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Abstract

Reusable APIs often define usage protocols. We previously developed a sound modular type system that
checks compliance with typestate-based protocols while affording a great deal of aliasing flexibility. We also
developed Plural, a prototype tool that embodies our approach as an automated static analysis and includes
several extensions we found useful in practice. This paper evaluates our approach along the following
dimensions: (1) We report on experience in specifying relevant usage rules for a large Java standard API with
our approach. We also specify several other Java APIs and identify recurring patterns. (2) We summarize
two case studies in verifying third-party open-source code bases with few false positives using our tool. We
discuss how tool shortcomings can be addressed either with code refactorings or extensions to the tool itself.
These results indicate that our approach can be used to specify and enforce real API protocols in practice.
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1 Introduction

Reusable APIs often define usage protocols. Loosely speaking, usage protocols are constraints on the order
in which events are allowed to occur. For example, a database connection can only be used to execute SQL
commands until it is closed. It has been a long-standing research challenge to ensure statically (before a
program ever runs) that API protocols are followed in client programs using an API. A long-overlooked but
related problem is to make sure that the protocol being checked is consistent with what the API implemen-
tation expects. Both of these challenges are complicated by object aliasing (objects being referenced and
possibly updated from multiple places)—the hallmark feature of imperative languages like C and Java.

We previously developed a sound (no errors missed) and modular (each method checked separately)
type system that checks compliance with typestate-based protocols while affording a great deal of aliasing
flexibility [6, 3]. Typestates [32] allow specifying usage protocols as finite-state machines. Our approach
tracks access permissions, which combine typestate and aliasing information, and was proven sound for
core single-threaded [6] and multi-threaded [3] object-oriented calculi. Unlike previous approaches, access
permissions do not require precise tracking of all object aliases (e.g. [14, 16]) or impose an ownership
discipline on the heap (e.g. [2]).

We extend previous work on typestates for objects [16] to support checking API implementations for
compliance with the protocols they declare (cf. section 2.2). While this does not rule out the possibility of
“wrong” protocol specifications, it does allow developers to ensure that what they specify is consistent with
what they implemented. If inconsistencies are found, developers will still have to decide if their specification
or their implementation (or both) is faulty.

As it turns out, access permissions do allow specifying protocols involving interdependent objects, such
as iterators [4, 6], which, as others have pointed out [29], are not expressible with previous typestate-based
approaches. Furthermore, ours is the only protocol checking approach (that we are aware of) that can
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soundly check clients and implementations of dynamic state tests. Dynamic state tests determine an object’s
state at runtime, for example, whether a database connection is open or closed.

We have implemented a prototype tool, Plural, that embodies our approach as an automated static analy-
sis [8] and includes several extensions to our approach that we found useful in practice (section 2.2).1 Plural
is based on developer-provided annotations on methods and classes (incl. the APIs to be checked).

Many previous modular protocol checking approaches have been proven sound and shown to work on
well-known examples such as file access protocols. But automated tools are rare and usually not evaluated
on real APIs or third-party code bases. (Notable exceptions include Vault [14] and Fugue [16, 15]).

This paper attempts a departure from this pattern. Its contribution is an evaluation of our approach for
specifying and checking compliance to API protocols using Plural. Contributions of this paper include the
following:

• Specification. We report on experience in specifying relevant usage rules for the Java Database Con-
nectivity (JDBC) API for relational database access with our approach (section 3)2. To our knowl-
edge, this is the largest case study available in the literature that evaluates the applicability of a usage
protocol specification method for real APIs.

• API Patterns. We specify several other Java APIs and identify recurring patterns (section 4.1). These
patterns represent challenges that any practical protocol enforcement technique should be able to
handle.

• Checking. We summarize two case studies in using Plural on third-party open-source code bases.

– We checked about 2,000 lines taken from the Apache Beehive project against the specified APIs
(section 4).

– We also checked PMD, a program of about 40KLOC, for compliance to a simple iterator protocol
(section 5).

We find that the code can be checked with few false positives and report the annotation overhead
of using our tool. We also discuss how tool shortcomings can be addressed (section 6). To our
knowledge, precision and annotation overhead measurements are not available for previous modular
protocol checking approaches.

We describe permissions and the Plural tool in section 2 before discussing the contributions of this paper
(see above). Section 7 summarizes related work and section 8 concludes.

2 Typestate protocols with access permissions

This section summarizes our previous work on access permissions [6] for enforcing typestate protocols and
our work on Plural, an automated tool for checking permission-based typestate protocols in Java [8]. Plural
will be described in more detail in the first author’s upcoming dissertation.

2.1 Access Permissions

Figure 1 shows a simplified protocol for the ResultSet interface as a Statechart [21]. ResultSets
represent SQL query results, and we will use their protocol as a running example in this and the following

1Plural is open-source: http://code.google.com/p/pluralism/.
2API specifications are available at http://www.cs.cmu.edu/∼kbierhof/
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open 

valid
end

unread read
closed

getInt(…)

next() / true next() / false

close()

wasNull()

Figure 1: Simplified JDBC ResultSet protocol. Rounded rectangles denote states refining another state. Arches
represent method calls, optionally with return values.

Access through Current permission has . . .
other permissions Read/write access Read-only access

None unique unique
Read-only full immutable
Read/write share pure

Table 1: Access permission taxonomy

section.
In our approach, developers can associate objects with a hierarchy of typestates, similar to Statecharts

[21]. For example, while a result set is open, it is convenient to distinguish whether it currently points to a
valid row or reached the end (figure 1).

Methods correspond to state transitions and are specified with access permissions that describe not only
the state required and ensured by a method but also how the method will access the references passed into
the method. We distinguish exclusive (unique), exclusive modifying (full), read-only (pure), immutable,
and shared access (table 1). Furthermore, permissions include a state guarantee, a state that the method
promises not to leave [6]. For example, next can promise not to leave open (figure 1).

Permissions are associated with object references and govern how objects can be accessed through a
given reference [6]. They can be seen as rely-guarantee contracts between the current reference and all
other references to the same object: they provide guarantees about other references and restrict the current
reference to not violate others’ assumptions. Permissions capture three kinds of information:

1. What kinds of references exist? We distinguish read-only and modifying references, leading to the
five different kinds of permissions shown in figure 1.

