r r e n t c e l l

ELSE pick a new c e l l ; repeat this operat i on .
END IF

END FOR

// F i l l in connec t i ons i n s i d e c e l l s
FOR a l l c e l l s DO
PICK a random agent i n s i d e the c e l l to s e rve as a l e ade r

// In t e rna l l y , generate a uniform network
FOR a l l agents i n s i d e the c e l l DO
generate l i n k s with in c e l l with the g iven dens i ty

END FOR

//Bring the p r obab i l i t y o f t r i a d c l o s u r e in l i n e with the
measurements

IF p r obab i l i t y o f t r i a d c l o s u r e s i g n i f i c a n t l y l e s s then

measured value
Add a smal l random number o f edges ; repeat the measurements
ELSE

Drop a smal l random number o f edges ; repeat the measurements
END IF

END FOR

FOR a l l c e l l l e a d e r s picked in prev ious s tep
Generate l i n k s among c e l l l e a d e r s to produce r equ i r ed in t e r−

c e l l dens i ty
END FOR
§ ¦
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Figure 6.5: Red Team: A Cellular Covert Network

6.0.2 Generalization and Optimization of Network Pro-
files

At this point, the choice of profile components lies in the hands of the re-
searcher and creation of a profile is a manual task. However, creation of such
profiles can be represented as an optimization problem.

Ideally, this profile should form a generative model with the following
properties[Chakrabarti, Zhan, and Faloutsos, 2004]:

• Parsimony: It would have a small number of parameters;

• Realism: It would generate graphs that match the properties of real
graphs (degree exponents, diameters, etc.) with the appropriate valued
of its parameters;

• Generation Speed: It would generate graphs in linear time on number
of nodes and edges.

Creation of general-purpose generative profiles can be done with using
the following assumptions:

• Let the network consist of a finite number of layered groupings. For ex-
ample, a corporate network may be viewed as a collection of (a)people,
(b) workgroups, (c)departments, (d)divisions, and (e)an entire corpora-
tion - resulting in a 5 levels of groupings.

• Assume that groupings at each of the levels (e.g. departments) connect
to each other with a network structure that can be expressed with a
generative function (unform, scale-free, etc).

A generalized algorithm for generation of complex organization network
can be described as a traversal of the hierarchy of layered groupings from
most specific to most general while applying a generative function for each
of the layers to generate edges at the given layer.
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(b)Closeness, (c)Betweenness, and (d)Eigenvector

Thus, generation of a complex network can be parameterized with a pro-
file consisting of (a)number of layers , (b)size of groupings at each layer, and
(c)a simple generative function for each layer.

Given that number of simple generative functions is finite such parametriza-
tion can be then viewed as an optimization problem, defined as traversal of
a state-space of generative profiles and evaluating the fit of each generative
profile to a population of known networks.

6.0.3 Generating Knowledge Networks

Knowledge is represented in the MetaMatrix as a set of nodes, with each
representing facts or groups of facts. Knowledge that an agent possesses is
referred to as an edge between an Agent node and a Knowledge; knowledge
that is required to accomplish an primitive task is represented as an edge
between Task and Knowledge nodes; etc.

Based on data available on structure of terrorist training[Carley, Lee, and
Krackhardt, 2002], NetWatch generates agent-knowledge networks using a
profile of the knowledge network of a cellular organization.

The knowledge that the agents possess is divided into a three main cat-
egories. These categories encompass (a) general doctrine and ideology of
the organization, (b) shared training and skills in MO of the organization
(e.g. communication procedures, clandestine operations), (c) specialist task-
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related skills (e.g. bomb-making, sniper skills, getaway car driving), and (c)
knowledge of overall organizational structure.

The algorithm for generating the knowledge network presumes the ex-
istence of well-formed cells, as generated by the algorithm in section 6.0.1.
The following principles are followed:

• Cell leaders are more knowledgeable than other members. As cell leaders
are recruited from the ranks of experienced operatives, their doctrinal
knowledge is high and they possess many of the shared skills of the
other agents. They also possess a small amount of knowledge in each of
the specialist areas. This knowledge is not sufficient to replace specialist
agents but is sufficient to proficiently delegate subtasks during execution
of a complex operation.

• Cell members share an ideological doctrine and a modus operandi, fur-
ther referred to as ”shared knowledge”. Adherence to a militant ideology
is a driving factor in recruiting of operatives in terrorist organizations
and is further amplified during training of studies in an a militant reli-
gious academy.

Shared M.O. skills are derived from shared training camp experiences
that terrorist organization recruits undergo. Shared skills include com-
munication procedures, clandestine operation skills, preservation of se-
crecy during planning and preparation of operations.

• Cell members possess specialized knowledge that outlines their specific
function within a cell; these facts are further referred to as ”specialist
knowledge”.
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Figure 6.8: Construction of a Task Network as a Precedence Graph

• A specialized portion of the knowledge network deals with overall knowl-
edge of the organizational structure and policies. This knowledge is
privileged information distributed only to cell leaders and is further re-
ferred to as privileged knowledge. However, rank-and-file cell members
may obtain small amounts of the privileged information through inter-
action with other agents outside the primary cell.

The algorithm that generates knowledge networks as outlined above is
fairly simple. The knowledge network is divided into portions based on pur-
pose of each fact(e.g. shared knowledge, specialist knowledge, privileged
knowledge)(see figure 6.7).

Then, for each agent ai and fact fk the algorithm generates a probability
Pi,k of existence of a an edge ai−fk based on the group that the agent belongs
to (i.e. cell leader vs. rank-and-file) and what group the fact belongs to (i.e.
shared, specialist or privileged).

The edges are then instantiated with a roll of the dice.

Algorithm Parameters

The knowledge network generator depends on the following parameters:

• Proportion of shared knowledge

• Proportion of specialist knowledge

• Proportion of privileged knowledge

6.0.4 Generating Task Structures

The goal of task network generator is to issue complex task specifications such
that would engage the planning and task delegation capabilities of agents as
described in section 3.9.

The task network consists of a set of primitive and compound tasks with
their precedence relations expressed as Task−Task edges in the MetaMatrix.
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The complexity of the task network in terms of feasibility of execution can
be controlled by varying the average connectivity (sum of predecessors and
successors) of a task[Collins, Tsvetovat, Mobasher, and Gini, 1998]. This
parameter can be essentially thought as controlling the parallelism within
the task network.

If the people-to-people network was generated as a cellular network, as-
signments of people to subtasks (Person − Task edges) are uniformly dis-
tributed within each cell. This results in various degrees of subtask difficulty
(amount of resource seeking and delegation required to accomplish the task).
When people-to-people networks are created as random or scale-free graphs,
the task assignments are distributed uniformly throughout the entire network
which results in some tasks being not feasible.

6.1 Scalability

To estimate efficiency of the network generation algorithms, I have conducted
timing runs of each of the algorithms for generation of people-to-people net-
works: Erdös random graphs, scale-free networks with preferential attach-
ment, and cellular networks. We varied the size of the network to be gener-
ated from 100 to 3500 nodes.

Figure 6.9 shows the time in seconds to generate a network of a given
size with each of the algorithms. The least efficient of the algorithms is
the preferential attachment algorithm, which grows exponentially. The high
computational complexity of the simple preferential attachment algorithm
(i.e. not enhanced with heuristics and not parallelized) has been shown by
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[Krapivsky, Redner, and Leyvraz, 2000]. Due to the design of the algorithm,
it can be broken down into independent local processes, which can be exe-
cuted by a parallel machine in near linear time [Machta and Machta, 2005].
Use of this algorithm becomes impractical for networks over 2000 agents,
where generation of the graph took approximately 10000 seconds, or a little
under 3 hours.

Erdös random graphs have been shown[Erdös and Rényi, 1960] to have
a quadratic complexity (Θ(n2)). However, one iteration of edge generation
is a very fast operation, so the algorithm remains practical in generating
networks of up to 20000 nodes (generation time is 120 seconds).

The cellular network generation algorithm performs in near-linear time
due to the fact that cells are small and self-contained. The computational
complexity of the cellular network generator is Θ(σcell

n
k
k2 + σintercelln) =

Θ(σcellnk + σintercelln) where n is the number of nodes, k is the mean size
of a cell, and σcell and σintercell are, respectively, densities inside the cell and
between cells. Thus, when k is much smaller then n, the complexity of the
cellular network generator is close to Θ(n). In practical terms, this means
that even very large networks can be generated in relatively short times, with
a 20,000 node network taking less then 20 seconds to generate.

6.2 Conclusion

All of the network generation algorithms described above are used as a
testbed for NetWatch, a large-scale multi-agent simulation of covert net-
works.

While realism of data generated by any of these algorithms can be dis-
puted and nothing is more realistic then empirical data, the use of diverse
techniques for generating initial data allows the simulation researcher to test
the multi-agent system on networks of widely varying sizes and topologies.
Due to small quantities of available empirical data, this is currently not pos-
sible to do without resorting to artificially generated data.

As a software engineering tool, the network generation package provides
a consistent interface to all of its generation functions - therefore enabling
the user (e.g. NetWatch) to test performance of the simulation tools on a
wide variety of source networks. This also forces the simulation to remain
independent of the initial network topology and thus allow for multi-theory
testing of simulation tools.
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Chapter 7

Towards an Integrated Analysis
Toolchain: Enabling Technologies for
Rich Social Network Data

In the past, social network (and more complex social structure) data has
been treated as distinct “datasets”. Each of these datasets represented a
largely self-contained conceptual chunk: a snapshot of a group or organiza-
tion, frozen in time. As one proceeded with analysis, new aspects of the
dataset were born, again largely self-contained but, in a researcher’s mind,
still connected with the original data.

However, as quality - level of detail and granularity - of social structure
data increased (largely facilitated by automated text analysis tools such as
AutoMap[Diesner, E.T.Lewis, and K.M.Carley, 2001]), its quantity rapidly
increased as well. Furthermore, existing ways of data representation did not
fare well with multi-mode matrices or with rich data (where every node and
edge carried multiple attributes). Furthermore, as research groups in the
field joined in large-scale projects, there arose a need for a well-defined data
interchange format.

Thus, the obsolescence of ad-hoc approaches to storage and manipulation
of such data has become inevitable. It also became apparent that new ways
to query, manipulate and extract subsets of the data were required.

