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Abstract
A challenge to meet the demand on higher education and professional devel-

opment is to scale these educational opportunities while maintaining their quality.
My dissertation work tackles this challenge by harnessing examples from existing
resources to enable the creation of scalable and quality educational experiences. De-
liberate practice targeting specific skills, appropriate scaffolding with timely feedback
helps novices become experts. However, the feature of deliberate practice with timely
feedback is often missing in college instruction. On the one hand, instructors believe
they should assign flexible work, but the very multifacetedness that makes it authentic
impedes students’ ability to learn because they rarely get timely, attribute-specific
feedback. On the other hand, instructors find designing materials that offer focused
practice and immediate feedback to be time-consuming and challenging.

This dissertation contributes insights about developing effective learning at scale
systems by leveraging the complementary strengths from peers, experts, and machine
intelligence, differentiating it from existing systems that solely rely on machine or
crowds of peers. This dissertation introduces a technique UpGrade, which uses
student solution examples to semi-automatically generate multiple-choice questions
for deliberate practice of higher order thinking in varying contexts. From exper-
iments in authentic college classrooms, I show that UpGrade helps students gain
conceptual understanding more efficiently and helps improve students’ authentic task
performance. Through an iterative design process with instructors, I demonstrate the
generalizability of this approach and offer suggestions to improve the quality and
efficiency of college instruction.

This dissertation suggests another layer to further distinguish knowledge com-
ponents, by the required generation and evaluation efforts in problem-solving. The
practical implication for a more nuanced understanding of knowledge components is
to help instructors make more nuanced and accurate instructional decisions, e.g., us-
ing “evaluation-type” exercises for evaluation-heavy skills. This dissertation provides
further evidence that instructors have so-called “expert blind spots”, revealed through
cases where their beliefs and student performance do not match. More generally,
this work suggests that the reasoning behind educational decisions can be probed
through well-designed, low-effort, experimental comparisons toward more nuanced
and accurate reasoning and decision making, and ultimately better design.
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Chapter 1

Introduction

A challenge to meet the demand on higher education and professional development is to scale
these educational opportunities while maintaining their quality. Traditionally, teachers or experts
take the most responsibility in providing learning opportunities to students, e.g., giving lectures,
offering feedback. However, the efforts required from experts (e.g., offering feedback to students’
open-ended work) make such learning opportunities less scalable. AI-based technologies have
begun to tackle this scaling issue. For example, there are a number of automatic grading systems
for programming assignments [56]. However, there are limited automatic assessment approaches
for open-ended work in other domains, and there is usually no natural language feedback offered
to students[8, 75]. In addition, a recent review paper suggests several major limitations of existing
automatic question generation techniques for educational purposes[8, 75], including that 1) they
target lower cognitive skills, such as fact questions and fill-in-the-gap questions, etc. 2) Meaningful
feedback is often missing in these existing systems. 3) Most techniques are domain-specific.
Intelligent tutoring systems can adaptively select problems for students and offer feedback, but
they also require huge authoring efforts upfront [5, 7]. We see that prior instructional approaches
that rely on human efforts are hard to scale and that prior AI-based approaches do not provide
high-quality learning experiences. In my dissertation work, I explore techniques that enable the
creation of learning opportunities that achieve scale and quality at the same time, by leveraging
the complementary strengths of humans and machine intelligence.

This dissertation is organized as follows. In Chapter 3, Chapter 4, Chapter 5, Chapter 6,
I present the insights we have gained over the past few years in designing, developing and
testing a technique that supports the creation of quality learning opportunities at scale, through
using student solution examples to semi-automatically generate authentic multiple-choice
questions for deliberate practice of higher-order thinking. In Chapter 7, I present theorized
analyses and empirical findings regarding the instructional choice of when to use evaluation-
type exercises to support student learning, which can be produced at scale using the technique
introduced in this dissertation. In Chapter 8, Chapter 9, I present two applications using the
insights we have acquired in two other domains.

To support the creation of high-quality learning opportunities, we must first understand what
“high quality” means and what are instructors’ current practice in authoring learning materials. The
“high-quality” feature I focus on in my dissertation is providing deliberate practice opportunities
with immediate feedback to students. A large body of literature suggests focused practice targeting
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specific skills helps novices become experts[9, 34]. Prior work also suggests that appropriate
scaffolding [132], timely feedback [42, 70, 74], and active engagement [22, 72] are helpful for
learning. However, we also observe that in colleges, open-ended assignments are widely used
and are treated as a major source of practice and learning in many courses (Chapter 3, Chapter 5,
Chapter 7). Considering a regular course expected to take a student 12 hours each week. Besides
the time to attend lectures and complete readings, students are usually expected to spend at least
6-9 hours each week on their assignments. This is about 50% - 75% of students’ learning time.
Through a survey with 22 HCI professors, we found that open-ended assignments are often given
and preferred (Chapter 7). However, timely feedback is one feature of deliberate practice
missing in almost all open-ended assignments. From the students’ perspective, open-ended
assignments are often large and require multi-steps. Because they require manual grading, students
often receive feedback days later rather than immediately after. This discrepancy shows that the
learning opportunities we are offering students do not align very well with what theories have
suggested.

From the teachers’ perspective, when they deploy what they believe are high-quality, authentic,
open-ended activities in their courses, a substantial workload is required to grade student solutions
and offer feedback to them. Probing into the reasons behind this through interview and surveys
with instructors (Chapter 5, Chapter 7), we find that instructors find the process for writing
questions that offer focused practice and immediate feedback to be time-consuming. We
also find that instructors believe open-ended assignments are better for student learning,
which is contradicted by student performance data (Chapter 7). This also suggests that
experts have blind spots that may prevent them from seeing what is best for novices (students).

These discrepancies point to opportunities that if we make creating deliberate learning op-
portunities easier and more manageable, it may increase the adoption of better pedagogies in
college instruction. Towards this goal, I explore methods that source authentic student open-ended
solutions to create learning opportunities that offer deliberate practice and immediate feedback
and also target higher-order thinking for students. In this dissertation, I present insights from
the iterative design, development and testing process of a technique UpGrade, during 3 years
engaging with 10 instructors and 600+ students at CMU. UpGrade uses student solution examples
to semi-automatically generate authentic multiple-choice questions for the deliberate practice
of higher-order thinking. The idea of UpGrade originated when I was a teaching assistant for
a research methods course. When I was grading students’ assignments, I realized that different
teams often had the same mistakes and I was mainly copying and pasting the same piece of
feedback to a lot of students. The same experience happened again during my second teaching
assistantship. I then conducted research to provide a better formative assessment experience for
students, which also saves repetitive efforts from instructors.

Before I developed UpGrade, I conducted a formative interview study (Chapter 5) with instruc-
tors and learning engineers to understand their current practices and challenges with designing
assessments. The major takeaways include that open-ended projects can be overly challenging,
and thus are not good learning opportunities for students. Students show similar mistakes, and
mistakes repeatedly appear within one student. When writing assessments, instructors find coming
up with scenarios and creating examples to be hard. The design consideration for the system is
to source examples from student solutions. Since we are anticipating common student errors,
giving them practice opportunities beforehand to avoid these errors can be powerful, and UpGrade
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Figure 1.1: Five Step Workflow of UpGrade. Step 1 almost happens naturally. Past students’
written solutions are logged, they can be logged in PDF formats or through online forms. In step 2,
the system segments the written solutions into components based on the assignment template (for
example, through keyword extraction). This step requires a manual check to make sure the data is
meaningfully segmented. In Step 3, we ask the instructor to specify a question creation schema,
in which the instructor will specify which components in the source will be used in the target
question. In step 4, the system reorganizes the source data based on the schema and leverages
Natural Language Processing (NLP) techniques to create multiple-choice questions. In the last
step, we ask instructors to select questions from the large question pool.

naturally identifies common errors by drawing on past student solutions and reuse instructor
feedback.

Fig 5.1 conceptually summarizes the workflow of UpGrade, UpGrade is leveraging the
capabilities of both humans and the machine. Past students function as a crowd that offers
data sources. Machine segments, selects, and reorganizes examples. The expert validates the
questions, in the end, as a quick quality control. This workflow enables UpGrade to quickly
produce good quality multiple-choice questions at scale. On the one hand, UpGrade provides
deliberate practice for students towards mastery learning with appropriate scaffolding, real-time
feedback and repeated practice opportunities. On the other hand, UpGrade aims at reducing
repetitive effort from instructors and complementing instructor expertise and effort with machine
and crowd intelligence.

UpGrade was first presented in [139] (Chapter 3) as a technique that requires a combination
of offline (manual) and online (automatic) efforts to produce a large pool of multiple-choice
questions. We did two evaluation studies to examine the learning benefits of UpGrade-produced
multiple-choice questions for students. The first experiment is presented in Chapter 3. In this
study, we found that students learnt the same from UpGrade as a traditional open-ended assignment
in 30% less time. The learning outcome is measured by a quiz composed of both multiple-choice
and open-ended questions. We were also interested in whether the skills exercised through
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Figure 1.2: QuizMaker Interface: Segmented past student work is displayed to the left; Instructors
can create question schemata and preview the question on the right.

evaluation-type activities could transfer to improved task performance. We then ran a second
evaluation experiment investigating whether exercising with UpGrade could lead to improvements
in the quality of authentic and complex open-ended work. The result for the second experiment is
presented in Chapter 4. We found that exercising with UpGrade before doing the open-ended
assignment (creating Storyboards for speed dating studies) helped improve the quality of open-
ended work students produced, i.e., higher quality of storyboards and protocols for subsequent
speed dating studies. These studies demonstrate the learning benefits of UpGrade-produced
practice questions. And at the same time, following the workflow of UpGrade, instructors can
create hundreds of these questions very quickly.

In Chapter 5, I describe the iterative design process of the authoring interface of UpGrade (as
shown in Fig 5.3) and present the takeaways around using UpGrade in practice with instructors
and learning engineers. UpGrade works by taking advantage of the complementary strengths of
peers, machine and instructors, and the content creation process wouldn’t have been possible
without each stakeholder here. With instructors alone, it is often hard to write lots of elaborated
good examples and wrong answers. With machine alone, we see that existing question generation
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Figure 1.3: UpGrade takes advantages of the strengths of peers, machine and instructors.

techniques only produce fact questions and are not flexible. Here, past peers offer a powerful data
source with structured examples that show common errors. With this better data input, machine
can auto select/filter and reorganize examples. Instructors, in the end, will check information
accuracy and comprehensiveness. This altogether supports quality content creation at scale, as
shown in Fig 1.3.

To enhance quality control of the questions created by UpGrade, we investigated psychometric
approaches using student performance data to automatically prune out low-quality questions. In
study 3 (Chapter 6), we collected learner responses to UpGrade-created questions, and used
Cronbach’s alpha [27] to identify unreliable question items. After pruning out low-quality
questions, UpGrade produces a question bank that exceeds reliability standards for classroom
use. We demonstrate that crowd (such as MTurk) can be leveraged as a source for quality control.
We also demonstrate that when reducing the sample size, the number of good items predicted as
bad increases, but the number of bad items predicted as good remains the same. This suggests
that with techniques such as UpGrade, which produces a large question pool, the system can
use relatively small data sets to prune out unreliable items without worrying about having false
positives.

As I explore the feasibility of applying UpGrade to a variety of courses, there arises the
question of when are multiple-choice practice questions appropriate? In study 4 (Chapter 7)[140],
I present theorized analyses and empirical findings and suggest when to use evaluation-type
exercises such as multiple-choice questions from a theoretical angle. On the one hand, we see
encouraging results suggesting multiple-choice questions can be useful. On the other hand, we
surface a negative sentiment towards multiple-choice questions from instructors, e.g., instructors
tend to believe “Although open-ended assignments are less scalable, they provide better learning
opportunities compared to multiple-choice assignments.” We conducted a series of studies in
four courses investigating when would multiple-choice questions be appropriate and applicable
following theorized analyses of the different types of cognitive efforts required when answering
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questions. We also contrasted expert prediction on the difficulty of these practice questions
with student performance data. Our studies demonstrate that “evaluation” efforts are critical
in at least some problem-solving processes, and in-fact in all the problem-solving processes
we have investigated. We suggest that for at least these “evaluation-heavy” domains, online
learning can benefit from the scaling advantages of evaluation-type exercises, e.g., multiple-
choice questions, without sacrificing (and perhaps gaining) learning quality. We also observe
that instructor prediction of question difficulty doesn’t align with student performance. This
is another case that suggests expert blind spots exist. I demonstrate that well-designed, low-
effort experimental comparisons can help experts (instructors) make more accurate and nuanced
instructional decisions and designs.

In Chapter 8, I present the design of a teacher training system [141] using insights on exer-
cising evaluative cognitive efforts found in study 4 (Chapter 7). With my studies in Chapter 7 and
other prior work, we have shown that evaluating the quality of solutions can support learning and
performance on generating solutions afterwards, even with higher learning efficiency compared
with practicing with generating solutions only. For example, Yannier et al. shows that evaluating
“which towers would be likely to fall” can be more effective in teaching kids physics principles
around gravity and balance compared to having kids continuously build towers with LEGO
[152]. Ericsson et al. shows that when teaching programming, having students solve Parsons
problems, i.e., evaluating the correctness and ordering of code snippets is equally effective for
learning compared to having them write the equivalent code. This prior work is mostly focused
on technical skills that do not require interpersonal communication. For skills such as asking
questions, it remains unknown whether evaluating responses can be a useful exercise, and whether
it is more, less, or equally useful for learning as generating improvisational responses to scenarios.
In Chapter 8, I present the design of a system that helps teachers learn questioning strategies and I
present findings regarding having teachers evaluate transcripts achieved similar benefits as asking
teachers to generate questions in chats.

In Chapter 9, I present a second example showing that with close human and machine
collaboration, we can repurpose online videos as software tutorials for end-users [138]. Besides
formal higher education settings. learning is also happening ubiquitously as people watch videos,
read online articles, etc. In Chapter 7, I describe a technique where I harness examples from online
videos and logs to support the use of complex graphical software. This workflow categorization
and recommendation technique also takes advantage of the complementary strengths of peers,
experts and machine intelligence, as shown in Fig 1.4.
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Figure 1.4: In this case, peers who can be users of the software everywhere in the world contribute
demonstration videos. We collect these videos (and their command logs) as input and use machine
to identify an end user’s workflow, expert input is elicited in this process. With this approach,
existing online repositories may be repurposed as targeted tutorials for end users

I summarize the contributions this dissertation makes below. I will elaborate on the suggestions
and related future work in Chapter 10 and Chapter 11.

• This dissertation contributes a novel technique that uses student solution examples to
semi-automatically generate authentic multiple-choice questions for deliberate practice of
higher-order thinking. With two classroom experiments, we show that the deliberate practice
opportunities created with this technique help students gain conceptual understanding more
efficiently and help improve the quality of student open-ended work.

• This dissertation contributes insights about developing effective learning at scale systems
by leveraging the complementary strengths from peers, experts, and machine intelligence,
differentiating it from existing systems that solely rely on machine or crowds. There are
three components that contribute to the effectiveness of this learnersourcing technique.
First, instructors are not good at creating distractors, and actual elaborated student errors
are helpful as sources. Second, we apply simple natural language processing techniques to
select distractors of interest. Third, we involve instructors closely in the process to enhance
quality.

• Applying the workflow of UpGrade in practice across courses demonstrates the generaliz-
ability and practical value of this approach and helps inform the design of an interface to
facilitate the independent use of UpGrade by instructors for authoring practice questions.

• When instructor efforts are not available for reviewing and revising the questions to enhance
quality control, we demonstrate an effective quality control method using psychometric
approaches to automatically select high-quality question items from a large question pool.
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• I demonstrate two examples where complementary human and machine intelligence are
leveraged to create educational materials at scale. In both cases, crowds (e.g., past stu-
dents) offer a powerful data source with structure examples that show common errors.
Machine automatically selects, filters and reorganizes examples. Experts (instructors) check
information accuracy and comprehensiveness to enhance content quality.

• This dissertation suggests another layer to further distinguish knowledge components, by the
required generation and evaluation efforts in problem-solving. The practical implication for
a more nuanced understanding of knowledge components (KCs) is to help instructors make
more nuanced and accurate instructional decisions, e.g., using “evaluation-type” exercises
for evaluation-heavy skills.

• This dissertation indicates that, at least for some domains, online learning can benefit
from the scaling advantages of multiple-choice questions without sacrificing (and perhaps
gaining) learning quality. Learning experience (LX) designers may consider, with less
guilt, the use of multiple-choice assessment and practice. To determine what subject-matter
may have the required characteristics (e.g., evaluative skill is distinctly challenging), LX
designers may use our matched assessment comparison technique to identify when MCQs
are equally difficult.

• This dissertation provides further evidence that instructors have so-called “expert blind
spots”, revealed through cases where their beliefs and student performance do not match.
Specifically, instructors believe open-ended assignments to be better for student learning,
which is contradicted by student performance data. More generally, our work suggests
that reasoning behind educational decisions can be probed through well-designed, low-
effort, experimental comparisons toward more nuanced and accurate reasoning and decision
making, and ultimately better design.

• This dissertation also makes suggestions to the model of take-home assignments used
in a higher-education context, especially relevant to topics similar to the ones we have
investigated. We surface an issue that open-ended work students turn in are of low quality,
suggesting there are cases when students are not ready and need scaffolding before they
do complex open-ended work. An alternative model would be giving students deliberate
practice opportunities before the assignment of flexible open-ended work. The deliberate
practice opportunities can be easily created with techniques such as UpGrade.

• I present the design of a system that benefits from the distinction between generation
and evaluation efforts during problem-solving. ELK (Eliciting Learner Knowledge), is a
text-based role-playing system that enables pre-service teachers to practice questioning
moves through simulated “teacher-student” conversations.
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Chapter 2

Related Work

In this chapter, I review relevant literature that my work situates in. First, I review literature in
recent advances in automatic question generation techniques for educational purpose. Second,
I review literature in the emerging field of learnersourcing [60], including systems that have
been developed by sourcing existing student data [63, 64, 65, 89, 143, 146]. Third, I review
literature related to skill acquisition, more specifically, theory of deliberate practice [33, 34, 35]
and constraint-based expertise acquisition [68, 102, 103]. Fourth, I introduce the Knowledge-
Learning-Instruction framework [70], which I followed to describe the relationships between
knowledge, learning and instruction. Fifth, I review literature related to learning problem-solving
skills [100], more specifically the use of worked examples [9, 21, 104, 129] and the role of
feedback [9, 51, 67, 73]. Finally, I review psychometric approaches [27, 50] which we applied to
enhance quality control in UpGrade.

2.1 Automatic Question Generation for Educational Purposes

This section discusses prior work on automatic generation techniques for educational purposes.
The discussion is based on two recent literature review papers on the topic, one was published
on 2015, and the other was published early this year summarizing the advances in the area since
2014. [8, 75]. Some of the major findings include that 1) existing automatic question generation
techniques produce questions that target lower cognitive skills, such as fact questions and fill-in-
the-gap questions, etc. 2) Meaningful feedback is often missing in these existing systems. 3) Most
techniques are domain-specific, and there are more techniques focusing on language learning,
followed by math and medicine when there are existing knowledge bases that provide language
ontology through NLP tools to support question creation. 4) The main purpose of generating
questions is to use them as assessment, for example, in exams. Few projects used the generated
questions as a way of instruction.

Prior work mostly focused on domain-specific question generation techniques, especially
on language learning and medicine learning. Generating questions for a specific domain is
more prevalent than generating domain-unspecific questions. For example, there are many
techniques/studies for generating language learning questions, followed by math and medicine.
For language learning, there are standardized tests developed by professional organizations such
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as ETS. These techniques use NLP tools for shallow understanding of text with an acceptable
performance, e.g., changing the verb form of the key, “write”, “written”, “wrote” as distractors
for “writing.” Another plausible reason for interest in questions on medicine is the availability
of NLP tools (named entity recogniser and co-reference resolvers) for processing medical text.
External, structured knowledge sources are needed to find what is true and what is similar. In
terms of question types, simple factual wh-questions and gap-fill questions are the most generated
types of questions. The types of questions generated from ontologies are more varied than the
types of questions generated from text.

There are several limitations in prior work identified, 1) there is limited research on controlling
the difficulty of generated questions, and on generating informative feedback; 2) the quality of
the questions generated has be a concern; 3) the simplicity of generated questions is another
concern, which has also been highlighted in [124]. Most generated questions consist of a few
terms and target lower cognitive levels. While these questions are still useful, there are potentials
for improvement by exploring the generation of other, higher order and more complex, types of
questions.

The strategy these approaches primarily use is limited in that they tend to simply transform
given text from declarative statements to questions. In this work, we explore data inputs that
are not declarative statements, but elaborated solutions from students that display common
misconceptions with accompanying thought processes. On the other hand, we involve experts at
multiple stages. Instructors specify question creation schema that target higher order thinking,
e.g., evaluation. Instructors also review questions and provide feedback in the end. With the
introduction of these two new components, our technique produces higher quality content.

2.2 Learnersourcing

The idea of learnersourcing, proposed and implemented in [60], is a form of crowdsourcing
in which learners collectively contribute novel content for future learners while engaging in
a meaningful learning experience themselves. For example, LectureScape [63] helps learners
navigate online lecture videos using interaction data aggregated over all previous video watchers.
ConceptScape [89] generates and presents a concept map for lecture videos through prompting
video watchers to externalize reflections on the video. AXIS [146] asks learners to generate,
revise and evaluate explanations as they solve a problem, and then presents these explanations to
future learners. Other crowdsourcing workflows are designed to extract step-by-step information
[64] from how-to-videos or construct subgoals [143] to enhance existing how-to videos.

Prior work used learnersourcing to enhance video watching experience and offer explanations
to students. A gap in this literature that our work seeks to fill is that students’ written assignments
have not been explored yet as a source for benefiting future learners. Written assignments often
take hours of student time to complete, containing rich information, thus could be used a valuable
input for learnersourcing.
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2.3 Expertise Development

2.3.1 Deliberate Practice
The theory of deliberate practice suggests that a sufficient amount of experience or practice may
not lead to maximal performance, such as merely executing proficiently during routine work.
Instead, further improvements on expertise depend on deliberate efforts to change particular
aspects of performance, in other words, practice that involves elements of the desired competence
that are at the edge of learners’ capability is most valuable for expertise development. [34, 35] The
theory of deliberate practice suggests that to support learners in expertise development, learning
opportunities should be created that would involve elements of the desired competence that are
at the edge of learners’ capability. Deliberate practice also involves the provision of immediate
feedback, time for problem-solving and evaluation, and opportunities for repeated performance
to refine behavior.[33] However, instructional events, such as open-ended assignments, do not
support learning events with deliberate practice.

2.3.2 Constraint-based Expertise Acquisition
Constraint-based expertise acquisition theory explains knowledge as a sets of constraints. It sug-
gests learning to solve a problem can be viewed as learning to meet and avoid certain constraints.
For example, opening a door is normally subject to the constraint that the door should not become
damaged in the process. [68] Faced with an unfamiliar problem, the problem solver knows neither
what to do nor what to avoid. If the problem reminds them of some problem encountered in
the past, constraints relevant to that problem are likely to be activated. If the constraints can be
adapted to the unfamiliar problem, the active constraints might circumscribe a problem space, in
which the problem solvers should search for a solution. Following the theory of constraint-based
expertise acquisition, when novices are learning new problem-solving skills, leveraging examples
that meet or avoid certain constraints as learning materials may help them learn the constraints
well.

Constraint-based Student Modeling

The student modeling problem in its general form can be stated as follows [102]: Given a
behavioral record (of some sort), infer what the student knows and does not know about the
relevant topic. [103] Ohlsson proposed constraint-based student modeling in contrast to other
student modeling techniques, e.g., model tracing techniques [10]. The advantage over model
tracing techniques is that it can make inference about student knowledge as the constraint is
violated.

The main goal for student modeling is to guide subsequent pedagogical decision making.
In this sense, the system may not need to differentiate between some mistakes if they point to
the same instructional approach. [103] This implies that a student modeling approach where
student are modeled in terms of equivalence classes of solutions rather than specific solutions
or strategies. Constraint-based student modeling is based on the notion that the student can be
described in terms of entities more abstract than particular solution paths or strategies.[103] Based
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on these considerations, constraint-based student modeling is proposed. Each constraint defines
two equivalence classes: solutions that violate the constraint and solutions which do not. If the
constraints are chosen to represent fundamental ideas of the domain, then these two classes of
situations require different tutorial responses.

For example, when a student is working on the problem of 1/4+2/3 = . If the system observes
student put 3/ on the right of the equation, that suggests thte student is simply adding the
numerators. It violates the constraint that if two fractions have unequal denominators, then the
denominators must be equalized before the fractions can be added. Violating this constraint
indicates that the student is not thinking about the denominator as the unit in terms of which the
numerator is expressed.

We consider many evaluation-heavy content domains can benefit from constraint-based student
modeling. For example, when students are learning to design survey questions. They are
essentially learning the constraints associated with survey question design, e.g., a survey question
shouldn’t be a leading question, shouldn’t ask respondents to estimate, shouldn’t ask a double-
barreled question, etc. To model student knowledge in terms of which constraints are violated
would be more effective than modeling how students came up with a survey question, because the
solution space is infinite. In my thesis, I apply the theory of constraint-based expertise acquisition
to support learners in learning evaluation-heavy skills.

2.4 The Knowledge-Learning-Instruction Framework

The Knowledge-Learning-Instruction framework is a widely adopted framework that specifies
three taxonomies, kinds of knowledge, kinds of learning processes, and kinds of instructional
choices, and dependencies between them. The framework demonstrates how kinds of knowledge
constrain learning processes and how these processes constrain which instructional choices will
be optimal in producing robust student learning.[70] It is a widely adopted framework to generate
and test research questions within specific domains and instructional situations. In my thesis,
I follow the definition of instructional event, assessment event, learning event, and knowledge
components, as defined in the widely adopted Knowledge-Learning-Instruction framework [70].
More specifically, instructional events and assessment events are designed and delivered by
instructors, e.g., a lecture is an instructional event, and an exam is an assessment event. Learning
events refer to the learning processes students engage in behind scenes, which are not observable.
Students gain knowledge components (KCs) through learning events, which can be inferred
from performance on assessment events. The KLI framework suggests that kinds of KCs drive
instructional event choices. For example, instructional approaches that emphasize recall and
spacing of practice may benefit learning of historical facts, vocabulary; whereas instructional
approaches that prompt self-explanation in students would be more valuable for learning complex
principles, such as Newton’s laws.
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2.5 Problem Solving, Worked Examples, Feedback

Newell and Simon [100] proposed a "generate and test" problem-solving approach, which sug-
gests that when people solve problems they carry out selective search in a problem space that
incorporates some of the structural information of the task environment. They propose that
the set of human behaviors of "problem solving" encompasses both the activities required to
construct a problem space in the face of a new task environment, and the activities required to
solve a particular problem in some problem space, new or old. The proposition that "search in
a well-defined problem space is not problem solving at all" was found to be empirically false.
This aligns with the distinction between generation and evaluation processes we are making in
problem-solving. In particular, we found domains where learning to evaluate alternative solution
options is much harder than learning to generate candidate solutions, and thus practicing the
"evaluation" aspect should be emphasized in learning.

The theory of worked examples suggests that when a problem to be solved is sufficiently
demanding, students may not have enough cognitive resources to learn from solving the problem
[9, 104]. Providing instructional scaffolding to a practice activity promotes learning when it helps
students practice the target skills at an appropriate level of challenge [21]. Worked examples
[129] are one such type of scaffold, which frees up cognitive resources and allows students to see
the key features of a problem and analyze the steps and reasons behind problem-solving. In my
work, I am developing UpGrade that provides such instructional scaffolding through auto-created
worked examples.

Targeted feedback is also critical during deliberate practice. Many studies have shown that
feedback interventions improve learning more than non-feedback ones [67]. Generally, more
frequent feedback leads to more efficient learning because it helps students stay on track [51].
However in practice, crafting deliberate practice opportunities with frequent feedback requires
careful design and substantive effort from instructors. Furthermore, for open-ended problems,
provision of frequent feedback may not be affordable, especially in large-scale classes [73]. In
this work, we design UpGrade to offer deliberate practice on open-ended problems without the
need for instructors to put in hours of effort in the preparation or during use. One risk of focused,
deliberate practice opportunities is that the focused nature might preclude the experience of
authentic activities [9]. UpGrade addresses this concern by delivering deliberate practice that is
situated within authentic activities.