2. What state is guaranteed? A guaranteed state cannot be left by any reference. References can rely on
the guaranteed state even if the referenced object was modified by other modifying references.

3. What do we know about the current state of the object? Every operation performed on the referenced
object can change the object’s state. In order to enforce protocols, we ultimately need to keep track of
what state the referenced object is currently in.

Permissions can only co-exist if they do not violate each other’s assumptions. Thus, the following
aliasing situations can occur for a given object: a single reference (unique), a distinguished writer reference
(full) with many readers (pure), many writers (share) and many readers (pure), and no writers and only
readers (immutable and pure).
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Permissions are linear in order to preserve this invariant. But unlike linear type systems [33], they allow
aliasing. This is because permissions can be split when aliases are introduced. For example, we can split
a unique permission into a full and a pure permission, written unique V full ⊗ pure to introduce a read-
only alias. Using fractions [10] we can also merge previously split permissions when aliases disappear
(e.g., when a method returns). This allows recovering a more powerful permission. For example, full V
1
2 · share⊗ 1

2 · share V full.
Fractions are conceptually rational numbers between zero and one. In previous work, fractions below

one make objects immutable; in our approach, they can alternatively indicate shared modifying access,
as in the above example. Splitting a permission into two means to replace it with two new permissions
whose fractions sum up to the fractions in the permission being replaced. Merging two permissions does the
opposite.

2.2 Plural: Access permissions for Java

Our prototype tool, Plural, is a plug-in to the Eclipse IDE that implements the previously developed type
system [6, 3] as a static dataflow analysis for Java [8]. In the remainder of this section we show example
annotations and explain how permissions are tracked and API implementations are verified. Then we discuss
tool features we found useful in practice: method cases, branch sensitivity, dependent objects, and marker
states.

Developer annotations. Developers use Java 5 annotations to specify method pre- and post-conditions
with access permissions (figure 2). Figure 2 shows a simplified ResultSet specification with Plural’s
annotations (compare to figure 1). Annotations on methods (parameters) specify borrowed permissions for
the receiver (resp. the annotated parameter). Borrowed permissions are returned to the caller when the
method returns. The attribute “guarantee” specifies a state that cannot be left while the method executes.
For example, next advances to the next row in the query result, guaranteeing the result set to remain open.
Cell values can be read with getInt (and omitted similar methods) if the result points to a valid row.
Conversely, a required (ensured) state only has to hold when the method is called (returns). For instance,
only after calling getInt is it legal to call wasNull. Additional annotations will be explained below.

Local permission inference. Figure 3 shows a simple client method that retrieves an integer value from
the first column in the first row of the given result set. Plural can be used to check that this code respects the
protocol declared for the ResultSet interface in figure 2.

Our goal is to avoid annotations inside method bodies completely: based on the declared protocols,
Plural infers how permissions flow through method bodies. Since Plural is based on a dataflow analysis, it
automatically infers loop invariants as well.

However, Plural does require additional annotations on method parameters that have a declared protocol,
such as the ResultSet parameter in figure 3. Notice that we use the same annotations for annotating
parameters in client code that we use for declaring API protocols. While protocol annotations on the API
itself (e.g., figure 2) can conceivably be provided by the API designer and amortize over the many uses of
that API, the annotation shown in figure 3 is specific to this client program. In section 6 we discuss the
overhead of providing these additional annotations for two open-source code bases.

Annotations make the analysis modular: Plural checks each method separately, temporarily trusting
annotations on called methods and checking their bodies separately. For checking a given method or con-
structor, Plural assumes the permissions required by the method’s annotations, i.e., it assumes the declared
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@Param(name = "stmt", releasedFrom("open"))
public interface ResultSet {

@Full(guarantee = "open")
@TrueIndicates("unread")
@FalseIndicates("end")
boolean next();

@Full(guarantee = "valid", ensures = "read")
int getInt(int column);

@Pure(guarantee = "valid", requires = "read")
boolean wasNull();

@Full(ensures = "closed")
@Release("stmt")
void close();

}

Figure 2: Simplified ResultSet specification in Plural (using the typestates shown in figure 1).

public static int getFirstInt(@Full(guarantee = "open") ResultSet rs)
{

Integer result = null;
if(rs.next()) {

result = rs.getInt(1);
if(rs.wasNull())

result = null;
return result;

}
else {

return rs.getInt(1); // ERROR: rs in "end" instead of "valid"
}

}

Figure 3: Simple ResultSet client with error in else branch that is detected by Plural.

pre-condition. At each call site, Plural makes sure that permissions required for the call are available, splits
them off (these permissions are “consumed” by the called method or constructor), and merges permissions
ensured by the called method or constructor back into the current context. Notice that most methods “bor-
row” permissions (cf. figure 2), which means that they are both required and ensured. At method exit
points, Plural checks that permissions ensured by its annotations are available, i.e., it checks the declared
post-condition.

Thus, permissions are handled by Plural akin to conventional Java typing information: Permissions are
provided with annotations on method parameters and then tracked automatically through the method body,
like conventional types for method parameters. Unlike with Java types, local variables do not need to be
annotated with permissions; instead, their permissions are inferred by Plural. Permission annotations can
be seen as augmenting method signatures. They do not affect the conventional Java execution semantics;
instead, they provide a static guarantee of protocol compliance without any runtime overhead.
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API implementation checking. Our approach not only allows checking whether a client of an API follows
the protocol required by that API, it can also check that code implementing an API is safe when used with
its declared protocol. The key abstraction for this are state invariants, which we adapted from Fugue [16]. A
state invariant associates a typestate of a class with a predicate over the fields of that class. In our approach,
this predicate usually consists of access permissions for fields. An example can be found in figure 7.

