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Abstract

Kimberley enables rapid software provisioning of fixed infrastructure for transient use by a mobile
device. It uses virtual machine (VM) technology, but avoids the performance challenges of running
VMs on resource-poor mobile devices. VM execution only occurs in the infrastructure and never
on the mobile device; however, the device may transport and interpret parts of VM state. Kimberley
decomposes VM state into a widely-available base VM and a much smaller private VM overlay.
The base is downloaded in advance; the overlay is delivered on demand from the mobile device
or under its control from a public web site. We have built a prototype of Kimberley, and our
experiments confirm the feasibility of this approach.
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1 Introduction
Usability often suffers when a mobile device is optimized for size, weight and energy efficiency.

On a hand-held device with a small screen, tiny keyboard and limited compute power, it is a
challenge to go beyond a limited repertoire of applications. A possible solution to this problem
is to leverage fixed infrastructure to augment the capabilities of a mobile device, using techniques
such as dynamically composable computing [11] or cyber foraging [1, 5, 2]. For this approach to
work, the infrastructure must be provisioned with exactly the right software needed by the user.
This is unlikely to be the case everywhere, especially at global scale.

This paper describes Kimberley, a system for rapid software provisioning of fixed infrastructure
for transient use by a mobile device. Kimberley uses virtual machine (VM) technology, but avoids
the performance challenges of running VMs on resource-poor mobile devices. It is thus funda-
mentally different from approaches such as the Internet Suspend/Resume R© system [6, 8] that rely
on VM migration. In Kimberley, VM execution only occurs in the infrastructure and never on the
mobile device; however, the device may transport and interpret parts of VM state.
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Figure 1: Kimberley Timeline

Kimberley decomposes VM state into a widely-available base VM and a much smaller, possibly
proprietary, private VM overlay. These two components are delivered to the site being provisioned
in very different ways. The base VM is downloaded by the infrastructure in advance from a pub-
licly accessible web site. The private VM overlay is delivered to a server in the infrastructure just
before use, either directly from the mobile device or under its control from a public web site. In
the latter case, encryption-based mechanisms can be used to ensure the integrity and privacy of the
private VM overlay. Once obtained, the overlay may be optionally cached for future reuse. The
server applies the overlay to the base to create and execute a launch VM. When the user departs,
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this VM is terminated and its state is discarded. In some cases, a small part of the VM state may
be returned to the mobile device; this is referred to as the VM residue. Figure 1 shows a typical
Kimberley timeline.

We anticipate that a relatively small number of base VMs (perhaps a dozen or so releases of
Linux and Windows configurations) will be popular worldwide in mobile computing infrastructure
at any given time. Hence, the chances will be high that a mobile device will find a compatible
base for its overlays even far from home. The chances of success can be increased by generating
multiple overlays, one for each of a number of base VMs. The collection of popular base VMs can
be mirrored worldwide, and a subset can be proactively downloaded by each mobile computing
infrastructure site.

2 Usage Examples
The two hypothetical examples below illustrate the kinds of usage scenarios we envision for

Kimberley.
Scenario 1: Dr. Jones is at a restaurant with his family. He is contacted during dinner by his

senior resident, who is having difficulty interpreting a pathology slide. Although Dr. Jones could
download and view a low-resolution version of the pathology slide on his smart phone, it would
be a fruitless exercise because of the tiny screen. Fortunately, the restaurant has a large display
with an Internet-connected computer near the entrance. It is sometimes used by customers who
are waiting for tables; at other times it displays advertising. Using Kimberley, Dr. Jones is able
to temporarily install a whole-slide image viewer, download the 100MB pathology slide from a
secure web site, and view the slide at full resolution on the large display. He immediately sees the
source of the resident’s difficulty, helps him resolve the issue over the phone, and then returns to
dinner with his family.

Scenario 2: While Professor Smith is waiting to board her flight, she receives email asking
her to review some budget changes for her proposal. The attached spreadsheet shows a bottom line
that is too high. After a few frustrating minutes of trying to manipulate the complex spreadsheet on
her small mobile device, Professor Smith looks around the gate area and finds an unused computer
with a large display. She rapidly customizes this machine using Kimberley, and then works on the
spreadsheet. She finishes just before the final boarding call, and retrieves the modified spreadsheet
on to her mobile device. On board, Professor Smith barely has time to compose a reply, attach the
modified spreadsheet, and send the message before the aircraft door is closed.