One possible solution to the problem of managing large and heterogenous
datasets is to use the notion of a toolchain, as opposed to building large
self-contained tools.

The concept of an analysis toolchain is derived from the software engineer-
ing concept of development toolchains[Ritter, 1989]. A software development
toolchain consists of a number of small self-contained tools such as editors,
project management tools, compilers, debuggers and analysis tools such as
profilers. While each of these tools is a separate product developed by a
different group of people, an implicit agreement on data interchange formats
allows users to mix and match tools to create a development environment
uniquely suitable to the project at hand. It is also important to note that
tools within a toolchain may vary in complexity, size, and features.

In a similar manner, a dynamic network analysis toolchain needs to con-
sist of a number of self-contained tools for gathering, storage, manipulation,
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analysis and simulation of dynamic social networks.
The development of the integrated analysis toolset was driven by both

a practical and a theoretical goal. From a practical standpoint we wanted
to enable the more effective and efficient collection and analysis of network
data across space and time to enhance the knowledge about complex social
groups as well as to provide support for decision making and action planning
regarding such systems.

From a theoretical standpoint, the data and its analysis could be deployed
to develop theories or validate hypotheses about the evolution of groups and
the co-evolution of types of networks such as social and knowledge networks.

7.1 Requirements for an Interoperable Net-

work Analysis Tool Chain

While the research community has developed a number of very powerful tools
for gathering, analyzing and visualizing relational or network data, the tools
are rarely interoperable: file import/export options make it possible to use
multiple analysis tools within a single project, but data format conversion
can be a work and time intensive process. Furthermore, a lack of automa-
tion and scripting features does not allow the batch-processing of data and
report generation, thus vastly increasing labor and time requirements for the
analysis of complex data.

To enhance decision making processes that involve analysis of dynamic
and rich network data, one must develop solutions to these drawbacks.

Summarizing the requirements for an interoperable dynamic network anal-
ysis toolchain we can identify the following criteria:

1. Network data collected with various techniques, by various people, groups,
or agencies and stored or maintained at different sites needs to be rep-
resented and stored in a common format to ensure the consistent and
compatible representation of various networks or identical networks in
various states. Such a common format facilitates data sharing and fu-
sion. Further, having a common format, even if the data is not shared,
enables different groups to run the same tools and share the results of
the analysis in a meaningful way even when data itself cannot be shared.

2. All tools embedded in a tool chain need to be capable of using (reading/
writing) the same set of data. This means that the output from one tool
can be used as input to other tools. This does not mean that each tool
needs to use all the data. Each tool can operate on the relevant subset
but without altering the basic data format. While not a requirement for
a toolchain, it is beneficial from a web-service approach if all interchange
among tools is in XML.
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Figure 7.1: Dynamic Networks in DyNetML

3. Inputs to and outputs from one tool chain need to be compatible with
external tools or tool chains that provide complementary analytic pro-
cedures. This is needed in order to make use of a wider spectrum of
analytic power as provided by a variety of social network analysis soft-
ware, standard statistical tool kits and multi-agent simulation tools.

4. The tools need to scale to large data sets in order to adequately analyze
complex systems. Large here means thousands to hundreds of thousands
of nodes.

5. The tools need to be robust in the face of missing data. Robustness here
means that measures react with little sensitivity to slight modifications
of the data.

6. Social and organizational systems need to be represented by a model
that captures the entities that such systems are typically composed of,
relations between these entities and attributes of the specific entities and
relations. Such a model and its implementation need to be expandable
as new entity types and relations need to be considered.

7. In addition to the analysis of the relations between and among the
entities in the network, the attributes of nodes and relations need to be
captured and used to understand the relational data.

The CASOS laboratory has proposed the creation of a seamless analy-
sis toolchain, allowing researchers to mix and match data gathering, analy-
sis and visualization tools interactively and/or to create analysis scripts of
batch-mode processing of large datasets or repetition of the same analysis on
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different datasets. All tools in such a suite need to be united with a common
data interchange format to enable interoperability.

Figure 7.1 shows the relationship of tools developed within and outside
the CASOS lab and their integration in a common toolchain.

As part of development of the CASOS toolchain, I have created a number
of enabling technologies that contribute towards a creation of an integrated
data acquisition, analysis and simulation toolchain. These tools include:

1. DyNetML: a rigorously defined data interchange language that will tie
together a heterogenous set of storage, manipulation and analysis tools

2. NetIntel: a database-backed system for easy storage of large quantities
of social structure data;

3. a set of data manipulation tools that enable powerful query capabilities

The following chapters discuss the rationale and details of design and
implementation of DyNetML and NetIntel, linking the development of these
technologies to the creation of a common toolchain.
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Chapter 8

DyNetML: A Robust Interchange
Language for Rich Social Network
Data

Current state of the art in social network data representation presents a
fairly bleak picture. Each of analysis and simulation packages uses its own,
proprietary and incompatible data format. Some of the file formats do not
even have a specification document, making the files unreadable without the
software that produced them.

Data formats that were designed for interoperability (such as DL) are
rarely expressive enough to fully represent the datasets.

As a result, most researchers are forced to deal with data interchange in
a makeshift fashion, at best increasing the workload and at worst resulting
in loss of data integrity.

8.1 Requirements for Social Network Data

Interchange

1. The data interchange format shall be contained in human-readable text
files that are at the same time easily parsable by computers.

2. The data interchange format shall allow an entire dataset, complete
with all computed measurements, to be stored in one file.

3. The data interchange format shall provide maximum expressive power
to its users, allowing:

• Typed nodes (types may include “person”, “resource”, “organiza-
tion”, “knowledge”, etc)

• Multiple sets of nodes of the same type (to express multiple units
within the company, etc)

• Multiple typed attributes per node

• Typed edges

• Multiple typed attributes per edge
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• Multiple graphs (sets of edges) expressed within the same file

• Dynamic network data expressed in a single file

4. The data interchange format shall allow developers to extend it in a
fashion that will not break existing software.

5. The data interchange format shall be flexible enough to be used as both
input and output of analysis tools.

Current social network data formats have a number of deficiencies:
Binary files are very difficult to read if exact specification of the file

format is not provided. Significant extra efforts are required to keep com-
patibility with other tools or between versions of the same tool.
Multiple files used for specification of rich data or saving analysis output

present a number of problems. First of all, there is a significant potential
for data loss due to misplaced or corrupted files (for example, while sent
through email). Secondly, a consistent naming scheme for all files and a file
catalogue are required to prevent data loss - which requires a certain amount
of discipline on the part of the researcher (as these features are not included
in the analysis software)
Raw Data file such as binary matrices or edge lists lack the expressive-

ness required to represent multiple relations between nodes or evolution of
social networks over time.
Human-Readable Data in text files or spreadsheets solves the expres-

sivity problem but requires extensive post-processing by hand or with post-
processing scripts. However, these programs often represent the weakest link
in the software chain (due to hasty design and dependance on outside tools
such as Perl or Awk).
General-purpose Graph XML formats such as GraphXML or GXL

provide a good approximation of fulfilling the requirements for a data in-
terchange format. They are both human- and machine-readable, and offer
extensible capabilities to allow some amount of customization. However,
each of the general-purpose formats in existence has a number of individual
drawbacks that make it difficult to adapt it for use with social network data.

Table 8.1 shows a comparison of a number of existing formats, both plain-
text and XML, in terms of the features required for an expressive interchange
format for social network data.

8.1.1 Existing Data formats

The DL format supported by UCINET[S.P. Borgatti and Freeman, 2002] is a
flexible and human readable data format, and it can contain multiple matrices
in a single file. However, the matrices in a DL file must be of a single type.
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Format Parseabiliy Multi-

Mode

Dynamic

Graph

Node At-

tributes

Edge At-

tributes

Graph-

Level

At-

tributes

Attribute

Typing

UCINET Native Proprietary,

poorly

docu-

mented

No No In sepa-

rate files

No No Numbers

UCINET DL Ad-Hoc No No No Single

value

No Numbers

UCINET VNA Ad-Hoc No No Extensible Single

value

No Numbers

PAJEK NET Rigorous

Gram-

mar

No No Extensible Extensible No Weak

GraphML XML No Delta Fixed

Set,

Graph

Drawing

Fixed

Set,

Graph

Drawing

No Fixed

GraphXML XML No Delta Extensible Extensible No Weak

GXL XML Fixed

Node

and

Edge

Types

No Extensible Fixed

Set

No String

only

ODL XML Fixed

Node

Types,

Untyped

Edges

No Extensible Extensible No Strong

DyNetML XML Extensible

Node

and

Edge

Types

Delta

or Full

Graph

Extensible Extensible Extensible Strong

Table 8.1: Comparison of Social Network Data Formats

For example, a single DL file cannot contain one matrix containing Agent by
Agent data, and another with Agent by Knowledge data. Thus to represent
an entire Meta-Matrix, multiple DL files must be used, which increases the
likelihood of data inconsistencies.

However, one of the largest drawbacks of DL format is the fact that it
is defined in an ad-hoc fashion and lacks a stable grammar. This results in
subtle and difficult to detect incompatibilities between tools that use DL as
an interchange format.

Moreover, DL files make it very difficult to communicate rich social net-
work data as DL matrices do not support attributes embedded within the
data files. While it is possible to communicate dynamic social network data
in DL, its handling is somewhat arcane and unstable.

PAJEK[Batagelj and Mrvar, 2003] comes closest to defining a universal
interchange format for social network data. PAJEK .net format is defined
using a rigorous and stable grammar and allows for arbitrary rich data in
both nodes and edges.

However, PAJEK files do not have a ready facility for expressing dynamic
network data, or for communicating multi-mode and multi-plex networks.

Thus, both of the dominant data formats for social network software have
a number of obvious drawbacks that make them unsuitable for communicat-
ing large amounts of rich data.
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8.1.2 XML-Based Graph Data Formats

The first issue that I address in assessing alternative data formats is that
of a rigorous yet expressive grammar. A further requirement is that the
new format must be easily implementable for support in various software
products.

The XML[XML.org, a] language provides powerful facilities for building
expressive and stable data formats. Through use of DTDs (Document Type
Definitions) and XML Schemata, it is possible to create a data format that
would be both easy to implement and use and provide ample expressive
power.

The nature of rich social network data is that it combines traditional
attribute based datasets with relational, or graph-based data.