2.6 Quality Control through Psychometric Approaches

Prior work has used learner subjective ratings [146] to select high quality content in learner-
sourcing systems. In this work, we instead explore psychometric methods to evaluate question
reliability using student performance data. Common psychometric methods evaluate test reliabil-
ity by the internal consistency of question items within a test, e.g., using a Rasch model [148],
Item Response Theory (IRT) model [50], or Cronbach’s alpha [27]. If question items within a
test are consistent in measuring student capabilities or in differentiating knowledgeable and less
knowledgeable students, the test is considered reliable and question items are considered to be of
high enough quality. On the other hand, if a question item is failing knowledgeable students but
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favoring less knowledgeable students, the question item is considered to be problematic and needs
redesign. Cronbach’s alpha is the most common internal consistency measure, and is incorporated
in UpGrade to evaluate the internal consistency of questions generated. An acceptable reliability
score (Cronbach’s alpha) for exams is in the range of 0.7-0.95 [130]. As reported in the 2011
TOEFL iBT research report [36], the reliability estimate for TOEFL iBT Speaking and Writing
sections are 0.84 and 0.8 respectively, measured by Cronbach’s alpha. We expect a reliability
score in the range of 0.7-0.8 to indicate good enough internal consistency of a test and the question
items in the test to be reliable.
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Chapter 3

UpGrade: A Learnersourcing Technique

In schools and colleges around the world, open-ended homework assignments are commonly
used. However, such assignments require substantial instructor effort for grading, and tend not
to support opportunities for repeated practice. We propose UpGrade, a novel learnersourcing
approach that generates scalable learning opportunities using prior student solutions to open-ended
problems. UpGrade creates interactive questions that offer automated and real-time feedback,
while enabling repeated practice. In a two-week experiment in a college-level HCI course, students
answering UpGrade-created questions instead of traditional open-ended assignments achieved
indistinguishable learning outcomes in ~30% less time. Further, no manual grading effort is
required. To enhance quality control, UpGrade incorporates a psychometric approach using crowd
workers’ answers to automatically prune out low quality questions, resulting in a question bank
that exceeds reliability standards for classroom use.

3.1 Introduction

A key insight that has spawned a new direction in crowdsourcing research called learnersourcing
is that learners around the world unwittingly produce content that can be leveraged to create novel
learning opportunities. For example, video watching traces [63], video annotations [64, 89, 143],
or explanations [146] generated by prior learners were sourced to benefit future learners. In this
paper, we explore written homework assignments as a new and powerful input for learnersourcing.
Afterall, students are producing great volumes of written content in response to open-ended
assignments. We describe how this content can be automatically transformed into online practice
activities where student learning is supported through immediate feedback and we present evalua-
tions of the quality of the questions created, the learning outcomes achieved, and time savings for
students and instructors.

Open-ended assignments are widely used in schools and colleges as formative assessments.
They typically involve qualitative feedback offered by instructors, and are designed to inform
subsequent learning in contrast with summative assessments, such as exams. At the same time,
open-ended assignments require substantive efforts from instructors to grade and provide feedback.
Furthermore, the full benefits of this feedback is best realized when it is provided soon after
students complete assignments and when they are given the opportunity to incorporate feedback
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into further practice. However, timely return of detailed feedback is hard to achieve and open-
ended assignments are often used as a one-off activity whereby there is little or no chance for
deliberate practice on concepts or skills that were not demonstrably mastered.

In this work, we propose UpGrade, a novel learnersourcing approach that delivers scalable
and efficient learning opportunities, reducing time commitment from both students and instructors.
Following the workflow of UpGrade, instructors can create hundreds of multiple-choice questions
from prior student solutions to open-ended problems with minimal effort. UpGrade-created
questions also offer real-time feedback for repeated practice. UpGrade can be used as an alternative
or primer to traditional open-ended assignments, with more instructional scaffolding towards
mastery of the knowledge and skills. UpGrade works by (i) chunking information to be learned
into smaller pieces, which allows novices to gradually engage more information; (ii) enabling
deliberate practice, which helps novices to develop mastery on knowledge and skills; and (iii)
offering immediate and frequent feedback, which helps students stay on track and addresses their
errors as they occur.

To evaluate UpGrade in a realistic learning setting, we applied it in a college-level Human-
Computer Interaction (HCI) course that teaches user-centered research methods, of which we
focused on heuristic evaluation and survey design. In a two-week classroom experiment using a
crossover design, we demonstrated that students answering interactive UpGrade-created multiple-
choice questions instead of traditional open-ended assignments achieved indistinguishable learning
outcomes, while reducing assignment completion time by ~30% and removing the need for
instructor grading. This first classroom experiment of UpGrade demonstrates substantial promise
for the approach. We also explore crowdsourced methods for evaluating and enhancing the
quality of the automatically generated questions. UpGrade incorporates a psychometric method to
distinguish reliable versus unreliable question items. Unreliable question items were successfully
identified through a validation study with 70 participants on Amazon Mechanical Turk. This
results in a reliable question bank with an internal consistency that exceeds the standards for
classroom use.

In summary, we make the following key contributions:
• New technique: UpGrade, a learnersourcing approach that delivers scalable and efficient

learning opportunities, reducing time commitment from both students and instructors.
• Evidence of support for learning: An experiment of UpGrade, demonstrating effective time

reduction for students and instructors, while achieving indistinguishable learning outcomes
compared to traditional open-ended assignments.

• Approach for quality control: An effective quality control method for automatically selecting
high quality learning materials with minimal crowdsourcing effort.

3.2 Related Work

Our work extends the frontier of work in an emerging area of crowdsourcing referred to as
learnersourcing [60, 63, 64, 89, 143, 146]. The design of UpGrade is motivated by learning
theories related to instructional scaffolding [9], worked examples [129], and deliberate practice
[34]. To lay a theoretical foundation for our work, in this section we discuss the cognitive
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processes involved in solving multiple-choice and open-ended problems. From a more practical
standpoint we discuss how frequent feedback and deliberate practice are not always affordable
for open-ended problems [73]. To address potential concerns that an automated approach to
item generation introduces the risk of unreliable or poor quality items, we reviewed established
psychometric methods to evaluate test reliability, which informs our quality control approach.

3.2.1 Learnersourcing Techniques
The idea of learnersourcing, proposed and implemented in [60], is a form of crowdsourcing
in which learners collectively contribute novel content for future learners while engaging in
a meaningful learning experience themselves. For example, LectureScape [63] helps learners
navigate online lecture videos using interaction data aggregated over all previous video watchers.
ConceptScape [89] generates and presents a concept map for lecture videos through prompting
video watchers to externalize reflections on the video. AXIS [146] asks learners to generate,
revise and evaluate explanations as they solve a problem, and then presents these explanations to
future learners. Other crowdsourcing workflows are designed to extract step-by-step information
[64] from how-to-videos or construct subgoals [143] to enhance existing how-to videos.

Prior work used learnersourcing to enhance video watching experience and offer explanations
to students. A gap in this literature that our work seeks to fill is that students’ written assignments
have not been explored yet as a source for benefiting future learners. Written assignments often
take hours of student time to complete, containing rich information, thus could be used a valuable
input for learnersourcing.

3.2.2 Worked Examples and Scaffolding
UpGrade addresses two important issues related to design of effective scaffolding, one related to
cognitive load and the other related to expert blind spots. First, though open-ended work provides
opportunities for authentic learning experiences, a downside is that these rich experiences may
consume most of a student’s available cognitive load when they have not mastered the skills
and knowledge needed to be successful at the activity [9]. If the problem itself is sufficiently
demanding, students may not have enough cognitive resources to learn from solving the problem
[104]. Providing instructional scaffolding to a practice activity promotes learning when it helps
students practice the target skills at an appropriate level of challenge [21]. Worked examples
[129] are one such type of scaffold, which frees up cognitive resources and allows students to
see the key features of a problem and analyze the steps and reasons behind problem-solving.
UpGrade provides instructional scaffolding in support of open-ended problem-solving through
auto-generated worked examples.

A second concern is expert blind spots [118], where the teachers’ expertise makes it difficult
for them to anticipate the specific needs of their students. This may prevent instructors from
authoring scaffolded learning experiences that take into account all the component skills and
knowledge required for complex tasks. On the other hand, prior solutions might provide a
complementary source of insight, offering visibility into common mistakes and misconceptions.
This motivates the design of UpGrade to decompose student solutions and display the merits or
mistakes of the solutions for future students’ reference.
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3.2.3 Repeated Practice and Feedback

Deliberate practice, which is focused practice targeting specific skills, assists novices in becoming
experts [118]. Research shows that the amount of time a learner spends in deliberate practice
rather than more generic practice is what predicts continued learning in a given field [34]. By
breaking information down into bite-sized chunks, deliberate practice allows novice learners to
gradually engage more information without being overwhelmed [118]. Targeted feedback is also
critical during deliberate practice. Many studies have shown that feedback interventions improve
learning more than non-feedback ones [67]. Generally, more frequent feedback leads to more
efficient learning because it helps students stay on track [51].

However in practice, crafting deliberate practice opportunities with frequent feedback requires
careful design and substantive effort from instructors. Furthermore, for open-ended problems,
provision of frequent feedback may not be affordable, especially in large-scale classes [73]. In
this work, we design UpGrade to offer deliberate practice on open-ended problems without the
need for instructors to put in hours of effort in the preparation or during use. One risk of focused,
deliberate practice opportunities is that the focused nature might preclude the experience of
authentic activities [9]. UpGrade addresses this concern by delivering deliberate practice that is
situated within authentic activities.

3.2.4 Quality Control Methods

Prior work has used learner subjective ratings [146] to select high quality content in learner-
sourcing systems. In this work, we instead explore psychometric methods to evaluate question
reliability using student performance data. Common psychometric methods evaluate test reliabil-
ity by the internal consistency of question items within a test, e.g., using a Rasch model [148],
Item Response Theory (IRT) model [50], or Cronbach’s alpha [27]. If question items within a
test are consistent in measuring student capabilities or in differentiating knowledgeable and less
knowledgeable students, the test is considered reliable and question items are considered to be of
high enough quality. On the other hand, if a question item is failing knowledgeable students but
favoring less knowledgeable students, the question item is considered to be problematic and needs
redesign. Cronbach’s alpha is the most common internal consistency measure, and is incorporated
in UpGrade to evaluate the internal consistency of questions generated. An acceptable reliability
score (Cronbach’s alpha) for exams is in the range of 0.7-0.95 [130]. As reported in the 2011
TOEFL iBT research report [36], the reliability estimate for TOEFL iBT Speaking and Writing
sections are 0.84 and 0.8 respectively, measured by Cronbach’s alpha. We expect a reliability
score in the range of 0.7-0.8 to indicate good enough internal consistency of a test and the question
items in the test to be reliable.

3.3 Formative Study: Assignment Survey

We first conducted a formative study to understand what commonly-used open-ended assignments
look like, and to identify potential cases where sourcing existing examples could be beneficial.
We did a content analysis of the assignments of six courses offered to both undergraduate and
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graduate students in the Human-Computer Interaction (HCI) program at an R1 institution. We
used a qualitative approach to examine the learning goals of these assignments and grouped them
into several clusters. We identified cases where the skills to be learned in these assignments could
be taught through evaluating examples, as shown in Figure 3.1. We illustrate how we construct
the graph below.

The courses we surveyed include two user experience (UX) method courses, two technical
(computer science-related) courses, one design course and one learning sciences course. We
took a bottom-up approach, mapping out the learning goals and requirements in the assignments.
Three clusters of assignments emerged, (i) Solve a problem or generate a solution, which most
assignments fall in; (ii) Learn to use a tool, e.g., get familiar with a software, set up a mobile data
collection module; and (iii) Share reading reflections and opinions. (ii) and (iii) were less frequent
in the sample and were often not graded, here we focus on the main cluster (i).

Problem-solving assignments include both group projects and individual projects. Individual
projects are usually intended for skill building, whereas group projects are for practicing skill
integration and content generation. For group projects that involve skill building modules, they
assemble that of individual projects. Here we only discuss the branch of individual projects.
We saw two types of individual problem-solving projects emerging from the data, open-ended
problem solving, asking students to generate a solution to a given problem; and doubly open-
ended problem solving, asking students to first define a problem and then generate a solution.
We highlight the distinction here because they offer different sources for UpGrade to create
multiple-choice questions. Among the problem-solving tasks, some have a single success path or
a limited set of success paths, e.g., computing the probability of an event using the Naive Bayes
model; computing the mean of a variable in a given dataset. Most problems in our surveyed
domains (i.e., UX methods, design, learning sciences) do not have a single success path. This also
applies to authentic problem-solving tasks in workplaces.

Traditional computer-based tutors such as Assistments [52] and example tracing tutors [6]
were designed for problems with single or limited success paths. UpGrade mainly targets at
problems that do not have a single success path. In such problem-solving tasks, students often
need to evaluate the solutions they came up with, rationalize why they made the decisions, and
revise their solution based on certain criteria. For some domains, the real challenge in solving a
problem is to evaluate the quality of a proposed solution rather than to come up with an initial
solution. Shifting the practice focus from generating solutions to evaluating existing solutions
could be beneficial for learning such skills. We consider such “evaluation-heavy” problem-solving
skills (Figure 3.1) could be exercised well through multiple-choice tasks that emphasize evaluation.
We listed example skills that are considered to be “evaluation-heavy” in our survey in Table 3.1.

3.4 UpGrade
In this section, we describe UpGrade’s workflow for creating multiple-choice questions from
prior students’ open-ended solutions. An overview of the workflow is shown in Figure 3.2. We
illustrate each step using an example to offer a proof of concept that this technique can be applied
in practice. The example course we used is an HCI research methods course that has been offered
in the department for 5+ years. We refer to the course as UX101 for the rest of the paper. We
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Figure 3.1: Problem-solving assignment classification from 6 HCI courses.

Course type “Evaluation-heavy” skill
Technical Propose new features to a model

based on error analysis
Learning
sciences

Perform a theoretical cognitive task
analysis

Design Ideate concept maps and conceptual
models

UX method Design a survey
UX method Heuristic evaluation (critique an in-

terface and come up with redesigns)

Table 3.1: Examples of “evaluation-heavy” problem-solving skills.
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Figure 3.2: UpGrade’s workflow.

focused on two topics of UX101 to create questions, Survey Design and Heuristic Evaluation.
Both are “evaluation-heavy” problem-solving skills as categorized in the formative study. Prior
offerings of UX101 used one open-ended assignment per topic to help students learn the method.
For Survey Design, students were asked to design a survey; for Heuristic Evaluation, students
were asked to write a report documenting heuristic problems found for a given website. Past
assignment submissions were assessed based on the rubric items shown in Figure 3.3.

3.4.1 Solution Logging
UpGrade requires structured data of students’ open-ended solutions, which can be logged in
different formats. We collected all student assignment solutions under the topics of Survey Design
and Heuristic Evaluation that were submitted in the 2015 offering of UX101, with ~100 written
assignment solutions per topic. All files were in PDF format, the majority of which had a length of
10+ pages, which is typical for college-level open-ended assignments. The assignment solutions
were graded and offered feedback to by peers and TAs through an online platform Coursemark
based on the assignment rubric (Figure 3.3). Feedback data from Coursemark was scraped in
association with rubric item for all the solutions. For courses where students’ open-ended solutions
are logged in online forms, the next step for solution segmentation will not be necessary.

3.4.2 Solution Segmentation Based on Assignment Rubric
UpGrade then assigns structures to assignment PDF documents by segmenting the solution based
on rubric items. For our collected PDF assignment solutions, UpGrade first converts them to
HTML files using the Adobe Acrobat API. UpGrade then employs a Python script to segment the
HTML files into sections based on DOM tags and text styles (e.g., <h1>, <h2>, <p>). We found
this method to be more effective in this segmentation task than using headings or texts. Different
students may use different language to describe each section. However, when they start a new
section, the DOM tag or text style is always different from the previous section. Moreover, the
segmentation technique also associates in-text images with sections, since image DOM tags (e.g.,
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<img>) are inside <p> tags. Each assignment solution file is reorganized into a .txt file with one
section per line.

The Survey Design and Heuristic Evaluation assignments followed templates. For example, in
the Heuristic Evaluation assignment, students were asked to identify five heuristic problems in a
given website. For each heuristic problem, it will be evaluated based on five rubric items, including
Description of the problem, heuristic rule Violation, Explanation of why the rule is violated,
justification of the Severity of the problem, and a Remedy plan to fix the problem. For solutions
whose segmented results matched the rubric items in the template, the segmented sections were
automatically associated with each rubric item. However, for solutions that did not follow the
exact template, we had to manually align them. For UX101, past instructor and peer feedback
were offered in correspondence with the rubric items. Solution segments and feedback offered to
the solution were thus automatically matched. From this step, the solution file is reorganized and
saved in a local database, an excerpt of which is shown in Table 3.2.

This manual checking step is a limitation of UpGrade’s current workflow. Potential ways to
mitigate this when applying UpGrade in practice include: (i) logging assignment solutions using
online forms where structures are predefined, eliminating the need of post-hoc segmentation and
metadata association; (ii) abandoning falsely templated solutions when there is a large pool of
existing solutions to source from; and (iii) applying advanced approaches to automatically align
with the template to minimize the manual checking effort.

Figure 3.3: Rubric items for open-ended assignments on the topic of Survey Design and Heuristic
Evaluation.

Figure 3.4: Four components used in UpGrade question schemata.
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Table 3.2: A data excerpt produced by the segmentation step: past assignment solutions were
segmented into sections based on the assignment rubric. Instructor and peer feedback was
associated with solution segments when available.

3.4.3 Question Creation

We define four components Question, Answer, Explanation, and Feedback (Figure 3.4)
to form question schemata in UpGrade. Question is a question asked in an open-ended
assignment, e.g., what are the goals of this survey. In doubly open-ended assignments, students
may self-define a Question. Answer is a past student’s answer to a Question. Typical
open-ended assignment solutions are composed of many Question-Answer pairs. In some
assignments, students are required to offer Explanation to their answers. For assignments
that have been graded, instructor or peer Feedback are also collected. Depending on the
available data sources, instructors will (i) select a question schema and (ii) specify which sections
should be placed into each component in the schema. Examples are given in Figure 3.5. With
the segmented solutions produced (Table 3.2) and instructor-specified schemata, UpGrade then
creates multiple-choice questions automatically. We introduce three question schemata we have
defined and explored.

Figure 3.5: Example instantiations of the three UpGrade question schemata:
(a) Question-Answer, (b) Question-Answer-Explanation, and (c)
Answer-Feedback.
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Question-Answer Schema

This schema defines a question with the components Question and Answer. In the example
shown in Figure 3.5 (a), three solution segments including heuristic problem Description, Rule
Violation and Explanation were used as the Question. Remedy of the problem was used as
the Answer. The distractors were selected from the pool of Remedy that were written for other
problems. The example question shown in Figure 3.6 displays a heuristic problem, and asks
question takers to select a remedy that would fix the problem.

Question-Answer-Explanation Schema

When Explanation is available as a data source, it can be used to offer informative real-time
feedback in the created question. This schema defines a question with the components Question
, Answer, and Explanation. As shown in Figure 3.5 (b), the heuristic problem Description
was used as the Question, and the Rule Violation was used as the Answer. The distractors
were selected from the pool of Rule Violation for other problems. The example question shown in
Figure 3.7 describes an interaction scenario of a website, and asks the question taker to identify
which heuristic rule is violated. Since the original author offered an explanation on why the rule
was violated, the corresponding Explanation is used as feedback to the question taker.

We present another example instantiation of this schema, when there are multiple iterations
over a solution. In the survey design assignment, past students designed survey questions, revised
them and explained why they made the revision. With this schema, draft 1 of a survey question
was used as the Question, revised version of the survey question was used as the the Answer.
Figure 3.7 shows an example question created. Both versions of the survey question are displayed,
and it asks question taker which version is better. Since the original author explained why they
made the revision, the corresponding Explanation was used as feedback to the question taker.

Answer-Feedback Schema

This schema can be used when past instructor or peer Feedback is collected. Since Feedback
points to prior students’ misconceptions and common errors which may repeatedly happen with
a new group of students, they can be a good source for creating questions. This schema defines
a question with the components Answer and Feedback. As shown in Figure 3.5 (c), past
students’ solution of Survey goals was used as the Answer, and the feedback offered to this
solution was used as Feedback. Distractors were selected from the pool of Feedback that
have been offered to other solutions. The example question shown in Figure 3.9 displays past
students’ written solutions of survey goals and asks question takers to select which feedback
would apply to each solution.

In this running example, after the segmentation step, we sat down with the UX101 instructor
for about two hours in total to decide which question schemata to use and specify the sections to
be used in each schema (the same process as shown in Figure 3.5). We asked the instructor to pick
a schema for each rubric item to make sure UpGrade creates multiple-choice questions that cover
the full scope of its open-ended assignment counterpart (Table 3.3). With the instructor-specified
schemata, UpGrade creates multiple-choice questions automatically. For example, for HE-1, the
specified schema is Q-A-E, also shown in Figure 3.5 (a). For every (Description, Rule Violation,
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Figure 3.6: An example question created by UpGrade using the Question-Answer schema.

Figure 3.7: An example question created by UpGrade using the Question-Answer-
Explanation schema.
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Figure 3.8: An example question created by UpGrade using the Question-Answer-
Explanation schema (Revision variation).

Figure 3.9: An example question created by UpGrade using the Answer-Feedback schema.
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Rubric Schema Description
SV-1 A-F Match instructor feedback to student writing of survey

population
SV-2 A-F Match instructor feedback to student writing of survey

goals
SV-3 A-F Match instructor feedback (issues/suggestions) to each

survey question
SV-4 Q-A-E Compare original and revised question (with UpGrade

feedback:student explanation on why they made the
revision)

SV-5 A-F Match instructor feedback to student design of survey
structure

HE-1 Q-A-E Decide which heuristic rule is violated in the problem
(with UpGrade feedback: student explanation on why
it violates the rule)

HE-2 Q-A Match severity rating to a student-constructed heuristic
problem

HE-3 Q-A Match potential remedies to a student-constructed
heuristic problem

HE-4 Q-A Match potential tradeoffs to a student-constructed
heuristic problem and its remedy

Table 3.3: Course instructor specified a question creation schema for each rubric item in the
assignment.

Explanation) tuple, a question entry is created by selecting three distractors from the pool of Rule
Violation. The questions produced by UpGrade are saved in a .csv file.

We built a prototype system with Django to render the questions. The front end of the
prototype system looks similar to the interface as shown in Figure 3.6-3.9. With one year of past
students’ solution, UpGrade created large quantities of multiple-choice questions. The number of
questions created for each rubric item is shown in the Space column of Table 3.4.

3.5 Classroom Experiment of UpGrade
We conducted a two-week experiment in a college-level HCI course to evaluate UpGrade in
comparison with traditional open-ended assignments.

3.5.1 Crossover Experiment Design

We conducted this study in the Spring 2017 offering of the UX101 course, with 28 students
enrolled. The course covered one topic (i.e., research method) per week. Instructional activities
on each topic included required readings, a 1.5-hour lecture, an open-ended assignment, and a 1.5-
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Rubric Trial Pool Space Rubric Trial Pool Space
SV-1 3 18 96 HE-1 30 70 478
SV-2 3 9 96 HE-2 10 70 478
SV-3 30 40 NA HE-3 15 70 478
SV-4 10 11 NA HE-4 5 27 91
SV-5 4 8 96

Table 3.4: Space: number of questions created in total; Pool: number of questions used in the
experiment; Trial: number of questions presented to students in each trial.

hour section. We divided students into two groups, Group A and Group B. Both groups of students
did the same regular learning activities (readings, lectures, sections). The only difference was the
type of assignment they did. For the topic of Survey Design, Group A worked on the traditional
open-ended assignment, and Group B worked on UpGrade-created assignment. Similarly for the
topic of Heuristic Evaluation, Group A worked on the UpGrade-created assignment, and Group B
worked on the traditional open-ended assignment. Students were given about 7-10 days to finish
each assignment.

For students working on UpGrade-created assignments, they logged in to a web-based system
with their school ID and completed the assignment online. Student grades on this assignment
were determined by how many questions they got right. In the system, students could navigate to
different modules to work on the questions in that module. Modules align with the rubric items of
the open-ended assignment (Figure 3.3). For each module, UpGrade produced a large question
space. We ranked past student solutions by grade and selected high quality ones to be used in
the experiment. The column of Pool in Table 3.4 indicates the number of questions used in the
experiment on each module. Students had unlimited number of attempts at each module, allowing
them to work repeatedly on the modules until they achieved a satisfying score. For each trial of
a module, Trial number of questions were selected from the Pool (Table 3.4), giving students
different learning opportunities in each trial.

3.5.2 Learning Outcome Measure
We administered a quiz on each topic in class as the learning outcome measure after each
assignment was due. The quiz contained 8-12 questions, including both multiple-choice and
open-ended questions. To counterbalance, each quiz item had two formats: an open-ended format,
and a matched multiple-choice format. For example, a quiz item asked students to identify the
design issue of a survey question. The multiple-choice form of the quiz item gave four options for
students to choose from (e.g., “leading question”, “asking about averages”), and the open-ended
form gave a blank for students to fill in. In another example, the quiz item asked students to
revise a survey question. The multiple-choice form of the quiz item gave four candidate questions
for students to choose from, and the open-ended form asked students to revise the question in
a text box. By varying the format for each quiz item, two variations of the quiz were created.
Both variations had half multiple-choice and half open-ended questions. Students were randomly
assigned to one of the variations.

The quiz was designed in collaboration with the course instructor to make sure it aligns with
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Figure 3.10: Student average quiz score in percentage by condition and content with standard
error bars.

the course objectives. We also conducted a think-aloud session with a domain expert and made
sure that the expected answers aligned with the experts’ responses. There are 4 variations of each
question item, so that there are only 7 data points for a given set of 8 question items. Thus it is
hard for us to perform reliability tests on this dataset.

3.6 Experiment Results

Learning outcomes were analyzed in a Condition (UpGrade-created Multiple-choice vs. Tra-
ditional Open-ended) by Content (Heuristic Evaluation vs. Survey Design) repeated measures
ANOVA. Results indicated a significant main effect of Content (F(1, 26) = 5.76, p = 0.02), with no
main effect of Condition (F(1, 26) = 1.02, p = 0.32) and no interaction effect. This suggests that
students who did UpGrade-created assignment achieved equal learning outcomes in comparison
with students who completed traditional open-ended assignments. Surprisingly, we see a trend
suggesting that students from UpGrade condition may actually have performed better on the quiz
than the Traditional condition, as shown in Figure 3.10.

In the in-class quiz, students were also asked to self-report the time they spent working on the
assignments. We performed another repeated measures ANOVA analyzing assignment completion
time by Condition and Content. Results indicated a significant main effect of Condition (F(1,
24) = 6.55, p = 0.017), with no main effect for Content (F(1,24) = 0.001, p = 0.97), and no
interaction effect. The average assignment completion time by Condition and Content is displayed
in Figure 3.11.

Overall, when students did the UpGrade-created assignment composed of multiple-choice
questions instead of the traditional open-ended assignment, there was a 28% reduction in assign-
ment completion time, from an average of 6.34 hours (SD = 3.03) to 4.56 hours (SD = 2.63).
The significant results show that this time reduction is substantial. Despite spending less time,
students achieved equal learning outcomes. Moreover, the trend in learning outcome even favor
the UpGrade condition (Figure 3.10). Further, UpGrade removed the need of manual grading
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Figure 3.11: Student average assignment completion time in hours by condition and content with
standard error bars.

effort from instructors and TAs.

3.6.1 User Experience and Feedback

To better understand user experience and get user feedback to improve UpGrade, we conducted a
subsequent interview with the instructor and an in-class interview with the participating students.
The instructor liked this approach in that students’ grades were all computed automatically, saving
substantial efforts of grading and offering feedback. The instructor further expressed concerns
that many students did not do well in the open-ended assignment. “Students are asked to design a
survey when they didn’t actually know how to design a survey. Many assignments turned in were
in very bad shape and I had to tell the students to go back and redo the assignment.” Additionally,
the instructor envisioned future practice where students got to practice with UpGrade first to learn
the skills before they went off to generate new content.