3 Prototype Implementation
The Kimberley prototype uses a Nokia N810 Internet tablet with a 400MHz TI OMAP proces-

sor, 128 MB of DDR RAM and 256 MB flash memory, 2 GB flash internal storage, an attached 8
GB microSD card, and a 4-inch touch-sensitive color display. It supports 802.11b/g and Bluetooth
networking, and is equipped with GPS and ambient light sensors. Its software is based on the
Maemo 4.0 Linux distribution. The infrastructure machine in our prototype is a Dell Precision 380
desktop with a 3.6 GHz Pentium 4 processor, 4 GB RAM, an 80 GB disk, and a 20-inch 1600x1200
LCD monitor. It runs Ubuntu 7.10, which is based on the Linux 2.6.22-14 kernel. This machine
has a 100 Mb/s Ethernet connection to the Internet; it also has 802.11b/g wireless network access
via a USB-connected network interface. We describe three aspects of our implementation below.
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Figure 2: Runtime Binding in Kimberley

3.1 Creating VM overlays
The VMs used in Kimberley are configured using VirtualBox [13] on a Linux host. We provide

an overlay creation tool called kimberlize that is invoked as follows:
kimberlize <baseVM> <install-script> <resume-script>

baseVM is a VM in which a minimally-configured guest OS has been installed. There are no
constraints on the choice of guest OS, except that it must be compatible with install-script

and resume-script. The tool first launches baseVM, and then executes install-script in the
guest OS. The result is a VM that has been configured for use by the mobile device. To avoid the run
time delays of guest reboot and application launch, kimberlize then executes <resume-script>
in the guest. This yields a VM that can suspended now and then resumed rapidly at run time in a
state ready for user interaction. There are no constraints on install-script and resume-script
except for the obvious caveat that they should not halt or crash the guest.

Once the launch VM has been created, kimberlize uses the xdelta binary differencing tool
to obtain the difference between the launch and and post-install memory images. In principle,
xdelta could also be used to obtain the difference in disk images. However, this is not necessary
since VirtualBox already maintains a compact differencing disk. The VM overlay consists of this
differencing disk plus the xdelta-generated memory difference.

The VM overlay is then compressed using the Lempel-Ziv-Markov algorithm [12], which is
optimized for fast decompression at the price of relatively slow compression. This is the appro-
priate tradeoff for Kimberley because decompression takes place in the critical path of execution
at runtime and contributes to user-perceived delay. Further, compression is only done once but
decompression occurs each time a mobile device uses infrastructure.

The final step of kimberlize is to encrypt the compressed VM overlay using AES-128 private-
key encryption. An optional argument to kimberlize can be used to specify the private key;
otherwise kimberlize generates a random key from /dev/urandom.

3.2 Binding to infrastructure
Figure 2 shows the key runtime components of Kimberley. The controller of the transient bind-

ing between mobile device and infrastructure server is a user-level process called Device Control
Manager (DCM). An instance of DCM runs on the device (“device DCM”) and on the infras-
tructure server (“server DCM”). The DCM abstracts service discovery and network management
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from the rest of Kimberley. Over time, we envision Kimberley supporting many different types of
wireless and wired connections between device and server. While wireless connections are more
natural and seamless to the user, there may be situations where the freedom from RF congestion
of a dedicated wired link may be preferable for crisp user interaction. The current implementation
supports 802.11 (wireless) and USB (wired) connectivity; we expect to add Bluetooth and Ethernet
in the future. Note that the mobile device may have a direct connection to the Internet, in addition
to the server connection shown in Figure 2.

DCM supports the browsing and publishing of services over the D-Bus interprocess commu-
nication mechanism. The use of D-Bus simplifies the implementation of extensibility in service
discovery by allowing DCM method calls to be defined in XML files. We currently support the
Avahi service discovery mechanism, and plan to support the Bluetooth Service Discovery Protocol
(SDP) in the future. It should also be possible to extend Kimberley to use other well-known service
discovery mechanisms such as Jini.

The first step in the binding sequence is the establishment of a secure TCP connection using
SSL between a device DCM and a server DCM. This secure tunnel is then used by the rest of
the binding sequence, which typically involves user authentication and optional billing interaction.
Kimberley supports the Simple Authentication and Security Layer (SASL) framework, which pro-
vides an extensible interface for integrating diverse authentication mechanisms. After successful
authentication, a dekimberlize command is executed on the server. This fetches the VM overlay
from the mobile device or a Web site, decrypts and decompresses it, and applies the overlay to the
base VM. The suspended VM is then launched.