A number of data formats for managing graph-based data, including
GraphXML[Herman and Marshall, 2000], GraphML[Brandes, Eiglsperger,
Herman, Himsolt, and Marshall, 2002] and GXL[Holt, Winter, and Schürr,
2000], propose XML-based languages for treating graph and relational data.

GraphXML[Herman and Marshall, 2000] is an early XML-based graph
language designed to fill the need of graph interchange languages in the
graph drawing community. It is essentially a single-purpose language that
communicates the graph structure and semi-fixed sets of attributes (such as
color, shape and location of nodes). GraphXML is the least flexible of the
currently available languages and has been largely superseded by GraphML.

GraphML[Brandes, Eiglsperger, Herman, Himsolt, and Marshall, 2002] is
an XML format for generalized graph structures. Its characteristic feature
is ability to add modules that implement specific extensions or additional
data, such as information related to graph drawing. These modules can be
combined or stripped without altering the underlying graph structure, which
affords GraphML a large degree of flexibility. GraphML is also the only
published format that supports manipulation of dynamic graph data.

The main disadvantage of GraphML is that it requires significant mod-
ifications in order to support multi-mode and multi-plex data. Due to its
orientation towards the graph drawing community, most of the extensions
written to the day are related to graphical representation of graphs and do
not contribute to GraphML’s ability to express social network data.

Additional advantage of GraphML is that it is supported in large number
of graph analysis and drawing software, including yFiles products[yWorks],
Ashwood libraries[ObjectStyle, 2005] and in future version of PAJEK[Batagelj
and Mrvar, 2003]

GXL[Holt, Winter, and Schürr, 2000][Taentzer, 2001][Winter, 2001] was
developed to enable interoperability between software reengineering tools and
components. GXL facilitates process of combining single-purpose tools for
parsing, source code extraction, architecture recovery, data flow analysis,
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pointer analysis, program slicing, query techniques, source code visualiza-
tion, object recovery, restructuring, refactoring into a single reengineering
workbench.

The conceptual data model of GXL is a typed, attributed, directed graph.
It can also be used to represent instance data as well as schemas for describing
the structure of the data. Moreover, the schema can be explicitly stated along
with instance data.

GXL comes very close to fulfilling requirements for social network data
interchange format. However, the advantage of enforcing strong typing and
directionality of the graph edges comes with a drawback of forcing a particu-
lar model of social structure into the data - as many social network measures
are not defined on directed graphs.

8.1.3 XML Data Formats for Social Network Data

ODL[Stacy, 2004] (Organizational Design Language) is an XML-derivative
language for representing organizational structures developed by Aptima.
ODL was designed approximately at the same time as DyNetML, and answers
to a very similar set of requirements. ODL represents rich social network data
as a collection of typed nodesets, and a set of graphs connecting these nodes
with edges.

A characteristic feature of ODL is its use of bindings to represent unknown
or probabilistic edges. A binding element acts as a placeholder for zero or
more concrete elements. For example, if the sender of a message is known,
but the recipient is not, the recipient of the message can be represented by
an empty binding element. As a list of probable recipients emerges, they can
be added to the binding element complete with their probability of being to
the communication.

While ODL is designed for a purpose that is very similar to that of
DyNetML, it possesses a number of shortcomings that limit its use for anal-
ysis of rich dynamic networks. First of all, ODL does not have a ready
representation of dynamic data. Dynamic representations can be achieved
by including multiple graphs, each representing a time period, but that tech-
nique does not provide a rigorous encapsulation of a multi-mode network
changing over time.

A further shortcoming is due to the fact that ODL operates with a fixed
set of concept types (Agent, Knowledge, Resource, Task, Event, Commu-
nication, Location and Organization). These concept types are not readily
extensible, and the methods for handling them are not consistent between
types. This places an undue burden on the developer and maintainer of the
tools and may cause inconsistencies in data interpretation if ODL was used
for data interchange between various software tools.

While use of ODL as an interchange standard may be difficult (both due
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to its design and due to the fact that the language is proprietary), translation
between ODL and DyNetML can be easily accomplished using XSLT trans-
form mechanism. Such translator was designed by Aptima and is used to
bridge their simulation tools to ORA[Carley and Reminga, 2004] and other
tools developed at the CASOS lab.

8.1.4 Advantages and Disadvantages of XML-based Data
Interchange

The main advantage of expressing complex data as XML is the ability of
XML to import hierarchical and object-oriented structures into a human-
readable text file. This solves a major representational challenge of other
text-based data formats, which are more suitable for representation of flat
attribute tables or matrix-based structures.

The representation of complex data structures enabled by XML would be
a much lesser advantage if XML did not provide facilities for specifying the
schemata for data contained in XML files. However, both DTD and XML
Schema facilitate creation of strong grammars that dictate file contents.

The combination of a rigorous markup grammar and data schema facili-
ties reduces the error rate in creation and parsing of XML documents, and
provides significant improvement in structure and implementation of third-
party code for use with the data format.

Another major advantage of all XML formats is that the rigorous defini-
tion of XML grammars allows for easy transformation between various graph
formats. Brandes and Lerner[Brandes, Lerner, and Pich, 2004] demonstrate
this by applying an XSLT[Wadler, 1999] transformation to convert between
GXL and GraphML formats described above.

An XSLT conversion also exists between the DyNetML format described
below and the ODL format developed at Aptima. TODO: MORE HERE

The major drawback of XML-derived data formats stems from the size
and complexity of XML files. The growth in size is dictated by needs for
rigorous markup, as every data element requires a number of delimiter tags
to describe its function to the parser. While XML files get quite large, they
compress very well with any of the currently available algorithms, resulting
in average of 90% compression rates.

Furthermore, the memory requirements of XML (and especially DOM[XML.org,
b]) parsers are significantly higher then these for parsing simple text-based
formats. Use of SAX[XML.org, c] parsers to process large XML files pro-
vides significant memory and processing time savings, but adds burden on
the software developer as SAX parsers are significantly more difficult to use.
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8.2 Extensibility andModularity of XML Data

Formats

A major portion of discussion regarding the future of XML-based data for-
mats for social network data is centered around extensibility of the format
for use in and inter-operation of a variety of applications.

A data format specification designed as a common standard, pursues a
number of conflicting goals[Stacy, 2004]. The first goal is providing a com-
mon language for all tools to be integrated. This goal argues for a least com-
mon denominator approach, that is, for a subset of network organizational
representations shared by all current and future integrated applications.

The second goal is to provide a comprehensive means for each tool to
represent all the data it requires, whether or not any other tool can use that
data. This goal argues for a least common multiple approach, that is, for a
large set of representations that cover the needs of all integrated applications.

The approach DyNetML takes is a hybrid of the two approaches outlined
above. First, DyNetML provides a mechanism for specifying an arbitrary
number of typed, named properties at node, edge, node-type, graph, and
dataset level. This mechanism is generic and does not violate the overall
graph-oriented structure of the data, and thus can be handled by existing
tools in a backwards-compatible fashion. This extensibility mechanism serves
well for adding custom data points within the graph (e.g. specifying the
probability density function of an edge; specifying demographic information
on a node).

If the custom data does not fit with the existing graph model (e.g. An-
thropac questionnaire data), DyNetML allows for modular extension using
auxiliary schemata. This modularity specification follows the W3C XML
Schema recommendations[Consorcium, 2004]. A developer extending DyNetML
with modular data must include the specification of an extension module with
the XSD schema of DyNetML and specify its role in the DyNetML structure
via XSD entities.

8.3 DyNetML: A Data Interchange For Rich

Social Network Data

To enable interchange and transmittal of rich social structure data, I have
designed DyNetML, an XML-based language that fits the requirements out-
lined above. While DyNetML is still a work in progress, it is slowly gaining
industry acceptance as a data interchange format. It is supported by all tools
developed at the CASOS laboratory at Carnegie Mellon University, and is a
part of ORA, a MetaMatrix-based organizational network analysis tool.
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¨ ¥

<node id="Mohammed_Rashed_Daoud_al -Owhali">
<p r op e r t i e s>

<property name="knowledgeAccumulated" type="double" value="
0.7500" />

<property name="placeOfBirth" type="string" value="Kabul ,Ã
Afganistan" />

</ p r op e r t i e s>
</node>

<edge source="Mohammed_Rashed_Daoud_al -Owhali" t a r g e t="
Usama_Bin_Ladin"

type="double" value="1.000000" />
<p r op e r t i e s>

<property name="observedOn" type="date" value="01/01/2000" /
>

<property name="edgeProbability" type="double" value="0.12"
/>

<property name="edgeStrength" type="double" value="0.12" />
</ p r op e r t i e s>

§ ¦

Figure 8.1: Examples of custom properties for a node and an edge

As of August 2004, DyNetML will be natively supported by UCINET,
the premier software package for social network analysis. Native support is
also under development for a number of software tools at the Department
of Defence. Through the use of translation tools, DyNetML is also used by
Aptima, University of Connecticut and a number of other companies and
institutions.

8.4 DyNetML: an XML-Derived Social Net-

work Language

To address the needs of data interchange and requirements outlined in sec-
tion 8.1, we have designed DyNetML: an XML-derived language for express-
ing rich social network data.

The following example illustrates use of DyNetML for representing simple
social network datasets (also illustrated on figure 8.2). This and further
examples are derived from the Tanzania Embassy Bombing dataset.

