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Abstract

Over the years, competitions have been important catalysts for progress in Artificial Intelligence.
We describe one such competition, the Trading Agent Competition for Supply Chain Management
(TAC SCM). We discuss its significance in the context of today’s global market economy as well as
AI research, the ways in which it breaks away from limiting assumptions made in prior work, and
some of the advances it has engendered over the past six years. TAC SCM requires autonomous
supply chain entities, modeled as agents, to coordinate their internal operations while concurrently
trading in multiple dynamic and highly competitive markets. Since its introduction in 2003, the
competition has attracted over 150 entries and brought together researchers from AI and beyond
in the form of 75 competing teams from 25 different countries.
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Introduction

Many important developments in Artificial Intelligence have been stimulated by organized com-
petitions that tackle interesting, difficult “challenge” problems. Examples include chess, robot
soccer, poker, robot navigation, stock trading, and others. Economics and artificial intelligence
share a strong focus on rational behavior. Yet the real time demands of many domains do not
lend themselves to traditonal assumptions of rationality (Simon, 1979; Wellman, 1996). This is the
case in trading environments, where self-interested entities need to operate subject to limited time
and information. With the Web mediating an ever broader range of transactions and opening the
door for participants to concurrently trade across a number of markets, there is a growing need
for technologies that empower participants to rapidly evaluate very large numbers of alternatives
in the face of constantly changing market conditions. AI techniques such as neural networks and
genetic algorithms are already routinely used in support of automated stock trading scenarios. Yet,
the deployment of these technologies remains limited, and their proprietary nature precludes the
type of open benchmarking that is critical for further scientific progress.

The Trading Agent Competition for Supply Chain Management (TAC SCM)1 was conceived
by the third author in 2002 as a way of focusing the attention of researchers in AI and beyond
on the increasingly complex problem of managing supply chains in today’s global economy. More
specifically, it was designed to foster the development of new techniques to manage risk and adapt to
changing conditions while concurrently trading in multiple market places (Sadeh et al., 2003a). The
initial version of the game was designed and implemented through a collaboration between Carnegie
Mellon University and the Swedish Institute of Computer Science (Arunachalam and Sadeh, 2005;
Eriksson et al., 2006), with subsequent refinements introduced through a collaboration with the
first author (Collins et al., 2005). Over the years, all three authors have also contributed successful
entries in the competition.

Supply chains are the foundation of today’s global economy, with annual flows worth tens of
trillions of dollars. As companies continue to focus on core competencies and outsource functions
ranging from procurement of raw materials and components to logistics, after sales support, and
recycling/remanufacturing operations, they weave increasingly complex networks of interdependent
organizations often spanning multiple continents. Pressure to shorten product lifecycles, reduce
costs and offer higher levels of customization is simultaneously forcing organizations to explore
increasingly flexible contractual relationships (e.g. price, volume or service-level flexibility) aimed
at reducing inventory risks while providing protection against shortages and price fluctuations. By
their very nature, these more flexible relationships place a premium on the ability of supply chain
entities to rapidly adapt to changing market conditions. Those capable of doing so reap significant
benefits in the form of more efficient operations and higher profit margins. Yet failures under these
less forgiving scenarios can also be catastrophic, ranging from companies going out of business
because they made the wrong bets, to critical supplies failing to be delivered in time in the face of
disruptive events such as hurricanes, strikes or pandemics.

TAC SCM builds on the observation that supply chains should not be viewed as monolithic
entities that can be centrally optimized, but instead consist of multiple self-interested entities each
operating according to its own objectives and policies (Swaminathan et al., 1998). Whereas each
real-world supply chain exhibits its own peculiarities, TAC SCM is designed to capture major
sources of complexity common to large numbers of supply chains, while shielding researchers from

1See http://www.tradingagents.org for more information
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less relevant idiosyncracies. Supply chain entities are modeled as autonomous agents that concur-
rently compete with one another in both end-product and component market places subject to both
exogenous and endogenous sources of uncertainty. In artificial intelligence terms, these agents must
act autonomously to maximize their expected utilities in an environment that is highly dynamic,
partially observable, and strongly affected by the actions of competing agents.

Starting with the first open competition in 2003, TAC SCM has attracted over 150 entries from
75 teams distributed across 25 different countries. These teams represent a variety of research
interests, including supply-chain management (Sardinha et al., 2009), agent architectures (Collins
et al., 2009a; Benisch et al., 2009), economic decision-making (Kiekintveld et al., 2006; Ketter et al.,
2009), empirical game theory (Jordan et al., 2007), dynamic pricing (Benisch et al., 2006a; Ketter
et al., 2007), machine learning (Pardoe and Stone, 2007), economic market modeling (Ketter et al.,
2009), fuzzy logic (He et al., 2006), stochastic optimization (Benisch et al., 2004), and a large
variety of other areas2.

In the following sections we present the TAC SCM game scenario and review the decisions
competing supply chain trading agents have to make in the game. Along the way, we discuss some
of the challenges associated with the design of the game and of successful agents. We highlight the
game’s relationship to current and future supply chain practices. We also review how TAC SCM
has been used in education and what is required for new teams to enter the competition, including
the availability of software that can help to develop and fine-tune agents.

