
Increasing the Scalability of Dynamic Web Applications

Amit Manjhi

CMU-CS-08-105

March 2008

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Bruce M. Maggs, Co-Chair

Todd C. Mowry, Co-Chair

Christopher Olston, Co-Chair

Mahadev Satyanarayanan

Michael J. Franklin, University of California at Berkeley

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright c© 2008 Amit Manjhi



Keywords: Scalability Service, Web Applications, Scalability, Optimization, View Invalidation, View

Materialization.



To my parents and my wife Shruti.



iv



Abstract

The continued growth of the Web and its increasing role in ourdaily life has created new technical and

social challenges. On the technical side, applications deployed on the Internet suffer from unpredictable

load, especially due to events such as breaking news (e.g., Hurricane Katrina) and sudden popular-

ity spikes (e.g., the “Slashdot Effect”). A large number of these Web applications increasingly use a

database to generate customized and personalized responses to users’ requests. Because of the widely

varying load, currently there is no economical way to provision infrastructure for many of these applica-

tions in whichthe database system is the bottleneck. On the social side, Web applications increasingly

collect sensitive data, which must be kept private.

In this dissertation we address both these technical and social challenges. We design and implement

a Database Scalability Service (DBSS), which can offer scalability to data-intensive applications as a

plug-in subscription service with a per-usage charge. A DBSSworks by caching applications’ data and

answering queries on their behalf. It uses a large shared infrastructure to absorb load spikes that may

occur in any individual application. We address two key issues in designing a DBSS: (a) the privacy

concerns of applications in allowing the DBSS to cache their data, and (b) the performance concerns

due to the high latency applications face in accessing theirdata in a DBSS setting.

Simply encrypting all the data that passes through the DBSS isnot a feasible solution to an applica-

tion’s privacy concerns. On an update, the DBSS must invalidate (at least) data from its cache that have

changed . If an application encrypts all the data passing through the DBSS, the DBSS cannot discern any

information about what data it is caching. The DBSS then is forced to invalidate large amounts of data

from its cache on any update, which leads to poor scalability. In deciding how much data (that passes

v



through the DBSS) to encrypt, the application faces a tradeoff between privacy and scalability. On the

one hand, encryptingmoredata means that the DBSS will invalidate far more than needed,decreas-

ing scalability. On the other hand, encryptinglessdata raises privacy concerns. We study this tradeoff

both formally and empirically. To simplify the task of managing this tradeoff, we devise a method for

statically identifying segments of the database that can beencrypted without impacting scalability. Ex-

periments with three realistic benchmark applications show that our static method is effective. For each

application, it identifies a significant fraction of the database that can be encrypted without any scala-

bility penalty. Moreover, most of the data that it identifiesis “moderately” sensitive, which application

designers will want to encrypt, if doing so has no performance overhead.

For some applications, extra information from the database, beyond the data passing through the

DBSS, is useful in making invalidation decisions. We presentinvalidation clues, a framework that allows

applications to provide this extra information to the DBSS. Clues also provide fine-grained control to the

applications for disclosing any other information to the DBSS that reveals little, yet limits the number of

unnecessary invalidations. Our experiments using three Web benchmark applications on our prototype

DBSS confirm that invalidation clues are indeed a low-overhead, effective, and general technique for

applications to balance their privacy and scalability needs.

To address the performance concerns due to the high latency an application faces in accessing its

data in the DBSS setting, we devise compiler-driven transformations that reduce the number of times an

application must access its data. Using our three benchmarkapplications, we show that our transforma-

tions apply widely and indeed reduce the number of times an application has to access its data. Finally,

on our prototype DBSS, we confirm that this reduction significantly improves scalability.

vi



Acknowledgments

I was fortunate to have three great advisors: Todd Mowry, Bruce Maggs, and Chris Olston. I learnt

from Todd the value of patience, from Bruce the value of humor,and from Chris the value of time-

management and the practice of setting and achieving goals.Thank you Todd, Bruce, and Chris for

making me a better researcher and a better person.

I would like to thank the other members of my Ph.D. thesis committee, Mahadev Satyanarayanan and

Mike Franklin, for their thoughtful comments and invaluable suggestions that have improved both the

quality of the experimental results and the completeness ofthis thesis.

Other than my advisors, I discussed my thesis research with Anastassia Ailamaki, Anthony Tomasic,

Charlie Garrod, Phil Gibbons, and Haifeng Yu. These discussions were invaluable in shaping this thesis.

I wrote a few other papers resulting from my course projects and summer internships. I learned a lot

from my co-authors on those papers, Mukesh Agarwal, Nikhil Bansal, Srini Seshan, Kedar Dhamdhere,

Vladislav Shkapenyuk, and Suman Nath, about how research isdone and how to best present it. I would

also like to thank members of the stampede group, particularly Chris Colohan and Shimin Chen, for

always being present to help me with any research or non-research related issue.

I had two memorable summer internships at Intel Research Pittsburgh. Even after the internships, I

had a cubicle for almost a year for being affiliated with the lab. I want to thank all the people in Intel

Research Pittsburgh for making my stay enjoyable. In particular, I am greatly indebted to Phil Gibbons,

my mentor during both summers, for making my internships productive and fun.

In my sixth year, with two other graduate students, I startedBuxfer.com, a Web application that

twenty-somethings could use to manage their expenses. It was a great experience that taught me how

vii



to build reliable systems, and instilled in me the confidence, discipline, and determination to achieve

seemingly impossible tasks. I would like to thank everyone who contributed to my Buxfer experience.

Seven years is a long time, but I never got bored of Pittsburgh, thanks to the Indian dinner gang – a

bunch of mostly Indian graduate students who were often too lazy to cook at home. The composition of

the group changed over the years as many of the seniors graduated and new students joined the group,

but it was always fun to enjoy good, often half-priced, food in good company.

Finally, I express my deepest gratitude to my family. I owe a great deal to my parents, my sister, and

my brother-in-law who were always affectionate and extremely supportive during the entire period. I

am indebted to my wife, Shruti, herself a graduate student atGeorgia Tech, for providing unwavering

encouragement. Without her love, patience, encouragement, and support in the last few years of my

Ph.D., it would have been difficult for me to finish.

viii



Contents

Abstract v

Acknowledgments vii

Contents ix

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 Example Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 2

1.1.1 E-Commerce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Civic Emergency Management . . . . . . . . . . . . . . . . . . . . . . .. . . . 3

1.2 Challenges in Creating a Scalability Service for Dynamic Web Applications . . . . . . . 4

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 7

1.3.1 Database Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 7

1.3.2 Database Caching and Replication . . . . . . . . . . . . . . . . . . .. . . . . . 8

1.3.3 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

1.3.4 Commercial Efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 10

1.4 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 11

1.4.1 Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 12

ix



1.4.2 Guaranteeing Privacy and Security in a DBSS Setting . . .. . . . . . . . . . . . 14

1.4.3 Scalability-Conscious Security Design Methodology .. . . . . . . . . . . . . . 15

1.4.4 Invalidation Clues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15

1.4.5 Holistic Transformations to Reduce User Latencies . . .. . . . . . . . . . . . . 16

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 17

1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 18

2 Architecture of the Scalability Service 21

2.1 Home Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 23

2.2 DBSS Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

2.2.1 Cache Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 24

2.2.2 Handling Database Queries . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 25

2.2.3 Handling Database Updates . . . . . . . . . . . . . . . . . . . . . . .. . . . . 26

2.2.4 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26

2.2.5 Other Implementation Details . . . . . . . . . . . . . . . . . . . .. . . . . . . 27

2.3 CDN Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 28

2.5 Invalidation Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 30

2.6 Benchmark Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 30

2.7 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 31

2.7.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 32

2.7.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34

2.8 Preliminary Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 34

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39

3 Simultaneous Scalability and Security for Data IntensiveWeb Applications 41

3.1 Security-Scalability Tradeoff . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 42

3.1.1 Managing the Security-Scalability Tradeoff . . . . . . .. . . . . . . . . . . . . 43

x



3.2 Framework for Studying the Security-Scalability Tradeoff . . . . . . . . . . . . . . . . 44

3.2.1 Query and Update Model . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 45

3.2.2 Formal Characterization of View Invalidation Strategies . . . . . . . . . . . . . 46

3.2.3 Mixed Invalidation Strategies . . . . . . . . . . . . . . . . . . .. . . . . . . . 49

3.3 Overview of Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 52

3.3.1 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52

3.3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 IPM Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 55

3.4.1 Query and Update Classification . . . . . . . . . . . . . . . . . . . .. . . . . . 56

3.4.2 Blind vs. Template-Inspection (DoesAi j = 1?) . . . . . . . . . . . . . . . . . . 58

3.4.3 Template-Inspection vs. Statement-Inspection (Does Bi j = Ai j ?) . . . . . . . . . 59

3.4.4 Statement-Inspection vs. View-Inspection (DoesCi j = Bi j ?) . . . . . . . . . . . 59

3.4.5 Database Integrity Constraints . . . . . . . . . . . . . . . . . . .. . . . . . . . 61

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 62

3.5.1 IPM Characterization Results . . . . . . . . . . . . . . . . . . . . . .. . . . . 63

3.5.2 Magnitude of Security-Scalability Tradeoff . . . . . . .. . . . . . . . . . . . . 64

3.5.3 Security Enhancement Achieved . . . . . . . . . . . . . . . . . . .. . . . . . . 65

3.6 Chapter Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 66

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 67

4 Invalidation Clues for Database Scalability Services 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 71

4.2 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 72

4.3 Using Clues for Invalidations . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 75

4.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 75

4.3.2 Query and Update Model . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 76

4.3.3 The Attack Model of the DBSS . . . . . . . . . . . . . . . . . . . . . . . .. . 76

4.3.4 Database-Inspection Strategy . . . . . . . . . . . . . . . . . . .. . . . . . . . . 77

xi



4.3.5 Types of Clues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

4.4 Database Clues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 78

4.4.1 Templates Requiring Database Clues . . . . . . . . . . . . . . . . .. . . . . . 80

4.4.2 Implementing Database Clues . . . . . . . . . . . . . . . . . . . . . .. . . . . 83

4.4.3 Beyond Precise Invalidations . . . . . . . . . . . . . . . . . . . . .. . . . . . . 86

4.5 Privacy-Scalability Tradeoffs . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 87

4.5.1 The Limit Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

4.5.2 Trading Off Scalability for Privacy . . . . . . . . . . . . . . .. . . . . . . . . . 89

4.5.3 Equality Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 89

4.5.4 Order Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 92

4.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 94

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 95

4.6.1 Characteristics of the Benchmark Applications . . . . . . .. . . . . . . . . . . 95

4.6.2 Scalability Benefits of Invalidation Clues . . . . . . . . . . .. . . . . . . . . . 95

4.6.3 Privacy Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 97

4.7 Chapter Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 98

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99

5 Holistic Query Transformations for Dynamic Web Applicati ons 101

5.1 TheMERGING Transformation: Clustering Related Queries . . . . . . . . . . . . . .. . 104

5.1.1 Impact on the Total Work in the System . . . . . . . . . . . . . . .. . . . . . . 105

5.1.2 Code Patterns Where theMERGING Transformation Applies . . . . . . . . . . . 106

5.1.3 Algorithm for Automating theMERGING Transformation . . . . . . . . . . . . . 108

5.1.4 Other Tradeoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 109

5.2 TheNONBLOCKING Transformation: Prefetching Query Results . . . . . . . . . . . . . 111

5.2.1 Algorithm for Automating theNONBLOCKING Transformation . . . . . . . . . . 113

5.2.2 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 113

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 114

xii



5.3.1 Scalability Impact of the Transformations . . . . . . . . .. . . . . . . . . . . . 115

5.3.2 Latency Impact of the Transformations . . . . . . . . . . . . .. . . . . . . . . 116

5.3.3 Applicability of the Transformations . . . . . . . . . . . . .. . . . . . . . . . . 119

5.3.4 Coverage of theMERGING Transformation . . . . . . . . . . . . . . . . . . . . 119

5.3.5 Coverage of theNONBLOCKING Transformation . . . . . . . . . . . . . . . . . 120

5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 122

5.4.1 Work Related to theNONBLOCKING Transformation . . . . . . . . . . . . . . . 122

5.4.2 Work Related to theMERGING Transformation . . . . . . . . . . . . . . . . . . 122

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 124

6 Conclusions 127

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 128

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 129

A Proofs for Chapter 3 131

A.1 Proofs for Section 3.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 131

A.2 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 132

A.2.1 Evaluation of a query . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 133

A.2.2 Additional Database Operations . . . . . . . . . . . . . . . . . .. . . . . . . . 133

A.2.3 Does the result of a query change on an insertion? . . . . .. . . . . . . . . . . 134

A.2.4 Intermediate Lemmas and Proofs . . . . . . . . . . . . . . . . . . .. . . . . . 135

Bibliography 139

xiii



xiv



List of Figures

1.1 A sample code fragment from theAUCTION application for finding names of users who have

posted comments about a particular user. The code fragment shows how the declarative code,

consisting of two query templates, is interspersed in the procedural code.We focus on two

base relations:users with attributesuser id and user name, andcomments with attributes

from user id andto user id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Traditional centralized architecture. . . . . . . . . . . . . .. . . . . . . . . . . . . . . 5

1.3 Scalable architecture for database-intensive Web applications. In this thesis, we focus

on the Database Scalability Service (DBSS), the shaded cloud. . . . . . . . . . . . . . . 13

2.1 Traditional versus distributed architecture. . . . . . . .. . . . . . . . . . . . . . . . . . 22

2.2 Architecture of the part of the home server used by the DBSS. . . . . . . . . . . . . . . 24

2.3 A closed system, in which there are a fixed number of users.A user sends a request only

when it has waited for at least “think time” after receiving the response to its previous

request. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

2.4 The transition graph for theBOOKSTOREapplication (reproduced from the TPCW [104]

specification). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 29

2.5 Query, update, and invalidation pathways. . . . . . . . . . . .. . . . . . . . . . . . . . 30

2.6 Total number of programs, and the number of query and update templates for our three

benchmark applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 31

2.7 Application configuration parameters. . . . . . . . . . . . . . .. . . . . . . . . . . . . 32

2.8 The figure shows (a) how scalability is computed as the number of simultaneous users

supported within a latency threshold, (b) how a reduction inlatency improves scalability. 32

2.9 The SIMPLE scenario used in the experiments. . . . . . . . . . .. . . . . . . . . . . 33

xv



2.10 The SIMPLETC scenario used in the experiments. . . . . . . . . . . . . . . . . . . . 33

2.11 Sample update rates for a ten-minute run. . . . . . . . . . . . .. . . . . . . . . . . . . 35

2.12 Cache hit rates for the three benchmark applications. . .. . . . . . . . . . . . . . . . . 35

2.13 Average latency per dynamic HTTP request, at three different number of EBs, for the

three benchmark applications executing in a traditional centralized setting. . . . . . . . . 36

2.14 Average bandwidth usage of the home server, at three different number of EBs, for the

three benchmark applications executing in a traditional centralized setting. . . . . . . . . 36

2.15 CPU usage at the home server, at three different number ofEBs, for the three benchmark

applications executing in a traditional centralized setting. . . . . . . . . . . . . . . . . . 37

2.16 Average latency per dynamic HTTP request for the three benchmark applications exe-

cuting in our scalability service setting. The adjoining table provides the number of EBs

and the resource usage at the home server during the experiment. . . . . . . . . . . . . . 38

2.17 Scalability in the presence and absence of the DBSS. . . . .. . . . . . . . . . . . . . . 38

3.1 Security-scalability tradeoff (TPC-WBOOKSTOREbenchmark). . . . . . . . . . . . . . 44

3.2 Relationships among classes of view invalidation strategies, in the general case. . . . . . 48

3.3 Security gradient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 49

3.4 An Invalidation Probability MatrixIPM(UT
i ,QT

j ). . . . . . . . . . . . . . . . . . . . . 50

3.5 Starting with the California data privacy law, additional exposure reduction for query

and update templates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 69

3.6 Tradeoff between security and scalability, as a function of coarse-grain invalidation strat-

egy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Privacy-Scalability tradeoff in the presence of clues.The dashed box shows the region

in which an application can operate in our scheme. The six scenarios,A–F, are ex-

plained later in Table 4.2. Code-analysis privacy and read-only scalability are explained

in Section 4.5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 73

4.2 Pseudo code for computing a database update clue when query templates are restricted

to a single table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 85

4.3 An example mapping of parameter values to place-holders. . . . . . . . . . . . . . . . . 90

xvi



4.4 The solution implied by Lemma 2.j i ∈ {1, . . . ,n} is such that the parameter valuea j i is

the ith most frequently occurring. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 91

4.5 Impact of invalidation clues on scalability. For comparison, we include the scalability

numbers without a DBSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 97

4.6 Reduction in invalidations due to ourEQUALITY-OPTIMAL mapping algorithm. . . . . . 98

4.7 Improvement in privacy on using two mappings instead of one mapping. . . . . . . . . 98

5.1 Latency in a traditional versus distributed architecture. . . . . . . . . . . . . . . . . . . 102

5.2 The holistic transformations, when applied to a Web application, reduce the number of

database queries that the Web application issues per HTTP request at runtime. . . . . . . 103

5.3 A code fragment from theAUCTION application, showing the original code on the left, and the

code after applying theMERGING transformation on the right. The code, an example of the Loop-

to-join pattern, finds the names of users who have posted comments about a particular user. We

focus on two base relations:users with attributesuser id anduser name, andcomments with

attributesfrom user id andto user id . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 An example of the merge-projection-predicates pattern, showing the original code on the left,

and the code after applying theMERGING transformation on the right. The code fragment is a

simplified version of the code from theAUCTION application, and finds the current maximum

bid and the total number of bids for an item. We focus on thebids relation with thebid and the

item id attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 An example of the merge-selection-predicates pattern, showing the originalcode on the left, and

the code after applying theMERGING transformation on the right (We just show the database

queries on the right). The simplified code fragment is from theBBOARD application, and shows

all the comments on a story in a tree format. We focus on thecomments relation with theid ,

body , parent , andstory attributes.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Query results that are invalidated on an update with template asUPDATE users SET user name

= ? WHERE user id = ? anduser id as 5, before and after applying theMERGING trans-

formation. Since theMERGING transformation increases caching granularity, it leads to more

invalidations, and consequently, less reuse of work.. . . . . . . . . . . . . . . . . . . . . . 110

xvii



5.7 A simplified code fragment from theBOOKSTOREapplication, which finds the name of an item

related to the item the user is viewing and the name of the user, given her id. Wefocus on

two base relations:users with attributesuser id anduser name, and items with attributes

item id , item name, andrelated . The left hand side shows the original code, while the right

hand side shows the code after applying theNONBLOCKING transformation. . . . . . . . . . . 112

5.8 The figure shows how a reduction in latency improves scalability. . . . . . . . . . . . . . 115

5.9 Scalability impact of the transformations. For comparison, we include the scalability

numbers without a DBSS, the leftmost bar for each application. . . . . . . . . . . . . . . 115

5.10 Impact of theMERGING andNONBLOCKING transformations on latency. We show the

average latency for two dynamic interactions in theBBOARD benchmark. The graph

shows that theMERGING transformation has a significant impact on the average latency. . 117

5.11 Impact of the two transformations on the average latency of a dynamic interaction in the

BBOARD application, executing in a DBSS setting. . . . . . . . . . . . . . . . .. . . . 117

5.12 Impact of theNONBLOCKING transformation on the total number of misses, for the three

benchmark applications. We use ‘pfs’ as a short-hand for prefetches. . . . . . . . . . . . 121

xviii



List of Tables

3.1 An example toystore application, denotedSIMPLE-TOYSTORE, with three query tem-

platesQT
1 ,QT

2 ,QT
3 , one update templateUT

1 , and two base relations:toys with attributes

toy id, toy name, qty , andcustomers with attributescust id, cust name. The

question marks indicate parameters bound at execution time. . . . . . . . . . . . . . . . 42

3.2 Invalidations differ depending on the amount of information the DBSS can access. The

table is for updateUT
1 with parameter5. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 A more elaborate exampleTOYSTOREapplication having three query templatesQT
1 ,QT

2 ,QT
3 ,

two update templatesUT
1 ,UT

2 and three base relations:toys with attributestoy id,

toy name, qty , customers with attributescust id, cust name, andcredit card

with attributescid, number, zip code . Attribute credit card.cid is a foreign key

into thecustomers relation. The question marks indicate parameters bound at execution

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Summary of IPM characterization for the exampleTOYSTOREapplication. . . . . . . . . 55

3.5 Notation for aspects of templates. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 56

3.6 Query and update classes. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 57

3.7 IPM characterization results for the three applications. The table entries denote the

number of update/query template pairs for which particularIPM relationships hold. . . . 63

4.1 A simplified bulletin-board example, consisting of a query templateQT and an update

templateUT on a base relationcomments with attributesid , story , rating , andbody .

The question marks indicate parameters bound at execution time. . . . . . . . . . . . . . 73

4.2 Six clue scenariosA–F and their effect on what the DBSS invalidates when an update

UT with id =123 andrating=rating+1 occurs. . . . . . . . . . . . . . . . . . . . . . . 75

xix



4.3 A taxonomy of clues (The various clue types are in normal font). Clues differ based on

whether they are attached to query results or updates, and whether they are computed

from parameters, result, or database. . . . . . . . . . . . . . . . . . .. . . . . . . . . . 78

4.4 A simple auction example, consisting of three query templates, two update templates,

and two base relations: (1)items with attributesitem id , seller , category , andend date ,

and (2)users with attributesuser id and region . Attribute items.seller is a foreign

key into theusers relation. The question marks indicate parameters bound at execution

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Types of clues required to implement a DIS for template-pairs of theSIMPLE-AUCTION

example in Table 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 80

4.6 Notation for aspects of templates. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 81

4.7 A query-update template pair from theBOOKSTOREbenchmark. . . . . . . . . . . . . . 89

4.8 A simplified query-update template pair from theAUCTION benchmark. . . . . . . . . . 92

4.9 Number of template pairs in the three applications whichrequire database clues for

precise invalidations, classified as per the categories introduced in Section 4.4.1. . . . . . 96

5.1 Runtime HTTP interactions in which theMERGING andNONBLOCKING transformation

apply. The “either” column represents interactions in which at least one of the two

transformations apply. The “static” column represents interactions in which a static

HTML file is returned. Clearly, neither transformation can apply to such interactions. . . 118

5.2 Frequency of occurrence of different patterns in which theMERGINGtransformation applies.119

5.3 Average number of database queries per dynamic HTTP interaction for the three bench-

marks. For our benchmark applications, theMERGING transformation does not affect

the cache hit ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 120

xx



Chapter 1

Introduction

Applications deployed on the Internet are immediately accessible to a vast population of potential users.

As a result, they tend to experience fluctuating and unpredictable load, especially due to events such

as breaking news (e.g., Hurricane Katrina) and sudden popularity spikes (e.g., the “Slashdot Effect”).

Administrators currently face a “provisioning” dilemma: either (i) waste money by heavily overprovi-

sioning the infrastructure, or (ii) risk being unavailablewhenever the load increases suddenly. Both of

these alternatives have a high economic cost and are undesirable.

This problem is largely addressed for static content (e.g.,images) by Content Delivery Network

(CDN) technology [23, 38, 71, 87], which offers on-demand scalability as a plug-in service. To serve a

request for static content, an application just returns therequested file from its filesystem. By caching

the static content and returning the appropriate file on a client request, CDNs can effectively offload

the work an application needs to do for serving static content. To absorb load spikes (which may occur

in any individual application) and yet be cost-effective, CDNs make use of a large infrastructure that

is shared across multiple applications. Hence CDNs can offergood scalability and charge application

providers on a per-usage basis.

The Web is increasingly becoming more “dynamic” – the content is produced by programs that exe-

cute at the time a request is made and is often customized based on several factors like a user’s prefer-

ences and the previous content the user has viewed. Dynamic content allows creation of rich interactive

1



Chapter 1 Introduction

applications like social networks, bulletin boards, civicemergency management, and e-commerce appli-

cations, which represent the future landscape of Web applications. Since dynamic content is generated

by programs and may depend on data not contained in the user’srequest, CDN technology cannot be

used to serve dynamic content. Hence CDN technology is not sufficient for scaling dynamic applica-

tions.

With dynamic applications, application administrators face the same provisioning problem.In this

thesis we show that it is possible to build a subscription-oriented scalability service that provides

on-demand scalability to dynamic Web applications.

In the rest of this chapter we first illustrate the potential benefits of subscription-oriented scalability

services for dynamic Web applications with two example scenarios in Section 1.1. Next we discuss the

challenges in creating a scalability service for dynamic Web applications in Section 1.2. Section 1.3

presents related work. We present an overview of our approach in Section 1.4, our contributions in

Section 1.5, and thesis organization in Section 1.6.

1.1 Example Scenarios

1.1.1 E-Commerce

Consider a relatively small-scale Web-based e-commerce operation whose customer base is expand-

ing. Suppose the relatively low-cost equipment on which thee-commerce site was originally built is

becoming saturated with load, and will soon be unable to serve all the customers. Standard solutions

include upgrading to faster equipment on which to run the web, application, and/or database servers,

or moving to a parallel cluster-based architecture as used by big e-commerce vendors. Unfortunately,

these solutions require a large investment in equipment, and, perhaps more significantly, funding for

staff with the expertise necessary to manage the more complex infrastructure. Moreover, transitioning to

a new architecture will undoubtedly create new bugs and may lead to costly application errors or system

downtime.

2



Section 1.1 Example Scenarios

A better option would be to subscribe to a scalability service on a pay-by-usage basis. A cost curve

proportional to usage could potentially save the company large sums of money, especially if demand

plateaus or drops. In this scenario, the equipment and management costs are shifted to the scalability

service provider, where they can be amortized across many subscribers.

1.1.2 Civic Emergency Management

Suppose the local government of a large city, such as Chicago,is ordered to prepare a disaster response

plan in case of a natural disaster. The government would liketo have the capability of providing each

citizen, even after the event has occurred, with both general and individualized instructions on how to

protect themselves. In particular, the city would like to beable to provide maps and directions for each

citizen explaining where to find medical treatment, shelter, uncontaminated food and water, etc. In

addition, the city would like to be able to collect requests for immediate medical treatment from citizens

who are immobile, and to collect reports from citizens and professionals about the effects of the incident

in various sections of the city.

This application lends itself naturally to a Web-based implementation, but there are several inherent

difficulties. First, demand for the application is likely never to occur, but if it should occur, it will

come very quickly and as a large spike. It would be costly for the city to invest in enough permanent

infrastructure to satisfy the demand, and not cost-effective to keep this infrastructure idle. Second, it is

critical to give all end users prompt and reliable access to information. It is even more important that

data collected from end users requiring immediate assistance be recorded reliably. Third, the delivery

of information customized to each end user, such as the generation of maps and directions, requires

significant computational resources. This information cannot easily be conveyed through a telephone

conversation, and in any case, the scale of the demand would make a call-center solution impractical.

