Traffic Analysis for Network Security
using Learning Theory and Streaming Algorithms

Shobha Venkataraman

CMU-CS-08-157
September 2008

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Avrim Blum (Co-Chair)
Dawn Song (Co-Chair)
Bruce Maggs
Phillip B. Gibbons, Intel Research — Pittsburgh
Subhabrata Sen, AT&T Labs — Research
Oliver Spatscheck, AT&T Labs — Research

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright(© 2008 Shobha Venkataraman

This research was supported in part by NSF grants CCR-0B05¢8F-ITR CCR-0122581 and CNS-0433540, and by
Cylab at Carnegie Mellon under grant DAAD19-02-1-0381 fritie Army Research Office. The views and conclusions
contained in this document are those of the author and shmilte interpreted as representing the official policies or
endorsements, either expressed or implied, of NSF, AROY&@ge Mellon, the U.S. government, or any other entity.

Keywords: network security, machine learning, learning theory,ficadnalysis, streaming
algorithms

Abstract

Arecurring problem in network traffic analysis is to autoiwaity distinguish legit-
imate traffic from malicious or spurious traffic. This prailarises in several guises
in network security (e.g., spam mitigation, worm detecfj@md is, at core, a machine
learning or data mining problem. However, traffic analysisetwork security has
many fundamental challenges that are not present in typieghine learning or data
mining problems, and a blackbox application of classicgbathms may not address
these challenges adequately. For example, many standatdmadearning algorithms
may not scale to the volume and diversity of network trafficperform well in the
presence of a malicious adversary who aims to evade detedtids, therefore, nec-
essary to design algorithms that meet these challengegrawide formal guarantees
on how well they have been met by the algorithms and the etdemhich they can be
met by any algorithm.

In this thesis, we consider four problems in network seguwvith these challenges,
and we use tools from computational learning theory andstieg algorithm design
to address them. In each of these four problems, the differbrtween the malicious
traffic and normal traffic is characterized by a specific stme of the traffic distri-
butions: temporal structure, structure in content, stmgctn communication patterns
of hosts and network structure given by host IP addressesprégent both efficient
algorithms as well as fundamental lower bounds for thesklgnos:

¢ In the stepping-stones problem, we use the temporal steucfuthe traffic — in
particular, the inter-packet timing delays — to identifyirpaof streams that are
likely to be stepping-stones. We provide algorithms witlorsty upper bounds
on the number of packets they need to observe, to detecksittdath given false
positive and false negative rates. We also present lowendsoghowing how
an adversary, with sufficient chaff, could evade any detaathiechanism that is
based only on the timing delays between packets.

e When generating signatures for exploits with patternastion techniques, the
content structure of network traffic is used to identify petskthat are likely to
be worms. A sequence of prior work has alternately develpadtern-extraction
algorithms for signature-generation, and attacks on thatern-extraction algo-
rithms. We present lower bounds showing hamy pattern-extraction algorithm
could be misled, in the presence of an adversary with sufiti@entrol over the
malicious data.

e We present efficient streaming algorithms to idensiiperspreaderswhich are
sources that contact many distinct destinations in a sime period. The com-
munication structure of most hosts on Internet makes finduperspreaders of
interest to security applications, as they are likely iathics of worms, scanning,
or other malicious activity. Our experimental results oal reetwork traces show
that our algorithms are substantially more efficient thaliexaapproaches.

e Finally, we study the problem of tracking regions of the IRli@3$s space that
send malicious traffic. In the first part of our work, we focusspam traffic, and
explore whether the history and structure of IP addressalsl @ used to distin-
guish spammers from senders of legitimate mail. In the skpant, we design
online algorithms that, with low space requirements, camadyically track IP
prefixes that originate the malicious traffic, and providearroptimal prediction
of IP addresses that send malicious traffic and normal traier experimental
results demonstrate that our algorithm finds prefixes tleadaters of magnitude
more accurate than fixed commonly-used IP prefixes.

Acknowledgements

My first thanks go to my advisors, Avrim Blum and Dawn Song. |extremely fortunate to have
had two such wise, patient, and helpful advisors, who gavges®rously of their time towards
the risk of exploring this very new area of common intereste €fforts that they invested and the
perspectives that they provided were instrumental in stgapiy research sense in this bridge area,
and looking back, it was a very lucky morning in September2@®en | decided to explore this
area!

| thank the rest of my thesis committee — Phillip Gibbons, d&iMaggs, Subhabrata Sen and
Oliver Spatscheck — for agreeing to see this thesis throamghfor the valuable advice that they've
shared with me over the years — on research, on talks, ongapdron job applications. They
have also been among my closest collaborators, and workitigtliem has helped me become a
better writer, presenter and researcher. | am deeply giateDaphne Koller and Yoav Shoham,
my undergraduate thesis advisors, for patiently gettingstagied in computer science research,
and | owe a special thanks to Carlos Guestrin for being an mgazentor during my senior year
at Stanford.

I have had a great many more wonderful collaborators ovelasiesix years, the consequence
of working in an area at the intersection of many others. hithhem all — Juan Caballero, Yan
Chen, Yan Gao, Patrick Haffner, Min Gyung Kang, Pongsin Bokam, Robert Schweller, Jen-
nifer Yates, Yao Zhao — for all that | have learnt from them.avé also been very lucky to have
had friends who have immensely improved my research aneémiesn — David Brumley, Hubert
Chan, Elena Nabieva, Vyas Sekar, and Runting Shi have peaaf-many papers, fixed many talks,
combed through many proofs, and served as research souraings over the last six years.

The staff in CSD and ECE have been instrumental in making feystnooth over the years. |
am especially grateful to Sharon Burks and Deb Cavlovichy Wwlve pulled all kinds of strings
for me and patiently resolved one complicated situatioerathother. And of course, some of my
biggest thanks go to all my friends — amidst all the ups andrdovwihey have made these years
wonderful and helped me keep my perspective on life.

Finally, I thank my parents and my brother for their constampport and encouragement
through all these years. This thesis would not have beernlpesgthout their love and prayers.

Vi

Contents

1 Introduction

1.1 Stepping-Stone Detection e

1.2 Limits of Signature-Generation using Pattern-Exteacechniques

1.3 Streaming Algorithms for Fast Detection of Superspeesad

1.4 Tracking Malicious Regions ofthelP Space
1.4.1 Exploiting IP-based Network Structure for Spam Mitign
1.4.2 Dynamically Tracking IP Prefixes Originating MaliagTraffic

1.5 Structure ofthisThesis e

2 Detection of Stepping-Stone Attacks

2.1 Introduction e

2.2 Related Work e

2.3 Problem Definition

2.4 Main Results: Detection Algorithms and Confidence Beund
241 ASimple PoissonModel 00
2.4.2 Generalizing the PoissonModel

2.5 Chalff: Detection and Hardness Result
2.5.1 Algorithm for Detection with Chaff
2.5.2 Hardness Result for Detection with Chaff

2.6 ConClUuSION e

3 Limits of Signature-Generation with Learning-based Algaithms

Vii

12
13
15

19
21
21
23
27

29

3.1 Introduction e
3.2 Definitionsand Overview
3.21 Definitions
3.2.2 Overview of Learning Framework
3.3 Reflecting Set e e
3.3.1 Motivation & Definitions Lo
3.3.2 Finding ReflectingSets
3.4 General Adversarial Model e
3.41 LearningModel.
342 Results e
3.4.3 Practical Implications. 0 ..
3.5 Exploiting GapsinTraffic,
3.5.1 DefiningtheGap e
3.5.2 LearningModel
3.53 Results
3.5.4 Practical Implications,
3.6 RelatedWork e
3.7 Conclusion
Streaming Algorithms for Fast Detection of Superspreades
4.1 Introduction e
4.2 Problem Definition and Previous Approaches
4.2.1 Problem Definition
4.2.2 Related Work and Previous Approaches
4.3 Algorithms for Finding Superspreaders.o v oo ..
4.3.1 One-level Filtering Algorithm
4.3.2 Two-Level Filtering Algorithm
44 EXIENSIONS e
4.4.1 Superspreaders with Deletion

4.4.2 Superspreaders over SlidingWindows

viii

4.4.3 Distributed Superspreaders e 71
45 Experimental Results e 72
45.1 Experimental evaluation of precision 72
45.2 Memoryusageonlongtraces 74
4.5.3 Comparison with an Alternate Approach 78

4.6 Conclusion 79
Exploiting IP-based Network Structure for Spam Mitigation 81
5.1 Introduction e 81
5.2 Analysis of IP-Address Characteristics 83
521 Data. . ..o v i 83
5.2.2 Analysisof IPAddresses 84
5.3 Analysis of Cluster Characteristics uu. ... 92
5.3.1 ClusterGranularity e 93
5.3.2 Persistence 59
5.4 Spam Mitigation under Mail ServerOverload 97
5.4.1 ServerOverload Problem 98
5.4.2 Designand Algorithms 99
543 Evaluation 210
55 Related Work 107
5.6 Conclusion 108
Tracking IP Prefixes Originating Malicious Traffic Dynamic ally 109
6.1 Introduction 109
6.2 Definitions and Preliminaries o, 110
6.3 Algorithmsand Analysis e 112
6.3.1 OverviewoffracklPTree. 112
6.3.2 Subproblems dfracklPTree. 113
6.3.3 The Complet@racklPTreeAlgorithm 116
6.3.4 Analysis e 117

6.3.5 Modifying TracklPTree for Experimental Issues 119

iX

6.4 Evaluation e e e 120

6.4.1 DataandPreliminaries e 120
6.4.2 ABaseline Algorithm, 121
6.4.3 Comparisons with Baseline Algorithm 121
6.4.4 EffectofChanging» 122
6.4.5 Cluster Distributionover Time co... 125
6.5 RelatedWork e 125
6.6 Conclusion 126
7 Conclusion 127
Bibliography 129

Chapter 1

Introduction

Network traffic analysis is an important part of computerusitg, yet it grows more challenging

each day: network traffic grows in volume and complexity,thas the Internet grow in number
and diversity, and attacks grow in variety and sophisticatildentifying patterns of normal and
anomalous traffic automatically, and using these patternsanitor unseen traffic is, therefore, of
prime importance.

A major line of research has focused on using machine legraid data mining algorithms
to automatically distinguish normal traffic from attackglamomalies. Machine learning and data
mining algorithms are attractive in this area as they canmaatically extract the distinctive fea-
tures of anomalies and attacks out of vast quantities of daththerefore, they have the potential
to produce highly accurate detection over the data witle littanual effort. A second advantage
these algorithms offer is speed of detection and mitigatiomhen they can quickly detect dras-
tic changes in traffic patterns and allow the associatefidriaf be filtered out, they can enable
attacks and anomalies to be mitigated much faster, witk hitiman intervention. Many systems
have demonstrated the feasibility of using machine legrtéthniques in a variety of security
applications, e.g., anomaly and intrusion detection [¥4,110, 75, 101, 54, 53, 76], traffic pro-
filing [87, 126, 130], worm detection [70, 103, 71, 91, 77]aspfiltering [102, 86, 8, 83]. Most
of this research has, however, focused on applying mackemaihg and data mining algorithms
as blackboxes to network traffic analysis. Because of thamynthallenges fundamental to net-
work security problems may go unresolved, as they do notraactine typical machine learning
problems.

In security problems, one important challenge comes fraptiesence of an intelligent adver-
sary who aims to evade detection. Unlike the typical macléaening problem, an adversary is
in control of one type of data (malicious data), and can oftemipulate features of the malicious
data over time to evade detection. The algorithm might aéstolred to mislearn —i.e., to learn a
function that labels normal traffic incorrectly — and causergny false positives that it becomes
completely unusable. The history of spam-filtering [83, 3% compelling example of how this

kind of adversarial reaction could affect performance -hea® spam filters get more and more so-
phisticated, spammers get more and more adept at desigingtspevade the existing spam-filters.
Thus, an algorithm’s performance on the evaluated data wtayatessarily reflect its future perfor-
mance: the algorithms may learn irrelevant artefacts fefaats maliciously added just to mislead
it) as the distinctive features of malicious data, and so n@ydetect future attacks. As a result, it
is important to provide algorithms with mathematical gudeas on their performance in adversar-
ial environments. The challenge is to design detectionrélgos that are resilient to adversaries,
quantifying the resilience as a function of the adversapgwer, and to develop well-specificed
guarantees on detection that go beyond the standard taanih test error analysis.

Further, for sufficiently powerful adversaries, there amedamental limits to the kind of detec-
tion that might be possible using machine learning apprescWith enough control over the data,
he might not need to know the specific parameters, or the @kgatithm used, in order to evade
detection or force mislearning: merely the structure ofdblition used — i.e., knowledge of the
features used and the distribution of normal traffic — mighsbfficient. In many problems, the ad-
versary does have a significant amount of such power. Forgeaime can choose how to craft the
content of the malicious packets, and affect all algorithihag use content. By choosing when to
attack different hosts, he can make attacks appear dissjraiid he can evade detection algorithms
that use timing-related features across different hosith Wétnets that are widespread, attackers
can also control where to launch attacks, and affect deteetigorithms that use IP addresses of
hosts. To understand the kinds of fundamental limits thaegplicable, we aim to quantify them
with lower bounds on the performance of different classeslgdrithms, and in terms of the kind
of power the adversary has.

The volume and diversity of network traffic poses anothedlehge — the algorithms in use
need to be extremely scalable, and utilize available ressurery efficiently. ISPs routinely collect
tens or hundreds of gigabytes of data everyday, and mangathmachine learning algorithms
would not scale, even if learning or analysis can be perfdroféine. With this kind of data, if an
algorithm’s running time or memory requirements is quddriat the size of the data, it is almost
certainly impossible to run it over hundreds of millions @fcget flows on a daily basis. For this
reason, it is important to quantify the kind of performane@amntees that can be obtained for
offline analysis, when only a small set of features or smdikstiof the data can be used. Itis also
important to design more efficient approximations of thdgerghms, that can scale over the data,
perhaps by taking into consideration the particular stmgcof network traffic in that problem.

Algorithms that need to be operated online, or perhaps gegl@t high-speed monitoring
points, pose even more challenges. These algorithms mag tbaoperate at links that see on
order of millions of packets a minute, in order to performeetive real-time attack detection and
mitigation. These algorithms cannot even afford to opezaén in space linear in the data set; they
have to be sub-linear in the size of the data set. The algonitiay observe each packet only once,
and will also need to make very few computational operatfmrgpacket. These constraints imply
that one-pass streaming algorithms are required to adtiress problems, and in addition to their
usual challenges in the streaming model, the algorithmsl&yeed only a very small amount of

2

per-packet processing.

Our work: The approach we take in this area, instead of blackbox ajit of standard algo-
rithms, is to pose a problem with a set of formal objectived tieed to be achieved, and then design
algorithms and analyze how well these objectives have besrbynthe algorithms. The formal
guarantees are needed to ensure that the challenges oktticsproblem have been adequately
met, because, as discussed earlier, it is not sufficienkel&arning algorithms’ performance on
an existing data set as an indicator of future performanteddition, it also allows us to analyze
when fundamental guarantees are achievable for a partieedarrity problem, as a function of the
adversary’s power and the amount of data seen. To developgtalgs in this manner, the concepts
and analytical techniques developed to address diffessnes (e.g, in machine learning, sample
complexity, representation of hypothesis, tail ineqigdijt turn out to be more important than the
original algorithms. While the resulting algorithms mayt be as general as those in a standard
machine learning or data mining formulation, they may be é&bltake advantage of the particular
structure of the problem in question, and may thereforenaietter scalability and more resilence
to adversaries.

In this thesis, we take this approach to address four prablemetwork security, and we use
tools from computational learning theory and streamin@lym design to solve them. In each
of these problems, the difference between the maliciousnanchal traffic is characterized by a
specific kind of structure in network traffic: temporal sture, structure in content, structure in
communication patterns of hosts and network structurengbyehost IP addresses. In each case,
the malicious traffic is generated by an adversary, and theradry may be able to manipulate the
structure of the malicious traffic to evade detection. Hamvethe adversary may or may not have
any power to manipulate normal traffic. In these problemsexore both the algorithmic aspects
as well as the fundamental limits of security analysis. Iratfhllows, we first briefly outline each
of the problems below, and then elaborate our results on@adtem in the rest of the section.

e The first problem we consider is the detectiostpping-stonattacks, i.e. , attacks launched
through a chain of hosts on the Internet used as relay machidere, we use the tempo-
ral structure of the traffic — in particular, the inter-packening delays — to identify pairs
of streams that are likely to be stepping-stones. We proaigerithms with strong upper
bounds on the number of packets they need to observe, tot @dtacks with given false
positive and false negative rates. We also present lowandsoshowing how an adversary,
with sufficient chaff, could evade any detection mechanisat is based only on the timing
delays between packets [17].

e In the second problem, we explore how an adversary couldeewadlass of signature-
generation mechanisms that defend against fast-spreaimys, specifically, pattern-extraction
techniques for signature-generation. These techniguestugture in the content of network
traffic to identify packets that are likely to be worms, anaquence of prior work [70, 104,

3

71,91, 77,97, 92, 61] has alternately developed pattemaeiion algorithms for signature-
generation, and attacks on these pattern-extractionitdgm. We present lower bounds
showing howany pattern-extraction algorithm could be misled, in the pneseof an adver-
sary with sufficient control over the malicious data [114].

e In the third problem, we present efficient streaming alponi to identifysuperspreaders
which are sources that contact many distinct destinatiddentifying superspreaders is of
great interest to security applications, as they are likafjcators of worms, scanning activ-
ity and malicious (or perhaps unwanted) activity, becausstrhosts contact only a small
number of destinations in a short time period. We extend therithms to allow for dis-
tributed monitoring, streams with deletion, and to opetatder sliding windows, and our
experimental results on real network traces show that @ari#hms are substantially more
efficient than earlier approaches [116].

¢ In the fourth problem, we explore how to track regions of tRespace that send malicious
traffic. In the first part of our work, we focus on spam mitigatas a concrete case study, and
explore whether the history and structure of IP addressebeased to distinguish spammers
from senders of legitimate mail [115]. In the second part,design online algorithms that,
with low space requirements, can dynamically track IP pesfithat originate the malicious
traffic, and provide a near-optimal prediction of IP addessthat send malicious traffic and
normal traffic, over adversarially-generated data.

1.1 Stepping-Stone Detection

Intruders on the Internet often prefer to launch networkugions indirectly, i.e., through a chain of
hosts on the Internet as relay machines using protocolsasidlelnet or SSH. The attacker types
commands on his local machine and then the commands aredeldg the chain of “stepping
stones” until they finally reach the victim. This type of aftas called astepping-stoneattack.
Because the victim sees traffic only from the last hop of tharghit is difficult for the victim to
identify the attacker, and the volume of the traffic on theeinét makes such attacks extremely
difficult to record or trace back.

We propose and analyze algorithms for stepping-stone tilmtegsing ideas from computa-
tional learning theory and the analysis of random walks elglrlier work, we assume that detec-
tion is done at a monitoring point — we examine the traffic ti@s in and out of routers, and try
to detect which streams, if any, are part of a stepping-stttaek. Also like earlier work, we use
timing delays between packets on streams, rather thanrtontehe sizes of the packets, since
the packets may be encrypted. Our results are the first t@walgrovable (polynomial) upper
bounds on the number of packets needed to confidently datecidantify encrypted stepping-
stone streams with proven guarantees on the probabilitgsélfy accusing non-attacking pairs. In
addition, our methods and analysis rely on mild assumptiesgecially in comparison to previous

4

work.

Furthermore, we examine the consequences when the attmdezts chaff — unnecessary
dummy packets — into the stepping-stone traffic, in order &karthe streams look uncorrelated.
We show how our algorithm can still detect stepping-stotecis with a limited amount of chaff.
We then give lower bounds on the amount of chaff that an adtaslould have to send to evade
detection byanyalgorithm that uses only packet timing information.

Our results on the stepping-stone problem are based on ap@wazh with connections to
sample-complexity bounds in learning theory, and allowauddtect correlation of streams at a
fine-grained level. Our results may also apply to more gdizerhtraffic analysis domains, such
as anonymous communication. This is joint work with AvrinuBl and Dawn Song.

1.2 Limits of Signature-Generation using Pattern-Extracion Tech-
niques

A signatureof an exploit is a function that distinguishes maliciousaostrings from non-malicious
ones. Automatic signature generation is necessary betaeigemay often be little time between
the discovery of a vulnerability, and exploits developedaiget the vulnerability. One major line
of research effort on automatic signature generation hassta on pattern-extraction techniques
to find signatures for exploits,e., by extracting byte patterns that uniquely distinguishlexp
using network traffic statistics [70, 103, 71, 91, 77]. Pattextraction techniques are attractive
for signature-generation because signatures can be ¢gethenrad matched efficiently, and several
systems have demonstrated the existence of the necesstinguishing byte patterns (invariants)
in the exploit. This research has then led to interest in hattepn-extraction algorithms may be
evaded [97, 92, 61].

We show fundamental limits on the accuracy of pattern-ektva algorithms for signature-
generation in an adversarial setting. We formulate a nbfiianamework that allows a unified analy-
sis of these algorithms, and prove lower bounds on the nuofhristakes any pattern-extraction
learning algorithm must make for an arbitrary exploit, undemmon assumptions. While previ-
ous work has targeted specific algorithms and systems, olir gemeralizes these attacks through
theoretical analysis to any algorithm with similar assuons, not just the techniques developed
so far.

We also analyze when pattern-extraction algorithms maykway showing conditions under
which these lower bounds are weakened. Our results showhbet may be many classes of
exploits for which these algorithms do work well, e.g., fapkits where there is a significant gap
between the byte patterns seen in the normal traffic and vheamts of the exploit. Our results also
illustrate the extent to which the difficulty of evasion dege on the complexity of the signature
function learned. Our results are applicable to other kinfdsignature-generation algorithms as
well (e.g., COVERS [78]), those that use properties of thaakthat can be manipulated. This is

5

joint work with Avrim Blum and Dawn Song.

1.3 Streaming Algorithms for Fast Detection of Superspreadrs

We consider the problem of detectisgperspreaderswhich are sources that connect to a large
number ofdistinct destinations. Superspreaders could be responsible fowtasn propagation

— the Slammer worm, for instance, caused some infected tmsend up t®6, 000 scans a sec-
ond [88] — and thus it is important to detect them quickly. Momng on high-speed links, for
example, on a large enterprise network or an ISP networlessable for real-time attack detection
and mitigation; however, such high-speed network momtpriequires fast streaming algorithms
that use very little memory space.

We propose new streaming algorithms for detecting supeasigrs and prove guarantees on
their accuracy and memory requirements. We also show ewrpatal results on real network
traces. Our algorithms are substantially more efficienth(lbloeoretically and experimentally) than
previous approaches. We extend our algorithms to identipesspreaders in a distributed setting,
with sliding windows, and when deletions are allowed in ttieam (which lets us identify sources
that make a large number of failed connections to distinstidations). In addition, one of our
algorithms is also based on a novel two-level sampling sehaiich may be of independent
interest.

More generally, our algorithms are applicable to any prolileat can be formulated as follows:
given a stream ofx, y) pairs, find all ther’s that are paired with a large number of distin.
We call this theheavy distinct-hittergoroblem. There are many network security applications
of this general problem: detecting ports which have high ECWhffic without storing per-port
information, detecting spammers who send the same emaisuy distinct destinations within a
short period, identifying sources in peer-to-peer netwdhat communicate with many different
hosts. Our algorithms apply to all of these problems; howerneur experiments, we focus on the
superspreader problem. This is joint work with Dawn SondglliptB. Gibbons, and Avrim Blum.

1.4 Tracking Malicious Regions of the IP Space

It is well-known that tracking individual IP addresses, ladgnited scope in reducing malicious
traffic (e.g. blacklisted spamming bots [66, 99, 115]). Wik growing trend of attackers to use
botnets for their attacks, these results are unsurprisiagndividual bots are expendable and the
attacker’s anonymity is preserved. Instead, there has te@@mt interest in correlatinggions of
the IP spacehat originate the malicious traffic. Several studies hamahstrated that significant
amount of spam originates from a relatively small numbeflofor /24 IP prefixes [125, 99, 29].

In the first part of our work, we explore whether the historg atructure of IP addresses can

6

be used to distinguish spammers from senders of legitimatg 11 5], focusing on the IP structure
afforded by using network-aware clusters. In the secondgbaur work, we study the problem of
finding the clusters that best partition the IP space, inraallow us to predict the IP addresses
that send malicious traffic and normal traffic.

1.4.1 Exploiting IP-based Network Structure for Spam Mitigation

From the perspective of spam mitigation, the IP address e@fsénder's mail server is an at-

tractive discriminatory feature of spammers and legitensénders: IP address information is
computationally-efficient to extract and store, and carbetamouflaged as easily as the emalil
content. Our work analyzes the extent to which IP addressrimdtion could be used to enhance
spam mitigation, through measurement analysis and simoatOur work shows the importance

of using the history of both the legitimate senders and spammim IP addresses. Our work also
demonstrates that network-aware clusters may be a goodowvemgtegate the history of spamming

IP addresses.

Through measurement analysis over a 6 month-long corpu8 ofition email messages, we
analyzed how the history and structure of IP addresses dmultseful for spam mitigation. Our
results showed significant differences in the behaviouregitimate senders and spamming IPs.
We found that the bulk of the legitimate mail was sent by a smainber of IPs that appeared
frequently and sent little spam. However, IPs sending megthm did not last long, e.g., spammers
responsible for over 80% of the total spam appeared no mae d¢h 5 distinct days. When
examining network-aware clusters, though, we observedfhaddresses appeared from Hagne
spamming clusters over and over again: the cluster sendioigoh spam “lives” for a very long
time, even if the spamming IP address was ephemeral.

To see if these differences could be used for prediction, xaenéed the mail-server overload
problem — when the mail server receives much more mail theamiprocess, is there a way for the
mail server to increase the legitimate mail accepted owedtfault selection? This problem has
been routinely observed at the mail servers of many ISPsusecit is in the interest of the spam-
mer to overload the mail server, if the mail server seleatsntiail to accept at random. Through
simulation over email logs, we demonstrated that the histbbehaviour of IP addresses and clus-
ters can be utilized to increase the legitimate mail acckpyea factor of 3. Thus, even this fixed
set of clusters affords significant discriminatory poweid auggests the importance of finding the
optimal clusters. This is joint work with Subhabrata Seny@IlSpatscheck, Patrick Haffner and
Dawn Song.