Students gave feedback freely during an in-class group interview at the end of a lecture
session. Participating students brought up usability issues of UpGrade and suggested ideas
for improving the questions in the future. One student commented on the UpGrade heuristic
evaluation assignment: “It’s hard to understand the interaction scenario captured by the previous
student from a static screenshot. Sometimes we have to guess the intention of the original author.”
Another student suggested “In the automated feedback, it gives a more detailed description of
the scenario. It’ll be helpful to move some of those texts up to the question stem to illustrate the
screenshot.”

The classroom experiment demonstrated UpGrade’s success in saving instructors’ grading
time and reducing students’ time to complete a required assignment without sacrificing learning.
Subsequent interviews with instructor and students suggested ways to enhance question quality.
Though concerns that are inherent to the learnersourcing input (e.g., image quality, text formats)
requires more substantial effort to improve, which we will discuss in future work, there is a huge
potential to select high quality items taking advantage of the large question pool.
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3.7 Discussion, Limitations and Future Work

In this section, we discuss the limitations and potential future directions to enhance the question
quality and the learning benefit of UpGrade.

3.7.1 Structured Text Data Logging

UpGrade enables the creation of multiple-choice questions from existing data, saving instructors’
efforts to manually construct materials. One important step in UpGrade’s workflow (Figure 3.2)
is to segment existing open-ended solutions into sections based on the assignment rubric. In our
experiment, manual effort was required in segmenting the existing solutions. A better approach
would have been logging assignment data hierarchically through digital forms. This would
eliminate the need for UpGrade to segment assignment texts.

3.7.2 UpGrade As A Primer To Open-ended Assignment

One potential risk of UpGrade is that it does not allow students to produce content as they would
normally do in open-ended assignment. On the one hand, students would not engage in successful
content creation before they have mastered the required competence. On the other hand, we do not
argue UpGrade should replace traditional open-ended assignment. In cases where the goal is to
develop mastery towards certain knowledge and skills, UpGrade can be used alone; in other cases
where the goal involves content creation, e.g., projects to be included in portfolios, UpGrade can
be used as a primer to open-ended work to prepare and scaffold students towards higher quality
content generation.

3.7.3 Quality Control and Quality Enhancement

We propose three directions for better quality control in UpGrade. (i) Employ active learner-
sourcing. The current workflow of UpGrade completely relies on existing learner-generated
written content, without intervening the content production process. Future work might explore
interventions on the content production process [65] to support more active learnersourcing, e.g.,
prompting students to document their thought processes while writing open-ended solutions
may produce additional input for question creation in UpGrade. (ii) Employ NLP techniques to
improve text clarify and select better distractors. For example, removing irrelevant texts from
student solutions; add intelligence into the system in selecting distractors (similar distractors,
abstract distractors, etc.) (iii) Develop an instructor review phase in UpGrade for instructors to
review, revise, and select questions. Intelligent support can be provided to instructors while they
are reviewing the questions, e.g., highlighting the texts that may require clarification. This aims at
better leveraging the capabilities of human and machine for high quality content production.
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3.8 Conclusion
In this work, we contribute a novel learnersourcing approach, UpGrade, that creates multiple-
choice practice questions with immediate feedback using prior student solutions to open-ended
problems. An evaluation experiment demonstrated that students achieved indistinguishable learn-
ing outcomes in ~30% less time from UpGrade compared to traditional open-ended assignments,
while at the same time eliminating the need for manual grading. UpGrade also incorporates a
quality control method that prunes out low quality questions based on student performance data.
With continued development, we envision a broader impact of UpGrade to generate high quality
learning opportunities that easily scale up and benefit learners and education providers.

32



Chapter 4

Evaluation of UpGrade Using Open-ended
Task Performance Measures

Following the first experiment (Chapter 3) in which we used quizzes that comprise both multiple-
choice and open-ended questions as outcome measures, we were interested in seeing whether
exercising through UpGrade (evaluation-type activities) could help students improve their open-
ended work quality. This also helps us to re-imagine potential new take-home assignment models
with UpGrade.

We ran this experiment in the fall of 2019, in a user research methods course offered at CMU.
The course covers one research method each module. Our study was conducted on the module of
analyzing usability findings from think-aloud studies and the module of designing storyboards for
speed dating studies.

There are three major research goals for this study. First, we would like to investigate
whether UpGrade-created multiple-choice questions can help students exercise the skills relevant
to generating responses in authentic and complex open-ended tasks. Second, the study design
corresponds to a new take-home assignment model where students exercise with evaluation-type
activities first and then go off to generate open-ended content. On the one hand, we are concerned
about the quality of the product produced. On the other hand, we are concerned about the total
time it took for students to complete the assignment. Our hypothesis is that if students get some
discrete practice first, it could actually save their time in doing the subsequent open-ended tasks.
Third, we implemented the UpGrade technique following the steps as outlined in Figure 4.9, with
co-design sessions with instructors in step 3 and 5. The goal is to understand what are instructors’
preferences and challenges when coming up with question schema and revising questions, to
better inform the design of an end-user interface for UpGrade.

4.1 Study Design

In each module, there is a 1.5-hour lecture, and the assignment is announced at the end of
the lecture, the assignment is due in a week. There is a TA-led section during this week for
students to ask questions and discuss their work with the TA. The class has five sections. Three
sections were assigned to Group A, and two sections were assigned to Group B. The two
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Figure 4.1: Study 2 Design:

experimental assignments contain two components, an evaluation component, in which students
complete UpGrade-produced multiple-choice questions through a web-based system, and a writing
component, in which students complete the projects in groups. Other parts of the class proceed
as usual. In the first week, students are learning about think-aloud protocols and summarizing
usability findings from them. The open-ended assignment is a week-long group project. In the
UpGrade condition, we give students an exercise composed of 20 multiple-choice questions
produced by Upgrade before the students work on their projects. In the second week, the two
groups switched when learning about storyboard and speed dating techniques. We use the quality
of students’ open-ended projects as the learning outcome measure.

4.2 Study Materials
We show the study materials for the module of storyboards.

Assignment Announcement on Canvas The assignment announcement is as shown in Fig-
ure 4.2. Students were also asked to complete a survey at the end of the assignment to report time
spent doing different components of the assignment. Detailed prompts for the evaluation and
writing component are shown in Figure 4.3 and Figure 4.4.

Example Questions In the UpGrade condition, students log in to the system to complete the
activity. There are 4 sections here corresponding to the 4 question schemata the instructor has
created. Section 1 is about the alignment between storyboard and user need. An example question
is shown in Figure 4.5. Section 2 is about writing lead questions for storyboards. An example
question is shown in Figure 4.6. Section 3 is about evaluating the riskiness of storyboards. An
example question is shown in Figure 4.7. Section 4 is about evaluating the quality of storyboards,
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Figure 4.2: Study 2 Materials: Assignment Announcement for “Ideation, Storyboarding and
Speed Dating ”

Figure 4.3: Study 2 Materials: “Ideation, Storyboarding and Speed Dating” Evaluation Component
Prompt
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Figure 4.4: Study 2 Materials: “Ideation, Storyboarding and Speed Dating” Writing Component
Prompt

through matching storyboards with previous instructor feedback. An example question is shown
in Figure 4.8.

4.2.1 Implementation of UpGrade

We followed the 5-step workflow as shown in Figure 4.9. In step 1, we collected students’
submitted assignments data in the past. In step 2, we segmented the solutions using keyword
matching; an example is shown in Figure4.10. We did a sanity check, in the end, to make sure the
segmentation is done meaningfully. In step 3, we did this through a one-hour meeting with the
instructor. During the meeting, I bring the materials, including the original student submission
files and the segmented data and discuss with the instructor about possible question schemata.
For example, the instructor would talk about the learning objectives for the module and suggest
question schemata. In step 4, using the specified question schemata, I run the algorithms to
reorganize the segmented responses and select distractors to create multiple-choice questions. In
step 5, we also did this through a one-hour meeting with the instructor. During the meeting, we
go over the question pool and the instructor would make edits when necessary.

4.2.2 Analysis Methods

There are two outcome measures we used here. First, the quality of the student’s open-ended
work. Second, the completion time for the assignment. To gauge the quality of the student’s
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Figure 4.5: Example question of Section 1: asking students to match a user need for a shown
storyboard
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Figure 4.6: Example question of Section 2: asking students to match a lead question for a shown
storyboard
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Figure 4.7: Example question of Section 3: asking students to evaluate whether the set of three
storyboards follow a progression of riskiness. The feedback here is written by the instructor
post-hoc, in step 5 of the workflow (shown in Figure 4.9
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Figure 4.8: Example question of Section 4: asking students to evaluate the quality of a shown
storyboard, through matching storybaords with previous instructor feedback.
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Figure 4.9: Five Step Workflow of UpGrade

Figure 4.10: Example of segmentation: through a keyword matching algorithm, the solution on
the left is transformed into segmented responses on the right.
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Figure 4.11: UFT Student Work Example 1

Figure 4.12: UFT Student Work Example 2
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Figure 4.13: Storyboard Student Work Example 1 (Descriptions of the storyboard and relevant
meta-data for speed dating.

Figure 4.14: Storyboard Student Work Example 1
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Figure 4.15: Storyboard Student Work Example 2

work, two instructors designed a very detailed grading rubric and checked inter-rater reliability
before grading the entire assignment pool. Student open-ended work was randomized in order
and named with random IDs before the instructors graded them, to make sure that the grading is
blind to condition, independent and not affected by the sequence. After two instructors checked
inter-rater reliability, one instructor graded all the Storyboard assignments (89 pieces), and the
other instructor graded all the UFT assignments (187 pieces). Because each student was asked
to write 2 UFTs and some students wrote more than 2, there were over 89*2 pieces in total. We
computed the percentage score for each piece.

Figure 4.11 and Figure 4.12 show examples of student work on the Usability Findings
assignment (summarize usability findings from think aloud studies). Figure 4.15, Figure 4.14 and
Figure 4.13 show examples of student work on the Storyboards assignments (creating storyboards
to prepare for speed dating studies) .

4.3 Experiment Results
Storyboards quality significantly improved for students who used UpGrade beforehand

For the Storyboard assignments, among the 89 pieces submitted, 36 were in the UpGrade condition
(who did the UpGrade-produced multiple-choice questions before doing the project), and 53 were
in the control condition. With a Welch Two Sample t-test of Percentage score on Condition, we
find that the UpGrade condition has significant higher grades compared to the control condition (t=
2.12, p = 0.037). The average grade for the UpGrade condition is 24.07 (83.0%), and the average
grade for the control condition is 22.25 (76.7%). For the Usability Findings assignments, among
the 189 pieces submitted, 117 were in the UpGrade condition and 72 were in the control condition.
With a Welch Two Sample t-test of Percentage score on Condition, we see no difference between
the two conditions on the total grade (t=8.35, p=0.40). The average grade for the UpGrade
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Figure 4.16: Average Percentage Score for both conditions on the two topics.

condition is 8.95 (81.4%), and the average grade for the control condition is 8.74 (79.5%). The
average score for both conditions is displayed in Figure 4.16.

One possible explanation we see improvements on the storyboard assignments but do not
see improvements on the usability findings assignments could be that, for the usability findings
assignments, students first conduct think-aloud studies with real users and then summarize their
findings from the respective think-aloud sessions. One thing we have observed while grading
student assignments is that the quality of their usability findings reports could depend on the
quality of the think-aloud studies that they performed beforehand. This may introduce more
unobserved variance into the quality of students’ open-ended work. Follow-up analysis such
as targeted error reduction (e.g., Are all errors being made in the two open-ended assignments
targeted in the MCQ?) could help us find more.

One limitation of the study design is that since all students put their individual work into
the group assignment they turned in, we could not align individual student’s work between the
two topics. The crossover can only happen at a team level. There are 20 teams, with 10 teams
in each condition. We did a repeated measures regression analysis at the team level, using the
Percentage score as the dependent variables, the condition, topic and the interaction between the
two as independent variables, and added a random intercept for each team. The result of this
regression analysis is shown in Table 4.1.
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Model 1:
Team Level Repeated Measures

Model 2:
Individual Work

Coefficient Estimate p-value Coefficient Estimate p-value

Condition (UpGrade) 0.07 0.13 0.063 0.056 .

Topic (Storyboard) 0.015 0.72 0.016 0.57

Condition (UpGrade)*

Topic (Storyboard)
-0.05 0.51 -0.043 0.277

Table 4.1: Parameter estimates and p-value for the repeated measures regression analysis at the
team level and at the individual level
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Chapter 5

Iterative Design of QuizMaker

We followed an iterative process to design the authoring interface in UpGrade: QuizMaker.
This includes an initial need-finding formative interview study to understand the challenges in
designing instructional and assessment activities by instructors and learning engineers and an
iterative design study working with instructors to apply UpGrade in their classes, examine what
worked and what did not work, and summarize user preferences to improve the design.

5.1 Initial formative interviews

5.1.1 Methods
Four faculty members and three learning engineers from an R1 institution participated in this
formative interview study. In the interview, I asked participants to describe their experiences in
designing assignments and other course activities. The interviews were transcribed through an
online transcription service. I then conducted a thematic analysis [18] and summarized the major
themes emerging from our interview data.

In the next section, I summarize the major themes emerging from our formative interview
study. Some themes were mentioned by both instructional designers (learning engineers) and
instructors, and some were only mentioned by one stakeholder. I want to note here that the
interview responses from the learning engineers were very consistent, and the interview responses
from the instructors were more diverse. The goal of this initial formative interview study is to
inform our system design and the themes should not be used as empirical findings.

5.1.2 Themes emerging from the formative interview study
Figuring out learning objectives is critical and takes time

In instructional design, figuring out the learning objectives of the class is critical and takes time.
Instructional designers also need to break down learning objectives into specific skills, which is
often an iterative process. Sometimes there are existing course materials, and what instructors do
is to tweak based on the existing materials. Learning engineers also mentioned the challenge of
not being domain experts in coming up with learning objectives, and sometimes instructors are
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not available, and “having something to get started and have the experts refine them (P5)” could
be an effective way.

Grading open-ended assignments is expensive

Our participants mentioned that grading open-ended assignments is “expensive” , and in one large
course, “the TAs only grade a subset of student submissions for each assignment (P7)”.

Instructors and TAs may have different knowledge base

All instructors mentioned the challenges of having TAs grade and expressed concerns such as
“They just don’t have the same knowledge base that I do. (P6)”

“Because you have to know more to see if this is right or wrong. Yeah. So the TAs are always
assigned to grade, the ones that have a very small, like more application questions. It’s a sort of a
small leak. The questions that are a bigger lead, I typically have to grade. (P6)”

Writing formative assessment is hard and time-consuming

In designing multiple-choice questions as formative assessments, most of our participants find
writing them to be hard and time-consuming. “So, writing the question is kind of the most hard,
hardest part because there isn’t a particular way to go about it. (P3)”

“And mainly, I think because to write good ones, it’s very hard to make them. I sort of have a
bias that it’s also to lower levels of Bloom’s taxonomy. But there are people who use very good
questions that get to higher levels. They’re just extremely hard to write. It’s easy to write bad
multiple-choice question. Yes. And so I don’t think it’s impossible, but I have not mastered that.
(P6)”

Coming up with examples and scenarios is hard

In particular, our participants find coming up with examples and distractors to be hard. “I might
sit there for 15 minutes trying just to think of a scenario or an example. (P3)”

The learning engineers also mentioned it is important to collaborate with domain experts to
identify plausible distractors. “. . . have to work with the subject matter expert. Like sometimes, if
they’re writing questions, usually they’ll provide that and we might refine and ask why did they
choose that distractor, i.e., where’s that coming from? But we have to, like learn enough of the
content to do that and then work with them to say like, Oh, I put this because I think it’s this thing,
can you check whether that’s a good distractor? (P2)”

Creating isomorphic tests, predicting the difficulty of questions is hard

Our participants found predicting the difficulty of the questions to be hard. “If we were generating
questions for, like a pre or post test, which was we were doing as part of that project, and making
sure that it is same difficulty level, but without being the same question. It’s hard. It’s really hard.
(P2) ”
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Learning engineers also mentioned that they are not subject matter experts, making it harder
for them to predict the difficulty. “I think predicting the difficulty is really hard. Because you
think it’s easy or it’s hard. But we’re not subject matter experts or students, and for subject matter
experts, they are not students. So it’s really hard to know. Is it too easy or is it too hard for
students? (P2)”

Lack of support on question authoring

Participants did not mention specific tools to support them design questions or instructional
activities. They would either revise materials from past years or open a word document and start
from there. One instructor kept a list of multiple-choice questions they can import to different
platforms. Multiple instructors mentioned using Gradescope for grading. One instructor said that
the past exams of their course become unused. They wanted to have a technical solution where all
past exam questions are stored and they could know from the system which questions were used
in which years.

Collaboration between learning engineers and domain experts is critical

From the instructional designers’ perspectives, they all mentioned that the collaboration between
them and the domain experts is critical at all stages of instructional design, including coming up
with learning objectives, refining learning objectives, break down learning objectives to specific
skills, design activities, design assessments, etc. Since experts have limited time, drafting materials
first and have experts refine them was found to be helpful, and coming up with ways to present
materials so domain experts can quickly go over them and offer feedback is important.

5.2 Iterative design, Co-design of QuizMaker
Over the past two years, I have applied UpGrade on 9 modules related to research methods in
three courses at CMU, including User-Centered Research and Evaluation (7 modules), E-learning
Design (1 module), and Applied Machine Learning (1 module). Five instructors have been
involved in this iterative design and development process. My past implementations of UpGrade
require support from an engineer in the workflow, as shown in Figure 5.1. And in the past
implementations, I played the role of the engineer in this process. On the one hand, with learning
engineer as an emerging profession, I envision my procedures can be replicated by someone
else. On the other hand, through these implementations, I explore opportunities to enable more
independent use of UpGrade by the instructor.

An example use of UpGrade includes these steps:
• Step 1: Engineer (E) gets past student data from the instructor.
• Step 2: E runs an algorithm to segment the data, and this step requires manual check and

cleaning depending on the structure of the input data.
• Step 3: Step 3 happens through a 45min-1h meeting between E and the instructor. During

the meeting, they see segmented student solutions from the past and tag dependency of
components. Usually, within this time, the instructor can specify 4-5 question schemata.
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Figure 5.1: Five Step Workflow of UpGrade

• Step 4: E runs an algorithm using the specified data sources, a question pool is created
• Step 5: Step 5 also happens through a 1h meeting between E and instructor to select/revise

questions. The usual yield rate is 20MCQs/45min-1hr.
In my past procedures, it takes 2 hours of instructors’ time at most, and for the engineer, the

solution segmentation in step 2 requires the most manual work. When the data source follows
a certain template, or the data is logged hierarchically through Google forms, this step is much
easier. Through my repeated observations, I also see opportunities to make the use of UpGrade
more independent, and I’m developing a teacher interface through an iterative design process
incorporating the instructors’ feedback along the way.

After the instructor logs in to the interface and selects a module to import, they’ll first look at
past student solutions on this topic, Figure 5.2 shows a mapping between the original submission
and the segmented solutions, which our users preferred to get a full picture of what student
solutions look like.

The next step is to create question schemata, as shown in Figure ??. Instructors can select
which components they’d like to display and specify the source component in the middle panel;
an example question of the specified schema is displayed on the right. For example, the instructor
can specify they want to use similar student answers as distractors, and the system computes the
word vectors similarity between answers and selects the most similar ones as distractors. In the
next step, instructors will select and revise questions. They will keep the ones that they like or
modify some questions later. The iterative design process is still ongoing and I’ll leave it to future
work to fully evaluate the system.
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Figure 5.2: Screenshot of a prototype system: users see a mapping between the original submission
and the segmented solutions.
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Figure 5.3: Segmented past student work is displayed to the left; Instructors can create question
schemata and preview the question on the right
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Chapter 6

Using Psychometric Methods to Support
Automatic Item Generation and Evaluation

Getting deliberate practice is critical in developing skill mastery. However, providing quality
support to learners requires a tremendous amount of time and effort from instructors or other
content providers. In college classrooms, for example, it is challenging for instructors to design
sufficient high quality learning materials, including formative and summative assessments. Prior
approaches have demonstrated the potential of automatically creating a large question pool through
sourcing existing student open-ended solutions. However, challenges remain, such as selecting
high quality question items from the pool. In this paper, we investigate the use of psychometric
methods to prune out low quality items with small-size student performance data. We demonstrate
in a classroom experiment that this question creation pipeline can produce high quality question
items.

In this chapter, we investigate how crowdsourced data can be used to detect reliable versus
unreliable question items. More specifically, we ask two research questions, (i) Can we use
crowdsourcing to determine which items are unreliable? (ii) If so, how large a crowd is needed
and how do we ensure the consistency of crowd workers?

6.1 Cronbach’s Alpha to Evaluate Consistency

Cronbach’s alpha [27] is a common psychometric measure of internal consistency across question
items within a test. For a test, zero means no consistency at all whereas one indicates perfect
consistency.

We use it to (i) evaluate the reliability of a set of UpGrade-created questions, and (ii) identify
reliable and unreliable questions. To identify reliable and unreliable items, we first compute an
overall Cronbach’s alpha on a set of N questions. Then for each of the N questions, if Cronbach’s
alpha increases when the item is dropped, the question is indicated to be inconsistent with the rest
of the questions, thus being a unreliable item, and vice versa.
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6.2 MTurk Study

We conducted a validation study on Amazon Mechanical Turk to evaluate the quality of UpGrade-
created question items. We focused the validation study on rubric item one in the heuristic
evaluation assignment – identify heuristic problems from given scenarios. Figure 3.7 shows an
example UpGrade-generated question on this rubric item. As shown in Table 3.4, 478 multiple-
choice questions were created. We randomly selected 30 questions from the pool to evaluate their
quality.

6.2.1 Participants and Procedure

We recruited participants from MTurk located in the US, with greater than 95% assignment
approval rate, and more than 500 HITs accepted. Participants first spent 10 minutes reading about
heuristic evaluation. Participants then proceeded to complete 30 multiple-choice questions about
heuristic evaluation shown in a random order. The task took roughly half an hour to complete,
resulting in an hourly pay of ~$8/hour. A total of 70 participants completed the task. On average,
participants spent 21 minutes answering all 30 questions, with an accuracy of 50%. To check
whether crowd workers were randomly picking responses, we computed a user-user correlation
matrix. Results show that among the 70×69/2 = 2415 participant pairs, all pairs had a correlation
above 0.85, and 2405 (99.6%) pairs had a correlation greater than 0.9. This suggests that despite
the low accuracy, participants were answering the questions carefully.

6.2.2 Prune Out Unreliable Question Items

The average Cronbach’s alpha for the set of 30 items on the 70 participants dataset was 0.565. The
correlation of each item with the total score, and the Cronbach’s alpha after dropping this item are
shown in Table 6.1. Using Cronbach’s alpha as a criterion, 11 items were identified as unreliable
items. Removing them resulted in a question bank of 19 items with a Cronbach’s alpha of 0.74,
suggesting high internal consistency in assessing student’s heuristic problem identification. The
19 items were thus classified as reliable items.

6.2.3 Question Face Validity Inspection

We further performed a face value inspection analysis to understand what features resulted in
unreliable question items. We summarized three reasons when a question is unreliable: (i) Multiple
answers could be correct; (ii) There was a lack of description about the scenario, so students
had to guess the original content creator’s intention. This was consistent with our interview with
students after the classroom experiment; and (iii) The original open-ended solution was of low
quality, e.g., there was misconception in the original solution, the writing was ambiguous. The
face value inspection analysis offers insights on ways to improve question reliability.
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6.2.4 Cost-effectiveness of Quality Control
With 70 crowd workers’ performance data, we successfully identified 11 unreliable items in the
30-question sample. However, it may be unrealistic to recruit a large population of crowd workers
to prune out unreliable question items for classroom use. With the collected MTurk dataset, we
further investigated the minimal crowd size requirement for cost-effective quality control. We
used the identified 19 reliable and 11 unreliable items as an approximation of ground truth. We
then conducted experiments with varying crowd sizes from 5 to 70. We computed the accuracy
for each experiment against the ground truth using the formula: (True Positives+True Negatives) /
Number of Items. For each crowd size, we did 100 iterations of random sampling, and computed
the average accuracy. The change of accuracy by crowd size is displayed in Figure 6.1. We can
already do a decent job of differentiating reliable vs. unreliable items with a crowd size of 25
(accuracy = 0.8), and with a crowd size of 50, accuracy can reach 0.9.

Further, we investigated the crowd size requirement if the goal was to identify a subset of
unreliable items. We ranked all 30 items that have been tested by their score correlation with the
total score (Table 6.1), and used this as an approximation of the question quality ranking’s ground
truth. We then conducted experiments to investigate the crowd size requirement for identifying
the X least reliable items in our sample. In the experiments we varied two variables, the crowd
size, and the X least reliable items in the sample. For each combination of crowd size and X , we
did 100 iterations of random sampling and computed the average accuracy on detecting the X
least reliable items. Figure 6.2 shows the average accuracy for each experiment. When the goal
was to detect the one least reliable item, we achieved an accuracy of 0.95 with only five students.
When the goal was to detect the three least reliable items, we achieved an accuracy of 0.8 with

item corr alpha item corr alpha
1 0.53 0.52 16 0.31 0.55
2 0.51 0.52 17 0.27 0.56
3 0.49 0.53 18 0.25 0.56
4 0.45 0.53 19 0.24 0.56
5 0.45 0.53 20 0.22 0.57
6 0.44 0.53 21 0.21 0.57
7 0.43 0.54 22 0.17 0.57
8 0.42 0.54 23 0.14 0.58
9 0.39 0.54 24 0.10 0.58

10 0.39 0.54 25 0.05 0.58
11 0.38 0.54 26 0.00 0.58
12 0.38 0.54 27 -0.03 0.57
13 0.36 0.55 28 -0.04 0.58
14 0.34 0.55 29 -0.08 0.60
15 0.32 0.55 30 -0.19 0.62

Table 6.1: The Pearson’s correlation of each question item with the total score and the average
Cronbach’s alpha for the set when the item is dropped. Higher correlation and lower Cronbach’s
alpha indicates higher reliability.
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Figure 6.1: Average accuracy in detecting 19 reliable items and 11 unreliable items on different
crowd size (across 100 iterations).

Figure 6.2: Accuracy in detecting the X least reliable items (X in the range of 1-11) varied by
crowd sizes (across 100 iterations).

five students. These experiments demonstrated that more cost-effective quality control can be
achieved depending on the needs.

6.3 Summary
Through quality control, we successfully identified 19 reliable multiple-choice questions that
are highly consistent, with an average Cronbach’s alpha of 0.74. Considering the recommended
reliability scores for exam use is 0.7-0.95 [130], the resulted question bank meets the criteria
for classroom use. Proportionally, with the existing assignment data we have for UX101, we
estimate UpGrade can output ~300 reliable multiple-choice questions on one rubric item after
quality control. From a time consumption standpoint, if we hire crowd workers for quality
control, assuming we prune out six questions in each 30-question set with 10 workers, UpGrade
can generate 100 reliable questions with a minimal of 13 hours (10×4×20 minutes) of crowd
workers’ time.
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In contrast, it would take far more than 13 hours for instructors to write 100 reliable multiple-
choice questions with feedback. Consider that the average time students spent to complete the
open-ended assignment is 6.3 hours (as in the classroom experiment), which only includes five
heuristic problems and corresponds to 5 multiple-choice questions. From a cost standpoint, it is
nevertheless to mention it requires far more than 13×8 = $104 to hire an expert to generate 100
practice questions. On the other hand, it might not be necessary to hire crowd workers for quality
control. As more students use UpGrade, student performance data can be incorporated to prune
out unreliable items, though with the risk of presenting low quality materials to students.
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Chapter 7

Seeing Beyond Expert Blind Spots: Online
Learning Design for Scale and Quality

Maximizing system scalability and quality are sometimes at odds. This work provides an example
showing scalability and quality can be achieved at the same time in instructional design, in contrast
to instructors’ beliefs. While designing learning and assessment activities, many instructors face
the choice of using open-ended or close-ended activities. Close-ended activities such as multiple-
choice questions (MCQs) enable automated feedback to students. However, a survey with 22 HCI
professors revealed a belief that MCQs are less valuable than open-ended questions, and thus,
using them entails making a quality sacrifice in order to achieve scalability. On the other hand, a
study with 178 students in two college HCI classes produced no evidence to support the teacher
belief. This paper indicates more promise than concern in using MCQs for scalable instruction
and assessment in at least some domains.