The ability to tap into a scalability service would solve these difficulties. The city would have to

prepare software in advance and maintain a modest amount of permanent infrastructure, but could rely on

the scalability service to shoulder the network and computational load, when demand suddenly arrived.

3



Chapter 1 Introduction

$template := SELECT from user id

FROM comments

WHERE touser id = ?;

$query := setparams ($template, $to id);

$result := execute($query);

foreach ($row in $result) {

$from id := get user id ($row);

$template := SELECT user name

FROM users

WHERE user id = ?;

$query := setparams ($template, $from id);

$result2 := execute($query);
}

Figure 1.1:A sample code fragment from theAUCTION application for finding names of users who have posted

comments about a particular user. The code fragment shows how the declarative code, consisting of two query

templates, is interspersed in the procedural code. We focus on two base relations:users with attributesuser id

anduser name, andcomments with attributesfrom user id andto user id .

1.2 Challenges in Creating a Scalability Service for Dynamic Web

Applications

The example scenarios in Section 1.1 illustrate the potential benefits of a plug-in scalability service for

current and future dynamic Web applications on the Internet. Constructing such a service for dynamic

applications is much more challenging than doing so for traditional static content.

Web applications are collections of programs commonly written in a procedural language like Java

or PHP. On an HTTP request, one or more of these programs is runto generate the response. The

programs interact with the application’s database, which houses and manages the application’s data, by

issuing queries and updates. These queries and updates are (typically) constructed at runtime by setting

the missing parameter values in the query and updatetemplates– queries or updates, embedded in an

application’s code, missing zero or more parameter values.Figure 1.1 shows a sample code fragment

from one of the benchmark applications we use. The code fragment finds the names of users who have

4



Section 1.2 Challenges in Creating a Scalability Service for Dynamic Web Applications

App server Database

DBMS

Web server

HTTP App code

Users

Home servers

Internet

Figure 1.2: Traditional centralized architecture.

posted comments about a particular user. To achieve this task, the code uses two query templates, which

find: (i) the user identifiers of all users who have posted comments about a particular user, and (ii) the

username of a user given her identifier. The code first issues aquery based on the first template. Then

for each of the user identifiers returned in the result, it issues a query based on the second template.

Web applications are typically deployed on a three-tiered server-side architecture consisting of one or

more instances of: a web server, an application server, and adatabase server. The web server manages

the HTTP interactions, the application server runs the application code, and the database server houses

the application’s database. We call these server(s), maintained by the application, itshome server(s).

(Figure 1.2 shows the resulting architecture.) The key to scalability is to ensure that the home server(s)

remains lightly loaded even at high request rates. Because anapplication’s web servers and application

servers do not carry any persistent state, they can be replicated so that each replica remains lightly loaded

even at high request rates. Alternatively, an application can use a CDN that executes application code to

scale its web and application server. In fact, Akamai’s EdgeSuite for Java service already provides this

functionality [58].

The main challenge is to design the database part of the scalability service, or aDatabase Scalabil-

5



Chapter 1 Introduction

ity Service (DBSS), which can effectively offload at least some of the database work from the home

infrastructure’s database server(s). We describe these challenges below.

Reluctance of administrators to cede ownership of dataAdministrators are typically reluctant to cede

ownership of data and permit distributed data updating outside the home organization. This re-

luctance arises with good reason, due to the security concerns, data corruption risks, and cross-

organizational management difficulties entailed.

Maintaining privacy and security of data in the face of updates In both the example applications in

Section 1.1, it is desirable that the DBSS, a third-party service, does not learn anything about the

application’s data. Privacy is critical more so due to the well-publicized instances of database

theft [103] and the security legislation in the California Senate [24]. Guaranteeing privacy without

affecting scalability is a challenge in itself; doing so in presence of distributed updates, common

in dynamic applications, is even more difficult. Section 1.4.1 provides details on how updates

increase the difficulty of simultaneously maintaining security and providing good scalability.

Guaranteeing data consistencyOne method to reduce the load on the database server(s) is to cache or

replicate the data at multiple nodes. Because users of a Web application are geographically dis-

tributed, to reduce user latencies, often these caches or replicas are widely distributed as well [6, 8,

66]. Many Web applications require strong consistency for their most important data. For exam-

ple, in our civic emergency management scenario (Section 1.1.2), inventory data for emergency

supplies must be managed precisely – inconsistencies couldcost lives. It is well-known that main-

taining strong consistency among replicas in a distributedsetting presents significant scalability

challenges [48].

Keeping user latency acceptableMost Web applications are interactive. High user latenciesdrive cus-

tomers away, nullifying any advantage that using a scalability service provides [59, 60]. Hence

to be effective, a scalability service should meet another key requirement besides offloading work

from the application’s home server(s) – the final user latency of a response generated using the

scalability service should be acceptable. Meeting this requirement in a scalability service, whose

nodes are distributed all over the Internet, can be challenging.

6



Section 1.3 Related Work

1.3 Related Work

In this section we provide an overview of the related work. Prior work related to ours can be partitioned

into four categories: database services, database cachingand replication, privacy, and commercial ef-

forts. We discuss each in turn.

1.3.1 Database Services

As we outlined in Section 1.2, the key challenge in building ascalability service is scaling the database

component. Existing work on providingdatabase servicescan be classified into two categories: the

Database Outsourcing (DO) model and the in-house database scalability model. In contrast, we propose

the Database Scalability Service (DBSS) model.

In the DO model, an application outsources all aspects of management of its database to a third

party [55]. A key concern is to safeguard the application’s sensitive data. Since the DO provider houses

the application’s entire database, one way to ensure security of an application’s data is to store an en-

crypted database at the DO provider, and use encryption schemes that permit query processing on en-

crypted data [3, 54, 56]. Aggarwal et al. [2] suggest an alternative—distribute data across multiple

independent providers that do not communicate with one another.

In the in-house database scalability model [6, 8, 12, 66, 70,72], other machines within the applica-

tion’s organization are used to cache data and answer query results on behalf of the database server(s).

While these approaches are cheaper than buying larger database server(s), they still suffer from the same

fundamental provisioning problem, i.e., how much caching infrastructure to provision. Hence these

approaches are uneconomical for Web applications, where the load is highly variable and unpredictable.

In contrast to work in the DO and the in-house database scalability models, we consider the DBSS

model, in which onlydatabase scalability, and not full-fledged database management, is outsourced to

a third party [84]. Under the DBSS model, application providers retain master copies of their data on

their own systems, with the DBSS only caching and serving read-only copies on their behalf. In our

DBSS approach, query execution on third party servers is not needed, so arbitrarily strong encryption

7



Chapter 1 Introduction

of the remotely-cached data is possible. We contend that from a security and data integrity standpoint,

the scalability provider model is more attractive than the DO model in the case of Web applications with

read/write workloads (e.g., e-commerce applications).

1.3.2 Database Caching and Replication

Remote caching of database objects first received significantattention during the late 1980’s as a tech-

nique that improves performance without sacrificing strongconsistency or 1-copy serializability [17],

in client-server object-oriented databases. The key issues addressed were: should consistency be main-

tained by propagating changed data or invalidating cached data at remote clients (e.g., [43]), which

locking mechanisms should be used [26, 43], and whether “objects” or “data pages” should be shipped

from the server to the clients [37, 44]. The work in this area did not explore update propagation methods

or the security concerns due to caching of data.

More recently, database caching has been investigated as a means to scale dynamic Web applica-

tions. Compared to client-server object-oriented databases, Web applications see a wider variation in

the user load, as discussed in Section 1.1. Because of this high variance in user load, we believe that

the efforts in the in-house database scalability model [6, 8, 12, 66, 70, 72], will continue to suffer from

the “provisioning” problem and will have limited applicability. Web applications may serve millions of

users, who are geographically distributed. To improve scalability and user latency, many systems put

database caches on the edge of the network [6, 8, 66]. However, in a wide-area network (where there

is a possibility of network failures), strong consistency and good performance cannot be guaranteed si-

multaneously [16, 42, 48]. Most caching systems sacrifice consistency for performance – for example,

in the DBCache [72] and DBProxy [8] projects at IBM and the MTCache [66] project at Microsoft Re-

search, an authoritative copy is maintained at the back-enddatabase(s) and caches are regularly updated

to keep them consistent with the back-end database(s). In addition, techniques like specifying a fresh-

ness constraint for queries [5], pre-declaring the access patterns of all write transactions [11], handling

the read and write transactions separately [89], and leveraging the statically available query and update

templates [9, 32] have been proposed to lower the overhead ofmaintaining a desired consistency. With

8



Section 1.3 Related Work

our work, the application developer can specify the parts ofthe application for which she desires strong

consistency; for everything else, best-effort consistency is provided.

Our approach of scaling the database involves caching materialized views and invalidating them when

data updates render them obsolete. Levy and Sagiv [68] provide heuristic methods for determining when

query statements (and hence view definitions) are independent of updates in many practical cases, al-

though the general query/update independence problem is undecidable. In the data-warehousing context,

a plethora of work [52] has been done on view maintenance, in which, on any update, the view is updated

to reflect the update; view maintenance strategies can be used to implement view invalidation strategies.

Gupta and Blakeley [51] provide techniques to update views using a subset of the query statement, the

update statement, and the updated base relation. Quass et al. [90] study view self-maintenance—for a

given view, find a set of extra views, called auxiliary views,so that on any update, the view and the set

of auxiliary views can be updated without inspecting the base relations.

The works cited above are special cases of clues (Chapter 4). However, they do not address privacy

concerns. Furthermore, we demonstrate the necessity and advantages of specially designed “database-

derived” clues, in order to achieve precise invalidations (Section 4.4.2). The work closest to this in

technique is by Candan et al. [25]. They suggested using “polling queries” to inspect portions of the

database in order to decide whether to invalidate cached query results in response to database updates.

However, they used polling queries as a heuristic to get better invalidations, and did not use them to

implement precise invalidations.

In the context of Coda, a file system for mobile computing environments, Mummert et al. [78] main-

tained cache entries at multiple levels of granularity which allowed trading precision of invalidation for

speed of invalidation. Satya [95] then showed by examples how this concept of cheap but conservative

invalidation can be useful in a variety of settings. In our work, we also see the effects of this tradeoff.

However, in addition to the speed of invalidation, we also focus on privacy and security—on how using

conservative invalidation exposes less data to the DBSS.

9



Chapter 1 Introduction

1.3.3 Privacy

A key challenge of a DBSS is providing this shared scalabilityinfrastructure while protecting each orga-

nization’s sensitive data. There has been a lot of recent interest in keeping data private, yet allowing the

computation of several functions on the data. For example, Agrawal et al. [4] showed how to transform

a databaseD to D′ so thatD′ is privacy-preserving, but still allows a user to compute a function f on

the database such thatf (D) = f (D′). Agrawal et al. [3] present order-preserving encryption schemes.

Since the encryption schemes preserve order, these schemescould be used to enable order-comparisons

over encrypted data like clues. However, under our attack model where the adversary can have access to

some plain-text to encrypted-value mappings, this scheme does not work.

Much work has been done on privacy metrics, starting with thework on k-anonymity [101]. Un-

der k-anonymity, each record is indistinguishable from at least k-1 other records with respect to some

“quasi-identifying” attributes. There has been follow-upwork on creating efficient algorithms for k-

anonymity using generalization and tuple suppression techniques [14, 67, 102]. Several improvements

over k-anonymity have also been proposed [69, 73]. Irrespective of which of these metrics is used

to measure privacy, the privacy-scalability tradeoff exists in the DBSS setting. These different met-

rics simply influence the exact values in the privacy-scalability curve. For our experiments regarding

equality-comparisons over clues, we use the simple metric of just measuring the number of distinct

values revealed to the scalability service.

Hore et al. [57] study the privacy-utility tradeoff in the choice of the “coarseness” of the index on

encrypted data. Our bucketization technique in Section 4.5.3 is similar. However, the different domain

we consider requires different optimization objectives.

1.3.4 Commercial Efforts

Akamai Technologies, a leading CDN, has an “EdgeJava” product, which allows Web content providers

to execute Java servlets on Akamai’s proxy servers. For example, a significant use of EdgeJava was a

widely advertised promotion staged by Logitech Corporation, in which peak demand exceeded 60,000

10



Section 1.4 Our Approach

user requests per second. For each request, a Java servlet dynamically generated an HTML document,

indicating whether the end user was a winner, which was then served to the end user’s browser. Other

Akamai customers have used EdgeJava to perform server-sidetransformations of XML to HTML. Aka-

mai provides weak consistency for cached data via TTL-basedprotocols, with the option of associating

“do-not-cache” directives with objects that require strong consistency.

In the Database Outsourcing (DO) model discussed in Section1.3.1, there have been many recent

commercial efforts [1, 7, 33, 93]. While these services promise on-demand database scalability and

follow a pay-per-usage model, currently they only provide rudimentary database functionality, both in

terms of the data model as well as the querying support. The most notable among these services, Ama-

zon’s SimpleDB service, supports a simple data model where each table is modeled as an independent

hash table. Even the foreign key relationships between tables cannot be specified. As a result of the

simple data model, the query functionality is rudimentary as well – limited to lookups in a single table

based on a simple predicate. Therefore these services, in their current state, can not be used by any dy-

namic Web application that uses its database extensively. In addition, to use these services, applications

need to trust the service providers with their data.

Neither Akamai nor any of these commercial efforts in the DO model has, as yet, addressed or even

explored the security concerns of a third-party service storing data from several Web applications.

Avokia (www.avokia.com) is another notable commercial effort which aims to scale the database

independently for each application running in a centralized setting. Since Avokia’s solution is in the

centralized setting, it will inevitably suffer from the provisioning problem.

1.4 Our Approach

Our approach exploits two basic properties of most Web applications: the underlying data workloads

tend to (1) be dominated by reads1, and (2) consist of a small, fixed set of query and update templates.

1As per [61], the “visits to media upload” ratio is 20:1 forwikipedia.org , 500:1 for flickr.com , and 600:1 for

youtube.com , three popular dynamic content sites on the Internet today.The “reads to writes” ratio should be similar to

11



Chapter 1 Introduction

For the diverse set of benchmark applications we studied, the number of templates varied between 10

and 100 – details in Figure 2.6. The first property makes it feasible to handle all data modifications

at each application’s home server(s). With this approach, no data updating is performed outside of the

home organization, and tight control over authentication of updates and overall data integrity is retained.

We exploit the second property, i.e., predefined query and update templates, to (1) provide best-effort

consistency that places almost no overhead on the home server(s) of an application, and (2) ensure

privacy and security of data in face of updates. Levy and Sagiv [68] provide several heuristic methods

for determining when query statements are independent of updates in many practical cases. This work

can be easily extended to determine (at compile-time) the query templates that are independent of an

update template. On an update, this analysis enables the DBSSnode to not only quickly narrow down

the candidate query results to consider for invalidation but also to be sure that the invalidation is precise

(details in Chapter 3). Such an analysis can also be used by theDBSS to find data that is not useful for

invalidation. Such data can be secured without affecting the scalability in the DBSS scenario (details in

Chapter 3 and Chapter 4).

We start in Section 1.4.1 by presenting our overall architecture of a scalability service for dynamic

content applications and our approach to data consistency.Section 1.4.2, Section 1.4.3, and Section 1.4.4

address the challenge of maintaining privacy and security in the face of data updates. Lastly, Sec-

tion 1.4.5 addresses the challenge of keeping final user latency acceptable.

1.4.1 Overall Architecture

Figure 1.3 depicts the overall architecture of a scalability service, in which (1) a Web application’s code

is executed at trusted hosts (application “servers”), shown in Figure 1.3 as the CDN, (2) the code in

turn fires off database queries and updates that are handled by a DBSS, and (3) queries that cannot be

answered by the DBSS and updates are sent to back-end databases within the application’s home or-

ganization. We have built a prototype DBSS with this general architecture, and used it to scale three

this ratio. Figure 2.11 lists the writes to reads ratio for our benchmark applications – reads still dominate writes, although the

ratio of reads to writes for the benchmark applications is lower than [61].

12



Section 1.4 Our Approach

Content Delivery Network

Users

Query results
Database

queries/updates

Database
queries/updates

servers

Query results

home

Database Scalability Service

Figure 1.3: Scalable architecture for database-intensiveWeb applications. In this thesis, we focus on the

Database Scalability Service (DBSS), the shaded cloud.

data-intensive Web benchmark applications. We provide more details about the overall design and im-

plementation of our scalability service in Chapter 2.

Any distributed system must grapple with the issue of consistency. Rather than explore the wide

space of potential solutions to the consistency problem, weadopt a simple model of consistency. Our

model is based on the insight that only some data in Web applications require strong consistency. For

example, only inventory data for emergency supplies in our civic emergency management example (Sec-

tion 1.1.2), where inconsistencies could cost lives, require strong consistency. For other applications like

bulletin-boards, strong consistency is not required. So wesupport two levels of consistency guarantees

– the application developer can specify the parts of the application for which she desires strong con-

sistency; for everything else, best-effort consistency isprovided. Additionally, we exploit the fact that

Web applications use a predefined set of query and update templates to provide best-effort consistency

that places almost no overhead on the home server(s) of an application. Finally, we believe that recent

work [15, 49, 50], which leverages the differing consistency needs of different data to guarantee seri-

alizability in an environment where each read operation carries a “freshness constraint”, can be used to

13



Chapter 1 Introduction

improve the consistency guarantees in our scenario.

1.4.2 Guaranteeing Privacy and Security in a DBSS Setting

As we pointed out in Section 1.2, a key challenge of a DBSS is providing this shared scalability in-

frastructure while protecting each organization’s sensitive data. The goals are (1) to limit the DBSS

administrator’s ability to observe or infer an application’s sensitive data, and (2) to limit an application’s

ability to use the DBSS to observe or infer another application’s sensitive data. Such concerns have been

increasing in the past few years, as borne by well-publicized instances of database theft [103]. We use

privacy to denote these concerns. We usesecurityto denote a special case of privacy. While the goal

of privacy is to limit the data from being observed or inferred, the goal of security is to just limit the

data from being observed. In Chapter 3, we address the security concerns. In Chapter 4, we expand the

discussion to privacy concerns.

Security/privacy concerns dictate that a DBSS should be provided encryptedupdates, queries and

query results. The home servers of applications maintain master copies of their data and handle updates

directly, and the DBSS caches read-only (encrypted) copies of query results that are kept consistent via

invalidation.

Security/Privacy-Scalability tradeoff. There is an important security/privacy-scalability tradeoff in

the DBSS setting. When a data update occurs, to maintain consistency, the DBSS must invalidate (at

least) all the cached query results that changed. Because alldata that the DBSS sees is encrypted, the

DBSS needs help from the application in order to know which results to invalidate; such help, however,

inevitably reveals some properties about the data. (The application could provide the help, either by

not encrypting the data passing through the DBSS, an approachwe use in Section 1.4.3, or by sending

invalidation clues, a more general technique we present in Section 1.4.4 that allows applications to

manage their privacy and scalability needs at a fine granularity.) Thus, in providing help to the DBSS,

the application faces an important dilemma. On the one hand,revealinglessabout the data means that

the DBSS will invalidate far more than needed, resulting in more queries passed through to the home

server, decreasing scalability. On the other hand, revealing more about the data to the DBSS raises

14



Section 1.4 Our Approach

security/privacy concerns.

1.4.3 Scalability-Conscious Security Design Methodology

We study this security-scalability tradeoff, both analytically and empirically, in Chapter 3. To help

manage this tradeoff, we present a static analysis method inSection 3.3 for identifying segments of

an application’s database that are never useful for invalidation decisions. The application administrator

can stop worrying about making such data available to the DBSS. Moreover, for all three benchmark

applications we study (details in Section 2.6), most of the data that can be encrypted without impacting

scalability is of the type that application designers will want to encrypt, all other things being equal2.

Based on our static analysis method, we propose a new scalability-conscious security design method-

ology that features: (a) compulsory encryption of highly sensitive data like credit card information,

and (b) encryption of data for which encryption does not impair scalability. As a result, the security-

scalability tradeoff needs to be considered only over data for which encryption impacts scalability, thus

greatly simplifying the task of managing the tradeoff.

1.4.4 Invalidation Clues

We presentinvalidation clues, a general framework (the solution of Section 1.4.3 is a special case) for

applications to reveal little data to the DBSS, yet prevent wholesale invalidations. Invalidation clues (or

cluesfor short) are attached by the home server to query results returned to the DBSS. The DBSS stores

thesequery clueswith the encrypted query result. On an update, the home server can send anupdate

clue to the DBSS, which uses both query and update clues to decide what to invalidate. We show how

specially designed clues can achieve three desirable goals:

• Limit unnecessary invalidations:Our clues provide relevant information to the DBSS that enable

it to rule out most unnecessary invalidations.

2See Section 3.5.3 for details on what data is kept private using our static analysis method.

15



Chapter 1 Introduction

• Limit revealed information:Our clues enable the application to achieve a target level ofsecu-

rity/privacy by hiding information from the DBSS.

• Limit database overhead:Our clues do not enumerate which cached entries to invalidate. Instead,

they provide a “hint” that enables the DBSS to rule out unnecessary invalidations. Thus, the home

server database is freed from the excessive overhead of having to track the exact contents of each

DBSS cache in order to enumerate invalidations.

See Section 4.2 for an illustrative example of how clues enable applications to balance their secu-

rity/privacy and scalability requirements.

We present all details on invalidation clues in Chapter 4. We show how invalidation clues offer

applications a low overhead control to balance their privacy and scalability needs at a fine granularity.

Furthermore, for many query/update template pairs, extra data, beyond data that is a function of query

and update statements and query results, is necessary for precise invalidation. We identify such pairs, and

show how precise invalidation can be achieved in such cases by generating “database-derived” clues. We

also empirically measure the scalability benefits of using precise invalidations for the three benchmark

applications we study (described in Section 2.6).

1.4.5 Holistic Transformations to Reduce User Latencies

As discussed in the previous sections, Web applications canuse the services of a secure scalability

service to get on-demand scalability, at an economical pay-per-usage rate. However, just being scalable

is not sufficient. Web applications, in addition to being scalable, must be interactive. After clicking a

web link or typing a URL into the browser’s address bar, a user expects the content to appear within at

most a few seconds. High user latencies can drive customers away, nullifying any scalability advantage

that using a scalability service provides [59, 60].

To keep the end user latency low, it is necessary to understand the factors that contribute to this latency

in a scalability service setting (Figure 1.3). A Web application (Figure 1.1 shows a fragment) is a collec-

tion of programs. On any HTTP request, one or more of these programs is executed. To obtain the data

16



Section 1.5 Contributions

these programs need to generate the response, they issue database queries. Frequently, these programs

issue multiple queries for each HTTP request: for the benchmark applications we study, the average

number of queries per HTTP request varies between 1.8 and 8.5, as in Table 5.3. Furthermore, for every

database query that misses in the DBSS cache, the user must endure the long latency of accessing the

home server database. Hence to keep user latencies low, it isdesirable to either reduce the number of

database requests or hide their latencies.

In Chapter 5 we present two transformations: one for reducingthe number of database requests and

the other for hiding the latency of database requests. Thesetransformations change both the database

queries as well as the code surrounding the queries. Web application code is typically in a procedural

language like Java or PHP, while the database queries are in adeclarative language like SQL. These

transformations require an understanding of both the procedural and declarative languages. They treat

the program as a whole. Therefore, we call these transformationsholistic. In Chapter 5 we discuss why

opportunities for applying these transformations will continue to exist in current Web application code,

present algorithms for automating these transformations in a source-to-source compiler [39, 81], and

evaluate the effects of applying these two transformationsto Web applications, both in a traditional as

well as a scalability service setting.

1.5 Contributions

The primary contributions of this thesis are the following:

• [Chapter 2] We design, build, and evaluate thefirst prototype of a Database Scalability Service

(DBSS).

• [Chapter 3] We present a convenient shortcut to managing the security-scalability tradeoff in the

DBSS setting. Our solution is to (statically) determine which data can be encrypted without any

impact on scalability. We confirm the effectiveness of our static analysis method, by applying

it to three realistic benchmark applications that use a prototype DBSS system we built. In all

three cases, our static analysis identifies significant portions of data that can be secured without

17



Chapter 1 Introduction

impacting scalability. The security-scalability tradeoff does not need to be considered for such

data, significantly lightening the burden on the application administrator managing the tradeoff.

• [Chapter 4] We proposeinvalidation clues, a general framework for enabling applications to reveal

little data to the DBSS, yet provide sufficient information tolimit unnecessary invalidations of

results cached at the DBSS. Compared with previous approaches, our proposed invalidation clues

provide increased scalability to the DBSS for a target security/privacy level, as well as more fine-

grained control of this tradeoff. Using three realistic Webbenchmark applications, we illustrate

the issues and solutions for generating effective clues, e.g., by identifying categories requiring

database clues, and then evaluate the effectiveness of our solutions on our DBSS prototype.

• [Chapter 5] We propose two holistic transformations to reduce the user latency of an application

executing in a DBSS setting. We discuss why opportunities forapplying these transformations will

continue to exist in Web applications and present algorithms for automating these transformations

in a source-to-source compiler. We finally evaluate the effect of these two transformations on three

realistic Web benchmark applications, both in the traditional centralized setting and the DBSS

setting.

1.6 Thesis Organization

Chapter 2 describes our overall design and implementation ofa scalability service for applications where

the database system is the bottleneck. The novel piece of such a service is the Database Scalability

Service, and Chapter 2 describes it in detail. It also describes the benchmark applications we use to

evaluate the DBSS, describes the setup and evaluation methodology we use for all our experiments,

and presents results confirming that the database system is indeed the bottleneck in the benchmark

applications we study.

Chapter 3 describes the security-scalability tradeoff in a DBSS setting. It provides a formal char-

acterization of view invalidation strategies in terms of what data they need to access. Based on this

characterization, it presents a static method for automatically identifying data that is not useful for in-

18



Section 1.6 Thesis Organization

validation and thus can be encrypted without reducing scalability. Results on the three benchmarks we

study confirm the effectiveness of our technique.

Chapter 4 describes invalidation clues, how different typesof clues can be used to achieve different

precisions in invalidations, how clues can be tailored to balance between privacy and scalability, and our

empirical findings using clues.

Chapter 5 describes two transformations for reducing the latency experienced by users of a Web appli-

cation executing in a DBSS setting. It argues why opportunities for applying these transformations exist,

identifies the various code “patterns” where these transformations apply, discusses the consequences of

these transformations other than the reduction in latency,and measures the effects of such transforma-

tions on three benchmark applications in a centralized as well as a DBSS setting.

Finally, Chapter 6 contains a summary of the important results in this thesis, and discusses their

implications.

19



Chapter 1 Introduction

20



Chapter 2

Architecture of the Scalability Service

In this chapter we present the architecture of our scalability service. Section 1.2 laid out the challenges

in designing a scalability service. In addition to these challenges, there are two goals that our scalability

service architecture should meet.