Whenever a receiver field is used, Plural unpacks a permission to the surrounding object to gain access
to its state invariants [6]. Essentially, unpacking means replacing the receiver permission with permissions
for the receiver’s fields as specified in state invariants. Before method calls, and before the analyzed method
returns, Plural packs the receiver, possibly to a different state, by splitting off that state’s invariant from the
available field permissions [6]. We extended Plural to Java constructors, which can contain arbitrary code,
by letting it start with an unpacked unique permission for the receiver in addition to the permissions required
for constructor arguments.

Method cases. The idea of method cases goes back to behavioral specification methods, e.g., in the JML
[26]. Method cases amount to specifying the same method with multiple pre-/post-condition pairs, allowing
methods to behave differently in different situations. We early on recognized their relevance for specifying
API protocols [5, 4], but we are not aware of any other protocol checking approaches that support method
cases. In order to support method cases, Plural supports tracking disjunctions of possible permissions.

Branch sensitivity. APIs often include methods whose return value indicates the current state of an object,
which we call dynamic state tests. For example, next in figure 2 is specified to return true if the cursor
was advanced to a valid row and false otherwise.

In order to take such tests into account, Plural performs a branch-sensitive flow analysis: if the code tests
the state of an object, for instance with an if statement, then the analysis updates the state of the object
being tested according to the test’s result. For example, Plural updates the result set’s state to unread at the
beginning of the outer if branch in figure 3. Likewise, Plural updates the result set’s state to end in the else
branch and, consequently, signals an error on the call to getInt.

Notice that this approach does not make Plural path-sensitive: analysis information is still joined at
control-flow merge points. Thus, at the end of figure 3, Plural no longer remembers that there was a path
through the method on which the result set was valid. We believe that Plural could be extended to retain this
information, but then we would have to deal with the usual complications of path sensitivity, i.e., large or
infinite numbers of paths even through small methods.

When checking the implementation of a state test method, Plural checks at every method exit that,
assuming true (or false) is returned, the receiver is in the state indicated by true (resp. false). This
approach can be extended to other return types, although reasoning about predicates such as integer ranges
may require using a theorem prover [7].

Dependent objects. Another feature of many APIs is that objects can become invalid if other, related
objects are manipulated in certain ways. For example, SQL query results become invalid when the originat-
ing database connection is closed. (A similar problem, called concurrent modification, exists with iterators
[4].) There are no automated modular protocol checkers that we know of that can handle these protocols,
although recent global protocol checking approaches can [9, 29].

Our solution is to “capture” a permission in the dependent object (the result set in the example) which
prevents the problematic operation (closing the connection in the example) from happening. The dependent

6



object has to be invalidated before “releasing” the captured permission and re-enabling the previously for-
bidden operation. Captured permissions are declared in Plural with a @Param annotation, and @Release
explicitly releases permissions, as in close (figure 2).

Others have modeled dependent objects with linear implications [11, 24, 20] but it is unclear how well
those approaches can be automated. Our solution is to use a live variable analysis to detect dead objects,
i.e., dead references to objects with unique permissions, and release any captured permissions from these
dead objects.3

Marker states. Plural can treat states special that are fixed throughout the object lifetime. We call these
marker states, which are reminiscent of (flow-insensitive) type qualifiers [19]. For example, result sets can
be marked as updatable or readonly (see section 3), and they cannot switch from one to the other once
created. Knowledge about an object being in a marker state, once gained, cannot be lost, which can simplify
checking API clients. Marker states are also interesting semantically as they indicate object properties
that are fixed at construction time, thereby directly refining conventional Java types with additional, flow-
insensitive information that does not change throughout the object’s lifetime.

3 JDBC: Specifying a Java API

The Java Database Connectivity (JDBC) API defines a set of interfaces that Java programs can use to access
relational databases with SQL commands. Database vendors provide drivers for their databases that are
essentially implementations of the JDBC interfaces. Database client applications access databases primarily
through Connection, Statement, and ResultSet objects. Clients first acquire a Connection
which typically requires credentials such as a username and password. Then clients can create an arbitrary
number of Statements on a given connection. Statements are used to send SQL commands through the
connection. Query results are returned as ResultSet objects to the client. Conventionally, only one result
set can be open for a given statement; sending another SQL command “implicitly closes” or invalidates any
existing result sets for that statement.

This section discusses the specification of these major interfaces (incl. subtypes) using Plural annota-
tions. The specified interfaces are massive: they define over 400 methods, each of which is associated with
about 20 lines of informal documentation in the source files themselves, for a total of almost 10,000 lines
incl. documentation (see table 2).

Connections. The Connection interface primarily consists of methods to create statements, to control
transactional boundaries, and a close method to disconnect from the database (figure 4). Closing a con-
nection invalidates all statements created with it, which will lead to runtime errors when using an invalidated
statement. Due to space limits, we do not discuss our specification of transaction-related features here, but
they are included in table 2.

Our goal was to specify JDBC in such a way that statements and result sets are invalidated when their
connections are closed. Our solution is a variant on our previous work with iterators [4, 6]: we capture a
share connection permission each time a statement is created on it. The captured permission has the open
state guarantee, which guarantees that the connection cannot be closed while the statement is active. Plural
releases the captured connection permission from a statement that is no longer used or when the statement is

3We could delete these objects (in C or C++) or mark them as available for garbage collection (in Java or C#), but we are not
exploring this optimization possibility here.
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JDBC On State Mult.
interface Lines (Increase) Methods methods space Total cases
Connection 1259 (9.8%) 47 84 4 88 2
Statement 936 (9.4%) 40 64 2 66 0
PreparedStatement 1193 (5.5%) 55 58 0 58 0
CallableStatement 2421 (5.0%) 111 134 1 135 0
ResultSet 4057 (15.4%) 187 483 8 491 82
Total 9866 (10.4%) 440 823 15 838 84

Table 2: Specified JDBC interfaces with total lines, size increase due to annotations, methods, annotation counts (on
methods, for defining state spaces, and total), and the use of multiple method cases in each file. The files length is
almost entirely due to extensive informal documentation.