7.1 Introduction

Increasing numbers of people are seeking higher education through online and physical courses
and programs. Solutions to meet this growing demand, e.g., learning management systems and
Massive Open Online Courses, have placed substantial emphasis on technology solutions that are
easy to scale. However, do scalable learning solutions come at the price of lower quality?

For example, online distribution of videotaped lectures is a powerful technique for scaling
education but is in conflict with research suggesting that more interactive forms of learning-
by-doing produce higher quality learning [29, 71, 110]. As another possible example of this
scale-quality trade-off, consider alternative ways to provide active learning opportunities online.
Do assignments implemented via multiple-choice questions (MCQs) provide for scale because
grading and instructional feedback can be easily automated but sacrifice quality relative to
open-ended assignments where solution generation and human-generated feedback enhance the
learning experience? In this paper, we address this question from both instructors’ and students’
perspectives.

MCQs are easier to grade especially with the availability of online learning and testing
platforms, e.g., Canvas [1], GradeScope [120]. The benefit of MCQs also extends to Massive
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Open Online Courses, where grading and offering feedback to hundreds or thousands of students
has been a substantial problem [53, 59, 74, 113]. One might argue, however, that though MCQs
have practical value in terms of ease of grading, using them comes at a cost in terms of quality
of insight provided. One temptingly sensible argument is “since recognition is easier than recall,
MCQs are easier than open-ended questions thus do not exercise the same level of thinking.”
Another we have heard from instructors is “Open-ended questions exercise students’ critical
thinking skills while MCQs don’t.” In this paper, we provide both evidence for the prevalence of
such beliefs and evidence for questioning these beliefs as they mismatch student performance
data. We also present alternatives to the arguments above that provide theoretical reasons for why
and when MCQs can provide for equivalent or better learning quality while enhancing prospects
for large-scale support for learning by doing.

Story problems vs. Equations
(Koedinger & Nathan, 2004)

MCQs vs. Open-ended questions
(this work)

Instructor be-
liefs

Story problems are harder than matched equa-
tions

Open-ended questions are harder than matched
MCQs

Instructor rea-
soning

Because equations are needed to solve the story
problem

Because recognition is easier than recall

Student data
suggests

Equations are harder than matched story prob-
lems

MCQs are of similar difficulty as open-ended
questions

Deeper analy-
sis
explains why

Story problems can be solved without equations
and equations are harder to learn to read than
appreciated

The distinctly hard skills that must be learned
are evaluative skills required by both multiple-
choice and open-ended questions and not the
generative skills uniquely demanded by open-
ended questions

Table 7.1: Two example cases where instructor beliefs and student performance do not match
because the expert reasoning does not align with the underlying cognitive processes of the students.
A deeper analysis suggests what is going on with the students.

Consistent with the quotes above, we first present evidence on college instructors’ beliefs
about the relative value of MCQs and open-ended questions. In a survey with 22 professors from
9 institutions that are teaching HCI research methods courses, participants showed a preference of
using open-ended questions in their courses. The surveyed instructors tend to believe that MCQs
are less valuable because recognition is easier than recall, and that open-ended questions exercise
critical thinking whereas MCQs do not.

We next present evidence from student performance data that is surprisingly at odds with
these beliefs. We designed 18 pairs of matched multiple-choice and open-ended questions on
HCI research methods, including the topics of survey design and heuristic evaluation. A total of
178 students in two college courses answered these questions as a part of their exams. Student
performance data contradicted the instructors’ predictions. We found no evidence that open-ended
questions were harder. At the same time we found substantial evidence that MCQs were not easy.
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The result supports the hypothesis that in the areas that we investigated, well-designed MCQs are
assessing, and exercising during practice, the same difficult skills that are exercised in open-ended
questions. In this paper we used question difficulty to indicate the potential learning benefit of the
questions. This method follows theorized analyses and has been applied in the literature to help
make instructional decisions [69]. We justify the method in the next section.

We suggest three general contributions of this work. First, our work indicates that, at least
for some domains, online learning can benefit from the scaling advantages of multiple-choice
questions without sacrificing (and perhaps gaining) learning quality. Learning experience (LX)
designers may consider, with less guilt, the use of multiple-choice assessment and practice. To
determine what subject-matter may have the required characteristics (e.g., evaluative skill is
distinctly challenging), LX designers may use our matched assessment comparison technique to
identify when MCQs are equally difficult.

Second, our work provides further evidence that instructors have so-called “expert blind
spots”, revealed through cases where their beliefs and student performance do not match [98, 99].
Instructor beliefs are important because they will influence the design of curriculum and learning
experience of students. In both this and a past case [69], we see experts have good reasons for
their beliefs, yet data suggests otherwise and a deeper analysis explains why. The instructor
reasoning provided and the actual reasoning suggested by student performance data for both cases
are displayed in Table 7.1. More generally, our work suggests that reasoning behind educational
decisions can be probed through well-designed, low-effort, experimental comparisons toward
more nuanced and accurate reasoning and decision making, and ultimately better design.

Third, our work surfaces a missing knowledge piece in instructional design especially in higher-
education. College instructors are experts in their domains, but they are not necessarily experts on
pedagogy. In many other domains, design of products to support the workflow of professionals
require expertise from both domain experts and interaction designers, e.g., interaction designers
design products to support doctors’ decision making [151]. However, instructors are frequently
required to take on both roles though their expertise does not prepare them for both. Our work
suggests that, consistent with other design practices, to improve quality of learning design in
higher-education, establishing roles such as learning designers or learning engineers is desirable.

7.2 Assessment Comparisons to Indicate Learning Benefits
Our ultimate goal is to explore the relative learning benefits (and costs) of the alternative question
forms, i.e., multiple-choice and open-ended question forms. One low-cost path to that goal is
examining the relative difficulty of both question forms through student performance data. In this
paper, we used a question’s difficulty when used as assessments to indicate its potential learning
benefit when used for instructional purposes. We describe the theorized analyses behind this
argument as follows.

Open-ended questions that elicit constructed responses can be a kind of "desirable difficulty"
[15], whereby students learn more by the constructive thinking processes than, for example, they
would by simply reading text or watching lecture video. This desirable constructive thinking
elicited by an open-ended question may not be required in a matched multiple-choice question.
In this sensible line of reasoning, there are hypothesized cognitive demands in open-ended tasks
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that are not present in a matched multiple-choice question. And the hypothesized extra cognitive
demands in open-ended tasks are what make students learn more from them compared to matched
multiple-choice tasks. We can use performance comparisons to test whether the hypothesized
extra cognitive demands exist. If open-ended questions practice some constructive thinking
processes that are not required in multiple-choice question answering, those open-ended questions
should be harder for students to get correct than matched multiple-choice questions. Students
who have not yet learned these important constructive thinking processes may nevertheless get
the multiple-choice question correct, but get the open-ended question wrong. Thus, by this line of
reasoning, the correctness rate on open-ended questions should be lower than the correctness rate
on multiple-choice questions.

However, on the other hand, if we do not observe a difference in the correctness rate between
matched multiple-choice and open-ended questions, this may suggest that the hypothesized
extra cognitive demands required in open-ended tasks do not actually exist. In this alternative
line of reasoning, i.e., there are no difference in the cognitive demands required in both tasks,
both question forms would offer similar learning benefits to students. Following this theorized
analyses, we designed an experiment using students’ performance on matched open-ended and
multiple-choice questions to infer the relative learning benefits of the two alternative question
forms.

7.3 Related Work
In this section, we discuss the debate in prior work about the pros and cons of MCQs and open-
ended questions for assessments and practice. Our work contributes to this literature about the
potential use and design of MCQs for learning. We discuss prior work that aimed at understanding
instructor beliefs in correlation with their instructional actions. We finally discuss prior studies
that used matched pairs of questions of different formats to investigate the relative difficulty
between them. The methods used in prior work inspired the design and implementation of our
study.

7.3.1 Debate Around the Use of Open-ended vs MC Questions
Prior work has discussed the use of multiple-choice versus open-ended items in assessments,
especially in STEM domains. There has been a debate around whether performance tasks can be
cognitively authentic without being strictly hands-on. It is generally assumed that more “authentic”
and costly methods of assessment, such as hands-on performance tasks in science, yield more valid
estimates of student knowledge than do more efficient methods, such as paper-and-pencil multiple-
choice items, although a number of authors (e.g., [111, 117]) suggest that certain assessment and
practice activities can be cognitively authentic – that is, can elicit the kinds of cognitive processing
characteristic of expertise in a domain – without being contextually authentic [128].

Prior studies indicate mixed findings in comparing the relative difficulty of multiple-choice
and open-ended questions as assessment items. Funk and Dickson found that students performed
better on multiple-choice questions compared to open-ended ones in a college psychology class
[37]. Surgue et al. found similar results in 7th and 8th grade physics class [128].
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However, other work found competing results showing multiple-choice questions can be
equally effective for learning compared to their open-ended counterparts, and even offer some
advantages. For example, Smith and Karpicke found that students performed equally well on
English reading tasks no matter whether they practiced with multiple-choice, short-answer, or
hybrid questions [123]. Similarly, Little et al. found that multiple-choice questions provide a
win-win situation compared to open-ended cued-recall tests on English reading tasks [87, 88].
The authors found that both open-ended and cued-recall tests foster retention of previously tested
information, but multiple-choice tests also facilitated recall of information pertaining to incorrect
alternatives, whereas cued-recall tests did not.

Beyond the reality that the debate around the use of MCQs and open-ended questions has
not yet reached consensus, we also see that the studies discussed above have focused on learning
objectives that fall into only a subset of categories of learning activities in Bloom’s Taxonomy
[17]. In particular, the categories of “Knowledge” and “Comprehension” (e.g., learn psychology
concepts, comprehend English paragraphs) in Bloom’s taxonomy have been explored, but ques-
tions remain about the remaining categories. Some of the tasks may touch upon “Application”
(e.g., apply knowledge about voltage and resistance to solve the current in a circuit). Few studies
have explored the merits and drawbacks of MCQs and open-ended questions for assessing and
practicing learning objectives that involve “Analysis”, “Synthesis” and “Evaluation.” In this paper,
we broaden the empirical foundation available to ground instructional design by investigating
learning objectives that involve “Evaluation” of candidate solutions.

7.3.2 Importance of Instructor Belief
Prior work has found that teachers’ interpretations and implementations of curricula (e.g., math)
are greatly influenced by their knowledge and beliefs about instruction and student learning [97].
Thus it is important to examine the accuracy of instructor beliefs in response to students’ actual
performance. For example, Nathan and Koedinger asked high school teachers to rank order the
relative difficulty of six types of mathematics problems and found that teachers accurately judged
students’ performance abilities on some types of problems but systematically misjudged them on
others [98]. In our investigation of the use of MCQs and open-ended questions, we performed
a survey with university instructors to understand their beliefs and specific judgments about the
difficulty of matched pairs of multiple-choice and open-ended questions. This is the first work
we know of that investigates university instructor beliefs on the use of MCQs versus open-ended
questions and compares instructor judgments with student performance.

7.3.3 Relative Difficulty of Matched Questions
Prior work used matched pairs of assessment questions to investigate the relative difficulty of
questions of different formats, which can shed light on whether one format of questions is more
valuable for practice and assessment compared to others. For example, Surgue et al. compared the
difference between a real hands-on task (e.g., assembling an electric circle) and a written analogue
of the task [128]. The study found that mean scores on the hands-on and written analogue tests
were very similar, suggesting written analogue tests can be interchangeable as hands-on tasks that
require actual manipulation of equipment. Noreen Webb et al. did a similar comparison between
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Figure 7.1: 10 pairs of matched multiple-choice and open-ended questions that were used in both
the instructor belief survey and in the subsequent classroom experiment. The multiple-choice
format shows the options in italics whereas the open-ended format only shows the question stem.

matched hands-on and paper-and-pencil tasks and showed consistent results [142]. Koedinger
and Nathan designed matched algebraic problems in three formats, story problem, word equation
and symbolic equation [69]. They found that symbolic equations are harder than matched story
problems and word problems. In our study, we adopted a similar approach to compare the relative
difficulty of matched pairs of MCQs and open-ended questions.

7.4 Methods

7.4.1 Hypotheses about Students’ Underlying Cognitive
Processes When Answering Questions

As introduced earlier, in this paper, we examined multiple-choice and open-ended questions’
difficulty when used as assessments to infer their potential learning benefits when used as in-
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structional activities. To form hypothesis about the relative difficulty of matched multiple-choice
and open-ended questions, we performed a theorized analysis of the cognitive processes required
when answering them.

There is an overlap between the cognitive processes required in answering MCQs and open-
ended questions. If we break down the cognitive processes required in answering an open-ended
question, it involves (i) generating candidate solutions and (ii) evaluating which solution is the
best; In contrast, answering a multiple-choice question only requires (ii) evaluating candidate
solutions. Thus, the important nuance here is how difficult it is to generate solutions compared
to evaluating the candidate solutions. Consider the example of playing chess, generating a legal
move might not be the real challenge; instead, the real challenge lies in evaluating which move
puts the player in the best position. We hypothesize that for content domains where generating
candidate solutions is especially simple and the real challenge is to evaluate which candidate
solutions are incorrect or inadequate and which are correct or adequate, multiple-choice questions
could be as hard as open-ended questions.

Empirically testing the relative difficulty of matched pairs of open-ended and multiple-choice
questions can help us address this hypothesis. More specifically, if we found MCQs to be
consistently much easier than matched open-ended questions, that would suggest that open-ended
questions exercise more challenging generative processes (critical thinking skills) that are not
exercised by MCQs. Thus MCQs are less valuable for probing deeply into a student’s knowledge
and skill; In contrast, if we found MCQs to be equally hard as or even harder than open-ended
questions, that supports our hypothesis that there is an overlap between the cognitive process
required in answering MCQs and open-ended questions. That would also suggest that for the
tested domains, MCQs may exercise similar skills as their open-ended counterpart. In those cases,
answering MCQs practice the challenging and critical underlying thinking elements about the
content domain, just as or more so than open-ended questions.

7.4.2 Design of Matched Pairs of Questions

In order to assess the relative difficulty of multiple-choice and open-ended questions, we designed
18 pairs of multiple-choice and open-ended questions that have the same question stem, the only
difference being the question format. The questions cover 4 topics around HCI research methods,
including conducting heuristic evaluation (usability inspection method that helps designers to
identify usability problems in the user interface design and propose redesign features to address the
problems), designing interview questions, interpreting notes from contextual inquiry interviews,
and performing think-aloud studies. The questions are designed collaboratively with instructors
who are teaching these topics at an R1 institution.

Example pairs of multiple-choice and open-ended questions used are shown in Figure 7.1.
Multiple-choice questions use a different verb from the matched open-ended questions, e.g.,
suggest (for open-ended) versus select (for multiple-choice), and have 3 to 5 options for students
to choose from, as shown in italics. To understand instructor beliefs about the difficulty of these
questions, we first ask instructors to predict the relative difficulty of the pairs of questions. We
then use the questions in actual HCI courses to get student performance data on them.
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Figure 7.2: Survey questions that ask about instructors general belief about using MCQs and
open-ended questions in their teaching.

7.5 Instructor Belief Survey
In order to understand instructors’ beliefs about using multiple-choice versus open-ended questions
in their teaching. We conducted a survey with instructor who are teaching university level HCI
research methods courses. The survey is composed of two sections, the first section asks about
instructors’ general beliefs on using multiple-choice or open-ended questions in their teaching.
The second section asks participants to predict the relative difficulty of pairs of questions.

7.5.1 Participants
We obtained a list of university professors who are teaching or have taught HCI research methods
from their websites. We added the ACs of the “Learning, Education and Families” subcommittee
of CHI 2019 to the list. We sent 110 invitations in total, 22 participants completed the first section
of the survey. 12 participants completed the second section of the survey.

7.5.2 General Beliefs
All participants indicated that they are experts or knowledgeable in the content domain (HCI
research methods) and have taught at least one course on a relevant topic before. Some of the
questions in section 1 of the survey are displayed in Figure 7.2. In response to question 1a “I would
pick open-ended rather than multiple-choice because multiple-choice questions and open-ended
questions teach different skills.”, 50% of the instructors answered “Always” and “Mostly”, and
45% answered “Depends.” In response to question 1b “I would pick open-ended rather than
multiple-choice because open-ended assignments are a way to develop critical thinking, which is
not entirely possible via multiple-choice questions.” , 73% of the instructors answered “Always”
and “Mostly”, 23% answered “Depends.” In response to question 2, 60% of the instructors thought
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students would gain more from doing open-ended practice, and 14% thought students would
gain more from multiple-choice practice, the rest thought the two were the same or it depends on
the topic. We see that instructors display a preference towards using open-ended questions and
believe them to be more valuable in some ways. In response to question 3, 45% of the instructors
considered open-ended questions to be easier to design, 23% considered MCQs to be easier to
design, and the rest thought they were similar or it depends on situations.

7.5.3 Predictions on Relative Difficulty of Matched Questions
The second section asks instructors to predict the relative difficulty of 10 pairs of multiple-choice
and open-ended questions. We selected 10 pairs from the 18 pairs, as shown in Figure 7.1. For
each pair, we display both questions and ask the instructor to predict which one would be harder.
Each question reads “Which of the above two problems do you think is harder? (Hard here means
you think the students are less likely to get it correct.)”, followed by options of “a is harder than
b”, “b is harder than a”, and “a and b are of the same difficulty.”

For 62% of the time, instructors answered that the open-ended question is harder than the
multiple-choice question; 23% of the time, they answered that the multiple-choice question is
harder than the open-ended question; For 15% of the time, they thought multiple-choice and the
open-ended question are of the same difficulty.

7.5.4 Instructor Reasoning
In the survey, we also asked instructors’ views about the skills exercised by multiple-choice
and open-ended questions respectively. Instructors tend to believe that MCQs mostly exercise
recognition, and open-ended questions may exercise a larger variety of skills. Here are some
instructors responses.

“Multiple choice is mostly recognition over recall. They are also only good for
questions that have a clear and well-defined answer. They also test knowledge, but
not necessarily practice of skills.” – P2
“Open-ended problems help students practice generating new ideas and developing
arguments to support those ideas, which I see as key skills in HCI. Multiple-choice
questions help students test their understanding of facts, and perhaps recognize good
ideas or designs.” – P12
“Open ended present better opportunities for students to exercise critical thinking
and analytical thinking. It allows them to talk about relations and more abstract
ideas (depending on the question). Multiple choice cannot do that. While they may
encourage students to think, they mostly test students memory, possibly understanding,
but rarely beyond that.” – P18

Following the predictions of relative difficulty of the question pairs, we also asked participants
to elaborate on their decision making process. Some explanations follow the contrast between
recognition and recall as well.

“I thought the open-ended questions were harder than the multiple choice questions.
This is because it’s hard to generate ideas for ways to improve (say) interview
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questions or interface designs from scratch. The multiple-choice questions model
the sorts of things you could think about, and help them get the correct answer more
often.” – P8

“I selected the multiple choice option as being easier in cases where the student is
being asked to recall terminology that I have seen students struggle with remembering.
When the question required explanation of a concept or the multiple choice option
didn’t give significant cues I tended to rate them as similar difficulty or the open-
ended easier. Yes, mostly I think open ended questions are harder than multiple choice
questions because the search space for a good answer is larger. The multiple choice
question restricts what one can think about.” – P5

7.6 Classroom Experiments
This experiment is designed to address our hypothesis about the underlying cognitive processes
involved in answering multiple-choice versus open-ended questions. This experiment also allows
us to check alignment between instructor belief and student performance data.

7.6.1 Study Design and Implementation
We performed an experiment in two separate classes to examine the relative difficulty between
matched multiple-choice and open-ended questions. The two courses are both offered at an
Human-Computer Interaction (HCI) program in an R1 institution. Both courses cover HCI
research methods, such as conducting interviews, and performing think-aloud protocols. We refer
to the two courses as UX1 and UX2 for the rest of the paper.

Among the 18 pairs of questions, 4 pairs were used in UX1’s mid-term exam, and 14 pairs were
used in UX2’s final exam. Taking UX1 as an example, with 4 pairs there are 8 question items in
total. The 8 questions items are distributed into 2 exam forms. Form A contains Q1(MC)-Q2(OE)-
Q3(OE)-Q4(MC), and Form B contains Q1(OE)-Q2(MC)-Q3(MC)-Q4(OE). In the design, we
made sure Q1 and Q3 are testing the same knowledge component, while Q2 and Q4 are testing
the same knowledge component. In this case, every student experienced both question formats
for a given knowledge component. The two exams forms were randomly distributed among 103
students on exam day. For UX2, similar to UX1, two exam forms were created based on the
28 question items. We also made sure there were at least 2 questions on the same knowledge
component, so that each student got to experience both question formats. The two exam forms
were randomly distributed among 75 students on the exam day.

7.6.2 Answer Grading and Dataset
103 students from UX1 participated in the study. 49 of them did exam form A and 54 did exam
form B. 75 students from UX2 participated in the study. 38 of them did exam form A and 37
did exam form B. Exams were graded as normal. One researcher and the course instructors
collaboratively graded the exam answers. Multiple-choice and open-ended questions were graded
using the same rubric, 1 being correct and 0 being incorrect. 0.5 point were occasionally given (32
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out of 1406 cases) to answers that addressed the intended problem but displayed additional errors.
In UX1, 2 questions ask students to identify a heuristic violation of an interface, and the other 2
questions ask students to redesign the interface based on the problems. The answer of the latter
question depends on their answer of the former question. To make the comparison fair, for the
latter 2 questions, we only included students who answered the former question correctly in the
dataset (regardless of question format). For modeling and interpretation purposes, we removed
the 32 entries with a score of 0.5. This results in a dataset of 1374 observations by 178 students.
Each observation is a student response to a question. It has features including student ID, question
ID, question format (multiple-choice or open-ended), and score (0 or 1).

7.6.3 Multiple-choice Questions Do Not Avoid the Hard Part
We built a mixed-effect logistic regression model, with question score (0 or 1) as the dependent
variable, and question format (multiple-choice or open-ended) as the fixed effect. Considering
different students may have different abilities in the course, we included a random intercept
for each student. Considering different questions may be of different difficulty and the relative
difficulty between the two questions formats might differ for different questions, we included a
random slope and a random intercept for each of the question in the model. We used the lme4 R
package to build the model, and the formula is shown below:

score = question_ f orm+(1|student_id)+(1+question_ f orm|question_id) (7.1)

We found that the fixed factor question format does not have an effect on the question score
(z = 0.352,p = 0.725). The fixed effect coefficient has an estimate of mean of 0.077, and a
95% confidence interval of [−0.352,0.506]. The random effects show that the student intercept
parameter has a variance of 0.287, the question intercept parameter has a variance of 0.606, and
the question slope parameter has a variance of 0.277. We take a further look at the random
slope coefficient for each question to see whether question format impacts different questions
differently.

For a given question j, and for one student i, the above formula looks like (7.2), where β is
the fixed effect coefficient, β j is the random slope for question j, α is the fixed intercept, and α j
and αi are random intercepts at question and student levels.

logit(score) = (β +β j)∗question_ f orm+α +α j +αi (7.2)

When inspecting the effect of question format for each individual question, we can check
whether β +β j is in the 95% confidence interval of the fixed effect parameter β . If not, that would
suggest the effect of question format for that question differs from zero. Among the 18 questions,
4 questions have β +β j that exceeds the confidence interval of [−0.352,0.506]. The β j for these
questions are 0.482, 0.499, 0.612 and 0.708 respectively. All four questions show the trend that
the open-ended format of this question received higher scores than the multiple-choice format
on average. For the rest of the 14 questions, adding the random coefficient to the fixed effect
coefficient does not make it different from zero, suggesting both formats of the questions are of
similar difficulty. From this experiment, we do not observe a difference in the relative difficulty
between matched pairs of multiple-choice and open-ended questions. In some cases, the trend
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shows that multiple-choice questions could be harder for students to answer compared to matched
open-ended ones.

7.6.4 Instructor Reasoning and Student Data Conflicts

We compared instructor prediction of the relative difficulty of matched multiple-choice and
open-ended questions with student performance data. Table 7.2 ranks the 10 pairs of questions
by the odds ratio computed from the mixed-effect logistic regression model as exp(β +β j) in
Equation (7.2). The odds ratio shows to what extent the open-ended format of the question is
easier than the multiple-choice format. The bigger the number, the harder the multiple-choice
version of the question is. The column Instructor Harder shows a metric we used to measure to
what extent instructors think multiple-choice format is harder than the open-ended format. For
each pair, if the instructor selects MC to be harder, they get a score of 1; if they select MC and
OE are of the same difficulty, they get a score of 0.5; otherwise they get a score of 0. It shows
instructors believe the MC format is harder if the score is closer to 1 and vice versa. If student
performance data and instructor judgment align, the odds ratio and instructor score columns in
Table 7.2 should rank in the same way. However, this is not what we observe. Additionally, we
observed a close to zero correlation between the two columns (Pearson’s correlation coefficient
= −0.05), suggesting instructor judgment do not align with student performance data. Table 3
displays instructor judgment and student performance data by responses. Each cell indicates how
many times the instructor or the student data suggests MC (or OE) is harder. The two greyed cells
are where they align.

ID OE-
Score

MC-
Score

Odds Ra-
tio
(OE/MC)

Student
Data
Harder

Instructor
Harder
1=MC
0=OE

1 0.94 0.7 2.19 MC 0.21

2 0.97 0.81 1.99 MC 0.67

3 0.97 0.84 1.78 MC 0.46

4 0.78 0.71 1.37 Same 0.42

5 0.71 0.7 1.14 Same 0.21

6 0.82 0.83 1.07 Same 0.25

7 0.69 0.7 1.07 Same 0.17

8 0.97 1 1.06 Same 0.33

9 0.92 0.95 1.04 Same 0.17

10 0.92 0.97 0.94 Same 0.21

Table 7.2: Ranks the 10 questions by the odds ratio computed from the logistic regression model.
Higher odds ratio suggests harder multiple-choice format of the question. Instructor score suggests
to which extent instructors predicted the multiple-choice format of the question was harder than
the open-ended question.
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````````````Instructor
Student MC Same OE Total

MC 13 15 0 28

Same 6 12 0 18

OE 17 57 0 74

Total 36 84 0 120

Table 7.3: This table shows counts of observations where instructor predicted this question format
to be harder and observations where student performance data suggests this question format to be
harder. The greyed area shows when the two aligns.

Figure 7.3: Example student answers in response to question 1 in Figure 7.1, including correct
and incorrect answers for both formats.
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7.6.5 Answer Examples

We show several example student answers in response to Q1 in Figure 7.1, including correct and
incorrect answers for both formats. The example answers are shown in Figure 7.3. Some exam
papers suggest evidence that students are evaluating and comparing options when they work on
questions (S2). Often times, the wrong answer students give in open-ended questions assemble
the incorrect options we present in the MCQs (S5). This also explains why MCQs are challenging
and can be equally valuable as they target specific student misconceptions.

7.7 Discussion

Our experiment reveals that the contrast between multiple-choice and open-ended questions
is not as simple as the contrast between recognition versus recall, especially when it involves
learning objectives that are high on the hierarchy of Bloom’s taxonomy, e.g., “Evaluation.” For
example, for Q3 shown in Figure 7.1 “Please describe the most salient issue for the following
interview question”, student performance data shows that the multiple-choice format is harder
than the open-ended format. The challenging part in answering this question is not coming up with
candidate solutions (potential issues for the interview question), rather it is evaluating whether
each of the issues presented applies.