8.4.1 DyNetML Format Overview

DyNetML represents dynamic network data as sets of time-slices. Each of
the time-slices is a descriptive snapshot of the organization at a given time.
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Listing 8.1: A simple network in DyNetML
¨ ¥

<?xml version = "1.0" encoding = "UTF-8"?>

<DynamicNetwork
xmlns :x s i="http://www.w3.org/2001/XMLSchema -instance"
xsi:noNamespaceSchemaLocation = "DyNetML.xsd">

<MetaMatrix>
<nodes>

<nodeset id="agent" type="agent">
<node id="Mohammed_Rashed_Daoud_al -Owhali"/>
<node id="Mohammed_Sadiq_Odeh"/>
<node id="Fazul_Abdullah_Mohammed"/>
<node id="Wadih_al_Hage"/>
<node id="Usama_Bin_Ladin"/>
<node id="Ali_Mohammed"/>

</ nodeset>
</nodes>

<networks>
<graph id="social_network" sourceType="agent" targetType="

agent" i sD i r e c t ed="true">
<edge source="Mohammed_Rashed_Daoud_al -Owhali" t a r g e t="

Usama_Bin_Ladin" type="double" value="1"/>
<edge source="Mohammed_Sadiq_Odeh" t a r g e t="Wadih_al_Hage"

type="double" value="1"/>
<edge source="Fazul_Abdullah_Mohammed" t a r g e t="Wadih_al_Hage

" type="double" value="1"/>
<edge source="Fazul_Abdullah_Mohammed" t a r g e t="

Usama_Bin_Ladin" type="double" value="1"/>
<edge source="Wadih_al_Hage" t a r g e t="Mohammed_Sadiq_Odeh"

type="double" value="1"/>
<edge source="Wadih_al_Hage" t a r g e t="Fazul_Abdullah_Mohammed

" type="double" value="1"/>
<edge source="Usama_Bin_Ladin" t a r g e t="

Mohammed_Rashed_Daoud_al -Owhali" type="double" value="1"/
>

<edge source="Usama_Bin_Ladin" t a r g e t="
Fazul_Abdullah_Mohammed" type="double" value="1"/>

<edge source="Usama_Bin_Ladin" t a r g e t="Wadih_al_Hage" type="
double" value="1"/>

<edge source="Ali_Mohammed" t a r g e t="Wadih_al_Hage" type="
double" value="1"/>

<edge source="Ali_Mohammed" t a r g e t="Usama_Bin_Ladin" type="
double" value="1"/>

</graph>
</networks>

</MetaMatrix>
</DynamicNetwork>
§ ¦
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Figure 8.2: A simple network in DyNetML

Figure 8.3: Dynamic Networks in DyNetML

Figure 8.3 shows the top-level hierarchy of DyNetML files. A Dynamic-
Network element is defined as a sequence of MetaMatrix elements, each
representing a snapshot of the organization for one time period.

Each of the MetaMatrix elements consists of:

• an optional TimePeriod attribute that allows clear identification of
each timeslice.

• a set of properties and measures, representing data about the whole
of the timeslice (see section 8.7 for a complete definition).

• a nodes element, containing one or more nodesets (section 8.5.1).

• a networks element, containing all networks in this timeslice (sec-
tion 8.6).

• an anthropac element that facilitates linking of network data to an-
thropological data.
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8.5 Representing Multiple Node and Rela-

tion Types

While designed predominantly for dealing with social network data, DyNetML
format is shaped as a generalized graph data interchange framework.

DyNetML represents graphs as sets of nodes nodes (vertices) and rela-
tionships (edges) between them. The node specification allows for detailed
specification of each vertex, as well as addition of rich data related to it.

8.5.1 Specifying Individuals and Nodes

Nodes are organized into nodesets, which should be thought about as logical
groupings of nodes (by type, by affiliation, etc).

Each nodeset has to be identified with a unique id attribute (see fig-
ure 8.4), and a type attribute. For more detailed description of node types,
see section 8.5.1.

DyNetML allows for an arbitrary number of nodesets (and arbitrary num-
ber of nodesets of each type) and an arbitrary number of nodes in each
nodeset.

A node specification consists of the following (see figure 8.4):

• id: a unique ID note: it is advisable for ease of searching to use node
IDs that do not contain spaces or special characters and are limited in
length to 32 characters.

• title: a human-readable title of the vertex (free of restrictions posed on
node ID field).

• prototype: an optional attribute specifying a parent class of a node.
Node prototype can be used to specify additional details about the node.

• Element port allows the user to specify inflows and outflows of each
node by allowing multiple connection points within each node.

• Properties and Measures elements allow specification of arbitrary
rich data for each node. They are described in more detail in section 8.7.

• Anthropac element provides a vehicle for connecting anthropological
data with social network data.

Ports and Multiple Connection Points

In order to implement multiple types of connections within the same graph,
and to enable use of graphs as nodes of other graphs, we have implemented
a system of ports.
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<node id="Mohammed_Rashed_Daoud_al -Owhali">
<port name="inbox" por t type="input"/>
<port name="outbox" por t type="output"/>
<p r op e r t i e s>

<property name="knowledgeAccumulated" type="double" value="
0.7500" />

</ p r op e r t i e s>
<measures>

<measure name="taskExclusivity" type="double" value="0.5017"
>

<input id="social_network" />
</measure>
<measure name="cognitiveLoad" type="double" value="0.1354">

<input id="social_network" />
</measure>

</measures>
</node>
§ ¦

Figure 8.4: Specification of Vertices in DyNetML

A port can be viewed as a point where an edge attaches to a vertex. Thus,
a directed edge connecting a port specified as input to another node’s port
specified as output represents a resource or information flow across the edge.

Since one can specify multiple input and output ports for every node,
it is possible to represent a number of distinct flows along every edge while
maintaining clear separation between different types of links.

A port is defined as follows (see figure 8.4):

• attribute name specifies a port ID that is unique for this node

• attribute port type is a multiple choice, with possible values “input”,
“output” and “general”

Node Types in DyNetML

DyNetML has been designed to assist the flow of information between soft-
ware tools by not only enforcing a consistent structured format upon the
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data, but also by specifying a constant vocabulary. Since the language has
been designed in service of the Social Network Analysis community, we spec-
ify a set of standard node types that could be used to express a majority of
rich social network data.

The standard node types are: agent, organization, knowledge, re-
source, task, location, and graph.

While the architecture of DyNetML allows developers to easily add node
types, to ensure inter-operability of tools using DyNetML it is advisable to
refrain from expanding the vocabulary unless absolutely required. To provide
a more fine-grained node type mechanism, it is best to use the prototype
attribute of nodes to specify arbitrary subtypes.

8.6 Representing Relations in DyNetML

DyNetML format allows the user to specify multiple graphs within a single
framework, including graphs that share vertices with other graphs.

An example for use of such system is the case where a number of individ-
uals are engaged in multiple relationship types - such as the formal network,
informal advice network, or familial ties network.

Each graph is specified as follows: (see figure 8.5)

• id attribute is the graph’s unique ID.

• source attribute specifies the nodeset from which the source nodes are
taken.

• sourceType attribute specifies the type of nodes contained in the
source nodeset.

• target attribute specifies the nodeset from which the target nodes are
taken.

• targetType attribute specifies the type of nodes contained in the target
nodeset.

• isDirected attribute specifies whether the edges of this graph are di-
rected; the attribute can only take values of “true” or “false”.

The graph then includes properties and edges elements (see 8.7), fol-
lowed by a set of edge elements that comprise the actual graph.

8.6.1 Edges

Edges (see figure 8.6) of the graph include the following attributes:
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<networks>
<graph sourceType="agent" targetType="agent" id="

social_network">

<edge source="Mohammed_Rashed_Daoud_al -Owhali" t a r g e t="
Usama_Bin_Ladin" type="double" value="1.000000" />

<p r op e r t i e s>
<property name="observedOn" type="string" value="

01/01/2000" />
</ p r op e r t i e s>
<measures>

<measure name="probability" type="double" value="0.10">
<input id="social_network" />

</measure>
<edge source="Mohammed_Rashed_Daoud_al -Owhali" t a r g e t="

Jihad_Mohammed_Ali_(Azzam)" type="double" value="6.000000
" />

. . . more edges . . .
</graph>
. . . more graphs . . .

</networks>
§ ¦

Figure 8.5: Specification of Graphs in DyNetML

• source and sourcePort attributes specify the source node and port
that an edge originates from. The source node should be a part of the
nodeset specified in the source attribute of the graph. source attribute
is required; sourcePort is optional if no ports have been defined for
the source node.

• target and targetPort attributes specify the source node and port
that an edge connects to. The target node should be a part of the
nodeset specified in the target attribute of the graph. target attribute
is required; targetPort is optional if no ports have been defined for the
target node.
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<edge source="Mohammed_Rashed_Daoud_al -Owhali" sourcePort="
outbox" t a r g e t="Usama_Bin_Ladin" ta rge tPor t="inbox" type=
"double" value="1.000000" />

<p r op e r t i e s>
<property name="observedOn" type="string" value="

01/01/2000" />
</ p r op e r t i e s>
<measures>

<measure name="probability" type="double" value="0.10">
<input id="social_network" />

</measure>
§ ¦

Figure 8.6: Specification of Edges in DyNetML

• type attribute is required for every edge. If the edge is unweighted, the
type attribute should be set to “binary”; other acceptable edge value
types are “double” and “string”

• value attribute specifies the edge weight or value; the type of the value
should match the type specified in type attribute.

• name attribute is an optional string that allows the user to a add
human-readable title to an edge.

• properties and measures elements are optional and allow addition of
rich data to edge-level specification. A complete description of these
elements can be found in section 8.7.

8.7 Representing Graph, Node and Edge At-

tributes

One of the important facilities of DyNetML is its ability to attach rich data
or attributes to every element of the structure.

The rich data, specified as properties and measures, can be added to
the MetaMatrix, node, graph and edge objects. The mechanisms for
handling the rich data are identical for all objects.
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<p r op e r t i e s>
<property name="nationality" type="string" value="Saudi" />
<property name="religion" type="string" value="Muslim" />
<property name="education" type="string" value="College" />

</ p r op e r t i e s>
<measures>

<measure name="taskExclusivity" type="double" value="0.0000">
<input id="social_network" />

</measure>
<measure name="knowledgeExclusivity" type="double" value="

0.9793">

<input id="social_network" />
</measure>
<measure name="cognitiveLoad" type="double" value="0.0208">

<input id="social_network" />
</measure>

</measures>
§ ¦

Figure 8.7: Specification of Properties and Measures

Properties and Measures objects are syntactically similar (see fig-
ure 8.7) and consist of a set of name-value pairs. The main distinction
between them is that Properties should be thought of as attributes inher-
ent to the subject, such as information obtained from a questionnaire or
otherwise known about the subjects.

Measures, on the other hand, are computed by analysis tools and inserted
into the dataset during processing.

The guidelines for naming properties and measures are following:

• Names should be descriptive of the nature of data contained within.

• Measure names should include the name of the tool that generated them.

For example, the measure of Freeman centrality computed by NetStat
tool should look as:

<measure name="netstat_freeman_centrality" type="double"

value="3.14"/>
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8.8 Complex Social Networks in DyNetML

The basic use of DyNetML is specification of rich social network data, in-
cluding properties and measures attached to objects within the network.
DyNetML also allows for an arbitrary number of network superimposed upon
each other, and specification of network data over time.

