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Abstract

Biomolecular systems are governed by changes in free energy, and the ability to predict binding
free energies provides both better understanding of biomolecular interactions and the ability to op-
timize them. We present the first graphical-model based approach, which we call GOBLIN (Graph-
ical mOdel for BiomoLecular INteractions), for predicting binding free energies for all-atom mod-
els of protein complexes. Our method is physically sound in that internal energies are computed
using standard molecular-mechanics force fields, and free energies are obtained by computing a
rigorous approximation to the partition function of the system. Moreover, GOBLIN explicitly mod-
els both backbone and side-chain flexibility, and, when desired, employs non-linear regression to
optimize force-field parameters. In tests on a benchmark set of more than 700 mutants, we show
that our method is fast, running in a few minutes, and accurate, achieving root mean square errors
(RMSEs) between predicted and experimental binding free energies of 2.05 kcal/mol. GOBLIN’s
RMSEs are 0.55 kcal/mol better than the well-known program ROSETTA, despite the fact that we
use the ROSETTA force field for computing internal energies. That is, our increase in accuracy is
due to our ability to accurately estimate entropic contributions to the free energy. Finally, using
our novel algorithm for optimizing force-field parameters on specific protein complexes reduced
GOBLIN’s RMSE by 0.26 kcal/mol on average.





1 Introduction
Protein-protein interactions are essential to the molecular machinery of the cell; transient or persis-
tent complexes mediate processes including regulation, signaling, transport, and catalysis. While
coarse-grained, high-throughput techniques such as yeast two-hybrid (Fields and Song, 1989) are
primarily focused on which proteins interact, finer-grained techniques based on structural analysis
address questions of how and why these interactions occur. By modeling the physical interactions
between constituent atoms, structure-based approaches provide deeper insights into, for example,
the specificity of an interaction or its sensitivity to various mutations (e.g., (Weber and Harrison,
1999; Wang and Kollman, 2001)). In addition to answering questions of interest to basic science,
such methods are also well-suited to designing variants with improved or novel properties (Ko-
rtemme and Baker, 2004; Lilien et al., 2005; Joachimiak et al., 2006).

A fundamental law of thermodynamics states that interactions are governed by binding free
energies. Free energy should not be confused with internal energy. Internal energy is a property
of a specific configuration of a system; it accounts for electrostatic and hydrophobic interactions,
among others. Free energy, on the other hand, is a property of the entire configuration space
and consists of both enthalpic and entropic contributions. Enthalpy is the expected internal energy,
averaged over a Boltzmann distribution over the entire configuration space. Entropy is the negative
expected log probability over the same distribution. We note that entropic contributions are known
to be important to biologically relevant phenomena (e.g., (Missimer et al., 2007; Chang et al.,
2008)).

There are a variety of techniques for estimating free energies computationally, and each method
makes a different trade-off between computational efficiency and fidelity to the underlying physics.
The most rigorous, and computationally demanding approaches require extensive sampling or
molecular dynamics simulations (e.g., Jarzynski (1997); Srinivasan et al. (1998); Åqvist et al.
(2002); Gohlke et al. (2003)). Statistical and coarse-grained methods are a popular alternative
(e.g., Böhm (1992); Bahar et al. (1997); Verdonk et al. (2003); Muegge (2006)), because they are
computationally much faster. Unfortunately, in addition to concerns regarding the utility of sta-
tistical potentials (e.g., Thomas and Dill (1994)), it has been argued (Leach et al., 2006; Warren
et al., 2006) that they do not adequately account for the conformational flexibility and in general
do poorly when estimating the change in entropy upon binding.

This paper introduces a method, called GOBLIN (Graphical mOdel for BiomoLecular INter-
actions), that lies between the extremes of detailed molecular dynamics and statistical potentials.
GOBLIN models the energy landscape for a protein-protein complex as a probability distribution
over an exponentially large number of configurations. This distribution is compactly encoded us-
ing an undirected probabilistic graphical model known as a Markov Random Field (MRF). Under
this model, internal energies are calculated using standard atomic-resolution force-fields, and rig-
orous binding free energy calculations are performed using Belief Propagation (Pearl, 1986). Our
method runs in a few minutes and this therefore is significantly faster than MD. At the same time,
GOBLIN is more rigorous than statistical methods.

The key contributions of GOBLIN are as follows:

• The first graphical model-based approach for modeling protein-protein interactions.
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• The first graphical model-based approach for free energy calculations under both side-chain
and backbone flexibility.

• A novel approach to optimizing force-field parameters by employing non-linear regression.

• An inferential approach to calculating free energies that properly accounts for the discretiza-
tion of the conformation space.