Our work demonstrates, for at least the domains we have tested, there is no evidence to support
the hypothesis that MCQs are easier than matched open-ended questions. Indeed, we found cases
where distractors were very competitive that made multiple-choice even harder. Competitive
distractors often contain frequent student misconceptions, which require students to engage in
challenging thinking processes that they may otherwise skip when working on an open-ended
problem. Prior work showed that leveraging past student performance data can help instructors
quickly create effective multiple-choice questions at scale [139]. Leveraging existing question
creation methods such as [139, 147] can address instructors’ potential concerns that multiple-
choice questions are harder to design compared to open-ended ones as revealed from the instructor
belief survey.

In the instructor survey, many instructors revealed that they made the judgments based on the
assumption that recognition is easier than recall, which makes the multiple-choice questions easier
than their open-ended counterparts. Some instructors mentioned that they made the judgments
based on how hard they thought the distractors were. When distractors seemed trickier or there
were multiple options that could be correct, they thought the multiple-choice question could be
harder. Although it was true that competitive distractors could make a multiple-choice question
harder, it appeared that instructors were not very effective in identifying which questions had
competitive distractors. For example, Q1 in Figure 7.1 has the highest odds ratio among all
questions and the distractors are very competitive. However, 75% of the instructors thought the
open-ended version would be harder. The misalignment between instructor belief and student
performance data further suggests that future instructional and assessment design should be
theoretically and empirically rooted.

This work suggests that we need to establish the profession of Learning Experience (LX)
designers to develop curriculum in higher education. Our work also demonstrates well-designed,
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low-effort, experimental comparison techniques that would allow LX designers to discover and
employ empirically-rooted instructional and assessment methods. When designing learning expe-
rience, LX designers need to focus more on the underlying cognitive processes being measured
instead of the format or surface features of the tasks [127]. When faced with the choice of using
either MCQs or open-ended questions, it is important for LX designers to consider the nature
of the learning objectives, i.e., the relative difficulty of the generation and evaluation processes
involved. For content domains where evaluating candidate solutions could be challenging and
worthwhile, such as the domains we have tested, there is more promise and benefit of using MCQs
for scalable and high quality instruction and assessment.

7.8 Conclusion
First, this paper indicates more promise than concern in using MCQs for scalable instruction
and assessment, with the goal of providing high quality education to more and more learners
through online or physical programs. We demonstrate a experimental comparison technique that
can be employed to compare alternative instructional and assessment methods, with the goal
of designing learning experience that are both scalable and high quality. Second, this paper
provides further evidence that expert blind spots exist, we observe that instructor intuition and
reasoning sometimes do not match those of student performance. When considering learning
experience design, a deeper analysis of the underlying cognitive processes students would engage
in is desired. Finally, faculties often need to act as both domain experts and LX designers in many
higher-education contexts, with limited time, resources and preparation for the dual roles. We
recommend to establish the profession of Learning Experience (LX) designers, whose work can
support the instructional design and development in higher education, and also contribute to the
broader HCI interaction design practices.
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Chapter 8

Practice-Based Teacher Questioning
Strategy Training with ELK: A
Role-Playing Simulation for Eliciting
Learner Knowledge

Practice is essential for learning. However, for many interpersonal skills, there often are not enough
opportunities and venues for novices to repeatedly practice. Role-playing simulations offer a
promising framework to advance practice-based professional training for complex communication
skills, in fields such as teaching. In this work, we introduce ELK (Eliciting Learner Knowledge),
a role-playing simulation system that helps K-12 teachers develop effective questioning strategies
to elicit learners’ prior knowledge. We evaluate ELK with 75 pre-service teachers through a
mixed-method study. We find that teachers demonstrate a modest increase in effective questioning
strategies and develop sympathy towards students after using ELK for 3 rounds. We implement a
supplementary activity in ELK in which users evaluate transcripts generated from past role-play
sessions. We demonstrate that evaluating conversation moves is as effective for learning as
role-playing, while without requiring the presence of a partner. We contribute design implications
for role-play systems for communication strategy training.

8.1 Introduction
With increasing challenges associated with the rapidly changing landscape of work, technology-
based solutions that support professionals in lifelong learning are in more demand. Communication
and interpersonal skills are critical for many professions, such as medical workers [58], researchers
[19], and teachers [40]. One consistent challenge with the training of communication skills is
that practice opportunities are limited and people are often expected to pick up the skills “on the
job” [20, 49, 58, 153]. Role-play simulations show promises of providing practice and rehearsal
opportunities for novices learning about communication strategies, for example, for medical
students to rehearse doctor-patient conversations [58], for nursing students to develop nurse-to-
doctor handover communicative competencies [20, 153], and for business students to learn and
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apply influence tactics [49]. In this work, we focus on the training of questioning strategies for
K-12 teachers and we discuss the implications of technology design for communication skill
training across contexts.

Effective teacher learning and professional development is important for student achievement.
In the United States, teacher professional learning programs provide insufficient opportunities
for teachers to practice important skills and judgments [44]. “Pre-service” teacher training –
the process of initial licensure in colleges of education – typically combines classroom-based
course work with field observations and practicum teaching [81]. In-service teacher training
programs take the form of professional seminars, workshops, expert or peer classroom observation
and consultations [23, 57, 126]. For both pre- and in-service teachers, teacher learning consists
primarily of attending lectures or discussions. Teachers have few opportunities to rehearse and
practice teaching with students or receive meaningful feedback. Teachers are expected to gradually
pick up skills “on the job” as they teach in real classrooms, in a haphazard process of trial and error
with insufficient feedback. We align our work with a movement of teacher-educators advancing
practice-based teacher education, an approach to teacher professional learning that emphasizes
opportunities for rehearsal and reflection [154].

Although decades of research has shown that it is essential for teachers to understand what
students know in order to help them learn [9, 25, 112], teacher practice is still far from satisfactory.
Pre-service teachers often regard students’ misconceptions as barriers to learning, rather than
useful starting points for instruction [79]. Even seasoned teachers often focus on evaluating
student work as right or wrong, rather than understanding student work as evidence of current
understandings that can be built upon [26]. This paper focuses on helping teachers develop the
skill of eliciting learner knowledge through a role-play simulation system.

We introduce ELK (Eliciting Learner Knowledge), a role-playing simulation system that
offers virtual sessions in which players can learn and practice discourse strategies on eliciting
knowledge from their conversational partners. After two players join a role-play session, each
of them assume the role of either a “Teacher” or a “Student”, and respectively receive teacher or
student profiles. The two players chat through a text-based interface. The goal of the “Teacher”
player is to elicit as much as possible of the “Student” player’s prior knowledge as indicated
in their profile (Figure 8.1). Both players take a quiz in the end to assess and reflect on their
performance.

We implement a supplementary activity in ELK –“Coding”, where players evaluate authentic
transcripts generated from past role-play sessions. As shown in Figure 8.4, in this "Coding"
activity, players assign a qualitative code to each line of the transcript, indicating which questioning
move was employed – such as “Telling”, “Evaluating”, or “Probing.” The design of this feature is
motivated by the constraints of role-play simulations and the demonstrated success of evaluation-
type activities in other domains. For example, some role-play activities are found to be overly
challenging and cause performance anxiety in players [49], organizers reported the overhead in
pairing players when it requires multiple people to be present at the same time [24]. On the other
hand, prior work has also demonstrated the strengths of evaluation-type activities for learning. For
example, solving Parsons problems, i.e., evaluating correctness and ordering of coding snippets,
is as effective for learning as writing the equivalent code[32], evaluating the quality of example
survey questions is as effective for learning as writing new survey questions [139]. However, most
of these prior work focuses on conceptual or technical skills that can be learned independently.
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We explore the feasibility of employing evaluation-type activities for learning communication
strategies, such as eliciting knowledge from a conversation partner.

We evaluate ELK with 75 pre-service teachers to answer three research questions. First, how
effective is ELK in helping players develop questioning strategies? A mixed-methods approach
was adopted in answering this question. To assess behavioral change, we look at how much
improvement participants make in questioning moves from the first to the last (third) round
of playing ELK. To assess conceptual and attitude change, we use an in-depth survey asking
participants to reflect on their learning experiences with ELK. Second, does the “Coding” activity
help participants develop questioning strategies? To address this question, we use the “Role-play”
activity as the control condition, and compare their effects on helping users learn questioning
moves. We also tease out the factor of receiving feedback from both conditions, resulting in a
2 by 2 experiment design, with the first factor being either in the “Role-play” or the “Coding”
activity, and the second factor being whether users receive feedback or not. Third, what are
users’ experiences in ELK and what challenges do they encounter? How can we better design
computer-based role-play systems to make them more engaging and useful? We address this
question through an open-ended survey sent to participants after they use ELK for at least an hour.

Our key contributions include:
• New system: ELK (Eliciting Learner Knowledge), a text-based role-playing system that

enables pre-service teachers to practice questioning moves through simulated “teacher-
student” conversations.

• Evidence of support for learning and sympathy development: An evaluation with 75 pre-
service teachers show participants demonstrate a modest increase in effective questioning
moves after using ELK for three rounds. Our study also provides evidence of conceptual
and attitude change from players. This is the first study to our knowledge that conducts a
thorough evaluation of the educational benefits of a computer-based role-play system, using
both performance and subjective outcome measures.

• Benefits of the “Coding” activity: We show that evaluating authentic transcripts generated
by others help participants develop questioning moves to a similar degree as generating
improvisational questions in the role-play chat. The “Coding” activity has practical benefits
as it can be performed by a single participant alone, which serves as a viable supplementary
activity for online role-play systems.

• Design implications for role-play systems for communication strategy training: the evalua-
tion study of ELK reveals prospects and challenges of role-play systems for communication
strategy training. We summarize the design implications and discuss the broader application
scenarios.

8.2 Related Work

In this section, we review prior teacher training programs and technologies that emphasize
classroom discourse. We also discuss relevant literature around role-play systems for learning and
simulation-based training. Finally, we present recent work on learnersourcing techniques. We
discuss how these prior work motivated the design of ELK, and how our contribution situates in
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these bodies of literature.

8.2.1 Teacher Classroom Discourse Training and Support

Teacher education researchers have explored a variety of approaches to improving discrete
elements of practice such as questioning strategies. One method involves recording teachers’
one-on-one conversations with students and have experts review them afterwards [122]. Another
approach involves creating face to face simulations, where teacher educators act a students
with misconceptions, and pre-service teachers practice questioning strategies. [119]. These are
compelling approaches, but they are very demanding on teacher educator labor (to review video,
act as students, provide individual feedback, etc.) We build upon these promising approaches
by creating a digital platform for practicing question asking strategies in a peer-learning context,
where teacher education students play both roles of teachers and students and provide each other
feedback on discrete elements of practice: eliciting learner knowledge.

8.2.2 Role-play and Simulation Systems for Learning

Many other professions equip practitioners with extensive hands-on training and practice oppor-
tunity before they start their professional life, such as nurses [11, 96]. However, teachers often
do not get sufficient opportunities to practice teaching in low stakes settings [44, 81]. When
teachers do engage in low-stakes simulated practice, it is often in the form of “rehearsals” where
participants practice teaching an entire activity or lesson to a group of simulated students [78].
Teaching is immensely complex, and research on complex learning suggests that novices often
struggle to practice a whole complex assemblage while improving at specific elements of the task
[66]. Rehearsals of the whole assemblage of teaching, therefore, should be complemented by
opportunities to practice more discrete skills and judgments in teaching practice [109].

8.2.3 How to Elicit Learner Knowledge

Prior work has studied effective “talk moves” for teachers to elicit learner knowledge, such
as asking follow-up questions [25, 31, 38, 95]. We reviewed prior work and then developed
a framework for training pre-service teachers on effective questioning moves. The framework
contains five categories of questioning moves.

• Priming: preparing the class for learning
• Eliciting: asking questions that reveal learner’s needs
• Probing: asking follow-up questions based on students’ responses
• Evaluating: responding in the positive or negative about students’ answers
• Telling: talking about the topic without listening to the student

Among the five questioning moves, we consider Priming, Eliciting and Probing to be effective
ones in eliciting learner knowledge; and Evaluating and Telling to be ineffective ones for eliciting
knowledge, since they are not optimal for teachers to understand what students know. (Telling and
evaluating may be appropriate in other parts of the teaching sequence, but in the early phases of
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eliciting learner knowledge, it is critical to simply understand student thinking before attempting
to “fix” or redirect student thinking.

This five-part questioning framework is central to our pedagogical aims and research efforts
with ELK. In implementing ELK in educational methods classes, teacher educators explain and
demonstrate these questioning strategies to pre-service students. ELK participants then use these
questioning strategies to code talk moves in transcripts. In analyzing ELK transcript data, as
researchers we use this framework to identify pre-service teacher development – we consider
an increase in the three effective questioning strategies and the decrease in the two ineffective
strategies over multiple rounds of ELK to be evidence of pre-service teacher fluency in eliciting
learner knowledge.

8.2.4 Learnersourcing and the Benefits of Solution Evaluation
We implement a supplementary “Coding” activity in ELK grounded in cognitive science and
instructional design. As shown in Figure 8.4, users assign a questioning move to each line of
an authentic transcript generated from previous role-play sessions. The design of this activity is
motivated by the cognitive load theory[9, 34], aiming to reduce the cognitive load required in
learners and allow them to focus on the learning task.

Prior work has shown that in some domains, evaluating the quality of solutions can support
learning and performance on generating solutions afterwards, even with higher learning efficiency
compared with practicing with generating solutions only. For example, Yannier et al. shows that
evaluating “which towers would likely to fall” can be more effective in teaching kids physics
principles around gravity and balance compared to having kids continuously build towers with
LEGO [152]. Wang et al. shows that evaluating candidate solutions is equally effective in teaching
college students how to design good survey questions compared to having students practice through
generating survey questions [139]. Ericsson et al. shows that when teaching programming, having
students solve Parsons problems, i.e., evaluating the correctness and ordering of code snippets is
equally effective for learning compared to having them write the equivalent code.

However, prior work mostly focused on technical skills that do not require interpersonal
communication. For skills such as asking questions, it remains unknown whether evaluating
responses can be a useful exercise, and whether it is more, less, or equally useful for learning
as generating improvisational responses to scenarios. For ELK, the “Coding” activity would be
especially helpful when a partner is not present, giving users more independence in using the
system.

8.3 ELK: A Role-Playing Simulation System
ELK aims at helping teachers develop effective questioning strategies. The major function
of ELK is a text-based role-play simulation, in which two players chat based on pre-written
profiles. The goal is for the “teacher” player to develop effective questioning moves in eliciting
the “student” player’s knowledge. We adopted a text-based interface, in which players type to
communicate. Although this differs from the authentic teaching experience people may have,
the goal of ELK is to provide focused practice for users to learn questioning moves without the
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Figure 8.1: “Role-play” interface in ELK for the “Student” player. The profile is shown on the
left, including the student’s (mis)conceptions about the topic. Players chat on the right.

Figure 8.2: Teacher and student profiles on the topic of Grade 6 Algebra

cognitive load required in managing other aspects of their behaviors. ELK is publicly available at:
https://newelk.herokuapp.com1

1Reviewers are welcome to use these test accounts to try out ELK. Pick one of the three usernames: [CSCWGuest1,
CSCWGuest2, CSCWGuest3], the password is the same for all accounts: ELKGuest. Please note that for the “Role-
play” activity, two players need to be present. For the “Coding” activity, please go to Onboarding and select “Learning
to ELK as a teacher.”
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Figure 8.3: Teacher and student profiles on the topic of Heredity

Figure 8.4: “Coding” activity in ELK. The user reads an authentic‘ transcript generated from past
role-play sessions and assign a questioning move to each line in the transcript.

8.3.1 Text-based Role-Play

Activity

The text-based role-play requires two players to be online at the same time and engage in
conversations. Two players each take the role of a “student” or a “teacher”. After entering the
platform, players first select a topic, e.g., grade 6 algebra, or grade 3 multiplication. The interface
for the “student” role player is shown in Figure 8.1. The profile on the left specifies the prior
knowledge held by the player, and the player should play out this persona. The “teacher” role
player enters the same interface with a“teacher” profile. Two example pairs of “teacher” and
“student” profiles are displayed in Figure 8.2 and Figure 8.3. These profiles are pre-written by
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researchers in the area and senior K12 teachers. Players press begin to start the conversation, each
session takes 7 minutes. The goal of the “teacher” player is to elicit as much prior knowledge
from the “student” player as possible.

Feedback

Both players take a quiz in the end in which they answer three True/False questions about the
(mis)conceptions in the “student” profile. For example, in the “student” profile shown in Figure 8.1,
a misconception is that the variable a is always equal to 1. One corresponding question in the quiz
is: Is this statement “a+4=6 means that a=2” True or False? If the “teacher” player understood the
“student” player’s misconception, they would answer False, otherwise True. The quiz gives the
“teacher” player feedback on whether they successfully elicited the learner’s knowledge.

8.3.2 Coding Activity
Activity

In the “Coding” activity, users read authentic transcripts generated from previous role-play
sessions. We apply the five-part questioning framework in the coding activity. Users first read
descriptions about each of the five questioning moves and then assign a move to each line in the
transcript, as shown in Figure 8.4.

Feedback

To enable real-time feedback to players, two experts from the development team coded 5 transcripts
in the dataset. With the labeled transcripts, the system provides real-time feedback to users after
they make a selection and click submit. Example feedback is displayed in Figure 8.4.

8.4 Evaluation of ELK
The evaluation study aims to address the following three research questions.

RQ1: How effective is ELK in helping users develop questioning strategies and understand
student misconceptions?

RQ2: How effective is the “Coding” activity? How does it compare to the “Role-play” activity
in helping participants learn questioning moves?

RQ3: What are users’ experiences with ELK and what challenges do they encounter? How
can we better design systems for communication strategy training?

8.4.1 Participants
To address the above questions, we wanted to evaluate our system with pre-service teachers who
are learning about classroom discourse and questioning moves. We reached out to teacher training
programs at a small liberal arts college in the Mid-Atlantic region. Three faculties from the liberal
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arts college signed up to use ELK in their classes. In total, 75 participants, who are enrolled in an
undergraduate teacher education program, completed the study.

8.4.2 Study Components
In response to RQ1, we adopt a mixed-methods approach and use both performance and self-
reported measures to assess participants’ behavioral and conceptual change on eliciting learner
knowledge. In order to examine participants’ behavioral change on adopting effective questioning
moves, we use a performance measure by quantifying the effective questioning moves “Teacher”
players displayed in the role-play chats. We design the study so that participants use ELK for
multiple rounds, which enables us to see their behavioral change over time. In order to gauge
participants’ conceptual and attitude change, we design an in-depth survey asking participants to
reflect upon their experiences.

In response to RQ2, in order to understand whether the “Coding” activity is helpful, we
design an experiment to compare the effectiveness of the “Coding” activity with the “Role-play”
activity in helping participants adopt effective questioning moves. One consideration here is
that the “Role-play” and the “Coding” activities have different feedback mechanisms. Feedback
for “Role-play” is provided through a post-hoc quiz, and feedback for the “Coding” activity is
provided immediately as participants evaluate transcripts. To make a fairer comparison and make
the results applicable for cases when feedback is not readily available, we decide to tease the
effect of feedback apart from the activity itself. We administer two versions of both activities, a
version without feedback, and a complete version as introduced in Section 3.

In response to RQ3, we include questions in the survey asking about participants’ experiences
and the challenges they encounter when using ELK. In the study design, we make sure that all

Figure 8.5: The study spans two 90-minute class meetings. In the first class meeting, participants
play three rounds of ELK without feedback. This means for the “Role-play” activity, the quiz is
disabled, and for the “Coding” activity, participants do not get feedback after making a selection.
Participants are paired and assigned to one of the two conditions. The only difference is whether
they complete the “Role-play” or the “Coding” activity in the second round. In the second class
meeting, participants play three rounds of ELK with feedback. Participants remain in the same pair
and switch roles. The pairs that did the “Coding” activity in Round 2 will now do the “Role-play”
activity in Round 5 and vice versa.
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participants experience both “Role-play” and “Coding” activities, and have played both “Teacher”
and “Student” roles in the role-play sessions, so that they can comment on all aspects of the design
of ELK.

8.4.3 Procedure
The study was conducted as a part of a teacher education course at the liberal arts college. we
communicated the experimental procedure with the three course instructors that signed up, and
they implemented the same procedure in their classes. The study spans across two 90-minute
class meetings. An overview of the procedure is shown in Figure 8.5. Overall, there are four
groups of participants, labeled as A, B, C, and D as shown in Figure 8.5. As an example, the
sequence of activity for a participant in group A would be: Round 1 - “Teacher” in role-play
with no feedback; Round 2 - “Teacher” in role-play with no feedback; Round 3 - “Teacher” in
role-play with no feedback; Round 4 - “Student” in role-play with feedback; Round 5 - Coding
with feedback; Round 6 - “Student” in role-play with feedback.

In the first class meeting, the instructor first gave a short lecture on how to elicit learner
knowledge, covering effective and ineffective questioning moves. Participants then used ELK
for three rounds, for about 30 minutes in total. Participants were randomly divided into two
conditions and were paired within each condition. For each pair, one participant assumed the
role of “Teacher”, and the other assumed the role of “Student” for the entire class meeting. The
only difference between the two conditions is whether they did the “Role-play” or the “Coding”
activity in the second round. For the “Role-play” sessions, the “Teacher” profile is consistent
across three sessions to reduce the amount of background knowledge and reading required, but
the “Student” profiles are different in all sessions to make sure the “Teacher” role still needs to
adjust their questioning moves to be able to elicit knowledge from their partners. For the first
class meeting, we disabled the feedback function for both activities, meaning participants do not
do the quiz at the end of the “Role-play” chat, and do not receive feedback when they evaluate the
transcripts.

In the second class meeting, all participants remained in the same pair and switched roles.
This means that the participant who played the “Teacher” role will now play as a “Student” with
the same partner. The pairs that did the “Role-play” activity in Round 2, e.g., A and B, will now
complete the “Coding” activity in Round 5, and vice versa. Feedback is enabled for both the
“Role-play” and the “Coding” activities.

At the end of the second class meeting, all participants would have experienced all roles and
activities in ELK. We sent a survey via Google Form that asked participants to reflect on their
experiences in ELK. We consider this design to best utilize the participant resources we have and
provide us with insights about the effectiveness of ELK.

8.4.4 Outcome Measures
Frequency of Effective Questioning Moves in Role-play Chats

This learning outcome measure only concerns participants who play the role of “Teacher” in the
role-play sessions. We developed a coding framework to gauge the quality of questions asked by
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the “Teacher” player. The coding framework was developed based on prior work on how to elicit
learner knowledge. As we develop the coding manual, we make sure that on the one hand this can
cover the nuances between questioning moves we have seen in our pilot data, such as “Eliciting”
and “Probing”. On the other hand, we also make sure this connects with existing work on what
types of questioning moves are effective, so that it can help us quantify the quality of questions
being asked by the players.

A brief version of the coding manual is shown in Table 8.1. The full version is provided
as supplementary material for this submission. In the coding manual, for each category of
questioning move, we provide multiple examples including explanation of edge cases. As shown
in 8.1, “Priming”, “Eliciting” and “Probing” are considered to be effective moves in understanding
what the students already knew, whereas “Telling” is considered as an ineffective move towards
eliciting student knowledge and does not support student-centered classroom conversations.
“Evaluating” moves often lead to “Telling” messages that also do not contribute to understanding
student (mis)conceptions. When counting the frequency of effective questioning moves in a
chat, we summarized the number of “Priming”, “Eliciting” and “Probing” messages uttered by
the “Teacher” player. The five categories are not mutually exclusive, meaning each line of the
teacher’s dialogue can have multiple codes. As shown in Figure 8.7, the orange texts indicate the
questioning moves assigned to each line of the “Teacher” role’s dialogue. The excerpt to the left
has a total of 5 effective questioning moves, and the excerpt to the right has a total of 9 effective
questioning moves. The coding framework enables us to quantify the quality of questions asked
by the participants.

The coding manual was developed and refined through an iterative process. Tow of the
authors first independently coded subsets of the dataset and addressed disagreements, enriched the
definitions and examples in the coding manual, and added categorization for edge cases. When
the coding manual is complete, two of the authors independently coded 100 lines of “Teacher”
dialogues and reached high agreement on all 5 categories in the coding manual, with Cohen’s
Kappa of 0.73 for “Priming”, 0.8 for “Eliciting”, 0.72 for “Probing”, 0.76 for “Evaluating” and
0.78 for “Telling”. One author continued to code all transcripts in our dataset following the coding
manual.

Open-ended Survey

In addition to behavioral changes, we are also interested in knowing participants’ experiences of
using ELK. To achieve this goal, we administered an open-ended survey at the end of the second
class meeting. The survey questions include:

• Please let us know more about how ELK may or may not have helped you learn questioning
strategies for eliciting learner knowledge

• Please let us know more about how ELK may or may not have helped you learn about
students’ conceptions about a specific topic (e.g., algebra or heredity)

• Did you change the way you asked questions during the game? Please elaborate on your
answer above.

• What, if anything, did you find difficult about role-playing in ELK?
• What suggestions do you have for improvements to ELK?
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Questioning
Move

Definition Example

Priming These are meta-messages that set the con-
text for the conversation. They might ap-
pear at the beginning of the conversation or
later to bring the conversation back to the
topic/goal.

[after a student asks, “Is that right?”] I will
tell you all about that during class today,
but for now I just want to understand your
ideas.

Eliciting These are questions that introduce a new
topic or broaden the discussion.

Teacher: If I were to give you x+p=q, would
you know how to solve?
What do you know about the area of a cir-
cle?

Probing These are follow-up questions that go
deeper into what the student thinks. It is
often impossible to tell the difference be-
tween Eliciting and Probing messages with-
out context.

Teacher: What do you know about word
order? (Eliciting)
Student: The noun comes before the verb.
Teacher: Is this always true? Or are there
ever nouns after verbs in a sentence? (Prob-
ing)

Evaluating These messages tell the student if they were
right or wrong, either explicitly or implic-
itly. They often lead to Telling messages
and distract the student from the goal of
figuring out their preconceptions.

That’s right.
Not quite.

Telling These are messages in which the teacher ex-
plains what’s true. While important during
instruction, they are distracting if the goal is
to figure out what the student already knew
or believed.

The circumference of a circle in 2πr.

Table 8.1: Brief version of the coding manual, with definitions and examples of the 5 questioning
moves.

8.4.5 Survey Analysis Method

After we see the survey responses, we realized that many participants shared their experiences,
takeaways, and challenges in their answers regardless of which question they were responding to.
In our analysis, we broke down the boundaries between the questions and conducted a thematic
analysis [18] of all the participants’ responses. First of all, two of the authors read and familiarized
themselves with all the responses. They then did open coding of all of the responses independently.
The two authors met and went over each of their comment and merged all the ideas into a list of
themes. The two authors discussed and summarized 6 major themes from the data with a list of
sub-topics within each theme. We will present our findings in response to each of the research
question in the next section.
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Participants
#

Round 1 Round 2 Round 3 Feedback

19 Role-play Coding Role-play disabled
18 Role-play Role-play Role-play disabled
19 Role-play Coding Role-play enabled
19 Role-play Role-play Role-play enabled

Table 8.2: Distribution of participants across conditions

8.5 Results
In the experiment, all 75 participants played the “Teacher” role. The number of participants
in each condition is shown in Table 8.2. Through a thematic analysis of the survey responses,
we identified 6 major themes, including 1) Awareness about eliciting learner knowledge, 2)
Adaptation in questioning moves throughout the process, 3) Gaining perspectives about the
student stakeholder, 4)“Coding” helps 5) Unfamiliarity with the content domain makes it difficult,
6) Tweaks about ELK features can make it better. We present both experimental results and survey
finding in response to each of the three research questions.

8.5.1 Effectiveness of ELK

Participants displayed modest increase in effective questioning moves from Round 1 to 3

We ran a paired t-test on the total number of effective questioning moves from Round 1 to Round
3 for all participants across conditions. We see that participants displayed significantly more
effective moves in Round 3 compared to Round 1 (p = 0.01). The average number of effective
moves per chat in Round 1 was 4.9, and the average number in Round 3 was 5.6. The average
number of effective moves across conditions is shown in Figure 8.6. We see a trend that for all
conditions, participants show modest increase in positive questioning moves.