First the scalability service architecture should aim to begeneral and powerful as possible, so that it

can generate any form of dynamic contentas the application administrator intends it to be generated.

This approach is in contrast with that of trying to detect thestructure of dynamic content [20, 92], and

using more traditional static caching techniques to generate the pages [27, 36, 106]. So the scalability

service architecture must be able to execute code, cache code, documents, and images, and process

database requests. Second the scalability service architecture should place no additional burden on the

Web application developers. Any application developed forthe traditional centralized scenario should

execute efficiently on the scalability service architecture, without requiring any additional effort from the

application developer. For an alternative architecture tobe easily adopted, it must not require developers

to master a dramatically different and difficult methodology.

To eliminate all scalability bottlenecks, we explore an approach that replicates all three tiers (web

server, application server, back-end database) of the traditional centralized architecture. Figure 2.1(a)

illustrates the traditional architecture (here all three tiers are depicted as executing on a single home

server; in general they may be spread across multiple physical servers). Figure 2.1(b) represents our

21



Chapter 2 Architecture of the Scalability Service

App server Database

DBMS

Web server

HTTP App code

Users

Home servers

Internet

Users

Content Delivery Network

Database Scalability Service

Home servers

Query results

Query results
Database

queries/updates

Database

queries/updates

(a) Traditional centralized architecture. (b) Distributed architecture.

Figure 2.1: Traditional versus distributed architecture.

distributed architecture, in which (1) a Web application’scode is executed at trusted hosts (application

“servers”), shown by the Content Delivery Network (CDN) in thefigure, which provides the function-

ality of a web and application server, (2) the code in turn fires off database queries and updates that

are handled by the Database Scalability Service (DBSS), and (3) queries that cannot be answered by

the DBSS and updates are sent to back-end databases within theapplication’s “home” organization. In

our architecture, the home server for each application provider retains the capability to independently

answer requests. We have built a prototype DBSS with this general architecture, and used it to scale

three data-intensive Web benchmark applications.

Since our scalability service architecture replicates allthree tiers of the traditional centralized archi-

tecture, it automatically generates the dynamic content asthe application administrator intends it to be

generated. Furthermore, no work is required to port the application to the new architecture – simply a

different JDBC driver has to be loaded. However, as we discussin Chapter 5, applications executing

in a scalability service architecture may feellessresponsive (to user’s actions). Chapter 5 proposes two

transformations that automatically increase the responsiveness of an application executing on the DBSS

architecture.

22



Section 2.1 Home Server

Outline. In Section 2.1– 2.4, we first present the design of the four logical nodes in our system:

home servers, CDN, DBSS, and the clients. Section 2.5 describes the flow of invalidations in our system.

Section 2.6 describes the three benchmark applications we use for evaluating our prototype scalability

service. Section 2.7 describes our methodology for carrying out the experiments in this thesis. In

Section 2.8, we present detailed results to confirm that the database system is indeed the bottleneck in

a traditional centralized architecture. We also confirm that our scalability service architecture is able to

effectively offload work from the home server(s) of the benchmark applications. Finally, we summarize

in Section 2.9.

2.1 Home Server

Each home server embodies the traditional three-tiered architecture, which enables it to generate Web

content dynamically and serve directly as much dynamic content as it chooses. The top tier is a standard

web server, which manages HTTP interactions with clients. The web server is augmented with a second

tier, theapplication server, which can execute programs for generating responses to clients’ request.

Finally, the third tier consists of adatabase serverthat the application uses to manage all of its data.

In our prototype each home server is implemented as follows.We use Tomcat [62] in its stand-

alone mode as both a web server and a servlet container, enabling it to process client requests and

invoke and run Java Servlets. We use MySql4 [79] as our back-end database management system and

mm.mysql [75], a type IV JDBC driver, as our database driver.

To use the scalability service, the home server just has to run a light-weight module written in Java.

On a cache miss or on an update, the DBSS contacts this module and provides it with the (encrypted)

query or update. The module decrypts the query or update as necessary, generates the query result

or the update acknowledgment, and does other required processing on the query result or the update

acknowledgment before sending it back to the DBSS nodes. The other required processing includes

encrypting the query result and computing “database-derived” clues for queries and updates (“Database-

derived” clues provide additional information that the DBSSnode can use for more precise invalidation;

23



Chapter 2 Architecture of the Scalability Service

Database

Clue computer

Main module

Encrypter

(Encrypted)

query / update

(Encrypted)

query result /

update acknowledgement

+ clues
query/updateclues

Decrypt

query/update

if required

Encrypt

query result

if required

Decrypter

JDBC

JDBC

Figure 2.2: Architecture of the part of the home server used by the DBSS.

see Chapter 4 for details). The module reads a configuration file of the query and update templates in the

application, and uses this knowledge to efficiently computethe clues. Figure 2.2 shows all the software

modules at the home server and their interactions.

2.2 DBSS Node

The design of the DBSS nodes is our central contribution. The DBSS nodes cache data on behalf of

the applications. We present the cache structure of the DBSS in Section 2.2.1. There are two main

tasks that a DBSS node has to perform: handling database queries and handling database updates. We

discuss these in Section 2.2.2 and Section 2.2.3, respectively. In Section 2.2.4 we present the consistency

guarantees that our system provides. Finally, in Section 2.2.5 we provide other implementation details.

2.2.1 Cache Structure

In our design, the DBSS nodes cache the results of database queries (i.e., materialized views) rather

than the tables of the database itself, or arbitrary subtables. We made this choice primarily due to pri-

vacy/security concerns. If the DBSS were to cache database tables, it would need to provide efficient

24



Section 2.2 DBSS Node

query processing capabilities over encrypted data. Recent work [63] has shown that only weak encryp-

tion can be used if queries are to be executed efficiently on encrypted data. Therefore, if the DBSS node

caches database tables, privacy of all data might be compromised.

Caching query results also makes the DBSS independent of the back-end database implementation.

This flexibility is required since different applications may choose different back-end databases. Lastly,

caching query results has the advantage that complex queries need not be re-executed, and the DBSS

does not have to implement full database functionality (e.g., it does not need a query optimizer).

The cache at the DBSS is partitioned to ensure better read/write concurrency. The partitions are based

on query templates. Furthermore, the cache is maintained inmemory to lower the read/write latency.

Entries that do not fit into the memory are written onto the disk using a Greedy-dual-size-frequency

(GDSF) policy [13]. In GDSF, each cache entry has an associated priority, which takes into account the

size of the entry (i.e., the query result) and the cost of computing the entry. On each reuse, an entry’s

priority is increased. Whenever an entry needs to be evicted,the one with the least priority is chosen.

In our preliminary evaluation, we found GDSF to perform better than LRU or other cache replacement

algorithms that do not consider size and cost explicitly.

2.2.2 Handling Database Queries

On receiving an (encrypted) database query, a DBSS node first tries to answer the (encrypted) query from

its store of cached query results. Queries that miss in its store are forwarded to the back-end database.

Since web workloads have high reuse across database queries(for our benchmark applications, the

hit rate varied from around 60% to 80% in typical runs), this architecture enables the DBSS node to

effectively offload work from the database server(s) of the home organization. When the database server

sends the query result, the DBSS node stores a copy of the (encrypted) query result along with any clues

that the home server sent, and forwards the result to the CDN node.

If the query template corresponding to the (encrypted) query has been marked uncacheable, the DBSS

simply forwards the query to the home server, and forwards the (encrypted) query result back to the

CDN.

25



Chapter 2 Architecture of the Scalability Service

2.2.3 Handling Database Updates

On receiving an update, a DBSS node first sends it to the back-end database, and waits for an acknowl-

edgment that the back-end database has applied the update. It then evicts from its cache (i.e., invalidates)

the query results, which it believes have changed. Next, it must forward the update and the correspond-

ing clue to those DBSS nodes whose caches are likely to be affected by the update. Charles Garrod, a

group member, is exploring efficient techniques for carrying out this task [46].

For determining which query results to evict from its cache,the DBSS node can only use the query

and update clues, since all other data that it sees is encrypted. This determination, or the precision with

which the DBSS can carry out the invalidation, depends on whatquery and update clues the application

has provided – more the information in the clues, more precisely the DBSS can invalidate. However, as

the application provides more information in the clues, theDBSS nodes learn more information, and less

is the privacy. Hence there is a privacy-scalability tradeoff in the DBSS setting. We study this tradeoff

in Chapter 3 and propose solutions for managing this tradeoffin Chapters 3 and 4.

2.2.4 Consistency

Rather than explore the wide space of potential solutions to the consistency problem, our DBSS proto-

type currently supports a simple consistency model. By default, the DBSS provides non-transactional

best-effort consistency for query results. The query and update templates are pre-analyzed to speed up

the invalidation process. This guarantee suffices for most of an application’s data. Examples of such data

include the ten best sellers in the bookstore and the latest posting in the bulletin board. For data requiring

strong consistency such as the number of copies of a book in stock in the bookstore application, or the

inventory data for emergency supplies in our civic emergency management scenario in Section 1.1.2, ap-

plications can mark the corresponding query templates as uncacheable. The DBSS then does not cache

query results for any such templates. Of course, marking objects as uncacheable may increase the load

on the home server infrastructure, reducing the scalability of our scalability service architecture. For our

benchmark applications, none of the query templates (out ofa total of 94 query templates) were marked

26



Section 2.3 CDN Node

as uncacheable.

2.2.5 Other Implementation Details

The entire DBSS code is implemented in Java. It reads a configuration file consisting of the query and

update templates. It is multi-threaded, and uses a thread-pool and persistent connections for improved

performance.

2.3 CDN Node

The CDN nodes provide the functionality of the web server and the application server. The trusted appli-

cation “servers” are used to encrypt queries/updates and decrypt query results, as well as run application

code. These hosts could either (1) be maintained by the application vendor—for many data-intensive

Web applications, executing application code is not the real bottleneck and hence a modest number of

hosts suffice, (2) be maintained by the CDN—if the vendor trusts the CDN, or (3) be users’ machines—

there are on-going efforts to guarantee secure execution ofcode on a remote machine [31, 105]. This

scenario is similar to the standard security scenario of twotrusted parties communicating over an un-

trusted channel. We consider the ciphertext-only attack [96] and the chosen-plaintext attack [96] in this

scenario—details are in Section 4.3.3.

We used Tomcat [62] to provide the functionality of a web server and an application server, i.e., the

ability to interact with a user running a web browser and the ability to run Web applications. Addition-

ally, the application server loads our custom JDBC driver that connects to a DBSS node instead of the

back-end database. Loading a different driver is the only change that an application must make to use

the DBSS infrastructure. We modified our custom JDBC driver further so that it supports prefetching

of database queries. On a prefetch request, the JDBC driver just notes the request and returns immedi-

ately. Another daemon thread, which periodically checks for any outstanding prefetch requests, issues

the prefetch request and ensures that the query result is brought in the DBSS cache, if it is not already

present there.

27



Chapter 2 Architecture of the Scalability Service

System Under Test

Think

Clients

ReceiveSend

Figure 2.3: A closed system, in which there are a fixed number of users. A user sends a request only

when it has waited for at least “think time” after receiving the response to its previous request.

2.4 Clients

To evaluate the traditional centralized architecture and our scalability service architecture, we use each

application’s workload generator. The workload generators use programs calledEmulated Browsers

(EBs)to emulate human users. These workload generators interactwith the system under test, which is

either the centralized architecture or the scalability service architecture, in a closed system model [97],

i.e., at any time in an experiment, there are a fixed number of EBs and an EB issues a new request

only after the application has responded to its previous request. Furthermore, EBs simulate human

usage patterns by issuing an HTTP request, waiting for the response, and pausing for athink timeof

X seconds after receiving the response and before requestinganother Web page—X is drawn from a

negative exponential distribution with a mean of seven seconds. Figure 2.3 shows this closed system

model.

An EB continually strives to model the behavior of a human trying to accomplish specific tasks such as

ordering books and browsing the new arrivals. To model such behavior, an EB issues HTTP interactions

as per a Markov chain, where the states are individual programs of the Web application and edges have

28



Section 2.4 Clients

Best Seller

Product

Detail

Shopping Cart

Buy Request

<Confirm
Updates >

  Customer

Registration

<Continue Buy>
       Not Returning
       Customer

<Continue Buy>
          Returning
          Customer

Buy Confirm

Order Inquiry

Order Display

 Admin

Request

Start User

Session

   New

Product

Search Result

 Admin

Confirm

<Order Status>

<Search>

<Search>

<Checkout>

<Confirm
    Buy>

<Shopping
    Cart >

<Search>

<Search>

<Search>

<Add to Cart >

<Submit>

<Search>

<Search>

Home Search

Request<Shopping Cart> <Shopping Cart >

(CURL)

<Display Last Order>

<Submit
 Query >

<Search>

<Admin>

Key:      <Name>       Button name

                           Web Interaction transition via button

                                   Web Interaction transition via HREF link

<Search> 

Figure 2.4: The transition graph for theBOOKSTOREapplication (reproduced from the TPCW [104]

specification).

weights that denote the transition probability of moving from one state to another. Figure 2.4 shows

the transition matrix for theBOOKSTOREapplication. The edges do not show the probabilities of the

transitions; they just show the “action” that needs to be taken for that transition to happen.

29



Chapter 2 Architecture of the Scalability Service

Figure 2.5: Query, update, and invalidation pathways.

2.5 Invalidation Flow

The flow of queries, updates, and invalidations in the systemis shown in greater detail in Figure 2.5.

In the figure, diagonal shading denotes information that is subject to encryption. The DBSS maintains

a cache of encrypted queries and encrypted query results. Along with each cache entry, it stores query

clues sent by the home server’s database when returning the encrypted query result. On receiving an

encrypted queryQ, the DBSS determines if an entry forQ is in its cache and, if so, it returns the cached

encrypted query result. Otherwise, the encrypted query is forwarded to the home database server, which

returns an encrypted query result and any associated query clues. All updates are encrypted by the CDN

and routed to the home organization via the DBSS. The home organization applies the updates, and

returns the encrypted updates with associated update clues. The DBSS monitors completed updates, and

uses the query clues and update clues to invalidate cached query results as needed to ensure consistency.

2.6 Benchmark Applications

We sought Web benchmarks that make extensive use of a the database and are representative of real-

world applications. We found three publicly available benchmark applications that met these criteria:

RUBiS [82], an auction system modeled afterebay.com , RUBBoS [83], a simple bulletin-board-like

system inspired byslashdot.org , and TPC-W [104], a transactional e-Commerce application that

30



Section 2.7 Methodology

Total number of programs Number of templates

Application Total Static Query Update

AUCTION 25 5 28 11

BBOARD 21 3 38 13

BOOKSTORE 14 0 28 16

Figure 2.6: Total number of programs, and the number of queryand update templates for our three

benchmark applications.

captures the behavior of clients accessing an online bookstore1. We used Java implementation of these

applications. We will henceforth refer to these applications asAUCTION, BBOARD, andBOOKSTORE,

respectively.

Figure 2.6 lists the total number of programs, and the numberof query and update templates in our

three benchmark applications. The HTTP interactions for the AUCTION andBBOARD applications are

significantly higher than theBOOKSTOREapplication, and they also have a few static HTML pages.

BBOARD has the highest number of query templates, whileBOOKSTORE has the highest number of

update templates. Figure 2.7 provides the database configuration parameters we used in our experiments.

2.7 Methodology

We carefully optimized the performance of the centralized architecture by enabling the query caching

feature of MySQL4, the back-end database, and by adding the indices necessary to make queries execute

as quickly as possible. We also eliminated most static content from our workload by ensuring that the

1To make the TPC-W application more representative of a real-world bookseller, we changed the distribution of book

popularity in TPC-W from a uniform distribution to a Zipf distribution based on the work by Brynjolfsson et al. [22]. Bryn-

jolfsson et al. verified empirically that for the well-knownonline bookstoreamazon.com , the popularity of books varies as

logQ = 10.526−0.871logR, whereR is the sales rank of a book andQ is the number of copies of the book sold within a

short period of time.

31



Chapter 2 Architecture of the Scalability Service

Application DB size Parameters

AUCTION 1 GB 33,667 items

100,000 registered users

BBOARD 1.5 GB 213,292 comments

500,000 registered users

BOOKSTORE 200 MB 10,000 items

86,400 registered users

Figure 2.7: Application configuration parameters.

Simultaneous users supported

Latency

Threshold
Scalability

Improved scalability

Latency curve

Reduced latency curve

Figure 2.8: The figure shows (a) how scalability is computed as the number of simultaneous users

supported within a latency threshold, (b) how a reduction inlatency improves scalability.

emulated browsers did not request any images. This modification makes our results conservative since

the static content of a normal workload can easily be cached by our system.

For theBOOKSTOREbenchmark, we used the standard shopping mix. Each of our experiments started

from a cold cache at the DBSS and ran for ten minutes.

2.7.1 Evaluation Metrics

The key evaluation metric is the maximum throughput (requests serviced per second) achieved by the

scalability service architecture vs. the centralized architecture. A secondary goal is to reduce the delays

32



Section 2.7 Methodology

100 Mbps

5 ms

2 Mbps

100 ms

Users

node

DBSS

node

Home server

node

Figure 2.9: The SIMPLE scenario used in the experiments.

CDN

node

100 Mbps

5 ms

5 Mbps

100 ms
20 Mbps

5 ms

Users

node

DBSS

node

Home server

node

Figure 2.10: The SIMPLETC scenario used in the experiments.

experienced by end users, or at least to not increase delays dramatically. If a user suffers a long delay in

receiving a response, the user might go away and the responsebecomes useless [59, 60]. It is therefore

desirable to combine the two metrics. We combine the two metrics in a user perceived scalability metric,

which is measured as the maximum number of users that could besupported while keeping the response

time below a threshold. We refer the user perceived scalability metric asscalability in the rest of this

thesis. Figure 2.8 shows how scalability is computed. It also shows how a reduction in latency improves

the scalability metric. For our experiments, we use a latency threshold of two seconds and this latency

threshold had to be met by 90% of the HTTP requests.

33



Chapter 2 Architecture of the Scalability Service

2.7.2 Scenarios

We use two scenarios, both running on Emulab [107] for evaluating our prototype: SIMPLE and SIM-

PLE TC, which differed in whether the CDN node was co-located withthe DBSS node or not and

whether the bandwidth between the home server and the DBSS node was a bottleneck (at high scalabil-

ity) or not. The SIMPLE scenario (Figure 2.9) had just two nodes–a home server machine, which had

an Intel P-III 850 MHz processor with 512 MB of memory, and a DBSS node machine, which had an

Intel 64-bit Xeon processor with 2048 MB of memory. For simplicity, the DBSS node implemented the

functionality of the CDN node. The SIMPLETC scenario (Figure 2.10) had three nodes–the SIMPLE

scenario plus a separate CDN node. The CDN node and the DBSS were connected by a low latency,

high bandwidth link (5 ms latency, 20 Mbps). In the SIMPLE experiment, the home server and DBSS

node were connected by a high latency, low bandwidth duplex link (100 ms latency, 2 Mbps). However,

we discovered that this bandwidth was proving to be a bottleneck in a traditional centralized scenario.

Hence in theSIMPLE TC setting, we increased the bandwidth to 5 Mbps from 2 Mbps.2 In both scenar-

ios, we used just one additional node to emulate all clients—the client was connected to the CDN node

by a low latency, high bandwidth duplex link (5 ms latency, 20Mbps). These network settings model a

deployment in which a DBSS node (because there are many of them) is “close” to the clients, most of

which are “far” from any single home server.

2.8 Preliminary Evaluation

Figure 2.11 lists sample query and update numbers for a ten minute run. The updates to queries ratio is

the lowest (1:50.9) for theBBOARD application and the highest (1:6.3) for theBOOKSTOREapplication.

Figure 2.12 provides the cache hit rates measured for each ofthe three benchmark applications under a

high load. TheBBOARD benchmark achieves high hit rates, implying that the DBSS should be able to

offload much of the database work from home servers of similarapplications. The hit rates for theAUC-

2Figure 4.5 and Figure 5.9 confirm that this change increased the scalability for each of the three benchmark applications

by over 20% in the centralized architecture.

34



Section 2.8 Preliminary Evaluation

Application Users Queries Updates Update:Query ratio

AUCTION 650 187.7k 13.3k updates 1:14.1

(53.9% insertions, 46.1% modifications)

BBOARD 350 376.8k 7.4k updates (61.4% insertions, 1:50.9

2.4% deletions, 36.2% modifications)

BOOKSTORE 900 91.8k 14.5k updates (42.0% insertions, 1:6.3

3.9% deletions, 54.1% modifications)

Figure 2.11: Sample update rates for a ten-minute run.

Benchmark Users Cache hit rate

AUCTION 650 57.4%

BBOARD 350 75.5%

BOOKSTORE 900 66.4%

Figure 2.12: Cache hit rates for the three benchmark applications.

TION andBOOKSTOREbenchmarks are less impressive. We need to explore TTL-based approaches [34],

which are the norm in caching static content, to improve the cache hit rates for these two applications.

Figure 2.13 plots the average latency per dynamic HTTP request, at three different number of EBs

(clients), for our three benchmark applications executingin a traditional centralized setting. The latency

has three components: the client latency (the time spent by an average request in going from the client

to the home server and by the response in returning back), theprocessing time spent in the web and

application server, and the time spent in servicing database requests. As the number of EBs increases,

time spent in each category increases, reflecting growing load. To understand these variations in latency,

we also plot the average bandwidth usage and the maximum CPU usage of the the home server for these

experiments in Figure 2.14 and Figure 2.15 respectively. The CPU usage is mainly due to two categories

of processes:mysqld(processes for the database server) andjava (processes for the web server and the

application server). Since the home server CPU usage reaches100% for theAUCTION andBOOKSTORE

35



Chapter 2 Architecture of the Scalability Service

 Database
 Web and app server
 Client latency

  0

  1,000

  2,000

  3,000

  4,000

  5,000

240_EBs 290_EBs 340_EBs 390_EBs

A
ve

ra
ge

 la
te

nc
y 

(in
 m

s)

 Database
 Web and app server
 Client latency

 0

 1,000

 2,000

 3,000

80_EBs 130_EBs 180_EBs 230_EBs

 Database
 Web and app server
 Client latency

 0

 1,000

 2,000

210_EBs 260_EBs 310_EBs 360_EBs

AUCTION BBOARD BOOKSTORE

Figure 2.13: Average latency per dynamic HTTP request, at three different number of EBs, for the three

benchmark applications executing in a traditional centralized setting.

  0

  1,000

  2,000

  3,000

  4,000

  5,000

240_EBs 290_EBs 340_EBs 390_EBs

A
ve

ra
ge

 b
an

dw
id

th

 0

 1,000

 2,000

 3,000

 4,000

 5,000

80_EBs 130_EBs 180_EBs 230_EBs
 0

 1,000

 2,000

 3,000

 4,000

 5,000

210_EBs 260_EBs 310_EBs 360_EBs

AUCTION BBOARD BOOKSTORE

Figure 2.14: Average bandwidth usage of the home server, at three different number of EBs, for the three

benchmark applications executing in a traditional centralized setting.

applications, it is evident that the home server CPU is the bottleneck for these applications. Furthermore,

for both applications, the database server uses more CPU thanthe web and application server, indicating

that the applications are database intensive. In contrast,for the BBOARD application, the application

and web server use more CPU than the database server. This behavior is expected because theBBOARD

application is presentation heavy.

We expect the average latency to increase sharply whenever abottleneck is hit. For theAUCTION and

BOOKSTOREapplications, this increase happens at 390 EBs and 360 EBs respectively, when the CPU

utilization reaches 100%. Note that most of the latency increase is due to increases in the time spent

36



Section 2.8 Preliminary Evaluation

 java
 mysqld

  0

  20

  40

  60

  80

  100

240_EBs 290_EBs 340_EBs 390_EBs

C
P

U
 u

sa
ge

 in
 p

er
ce

nt

 java
 mysqld

 0

 20

 40

 60

 80

 100

80_EBs 130_EBs 180_EBs 230_EBs

 java
 mysqld

 0

 20

 40

 60

 80

 100

210_EBs 260_EBs 310_EBs 360_EBs

AUCTION BBOARD BOOKSTORE

Figure 2.15: CPU usage at the home server, at three different number of EBs, for the three benchmark

applications executing in a traditional centralized setting.

at the web, application, and database server, consistent with the fact that the home server CPU is the

bottleneck. For theBBOARD application, the latency increases sharply at 230 EBs, indicating that some

bottleneck has been hit. We know that the home server CPU is notthe bottleneck in this case – since

the CPU utilization remains below 80%. Instead, we believe itis the capacity of the link from the home

server which proves to be a bottleneck. The maximum capacityof the link is 5Mbps, signifying that

its average utilization over the duration of the entire experiment for 230 EBs, in case of theBBOARD

application, is higher than 60%. That the link is the bottleneck is also consistent with how sharply the

client latency increases in Figure 2.13.

Figure 2.13 plots the average latency per dynamic HTTP request, at three different number of EBs

(clients), for our three benchmark applications executingin our scalability service setting. Note that

for each application, at similar latencies, our DBSS architecture supports much higher number of si-

multaneous users than the traditional centralized scenario. Furthermore, both the CPU usage and the

bandwidth usage of the home server are well within their maximum limits, thus indicating that the home

server can handle even more load. (A higher load could not be supported because the single DBSS node

became a bottleneck.) Figure 2.17, which plot the scalability metric defined in Section 2.7.1, confirms

the scalability advantages of our DBSS architecture.

37



Chapter 2 Architecture of the Scalability Service

 Database

 Latency DBSS−Database

 DBSS

 Latency CDN−DBSS

 Client latency

  0

  200

  400

  600

  800

  1,000

AUCTION BBOARD BOOKSTORE

A
v
er

ag
e 

la
te

n
cy

 (
in

 m
s) CPU usage (in %)Bw usage

Application EBs mysqld java in kbps

AUCTION 650 40.2 7.6 329

BBOARD 350 26.5 7.4 535

BOOKSTORE 900 61.1 5.4 261

Figure 2.16: Average latency per dynamic HTTP request for the three benchmark applications executing

in our scalability service setting. The adjoining table provides the number of EBs and the resource usage

at the home server during the experiment.

 No DBSS
 With DBSS

  0

  200

  400

  600

  800

AUCTION BBOARD BOOKSTORE

S
ca

la
bi

lit
y

 (
nu

m
be

r 
of

 c
on

cu
rr

en
t u

se
rs

 s
up

po
rt

ed
)

Figure 2.17: Scalability in the presence and absence of the DBSS.

The latency in Figure 2.16 consists of five components: the client latency including the execution

time at the CDN, the latency from the CDN to the DBSS, the time spent at the DBSS, the latency from

the DBSS to the database, and the time spent at the database. The latency from the DBSS node to the

database is highest for theBBOARD application because theBBOARD application has the most number

of database queries per HTTP request. Compared to Figure 2.13, the database load on the home server

is substantially reduced (reflected in the lower average latency to service back-end requests in spite of

the number of EBs in the scalability service setting being much higher than the maximum number of

EBs in the centralized setting). This observation provides some evidence that in our scalability service

38



Section 2.9 Summary

architecture, the DBSS is able to shield the home server database from increasing load.