1.4.2 Dynamically Tracking IP Prefixes Originating Malicious Traffic

Our earlier research (Section 1.4.1) and related conduwerk [125, 99, 29, 85] indicate that
many kinds of malicious traffic, (e.g,. spam, scans) aredddeorrelated with relatively small

7

regions of the IP space. The kind of correlation observedsrprising, as bots originate much

of this malicious traffic, and networks that are easily coonfised contain more bots than others.
Prior work has, so far, focused on finding correlations wifixedset of IP clusters: the analysis

typically takes as input a set of IP clusters, and finds dlesienong those that originate the most
of the malicious traffic. Instead, we focus on automaticatigking the best IP clusters that isolate
the malicious traffic.

We design online algorithms to identify the origin of matias traffic with the best possible IP
clusters, using only limited space. The question that weesddis: can we partition the IP space
into clusters that predict the IP addresses that are likedgihd malicious traffic? Such clusters may
have many applications: they may help identify future sp&msor predict future botnet addresses;
they may be useful for network management in discoveringpromised subnets. In addition, the
regions that originate malicious traffic may change overtiior many reasons: attackers may
be able to compromise more hosts, some networks or hosts etgatched and no longer send
malicious traffic. Our algorithm also adapts when the chgstiginating malicious traffic (and
likewise, benign traffic) change over time.

We evaluate our algorithm on empirically real data of spauhlagitimate mail from an enter-
prise network of a large corporation. Our algorithm is hygéfficient, and produces predictions
that are orders of magnitude better than fixed sets of IPaissuch as network-aware clusters
and /24 IP blocks.

This is joint work with Avrim Blum, Subhabrata Sen, Oliver&gcheck and Dawn Song.

1.5 Structure of this Thesis

The rest of this thesis is organized as follows. In Chaptene present algorithms and lower
bounds for stepping-stones problem. In Chapter 3, we présadamental limits of analysis in
pattern-extraction algorithms for signature generatiGhapter 4 presents our work on designing
streaming algorithms to find superspreaders. Chapter Bipieethe results of our analysis on using
the history and structure of IP addresses for spam mitigatio Chapter 6, we present algorithms
that can track dynamically malicious regions of the IP agslgpace. Chapter 7 summarizes and
concludes the thesis.

Chapter 2

Detection of Stepping-Stone Attacks

2.1 Introduction

Intruders on the Internet often launch network intrusiomgdirectly, in order to decrease their
chances of being discovered. One of the most common metls®its to evade surveillance is
the construction o$tepping stonedn a stepping-stone attack, an attacker uses a sequenostsf h
on the Internet as relay machines and constructs a chaimepéaiive connections using protocols
such as Telnet or SSH. The attacker types commands on hisiachine and then the commands
are relayed via the chain of “stepping stones” until theyllynaach the victim. Because the final
victim only sees traffic from the last hop of the chain of thepgling stones, it is difficult for the
victim to learn any information about the true origin of théaaek. The chaotic nature and sheer
volume of the traffic on the Internet makes such attacks mdhg difficult to record or trace back.

To combat stepping-stone attacks, the approach taken bippsaresearch (e.g., [106, 128, 127,
43]), and the one that we adopt, is to instead ask the queStitiat can we detect if we monitor
traffic at the routers or gateways?” That is, we examine #fédrthat goes in and out of routers, and
try to detect which streams, if any, are part of a steppingestattack. This problem is referred to
as thestepping-stone detection proble stepping-stone monitanalyzes correlations between
flows of incoming and outgoing traffic which may suggest thistexce of a stepping stone. Like
previous approaches, we consider the detectidntefactiveattacks: those in which the attacker
sends commands through the chain of hosts to the targeg foaresponses, sends new commands,
and so on in an interactive session. Such traffic is chaiaeteby streams of packets, in which
packets sent on the first link appear on the next a short titeg laithin somemaximum tolerable
delayboundA. The detection of non-interactive connections (i.e., ¢hoghout a maximum delay
bound A) is much harder, as there is no bounded time frame within kvpickets on different
streams need to compared. Like previous approaches, wmedsalfic is encrypted, and thus
the detection mechanisms cannot rely on analyzing the abofehe streams. We will call a pair

9

of streams arattacking pairif it is a stepping-stone pair, and we will call a pair of streaa
non-attacking paiif it is not a stepping-stone pair.

Researchers have proposed many approaches for deteefpingt stones in encrypted traffic.
(e.g., [106, 128, 127]. See more detailed related work irti@e@.2.) However, most previous
approaches in this area are based on ad-hoc heuristics amat dove any rigorous analysis that
would provide provable guarantees of the false positive oatthe false negative rate [128, 127].
Donoho et al. [43] proposed a method based on wavelet tnansfio detect correlations of streams,
and it was the first work that performed rigorous analysishefrtmethod. However, they do not
give a bound on the number of packets that need to be obsanadér to detect attacks with a
given level of confidence. Maoreover, their analysis reqittee assumption that the packets on the
attacker’s stream arrive according to a Poisson or a Pargtibdtion — in reality, the attacker’s
stream may be arbitrary. Wang and Reeves [121] proposedeamaatk-based scheme which can
detect correlation between streams of encrypted packetsever, they assume that the attacker’s
timing perturbation of packets is independent and idelyiadistributed (id), and their method
breaks when the attacker perturbs traffic in other ways.

Thus, despite the volume of previous work, an important tipestill remains open: how can
we design an efficient algorithm to detect stepping-stoteclks with (a) provable bounds on the
number of packets that need to be monitored, (b) a provaldeagtee on the false positive and
false negative rate, and (c) few assumptions on the disititel of attacker and normal traffic?

Our work sets off to answer this question. In particular, his tthesis, we use ideas from
Computational Learning Theory to produce a strong set ofaguees for this problem:

Objectives: We explicitly set our objective to be to distinguish attackpairs from non-attacking
pairs, given our fairly mild assumptions about each. In @sif the work of Donoho et
al. [43] detects only if a pair of streams is correlated. Tikisquivalent to our goal if one
assumes non-attacking pairs are perfectly uncorrelatgidthbt is not necessarily realistic
and our assumptions about non-attacking pairs will allomstdostantial coarse-grained cor-
relation among them. For example, if co-workers work ane tadeaks together, their typing
behavior may be correlated at a coarse-grained level evrmgliththey are not part of any
attack. Our models allow for this type of behavior on the péfinormal” streams, and yet
we will still be able to distinguish them from true steppisigne attacks.

Fewer assumptions: We make very mild assumptions, especially in comparisom wievious
work. For example, unlike the work by Donoho et al., our ailfpon and analysis do not rely
on the Poisson or Pareto distribution assumption on thevilmhaf the attackingstreams.
By modeling a non-attack stream as a sequence of Poissoessexwith varying rates and
over varying time periods, our analysis results can applrtwst any distribution or pattern
of usage of non-attack and attack streams. This model alfowsubstantial high-level
correlation among non-attackers.

Provable bounds: We give the first algorithm for detecting stepping-stonacks that provides (a)

10

provable bounds on the number of packets needed to confidkatdct and identify stepping-
stone streams, and (b) provable guarantees on false pasites. Our bounds on the number
of packets needed for confident detection are only quadratierms of certain natural pa-
rameters of the problem, which indicates the efficiency afadgorithm.

Stronger results with chaff: We also propose detection algorithms and give a hardnesg#t res
when the attacker inserts “chaff” traffic in the steppingrgt streams. Our analysis shows
that our detection algorithm is effective when the attadkserts chaff that is less than a cer-
tain threshold fraction. Our hardness results indicatewien the attacker can insert chaff
that is more than a certain threshold fraction, the attackermake the attacking streams
mimic two independent random processes, and thus completede any detection algo-
rithm. Note that our hardness analysis will apply even whenrhonitor can actively ma-
nipulate the timing delay. Our results on the chaff case @ asignificant advance from
previous work. The work of Donoho et al. [43] assumes thattiadf traffic inserted by the
attacker is a Poisson process independent from the nohicaifit in the attacking stream,
while our results make no assumption on the distributiorhefdhaff traffic.

The type of guarantee we will be able to achieve is that giveordidence parameter, our
procedure will certify a pair as attacking or non-attackimigh error probability at mosg, after
observing a number of packets that is only quadratic in ertatural parameters of the problem
and logarithmic inl /6. Our approach is based on a connection to sample-compleaiipds in
Computational Learning Theory. In that setting, one has arssequence of hypothesks, ho, . . .,
and the goal is to identify which if any of them has a low trueerate from observing performance
on random examples [68, 113, 18]. The type of question adddeim that literature is how much
data does one need to observe in order to ensure at most seame’ girobability of failure. In
our setting, to some extent packets play the role of exangudgairs of streams play the role of
hypotheses, though the analogy is not perfect becausehe isetationshigbetweernpackets that
provides the information we use for stepping-stone detacti

The high-level idea of our approach is that if we consider paoket streams and look at the
differencebetween the number of packets sent on them, then this quantierforming some type
of random walk on the one-dimensional line. If these strearagpart of a stepping-stone attack,
then by the maximume-tolerable delay assumption, this giyantll never deviate too far from the
origin. However, if the two streams anet part of an attack, then even if the streams are somewhat
correlated, say because they are Poisson with rates thain/é&andem, this walkwill begin to
experience substantial deviation from the origin. Theeesmveral subtle issues: for example, our
algorithm may not know in advance what an attacker’s tolerdblay is. In addition, new streams
may be arriving over time, so if we want to be careful not toehtalse-positives, we need to adjust
our confidence threshold as new streams enter the system.

Outline. In the rest of the chapter, we first discuss related work ini&e@.2, then give the
problem definition in Section 2.3. We then describe the dtepptone detection algorithm and

11

confidence bounds analysis in Section 2.4. We consider theegoiences of adding chaff in Sec-
tion 2.5. We finally conclude in Section 2.6.

2.2 Related Work

The initial line of work in identifying interactive steppinstones focused ortontentbased tech-
niques. The interactive stepping stone problem was firshdidated and studied by Staniford and
Heberlein [106]. They proposed a content-based algorittandreated thumbprints of streams and
compared them, looking for extremely good matches. Anotloaitent-based approach, Sleepy
Watermark Tracing, was proposed by Wang et al. [123]. Thes&at-based approaches require
that the content of the streams under consideration do amigehsignificantly between the streams.
Thus, for example, they do not apply to encrypted traffic aglBSH sessions.

Another line of work studies correlation of streams base@amection timings Zhang and
Paxson [128] proposed an algorithm for encrypted connectiains based on periods of activity of
the connections. They observed that in stepping stone§nhgeriods and ®Fperiods will coin-
cide. They use this observation to detect stepping stogesxdmining the number of consecutive
OFF-periods and the distance of the©Gperiods. Yoda and Etoh [127] proposed a deviation-based
algorithm to trace the connection chains of intruders. T¢myputed deviations between a known
intruder stream and all other concurrent streams on thenkettecompared the packets of streams
which have small deviations from the intruder’s stream, atilize these analyses to identify a
set of streams that match the intruder stream. Wang et &] [i®@posed another timing-based
approach that uses the arrival and departure times of gatkebrrelate connections in real-time.
They showed that the inter-packet timing characteristrespreserved across many router hops,
and often uniquely identify the correlations between catinas. These algorithms based on con-
nection timings, however, are all vulnerable to active tighpertubation by the attacker — they will
not be able to detect stepping stones when the attackeelygtigrturbs the timings of the packets
on the stepping-stone streams.

We are aware of only two papers [43, 121] that study the proldédetecting stepping-stone
attacks on encrypted streams with the assumption of a bomitideomaximum delay tolerated by
the attacker. In Section 2.1, we discuss the work of Donolab. 3] in relation to our work. We
note that their work does not give any bounds on the numbeaiaigis needed to detect correlation
between streams, or a discussion of the false positivesntlagt be identified by their method.
Wang and Reeves [121] proposed a watermark-based scheioh,cah detect correlation between
streams of encrypted packets. However, they assume thatttdeker's timing perturbation of
packets is independent and identically distributid).(Our algorithms do not require such an
assumption. Further, they need to actively manipulate ritex-packet delays in order to embed
and detect their watermarks. In contrast, our algorithngglire only passive monitoring of the
arrival times of the packets.

12

Wang [120] examined the problem of determining the seridéoof correlated connections in
order to determine the intrusion path, when given the cotagget of correlated connections.

2.3 Problem Definition

Our problem definition essentially mirrors that of Donohakt[43]. A streamis a sequence of
packets that belong to the same connection. We assume ¢hattitker has a maximum delay
toleranceA, which we may or may not know. That is, for every packet sernthafirst stream,
there must be a corresponding packet in the second streavedsed and\ time steps later. The
notion of maximum delay bound was first proposed by Donohd. ¢43]. We also assume that
there is a maximum number of packets that the attacker cahises particular time intervat,
which we callp;. We note thapa is unlikely to be very large, since we are considering irdtéve
stepping-stone attacks. As in prior work, we assume thatkgban either stream maps to only
one packet on the other stream (i.e., packets are not cothbimteroken down in any manner).

Similar to previous work, we do not pay attention to the cohtar the sizes of the packets,
since the packets may be encrypted. We assume that themealraffic delay between packets
is very small compared td\, and ignore it everywhere. We have a stepping-stone mottitdr
observes the streams going through the monitor, and kesgsdf the total number of packets on
each stream at each time of observation. We denote the totder of packets in streafby time
t asN,(t), or simply N; if ¢ is the current time step.

By our assumptions, for a pair of stepping-stone stre&mss, the following two conditions
hold for the true packets of the streams, i.e., not includingff packets:

1. Ni(t) > Na(t).
Every packet in stream 2 comes from stream 1.

2. Nl(t) < Ng(t + A)
All packets in stream 1 must go into stream 2 — i.e., no packetstream 1 are lost enroute
to stream 2, and all the packets on stream 1 arrive on streaithi2 wme A.

If the attacker sends no chaff on his streams, then all thiegbgon a stepping stone pair will obey
the above two conditions.

We will find it useful to think about the number of packets inteeam in terms of the total
number of the packets observed in the union of two streamsthier words, viewing each arrival
of a packet in the union of the two streams as a “time step”. \lleyge N, (w) for the number of
packets in streamy when there are a total af packets in the union of the two streams.

In Section 2.4.1, we assume that a normal streasngenerated by a Poisson process with a
constant rate\;. In Section 2.4.2, we generalize this, allowing for subisghhigh-level correlation

13

Table 2.1: Summary of notation

A maximum tolerable delay bound
PA maximum number of packets that may be sent in time intetval
0 false positive probability
S; streami
M number of packets that we need to observe on the union of thstt@ams
in the detection algorithms
N;(t) | number of packets sent on streaimm time intervalt.
N;(w) | number of packets sent on streamvhen a total ofw packets is present on
the union of the pair of stream under consideration.

between non-attacking streams. Specifically, we model aattaicking stream as a “Poisson pro-
cess with a knob”, where the knob controls the rate of thegg®and can be adjusted arbitrarily by
the user with time. That is, the stream is really generated $gquence of Poisson processes with
varying rates for varying lengths of time. Even if two notaaking streams correlate by adjusting
their knobs together — e.g., both having a high rate at cetiaies and low rates at others — our
procedure will nonetheless (with high probability) not leeled into falsely tagging them as an
attacking pair.

The guarantees produced by our algorithm will be descrilyetvb quantities:

e amonitoring time)M measured in terms of total number of packets that need to $enaix
on both streams, before deciding whether the pair of strésans attack pair, and

e a false-positive probabilitys, given as input to the algorithm (also called the confidence
level), that describes our willingness to falsely accuseraattacking pair.

The guarantees we will achieve are that (a) any steppingespair will be discovered aftel/
packets, and (b) any normal pair has at masthance of being falsely accused. Our algorithm will
never fail to flag a true attacking pair, so long as at lddgpackets are observed. For instance, our
first result, Theorem 2.1, is that if non-attacking streanesRoisson, thed/ = 2(pa + 1)? log%
packets are sufficient to detect a stepping-stone atta¢kfalge-positive probability. One can
also adjust the confidence level with the number of pairsrefshs being monitored, to ensure at
most aj chance okverfalsely accusing a normal pair.

All logarithms in this chapter are base 2. Table 2.1 sumrearthe notation we use in this
chapter.

14

2.4 Main Results: Detection Algorithms and Confidence Bounsl

In this section, we give an algorithm that will detect steygpstones with a low probability of false
positives. We only consider streams that have no chaff, hvhieans that every packet on the
second stream comes from the first stream, and packets cahedkelayed, not dropped. We will
discuss the consequences of adding chaff in Section 2.5.

Our guarantees give a bound on the number of packets thatméedobserved to confidently
identify an attacker. These bounds have a quadratic depeads the maximum tolerable delay
A (or more precisely, on the number of packetsan attacker can send in that time frame), and
a logarithmic dependence drid, where/ is the desired false-positive probability. The quadratic
dependence on maximum tolerable delay comes essentiafty tiie fact that on average it takes
O(p?) steps for a random walk to reach distapciom the origin. Our basic bounds assume the
value ofpa is given to the algorithm (Theorems 2.1 and 2.2); we then show to remove this
assumption, increasing the monitoring time by only(¥og log pa) factor (Theorem 2.3).

We begin in Section 2.4.1 by considering a simple model ofmabrstreams — we assume
that any normal strearfi; can be modeled as a Poisson process, with a fixed Poissok; raiée
then generalize this model in Section 2.4.2. We make noiadditassumptions on the attacking
streams.

2.4.1 A Simple Poisson Model

We first describe our detection algorithm and analysis ferddse thapa is known, and then later
show how this assumption can be removed.

The Detection Algorithm

Our algorithm is simple and efficient: for a given pair of aimes, the monitor watches the packet
arrivals, and counts packets on both streams until the totadber of packets (on both streams)
reaches a certain threshdpa + 1)2.1 If in this time, the difference in the number of packets
of the two streams ever exceeds the packet boundve know the streams are normal; otherwise,
the monitor restarts. If the difference stays bounded farfiicgently long time (og% such trials

of 2(pa + 1)? packets), the monitor declares that the pair of streams tegpisig stone. The
algorithm is shown in Fig. 2.1.

We note that the algorithm is memory-efficient — we only neekigep track of the number of
packets seen on each stream. We also note that the algoritesnndt need to know or compute
the Poisson rates; it simply needs to observe the packetsigomon the streams.

The intuition for the parameters as well as the proof of aimess is in the analysis section.

15

DETECTATTACKS (4, pa)
Setm =log 3, n = 2(pa + 1)
Form iterations
Forw = 1 ton packets observed ofy U Ss.
Computed(w) = Ny (w) — No(w)
If |d(w)| > pa return NORMAL.
ResetV; = Ny, = 0.
return ATTACK.

Figure 2.1: Algorithm for stepping-stone detection (withohaff) with a simple Poisson model

Analysis

We first note that, by desigmur algorithm will always identify a stepping-stone pairppiding
they send\/ packets We then show that the false positive raté @ also achieved by the algorithm.
Under the assumption that normal streams may be modeledissoR@rocesses, we show three
analytical results in the following analysis:

1. Whenp, is known, the monitor needs to observe no more than= 2(pa + 1)?log +
packets on the union of the two streams under consideratioguarantee a false positive
rate ofd for any given pair of streams (Theorem 2.1).

2. Suppose instead that we wish to achiewe @obability of false positive oveall pairs of
streams that we examine. For instance, we may wish to achitalse positive rate af over
an entire day of observations, rather than over a particularber of streams. Whewn is
known, the monitor needs to observe no more than= 2(pa + 1)%log @ packets on
the union of theth pair of streams, to guarante@ ahance of false positive among all pairs

of streams it examines (Theorem 2.2).

3. Whenpy is unknown, we can achieve the above guarantees with onl (&wg log pa)
factor increase in the number of additional packets thatl teebserve (Theorem 2.3).

Below, we first give some intuition and then the detailed thaostatements and analysis.

Intuition We first give some intuition behind the analysis. Consider hermal streams as Pois-
son processes with ratas and \». We can treat the difference between two Poisson processes a
a random walk, as shown in Fig. 2.2. Consider a sequence &efzagenerated in the union of
the two streams. The probability that a particular packeeiserated by the first Streamj'elsfﬁT2
(which we denotg:), and probability that it is generated by the second str% (which we

call u9). We can define a random variabteto be the difference between the number of packets
generated by the streams. Every time a packet is sent o éithar .S, Z increases byl with

16

A A A A

@ stream1 e N e

M stream 2 A2 A A A

(@) (b)

Figure 2.2: (a) Packets arriving in the two streams. (b) figwthe arrival of packets as a random
walk with rates\; and\s,.

probability 1.1, and decreases [ywith probability . It is therefore a one-dimensional random
walk. Assuming that our observation of the random walk beginsome unknown position, we
care about the expected time fgrto exit the bounded regiolx — pa, x + pa]. Without loss of
generality, we may take = 0. Then, if|Z| > pa, the delay bound has to be violated for some
packet.

Theorem 2.1. Under the assumption that normal streams behave as Poigegcegses, the algo-
rithm DETECTATTACKS will correctly detect stepping-stone attacks with a falesifive probabil-
ity at mosts for any given pair of streams, after monitoridgpa + 1)? log % packets on the union
of the two streams.

Proof: LetZ = N;(w) — No(w). We first bound the probability thaf of n packets. Lefl" be
the time taken for a one-dimensional random walk startirgatfigin to reaclpa + 1 or —pa — 1
for the first time. Then, as in Feller[48], for a fair randomlkya

E[T] = (pa +1).
For a biased random walk starting at the origifi]’] is always strictly less thafpa + 1)2.

By Markov’s inequality,

N —

PrT > 2(pa +1)*] <
Thus, the probability thakZ remains in the interval-pa, pa] throughout the arrival of packets
on the union of the streams is boundedipy

To ensure that this is bounded by the given confidence leetaken such observations of
time steps, so thet})™ < 4, or

> 1 —

m (0} .

= g 5

We need to observe: sets ofn packets; therefore, we IIEGIg —15 intervals.] |

We have just shown in Theorem 2.1 that our algorithm in Fid. \&ill identify any given
stepping-stone pair correctly, and will have a probabiitgf a false positive for any given non-
attacking pair of streams. We can also modify our algoritlonthat it only has a probability of a

17

false positive amongll the pairs of streams that we observe. That is, giyeme distribute it over
all the pairs of streams that we can observe, by allowing %ﬂjh probability of false positive for

theith pair of streams, and using the fact thag” , ﬁ = 4. To see why this might be useful,
suppose) = 0.001. Then, we would expect to falsely accuse one pair out of et8680 pairs of
(normal) streams. It could be more useful at times to be abtgvie a false positive rate 6£001
over an entire month of observations, rather than give titataver a particular number of streams.

Theorem 2.2. Under the assumption that normal streams behave as Poigegegses, the algo-
rithm DETECT-ATTACKS will have a probability at most of a false positive among all the pairs of
streams it examines if, for thgh pair of streams, it uses a monitoring time2¢pa + 1) log @
packets.

Proof: We need to split our allowed false positiveamong all the pairs we will observe; however,
since we do not know the number of pairs in advance, we do tibtisp evenly.

Instead, we allow théth pair of streams a false positive probabilityﬁi—l), and then use the
previous algorithm with the updated false positive levédie Tesult then follows from Theorem 2.1

and the fact thaf 2% | 7%y = 6. O n

The arguments so far assume that the algorikmowsthe quantitypa. We now remove this
assumption by using a “guess and double” strategy.plet 2/ — 1. When a pair of streams is
“cleared” as not being a stepping-stone attack with resfoeef, we then consider it with respect
to p;4+1. By setting the error parameters appropriately, we can taairthe guarantee that any
normal pair is falsely accused with probability at méstwhile guaranteeing that any attacking
pair will be discovered with a monitoring time that depend$/®n theactual value ofpa. Thus,
we can still obtain strong guarantees. In addition, evemghathis algorithm “never” finishes
monitoring a normal pair of streams, the time between stepghach the monitor compares the
difference N1 — N5 increases over the sequence. This means that for the stthatitsave been
under consideration for a long period of time, the monitetdelifferences less often, and thus does
not need to do substantial work, so long as the stream cauaterrunning continuously.

Theorem 2.3. Assume that normal streams behave as Poisson processes, eMan ifpa is
unknown, we can use algorithBPEETECT-ATTACKS as a subroutine and have a false positive prob-
ability at mosts, while correctly catching stepping-stone attacks withifp4 (log log pa + log %))
packets, whergx is theactual maximum value olV; (¢) — N»(t) for the attacker.

“won

Proof: As discussed above, we rurEDECTATTACKS using a sequence opA” valuesp;, where
p; = 2/ — 1, incrementingj when the algorithm returns ®RMAL. As in Theorem 2.2, we use
ﬁ as our false-positive probability on iteratign which guarantees having at most &alse-
positive probability overall. We now need to calculate thenitoring time. For a given attacking
pair, the number of packets needed to catch it is at most:

[logpal

Z 2-2% log '7.7(‘7. + 1).
j=1 0

18

Since the entries in the summation are more than doubliniy jyithe sum is at most twice the

. oo . 1
value of its largest term, and so the total monitoring time@ {2 (log log pa + log 5)). O m

2.4.2 Generalizing the Poisson Model

We now relax the assumption that a normal process is Poisgbraviixed rate). Instead, we
assume that a normal process can be modeled as a sequendssohRwocesses, with varying
rates, and over varying time periods. From the point of viéaur algorithm, one can view this as
a Poisson process with a user-adjustable “knob” that isgogamtrolled by an adversary to fool us
into making a false accusation.

Note that this is a general model; we could use it to coarggbyaximate almost any distribu-
tion, or pattern of usage. For example, at a high level, thislehcould approximately simulate
Pareto distributions which are thought to be a good modelders’ typing patterns [96], by using a
Pareto distribution to choose our Poisson rates for varjing periods, which could be arbitrarily
small. Correlated users can be modeled as having the samerseqof Poisson rates and time
intervals: for example, co-workers may work together ake &hort or long breaks together.

Formally, for a given pair of streams, we will assume the Btstam is a sequence given by
(M1,t11), (M12,t12), - . ., and the second stream BYo1, t21), (A2, t22), Let N;(t) denote the
number of packets sent in streary time¢. Then, the key to the argument is that over any given
time intervalTl’, the number of packets sent by streamdistributed according to a Poisson process
with a single ratei@T, which is the weighted mean of the rates of all the Poissoogases during
that time. That is, if time interval’ contains a sequence of time intervalg, ¢, - - . , jend, then
XLT = ﬁ ;zﬁsmt Aijti; (breaking intervals if necessary to match the boundariés) of
Theorem 2.4. Assuming that normal streams behave as sequences of Ppiss@sses, the algo-
rithm DETECT-ATTACKS will have a false positive rate of at mastif it observes at leasf log

intervals ofn packets each, where = 8(pa + 1)2.