GOBLIN significantly extends the state of the art of all-atom graphical models of proteins,
including our own previous work (Kamisetty et al., 2007, 2008) in this area. Our earlier work fo-
cused on computing intra-molecular folding free energies for fixed backbone configurations, while
the present paper develops and demonstrates a technique for computing inter-molecular binding
free energies under backbone flexibility. Additionally, in order to account for the particularities of
the binding free energies of the system under study, we solve a non-linear optimization problem to
fit the force-field parameters to predict the partition function correctly. This optimization problem
is novel and distinct from the work by Yanover et al. (2007) who learnt force-field parameters to
maximize the accuracy of side-chain placement; in the presence of flexible backbones, doing this
efficiently is also very challenging.

We demonstrate the utility of GOBLIN by performing binding free energy calculations for more
than 700 mutants of protein-protein complexes. It is fast, typically requiring less than 5 minutes per
calculation. It is also accurate, with root mean squared errors (RMSE) of 2.05 kcal/mol relative to
experimental values. Significantly, our method outperforms the well-known program ROSETTA in
terms of accuracy by 0.55 kcal/mol. This result is especially interesting because we implemented
ROSETTA’s own force field in order to compute internal energies. That is, our improved accuracy
can be attributed to our approach to computing free energies. Finally, GOBLIN’s RMSEs can be
reduced by 0.26 kcal/mol on average, when our learning algorithm is used to optimize force-field
parameters.

2 A Markov Random Field Model for Protein Complexes
In this section, we will describe a compact encoding of the equilibrium protein ensemble.

A protein consists of some number of atoms across one more more polypeptide chains. A
configuration of the protein corresponds to the geometry of each of its constituent atoms. While a
protein is commonly represented as a single configuration (usually the crystalline form), at room
temperature, a more accurate representation of the protein would be as an ensemble of configura-
tions. We will adopt such a representation, by treating the configuration of a protein as a random
variable in some configurational space C.

In what follows, random variables are represented using upper case letters, while lower case
variables represent specific values that the random variables can assume. Additionally, we will use
bold face variables to describe sets or vectors of variables.

If we use X to refer to the random variable corresponding to the configuration of the entire set
of atoms in the protein. Boltzmann’s law describes the probability distribution over C of a physical

2



system at equilibrium; according to it, the probability of a configuration xc ∈ C, P (X = xc), with
internal energy Ec is

P (X = xc) =
1

Z
exp

(
−Ec

kBT

)
(1)

where Z =
∑

xc∈C exp(−Ec) is the partition function, kB is Boltzmann’s constant, and T is the
absolute temperature in Kelvin.

It is customary to partition the entire set of atoms into two disjoint sets: backbone and side-
chain. Backbone atoms refer to those that are common to all 20 amino acid types, while side-chain
atoms are those that differ among the different kinds of amino acids. We will use the b, s suffixes
to denote backbone and side-chain variables variables respectively: xb = {xb1 , xb2 , . . .}, is a set of
variables, one for each chain in the protein, representing the conformation of the backbone atoms,
xs = {xs1 , xs2 , . . .} where xsi represents the conformation of the side-chain atoms of residue i, and
Eb, Es represent energies of xb, xs.

Using the fact that xc = {xb, xs}, Ec = Eb + Es, we can now rewrite the joint distribution and
the partition function as:

P (X = xc) = P (Xb = xb)P (Xs = xs|Xb = xb) (2)

Z =
∑

xb

exp(− Eb

kBT
)Zb (3)

where Zb =
∑

xs
exp(−Es

kBT
) is the partition function over the side-chain conformational space with

a fixed backbone.
Note that this distribution is over the entire configurational space C, a space that is exponentially

large in the size of the protein. In what follows, we will attempt to simplify this distribution by
exploiting its properties around near-native equilibrium.

First, in order to account for the flexibility in backbones around the native structure, we sample
the space of backbones around the wild type backbone by using backrub motions – prevalent but
subtle mode of local backbone motions that are observed in native crystal structures – as described
in Davis et al. (2006). Recent work has described how incorporating such backbone flexibility
improves side chain prediction and protein design (Smith and Kortemme, 2008; Friedland et al.,
2008; Georgiev et al., 2008). We generate an ensemble of backrub backbone traces (xb) which we
assume efficiently samples the space of local backbones.

Given a specific backbone trace xb, due to the nature of the physical forces in action, pairs
of residues distally located according to trace are expected to exert very little direct influence on
one another. In statistical terms, we say that such residues are independent of each other when
conditioned on the event Xb = xb. We will exploit these conditional independencies present in
P (Xs = xs|Xb = xb) to compactly encode it as a Markov Random Field(MRF).

An MRF G is a probability distribution over a graph, and can be represented as a tuple (X, E ,Φ),
where the set of random variables in the multivariate probability distribution are the set of vertices
– Xs and Xb in this case – while edges e ∈ E join residues that are directly dependent on each other
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and Φ = {φ1, φ2, ..., φm} is a set of functions (popularly called factors) over random variables. 1

The PDB structure is assumed to be one of the micro-states of the system at equilibrium. Atoms
are allowed to deviate from their crystal structure coordinates. This is done by discretizing each
degree of freedom and grouping atoms together according to side-chain rotamer libraries (e.g.,
Lovell et al. (2000)). Additional simplifying assumptions include fixing bond lengths and bond
angles to idealized values or to the observed in the crystal structure. When discrete approximations
are used, the MRF efficiently encodes an ensemble of micro-states of size O(kn), in O(kn) space,
where k is the average number of conformations per residue, and n is the number of residues in
the protein.