The TAC SCM scenario

The TAC SCM game captures key features of a multi-tier supply chain with multiple actors com-
peting in each tier. The game models 220 days (or 44 five-day weeks, which we informally refer to as
”‘a year”’) of operation in 55 minutes of real time. Participating agents must operate through three
conceptual phases that are characteristic of the launch, steady production, and eventual phasing
out of multiple end-products. The end products are assumed to be different types of PCs, though
the simulation model is in no way restricted to this particular type of product.

Each PC model requires a different combination of components. To promote lean supply chain
management practices, TAC SCM assumes that PC models are phased out by the end of the one-
year period, and their residual value and that of the major components they require is effectively
zero. In other words, the scenario penalizes agents that hoard more components than they need or
assemble more PCs than they are able to sell. Teams compete by entering their supply chain trading
agents in the competition and playing a large number of games against different combinations of
competitors. Each trading agent is responsible for procuring components from multiple suppliers,
manufacturing finished products (different types of PCs), and selling those products to customers.
All the while it competes with other trading agents entered by other teams, who are also trying to
purchase the same components and sell the same products, as component and end product market
conditions change (e.g. because of the actions of other trading agents or because of exogenous
conditions such as suppliers losing some capacity or demand for some particular types of PCs
dropping over time). By requiring agents to compete in hundreds of games, the competition is able
to evaluate agent performance across a large number of market conditions and competitive settings

2A Google Scholar search on ”‘TAC-SCM”’ returns over 350 hits. While some of these links may be duplicates or
erroneous, they give a sense of the intensity and breadth of research activity the competition has stimulated over the
past several years.
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- from markets with low product demand and high component availability, to markets with high
product demand and low component availability, to anything in between including markets that
transition between these extremes for different end products and components.

The schematic overview of the TAC SCM scenario shown in Figure 1 will help explain the
specifics of the game. Several agents (e.g., MinneTAC, TacTex, Botticelli) compete with each other
as manufacturers of personal computers, purchasing computer components (CPU, motherboard,
hard drive, and memory) from suppliers (IMD, Pintel, etc.) in a procurement market, and selling
their finished products to customers in a sales market. Each agent has identical production and
warehouse facilities, each sees the same customer demand, and each initially has equal access to
suppliers, although reputation effects can result in preferential treatment as the game progresses.
Customer demand and supplier capacity and prices are highly variable both within the course of a
game and across different games. Each agent starts with no inventory and an empty bank account,
and must borrow (and pay interest) to build up an inventory of computer components before it
can begin assembling and shipping computers. The agent with the largest bank account at the end
of the game is the winner of that particular game; performance of agents is averaged across many
games in the competition setting. Actions of other agents are visible only through their effects on
the customer and supplier markets.

Figure 1: Schematic view of TAC SCM simulation scenario. Agents assemble and sell 16 different
products, using 10 component types purchased from suppliers.

Figure 2 shows a typical sequence of interactions between a TAC SCM agent and its environ-
ment over the course of a simulated day. Each day lasts 15 seconds, which limits the reasoning time
available to agents. In the real world, supply chains require the management of many more com-
ponents with many events accruing during the course of the day; a 15-second day in the TAC SCM
game is therefore not unrealistic. At the beginning of each cycle, each agent receives a bundle of
messages from the server, representing customer demand, customer orders arising from bids placed
during the previous cycle, status updates from the bank and warehouse, and supplier offers arising
from supplier RFQs issued during the previous cycle. Before the end of the cycle, the agent must
decide how to bid on new customer RFQs, which supplier offers to accept, what parts to request
from suppliers, what finished goods to ship to customers, and how to allocate its limited factory
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and inventory resources to production of new finished products. The actual delivery of components
from suppliers to the agent’s warehouse, and delivery of finished products from the agent’s ware-
house to customers, along with associated payments from and to the agent’s bank account, are
handled by the server.

Figure 2: Timeline of an agent’s interactions with its environment.

From an AI perspective, the TAC SCM game requires agents to concurrently compete in multiple
markets (the procurement and sales markets) subject to numerous sources of uncertainty, while
simultaneously managing their internal production and logistics operations. The markets also
exhibit some level of interdependence. For instance, different end products require different but
overlapping combinations of components, and hence demand for different components will have
some correlation over time. The agents also have to operate with incomplete information. For
instance, agents do not know how market conditions will evolve and they do not see the private
data of other agents such as their inventory positions, their order books, the prices at which they
procure components from suppliers, the component purchases they have made, the price at which
they are selling different PC models on a given day, etc. Yet, each day as they place requests for
components and offer end products for sale, they receive feedback from the environment. This
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feedback comes in multiple forms, including whether they manage to sell different types of PCs and
at what price, how many components they manage to procure from different suppliers, at what
price and leadtime. Agents can leverage this feedback to update probabilistic models of the markets
and of what other agents are doing. These models in turn can help them dynamically adapt their
strategies. Strategies can include adjusting one’s product mix, stocking up on components that are
expected to be in low supply, and increasing the price of products that seem to be in high demand
or for which there seems to be little competition.