Proof: LetS(t) be the number of packets on the union of the streams atttirhet D(¢) be the
difference in the number of packets at time.e. Ny (t) — Na(t). Letn = 2(pa + 1)%. Let&, be
the event that at some tinté < ¢ the quantity| D(¢')| exceedeha. We definel to be the time
whenPr[S(T) > 7] = 4. Then, from the proof of Theorem 2.1, for fix@4 7 = 2(pa + 1)%, we
know

Prisér|s(T) 4] < .

Therefore,Pr(Er] > Pr(&r|S(T) > n|Pr(S(T) > n]
> g 4Lt
= =39 =7

By definition, for allt > T', Pr[&;] > Pr[Er], which, by the above, is at Iea%t

19

However, our algorithm does not kndiy it can only observe the number of packets that appear
on the streams. We therefore have to estimate the prolyathiéit the timel” has passed when we
have observed, sagy packets on the union of the streams, for some suitabla other words, if
we have observetn packets at time, we need to estimate the probability that 7', in addition
to the event that we want.

We definet,, to be the time when the number of packets on the union of the streamdiig.,
S(tn) = n).

Note that, by definition of’, we havePr[S(T) > k] < g5r. S0,Prlty; < T] < 5. Setting
k=4, Prlty, < T) < . Therefore,

15
Prity, >T] < —.
rltsn 2 T) < 3

Therefore,

PT[ET/\ (t4ﬁ > T)] =1- PT[—\gT vV (t4ﬁ > T)] >1-— (— + —) = —.
Note thatPr[Er A (tsn > T)] < Pr[&,.], therefore,

3
PT‘[&M] Z E

Thus,Pr[=&,,] < £
To bound this quantity by the given confidence level, we neddkem such observations of
4n packets in the union of the streams, so that:

3 m
1 —— < .
(16) =0

m

v

P 1 7 7 1
AT 5 > L E
Slncebg(%g) < 5, we setm > flog 5

Likewise, we have the analogues of Theorem 2.2 and Theor@iio2the general model. We
omit their proofs, since they are very similar to the prodf§loeorem 2.2 and Theorem 2.3.

Theorem 2.5. Assuming that normal streams behave as sequences of Pgassmsses, the al-
gorithm DETECTATTACKS will have a probability at most of a false positive over all pairs of
streams it examines, if, for thigh pair of streams, it observ&}log i(ijl) intervals ofn packets
each, wherer = 8(pa + 1)2.

20

Theorem 2.6. Assuming that normal streams behave as sequences of Ppisg@sses, then jia
is unknown, we can use repeated-doubling and incur an éxXftag log pa) factor in the number
of packets over that in Theorem 2.5, to achieve false-pesiiobabilityd.

2.5 Chaff: Detection and Hardness Result

All the results in Section 2.4 rely on the attacker streaneywiy two assumptions in Section 2.3
— in a pair of attacker streams, every packet sent on the fiesire arrives on the second stream,
and any packet that arrives on the second stream arrivesthrerfirst stream. In this section, we
examine the consequences of relaxing these assumptions.

Notice that only the packets that must reach the target reetay these two assumptions.
However, the attacker could insert some superfluous pasketgither of the two streams, that do
not need to reach the target, and therefore, do not have jotbbeassumptions. Such extraneous
packets are calledhaff By introducing chaff into the streams, the attacker wowdtd ensure
that the number of packets observed in his two streams afgssacorrelated, and thus reduce the
chances of being detected.

Donoho et al. [43] also examine the consequences of thei@adit chaff to attack streams.
They show that under the assumption that the chaff in tharsisés generated by a Poisson process
that is independent of the non-chaff packets in the stepgloge streams, it is possible to detect
correlation between stepping-stone pairs, as long asrisa@nss have sufficient packets. However,
an attacker may not wish to generate chaff as a Poisson grolcethis section, we assume that a
clever attacker will want to optimize his use of chaff, irmteof adding it randomly to the streams.
In Section 2.5.1 we explain how to detect stepping stonegusur algorithm when the attacker
uses a limited amount of chaff (Theorem 2.7). In Section22wfe describe how an attacker could
use chaff to make a pair of stepping-stone streams mimicradegdendent Poisson processes, and
thus ensure that the pair of streams are not correlated. &kegilie upper bounds on the minimum
chaff the attacker needs to do this (Theorems 2.8 and 2.9).

2.5.1 Algorithm for Detection with Chaff

Recall that our algorithm BTECTATTACKS is based on the observation that, with high probability,
two independent Poisson processes will differ by any fixesdadice given sufficient time. An
attacker can, therefore, evade detection with our algoritly introducing a sufficient difference
between the streams all the time. Specifically, our algorithecks if the two streams have a
difference that is greater tharm packets every time either stream gets a packet, until there a
2(pa + 1)? packets in the union of the streams. To evade our algorithinstands (in Fig. 2.1),
all that the attacker might need to do is to send one packetadf on the faster stream.

21

DETECTATTACKS-CHAFF (6, pa)
Setm =log 3, n = 8(pa + 1)*.
Form iterations
Forw = 1 ton packets observed ofy U Ss.
Computed(w) = Ny (w) — No(w)
If |d(w)| > 2pa return NORMAL.
ResetNV; = Ny = 0. NORMAL.
return ATTACK.

Figure 2.3: Algorithm for stepping-stone detection withvés thanpa packets of chaff every
8(pa + 1)? packets.

Algorithm

We now modify DETECT-ATTACKS slightly, to detect stepping-stone attacks under a limat@dunt

of chaff. Instead of waiting for the difference to exceed packets between the two streams, we
could wait for the difference to exceep packets. The independent Poisson processes would
eventually get a difference @&pa + 1, but now, the attacker would need to send more than
packets in chaff in order to evade detection. He could gelyawtn exactlypa + 1 packets if he
sends all of the chaff packets in the same time interval, erstime stream. However, as long as
he sends fewer thgsn packets of chaff in every time interval, the monitor will flag streams as
stepping stone$ The complete algorithm is shown in Fig. 2.3.

Analysis

We now show that BTECT-ATTACKS-CHAFF will correctly identify stepping stones with chaff, as
long as the attacker sends no more tharpackets of chaff for everg(pa + 1)? packets. Further,
any given non-attacking pair of streams will have no more tixdchance of being called a stepping
stone.

Theorem 2.7. Under the assumption that normal streams behave as Poissgegses, and the
attacker sends fewer tham packets of chaff ever§(pa + 1)? packets, the algorithnfDETECT
ATTACKS-CHAFF will have a false positive rate of utmost if we observelog% intervals of

8(pa + 1)? packets each.
Proof: The analysis is similar to that of Theorem 2.1.
Let Z = Ni(w) — No(w), and letT' be the time taken for a one-dimensional random walk

2We choose to wait for a difference @pa packets here, because it is the integral multiple ofthat maximizes
the rate at which the attacker may send chaff. with the ntegial multiple ofpa that maximizes the rate at which the
attacker must send chaff, but we omit the details here.

22

starting the origin to reactpa + 1 or —2pa — 1 for the first time. Again, as in Feller[48],
E[T] < (2pa +1)* < 4(pa +1)%

By Markov's inequality,
Pr(T > 8(pa +1)%] <

N |

Thus, the probability thaf remains in the intervdl-2pa, 2pa] throughout the arrival of packets
on the union of the streams is boundedipy

On the other hand, for an attack pair with no chaff, we know Mg w) — No(w) < pa. When
the attacker can add less thar packets of chaff i(pa +1)2 packets N1 (w—+n)— No(w+n) <
2pa, and thus, difference in packet count an attack pair cantosesl2pa in n packets. 0O m

Note that Theorem 2.7 is the analogue of Theorem 2.1 whenhh# rate is bounded as
described above. The analogues to the other theorems iiB&c4 can be obtained in a similar
manner.

Obviously, the attacker can evade detection by sending thare A packets of chaff for every
8(pa + 1)? packets. Further, if we count in pre-specified intervals, dttacker would only need
to sendpa packets of chaff ironeof the intervals, since the algorithm only checks if the antne
differ by the specified bound iany of the intervals.

We could address the second problem by sampling randonvatéeand checking if the dif-
ferenceZ in those intervals is at lea8pa. We could also modify our algorithm to check if the
differenceZ stays outsid@pa for at least a fourth of the intervals, and analyze the rigpjirob-
abilities with Chernoff bounds. To defeat this, the attackeuld have to send at Ieagml—m

fraction the total packets on the unigpn(+ 1 packets of chaff everg(pa + 1) packets) in an
independent interval, so that every (sufficiently longgimal is unsuspicious.

However, if the attacker just chooses to send a lot of chafgia on his stepping-stone streams,
then he will be able to evade the algorithm we proposed. Hpie of evasion is, to some extent,
inherent in the problem, not just the detection strategy re@gse. In the next section, we show
how an attacker could successfully mimic two independemiasts, so that no algorithm could
detect the attacker. We also give upper bounds on the miniohaffi the attacker needs to add to
his streams, so that his attack streams are completely shaskedependent processes.

2.5.2 Hardness Result for Detection with Chaff

If an attacker is able to sendat of chaff, he can in effect ride his communication on the baufks
two truly independent Poisson processes. In this sectieramalyze how much chaff this would
require. This gives limitations on what we could hope to detewe do not make additional

assumptions on the attacker.

23

Specifically, in order to simulate two independent Poissocgsses exactly, the attacker could
first generate two independent Poisson processes, andehdrpackets on his streams to match
them. He needs to send chaff packets on one of the streams, ttveonstraints on the other
stream do not allow the non-chaff packet to be forwardeddoffit. In this way, he can mimic the
processes exactly, and pair of streams will not appear todtepping-stone pair, to any monitor
watching it. Note that even if the inter-packet delays wet&valy manipulated by the monitor, the
attacker can still mimic two independent Poisson processas therefore, by our definition, will
be able to evade detection.

Let \; be the rate of the first Poisson process, anthe the rate of the second Poisson process.
In our analysis, we assumg = Ay = A > %. If A1 > A9, Or A\ < \g the attacker will need
to send many more chaff packets on the faster streamy; se A, will be the best choice for the
attacker.

We model the Poisson processes as binomials. We choosertixapate the two independent
Poisson processes of rateas two independent binomial processes, for cleaner analysi gen-
erate these processes, we assume that the attacker flip®itvgp each with\ bias (of getting a
head), at each time stépHe has to send a packet (either a real packet or chaff) onanstnen
its corresponding coin turns up heads, and should sendhgoivtien the coin turn up as tails. That
way, he ensures that the two streams model two independeanizl processes exactly. Since the
attacker generates the independent binomial processesuleflip coinsA or more time steps
ahead, and then decide whether a non-chaff packet can baess for a particular coin flip that
obeys all constraints, or if it has to be chaff.

We now show how the attacker could simulate two indepenggatherated binomial processes
with minimum chaff. First, the attacker generates two saqes of independent coin flips. The
following algorithm, BOUNDED-GREEDY-MATCH, then produces a strategy that minimizes chaff
for the attacker, for any pair of sequences of coin flips. Gitwgo sequences of coin flips, the
attacker matches a head in first stream at i@ the first unmatched head in the second stream
in the time intervalt, ¢t + A]. All matched heads become real (stepping-stone) packetsalbthe
remaining heads become chaff. An example of the operatitimecdlgorithm is shown in Fig. 2.5.2.

The following theorem shows thatdNDED-GREEDY-MATCH will allow the attacker to pro-
duce the minimum amount of chaff needed, when the attackaulaies two binomial processes
that were generated independently.

Theorem 2.8. Given any pair of sequences of coin flips generated by twern#ent binomial
processesBOUNDED-GREEDY-MATCH minimizes the chaff needed for a pair of stepping-stone
streams to mimic the given pair of sequences.

Proof: Suppose not, i.e., suppose there exists a sequence pain d@igoo for which BOUNDED-
GREEDY-MATCH is not optimal. LetS be the strategy produced byoBNDED-GREEDY-MATCH

3We could, equivalently, assume that the attacker flips awciiim% biask times in a time step. A& — oo, the
binomial approaches a Poisson process of xate

24

Normal Packets
................ Chaff

Figure 2.4: An illustration of the matching produced by tHgoathm BOUNDED-GREEDY-
MATCH on two given sequences, with = 2.

for o. Let S’ be a better matching strategy, so tlidtaff (S) > Chaff (S’). Then there exists a
head ino such that: is matched with a heatl throughsS’, but not throughS.

Assume, wlog, that is on the first stream at timg and/’ on the second stream. F8rto be a
valid match,h’ should be int, ¢ + A], andh’ must be unmatched undsf to any other head. Let
us suppose thdt’ is matched to another (earlier thgrhead on the first stream undgotherwise
BOUNDED-GREEDY-MATCH would have generated a match betwéesmdh’ on S).

We track chain of the matching heads in the sequence backWstatting fromh) in this way:
we take the currently matched head in one strategy, and lmothé head that matches it in the
other strategy. When this chain of matchings stops, we maws hn unmatched head, and one of
following two cases (the manner in which we trace the chaimatching heads, along with the
assumption that the unmatched heéads on the first stream, implies that we find only matched
heads on the second streamSfand the first stream of’):

e Case 1 The unmatched head is in stream 1.9 In this case, an unmatched head in
S correlates with an unmatched headSh and therefore, this particular case is not our
counterexample, since each unmatched head usigéll correspond to an unmatched head
unders’.

e Case 2 The unmatched head is in stream 2%fIn this case, we have to have reached this
head (call itgy) from its matching heagd; in S’; we have to reacly; from matched head
g2 in S. Since we are tracing backwards in time, timegofis greater than the time af.
However, sincegyy can be matched tg,, we have a contradiction, since we are not matching
the heady; to the earliest available heagd, as per BUNDED-GREEDY-MATCH.

The analysis when is on the second stream 6fis similar.

Thus, with the algorithm BUNDED-GREEDY-MATCH, every unmatched head fimust have
a corresponding unmatched headintherefore,Chaff (S) < Chaff (S’), creating a contradiction.
] [|

Now we examine upper bounds on the chaff that will need to belsethe attacker, in terms

25

N OIOR00

Strategy S: Case 1

(@)
Stream 1 ‘:,:_' @ °

Stream 2

Stream 2

Strategy S: Case 2

()

26

Stream 1 --.,: @

Strategy S": Case 1

(b)

Stream 2

Stream 1

Stream 2

Strategy S": Case 2

(d)

Figure 2.5:The proof of Theorem 2.8. All the figures give an illustratmfrhow the heads are traced back.
(a) and (b) show case 1 of the proof, and (c) and (d) show caktn@ proof. By assumptioth, is unmatched

in S and matched irt’. h is matched td' in the strategys’; in S, A’ is matched td:2; then, we look at
h2's match inS’, call it h3; useh3 to find h4 in S, h4 to find 15 in S/, and so on. We continue tracing the
matches of heads backwards in this manner until we stophirggeither case 1 or case 2. In casglljs
unmatched in strategy’, and inS, g0 is unmatched irt, butg1 is not matched greedily.

of the total packets sent. We give an upper bound on the anodwttaff that the attacker must
send in BDOUNDED-GREEDY-MATCH. We note that our analysis shows how the attacker could do
this if he mimics two independent Poisson processes, budytmot be necessary for him to do this
in order to evade detection.

Theorem 2.9. If the attacker ensures that his stepping-stone streamsamwo truly independent
Poisson processes, then, und®@oUNDED-GREEDY-MATCH, the attacker will not need to send
more than L -+ 0.05 fraction of packets as chaff in expectation, when the Paisso

V228 -2/ 120

rates of the streams are equal with rate

Proof: We divide the total time (coin flips) into intervals that axdong, and examine the expected
difference in one of these intervals. Notice that for thelketethat are within a specifis interval,
matches are not dependent on the times when they were gehefiat., any pair of packets in this
interval is no further thar\ apart in time, and therefore, could be made a valid matchhyigore
packets than this can be matched, across the interval boesdbut this gives us an easy upper
bound.

Consider the packets in the union of the two streams in thésval. Each packet in this union
can also be considered as though it were generated fromferéaif) unbiased coin, with heads as
stream 1 and tails as stream 2; once again, we have a unifodomawalk. Since every head can
be matched to any available tail, the amount of chaff is thmeeted (absolute) difference in the
number of heads and tails. Call this differen¢eand the packets on the union of the strea¥ns
X is then a binomial with paramete?s, andA. Therefore, E[X] = 2AA. The expectation o%
is then the following:

A 1
B[] = > —E[Z|X =2]P(X =2)
1
1
< 0.05 + —————, Whereoc = /2A(1 — 2\)A.
o V2A\A — 20 7 ()

Since every interval of sizA is identical, the attacker needs to send 5

end L +0.0
V23 —2y/ A (1-20)A
O

fraction of packets as chaff, at most, in expectation.

2.6 Conclusion

In this chapter, we have proposed and analyzed algorithmstdpping-stone detection using tech-
nigues from Computational Learning Theory and the analyisiandom walks. Our results are the

27

first to achieve provable (polynomial) upper bounds on thralmer of packets needed to confidently
detect and identify encrypted stepping-stone streamspithien guarantees on the probability of
falsely accusing non-attacking pairs. Moreover, our mashand analysis rely on very mild as-
sumptions, especially in comparison with previous work. alé® examine the consequences when
the attacker inserts chaff into the stepping-stone tradiic] give bounds on the amount of chaff
that an attacker would have to send to evade detection. Guitseare based on a new approach
which can detect correlation of streams at a fine-graineel.le®ur approach may apply to more
generalized traffic analysis domains, such as anonymoumcaination.

The results presented in this chapter are joint work withilAvBlum and Dawn Song, and

have previously appeared at tiigh International Sympoisum on Recent Advances in Intrusion
Detection, 2004 [17].

28

Chapter 3

Limits of Sighature-Generation with
Learning-based Algorithms

3.1 Introduction

It is well-known that automatic signature generation isamant — often, there may be small time-
windows between when a vulnerability is discovered, andnfhst-spreading exploits that target
it appear. Generating signatures manually is slow and-pmare, and thus, we need automatic
signature generation.

However, there are some requirements for the generatedtsigs to be useful. These sig-
natures need to identify most of the exploits (have low falegatives), and falsely identify very
few non-exploits (have low false positives). They need wae properties of exploits that do not
appear in normal traffic. They also need to be efficient sodigatatures can be generated quickly.
These requirements make automatic signature generatiardgptoblem.

A major line of research effort has focused on finding sigregtwsingpatternbased analysis,
i.e,, by extracting byte patterns that uniquely distinguishlexg using network traffic statistics
[70, 104, 71, 91, 77]. Sucbattern-extraction algorithmare attractive because the signatures can
be efficiently generated and matched. Pattern-extractgorithms are, at core, machine learning
algorithms: they use a pool of data containing exploits asrdnal traffic (called theraining poo)),
and look forinvariant byte strings that are present across all exploit packetsgdwmot occur in
the normal traffic. Earlier work has shown that such distisiging invariants exist, even when the
payloads are self-encrypting, e.g., even in polymorphicrmg) the high-order bits of the return
address of buffer overflows and protocol framing bytes atmdoto be invariant[91, 77]. This
research has led to interest in how pattern-extractionridifgos could be attacked or evaded [97,
92, 61].

In this work, we show fundamental limits on the accuracy airge class of pattern-extraction

29

algorithms in an adversarial setting. We formulate a fraor&what allows unified analysis of all
such pattern-extraction algorithms, and show lower boumdthe mistakes all pattern-extraction
algorithms need to make under some common assumptionspiyrghhow to adapt results from
learning theory. At a high level, our results show that atbons for pattern-extraction signature-
generation can be forced into making a significant numbealséfpositives or false negatives. Ear-
lier work on the limitations of pattern-extraction algbris have focused on individual algorithms
and specific systems. For example, Perdisci et al. [97] detraie if an attacker can systematically
inject noise into the training pool, Polygraph [91] failsgenerate good signatures. Newsome et
al. [92] illustrate similar results in Paragraph even wheveasary cannot inject arbitrary noise into
the training pool. Our results generalize these earliarli®shrough theoretical analysis, demon-
strating that similar attacks are possible on all such &lgos, with similar assumptions.

The central conclusion of our theoretical analysis is thmt pattern-extraction (and similar
learning-based) algorithms could be manipulated into naki number of mistakes on arbitrary
exploits, as a function of the adversary’s power to add radileg information to his exploits. Be-
cause we cannot predict how future exploits would look, imgortant to know (and this result
shows us) when and how much pattern-extraction algoritrontdde fooled. These results hold
when there is a valid signature of invariants, the signagiemerator uses randomized algorithms,
whose output the adversary cannot predict, and even ifrhositoring techniques like taint analy-
sis [33, 37, 93, 108] are used to identify exactly which p&slkeee exploits and which are not.

Our results are independent of the kind of function that tlger&hm tries to learn over the
byte sequence, (i.e., the algorithm is allowed to learn abjtrary complex function over the
invariant bytes), or computational complexity of the altfon. Our analysis also offers insight
into algorithms that refuse to tolerate one-sided errod, the lower bounds for these algorithms
are much higher than results for more general algorithmses&hesults show that, it is indeed
much easier for an adversary to manipulate an algorithmnttztes very few false positives, or
very few false negatives.

Existing experimental results (Perdisci et al. [97] andaBeaph[92]) already illustrate that the
assumptions for our analysis hold, at least for current lfambf pattern-extraction algorithms.
Our results demonstrate that if pattern-extraction algors (and similar signature-generation al-
gorithms) need to work in an adversarial environment, thegdnto be designed so that the as-
sumptions do not hold; i.e., that the adversary cannot firsigelset of byte strings, resemble the
exploit’s invariants in traffic frequency statistics.

We also explore when pattern-extraction algorithms (amdilai signature-generation algo-
rithms) may work. For example, if an exploit contains ingaits that are never present in normal
traffic, then it seems likely that the exploit can be idendifi®ur results show that the lower bounds
of some families of algorithms are noticeably weakenedgeusdme conditiong,e., when there
is a gap between the distribution of tokens in normal traffid ghe invariants of exploits. Our
analysis also offers insight into the kind of algorithmsttmay work and highlights the importance
of the function (over the invariants) that the algorithmriea algorithms that look for a simple

30

set of invariants (learning a simple conjunction of invat& have far worse lower bounds than
algorithms that look for more complex functions over theaiants; this implies that, unlike the
results for arbitrary exploits, it is far easier for the acbagy to manipulate those simple functions
when there is a gap in the traffic.

Our results are also applicable to other signature-gepargchniques besides pattern-extraction
algorithms. If, for example, a signature-generation atgor looks for protocol fields exceeding
specific lengths, but chooses the lengths based on malicaftis (e.g., COVERS [78]), our results
would still hold. The key limitation in pattern-extracti@hgorithms is that the adversary can easily
add patterns that are similar to exploit’s invariants, alg@thm cannot distinguish between the
invariants and those added by the adversary (red herriri@s).results are applicable as long as
this kind of limitation holds: the adversary can embed samfroperties to those invariant to the
exploit, and the algorithm cannot distinguish between them

3.2 Definitions and Overview

We now present the main definitions and assumptions that evéhusughout the paper.

3.2.1 Definitions

A signatureis a functions that classifies a given byte sequence (or, equivalenthkgipas ma-
licious or non-maliciousi.e., o(y) = Malicious when byte sequencgis an exploit, andr(y) =
Non-Malicious wheny is benign.

A signature may be based on various properties of the byteeseq, and we denote these
properties under consideration for signature generatsattebutes An attribute A is a function
whose input is the byte sequence and output is boolean:Aauld be whethetiaaaa is present
in a byte sequence. For this attribute, for byte sequeneeattttt, A(aaaaattttt) = true, while
for byte sequenceabbecttttt, A(aabbecttitt) = false. A signature could then be considered a
function of attributes; thus, in effect, a signature is action over boolean conditions. e.g.Afy)
andB(y) are attributes, a signature could b)) = {Malicious : A(y) A B(y)}. We say that an
attribute issatisfiedif it evaluates to true.

Recall pattern-extraction algorithms look for invariantéy strings that are present in the ex-
ploit, and not in normal traffic, and these invariants areelsftings that must all be present in the
exploit for it to be malicious, e.g., a signature reportedPmyygraph [91] is a pair of byte strings,
"\XFF\xBF" and "\x00\x00\FA' (the Lion worm exploiting the BIND TSIG vulnerability) We
refer to each such byte string asoten In our terminology, the attributes test for whether each of
these tokens is present, and signature is a conjunctioredimb attributes. We could denote this
signature as (y) = { Malicious : "\XFF\xBF'€ y A "\x00\x00\FA' € y}.

More generally, for pattern-extraction algorithms, aniladte tests for the presence of a partic-

31

ular token, perhaps at a particular location. For algorgtihat use more information, other kinds
of attributes would also be needed, e.g., COVERS [78] censittngths of fields, so an attribute
would also represent whether a particular field in the bytgisece is longer than a specific value.

For a fixed set of attribute&’, we can represent a byte sequence by the attributéstivat it
satisfies, and we describe how to do so now. We defiriastancei for a byte sequence and a set
of attributesG to be a booleam:-tuple, i.e.,i € {0,1}", where theith bit is 1 if theith property
holds true for the byte sequence. An instance thus is a remison of a byte sequence for a set of
attributes. So, if7 consists of the two attributes “Isiacaa} present?” and “I§bbbbb} present?”,
the byte sequencenaaazxxxbbbb would be represented &8, 1), andcccecrzzxabbbb would be
represented by0, 1). Theinstance spacés the set of all instances = {i € {0,1}™}. For the
rest of this paper, we consider the set of possible attribGtéo be fixed. Every byte sequence
is represented as a vector in the instance space, and oussime will be in this instance space
{0,1}™.

We also introduce some machine learning terminology. Tgerdthm is given soméraining
data, which consists of malicious and non-malicious irstanalong with théabels of each in-
stance, so that it knows which instances are malicious anidhvdre not. The algorithm finds a
hypothesisa function that classifies a given instance as malicioupofmalicious.

We define thetrue signatureto be the signature that achieves 0 false positives and 8 fals
negatives, on any set of instances presented to it. In legterminology, the true signature is the
target hypothesishat needs to be found by the learning algorithm. Once theesphattributes
is fixed, we assume there is only one true signature; of cptineee may be multiple functions
to represent this true signature.(If there are multipleaigres that can always achieve 0O false
positives and false negatives, then the bounds apply fdr sigoature, so this assumption is not
limiting.) We refer to the attributes in the true signatuseatical attributes

3.2.2 Overview of Learning Framework

The central question that we want to answer is the followingvhat extent can an adversary force
every learning algorithm to learn the signature slowly? Waneer this question by presenting lower
bounds on the algorithm’s performance. To do so, we need ssswenptions, and in this section
we describe and justify some basic assumptions we use. @lifrgohoosing these assumptions
is to give the algorithms in the signature generator as moglepas possible. The lower bounds
show that, even so, the adversary can evade detection fagditoe.