The example below is a heavily commented small dataset containing two
types of nodes (people and facts), and three networks (friendship, advice and
knowledge). It is derived from a full MetaMatrix dataset on the terrorist
bombing of the U.S. embassy in Tanzania.
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<?xml version="1.0" encoding="UTF -8"?>
< !DOCTYPE MetaMatrix SYSTEM "DyNetML.dtd">

Header Information

<MetaMatrix t imePeriod="1997">

Time periods can be labelled
with arbitrary string labels

<nodes>
<nodeset id="agent" type="agent">

<node id="Mohammed_Rashed_Daoud_al -Owhali"/>
<node id="Khalfan_Khamis_Mohamed "/>
<node id="Mohammed_Sadiq_Odeh "/>
<node id="Ahmed_the_German"/>
<node id="Fazul_Abdullah_Mohammed "/>
<node id="Wadih_al_Hage "/>
<node id="Usama_Bin_Ladin "/>
<node id="Ali_Mohammed"/>
<node id="Ahmed_Khalfan_Ghailani "/>
<node id="Mohammed_Salim"/>
<node id="al -Fadl"/>

Nodes are broken up into
nodesets by type (e.g. agent,
knowledge, resource, task,
etc)
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<node id="al -Fawwaz"/>
<p r op e r t i e s>

<property name="knowledge" type="double" value="0.2500" />
</ p r op e r t i e s>
<measures>

<measure name="taskExclusivity " type="double" value="0.0000">

<input id="social_network" />
</measure>
<measure name="knowledgeExclusivity" type="double" value="0.9793">

<input id="social_network" />
</measure>
<measure name="cognitiveLoad " type="double" value="0.0208">

<input id="social_network" />
</measure>

</measures>

This is a more complex
node with properties and at-
tached measures

<node id="Jihad_Mohammed_Ali_ (Azzam)"/>
<node id="abouhalima"/>
<node id="Abdullah_Ahmed_Abdullah_ (Saleh)"/>
<node id="Abdal_Rahman"/>

</ nodeset>

<nodeset id="type" type="task">

<node id="surveillence"/>
<node id="weapon_training "/>
<node id="driving_training"/>
<node id="bomb_prep"/>
<node id="bombing"/>

</ nodeset>

”TASK” nodeset outlines
the types of tasks that the
group performs
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<nodeset id="resource" type="resource">

<node id="building_for_bombmaking "/>
<node id="money"/>
<node id="bomb_material "/>
<node id="truck"/>

</ nodeset>

”RESOURCE” nodeset:
tangible resources for
functioning of organization

<nodeset id="knowledge" type="knowledge">

<node id="religious_extremism "/>
<node id="weapons_expertise "/>
<node id="surveillance_expertise "/>
<node id="media_consultant"/>

</ nodeset>

”KNOWLEDGE”: non-
tangible or mental resources
of the organization

</nodes>

Now we specify the graphs
that comprise the metama-
trix.
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<networks>
<graph id="social_network" sourceType="agent" targetType="agent" i sD i r e c t e d="true">

<edge source="Mohammed_Rashed_Daoud_al -Owhali" t a r g e t="Usama_Bin_Ladin " type="

double" value="1"/>
<edge source="Mohammed_Rashed_Daoud_al -Owhali" t a r g e t="Jihad_Mohammed_Ali_ (Azzam)

" type="double" value="1"/>
<edge source="Mohammed_Rashed_Daoud_al -Owhali" t a r g e t="Abdullah_Ahmed_Abdullah_ (

Saleh)" type="double" value="1"/>
<edge source="Mohammed_Rashed_Daoud_al -Owhali" t a r g e t="Abdal_Rahman" type="double

" value="1"/>
<edge source="Mohammed_Sadiq_Odeh " t a r g e t="Wadih_al_Hage " type="double" value="1"

/>
<edge source="Ahmed_the_German" t a r g e t="Abdullah_Ahmed_Abdullah_ (Saleh)" type="

double" value="1"/>
<edge source="Fazul_Abdullah_Mohammed " t a r g e t="Wadih_al_Hage " type="double" value

="1"/>
<edge source="Fazul_Abdullah_Mohammed " t a r g e t="Usama_Bin_Ladin " type="double"

value="1"/>
<edge source="Wadih_al_Hage " t a r g e t="Mohammed_Sadiq_Odeh " type="double" value="1"

/>
<edge source="Wadih_al_Hage " t a r g e t="Fazul_Abdullah_Mohammed " type="double" value

="1"/>
<edge source="Wadih_al_Hage " t a r g e t="Usama_Bin_Ladin " type="double" value="1"/>
<edge source="Usama_Bin_Ladin " t a r g e t="Mohammed_Rashed_Daoud_al -Owhali" type="

double" value="1"/>
<edge source="Usama_Bin_Ladin " t a r g e t="Fazul_Abdullah_Mohammed " type="double"

value="1"/>
<edge source="Usama_Bin_Ladin " t a r g e t="Wadih_al_Hage " type="double" value="1"/>
<edge source="Ali_Mohammed" t a r g e t="Wadih_al_Hage " type="double" value="1"/>
<edge source="Ali_Mohammed" t a r g e t="Usama_Bin_Ladin " type="double" value="1"/>
<edge source="al -Fawwaz" t a r g e t="Wadih_al_Hage " type="double" value="1"/>
<edge source="al -Fawwaz" t a r g e t="Usama_Bin_Ladin " type="double" value="1"/>
<edge source="Jihad_Mohammed_Ali_ (Azzam)" t a r g e t="Mohammed_Rashed_Daoud_al -Owhali

" type="double" value="2"/>
<edge source="abouhalima" t a r g e t="Wadih_al_Hage " type="double" value="1"/>
<edge source="Abdullah_Ahmed_Abdullah_ (Saleh)" t a r g e t="Mohammed_Rashed_Daoud_al -

Owhali" type="double" value="1"/>
<edge source="Abdullah_Ahmed_Abdullah_ (Saleh)" t a r g e t="Mohammed_Sadiq_Odeh " type=

"double" value="1"/>
<edge source="Abdullah_Ahmed_Abdullah_ (Saleh)" t a r g e t="Abdal_Rahman" type="double

" value="1"/>
<edge source="Abdal_Rahman" t a r g e t="Mohammed_Rashed_Daoud_al -Owhali" type="double

" value="1"/>
<edge source="Abdal_Rahman" t a r g e t="Abdullah_Ahmed_Abdullah_ (Saleh)" type="double

" value="1"/>
</graph>

This graph specifies the so-
cial network of the organi-
zation, i.e. who knows or
speaks to whom.
NOTE: source and target of
each edge should be a valid
node; however, it’s up to the
software developer to ensure
that, or to check consistency
in any code that imports this
data
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<graph id="knowledge_network " sourceType="agent" targetType="knowledge">

<p r op e r t i e s>
<property name="title" type="string" value="thisÃgraphÃspecifiesÃwhoÃknowsÃwhat

">

<p r op e r i t e s>
<measures>

<measure name="centralization" type="double" value="0.023">

<measure name="density" type="double" value="0.45">

<measures>
<edge source="Mohammed_Rashed_Daoud_al -Owhali" t a r g e t="religious_extremism " type=

"double" value="1"/>
<edge source="Khalfan_Khamis_Mohamed " t a r g e t="weapons_expertise " type="double"

value="1"/>
<edge source="Khalfan_Khamis_Mohamed " t a r g e t="surveillance_expertise " type="

double" value="1"/>
<edge source="Mohammed_Sadiq_Odeh " t a r g e t="religious_extremism " type="double"

value="1"/>
<edge source="Fazul_Abdullah_Mohammed " t a r g e t="religious_extremism " type="double"

value="1"/>
<edge source="Wadih_al_Hage " t a r g e t="religious_extremism " type="double" value="1"

/>
<edge source="Ali_Mohammed" t a r g e t="surveillance_expertise " type="double" value="

1"/>
<edge source="Mohammed_Salim" t a r g e t="religious_extremism " type="double" value="1

"

<edge source="al -Fadl" t a r g e t="religious_extremism " type="double" value="1"/>
<edge source="Jihad_Mohammed_Ali_ (Azzam)" t a r g e t="religious_extremism " type="

double" value="1"/>
<edge source="Abdullah_Ahmed_Abdullah_ (Saleh)" t a r g e t="surveillance_expertise "

type="double" value="1"/>
<edge source="Usama_Bin_Ladin " t a r g e t="media_consultant" type="double" value="1"/

>

<edge source="al -Fawwaz" t a r g e t="media_consultant" type="double" value="1"/>
</graph>

Specifies who in the organi-
zation knows or has trained
in which areas of knowledge
This graph has a number of
associated measures and a
text property
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<graph id="resource_network" sourceType="agent" targetType="resource" i sD i r e c t e d="

true">

<edge source="Khalfan_Khamis_Mohamed " t a r g e t="building_for_bombmaking " type="

double" value="1"/>
<p r op e r t i e s>

<property name="edgeDescription " type="string" value="propertyOwnership ">

<p r op e r i t e s>
<measures>

<measure name="probability " type="double" value="0.85">

<measures>
<edge source="Mohammed_Sadiq_Odeh " t a r g e t="building_for_bombmaking " type="double"

value="1"/>
<edge source="Khalfan_Khamis_Mohamed " t a r g e t="building_for_bombmaking " type="

double" value="1"/>
<p r op e r t i e s>

<property name="edgeDescription " type="string" value="propertyLease ">

<p r op e r i t e s>
<measures>

<measure name="probability " type="double" value="0.4">

<measures>
<edge source="Fazul_Abdullah_Mohammed " t a r g e t="building_for_bombmaking " type="

double" value="1"/>
<edge source="Wadih_al_Hage " t a r g e t="bomb_material " type="double" value="1"/>
<edge source="Usama_Bin_Ladin " t a r g e t="money" type="double" value="1"/>
<edge source="Ahmed_Khalfan_Ghailani " t a r g e t="truck" type="double" value="1"/>
<edge source="Mohammed_Salim" t a r g e t="money" type="double" value="1"/>
<edge source="Abdullah_Ahmed_Abdullah_ (Saleh)" t a r g e t="building_for_bombmaking "

type="double" value="1"/>
<edge source="Abdal_Rahman" t a r g e t="bomb_material " type="double" value="1"/>