@States({"open", "closed"})
public interface Connection {

@Param(name = "conn")
@Perm(requires = "share(this, open)",

ensures = "unique(result) in open")
Statement createStatement() throws SQLException;

@Full(ensures = "closed")
void close() throws SQLException;

@Pure
@TrueIndicates("closed")
boolean isClosed() throws SQLException; }

Figure 4: Simplified JDBC Connection interface specification.

closed, as explained in section 2.2. When all statements are closed then a full permission for the connection
can be re-established, allowing close to be called.

Statements. Statements are used to execute SQL commands. Statements define methods for running
queries, updates, and arbitrary SQL commands (figure 5).

We specify executeQuery similarly to how statements are created on connections. The resulting
ResultSet object captures a full permission to the statement, which enforces the requirement that only
one result set per statement exists. Conversely, executeUpdate borrows a share statement permission
and returns the number of updated rows. Since share and full permissions cannot exist at the same time,
result sets have to be closed before calling executeUpdate. The Statement documentation implies
that result sets should be closed before an update command is run, and our specification makes this point
precise.

The method execute can run any SQL command. If it returns true then the executed command was
a query, which we indicate with the state hasResultSet. getResultSet requires this state and returns the
actual query result.

In rare cases a command can have multiple results, and getMoreResults advances to the next result.
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@Refine({
@States({"open", "closed"}),
@States(refined = "open", value = {"hasResultSet", "noResultSet"}, dim = "rs") })

@Param(name = "conn", type = Connection.class, releasedFrom = "alive")
public interface Statement {

@Param(name = "stmt")
@Perm(requires = "full(this, open)", ensures = "unique(result) in scrolling")
ResultSet executeQuery(String sql) throws SQLException;

@Share("open")
int executeUpdate(String sql) throws SQLException;

@Full("open")
@TrueIndicates("hasResultSet")
@FalseIndicates("noResultSet")
boolean execute(String sql) throws SQLException;

@Param(name = "stmt")
@Perm(requires = "full(this, open) in hasResultSet", ensures = "unique(result) in scrolling")
ResultSet getResultSet() throws SQLException;

@Full(value = "open")
@TrueIndicates("hasResultSet")
@FalseIndicates("noResultSet")
boolean getMoreResults() throws SQLException;

@Full(ensures = "closed")
@Release("conn")
void close(); }

Figure 5: JDBC Statement interface specification (fragment).

Again, true indicates the presence of a result set. We use a full permission because, like execute meth-
ods, getMoreResults closes any active result sets, as stated in that method’s documentation: “Moves to
this Statement object’s next result, returns true if it is a ResultSet object, and implicitly closes any
current ResultSet object(s) obtained with the method getResultSet.”

Besides a plain Statement interface for sending SQL strings to the database, JDBC defines two
other flavors of statements, prepared and callable statements. The former correspond to pattern into which
parameters can be inserted, such as search strings. The latter correspond to stored procedures.

Since these interfaces are subtypes of Statement they inherit the states defined for Statement. The
additional methods for prepared statements are straightforward to define with these states, while callable
statements need an additional state distinction for detecting NULL cell values.

Overall, we were surprised at how well our approach can capture the design of the Statement inter-
face.

Result sets. ResultSet is the most complex interface we encountered. We already discussed its most
commonly used features in section 2. In addition, result sets allow for random access of their rows, a feature
that is known as “scrolling”. Scrolling caused us to add a begin state besides valid and end. Furthermore,
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the cell values of the current row can be updated, which caused us to add orthogonal substates inside valid
to keep track of pending updates (in parallel to read and unread, see figure 2).

Finally, result sets have a buffer, the “insert row”, for constructing a new row. The problem is that,
quoting from the ResultSet documentation for moveToInsertRow, “[o]nly the updater, getter, and
insertRow methods may be called when the cursor is on the insert row.” Thus, scrolling methods are
not available while on the insert row, although the documentation for these methods does not hint at this
problem.

Our interpretation is to give result sets two modes (i.e., states), scrolling and inserting, where the former
contains the states for scrolling (shaded in figure 1) as substates. moveToInsertRow and moveToCurrentRow
switch between these modes. In order to make the methods for updating cells applicable in both modes we
use method cases which account for all 82 methods with multiple cases in ResultSet (see table 2).

Figure 6 shows a fragment of the ResultSet interface with our actual protocol annotations. Notice
how the two modes affect the methods previously shown in figure 2. The figure also shows selected methods
for scrolling, updating (including method cases), and inserting.4

4 Beehive: Verifying an intermediary library

This section summarizes a case study in using Plural for checking API compliance in a third-party open
source code base, Apache Beehive. In the process we specified protocols for several other APIs besides
JDBC (see section 3) including a simple protocol for Beehive itself.

Beehive5 is an open-source library for declarative resource access. We have focused on the part of
Beehive that accesses relational databases using JDBC. Beehive clients define Java interfaces and associate
the SQL command to be run when a method in these interfaces is called using Java annotations. Notice
that this design is highly generic: the client-specified SQL commands can include parameters that are filled
with the parameters passed to the associated method. Beehive then generates code implementing the client-
defined interfaces that simply calls a generically written SQL execution engine, JdbcControl, whose
implementation we discuss below.

We first describe the APIs used by Beehive before discussing the challenges in checking that Beehive
correctly implements a standard Java and its own API.

4.1 Checked Java standard APIs

We specified four Java standard APIs used by Beehive, highlighting Plural’s ability to treat APIs orthogo-
nally.

JDBC. We described the JDBC specification in section 3. Since Beehive has no apriori knowledge of
the SQL commands being executed (they are provided by a client), it uses the facilities for running “any”
SQL command described in section 3. Its use of result sets is limited to reading cell values, and a new
statement is created for every command. We speculate that the Beehive developers chose this strategy in
order to ensure that result sets are never rendered invalid from executing another SQL command, which ends
up helping our analysis confirm just that.

Beehive is tricky to reason about because it aliases result sets through fields of various objects. Plural’s
modular approach nonetheless allowed us to move outwards from methods calling into JDBC to callers

4updateInt defines two cases, which are both based on a borrowed full permission. One case requires that permission in the
valid state and ensures pending, while the other case requires and ensures insert.