In our model, the functions in G (i.e., φi) are defined in terms of a Boltzmann factor. That is,
φi(xφi) = exp

(
− E(xφi )

kBT

)
, where xφi is the set of atoms that serve as arguments to φi, andE(xφi) is

the potential energy of those atoms as defined by a molecular force field. In theory, any molecular
force field can be used. We specifically use the ROSETTA potential ERosetta that ROSETTA uses
in computing ∆∆G(Kortemme and Baker, 2002) which is composed of the following terms:

• Eljatr, Eljrep, the attractive and repulsive parts of a 6 − 12 Lennard-Jones potential used to
model van der Waals interactions.

• Esol, the Lazardus-Karplus solvation energy that approximates the solvation energy by using
an implicit solvent Lazaridis and Karplus (1999).

• Ehb, is the Hydrogen bond energy as computed by Kortemme et al. (2003)

ERosetta is a linear combination wTE = wljatrEljatr + wljrepEljrep + wsolEsol + whbEhb.
The vector w that defines the linear combination is typically learnt by fitting the energy terms to
physical observations like ∆∆G(Kortemme and Baker, 2002).

Fig. 1 illustrates the construction of G using a protein complex in our dataset: Chymotrypsin
complexed with the third domain of turkey ovomucoid(OMTKY). Fig. 1-A shows a single config-
uration configuration xc of the protein complex, with the residues in the Chymotrypsin chain and
the the OMTKY chain shown in different colors (red,blue respectively) for visual clarity. In con-
trast, the MRF G shown in Fig. 1-B models a distribution over all possible xs for a given backbone
trace. The construction of G is identical irrespective of whether the protein is a single chain, or
multiple chains as in the case of a protein complex. What does change is the nature of the physical
interactions being captured by the φ in G in each case. The potential terms in ERosetta capture both
the intra-molecular interactions (shown as solid lines), and the inter-molecular interactions(shown
as dashed lines).

Given the structure of G and the potentials Φ as described above, we can rewrite the conditional
distribution P (Xs = xs|Xb = xb) by using the Hammersley-Clifford theorem Clifford (1990) in
the following manner.

P (Xs = xs|Xb = xb) =
1

Zb

∏
φi∈Φ

φi(xφi) (4)

1Since we use G to represent a conditional probability distribution P (Xs|Xb = xb), this is also referred as a
Conditional Random Field(CRF). Since commonly used CRFs Lafferty et al. (2001) are usually chain graphs, we use
the more general term, MRF, to avoid confusion.
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(A) (B)

Figure 1: (A) Chymotrypsin complexed with the third domain of turkey ovomucoid (OMTKY). While pro-
tein structures are often shown as a single conformation, in reality they occupy ensembles of conformations;
our method models both side-chain and backbone ensembles. (B) Part of an MRF encoding the conditional
distribution over the ensembles of conformations. Blue nodes with thick lines correspond to Chymotrypsin,
red nodes with thin lines correspond to OMTKY. Solid lines refer to intra-molecular interactions, and dashed
lines refer to inter-molecular interactions. The nodes labeled b1, b2 represent the conformation of the back-
bone atoms in the two chains, while the nodes labeled si and sj corresponds to conformations of side-chain
atoms. (Since all the variables in the graph represent conformations, for visual clarity, we omit the X in
their labels.)

where once again we have the partition function Zb associated with a specific backbone:

Zb =
∑

Xs

∏
φi∈Φ

xφi (5)

Notice that the due to the choice of the Boltzmann factor for Φs, this distribution is consistent with
the Boltzmann distribution of Eq. 1. To obtain the joint distribution, one needs to simply multiply
Eq. 4 with the probability of the particularly backbone conformation xb according to Eq. 2.

Thus, the probability of a given state is simply the product of the functions, suitably normal-
ized. Evaluating the product in Eq. 4 is straightforward for any given configuration of the random
variables. Computing the partition function in Eq. 5, on the other hand, is computationally in-
tractable in the general case (Dagum and Chavez, 1993) because it involves summing over every
state. However, the machine learning community has developed a number of efficient algorithms
for performing probabilistic inference over MRFs. One of these algorithms – Belief Propagation –
and its relationship to free energy calculations is discussed in section Sec. 3.

3 Probabilistic Inference and Free Energy Calculations
Recall that in solution a protein exists in an ensemble of different configurations. The free energy
of a protein is a measure on the ensemble and is defined as: G = H−TS where H is the enthalpy,
or the expected internal energy, S is the entropy of the ensemble and T is the temperature of the
system.