2.9 Summary

In this chapter we presented the overall architecture of thescalability service, and the design of the major

components. We have built a prototype scalability service with this architecture, and used it to scale three

benchmark applications. We finished this chapter by describing the three benchmark applications, our

methodology for carrying out the experiments in this thesis, a detailed analysis of the bottlenecks in a

traditional centralized setting, and an analysis of our DBSSprototype.

39



Chapter 2 Architecture of the Scalability Service

40



Chapter 3

Simultaneous Scalability and Security for Data

Intensive Web Applications

As argued in Section 1.4.3, there is an important tradeoff between security and scalability in the DBSS

setting. Recall from Section 1.4.2 that the goals with security are (1) to limit the DBSS administrator’s

ability to observe an application’s sensitive data, and (2)to limit an application’s ability to use the DBSS

to observer another application’s sensitive data. It is notimmediately clear how application administra-

tors can manage this security scalability tradeoff. In thischapter, we present our work which greatly

simplifies an application administrator’s task of managingthis tradeoff and achieving simultaneous scal-

ability and security when using a DBSS.

We begin in Section 3.1 by providing an example that illustrates the security-scalability tradeoff in

the DBSS setting and an overview of our approach. To underpin our study of the security-scalability

tradeoff, we present our formal characterization of cache invalidation strategies in Section 3.2, each

of which represents a natural choice in the space of security-scalability options. Section 3.3 describes

our methodology for management of the tradeoff, while Section 3.4 presents our main contribution: a

static analysis method for determining which data can be encrypted without impacting scalability. In

Section 3.5 we present our empirical findings, which point tothe effectiveness of our technique. We

present the contributions this chapter makes in Section 3.6and summarize in Section 3.7.

41



Chapter 3 Simultaneous Scalability and Security for Data Intensive Web Applications

QT
1 SELECT toy id FROM toys WHERE toy name=?

QT
2 SELECT qty FROM toys WHERE toy id=?

QT
3 SELECT cust name FROM customers WHERE cust id=?

UT
1 DELETE FROM toys WHERE toyid=?

Table 3.1: An example toystore application, denotedSIMPLE-TOYSTORE, with three query templates

QT
1 ,QT

2 ,QT
3 , one update templateUT

1 , and two base relations:toys with attributestoy id, toy name,

qty , andcustomers with attributescust id, cust name. The question marks indicate parameters

bound at execution time.

Accessible?

Temp- Param- Query Invalidation

lates eters Results Condition

No No No All of QT
1 , QT

2 , QT
3

Yes No No All QT
1 , all QT

2

Yes Yes No All QT
1 , QT

2 if toy id=5

Yes Yes Yes QT
1 if toy id=5 ,

QT
2 if toy id=5

Table 3.2: Invalidations differ depending on the amount of information the DBSS can access. The table

is for updateUT
1 with parameter5.

3.1 Security-Scalability Tradeoff

To illustrate the presence of the security-scalability tradeoff when DBSSs are employed, we introduce a

simple example application calledSIMPLE-TOYSTORE, specified in Table 3.1. We focus on the applica-

tion’s database accesstemplates—queries or updates missing zero or more parameter values. Table 3.2

lists the invalidations the DBSS needs to make on seeing a specific update in four different scenarios;

42



Section 3.1 Security-Scalability Tradeoff

each scenario is represented by a row of the table. The scenarios differ in what information the DBSS

is able to access. For example, if no information is accessible, i.e., all data is encrypted, as in the first

row, then all cached query results are invalidated on seeingan instance of updateUT
1 . However, if the

template information is accessible, as in the second row, then cached query results of all instances of

only QT
1 andQT

2 are invalidated. As the information available to a DBSS increases (moving down the

rows), the number of invalidations it needs to make decreases, thereby increasing scalability.

There is an important tradeoff between security and scalability in the DBSS scenario. Encryption

of queries, updates and data for security purposes limits the information available to the DBSS for

making invalidation decisions. With limited information,the DBSS is forced to employ conservative

invalidation strategies to maintain consistency, resulting in excess invalidations and reduced scalability.

This basic tradeoff between security and scalability is illustrated quantitatively in Figure 3.1, which

shows measurements of the TPC-W online bookstore benchmark executed on a prototype DBSS system

we have built (details are provided in Section 3.5). The vertical axis plots scalability, measured as

the number of concurrent users that can be supported while keeping response times within acceptable

limits. The horizontal axis plots a simple measure of security: the number of query templates embedded

in the bookstore application for which query results are encrypted as they pass through the DBSS. It is

straightforward to achieve either good security or good scalability by encrypting either all data or no

data. Achieving good scalability and adequate security simultaneously requires more thought.

3.1.1 Managing the Security-Scalability Tradeoff

There is often room to maneuver with respect to what data needs to be encrypted. Flexibility arises be-

cause in most Web applications, not all data is equally sensitive. It may range from highly-sensitive data

such as credit card information, to moderately sensitive data such as inventory records, to completely

insensitive data such as the weekly best-seller list, whichis made public anyway.

In general, management of the security-scalability tradeoff requires careful assessment of data sensi-

tivity, weighed against scalability goals. Unfortunately, it is nontrivial to assess the scalability implica-

tions of ensuring the security of a particular portion of thedatabase. Furthermore, for data that is not

43



Chapter 3 Simultaneous Scalability and Security for Data Intensive Web Applications

 200

 400

 600

 800

 7  14  21  28

S
ca

la
b

ili
ty

(n
um

be
r 

of
 c

on
cu

rr
en

t u
se

rs
 s

up
po

rt
ed

)

Security
(number of query templates with encrypted results) 

No Encryption Our Approach

Full Encryption

Figure 3.1: Security-scalability tradeoff (TPC-WBOOKSTOREbenchmark).

entirely insensitive, it can be difficult to quantify sensitivity in a meaningful way. Therefore it is not

immediately clear how to best approach the task of managing the security-scalability tradeoff.

In this chapter we present a convenient shortcut, which simplifies the task substantially while avoiding

undesirable compromises with respect to security or scalability. The idea is to identify portions of the

database that can be encrypted while incurring no additional penalty to scalability. The outcome of

applying this idea is shown in the upper-right point in Figure 3.1, labeled “our approach.” The data that

can be encrypted using our approach does not need to be considered for the security-scalability tradeoff,

thus greatly simplifying the task of managing the tradeoff.Hence, for the benchmark applications we

have evaluated, our approach automatically achieves good security1 without compromising scalability.

3.2 Framework for Studying the Security-Scalability Tradeoff

In this section we characterize when an update necessarily causes invalidation of the cached result of

a query, as a function of the information that is accessible.This formal characterization underpins our

study of the security-scalability tradeoff. We begin in Section 3.2.1 by providing the details of our basic

query and update model, and introducing the terminology andnotation we use in the rest of the chapter.

1See Section 3.5.3 for details on what data is kept private under our approach.

44



Section 3.2 Framework for Studying the Security-Scalability Tradeoff

Then, in Section 3.2.2 we characterize four distinct classes of invalidation strategies, i.e., strategies for

deciding when to invalidate a cached query result in response to an update, that differ in the amount of

information available to them. Finally, in Section 3.2.3 westudy the mixed invalidation strategies that

arise when the information available for making invalidation decisions varies across queries and across

updates.

3.2.1 Query and Update Model

The database components of a Web application consist of a fixed set of query templates, and a fixed set

of update templates (Table 3.1 shows an example). LetQ T = {QT
1 , . . . ,QT

n} andUT = {UT
1 , . . . ,UT

m}

denote the set of query and update templates, respectively.A queryQ is composed of a query template

QT to which parametersQP are attached at execution time. Formally,Q = QT(QP). Likewise,U =

UT(UP). Let Q[D] denote the result of evaluating queryQ over databaseD. Let (D+U) denote the

database state resulting from application of updateU . A sequence of queries and updates issued at

runtime constitutes aworkload.

Based on our study of three benchmark applications (details in Section 3.5.1), the query language is

restricted to select-project-join (SPJ) queries having only conjunctive selection predicates, augmented

with optional order-by and top-k constructs. SPJ queries are relational expressions constructed from any

combination of project, select and join operations. As in previous work [18, 90], the selection operations

in the SPJ queries can only be arithmetic predicates having one of the five comparison operators{<,≤,>

,≥,=}. Theorder-byconstruct affects tuple ordering in the result; and thetop-kconstruct is equivalent

to returning the firstk tuples from the result of the query executed without the top-k construct. We

assume multi-set operation; the projection operation doesnot eliminate duplicates.

The update language permits three kinds of updates: insertions, deletions and modifications. Each

insertionstatement fully specifies a row of values to be added to some relation. Eachdeletionstatement

specifies an arithmetic predicate over columns of a relation. Rows satisfying the predicate are to be

deleted. Eachmodificationstatement modifies non-key attributes of the row (of a relation) that satisfies

an equality predicate over the primary key of the relation.

45



Chapter 3 Simultaneous Scalability and Security for Data Intensive Web Applications

Assumptions for simplifying the presentation of our analysis

To simplify the presentation of our analysis (Section 2.3 and Section 4) of which information can be

encrypted without impacting scalability, we make three assumptions about the update and query tem-

plates: First, each selection predicate either compares attribute values across two relations or compares

a value with a constant. Second, no constants that might aid in invalidations are embedded in a query or

update template. Third, no queries compute Cartesian Products, i.e., each query has a non-empty selec-

tion predicate. The above assumptions always hold for two ofthree benchmark applications we study,

and are violated in less than 3% of the update/query templatepairs for the third benchmark. Whenever

the assumptions do not hold, no encryption is recommended for the given update/query template pair.

This conservative strategy ensures that our analysis neverrecommends encrypting any data, for which

encryption impacts scalability.

To simplify the presentation further, we make two additional assumptions about the execution of

updates and queries: First, no query whose result is subjectto invalidation by either an insertion or a

deletion statement in the workload returns an empty result set. Second, each update has some effect on

the database, i.e., for each updateU , D 6= [D+U ]. In our experiments with all three of the benchmark

applications we study, these assumptions always hold, and cause no loss of scalability.

3.2.2 Formal Characterization of View Invalidation Strategies

Recall that in our current design, the DBSS caches views, whichare results of queries. A view invalida-

tion strategyS is a function whose arguments possibly include an update statement, a query statement,

and other information such as a cached query result. It evaluates to one of I (for “invalidate”) or DNI

(for “do not invalidate”). A view invalidation strategy iscorrect if and only if whenever a view changes

in response to an update, all corresponding cached instances of that view are invalidated. A formal

definition of correctness is as follows:

Correctness: A view invalidation strategyS is correct iff for any queryQ, databaseD, and updateU ,

(Q[D] 6= Q[D+U ]) ⇒ (S(U,Q, . . .) = I).

46



Section 3.2 Framework for Studying the Security-Scalability Tradeoff

(Assume that updates are applied sequentially, and that allinvalidations necessitated by one update are

carried out before the next update is applied.)

A view invalidation strategy isinvokedwhenever an update occurs. Based on what information they

access in making invalidation decisions, four classes of view invalidation strategies, one for each row of

Table 3.2, may be defined as follows (The arguments to a strategy also list the information the strategy

can access):

• Blind Strategy2 (BS) S(): No information is available to make the invalidation decision. Cor-

rectness requires that(∃U,Q,D : (Q[D] 6= Q[D+U ])) ⇒ (S() = I).

• Template-Inspection Strategy (TIS)S(UT ,QT): Only the update templateUT and query tem-

plateQT may be used to make the invalidation decision. Correctness requires that(∃UP,QP,D :

(QT(QP)[D] 6= QT(QP)[D+UT(UP)])) ⇒ (S(UT ,QT) = I).

• Statement-Inspection Strategy (SIS)S(U,Q): Only the updateU and query statementQ may

be used to make the invalidation decision. Correctness requires that(∃D : (Q[D] 6= Q[D+U ]))⇒

(S(U,Q) = I).

• View-Inspection Strategy (VIS) S(U,Q,Vp): The updateU , the query statementQ, and the

content of the viewVp = Q[Dp], whereDp denotes the state of the database at the time the view

was evaluated (i.e., prior to application of the update), may be used to decide whether to invalidate

Vp. Correctness requires that(∃D : ((Q[D] = Vp)∧ (Q[D] 6= Q[D+U ]))) ⇒ (S(U,Q,Vp) = I).

These four view invalidation strategies, natural points inthe invalidation strategy design space, are

largely based on previous work in the area of view invalidations. For example, the methods of [51]

can be used to implement a view-inspection strategy. Similarly, the methods of [68] can be used to

implement a template- or a statement-inspection strategy.Finally, implementing a blind strategy is

simple: invalidate all cached query results on any update.

2In earlier work [84], the termblack-box strategywas used to refer to the same concept.

47



Chapter 3 Simultaneous Scalability and Security for Data Intensive Web Applications

Correct view−inspection strategies

Correct statement−inspection strategies

Minimal view−inspection strategies

Correct template−inspection strategies

Correct blind strategies

Minimal statement−inspection strategies

Minimal blind strategies

Minimal template−inspection strategies

Figure 3.2: Relationships among classes of view invalidation strategies, in the general case.

Also, every correct blind strategy is a correct template-inspection strategy, every correct template-

inspection strategy is a correct statement-inspection strategy, and every correct statement-inspection

strategy is a correct view-inspection strategy. The relationships are depicted in Figure 3.2.

We now define minimality:

Minimality: A view invalidation strategyS belonging to classC is minimal if and only if it is correct

and there exists no query statementQ, update statementU , and databaseD such thatS invalidates

the viewQ[D] in response toU , while another correct view invalidation strategy in classC does not.

Corresponding to each class of invalidation strategy, the criterion for a minimal blind strategy (MBS),

a minimal template-inspection strategy (MTIS), a minimal statement-inspection strategy (MSIS), and a

minimal view-inspection strategy (MVIS), can be arrived at, by applying the definition of minimality to

the respective class.

For arbitrary databases and workloads, no correct blind strategy is a minimal template-inspection

strategy. Similarly, no correct template-inspection strategy is a minimal statement-inspection strategy

and no correct statement-inspection strategy is a minimal view-inspection strategy. (We omit formal

proofs for brevity.) Figure 3.2 depicts the relationships among classes of view invalidation strategies as

a Venn diagram.

The choice of invalidation strategy determines what information can be encrypted. On the one ex-

48



Section 3.2 Framework for Studying the Security-Scalability Tradeoff

Exposure levels:blind template stmt view

-

greater exposure (less encryption)

¾

greater security

Figure 3.3: Security gradient.

treme, if a view-inspection strategy is used, neither queries, nor updates, nor cached query results can

be encrypted. On the other extreme, if a blind strategy is used, all queries, updates, and cached query

results can be encrypted.3

3.2.3 Mixed Invalidation Strategies

Typically, not all of an application’s data is equally sensitive. An administrator may wish to control

encryption of information at a per-template granularity. To control what information to encrypt, the

administrator chooses anexposure level E(UT) ∈ {blind, template,stmt} for each update template

UT ∈ UT, and an exposure levelE(QT) ∈ {blind,template,stmt,view} for each query template

QT ∈ Q T. Each exposure level exposes some information of a query or an update; all information

not exposed can then be encrypted. Theblind exposure level exposes nothing;template exposes the

template;stmt exposes the entire query or update statement (i.e., template and parameters); andview

(only for query templates) exposes the query statement and the result of executing the query. Figure 3.3

shows the range of exposure level options.

Figure 3.4 shows the possible exposure level combinations for a givenUT/QT pair (the contents of the

boxes may be ignored for now). When exposure level choices aremade independently for every update

3 Note that deterministic encryption is required for correctcaching mechanics. To check whether a given query can be

answered from the cache, a lookup operation is required to check whether the DBSS has a cached copy of the query result.

For a VIS or SIS, the query statement serves as the lookup key.For a TIS, the query template along with encrypted parameters

are used. For a BS, the encrypted query statement is used as the lookup key.

49



Chapter 3 Simultaneous Scalability and Security for Data Intensive Web Applications

Query

blind template stmt view

U
pd

at
e blind 1 1 1 1

template 1 Ai j Ai j Ai j

stmt 1 Ai j Bi j Ci j

Figure 3.4: AnInvalidation Probability MatrixIPM(UT
i ,QT

j ).

and query template, the invalidation strategy to use may be determined at the granularity of update/query

template pairs. In Figure 3.4, the shaded boxes correspond to the four classes of invalidation strategies

introduced in Section 3.2.2. (We discuss the unshaded boxesshortly.)

Invalidation Probabilities

In our approach, exposure level choices determine the mix ofinvalidation strategies employed. Given

a workload, the invalidation strategy used for a givenUT/QT pair in turn determines theinvalidation

probability—the likelihood that the invalidation strategy invalidates (the result of) an instance of the

query template on seeing an instance of the update template (where probability distribution over template

instances are derived from the workload). Invalidation probabilities also depend on the database, and

may change over time. In general it is difficult to estimate these (dynamic) quantities accurately, but as

we will see we can find useful invariant relationships among them using static analysis alone. For the

purpose of our static analysis, we represent the invalidation probabilities for different choices of exposure

levels as a matrix. AnInvalidation Probability MatrixIPM (UT
i ,QT

j ), illustrated in Figure 3.4, contains

invalidation probability values for each combination of exposure levels forUT
i andQT

j . (Ai j , Bi j , andCi j

are placeholders for invalidation probabilities that depend on workload and database characteristics.)

IPM’s obey the following properties:

Property 1: The invalidation probability equals 1 if either exposure level isblind . Clearly, whenever

no information is available about either updateU or queryQ, for correctness, the cached result ofQ

50



Section 3.2 Framework for Studying the Security-Scalability Tradeoff

must be invalidated whenever any updateU occurs.

Property 2: The invalidation probability is the same for all cases in which one exposure level is

template and the other is some exposure level other thanblind . (We denote this invalidation prob-

ability by Ai j ∈ [0,1].) Recall from Section 3.2.1 our assumptions that the selection predicates cannot

compare two database values of the same relation and there are no constants in the update (query) tem-

plates. Under these assumptions, knowledge of the query (update) parameters but not the update (query)

parameters does not aid in reducing invalidations because the query (update) parameters cannot be com-

pared to anything. Similarly, knowledge of the query resultbut not the update parameters does not aid

in reducing invalidations. (We omit formal proofs for brevity.)

Property 3: The invalidation probabilities constitute a gradient as we move from top-left to bottom-right

in Figure 3.4, i.e., 1≥ Ai j ≥ Bi j ≥Ci j ≥ 0. Clearly, under minimal invalidation strategies, invalidations

cannot increase if more information is available for makinginvalidation decisions.

From the above discussion, it follows that invalidation strategy classes corresponding to unshaded

boxes in Figure 3.4 are of no interest since they aredominatedby those corresponding to shaded boxes,

i.e., the shaded boxes permit lower exposure while offeringthe same invalidation probability. In certain

instances, additional domination relationships can be found. First, for certain update/query template

pairsUT
i /QT

j , it can be shown thatAi j = 1 (meaning minimal template inspection invalidation strategies

are equivalent to minimal blind strategies for such update/query template pairs). Similarly, in some cases

Bi j = Ai j (meaning minimal statement inspection strategies are equivalent to minimal template inspec-

tion strategies for such update/query template pairs), andin some casesCi j = Bi j (meaning minimal view

inspection strategies are equivalent to minimal statementinspection strategies for such update/query tem-

plate pairs). We examine how to identify and exploit such cases in Section 3.4. Before we approach this

topic, we first describe our overall approach to managing thesecurity-scalability tradeoff while meeting

scalability requirements.

51



Chapter 3 Simultaneous Scalability and Security for Data Intensive Web Applications

3.3 Overview of Approach

In this section we outline our approach for managing the security-scalability tradeoff, given scalability

requirements. As Figure 3.3 shows, one may control securityby adjusting the exposure level of an

application’s update and query templates. We first provide our approach in Section 3.3.1, and then

present a brief example in Section 3.3.2 that illustrates the approach.

3.3.1 Our Approach

A natural approach to solve the security-scalability management problem is to model it as a constrained

optimization problem where each potential solution, i.e.,an assignment of an exposure level to every

template of the application, has an “overhead” and a “security” value; the objective is to maximize

the “security” value while keeping the “overhead” below a given threshold. However, the approach is

impractical because assigning meaningful security valuesto, and predicting overhead values of, each

potential solution is virtually impossible.

We advocate a new scalability-conscious security design methodology, which uses the following prac-

tical three-step approach for managing the security-scalability tradeoff, given a scalability requirement:

1. Beginning with maximum exposure for all templates, i.e., exposure levelstmt for each update

template and exposure levelview for each query template, reduce exposure levels (i.e., moveto the

left in Figure 3.3) based on cases in which data absolutely must be encrypted. Such requirements

may be decided in an ad-hoc manner, or based on a data privacy law such as [24].

2. Using our static analysis techniques (described shortly), reduce exposure level of each template

for which doing so does not impact scalability.

3. Prioritize remaining exposure level reduction possibilities based on security considerations and

adjust with respect to the tradeoff with scalability.

Step 2 is the focus of our work. We divide Step 2 into two sub-steps:

52



Section 3.3 Overview of Approach

Step 2(a): Characterize IPM domination relationships. Determine for eachUT
i /QT

j pair whether

(a) Ai j = 1, (b)Bi j = Ai j , and (c)Ci j = Bi j . Identifying these relationships is a challenge; Section 3.4 is

dedicated to this task.

Step 2(b): Eliminate high-exposure options whenever possible without hurting scalability. The

inputs to this step include: (a) IPM tables with the information from IPM characterization (Step 2a)

plugged in, and (b) the initial exposure levels of templatesbased on requirements that certain data must

absolutely be encrypted (Step 1). The goal of Step 2b is to maximally reduce the exposure level for each

template without impacting scalability. Since scalability is impacted whenever invalidation probabilities

change, the key idea in achieving maximal reduction of exposure levels is to ensure that the invalidation

probability of no update/query template pair (as given by the IPM table) changes due to a reduction in

the exposure level of a template.

Algorithm MinExposure can be used to find the minimal exposure levels that offer the same scalability

as the initial exposure levels of the templates. It repeatedly lowers the exposure level of a template

if doing so does not increase any invalidation probability.Lines 4–12 use this idea for lowering the

exposure level of query templates, and Lines 13–21 use this idea for lowering the exposure level of

update templates. Furthermore, since the algorithm lowersthe exposure level of a template if and only if

doing so does not increase any invalidation probability, the final exposure levels are independent of the

order in which the templates in Line 4 and Line 13 are selectedfor exposure level reduction.

We next provide an example that illustrates our approach.

3.3.2 Example

Consider theTOYSTOREapplication shown in Table 3.3, an extension of our earlierSIMPLE-TOYSTORE

application of Table 3.1. As Step 1, the administrator may well decide that credit card numbers are

not to be exposed, and accordingly reduce the exposure levelof UT
2 to template . Using the notation

introduced in Section 3.2.3,E(UT
2 ) = template.

The next step is Step 2a, in which the IPM domination relationships are characterized. The results for

53



Chapter 3 Simultaneous Scalability and Security for Data Intensive Web Applications

QT
1 SELECT toy id FROM toys WHERE toy name=?

QT
2 SELECT qty FROM toys WHERE toy id=?

QT
3 SELECT cust name FROM customers, credit card

WHERE cust id=cid and zip code=?

UT
1 DELETE FROM toys WHERE toyid=?

UT
2 INSERT INTO credit card (cid, number, zip code)

VALUES (?, ?, ?)

Table 3.3: A more elaborate exampleTOYSTOREapplication having three query templatesQT
1 ,QT

2 ,QT
3 ,

two update templatesUT
1 ,UT

2 and three base relations:toys with attributestoy id, toy name, qty ,

customers with attributescust id, cust name, and credit card with attributescid, number,

zip code . Attribute credit card.cid is a foreign key into thecustomers relation. The question

marks indicate parameters bound at execution time.

the TOYSTOREapplication are provided in Table 3.4. To understand intuitively how these relationships

are determined, let us focus on the first row, i.e., entries corresponding toUT
1 . Since no instance ofUT

1

can affect the result of any instance ofQT
3 , no instance ofUT

1 will trigger invalidation of the result of

any instance ofQT
3 , soA13 = 0. However, since an instance ofUT

1 can affect the result of an instance of

QT
2 or QT

1 , A12 > 0 andA11 > 0. As we show in Section 3.4, wheneverAi j > 0, Ai j = 1. Hence,A11 =

A12 = 1. Further, using our analysis in Section 3.4, it can be inferred thatB11 = A11, i.e., knowledge

of the parameters ofUT
1 andQT

1 does not aid in reducing invalidations. AlsoC12 = B12, i.e., additional

knowledge of the content of the result of an instance ofQT
2 , when the parameters ofUT

1 andQT
2 are

already known, does not aid in reducing invalidations. Finally, sinceA13 = 0, A13 = B13 = C13 holds

trivially due to Property 3 (Section 3.2.3).

Step 2b, in which AlgorithmMinExposure is invoked, follows the IPM characterization step. When

invoked on theTOYSTOREapplication (Table 3.3) with inputs asE(UT
2 ) = template (Step 1) and Ta-

54



Section 3.4 IPM Characterization

QT
1 (j=1) QT

2 (j=2) QT
3 (j=3)

A11 = 1 A12 = 1 A13 = 0

UT
1 B11 = A11 B12 < A12 B13 = A13

(i=1) C11 < B11 C12 = B12 C13 = B13

A21 = 0 A22 = 0 A23 = 1

UT
2 B21 = A21 B22 = A22 B23 < A23

(i=2) C21 = B21 C22 = B22 C23 = B23

Table 3.4: Summary of IPM characterization for the exampleTOYSTOREapplication.

ble 3.4 (Step 2a), the algorithm used for Step 2b reduces exposure level of query templateQT
3 from view

to template , and of query templateQT
2 from view to stmt . By reducing the exposure level in this way,

the inventory (quantity of toys in stock) and the customer demographic (customers in an area) are no

longer exposed. An application provider may prefer not to expose this moderately sensitive information,

all else being equal. Further, we confirm that the additionalsecurity this reduction in exposure enables

does not impact scalability. As before, cached results of instances ofQT
2 are only invalidated by instances

of UT
1 if the toy id match, and cached results of all instances ofQT

3 are invalidated by any instance of

UT
2 .

Having presented our overall approach, we next describe howto determine IPM domination relation-

ships using static analysis (Step 2a).