5http://beehive.apache.org/
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@Refine({
@States({"open", "closed"}),
@States(refined = "open", value = {"scrolling", "inserting"}),
@States(refined = "scrolling", value = {"begin", "valid", "end"}, dim = "row"),
@States(refined = "valid", value = {"read", "unread"}, dim = "access"),
@States(refined = "valid", value = {"noUpdates", "pending"}, dim = "update")
/∗...∗/ })

@Param(name = "stmt", type = Statement.class, releasedFrom = "alive")
public interface ResultSet {

// changes from figure 2

@Full(guarantee = "scrolling", requires = "noUpdates")
@TrueIndicates("valid")
boolean next() throws SQLException;

@Full(guarantee = "scrolling", requires = "valid", ensures = "read")
int getInt(int columnIndex) throws SQLException;

@Pure(guarantee = "scrolling", requires = "read", ensures = "read")
boolean wasNull() throws SQLException;

// features introduced in JDBC 2.0

@Pure("open")
@TrueIndicates("begin")
boolean isBeforeFirst() throws SQLException;

@Full(guarantee = "open", requires = "updatable")
@Cases({

@Perm(requires = "this in valid", ensures = "this in pending"),
@Perm(requires = "this in insert", ensures = "this in insert")

})
void updateInt(int columnIndex, int x) throws SQLException;

@Full(guarantee = "scrolling", requires = "pending", ensures = "noUpdates")
void updateRow() throws SQLException;

@Full(guarantee = "open", ensures = "insert")
void moveToInsertRow() throws SQLException; }

Figure 6: JDBC ResultSet interface specification (fragment).
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of those methods. In other words, we followed a process of running Plural “out of the box” on a given
Beehive class first. Places where Plural issued warnings usually required annotations on method parameters
(or for state invariants). Running Plural again would possibly result in warnings on the methods calling the
previously annotated methods. Providing annotations for these methods would move the warnings again
until a calling method was able to provide the required permissions by itself because it for instance created
the needed API object.

Collections API. Beehive generically represents a query result row as a map from column names to
values. One such map is created for each row in a result set and added to a list which is finally returned to
the client.

The Java Collections API defines common containers such as lists and maps. Iterators are available
for retrieving all elements in a container one by one. Maps provide views of their keys, values, and key-
value pairs as sets. Lists support sublist views that contain a subsequence of the list’s elements. Views are
“backed” by the underlying container, i.e., changes to the view affect the underlying container.

We specified the Collections API following our previous work [6]. Iterators are challenging because they
do not tolerate “concurrent modification” of the underlying collection. We address this problem by capturing
a immutable collection permission in the iterator [4, 6]. Views can be similarly handled by capturing a
permission from the underlying collection when creating the view.

Regular expressions. Regular expressions are only used once in Beehive. The pattern being matched
is a static field in one of Beehive’s classes, which we annotate with @Imm.

The API includes two classes. A Pattern is created based on a given regular expression string. Then,
clients call find or match to match the pattern in a given string. The Matcher resulting from these
operations can be used to retrieve details about the current match and to find the next matching substring.

We easily specified this protocol in Plural. As with iterators, we capture a immutable Pattern permis-
sion in each Matcher. We use a typestate matched to express a successful match and require it in methods
that provide details about the last match.

Exceptions. When creating an exception, a “cause” (another exception) can be set once, either using
an appropriate constructor or, to our surprise, using the method initCause. The latter is useful when
using exceptions defined before causes were introduced in Java 1.4. Beehive uses initCause to initialize
a cause for such a legacy exception, NoSuchElementException. This protocol is trivial to specify in
Plural, but it was fascinating that even something as simple as exceptions has a protocol.

Recurring patterns. There were at least three common challenges that we found across several of the
APIs we specified.

1. We were surprised how prevalent dynamic state test methods are, and how important they are in
practice. We found dynamic state test methods in JDBC, Collections, and regular expressions, and a
large number of them in JDBC alone. For example, the method hasNext in the Java Iterator
interface tests whether another element is available ([4], cf. section 4.2), and isEmpty tests whether
a collection is empty. It was crucial for handling the Beehive code that our approach can express and
benefit from the tests that are part of JDBC’s facilities for executing arbitrary SQL commands.

2. We also found protocols involving multiple interdependent objects in these APIs (and very prevalent
in JDBC). We could model these protocols by capturing and later releasing permissions.

3. We used method cases in JDBC and the Collections API. As previously shown, method cases can be
used to specify full Java iterators, which may modify the underlying collection [4].
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We believe that these are crucial to address in any practical protocol checking approach; our approach
was expressive enough to handle these challenges for all the examples in our case study (see section 3).

4.2 Protocol Implementations

This section summarizes challenges in checking that Beehive implements the Java iterator API and that
Beehive’s main class is implemented correctly assuming clients follow Beehive’s API protocol.

Implementing an iterator. Beehive implements an Iterator over the rows of a result set. Figure 7
shows most of the relevant code. We use state invariants, i.e., predicates over the underlying result set (see
section 2.2), to specify iterator states. Notice that alive is our default state that all objects are always in. Thus
its state invariant is a conventional class invariant [26, 2] that is established in the constructor and preserved
afterwards.

When checking the code as shown, Plural issues 3 warnings in hasNext (see table 3). This is because
our vanilla iterator specification [6] assumes hasNext, which tests if an element can be retrieved, to be
pure. Beehive’s hasNext, however, is not pure because it calls next on the ResultSet.

This problem can be fixed, for example, by advancing the result set to the next row at the end of the
iterator’s next method (after constructing the return value) and remembering the outcome in the existing
flag. The iterator constructor can initialize the flag by moving the result set to the first row, if it exists.
That way, hasNext is pure because it only tests whether the flag is true. However, this code change has
the disadvantage that the result set may be unnecessarily advanced to a row that is never retrieved with a
subsequent call to the iterator’s next method. Furthermore, it duplicates the code for advancing to the next
row: next and the constructor.

Alternatively, the warnings disappear when we change hasNext’s specification to use a full permission.
Note that next’s specification requires available, which guarantees that _primed is true (see figure

7), making the initial check in next superfluous (if all iterator clients were checked with Plural as well).