Here is one example of behavioral change from Round 1 to Round 3 by P68 (Figure 8.7). In
Round 1, as shown in the transcript to the left, the participant used multiple “Telling” messages.
P68 directly told the student what was the correct answer, without trying to understand why the
student came to a wrong answer in the first place. However in Round 3, as shown in the transcript
to the right, under a similar circumstance where the student made a mistake, P68 started to use
“Eliciting” and “Probing” questioning moves to understand why the student made the mistake. We
have attached two additional full transcripts from the study in the Appendix.

Participants showed more awareness about eliciting learner knowledge

One emerging theme from the survey responses is that participants disclosed they realized the
importance of understanding student knowledge and began to set expectations about what they
would experience when they became teachers. On the one hand, some participants mentioned
that they became to realize how difficult it is to understand student thinking and the frustration
they could experience as teachers, “This just showed me how difficult it is to find deficiencies or
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misconceptions. You almost need to know what you are looking for. And open ended question will
not suffice sometimes. I enjoyed practicing as the teacher. It helped. (P37)” , “It gives me an
insight as to what it is like to be a teacher and have students not understand the concept of a topic
or not remember. It is very frustrating. (P21)”

Participants also shared the conceptual knowledge they have gained throughout the process,
for example P42 said : “It helped me to really know the difference between eliciting and probing
and how to ask good, open-ended probing questions.”, and P71 said : “ELK helped me learn how
to ask particular questions to get students to reconsider their answers and think of new ideas.
Directly telling a student if they are right or wrong is ineffective and should be used sparingly.
Teachers should guide students to new knowledge by asking questions that prompt their thinking.”

Participants talked about adaptation of questioning moves throughout the process

This is an important theme we summarized from the survey responses. Participants talked about
how they changed their tactics in asking questions as they engaged with ELK. Participants
mentioned that they are now trying to ask more questions and explain less. “I made a few changes
to the way I asked questions and I ended up asking more questions rather than trying to explain the
material (P44)” More specifically, P8 who played the teacher role teaching the topic of heredity
said: “Instead of saying what a gene was and then asking a question I started from the very
beginning I asked do you know what a gene is?”

People also talked about switching from fact-based questions to more open-ended ones.
“Rather than asking yes or no questions, i tried to ask questions that made the student participate
in the discussion. Open-ended, leading questions helped to let me know what the student knew.

Figure 8.6: Participants increased positive questioning moves from Round 1 to Round 3 across
conditions.

88



Figure 8.7: Left: excerpts from Round 1 of P68 playing the “Teacher” role. The participant used
multiple “Telling” moves and directly told the student the correct answer when the student made a
mistake. Right: excerpts from Round 3 of P68 playing “Teacher” role. When the student gave an
unexpected answer, P68 used “Eliciting” and “Probing” moves to understand the thinking process
of the student.

(P6)”, “Also asking questions that get the students to expand on what they know and why they
knew what they did and how they got it. (P23)”

Participants mentioned adapting their questions to the student responses allowed them to more
quickly get at students’ prior knowledge and misconceptions. For example, P20 mentioned how
they changed from Round 1 to Round 2: “I started out asking standard questions about the
topic. I made slight changes to my approach during the next round. In the 2nd round, I asked the
student to explain their reasoning to me so that I could understand their misconceptions.” P50
and P8 shared their experiences of tweaking questions based on the students’ responses in order
to more effectively elicit their students’ prior knowledge. “If the student seemed to know more
about a certain area I would continue on that path. If it seemed like they didn’t I would veer to
another realm of the subject. I tried to learn as much about what the student knew. (P50)”, “Some
questions I asked only got me generic answers that, while still helpful, were only helpful in finding
out what my student definitively knows about the basics, but not what they know about the subject
at hand. So I was able to tweak my questions to get to the heart of the matter more quickly.”

Some participants referred to the questioning moves they have learned in ELK and shared

89



their experiences of using them. P8 and P29 talked about using probing and eliciting questions
in their conversations: “Probing questions, giving praise and minor corrections when needed to
encourage the student to keep talking to me. (P8)” “I tried to ask a variety of general (eliciting)
questions along with probing questions to get a good balance in the conversation (P29)” While
P49 shared that by changing the wording of the questions, the questions could be more useful
in eliciting the learner’s prior knowledge. “I really only changed the wording of my questions.
Probing questions were still probing, but they became more like leading questions, where I was
actively trying to get information out of the student, instead of just passively seeing what the
student knows. (P49)”

Participants disclosed that they gained the perspectives of students through playing ELK

This is an important emerging theme from the survey responses. Many participants talked about
the benefit of switching perspectives in the role-play, and disclosed that knowing what a student
may think through acting out as a student was “eye-opening”. Participants also talked about
their willingness to be more patient with students when they become teachers in the future. For
example, P8 said “Students can come up with some odd associations, and seeing some of them
written out helped remind me to be more flexible as a teacher because sometimes the associations
make sense to others as well, and sometimes they only barely make sense to the student, so the
teacher needs to be patient and open-minded.” P17 gave a more concrete example of a student
misconception they would never have thought of: “When learning about variables, students
thought the alphabet and the certain letter was paired up with where the number is in the alphabet.
I never thought about it like that until then.”

Participants also mentioned that playing ELK helped them understand that every student is
different and thus understanding student thinking is critical yet challenging. “It shows that all
students have different knowledge and different ways of thinking, and teachers must adapt quickly
to answer questions that their students have. (P74)”, , “ELK taught me that each student has a
different concept of a topic. It is the job of a teacher to work through that and help the individual
but also the whole class. (P50)” , “I learned that unless you ask the right type of questions
students aren’t going to be able to explain what they know randomly. (P4)”

8.5.2 “Coding” is an Effective Supplementary Activity in ELK
In order to evaluate the effectiveness of the “Coding” activity, we used the “Role-play” activity as
a control condition in the experiment design. On the one hand, the feedback mechanism for both
activities are very different. On the other hand, considering broader use cases of evaluation-type
activities for learning communication strategies, expert annotated transcripts and feedback may
not always be available. Because of these reasons, in the first half of the experiment, we disabled
the feedback feature in ELK. This is to investigate to what extent is evaluating transcript helpful
even when feedback is absent, when comparing to generating question moves in role-play sessions.
In the second half of the experiment, we enabled the feedback feature in ELK, the goal is to
compare both activities using the full setup in ELK.

In both cases, the second Round, being either “Coding” or “Role-play” is the intervention,
and we compare their impacts on participants’ use of questioning moves from Round 1 to Round
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No Feedback Setting With Feedback Setting

Coefficient Estimate p-value Coefficient Estimate p-value

Condition (Role-play) 0.11 0.10 -0.04 0.65

Round (Round 3) 0.09 0.018* 0.07 0.13

Condition (Role-play)*

Round (Round 3)
-0.08 0.13 -0.03 0.63

Table 8.3: Parameter estimates and p-value for both repeated-measures linear regression models
comparing the effectiveness of “Coding” and “Role-play” activities. Both models show that there
is no observed difference between the two conditions.

3. We run two separate comparisons for the first half (ELK without feedback) and second half
(ELK with feedback) of the experiment.

We run a repeated-measures linear regression model on the long table format of the data, with
each row being an observation. Each participant has two rows, with one being the performance
for Round 1 and the other for Round 3. We use the number of effective questioning moves as the
dependent variable, and the independent variables include Condition (a binary variable indicating
whether Round 2 is “Role-play” or “Coding”), Round (a binary variable indicating whether this
observation is from Round 1 or Round 3), and the interaction between Condition and Round.
We included a random intercept for each participant ID in the model to account for individual
differences. For both settings, the estimates of the parameters in the model are displayed in Table
8.3.

Both models show that participants demonstrated modest increase in questioning moves from
Round 1 to Round 3 regardless of whether they did “Role-play” or “Coding” in Round 2. As
shown in Figure 8.6, one big limitation of this experimental study is that the randomization did not
work. In the no feedback setting, participants in the two conditions had significant difference in
their performance in Round 1, with participants in the “Coding” condition being lower performing.
Even though the “Coding” condition had a bigger leap in the no feedback setting, also indicated
by a weak interaction between Round and Condition in Table 8.3, it is not clear whether it is
because it is harder for participants in the “Role-play” condition to improve.

We want to point out here that having participants evaluate transcripts could be a useful activity
for beginners. As shown in the comparison, this evaluation-type activity could help participants
adopt effective questioning moves to a similar degree as the role-play sessions. It can be especially
helpful when it is hard to find partners to role-play.

Coding activity experiences

In the survey, participants also talked about their experiences with the coding activity. Some
participants found the “Coding” activity to be helpful for them to understand the questioning
moves. “Coding transcripts really helped me to understand the difference in question types (P37)”
, “I liked being the teacher because I thought it was easier to be the teacher, especially after
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doing the coding. It was easier to guide the conversation and focus on gathering the student’s
knowledge. (P11)” , “It really had me thinking and what I was doing as a Teacher and a Student.
I really liked the Coding activity we did, it helped out understanding the different ways teachers
interact with the students.”

Some participants said that the coding practice made them change their questioning moves.
For example, P74 said: “After the coding and switching roles I changed my answers by using the
different types of questions and my questions also changed based on the students prior knowledge
about the subject.”

8.5.3 User Experiences, Challenges and Feedback

Unfamiliar content makes it very difficult

This is the most prevalent theme we have identified from the survey responses. Many participants
found the content domain to be critical for successful role-play. Some participants said that if
they were not familiar with the content, e.g., heredity, it was hard for them to think of questions
to elicit learner knowledge. “Make the content easier and maybe geared toward a younger age
group. It’s hard to be the teacher when you don’t know whether the student is right or wrong.”
, “Please provide teachers with a brief overview of the material because the content was really
getting in the way. Or revise the material and make it simpler. ”

Trying to stay in character is hard

When taking the role of a “Student”, participants find it hard to stay in character, especially when
they do not have the same conceptions about the subject matter. Participants mentioned that trying
to separate the role-play from their real-world knowledge is challenging. For example, P43, P2
and P3 said: “Trying to stay in character was difficult. It was hard not to elaborate on answers
with too much information before the teacher asked the question. You really had to have balance
in how much you said and let the teacher try to pull it from you, rather than trying to help your
friend who was playing the teacher.” , “It’s hard to separate my real-world knowledge from the
student’s. Acting as though I am confused or have limited knowledge is far harder than acting
like I know more than I do. (P2)”, “it was kind of difficult because when I knew the answer was
wrong I wanted to be able to answer it correctly and explain myself but I still had to follow the
profile (P3)”

Multiple opportunities and realistic experience through simulation

Participants enjoyed having multiple opportunities to tweak questions and appreciated the seem-
ingly real experience provided by ELK. For example, P 42 said: “It allowed me to play around
with questions in order to elicit what they students already know (their conceptions).(P42)”

P43 and P1 talked about having realistic experiences in ELK: “ELK was really cool because
it gave you seemingly real experience in trying to see what a student may or may not know about
a topic”. (P43)” “The student profiles seemed to have much more detailed information about
what students knew and what they misunderstood. They seemed pretty realistic. I’m never going
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to be teaching algebra, but I can see how a student would be very confused and just think that
a=1 no matter what. (P1)”

Provide more flexibility in the system

Participants also wanted to have more flexibility with the length of the sessions, with some hoping
the sessions to be longer, and other hoping them to be shorter. “Bit longer time for the rounds,
please. Seven minutes is not really enough when you’re not talking audibly, and have to type;
not everyone can type super fast. ” (P8) , “I felt rushed to ask so many questions in the short
7 minutes. I felt like time was up just when I was getting started.” (P59) “Maybe a 5 minute
simulation instead of 7, and give more background for the teacher. ” (P56)

8.6 Design Implications
From the above analyses, we summarize the design implications for role-play systems for commu-
nication strategy training.

8.6.1 Content Domain Knowledge is Essential

As mentioned by many participants, if they were not familiar enough with the content domain,
it gets in the way of practicing communication skills. Participants also talked about providing a
bigger pool of “Teacher” and “Student” profiles for players to choose from. For example, P20 said:
Please add different subjects. I’m a history and political science major. I don’t remember much
from biology class. , and P1 said: “Please include more topics that have to do with the humanities!
I know very, very little at this point about algebra and biology.” We are implementing a new
feature in the system now that enables players to contribute “Teacher” and “Student” profiles. The
goal of this is to enrich the profile pool to give players more options to choose from.

In addition to supporting teachers develop classroom discourse, this also applies to exercising
other types of communication skills through role-play simulations. Allowing users to customize
user profiles and providing background content knowledge to users could better prepare them to
focus on developing the communication strategies of interest.

8.6.2 Role-Play Helps Participants Gain Perspectives of Relevant Stake-
holders

In our study, many participants expressed that ELK made them aware of student misconceptions
and the very different thinking processes students may have. Participants found acting out as a
student is “eye-opening” for them to gain perspectives as a student. In addition to teachers, many
professions are interpersonal and involve multiple stakeholders, such as doctors and patients,
judges and victims, and mentors and mentees. When supporting these professionals develop
communication competencies, role-play systems have great potentials and an adds-on benefit of
helping learners gain perspectives from other relevant stakeholders.
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8.6.3 Focused Practice through Evaluation Activities
The experiment suggests that having novices evaluate past transcripts can be an effective instruc-
tional activity, which also has the practical benefit as it can be performed by a single participant
alone. For future communication strategy training programs, such evaluation-type activities can
be applied before role-play sessions to foster understanding.

8.6.4 Different Modalities of Role-Play
ELK is a text-based platform where participants type to communicate. The design consideration
is to reduce the cognitive load from players to manage their behaviors. In the survey, participants
also mentioned the inconvenience of a text interface where they have to type. For example, P9
mentioned that “maybe more of a face to face interaction, it take a lot of time to type the responses”
Future design of such system could provide different modes of interaction, e.g., as users become
better in eliciting learner knowledge with the original text interface, they can go ahead and try a
speech-based version.

One participant raised a point that it was hard for adults to imitate 6th graders in the conversa-
tion. “It was hard to find a balance between talking as if I really was in 6th grade and saying
things I would actually say as an adult (using words like "correspond," for example.” Although
the role-play sessions did not require the players to act like 6th graders, it is an interesting idea to
scaffold players to talk in the same way as the persona specified in the profiles. This would offer a
more realistic role-play experience for all participants.

8.7 Conclusion
All across the helping professions – teaching, medicine, social work, clerical work, and so forth
– eliciting thoughts, feelings, and understandings from people is a critical part of professional
practice. In this work, we demonstrate a system that supports simulated practice of questioning
strategies through two learning modalities: question generation and question evaluation. In a
teaching context, we find evidence that ELK helps participants value learner knowledge, empathize
with the challenges of students as they develop understanding of STEM topics, and increase their
use of questioning strategies that effectively elicit learner knowledge. We have tentative evidence
that a combination of question generation and evaluation practice may be more effective than
question generation practice alone in increasing the use of teacher questioning strategies.

While the scenarios in ELK are customized primarily to deal with STEM topics; ELK could
be customized to support the development of interpersonal skills in a wide variety of contexts
and professions. ELK’s digital platform supports a variety of educational implementations (in
face to face classes, in online classes, as out of classwork, etc.) and collects data for partici-
pants, educators, and researchers to better understand how learners develop effective questioning
strategies.

8.8 Appendix
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Round 1 chat Round 3 chat

T: Good morning! Today we are going to
be talking about Chromosomes and Alleles
S: yippeeeeee
T: Can you tell me about either of those?
what do you already know about chromo-
somes
S: I have 23 chromosomes!
S: I got one chromosome from my mom
and one from my dad and the last one is
from both of them combined
T: where did you get 23 from? you aren’t
too far off
T: Yes that is true however you are missing
some information S: Well, I have dominant
and recessive alleles
T: Well you aren’t wrong you do have at
least 23 chromosomes T: And you do have
dominant and recessive traits!
S: The extra chromosome I have is a com-
bination of both T: You don’t quite have an
extra set of chromosomes, everyone has 46,
did you think that you had 23 because you
got a set from each parent?
S: No? I have 23.
S: One from each parent and the 23rd one
is a combination from both of them
T: You are correct you have at least 23 but
the correct number is 46 you receive 23
from each parent
S: I was told i have 23.
T: I’m sorry but today we will learn why
you have 46 chromosomes, it’s going to be
fun and we are going to learn a lot!
T: What do you know about alleles

T: Good morning Class today we will be
talking about genes, and chromosomes, and
dominant and recessive traits!
S: yAY
T: Let’s start with chromosomes! tell me
what you understand about chromosomes
S: Everyone has 46!
S: 23 from my mother and 23 from my fa-
ther
T: YES that’s correct! excellent! now on to
dominant and recessive traits
T: what do you know about these
S: What are alleles?
T: Do you know anything about them at all?
T: Tell me what you know and understand
first then we can move on from there
S: Well i heard someone mention alleles
earlier but I thought dominant and recessive
traits were about chromosomes
S: Because chromosome are like genes and
there is one for each part of your body
T: Alleles is just another term for gene or
chromosomes, they all relate to heredity and
traits
T: Do you know what a recessive allele is?
S: I know that if my dad has brown eyes
and he has the dominant chromosome then
that covers up my moms recessive chromo-
somes S: So I would have brown eyes
T: something like that, do you understand
how that works?
S: Well...yeah i just told u
T: We will come back to this, what do you
understand about mutations?

Table 8.4: Full transcript of an example role-play session (1)
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Round 1 chat Round 3 chat

T: Good morning, so nice to have you in
my class today. We are going to be learning
about genes and chromosomes today!
S: okay
T: Do you remember anything about genes
and chromosomes from middle school?
S: I remember that we have 23 chromo-
somes that are passed down from our par-
ents
T: Great! Do you remember what recessive
and dominant alleles are?
S: They determine what we look like.
T: Great! Is there a difference between the
two?
S: Something about if one parent has brown
eyes which is a dominant color and the other
has blue which is recessive then the kid will
have brown eyes because thats the domi-
nant color
T: Great! You seemed to have really re-
tained that information from middle school!
T: Do you remember how those genes are
passed down from the parents to the child?
S: thank you
S: genes are a part of chromosomes
T: Okay. How is that so?

T: Good morning! Today we are learning
about genes and chromosomes. Do you re-
member anything about that from middle
school?
S: we have 46, 23 from each parent
T: Okay. Im so happy to hear that you seem
to remember things from middle school.
T: What do chromosomes do?
S: they determine what we look like
T: Okay. What do you know about domi-
nant alleles?
S: that its one of two options. it beats out
the other one.
T: Okay. Interesting way of phrasing it. Are
there any exceptions?
S: something like if the kid has green eyes
it a mutation
T: Well, I was talking about something a
little different.
S: well...
T: What about recessive genes? Is ever it
possible to have a recessive trait? How?
S: no dominant beats recessive
T: Okay. Interesting point of view. We will
learn more about this later and test your the-
ory.
S: okay
T: How are these genes passed down?
S: no clue

Table 8.5: Full transcript of an example role-play session (2)
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Chapter 9

Leveraging Community-Generated Videos
and Command Logs to Classify and
Recommend Software Workflows

Users of complex software applications often rely on inefficient or suboptimal workflows because
they are not aware that better methods exist. In this paper, we develop and validate a hierarchical
approach combining topic modeling and frequent pattern mining to classify the workflows offered
by an application, based on a corpus of community-generated videos and command logs. We
then propose and evaluate a design space of four different workflow recommender algorithms,
which can be used to recommend new workflows and their associated videos to software users.
An expert validation of the task classification approach found that 82% of the time, experts agreed
with the classifications. We also evaluate our workflow recommender algorithms, demonstrating
their potential and suggesting avenues for future work.

9.1 Introduction
Modern complex software applications often include hundreds or thousands of commands, which
further form a much larger number of workflows a user can use. The large variety of commands
and workflows raises two issues. First, predesigned tutorials cannot exhaustively cover all the
different workflows. Second, users may get stuck in inefficient or suboptimal ways of completing
tasks if they are not aware that better workflows exist.

Prior work on software learning addressed this awareness problem [46] at a command-level
granularity by recommending individual commands [86, 93], or videos based on command usage
[94]. However, command-based recommendations may not consider the user’s higher-level
workflow needs, or help the user to understand how to use already-known commands in new ways.

Knowing the tasks that a user is working on, and the work-flows they are using, is the first step
towards providing better-personalized software learning support. For example, upon recognizing a
user’s workflow, the application could recommend alternative or more efficient workflows, display
sample tutorial videos to help with their task, or provide links to relevant community-created
content. By investigating software learning recommendation systems at a work-flow level, this
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work complements the existing body of software learning research that focuses on individual
commands.

With the above as motivation, this paper contributes a hierarchical approach to mining user
workflows at both task and command-set levels. In the first layer of our hierarchical approach,
we use Bi-term Topic Modeling (BTM) [150] to infer 18 high-level user tasks (e.g., “Rendering”,
“Beginner Sketching”, and “Advanced Surface Modeling”) from command logs associated with
11,713 videos of people using the software. A study found an 82% expert agreement with the
algorithm’s classification of videos into task categories. In the second layer, we apply a frequent
itemset mining and ranking approach [30] to acquire frequent patterns of commands under each
task. For example, a pattern under the task “Beginner Sketching” may look like Center Rectangle,
Create Sketch, Sketch Dimension, Edit Sketch Dimension.

Based on this hierarchical understanding of user workflows from command logs, we propose
and evaluate a design space of four algorithms which recommend community-generated videos to
the user, demonstrating relevant workflows. We evaluate the performance of the four algorithms
along the dimensions of relevance and novelty. Users had high ratings on the relevance of the
videos, with pattern-based recommendations being more relevant and familiar to the user than
task-based recommendations.

Our work contributes a new method to infer user workflows and shows how this method can
be utilized to recommend learning videos for a 3D design application. We conclude by discussing
how our approach to workflow identification can generalize to other applications and can inform
future designs of support systems for software learning.

9.2 Related Work
Our work directly builds upon prior work on tools to support software learning, especially
recommender systems and community-enhanced software learning systems. We also draw upon
methods used in the literature to mine user data. In this section, we review related work in each of
these areas.

9.2.1 Relevant Applications for Software Learning
There have been many efforts in the HCI community to design tools to support the learning and
use of software, ranging from reflective visualization tools [14, 85, 91], to tools that provide
more active support, such as in-software recommendations and feedback [86, 93, 94]. A range of
different channels for providing support have been investigated, from in-application contextual
help [45], to community support [83], to auto-generation of demonstration videos [77].

Tools to Raise User Awareness

Visualization tools are designed to raise users’ awareness of their usage patterns and performance,
with the goal of encouraging users to adopt more efficient methods. Such visualization tools have
been shown to be successful in raising awareness [14, 85, 91], but can be limited in that they reflect
existing behavior, rather than providing users with insights into new ways of working. Other
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work has adopted more proactive approaches, e.g., CommunityCommands [93] uses collaborative
filtering to recommend new commands, and Ambient Help [94] continuously recommends video
resources based on the user’s recently used commands.

The above systems operate at the command level. In this work, we also take an proac-
tive recommendation approach, but we develop tools to understand user tasks and recommend
personalized resources at a workflow level. Our approach is informed by the collaborative fil-
tering algorithms developed in CommunityCommands [93], and explores a design space for
workflow-based recommender systems.

Community Enhanced Learning

Prior work on software learning and “learner-sourcing” [61] has demonstrated the benefits of
community-created learning resources, and the potential of repurposing community-created
content for software learning purposes. CADament [83] allows players to acquire new skills
by observing the workflows of their opponents in a multiplayer game. CoScripter [80] enables
end-users to create and share scripts to automate web-based processes. FollowUs [77] enables
community-enhanced tutorials, which improve as more users work with them. Techniques have
also been explored to extract command demonstrations from workflow videos [76], and to elicit
workflow metadata for how-to videos [64].

Motivated by the work above, our approach leverages community-generated workflow videos
to model common workflows in an application, and repurposes these videos as a means for
presenting recommended workflows to the user.

9.2.2 User Data Mining

Dev and Liu [30] provides a good summary of prior work on user behavior modeling [2, 101, 105],
event sequence [107] and clickstream data modeling [133]. In their work [30], they use a frequent
pattern mining approach to identify user tasks in a photo editing application from command logs.
They also developed a ranking algorithm to select more coherent patterns. Our work directly
builds upon this approach, extending it to be more applicable for software with more diverse
usage domains, and utilizing it to provide workflow recommendations.

Outside of the software learning literature, topic modeling is a common generative model to
extract topics from a corpus [43]. Prior work has successfully applied topic modeling to mine
user behaviors from sequence data. Huynh et al. [55] used this approach to identify routine
behaviors from sensor data. In this case, a topic is a behavior (e.g., having lunch), and the words
are activities associated with this topic (e.g., walking freely, picking up cafeteria food, queuing in
the line, etc.) Wen and Rose [144] used a similar approach to identify click patterns in data from
Massive Open Online Courses.

In our work, we develop a hierarchical approach combining topic modeling and frequent
pattern mining approaches to mine software workflows at two levels: a task level, and a finer-
grained command-pattern level.
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9.3 Dataset

The software application we target with our approach is a 3D modeling application designed for
consumer, commercial and educational use. The application has over 1,000 commands, separated
into a set of high-level workspaces (Model, Sketch, Assemble, etc.) Collectively, this rich feature
set enables a wide variety of workflows, including modeling, mesh editing, simulation, and
animation. Even for a single task, users can take many different approaches. For example, for
basic modeling, users can start from primitive shapes (e.g., a box or cylinder), or can sketch in 2D
then transform the sketch to 3D using extrude or other operations.

We collected detailed natural usage logs for 20,000 users of the software from June 25 to
August 25, 2017, including 255,643 user sessions and 20 million command invocations. In
addition to these usage logs, we collected video data from an online community repository where
users up-load videos of their usage of the software. These videos have an associated meta-data
file with time-stamped command usage data. We collected data for 11,713 videos, with 470,811
commands invoked across these videos. We preprocessed the command logs of the videos to be
in the same format as the natural logs from the product, and also collected video attribute data
including video length and view count.

9.4 Understanding User Tasks from Videos

The first step to recommend personalized resources to users is to understand what the users are
doing in the software. To this end, we developed a hierarchical approach to mine user workflows
at both task and command-set levels. In the first layer of our hierarchical approach, we used
topic modeling and inferred 18 meaningful user tasks (topics). In the second layer, we mined
frequent command patterns for videos of each task respectively, resulting in 233 patterns in total.
The rationale for this two-level approach is that simply mining frequent command patterns from
the entire corpus of command logs can lead to an over-representation of command patterns for
frequently-performed tasks, with those for less-frequent tasks drowned out by the volume of log
data for more-frequent tasks. Adding an initial stage of topic modeling allows less frequent but
distinct activities to be captured as well.

In this section, we describe the limitations of the state-of-the-art approach [30] to mining
frequent tasks on our dataset, and then introduce the first layer of our hierarchical approach –
using topic modeling to mine user tasks.

9.4.1 Frequent Pattern Mining Approach

The current practice of identifying frequent user tasks involves applying frequent pattern mining
techniques, such as frequent itemset mining and sequential pattern mining [3, 4, 28, 92]. However,
such existing techniques do not ac-count for the unique characteristics of software log data. For
example, in software logs it is common for users to per-form a task by executing a set of operations
contiguously with no, or few, outliers. Users may also execute a required operation multiple
times within the duration of a task. Re-cent work by Dev and Liu [30] developed an outlier-based
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ranking algorithm to rank frequent patterns mined from user log data, which addressed the above
challenges specific to software logs. We adopted their approach as a starting point.

Initially, we applied Dev and Liu’s approach to our dataset without modifications, but found
that it mainly identified patterns related to the software’s most frequently-used workspace (Sketch-
ing). This suggests that for complex software applications with diverse usage domains, a frequent
item-set mining approach may not be sufficient to identify patterns representative of the full range
of work-flows in the software.

9.4.2 Topic Modeling Approach

A topic model is a type of statistical model for discovering abstract “topics” that occur in a
collection of documents. Although it was originally developed as a text-mining technique, topic
modeling has also been used to mine human behaviors [55, 144]. We consider the way a software
user composes a session to be similar to the generative process of a document in topic modeling.
Users first decide which task to work on, and then choose commands for that task. Additionally, for
complex software applications, it is often the case that users will use slightly different command
sets to accomplish similar tasks. The relationship between commands may not be captured by
frequent pattern mining approaches, since they measure the co-occurrence of a set of commands.
We see an opportunity for topic models to capture these relationships.