3.4 IPM Characterization

Recall from Section 3.3.1 that IPM characterization entails: determining statically for eachUT
i /QT

j pair,

whether (a)Ai j = 1, (b) Bi j = Ai j , and (c)Ci j = Bi j . We discuss in Sections 3.4.2 – 3.4.4, how to

determine for a givenUT/QT pair whether each of these relationships holds. Then, in Section 3.4.5 we

discuss how additional information, beyond those considered up to now, affect IPM values. But, first in

Section 3.4.1, we introduce some terminology for classifying query and update templates in a way that

55



Chapter 3 Simultaneous Scalability and Security for Data Intensive Web Applications

Symbol Meaning

S(UT) Attributes used in any of the selection predicates

(i.e., selection and join conditions) ofUT

M(UT) Attributes modified byUT

S(QT) Attributes used in selection predicates or

order-by constructs ofQT

P(QT) Attributes retained in the result ofQT

Table 3.5: Notation for aspects of templates.

is useful for our analysis.

3.4.1 Query and Update Classification

Defineselection attributesof update templateUT (denotedS(UT)) to be attributes used in any selection

predicate (i.e., a selection or a join condition) ofUT . (If UT is an insertion,S(UT) = {}.) Further define

modified attributes(M(UT)) of UT , selection attributes(S(QT)) of query templateQT , andpreserved

attributes(P(QT)) of QT as in Table 3.5. IfUT is an insertion or a deletion,M(UT) is defined to be the set

of all attributes in the table in which the insertion or deletion takes place. For theTOYSTOREapplication

(Table 3.3),S(QT
1 ) = {toys.toy name}, P(QT

1 ) = {toys.toy id}, S(UT
1 ) = {toys.toy id}, M(UT

1 ) =

{toys.toy id, toys.toy name,toys.qty}.

Recall from Section 3.2.1 that queries are restricted to be Select-Project-Join (SPJ) queries having

conjunctive selection predicates, augmented with optional order-by, and top-k constructs. Further define

two (possibly overlapping) classes of queries: ones with only equality joins or no joins (denotedE for

equality), and ones with no top-k constructs (N ). As before, there are three classes of updates: insertions

(denotedI ), deletions (D), and modifications (M ). We say an update (query) template belongs to a

particular update (query) class if any instance of the update (query) template belongs to the class.

For our static analysis, it is important to know whether any instance of an update template can ever

affect the result of any instance of a query template. Following the terminology of [90], an update

56



Section 3.4 IPM Characterization

QT ∈ E Q is a query with only equality joins

QT ∈ N Q is a SPJ query with

no top-k constructs

UT ∈ I U is an insertion

UT ∈ D U is a deletion

UT ∈ M U is a modification

UT is ignorablefor QT 〈UT ,QT〉 ∈ G ⇔

(〈UT ,QT〉 ∈ G) M(UT)∩ (P(QT)∪S(QT)) = {}

QT is result-unhelpful 〈UT ,QT〉 ∈ H ⇔

for UT (〈UT ,QT〉 ∈ H ) S(UT)∩P(QT) = {}

Table 3.6: Query and update classes.

templateUT is ignorable with respect to a query templateQT if and only if no attributes modified

by the update template are either preserved by the query template, or used in the selection predicate

of the query template. LetG denote the set of all such update/query template pairs, i.e., 〈UT ,QT〉 ∈

G ⇔ M(UT)∩ (P(QT)∪S(QT)) = {}. For example, in theTOYSTOREapplication (Table 3.3), update

templateUT
1 is ignorable with respect to query templateQT

3 .

It is also important to know whether a query result has any information that aids in reducing invalida-

tions. A query templateQT is result-unhelpfulwith respect to an update templateUT if and only if none

of the selection attributes of the update template are preserved by the query template. LetH denote the

set of all such update/query template pairs, i.e.,〈UT ,QT〉 ∈ H ⇔ S(UT)∩P(QT) = {}. For example, in

theTOYSTOREapplication (Table 3.3), query templateQT
3 is result-unhelpful for update templateUT

2 .

In Table 3.6, we summarize the different classes of templates and properties of update/query template

pairs.

57



Chapter 3 Simultaneous Scalability and Security for Data Intensive Web Applications

3.4.2 Blind vs. Template-Inspection (DoesAi j = 1?)

Begin by considering the case in which both update and query templates are exposed. If any instance of

update templateUT
i could cause invalidation of cached results of all possible instances of query template

QT
j , thenAi j = 1. Hence, there is no advantage to using a minimal template-inspection strategy instead

of a minimal blind strategy, i.e., knowledge of the query or update templates does not aid in decreasing

invalidations. For example,A11 equals 1 in theTOYSTOREapplication (Table 3.4).

Furthermore, ifAi j is greater than 0, thenAi j equals 1, i.e.,Ai j > 0⇒ Ai j = 1. The implication holds

because the invalidation behavior of a template-inspection strategy is the same for all instances of an

update/query template pair. So if there exists some instance of UT
i that causes invalidation of cached

results of some instance ofQT
j , then ’any’ instance ofUT

i causes invalidation of cached results of ’all’

instances ofQT
j . Thus,Ai j either equals 0 or 1.

Lemma 1 provides the necessary and sufficient conditions fordetermining ifAi j equals 0.

Lemma 1. With assumptions as in Section 3.2.1, invalidation probability Ai j equals 0 if and only if the

update template UTi is ignorable with respect to the query template QT
j . Formally, Ai j = 0⇔〈UT

i ,QT
j 〉 ∈

G . Otherwise, Ai j = 1.

Proof. We only prove the “if” part of this Lemma, and omit the proof ofthe “only if” part for brevity.

An instance of an update template can only change the values of the attributes inM(UT
i ). Further,

the result of an instance of a query templateQT
j changes only if values of any of the attributes in the

union ofP(QT
j ) andS(QT

j ) changes. If the two sets,M(UT
i ) andP(QT

j )∪S(QT
j ), don’t intersect, then

no instance ofUT
i can invalidate the cached query result of any instance ofQT

j , i.e.,M(UT
i )∩ (P(QT

j )∪

S(QT
j )) = {} ⇒ Ai j = 0. Using the definition of whenUT

i is ignorable with respect toQT
j , we get

〈UT
i ,QT

j 〉 ∈ H ⇒ Ai j = 0.

58



Section 3.4 IPM Characterization

3.4.3 Template-Inspection vs. Statement-Inspection (DoesBi j = Ai j ?)

For a given update/query template pair, if whenever a minimal template-inspection strategy (MTIS)

evaluates to invalidate (denoted I), a minimal statement-inspection strategy (MSIS) also evaluates to

I, thenBi j = Ai j , i.e., knowledge of update and query parameters in additionto the update and query

template does not aid in decreasing invalidations. SinceAi j can take only two possible values, 0 or 1, if

Bi j = Ai j , then eitherBi j = Ai j = 0 orBi j = Ai j = 1.

Case 1(Bij = A ij = 0): Property 3 (Section 3.2.3) implies that the equalityBi j = Ai j = 0 holds if

and only ifAi j = 0. Furthermore, from Lemma 1, we know the necessary and sufficient conditions for

Ai j being 0. Combining the two statements,Bi j = Ai j = 0 holds if and only if the update template is

ignorable with respect to the query template, i.e.,Bi j = Ai j = 0⇔ 〈UT
i ,QT

j 〉 ∈ G .

Case 2(Bij = A ij = 1): The equalityAi j = 1 is a necessary condition forBi j = Ai j = 1. Using

Lemma 1, the previous statement can be rewritten as: update templateUT
i must not be ignorable with

respect to query templateQT
j for the equalityBi j = Ai j = 1 to hold. This necessary condition forBi j =

Ai j = 1 is however not a sufficient condition since a MSIS also has knowledge of the parameters of the

update and the query statement. This knowledge may allow theMSIS to infer that an instance ofUT
i

does not affect the cached query result of some instance ofQT
j . For example,A12 = 1 butB12 < 1 in the

TOYSTOREapplication (Table 3.4).

However, ifS(UT
i )∩S(QT

j ) = {}, then knowing the parameters in addition to the update and query

templates cannot aid in decreasing invalidations. Hence a sufficient condition forBi j = Ai j = 1 is: If no

attribute is common to the selection predicates of both the update and query template, and the update

template is not ignorable with respect to the query template, thenBi j = Ai j = 1, i.e.,(S(UT
i )∩S(QT

j ) =

{})∧ (〈UT
i ,QT

j 〉 /∈ G) ⇒ Bi j = Ai j = 1.

3.4.4 Statement-Inspection vs. View-Inspection (DoesCi j = Bi j ?)

For a given update/query template, if whenever a minimal statement-inspection strategy (MSIS) eval-

uates to invalidate (denoted I), a minimal view-inspectionstrategy (MVIS) also evaluates to I, then

59



Chapter 3 Simultaneous Scalability and Security for Data Intensive Web Applications

Ci j = Bi j , i.e., knowledge of the query result in addition to the update and query statement does not aid

in decreasing invalidations. From Property 3 (Section 3.2.3), Ci j ≤ Bi j . In this subsection we provide

several sufficient conditions for the equalityCi j = Bi j by identifying important classes of update/query

pairs for which the equality holds. For other classes, we provide an example instance ofUT
i andQT

j

for which Ci j < Bi j . Next, we consider the three classes of updates in turn: insertions, deletions, and

modifications.

Insertions. This paragraph applies if the update is an insertion. If queries are limited to SPJ queries

having conjunctive selection predicates, with equality asthe join operator, augmented by optional order-

by constructs, then whenever a MSIS evaluates to I, a MVIS also evaluates to I, i.e.,(UT
i ∈ I )∧ (QT

j ∈

E ∩ N ) ⇒ Ci j = Bi j . We prove this result as Lemma 4 in Appendix A.1. This result is our most

significant contribution in finding sufficient conditions for Ci j = Bi j . For example,C23 equalsB23 for the

TOYSTOREapplication (Table 3.4), as predicted by this result. However, when the query template either

has one or more of{<,≤,>,≥} appearing in the join predicate (QT
j /∈E ), or has a top-k construct (QT

j /∈

N ), Ci j may be less thanBi j , as illustrated when the updateINSERT INTO toys (toy id, toy name,

qty) VALUES (15, ‘toyB’, 10) is paired with either of the following queries:

a) SELECT t1.toy id, t1.qty, t2.toy id, t2.qty

FROM toys as t1, toys as t2

WHERE t1.toy name=‘toyA’ AND t2.toy name=‘toyB’

AND t1.qty > t2.qty

Suppose the query result has just one tuple(10, 3, 12, 2) . A minimal statement-inspection strat-

egy will invalidate the cached query result, since a‘toyA’ with qty > 10 might exist in the database.

However, a minimal view-invalidation strategy, with the knowledge of the cached query result, which

implies that there is no‘toyA’ with qty > 3 , will not invalidate the query result.

b) SELECT MAX(qty) FROM toys

Suppose the result of this top-k query is15. A minimal statement-inspection strategy will necessarily

invalidate the cached query result, since the currentmax(qty) might be less than10. However, a

60



Section 3.4 IPM Characterization

minimal view-invalidation strategy, with the knowledge ofthe query result, will not invalidate the

cached query result.

Deletions. This paragraph applies if the update is a deletion. If the query template is result-unhelpful

with respect to the update template, then whenever a MSIS evaluates to invalidate (I), a MVIS also eval-

uates to I, i.e.,〈UT
i ,QT

j 〉 ∈ H ⇒ Ci j = Bi j . We prove this result formally as Lemma 5 in Appendix A.1.

For example, the equalitiesC12 = B12 andC13 = B13 hold for theTOYSTOREapplication (Table 3.4), as

predicted by this result. Moreover, theUT
1 /QT

1 pair of theTOYSTOREapplication is an example where

the precondition of this result is not met andC11 < B11.

Modifications. This paragraph applies if the update is a modification. If either the update template

is ignorable with respect to the query template or the query template is result-unhelpful with respect to

the update template, then whenever a MSIS evaluates to invalidate (I), a MVIS also evaluates to I, i.e.,

〈UT
i ,QT

j 〉 ∈ G ∪H ⇒ Ci j = Bi j . We prove this result formally as Lemma 6 in Appendix A.1. Moreover,

if the precondition of this result is not met,Ci j may be less thanBi j , as with the following update/query

pair:

UPDATE toys SET qty=10 WHERE toy id=5

SELECT toy id FROM toys WHERE qty > 100

Let the toy withtoy id=5 be absent from the cached query result. A minimal statement-inspection

strategy will necessarily invalidate the cached query result, because the cached result could contain the

toy with toy id = 5 . A minimal view-inspection strategy will not invalidate it.

3.4.5 Database Integrity Constraints

So far the IPM values are based on the DBSS’s (optional) knowledge of the update statement, the query

statement, and the query result. The DBSS can further lower the values of the invalidation probabilities

Ai j , Bi j , andCi j , i.e., increase the precision of invalidation decisions, by using database integrity con-

straints. Databaseintegrity constraintsare conditions on the database that must be satisfied at all times,

61



Chapter 3 Simultaneous Scalability and Security for Data Intensive Web Applications

i.e., all instances of the database must satisfy the constraints. We expect the DBSS to know the basic

database integrity constraints4, and thus use them for providing greater scalability to the applications.

We list two such basic database integrity constraints below, and show, using theTOYSTOREapplication

(Table 3.3), how knowledge of the constraints can affect values of the IPM:

1. Primary key constraint : Consider the query templateQT
2 . If toy id is the primary key of the

toys relation, then thetoys table cannot have more than one tuple with the same value oftoy id .

As a result, no insertion into thetoys relation affects the cached query result of any instance of

the query templateQT
2 .

2. Foreign key constraint: Consider the query templateQT
3 . We already assume that attributecid

of the credit card relation is a foreign key intocustomers relation, i.e., the value of thecid

attribute for any tuple of thecredit card relation should be the same as the value of the attribute

cust id for some tuple in thecustomers relation. Further, any insertion into thecustomers

relation inserts a newcust id , which cannot join with any tuple in thecredit card relation. As

a result, no insertion into thecustomers relation affects the cached query result of any instance

of QT
3 .

For any update/query template pair, if either of the two integrity constraints applies,Ai j becomes zero.

Furthermore, as Property 3 (Section 3.2.3) implies, ifAi j = 0, then the equalityAi j = Bi j =Ci j = 0 holds.

3.5 Evaluation

Using our prototype DBSS (described in Chapter 2), we evaluated how well our scalability-conscious

security design methodology works in practice. Before presenting these results, we first describe in

Section 3.5.1 how the templates of our benchmark applications, described in Section 2.6, differ from the

assumptions outlined in Section 3.2.1. We also present in Section 3.5.1 the IPM characterization results

4For all three benchmark applications that we study (detailsin Section 3.5.1), database integrity constraints fall into the

category of insensitive data, and so revealing it to the DBSSdoes not compromise security.

62



Section 3.5 Evaluation

Number of UT/QT pairs for which

A = 1

Application A = B = B < A B = A

= C = 0 C < B C = B C < B C = B

AUCTION 267 2 25 14 0

BBOARD 488 0 25 25 2

BOOKSTORE 405 0 22 18 3

Table 3.7: IPM characterization results for the three applications. The table entries denote the number

of update/query template pairs for which particular IPM relationships hold.

of applying our static analysis to the benchmark applications. Next, in Section 3.5.2 we confirm that

blanket encryption of all data passing through the DBSS greatly hurts scalability. Finally, in Section 3.5.3

we find that our scalability-conscious security design methodology enables significantly greater security

without impacting scalability.

3.5.1 IPM Characterization Results

The update/query templates of the benchmark applications we used (Section 2.6) differ from the assump-

tions outlined in Section 3.2.1 in one significant way: between 7% and 11% of the query templates for

each application have aggregation or group-by constructs.Aggregationis one ofmin, max, count,

sum, avg, andgroup-byallows application of aggregation functions to tuples clustered by some at-

tribute. Our current model does not handle aggregation and group-by queries. For our evaluation, we

separately consider each update/query template pair, where the query has an aggregation or group-by

construct, and manually determine the behavior of each of the four classes of minimal invalidation

strategies of Section 3.2.2.

Table 3.7 summarizes the IPM characterization results for the three applications, assuming the DBSS

63



Chapter 3 Simultaneous Scalability and Security for Data Intensive Web Applications

has knowledge of the two types of database integrity constraints mentioned in Section 3.4.5. Each row of

Table 3.7 corresponds to an application. The table entries denote the number of update/query template

pairs for which particular IPM relationships hold. The firstcolumn lists the number of update/query

template (UT/QT) pairs for which the equalityA = B = C = 0 holds. For each application, the majority

of UT/QT pairs fall in this category. For the remainingUT/QT pairs, invalidation probabilityA equals

1. TheseUT/QT pairs are further divided into four categories, represented by the next four columns of

Table 3.7, depending on whetherB < A or B = A, and whetherC < B or C = B. As Table 3.7 shows,

equalitiesB= A and/orC= B hold for the majority of the template pairs. Accordingly, for these template

pairs, reducing the exposure of templates does not increaseinvalidations. Thus, the analysis presented

in Section 3.4 applies to the applications we studied.

3.5.2 Magnitude of Security-Scalability Tradeoff

We performed our experiments in the SIMPLE scenario and the methodology described in Section 2.7.

Figure 3.6 plots the scalability of an application as a function of the invalidation strategy used by the

DBSS, for all three applications. The y-axis plots scalability, measured as specified in Section 2.7. On

the x-axis, we consider an instance of each of the four classes of invalidation strategies introduced in

Section 3.2.2. (The same invalidation strategy is used for all update/query template pairs.) For the

BBOARD application, in which each HTTP request results in about tendatabase requests, with the poor

cache behavior of a blind or a template inspection strategy,not even a small number of clients can be

supported within the response time threshold specified in Section 2.7.

For each application, the leftmost strategy, a minimal viewinspection strategy (MVIS), offers the

best scalability, but the worst security (full exposure of all data). On the other extreme, the rightmost

strategy, a minimal blind strategy (MBS), offers the best security (full encryption of all data), but the

worst scalability. Figure 3.6 confirms the claim made in Section 3.1 that blanket encryption of all data

(thereby requiring a blind invalidation strategy) significantly hinders scalability.

64



Section 3.5 Evaluation

3.5.3 Security Enhancement Achieved

In this section we show that for all three applications, the static analysis step of our scalability-conscious

security design methodology enables significantly greatersecurity without impacting scalability. Recall

Figure 3.1 of Section 3.1.1, which plots scalability5 versus security, for a simple metric of security that

counts the number of query templates for which results can beencrypted. Our static analysis identifies

21 out of the 28 query templates associated with theBOOKSTOREapplication, for which encrypting the

results has no impact on scalability. While encouraging, that result does not tell the whole story. Here

we examine in greater depth the degree of security afforded by our static analysis.

As discussed in Section 3.3.1, the outcome of our static analysis (Step 2) depends on the initial de-

termination of what highly sensitive data absolutely must be encrypted (Step 1). To make this deter-

mination, we defer to the well-known California data privacylaw [24], which, when applied to our

applications, mandates securing all credit card information.

Figure 3.5 plots the exposure levels of query and update templates both before and after our static

analysis is invoked. The top three graphs correspond to the query templates of each application, and

the bottom three graphs correspond to the update templates.The y-axis of each graph plots the possible

exposure levels for a template (low exposure on the bottom; high exposure on top). The x-axis plots the

query or update templates associated with an application, in increasing order of exposure. The dashed

lines show the initial exposure levels mandated by the California data privacy law (only a little encryption

is needed to comply); the solid lines show the final exposure levels resulting from the application of our

static analysis. The area between the lines gives an idea of the reduction in exposure achieved using our

approach.

Much of the data whose exposure level can be reduced due to ourstatic analysis turns out to be moder-

ately sensitive, and therefore the reduction in exposure would likely be a welcome security enhancement.

To illustrate, we supply examples of moderately sensitive data that can be encrypted:

5Computational overhead of encryption and decryption is nottaken into account. Optimizing the encryption and decryp-

tion process is beyond the scope of this work.

65



Chapter 3 Simultaneous Scalability and Security for Data Intensive Web Applications

• AUCTION application: the historical record of user bids (i.e., userA bid B dollars on itemC at time

D).

• BBOARD application: the ratings users give one another based on thequality of their postings (i.e.,

userA gave userB a rating ofC).

• BOOKSTORE application: book purchase association rules discovered by the vendor (i.e., cus-

tomers who purchase bookA often also purchase bookB).

In all cases scalability is not affected—it remains the sameas that of MVIS in Figure 3.6.

3.6 Chapter Contributions

We developed a formal characterization of view invalidation strategies in terms of what data they access,

and used the formal characterization to cleanly formulate the security-scalability management problem.

We then presented a method for automatically identifying data that can be encrypted without reducing

scalability at all. Our method is based on static analysis ofthe data access templates of a given Web

application. It determines which query results, query statements, and update statements associated with

the application can be encrypted without impacting scalability.

Our experiments over a prototype DBSS system showed that several Web applications can encrypt the

majority of query results, as well as a substantial fractionof parameters to query and update statements,

with no scalability penalty. Furthermore, much of the data that is secured at no cost, falls into the

moderately sensitive category. This type of data would not tend to be classified as compulsory for

encryption, yet application designers may well choose to encrypt it, if armed with the knowledge that

doing so does not impact scalability.

Our static analysis method enables a new scalability-conscious security design methodology that

greatly simplifies the task of managing the security-scalability tradeoff: First, an administrator identifies

highly-sensitive data (perhaps by applying a security law)and sets it aside for compulsory encryption.

Second, our static analysis method is invoked to determine which of the remaining data can be encrypted

66



Section 3.7 Summary

without impacting scalability. As a result, the administrator only needs to weigh the security-scalability

tradeoff over the substantially reduced set of data items for which encryption may have scalability im-

plications.

3.7 Summary

In this chapter we explored ways to secure the data of Web applications that use the services of a shared

DBSS to meet their database scalability needs. At the heart ofthe problem is the tradeoff between

security and scalability that occurs in this framework. Whenupdates occur, the DBSS needs to invalidate

data from its cache. The amount of data invalidated varies depending on the information exposed to the

DBSS. The less information exposed to the DBSS, the more invalidations required, and the lower the

scalability.

We presented a convenient shortcut to manage the security-scalability tradeoff. Our solution is to

(statically) determine which data can be encrypted withoutany impact on scalability. We confirmed the

effectiveness of our static analysis method, by applying itto three realistic benchmark applications that

use a prototype DSSP system we built. In all three cases, our static analysis identified significant portions

of data that could be secured without impacting scalability. The security-scalability tradeoff did not

need to be considered for such data, significantly lightening the burden on the application administrator

managing the tradeoff.

67



Chapter 3 Simultaneous Scalability and Security for Data Intensive Web Applications

Algorithm MinExposure: Reduce exposure levels of application templates.(We assign numeric val-

ues corresponding to each exposure level as follows:blind =1, template =2, stmt =3, view =4. Let pk,l

represent the value in thekth row, l th column of IPM(UT ,QT).)

Inputs: UT , Q T , IPM(UT ,QT) for each(UT ,QT) ∈ UT ×Q T , initial exposure levels E(UT) and E(QT)

for each template inUT ∪Q T

Output: updated exposure levels E(UT) and E(QT) for each template inUT ∪Q T

01done← false

02while done= false

03 done← true

04 for eachQT ∈ Q T whereE(QT) > 1

05 l ← E(QT)

06 for eachUT ∈ UT

07 k← 1

08 while pk,l = pk,(l−1) andk < E(UT)

09 k← k+1

10 if pk,l = pk,(l−1)

11 done← false

12 E(QT) ← l −1

13 for eachUT ∈ UT whereE(UT) > 1

14 k← E(UT)

15 for eachQT ∈ Q T

16 l ← 1

17 while pk,l = p(k−1),l andl < E(QT)

18 l ← l +1

19 if pk,l = p(k−1),l

20 done← false

21 E(UT) ← k−1

68



Section 3.7 Summary

Query templates:

 1  7  25  28

Ex
po

su
re

 le
ve

l

Query Templates

template

stmt

view

initial
final

 1  8  20  36

Query Templates

initial
final

 1  8  22  28

Query Templates

initial
final

Update templates:

 1  11

Ex
po

su
re

 le
ve

l

Update Templates

template

stmt

initial
final

 1  2  15

Update Templates

initial
final

 1  3  16

Update Templates

initial
final

(a) AUCTION (b) BBOARD (c) BOOKSTORE

Figure 3.5: Starting with the California data privacy law, additional exposure reduction for query and

update templates.

MVIS
MSIS
MTIS
MBS

  0

  200

  400

  600

  800

AUCTION BBOARD BOOKSTORE

S
ca

la
bi

lit
y

 (
nu

m
be

r 
of

 c
on

cu
rr

en
t u

se
rs

 s
up

po
rt

ed
)

0 0

Figure 3.6: Tradeoff between security and scalability, as afunction of coarse-grain invalidation strategy.

69



Chapter 3 Simultaneous Scalability and Security for Data Intensive Web Applications

70



Chapter 4

Invalidation Clues for Database Scalability

Services

Recall from Section 1.4.4 that invalidation clues present a general framework for applications to re-

veal little data to the DBSS, yet prevent wholesale invalidations. For completeness, we reproduce the

description of invalidation clues from Section 1.4.4 in Section 4.1. Section 4.2 provides an overview

of invalidation clues using an example. Section 4.3 and Section 4.4 show how different types of clues

can be used to achieve different precisions in invalidations. Section 4.5 discusses how clues can be tai-

lored to balance between privacy and scalability. Section 4.6 presents our empirical findings. Section 4.7

summarizes the contributions this chapter makes. Finally,Section 4.8 presents a summary of the chapter.

In this chapter, we focus onprivacy. Note that our notion of privacy encapsulates the notion of

security. Recall from Section 1.4.2 that the goals with privacy are (1) to limit the DBSS administrator’s

ability to observe or infer an application’s sensitive data, and (2) to limit an application’s ability to use

the DBSS to observe or infer another application’s sensitivedata.

4.1 Introduction

Invalidation Clues. We presentinvalidation clues, a general framework for enabling applications to

71



Chapter 4 Invalidation Clues for Database Scalability Services

reveal little data to the DBSS, yet prevent wholesale invalidations. Invalidation clues (orcluesfor short)

are attached by the home server to query results returned to the DBSS. The DBSS stores thesequery

clueswith the encrypted query result. On an update, the home server can send anupdate clueto the

DBSS, which uses both query and update clues to decide what to invalidate. In this chapter, we show

how specially designed clues can achieve three desirable goals:

(1) Limit unnecessary invalidations:Our clues provide relevant information to the DBSS that enable it

to rule out most unnecessary invalidations.

(2) Limit revealed information:Our clues enable the application to achieve a target privacyby hiding

information from the DBSS.

(3) Limit database overhead:Our clues do not enumerate which cached entries to invalidate. Instead,

they provide a “hint” that enables the DBSS to rule out unnecessary invalidations. Thus, the home server

database is freed from the excessive overhead of having to track the exact contents of each DBSS cache

in order to enumerate invalidations.

Compared with previous approaches [6, 8, 12, 66, 70, 72, 74, 84], invalidation clues provide applica-

tions significantly improved tradeoffs between privacy andscalability. This difference is demonstrated

in Figure 4.1 (discussed in detail in Section 1.3.1), which compares prior work in database scaling tech-

nology to our scheme. Only our scheme enables the favorable tradeoffs inside the dashed box.