We focus on four different assumptions here: the learnindetdhe form of the true signature,
the label correctness, and the adversary’s knowledge @ltjogithms.

Learning model: Our analysis assumes that the algorithm is allowed to uptaiaternal
state after each batch of data that it sees, and these updatebe made over all of the data
accumulated so far. For example, if the algorithm has 10Bgiadn its initial training pool, and

32

then gets 50 packets in the next batch, the algorithm maytegtasignature after seeing the
second batch, and may then use all 150 packets to generatpdaged signature.

This is a little different from the typical machine learnisgtting, where the algorithm is given
a large batch of training data, allowed to learn a functioarad; and then tested on new testing
data. However, since we have a malicious adversary whoalsnpart of the data and aims to
delay learning, the adversary could ensure that, withodatgs, the algorithm never learns a good
signature. By allowing updates, algorithm might find a goigdiature over a longer period of time.
We can also perform a more informative analysis about hovalierithm’s performance evolves
with more data over time. The learning algorithm still does a@n initial training pool, which can
contain any number of malicious and non-malicious sample#yng as the assumption of Section
3 is obeyed.

In addition, since the adversary wants the algorithm to nekenany errors as possible, the
adversary aims to release information about the true sigmats slowly as possible. The adver-
sary can present information about exactly one new instameach batch (e.g., all the malicious
instances in the batch can be the same, so a mistake on thedastould cause H0% false neg-
ative).® In effect, it is as if the algorithm gets one new instance &ne tclassifies it, and updates
its internal state based on that instance. Our bounds wifl lerms of the number of mistakes the
algorithm makes in this setting, which also correspondheéaumber of updates it requires. In the
learning theory literature, this is known as the mistakerabmodel [79].

Form of the true signature: We assume that the true signature of the exploit is a conunct
of attributes — i.e., all attributes in the conjunction mbst satisfied by the packet. We do so
because conjunctions are the simplest form of signatuegfitve been historically considered, and
lower bounds for conjunctions imply lower bounds for morenpdex functions that can represent
conjunctions. For example, these lower bounds are alsorlb@ends for regular expressions,
because regular expression signatures can represenhctois.

However, we do not make any assumption on the form of hypethelsosen by the algorithms
for its internal state. The algorithm could use, for exampl&veighted combination of tokens as
its classifier. The learning algorithm et required to learn a conjunction.

Label Correctness: We assume that every label given to the algorithm is corfdus means
the adversary is forced to be truthful, and cannot decidbamge the signature (target hypothesis)
after the algorithm has been given data. This affords theritifign a lot of power: it is as if the
algorithm has an oracle like a dynamic runtime checker, amdtest each input on it. If the
adversary can lie, by adding carefully crafted noise for sanstances, or change the target, the
lower bounds would only increase.

Adversary knowledge: We assume that the adversary knows the kinds of attributesdsred
by the algorithm in question (and thus knows the instanceespa In some of our bounds (for

!Indeed, if the algorithm can update its hypothesis onlyyebaich, it is optimal for the adversary to present exactly
one instance at a time.

33

deterministic algorithms), the adversary needs to knovatperithm he aims to mistrain, but this
is not required for the bounds on the randomized algoriththese randomized bounds hold when
the adversary (a) knows the algorithm, but has no access fwiitate randomness, (b) does not
know the algorithm, or (c) does not know the parameters,(stgtistical algorithms using soft
decision boundaries).

3.3 Reflecting Set

In this section we describe the formal framework we will usehalyze limitations on learning-
based signature generation. Our key assumption is thattrexsary has the ability to construct
reflecting sets spurious attributes (e.g., tokens) that, to the learniggrahm, look at least as
plausible apriori as the actual attributes in the signatlifeese take the role of the "concept class”
in learning theory, and the larger the set, the strongernh&kion. Below, we motivate the notion
of reflecting sets and give formal definitions, focusing ottgra-extraction algorithms, especially
Polygraph [91] & Hamsa [77].

3.3.1 Motivation & Definitions

We begin by observing a common property of many strategiepgsed to evade detection by
pattern-extraction algorithms. A wide range of stratediase been proposed for evasion, and
all of them succeed because the adversary can increase rfieenof tokens that resemble the
tokens critical to the signature. For example, in red hgratiacks [91], the attacker adds spurious
tokens to the true signature, and the attack succeeds whkealgbrithm mistakenly considers
those as part of the true signature. Likewise, in noise figea@ttacks [97], allergy attacks [61] and
suspicious/innocuous pool poisoning attacks [92], theeesiry manipulates the token distribution
in the training or testing pool, by adding well-crafted (ii@us or normal) packets with carefully
chosen tokens, and changing the distributions of varioksn® in the training pool. Here again,
how effective the attack is depends on how much the attagteclesange the tokens considered by
the algorithm.

Thus, these attacks succeed when the algorithm is unableritwriedistinguish between the
tokens critical to the true signature, and any spuriousrisklat happen to resemble these critical
tokens. The attacker forces the algorithm to fail by catgfacreasing the appropriate resemblance
between the critical and spurious tokens, and he may be@Uke this for other kinds of attributes
as well. We will use the termreflecting set$o describe these sets of resembling attributes, as each
attribute within a reflecting set appears to reflect all ofdtieer attributes in that set.

Definition: We now define reflecting sets formally: L&denote the true signature for an exploit,
and letA denote a signature generation algorithm. Petf;[S’] denote the probability that gives

34

to the functionS’ being the true signature. Lét;, Cs,...C; be sets of attributes, such that the
signatureS contains an attribute; in eachC;. Let7 be the set of functions obtained by choosing
one or more attributes € C;, to replace the corresponding propestyn S. Let W,, andW,,,,, be
the malicious and non-malicious instances seen by theitdgoso far, and letV = W,,, U W,,,.,.
Let 7y be the set of functions il consistent withiW. If Pr4[T] = Pra[T"], for any pair of
functionsT, 7" € Ty, for all W, then the set§’;, C, ... C; arereflecting setdor the signatureS
and the algorithmi.

Thus, from the point of the view of the algorithm, it is as ifyatombination of attributes, as
long as one is picked from each reflecting set, could be thedignature even after analysis over
all of the training data. 17" denotes the set of all combinations of attributes that oetuone from
each reflecting set, then the algorithm the true signatur@ appears to be drawn at random from
7.

An additional aspect of this definition is that reflectingssate specific to an algorithm (or a
family of algorithms). We define the reflecting sets this wagduse different algorithms could use
different aspects of possible attributes to identify aliikégnature, and therefore, a reflecting set
for one algorithm may not be a reflecting set for another @lgor. For example, the conjunctions
algorithm of Polygraph uses every infrequent token thaeappin all of the malicious instances as
its signature. For this algorithm, a reflecting set is versilgaonstructed by simply adding more
infrequent tokens to all of the malicious instances. Suchnple reflecting set, however, would
not work for other algorithms, e.g., the naive Bayes albaniin Polygraph, or Hamsa'’s algorithm.

Learning with Reflecting Sets: In this paper, we analyze the problem of learning a signature
with a malicious adversary as the following: for every catiattribute, the adversary may include
the respective reflecting set in the packets (normal or moak; as needed). The goal is to find
the true signature by identifying the critical attributislating them from their reflecting sets. We
define the problem formally in the next section.

3.3.2 Finding Reflecting Sets

The results of this paper are applicable to algorithms whésepossible/easy for the adversary to
construct reflecting sets (or sets with a bias away from e $ignature) for the attributes in the
true signature, e.g., pattern-extraction algorithms.dnegal, this could be done for algorithms that
require information from (adversarially-generated) eis| but cannot identify the true cause of
the exploit, and therefore, the attribute or parameter kbagn can be forged by the attacker.

It is also not strictly necessary for all the attributes ia thflecting set to have identical traffic
statistics: the goal is to capture the algorithm’s inapitd distinguish between different attributes
inside the set, and therefore, unable to bias any selectivartls the true signature. If the reflecting
sets are chosen so that the algorithm’s choice of signatigeslikely to be the true signature, then
the lower bounds would only increase, e.g., Hamsa's algoriprefers tokens with the smallest

35

frequency in normal traffic pool, and the attack suggestel$ agurious tokens that are even less
frequent, and therefore, would cause the algorithm to maleaat as many mistakes.

The quantitative bounds on algorithms’ errors are relatetthé size of the reflecting sets that
can be found for the attributes. The size of any particulilecéng set depends on the nature of
the exploit (e.qg., its distinguishing properties, the poats applicable), the adversary’s ability to
manipulate the training and testing pool, and the kindsgfatiures that the algorithm aims to learn
for it. The adversary may craft these reflecting sets eithi@xiplicitly including selected attributes
in the malicious instances, or sending specific types o&itss in the training data. Because the
adversary crafts the reflecting set for the signature gémrsrahe adversary knows the reflecting
set.

Earlier experimental work (e.g., in Paragraph) has dematest that reflecting sets can be
found for current generations of pattern-extraction atbors. Further, polymorphic blending at-
tacks [50] suggest that it may be possible to find such reflgets for many pattern-extraction
algorithms, as long as the algorithms use byte-based tsifftistics for finding the priors of the
critical tokens in the signature (e.g. [119]). We beliewsduld be typically possible to find reflect-
ing sets for pattern-extraction algorithms in generaleesdly those which use the traffic statistics
of individual tokens, due to the heavy-tailed nature of rariraffic distribution, i.e., if tokens in
signatures typically consist of combinations that are maneormal traffic, and the distribution of
token combinations in normal traffic is heavy-tailed, thieis likely that an adversary will be able
to easily find reflecting sets consisting of rare token coiatioms.

3.4 General Adversarial Model

In this section, we consider a general adversarial setind,we present impossibility results on
learning algorithms that generate signatures in this model

3.4.1 Learning Model

We present our analysis in the mistake-bound model of legrnAs described in Section 3.2.2,
we choose this model because it affords the algorithm sggmfipower, but even with this power,
the adversary can delay signature generation. In this mtueklgorithm gets an initial training

pool (of any size), and then gets one instance at a time tgifjlaslassifies it as malicious or

non-malicious, and is then told the correct label of theansé. The algorithm then updates its
hypothesis. The algorithm’s goal is to converge to the tigeature while minimizing the mistakes

made.

Each instance given to the learning algorithm israftuple boolean vector, i.e., a point in
{0,1}™. The true signature, or target hypothesis, is a conjunafonattributes: an instance must
contain alln attributes to be malicious. As discussed in Section 3.3,38arae the adversary can

36

find a reflecting seC; of size k for each critical attributé, and the algorithm cannot distinguish
between the attributes insidg;. It may, however, be able to distinguish between attribiies
different reflecting sets, and we need to account for thisienldwer bounds. Thus, the set of all
valid hypothesedd is the set of all conjunctions containing an attribute frometereflecting set;
thus|H| = k™. We refer to then bits in the true signature as tkerget bits Because the adversary
crafts the malicious data, he can ensure that even with #@alitiaining pool, no information
is released about the critical attribute, to distinguismiits reflecting set. The total number of
attributesm = nk, the product of the number of critical attributes and the sizeach reflecting
set.

Our bounds are in terms of the number of mistakes made by gloetfim. The mistakes made
can be interpreted as the number of updates required to rgent@ the true signature, when the
algorithm receives the correct label right away. The missaik this model imply false positives
and negatives in the standard batch setting: a mistake orlieiona instance is a false negative,
and a mistake on a non-malicious instance is a false pasifive exact false positive and negative
rate that a mistake (or a sequence of mistakes) causes d@eperitie specific algorithm, but a
worst-case estimate on any particular batch can be seemewtiethe algorithm makes a mistake,
the adversary can generate a distribution that caud@8% false negative rate (for a malicious
instance), or potentially a large false positive rate (fooamal instance).

There are two ways in which a target hypothesis can be chasehd lower-bounds analysis.
The adversary can choose the target hypothesis from thé,smtnature picks the target at random
from the setH, and the adversary knows the target hypothesis selectederlioounds for the
second way of choosing the target clearly imply lower bouodshe first.

Representation of Hypothesis Even though the target hypothesis is a conjunction of thgetar
bits, there is no requirement that the learning algorithemie conjunction of the target bits. That is,
the learning algorithm is free to choose any function, ag s it agrees with the target hypothesis
on all the instances seen.

Formally, letzy, ..., x,, denotem bits of an instance, where; = {0,1}. In this context, a
conjunction hypothesis is a functian, A = A ...z, for somer values, and evaluates to true if
all bits x,, . .. - arel. A linear separatorhypothesis is a function of the for@:ie[lvm] w;Ti > q
where the weightsy; € R. All instances that satisfy the condition (i.e., weightemnbinations of
bits exceeds the threshafjl evaluate to true.

Therepresentatiorof the hypothesis is the type of function learnt by the akboni, e.g. a linear
separator or conjunction. Polygraph uses both conjursionl linear separators, and Hamsa uses
conjunctions. The results in this section are independgthtechypothesis representation chosen.

37

3.4.2 Results

We now present our results in the learning model describedealiEach of these lower bounds can
be derived from more general results in learning theorypooofs show an explicit construction of
instances that achieve the bounds for our setting. In thef pifeeach theorem, we show a sequence
of instances for which any algorithm must achieve the statistiake-bound?

We first present bounds on the overall number of mistakesatmatdeterministic or random-
ized algorithm could be forced to make. Theorem 3.1 showsawery deterministic algorithm,
regardless of what it learns, could be forced to make at least °- mistakes by an adversary —
thus, the mistakes grow linearly in the size of the signatow only logarithmically in the size of
the reflecting setg = 2

.
Theorem 3.1. (Deterministic Algorithms) For every deterministic algorithm, an adversary can

generate a sequence of instances such that the algorithorcisd to make at leastlog k& mistakes,
wherek is the size of the reflecting sets.

Before presenting the proof, we discuss some common elsnoé@l proofs in this section.
As described in Sec. 3.2.2, the adversary is in control ofllaéicious instances presented in the
training data. The adversary’s goal is for the algorithnetrh as little as possible, and make many
mistakes. Thus, it is optimal for the adversary to generlitmalicious instances identically, so
that each instance contains Alhttributes of every reflection set. Note that this does naflicb
with our assumption that there is no noise in the trainingdat that the adversary is required to
be truthful.

Formally, in the instance spadd = i € {0,1}"}, the argument above says that adversary
gives the algorithm many copies of the instanee {1, 1,... 1} in the training pool. For example,
in red-herring attacks on pattern-extraction signatureegegors, this instance can be thought of the
initial input given to the learning algorithms: all initiaistances contain all red herrings as well as
the invariants. Note that the target hypothesis is selesttedversarially or at random from the set
H, and all hypotheses i are indistinguishable to the algorithm. This implies theg adversary
can ensure that the algorithm gains no additional inforomagibout the target bits from the training
data.

Proof: Our proof is an application of the bounds proven in [79] to seiting. For completeness,
we present the whole proof here to illustrate the sequenoestainces that the attacker can present,
in order to force the mistakes indicated in the lower bound.

Let us assume that the algorithm can divide bits into setscihr@espond to a critical attribute
and its reflections. By definition of reflection, the algamitttannot distinguish between theke
properties, even if the algorithm is powerful enough toidgtish properties inta sets ofk.

2The adversary does not require knowledge of the algorithwersviour to generate the next instance. He would for

the lower bounds on deterministic algorithms, but the beundthe randomized algorithms apply even if the algorithm
is a blackbox to the adversary.

38

We show a sequence of instances that force the algorithm lte ln@ k& mistakes, for a single
reflecting set ofc properties. Since there aresuch sets, and no reflecting set can provide infor-
mation about targets in any other reflecting set, using thédegyy on each of will generatelog &
mistakes.

With knowledge of the deterministic algorithm, the adveysean decide where to place the
target bit in the reflecting set as follows: the adversaryosks a set of bits. If the algorithm
labels it positive, it places the target bit in the other $6t e ¢ bits, otherwise it places it in this set.
By observing the actions of the algorithm, the adversarydmasen a set of min(k — t) bits in
which to place the target bit. The adversary can repeat thisegs until it isolates where to place
the target bit.

Thus, because the algorithm is deterministic, it is eqevato the adversary deciding which
bit to choose as the target bit, rather than deciding whepéatze the target bit.

The adversary begins by setting= k/2, i.e., it presents an instance withi2 bits set. After
the algorithm makes a mistake on the instance, the advepsasgnts an instance witty4 bits
from thek /2 bits where the target bit needs to be present. This processuaes until the number
of bits is reduced td. Theith instance presented by the adversary h&% bits set to 1, and
forces the adversary to commit to the presence of the thetthigin one ofk/2¢ bits, and the
adversary forces a mistake on each instance. Thus, algoistifiorced to makéog £ mistakes on
this sequence of examples.

If there are multiple critical attributes within a singldleztion set, the adversary can treat this
set as two separate reflection sets, each ofisiaed achieve the same number of mistakes.m

Since the bound of Theorem 3.1 scales logarithmically withriumber of spurious attributes,
it is natural to ask whether this lower bound is tight. The Mdéw algorithm [79] achieves a bound
within n log n additive factor, showing that the bound is nearly tight.

However, much of the error in the previous theorem comes fileenadversary’s ability to
predict what the algorithm would do next. A common solutiertd allow the algorithm to use
randomization. Theorem 3.2 analyzes the number of mistakete if the algorithm is randomized
(or equivalently, unknown) to the adversary. It shows theneif the signature generator uses a
randomized algorithm, the algorithm can be forced to gdaexdot of mistakes in expectation, half
the mistakes of the deterministic case.

Theorem 3.2. (Randomized Algorithms)For any randomized algorithm, an adversary can gen-
erate a sequence of instances so that the algorithm will miakexpectation, at Ieas%nlog o
mistakes, wherg is the size of the reflecting sets.

Proof: Our proof is an application of the bounds proven in [79] to seiting. For completeness,
we present the whole proof here to illustrate the sequenoestainces that the attacker can present,
in order to force the mistakes indicated in the lower bound.

The proof is similar to Theorem 3.1. The initial instancesemted by the adversary, as before,

39

contains all attributes, or equivalently, all bits set tol. As before, the algorithm may be suffi-
ciently powerful to distinguish the reflecting sets, butahoot identify the critical attributes within
each reflecting set.

The sequence of instances that the adversary presentsla simt chosen randomly. For each
reflecting set, the adversary does the following before therithm identifies the target bit. The
adversary chooses a setof2 bits at random from all sets &f/2 bits, and presents an instance with
this set ofk /2 bits. Then, with probability 1/2, the target bit is presemthis set. The probability
that any decision given by the algorithm on this randomlyseimoset of: /2 bits is correct isl /2.
Thus, the algorithm has a chancelg of making a mistake on this step.

Once the label is given by the adversary, the informatioruatiee target bit is reduced fg/2,
as in the deterministic case. The adversary then picks af seteok /4 from the set of size:/2
containing the target bit. This continues until the targétidisolated, which takesog &k steps.
Thus, the algorithm has an expected erro% bdg k.

For every reflecting set of size the algorithm will make an expecté%gi“ mistakes, and so
the total expected number of mistakes will pelog k, i.e., inlog 2. n

Theorem 3.2 shows that an arbitrary deterministic algoriie not too much worse than a
randomized algorithm, and suggests that some deterngirdikjorithms may not fare too poorly.
This result is, however, dependent on the nature of deté&smiim the algorithm. For example,
one kind of extreme determinism is to guarantee no falsetipesior no false negatives. Such
algorithms are attractive, since it seems better to haveleécette only one kind of error.

We now consider one-sided algorithms: algorithms whichreeallowed to make (many)
false positives or (many) false negatives. Our results ghaivone-sided algorithms can be forced
into making many more errors than algorithms with an arbyti@eak-down of mistakes (e.g., in
comparison to Theorem 3.1). Guaranteeing a small numbeistékes of either false positives or
false negatives forces the algorithm to make a large nunfbrarstakes of the other kind.

Theorem 3.3. (Bounded False Positives) an algorithm is not allowed to make any mistakes on
non-malicious instances, there exists a sequence of icssasuch that it is forced to make at least
n(k — 1) mistakes on malicious instances. More generally, consadealgorithm that is forced to
make fewer tham mistakes on the non-malicious instances, et n. Then the algorithm must
make at leastn — t)(k — 1) mistakes on the malicious instances.

Proof: Our proof for the case of = 0 is an application of the theorems in [9] to our problem, a
restriction of the general learning problem. We extendftiiis > 0 in our proof. For completeness,
we present the whole proof here to illustrate the sequenoestainces that the attacker can present,
in order to force the mistakes indicated in the lower bound.

Lett = 0. Then, we need to show a sequence of instances such thagtrérah makes at
leastn(k — 1) mistakes. If the algorithm is allowed to make mistake on non-malicious instances,
it must always label an instance to be non-malicious whenunhicertain of the label of an instance.

40

In order to have the algorithm make a lot of mistakes, the i@dwg has to present a sequence of
instances such that the algorithm is always forced to ldlnelri-malicious. The adversary does this
as follows: in theith epoch he picks one reflecting séf; to focus on, and the instances presented
have the bits that correspond to all the other reflecting(gets other thar(;) all setto 1 (e.g., in
the first epoch, all bits that correspond to reflecting gét¢o C,, are always set to 1). He starts
the epoch by presenting the instance with all bit€inset to 1, and he chooses one additional
non-target bit from the current instance, and sets it to Gtwegate the instance that follows.

Thus, within an epoch, every instance received by the dlgarisubsequent to the first in-
stance) has one fewer bit set to 1 than the previous instahoeever, it does not know whether
the target bit has been set to 0, by definition of the reflecsigiy and therefore has to label the
instance non-malicious. As the adversary does not set tfetthit to O, each instance presented
to the algorithm is indeed malicious. The adversary cangotes — 1 such instances for each
reflecting set, and thus, there arg: — 1) mistakes made by the algorithm.

Whent > 1, the algorithm may make at masincorrect guesses on non-malicious instances.
The adversary may use the same sequence of instances abatkstiove, and because the algo-
rithm is deterministic, the adversary knows when the atgoriwill label an instance to be mali-
cious. The adversary can then choose the target hypottetisis at that point, a non-malicious
instance is presented, i.e., it is the target bit of the seleveflecting set that is dropped at the
instance (though all bits dropped earlier in the epoch dteenh-target bits, as before). With this
change, algorithm has then made a mistake on a non-malitistace, but also knows the target
bit for the relevant reflecting set, and will not make any mmistakes within that epoch. Thus,
each mistake on a non-malicious instance in this sequenealsghe target bit of one reflecting set,
but no information about any other reflecting set. When thgerghm is allowed: such mistakes,
the adversary can force the algorithm to make at léast ¢)(k — 1) mistakes on the malicious
instances. [

Such large mistakes are not special to only algorithms #watire a small number of false pos-
itives. Theorem 3.4 shows mistake-bounds for algorithras itust make very few false negatives.
Indeed, these mistake-bounds are much larger than thodeeiordm 3.3, fokn > n (i.e., since
reflecting sets may be large, but contain only one targetdgihe

Theorem 3.4. (Bounded False Negative#f)an algorithm is allowed to make no mistakes on mali-
cious instances, an adversary can generate a sequencetahaes so that the algorithm is forced
to makek™ — 1 mistakes on non-malicious instances. More generally, idens deterministic
algorithm that is forced to make fewer thamistakes on malicious instances, fox n. Then the
algorithm must make at least+ — 1 mistakes on non-malicious instances.

Proof;

Our proof for the case of = 0 is an application of the theorems in [9] to our problem, a
restriction of the general learning problem. We extendftirig > 0 in our proof. For completeness,
we present the whole proof here to illustrate the sequentestainces that the attacker can present,

41

in order to force the mistakes indicated in the lower bound.

Once again, we begin with the caseto= 0. Now, the adversary is allowed to make no
mistakes on the malicious instances. Therefore, any tirealfjorithm receives an instance, it
must label it malicious, unless the algorithm is certairt tha instance is not malicious.

The adversary presents any non-malicious instancemliits present, subject to the following
two conditions: (1) exactly one bit is present from each otiftg set, (2) all target bits are not
present in the instance (this follows by definition of a noalinious instance). Each instance in
this sequence is non-malicious, but the algorithm is fotoddbel it malicious: the algorithm does
not have enough information to distinguish whether anyi@adr bit present from a reflecting set
is truly the target bit for the reflecting set, until a maliggoinstance has been presented.

More formally, letA denote the set of all instances that satisfy the above twdittons: each
instance inA contains exactlyn bits set to 1, and only one bit is set from each reflecting set.
Let i,,,; denote the sole malicious instanceAn The adversary presents instanégss, . . . from
A—{ina} to the algorithm, one at a time. Defilig to be the set of the first instances presented,
for w < |A — {i;ma }|. With the non-malicious instances Iy, it is consistent for any instance in
remaining inA — I, to be the malicious instance, and so the algorithm mustmoatio classify
the next instance as malicious. Thus, the algorithm is tbtoenake a mistake on every instance in
A — {ima }- There arék”™ — 1 such instances, and therefore, the algorithm méKes 1 mistakes.

A similar analysis can be applied for < t < n. We focus ont = 1 for simplicity. The
adversary now divides the reflecting sets into two equalggod;, and A,, and each reflecting set
goes into one ofd; or A,; so, each groupd; and A, will account form/2 bits. The adversary
chooses instances in two phases: in the first phase, alhoedaset all bits fron#; to 1, but only
set one bit from each reflecting setih to 1 (som/2 bits in A; but onlyn/2 bits in As). In the
second phase, the roles 4f and A, are reversed: all instances set all bits framto 1, but only
set one bit from each reflecting set#y to 1 (som/2 bits in A, but onlyn /2 bits in A;). There
arek™? — 1 non-malicious instances in each phase.

Recall that the algorithm may make at most one mistake on eimas instance, and thus it
can call an uncertain instance non-malicious at most oneealse the algorithm is deterministic,
the adversary knows when the algorithm will classify andnse to be non-malicious, and chooses,
ahead of time, the target hypothesis appropriately to eniat at that point, a malicious instance
can be presented.