The rates of biochemical reactions are determined by changes in free energies. In particular,
∆Gbind , the binding free energy, is the change in free energy when two proteins, A and B, bind:
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GAB− (GA+GB). It determines the rate of association of A and B. Often, the quantity of interest
in tasks such as protein design is ∆∆G, the change in the ∆G value upon mutation from wild-type:
∆Gmutant −∆Gwild−type . For example, a beneficial mutation results in a better ∆G for the variant
than for the wild-type, and thus a negative ∆∆G. Computing G therefore is extremely useful in
determining the properties of the protein.

The free energy of a physical system is related to the Boltzmann distribution by way of the
partition function: G is simply−kBT logZ. The MRF model from the previous section provides a
compact representation of the Boltzmann distribution that enables us to compute a quick and good
approximation to the binding free energy by solving a statistical inference problem to compute Z.

Probabilistic inference in an MRF involves computing marginal distributions over the random
variables in the graph. In general, the problem is intractable (Dagum and Chavez, 1993). How-
ever, a number of rigorous approximation algorithms have been devised for performing inference
in MRFs. Significantly, it has been shown that mathematically, these algorithms are equivalent to
performing free-energy approximations (Yedidia et al., 2005). This is not surprising, because infer-
ence and free energy calculations both require estimating a partition function. What is surprising,
however, is that some existing inference algorithms are mathematically equivalent to specific free-
energy approximations introduced by statistical physicists (e.g., Bethe (1935); Kikuchi (1951);
Morita (1991); Morita et al. (1994)). For example, it is now known that Pearl’s Belief Propagation
(BP) algorithm (Pearl, 1986) is equivalent to the Bethe approximation (Bethe, 1935) of the free
energy. We use BP in this paper.

The term ‘belief’ in both BP refers to the marginal distributions over the random variables in
the MRF. Briefly, each node in the graph keeps track of its own marginal probability distribution
(i.e., belief). Belief Propagation algorithms start with random initial beliefs, and then use message
passing between nodes to converge on a final set of beliefs. Informally, each node updates its own
beliefs based on the beliefs of its neighbors in the graph, and the value of the potential function, Φ.
When the algorithm converges, the final beliefs can be used to obtain the partition function (or an
approximation thereof), and hence a free energy.

If the MRF happens to form a tree (i.e., a graph with no cycles), Belief Propagation is exact
and takes O(|E|) time, where |E| is the number of edges in the graph. The MRFs considered in
this proposal, however, are not trees and have O(|V|) edges. In this case, we use a closely related
algorithm known as Loopy Belief Propagation. Loopy BP is not guaranteed to converge, but has
always done so in our experiments.

Using Loopy Belief Propagation on the MRF that encodes the conditional distribution, we can
obtain an estimate of the partition function of the conditional distribution Zb for each backbone
configuration xb as we previously did for folding free energies (Kamisetty et al., 2008, 2007); Z,
the partition function over xc can then be computed using Eq. 3.

3.1 Discretization
We now briefly discuss a subtle, yet important issue that we have glossed over so far in our presen-
tation: the effects of discretizing the conformational space C.

The assumption of a discrete rotamer library is fairly well-founded, cf. Canutescu et al. (2003);
Ponder and Richards (1987); McGregor et al. (1987). While a common use of such rotamer li-
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braries is in performing side-chain placement, i.e. finding the single most energetically favorable
side-chain conformation xs (Yanover and Weiss, 2002; Xu, 2005; Kingsford et al., 2005; Canutescu
et al., 2003), these rotamer libraries have also been used in computing free energies and confor-
mational entropies of protein structures (Koehl and Delarue, 1994; Kamisetty et al., 2007, 2008;
Lilien et al., 2005).

This approach of using a set of discrete rotameric states to compute the entropy faces a subtle
problem. To understand this, let us consider an imaginary protein with exactly one residue whose
side-chain atoms are unconstrained in configurational space, i.e. the energy Es of the side-chain
atoms is the same, no matter what configuration they are in.

This protein has a physically measurable amount of entropy Sphysical. Now suppose we dis-
cretized the configurational space into n points, each representing an equal fraction of the space.
It is clear that in this scenario, the probability of each rotamer will be equal to 1/n(and indeed,
this is what Belief Propagation would predict). The free energy in our discrete model, H − TS
equals < Es > −T

∑n
i=1−

1
n

log( 1
n
) = Es−T log(n). In other words, as the granularity of the dis-

cretization increases, the discrete entropy increases and as n −→ ∞, S −→ ∞ and is completely
unconnected to Sphysical.

This problem arises in many scenarios, most notably for our purposes, in information-theoretic
treatments of statistical physics (Jaynes, 1963, 1968). Fortunately, a solution to this problem is
available, which to the best of our knowledge is due to E.T. Jaynes (Jaynes, 1963). By using a
measure (i.e. a possibly unnormalized probability distribution) m over the configurational space
and replacing the discrete entropy by the relative entropy S = −

∑
Xs
P (Xs) log P (Xs)

m(s) , we now
obtain a quantity that behaves correctly in the limit. To use this for our purposes, we point out that
the rotamer library we use (Canutescu et al., 2003) provides such a measure mdun for each rotamer
which we utilize.