4.2 An Illustrative Example

This section introduces invalidation clues via an example.Consider the applicationSIMPLE-BBOARD,

specified in Table 4.1. In this application, queries follow the templateQT (requesting information on

comments, with rating above a threshold, made on a particular story) and updates follow the template

UT (changing a comment’s rating). The DBSS caches the (encrypted) results of previous queries and

uses any clues at hand to decide what to invalidate on an update.

Figure 4.1 plots six different scenarios of clues that illustrate the privacy-scalability tradeoff an appli-

cation faces with various schemes, usingSIMPLE-BBOARD as an example. It also plots prior work in

72



Section 4.2 An Illustrative Example

S
c
a

la
b

ili
ty

Privacy

(Code-analysis privacy, 

maximum scalability)

(Maximum privacy, 

read-only scalability)

clues offer

fine-grained control

F

A C

[4, 5, 6, 20, 22, 23]

[24]B D
E

Figure 4.1: Privacy-Scalability tradeoff in the presence of clues. The dashed box shows the region in

which an application can operate in our scheme. The six scenarios,A–F, are explained later in Table 4.2.

Code-analysis privacy and read-only scalability are explained in Section 4.5.1.

SIMPLE-BBOARD

QT SELECT id, body FROM comments WHERE story=? AND rating>=?

UT UPDATE comments SET rating=rating+? WHERE id=?

Table 4.1: A simplified bulletin-board example, consistingof a query templateQT and an update tem-

plateUT on a base relationcomments with attributesid , story , rating , andbody . The question marks

indicate parameters bound at execution time.

database scaling technology. Most of this work [6, 8, 12, 66,70, 72] does not address privacy concerns,

and as a result, can attain more scalability than our architecture (e.g., by not encrypting data, cached

query results may be incrementally maintained at the caches, instead of just invalidated). Our previous

work [74] (plotted asB in the figure) showed how to encrypt data that is not useful forinvalidation.

Without the general notion of clues introduced here, however, the previous work was unable to achieve

the favorable tradeoffs in the figure’s dashed box, even under a weaker attack model.

Table 4.2 summarizes the clue scenarios and what happens when an update occurs. ScenarioA depicts

a scenario in which the DBSS gets a copy of the entire database and sees the updates (id value of 123 and

rating increment of 1 in the example update) and hence can perform precise invalidation (we formalize

the notion in Section 4.3.4). Because the increase in rating by UT can never causeid =123 to drop out

73



Chapter 4 Invalidation Clues for Database Scalability Services

of a query result, the only case where the result is invalidated is whenid =123 is not in the query result

but its story matchesQ’s story and its newrating now exceedsQ’s rating parameter. ScenarioF

depicts the other extreme—a scenario with no clues; in such cases, the DBSS has no way of knowing

which (encrypted) cache result for an earlier encrypted query is invalidated by this (encrypted) update.

Hence, it must invalidate the entire cache on an update. As Figure 4.1 shows, while the former provides

maximum scalability (for invalidation based approaches) but no privacy, the latter provides maximum

privacy but minimum scalability.

ScenarioB translates the solution proposed in [74] into the terminology of this chapter. [74] did not

have a notion of clues and privacy was “all-or-nothing”—thedifferent attributes in parameters or the

query results could not be encrypted independently. In thisscenario, the DBSS does not know thestory

andrating of id =123, so if theid is not in the unencrypted query result, then the DBSS does not know

whether theid should now be added and hence it must invalidate.

Because our clues can be arbitrarily fine-grained, our schemeenables better choices than previous

schemes. ScenarioD, for example, has the same invalidations as scenarioB, but additionally encrypts

the body of comments—only theid field is revealed, in order to enable checking for a particular id .

ScenarioC uses better clues than scenarioA—they reveal less information (e.g., thestory , rating , re-

sult id s but not the resultbody s), yet enable precise invalidation as in ScenarioA. Including thestory

andrating of id =123 in the update clue is an example of a “database-derived”clue (discussed in Sec-

tion 4.4), because these attributes are not in the update andhence need to be looked-up in the database.

Finally, scenarioE uses Bloom-filters1 to hide even theid s, at a cost of a small probability of an unnec-

essary invalidation. This example illustrates how clues offer fine-grained control to an application—the

size of the Bloom-filter in this case—to choose a desired balance of privacy and scalability, as depicted

by the range of choices in the curved line for scenarioE.

1A Bloom-filter [19] encodes a set as a short bit vector. Each value v in the set is represented by setting theh1(v)’th,

h2(v)’th andh3(v)’th bit in the bit vector, for three hash functionsh1, h2, andh3. A query result is invalidated if the three

bits set in the update clue Bloom-filter are all set in the query clue Bloom-filter. A longer Bloom-filter reduces the numberof

unnecessary invalidations but reveals more about the data.

74



Section 4.3 Using Clues for Invalidations

Query Clue for Q Update Clue Query Q Result invalidated

A entire database; 123, 1 if id =123 should be added

Q’s story & rating given itsstory & rating

B entire query result (unencrypted) 123, 1 if id =123 is absent from query result

C Q’s story & rating , 123, and its as in scenario A

id values in result story & rating

D id values (only) in query result 123 as in scenario B

E Q’s story & rating , Bloom-filter of Bloom-filter of{123}, scenario A, with some false positives

id values in result and 123’sstory & rating due to Bloom-filter

F none none if any update occurs

Table 4.2: Six clue scenariosA–F and their effect on what the DBSS invalidates when an updateUT

with id =123 andrating=rating+1 occurs.

4.3 Using Clues for Invalidations

In this section we describe how clues can be used for invalidations. We begin in Section 4.3.1 by

describing the architecture that is the context for our work. Section 4.3.2 provides the details of our

basic query and update model, and introduces the terminology and notation we use in the rest of the

chapter. Section 4.3.3 describes the attack model of the DBSS. Then, in Section 4.3.4, we formalize the

notion of precise invalidations. Finally, in Section 4.3.5we present various types of clues and provide

examples of when each type is useful.

4.3.1 Architecture

The overall system architecture is as described in Chapter 2.The invalidation flow is described in

Section 2.5. Depending on how the query clues and update clues are computed, this general formulation

can emulate any invalidation strategy in the DBSS setting. Inparticular, the application, via clues, can

send relevant data (about the rest of the database) to the DBSS, which may enable the DBSS to achieve

75



Chapter 4 Invalidation Clues for Database Scalability Services

more precise invalidation.

4.3.2 Query and Update Model

Our query and update model is based on our study of three benchmark Web applications (details in

Section 4.6.1). In our model there are a fixed set of query templates and a fixed set of update templates. A

query is composed of a query template to which parameters areattached at execution time. Likewise, an

update is composed of an update template to which parametersare attached at execution time. (Examples

are in Tables 4.1, 4.4, 4.7, and 4.8.) A sequence of queries and updates issued at runtime constitutes a

workload.

The query language is restricted to select-project-join (SPJ) queries having only conjunctive selection

predicates, augmented with optional order-by and top-k constructs. SPJ queries are relational expres-

sions constructed from any combination of project, select and join operations (except Cartesian product).

As in previous related work [18, 74, 90], the selection operations in the SPJ queries can only be arith-

metic predicates having one of the five comparison operators{<,≤,>,≥,=}. Theorder-byconstruct

affects tuple ordering in the result; and thetop-k construct is equivalent to returning the firstk tuples

from the result of the query executed without the top-k construct. We assume multi-set semantics; the

projection operation does not eliminate duplicates.

The update language permits three kinds of updates: insertions, deletions and modifications. Each

insertionstatement fully specifies a row of values to be added to some relation. Eachdeletionstatement

specifies an arithmetic predicate over attributes of a relation. Rows satisfying the predicate are deleted.

Eachmodificationstatement modifies non-key attributes of a row selected according to an equality pred-

icate on the relation’s primary key.

4.3.3 The Attack Model of the DBSS

In this chapter we use the following default “no-clue” scenario. The DBSS knows the application’s

database schema, including the primary keys and foreign keys, and the application’s query and update

76



Section 4.3 Using Clues for Invalidations

templates. On a query or update, the DBSS is informed as to which template has been used, but not the

instantiated parameters. We will consider various scenarios where clues are added on top of this default

scenario.

When considering privacy, we assume that a DBSS can pose as a user “on top of” being honest-but-

curious. An honest-but-curious DBSS invalidates correctlyas per the query and update clues, but tries

to infer the contents of the encrypted query results, encrypted queries, and encrypted updates, i.e., the

DBSS is limited to ciphertext-only attacks [96]. Additionally, posing as a user enables the DBSS to issue

queries and updates, observe which clues are generated, andcorrelate values in unencrypted queries and

updates to clues, i.e., the DBSS can perform chosen-plaintext attacks [96].

4.3.4 Database-Inspection Strategy

We formalize the notion ofprecise invalidationas the invalidation behavior of an idealized strategy

that can inspect any portion of the database to determine which cached query results to invalidate for a

given update. A cached query result for a queryQ must be invalidated if and only if the update alters

the answer toQ. We call such a strategy aDatabase-Inspection Strategy (DIS). A DIS invalidates the

minimal number of query results—any other (correct) invalidation strategy invalidates at least the query

results invalidated by a DIS. Thus a DIS is a useful lower bound against which we can compare how

successful particular clues are in helping the DBSS make invalidation decisions.

4.3.5 Types of Clues

Recall that we distinguish betweenquery clues(attached to encrypted query results) andupdate clues

(attached to encrypted updates). We further classify queryand update clues based on what data are used

to compute them. A query clue might be aparameterquery clue, aresultquery clue, or adatabasequery

clue, based on whether it is computed from the query parameters, the query result, or the database itself.

Similarly, an update clue might be aparameterupdate clue or adatabaseupdate clue based on whether

it is computed from the update parameters or the database itself. Note that the contents of different types

77



Chapter 4 Invalidation Clues for Database Scalability Services

Computed from

Attached to Parameters Result Database

query result parameter query clueresult query cluedatabase query clue

update parameter update clue database update clue

Table 4.3: A taxonomy of clues (The various clue types are in normal font). Clues differ based on

whether they are attached to query results or updates, and whether they are computed from parameters,

result, or database.

of clues may overlap. Table 4.3 summarizes the taxonomy of clues.

Consider theSIMPLE-AUCTION application shown in Table 4.4. For each of its query/updatetemplate

pairs, Table 4.5 lists the different kind of clues required to implement a DIS. In the first row, it suffices

to have result query clues and parameter update clues, in order to implement a DIS. In other words, the

set of item id values in the query result together with theitem id from the update statement suffice.

Invalidation is ruled out in the second and third rows simplyby examining the templates. It is also ruled

out in the last row because of the foreign key relationship. In the fourth row, only theregion attributes

need to be matched for a DIS—so the query and updates clues arejust a function of their instantiated

parameters. For the fifth row, invalidation of cached results of any instance of the query templateQT
3

in response to an update templateUT
1 cannot be ruled out just by inspecting the query result, query

parameters, or update parameters. For example, increasingthe end date may mean that the item in

UT
1 now satisfies the cachedQT

3 query—but only if the item has the appropriatecategory and region

(information available only in the database). So parameterand result clues are insufficient to prevent

wholesale invalidation. Database clues are needed.

4.4 Database Clues

The previous section motivated the use of database clues using theSIMPLE-AUCTION example. We begin

this section by identifying in Section 4.4.1 families of common query/update classes where database

78



Section 4.4 Database Clues

SIMPLE-AUCTION

QT
1 SELECT item id, category, end date

FROM items WHERE seller=?

QT
2 SELECT user id FROM users WHERE region=?

QT
3 SELECT item id FROM items, users

WHERE items.seller=users.user id

AND items.category=?

AND items.end date>=?

AND users.region=?

UT
1 UPDATE items SET end date=end date+? DAYS

WHERE item id=?

UT
2 INSERT INTO users (user id, region)

VALUES (?, ?)

Table 4.4: A simple auction example, consisting of three query templates, two update templates, and

two base relations: (1)items with attributesitem id , seller , category , andend date , and (2)users

with attributesuser id andregion . Attribute items.seller is a foreign key into theusers relation. The

question marks indicate parameters bound at execution time.

clues are required for precise invalidation. Section 4.4.2discusses the problems with achieving precise

invalidations usingdatabase queryclues, and then presents our solution usingdatabase updateclues.

Finally, while database clues enable precise invalidation, for some workloads the overhead of computing

them can be higher than their savings. Section 4.4.3 presents practical techniques that further reduce

overheads and/or increase privacy by relaxing the precise invalidation requirement.

79



Chapter 4 Invalidation Clues for Database Scalability Services

Pair 〈Query clue, Update clue〉

〈QT
1 ,UT

1 〉 〈 result, parameter〉

〈QT
1 ,UT

2 〉 〈 , 〉 (never invalidates: different relations)

〈QT
2 ,UT

1 〉 〈 , 〉 (never invalidates: different relations)

〈QT
2 ,UT

2 〉 〈 parameter, parameter〉

〈QT
3 ,UT

1 〉 〈 database, parameter〉 or

〈 parameter, database〉

〈QT
3 ,UT

2 〉 〈 , 〉 (never invalidates: foreign key constraint)

Table 4.5: Types of clues required to implement a DIS for template-pairs of theSIMPLE-AUCTION

example in Table 4.4.

4.4.1 Templates Requiring Database Clues

We begin by introducing some terminology for classifying query and update templates in a way that

is useful for our analysis. Then, we enumerate the query/update classes for which database clues are

required for precise invalidation.

Query and Update Classification

Define theselection attributesof an update templateUT (denotedS(UT)) to be the attributes used in any

selection predicate (i.e., a selection or a join condition in thewhere clause) ofUT . (If UT is an insertion,

S(UT) = {}.) Further define themodified attributes(M(UT)) of UT , theselection attributes(S(QT)) of

a query templateQT , and thepreserved attributes(P(QT)) of QT as in Table 4.6. IfUT is an insertion

or a deletion from a relation,M(UT) is defined to be the set of all attributes in the relation. For the

SIMPLE-BBOARD application (Table 4.1),S(UT) = {comments.id}, M(UT) = {comments.rating},

S(QT) = {comments.story,comments.rating}, andP(QT) = {comments.id,comments.body}.

80



Section 4.4 Database Clues

Symbol Meaning

S(UT) Attributes used in the selection/join predicates

of UT (i.e., in thewhere clause)

M(UT) Attributes modified byUT

S(QT) Attributes used in the selection/join predicates

or order-by constructs ofQT

P(QT) Attributes preserved in the result ofQT

(i.e., in theselect clause)

Table 4.6: Notation for aspects of templates.

Enumeration of Classes

We identify important classes of update/query template pairs, for which database clues are necessary for

achieving the invalidation behavior of a DIS. For all the other classes in the query and update model we

consider, described in Section 4.3.2, database clues are not necessary. (We omit proofs for brevity.)

For ease of understanding, we divide the classes into three main categories. A common condition

across all three categories is that the update not be “ignorable” with respect to the query. We say an

update template isignorablewith respect to a query template if and only if none of the attributes mod-

ified by the update template belong to either the selection orpreserved attributes of the query template.

Formally, an update is ignorable if and only ifM(UT)∩ (S(QT)∪P(QT)) is empty. For simplicity in the

discussion below, we assume that there are no foreign key constraints. The discussion can easily be ex-

tended to handle foreign keys. Next, we enumerate the three categories. For each category, if applicable,

we provide separate examples for insertion, deletion, and modification templates.

Category I. The rules for the first category are: (a) the update might add at least one row to the

query result, and (b) there is at least one attribute belonging to the query’s selection attributes whose

final value is not specified in the update. The intuition behind this rule is that as long as there is at least

81



Chapter 4 Invalidation Clues for Database Scalability Services

one attribute whose value needs to be examined in the database in order to determine whether or not the

update affects the query result, a database clue is required. For example, in Table 4.4, consider the query

QT
3 with either modification templateUT

1 , or the following insertion and modification templates:

INSERT INTO items (item id, seller, category, end date) VALUES (?, ?, ?, ?)

UPDATE items SET end date=? WHERE item id=?

Category II. The rules for the second category are: (a) the query involvesa top-k predicate, and

(b) the query fails to preserve at least one of its order-by attributes that is modified by the update.

The intuition behind this rule is that because of the top-k predicate, even when an update affects some

tuple in the database that is absent from the query result, itmight affect the query result. For exam-

ple, consider the query templateSELECT item id FROM items WHERE category=? ORDER BY end date

FETCH 11th to 21st rows 2 paired with any of the following templates:

INSERT INTO items (item id, seller, category, end date) VALUES (?, ?, ?, ?)

DELETE FROM items WHERE itemid=?

UPDATE items SET category=? WHERE item id=?

Category III. The rule for the third category is: there is at least one attribute in the selection predicate

of the update template that is not preserved by the query template. The intuition behind this rule is

that the query result does not contain sufficient information to determine whether the update affects

the query result or not. For example, consider the query templateSELECT end date FROM items WHERE

category=? paired with either of the following:

DELETE FROM items WHERE itemid=?

UPDATE items SET end date=? WHERE item id=?

2Such a query arises, e.g., when the application wants to fetch and display the second page of query results.

82



Section 4.4 Database Clues

4.4.2 Implementing Database Clues

We now discuss how to implement database clues, so as to achieve as precise invalidations as a DIS,

while minimizing both the overheads and the amount revealedabout the data.

Problems with Using Database Query Clues.One way to achieve a DIS is to use database query

clues. The goal for a database query clue is to provide all thedata from the database that could po-

tentially help in deciding if a future update would affect the given query result. Self-maintaining view

techniques [90] could be used to identify the minimal such data. For example, for query templateQT
3

in Table 4.4, the techniques in [90] would suggest the DBSS caches two database fragments: (a) the

seller , category , andend date of each item in theitems table, and (b) theregion of each user in the

users table.

For Web applications, because the set of update templates isknown in advance, the amount of data

stored can sometimes be reduced. In the previous example, because of the limited update templates,

it suffices to cache allitem id s that satisfy all but theend date predicate of the instantiatedQT
3 query;

these are the only rows that can possibly become part of the query result as a result ofUT
1 updating the

end date for some item.

In general, given many cached queries and a richer collection of update templates than in theSIMPLE-

AUCTION example, the amount of auxiliary data stored to maintain theviews can be quite large. As a

result, this approach suffers from two significant problems. First, the cached portions of the database

must themselves be maintained, resulting in additional overhead and additional clues to enable the main-

tenance. For example, maintaining theregion information would mean that instances of updateUT
2 ,

which could previously be ignored forQT
3 (because attributeitems.seller is a foreign key into the

users relation), can no longer be ignored. Second, because the approach potentially reveals large por-

tions of the database, it does not offer any reasonable privacy.

Our Solution. Instead, our approach is to achieve a DIS by generating the relevant database infor-

mation at runtime as database update clues. Because all updates are centrally handled by our system,

such clues are computed at the home organization. Database update clues make sense in our setting

83



Chapter 4 Invalidation Clues for Database Scalability Services

where the query templates are known. For example, for the update templateUT
1 in Table 4.4, knowing

the query templates enables the clue to be computed from justfour values: thecategory of the specific

item being updated, the old and newend date s of the item, and theregion of the specific seller of the

item. Together with parameter query clues stored with an instantiated queryQ, these enable a DBSS to

achieve a DIS, by checking whether these four values now satisfy Q as a result of the update.

With database update clues, there is no overhead of keeping them consistent because the clue is gen-

erated on-the-fly with every update. However, generating them each time places extra load on the home

server’s organization. Hence, it is not obvious whether theincrease in scalability from precise invalida-

tion outweighs the decrease in scalability from generatingthe clues. Fortunately, for the templates in the

three realistic benchmarks we study, the work to generate a database update clue is rather minimal. In

particular, out of the over 1000〈 query template, update template〉 pairs, only 21 require database clues

(details are in Section 4.6.1). Of these 21, almost all of them require fetching a single row from a table

and perhaps a single associated row from a joining table, as in the〈QT
3 ,UT

1 〉 example above. Moreover,

for these same reasons, database update clues achieve better privacy.

We use the following procedure for determining clues. Most of the work is precomputed offline given

the set of templates for an application. For our three applications, we performed this precomputation by

hand; however, it would not be difficult to automate much of this process. For example, precomputing

which update templates are ignorable by which query templates can be automated by extractingS(UT
i )

andM(UT
i ) for each update templateUT

i andS(QT
j ) andP(QT

j ) for each query templateQT
j , and then

testing whetherM(UT)∩ (S(QT)∪P(QT)) is empty. Similarly, there are simple, easily automated, rules

for determining pairs made ignorable by foreign key constraints. The precomputed results are stored

in a table for fast reference during execution. For those pairs using database update clues, a script is

generated and stored in the table for computing the clue. Figure 4.2 shows how a database update clue

is computed for single table SPJ queries. (Note that ifUT is a modification template, the algorithm in

Figure 4.2 must be called twice, oncebeforeand onceafter applying the update. IfUT is a deletion

template, the algorithm must only be calledbeforeapplying the update.) This algorithm can readily

be extended to handle top-k and join queries. After the extension, there are only a few pairs in our

benchmarks, which fall outside the query and update model weconsider, that we currently only know

84



Section 4.4 Database Clues

Algorithm: For update template UT and SPJ query templateQT , find the database-update clue.

Inputs: update template UT , query template QT

Output: database-update clue C as an associative array

1 If UT is an insertion,return

2 X ← M(UT)∩ (P(QT)∪S(QT))

3 If X = {}, return /* ignorable update */

4 if UT is a deletion

5 X ← S(QT)

6 for eachattr a ∈ X,

7 C{a}← “value of a in the row being updated”

8 return C

Figure 4.2: Pseudo code for computing a database update cluewhen query templates are restricted to a

single table.

85



Chapter 4 Invalidation Clues for Database Scalability Services

how to do by hand.

4.4.3 Beyond Precise Invalidations

Thus far, we have focused on the goal of matching DIS’s optimal number of invalidations. However,

because of the minimal invalidations requirement, we have sacrificed opportunities to further minimize

overheads and maximize privacy. In this section, we presentseveral simple techniques that further reduce

overheads and/or increase privacy by relaxing the precise invalidation requirement.

Opportunistic Database Clues. Although the overheads of computing database clues are minimal,

depending on the workload, their overheads can still be higher than their savings in some cases. In the

three benchmarks we study, there are cases where most of the invalidation savings arise from a small

subset of the database update clues. While generating these clues is worthwhile, generating the other

clues (where the savings is small) costs more than the savings. To address such concerns, we use a

simple OPPORTUNISTICstrategy that monitors the workload for invalidation savings and then gener-

ates database update clues only when the savings exceeds an estimated threshold of the (appropriately

normalized) cost to generate the clue. Although more wholesale invalidations are needed whenever

we do not generate a database update clue, the overall effectis an increase in scalability, as shown in

Section 4.6.

Increasing Privacy through Hashing and Bloom-filters. As argued above, for most updates the

amount of revealed data is small (e.g., four values in the update clue for the〈QT
3 ,UT

1 〉 example). How-

ever, even revealing four values per update may be more than desired if there are thousands to millions

of updates. Fortunately, in many cases, the revealed valuesare used solely for equality tests with query

parameters, e.g., thecategory andregion values in the〈QT
3 ,UT

1 〉 clue. In such cases, the actual values

can be obscured by using a one-way hash function. The equality test is assumed to succeed if the hashed

values match. Such an approach will always invalidate when required for correctness, but it introduces

a very small probability of an unnecessary invalidation dueto a hash collision. Thus, for all practical

purposes, it is as good as a DIS strategy, but with better privacy.

86



Section 4.5 Privacy-Scalability Tradeoffs

In other common cases, the revealed values are used for ordercomparisons with query parameters,

e.g., theend date value in the〈QT
3 ,UT

1 〉 clue. In such cases, the actual values can be hidden to varying

degrees as a tradeoff against invalidation precision, as will be discussed in Section 4.5.

Finally, another common case involves testing whether a particular value in an update clue is in a

set of values in a result query clue. For example, consider the SIMPLE-BBOARD example in Table 4.1

and the corresponding result query clue and parameter update clue in ScenarioC of Table 4.2. These

clues enable exact matching ofid s but reveal all theid values in the query result. Instead, as shown

in ScenarioE of Table 4.2, we can obscure theseid values by using Bloom-filters [19], as discussed

in Section 4.2. Although Bloom-filters introduce a small probability of unnecessary invalidations (the

probability is tunable by the number of hash functions used in the filter and the size of the bit vector),

for all practical purposes, it is as good as exact matching, but with better privacy.

4.5 Privacy-Scalability Tradeoffs

In this section we study privacy-scalability tradeoffs in the DBSS setting, considering the attack model

of Section 4.3.3. We begin in Section 4.5.1 by showing that there is a fundamental tradeoff between

privacy and scalability in our DBSS setting. Section 4.5.2 then presents an overview of how applications

could get extra privacy by having the DBSS carry out unnecessary invalidations. Next, in Sections 4.5.3

and 4.5.4, we study representative query and update template pairs from our benchmark applications,

and present configurable clues for these pairs. Finally in Section 4.5.5, we discuss how our current work

applies to entire applications, beyond a single query and update template pair.

4.5.1 The Limit Cases

Recall the dashed box in Figure 4.1 from Section 4.1, which illustrates the privacy-scalability tradeoff

that an application faces in our DBSS setting, where (a) the DBSS has an attack model as described

in Section 4.3.3 and (b) the home server does not track the state of the DBSS’s cache. We denote

ascode-analysis privacythe level of privacy that an application can attain by encrypting the data not

87



Chapter 4 Invalidation Clues for Database Scalability Services

useful for invalidation (determined statically by analyzing the application code as in [74]). On the other

hand, minimal scalability is achieved when the DBSS invalidates all its cache entries on any update, i.e.,

queries can only be answered from the cache as long as the workload remains read-only. We call this

level of minimal scalabilityread-only scalability.

As we show next, if an application achieves the maximum scalability, it gets code-analysis privacy

(the upper left corner of the dashed box in Figure 4.1), and ifit achieves the maximum privacy, it gets

read-only scalability (the lower right corner of the dashedbox in Figure 4.1). Thus, applications cannot

hope for both good scalability and good privacy.

Maximum privacy implies read-only scalability. An application achieves the maximum privacy if

the DBSS it is using cannot distinguish between any two encrypted query results in its cache. Because

the DBSS can pose as a user and issue updates, on any update, either all or none of an application’s

query results should be invalidated. Otherwise, the DBSS candistinguish between query results that

were invalidated and those that were not invalidated. Furthermore, for any non-trivial workload, it is

likely that an update invalidates some query result. Becausethe home server does not track what the

DBSS’s cache contains, for privacy and correctness, it requires the DBSS to invalidate all query results

on every update. Thus the application achieves read-only scalability.

Maximum scalability implies code-analysis privacy. An application achieves maximum scalability

when the invalidation behavior of the DBSS resembles a Database Inspection Strategy (Section 4.3.4).