We term the algorithm to baon-conservativef it labels an instance malicious in the first
k™2 — 1 instances that it sees, otherwise we term tocbeservative For a non-conservative
algorithm, the adversary presents non-malicious instafrcen Phase 1 until the point where it
would label an instance malicious, and then the maliciostimce from Phase 1, to ensure that the
algorithm makes a mistake on the malicious instance. It gfresents the non-malicious instances
from Phase 2 to the algorithm. With this sequence of insgnitee algorithm needs to identify
then /2 target bits in Phase 2 without making any mistakes on thecinah instances, and every

42

hypothesis is consistent with the instances and labeleptred in Phase 1. Thus, the mistake-
bound of Phase 2 reduces to the case ef 0, with a target hypothesis of size/2, and so a
non-conservative algorithm makes at lelst> — 1 mistakes.

The analysis for a conservative algorithm is similar, exd¢bpt the malicious instance is pre-
sented at the appropriate point in Phase 2. Thus, this #igoras to make at leagt/? — 1
mistakes on the non-malicious instances in Phase 1. Thgssathent < n is also similar, the
adversary simply divides the reflecting sets intg groups, instead of dividing it into 2 groups,
whent = 1. [

We note briefly that lower bounds in Theorems 3.3 and 3.4 mapatight for large values of
t. Nevertheless, they still serve to illustrate the effecaltidwing very few false positives or false
negatives.

We note also that the bounds of Theorems 3.3 and 3.4 are \iéeyedi. Intuitively, the ba-
sic difference between them arises from the kind of the médion that is encoded in an exploit
(malicious instance), when compared to a non-exploit (maticious instance) packet. In The-
orem 3.3, the adversary forces the algorithm to learn théo#xjpom only exploit information,
while in Theorem 3.4, the adversary forces the algorithneamr the exploit from only non-exploit
information. As there may be far more non-exploit packentaxploits, each of which encodes
very little information about the exploit, the adversaryndae able to force many more errors in
Theorem 3.4.

3.4.3 Practical Implications

Discussion The central conclusion of the theoretical analysis is thgt@attern-extraction (and
similar learning-based signature-generation) algoriticmuld be manipulated into making a signif-
icant number of mistakes, in terms of the total number oEfaissitives and false negatives gener-
ated. This holds when the signature-generator uses ramddraigorithms, whose output the adver-
sary cannot predict. It holds even if host-monitoring tegbas like taint analysis [35, 37, 93, 108]
are used to identify exactly which packets are maliciouswahigh are not. Our analysis suggests
that these algorithms could work only when they are desiguetthat a large reflecting set cannot
be found.

Existing experimental research has already demonstraedetsibility of these attacks on
real systems, e.g. Paragraph shows that it is feasible tmddye number of tokens to a real
buffer-overflow exploit against the ATPhttp web server, ahdws how this affects the detection
of polymorphic worms by Polygraph and Hamsa. This disrupttocaused by the sequence of the
instances presented to the algorithms, so that the algouibes not have enough information to
infer the correct target. In our proofs, we show construngiof sequences of instances that force
every algorithm to make a lot of mistakes.

The results also show that if pattern-extraction algorghmeed to be used, an algorithm like

43

20

-+ - Lower Bounds —— Determ
- e-Lower Bound — Randomize
1501« Polygraph — Conj
—o—Hamsa

-s--Polygraph — Naive Bayes
100 o

[=}

No. of updates

50- o

g —h —k o Rk o Fm ok

2 4 6 8 10 12 14 16 18 20
k: Reflecting Set Size

Figure 3.1: Comparison of lower bounds and current algmstlior general case: number of up-
dates required before convergence to the true signature.

Winnow [79] may guarantee better accuracy in adversaritihgs. Using a more complex algo-
rithm would not gain a significant improvement. This is esaigcso these bounds are independent
of the representation of the algorithms used (one coulchlany arbitrary complex function over
the instance space), or the algorithm’s computational d¢exity. Still, Winnow’s mistake-bound
offers insight into using a more expressive representdtian the basic conjunction used in several
algorithms.

Lastly, our analysis offers insight into algorithms thaiuse to tolerate one-sided error. The
mistake bounds for these results are much higher than sésultnore general algorithms. These
results show that, it is indeed much easier for an advergsamyanipulate an algorithm that makes
very few false positives, or very few false negatives. Spely, note differences in their depen-
dence ork, the size of the reflecting set: Theorems 3.1 and 3.2 haveaaitbgiic dependence on
k, while Theorems 3.3 and 3.4 have a polynomial dependende dihus, for an arbitrary algo-
rithm, the adversary would not gain significantly from signpbhdding the malicious packets with
red herrings, though he does so for one sided algorithms.

Comparison to Existing Systems As a specific illustration of the bounds, we compare lower
bounds with the estimated mistakes (through calculatiba) would be made by the Polygraph
suite of algorithms and Hamsa. These mistakes are made wHfenting sets can be found for
these pattern-extraction algorithms, but this has alr&seyn demonstrated in Paragraph.

For our comparisons, we use the attacks suggested in Palnafgraeach of the algorithms. In
the red herring attack suggested on Polygraph’s conjumetigorithm, a mistake can be induced

44

on every presented instance by dropping a token each tirkewise, for the Hamsa'’s algorithm, a
mistake can be induced for each spurious token by droppm¢ptten with the smallest frequency
at the time. On the naive Bayes algorithm, mistakes can heaulby the correlated outlier attacks
shown: each malicious instance presented is crafted widmtappearing in normal traffic, forcing
the algorithm to classify it as non-malicious.

Fig. 3.1 shows the number of iterations in which mistakesld/be made, as a function of the
size of the reflecting set, for a signature with 10 tokens hid¢hese algorithms require iterations
linear innk, wheren is the number of true critical attributes in the signatured & is the size of
the reflecting set. The lower bounds, on the other hand, gvgarithmically ink. Of course, it is
harder to find a reflecting set for the Bayes algorithm tharctmgunction algorithm in Polygraph,
and it is similarly harder to find a reflecting set for Hamsddpdathm. For example, if there are
10 tokens in the true target signature, a reflecting set ef Bizfor each token would mean that
the lower bounds for deterministic algorithms require 3datps, and the randomized algorithms
require 17 updates. In contrast, the Polygraph conjunetigarithm and Hamsa's algorithm could
be manipulated into requiring 100 updates.

Further, all of these calculations assume that there isfaotie way to ensure that the pre-
sented instances are (later, at time of update) corre@gsifled, and that updates are immediate. A
lag in updates would increase the number of batches seeth@mdore, mistakes seen) before con-
verging. If, for example, the algorithm gets the correceladnly every 10 iterations, the number
of mistakes could increase by a factor of 10.

3.5 Exploiting Gaps in Traffic

In this section, we examine when signature-generatiorrigtgas would work, even in the presence
of adversaries, and when there may be large reflecting setsdwignatures. For example, if an
exploit’s invariant tokensieverappeared in normal traffic, it ought to be possible to idgrttiis

exploit with pattern-extraction algorithms. Our goal isuttderstand conditions under which these
learning algorithms might work, even if they must learn gueaaperties which have reflecting sets.

The lower bounds analysis in the previous section was basd#ukcexistence of a sequence of
instances (or equivalently, an adversary who generategieesee of instances) for the algorithm to
classify, and these instances could be drawn from any pothti instance space. Thus, effectively,
the algorithm needed to be able to classify every singlents correctly, and was required to have
a small number of mistakes on any sequence of instances. ypoghiesis found by the algorithm
was required to agree with the target hypothesis on evegjesinstance in the instance space.

However, there might be situations when such a requirensemiore stringent than necessary.
For example, while we would certainly want the algorithm todble to classify all malicious in-
stances generated by the adversary, perhaps we do not mealgjohithm to classify all possible
non-malicious instances, unless they are regularly ptasemormal traffic. A reasonable goal

45

might be to ask an algorithm to only classify correctly themoalicious instances that are truly
present in normal traffic, rather than any arbitrary comtiimaof properties generated by an ad-
versary. In this situation, an algorithm would need to agvéh the target hypothesis only on the
malicious instances, and the non-malicious instapecesent in normal traffic

Thus, the algorithm can disagree with the target hypothmsia region of the instance space,
the region where the non-malicious instances are not presaarmal traffic. In this case, it might
be possible to make fewer mistakes, as a function of how ldrgegap between the malicious
instances and the normal instances are. The analysis irB3eaddresses the case when there is
no gap between normal instances and malicious instances.

Recall that the instance space is a boolean hypercub@ ir™. The malicious instances are
instances which have all target bits set td, regardless of the values of the remaining— n
bits. The non-malicious instances are all the remainintaimt®s. The non-malicious instances
truly present in normal traffic may be only a small subset esthinstances. We need a way to
quantify the region of the instance space that the algoridbes not need to classify correctly. We
do this by defining how to measure the gap between the two tyigesffic in Section 3.5.1. Then,
in Section 3.5.2, we describe the learning model. We descgbults in Section 3.5.3, and their
practical implications in Section 3.5.4.

3.5.1 Defining the Gap

Intuitively, our goal is to measure how close the normafica$ to the malicious instances, e.g., if
few attributes of the malicious instances are present imtihmal instances, we would like the gap
to be large. Further, we would like the gap to capture somagit property between the normal
traffic and the malicious instances, which the adversamaamanipulate over time. That way, we
can then measure the effect of the adversary’s manipulafitme malicious instances for different
kinds of gap.

We measure the gap in the following manner:4dbe the set of target attributes — the attributes
that must truly be present in the malicious instances (inrmiationn = |Z|). We define the
instance-overlapf a normal instance to be the fraction of attributes df that is present in the
instance. We define thmverlap-ratioof the normal traffic to be the maximum instance-overlap of
anyinstance in normal traffic. In other words, the fraction afj&t attributes present in a normal
instance is, at most, the overlap-ratio. So, for examplegxioit whose invariant is a single
token that never appears in normal traffic has overlap-ati©ur definition is motivated by the
observation that tokens extracted in signatures are veeyimanormal traffic, and the appearance
of multiple tokens together is even rarer.

46

3.5.2 Learning Model

The learning model in this section is similar to the one int®ec3.4, however, we need to make
some crucial changes. A hypothesisoigerlap-equivalento the target hypothesis if the two hy-
potheses agree on all the malicious instances, and all radiciaus instances truly present in the
normal traffic. The goal of the learning algorithm is to findeuerlap-equivalent target hypothesis,
when the target hypothesis is drawn at random from the sell @bl hypotheses. As in Sec-

tion 3.4, we give mistake bounds for algorithms that arewald any number of samples, and any
kind of running time. However, the bounds now depend on thessentation that the algorithm

uses to find an overlap-equivalent hypothesis.

We used to denote the overlap-ratio of the normal traffic distribatwith the target hypothesis.
The overlap-ratio also has an implication for the reflectiets that the adversary chooses. The
attributes in the reflecting sets may also need to obey theapveatio, otherwise, they may not be
reflecting sets for some algorithms anymore. That is, thetsersay need to be chosen so that no
more thand fraction of the reflected attributes from different reflagtisets can be present together
in any instance in normal traffic.

3.5.3 Results

We now present lower bounds on the mistakes made in this madidike the previous model,
these results depend on the representation used by thétalgowhenever the overlap-ratib< 1.
This is because there is always a signature that can be egpeesin the disjunctive normal form:
the signature just looks for the presenceny of the k" possible combinations of the attributes is
always correct® To our knowledge, this model has not been analyzed before.

We describe lower bounds for two commonly used representticonjunctions and linear
combinations of attributes, and we show lower bounds on tetérministic and randomized algo-
rithms. Our bounds are in terms of the mistakes made on a segwd instancesonsistenwith
a given overlap-ratial: every non-malicious instance in the sequence has an gestarerlap of
at mostd. As these instances are consistent with overlap-gtibey could potentially appear in
normal traffic. In other words, our theorems imply that, wilee overlap-ratio i/, there exists
normal traffic for which every algorithm has to make a certaiimber of errors (as a function of
d).

Theorems 3.5 and 3.6 show lower bounds for learning coripmetfor deterministic and ran-
domized algorithms. They show that the mistakes made by lgayithm that is forced to learn
conjunctions of attributes scales linearly with the numtifeattributes, as well as the overlap-ratio
of the normal traffic distribution.

SAlternately, one can consider this signature to be an ORtinmof the set of all valid hypotheses described in
Section 3.4.1.

a7

Theorem 3.5. (Deterministic Algorithms using Conjunctiors) Let the overlap-ratio of the nor-
mal traffic bed, and letk be the number of attributes in each reflecting set. For @nyere exists
a sequence of instances consistent with overlap-r@sach that any deterministic algorithm that
learns an overlap-equivalent conjunction will need to makkeast(k — 1)(dn + 1) mistakes.

Proof: We prove this in two parts: we first prove that any determimiatgorithm learning a
conjunction withdn + 1 bits may be forced to make a lot of mistakes, and then we shatihbre
exists a sequence of non-malicious instances consistémiowerlap-ratiad, so that the adversary
can force algorithm to learn a conjunction with + 1 bits.

We first show that any deterministic algorithm that learnsmgjunction withdn + 1 bits could
be forced to makék — 1)(dn + 1) mistakes, when reflecting sets are of siz&\Ve count only the
mistakes made on malicious instances, and therefore eatstahces must contain alltarget bits.
The adversary may generate a sequence of instances in lineifg manner: he starts with the
malicious instance that has all bits set to 1, and in eachespuiesit instance, he sets one additional
non-target bit (from any reflecting set) to be 0. Because lfperithm is deterministic, the adver-
sary can choose the target hypothesis and the bit that is Seat each point and ensure that the
algorithm makes a mistake on each instance. This way, fdr eslecting set, the algorithm will
need to havé: — 1 bits set to 0 before the target bit is revealed. As this procedan be done for
each of the reflecting sets included in the learned conjongcthe algorithm makeg: —1)(dn+1)
mistakes.

Now, we show that all deterministic algorithms have to lemgonjunction with at leagin + 1
attributes. To do this, we use the following definitions. Went ablock to be all of the bits
corresponding to a reflecting set. We say that a block is seftiftall bits in the block are 0, and
that a block is set to 1 if all bits in the block are set to 1. W# term azero-informationinstance
to be one that hag blocks set to 1, and has all the remainimg- d blocks set to 0. The séft is
the set of all zero-information instances.

Each instance ik’ may appear in normal traffic: the instance contains no mae dharget
bits set to 1. Each instance i is also non-informative about the true target — all bits ia th
reflecting set always appear simultaneously. With this/éefif the algorithm does not have at
leastdn + 1 bits (each from a different reflecting set) in its conjunctiat any point, it can be
forced to make an error on a non-malicious instance: theradmesimply chooses non-malicious
instance fromk that satisfies the algorithm’s conjunction, and forces ihetke an error on a zero-
information instance. This mistake reveals no addition&brimation to the algorithm about the
target hypothesis, and the adversary can force the algotitbhmake it as long as the algorithm’s
conjunction has fewer thatn + 1 bits. Thus, the algorithm makes fewer mistakes if it always
learns a conjunction of size at least + 1. [

Theorem 3.6. (Randomized Algorithms using Conjunctions).et the overlap-ratio of the normal
traffic bed, and letk be the number of attributes in each reflecting set. For dnthere exists a
sequence of instances consistent with overlap-rdtguch that any randomized algorithm that
learn an overlap-equivalent conjunction will make, in exjadion, at Ieast’%(dn + 1) mistakes.

48

Proof: The proof is similar to that of the previous theorem, but vistlo modifications. In our
proof, we use, the set of zero-information instances defined in the prevjaroof.

First, the adversary no longer knows when the conjunctiad Uy the algorithm contains at
leastdn + 1 attributes; however, he can force the algorithm to contachsa conjunction with
high probability by giving the algorithm, at random pointsthe sequence of instances, a non-
malicious instance fronk’. Let7 be the event that the algorithm uses a conjunction with fewer
thandn + 1 attributes. For any > 0, if Pr[7] > ¢, an instance drawn at random frafn will
force the algorithm to make a mistake with probabilé;zy(dﬁl). Thus, there is always a constant
chance of error on the non-malicious instanceB#{7] > e. Therefore, if the algorithm uses a
conjunction with few attributes, a long sequence of randwstainces drawn frorii’ could generate,
in expectation, many non-informative errors on the nonici@ls instances.

Now, if the algorithm tries to find a conjunction with at ledst+ 1 attributes (and thus include
attributes from at leastn + 1 reflecting sets), it makes at Iedf%‘ti mistakes in expectation for each
of the(dn+1) attributes. As before, the adversary starts with the n@aliginstance that has all bits
set to 1, and in each subsequent round, picks one additionatanget bit (from any reflecting set)
to set to O in the instance that is presented. For every rigfiteset that appears in the algorithm’s
conjunction, the algorithm haslak chance of making a mistake when any non-target bit is set to
0. Because the adversary can do this 1 times within a single reflecting set, the expected number
of mistakes is’%l, within one set. The adversary can ensure that- 1 reflecting sets are used
with probability 1 — €, so the number of mistakes it makes, in expectatio(y is e)%(dn +1),
for anye > 0. [

Next we consider the minimum number of malicious instanted &n adversary can send
through undetected, if the learning algorithm learns lirsegoarators. Theorems 3.7 and 3.8 show
lower bounds for algorithms that need to learn overlapaedent linear separators.

Theorem 3.7. (Deterministic Algorithms using Linear Sepaators) Let the overlap-ratio of the
normal traffic bed, and letk be the number of attributes in each reflecting set. For dénthere
exists a sequence of instances consistent with overlap<auch that any deterministic algorithm
that learns overlap-equivalent linear separators will dee make at leasbg; ,; &k mistakes.

Proof: Recall thatC; denotes théth reflecting set. LeV = {C;},;. Without loss of generality,
we will assume that the bits in the instance are reorderetdadhe firstk bits correspond to the
attributes in reflecting sef'; the nextk bits correspond to the attributes in the reflecting(sgt
and so on. Let; ; bel if the jth property of the reflecting s€t; is present in the instancék(+- jth
bit is 1 in the reordered instance) abdtherwise.

A linear separator that identifies malicious instances si¢etbe of the fornd _, . w; jz;; > ¢,
wherew; ; is a weight of token, andis any fixed value witht > 0. For the proof, we will usey,
the set of zero-information instances defined in the prodffeforem 3.5. LeD be a set that con-
tains exactlyi-fraction of the reflecting sets. The adversary can thereftre following constraints
to hold at every point of time: for ever®, > .., >, w,,; < t. This is because if the constraints

49

do not hold, the adversary can force the algorithm to makestake on a zero-information in-
stance fromi(, and thus the algorithm makes a mistake that does not heffeiifying the target
hypothesis.

As in the proof of Theorem 3.5, we show how the attacker géeeraistakes on the malicious
instances with these constraints. The attacker constmaligious instances as follows: for each
reflecting setC;, the attacker chooses thebits with the lowest weights, and sets the malicious
instance to have thegehits to bel.

Let ¢; be the sum of the weights of thebits for a reflecting set’;. Then, for every set
D as defined earliery_, ., ¢; < t%. Let D be the set of all such set®. Then, we have
S pep 2iep @ < [D[t2. This implies that(") S, cp @ < (J)t2, giving S,c 4 < 2.
By settingp < kd, ZieU q; < t. Thus, the attacker can send a malicious instance with the
appropriatep bits set, and the algorithm will make a mistake by labellingan-malicious.

With this mistake, the attacker has reduced the size of eedligcting set to effectively bed
from the original size of:: the algorithm now knows that the target bit has to be amoed:th
bits that were set in the malicious instance just presefitbd.adversary can recurse this procedure
with the new reflecting sets, until their size has effecyivelduced to 1, and this allows the attacker
to forcelog, ,; k mistakes, otog; ;.]

Theorem 3.8. (Randomized Algorithms using Linear Separats) Let the overlap-ratio of the
normal traffic bed, and letk be the number of attributes in each reflecting set. For @nyere ex-
ists a sequence of instances consistent with overlap-tiegioch that any randomized algorithm that
learns overlap-equivalent linear separators will need take, in expectation, at Iea%tlog1 s2ak
mistakes to converge to a hypothesis equivalent to thettarge

Proof: The proof is similar to that of Theorem 3.7; however, we neeghéke two modifications,
because the adversary does not always know the internaldtéte algorithm. In our proof, we
use K, the set of zero-information instances defined in the egstieofs.

First, the adversary no longer knows whether the const@m w;j < t/dis disobeyed,
however, he can force it to hold with high probability by mesng the algorithm, at randomly
chosen points in sequence, a non-malicious instance fkomin particular, for anye > 0, if
Pr[3_, jwi; > t/d] > e an instance drawn at random frof will cause the algorithm to
make a mistake with probabilitge. Thus, there is always a constant chance of error on the non-
malicious instances ir[}_, ;w;; > t/d] > e — this chance of error does not approach 0 as
long as}_,; ; w;; > t/d. Therefore, ify_, ;w;; > t/d, an arbitrarily long sequence of random
instances drawn fronk could generate, in expectation, arbitrarily many non4imfative errors on
the non-malicious instances.

The second modification needed is that the adversary catstauslightly different sequence
of malicious instances present to the algorithm. In thigasibn, the adversary cannot pick the
smallest weights, since the adversary does not know 8meallest weights. Instead, the adversary
picks p/2 weights at random, from each reflecting set, and construrcteséance with those bits

50

20

-+ -Lower Bounds — Determ Linear Separata
- e-Lower Bound - Determ Conj

1501 - Ppolygraph - Conj

—>—Hamsa

-s--Polygraph — Naive Bayes

100 Pt

=

No. of updates

501 o7

e~
— ¥

* e K —K— —k— —k— k— k— k— Kk— Kk — ok — K — *k—
i i I | I

0 /i/ -+ o |
2 4 6 8 10 12 14 16 18 20
k: Reflecting Set Size

Figure 3.2: Comparison of lower bounds and algorithms wihenetis a large gap between the
normal traffic and malicious samples: no. of updates reduiefore converging to true signature,
as a function of reflecting set

setto 1, and the rest set to 0. The probability that thes@ weights exceedp/kd is at most 1/2,
which means that the probability that an mistake is causatl lsast 1/2, by Markov’s inequality.
Thus, at each step, the algorithm makes a mistake with pilipdd2, and the number of attributes
in each reflecting set reducesid/2. Thus, the algorithm makely'2log, /o, 7 mistakes on the
malicious instances in expectation, when the constraint w; ; > ¢/d holds. As this can be
set to hold with probabilityl — ¢, for anye > 0, the expected number of mistakes is at least
3(1 =€) logy oq ™. u
Since these lower bounds are representation-dependemtcéimnot be directly compared to
the ones in Section 3.4.2. However, the results for learoiveylap-equivalent linear separators
are comparable to the lower bounds of Theorems 3.1 and 3.&knwe that the lower bounds of
Theorems 3.1 and 3.2 are tight, and the Winnow algorithrmkearlinear separator. We note that
d = -2, these lower bounds approach those of Section 3.4.2. Thex the gap between the

n—1"

normal traffic and malicious exploits are large, it may besgue to learn with few mistakes.

3.5.4 Practical Implications

The results of this section suggest that pattern-extnadtmd similar signature-generation) algo-
rithms would work in practice for some kinds of exploits —tlweould work better when the overlap
between tokens present in normal traffic and exploits ielaf@ur analysis suggests an easy way
of quickly quantifying the exploits such algorithms may Wwavell for. In addition, it highlights

51

the importance of choosing an appropriate representatidgatn from: even if all signatures are
conjunctions of tokens (attributes), choosing a more flexibpresentation like linear separators
allows the adversary fewer ways to manipulate the algorghoahaviour.

Fig. 3.2 also shows that the representations chosen by dneirlg algorithm determine its
accuracy significantly. It shows the number of updates reduio learn the true signature, when
there are 10 tokens in the true signature, and the overtapiseD.5 (i.e., any normal instance has
at most half the critical tokens). When the reflecting setlisdlgorithms learning conjunctions
still require 50 mistakes, while those learning linear safmas require only 5. Conjunctions are
easy for an adversary to manipulate, and therefore can beddo make far many more errors than
linear separators. The errors on linear separators alsirdte the extent to which the bounds are
weakened with a gap in traffic: the corresponding mistakentddor arbitrary exploits is about 30.

Of course, normal traffic is difficult to model and may undergpid changes. It may be
difficult to tell what the overlap-ratio of an exploit mighepand how likely it is to change, and
of course, one cannot predict the overlap-ratios of futw@odts. Further, the data captured to
find the overlap-ratio might not be sufficient to identify ayweare token, and one might think that
the overlap-ratio is smaller than it truly is, which woulduse false positives. However, if normal
traffic continues to originate from the same kind of disttibo as the data captured, such false
positives are likely to be few and infrequent.

3.6 Related Work

As we have discussed pattern-extraction signature-gémer@gorithms throughout this paper, we
do not discuss them further here. Signature generatiorritdges that use semantic information
have taken many different directions; some examples td poitirections are [21, 73, 117, 38, 34].
As it is not immediately clear when reflecting sets would eisemantic information is used, our
results may not apply to these algorithms. A notable exorpi COVERS [78], that uses protocol
semantics, but generates a property that can be manip gt adversary.

We next discuss prior attacks on pattern-extraction algms. Perdisci et al. [97] showed
that if the adversary could add malicious noise to suspgcimol and the normal pool, Polygraph
fails to generate good signatures. Paragraph [92], demabestthat even with a truthful adversary,
Polygraph and Hamsa [77] are vulnerable to attacks. Allettpcks, forcing many false positives
and DoS against the network, also demonstrated on PolygmagtiHamsa [27]. However, these
papers demonstrate attacks on specific algorithms andnsysighile our work shows general
lower bounds. Gundy et al [61] present a different kind ad@ttshowing that polymorphic worms
do not need to have invariant bytes. Our work differs as itnshlmwer bounds even when there
invariant bytes. A related attack on intrusion detectioatems are the polymorphic blending
attacks by Fogla et al. [50]. These attacks match all bytgeuiacy statistics of normal traffic
under consideration by an IDS, and thus evade detectios.iF Hifferent from our situation, as we

52

do already have the appropriate target attributes undeidemtion, and these do uniquely identify
the exploit. Our work is also complementary to that of Crdinelzal [36], as their work explores
the extent to which pattern-based signatures may need teeberg at all in the packets containing
exploits. Our work shows that even if they are present, itiisegeasy for the adversary to mislead
signature generators.

Finally, we discuss related work in learning in adversasettings. The learning theory com-
munity has explored theoretical questions on learning witllicious adversaries and malicious
noise [69, 10, 23]. In this regard, the most related work istinaed in Sec. 3.4. Experimentally,
there have been a few studies on learning adverserially.dLanwd Meek [82] study the problem
of an adversary reverse engineering classifiers, and shplicagions to reverse-engineering spam
filters [95]. Dalvi et al. [39] present a game-theoretic e of how an algorithm and adversary
could adapt to each other, and show applications to spamirfgte Barreno et al. [15] examine
when machine learning could be more secure at a more gepeed| presenting a framework, and
a lower bound on the work that an attacker must to evade anHb®&ever, none of this work is
directly applicable to our problem.