The following three subsections further detail elements of the game’s procurement market,
production and logistics, and the sales market. These subsections are intended to convey the level
of sophistication involved in the design of the TAC-SCM Competition. Some readers may just want
to jump to the section on “Agent decision problems.”

Procurement market

The procurement market consists of eight suppliers, each of which carries two product lines. Each
supplier operates according to a lean, make-to-order policy. In other words, production is driven by
actual demand rather than demand forecast. The capacity of each supplier production line varies
from day to day according to a mean-reverting random walk that captures effects such as loss of
capacity (e.g. due to maintenance) and exogenous demand (e.g. components used in products
not modeled in this supply chain). Agents may request price quotes from suppliers, specifying a
particular component, quantity, delivery date, and reserve price. Suppliers respond with quotes
that reflect how busy they are, with higher quotes being returned when they are running near
capacity and lower quotes when they have lower order books. Supplier commitments are based
on estimates of their future capacity and, as such, are not entirely reliable. As a result, capacity
variations can lead to shipment delays.

To build a finished product, an agent needs one each of four different component types: a
CPU, a motherboard, a disk drive, and a memory card. There are two CPU suppliers, Pintel
and IMD. Their processors are not interchangeable; Pintel CPUs must be assembled with Pintel
motherboards, and IMD CPUs must be assembled with IMD motherboards. Both Pintel and IMD
make “fast” and “slow” CPUs. Disk drives and memory cards each come in two different sizes.
The result is that the CPUs are single-sourced, while all other component types are dual-sourced.
The lack of substitutability between CPU sources means that the CPU market is more volatile and
unpredictable than the markets for other component types.

Individual suppliers are approximately revenue-maximizing entities, and they manage risk in
two ways. First, they will not commit their entire capacity at any one time; instead, they reserve
a portion (approximately half) of future capacity for future business. Second, they keep track of
whether agents follow through with orders when offers are made. The result is that agents must
manage their individual “reputations” with respect to each supplier, by keeping their ratio of orders
to offers above a threshold. Failure to do so results in higher prices and lower availability of parts
in comparison with competing agents.

The procurement market generally yields lower prices for longer lead-times, but at times of
oversupply, prices can be lower for very short-term requests. Order lead-times can extend to the
end of the game, which is 220 days at the beginning of a game. The longest customer lead-time
is 12 days, and supplier prices tend to peak in the range of 8-15 days lead-time. Supplier orders
require a 10% down-payment, and so the cost of funds can be a significant factor for long lead-time
orders.

5



Production and logistics

Once an agent has acquired the necessary parts to assemble computers, it must schedule production
in its finite-capacity factory. Each computer model requires a set of parts, and a specified number
of assembly cycles. Assembled computers are added to the agent’s finished-goods inventory, and
may be shipped to customers to satisfy outstanding orders.

Warehouse capacity for both components and finished products must be purchased at a price
that is a function of the value of the stored materials. This effectively places a premium on keeping
inventories under control. In addition, each individual component type is used in multiple types
of finished goods, across multiple market segments. The result is that there is potentially some
opportunity cost to converting parts to finished goods without having sales commitments for the
finished goods. Further incentive to keep inventory under control arises from the fact that at the
end of the simulation, unsold inventory has no residual value.

Sales market

The sales market uses a reverse, first-price, sealed-bid auction mechanism. Each day, customers
issue requests for quotes (RFQs) for the products they wish to buy. Each RFQ specifies a computer
model, quantity, delivery date, and a maximum or reserve price, as well as a daily penalty amount
that the agent must pay if it fails to meet its sales commitments. Penalties can make failure to
ship on time quite expensive, and customer orders are canceled if they are more than five days late,
which also eliminates income from the sale.

The sales market trades in 16 product types, segmented into high-end, medium, and low-end
products. Customer demand varies from day to day independently in each segment, controlled
by a trend that changes daily through a bounded random walk. Figure 3 shows a qualitative
view of the supply and demand behavior of one segment of the customer market. The shape of
the demand curve is controlled by the current overall demand, and by the uniform distribution of
reserve prices between 0.75-1.25 of the nominal cost of components. The shape of the supply curve
is limited at the high-quantity end by the inventory status and aggregate production capacities of
the competing agents, and at the low-price end by the minimum cost of components. The detailed
shape of the supply curve is a function of the combined bidding strategies of the competing agents.
It is not directly observable within a game, but segments of it can be deduced through post-game
examination of data.