Our earlier treatment of inference can be modified to use the relative entropy instead of the
discrete entropy, by observing that

S = −
∑
Xs∈C

(P (Xs) logP (Xs)− P (Xs) logm(Xs))

and therefore, G =∑
Xs

P (Xs)Es +
∑

Xs

(P (Xs) logP (Xs)− P (Xs) logP (m(Xs)))

=
∑

Xs

P (Xs)(Es − logm(Xs))−
∑

Xs

P (Xs) logP (Xs)

In other words, the move from the discrete entropy to the discrete relative entropy can be made
by adding a Erot = − logm(Xs) term to the energy function. Furthermore, due to the properties
of the measure mdun we actually use, any (mdun)wrot is also a valid measure; we can therefore use
any linear combination wrotErot in the energy function leading to Egoblin , the “pseudo” energy
function being ERosetta + wrotErot.

A similar problem arises when summing over multiple backbone traces according to Eq. 3: by
increasing the number of backbone traces, the value of Z monotonically increases. Again, this can
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be easily fixed by assigning a fraction of volume of the conformational space to each trace. For
our experiments we assume that the conformational space is uniformly sampled by the traces, i.e.
each trace represents an equal volume of the conformational space.

4 Learning force fields
Molecular mechanics force-fields are classical approximations of what is fundamentally a quantum
mechanical phenomenon. The basic elements for any force field are a) a defined set of atom
types, b) a function defining the internal energy of the system, and c) a set of parameters. One of
the key challenges when working with force fields is that the due to various approximations, the
parameters that work well in one application domain might not work well in another. In practice,
force-field parameters are estimated by computing a best fit to large heterogeneous datasets (e.g.,
Kortemme and Baker (2002)), which may not reflect important interactions that are relevant to a
particular protein-protein complex. Therefore, it is not unusual to optimize or develop force-fields
for specific complexes (Fong et al., 2004; Lu et al., 2001).

A force-field parameter optimization protocol generally requires a set of training data. The
parameters of the force field are adjusted to (approximately) minimize a given objective function.
Normally, that objective function is simply the square errors in estimates of internal energies in
training data. Of course, as shown earlier, GOBLIN considers both the internal energy and the en-
tropy of the system when predicting free energies. This, in turn, argues for the use of a different
objective function — the square errors of the free energy estimates in the training data. This is a
rather different objective; it replaces a simple linear regression problem with a much more compli-
cated non-linear regression problem. However, as we shall show, it is possible to efficiently, albeit
approximately solve this problem. Though our (more accurate) modeling by explicitly accounting
for entropic effects introduces a problem that is harder to solve exactly, our results indicate that the
loss in accuracy from the approximations in solving this problem are more than outweighed by the
gain in accuracy obtained from capturing these entropic differences.

Given a training set that consists of experimentally measured changes in ∆∆G, of N mutants
of some protein complex, our strategy is optimize the vector of weights w that define the linear
combination Egoblin to minimize the mean square error (MSE) in predicting ∆∆G.

Let ∆Gwt
obs,∆G

i
obs be the experimentally measured binding free energy for the wild-type (i.e.,

non-mutated) and the ith mutant protein complex respectively. Let ∆Gwt,∆Gi be their predictions
obtained using inference on the corresponding wildtype and mutated complexes obtained using
Belief Propagation as described in Sec. 3. The quantity ∆∆Gi

obs, the experimentally observed
change in the change in binding free energy upon mutation equals ∆Gi

obs−∆Gwt
obs and is predicted

by ∆Gi −∆Gwt.
The MSE across the dataset then equals 1

N

∑N
i=1(∆Gi −∆Gwt −∆∆Gi

obs)
2

To minimize MSE subject to w � 0 by gradient descent, we need to compute the gradient w.r.t
w, ∂mse

∂w =

1

N

N∑
i=1

2
(
∆Gi −∆Gwt −∆∆Gi

obs

)(∂∆Gi

∂w
− ∂∆Gwt

∂w

)
(6)

In the case of rigid backbones, we have G = −kBT logZb. The partial derivative ∂G
∂w is there-
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fore
∂G

∂w
= −kBT

∂ logZb

∂w
= −kBT

1

Zb

∂Zb

∂w
= 〈E〉s (7)

where 〈E〉s is the expected value of the vector of the individual force-fields over all xs with the
current value of w.

By using the fact that the difference in derivatives is just the derivative of the differences, we
get that Eq. 6 for the model without backbone flexibility is

∂mse

∂w
=

2

N

N∑
i=1

(∆Gi −∆Gwt −∆∆Gi
obs)(∆〈Ei〉 −∆〈Ewt〉) (8)

Now, if we had backbone flexibility, we would have G = −kBT logZ. Substituting for Z
using Eq. 3, the partial derivative would therefore be

∂G

∂w
=

1

Z

∑
xb

e−Eb/(kBT )Zb〈E〉s (9)

which we can substitute into Eq. 6 to get the derivative for the model with backbone flexibility. In
other words, given the enthalpies and free energies of each backbone trace, we can compute the
free energy of the entire distribution and its derivatives.