3.7 Conclusion

We have shown fundamental limits on the accuracy of a la@gsabf pattern-extraction algorithms
in an adversarial setting. Our work generalizes earlierkwmr attacks which have focused on
individual algorithms and current systems. We also analyaed shown conditions under which
pattern-extraction may work. Our results are applicabletter kinds of signature-generation
algorithms that use easily forgeable properties of an éxplo

The results presented in this chapter are joint work withirABlum and Dawn Song, and have
previously appeared at thé’h Annual Network and Distributed Systems Security Symposium
2008 [114].

53

54

Chapter 4

Streaming Algorithms for Fast
Detection of Superspreaders

4.1 Introduction

Internet attacks such as distributed denial-of-servided®) attacks and worm attacks are increas-
ing in severity. Network security monitoring can play an omjant role in defending against and
mitigating such large-scale Internet attacks — it can bd tseletect drastic traffic pattern changes
that may indicate attacks or, more actively, to identifylmsisaving hosts or victims being attacked,
in order to throttle attack traffic automatically.

For example, a compromised host doing fast scanning for wopagation often makes an
unusually high number of connections to distinct destoregiwithin a short time. The Slammer
worm, for instance, caused some infected hosts to send 24 660 scans a second [88]. We call
such a host auperspreader (Note that a superspreader may also be known as a port sdganne
certain cases.) By identifying in real-time any source IBrads that makes an unusually high num-
ber of distinct connections within a short time, a networknitmring point can identify hosts that
may be superspreaders and take appropriate action. Fopexdire identified potential attackers
(and victims) can be used to trigger the network loggingesysto log attacker traffic for detailed
real-time and post-mortem analysis of attacks, in orddurmttle subsequent (similar) attack traffic
in real-time.

In this chapter, we study the problem of identifyisgperspreaders A superspreader is de-
fined to be a host that contacts at least a given number ohdistestinations within a short time
period. Superspreaders could be responsible for fast woopagation, so detecting them early
is of paramount importance. Thus, given a sequence of paoketwould like to design an effi-
cient monitoring algorithm to identify in real-time whicbw@rce IP addresses have contacted a high
number of distinct hosts within a time window.

55

(s1,d1), (s2,d2), (s1,d1), (s3,d3), (s1,d1), (s2,d3), (s4,dl), (s2,d4), (s1,d1), (s5,d4), (s6,d6)

Figure 4.1:Example stream of (source, destination) pairs, starting with (s1,d1) and ending with
(s6,d6).

Note that a superspreader is different from the usual dieimadf a heavy-hitter ([55, 26, 46,
84, 41, 67]). A heavy-hitter might be a source that sends aflgtackets, and thus exceeds a
certain threshold of the total traffic. A superspreader,iendther hand, is a source that contacts
manydistinctdestinations. So, for instance, a source that is involveaifew extremely large file
transfers may be a heavy-hitter, but is not a superspre&tethe other hand, a source that sends
a single packet to many destinations might not create entmadfic to be a heavy-hitter, even if
it is a superspreader — some of the sources in our tracesrthauperspreaders create less than
0.004% of the total traffic analyzed; heavy-hitters typically ihv® a significantly higher fraction
of the traffic.

It is desirable to be able to do the monitoring on high-spéekk] for example, on a large
enterprise network or an ISP network for a large number ofdasers. A major difficulty with
detecting superspreaders on a high-speed monitoring igdhmt the traffic volume on high speed
links can be tens of gigabits per second and can containomsllof flows per minute. In addition,
within such a great number of flows and high volume of traffiostrof the flows may be normal
flows. The attack traffic may be an extremely small portionhef total traffic. Many traditional
approaches require the network monitoring points to mainar-flow state. Keeping per-flow
state, however, often requires high memory storage, ancehiemot practical for high speed links.
We need, therefore, efficient algorithms to find supersmesathat use memory sparingly.

The superspreader problem is an instance of a more genetalepr that we termheavy
distinct-hitters which may be formulated as follows: given a stream(aafy) pairs, find all the
x’s that are paired with a large number of distipts. Figure 4.1, for example, depicts a stream
where source? is paired with three distinct destinations, whereas aleo#ources in the stream
are paired with only one distinct destination; thds a heavy distinct-hitter for this (short) stream.

An algorithm for the heavy distinct-hitters problem has @eviange of networking applica-
tions. Clearly, we can solve the dual of the superspreadsdgmn — finding the destinations which
are contacted by a large humber of sources — and such destgabuld be victims of DDoS at-
tacks. It can be used to identify which port has a high numibelistinct destinations or distinct
source-destination pairs without keeping per-port infation and thus aid in detection of attacks
such as worm propagation. Such a port is a heavy distintrhit our setting « is the port and,
is the destination or source-destination pair). Such aorigign can also be used to identify which
port has high ICMP traffic, which often indicates high scagractivity and scanning worm propa-
gation, without keeping per-port information. For examgiegammers often send the same emails
to many distinct destinations within a short period, and waa identify potential spammers with-
out keeping information for every sender. An algorithm toe heavy distinct-hitter problem may
also be useful in peer-to-peer networks, where it could leel tis find nodes that talk to a lot of

56

other nodes without keeping per-node information. For §oity in the rest of this chapter, we
will describe our algorithms for identifying superspreedeThe algorithms can be easily applied
to the other applications mentioned above.

To summarize, the contributions of our work are the follogvin

e We propose new streaming algorithms for identifysgperspreadersOur algorithms are
the first to address this problem efficiently and provide proaccuracy and performance
bounds. The best previous approaches [47, 124] requiret@rcamount of memory to be
allocated for each source [47] or each flow [124] within tmeeiwindow; we do not keep
state for every source, and thus our algorithms scale velly Wie present two algorithms:
the first, a simpler one, which is already much better thastiexj approaches, and which
we use for base comparison; and the second, a more compldeveldiltering scheme, that
is more space-efficient on commonly-seen distributionsaddition, the two-level filtering
scheme may have other applications and be of independentsht

e We also propose several extensions to enhance our algsrittwe extend our algorithms
to scenarios when deletion is allowed in the stream (Seetidrl), to the sliding window
scenario (Section 4.4.2), and we propose efficient digegtuersions of our algorithms (Sec-
tion 4.4.3). The deletion scenario is especially well-weatttd — it can be used to find sources
that have a large number of distinct connection failuress (finay be an indication of scan-
ning behavior), rather than just sources that contact & latgnber of distinct destinations.
That is, once the network monitoring point sees a respoise & destination for a connec-
tion from a source, that source-destination pair gets eélgbm the count of the number of
distinct connections a source makes.

e Our experimental results on traces with up to 10 million fleesfirm our theoretical results.
Further, they show that the memory usage of our algorithnsulistantially smaller than
alternative approaches. Finally, we study the effect dediit superspreader thresholds on
the performance of the algorithms, again confirming therétezal analysis.

Note that our contribution is in the proposal of new streajrafgorithms to enable efficient
network monitoring for attack detection and defense, wgieancertain parameters. Selecting and
testing the correct parameters, however, is applicatepeddent and outside of the scope of this
thesis.

Note that we cannot detect a malicious host that spoofs IReades and contacts many desti-
nations, since the algorithms will only operate on the ingut, dst) pairs. It is, however, difficult
to engage in TCP-based attacks with IP spoofing. Also, we raagl Bpecial care when identifying
the connection direction. We can handle this issue in TCiRdtay checking for superspreaders
only in the SN packets. In UDP traffic, though, this may not be possibleabse we may not
be able to distinguish which of the two hosts sent the firskgawithout extra storage. Thus, in
UDP traffic, we may not be able to distinguish between a sppeasler and a source that simply

57

respond€o many clients. (In our abstraction, the latter is also a&ssgreader in case of UDP). In
practice, though, we expect that most sources that typicaled to respond to many clients will
remain more or less constant over brief periods of time (e/gp servers over a few days’ time),
and that it will be easy to identify these sources early, a@pkhem on a separate list, so that they
do not interfere in network anomaly detection.

The rest of the chapter is organized as follows. Section dfidels the superspreader problem
and discusses previous approaches. Section 4.3 preseht®m@pares two novel algorithms for
the superspreader problem. Section 4.4 presents our @xiserie handle distributed monitoring,
deletions, and sliding windows. Section 4.5 presents opegmental results, and Section 4.6
presents conclusions.

4.2 Problem Definition and Previous Approaches

In this section, we present a formal definition of the probkemd then discuss the deficiencies of
previous techniques in addressing the problem.

4.2.1 Problem Definition

We define ak-superspreaderas a host which contacts more thamnique destinations within a
given window of N source-destination pairs. In Figure 4.1, for example, With 2, sources2 is

the onlyk-superspreader. Note that there may be as many/ask-superspreaders in a given set

of N packets, and reporting them would n€e@V/k) space. Thus, this gives us a lower bound
on the space bounds needed to find superspreaders. It d®osfdtom a lower bound in [7]

that any deterministic algorithm that accurately estim#égeg., within 10%) the number of unique
destinations for a source needs¢k) space. Because we are interested in small space algorithms,
we must consider instead randomized algorithms.

More formally, given a user-specifiéd> 1 and confidence levél < § < 1, we seek to report
source IPs such that a source IP which contacts more hamque destination IPs is reported
with probability at least — ¢ while a source IP with less thatyb distinct destinations is (falsely)
reported with probability at most For example, whe& = 500, b = 2 andé = 0.05, we want to
report any source that contacts at I€&i distinct destinations and report no source that contacts
less thar50 distinct destinations with probabilityy.95.

We envision our algorithms to be useful in applications \eheis acceptable to report sources
whose distinct destination count is within a factor of 2 (daetor of 5, 10, etc.) of a superspreader.
For example, if we wish to identify sources involved in fastrm propagation and chooge= 500,
it suffices to seb = 2, as we do not expect to find many sources (in normal traffid) cbatact
over250 destinations within a short period. When a much finer diftincneeds to be made (when
b approached), we will require a very high sampling rate, and there wilk @ a substantial

58

N | Total no. of packets in a given time interval
k | A superspreader sends to more than
distinct destinations

b | Afalse positive is a source that contacts
less thark /b distinct destinations but is
reported as a superspreader

0 | Probability that a given source becomes a
false negative or a false positive
W | Sliding window size

Source IP address

Destination IP address

QU »

Table 4.1: Summary of notation

reduction in memory usage or computational time.

Also, note that by our problem statement, a source will batifled as a superspreader with
high probability when it has contacted betwégeandk destinations. Thus, we will expect to report
the (potential)-superspreaddyeforeit has contacted destinations, and so our approach will not
delay the identification of the superspreader.

Table 4.1 summarizes the notation used in this chapter.

4.2.2 Related Work and Previous Approaches

There has been a volume of work done in the area of streantogithims (see the surveys in [11,
90]). However, none of this work addresses the problem aftifyéng superspreaders efficiently.
Perhaps most closely related is the problem of counting timeber of distinct values in a stream.
It has been studied by a number of paperg([7, 12, 13, 30, 40, 49, 56, 57, 47]). The seminal
algorithm by Flajolet and Martin [49] and its variant due ttmA, Matias and Szegedy [7] estimate
the number of distinct values in a stream up to a relativerefe > 1. Cohen [28], Gibbons and
Tirthapura [56], and Bar-Yossef et al. [13] give distinctioting algorithms that work for arbitrary
relative error. More recently, Bar-Yosseffal.[12] improve the space complexity of distinct values
counting on a single stream, and Cormedal. [30] show how to compute the number of distinct
values in a single stream in the presence of additamtsdeletion®of items in the stream. Gibbons
and Tirthapura [57] give are(§)-approximation scheme for distinct values counting oveliding
windowof the lastN items, usingB = O(Ei2 log(1/6)log N log R) memory bits. The algorithm
extends to handle distributed streams, whiereits are used for each stream.

Previous Approaches: We now discuss existing approaches that may be applied tesfipdr-
spreaders and their deficiencies.

59

e Approach 1:As afirst approach, Snort [100] simply keeps track of eacincgoand the set of
distinct destinations it contacts within a specified timaaaw. Thus, the memory required
by Snort will be at least the total number of distinct soudestination pairs within the time
window, which is impractical for high-speed networks.

e Approach 2:Instead of keeping a list of distinct destinations that as®weontacts for each
source, an improved approach may be to use a (randomizeutctisounting algorithm to
keep an approximate count of distinct destinations a sotwogacts for each source [47].
Along these lines, Estan et al. [47] propose using bitmapddntify port-scans. The trig-
gered bitmap construction that they propose keeps a sntailapifor each distinct source,
and once the source contacts more than 4 distinct destisagapands the size of the bitmap.
Such an approach requires S space where is the total number of distinct sources (which
can beQ2(N)) and S is the amount of space required for the distinct countingritigm
to estimate its count. These approaches are particulaeljidient when the number df-
superspreaders is small and many sources contact far fearet testinations.

e Approach 3:The recent work by Weaver et al. [124] proposes an intemgstaia structure
for finding scanning worms using Threshold Random Walk [6Bfis data structure may
be adapted to find superspreaders by tracking the numbestoialidestinations contacted
in the address caché. However, it may not scale well to high-speed links, as it seted
keep some state for every flow for a period of time (and thus,nlemory usage could be
Q(N)). We present a concrete example for the parameters in [T2¥§.1 MB connection
cache keeps per-flow details, and after sedimgillion flows (in one direction), fewer than
37% of new flows (in the same direction) are expected to map to aisadhentry in the
cache? When new flows map into an existing entry in the connectioreathe counter for
the source does not get updated. Thus, rougs¥ of superspreaders that appear after these
million flows will not be identified (in expectation). With a@rie-out of 10 minutes, a rate
of 1700 flows a second will saturate tHeMB connection cache to this point. If we assume
that these million flows come from distinct sources, and wegrie find1000-superspreaders
with b = 2, and error probabilityy = 0.05, our two-level filtering algorithm needs only an
expected24KB of space. Thus, in this scenario, our algorithm is moreuestte and requires
much less space. However, their data structure is designtaddt small scans quickly, and
in this case performance of our algorithms will degrade.

e Approach 4: Another approach that has not been previously consideredimng a heavy-
hitter algorithm in conjunction with a distinct-countindggarithm. We use a modified ver-
sion of a heavy-hitter algorithm to identify sources thaidsé many destinations. Specifi-
cally, whereas heavy-hitters count the number of destinatiwe count (approximately) the
number of distinct destinations. This is done using a distoounting algorithm. In our
experiments we compare with this approach, with LossyGogriB4] as the heavy-hitter

"We refer the reader to [124] for an understanding of the datmtsire. Here, we just describe how to use it for
detecting superspreaders and what the issues with doingso a
2Theorems on occupancy problems give these numbers. Filsgstg [89].

60

algorithm, and the first algorithm from [12] as the distigatanting algorithm. The results
show that our algorithms use much less memory than this apprdhe details are in Sec-
tion 4.5.

Other Related Work: A number of papers have proposed algorithms for relatedlgmub in
network traffic analysis. Estan and Varghese [46] proposeatgorithms to identify the large flows
in network traffic, and give an accurate estimate of theesiZstan et al. [45] present an offline
algorithm that computes the multidimensional traffic custreflecting network usage patterns.
Duffield et al. [44] show that the number and average lengtthoafs may be inferred even when
some flows are not sampled, and compute the distributionwflnogths. Golab et al. [58] present
a deterministic single-pass algorithm to identify frequ&ms over sliding windows. Cormode and
Muthukrishnan [31] present sketch-based algorithms totifielarge changes in network traffic.

4.3 Algorithms for Finding Superspreaders

We now propose two efficient algorithms to find superspreadeéfe first propose a one-level
filtering algorithm, based on sampling from the sedadtinct source-destination pairs. We then
present a more complex algorithm based on a novel two-ldtasifig scheme, which will be more
space-efficient than the one-level filtering algorithm floe tistributions that (we expect) will be
more common.

4.3.1 One-level Filtering Algorithm

The intuition for our one-level filtering algorithm for idéfying k-superspreaders over a given
interval of NV source-destination pairs is as follows.

We observe that if we sample tlistinct source-destination pairs in the packets such that
each distinct pair is included in the sample with probabifit then any source withn distinct
destinations is expected to ocqur times in the sample. Ip were%, then anyk-superspreader
(with its m > k distinct destinations) would be expected to occur at leaseadn the sample,
whereas sources that are riesuperspreaders would be expectad to occur in the sample. In
this way, we may hope to use the sample to ideritisuperspreadets

There are several difficulties with this approach. Firs,résulting sample would be a mixture
of k-superspreaders and other sources that got “lucky” to Haded in the sample. If there are
no k-superspreaders, for example, the sample will consistafrilycky sources. To overcome this,
we setp to be a constant factar, larger than%. Then, anyk-superspreader is expected to occur

Note that we are sampling from the set of distinct sourceiuson pairs, not the set of packets we see; we perform

a computation on every element in the stream — the “samplingt a conceptual level. The lower bounds of sampling
approaches on counting distinct values [25] thus do notyappbur approach.

61

In(1/5) - (L2/0e2)

ifb<3

¢ = 4 In(1/8) max(b,2/(1 - £)?) (4.1)
if 3<b<2e?

81In(1/4) if b > 2¢?

ay fenys) ifb<s3
ro= { e if 3 < b < 22 (4.2)
g if b > 2¢?

Figure 4.2: The parameters andr for the one-level filtering scheme.

at leastc; times in the sample, whereas lucky sources may occur a feastimthe sample but
nowhere neat; times. To minimize the space used by the algorithm, we sealat@c,; as small

as possible while being sufficiently large to distinguisisuperspreaders from lucky sources. A
second, related difficulty is that there may be “unluckySuperspreaders that fail to appear in the
sample as many times as expected. To overcome this, we ha@adsparameter < ¢; and
report a source as/asuperspreader as long as it occurs at ledshes in the sample. A careful
choice ofc; andr is required.

Finally, we need an approach for uniform sampling from ditinct source-destination pairs.
To accomplish this, we use a random hash function that mapsesalestination pairs {0, 1) and
include in the sample all distinct pairs that hasttg). Thus each distinct pair has probability
p of being included in the sample. Using a hash function esstirat the probability of being
included in the sample is not influenced by how many times tqodear pair occurs. On the other
hand, if a pair is selected for the sample, then all its dapdioccurrences will also be selected. To
fix this, our algorithm checks for these subsequent dugtcand discards them.

Algorithm Description: Let srclP anddstIP be the source and destination IP addresses, respec-
tively, in a packet. Let, be a uniform random hash function that maps (srclIP, dstli® =0, 1),

(that is, each input is equally likely to map to any valuédnl) independently of other inputs). At

a high level, the algorithm is as follows:

e Retain all distinct (srclP, dstIP) pairs such tihatsrcIP, dstiR < <, wherec; is given in
Figure 4.2.

e Report all srclPs with more than retained, where- is given by the equations in Fig-
ure 4.2(b).

We can implement the algorithm above using two hash-taklihl %N buckets each): the first
one to detect and discard duplicate pairs from the sampiethensecond one to count the number

62

of distinct destinations for each source in the sample.

In more detail, the above steps can be implemented as foll@us implementation has the
desirable property that eaéhsuperspreader is reported as soon as it is detected. Wevas@ash
tables: one to detect and discard duplicate pairs from timplsa and the other to count the number
of distinct destinations for each source in the sample. [Htisr hash table uses a second uniform
random hash functioh, that maps srclPs {0, 1).

e Initially: Let 7} be a hash table withy N/k entries, where each entry contains an initially
empty linked list of (srclP, dstIP) pairs. L&, be a hash table with; N/k entries, where
each entry contains an initially empty linked list of (sratBunt) pairs.

e On arrival of a packet with srcIR and dstIPd: If hy(s,d) > ¢1/k then ignore the packet.
Otherwise:

1. Check entry% - hi(s,d) of T1, and inser{(s, d) into the list for this entry if it is not
present. Otherwise, itis a duplicate pair and we ignore Huket.

2. At this point we know thatl is a new destination foy, i.e., this is the first timés, d)
has appeared in the interval. We lﬁi@ - ha(s) to look-ups in Ty. If s is not found,
insert(s, 1) into the list for this entry, as this is the first destination § in the sample.
On the other hand, i is found, then we increment its count, i.e., we replace thie pa
(s,m) with (s,m + 1). If the new count equalg + 1, we reports. In this way, each
declaredk-superspreader is reported exactly once.

Note that at the end of the interval, the counts/incan be used to provide a good estimate
on the number of distinct dstIPs for each reported srclP ¢ajirsy them up by the inverse of the
sampling rate, i.e., by a factor &fc;).

Accuracy Analysis: Our analysis yields the following theorem for precision:

Theorem 4.1. For any givernb > 1, positiveé < 1, andt such thab < k£ < 1, the above algorithm
reports srclPs such that any-superspreader is reported with probability at ledst- §, while a
srclP with at most /b distinct destinations is (falsely) reported with probétyilat most).

We defer the detailed proof to the full thesis.

Overhead Analysis: The total space is an expectédc; N/k) memory words. The choice of
depends ot. By equation 4.2, we have that = O(In(1/0)(5%7)%) = O((1 + =gy In(1/9))
for b < 3. For3 < b < 2¢2, bis a constant, se; = O(In(1/6)). For largerb, c; = O(In(1/6)).
Thus across the entire range forwe havec; = O((1 + ﬁ;) In(1/4)). This implies that the

63

total space is an expecté@i(% In %(1 + ﬁ)) bits. For the typical case whedes a constant
andb > 2, the algorithm requires space for ortl{ N/k) memory words.

As for the per-packet processing time, note that each hadh iexpected to hol®(c; N/k)
entries throughout the course of the algorithm. Thus eash keble look-up takes constant ex-
pected time, and hence each packet is processed in congteated time.

We now give some examples to illustrate the one-level fiiggelgorithm.

Example: In this example, we set = 1000 andb = 2, which means we are interested in
reporting all sources that contatdh00 or more destinations within a given time period, without
reporting any source that contacts less thah destinations within that time. L&V be the total
number of packets seen in this time perfodror this, we find numerically that, /& = 0.052,
andr = 39 suffice, whens = 0.05. Note that this sampling rate implies that in expectation,
94.8% of the packets will simply require one computation (hashgee if the source-destination
pair falls belowe, /&), and5.2% of the packets will be selected for more processing. To stare
source-destination pairs with a hash-tabl®.662 NV, each of these selected packets will require (in
expectation) no more than a read and a write of two IP addsesgech is a small computational
overhead. To count the number of distinct destinations figrsource in the first hash-table, we
could use another hash-table and have an additional ovedi€at most) 2 reads and 2 writes (an
IP address and a counter) per stored packet.

Note that these quantities awt depend on the distribution of the number of distinct desti-
nations by source. That is, even if nearly every source seaka&ctly one destination, the basic
algorithm would have us stofe2% of these sources, where the numb#b2 depends ot, b, and
N. We would like to reduce the memory used in storing thesesuperspreader sources. Further,
we expect that most traces will have a very large number aftestthat contact only a few distinct
destinations, andery few superspreaders. Can we track the superspreaders t@bcuvéhout
tracking so many non-superspreaders?

The difficulty here is that the one-level filtering algorithmaeds a certain minimum sampling
rate in order to distinguish between sources that seriddestinations an(% destinations. But
sources that contact only a few destinations also get samapliis rate In the next section, we
will effectively reduce the sampling rate of these non-sspeeader sources without compromising
on the accuracy of the algorithm for detecting supersprsade

4.3.2 Two-Level Filtering Algorithm

We now present another algorithm that uses levels of filters and is more memory-efficient
than one-level filtering in most cases. At a high level, thgpoathm uses two levels of filtering

“In a real setting)N' could be determined historically.

64

function Two-Level Filterings, d)
Level2(s,d); Levell(s, d);

function Levells, d)
if(hi(s,d)< ry) inserts into Ty

function LevelZs, d)
if (ha(s,d) > rq) return;
if (s ¢ Ty) return;
else compute = %‘Z’d) -y and insert into 15 ,,.
function Output
output all sources that appear in more thaof the hash-table$; ;.

Figure 4.3: Two-level filtering pseudocode, whésed) represents a source-destination pair.

in the following manner: the first-level filter effectivelyedides whether we should keep more
information about a particular source, while the secon@ilélter effectively keeps a small digest

that can then be used to identify superspreaders. The fidtias a lower sampling rate than the
second level. Thus intuitively, the first level is a coarsteffithat filters out sources that contact
only a small number of distinct destinations, so that we doeed to allocate any memory space
for them. The second level is a more precise filter which useermemory space, and we only
use it for sources that pass the first filter.

Intuitively, the reason why the two-level filtering algdmib is more space-efficient than the
one-level filtering algorithm is because the sampling ratetlie first level of two-level filtering
algorithm is lower than the sampling rate of the one-levégiiihg algorithm. (To compensate, the
sampling rate for theecond levelill need to be a bit higher.) If a source contacts suffickentbny
destinations, it will be sampled (and thus, stored) in bhthdne-level filtering algorithm and the
two-level filtering algorithm. But if a source contacts omlyfew destinations, the probability that
it is sampled (and tracked) in the two-level filtering algiom is much lower than the probability
that it is sampled (and tracked) in the one-level filteringoathm. Thus, the two-level filtering
algorithm will store fewer sources that contact very fewidit destinations. It is therefore more
space-efficient when there are many sources that contacadalv distinct destinations.

This type of sampling at multiple levels is a new approach tiay be of independent interest.

Algorithm Description: The algorithm takesq, 2, v, w as parameters, wherg andr, repre-
sent the sampling rate in the first and second level respdgtimndw is a threshold. Given the
required values fok andb, the values ofry,r2,v,w may be determined as in the analysis of
Theorem 4.2.

We keep one hash-tablg at the first level, and hash-tables denotef} ; at the second level.

65

Graph showing how
rater, varies with b

Rate Tz

[¢] 5 20 25 30

1F’Oarametlesrb
Figure 4.4: The rates required fork = 1000, § = 0.01, with varyingb.

Let h; andhy be uniform random hash functions that take a source-déstnpair and return a
value in[0, 1) as described in the previous section.