Figure 3: Supply and demand in the sales market.
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The game design challenge3

Designing an economic game that serves a research agenda and provides an interesting and rea-
sonably accessible challenge to researchers is a difficult undertaking. The original goals for TAC
SCM, described by Arunachalam and Sadeh (2005), included realism and generality, uncertainty
and incomplete information, strategic interactions, and simplicity. The scenario must have enough
realism to be relevant to practitioners, enough generality to be representative of a broad range of
supply-chain situations, and enough subtlety to require new ideas, without unnecessary complexity
that would make agent design and data analysis more difficult than it needs to be. Supply chain
management must deal with uncertainty, risk, and limited information. An interesting simulation
scenario should include significant variability in prices, availability, and demand, and should limit
visibility of markets and competitors to approximate the view of a real-world supply-chain manager.
The scenario should reward careful management of risk. The game and its market mechanisms must
allow and encourage strategic behavior, and yet be free of unintended exploitable weaknesses. In
addition, in order to attract enough interest to provide good competition, game designers must pro-
vide the simulation infrastructure and a basic agent framework that encapsulates the interactions
between the infrastructure and the agent. Serviceable visualization and analysis tools are needed
in order to demonstrate the concepts of the game, and to support researchers as they develop and
analyze their agents.

The design of TAC SCM was carefully tuned over the first three years to make the competition
interesting and challenging. Empirical evidence based on the many games played over the years by
agents developed by 75 different teams suggests that opportunities for strategic manipulation that
have the potential to subvert the purpose of the game have been eliminated (Ketter et al., 2004;
Wellman et al., 2005). Agents must manage their reputations with respect to each supplier; this
discourages agents from creating false demand by making large requests and then turning down
the resulting offers, thereby inflating prices. Because suppliers reserve some capacity for future
demand, it is very difficult to “corner” the market for some component type. It is still possible and
indeed common for agents to manipulate prices in both the sales and procurement markets. For
example, knowing that agents can see only the highest and lowest order prices in the sales market,
agents can make isolated offers well below current prices, thereby seeding opponent price models
with misleading information. This technique can be used to drive prices down with minimal impact
on profits, in situations where prices are above the “knee” in the customer demand curve, or when
an agent believes it has a lower procurement cost basis for a specific product than its competitors.

The parameters of the scenario are set to ensure that decision coordination between procurement
and sales is reasonably challenging. Figure 4 is a histogram of the daily customer RFQ count over
200 games, approximately 44,000 observations, which shows the overall balance between supply and
demand. Superimposed on the histogram are the mean customer demand, the aggregate capacity
of six agent factories, and the expected supplier capacity. The key message from this balance is
that an agent can expect to buy enough parts to keep its factory busy, but a strategy that simply
tries to keep the factory busy is likely to result in a large unsold inventory at the end of an average
game because the expected customer demand cannot absorb the production of a set of agents that
behave in this way4. On the other hand, there are some games in which the agents cannot supply all
the demand, and the variability inherent in the simulation can lead to serious imbalances between

3Note to the reviewers: This section could be a sidebar
4This balance was first introduced in the 2005 competition. Destructive price wars were a common problem in

the early rounds of that competition until the full-production agents were eliminated
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customer demand for specific products and the availability of the parts required to build them.
The best agents are able to adapt their behaviors to exploit these imbalances.
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Figure 4: Distribution of demand in the TAC SCM customer market, compared with the expected
availability of parts, and the aggregate production capacity of six agent factories.

The game platform consists of a server that simulates not only the suppliers and customers,
but also the agent factories and warehouses, along with a bank. Agents join a simulation through
standard Internet connections. This allows research teams to work with their own tools and hard-
ware, and greatly simplifies the operation of open competitions. Since many agents are essentially
compute-bound, this structure arguably gives some advantage to teams who have more or better
hardware at their disposal. So far, there is little evidence that this is a factor; agent design appears
to be a significantly greater predictor of performance than hardware capability.

Agent decision problems

To be competitive, an agent must purchase components and manufacture products it can sell, and,
to the extent possible, it must sell what it has built at a profit. After seven years of competition and
publication, the competition in the final stages of the annual tournament is quite intense. Profit
margins are very slim, and prices in the customer market are seldom very far above the component
costs seen by the agent with the most effective procurement strategy. Prices in both the customer
and supplier markets can be quite volatile as agents continually adjust their behaviors to take
advantage of the markets and of any weaknesses in their opponents. Kiekintveld et al. (2006)
identify three key issues that a successful TAC SCM agent must address: dealing with substantial
uncertainty in a highly dynamic economic environment, in competition with other self-interested
agents whose behavior is naturally strategic.

A successful agent design for TAC SCM must make a large number of decisions every 15 seconds.
Attempts to construct and maintain opponent models must account for the fact that the sales and
procurement markets are “oligopoly” markets, which means that one must model and anticipate the
effects of ones own actions. For example, any attempt by an agent to increase its market share for
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a highly profitable product will typically depress prices and hence the profitability of that product.
It also means that daily variations in the behavior of a competitor can introduce significant “noise”
into the price signals that are observed by an agent.

In the remainder of this section we describe the basic decision problems a successful TAC SCM
agent must address, and review some of the successful approaches that have been developed as a
result of the ongoing competition.

Procurement

Agents seek to purchase raw materials (computer components) at a price that will allow finished
goods to be sold at a profit. But purchasing low-cost components is not enough. There is a limit
to the rate at which the agent’s factory can absorb components, and components that cannot be
assembled into usable products are worse than useless – they represent sunk cost that may not be
recoverable, and the agent must pay to store them.