</graph>

Relationship between people
and tangible resources of the
organization
This graph illustrates use of
edge properties to represent
arbitrary rich data
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<graph id="people_task " sourceType="agent" targetType="task">

<edge source="Mohammed_Rashed_Daoud_al -Owhali" t a r g e t="surveillence" type="double

" value="1"/>
<edge source="Khalfan_Khamis_Mohamed " t a r g e t="weapon_training " type="double"

value="1"/>
<edge source="Mohammed_Sadiq_Odeh " t a r g e t="weapon_training " type="double" value="

1"/>
<edge source="Ahmed_the_German" t a r g e t="bombing" type="double" value="1"/>
<edge source="Wadih_al_Hage " t a r g e t="weapon_training " type="double" value="1"/>
<edge source="Ali_Mohammed" t a r g e t="surveillence" type="double" value="1"/>
<edge source="Ahmed_Khalfan_Ghailani " t a r g e t="bomb_prep" type="double" value="1"/

>

<edge source="Mohammed_Salim" t a r g e t="weapon_training " type="double" value="1"/>
<edge source="al -Fadl" t a r g e t="weapon_training " type="double" value="1"/>
<edge source="Jihad_Mohammed_Ali_ (Azzam)" t a r g e t="surveillence" type="double"

value="1"/>
<edge source="Abdullah_Ahmed_Abdullah_ (Saleh)" t a r g e t="bomb_prep" type="double"

value="1"/>
<edge source="Abdal_Rahman" t a r g e t="weapon_training " type="double" value="1"/>

</graph>

Assignment of people to
tasks

<graph id="resource_task " sourceType="resource" targetType="task">

<edge t a r g e t="weapon_training " source="weapons_expertise " type="double" value="1"

/>
<edge t a r g e t="driving_training" source="weapons_expertise " type="double" value="1

"/>
<edge t a r g e t="bomb_prep" source="weapons_expertise " type="double" value="1"/>
<edge t a r g e t="bombing" source="religious_extremism " type="double" value="1"/>
<edge t a r g e t="bombing" source="weapons_expertise " type="double" value="1"/>

</graph>

Resource requirements for
tasks
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<graph id="knowledge_task" sourceType="knowledge" targetType="task">

<edge source="religious_extremism " t a r g e t="surveillence" type="double" value="1"/
>

<edge source="weapons_expertise " t a r g e t="surveillence" type="double" value="1"/>
<edge source="surveillance_expertise " t a r g e t="surveillence" type="double" value="

1"/>
<edge source="media_consultant" t a r g e t="surveillence" type="double" value="1"/>
<edge source="weapons_expertise " t a r g e t="weapon_training " type="double" value="1"

/>
<edge source="surveillance_expertise " t a r g e t="weapon_training " type="double"

value="1"/>
<edge source="weapons_expertise " t a r g e t="driving_training" type="double" value="1

"/>
<edge source="weapons_expertise Ãtarget="bomb prep"Ãtype="double "Ãvalue="1"/>

ÃÃÃÃ<edgeÃsource=" s u r v e i l l a n c e e x p e r t i s e "Ãtarget="bombing"Ãtype="double"Ãvalue="1"/>
ÃÃÃÃ<edgeÃsource=" s u r v e i l l a n c e e x p e r t i s e "Ãtarget="bombing"Ãtype="double"Ãvalue="1"/>
ÃÃ </graph >

Knowledge requirements for
tasks

<graph id="task_network" sourceType="task" targetType="task" i sD i r e c t e d="true">

<edge source="bomb_prep" t a r g e t="weapon_training " type="double" value="1"/>
<edge source="bombing" t a r g e t="driving_training" type="double" value="1"/>
<edge source="bombing" t a r g e t="bomb_prep" type="double" value="1"/>
<edge source="bombing" t a r g e t="surveillence" type="double" value="1"/>

</graph>

Precedence relationship of
tasks in the grand task of the
organization (i.e. large-scale
attack)

</networks>
</MetaMatrix>

End of example
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Chapter 9

Storage and Manipulation of Social
Structure Data

9.1 Rationale for Building a Social Network

Database

Social network analysis focuses on the relations among and between entities
in a social or organizational system. For most of its history, social network
analysis has operated on a notion of a dataset - a clearly delimited and
pruned set of observations that have been encoded and parameterized using
a particular set of assumptions or policies. In such a dataset the entities
are represented as nodes, and the relations between them as edges or links.
The datasets were often painstakingly collected by hand over long periods of
time and pruned to illustrate a phenomenon or hypothesis with the greatest
possible clarity. Thus, traditional SNA datasets came to be viewed as self-
contained units of data, potentially with some shared characteristics (such
as data collection or encoding methods) but also with potential for vastly
different assumptions at any stage of the process.

Each dataset, as defined in the SNA terms, represents a largely self-
contained conceptual chunk: a snapshot of a social system at one point in
time. As one proceeds with analysis, new measures computed on the dataset
are introduced, again largely self-contained but, except in a researcher’s
mind, still unconnected with the original data in a except in assorted ad-
hoc fashions. Over the past ten years there have been a growing number of
studies in which the researchers made use of the social network and attributes
or networks at two or more points in time.

Social network data can be multi-mode (various types of relationships
such as friendship, kinship), multi-link (connections across various meta-
matrix entities) and multi-time period. Furthermore, nodes and edges can
have multiple attributes such as the formal position of an employee in a
company or the types of relationships between employees (multi-mode). We
refer to data that is multi-mode, multi-link and multi-time period in which
both nodes and edges can have attributes that carry information on to how
to interpret, evolve, and impact these nodes and edges as ”rich” data.

With the advent of tools for automated gathering of relational data such
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as AutoMap[Diesner and Carley, 2004][Diesner and Carley, 2005] and com-
putational models including multi-agent social-network simulation tools such
as Construct[Schreiber and Carley, 2004] and NetWatch[Tsvetovat and Car-
ley, 2004], the sheer quantity of available data has increased exponentially.
Moreover, most of the data gathered, processed, or simulated in this manner
is rich network data of groups with hundreds or thousands of actors.

Ad-hoc approaches to storage and manipulation of such data significantly
increase the labor burden upon the researcher, and it became apparent that
new ways to query, manipulate and extract subsets of the data were required.
Furthermore, as research groups in the field joined in large-scale projects,
there arose a need for a well-defined data interchange format.

There is a pressing need to automatically collect data on social systems as
rich network data, analyze such systems to find hidden relations and groups,
prune the datasets to locate regions of interest, locate key actors, characterize
the structure, locate points of vulnerability, compare and contrast alterna-
tive networks, visualize the structure of a system as a whole or in part and
simulate change in a system as it evolves naturally or in response to strate-
gic interventions over time or under certain impacts, including modification
of data. To meet this challenge, we need to move beyond the traditional
approach[Carley, 2002c].

The amount and quality of data collected by the automated data gather-
ing tools and simulation tools suggest that a relational database (RDBMS)
tool needs to be used to manage and query the data. However, dealing with
large quantities of network data presents a number of unique challenges from
the data warehousing point of view.

I discuss the design and construction of NetIntel[Tsvetovat, Diesner, and
Carley, 2005] - an RDBMS-based system for warehousing, merging and ma-
nipulating large network datasets.

9.2 Databases and Gathering of Network In-

telligence

In the aftermath of the September 11th attacks, it was noted that coherent
information sources on terrorism and terrorist groups were not available to
researchers[Gruenwald, McNutt, and Mercier, 2003]. Information was either
available in fragmentary form, not allowing comparison studies across inci-
dents, groups or tactics, or made available in written articles - which are not
readily suitable for quantitative analysis of terrorist networks. Data collected
by intelligence and law-enforcement agencies, while potentially better orga-
nized, is largely not available to the research community due to restrictions
in distribution of sensitive information.
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To counter the information scarcity, a number of institutions developed
unified database services that collected and made available publicly accessible
information on terrorist organizations. This information is largely collected
from open source media, such as newspaper and magazine articles, and other
mass media sources.

Such open-source databases include:

• RAND Terrorism Chronology Database[Corporation, 2003] - including
international terror incidents between 1968 and 1997

• RAND-MIPT (Memorial Institute for Prevention of Terrorism) Terror-
ism Incident Database[Houghton, 2002], including domestic and inter-
national terrorist incidents from 1998 to the present

• MIPT Indictment Database[Smith and Damphousse, 2002] - Terrorist
indictments in the United States since 1978.

Both RAND and MIPT databases rely on publicly available informa-
tion from reputable information sources, such as newspapers, radio and
television.

• IntelCenter Database (ICD)[IntelCenter, 2005] includes information on
terrorist incidents, groups and individuals collected from public sources,
including not only traditional media outlets and public information
(such as indictments), but also information learned from Middle East-
based news wire services. Separately, IntelCenter also collects informa-
tion from Arabic chat-rooms and Internet-based publications - although
value of such data is questionable and data may be tainted by propa-
ganda.

The focus of these databases is the agglomeration of publicly available
data and dissemination of it to researchers, both in the public and private
sectors. Little of the work in large public databases has been focused on
enabling social network analysis or link analysis of covert and terrorist net-
works. The IntelCenter Corporation has released a dataset mapping relation-
ships between members of Al-Qaida[IntelCenter.com, 2003]. However, that
dataset was delivered as virtually a read-only diagram that did not facilitate
quantitative analysis of the data.

Furthermore, the data in the above databases is frequently presented in a
proprietary format, making it difficult to employ other software for analysis
purposes.

On the commercial software frontier, I2 Corporation has been marketing
Analyst’s Notebook[Corporation, 2005], a software product for integrating
and charting network-based intelligence on criminal and terrorist organiza-
tions. This software is in use in many governmental and law enforcement
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Figure 9.1: Schemata for Graph Data: (a)Simple relations, (b)Rich relational
data

agencies, and allows significant integration with data collection, communi-
cation and other technologies. A separate product, iBase, provides shared
storage and data integration facilities of the product. However, the product
implements very few quantitative analysis tools and does not allow ready
export of network data into analysis packages.

The goal of the NetIntel project, as described in this chapter, is to pro-
vide a means for ready collection and integration of network data, with an
emphasis on making the data available for quantitative analysis with stan-
dard software tools, and making the database accessible on the basis of open
standards for database connectivity.