5 Results
We studied the efficacy of our approach on a database of over 700 single-point mutants from eight
large and well studied complexes. For each of these variants, the database contains the ∆∆Gobs ,
the experimental change in binding free energy upon mutation. The details of the datasets, along
with the PDB ids of the wildtype complexes, are shown in Table 1. Of these, the three largest
datasets (wildtype PDB ids: 1sgr, 1cho, 1ppf) are from the Kazal family of protein inhibitors (Lu
et al., 2001) while the rest of the interactions are part of an Alanine-scanning database previously
used in Kortemme and Baker (2002) and Kortemme et al. (2003). We note that the amount of
thermodynamic data available for protein-protein interactions is limited, and the database we con-
sidered is among the largest of its kind.

We performed in silico mutagenesis with a fixed backbone on the wildtype complex to ob-
tain a plausible structure of each mutant. Hydrogen atoms were then added using the REDUCE
software program (Word et al., 1999). In order to compute ∆∆G, we also need the structures of
the individual partners. As is common, we assumed that the native backbone in the complex is a
good approximation of both the complexed and apo backbones of the engineered proteins. Thus,
at the end of this process, we obtained plausible structures for the complexed and apo partners.
The results on fixed backbones were obtained using these structures. We describe how backbone
flexibility was added later in this section.

We determined atom types and computed energies using our implementation of the ROSETTA

force-field as specified in Kuhlman et al. (2003); Kortemme et al. (2003); Kortemme and Baker
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Wt PDB id Partner A Partner B # mutants in A, B
1sgr OMTKY SGP B 150,0
1cho OMTKY Chymotrypsin 170,0
1ppf OMTKY Human LE 170, 0
3hfm (AS) HYHEL HEL 12,13
1gc1 (AS) CD4 GP120 49,0
1a22 (AS) HGH HGHBP 34,29
1dan (AS) BCF VII-A TF 20,23
1bxi (AS) E9 Dnase IM 9 30,0

Table 1: Summary of datasets of ∆∆G values for mutant protein-protein complexes. Datasets
annotated “AS” are Alanine-scanning experiments

(2002). We used the soft-rep atomic radii used in ROSETTA and the soft-rep force-field
setting since previous studies (Yanover et al., 2007) have indicated that it is better suited for com-
putations with discrete conformations.

Since there are multiple contributions in this paper, we will describe the benefits of each of
these by showing the incremental improvement in the accuracy of predicting ∆∆G due to each
contribution. To clearly disambiguate between these models, we will refer to the side-chain free
energy computation using generic weights as GOBLIN-global, the side-chain free energy optimized
for a specific dataset as GOBLIN-spec and the free energy incorporating both backbone and side-
chain flexibility with parameters optimized for a specific dataset as GOBLIN-bbflex-spec. To quan-
tify the contribution of the improved force-field, we will also compare our results with our previ-
ously published approach (Kamisetty et al., 2007, 2008) which used the SCWRL potential. We
will refer to those results as GOBLIN-SCWRL.

Side-chain Flexibility: We first quantify the contributions of using a better force-field and
incorporating entropic contributions, by comparing the RMSE in ∆∆G predictions over the entire
dataset using GOBLIN-global, GOBLIN-SCWRL, and two different force-field settings of ROSETTA:
hard-rep (the default) and soft-rep. GOBLIN-global uses the default set of soft-rep
weights along with a weight of 1 for Erot . Note that GOBLIN-global uses the soft-rep parame-
ters because, unlike ROSETTA, it models side-chain flexibility while computing ∆∆G.

Fig. 2-A illustrates a number of interesting findings from our study. First, GOBLIN-global out-
performs ROSETTA-hard-rep by approximately 0.55 kcal/mol (second bar vs. fourth bar), and
ROSETTA-soft-rep by approximately 1.35 kcal/mol (first bar vs. fourth bar). Second, in or-
der to evaluate the amount by which our explicit entropic term reduces RMSE, we also computed
RMSE when the entropic term is ignored. The enthalpy-only RMSE is comparable in accuracy to
ROSETTA-hard-rep (second bar vs. third bar), indicating that the entropic factor reduces RMSE
by roughly 0.7 kcal/mol. Third, the RMSE of the enthalpy-only term is roughly 0.65 kcal/mol
smaller than ROSETTA-soft-rep (first bar vs. third bar). This is noteworthy because, as previ-
ously mentioned, both use the same force field parameters. That is, there is benefit to reporting an
expected internal energy (i.e., the enthalpy) as opposed to the internal energy of a single structure.
Finally, Fig. 2-A also shows the obvious benefit of moving from the simple force-field (GOBLIN-
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Figure 2: (A) Comparison of predictions by GOBLIN-unopt, ROSETTA, GOBLIN-unopt’s enthalpy
term, and our previously published work (Kamisetty et al., 2007) using the SCWRL force-field
instead of the ROSETTA force-field. GOBLIN performs significantly better (0.55 kcal/mol lower
RMSE) than ROSETTA. Accounting for the entropic component of the free energy significantly
improves GOBLIN-unopt’s performance (0.70 kcal/mol lower RMSE) over the enthalpy-only term.
(B) Breakdown of the error across the individual datasets for the two best methods in (A):
ROSETTA’s hard-rep and GOBLIN-global. The datasets are ordered according to their size,
with the largest dataset appearing to the left.
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SCWRL) used in Kamisetty et al. (2007, 2008) to a more expressive force-field used in the present
study (fourth bar vs. fifth bar).