Most agents use some sort of projected inventory model to determine their procurement needs,
along with a supplier pricing model. For example, Kiekintveld et al. (2004) describe an inventory
model that projects future inventories by adding supplier shipping commitments and subtracting
existing and expected future consumption. Whenever a future shortage is discovered, the agent
forms a goal of replenishing its inventory to cover the shortage. If the expected shortage is more
than a few days in the future, the agent must decide whether to place an order immediately, or
wait until some later date and place an order with a shorter lead-time. This decision is driven by a
supplier pricing model that observes supplier price quotes to build up a history of prices at various
lead-times; the agent then uses this model to estimate bounds on each supplier’s uncommitted
capacity (this works because supplier pricing is a deterministic function of uncommitted capacity,
but the signal is sparse and extremely noisy), and it uses these capacity estimates to predict current
and future prices.

Benisch et al. (2006b, 2009) describe a procurement process that spreads its requests to each
supplier over time in a way that attempts to minimize overall cost. The difference between target
and predicted inventory is projected out to the end of the game, and each projected shortfall
initiates a process that distributes purchasing across available suppliers and across time, attempting
to exploit minima in the prices predicted by its supplier-price model.

Procurement is arguably the most difficult decision problem in the TAC SCM scenario. Pos-
sibly because of this difficulty, there is strong evidence from work by Andrews et al. (2008) that
procurement performance is the best predictor of overall agent performance. This observation was
also one of the motivations behind the launch in 2007 of a separate Procurement Challenge focusing
specifically on benchmarking agents’ procurement strategies (Sardinha et al., 2009).

Production scheduling

In the early competitions, some agents experimented with various methods for building near-optimal
production schedules. For example, Benisch et al. (2004) describe a stochastic programming formu-
lation for production scheduling. The goal was to maximize the probability that products produced
would actually be sold. At any given time, an agent has a set of outstanding customer orders, with
due dates spread out over up to 11 days in the future. It also has a set of customer RFQs on
which it can place bids, and it has some expectation of future demand. In the approach described
by Benisch et al., bids are placed before the production schedule is generated. The production
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schedule attempts to satisfy all outstanding commitments first, ordered by due date, then as many
outstanding sales offers as possible, ordered by expected profitability and due date. The schedule
is projected into the future by several days, and the availability of uncommitted capacity is used
to control sales volume targets.

Most agents simply keep track of uncommitted production capacity and use it to constrain sales
quotas, and schedule production using a straightforward greedy method. Evidence from Andrews
et al. (2008) suggests that production scheduling performance is not a strong differentiating factor
among existing agents.

Sales

During each simulation cycle, each agent sees the full customer demand in the form of a bundle
of RFQs. It must decide which requests to bid on, and what the bid prices should be. The agent
must consider a number of factors in making this decision, including its own current and expected
inventory situation, expected cost of inventory replenishment, existing sales commitments, available
factory capacity, and its own models of future demand and market prices. A number of approaches
have been tried for controlling this decision, ranging from fuzzy logic to linear programming. All of
them must somehow solve a constrained optimization problem with some degree of approximation,
in limited time.

The MinneTAC agent (Ketter et al., 2007) controls its bidding in the customer market on three
principles. First, market prices are tracked and projected using a model that is trained with a
large body of historical game data, and fine-tuned using in-game market monitoring. A Gaussian
mixture model classifies market situations or “economic regimes” (Ketter et al., 2009). Projection
of future price trends uses a recursive Markov model. Given sales and procurement price predictions
over a planning horizon, a linear program sets daily sales quotas for each product over the horizon,
subject to constraints arising from inventory, factory capacity, and (projected) customer demand.

The SouthamptonSCM agent (He et al., 2006) uses fuzzy reasoning to decide which customer
requests to respond to, and what the bid prices should be. Its overall goal is to maximize its factory
utilization, as long as it can do so profitably. Demand and inventory are represented as fuzzy sets,
and a set of rules convert those into control variables which are combined into a “price adjustment
factor” that is applied to the prices observed in the market on the previous day. SouthamptonSCM
uses a separate fuzzy rule base to control pricing near the end of a game, where the criterion for
profitability requires moving as much of its remaining inventory as possible.

Benisch et al. (2006a) describe a very different approach to pricing in the sales market. Their
CMieux agent treats sales pricing as a continuous knapsack problem. The goal is to offer a price to
every potential customer (at least those for which a profitable sale is possible) that maximizes total
revenue, while avoiding overcommitment of its inventory and production capacity in expectation.
They show that the optimum price sets the demand fraction for the different products such that
the first derivative of a “reward function” is equal across all products.

The small number of players in the TAC SCM markets has been a tempting target for opponent-
modeling techniques. Unfortunately, the specific actions of individual opponents are not visible
during the simulation – only their aggregate effects on the markets can be observed. However,
the simulation server keeps a detailed log of agent interactions, and this data is available after the
completion of each tournament round. Pardoe and Stone (2009) have experimented with a variety
of opponent modeling schemes, using these detailed simulation records. They were able to show
that there is some advantage to learning from a body of training data containing exactly the mix
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of opponents that one is competing against, but it is not a large effect.