9.3 Existing Work

Storing and manipulating massive persistent graph data is a non-trivial
preposition. Despite the fact that majority of data captured by businesses
and organizations is relational in nature and can be efficiently described in
terms of graphs, much of database and data mining research in the past
decade has concentrated on propositional data[Neville and Jensen”, 2002].

In propositional data, instances and objects are assumed to be identi-
cal and independently distributed (i.i.d.). Relational data violates this as-
sumption. Relationships among objects reflect dependence among instances,
and the instances themselves are heterogenous. Rich social network data,
such as information extracted via text analysis, further supports this fact by
attaching semantics and attribute sets to both instances and the relations
themselves.

Further, even the part of the data mining community that routinely deals
with relational data has focused on learning patterns from the data and
structure of relations. An important, but oft-overlooked aspect of storing
relational data is that of data selection and transformation.

The basic schemata for storing graph data in a relational database (RDBMS)
(figure 9.1(a)) is a many-to-many relation recursively defined on a table. Fig-
ure 9.1(b) illustrates a slightly more complicated scenario, turning edges from
a simple relation to an object that can contain rich attribute sets.
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To extract subsets of a large graph both of these schemata in a query
language such as SQL, it is necessary to build a recursive JOIN operator.
However, it should be noted that SQL[Melton, 1996] explicitly disallow re-
cursive JOINs, and thus lack facilities for ready implementation of graph
data manipulation.

A number of research systems, such as Lorel[Abiteboul, Quass, McHugh,
Widom, and Wiener, 1997] and QGraph[Blau, Immerman, and D.Jensen,
2002], solve this problem by building graph-based DBMS systems from scratch
or building on top of object-oriented storage mechanisms, and adding a graph
query language.

Lorel[Abiteboul, Quass, McHugh, Widom, and Wiener, 1997] language,
while not specifically designed for manipulation of social network data, is
built using a graph metaphor as the underlying data model and thus suit-
able for storage of relational data. It also introduces existential quantifiers
that allows selection of graph subsets based on existence (as opposed to prop-
erties) of their relations. However, Lorel can be only implemented on top of
an experimental Lore[Jennifer Widom, 2004] DBMS - which is no longer
maintained and thus not suitable for use in a production system.

QGraph[Blau, Immerman, and D.Jensen, 2002] presents a visual language
specifically designed for querying and updating graph databases. A key fea-
ture of QGraph is that the user can draw a query consisting of vertices and
edges with specified relations between their attributes. The response will
be the collection of all subgraphs that have the desired pattern. QGraph
implements an advanced set of quantifiers that allows the user to specify not
only existence of relations, but also the cardinality of edge subsets, and also
place conditional operators on both nodes and edges. QGraph is well-suited
for dealing with general graph data, and can be well adapted for storing and
retrieving complex social network data.

However, the graphical nature of the language that is one of its sell-
ing features for a stand-alone DBMS, presents a significant disadvantage for
integration of QGraph into an analysis toolchain such as one described in
chapter 7. QGraph also shares Lorel’s disadvantage of being built on top of
an experimental storage engine.

9.4 Storage Requirements for Social Struc-

ture Data

Mindful of the limitations of both traditional RDBMS systems and experi-
mental graph query languages, we suggest that a scalable solution to storage
and manipulation of graph-based data is not via creation of custom database
systems or query languages, but rather via extension of database tools found
and widely used in the industry.
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The structure of the database shall be defined in a way that preserves
the character and integrity of the data (i.e. is aware of underlying graph
properties of the data). The structure shall be designed in an extensible
manner, allowing easy addition of new attributes, node and edge types.

The database system shall not only keep track of the units of social struc-
ture data (such as nodes and edges) but also sources of such, enabling the
creation of large-scale multi-source datasets while preserving the original data
sources.

The database shall have an easy-to-use web-based interface, allowing users
to enter, search and edit data as well as access manipulation and query
capabilities described below.

9.5 Requirements for Data Manipulation Tools

The data manipulation tools shall be closely coupled to the database system
described above. The foremost requirement for the subsystem is the ability
to extract subsets of the data based on:

• the source (or sources) of data (e.g. “Find all social structure data that
came from New York Times” or “Find all data that came from New
York Times article from 10/10/2003”)

• attributes of nodes and edges (e.g. “What is the network of people who
were born in Syria?”)

The manipulation tools shall include both existential, universal and car-
dinality quantifiers for specifying structure of subgraphs.

The manipulation tools shall be able to extract subsets of the network
based on graph-theoretic properties of the network such as graph distance
(e.g. “Find all nodes at a graph distance of 2 or less from a given node”)
and graph density (e.g. “Find all nodes embedded in subgraphs with given
density”).

The manipulation tools shall allow easy completion of incomplete datasets
(e.g. “Given a set of people, find all organizations and resources connected
to them”)

The query tools shall enable the creation of time-slices from the complete
dataset of any subset thereof, if time-dependent data is present.

Finally, the query tools shall be easily combined into scripts, resulting in
extremely powerful structure-aware data manipulation capability.
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9.6 Database Design

A DBMS chosen for the underlying storage engine must feature advanced
query capabilities (both SQL and procedural), as well as stored procedure
and trigger capabilities. For the current implementation, we have chosen
PostgreSQL[PostgreSQL, 2005] database. Of the databases available under
the GPL license, it offers the most complete implementation of ANSI SQL,
and an implementation of PL/SQL - a procedural language that is portable
to other industry database systems such as Oracle.

The majority of the data manipulation tools are implemented as func-
tional extension to SQL and thus available within standard SQL queries.
Two end-user interfaces to the database (a command-line system and a web-
based interface) are also awailable. These interface serve as a means to import
raw data from data gathering tools such as AutoMap and export data into
analysis tools such as ORA.

The Web-based interface allows easy navigation and editing of large bod-
ies of data, as well as some access to data manipulation and query tools.

9.6.1 Database Schema

The database schema is designed to preserve flexibility inherent in the source
data while enforcing some regularity upon the datasets.

2 tables, Node and Edge, compose the basic graph structure. Two
separate tables contains a set of Node Types and Edge Types, thus making
the graph structure in the database semantically extendable.

A Document table stores data sources that contribute to the creation of
the database and links them through many-to-many relations to the graph
entities (Nodes and Edges).

A set of tables store domain-dependent data on each of the node types.
These tables are not static in the database schema, but rather created auto-
matically at the same time as a new Node Type, thus ensuring both flexibility
and referential integrity of data.

9.6.2 Thesaurus

Due to the fact that data for the database comes from many disparate sources
and includes many foreign names, alternative spellings of such names are
inevitable.

The database uses a separateThesaurus table to store alternative spellings
of names of entities. When an entity (Node or Edge) is inserted, queried or
updated, a Trigger Function checks spelling of the entity’s name or ID and
makes sure that the ID is spelled in a canonical way within the dataset.
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Unfortunately, the data populating the Thesaurus table had to be com-
piled by hand. However, with a simple conversion tool, NetIntel can make
use of thesauri written for use with AutoMap and can therefore capitalize on
the manual work that was invested in their creation.

9.7 Data Manipulation

The data manipulation tools are closely coupled to the database system de-
scribed above. The foremost requirement for the subsystem is the ability to
extract subsets of the data based on:

• the source (or sources) of data (e.g. “Find all social structure data that
came from New York Times” or “Find all data that came from New
York Times article from 10/10/2003”).

• attributes of nodes and edges (e.g. “What is the network of people who
were born in Syria?”).

The query tools enable the creation of time-slices from the complete
dataset of any subset thereof if time-dependent data is present.

The above queries are easily accomplished using SQL and the Document
tracking tables. This query has been implemented as a part of db2dynetml
export program and is useable with a single command-line option.

9.7.1 Graphs in NetIntel Database

Let the graph be defined as

G = (V,E) :

{

V = {vi : [nodeid, nodeType, attributes]}

E = {ei : [source, dest, edgeType, attributes]}
(9.1)

where V is the set of graph vertices and E is the set of graph edges.
For purpose of database storage, vertices and edges are stored in relational
database tables.

9.7.2 Graph Subsets

The manipulation tools are designed to extract subsets of the network based
on graph-theoretic properties of the network such as graph distance (e.g.
“Find all nodes at a graph distance of 2 or less from a given node”) and graph
density (e.g. “Find all nodes embedded in subgraphs with given density”).

Graph subsets are defined by a union of two conditional operators - the
vertex condition and the edge condition:
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Figure 9.3: Graph Subset Creation

gCV,CE =

{

vCV vi ∈ V,CV (vi) = true

eCE ei ∈ E,CE(ei) = true
(9.2)

where gCV,CE is the graph subset containing the results of the subset
operation, CV and CE are logical operations (i.e. WHERE statements
in SQL) that return true if the given node or edge, respectively, are to be
included in the subset.

The CV and CE operations may place an arbitrary set of constraints on
the selection of nodes and edges.

If CV == null but CE! = null, a set of edges is extracted into the graph
subset, and the vertex set consists of all vertices that are referred to as a
source or destination of the selected edges.

If CE == null but CV ! = null, a set of vertices and all edges that
connect them are extracted into the subset.

The graph subset as extracted by this operation is stored in a persistent
database view and can be revisited or used as a basis for future pruning
operations or queries.

9.7.3 EgoNet: Generating Ego Network subsets

The EgoNet operation returns a subset of the graph that consists of nodes
that are located at or within a given graph distance. All edges that exist
between these nodes are included in the subset, although it is possible to
prune the subset further by applying an edge condition.

gegonet(vc,d) =

{

vegonet vi ∈ V, distance(vi, vc) < d

eegonet ei ∈ E, source(ei) ∈ vegonet ∧ dest(ei) ∈ vegonet
(9.3)
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Figure 9.4: Extraction of EgoNet

where vc is the center node specified by the user, and d is the maximum
graph distance between the center node and any other node in the subset.

It is a special case of the subset operations, as it imposes a relational
condition upon the selection of nodes and requires computation of graph
distance as an intrinsic database operation.

The EgoNet function performs a breadth-first search of the graph, starting
at the center and expanding its search radius until it is equal to the specified
maximum radius d.

Pure SQL is not very suitable graph-theoretic computations as most of
them require recursion, which is expressly forbidden in SQL semantics. To
implement graph traversals within the database, the recursive component
is written in PL-SQL, a procedural language shared between Oracle and a
number of other database engines. The PL-SQL function then calls SQL
SubSet operations and builds up recursive views of the database.
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Figure 9.5: Network Expansion

Format: egonet(center-node-id,distance)

Arguments:
center-node-id ⇒ string the ID of the center node of the ego net-

work
distance ⇒ int maximum graph distance between the cen-

ter node and any other node in the subset

Returns:
A SELECT set of objects of type Node.