The last step in the binding process is enabling user interaction via VNC [7]. With this setup,
all user interactions occur at the mobile device and its screen mirrors a scaled image of the large
display on the server. This style of interaction allows the user to remain untethered and to be
at some distance from the large server display. However, the ease of interaction is limited by
the dimensions of the mobile device. Kimberley also supports interaction through a full-sized
keyboard, mouse and other devices attached to the server, as in Scenario 2. This approach may be
preferred when the usage context requires more extensive interaction.

3.3 Sharing user data
Some usage contexts require data to be shared between the mobile device and infrastructure

server. In Scenario 2, for example, the mobile device could be running Windows CE while the
launch VM may run Windows XP. Although versions of the Excel spreadsheet application run in
both environments, they are not identical: the mobile version is optimized for interaction in a small
device. However, both versions share the same spreadsheet file format. Kimberley needs a mech-
anism to share such files between device and infrastructure. A file system such as Coda [9] would
be an obvious choice. However, this adds to the list of dependencies for making infrastructure
compatible with Kimberley, possibly restricting its deployment.

Our solution emulates a large FAT32 floppy disk using a part of the device’s flash memory
storage. When the mobile device is being used in isolation, this virtual floppy disk is accessible
as a mounted file system. When binding to an infrastructure server, Kimberley unmounts this
virtual floppy disk, transfers its contents to the server, and then mounts it in the launch VM. When
unbinding, Kimberley unmounts the virtual floppy disk, computes the state change since it was
mounted, and transmits this difference to the mobile device. The state difference is effectively the
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“VM residue” shown in Figure 1. At the device, Kimberley applies the difference and then mounts
the virtual floppy disk. The default size of the virtual floppy disk is 20MB, but it can be configured
to any size within the storage capacity of the mobile device. Although simple, this solution works
well for the usage scenarios that we envision for Kimberley. It is idiot-proof since the virtual floppy
disk is never accessible simultaneously on both the mobile device and the VM.

4 Prototype Performance
Our evaluation addresses three questions relative to the use of an infrastructure site that has no

cached overlay state:
• How big are typical VM overlays?
• What is the typical startup delay?
• How fast can a user depart?
To answer these questions, we examined six open-source Linux applications. These are listed

below, along with their better-known Windows counterparts:
• AbiWord: a word processor (Microsoft Word)
• GIMP: an image processor (Adobe Photoshop)
• Gnumeric: a spreadsheet program (Microsoft Excel)
• Kpresenter: a slide tool (Microsoft PowerPoint)
• PathFind: a digital pathology tool for whole-slide images based on the OpenDiamond plat-

form [3] and suggestive of Scenario 1.
• SnapFind: a tool for examining digital photographs and searching for other similar pho-

tographs. It is also based on the OpenDiamond platform.
As a limiting case to explore the intrinsic overhead of Kimberley, we also considered a hypotheti-
cal Null application by invoking kimberlize with empty install-script and resume-script

parameters.

4.1 Overlay Size
Table 1 presents data relevant to the first question. The table shows that the compressed overlay

size for these seven applications ranges from 5.9 MB for the Null case to 196.6 MB for PathFind.
The uncompressed sizes indicate a typical compression factor of about three. We initially expected
overlay creation to be a completely deterministic process, and were therefore surprised to see
small variations in overlay sizes for the same application in different experimental runs. This turns
out to be an artifact of Virtual Box’s differencing disk implementation. Based on more detailed
experiments (not described here), we conjecture that VirtualBox asynchronously preallocates real
disk space for its virtual disk. The effect is modest, amounting to just a few percent of total overlay
size. The last column gives the size of the installation package for an application. This size is
loosely correlated with the application’s compressed and uncompressed overlay sizes.

Table 2 shows the time taken by kimberlize to create overlays. Recall that kimberlize
sacrifices compression speed for fast decompression at runtime. This accounts for the relatively
long times shown in Table 2, ranging from just over a minute for Null to nearly 11 minutes for
Gnumeric.
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Application Compressed Uncompressed Install
VM Overlay VM Overlay Package

Size (MB) Size (MB) Size (MB)

AbiWord 119.5 (3.8) 364.2 (19.9) 10.0
GIMP 141.0 (5.2) 404.7 (30.7) 16.0
Gnumeric 165.3 (3.6) 519.8 (24.7) 16.0
Kpresenter 149.4 (7.6) 426.8 (32.2) 9.1
PathFind 196.6 (1.0) 437.0 (2.3) 36.8
SnapFind 63.7 (0.9) 222.0 (3.6) 8.8
Null 5.9 (0.0) 24.8 (0.0) 0.0

Note: Small figures in parentheses are standard deviations

Table 1: VM Overlay and Install Package Sizes

4.2 Startup Delay
To answer the second question (“What is the typical startup delay?”), we measured the time it

takes from a user’s initial action to use infrastructure to the point at which he starts interacting with
the application. This includes the time taken to transmit the VM overlay and virtual floppy disk, to
apply the VM overlay, and to launch the VM.