We define the problem of inferring user tasks from in-situ command logs as an unsupervised
machine learning task, due to the lack of ground truth data. In this work, we collected a large
dataset of community-generated videos showing various uses of the software, with corresponding
command logs. This enables us to first infer user tasks through unsupervised machine learning
and then validate the results using the additional context provided by the videos.

We used the command logs from the video dataset as training data for the topic model, treating
each video as a document, and each command as a word. After labeling and validating the inferred
topics, we applied the topic model to the community logs to classify user tasks for all users.

Data Preprocessing

We extracted the command logs from the video dataset, and filtered out 34 “stop word” commands
identified by domain experts, such as “Constrained Orbit”, “Free Orbit”, “Pan”, and “Cancel”.
We only included videos with at least 2 unique commands. This resulted in 11,713 videos with
952 unique commands, and 470,811 total command invocations.

LDA vs. BTM

We initially applied a common topic modeling algorithm, Latent Dirichlet Allocation (LDA) [16]
(using Gensim [39]) to infer topics from the command logs of the video dataset. To select the
number of topics, K, we tested values from 5 to 100 in increments of 5. A researcher and a
domain expert analyzed the output for each value of K to identify the most sensible results. New
topics (“Animation”) emerged at K=20, as compared to K=15, and for K≥25, we started to see
overlapping topics, especially related to sketching. We did not further refine the final number of
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topics by testing values of K between 20 and 25, due to limitations in time with the domain expert.
Based on the above, we finalized at K=20.

A limitation of the LDA algorithm is the sparsity issue. Some videos contain a small number
of commands, resulting in a sparse document-word (video-command) matrix. To address this, we
adopted the Bi-term Topic Modeling (BTM) approach [150], which is designed to infer topics from
short texts. BTM explicitly models word co-occurrence patterns to enhance the topic learning,
and uses the aggregated patterns in the whole corpus when learning topics, to solve the problem of
sparse word co-occurrence patterns. We applied BTM on the command logs of the video dataset
and used a similar approach to tune the number of topics parameter, which also generated optimal
performance for K = 20 topics. The researcher and a domain expert did a qualitative comparison
of the 20 topics generated by LDA and BTM respectively. We concluded that BTM generated
more coherent topics, with fewer overlapping topics, and additional topics not identified by LDA.
Thus, we used BTM to classify user tasks. We refer to the topics generated by BTM as “tasks”.

Output of BTM

The output of BTM includes (1) a topic-word (task-command) distribution matrix, and (2) a
document-topic (video-task) distribution matrix. Using the video-task ma-trix, we assigned each
of the 11,713 videos as belonging to the “task” (i.e., topic) with the highest weight for that video.
We also define the following two similarity terms:

Task-Task similarity—each task is represented in a task-command vector by the topic-word
(task-command) matrix. We define the task-task similarity as the cosine similarity between the
two task-command vectors. We used a similar definition of task-task similarity as used in Labeled
LDA [108].

Video-Video similarity—each video is represented in a video-task vector by the document-topic
(video-task) matrix. We define the similarity between two videos as the cosine similarity between
the two video-task vectors. Cosine similarity can compare documents in terms of their subject
matter [121], rather than length or other attributes. This makes it appropriate for calculating
similarity of videos and tasks, which may vary in length but concern the same high-level content.
While cosine similarity comes from a different modeling approach than probabilistic modeling,
we selected it over probability-based metrics (e.g., Kullback-Leibler Divergence) because it is
well-known, easy to implement, and has been found to be as effective as probability-based metrics
in applications similar to our own (e.g., filtering redundant documents [155], and computing
similarity between user-topic vectors generated by LDA [106]).

Expert Labeling

While the topic modeling algorithm provides an association of commands to topics, it does not
provide a semantically meaningful label for these “tasks”. To generate such labels, we recruited
two domain experts from the company that developed the software. For each “task”, we showed
the top 10 weighted commands for the task, and the top three videos ranked by weight for that
task. We included three multiple-choice questions and one open-ended question in the survey to
understand whether experts found the “tasks” to be meaningful, and to label each with a name.

Expert Labeling Survey Results
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In the open-ended question, we asked the experts to give a name to each task (i.e., what
they think the user is working on when seeing these commands used together). The experts’
responses are shown in 9.1. Following the survey, a researcher met each expert to discuss their
under-standing and finalize a name for each task (also shown in 9.1). We dropped one task that
was indicated as not meaningful by the experts, and combined two tasks on beginner sketching,
resulting in 18 distinct tasks. The number of videos that are categorized into each task is shown in
column “Videos”.

To further assess the effectiveness of the algorithm, we asked experts to indicate whether
the commands composing each task are frequently used together. In a multiple-choice question,
we asked each expert to rate “How frequent/likely do you think these commands would be used
together?” The experts respectively rated 15/20 and 17/20 tasks as meaningful (9.2). This provides
initial validation of our approach of task recognition using topic modeling.

The experts also rated the helpfulness of the videos in deciding the name of the task. Experts
found the videos to be helpful or neutral for 16/20 and 16/20 of the tasks respectively. The two
experts also showed high agreement on this question, with a Pearson coefficient of 0.48 (p=0.03)
be-tween their ratings. This is a promising result, indicating that the community corpus of videos
can be used to demonstrate new workflows to users as part of a recommender system.

Figure 9.1: Task names, as labeled by experts, with the number of videos that are categorized for
each task.
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9.5 Study 1: Task Categorization Validation
The aim of our first study was to evaluate the topic modeling approach for categorizing user tasks.
Based on the labels provided by the domain experts, we asked a new set of ten users to watch a
selection of videos, and identify the task demonstrated in the video, and the similarity of pairs
of videos. The goal was to evaluate whether users’ responses would match the topic modeling
algorithm’s categorization.

9.5.1 Video Study Design
Based on several rounds of piloting, we developed the fol-lowing two question types answered by
users in this study.

Labeling Questions

The first question type asked participants to view a single video, and choose a task category
for that video from a list of four possible options (9.3). The list of choices for each video was
constructed so that it contained the label provided by the topic modeling algorithm, as well as
three other tasks. The three additional tasks were selected by ranking the remaining 17 tasks
produced by the topic modeling approach by similarity to the task of the target video (using the
task-task similarity metric as defined earlier). This ranked list of tasks was divided into three

Figure 9.2: Expert ratings for Q1:“How frequently/likely do you think these commands would be
used together”
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roughly equal-sized tiers, and one task was selected from each tier. This results in each question
containing a mix of tasks that our algorithm believes are close to the video, and that are far from
it.

For example, the BTM algorithm categorizes the video shown in 9.3 as belonging to “Interme-
diate sketching (offsetting sketch geometry and trimming lines)”. The three additional choices,
ranked by their similarity to this task, are “Beginner sketching” (0.8), “Editing splines in a sketch”
(0.25), and “Simulation” (0.12). Using this approach, we include choices that are similar to the
task chosen by the algorithm, and ones that are different, without overwhelming the participant
with all 18 possible choices. This enables us to investigate whether the distribution of answers
over choices is consistent with the similarity be-tween tasks.

Similarity Questions

The second question type asked the participant to watch a pair of videos, and evaluate whether
they believed the tasks being performed in the two videos were similar or not, on a 5-point Likert
scale (9.4). To construct the similarity questions, we randomly selected a video from the dataset
as the target video, and ranked all the other videos based on their similarity to the target video
(using the video-video similarity metric as defined earlier).

Figure 9.3: Example labeling question – Select the category that best describes the task being
performed in the video.
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Figure 9.4: Similarity question – Rate the similarity of the tasks performed in the two videos.

Figure 9.5: Similarity between a video and all other videos. We selected similar videos from the
green shaded area, and dissimilar videos from the red shaded area.
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The pair of videos shown to the participant was either similar or dissimilar. To form a similar
pair, we identified videos with a similarity score higher than 0.9 to the target video (the green
shaded area in 9.5), and randomly selected one such video. To form a dissimilar pair, we randomly
selected a video from the bottom half of all videos, ranked by similarity to the target video (the
red shaded area in 9.5). Our approach for selecting similar/dissimilar items was developed in an
ad-hoc manner, based on experimentation with our dataset. In particular, we found that a simpler
criterion (e.g., selecting the top 10% of videos, ranked by similarity [93]) did not account for
tasks with few videos. For example, the Animation task included only 53 videos, so selecting
10% of all videos ranked by similarity to a video on Animation would select many videos outside
this topic. Using a threshold on similarity score avoided this problem.

Participants

We recruited 10 users (8 male, 2 female) that self-identified as intermediate or expert-level users
of the software. Participants were given a $25 gift card for participating.

Study Design

Each participant answered 11 labeling questions, and 18 similarity questions (including 9 video
pairs that our algorithm indicated were similar, and 9 that our algorithm indicated were dissimilar),
covering a total of 47 videos across 29 questions. In order to cover a larger variety of videos,
we designed the study so that 2 participants worked on questions with the same set of 47 videos,
with 5 sets of 47 videos in total. We also made sure videos of each task were equally represented
in the questions. In total, we covered 235 videos in the study, which ranged in duration from
10-60 seconds. To counterbalance, in each set, we reversed the order of similarity and labeling
questions for the two participants. Questions within each category were presented in a random
order. To make sure the participants watched the videos and treated the questions seriously, we
asked participants to provide a short text justification of their response to each question.

9.5.2 Quantitative Results and Analysis
For similarity questions, if the participant answers “Strongly Agree” or “Agree” for a similar
pair of videos, or “Strongly Disagree” or “Disagree” for a dissimilar pair of videos, we count the
answer as consistent with the algorithm, otherwise as inconsistent. Participants’ overall agreement
on similarity questions with the algorithm was 71%. We also computed the users’ average rating
for similar pairs (1.4) and dissimilar pairs (3.4), where the rating is computed on a 1-5 scale, with
5 meaning “similar” and 1 meaning “dissimilar”. For the labeling questions, participants agreed
with the algorithm’s classification 82% of the time. The performance of each participant is shown
in 9.6.

From the results, we found that participants had a high level of agreement with the algorithm.
The main source of inconsistency was the lack of agreement when our algorithm considered two
videos to be similar – participants were more conservative about judging two videos to be similar.

In particular, participants had high agreement with the algorithm on labeling questions. As
shown in 9.7, 82% of responses matched the algorithm’s classification. Moreover, approximately

107



half of the responses that did not match the algorithm were in Tier 1, which is the closest to the
classification of the algorithm without being an exact match. Overall, 91% of responses were
either exact matches or in Tier 1.

9.5.3 Qualitative Analysis of User Feedback

To better understand the circumstances under which participants agreed or disagreed with the
algorithm’s classification, we examined the justifications they provided for their ratings. In general,
we found that participants were able to give detailed descriptions of the tasks being performed in
the videos. Some examples of justifications are provided below:

“They are both linked with motion, both using joints to drive the parts or restrict movement.”

Figure 9.6: Summary of results for Study 1, grouped by video set.

Figure 9.7: Summary of agreement between the algorithm and participants’ responses to the
labeling questions.
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“Both are short videos that go into the render environment and start in-canvas rendering.”
“Fairly advanced sketching manipulations, all 2D. 2nd video, manipulating 3D assembly with

joints and alignments, no actual changes to the geometry just their orientation.”
“The first video is using a sketch on a plane to use as a cutting tool to split a body - the second

uses the time line and preferences to modify an existing model.”
Participants’ justifications indicated a range of different standards for judging similarity. While

we asked participants to judge based on whether the two workflows were working toward a similar
goal, even if their individual approaches were different, or the end results were different (e.g.,
one succeeded while the other failed), we observed that many participants judged similarity
based on other standards, such as the expertise level of the approaches shown in the video, or
the specific operations used (e.g., “Both navigate the design space and add features. The former
looks unprofessional, but latter looks very skilled.”, and “Both videos create a sketch, but other
operations are different”.) Participants also mentioned that their answer could go either way,
depending on how similarity was defined (e.g., “It depends on how vague you want to go with
the similarities – you could say that they are using some type of constraint by aligning faces or
changing dimension etc. – but it is vague”). Further, some participants were particularly strict
when judging similarity. In the examples below, participants’ justifications for their ratings suggest
an agreement that the tasks had a similar goal, but their ratings do not reflect this:

“1 is creating a drawing view. 2 is editing a drawing view’s scale. The general end goal is to
end up with a drawing.” (Rated as “Neutral”)

“Both attempt to simulate how parts work in the physical world” (Rated as “Extremely
different”)

“1 is creating a body from a TSpline. 2 is creating variations of TSpline bodies and ends up
with bodies.” (Rated as “Neutral”)

Overall, our study results suggest that the BTM algorithm does infer meaningful user tasks that
are consistent with the understanding of experienced users of the software. This is encouraging
evidence for the value of topic modeling approaches for software log data. Our findings also
indicate the value of gathering a corpus of video and associated log data for a software application,
as it can be used to validate approaches for modeling user tasks from log data.

9.6 Hierarchical Task Identification
Study 1 validates the first layer of our hierarchical approach, with which we can infer the high-
level tasks (topics) the user is working on. However, even when two videos are of the same
high-level task, they may contain very different command sets. The second layer of our approach
allows us to acquire finer-grained command sets under each task.

We began with the output of BTM, which assigned each video to a task (i.e., the task with
the highest weight for that video in the video-task matrix). For the set of videos under each task,
we applied the FP-Growth algorithm (using SPMF library [84]) on the command logs to identify
frequent patterns. We set different thresholds for each task based on how many videos there were –
our rule of thumb was that the number of frequent patterns acquired for each task should be within
the range of 5-10% of the total number of videos for that task. For the patterns acquired under
each task, we applied the ranking algorithm developed by Dev and Liu [30] and set the minimal
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length for a pattern to be 3 and the cutout cohesion score to be 2. By choosing cohesion score
of 2, we allowed 1 outlier for a pattern with 3 commands. For example, the pattern Construct
Sketch, Draw Line, Add Geometry Constraint to Sketch contained three commands and had a
cohesion score of 2, because for the 206 times that this pattern appeared, at least half of the times
there was another command that appeared in the sequence other than the three commands in the
pattern (i.e., an outlier). Examining the video command logs, there were cases where the three
commands appeared together with no outliers, and other cases such as Draw Line, Construct
Sketch, Trim Sketch, Add Geometry Constraint, and Draw Line, Construct Sketch, Add Tangent
Handle, Add Tangent Handle, Add Geometry Constraint where this was not the case. Setting the
cutout cohesion score to 3 would result in a loss of such length-3 patterns that appeared frequently
with 1 outlier in between the commands. We refer the reader to Dev and Liu [30] for additional
context surrounding our choice of cohesion score and allowing outliers. Using this approach, we
got 233 frequent patterns in total for the 18 tasks. The final distribution of command patterns by
task is shown in 9.8.

Comparing this hierarchical approach with simply applying the above command-set identifi-
cation to all data, we found greater diversity in the tasks identified. Specifically, with-out first

Figure 9.8: Distribution of patterns by task.
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applying BTM, all 53 frequent patterns acquired were for sketch-related tasks.
Examining the output of our approach indicated that it provided reasonable results. For

example, for the Beginner Sketching task, we found patterns such as Center Rectangle, Create
Sketch, Sketch Dimension, Edit Sketch Dimension showing the user created a sketch, drew a
rectangle, and edited its dimensions. For the Intermediate Sketching task, we found patterns
such as Line, Extrude, Stop Sketch, Trim showing the user is drawing and trimming lines in a
sketch, and extruding from the sketch. For the Assembly task, we found patterns such as Activate
Environment, Joint, Drag Joint Origin which shows the user activated the workspace, dragged the
joint origin and then made a joint.

9.7 Recommender System
Using the hierarchical approach, we trained a topic model using BTM on the command logs of
11,713 videos, to infer 18 topics representing high-level tasks in the software (first layer), and
then acquired frequent patterns for each of these tasks (second layer), resulting in 233 patterns
in total. These topics and command patterns allow us to infer a task distribution for each user,
and to characterize users and videos based on which of the patterns are exhibited in their log data.
Specifically, we used this model of tasks and command patterns to design and implement four
collaborative-filtering algorithms to recommend workflows and associated videos.

To form the community for collaborative filtering, we sampled 20,000 users and collected
their log data for the period of June 25 to August 25 of 2017. In all, this included 255,643 user
sessions and about 20 million command invocations. We applied the model trained using BTM in
the first layer of the hierarchical approach on the community data to infer task usage for each user,
resulting in a user-task distribution matrix. We then searched for the appearance of each of the
233 patterns acquired from the second layer of the hierarchical approach in the command logs of
each user session. This results in a user-pattern frequency matrix.

The recommender system works in three steps. First, for a given user, the system gets his/her
task and command pat-tern usage from the above matrices. Second, it selects either a task (first
layer) or a command pattern (second layer) to recommend using collaborative filtering. Finally, it
selects a candidate video to recommend based on the chosen task or pattern.

9.7.1 Recommender System Design Space
Based on this hierarchical understanding of user workflows both at a task level (inferred from
the topic modeling approach), and at a pattern level (inferred from the frequent pattern mining
approach), we propose and evaluate a design space for workflow-based video recommender
systems. The first dimension of our design space is granularity, basing our recommendation on
either a topic level or a pattern level. Videos that are recommended at a topic level target a general
task, e.g., sketching, whereas videos that are recommended at a pattern level target a specific
pattern of commands, e.g., drawing a line, applying a constraint, and editing dimensions. The
second dimension we evaluated was topic relevance. Recommendations were either most-familiar
topic (MFT), meaning the recommended videos match the user’s most commonly-used topic,
or less-familiar topics (LFT), meaning the recommended videos are outside of the user’s most
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Most-Familiar Topic Less-Familiar Topics
Topic Level 1. Topic-MFT 2. Topic-LFT
Pattern Level 3. Pattern-MFT 4. Pattern-LFT

Table 9.1: A design space for workflow recommender systems.

commonly-used topic. The intention is for the MFT recommendations to be more familiar and
relevant, and for LFT recommendations to be more novel. Exploring this dimension allows user
to explore the tradeoff between relevance and novelty [82]. Based on these two dimensions, we
proposed a design space of four workflow based video recommendation algorithms (Table 9.1).

9.7.2 Recommendation Algorithms
All four algorithms make recommendations in two stages. First, a topic is selected (topic-level
algorithms), or a set of five patterns1 is selected (pattern-level algorithms). Second, based on the
selected topic or patterns, videos are chosen that either belong to the topic, or contain the selected
pat-terns. The following sections describe the specific algorithms.

Algorithm 1: Topic-MFT

Step 1: Compute the task distribution for the target user.
Step 2: Choose the task the user has most frequently used. For example, in 9.9 we visualize

the task distribution for a target user. In this case, we would select Task 5.
Step 3: Select five videos for the chosen task. We select all videos in the dataset that belong to

this task, and compute the similarity between the target user’s task usage with all videos selected.
Videos with a similarity greater than 0.9 are ranked by their view counts, and the top five videos

Figure 9.9: Example task distribution, user vs. similar users.
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are selected. The threshold 0.9 followed a similar rationale as introduced in Study 1. The task
similarity step guarantees that the videos will be close to the user’s typical workflows, and the
view count ranking ensures that we select higher-quality videos.

Algorithm 2: Topic-LFT

Step 1: Compute the task distribution for the target user and all 20,000 other users in the
community.

Step 2: Find similar users. We select users that have a task similarity score larger than 0.9
with the target user. Task similarity here is defined as the cosine similarity between the user-task
vectors. 9.9 shows the comparison of task distributions between a target user and similar users.

Step 3: Compare target user to similar users. We compute the task weight difference between
the target user and similar users, and select the task that has the largest delta between similar users
and the target user. For the example in 9.9, Task 1 would be recommended. We then use a similar
algorithm as in Approach 1, Step 3 to select five videos.

Algorithms 3 & 4: Pattern-MFT, Pattern-LFT

Step 1: Compute the pattern frequency distribution for the target user, and all 20,000 other users
in the community.

Step 2: Find similar users based on pattern frequency. Similarity here is defined as the cosine
similarity between user-pattern frequency vectors. Since the pattern frequency similarity is much
lower than task similarity, it was difficult to determine a threshold for selecting similar users. We
chose N=200 to select the top 200 users based on the ranking of pattern frequency similarity with
the target user.

Step 4: Compute expected pattern frequency for the target user. To calculate the expected
frequency for each pattern, we follow the method used by Matejka et al. [93]. We define the
expected frequency, e fi j, for pattern pi and user u j:

e fi j =
n

∑
k=1

w jk p fik

, where w jk is the similarity between u j and uk, and p fik is the frequency of pattern pi for uk.
Step 5: Remove previously used patterns. We then rank the patterns based on the expected

frequency and remove patterns that the target user has been observed using.
Step 6 (Algorithm 3): Select patterns for the user’s most relevant task. In the list of patterns

ranked by expected frequency, to select patterns that are more relevant to the user, we select the
top five patterns that belong to the most frequently used tasks by the target user.

Step 6 (Algorithm 4): Select patterns of less relevant task. In the list of patterns ranked by
expected frequency, to select patterns that are less relevant to the user, we select top five patterns
that are outside the user’s most frequently used tasks (as defined in Algorithm 3).

Step 7: Choose videos based on patterns. For each chosen pattern, we first select all videos
that contain that pattern. We then rank the selected videos based on their task similarity to the
target user, and rank the top 10 by view count. Finally, we select the top-viewed video as the video
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for that pattern. This is the same method for video selection used in Approach 1 and 2, which is
designed to guarantee the video is close to the user’s typical workflows and of reasonable quality.

9.8 Study 2: Workflow Recommendations

To evaluate the proposed algorithms, we conducted a study where we generated a personalized set
of videos for participants, and sent them a survey where they could view the videos and rate the
recommendations. This follows the methodology used in past work by Matejka et al. [93].

9.8.1 Participants and Procedure

We recruited 8 users that had actively used the software during the past 2 months (1 female, 7
male). With permission, we retrieved participants’ natural log data for the past two months, from
June 25 to August 25, 2017. We made 20 video recommendations in total for each user – five
videos from each of the four algorithms described above. We filtered videos to be shorter than 5
minutes. The videos were presented to participants in random order.

For each video, participants were asked to rate to what ex-tent they would agree with the
following statements (1=Strongly Disagree, 5=Strongly Agree): (1) I was familiar with the
workflow (or workflows) shown in this video. (2) I may use the workflow (or workflows) shown
in this video. (3) This video would be a good demonstration for someone who was unfamiliar
with the workflow (or work-flows) being shown. The first question (Familiarity) was used to
evaluate whether the workflows were novel to the user. The second question (Relevance) was
used to evaluate whether the workflows were relevant to the user. The third question was used
to evaluate the quality of the video, and the feasibility of using community generated videos for
learning new workflows. Each question was followed by a justification text box.

9.8.2 Quantitative Results and Analysis

9.2 shows the average rating of each recommendation algorithm on the two dimensions of
relevance and familiarity. In general, our results indicate that participants found the recommended
videos to be relevant (indicating that they would use the workflow), and familiar (indicating
lower novelty). Given the low sample size (n=8) it is difficult to make definitive conclusions,
however we do see potential trends of higher familiarity ratings for pattern-level recommendations
than topic-level recommendations (p=0.08) and higher relevance ratings for the pattern-level
recommendations as well (ns). Our interpretation of pattern-based algorithms generating more
familiar and relevant recommendations is because similar users, as identified by pattern frequency
similarity, are more likely to use similar patterns. Even if previously-used patterns are removed,
the patterns recommended may be of a similar general task.

While the LFT approaches showed some potential impact on the novelty of the recommen-
dations, the novelty ratings were lower than we expected. This could be because we favored
relevance in the design of the recommendation algorithms. For instance, in the video selection
step, we select-ed videos based on the similarity between the target user’s task usage and the task

114



Algorithm Relevance Rating Familiarity Rating

Topic-Level
Most-Familiar Topic 4.13 3.70
Less-Familiar Topics 4.10 3.58

Pattern-Level
Most-Familiar Topic 4.23 4.08
Less-Familiar Topics 4.18 3.95

Table 9.2: Study 2 results: users’ rating on the relevance and familiarity of the recommended
tutorial videos.

distribution of the videos, which can cause the recommended videos to be closer to the user’s
typical workflows. We revisit this issue in our discussion of future work.

In terms of the video quality, the ratings were generally positive, with an average rating of 3.5
for all the recommendations. In their free-form feedback, participants showed a strong preference
for videos with audio.

9.8.3 Qualitative Analysis of User Feedback
Through a qualitative analysis of user feedback, we found that users may rate the videos as very
familiar, even if they disclosed in their justification responses that they were only partially familiar
with the workflow. Part of this issue is that each video may show more than one workflow or
command pattern. If part of the video shows a general task that the user is familiar with, the user
may rate the video as familiar, even if a subsequence of the video was novel.

Despite the low level of reported novelty, users did report positive attitudes towards the
recommended videos and expressed that they would want to try out the workflows in the future.
For example, P1 stated: “I knew how to use all these features, but hadn’t really thought of using
them in combination this way before. The workflow will be useful in the future.”

P2 expressed that he/she is partially familiar with the work-flow recommended: “I am partially
familiar with the patch workflow but understand how to use extrude to make a groove to a box. I
want to learn more about patch and the video gave a good description of how it can be used.”

P3 was excited about one of the recommended workflows: “Amazing workflow, I was never
familiar with such an approach. Maybe because I’ve never used Remake. I would love to give it a
go. This has a lot of uses and potential in the field I’m working, so I would definitely use it.”

In conclusion, the algorithms show a strong potential for recommending learning resources
that are relevant to the goals of the target user. The study reinforces the tradeoff between the
two factors of relevance and novelty in our design space. We see opportunities for improving the
algo-rithms and adjusting the design decisions to make more novel recommendations, which we
will discuss as future work.

9.9 Discussion and Future Work
A diagram summarizing our approach is shown in 9.10. The overall idea is to first use topic
modeling to segment logs into mutually exclusive sets based on high-level tasks (Layer 1), and
then to apply frequent pattern mining to each set, to identify finer-grained patterns of command
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usage (Layer 2). The resulting topics (i.e., tasks) and patterns are then used as input to software
support systems, e.g., recommender algorithms, as we have demonstrated.

While we found that Bi-term Topic Modeling and Dev and Liu’s algorithm for frequent pattern
mining were effective, we see the hierarchical approach as being largely independent of these
specific techniques, or the assumptions used to tune them to our dataset. In particular, a key
finding from this work is that it is valuable to first use topic modeling to segment logs, and then to
apply pattern mining to the resulting segments, because it prevents frequent user activities (e.g.,
sketching activities for our application) from drowning out other distinct activities performed in
the software.

The remainder of this section discusses opportunities for future work to develop and build on
this approach.

9.9.1 Incorporating Heuristics Based on Expertise Levels

In our approach, we tried to minimize human input. Apart from the expert labeling of topics, the
process is data driven. However, we see opportunities to incorporate heuristics to enable more
meaningful workflow recommendations (an approach used at the command level in [93]). Though
we did not report on it, we had experts evaluate the expertise levels of the 18 tasks produced by
our topic modeling, and this data could be incorporated into a workflow recommender system
(e.g., to recommend intermediate sketching workflows to users who have been observed doing
beginner sketching).

9.9.2 User In-the-Loop Recommender Systems

In this work, we did not apply filtering to control the quality of community-generated content,
but we see the potential of integrating such quality-control methods (e.g., machine learning
methods to predict video quality [76]). Prior work has shown that “learner-sourcing” systems
can harness input from learners to improve the quality of content over time (e.g., ask learners to
label activities performed in MOOC videos [62]). Similar approaches could be used to refine the
recommendations made by a workflow recommender system, so that recommendations improve
over time.

Figure 9.10: Summary of our hierarchical approach.
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9.9.3 Generalizability
Though we developed our hierarchical approach for a specific 3D design application, the approach
can be applied to other applications as well. Our approach is based on command log data, which
is commonly logged in feature-rich software. More unique is that we also leverage data from
a user-generated video repository, where the videos are supplemented with command log data.
Software companies looking to apply our approach could curate such marked-up video repositories
with existing tools, e.g., Autodesk Screencast’s public SDK [12]. Alternatively, prior work has
demonstrated approaches to extract command data from existing video repositories [13, 64]. In
this way, our approach can be generalized to other applications and software domains.