One way in which progress is evident over the years of the competition is through the distribution
of sales prices. We see this in two different ways. First, agents have become more consistently
profitable, although they do not always earn back their initial investment. This means, for example,
that price wars have been rare in the more recent tournaments. Second, the daily sales price ranges
for given products averaged around 3% in the 2008 tournament, and 1.5% in the 2009 tournament.
In contrast, the width of the daily price distributions during the first two years of competition
averaged over 7% and frequently went well over 10% in tournament games.

Decision coordination

The TAC SCM scenario places a premium on effective coordination of decisions affecting multiple
markets and internal resources. Inventory planning is complicated by the fact that a given part
may be used in multiple products, and a shortage of a particular part can prevent an agent from
participating in significant segments of the customer market. Because demand in the three customer
market segments can vary independently over a wide range, a strategy that strongly decouples
procurement from sales is unlikely to meet customer demand effectively without carrying excess
inventories of the parts that are not currently in demand. In the first years of the competition,
before the customer market was segmented, this decoupling was a very common strategy. Ketter
et al. (2010) identify the problem of decision coordination as a crucial element in the design of
an agent for TAC SCM, and review the published literature on agent design to discover a wide
variety of approaches to this problem. The authors believe that the existence of such variety is an
indication that much is yet to be learned about designing such agents.

Figure 5: CMieux coordinates decisions using a separate Strategy module.

The CMieux agent (Benisch et al., 2009) from Carnegie Mellon is an example of an agent
that clearly separates decision coordination from details of procurement, sales, and production
scheduling. A schematic diagram of the CMieux design is shown in Figure 5. The Strategy module
sets overall goals for the remainder of the system, such as the portion of expected demand to target,
and the portion of the production schedule (ATP, or Available to Promise quantities for each end
product) that should be sold to customers (DTP, or Desired to Promise quantities for each end
product). The Forecast module observes the markets and makes predictions about demand, prices,
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and delays in supplier shipments. The Inventory Projector combines that with current inventories
and expected supplier deliveries to generate inventory projections over time. Procurement uses the
projected inventory along with an optimistic version of the production schedule (what Production
would expect to build if there were no inventory constraints) to decide what to order from suppliers,
and supplies the Inventory Projector with actual supplier orders. CMieux reached the finals in 2007,
2008 and 2009.

Figure 6: DeepMaize coordinates decisions through a long-term production schedule, using value-
based decomposition.

The DeepMaize agent (Kiekintveld et al., 2006) from the University of Michigan coordinates its
decisions through “value-based decomposition”. In this approach, a long-term production sched-
ule is constructed by incrementally adding the products that are expected to return the highest
marginal profits at multiple points in the future. The general scheme is summarized in Figure 6.
This approach depends on reasonably accurate pricing models for both the customer and supplier
markets that effectively capture price-quantity tradeoffs. The two prediction components shown in
the diagram, along with an off-line machine-learning process, are responsible for producing those
models. Given the resulting long-term production schedule, the Procurement module attempts to
provide the necessary components to fill it, and Sales uses it to set prices in the customer market.
DeepMaize has been a finalist in all of the TAC SCM tournaments. It placed third in 2006 and
2007, and first in 2008 and 2009.

Real-world agent-enabled SCM

Since the mid nineties, artificial intelligence techniques have contributed to the development of new
supply chain decision support techniques, starting with the work of Swaminathan et al. on agent-
based supply chain modeling and simulation, which was applied in the context of business process
re-engineering efforts at major electronics and grocery firms (Swaminathan et al., 1998). Around the
same time, Sadeh et al. also reported on the initial deployment and evaluation of AI-based decision
support tools for supply chain coordination at Raytheon (Sadeh et al., 1998). This work led to the
development of the MASCOT multi-agent architecture for coordinated decision support within and
across multiple supply-chain entities (Sadeh et al., 2003b) and demonstrated how agent-assisted
lateral coordination of manufacturing operations across organizations can increase both profitability
and customer responsiveness in the face of high load factors and a variety of contingencies. A third
line of work strongly influenced by research in artificial intelligence has seen the development and
fielding of technologies for reverse supply chain auctions. This includes work by Wurman et al.
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(1998) on configurable auction technology eventually conmmercialized by Ariba. It also includes
work on more expressive mechanisms for reverse auctions conducted by Sandholm et al. (2005) and
commercialized by CombineNet, a company that conducts large-scale procurement auctions where
buyers and sellers can express a wide range of constraints and preferences beyond price.