Formalizing Beehive client obligations. Beehive is an intermediary library for handling resource access
in applications: it uses various APIs to access these resources and defines its own API through which
applications can take advantage of Beehive. We believe that this is a very common situation in modern
software engineering: application code is arranged in layers, and Beehive represents one such layer. The
resource APIs, such as JDBC, reside in the layer below, while the application-specific code resides in the
layer above, making applications using Beehive appear like an hourglass.

Beehive’s API is defined in the JdbcControl interface, which JdbcControlImpl implements.
JdbcControlImpl in turn is a client to the JDBC API. JdbcControlImpl provides three methods
onAcquire, invoke, and onRelease to clients. The first one creates a database connection, which the
third one closes. invoke executes an SQL command and, in the case of a query, maps the result set into
one of several possible representations. One representation is the iterator mentioned above; another one is a
conventional List. Each row in the result is individually mapped into a map of key-value pairs (one entry
for each cell in the row) or a Java object whose fields are populated with values from cells with matching
names.

Notice that some of these representations, notably the iterator representation, of a result require the
underlying result set to remain open. The challenge now is to ensure that onRelease is not called while
these are still in use because closing the connection would invalidate the results. This requirement is identical
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@ClassStates({
@State(name="alive",

inv="full(_rs,scrolling) && full(_rowMapper) in init && _primed == true => _rs in valid"),
@State(name="available", inv="_primed == true") })

@NonReentrant
public class ResultSetIterator implements java.util.Iterator {
private final ResultSet _rs;
private final RowMapper _rowMapper;
private boolean _primed = false;

/∗∗ @return true if there is another element ∗/
@Pure(guarantee = "next", fieldAccess = true)
@TrueIndicates("available")
public boolean hasNext() {

if (_primed) {
return true;

}

try {
_primed = _rs.next();

} catch (SQLException sqle) {
return false;

}
return _primed;

}

/∗∗ @return The next element in the iteration. ∗/
@Full(requires = "available", ensures = "hasCurrent", fieldAccess = true)
public Object next() {

try {
if (!_primed) {

_primed = _rs.next();
if (!_primed) {

throw new NoSuchElementException();
}

}
// reset upon consumption
_primed = false;
return _rowMapper.mapRowToReturnType(/∗ analysis−only ∗/ _rs);

} catch (SQLException e) {
// Since Iterator interface is locked, all we can do
// is put the real exception inside an expected one.
NoSuchElementException xNoSuch = new NoSuchElementException("ResultSet exception: " + e);
xNoSuch.initCause(e);
throw xNoSuch;

}
} }

Figure 7: Beehive’s iterator over the rows of a result set (constructor omitted). Plural issues warnings because
hasNext is impure.
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to the one we described for immediate clients of Connection, and thus we should be able to specify it in
the same way.

However, the connection is in this case a field of a surrounding Beehive JdbcControlImpl object,
and Plural has currently no facility for letting JdbcControlImpl clients keep track of the permission
for one of its fields. Therefore, we currently work with a simplified JdbcControlImpl that always
closes result sets at the end of invoke. Its specification, as desired, enforces that onAcquire is called
before onRelease and invoke is only called “in between” the other two. This, however, means that our
simplified JdbcControlImpl does not support returning iterators over result sets to clients, since they
would keep result sets open. Overcoming this problem is discussed in the next section.

As mentioned, Beehive generates code that calls invoke. The generated code would presumably have
to impose usage rules similar to the ones for invoke on its clients. Plural could then be used to verify that
the generated code follows JdbcControlImpl’s protocol.

5 PMD: Scalability

We used the version of PMD included in the DaCapo 2006-10-MR2 benchmarks6 to investigate how Plural
can be used to check existing large code bases. In the next section this case study is used for direct compar-
ison with state-of-the-art global protocol analyses [9, 29], which typically focus on simple protocols such
as the well-known iterator protocol. Iterators are widely used in PMD, and most iterations in PMD are over
Java Collections (see section 4.1), but PMD implements a few iterator classes over its own data structures
as well.

Iterator protocol. We decided to focus on the simple and well-known iterator protocol (see section 4.1). It
took one of the authors about 75 minutes to check that this protocol is followed in all of PMD, which includes
hundreds of places that use iterators [9, 29], using only 15 annotations. Most iterator usages could be verified
by Plural without any user intervention because their are entirely used inside one method. Annotations were
needed where iterators were returned from a method call inside PMD and then used elsewhere. In one place
an iterator is passed to a helper method after checking hasNext, and we could express the contract of this
helper method with a suitable annotation.

Iterator implementations. PMD implements three iterators of its own. In one of them, TreeIterator,
the implementation of hasNext is not only impure, like Beehive’s iterator, but advances the iterator every
time it is called. Thus, failure to call next after hasNext results in lost elements. The other iterators
exhibit behavior compatible with the conceptual purity of hasNext: next is used to pre-fetch the element
to be returned the next time it is called before returning the current element. hasNext then simply checks
the pre-fetched element is valid, which is typically a pure operation.

In light of these and the iterator implementation in Beehive (figure 7), it appears legitimate to ask whether
hasNext is really a pure operation. This would have significant consequences for behavioral specification
approaches like the JML [26] or Spec# [2] because they use pure methods in specifications. Conventionally,
the specification of next in the JML would be “requires hasNext()”, but that would be illegal if
hasNext was not pure. In contrast, our specifications are more robust to the non-purity of hasNext. In
fact, Plural can verify iterator usage in PMD with a full permission for hasNext with the same precision.