Fig. 2-B shows the breakdown of the two top methods, GOBLIN-global and ROSETTA-hard-rep,
across the eight datasets listed in Table 1. The datasets are listed in decreasing order of their sizes.
GOBLIN-global’s error is much lower than ROSETTA on six out of the eight datasets; the largest
improvement occurs in HLE (1.04 kcal/mol). On the two smallest datasets (1bxi and 3hfm), com-
prising less than 8% of our entire data, GOBLIN-global performs worse than ROSETTA.

On studying the performance of GOBLIN-global as a function of the kind of mutation, we
observed that in many cases, mutations to Proline had a large error. This is to be expected since
Proline has an atypical backbone and a mutation to it can cause significant structural changes. If
we omit all mutations to Proline from the dataset, our global RMSEs decrease from 2.05 kcal/mol
down to 1.92 kcal/mol. The most significant decrease in RMSE was observed in SGPB, where the
error decreases from approximately 1.8 kcal/mol down to nearly 1.5 kcal/mol.

While the predictions to ∆∆G in mutations to Proline had large errors, they were not the
only kinds of mutations to have such errors. For example, in the Chymotrypsin dataset, GOBLIN-
global had the largest error on a mutation to Tryptophan (a bulky amino acid). To measure the
effect of such outliers on the relative ordering of the various methods, we computed the RMSE
for GOBLIN-global and ROSETTA-hard-rep by removing the top outliers for their respective
predictions. We found that the RMSE of GOBLIN-global ignoring the top k% of the outliers was
better by at least 0.3 kcal/mol for all values of k up to 75%. Thus, while GOBLIN-global performed
poorly on some kinds of mutations, it was still consistently better than ROSETTA.

Learning: We believe that these results using GOBLIN-global itself represent a significant
improvement over the state-of-the-art method of computing ∆∆G. However, while a general-
purpose set of force-field parameters is often useful when dealing with a protein-protein complex
that hasn’t been well studied, studies have shown the utility of considering the use of complex-
specific force-field parameters (Lu et al., 2001; Fong et al., 2004). We optimize the force-field
parameters for the same reasons, though it should be pointed out that our optimization method
is fundamentally different than those used by other researchers owing to the fact that we have an
explicit entropic term in our free energy.

To perform this optimization, we first compared the performance of a simple gradient descent
algorithm and the constrained L-BGFS-B, a quasi-Newton gradient algorithm (Liu and Nocedal,
1989). Since the performance of L-BFGS-B was far superior both in running time and accuracy
(results not shown), we simply used this approach for the rest of our experiments.

To test the efficacy of our learning algorithm, we learned a set of weights for the three largest
datasets – the OMTKY datasets – by constructing five random partitions for each of the datasets
into two equal sized train/test splits. For each training set, we learned a set of weights over the
five force-field terms mentioned earlier, so as to minimize the square error in ∆∆G predictions
as described in Sec. 4. We then computed the RMSE in the test set. Fig. 3 shows the error
of GOBLIN-global (blue bar) and GOBLIN-spec (green bar). On all three datasets, incorporating
learning decreases the average RMSE of predictions by 0.08-0.28 kcal/mol.

Backbone Flexibility: Finally, we incorporate backbone flexibility into our predictions. We
used the approach described in Smith and Kortemme (2008) to sample a set of four plausible
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backbones for each wild-type and mutant structure. Together with the backbone of the crystal
structure, this gives us a set of five backbones for each protein. We then repeated our procedure of
learning weights to improve accuracy, this time using an ensemble of backbones. On two of the
three datasets, incorporating backbone flexibility did not further improve the predictions. However,
on the OMTKY-Chymotrypsin complex, incorporating backbone flexibility decreased RMSE by
0.22 kcal/mol to about 2.1 kcal/mol (Fig. 3, red bar). Fig. 4 shows the error of GOBLIN-bbflex-
spec on the OMTKY-Chymotrypsin complex as a function of the mutations.