We focus on two representative cases: (a) the invalidation decision involves an equality comparison, and

(b) the invalidation decision involves an order comparison. In case (a), the DBSS can repeatedly issue

updates till the query result is invalidated. Since the invalidation is precise and the DBSS is issuing

the updates, the DBSS learns the value of the data in the query result used for invalidation. In case

(b), the DBSS first computes an ordering between encrypted query results. It can do so easily, based

on the frequency with which a query result is invalidated. (Note that cache evictions do not affect the

maintenance of the frequency count, because (i) the DBSS can always store the query result just for the

purposes of maintaining this frequency count, and (ii) the home server does not track the contents of a

DBSS’s cache.) It can then pose as a user and do a binary search on the ordered query results to find the

88



Section 4.5 Privacy-Scalability Tradeoffs

QT SELECT i stock FROM item WHERE i id=?

UT UPDATE item SET i stock=? WHERE i id=?

Table 4.7: A query-update template pair from theBOOKSTOREbenchmark.

value corresponding to an encrypted query result. Thus in both cases, equality and order comparisons,

maximum scalability results in the code-analysis privacy.

4.5.2 Trading Off Scalability for Privacy

In order to increase privacy, applications have to sacrificescalability—by allowing needless invalida-

tions. Through representative query and update template pairs from our applications, we next show how

clues provide applications with a convenient knob to balance their privacy and scalability needs. We

consider two cases, depending on whether invalidations involve equality comparisons (Section 4.5.3) or

order comparisons (Section 4.5.4).

4.5.3 Equality Comparisons

Consider an actual template pair, shown in Table 4.7, from theBOOKSTORE benchmark (details in

Section 4.6.1) where the invalidation decision involves anequality comparison. For precise invalidation,

the DBSS needs the attribute valuei id in the query and the update. However, in creating a clue,

applications want to limit the information that is revealedand may not want to reveal the exacti id

value.

One natural way to do so is to map parameter values3 to some space of place-holders and then only

reveal place-holders as clues to a DBSS. Let{a1, . . . ,an} be the parameter values and{e1, . . . ,em} be

the place-holders. Letf be the function that determines the mapping. The mapping canbe represented

3In general, the discussion here applies to all attribute values used in invalidation equality comparisons, not just parameter

values.

89



Chapter 4 Invalidation Clues for Database Scalability Services

a2

an

e1

em

parameter
values

function f
place−holders

a1

Figure 4.3: An example mapping of parameter values to place-holders.

by a bipartite graph as in Figure 4.3. Computing the query or the update clue then just involves finding

the place-holder corresponding to the parameter value. TheDBSS invalidates a cached query result if

the values of the place-holders in the query and update clue match. An example is the hash function

discussed in Section 4.4.3.

In this setting, all that the DBSS can see is the place-holders. Using its capabilities, it can at most infer

the mappingf used to generate the place-holders. A metric of privacy in this setting then is the number

of place-holdersm that the application chooses. The lower this number is, the better the privacy is. In

the extreme, if there is just one place-holder, the DBSS can not learn anything about the parameters. On

the other extreme, a higherm means the DBSS can more precisely infer the parameter values that get

mapped to an encrypted value.

Because the query results ofall constituent parameter values that are mapped to a single place-holder

get invalidated whenever an update withanyof the constituent values is issued, the value ofm has an

opposite effect on the scalability. A highermusually means that there are less unnecessary invalidations,

and the scalability is higher. Thus an application can tune the value ofm to balance its privacy and

scalability requirements.

Next, we show that an application can use knowledge of the frequency distribution of parameters

to further choose clues that maximize its scalability for a given privacy value. Before proceeding, we

introduce some notation.

Let p j denote the probability with which an update with parametera j is issued. Formally,∑ j p j =

1. For each of the place-holder valuesei, let domain-sizeni and cumulative probabilityPi denote the

90



Section 4.5 Privacy-Scalability Tradeoffs

p jn−1
p jn>= >=

1

>=

m−1

p j1

Figure 4.4: The solution implied by Lemma 2.j i ∈ {1, . . . ,n} is such that the parameter valuea j i is the

ith most frequently occurring.

number of parameter values mapped to a place-holderei and the sum of their probabilities, respectively.

Formally, fori ∈{1, . . . ,m}, ni = |{a j | f (a j) = ei}|, andPi = ∑ f (a j )=ei
p j . Also∑m

i=1ni = n, and∑m
i=1Pi =

1.

If the application knows thep j values, for a given fixed privacy valuem, we show how it can choose a

mapping that minimizes the total number of invalidations (the term∑m
i=1niPi represents the total number

of invalidations). Formally, the constrained optimization problem is to find theEQUALITY-OPTIMAL

mapping that minimizes∑m
i=1niPi given the constraints∑m

i=1ni = n and∑m
i=1Pi = 1. Lemma 2 provides

the key insight required to find theEQUALITY-OPTIMAL mapping.

Lemma 2. For a given privacy value, the minimum number of invalidations is achieved when: for any

two place-holders ei and ej with domain-size ni less than domain-size nj , the probability with which an

update using a value mapped to ei is issued is higher than the probability with which an update using a

value mapped to ej is issued.

Proof. Suppose the number of invalidations is minimum, and yet there are two place-holdersei andej

with ni < n j such that for valuex mapped toei ( f (x) = ei) and valuey mapped toej ( f (y) = ej ), px ≤ py.

In the expression for the number of invalidations, the contribution of terms in whichpx andpy appear

is ni px +n j py. By swappingx andy, this contribution is reduced, thereby reducing the total number of

invalidations. Hence, the original mapping was not minimum, a contradiction.

Lemma 2 implies that the final solution has a form as shown in Figure 4.4, where the parameter values

are arranged in a sorted order of the probabilities with which they are issued, and only parameter values

with consecutive ranks can map to the same place-holder. Another implication of Lemma 2 is that the

91



Chapter 4 Invalidation Clues for Database Scalability Services

QT SELECT * FROM items WHERE enddate>=?

UT INSERT INTO items VALUES (?, . . ., ?)

Table 4.8: A simplified query-update template pair from theAUCTION benchmark.

problem of finding anEQUALITY-OPTIMAL mapping has theoptimal sub-structureproperty, i.e., parts

of the mapping are themselves optimal solutions to parts of the problem. Dynamic Programming, which

uses memoization to get rid of repeated computations, can beused to solve this problem inO(nm) space

andO(n2m) time.

In Section 4.6.3 we show that in the common case, anEQUALITY-OPTIMAL mapping reduces the

number of invalidations by around 20%, when compared to a simplistic mapping which maps an equal

number of parameter values to each place-holder. Thus if applications know the probability distribution

with which parameters are chosen when issuing updates, theycan choose clues that maximize their

scalability for a target privacy.

4.5.4 Order Comparisons

Consider the template pair shown in Table 4.8. This pair is from theAUCTION benchmark (details in

Section 4.6.1), and the invalidation decision involves an order comparison on the end date of an item

being auctioned. For precise invalidations, the DBSS needs the attribute valueend date in the query

and the update. However, the application may not want to reveal the exactend date value.

As with equality comparisons, we can apply an approach basedon mapping parameter values to some

space of place-holders and then revealing only place-holders in the clues. Assume parameter values

{a1, . . . ,an} with a1 < a2 < .. . < an and place-holders{e1, . . . ,em} with e1 < e2 < .. . < em. Let f be the

function that determines the mapping. The application can use an Order-Preserving-Encryption-Scheme

(OPES) [3] to map the parameter values to place-holders suchthat the order is preserved. Use of an

OPES ensures that ifai < a j then f (ai) < f (a j). An honest-but-curious DBSS can learn a total ordering

on the place-holders either immediately (if it can observe the execution of the invalidation code), or over

92



Section 4.5 Privacy-Scalability Tradeoffs

time (if it can only observe which results are invalidated).However, privacy is still preserved since the

DBSS cannot associate place-holders to actual parameter values (as in [3]). In contrast to an honest-

but-curious DBSS, use of an OPES provides little privacy withour attack model. The DBSS by posing

as a user can initiate queries with known parameter values, observe the clues generated, and correlate

place-holders to the parameter values. Moreover, since it can learn a total ordering on the place-holders

(as mentioned above), it can use binary search to quickly findthe parameter value(s) corresponding to a

place-holder.

For place-holdersei and ej with ei < ej in query clues, letak be the maximum value that gets

mapped toei andal be the minimum value that gets mapped toej . Formally, ak = maxf (ak)=ei
and

al = minf (al )=ej
. The DBSS can use binary search because in all of the above formulations,ei < ej

impliesak < al , i.e., the order is preserved when mapping parameter valuesof query. Thus any place-

holder corresponds to a disjoint range of parameter values,whose end-points can be determined by

binary search.

To defeat binary search, our key observation is that for correct invalidations, the order has to be

preserved onlybetweenparameters of queries and parameters of updates, and notacrossthe parameters

of queries and updates. Formally, for two query (or update) parameter valuesai anda j with ai < a j and

mappingf , f (ai) < f (a j) need not be true. This flexibility enables us to usetwo mapping functionsfq

(to map query parameters) andfu (to map update parameters) so that ifai is a query parameter anda j is

an update parameter withai < a j , then fq(ai) < fu(a j).

One family of such mappings is where a non-negative number issubtracted from each query param-

eter and a non-negative number is added to each update parameter. Formally, fq(ai) = ai − rq(ai) and

fu(a j) = a j + ru(a j), whererq(ai) andru(a j) are always non-negative, but can even be randomly gen-

erated. With such a mapping, the DBSS can no longer use binary search to quickly find the parameters

corresponding to a place-holder because even ifai < a j , neitherfq(ai) < fq(a j) nor fu(ai) < fu(a j) may

be true.

A Mapping with a Provable Guarantee. Next, we show how an application can use the two map-

pings for greater privacy. Assumefu is the identity function, i.e.,ru(a j) is always zero. The choice of

93



Chapter 4 Invalidation Clues for Database Scalability Services

rq allows the application to control its privacy-scalabilitytradeoff. For parameter valuesa1 < .. . < an,

an application not wanting to let the DBSS learn the order information can measure privacy leak as

the number of pairs for which the DBSS can figure out the correctordering. Privacyp can then be

measured simply by normalizing the privacy leak and subtracting it from 1. Formally, privacy(p) = 1-

2
n(n+1) ∑i< j P( fq(ai) < fq(a j)), whereP(ai < a j) = 1 if fq(ai) < fq(a j), 1/2 if fq(ai) = fq(a j), and 0

otherwise.

Under such a definition and assuming that all parameter values are equi-probable, we show how for

a fixed number of invalidations, an application can chooseru values that maximize its privacy. We call

such a mapping theORDER-OPTIMAL mapping.

Lemma 3. In an ORDER-OPTIMAL mapping, for any two parameter values ai and aj with ai < a j , if

rq(ai) and rq(a j) are non-zero, then fq(ai) > fq(a j).

Proof. By contradiction. Assume in anORDER-OPTIMAL mapping, there exist two valuesai anda j

with ai < a j , for which rq(ai) > 0 andrq(a j) > 0. If rq(a j) is increased by 1 andrq(ai) is decreased by

1, the total number of invalidations remain the same, but theprivacy increases. Hence contradiction.

An implication of Lemma 3 is that for any given number of invalidationsi, to find ORDER-OPTIMAL,

the following two steps should be carried out: (1) Find valuesa−n < a−n+1 < .. .a−1 so thata−1 = a1. (2)

Starting with the maximumai , map eachai to a−i till the invalidation limit is reached. If the invalidation

limit is reached in anai getting toa−i , allow theai to reach whatever value is reachable.

Section 4.6.3 shows that for a given scalability value, thismapping enables twice the privacy of an

OPES.

4.5.5 Discussion

For our query and update model,any invalidation decision in an application fundamentally involves

either an equality comparison (or its generalization to a set membership test) or an order comparison.

Thus, our above results can be applied to the entire application. Note, however, that care must be taken

94



Section 4.6 Evaluation

in treating queries or updates with conjunctions between arithmetic predicates that share attributes (e.g.,

WHERE enddate > ? AND end date < ? + 30 DAYS ).

4.6 Evaluation

We evaluated our proposed clues by implementing them in our prototype DBSS and then measuring

the scalability advantages of using various types of invalidation clues. In this section, we describe

characteristics of our benchmark applications in Section 4.6.1 and our scalability results in Section 4.6.2.

Finally, in Section 4.6.3 we measure the effectiveness of our techniques in helping an application manage

its privacy-scalability tradeoff.

4.6.1 Characteristics of the Benchmark Applications

We used the benchmark applications described in Section 2.6. There were a few queries in these bench-

mark applications (12 out of 94 templates) that did not conform to our query model (Section 4.3.2), e.g.,

aggregate queries. For these queries, we use parameter and result clues but not database clues.

Table 4.9 provides, for each of the three applications, the number of template pairs which require

database clues for precise invalidations, and classifies them according to the categories introduced in

Section 4.4.1. As the table shows, only 21 (out of the over 1000) pairs require database clues, and all but

2 of these fall into Category I.

4.6.2 Scalability Benefits of Invalidation Clues

We performed our experiments in the SIMPLE scenario and the methodology described in Section 2.7.

Figure 4.5 plots the scalability of an application as a function of the invalidation strategy used by the

DBSS, for all three applications. The y-axis plots scalability, measured as specified in Section 2.7. On

the x-axis, we consider five cases: one corresponding to not using a DBSS, one corresponding to not

95



Chapter 4 Invalidation Clues for Database Scalability Services

Number of〈UT ,QT〉 pairs in category

Application Category I Category II Category III

AUCTION 9 1 0

BBOARD 7 0 0

BOOKSTORE 3 1 0

Table 4.9: Number of template pairs in the three applications which require database clues for precise

invalidations, classified as per the categories introducedin Section 4.4.1.

using clues4, and the other three corresponding to DBSS strategies based on different classes of clues:

Clues (excl. DB clues), which uses only parameter and result clues5, Clues (incl. DB clues), which uses

parameter, result, and database update clues (as presentedin Section 4.4.2), andOpportunistic, which

uses theOPPORTUNISTICstrategy presented in Section 4.4.3.

In all applications, using a DBSS with invalidation clues significantly increased scalability. This

agrees with previous work [74], which can be viewed as havingconsidered specific types of (non-

database) clues. Because the rightmost strategy, Opportunistic, heuristically uses database update clues

only when the increase in scalability is higher than the overhead, it offers the most scalability, for all

three applications. As the figure shows, the results for theBBOARD application differ from the others

in two respects. First, when no clues are used, not even a small number of clients can be supported

within the response time threshold specified in Section 2.7.This is because each HTTP request results

in about ten database requests, most of which suffer cache misses (due to no clues being used). Second,

the overhead of computing database update clues is high relative to the decrease in invalidations. Hence,

as Figure 4.5 shows, using database update clues whenever required for precise invalidations results in

worse scalability. Figure 4.5 thus confirms the claim made inSection 4.4.3 that the use of database

update clues must be carefully weighed against the expectedbenefit.

4The scalability of this strategy is the same as the Minimal Template-Inspection Strategy (MTIS) of [74].
5The scalability of this strategy is the same as the Minimal View-Inspection Strategy (MVIS) of [74].

96



Section 4.6 Evaluation

 No DBSS
 Clues (excl. DB clues)
 Clues (incl. DB clues)
 Hybrid

  0

  200

  400

  600

  800

AUCTION BBOARD BOOKSTORE

S
ca

la
bi

lit
y

 (
nu

m
be

r 
of

 c
on

cu
rr

en
t u

se
rs

 s
up

po
rt

ed
)

Figure 4.5: Impact of invalidation clues on scalability. For comparison, we include the scalability num-

bers without a DBSS.

4.6.3 Privacy Experiments

Figure 4.6 shows the reduction in the number of invalidations. The workload used is the template

pair in Table 4.7, with the parameter values chosen according to the Zipf distribution inBOOKSTORE,

over a domain of 100 values. The y-axis plots the percentage reduction in invalidations in using our

EQUALITY-OPTIMAL mapping (Section 4.5.2), over a simplistic mapping which maps an equal number

of parameter values to each place-holder. (The percentage reduction is a crude estimate of the scalability

improvement an application can achieve by switching to anEQUALITY-OPTIMAL mapping.) On the

x-axis, we plot the number of place-holders. (Recall from Section 4.5.2 that fewer place-holders implies

greater privacy.) As expected, when all parameter values are mapped to a single place-holder or most

are mapped to separate place-holders (right part of the graph), both mapping algorithms result in almost

the same number of invalidations. In other cases, however, theEQUALITY-OPTIMAL algorithm reduces

invalidations by around 20%. The benefits increase as the distribution over the parameters becomes

more skewed.

Figure 4.7 plots the improvement in privacy due to using two mappings instead of one mapping,

as described in Section 4.5.4. The workload used is the template pair in Table 4.8, with parameter

97



Chapter 4 Invalidation Clues for Database Scalability Services

 0

 10

 20

 30

 40

 0  20  40  60  80  100

%
 r

ed
uc

tio
n

 in
 In

va
lid

at
io

ns

Number of place-holders

Figure 4.6: Reduction in invalidations due to ourEQUALITY-OPTIMAL mapping algorithm.

 0

 0.25

 0.5

 0.75

 1

 0  0.5  1N
or

m
al

iz
ed

 S
ca

la
bi

lit
y

Normalized Privacy

Using one mapping
Using two mappings

Figure 4.7: Improvement in privacy on using two mappings instead of one mapping.

values chosen uniformly-at-random, over a domain of 100 values. The x-axis plots normalized privacy,

measured as per the definition in that section. The y-axis plots normalized scalability, measured as
max−I j

max−min, whereI j is the number of invalidations for thejth data point and max and min are the maximum

and minimum, respectively, of theI j over all data pointsj. For the one mapping approach, we use an

order-preserving encryption scheme, augmented so that multiple adjacent values could be mapped to

a single place-holder. For the two mappings approach, we usean identity mapping, and theORDER-

OPTIMAL mapping described in Section 4.5.4. For a given scalability, with our two mapping approach,

the privacy is almost twice that of a one-mapping approach. Although these results are skewed by the

specific privacy measure we use, we believe that the factor oftwo gap between the curves demonstrates

a significant opportunity for using two-mapping approaches.

4.7 Chapter Contributions

In this chapter, we made the following contributions:

• We presented invalidation clues, a general framework that offers applications a low overhead, fine-

grained control to balance their privacy and scalability needs, and provides better tradeoffs than

98



Section 4.8 Summary

previous approaches. We also provided examples of several configurable invalidation clues.

• We showed how to keep application data secure/private undera general attack model where the

DBSS can pose as a user, issuing queries and update, and then observing the invalidations in an

attempt to learn other user’s data.

• We identified families of common query/update classes whereextra information is needed from the

database in order to perform precise invalidations. We showed that generating these “database-

derived” clues in response to an update typically requires accessing only one or two database

rows. We presented a strategy that uses such clues only when the scalability benefit from reduced

invalidations outweighs the cost of computing the clue.

• Using experiments with three Web benchmark applications—abookstore (TPC-W), an auction

(RUBiS), and a bulletin-board (RUBBoS)—running on our prototype DBSS, we demonstrated

the scalability benefits of our proposed clues. We also used representative queries from these

benchmarks to show the effectiveness of our configurable clues in providing an improved privacy

versus scalability tradeoff.

4.8 Summary

Database scalability services (DBSSs) are an extension of CDNs that offload work from and absorb

load spikes for individual application databases, therebyremoving a key bottleneck for many Web ap-

plications without the expense/headaches of an over-provisioned server farm. This chapter presented

invalidations clues, a general framework and techniques for enabling applications to reveal little data

to the DBSS, yet provide sufficient information to limit unnecessary invalidations of results cached

at the DBSS. Compared with previous approaches, our proposed invalidation clues provide increased

scalability to the DBSS for a target privacy level, as well as more fine-grained control of this tradeoff.

Using three realistic Web benchmark applications, we illustrated the issues and solutions for generating

effective clues, e.g., by identifying categories requiring database clues, and then we demonstrated the

solutions on our DBSS prototype.

99



Chapter 4 Invalidation Clues for Database Scalability Services

100



Chapter 5

Holistic Query Transformations for Dynamic

Web Applications

Web applications are interactive. User studies [59, 60] have shown that high user latencies drive cus-

tomers away. Therefore it is important that we preserve low user latencies with a scalability service,

even under high load. For our experiments throughout this thesis, we take this into account by requiring

responses to have a latency of two seconds or less.

To ensure low user latencies, it is important to understand how this latency arises. A Web application

is a collection of programs. On an HTTP request, an application server runs one or more of these

programs to generate the response. To access the data these programs need to generate the response,

they issue database queries. Frequently, the programs issue multiple database queries for each HTTP

interaction: e.g., for the benchmark applications we study, the average number of queries per dynamic

HTTP request varies between 1.8 and 9.1 (Table 5.3). In a traditional centralized setting, these database

queries are answered by a database server, which is in the same administrative domain and connected

to the application server(s) by a high bandwidth, low latency link. As a result, these multiple round-

trips have little impact on the overall latency a user experiences. The user latency is dominated by the

high latency of reaching the web server of the application. Figure 5.1(a) shows the different latency

components in a traditional centralized setting.

In a scalability service setting, the DBSS first tries to answer a database request from its cache. If

101



Chapter 5 Holistic Query Transformations for Dynamic Web Applications

Web server App server Database

HTTP request, high latency

HTTP response, high latency

DB queries, low latency

(a) Latency in a traditional centralized architecture.

DatabaseDBSSCDN

high latency

Misses in 

DBSS cache

DB queries,

low latency

(b) Latency in a distributed architecture.

Figure 5.1: Latency in a traditional versus distributed architecture.

the request hits in the DBSS cache, the delay in obtaining the query result is minimal. However, if the

request misses in the cache, the user must endure the delay ingetting the response back from the home

server database. This delay is typically long because the scalability service nodes are geographically

distributed. Figure 5.1(b) shows the different latency components in a scalability service setting. Even

after methods to boost the cache hit rate are employed by scalability service nodes, users are likely to

experience a high latency in the scalability service setting if multiple database requests miss the cache

on an HTTP request.

To reduce the user latency, it is desirable to either eliminate database requests or hide their latencies.

There are several reasons why opportunities to do so appear in current Web applications. First, these

applications are typically written for a traditional centralized setting, in which there is minimal overhead

of issuing multiple database requests. So application developers frequently do not optimize for the

number of database requests the application issues. Second, application developers find it convenient to

102



Section 5 Holistic Query Transformations for Dynamic Web Applications

Procedural

program with 

embedded SQL

Holistic

transformations

Transformed

program and SQL

Web  Application Code Transformed Code

Figure 5.2: The holistic transformations, when applied to aWeb application, reduce the number of

database queries that the Web application issues per HTTP request at runtime.

abstract database values as objects in the program, a paradigm that is also adopted by Object Relational

Mapping tools [41, 85]. If they need multiple values, they just issue multiple queries. Third, there are

instances where it is easier for developers to express theirmain logic in the procedural language and

issue multiple, short queries because it is closer to how thedata is actually presented to the user, as in

the example in Figure 5.5.

In this work we propose two transformations that rewrite theapplication code to either eliminate

database requests or hide their latencies. Our first transformation, theMERGING transformation, elimi-

nates queries by clustering related queries. Our second transformation, theNONBLOCKING transforma-

tion, hides the long latency in fetching query results, by overlapping the execution of queries.

Both transformations that we propose change the database queries as well as the application code

surrounding them. Web applications are commonly written ina procedural language like Java or PHP

whereas they issue database queries in a declarative language, typically SQL. Applying these trans-

formations requires an understanding of the procedural language as well as the declarative language.

These transformations affect the program as a whole. Therefore we call these transformationsholistic

(Figure 5.2). To evaluate the effectiveness of these transformations, we have applied it to three bench-

mark applications. While we currently applied them manually, we believe that the algorithms (described

in Section 5.1.3 and Section 5.2.1) should be straightforward to automate in a source-to-source com-

piler [39, 81]. We next discuss the transformations individually in the next two sections.

103



Chapter 5 Holistic Query Transformations for Dynamic Web Applications

$template:=SELECT from user id
FROM comments
WHERE touser id = ?;

$query:= setparams ($template, $to id);
$result:= execute($query);
foreach ($row in $result) {

$from id:= get user id ($row);
$template:=SELECT user name

FROM users
WHERE user id = ?;

$query:= setparams ($template, $from id);
$result2:= execute($query);

}

$template:=SELECT from user id, user name
FROM comments, users
WHERE fromuser id = user id

AND to user id = ?;
$query:= setparams ($template, $to id);
$result:= execute($query)

(a) Original code (b) After theMERGING transformation

Figure 5.3:A code fragment from theAUCTION application, showing the original code on the left, and the code

after applying theMERGING transformation on the right. The code, an example of the Loop-to-join pattern, finds

the names of users who have posted comments about a particular user. We focus on two base relations:users

with attributesuser id anduser name, andcomments with attributesfrom user id andto user id .

5.1 The MERGING Transformation: Clustering Related Queries

We explain theMERGING transformation using an illustrative example. Consider theleft-hand side code

fragment of Figure 5.3 which is taken from theAUCTION benchmark. The program issues several short

inter-related queries and the procedural code combines their results. In a DBSS setting, for each query

that results in a cache miss at the DBSS node, the user must endure the long delay of accessing the home

server database. Assuming a constant hit rate at the DBSS cache, the latency observed by the end-user

is proportional to the number of queries issued in an HTTP interaction. TheMERGING transformation

transforms the left-hand side to the equivalent right-handside code, merging all the short inter-related

queries into one join query. The program then needs to issue just one query instead of the previousN+1

queries, assuming the loop is repeatedN times.

104



Section 5.1 TheMERGING Transformation: Clustering Related Queries

5.1.1 Impact on the Total Work in the System

While it is certainly possible for theMERGING transformation to either decrease or increase the total

amount of work done in the system, we do not expect it to affectthe total amount of work in the system.

We use the termwork to mean the use of any resources like disk I/O or CPU in the system. In most

cases, like the example in Figure 5.3, we simply expect it to change the division of work between the

application and the database server(s). The example, whichinvolves a simple one-to-one join operation,

is likely to require the same amount of work even after theMERGING transformation. For a complete

understanding of the consequences of this optimization, wehowever discuss instances in which applying

this transformation might decrease or increase the total amount of work in the system.

Applying theMERGING transformation can decrease the total amount of work if the database is able to

execute the queries more efficiently after applying the transformation. This happens when the database

can execute a larger task more efficiently than executing several small tasks: e.g., if the application

code in Figure 5.3 involved a many-to-many join instead of anone-to-one join. The left hand side code

will still implement a nested loop join in the application with a pre-determined outer table whereas on

the right hand side, the database optimizer will be able to doa much better task at optimizing the join

based on the cardinality and selectivity estimations of thetables involved and the available indices. See

[29] for an overview of query optimization in relational databases. This reduction in work would be

reflected in improved scalability in both the centralized aswell as the DBSS setting. Since deployed

application code is unlikely to have such inefficiencies, wedo not expect such opportunities to exist in

a deployed application code. As expected, we did not find any opportunities for significantly reducing

work in the three benchmark applications we used. As a result, we did not see any measurable scalability

improvement due to theMERGING transformation in any of the benchmark applications in the centralized

setting.