6http://dacapobench.org/

15



Lines / Annotations Plural False
Beehive class Methods Meths. Invs. Total warnings pos.
DefaultIteratorResultSetMapper 37 / 2 1 0 1 0 0
DefaultObjectResultSetMapper 127 / 2 2 0 2 0 0
JdbcControlImpl 521 / 13 13 1 14 2 1
ResultSetHashMap 85 / 9 9 0 9 0 0
ResultSetIterator 106 / 4 4 3 7 3 0
ResultSetMapper 32 / 2 2 0 2 0 0
RowMapper 260 / 5 9 1 10 0 0
RowMapperFactory 156 / 7 3 0 3 4 4
RowToHashMapMapper 57 / 2 4 1 5 0 0
RowToMapMapper 49 / 2 4 1 5 0 0
RowToObjectMapper 236 / 3 4 0 4 0 0
SqlStatement 511 / 14 4 0 4 0 0
Total 2158 / 65 59 7 66 9 5

Table 3: Beehive classes checked with Plural. The middle part of the table shows annotations (on methods, invariants,
and total) added to the code. The last 2 columns indicate Plural warnings and false positives.

6 Evaluation

This section summarizes overhead and precision of applying Plural to Beehive and discusses improvements
to the tool to address remaining challenges.

Overhead: The price of modularity. The overhead for specifying Beehive is summarized in table 3. We
used about 1 annotation per method and 5 per Beehive class, for a total of 66 annotations in more than 2,000
lines, or about one annotation every 30 lines. Running Plural on the 12 specified Beehive source files takes
about 34 seconds on a 800 Mhz laptop with 1GB of heap space for Eclipse including Plural.

For PMD we mentioned in section 5 that we only needed 15 annotations in total, which one of the
authors provided in approximately 75 minutes. Thus, checking the iterator protocol was straightforward
and imposed almost no overhead. Running Plural on PMD’s entire source tree of 446 files (with the same
configuration as for Beehive) takes about 15 minutes.

Precision: A benefit of modularity. Plural reports 9 problems in Beehive. Three of them are due to
the impure hasNext method in ResultSetIterator (see section 4.2). Letting hasNext use a full
permission removes these warnings. Another warning in JdbcControlImpl is caused by an assertion
on a field that arguably happens in the wrong method: invoke asserts that the database connection is open
before delegating the actual query execution to another, “protected” method that uses the connection. Plural
issues a warning because a subclass could override one, but not the other, of these two methods, and then
the state invariants may no longer be consistent. The warning disappears when moving the assertion into the
protected method. Furthermore we note our state invariants guarantee that the offending runtime assertion
succeeds.

The remaining warnings issued by Plural are false positives. This means that our false positive rate is
is around 1 per 400 lines of code. We consider this to be quite impressive for a behavioral verification tool
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applied to complicated APIs (JDBC and others) and a very challenging case study subject (Beehive).
The false positive rate in PMD is extremely low. Warnings remained only in three places where PMD

checks that a set is non-empty before creating an iterator and immediately calling next to get its first
element. This is also mentioned as a source of imprecision in the most recent global protocol compliance
checkers, which check for the same iterator protocol in PMD with 6 [9] and 2 [29] remaining warnings,
respectively.

Future improvements. The remaining warnings in Beehive fall into the following categories:

• Reflection (1). Plural currently cannot assign permissions to objects created using reflection in
RowMapperFactory.

• Static fields (3). RowMapperFactory manipulates a static map object, which we specified to re-
quire full permissions. For soundness, we only allow duplicable permissions, i.e., share, pure, and
immutable, on static fields.

• Complex invariant (1). JdbcControlImpl opens a new database connection in onAcquire only
if one does not already exist. We currently cannot express the invariant that a non-null field implies
a permission for that field, which would allow Plural to verify the code.

These are common sources of imprecision in static analyses. We are considering tracking fields as
implicit parameters in method calls, as discussed in section 4.2, and static fields could be handled in this
way as well. Related to this issue is also a place in Beehive where a result set that was assigned to a field
in the constructor is implicitly passed in a subsequent method call. We turned it into an explicit method
parameter for now (the call to mapRowToReturnType in figure 7). Java(X) has demonstrated that fields
can be tracked individually [13], although we would like to track permissions for “abstract” fields that do
not necessarily correspond to actual fields in the code. We are also working on a strategy for handling object
construction through reflection, and on generalizing the state invariants expressible in Plural.

We also simplified the Beehive code in a few places where our approach for tracking local aliases leads to
analysis imprecisions. Since local alias tracking is orthogonal to tracking permissions we used the simplest
available, sound solution in Plural, which is insufficient in some cases. We plan to evaluate other options.

Problems occur when the same variable is assigned different values on different code paths, usually
depending on a condition. When these code paths rejoin, Plural assumes that the variable could point to one
of several locations, which forbids strong updates. We are investigating using more sophisticated approaches
that avoid this problem. Alternatively, Plural will work fine when the part of the code that initializes a
variable on different paths is refactored into a separate method. Notice, however, that tracking local aliasing
is a lot more tractable than tracking aliasing globally. Permissions reduce the problem of tracking aliasing
globally to a local problem.

Furthermore, we modified Beehive in one place to not use correlated ifs, which the tool currently does
not support.

Finally, we assumed one class to be non-reentrant, but we believe a more complicated specification
would allow the class to be analyzed assuming re-entrancy. Our approach conservatively assumes that all
methods are re-entrant [6]—meaning they may be invoked in their own dynamic scope—, but in practice
that is not always the developer’s intention. Therefore, we use the (currently unchecked) annotation shown
in figure 7 to mark a class as non-reentrant, which causes Plural to omit certain checks during API imple-
mentation checking. We are planning on checking this annotation with Plural in the future.
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Refactoring option. Notice that besides improving the tool there is usually the option of refactoring the
problematic code. We believe that this is an indicator for the viability of our approach in practice, indepen-
dent of the features supported by our tool: developers can often circumvent tool shortcomings with (fairly
local) code changes. On the other hand, we have not seen many examples that fundamentally could not be
handled by our approach.

7 Related Work

We previously proposed access permissions for sound, modular typestate protocol enforcement in the pres-
ence of aliasing, first for single-threaded [6] and recently for multi-threaded programs [3]. We showed on
paper that the proposed type systems can handle interesting protocols, including iterators. We also devel-
oped Plural, an automated tool that embodies our permission-based approach as a static dataflow analysis
for Java [8]. A comprehensive description of the Plural tool will be part of the first author’s upcoming dis-
sertation. This paper evaluates our approach for specifying and checking compliance to API protocols using
Plural.