Application Elapsed time for
Kimberlize

(seconds)

AbiWord 513 (32.4)
GIMP 527 (39.3)
Gnumeric 652 (36.3)
Kpresenter 548 (45.1)
PathFind 518 (4.3)
SnapFind 277 (3.9)
Null 81 (0.7)

Note: Small figures in paren-
theses are standard devia-
tions

Table 2: Creation Time for VM Overlays

Our experiments used the same set of seven applications and the VM configuration discussed in
Section 4.1. The hardware used in these experiments is the same as that described at the beginning
of Section 3. Since network bandwidth is a critical factor that affects overlay transmission time,
we explored performance at two different bandwidths. The first bandwidth of 100 Mbps is typical
of what one might expect within an enterprise. The second bandwidth of 10 Mbps is suggestive of
well-connected public infrastructure. For example, in Scenarios 1 and 2, this might be the band-
width available from the restaurant or airport gate to the overlay server. Note that bandwidth to the
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(b) 10 Mbps
Figure 3: Startup Delay in Seconds

overlay server is independent of the wireless connnection between mobile device and infrastructure
over which control interactions and transfer of the virtual floppy disk take place.

Figure 3 presents our results for two bandwidths: 100 Mbps and 10 Mbps. Five runs of each
experiment were performed. At 100 Mbps, the transfer time for VM overlays only accounts for
one-fifth or less of the total startup delay for most applications. Decompressing and applying the
VM overlay are the dominant contributors to delay, accounting for roughly half of the total startup
delay in most cases. The time to compress the virtual floppy disk is also significant. Improving
this quantity is complicated by energy considerations for mobile devices. The total startup delay
at 100 Mbps is quite acceptable, ranging from under a minute for SnapFind to just over a minute
and a half for GIMP.
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At 10 Mbps, VM overlay transfer time dominates. It accounts for roughly three-fourths of
the total startup delay for most applications in Figure 3(b). Decompressing the VM overlay and
applying it account for roughly one-fourth of the total time in those cases. The total startup delay
ranges from roughly 3 to 5 minutes in most cases, which is at the outer limit of acceptability for
transient use of infrastructure. This can be improved by using techniques such as data staging [4]
to proactively transfer an overlay close to an anticipated usage site. In that case, the startup delay
experienced would be closer to the 100 Mbps case. A cached overlay would, of course, also greatly
improve startup delay.

4.3 Teardown Delay
Before a user can depart from a site, three steps must occur: the VM must be powered down;

the server must generate the VM residue; and the residue must be transferred to the mobile device.
Our measurements (not shown here, to save space) indicate that all of these steps combined require
less than one second for all the applications studied. Post-departure cleanup of state at the server
and on the mobile device take a few additional seconds.

5 Related Work
Although no previous work addresses the specific combination of concerns addressed by Kim-

berley, there has been much recent work on building mobile computing systems that take advantage
of infrastructure. Want et al [11] focus on the problem of dynamically composing hardware compo-
nents to yield a computing device with desired capabilities. Balan et al [2] focus on the problem of
creating mobile computing applications that can use cyber foraging. Goyal and Carter [5] discuss
secure cyber foraging using services provided by VMs in the infrastructure; their work assumes
that the VMs have been pre-configured for the desired services. Outside mobile computing, a re-
cent commercial product vizioncore vPackager uses VM differencing to support a community of
collaborative software developers [10]. Although developed for a completely different purpose and
independently of our work, their use of VM differences is superficially similar to our use of VM
overlays.

6 Conclusion
Kimberley is the first system to apply VM technology to the problem of provisioning infras-

tructure for use by mobile computing devices. A good solution to this problem needs to respect
the resource limitations of mobile devices while also keeping the configuration complexity of in-
frastructure low. Kimberley accomplishes the first goal by avoiding VM execution on the mobile
device (hence reducing CPU and memory demand) and using indirection to deliver VM overlays
to the infrastructure from third-party sites (hence reducing wireless bandwidth demand and energy
use on the mobile device). The second goal is accomplished through the use of VM technology.
Rather than infrastructure having to be configured for many different applications, it only has to
be configured to support Kimberley. The rest of the configuration happens dynamically, through
VM overlays. By simplifying configuration, Kimberley lowers a key barrier to the widespread
deployment of mobile computing infrastructure.
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