Among other objectives, TAC-SCM was designed to promote the development and benchmark-
ing of adaptive supply chain trading technologies required to better manage risk in supply chain
environments characterized by increasingly flexible contractual relationships, such as those result-
ing from reverse auctions organized by companies like CombineNet. These long-term contractual
relationships are typically characterized by flexibility in price, quantities and service levels and often
entail arrangements where supply chain entities need to dynamically manage complex portfolios
of flexible supply chain contracts (Martinez de Albeniz and Simchi-Levi, 2005). This work itself
was strongly influenced by studies conducted in the mid to late nineties, showing that, contrary
to popular belief, a number of manufacturers did not rely solely on long-term strategic partner-
ships with suppliers and that more research was needed on how to effectively manage portfolios
of buyer-supplier relationships covering a wide spectrum of possible arrangements (e.g. study of
Japanese car manufacturers by Bensaou (1999)). A review of models for constructing short-term
and long-term contracts in business-to-business markets has been conducted by Kleindorfer and Wu
(2003). Elmaghraby (2000) also provides an excellent review of tradeoffs between different sourcing
strategies. Martinez de Albeniz and Simchi-Levi (2005) have shown that portfolios of quantity
flexible procurement contracts used in combination with spot market procurement can contribute
to higher expected profits and lower financial risk. Nagali et al. (2008) have reported using a sim-
ilar risk management model to support the development of portfolios of procurement contracts,
achieving savings of hundreds of millions of dollars in the procurement of flash memory used in
printers assembled by Hewlett-Packard. In 2007, the third author and his colleagues launched a
variation of the supply chain trading competition focusing solely on the management of long-term,
quantity flexible procurement contracts and one-off procurement contracts (Sardinha et al., 2009).

Teaching

Beyond its research impact, the TAC-SCM scenario has also contributed to classroom education
around the world (US, Canada, the Netherlands, Brazil, UK, Australia, etc), both at the undergrad-
uate and graduate levels. Typically, students are required to either develop new entries from scratch
or develop and evaluate alternative designs for modules of a given trading agent. In the process,
they gain hands-on experience with online learning and stochastic optimization techniques. They
also learn to better appreciate the complexity associated with competitive environments, where
the success of one’s strategy depends on the strategies of others and how quickly one can adapt
to changes in these strategies. Having students work on TAC-SCM agents or modules has also
proven to be an excellent way to expose students to software engineering concepts, especially when
they work in teams, with different members each in charge of developing and evaluating modules
or functionality whose performance is often dependent on modules or functionality developed by
other team members. This type of work fits natually in a computer science curriculum, but is less
appropriate for management science and economics students.

As a result, games such as the MIT beer game5 (Sterman, 1989, 1992), are still the prevalent
teaching tools in business and management programs, despite their simplistic setup. TAC SCM has

5http://beergame.mit.edu
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the potential to replace these games and expose students (and managers) to much more dynamic
and complex supply chain scenarios. Getting there however will require building an additional
layer of mixed initiative functionality, where human decision makers (students or managers) have
the ability to tweak high-level, human-oriented parameters, wile relying on underlying agent-based
decision support to process the very large number of options and decisions necessary to implement
resulting strategies. Initial work on a mixed-initiative version of TAC SCM and the MinneTAC
trading agent is currently under way (Nelson et al., 2009).

Getting involved

A working trading agent is a complex piece of software. TAC SCM agents must not only make
coordinated decisions; they must also interact correctly with the game server, and typically they
must produce data needed for empirical research. The organizers of the competition have worked
to keep the game interesting and to minimize the barrier to entry, by providing the game server
along with a software infrastructure that handles the agent-to-server interface and does the basic
data management tasks. A simple “dummy” agent is included with this infrastructure, forming a
foundation for more sophisticated agents. Teams whose agents do well in competition are strongly
encouraged to make their agents available to the community6. As a result, a number of teams have
provided both binary and source for working agents that are significantly more competitive than
the dummy agent. The availability of top-performing agents enables novel types of research, such
as the empirical game theory work of Jordan and Wellman (2007).

Research requires data, and both research and agent development depend on basic analysis
tools. The game infrastructure includes a tool for parsing the logs produced by the game server.
This tool provides a basic user interface that shows day-by-day activity in the procurement and
sales markets, along with bids, offers, orders, inventory levels, factory utilization, bank account
balances, and other data. For example, Figure 7 shows the production and inventory display. The
log analysis tool is programmable with simple Scheme scripts to enable data extraction, and is
distributed with sample code that dumps game data into a database for further analysis.

Figure 8 shows an example of a set of market-oriented analysis tools built by students at CMU
on top of the basic logfile parser. This tool is useful for understanding market interactions among
agents, such as market share and bidding behavior.

The MinneTAC agent (Collins et al., 2008, 2009a), shown schematically in Figure 9, is a com-
plete, easily configured agent available in source form7. Building a working agent on the MinneTAC
foundation is much less work than building a competitive agent on the lower-level framework that is
distributed with the TAC SCM server. As we can see from Figure 9, MinneTAC uses a very different
design approach from the other agents we have examined. The Repository acts as a “blackboard,”
and the various components interact only through the Repository. The Oracle component is a
wrapper for a large number of small modules, called “Evaluators”, that can be strung together as
specified in a configuration file to do the necessary analysis and prediction tasks requested by the
decision components. The actual coordination among decision components happens because they
share some of those Evaluators. Specifically, both the Sales Manager and the Supplier Manager
use sales quotas produced by one of the Evaluators.

6See http://www.sics.se/tac/showagents.php for the current list
7at http://tac.cs.umn.edu
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Figure 7: Logfile analysis example.