Example Usage
SQL: SELECT * FROM

egonet(’bin ladin’,2);

db2dynetml: db2dynetml <database> <output file>

-ego bin ladin -distance 2

WWW: In the node list, click on ”Egonet” button
next to the center node

9.7.4 Network Expansion

The purpose of NetExpand operation is, starting with an incompletely defined
graph subset, find all surrounding network features. For example, NetExpand
can be used to find all organizations, resources, locations and tasks connected
to a given group of people.

The NetExpand function takes a graph subset Ssource returns a subset
of the graph Sresult such that all nodes in Sresult are at or within a given
graph distance from one of the nodes in Ssource. In a simpler fashion, it can
be defined as a union of ego networks (EgoNet of all nodes in the Ssource:
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NetExpand(Ssource, d) =
⋃

(EgoNet(vi, d), vi ∈ Ssource (9.4)

Format: fullnet(source-nodeset,distance)

Arguments:
center-node-set ⇒ name the name of database view of type Node

that contains the center nodeset.
Database view can be created by running
the following command:
CREATE VIEW <name> AS SELECT * FROM

NODE WHERE ...node conditional...

distance ⇒ int maximum graph distance between the cen-
ter nodes and any other node in the subset

Returns: A SELECT set of objects of type Node.

Example Usage
SQL: SELECT * FROM

fullnet(source-nodeset,2);

db2dynetml: db2dynetml <database> <output file>

-net source.xml -distance 2

WWW: Load a database subset on screen by im-
porting a DyNetML file, running queries
or manual selection; then click on ”Expand
Network” in the toolbar

9.7.5 Nodeset Pruning

The ExcludeCond function removes nodes from a graph subset given a based
on a selection criteria. The function is defined as:

gExcludeCond(source, CV ) =

=

{

vexclude vi ∈ source, CV (vi) = false

eexclude ei ∈ E, source(ei) ∈ vexclude ∧ dest(ei) ∈ vexclude
(9.5)

234



= Selected Nodes


=


Selection Criteria Applied
Source Graph
 Resulting Subset


Figure 9.6: Pruning the network subsets

Format: exclude-cond(source-
nodeset,exclude-conditional)

Arguments:
source-nodeset → name the name of database view of type Node

that contains the center nodeset.

exclude-conditional → sql SQL statement containing the exclusion
condition

Returns: A SELECT set of objects of type Node.

Example Usage
SQL: SELECT * FROM exclude-

cond(source-nodeset,”WHERE
nodeID!=’bin ladin’”);

db2dynetml: db2dynetml database-name output-
file -net source.xml -exclude-cond
”WHERE nodeID!=’bin ladin’”

WWW: Currently no Web interface implemented

The ExcludeNodeset function removes nodes from a graph subset given a
based on membership in another set. The function is defined as:

gExcludeNodeset(source, exclude− list) =

=

{

vexclude vi ∈ source, vi /∈ exclude− list

eexclude ei ∈ E, source(ei) ∈ vexclude ∧ dest(ei) ∈ vexclude
(9.6)
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Format: exclude-nodeset(source-
nodeset,exclude-nodeset)

Arguments:
source-nodeset → name the name of database view of type Node

that contains the center nodeset.
exclude-nodeset → name the name of a database view containing

nodes to exclude from the given nodeset

Returns: A SELECT set of objects of type Node.

Example Usage
SQL: SELECT * FROM exclude-

cond(source-nodeset,exclude-
nodeset);

db2dynetml: db2dynetml database-name output-
file -net source.xml -exclude-list
exclude.xml

WWW: Load the source nodeset from a DyNetML
file, click on ”Limit by” button in the tool-
bar and select a DyNetML file containing
the exclusion list.

9.8 Auxiliary Tools

Current subsetting tools are written as stored procedures, and can be ac-
cessed through any programmatic interface to PosgreSQL, the Web interface
or through a command-line programme db2dynetml.

The manipulation tools allow easy completion of incomplete datasets (e.g.
“Given a set of people, find all organizations and resources connected to
them”). To initiate dataset completion, the db2dynetml tool is launched
with a DyNetML file containing the subject dataset. It then runs a set of
graph-traversal expansions on the network and stores their results as a new
network.

9.8.1 Exporting data from the database: db2dynetml

db2dynetml is a cross-platform command-line tool that exports information
stored in a NetIntel database into a DyNetML file. Versions of the tool exist
for Windows NT/2000/XP, Linux and OpenBSD; other operating systems
that utilize a standard GNU compiler architecture can be also supported.
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Command Usage

prompt> db2dynetml database-name output-file

[-h<db host> ] [-u<db username> ] [-ego<egonet center> ]

[-distance<egonet distance> ] [-doc<documentID> ]

[- net<DyNetML file>] [-exclude<Exclusion List>]

The command-line parameters are explained below:

database-name name of the database to connect to; Re-
quired

-h db host name or IP address of the database host
(Optional; default value is the the name of
the central CASOS application server)

-u db username database username (Optional; specify
when not using a default host. The pro-
gram will request a password interactively
if the database requires password authen-
tication

output file name of a DyNetML output file; Re-
quired

-doc documentID Extract a dataset that is related to a par-
ticular source document

-ego

egonet center

Generate an ego network centered around
a node (see section 9.7.3

-distance

egonet distance

Radius of the ego network; requires -ego or
-net

-net DyNetML file expand a network from one specified in the
file (see section 9.7.4

. Note: -ego and -net are mutually exclusive

-exclude

Exclusion List

prune dataset (resulting from -net, -ego or
-doc options) using exclusion list stored in
a DyNetML file.

9.8.2 Importing Data into the database

dynetml2db is a tool for importing data stored in DyNetML files into the
database. The database will not only store the data contained in the DyNetML
file but also track the origin of data by creating an entry in the document
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table. Thus, the exact copy of the imported document can be retrieved using
the -doc switch of the db2dynetml.

Command Usage

prompt> dynetml2db <database name> <input file> [-h<db host> ]

[-u<db username> ] [-m<message> ]

The command-line parameters are explained below:

database-name name of the database to connect to; Re-
quired

-h db host name or IP address of the database host
(Optional; default value is the the name of
the central CASOS application server)

-u db username database username (Optional; specify
when not using a default host. The
program will request a password interac-
tively if the database requires password
authentication

input file name of a DyNetML file to be imported;
Required

-m message tag the imported data with a message;
messages can be viewed and searched via
the WWW interface

9.9 WWW Interface to NetIntel dataset

Figure 9.7 shows the WWW interface for entry, editing and manipulation of
data stored in the NetIntel database. The interface allows a user to enter
new nodes and edges, search the database for occurrence of keywords and
build subsets of data based on attribute values as well as graph-theoretic
measures.

TheWWW interface allows graphical controls for building complex queries
against the database, as well as easy import and export of data.

The WWW interface is written as in PHP and runs on an Apache server.

9.9.1 Managing Graph Data

The main screen (Figure 9.8) of the NetIntel interface consists of a toolbar
that contains a number of common actions, and a list of graph nodes or
objects in the database.
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Figure 9.7: Screenshot of the WWW Interface to NetIntel Database

The toolbar of the NetIntel interface allows the user to import and export
data, as well as run queries and run graph expansion:

All Documents Displays the list of documents imported
into the database (see section 9.9.2)

All Nodes Reset the current subset and display all of
the nodes in the database

Export to DyNetML Construct a DyNetML file from the cur-
rently selected subset of the network

Import DyNetML Import a DyNetML file and register it as
a data source document

Expand Net Run the NetExpand operation (see sec-
tion 9.7.4)

Agent,

Organization,

Location, etc

Limit the nodes displayed by node type.
A button will be created for every type of
nodes present in the database

The node list contains nodes in the currently selected database subset.
The current subset can be manipulated using any of the query, network
expansion and sorting functions. The current subset can also be exported as
a DyNetML file using the Export to DyNetML button on the toolbar
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Figure 9.8: Screenshot: Main toolbar and Listing of Nodes

Each of the nodes in the list is displayed with its ID, type and 3 buttons
that allow operations on individual nodes:

Edit Brings up the editing screen (see below)
EgoNet Runs the EgoNet function (section 9.7.3)

on the selected node and makes EgoNet
selection the current subset. The distance
parameter of the EgoNet function can be
entered to the left of the button

Delete Deletes a node and all edges associated
with it.

The node editing screen (figure 9.9) allows the user to edit the attributes
of a node and view and edit edges associated with the node. Number and
type of attributes are dictated by the type of the node.

The list of edges is displayed below the node attributes. The edges are
sorted by the type of target nodes (e.g. links between an agent and organi-
zation will be shown in the Organization section). Each of the edges is listed
with its label, as well as strength and confidence values. Pressing the GO

button next to the edge target displays the target node in the editing screen.
This behavior of the interface allows for fast manual data entry from text

sources. For example, to code a statement ”Hamas was headed by Yassin and
Rantissi”, the user should add a node of type Organization and name it
Hamas. The new node will be automatically displayed in the editing screen.
In the Agent category of the edge list, the user should type the name Yassin
and add the edge. Then, Rantissi is added with the similar operation. Both
nodes will be automatically added to the database and can be edited by
pressing the GO button next to them.
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Figure 9.9: Screenshot: Viewing and editing information in an imported
document

9.9.2 Managing Data Source Documents

NetIntel interface allows the user to view and manage any number of data
source documents after they have been imported into the database. This
makes it possible to integrate multiple data sources as well as retain access
to each dataset individually. Figures 9.10 and 9.11 show the interface for
managing collections of documents and associated network data.

9.10 Conclusion

NetIntel is a flexible database system designed for handling large volumes of
graph-based and social network data. NetIntel is built as an extension to a
standard SQL database, and thus does not require custom or experimental
database storage engines, and can utilize the wealth of third-party interface
software and APIs. While not as full-featured as QGraph or other systems
designed specifically for graph manipulation, it provides a reliable means of
storage and manipulation of graph-based data and easy-to-use facilities for
export of data into analysis tools as well as online browsing and data entry.
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Figure 9.10: Screenshot: List of imported documents
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Figure 9.11: Screenshot: Viewing and editing information in an imported
document
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