For each packets, d), the network monitor performs the following operations ageqg in
pseudocode in Figure 4.3:

e Step 1: First, we comput®s(s,d). If ha(s,d) is greater than rate,, we skip to step 2.
Otherwise, we check to see if the soukcis present in the hash-talilg. If s is not present
in 177, then again, we skip to step 2. Otherwise, we inseitto level 2 as follows: If
ha(s,d) < ry ands is present inl, we inserts into the level-2 hash-tabl& ,, where
p = %‘;’d) - ~v. Thus, we insert into level 2 with at most probability,, and every source
appearing in level 2 appears in level 1.

e Step 2: Ifhy(s,d) is less than rate;, we inserts into 7.

Finally, we output all sources that appear in more thaof the tablesl? ;.

Optimizations: Note that in the above description, we use hash-tables te #te sampled ele-
ments for ease of explanation. We can easily optimize thag¢ospace in the two-level sampling
further by using Bloom filters instead of hash-tables toestbe sampled elements. A discussion
of Bloom filters may be found in [16, 20]. In addition, in theosle description, we chose the
probability of inserting a sampled packet into any levela3lirtablel ; to be equal tal /v, for
simpler description and analysis. We can easily genertiizgo alter the probability of inserting
a sampled packet into any level-2 hash-table to be non4unjfe.g., an exponential distribution.

Accuracy Analysis Our analysis yields the following theorem for precision:

Theorem 4.2. Givenk, N,b > 1 such thatk/b > 1 and0 < ¢ < 1. Letz = max(%,f)). Let
r1 = % log % andr, be minimal value that satisfies the following constraints:

66

2In2/8 In1/8 o 1—e—3/2b
Q)re > Qe G-D/7)2 and (2)ry > k(1_673/2b)((1+62)1n(1+62)_62)vWhereel =1- 1—1/e (1+

62),62 > 0,and0 < ¢ < 1.

Let ¢} be the value ot; whenr; is minimized in the above constraints. Let= rok, and
w=(1-en1-1).
Then, for any giveh > 1, positived < 1, andk such thatt /b > 1, Algorithm Il reports srclPs

such that any:-superspreader is reported with probability at ledst ¢, while a srcIP with at most
k /b distinct destinations is (falsely) reported with probatilat most).

We defer the complete proof to the thesis.

Figure 4.4(b) shows how the required ratevaries withb. The thresholdy and the number of
hash-tablesy vary similarly.

The expected space requiredQ$r; N + roN). Note that, for a fixed, bothr; andry are
O(# In), and thus the space requiredd$%’ In 1).

We may make a similar statement when we use Bloom filters réltlae hash-tables to store
sampled elements as described in the optimization aboviagB$oom filters does not affect the
false negative rate, but only the false positive rate. Weeeesily reduce the additional false positive
rate caused by the Bloom filter collision by setting the cdrparameters of the Bloom filters using
the theorems in [16].

We observe also that the accuracy of both algorithms is ieggnt of the input distribution
of source-destinations pairs, as long as the assumptionifofon random hash function is obeyed.
In addition, note that it is important to pick secret hashctions at run-time each time so that the
attacker cannot generate an input sequence that avoidnckash values. Also, in practice, we
optimize our choice of the parameters numerically for bégo@thms, since the bounds given by
the theorems may have larger constant factors than ardystrecessary.

Example: In this example, we set = 1000 andb = 2, which means we are interested in
reporting all sources that contatb00 or more destinations, without reporting any source that
contacts less thas00 destinations. For this, we find numerically that= 0.006, r, = 0.15 and

~ = 100 suffice, whery = 0.05. Note that this sampling rate implies tt&i% of the flows will
need only to be hashed once and incur no memory accesse$5%ndf the flows will have to
be additionally processed. The amount of computationath@aal that these selected flows incur
will depend on the number of distinct destinations thatrthespective source contacts, so we will
examine two specific cases:

Case 1:For the sources that contact exactly one distinct destinaach, in expectation,6% of
the packets will be entered into the first level, and requiread and 1 write (of one IP address),
and15% of the packets will require exactly 1 read.

Case 2:For any particular superspreader, at mdst of the distinct flows (corresponding to that
superspreader) will require 2 distinct memory locationin(level-1, 1 in level-2, of 1 IP address

67

each, with 2 reads and 1 write).

Note that if the trace contains only sources that contactdastination each (the first case), the
two-level filtering algorithm has much less overhead thandhe-level filtering algorithm, and if
the trace contains only superspreaders (the second caseleviel filtering algorithm has about
three times as much overhead as one-level filtering algorithhis gives an idea of the trade-off
between the algorithms; we expect that most sources onlacba few distinct destinations, and
thus the traces will resemble the first case far more thaneibens! case.

Using a Bloom filter in both levels will reduce the memory sige required, but increase
the number of accesses that need to be made. If we use a Blaemwiith 8 independent hash
functions at each of the two levels, our memory storage wipdoy a constant factor of at least
2.5 (estimating conservatively to account for additioredsé positives), and our computational
overhead will increase by a factor of 8 — since we will need &ken8 memory accesses for every
memory access of the hash-table implementation.

Note that there could exist as many%ssuperspreaders; thus, for constanall our bounds
are within alog % factor of the asymptotically optimal values.

4.4 Extensions

In this section we show how to extend our algorithms to haddletions, and sliding windows and
distributed monitoring.

4.4.1 Superspreaders with Deletion

We can extend our algorithms to support streams that indhadle newly arriving (srclP, dstlP)
pairs and thedeletionof earlier (srclP, dstlP) pairs. Recall from Section 4.1t thanotivating
scenario for supporting such deletions is finding sourceddtesses that contact a high nhumber
of distinct destinations and do not get legitimate repliesfa high number of these destinations.
Each in-bound legitimate reply packet with sourcecl&nd destination IR is viewed as a deletion
of an earlier request packet with sourceylBnd destination 1R from the corresponding flow, so
that the source is charged for only distinct destinations without legitieaeplies.

For the one-level filtering algorithm (Section 4.3.1), aeatiein of (s, d) is handled by first
checking to see ifs, d) is in the hash-table. If it is not, thehis already not being accounted for
in s's distinct destination count, so we can ignore the deletidtherwise, we deletés, d) from
the hash-table. The precision, space, and time bounds ergathe as in the case without dele-
tions. Similarly, we can extend the hash-table implementatf the two-level filtering algorithm
to handle deletions as weél.

5Technically, we need a slight modification of the algorithescribed earlier; we need to store the destinations as
well at each level-2 hash-table; this may increase the mgneguired by at most a factor of 2.

68

We can also use this approach to find those sources which haseethank failures and fewer
thank /b successes. We could find these sources by computing sdpadhatsources that have at
leastk successes and those that have at ledatiures, and return the appropriate difference.

Note that the definition of &-superspreader under deletions is not a stable one. At d@ny po
in time, the monitor may have just processed a packet, anel tavdea whether this pair will be
subsequently deleted. There may be a source right dt-thgerspreader threshold that exceeds
the threshold unless the pair is subsequently deleted. IQaritams can be readily adapted to
handle a variety of ways of treating this issue. For exantpke,one-level filtering algorithm can
report a source astantativek-superspreader when its countZih reaches: + 1, and then report
at the end of the interval which sources (still) have coungsiggr than-.

4.4.2 Superspreaders over Sliding Windows

In this section, we show how to extend our algorithms to haustiling windows. Our goal is to
identify k-superspreaders with respect to the most redémpiackets, i.e., hosts which contact more
thank unique destinations in the laBt’ packets. Our goal is to use far less space than the space
needed to hold all the pairs in the current window.

Figure 4.5 gives an example of a stream subject to a slidimglovww of sizel’’ = 4. The top
row shows the packets in the sliding window after the arrofals1, d3). The middle row shows
that on the arrival ofs2, d3), the window includes this pair but drogsl, d1). The bottom row
shows that on the arrival @§2, d1), the window adds this pair but dropsl, d2).

What makes the sliding window setting more difficult than stendard setting is that a packet
is dropped from the window at each step, but we do not havepheesto hold on to the packet
until it is time to drop it. This is in contrast to the deletfogetting described in Section 4.4.1 where
we are given at the time of deletion the source-destinatantp delete.

In the sliding window setting, a source may transition beméeing ak-superspreader and
not, as the window slides. In Figure 4.5, for example, suppbat the threshold for being a
k-superspreader is having at least 3 distinct destinatiers, & = 3). Then sources1 is a super-
spreader in the first window, but not the second or third wivelo

We show how to adapt one-level filtering algorithm to handildirey windows. the approach
for two-level filtering algorithm is similar. We keep a rungi counter of packets that is used to
associate each packet with its stream sequence numberysggNhus if the counter is currently
x, the sliding window contains packets with sequence numberd?” + 1, ..., x. Ata high level,
the algorithm works by (1) maintaining the pairs in our sagrgairted by sequence number, in order
to find inO(1) time sample points that drop out of the sliding window, andkézping track of the
largest sequence number for each pair in our sample, in toddgtermine inO(1) time whether
there is at least one occurrence of the pair still in the windo

In further detail, the steps of the algorithm are as follows.

69

(s1,d1), (s1,d2), (s2,d2), (s1,d3)
(s1,d2), (s2,d2), (s1,d3), (s2,d3)

(s2,d2), (s1,d3), (s2,d3), (s2,d1)

Figure 4.5: Example stream, showing three steps of a slidingow of sizel¥ = 4. The top row
shows the packets in the sliding window after the arriva{«f d3). The middle row shows that
on the arrival of(s2, d3), the window includes this pair but dropsl, d1). The bottom row shows
that on the arrival ofs2, d1), the window adds this pair but dropsl, d2).

e Initially: Let L be an initially empty linked list of (srclP, dstIP, seqNumples, sorted by
increasing segNum. L&t and7; be as in the original one-level filtering algorithm, except
that7; now contains (srclP, dstIP, segNum) triples.

e On arrival of a packet with srclR and dstIPd: Let z be its assigned sequence number.

1.

Account for a pair dropping out of the window, if arljthe tail of L is a triple(s, d, n)
such thatn = x — W, then remove the triple fronk and check to see if the triple
exists in entryclTN - hi(s,d) of Ty. If the triple exists, then becaudg holds the latest
sequence numbers for each source-destination pair in thelsawe know thats, d)
will not exist in the window after droppings, d,n). Accordingly, we perform the
following steps:

(a) Remove the triple fror}.

(b) Use ClkN - ha(s) to look-up s in T5, and decrement the count of this entryTip,
i.e., replace the paifs, m) with (s,m — 1).

(c) Ifthe new count equals 0, we know that the source no loagpears in the sample
and we remove the pair froffy,.

On the other hand, if the triple does not exist, then thereiisesother triple(s, d, n’)

corresponding to a more recent occurrencésofl) in the streams{ < n’). Thus drop-
ping (s, d,n) changes neither the sampled pairs nor the source countsg samply
proceed to the next step.

. Account for the new pair being included in the winddWh, (s, d) > ¢;/k ignore the

packet. Else:

(a) Check entry% - hi(s,d) of T for a triple withs andd. If such an entry exists,
replace it with(s, d, z), maintaining the invariant that the entry has the latest se-
quence number, and return to process the next packet. Qsieerwsert(s, d, x)
into the list for this entry.

(b) At this point we know thatl is a new destination fog, i.e., this is the first time
(s,d) has appeared in the window. We L%@l - ho(s) to look-ups in Ty. If sis
not found, inser{s, 1) into the list for this entry, as this is the first destinatian f

70

Stream 1: (s1,dl), (s2,d2), (s3,d3), (s4,d4)
Stream 2: (s2,d3), (s1,dl), (s1,d1), (s3,d2)
Stream 3: (s4,d2), (s4,d4), (s2,d4), (s4,d3)

Figure 4.6: Example streams at 3 monitoring points

s in the sample. On the other handgifs found, then we increment its count, i.e.,
we replace the paifs, m) with (s, m+1). If the new count equals+ 1, we report
S.

The precision, time and space bounds are the same as invadilering algorithm of Sec-
tion 4.3.1 withWW substituted forV.

Note that the algorithm is readily modified to handle slidwigdows based on time, e.g., over
the last 60 minutes, by using timestamps instead of sequantders. The precision, time and
space bounds are unchanged, except that the time is now atizzddime bound instead of an
expected one. This is because multiple pairs can drop otmeofvindow during the time between
consecutive arrivals of new pairs. If more than a constambber of pairs drop out, then the
algorithm requires more than a constant amount of time toge® them. However, each arriving
pair can drop out only once, so the amortized per-arrival isasonstant.

4.4.3 Distributed Superspreaders

In the distributed setting, we would like to identify sout&eaddresses that contact a large number
of unique hosts in the union of the streams monitored by a fsdistributed monitoring points.
Consider for example, the three streams in Figure 4.6aad. Sources1, s2, s3, ands4 contact

1, 3, 2, and 3 distinct destinations, respectively. ThudHertotal of N = 12 source-destination
pairs, onlys2 ands4 arek-superspreaders.

Note that a source IP address may contact a large number &f tverall, but only a small
number of hosts in any one stream. Sow2én Figure 4.6 is an example of this. A key challenge
is to enable this distributed identification while havingyolimited communication between the
monitoring points.

We describe how to modify our one-level filtering algorithmviork in a distributed setting.
First, each network monitor runs the algorithm as describheSection 4.3.1 (all using the same
hash function, and with appropriately sized hash-tablag,csN/k; if each of thej monitors
expects to sed’/j packets). The monitor reports any locally detected supessier. Next, at the
end of the stream, each monitor sends its hash-table, @f pairs to the central monitor. Finally,
the central monitor treats these hash-tables as a stredm &f pairs, and using the same hash
function, runs the algorithm on this stream, and reportssaperspreader found.

The overall space and time overhead of first step above suronedall the monitors is the
same as if one monitor monitors the union of the streams. &bensl step requires a total amount

71

of communication equal to the sum of the space for the hdsbgai.e., an expecte@(c; N/k)
memory words. Accounting for the last step increases tla $pace and time by at most a factor
of 2. Note that the algorithm does not require that all strearse an interval ofV/j packets.
As long as there are exactly packets in all, the algorithm achieves the precision bouwgigsn

in Theorem 4.1. Thus our distributed one-level filteringoaidnm uses little memory and little
communication. On the other hand, a similar extension tdwloelevel filtering algorithm results
in more communication in the distributed setting — spedificat each step, the monitors would
need to have access to all the (individual) first-level hiaites, which results in significant increase
in communication between monitors.

4.5 Experimental Results

We implemented our algorithms for finding superspreadend, vee evaluated them on network
traces taken from the NLANR archive [94], after they wereatgd with appropriate superspread-
ers as needed. All of our experiments were run on an Intelildanty, 1.8GHz. We use the
OPENSSLmplementation of th&&HAlhash function, picking a random key during each run, so
that the attacker cannot predict the hashing values. Falam@lementation, one can use a more
efficient hash function. Both algorithms are implementedhst the superspreaders get output at
the end of the run, once all the packets have been processedanur experiments on several
traces and obtained similar results. Our results show tinaélgorithms are fast, have high preci-
sion, and use a small amount of memory. On average, the thigwritake on the order of a few
seconds for a hundred thousand to a million packets (withhaamimized implementation).

In this section, we first examine the precision of the alhong experimentally, then examine
the memory used ds b and N change, and finally compare with the alternate approachogemp
in Section 4.2.2.

4.5.1 Experimental evaluation of precision

To illustrate the precision of the algorithms, we show a $etxperimental results below. To the
base trace 1 (see Figure 4.8), we inserted various attade{sawhere some sources contacted a
high number of distinct destinations. That is, for givengmaeterst andb, we added 00 sources
that send td: destinations each, arld0 sources that send to just unde destinations each. This
was done in order to test if our algorithms do indeed dististgbetween sources that send to more
thank destinations and fewer tharn'b destinations.

We setd = 0.05. In Figure 4.7, we show the results of our experiments, wailjards to
precision of the algorithms. We examine the correctnessipatgorithm by comparing it against
an exact calculation of the number of distinct destinatieash source contacts. We optimize
our choice of the other parameters numerically for bothritlgms (in a manner suggested by the

72

k b False Positives | False Negatives
1-Level | 2-Level | 1-Level | 2-Level
500 2 8.1e-5 | 6.3e-5 0 0
500 5 1 1.13e-4| 1.13e-4 0 0
500 | 10| 1.35e-4| 8.1e-5 0.01 0
1000 | 2 | 4.95e-5| 1.13e-4| 0.02 0
1000 | 5 | 1.62e-4 0 0.02 0.02
1000 | 10 | 1.13e-4| 9.45e-5 0 0.03
5000 | 2 8.1e-5 0 0 0
5000 | 5 | 4.95e-5| 1.62e-5 0 0
5000 | 10 | 3.19e-5| 1.62e-5 0 0.01
10000| 2 | 1.62e-4 0 0.02 0
10000| 5 3.2e-5 0 0.01 0
10000| 10| 1.62e-5| 3.2e-5 0.04 0

Figure 4.7: Evaluation of the precision of one-level filtgriand two-level filtering algorithms over
various settings fok andb, with § = 0.05.

analysis of the theorems), since the bounds given by theégheomay have larger constant factors
than are strictly necessary.

We observe that the accuracy of both algorithms is comparatdi bounded by, which con-
firms our theoretical results. Note that using a smallerevafly would produce a smaller false
positive rate and false negative rate. We note that the fadséive rate is much lower than the
false negative rate. Our sampling rates are chosen togligsim sources that send talestinations
from sources that send f9/b destinations with error rat® When a source sends to a very small
number of destinations (much smaller thiafb), the probability that it becomes a false positive is
significantly lower thard. Likewise, when a source sends to a very large number offéeisins
(> k), the probability that it becomes a false negative is mush thany. Through the construc-
tion of our traces, there are onlyl80 possible sources that may be false negatives, and all of them
send to just ovek destinations. There are many more sources that could lee galsitives, and
only a 100 of these sources send to neaklyb destinations. Thus, the false positive rate that is
seen is much less than the setFurther,all of the false positives in our experiments come from
the sources at the threshold that we addedt the original trace itself. The false positive rate is
typically of much more importance than the false negative, isince there are usually many more
sources that could be false positives than sources thatl dmufalse negatives. Thus, it is very
useful to verify that the false positive rate is much lowearitthe stated in real traces, and that
the false positives observed do come only from the insersdfictat the threshold.

73

Length | No. distinct| No. distinct | N (no. of

(insec)| sources | src-dstpairs| packets)
1 65 59,862 194,060 2.88¢6
2 154 282,484 416,730 3.09¢6
3 207 1.21e6 1.35e6 4.02e6
4 269 2.12e6 2.29¢e6 4.49e6

Figure 4.8: Base traces used for experiments

4.5.2 Memory usage on long traces

We now examine memory used on very long traces by one-letelifig algorithm (Section 4.3.1)
and the hash-table and Bloom-filter implementations of W level filtering algorithm (Section
4.3.2). To distinguish the two implementations of the tweedl filtering algorithm, we will refer

to the hash-table implementation as 2LF-T, and the Bloomrfimplementation as 2LF-B. We
will use 1LF to refer to the one-level filtering algorithm. \Egamine the memory used as the
parameters, b and NV are allowed to vary. The memory usage reported is the nunfledements
actually stored, which is always very close to the size ofttash-tables. (The size of each hash-
table set to be the expected number of elements that willdertied, based on the sampling rates
andN.) For the bloom filter implementation, we use 8 independashHunctions.

The traces used for this section are constructed by takimgkfase traces of varying lengths,
and adding to each of them a hundred sources that sehdi¢stinations, and a hundred sources
that send td:/b destinations. The details of the base traces are shown urd=#§8. We observe
that, with the largest of these traces, a source that seng8Qalistinct destinations contributes
just about0.004% to the total traffic analyzed. The memory used is the numbevastls (or IP
addresses) that need to be stored.

The graphs in Figure 4.9 show the total memory used by eadhrithlgn plotted against the
number of distinct sources in the trace, at different valokes. Notice that through our trace
construction procedure, the traces in Figure 4.9(a), 4.8 4.9(c) contain the same number of
distinct sources, even though the valué differs.

We observe that the memory used by the two algorithms isglyy@orrelated with, as pointed
out by our theoretical analysis. For both algorithms, thenmiey required decreases sharplybas
increases fron? to 5, and then decreases more slowly. This can also be seen (for f&hm
Figure 4.4, in section 4.3.2.

Another observation is that, as expected, the memory usetlByeventually exceeds the
memory used by 2LF-T & 2LF-B, for every value éf The number of sources at which the
memory used by 1LF exceeds the memory used by 2LF-T & 2LF-8 é¢pends on. We also
note that, as expected, the memory used by 2LF-B is muchHhassthe memory used by 2LF-T
and 1LF .

74

N
N
w
3

=
1<)
w

©
Ind
o

N

~ 1LF
- 2LF-T
o 2LF-B

ALk
- 2LF-T
4 o 2LF-B

=
[}

-

total memory used (in words)
[}
total memory used (in words)

e -

N
+

o

o
4

o
=
o
°
o
foo

0.5 1 15 2 25 0.5 1 15 2 25
number of sources (in millions) x10° number of sources (in millions) x10°

(@)b=2 (©)b=5

o

25

+ 1LF
2LF-T
2LF-B

¢

N
o

L
[

total memory used (in words)
N
>

o
o

0.5 1 15 2 25
number of sources (in millions) ©10°

(c)b=10

Figure 4.9: Total memory used by the algorithms in words, (iRraddresses) vs humber of distinct
sources, fob = 2, 5 and10, atk = 200.

75

x10° 5

5 25X10
+ +
g1 2 2
S S
z 2 + ALF
£ 3] 15 - 2LF-T
= ¢ 57 . —=— 2LF-B
&
3 @
> + 1LF 3
g2 o 2LF-T s 1
o —— 2LF-B I}
E £
= =
s! g 0.5 .
[
0 0
0 05 1 15 2 25 0 0.5 1 15 2 25
number of sources (in millions) x 10° number of sources (in millions) X 10°
(@) k = 500 (b) k = 1000
6% 10
+ 1LF
- 2LF-T
9] —— 2LF-B
@
°
S
S 4
£
= .
83
2
g
T 2
= ©
= . - [-
gqr "
e —
0
0 05 1 15 2 25
number of sources (in millions) % 10°
(c) £ = 5000

Figure 4.10: Total memory used by the algorithms in words.,(lP addresses) vs number of
distinct sources, fok = 500, 1000 and5000, atb = 2.

76

We next examine the memory usagekashanges, which is shown in Figures 4.10 and 4.11.
We observe that the total memory used drops sharply iasreases, as expected: in 4.10(a), at
k = 500, the memory used ranges fraxf, 000 to 200, 000 IP addresses; in 4.10(c), at= 5000,
it ranges froml10, 000 to 55, 000 IP addresses. Even though the number of source-destinzdion
increases wheh increases, we can afford to sample much less frequentlys ifhiurn decreases
the number of sources stored that have very few destinatenms thus the total memory used
decreases.

Also, for everyk, as the number of packef$ increases, the memory used by 1LF eventually
exceeds the memory used by 2LF-T & 2LF-B. This is becauseeofwio-level sampling scheme.
Since the first sampling ratg is much smaller than, /% in 1LF , the number of non-superspreader
sources stored in 2LF-T & 2LF-Br(/N in expectation) is much less than in 1LF . The actual
number of sources at which this occurs depend#.0As k increases, the number of sources at
which the memory used by 1LF exceeds the memory used by 2ldnd ZLF-B) also increases,
since the sampling rates for both algorithms decrease isah®e way. We also observe that, once
again, the memory used by 2LF-B is significantly lower tha And 2LF-T.

1.4 0.7,

12 —— k=200 06 —— k=200
- k=500 o= k=500

- o~ k=1000 -e- k=1000
—+— k=5000 —— k=5000
—=— k=10000 —s— k=10000

memory per source (in words)

25
x10°

! 0
. 1 15 2 25 0 0.5 1 15 2
number of sources (in millions) 6 number of sources (in millions)

(a) One-level filtering (b) Two-level filtering (hashtable)

0.35

—— k=200
- k=500
-=- k=1000
—— k=5000
—— k=10000

o
w

memory per source (in words)

25

0.5 1 15
number of sources (in millions) x 10°

(c) Two-level filtering (Bloom filters)

Figure 4.11: Memory used per source vs humber of distinatcesu for allk, by 1LF , 2LF-T, &
2LF-B ath = 2.

The graphs in Figure 4.11 show the memory used per sourcteglagainst the number of
distinct sources, for various — ask increases, the total memory used drops. We observe that

e

b | ILF | 2LF-T|2LF-B| Altl | Altll
Trace 1

2 | 37610| 16234 | 7223 | 49063 | 105589
5 | 9563 | 3241 | 1377 | 20746 | 48424
10 | 5685 | 2698 | 1136 | 16839 | 36823
Trace 2
2 | 71852| 17536 | 7711 | 133988| 273101
5 | 19298 | 4543 | 1865 | 76543 | 168256
10 | 12030| 4000 | 1624 | 67007 | 135540

Figure 4.12: Comparisons of total memory used with traces2lfé& k& = 1000 and varyingb.

each algorithm has a similar dependence:pthough the absolute memory usage is different, as
discussed.

Lastly, we tested both 1LF and 2LF-T on a trace with 10 millgmurces that contacted a few
destinations each. At = 1000 andb = 2, the memory usage of 1LF and 2LF-T were about 1.04
million and 60,100 IP addresses respectively. Thus, welsdeotr algorithms do indeed scale
well as the number of flows increases.

4.5.3 Comparison with an Alternate Approach

We now show results comparing our approach to the Approactsdriibed in Section 4.2.2: we
count the number of distinct destinations that a sourcessenasing LossyCounting [84], replacing
the regular counter with a distinct-element counter. Weal@show experimental comparisons with
the other approaches as they all keep per-flow state, andiscolear that they need far more space
than our algorithms.

We chose the parameters for LossyCounting and the distomaiting algorithm so that (a)
the memory usage was minimized for edchnd (b) the false positive and false negative rates
were similar to (but at least as large as) the results of @argthm over 10 iterations; we ensured
this by slowly reducing the memory used by the alternaterdlgos until the error rates were
just slightly larger than our algorithm, in order to make anparison that was favourable to the
alternate algorithms. We show experimental results with\rariants of the approach: (1) use one
distinct counter per source (this is Alt I), and (2) USg% distinct counters per source, and use
their median for the estimate of the number of distinct eletsies used (this is Alt Il). The memory
used is reported as the maximum of the total number of hasiesatored for all the sources at any
particular time.

Figure 4.12 shows the result of the comparison of memoryaiatig= 1000, for b = 2,5 and
10, on Trace 1 & Trace 2. Note that all our algorithms show beitgformance than Alt | and Alt
Il on Traces 1 & 2. The results for Trace 3 & Trace 4 are siméagept that Alt | uses less memory

78

than 1LF wherb = 2.