On closer examination, we found that in the OMTKY datasets, the errors were largely similar
with and without backbone flexibility for most kinds of mutations which is consistent with studies
showing that the structure of the OMTKY complexes is largely stable to mutations (Lu et al., 2001).
However, we expected that in cases of disruptive mutations, incorporating backbone flexibility
would decrease the error. In the OMTKY-Chymotrypsin dataset, this did happen: the mutation
with the worst error, Lysine to Tryptophan which is fairly disruptive owing to the bulky structure
of Tryptophan, had lower error once backbone flexibility was incorporated. In SGPB and HLE on
the other hand, the worst error was due to a mutation from Arginine to Proline. For this mutation,
we found that the energies of the backrub structures were at least 7 kcal/mol worse than the native,
resulting in nearly negligible contribution to the partition function (since they are exponentially
down-weighted).

To see if this could be caused due to the number of backrub structures we used, we redid
our GOBLIN-bbflex-spec experiments in SGPB and HLE with 10 backbone traces (9 backrub + 1
crystal). We found that despite doubling the number of backbone traces, our results did not change
measurably (less than a 0.05 kcal/mol change in RMSE). To see if alternate sources of backbone
traces would affect results, we generated and used backbone traces from FRODA (Wells et al.,
2005) instead of backrub; again, there was no measurable change in RMSE.

Based on these experiments, we concluded that the lack of improvement in SGPB and HLE
was probably due to the poor ability of current methods that generate backbone traces to handle
(disruptive) mutations to Proline.

6 Discussion and Conclusion
Fast and accurate free energy calculations are essential to a number of significant tasks within
Computational Structural Biology, including structure-based protein and drug design. Our prob-
abilistic graphical model-based approach to all-atom free energy calculations strikes a balance
between the rigor of physical methods (i.e., molecular dynamics based free energy calculations)
and the speed of statistical methods. Our method is physically rigorous in that (i) it uses all-atom
force fields when computing internal energies, and (ii) it computes a rigorous approximation of the
true partition function of the system. At the same time, our method is competitive with statistical
methods, in terms of speed.

GOBLIN represents the first graphical model for protein-protein complexes, as well as the
first graphical model simultaneously modeling backbone and side-chain flexibility. Furthermore,
it demonstrates how to properly account for discretization of the conformation space in calculating
free energies. Finally, it incorporates a novel algorithm for optimizing force fields by minimizing
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differences in free energies. We have shown that GOBLIN is both efficient and accurate on the
task of computing the free energy of protein-protein complexes. In particular, it outperforms the
gold-standard ROSETTA on a benchmark set of more than 700 mutants by at least 0.55 kcal/mol.

Our results indicate that an explicit incorporation of backbone and side-chain flexibility is
feasible. Interestingly, for most complexes in our benchmark set, backbone flexibility did not
substantially improve our results relative to the fixed-backbone case. There are two likely reasons
for this. First, our chosen benchmark set contains relatively rigid complexes. That is, the backbones
are largely stable in vivo, as previously suggested by Lu et al. (2001). We hope to study the
effects of backbone flexibility in other complexes, most notably those where high throughput data
are available (Pal et al., 2006). Second, our backrub-generated backbones generally have high
internal energies and therefore do not contribute substantially to the total free energy. To address
this problem, we are presently investigating the use of energy-minimized backbones, as well as
alternative methods for generating backbones.

We have also shown that it is possible to improve the accuracy of free energy predictions by
approximately 0.26 kcal/mol on average by learning complex-specific parameters. This is to be
expected, as proteins all have specific properties of stability, reactivity, and so forth that are hard
to capture with a general set of parameters (Carter Jr et al., 2001). The learning process also
supports an iterative approach to protein design, in which an initial graphical model is used to
design variants, which are then are then used to improve the model in order to design further
improved variants. Such iterative approaches to protein design have been considered before (e.g.,
Liao et al. (2007)), although not using probabilistic graphical models.

In addition to providing a compact encoding of probability distributions supporting powerful
and efficient algorithms for inference, another advantage of graphical models is their extendabil-
ity. In this paper, for example, we have shown that modeling protein-protein complexes can be
achieved in a straight-forward fashion by, in effect, composing two single-protein models of the
type we previously introduced (Kamisetty et al., 2007, 2008). Notice that our model does not dis-
tinguish between intra- and inter-molecular interactions. That is, we use a single set of force-field
parameters. Statistical approaches, on the other hand, generally learn separate parameters for intra-
and inter molecular interactions. We have also shown that it is also possible to extend the model to
account for limited backbone flexibility. Others have shown that graphical models are well suited
to such tasks as constructing protein backbone traces (DiMaio et al., 2006) and all-atom models
(DiMaio et al., 2007) from electron density maps, modeling residue couplings (Thomas et al.,
2008), and protein sequence design (Fromer and Yanover, 2008; Thomas et al., 2009).

Acknowledgments
This work is supported in part by US DOE Career Award (DE-FG02-05ER25696) (CJL), a grant
from Microsoft Research (CJL), US NSF grant IIS-0444544 (CBK), and an Alfred P. Sloan Foun-
dation Fellowship (CBK). We thank Menachem Fromer for raising the significant question of the
effects of discretization on entropic contributions at ISMB 2008 and Prof. Tanja Kortemme for her
kind assistance with some implementation details of Kortemme et al. (2003).

16



References
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