A plethora of approaches was proposed in the literature for checking protocol compliance and program
behavior in general. These approaches differ significantly in the way protocols are specified, including
typestates [32, 14, 25, 18, 16, 6], type qualifiers [19], size properties [12], direct constraints on ordering
[23, 9, 29], type refinements [28, 13], first-order [26, 2] or separation logic [31], and various temporal
logics [22]. In these approaches, like in ours, usage rules of the API(s) of interest have to be codified by a
developer. Once usage protocols are codified, violations can be detected statically (like in our and most of
the above approaches) or dynamically (while the program is executing, e.g. [5, 17]).

Many of the proposed static approaches, including ours, are modular and require developer-provided
annotations in the analyzed code in addition to codifying API usage rules (e.g. [16, 13]) but there are also
global approaches that require no or minimal developer intervention (e.g. [19, 22]). Unlike previous modular
approaches, our approach does not require precise tracking of all object aliases (e.g. [14, 16]) or impose an
ownership discipline on the heap (e.g. [2]) in order to be modular.

Ours is one of the few approaches that can reason about correctly implementing APIs independent from
their clients. (Interestingly, all of these approaches that we are aware of are modular typestate analyses [16,
25, 6].) Ours is the only approach (that we are aware of) that can verify correct usage and implementation
of dynamic state test methods. Several other approaches can verify their correct usage (e.g., [28, 12]), but
not their implementation.

Previous modular approaches are often proven sound and shown to work for well-known examples
such as file access protocols. But automated checkers are rare, and case studies with real APIs and third-
party code hard to find. Notable exceptions include Vault [14] and Fugue [16, 15], which are working
automated checkers that were used to check compliance to Windows kernel and .NET standard library
protocols, respectively (although Vault requires rewriting the code into its own C-like language).

This paper shows that our approach can be used in practical development tools for enforcing real API
protocols. As far as we know, this paper is the first one that reports on challenges and recurring patterns
in specifying typestate protocols of large, real APIs. We also report overhead (in terms of annotations) and
precision (in terms of false positives) in checking open-source code bases with our tool.

We suspect that empirical results are sparse because APIs such as the ones discussed in this paper
would be difficult to handle with existing modular approaches due to their limitations in reasoning about
aliased objects. These limitations make it difficult to specify the object dependencies we found in the JDBC,
Collections, and Regular Expressions APIs in the Java standard library. Fugue, for instance, was used for
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checking compliance with the .NET equivalent of JDBC, but the published specification does not seem to
enforce that connections remain open while “commands” (the .NET equivalent of JDBC “statements”) are
in use [15].

Existing work on permissions recognized these challenges [10, 11] but only supports unique and im-
mutable permissions directly and does not track behavioral properties (such as typestates) with permissions.

In contrast to modular checkers, many global analyses were implemented and empirically evaluated.
While model checkers [22] typically have severe limitations in scaling to larger programs, approaches based
on abstract interpretations were shown to scale quite well in practice. “Sound” (see below) approaches rely
on a global aliasing analysis [1, 18, 9, 29] and become imprecise when alias information becomes imprecise.

This paper shows that our approach at least matches the most recently proposed global analyses that
we are aware of in precision when verifying iterator usage in PMD [9, 29] with extremely low developer
overhead. Another previous global typestate analysis has also been used—with varying precision—to check
simple iterator protocols, but in a different corpus of client programs [18].

These global typestate-based analyses have been used to make sure that dynamic state test methods are
called, but not that the test actually indicated the needed state [18, 9, 29]. For example, the protocols being
checked require calling hasNext before calling next in iterators, but they do not check whether hasNext
returned true, which with our approach is expressed and ensured easily. Tracematch-based analyses [9, 29]
currently lack the expressiveness to capture these protocols more precisely, while approaches based on
must-alias information (e.g. [18]) should be able to, but do not in their published case studies, encode these
protocols. This is arguably an omission in these approaches that, given the importance of dynamic state tests
in practice, we believe should be addressed.

We do not claim to comprehensively compare our approach’s precision relative to global analyses. But
we do point out that our approach, unlike global analyses, can reason about API implementations separately
from clients and handles dynamic state tests soundly, as discussed above. Reasoning about API implemen-
tations separately from clients is critical for libraries such as Beehive that may have many clients. Our
approach also seems to match the precision of global analysis for checking a simple iterator protocol.

In addition, there has been research on inferring API usage protocols (e.g. [30]) and flagging deviations
from commonly followed rules using statistical methods [27]. These approaches are complimentary to ours
in that the inferred protocols could be specified and checked in our approach.

8 Conclusions

This paper evaluates access permissions for enforcing API protocols using our prototype tool, Plural. It
reports on our experience in specifying JDBC and several other important Java standard APIs, identifying
common challenges for any practical API protocol enforcement technique. The paper also summarizes case
studies in checking third-party open source applications after the fact, i.e., by using Plural on the existing
code base, injecting annotations, and performing small refactorings. In future work we plan to evaluate
Plural during software development.

Intermediary libraries, such as the one we consider in this paper, represent a compelling use case for
Plural. Because Plural is modular and can verify implementations of protocols it can be used to verify
the library by itself, assuming the specification of underlying APIs and imposing rules on potential clients
but without depending on the specifics of a sample client or a concrete implementation of the underlying
APIs. Thus, the effort for verifying a library can amortize across the users of the library and the possible
combinations of underlying API implementations (such as the drivers for various databases).

To our knowledge, this is the first comprehensive evaluation of a modular protocol checking approach in
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terms of its ability to specify large, real APIs. We also report annotation overhead and precision in checking
open-source code bases with our tool. We find that our approach imposes moderate developer overhead in
the form of annotations on classes and methods and produces few false positives. These results indicate that
our approach can be used to specify and enforce API protocols in practice. From specifying APIs we notice
several recurring patterns including the importance of dynamic state tests, method cases, and the dependency
of API objects on each other. The extremely small overhead of enforcing a simple protocol (iterators) in a
large code base (PMD) also suggests that our approach can be introduced gracefully into existing projects,
with increasing effort for increasingly interesting protocols.
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