Ultimately, the process of generating and analyzing data from TAC SCM simulations requires
that many games be run. The simulation environment is designed to separate the server from
the agents over network connections, and many agents are nearly compute-bound while they make
their daily decisions. This means that running games requires either a large cluster configuration,
or coordination of processes across multiple machines in a network environment. In addition, the
high variability of the game scenario coupled with random behavior on the part of some agents
may require analyzing large numbers of games to reach statistically interesting conclusions. For
example, the game theory analysis described by Jordan et al. (2007) required over 12,000 games.
The process of manually setting up and running such experiments is daunting even for the most
dedicated graduate student. To address this problem, Collins et al. (2009b) describe a framework
for managing multi-game experiments through a simple web-based user interface.

A primary factor that makes the TAC SCM scenario interesting and challenging is the high
variability of market conditions within and across games. This variability drives up the number
of simulations required to achieve statistical significance when comparing agents or agent configu-
rations. Because the game server generates its random behavior using pseudo-random sequences,
it is possible to “re-run” games when evaluating alternate agent configurations, as described by
Sodomka et al. (2007). The result is a dramatic reduction in the number of games needed in
an experiment design. The game server distributed through tac.cs.umn.edu supports this level of
control.
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Figure 8: Game analysis tools made available to competitors by Carnegie Mellon.

Figure 9: MinneTAC: Coordination through the Repository, details depend on configuration.

Conclusion and future work

Organized competitions such as TAC SCM have been effective tools for driving AI research into
a range of interesting, complex domains that are both socially and economically important, and
difficult for a single research team to address. The rapid rise of internet-enabled business interac-
tions makes the supply-chain management domain, like many real-world problem areas, increasingly
challenging for human decision making. At the same time, the complexity of such interactions is
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beyond the analytic scope of formal game theory. The result is that evaluation of new approaches
to decision-making is very difficult in isolation. The multi-year competition format, with active par-
ticipation of motivated teams of researchers and regular publication of new techniques and results,
makes such evaluation possible. At the same time, the need to work with management science and
economics practitioners expands the scope of contributions from AI research and stimulates the AI
community with new and interesting challenges.

Agents that operate effectively in the TAC SCM environment must be able to sense and model
their environment and predict their own impacts on that environment. They must be able to deal
with substantial uncertainty and limited visibility of the important features of their environment.
They must maximize their utilities in expectation, while carefully managing risk. They must make
a number of coordinated decisions within strict time constraints. Agents may engage in strategic
interactions with their competitors, through manipulation of the shared environment. After seven
years of competition, there is no clearly dominant approach to agent design and decision processes.
This is evident in the results of the 2009 competition, in which the two top agents very nearly
tied, using very different approaches. The DeepMaize agent from the University of Michigan uses
very careful control of inventory and profitability over a wide range of market conditions, while the
TacTex agent from the University of Texas is more aggressive and strategic, taking large risks in
building up inventory during low-demand periods when procurement prices are low, and exploiting
these inventories when demand recovers and procurement prices rise.

Over the past seven years, considerable progress has been made in developing effective tech-
niques and architectures to manage risk in dynamic supply chain environments, with models from
the TAC-SCM competition influencing ongoing work at large companies such as HP. While research
in this area is far from over and there is still room for very significant advances, the TAC-SCM
community will also have to turn its attention to packaging many of the technologies it has already
developed into human-oriented decision support tools. These tools will have to allow supply chain
managers to remain in control of key strategic decisions while delegating many more minute, real-
time optimization decisions to agent-oriented functionality. To be effective, this line of work will
have to identify a meaningful balance between the frequency and level of details in supply chain
updates and decisions it exposes users to. This balance will have to be sufficient for supply chain
managers to feel that they remain in control of key sensitive decisions where their own insight is
critical. Yet it should not overwhelm users with information and decisions. Ultimately, developing
mixed initiative functionality that meets these requirements will be critical to the broad uptake of
TAC-SCM technology. Ongoing efforts in this area include work on a mixed-initiative version of
the MinneTAC agent and the TAC SCM competition (Nelson et al., 2009). Early work on devel-
oping mixed initiative supply chain decision support functionality was also detailed by Sadeh et al.
(2003b).

Acknowledgements

We would like to thank all research teams who have participated in TAC SCM over the years
and made it a stimulating and highly research driven competition. Special thanks also to Sverker
Janson and his group at the Swedish Institute for Computer Science for their contributions to the
initial design and implementation of the TAC-SCM game. Another big thanks goes to the TAC
community as a whole, which provides a platform for vivid exchange and feedback among the
various researchers through an annual workshop on Trading Agent Design and Analysis (TADA).

17



The third author would also like to acknowledge the support provided for this work by the National
Science Foundation under ITR Grant 0205435 as well as by a grant from SAP Research.

References

Andrews, J., Benisch, M., Sardinha, A., and Sadeh, N. M. 2008. Using information gain to analyze
and fine tune the performance of supply chain trading agents. In Collins, J., Faratin, P., Parsons,
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