4.6 Conclusion

In this chapter, we have described new streaming algorittem&entifying superspreaders on
high-speed networks. Our algorithms give proven guaranteethe accuracy and the memory
requirements. Compared to previous approaches, our thigwriare substantially more efficient,
both theoretically and experimentally. We also provideesavextensions to our algorithms — we
can identify superspreaders in a distributed setting, theesliding windows, and when deletions
are allowed in the stream (which lets us identify sources ke a large number of failed con-
nections to distinct destinations). Our algorithms haveynanportant networking and security
applications. We also hope that our algorithms will shed hight on developing new fast stream-
ing algorithms for high-speed network monitoring.

The results presented in this chapter are joint work with D&eng and Phillip Gibbons and
Avrim Blum, and have previously appeared at 2¢h Annual Network and Distributed Systems
Security Symposium, 2005 [116].

79

80

Chapter 5

Exploiting IP-based Network Structure
for Spam Mitigation

5.1 Introduction

E-mail has emerged as an indispensable and ubiquitous neé@aesnmunication today. Unfor-
tunately, the ever-growing volume of spam diminishes tlfieieficy of e-mail, and requires both
mail server and human resources to handle.

Great effort has focused on reducing the amount of spam lieaénd-users receive. Most
Internet Service Providers (ISPs) operate various typepai filters [1, 4, 5, 62] to identify and
remove spam e-mails before they are received by the endfiseail software on end-hosts adds
an additional layer of filtering to remove this unwantedftcatbased on the typical email patterns
of the end-user.

Much less attention has been paid to how the large volumeawhsmpacts the mail infrastruc-
ture within an ISP, which has to receive, filter and delivaanthappropriately. Spammers have a
strong incentive to send large volumes of spam — the more Hpeyrsend, the more likely it is that
some of it can evade the spam filters deployed by the ISPse#dg for the spammer to achieve
this — by sending spam using large botnets, spammers cdy gaserate far more messages than
even the largest mail servers can receive. In such condijtibis critical to understand how the
mail server infrastructure can be made to prioritize leggiie mail, processing it preferentially over
spam.

In this context, the requirements for differentiating beém spam and non-spam are slightly
different from regular spam-filtering. The primary requirent for regular spam-filtering is to be
conservative in discarding spam, and for this, computaticost is not usually a consideration.
However, when the mail server must prioritize the processihlegitimate mail, it has to use
a computationally-efficient technique to do so. In additionthis situation, even an imperfect

81

distinction criterion would be useful, as long as a signiftcaction of the legitimate mail gets
classified correctly.

In our work, we explore the potential of using the historioahaviour of IP addresses to predict
whether an incoming email is likely to be legitimate or sp&ssing IP addresses for classification
is computationally substantially more efficient than angteot-based techniques. IP address infor-
mation can also be collected easily and is more difficult fepammer to obfuscate. Our measure-
ment studies show that IP address information provideskdesthscriminator between legitimate
mail and spam. We find that good mail servers send mostlyinegfi¢ mail and are persistent for
significant periods of time. We also find that the bulk of spaymes from IP prefixes that send
mostly spam and are also persistent. With these two findings;an use the properties bbth
legitimate mail and spam together, rather than using thpasties of only legitimate mail or only
spam, in order to prioritize legitimate mail when needed.

We show that these measurements are valuable in an appticatiere legitimate mail must be
prioritized. We focus on the situation when mail serversauerloaded, i.e., they receive far more
mail than they can process, even though the legitimate medived is a tiny fraction of the total
received. Since mail typically gets dropped at random whenserver is overloaded, and spam
can be generated at will, the spammer has an incentive ttoadethe server. Indeed, the optimal
strategy for the spammer is to increase the load on the niiekinucture to a point where the most
spam will be accepted by the server; this kind of behaviosride®en observed on the mail servers
of large ISPs. In this work, we show an application of our nmeamient study to design techniques
based on the reputations of IP addresses and their agggegadademonstrate the benefits to the
mail server overload problem.

Our contributions are two-fold. We first perform an extemsimeasurement study in order to
understand some IP-based properties of legitimate maispath. We then perform a simulation
study to evaluate how we can use these properties to mt@gitimate mail when the mail server
is overloaded.

Our main results are the following:

e We find that a significant fraction of legitimate mail comesnir IP addresses that last for a
long time, even though a very significant fraction of spam esrinom IP addresses that are
ephemeral. This suggests that the history of “good” IP esighe that is, IP addresses that
send mostly legitimate mail, could be used for prioritizimgil in spam mitigation.

e We explorenetwork-aware clusteras a candidate aggregation scheme to exploit structure
in IP addresses. Our results suggest that IP addressesisdgdpdor the bulk of the spam
are well-clustered, and that the clusters responsibleh®ibtlk of the spam are persistent.
This suggests that network-aware clusters may be gooddztedito assign reputations to
unknown IP addresses.

e Based on our measurement results, we develop a simple tiepisaheme that can prioritize

82

IP addresses when the server is overloaded. Our simulasioms that when the server
receives many more connection requests than it can prooesgolicy gives a factor of 3
improvement in the number of legitimate mails accepted tweistate-of-the-art.

We note that the server overload problem is just one apfit#bat illustrates how IP informa-
tion could be used for prioritizing email. This informaticould be used to prioritize e-mail at ad-
ditional points of the mail server infrastructure as welbvirtver, the kind of structural information
that is reflected in the IP addresses may not always be a pdigeciminator between spammers
and senders of legitimate mail, and this is, indeed, refieictehe measurements. Such structural
IP information could, therefore, be used in combinatiorhwither techniques in a general-purpose
spam mitigation system, and this information is likely tauseful by itself only when an aggressive
and computationally-efficient technique is needed.

The remainder of the chapter is structured as follows. Wegpreour analysis of characteristics
of IP addresses and network-aware clusters that distindugsveen legitimate mail and spam in
Sections 5.2 and 5.3 respectively. We present and evaluatotution for protecting mail servers
under overload in Section 5.4. We review related work in ®adi.5 and conclude in Section 5.6.

5.2 Analysis of IP-Address Characteristics

In this section, we explore the extent to which IP-basedtifleation can be used to distinguish
spammers from senders of legitimate e-mail based on diffei®in patterns of behaviour.

5.2.1 Data

Our data consists of traces from the mail server of a largepaom serving one of its corporate
locations with approximately 700 mailboxes, taken overréopeof 166 days from January to June
2006. The location runs a PostFix mail server with extenlsigging that records the following: (a)
every attempted SMTP connection, with its IP address anel simmp, (b) whether the connection
was rejected, along with a reason for rejection, (c) if thenawtion was accepted, results of ad-
ditional mail server’s local spam-filtering tests, and i€epted for delivery, the results of running
SpamAssassin.

Fig. 5.1(a) shows a daily summary of the data for six monthisshbws four quantities for
each day: (a) the number of SMTP connection requests maclading those that are denied via
blacklists), (b) the number of e-mails received by the mailver, (c) the number of e-mails that
were sent to SpamAssassin, and (d) the number of e-mailsedetgitimate by SpamAssassin.
The relative sizes of these four quantities on every dagtiliie the scale of the problem: spam is
20 times larger than the legitimate mail received. (In ouadet, there were 1.4 million legitimate
messages and 27 million spam messages in total.) Such aisitzlance indicates the potential
of a significant role for applications like maximizing lagitate mail accepted when the server is

83

overloaded: if there is a way to prioritize legitimate mdile server could handle it much more
quickly, because the volume of legitimate mail is tiny in qguarison to spam.

In the following analysis, every message that is considéegidimate by SpamAssassin is
counted as a legitimate message; every message that isle@mtsispam by SpamAssassin, the
mail server’s local spam-filtering tests, or through dehiah blacklist is counted as spam.

5.2.2 Analysis of IP Addresses

We first explore the behaviour of individual IP addresses sbad legitimate mail and spam, with
the goal of uncovering any significant differences in theihavioral patterns.

Our analysis focuses on thEB spam-ratioof an IP address, which we define to be the frac-
tion of mail sent by the IP address that is spam. This is a simiptuitive metric that captures
the spamming behaviour of an IP address: a low spam-ratiodtes that the IP address sends
mostly legitimate mail; a high spam-ratio indicates tha tR address sends mostly spam. Our
goal is to see whether the historical communication behaab IP addresses categorized by their
spam-ratios can differentiate between IP addresses dintege senders and spammers, for spam
mitigation.

As discussed earlier, the differentiation between thetitegte senders and spammers need
not be perfect; there are benefits to having even a parti@rdiftiation, especially with a simple,
computationally inexpensive feature. For example, in #wer overload problem, when all the
mail cannot be accepted, a partial separation would stiifl teeincrease the amount of legitimate
mail that is received.

In the IP-based analysis, we will address the following tjages:

e Distribution by IP Spam Ratiowhat is the distribution of IP addresses by their spanoyati
and what fraction of legitimate mail and spam is contribubgdP addresses with different
spam-ratios?

e PersistenceAre IP addresses with low/high spam-ratios present adoogstime periods? If
they are, do such IP addresses contribute to a significartidreof the legitimate mail/spam?

e Temporal Spam-Ratio StabilityDo many of the IP addresses that appear to be good on
average fluctuate between having very low and very high spdios?

The answers to these three questions, taken together, giaa idea of the benefit we could
derive in using the history of IP address behaviour in spatigation. We show in Sec. 5.2.2,
that most IP addresses have a spam-rati@/obr 100%, and also that a significant amount of the
legitimate mail comes from IP addresses whose spam-ratieegls zero. In Sec. 5.2.2, we show
that a very significant fraction of the legitimate mail confresn IP addresses that persist for a long
time, but only a tiny fraction of the spam comes from IP adskeghat persist for a long time. In

84

Sec. 5.2.2, we show that most IP addresses have a very higlotaihnatio-stability — they do not
fluctuate between exhibiting a very low or very high dailyrepeatio over time.

Together, these three observations suggestidieatifying IP addresses with low spam ratios
that regularly send legitimate madould be useful in spam mitigation and prioritizing legitita
mail. In the rest of this section, we present the analysisl#zals to these observations. For con-
creteness, we focus on how the analysis can help spam natigatthe server overload problem.

x 10 1
kN - - - SMTP handshake receive|
" - Mail received

- - SpamAssassin applied
— Legitimate Mail

o
L

o
Sk

o
=

No. of messages

Fraction of IP Addresses

o
N

! 3 .
A ,. N
et " A
| , .
[o3 Yo . nont
-y i . o DR VEU
: i [N P
= oz .t ! \\‘ N U PSS
- S vty e, e ‘, -
0.5 4 |
i

.
ARSI AR AR AR A 9

% 20% 40% 60% 80% 100%

20 40 60 86 100 120 140 160)
Time in days IP spam-ratio
(a) Data characteristics (b) CDFs of IP spam-ratios for many days: each line
is a CDF for a different day.

Figure 5.1: 1(a): Daily summary of the data set over 6 monifls): CDFs of IP spam-ratios for
many different days.

Distribution by IP Spam-Ratio

In this section, we explore how the IP addresses and theacited mail volumes are distributed
as a function of the IP spam-ratios. We focus here on the sptimeomputed over a short time

period in order to understand the behaviour of IP addresghsut being affected by their possible

fluctuations in time. Effectively, this analysis shows thmits of the differentiation that could be

achieved by using IP spam-ratio, even assuming that IP spimeould be predicted for a given

IP address over short periods of time. In this section, wadamn day-long intervals, in order to

take into account possible time-of-day variations. Werradeghe IP spam-ratio computed over a
day-long interval as thdaily spam-ratio

Intuitively, we expect that most IP addresses either serstlynlegitimate mail, or mostly spam,
and that most of the legitimate mail and spam comes from theseldresses. If this hypothesis
holds, then for spam mitigation, it will be sufficient if wercalentify the IP addresses as senders
of legitimate mail or spammers. To test this hypothesis, nayaze the following two empirical
distributions: (a) the distribution of IP addresses as ation of the spam-ratios, and (b) the
distribution of legitimate mail/spam as a function of theispective IP addresses’ spam-ratio.

85

We first analyze the distribution of IP addresses by theilydgoam-ratios in Fig. 5.1(b). For
each day, it shows the empirical cumulative distributionclion (CDF) of the daily spam-ratios of
individual IP addresses active on that day. Fig. 5.1(b) shitwe daily CDF for a large number of
randomly selected days across the observation period.

Result 1. Distribution of IP addresses: Fig. 5.1(b) indicates: (i) Most IP addresses, send either
mostly spam or mostly legitimate mail. (ii) Fewer thar- 2% of the active IP addresses have a
spam-ratio of betweet?% — 99%, i.e., there are very few IP addresses that send a non-triraa-
tion of both spam and legitimate mail. (i) Further, the vasajority (nearly90%) of IP addresses
on any given day generate almost exclusively spam, and Ipawva-gatios betweefi9% — 100%.

The above results indicate that identifying IP addressek loiv or high spam-ratios could
identify most of the legitimate senders and spammers. litiadgdfor some applications (e.g., the
mail server overload problem), it would be valuable to idfgrihe IP addresses that send the bulk
of the spam or the bulk of the legitimate mail, in terms of nvalume. To do so, we next explore
how the daily legitimate mail or spam volumes are distridugs a function of the IP spam-ratios,
and the resulting implications.

Let I;, denote the set of all IP addresses that have a spam-ratiorwsik. Fig. 5.2 examines
how the volume of legitimate mail and spam sent by thd seepends on the spam-rafio Specif-
ically, let L;(k) and S;(k) be the fractions of the total daily legitimate mail and sp&at tomes
from all IPs in the sefy, on dayi. Fig. 5.2(a) plotsL;(k) averaged over all the days, along with
confidence intervals. Fig. 5.2(b) shows the correspondisigililtion for the spam volums; (k).

Result 2. Distribution of legitimate mail volume: Fig. 5.2(a) shows that the bulk of the legitimate
mail (nearly 70% on average) comes from IP addresses with a very low spam-(ati< 5%).
However, a modest fraction (ov&? on average) also comes from IP addresses with a high spam-
ratio (k > 80%).

Result 3. Distribution of spam volume: Fig. 5.2(b) indicates that almost all (ov€9% on aver-
age) of the spam sent every day comes from IP addresses wattiramely high spam-ratio (when
k > 95%). Indeed, the contribution of the IP addresses with lowemsgatios ¢ < 80%) is a
tiny fraction of the total.

We observe that the distribution of legitimate mail volunseaafunction of the spam-ratib
is more diffused than the distribution of spam volume. Theme two possible explanations for
such behaviour of the legitimate senders. First, spamifijesoftware tends to be conservative,
allowing some spam to marked as legitimate mail. Second, @ legitimate mail tends to come
from large mail servers that cannot do perfect outgoing spiening. These mail servers may,
therefore, have a slightly higher IP spam-ratio, and thisldi@ause the distribution of legitimate
mail to be more diffused across the spam-ratio.

Together, the above results suggest that the IP spam-ratidena useful discriminating feature
for spam mitigation As an example, assume that we have aifataion function that accepted

86

o
o]
—-—
.
. 1
—.—
.
-
-
.
.-
i
.
.
o
(]

€
So8
° =
E Hfﬁ

LTs c
go QEE g 06
£ | @
Q c
5 0.4r .% 0.4r
c ©
g s
8 |
Zo2 1 0.2 '

%% 20% 40% 60% 80% 100% % 20% 40% 60% 80% 100%
IP spam-ratio IP spam-ratio
(a) Legitimate mail (b) Spam

Figure 5.2: Legitimate mail and spam contributions as atfanwf IP spam-ratio.

(or prioritized) all IP addresses with a spam-ratio of at trkoand rejected all IP addresses with a
higher spam-ratio. Then, if we set= 95%, we could accept (or prioritize) nearly all the legitimate
mail, and no more thah% of the spam. However, such a classification function requerfect
knowledge of every IP address’s daily spam-ratio everylsidgy, and in reality, this knowledge
may not be available.

Instead, our approach is to identify properties that oceer tonger periods of time, and are
useful for predicting the current behaviour of an IP addtessed on long-term history, and these
properties are incorporated into classification functiombe effectiveness of such history-based
classification functions for spam mitigation depends onetktent to which IP addresses are long-
lived, how much of the legitimate email or spam are conteduty the long-lived IP addresses, and
to what extent the spam-ratio of an IP address varies over. tBec. 5.2.2 and Sec. 5.2.2 explore
these questions.

For the following analysis, we focus on the spam-ratio ohaadividual IP address, computed
over the entire data set, since we are interested in its b®lrawver its lifetime. We refer to this as
thelifetime spam-raticof the IP address. We show the presence of two propertiessimtialysis:
() a significant fraction of legitimate mail comes from gol®laddresses that last for a long time
(persistenck and (ii) IP addresses that are good on average tend to hemespam-ratio each time
they appeartémporal stability. These two properties directly influence how effective auhd be
to use historical information for determining the likeldebof spam coming from an individual IP
address.

Persistence

Due to the community structure inherent in non-spam comaatioin patterns, it seems reasonable
that most of the legitimate mail will originate from IP addgses that recur frequently. Previous

87

studies have also indicated that most of the spam comes RPaddresses that are extremely short-
lived. These suggest the existence of a potentially sigmifidifference in the behaviour of senders
of legitimate mail and spammers with respect to persistevManext quantify the extent to which
these hypotheses hold, by examining the persistence ofdindil IP addresses.

Our methodology for understanding the persistence behafidP addresses is as follows:
we consider the set of all IP addresses with a low lifetimarspatio and examine how much
legitimate mail they send, as well as how much of the legiténmaail is sent by IP addresses that
are present for a long time. Such an understanding can iedica potential of using a whitelist-
based approach for prioritizing legitimate mail. If, fostance, the bulk of the legitimate mail
comes from IP addresses that last for a long time, we coulthisproperty to prioritize legitimate
mail from long-lasting IP addresses with low spam-ratios.

10’ ‘ ‘ ‘ ‘ ‘ ‘ : : 0.7
L [
R w-k=1 060\“ -v-k=1
\ @ k=5 e ‘\‘ k=5
2 gtk b —1dd 2 “+ k=1
§ 4 k=10 = 0.§§\ s IS ¥ (0]
4] | 4 k=20 £ Y .;‘ 4 k=20
§ -m-k =30 %0_4 \%** 1 } -m-k =230
a = Tk L4
- > . * - L4 ¥y
S k7] 0.31\ ‘\0\‘; * He R \.
< 5 N o * oy O
g c v .\."1—; * ¥
o L v~ e B
2 i*\‘* 502 M TYV-yvy v ‘\.\. N **
v % & Vv g g TE
v - “w-
Ty 5o T3
v
10 Y o S S SR
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Number of days Number of days

(@) Number ofk-good IP addresses present fotb) Fraction of legitimate mail sent bi-good IP
or more days addresses present foror more days

Figure 5.3: Persistence éfgood IP addresses.

For this analysis, we use the following two definitions.

Definition 1. A k-good IP addressis an IP address whose lifetime spam-ratio is at miastA
k-good setis the set of alk-good IP addresses. Thus28-good set is the set of all IP addresses
whose lifetime spam-ratio is no more th20t%.

We compute (a) the number éfgood IP addresses present for at leastistinct days, and
(b) the fraction of legitimate mail contributed ldygood IP addresses that are present in at least
distinct days? Fig. 5.3(a) shows the number of IP addresses that appealeiastt: distinct days,
for several different values @f.

1Our analysis considers persistence of IP addresses only itata set, i.e., it considers whether the IP address has
sent mail forz days to our mail server. These IP addresses may have sertorodiler mail servers on more days, and
combining data across multiple different mail servers mag g better picture of stablility of IP addresses sending.ma
Nevertheless, in this work, we focus on the persistence endata set, as it highlights behavioural differences due to
community structure present within a single vantage point.

88

Fig. 5.3(b) shows the fraction of the total legitimate mhdttoriginates from IP addresses that
are in thek-good set and appear in at leastiays, for each threshold

Most of the IP addresses in/&agood set are not present very long, and the number of IP
addresses falls quickly, especially in the first few daysweler, their contribution to the legitimate
mail drops much more slowly asincreases. The result is that the few longer-lived IPs daurt
to most of the legitimate mail from &-good set. For example, only 5% of all IP addresses in
the 20-good set appear at least 10 distinct days, but they coterioualmost 87% of all legitimate
mail for the 20-good set. If the-good set contributes to a significant fraction of the |leggie mail,
then the few longer-lived IP addresses also contributdfgigntly to the total legitimate mail. For
instance, IP addresses in ti@good set contribute t63.5% of the total legitimate mail received.
Only 2.1% of those IP addresses are present for at least 30 days, putdh&ibute to oveb0%
of the total legitimate mail received.

Result 4. Distribution of legitimate mail from persistent k-good IPs: Fig. 5.3 indicates that

() IP addresses with low lifetime spam ratios (smlltend to contribute a major proportion of
the total legitimate email, and (ii) only a small fraction tfe IP addresses with a low lifetime
spam-ratio addresses appear over many days, but they batdrio a significant fraction of the
legitimate mail.

The graphs also reveal another trend: the longer an IP althsts, the more stable is its
contribution to the legitimate mail. For exampe)9% of the IP addresses in tl¥-good set are
present for at least 60 days, but they contribute to @&t of the total legitimate mail received.
From this, we can infer that there were an additionafs of IP addresses in th#)-good set that
were present for 30-59 days, but they only contributetiOtd of the total legitimate mail received.

Fig. 5.4 presents a similar analysis of persistence for lRem$es with a high lifetime spam-
ratio. Like thek-good IP addresses akegood sets, we define-bad IP addresses akebad sets.

Definition 2. A k-bad IP addressis an IP address that has a lifetime spam-ratio of at ldasA
k-bad setis the set of alk-bad IP addresses.

Fig. 5.4(a) presents the number of IP addresses ikibad set that are present in at least
days, and Fig. 5.4(b) presents the fraction of the total spamh by IP addresses in thebad set
that are present in leagtdays.

Result 5. Distribution of spam from persistent k-bad IPs: Fig. 5.4 indicates that (i) IP ad-
dresses with high lifetime spam ratios (large k) tend to buate almost all of the spam, (ii) most
of these high spam-ratio IPs are only present for a short {jthis is consistent with the finding in
[99]) and account for a large proportion of the overall spaend (iii) the small fraction of these
IPs that do last several days contribute a non-trivial fiagtof the overall spam; however, a much
larger fraction of spam comes from IP addresses that are reggnt for very long. As in the case
of thek-good IP addresses, the spam contribution from/iHsad IP addresses tends to get more
stable with time.

89

1:
-m-k=70) -m-k=70
4 k=80 OQM 4 k=80
8 10°t k=90 g k=90
8 _e-k=99 g i -@-k=99
3 ~v-k =100 5 0.6} ~v-k=104
; 4 N & \\\\w
Z 107 “$a 5 |l
I \Hi*\ S 0.4 il
2 . S04\
2 Frey A
E V\v\t‘:t) =z N
Z 107 A o %
Y v X 0.2 * .
> ‘v 388 a.
\ A v} “‘*“ti:tttttur
10 Y 0 . . vf‘V*va»'»->y_¥¥ v
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160

Number of days Number of days

(a) No. ofk-bad IP addresses presentrior more(b) Fraction of spam sent by-bad IP addresses
days present inc or more days

Figure 5.4: Persistence 6fbad IP addresses.

So, for instance, we can see from Fig. 5.4 that anli/% of the IP addresses in tf#9-bad
set appear in at least 10 distinct days, and these contribd&4% of the volume of spam from
the 80-bad set, and4% of the total spam. The difference is more pronouncedifiir-bad IP

addresses2% of the 100-bad IP addresses appear for 10 or more distinet, daygl contribute to
25% of the total spam volume.

The results of this section have implications in designipgns filters, especially for applica-
tions where the goal is to prioritize legitimate mail ratittean discard spam. While spamming IP
addresses that are present sufficiently long can be bltedklishe scope of a purely blacklisting
approach is limited. On the other hand, a very significanttiva of the legitimate mail can be
prioritized by using the history of the senders of legitienatail.

Temporal Stability

Next, we seek to understand whether IP addresses ik-tfutmd set change their daily spam-ratio
dramatically over the course of their lifetime. The queastiee want to answer is: of the IP ad-
dresses that appear inkagood set (for small values &), what fraction of them have ever had
“high” daily spam-ratios, and how often do they have “higham-ratios? Thus, we want to under-
stand theemporal stabilityof the spam-ratio of IP addresseskirgood sets. In this section, we
focus onk-good IP addresses; the results for fAbad IP addresses are similar.

We compute the following metric: for each IP address ir@ood set, we count how often its
daily spam-ratio exceeds(and normalize this count by the number of days it appears)d#fine
this quantity to be thé&equency-fraction excessd the IP address, for thle-good set. We plot the

90

0.
-x-k=1
—* K=
008 k=5 | |
8 = k=10
] ——k=20
Soog ., -e-k=30]
a
k]
5 0.04
g
©
[T
0.02
o \.3
K L L L B L bl L d
0 0.1 0.2 0.3 0.4 05

Frequency fraction-excess

Figure 5.5: Temporal stability of IP addresseskhigood sets, shown by CCDF of frequency-
fraction excess.

complementary cdf (CCDF) of tHeequency-fraction excess all IP addresses in the-good set?
Intuitively, the distribution of the frequency-fractiomeess is a measure of how many IP addresses
in the k-good set exceek, and how often they do so.

Fig. 5.5 shows the CCDF of the frequency-fraction excesséoeralk-good sets. It shows
that the majority of the IP addresses in e&efjood set have a frequency-fraction excess of 0, and
that95% of the k-good IP addresses have a frequency-fraction excess ofsaro

We explain the implications of Fig. 5.5 to the temporal digbof the spam-ratio of IP ad-
dresses with an example. We focus on thgood set fork = 20: this is the set of IP addresses
whose lifetime spam-ratio is bounded 29%. We note that the frequency-fraction excess is 0 for
95% of the 20-good IP addresses. This implies tl9#t%s of IP addresses in this-good set do
not send more tha?0% spamany day, i.e., every time they appear, they have a daily spaim-rat
of at most20%. We also note that fewer thai¥ of the IP addresses in thisgood set have a
frequency-fraction excess larger thag.

Thus, for manyk-good sets with smalt-values, only a few IP addresses have a significant
frequency-fraction excess, i.e., very few IP addresselsaset sets exceed the valkeften. Since
they would need to exceddoften to change their spamming behaviour significanthglibfvs that
most IP addresses in tihiegood set do not change their spamming behaviour significant

In addition, the frequency-fraction excess