9.9.4 Limitations
A limitation of our work that could impact its generalizability is that we used heuristic or ad-hoc
approaches to choose some parameters (e.g., the cosine similarity threshold of 0.9, and the cutout
cohesion score of 2), which would need to be adapted for other data sets. More broadly, the use of
cosine similarity is a limitation as it comes from a non-probabilistic modeling approach, and thus
it would be valuable to investigate probabilistic-based similarity metrics, such as Kullback-Leibler
Divergence [90], in future work. When selecting videos to recommend, we also used an ad-hoc
method to select videos that are similar to a user’s typical workflow, which favored “Relevance”
over “Novelty” in our design space. Future work could investigate more rigorous approaches to
tuning the similarity threshold, or more generally modeling the similarity/novelty of workflow
recommendations.

9.10 Conclusion
In this paper, we have proposed a hierarchical approach to classifying user workflows by first
applying topic modeling to identify high-level tasks, and then applying frequent pattern mining to
identify distinct command patterns for each task. An evaluation showed encouraging evidence
that topic modeling can effectively categorize logs into meaningful high-level tasks. As well,
the hierarchical approach appears to help identify a larger variety of distinct command patterns.
Based on this approach, we proposed a design space of workflow-based recommender systems.
An evaluation of four such algorithms was encouraging, and suggests that this approach has the
potential to effectively support software users.
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Chapter 10

List of Contributions

I summarize the contributions and insights offered by this dissertation below. This dissertation
contributes to the literature of Human-Computer Interaction, Learning Technologies, and Learning
Sciences.

10.1 Human-Computer Interaction and Learning Technolo-
gies

• This dissertation contributes a novel technique that uses student solution examples to
semi-automatically generate authentic multiple-choice questions for deliberate prac-
tice of higher-order thinking in varying contexts. With two classroom experiments, we
show that the deliberate practice opportunities created with this technique help students
gain conceptual understanding more efficiently and help improve the quality of student
open-ended work.

• This dissertation contributes insights about developing effective learning at scale sys-
tems by leveraging the complementary strengths from peers, experts, and machine
intelligence, differentiating it from existing systems that solely rely on machine or
crowds. There are three components that contribute to the effectiveness of this learn-
ersourcing technique. First, instructors are not good at creating distractors, and
actual elaborated student errors are helpful as sources. Second, we apply simple nat-
ural language processing techniques to select distractors of interest. Third, we involve
instructors closely in the process to enhance quality.
Building upon prior work on automatic question generation for educational purposes[75],
techniques in prior work 1) target lower cognitive skills, such as fact questions and fill-in-
the-gap questions 2) does not provide meaningful feedback 3) are domain-specific when
leveraging existing language ontology. The strategy these approaches primarily use is
limited in that they tend to simply transform given text from declarative statements to
questions. In this work, we explore data inputs that are not declarative statements, but
elaborated solutions from students that display common misconceptions with accompanying
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thought processes. Some of the thought processes students displayed in their open-ended
work are leveraged as “feedback” for the new questions. The nature of the data input
provides sources for feedback.
On the other hand, we involve instructors at multiple stages. Instructors are asked to
specify question creation schemata that target higher order thinking, e.g., evaluation. The
re-organization of student open-ended solutions provides examples of varying contexts.
This makes the creation of question schemata that target higher order thinking feasible,
e.g., having students analyze and evaluate examples. This would not be possible without
examples of varying contexts as the input. Instructors also review questions and provide
feedback in the end, which enhances the quality of the questions produced. The nature of the
data source and the involvement of experts at multiple stages differentiates the techniques
UpGrade from existing work in the literature on automatic question generation techniques.
Building upon prior work on learnersourcing and crowdsourcing, prior work leveraged
learner data such as video watching traces [63], video annotations [64, 89, 143], or ex-
planations [146] to benefit future learners. I explore written homework assignments as a
new and powerful input for learnersourcing. Peer review [73] is another direct ’scaling’
approach for education. For peer review to work effectively, it requires hard rubric work
that instructors can’t or don’t want to do and timely and high quality feedback – while not
impossible – is extremely rare [137]. In UpGrade, instructors play an important role in
quality control compared to prior crowdsourcinglearnersourcing systems and peer review
systems. Instructors’ effective participation makes sure the content created is of high quality.

• Applying the workflow of UpGrade in practice across courses demonstrates the gen-
eralizability and practical value of this approach and helps inform the design of an
interface to facilitate the independent use of UpGrade by instructors for authoring
practice questions. Over the past few years, we have applied the workflow of UpGrade to
9 modules on topics of research methods and design including heuristic evaluation, survey
design, usability findings from think-aloud studies, affinity diagrams, interview question
design, creating storyboards for speed dating studies, log data analysis and visualizations,
theoretical cognitive task analysis, and performing error analysis with machine learning
predictions. Some modules were repeatedly used in the same class and some are used across
classes at CMU. For the development and use of these modules, we followed the workflow
of UpGrade using a combination of offline, i.e., meeting between an engineer (myself)
and the instructors and online, algorithms of UpGrade, approaches. These modules have
different types of data input, and we also used different quality control methods for different
modules. The effort required from instructors for these modules is 2 hours at most. In this
process, I’m also trying to understand instructors’ preferences and traditional workflows in
writing practice questions to inform the design of the interface of QuizMaker, with which
instructors can independently use the workflow of UpGrade. On a practical side, this past
process demonstrates the generalizability of the workflow of UpGrade, with the facilitation
of a learning engineer. On the other hand, we leave it to future work to explore the usability
and effectiveness of the QuizMaker interface for independent use.

• When instructor efforts are not available for reviewing and revising the questions to
enhance quality control, we demonstrate an effective quality control method using
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psychometric approaches to automatically select high-quality question items from a
large question pool. We show that with this quality control method, UpGrade produces
a question bank that exceeds reliability standards for classroom use. We demonstrate that
crowd (such as MTurk) can be leveraged as a source for quality control. Crowd generates
consistent performance as real students. We also demonstrate that when reducing the sample
size, false negatives increase and false positives remain the same. This suggests that with
techniques such as UpGrade, which produces a large question pool, the system can use
relatively small data sets to prune out unreliable items without worrying about having false
positives.

• I demonstrate two examples where complementary human and machine intelligence
are leveraged to create educational materials at scale. In both cases, crowds (e.g.,
past students) offer a powerful data source with structure examples that show com-
mon errors. Machine automatically selects, filters and reorganizes examples. Experts
(instructors) check information accuracy and comprehensiveness to enhance content
quality. First, in the example of UpGrade, with instructors alone, it is often hard to write
lots of elaborated good examples and wrong answers. With machine alone, we see that
existing question generation techniques only produce fact questions and are not flexible.
Here, past peers offer a powerful data source with structured examples that show common
errors. With this better data input, machine can auto select/filter and reorganize examples.
Instructors, in the end, will check information accuracy and comprehensiveness. This
altogether supports quality content creation at scale. Second, I present a workflow catego-
rization and recommendation technique where I harness examples from online videos and
logs to support the use of complex graphical software. Here, peers who can be users of the
software everywhere in the world contribute demonstration videos. We collect these videos
(and their command logs) as input and use machine to identify an end user’s workflow;
expert input is elicited in this process. With this approach, existing online repositories are
repurposed as targeted tutorials for end users.

10.2 Learning Sciences

• This dissertation suggests another layer to further distinguish knowledge compo-
nents, by the required generation and evaluation efforts in problem-solving. The
practical implication for a more nuanced understanding of knowledge components
(KCs) is to help instructors make more nuanced and accurate instructional decisions,
e.g., using “evaluation-type” exercises for evaluation-heavy skills. As defined in the
KLI framework [70], students gain knowledge components (KCs) through learning events,
which can be inferred from performance on assessment events. The KLI framework suggests
that kinds of KCs drive instructional event choices. For example, instructional approaches
that emphasize recall and spacing of practice may benefit learning of historical facts, vo-
cabulary; whereas instructional approaches that prompt self-explanation in students would
be more valuable for learning complex principles, such as Newton’s laws. In my work,
we identify problem-solving skills that require critical evaluation efforts (such as heuristic

121



evaluation, survey question design, etc.). The practical implication for a more nuanced un-
derstanding of knowledge components (KCs) is to help instructors make more nuanced and
accurate instructional decisions, e.g., using “evaluation-type” exercises for evaluation-heavy
skills.

• This dissertation indicates that, at least for some domains, online learning can bene-
fit from the scaling advantages of multiple-choice questions without sacrificing (and
perhaps gaining) learning quality. Learning experience (LX) designers may consider,
with less guilt, the use of multiple-choice assessment and practice. To determine what
subject-matter may have the required characteristics (e.g., evaluative skill is distinctly
challenging), LX designers may use our matched assessment comparison technique
to identify when MCQs are equally difficult. Prior work has investigated the use of
“evaluation-type” exercises in other age groups and other domains. For example, Yannier
et al. shows that evaluating “which towers would likely to fall” can be more effective
in teaching kids physics principles around gravity and balance compared to having kids
continuously build towers with LEGO [152]. Ericsson et al. shows that when teaching
programming, having students solve Parsons problems, i.e., evaluating the correctness and
ordering of code snippets is equally effective for learning compared to having them write
the equivalent code. My work adds to this body of literature, focusing on different domains
and contexts. The practical implication for Learning experience (LX) is that LX designers
may consider, with less guilt, using multiple-choice assessment and practice. To determine
what subject-matter may have the required characteristics (e.g., evaluative skill is distinctly
challenging), LX designers may use our matched assessment comparison technique to
identify when MCQs are equally difficult.

• This dissertation provides further evidence that instructors have so-called “expert
blind spots”, revealed through cases where their beliefs and student performance
do not match. Specifically, instructors believe open-ended assignments to be better
for student learning, which is contradicted by student performance data. My work
provides further evidence that instructors have so-called “expert blind spots”, revealed
through cases where their beliefs and student performance do not match [98, 99]. Instructor
beliefs are important because they will influence the design of the curriculum and learning
experience of students. In both this and a past case [69], we see experts have good
reasons for their beliefs, yet data suggests otherwise and a deeper analysis explains why.
More generally, our work suggests that reasoning behind educational decisions can
be probed through well-designed, low-effort, experimental comparisons toward more
nuanced and accurate reasoning and decision making, and ultimately better design.

• This dissertation also makes suggestions to the model of take-home assignments used
in a higher-education context, especially relevant to topics similar to the ones we have
investigated. We surface an issue that open-ended work students turn in are of low
quality, suggesting there are cases when students are not ready and need scaffolding
before they do complex open-ended work. An alternative model would be giving stu-
dents deliberate practice opportunities before the assignment of flexible open-ended
work. The deliberate practice opportunities can be easily created with techniques
such as UpGrade. Open-ended assignments are frequently used in colleges and are treated
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as a major source of practice and learning in many courses, considering a regular course
that is expected to take a student 12 hours each week. Besides the time to attend lectures
and complete readings, students are usually expected to spend at least 6-9 hours each week
on their assignments. This is about 50% - 75% of students’ learning time. One reason for
using open-ended assignments is that students will receive individualized feedback on their
learning. However, we found the feedback students were given hasn’t been satisfactorily
informative. The frequency of the same mistakes among students is high, and the persistence
of the same mistakes within a student is also high. We demonstrate that it is valuable to
provide more instruction before asking students to spend significant time working on their
projects.

• I present the design of a system that benefits from the distinction between genera-
tion and evaluation efforts during problem-solving. ELK (Eliciting Learner Knowl-
edge), is a text-based role-playing system that enables pre-service teachers to practice
questioning moves through simulated “teacher-student” conversations. To facilitate
“evaluation-type” exercises, we introduce a “Coding” activity in ELK where players evalu-
ate authentic transcripts generated from past role-play sessions. We show that evaluating
authentic transcripts generated by others helps participants develop questioning moves to a
similar degree as generating improvisational questions in the role-play chat. The “Coding”
activity has practical benefits as it can be performed by a single participant alone, which
serves as a viable supplementary activity for online role-play systems.

123



124



Chapter 11

Discussions and Future Work

In the first section, I talk about the future work specifically relevant to creating and providing
deliberate learning opportunities as done by UpGrade. In the subsequent sections, I discuss my
observations working on this dissertation and future work I’d like to explore related to human-AI
collaboration, learning technologies, higher education, and creativity.

11.1 Creating and Providing Deliberate Learning Opportuni-
ties

11.1.1 Generalizability - Active learnersourcing
We have observed while applying UpGrade to different courses that the quality of the questions
produced is highly correlated with how well structured the data input is. As an example, when
the open-ended solutions we passively collect provide nuanced structures, it gives the system
more input in creating questions. We suggest these structures can be actively collected by helping
instructors design more detailed rubrics when giving open-ended assignments to students. In
future work, UpGrade can also help instructors refine learning objectives and coming up with
better rubrics.

As defined in [60], passive learnersourcing uses data generated by learners’ natural interaction
with the learning platform. On the other hand, active learnersourcing prompts learners to engage
in specific activities, to provide pedagogical benefits (for the current learner) and to collect useful
information (for future learners) at the same time. For my work thus far, I have been exploring
passive learnersourcing using student written assignments or short answers as inputs. Future
work could explore how active learnersourcing activities can be designed and implemented to
bring additional benefits for current and future learners. Two explorations we have done shows
promising of leveraging active learnersourcing in creating deliberate practice opportunities. The
first example shows that student solutions help instructors refine learning objectives, provide
more detailed rubrics and thus enables the system to create finer-grained data inputs. The second
example shows that actively giving students structured exercises provides us with input to create
versatile multiple-choice questions.

In the course User-centered Research and Evaluation, one learning objective on the method of
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Figure 11.1: Student solution example on the topic of usability findings. The severity of the
problem is further broken down into three aspects.

think-aloud protocols is to assess the severity of a usability problem. Through multiple offerings
of the course, the learning objective was refined as assessing the severity of a usability problem
from three aspects. As shown in 11.1, when evaluating the severity of a usability problem, students
were asked to evaluate from three aspects, namely frequency, impact and persistence. With this
data input, UpGrade creates multiple-choice questions that exercise this knowledge component of
differentiating aspects in assessing a usability issue.

Another important research method students need to learn is to conduct interviews. In the
open-ended assignment, students were asked to list the interview questions they will use. Through
an active learnersourcing approach, we asked students to select 5 interview questions from the
list, revise them and offer an explanation. The activity was done through Google form, as shown
in Figure 11.2. The data resulted from this activity was used as sources to create new multiple-
choice questions, Figure 11.3 shows an example question created. The pilot study shows promise
for using more active learnersourcing practices. On the one hand, it starts by logging student
assignment data hierarchically, which saves future efforts to segment the solutions. On the other
hand, it helps current students reflect on their solutions and creates additional sources to create
questions for future students.

11.1.2 Scalability - Data sharing and reuse
The courses I have worked with have multiple offerings in the past and have existing student
solution data to bootstrap the system. For courses without existing resources to start with,
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Figure 11.2: The active learnersourcing practice we piloted in UCRE.

Figure 11.3: An example UpGrade-created question with active learnersourcing.
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instructors can either take the active learnersourcing approach to collect student solutions or reuse
the materials created from other courses. As examples, two of our modules on research methods
were reused across classes at CMU.

To facilitate this data sharing and reuse, privacy issues related to student data may arise. Future
work could also explore issues around the ownership of student-generated data, ways to credit
students when using their answers as course materials, and ways to share and reuse data in a
privacy-preserving way, following school regulations.

11.1.3 Varying inputs, outputs and domains
Getting deliberate practice is critical in developing skill mastery. In our work, from interviews
and surveys with instructors, we see that creating enough deliberate practice opportunities is time-
consuming and challenging. UpGrade is one attempt at semi-automatically creating deliberate
learning opportunities with immediate feedback. The input is past students’ open-ended solutions
and the output is multiple-choice questions that target higher-order cognitive skills, such as
evaluation skills. Future work could explore other sorts of inputs and outputs to support deliberate
practice in different domains. For example, forum Q&A, lecture notes, online tutorials (both texts
and videos), programs, etc., can all be potential inputs, and besides multiple-choice questions,
such systems may create various sorts of practice opportunities with feedback.

My past work has focused on providing deliberate practice opportunities as part of students’
take-home assignments. Future work could explore leveraging such techniques to support active
in-class instruction. A large body of learning science literature suggests that active learning that
encourages students to participate and engage with the content is better than passive lecturing
[22, 29]. However, a recent study found that most college STEM instructors still choose traditional
passive teaching methods, such as lecturing with little student interaction[125]. An experiment in
a college physics course found that active instruction that gives students problems to solve and
discuss during class results in more learning than passive instruction, which is having students
passively listen to lectures [29]. Future work could employ such content authoring techniques to
create problem-solving activities to be embedded during in-class instruction.

11.1.4 Social Learning
In the deliberate practice literature [34], it is often described as an individual mastery learning
approach, focusing on repeated practice at the edge of the learner’s competency with immediate
feedback. The social contexts of where such learning happens are rarely discussed. In the
future, building upon my prior work related to collaborative learning and team-based learning
[114, 115, 116, 134, 135], I’m also interested in connecting deliberate practice efforts with social
learning support, enabling students to engage in deliberate practice together and exchange ideas
where appropriate.

11.1.5 Adaptivity
Besides creating deliberate learning opportunities, I’m also excited about adaptively providing
deliberate learning opportunities when learners are doing open-ended tasks. For example, when
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a student is writing an interview protocol, the system provides deliberate practice opportunities
when it identifies the student makes mistakes on certain knowledge components.

11.1.6 Machine Learning Enhanced Quality Control
We see opportunities for leveraging instructor revision history to further speed the revision history.
A possible direction would be building predictive models on the quality of questions based on
instructor revision history, thus reducing human review time.

We also see opportunities for using more sophisticated natural language processing techniques
to filter and compress texts and remove irrelevant information from existing student solutions.
Reinforcement learning approaches could also be explored.

11.1.7 Potential Risks and Ways to Mitigate Them
Potential risks exist using systems similar to UpGrade. Crowdsourcing existing solutions may
risk broadcasting incorrect information written by one student to more students. Some student
solutions may contain irrelevant information to the targeted learning objectives, or that segments
of student solutions do not provide enough contexts for future students to fully understand and
learn. These may lead to unnecessary extra cognitive load for students trying to learn from these
questions and may reduce the expected benefits from such systems.

I summarize three pathways to mitigate the potential risks of deploying such systems. On the
one hand, we have seen the importance of expert-involvement in this process. Giving instructors
an opportunity to finally revise questions and check information accuracy and comprehensiveness
makes sure that the content delivered to students is of high quality. However, the efforts required
from experts would also undermine the scalability of such approaches. Techniques to enhance
effective human-machine collaboration could reduce instructor efforts. For example, incorporating
instructor editing history into the system to prioritize question items likely to be good items, which
could reduce the reviewing effort needed. Finally, designing systems that would allow instructors
to collect student responses better aligned with the targeted learning objectives would help collect
better data input up front, saving subsequent efforts in processing messy data. Detailed discussions
of this direction is presented in Section 11.1.1

11.2 Artificial Intelligence in Education
Traditionally, teachers take the most responsibility in providing learning opportunities to students,
e.g., giving lectures, offering feedback. However, the efforts required from experts make such
learning opportunities less scalable. On the other hand, AI-based technologies have begun to
tackle this scaling issue, such as automatic grading (Arrow #1 in Figure 11.4), intelligent tutoring
systems that adaptively select questions based on students’ knowledge (Arrow #2 in Figure 11.4).
But challenges remain. In my work, I show we can take advantage of AI and the open-ended
data past students produced to augment teachers’ capabilities on content creation (Arrow #3 in
Figure 11.4) [139]. I have also explored ways that AI could support team-based learning through
signaling opportunities for in-depth discussion (Arrow #4 in Figure 11.4) [131, 136, 145].
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Figure 11.4: Arrows #1 and #2 are existing focuses of AI in education; #3 and #4 indicate my
contributions. #1 stands for direct AI support to learners, e.g., automatic grading, chat bots.
#2 stands for techniques that intervene during instruction, e.g., intelligent tutoring systems that
support adaptive question selection. #3 stands for techniques to support the authoring of content
leveraging past student data. #4 stands for techniques to support interaction between peers.

Besides learner-centered systems, future work could explore diverse support links such as
Arrow #3 and Arrow #4, as shown in Figure 11.4). And besides learner support systems, I
encourage researchers in the field of AIED to explore approaches and find solutions to better
support instructors and instructional designers. Notable prior projects in this direction include
teacher dashboard that visualizae student performance [149], and real-time teacher augmentation
to combine strengths of human and AI instruction in K12 classrooms[54], Overcode[41], a system
for visualizing and exploring thousands of programming solutions and enable instructors to offer
aggregate feedback to student solutions. In my research, we also see that many of the instructional
design and implementation efforts could largely benefit from the advances in AI and technologies,
for example, helping instructors define learning objectives, perform cognitive task analysis, design
a variety of instructional activities and assessments, etc. My work offers a starting point of helping
instructors break things into more manageable steps and provide a bit of scaffolding for them in
creating deliberate practice opportunities.

On the one hand, my work demonstrates that advances in computer science have promise
in improving education, e.g., natural language understanding techniques can be leveraged for
automatic content creation and scalable teaching. On the other hand, I seek to explore how
advances in learning technologies could contribute to computer science. For instances, research on
human intelligence could inform the design of machine intelligence; Human-AI hybrid methods
that can make an impact in practice contribute knowledge around how to better structure and
engineer training data as input to algorithms and how to leverage the complementary strengths of
human and AI to tackle real-world challenges.
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11.3 Human-AI Collaboration

A major takeaway I’ve gained from my dissertation work is that close collaboration between
humans and AI is critical in solving real-world problems as the ones I have shown in generating
deliberate practice for higher-order thinking [139], and in repurposing online tutorial videos for
software learning [138]. In the example of UpGrade, the complementary strengths of experts,
novices and machine intelligence are leveraged in the process of content creation. With instructors
alone, it is often hard to write lots of elaborated good examples and wrong answers. With AI
alone in prior work, we see that existing question generation techniques for educational purposes
only produce fact questions and are not flexible. Here, past peers offer a powerful data source
with structured examples that show common errors. With this better data input, machine can
auto selectfilter and reorganize examples. Instructors, in the end, will check information accuracy
and comprehensiveness. In the example of the workflow categorization and recommendation
technique, the partnership between humans the machine is also manifested. Peers who can be
users of the software everywhere in the world contribute demonstration videos. We collect these
videos (and their command logs) as input and use machine to identify an end user’s workflow,
expert input is elicited in this process. With this approach, existing online repositories may be
repurposed as targeted tutorials for end users.

In this process, I also observed human-AI collaboration issues and opportunities that future
work could investigate. As examples, specific to one step in question authoring, selecting
plausible distractors, instructors have different preferences in different contexts, such as “I want
to use abstract distractors here” or “I want to select more technical answers here”. Following
human judgements, AI selects answers that match the above criteria, in this case using natural
language understanding techniques. In this example, human experts make judgements about
which constructs to capture, and subsequently, AI is used to automatically capture these constructs,
demonstrating the flexibility of humans and the scalability of AI.

There is an increasing amount of work in HCI to investigate ways that humans and AI
could collaborate. As examples, Holstein developed teacher augmentation tools by combining
the strengths of human and AI instruction [54], Guo developed systems [47, 48] that combine
crowdsourcing systems and computer vision techniques to support visual information access.
Building upon these prior efforts in developing human-AI systems, I’d like to explore and define
the engaged efforts from different human and machine stakeholders to make such systems work.
For example, there could be different types of human stakeholders, including crowd and experts.
Some open questions I’d like to answer in my future work include, how to better leverage the
crowd power? What types of data can we collect and how can we collect better examples? How
to best user experts’ time? When and how to elicit expert input? How to foster human-machine
communication, e.g., having machines execute human preferences? I’d also like to continue
developing and applying these techniques in different domains to solve real-world problems.
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11.4 Instruction and Assessment in Higher Education

11.4.1 Scaffold before Open-ended Work

Open-ended assignments are frequently used in colleges and are treated as a major source of
practice and learning in many courses. However, often, the quality of students’ open-ended
work is low because they start working on large, complex, open-ended projects before they are
ready. Providing instruction and scaffold beforehand could be a win-win solution, where it saves
instructors’ subsequent efforts in offering feedback to repeated mistakes and help students produce
higher quality content that can go into their portfolios.

11.4.2 Discrepancy between Practice and Theories

Expert blindspot is one reason for the lack of movement from current practice to what learning
sciences theories would recommend. We provide evidence that instructors have so-called “expert
blind spots”, revealed through cases where their beliefs and student performance do not match
[98, 99]. Instructor beliefs are important because they will influence the design of curriculum
and learning experience of students. In both this and a past case [69], we see experts have good
reasons for their beliefs, yet data suggests otherwise and a deeper analysis explains why. More
generally, our work suggests that reasoning behind educational decisions can be probed through
well-designed, low-effort, experimental comparisons toward more nuanced and accurate reasoning
and decision making, and ultimately better design.

Another reason is perhaps that student perceptions, which could be opposite to the actual
learning outcomes, pose further challenges in promoting new pedagogies that lead to cognitive
dissonance in classrooms. An experiment in a college physics course found that active instruction
that gives students problems to solve and discuss during class results in more learning than passive
instruction, which is having students passively listen to lectures [29]. However, surprisingly,
students perceived that they learnt more from listening to lectures than doing the active problem-
solving. Future research and practice could explore new teaching evaluation models that do not
evaluate teaching solely based on student ratings.

11.4.3 Service Design in Higher Education

My work suggests that we need to establish the profession of Learning Experience (LX) designers
to develop a curriculum in higher education. College instructors are experts in their domains, but
they are not necessarily experts on pedagogy. In many other domains, the design of products to
support the workflow of professionals requires expertise from both domain experts and interaction
designers, e.g., interaction designers design products to support doctors’ decision making [151].
However, instructors are frequently required to take on both roles though their expertise does not
prepare them for both. Our work suggests that, consistent with other design practices, to improve
the quality of learning design in higher-education, establishing roles such as learning designers
or learning engineers is desirable. Given the increasing number of stakeholders involved in
delivering educational service in a higher education context, future work could further investigate
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the information flow and find design solutions to help different stakeholders collaborate and
deliver the best educational service to students.

11.5 Professional Training and Informal Learning
My dissertation work has focused on formal higher education contexts. However, many concepts
presented here would apply to professional training and informal learning contexts outside of
schools [115, 141]. As examples, many companies have grown programs to support internal
employee training and professional development. Learning is becoming increasingly ubiquitous
and easy with the advances in technologies such as web search, online tutorials, conversational
agents, mobile apps, etc. In my future work, I’d also like to explore techniques to support
professional training and informal learning at scale.

11.6 Generation vs. Evaluation, Creativity
As defined in the KLI framework [70], students gain knowledge components (KCs) through
learning events, which can be inferred from performance on assessment events. The KLI frame-
work suggests that kinds of KCs drive instructional event choices. For example, instructional
approaches that emphasize recall and spacing of practice may benefit learning of historical facts,
vocabulary; whereas instructional approaches that prompt self-explanation in students would be
more valuable for learning complex principles, such as Newton’s laws. My work attempts to
add a new layer to the characteristics of knowledge components (KCs) by comparing the relative
“Generation” and “Evaluation” efforts involved in problem-solving. For skills (KCs) that require a
non-trivial amount of “Evaluation” efforts, whereas the amount of “Generation” efforts required
is minimal, they benefit from “evaluation-type” learning events, such as multiple-choice practice
questions that target evaluation goals.

With this prior work as the foundation, there are many open questions remaining. Our work
demonstrates a low-effort, experimental comparison technique to help instructional designers find
out about the relative “Generation” and “Evaluation” efforts involved in problem-solving. It’ll
be great if future work could offer theoretical guidance on making the judgement. Other related
questions I’d like to explore include the role “Generation” and “Evaluation” efforts play in learning
and performance, respectively, and the relationship between “Generation” and “Evaluation” with
creativity.
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