Applying theMERGING transformation can increase the total amount of work in the system when one

or more of the queries being merged is issued conditionally.For example, consider a slightly modified

version of Figure 5.3. Imagine that the loop is executed onlyif the returned result contained at least ten

rows. Then applying the transformation can increase the total amount of work if most of the returned

105



Chapter 5 Holistic Query Transformations for Dynamic Web Applications

$template1:=SELECT MAX(bid) FROM bids
WHERE item id = ?;

$query1:= setparams ($template1, $item id);
$result1:= execute($query1);
$template2:=SELECT COUNT(*) FROM bids

WHERE item id = ?;
$query2:= setparams ($template2, $item id);
$result2:= execute($query2);

$template:=SELECT MAX(bid), COUNT(*)
FROM bids
WHERE item id = ?;

$query:= setparams ($template, $item id);
$result:= execute($query);

(a) Original code (b) After theMERGING transformation

Figure 5.4:An example of the merge-projection-predicates pattern, showing the original code on the left, and the

code after applying theMERGING transformation on the right. The code fragment is a simplified version of the

code from theAUCTION application, and finds the current maximum bid and the total number of bids foran item.

We focus on thebids relation with thebid and theitem id attributes.

results had fewer than ten rows. To decide whether to apply this transformation in such “speculative”

situations or not, we use estimates of the relative costs of evaluating the query result and the frequencies

with which the different queries are issued. In practice, wewill not apply this transformation when

doing so increases the total amount of work. Only once in our benchmark applications, we had to decide

whether to apply this transformation speculatively or not –it occurred in theBBOARD benchmark and

we decided to speculatively apply the transformation.

In the example in Figure 5.3, theMERGING transformation converted a loop in the application code to

a database join. We call this pattern the “loop-to-join” pattern. In the next section we list all the patterns

that we found in the three benchmark applications.

5.1.2 Code Patterns Where theMERGING Transformation Applies

Based on our study of the three benchmark applications, we found three code patterns where theMERG-

ING transformation applies. In Table 5.2 of Section 5.3 we list how frequently each of these patterns

exist in the benchmark applications.

Loop-to-join: In this pattern the application first issues a query to get multiple values and then for each

106



Section 5.1 TheMERGING Transformation: Clustering Related Queries

$template:=SELECT id, body FROM comments
WHERE parent = 0 AND story = ?;

$query:= setparams ($template, $sid);
$result:= execute($query);
push comments (Stack, $result);
while (($comment:=pop (Stack)) != NULL) {

print ($comment);
$cid:=get id ($comment);
$template:=SELECT id, body FROM comments

WHERE parent = ? AND story = ?;
$query:= setparams ($template, $cid, $sid);
$result := execute($query);
push comments (Stack, $result);

}

$template:=SELECT id, body, parent
FROM comments
WHERE story = ?;

$query:= setparams ($template, $cid, $sid);
$result:= execute($query);

(a) Original code (b) After theMERGING transformation

Figure 5.5:An example of the merge-selection-predicates pattern, showing the originalcode on the left, and the

code after applying theMERGING transformation on the right (We just show the database queries on the right).

The simplified code fragment is from theBBOARD application, and shows all the comments on a story in a tree

format. We focus on thecomments relation with theid , body , parent , andstory attributes.

value (using a loop structure), issues another database query. This code pattern can be transformed

to a single database join query, as in the example in Figure 5.3. Out of the three patterns we found,

this pattern occurs the most frequently. In fact, it occurs in all three benchmark applications that

we study.

Merge-projection-predicates: In this pattern the application issues multiple queries in succession that

are identical except in the attributes they project. This code pattern can be transformed to a single

database query where the projection clause is a union of the projection clauses of the original

queries. For instance, in theAUCTION benchmark example in Figure 5.4, a query to find the

maximum bid on an item is followed by another query to find the number of bids for the same

item.

For any merge-projection-predicates pattern, theMERGING optimization reduces the total work in

the system. For the example in Figure 5.4, after theMERGINGtransformation, the database must

107



Chapter 5 Holistic Query Transformations for Dynamic Web Applications

lookup just one row instead of looking up the row twice, saving on both the disk I/O and CPU

costs. Of course, these costs will be reduced only if the database is “row” oriented, which is true

of most general purpose databases today. While this pattern exists in theAUCTION andBBOARD

benchmarks, we do not expect this pattern to occur frequently for a deployed Web application.

This pattern might exist only when it is difficult to optimizeaway the pattern: e.g., (1) there is

a significant time gap among when the different component queries being issued, and (2) some

component queries are issued speculatively.

Merge-selection-predicates:In this pattern the application issues multiple queries in succession that

are identical except in a selection clause. This code pattern can be transformed to a single database

query where the differing selection clause is dropped and the attribute used in the dropped selection

clause is added to the projection attributes. For example, in theBBOARD benchmark, when a user

views a story, all the comments for the story are to be displayed in a tree format (The comments

on a story can be viewed as a tree with the story being the root,each comment being a node of

the tree, and comments which are replies to a particular comment, determining the children-parent

relationships in the tree). In the original code, to achievethis task, a tree traversal is done, and at

each tree node, a new query is issued to fetch the children comments. The issued query does a

selection on theparent and thestory attribute. Applying this transformation, all the comments

on the story can be obtained using a single query: the issued query simply does a selection on the

story attribute, as illustrated in Figure 5.5. We found this pattern only in theBBOARD application

where it existed because the original code more closely reflected how the data is actually presented

to the user.

5.1.3 Algorithm for Automating the MERGING Transformation

In this section we present an algorithm for automating theMERGING transformation, which should be

straightforward to implement in a source-to-source compiler [39, 81]. As with any compiler transforma-

tion, the algorithm can bail out if it does not completely understand the program. Additionally, for ease

of exposition, we assume that this transformation modifies aprogram of the application code only up

108



Section 5.1 TheMERGING Transformation: Clustering Related Queries

to the first update statement. The algorithm works by identifying the three code patterns: loop-to-join,

merge-projection-predicates, and merge-selection-predicates, and then making appropriate changes in

each case.

Loop-to-join pattern: For the loop-to-join pattern, we build on the work done in optimizing nested

queries over 25 years ago [64]. We first identify loops in the program. We then check if: (1)

the loop iterates using the result of a previous query, (2) the loop issues a query in each iteration,

and (3) the previous query is executed whenever the loop executes. Moreover, to avoid issuing

speculative queries, we check if the loop is executed whenever the previous query is executed.

Once the pattern is identified, we can use work done by [64] to replace the small queries by a

merged query. Additionally, variables that used the resultof any of the small queries must be

reinitialized to use the result of the merged query.

Merge-projection-predicates pattern: For the merge-projection-predicates, we check if (1) the second

query is executed whenever the first query is executed (usingcontrol-flow-analysis [77]), and (2)

the queries are identical except the projection predicates. If these pre-conditions are satisfied, the

two queries can be merged as in Figure 5.4. Finally, variables that used the result of any of the

queries being merged must be reinitialized to use the resultof the merged query.

Merge-selection-predicates pattern:For the merge-selection-predicates, we check if: (1) the outer

query is executed whenever the loop is executed and vice versa (using control-flow-analysis), and

(2) the queries are identical, except one selection clause.If these pre-conditions are met, the query

is transformed as per the example in Figure 5.5. Finally, variables that used the result of any of

the queries being merged must be reinitialized to use the result of the merged query.

5.1.4 Other Tradeoffs

There are other advantages and disadvantages of applying the MERGING transformation, beyond just

reducing latencies.

109



Chapter 5 Holistic Query Transformations for Dynamic Web Applications

SELECT user name
FROM users
WHERE user id = 5

SELECT from user id, user name
FROM comments, users
WHERE fromuser id = user id AND to user id = ?

Invalidated if the query result contains the userid 5

(a) Invalidations in the original code (b) Invalidations after applying theMERGING transformation

Figure 5.6:Query results that are invalidated on an update with template asUPDATE users SET user name =

? WHERE user id = ? anduser id as 5, before and after applying theMERGING transformation. Since the

MERGING transformation increases caching granularity, it leads to more invalidations,and consequently, less reuse

of work.

Interactions with query result caching For our DBSS setting, in which the query results are cached,

the MERGING transformation, which merges short related queries into a long query, increases

the caching granularity. Increasing the caching granularity implies that on an invalidation, a

larger cache entry, which is more expensive to compute, is invalidated. For example, in Fig-

ure 5.6, rather than invalidating the result of a simple lookup query, in the transformed code, the

updateUPDATE users SET user name = ? WHERE user id = 5 invalidates the result of the

join query, a query result which is more expensive to compute.

Because of the possibility of increased invalidation overhead, the latency reduction due to this

transformation must be weighed carefully against the increased invalidation, before applying this

transformation in a setting that caches query results. For our benchmark applications, the increase

in invalidations was minimal, and so we always decided to apply this transformation.

Impact on privacy In Chapter 3 and Chapter 4, we discussed how applications can ensure the privacy of

their data in a DBSS setting. TheMERGING transformation, by making query results larger, lowers

the number of distinct query results in an application’s workload. On the one hand, if only query

results, parameters, or templates can be clues (as in Chapter3), the MERGING transformation

lowers the number of distinct privacy levels at which the application can operate. On the other

hand, if arbitrary clues are possible (as in Chapter 4), theMERGING transformation has no effect

on the number of distinct privacy levels at which the application can operate.

110



Section 5.2 TheNONBLOCKING Transformation: Prefetching Query Results

5.2 The NONBLOCKING Transformation: Prefetching Query Results

After issuing a database query, a Web application waits for the query result. In many cases, this wait is

unnecessary since the the next database query does not depend on the answer to the current query. In

such cases, the user latency can be greatly reduced by overlapping the query executions. In this section

we present theNONBLOCKING transformation, which can overlap executions of multiple queries that do

not depend on each other by “prefetching” query results.

To illustrate how this transformation can be applied to a code fragment, consider Figure 5.7, which

shows two functionally-equivalent code fragments from theBOOKSTOREapplication. The program on

the right shows the code after applying theNONBLOCKING transformation. Forquery2, we execute

both the methods:executenon blockingandexecute. While the methodexecutenon blockingdoes not

block and only serves to populate the cache with the query result, theexecutemethod fetches the query

result to be used in the program. If the latency of the first database request ista and the latency of the

second request istb, this transformation reduces the overall latency fromta + tb to max{ta, tb}.

Ideally, whenever the program that dynamically generates the HTTP response starts running, we

would like to issue prefetch requests for all queries that the program will issue during its execution.

However, issuing a prefetch request for each query, at the start of the program’s execution, might not

always be possible because: (1) one of the parameters of the query is the result of a previous query, (2)

the query is conditionally issued and the condition uses theresult of a previous query, and (3) there is an

update statement before the query that may affect the query result.

Formally, each program of a Web application can be represented as a directed acyclic graph, where

the nodes are database accesses, and there is an edge betweentwo nodes if one node has to be executed

after the other node for correctness. We call this graph thedatabase dependence graphof a program.

Given this directed acyclic graph, a database access can be issued as soon as all database accesses that

are its ancestors in the directed acyclic graph have completed. With this formulation, the latency that a

user sees can be brought down significantly.

Note that this transformation normally does not change the amount of work that must be done, it just

111



Chapter 5 Holistic Query Transformations for Dynamic Web Applications

$template1:=SELECT item name
FROM items i1, items i2
WHERE i1.id = i2.related

AND i2.id = ?;
$query1:= setparams ($template1, $id);
$result1:= execute($query1);
$template2:=SELECT user name FROM users

WHERE user id = ?;
$query2:= setparams ($template1, $user id);
$result2 := execute($query2);

$template2:=SELECT user name FROM users
WHERE user id = ?;

$query2:= setparams ($template2, $user id);
executenon blocking ($query2);
$template1:=SELECT item name

FROM items i1, items i2
WHERE i1.id = i2.related

AND i2.id = ?;
$query1:= setparams ($template1, $id);
$result1:= execute($query1);
$result2:= execute($query2);

(a) Original code (b) After theNONBLOCKING transformation

Figure 5.7: A simplified code fragment from theBOOKSTORE application, which finds the name of an item

related to the item the user is viewing and the name of the user, given her id. Wefocus on two base relations:

users with attributesuser id anduser name, anditems with attributesitem id , item name, andrelated . The

left hand side shows the original code, while the right hand side shows thecode after applying theNONBLOCKING

transformation.

improves the scheduling of the work. However, if a prefetch is issued for a query that is conditionally

executed, the result of the prefetch will not always be used.While issuing such “speculative” prefetches

increases the total work in the system, it allows a scalability service to trade off reduced latency for

extra work done in the system. For our evaluation, we issued speculative prefetches whenever possible,

since the queries werenot issued only in case of error conditions – an infrequent occurrence for any

application.

Application of this transformation can be automated – we outline an algorithm for automatically

applying this transformation in Section 5.2.1. Finally, inSection 5.2.2 we discuss other issues relating

to this transformation.

112



Section 5.2 TheNONBLOCKING Transformation: Prefetching Query Results

5.2.1 Algorithm for Automating the NONBLOCKING Transformation

In this section we present an algorithm for automating theNONBLOCKING transformation, which should

be straight-forward to implement in a source-to-source compiler [39, 81]. As with any compiler trans-

formation, the algorithm can bail out if it does not completely understand the program. For ease of

exposition, we make two assumptions. First, similar to the assumption in Section 5.1.3, we assume that

the algorithm modifies a program of the application code onlyup to the first update statement. The work

on query-update-independence [68] can be used to remove this restriction. Second, we assume that there

are no edges in the database dependence graph of the program,as defined before. The dependence graph

for a program can be computed using data-flow techniques [77]. After allowing for the assumptions, the

algorithm is:

1. Let Q be the list of all the queries in the program that appear before any database modification.

The goal is to place anon-blocking-executefunction call to every queryq appearing in the listQ

at the beginning of the program.

2. For every queryq, put a copy of all variable initializations that queryq uses directly or indirectly

(through some other variable) at the beginning of the program. Next, put anon-blocking-execute

function call after all these variable initializations. Since the database dependence graph has no

edges, the order in which the queries are selected from the list Q does not matter.

5.2.2 Implementation Issues

We now describe three issues regarding the implementation of the prefetch mechanism that we evaluate

later in Section 5.3.5.

Prefetching support in the runtime layer For this transformation to work, the runtime layer must sup-

port the execution of non-blocking queries. In our implementation, as an admission control mech-

anism to avoid overloading the database, the DBSS node maintains a fixed number of connections

to the home server database. The runtime layer must decide onthe number of connections to

113



Chapter 5 Holistic Query Transformations for Dynamic Web Applications

allocate to fulfilling prefetch requests. For our implementation, we dynamically allocated the

connections used for fulfilling prefetch requests, depending on how many were available after ful-

filling the regular database requests. Of course, if the object that the prefetch was requesting was

already present in the cache, we just filtered the prefetch.

Timing of prefetches For hiding latencies due to a miss, it is critical that the prefetches be issued at

the right time. On the one hand, if the prefetch is issued late, it will not be able to hide the

latency due to the miss. On the other hand, if it is issued wellin advance, its result might be

invalidated by a later update and it becomes useless. From our experiments, we found out that

none of our prefetches were “early” even if we issued them at the earliest possible time – when

the program generating the HTTP response started its execution. So we just used this policy in our

implementation.

5.3 Evaluation

We evaluate the two transformations–MERGING and NONBLOCKING–by applying them to the three

benchmark applications (i.e.,AUCTION, BBOARD, andBOOKSTORE) described earlier in Section 2.6 and

then measuring the resulting scalability improvements. Note that we measure scalability as the number

of simultaneous users that can be supported with latency remaining under a threshold. We performed

our experiments in the SIMPLETC scenario using the methodology described in Section 2.7.

We start in Section 5.3.1 and Section 5.3.2 by evaluating theeffects of these transformations on scal-

ability and latency, both in the traditional centralized setting as well as the DBSS setting. Next, we

list the frequencies with which the two transformations apply to our benchmark applications in Sec-

tion 5.3.3. We finally present the detailed “coverage” results of the two transformations in Section 5.3.4

and Section 5.3.5.

114



Section 5.3 Evaluation

Simultaneous users supported

Latency

Threshold
Scalability

Improved scalability

Latency curve

Reduced latency curve

Figure 5.8: The figure shows how a reduction in latency improves scalability.

 No DBSS
 No Transformations
 MERGING
 NONBLOCKING
 Both Transformations 

  0

  200

  400

  600

  800

AUCTION BBOARD BOOKSTORE

S
ca

la
bi

lit
y

 (
nu

m
be

r 
of

 c
on

cu
rr

en
t u

se
rs

 s
up

po
rt

ed
)

Figure 5.9: Scalability impact of the transformations. Forcomparison, we include the scalability num-

bers without a DBSS, the leftmost bar for each application.

5.3.1 Scalability Impact of the Transformations

So far, we have focused on how the MERGING and NONBLOCKING transformations reduce the la-

tency of an HTTP request in the DBSS setting. However, we use scalability as the single unifying metric

in this thesis. We measure scalability as the number of simultaneous users that can be supported with

latency remaining under a threshold. Figure 5.8 shows how a reduction in latency improves the scala-

bility metric. Because of the reduced latency, the scalability in the figure increases from “scalability” to

“improved scalability.”

115



Chapter 5 Holistic Query Transformations for Dynamic Web Applications

Figure 5.9 plots the scalability of an application as a function of the code transformations used, for

all three benchmark applications. The y-axis plots scalability, measured as specified in Section 2.7.

On the x-axis, we consider five cases: one corresponding to not using the DBSS, one corresponding to

using the DBSS but no transformations, and the other three corresponding to using either or both the

transformations.

For clarity, we did not plot the bar for using the transformations in the centralized setting. The results

were identical to not using the transformation in the centralized setting, showing that these transforma-

tions do not have any effect on the performance in a centralized setting. In all applications, using a

DBSS significantly increased scalability. Turning on the transformations further improved scalability.

TheMERGING transformation has the most effect on theBBOARD application and the least effect on the

BOOKSTOREapplication. On the other hand, theNONBLOCKING transformation has the most effect on

theBOOKSTOREbenchmark and the least effect on theBBOARD benchmark.

The two transformations:MERGING andNONBLOCKING, are complementary. While theMERGING

transformation can be applied only when the queries arerelated, theNONBLOCKING transformation can

be applied only when the queries arenot related. Consequently, we expect that both transformations

must be applied for the best scalability. Figure 5.9 shows that the scalability indeed increases the most

when both transformations are applied simultaneously.

5.3.2 Latency Impact of the Transformations

Even though a single unifying metric like ‘scalability’ is helpful in comparisons, it is not always able to

correctly portray the magnitude of a change. The scalability improvements due to these transformations,

at around 10%, seem minor. To understand the results better,we plot the average latencies for two

popular interactions in theBBOARD application. (We choseBBOARD because the latency effects of the

transformations onBBOARD is the highest.)

Figure 5.10 shows the effect of the transformations on the average latency, for two dynamic interac-

tions of theBBOARD application, executing in a DBSS setting. Applying both transformations reduces

latency by over 50%. Of the two transformations, theMERGING transformation causes a greater reduc-

116



Section 5.3 Evaluation

 No Transformations
 MERGING
 Both Transformations 

  0

  700

  1,400

  2,100

  2,800

ViewStory BrowseStoriesByCategory

A
ve

ra
ge

 la
te

nc
y 

in
 m

s

Figure 5.10: Impact of theMERGING and NONBLOCKING transformations on latency. We show the

average latency for two dynamic interactions in theBBOARD benchmark. The graph shows that the

MERGING transformation has a significant impact on the average latency.

 Database

 Latency DBSS−Database

 DBSS

 Latency CDN−DBSS

 Client latency

  0

  200

  400

  600

  800

  1,000

No_Transformations _ Both_Transformations

A
v
er

ag
e 

la
te

n
cy

 (
in

 m
s)

Figure 5.11: Impact of the two transformations on the average latency of a dynamic interaction in the

BBOARD application, executing in a DBSS setting.

tion in latency. The larger impact of theMERGING transformation agrees with the scalability results in

Figure 5.9. Figure 5.10 also shows that both transformations are complementary: applying both reduces

the latency more than applying either of them.

Figure 5.11 evaluates the impact of the two transformationson the average latency of a dynamic inter-

action in theBBOARD application, executing in a DBSS setting. The latency consists of five components:

the client latency including the execution time at the CDN, the network latency from the CDN to the

DBSS, the time spent at the DBSS, the latency from the DBSS to the database, and the time spent at the

117



Chapter 5 Holistic Query Transformations for Dynamic Web Applications

Percentage of runtime HTTP interactions

Application Static MERGING transformation NONBLOCKING transformation Either

AUCTION 15.9% 15.2% 3.8% 15.7%

BBOARD 7.4% 69.8% 28.5% 70.1%

BOOKSTORE 0.0% 0.8% 58.6% 59.4%

Table 5.1: Runtime HTTP interactions in which theMERGING andNONBLOCKING transformation apply.

The “either” column represents interactions in which at least one of the two transformations apply.

The “static” column represents interactions in which a static HTML file is returned. Clearly, neither

transformation can apply to such interactions.

database. almost all the latency decrease is due to a reduction in the network latency from the CDN to

the DBSS.

A latency decrease often does not result in a commensurate scalability increase. For example, while

these two transformations reduce the average latency by 38%for theBBOARD application (Figure 5.11),

they increase the scalability by only about 10% (Figure 5.9). To understand this difference, we need

to refer back to Figure 5.8. In the figure, the latency decrease and the scalability increase are related

by the slope of the latency-users curve. This slope governs how much the scalability will increase due

to a decrease in latency. Steeper the curve, more is the slope, and less is the impact on scalability due

to any reduction in latency. There is another factor that contributes to why a latency decrease does not

result in a commensurate scalability increase. These transformations sometimes tend to impact low-

latency interactions more than high-latency interactions. For the ViewStory interaction of theBBOARD

application, while the latency reduction for low-latency interactions1 was 78%, the latency reduction for

the high-latency interactions was only 58%.

118



Section 5.3 Evaluation

Total query Percentage of query templates where the patterns apply

Application templates Loop-to-join Merge-projection-predicatesMerge-selection-predicates

AUCTION 28 25.0% 3.6% 0.0%

BBOARD 38 26.3% 13.2% 5.3%

BOOKSTORE 28 7.1% 0.0% 0.0%

Table 5.2: Frequency of occurrence of different patterns inwhich theMERGINGtransformation applies.

5.3.3 Applicability of the Transformations

Table 5.1 lists the percentage of runtime HTTP interactionsin which these transformations apply. The

“either” column represents interactions in which at least one of the two transformations apply. The

“static” column represents interactions in which a static HTML page is returned. Clearly, neither trans-

formation can apply to such interactions. Even after including the static interactions (interactions which

return a HTML file), one of these transformations applied to over 15%, 70%, and 59% of all runtime

HTTP interactions for theAUCTION, BBOARD, and theBOOKSTORE benchmarks, respectively. For

the BBOARD application, theMERGING transformation applies to over 69% of all HTTP interactions–

this high percentage is one of the reasons why theMERGING transformation is particularly effective in

increasing scalability (Figure 5.9) and reducing latency (Figure 5.10) of theBBOARD application. A

similar argument can be made for theNONBLOCKING transformation and theBOOKSTOREapplication.

5.3.4 Coverage of theMERGING Transformation

Table 5.2 lists the total number of query templates per benchmark application and the number of times

we could find the different “patterns” described in Section 5.1.2. We found the maximum number of

patterns in theBBOARD benchmark where theMERGING transformation could be applied to almost

half of the query templates. In contrast, theBOOKSTOREbenchmark had the fewest opportunities for

1All interactions that had a latency below the threshold werecategorized as low-latency interactions. The latencies were

measured after the two transformations were applied.

119



Chapter 5 Holistic Query Transformations for Dynamic Web Applications

Average number of database queries

per dynamic HTTP interaction

Application Cache hit ratio original code after theMERGING transformation % decrease

AUCTION 57.4% 2.6 2.1 19%

BBOARD 75.5% 9.1 1.9 79%

BOOKSTORE 66.4% 1.78 1.77 1%

Table 5.3: Average number of database queries per dynamic HTTP interaction for the three benchmarks.

For our benchmark applications, theMERGING transformation does not affect the cache hit ratio.

applying this transformation. As for the patterns, the mostfrequently occurring pattern was loop-to-join,

while the most uncommon pattern was merge-selection-predicates.

Table 5.3 lists the average number of database queries per dynamic HTTP interaction for all three

benchmark applications both before and after applying theMERGING transformation, and computes the

percentage decrease due to the transformation. The maximumdecrease, 79%, occurs for theBBOARD

benchmark and the minimum decrease, 1%, occurs for theBOOKSTOREbenchmark. These results are in

line with the results in Table 5.2 where theMERGING transformation applies most to the query templates

of BBOARD benchmark, and least to the query templates of theBOOKSTOREbenchmark. The table

also provides the cache hit rates for the benchmark applications. From the cache hit rates, the average

number of round trips from the DBSS node to the back-end database node that theMERGING transfor-

mation saves can be easily computed – 0.21, 1.76, and 0.003 round-trips are saved for theAUCTION,

BBOARD, andBOOKSTOREbenchmarks. These huge savings for theBBOARD application is reflected in

Figure 5.11 – the ‘latency DBSS-Database’ decreases by almost 400ms.

5.3.5 Coverage of theNONBLOCKING Transformation

Figure 5.12 plots how effective theNONBLOCKINGtransformation is in hiding the cache misses. The

y-axis plots the misses and prefetches for each of the benchmarks (The original misses have been nor-

120



Section 5.3 Evaluation

Original misses

normalized to 100%

Still Partial Useful Filtered Wasted

Application miss Pfs Pfs Pfs Pfs

AUCTION 87.9 11.0 1.1 7.4 0.1

BBOARD 94.7 1.7 3.6 8.2 0.4

BOOKSTORE 88.8 6.2 5.0 68.4 2.2

Wasted prefetches
Filtered prefetches
Useful prefetches
Partially useful prefetches
Still miss

  100

  150

AUCTION BBOARD BOOKSTORE

M
is

se
s 

an
d 

pr
ef

et
ch

es
 (

or
ig

in
al

 m
is

se
s 

no
rm

al
iz

ed
 to

 1
00

)

Figure 5.12: Impact of theNONBLOCKING transformation on the total number of misses, for the three

benchmark applications. We use ‘pfs’ as a short-hand for prefetches.

malized to 100). After prefetches are issued, these misses either still remain a miss (still miss), meaning

no prefetch was issued for it, or the prefetches were completely (useful prefetches) or partially use-

ful (partially useful prefetches) in hiding the latency of a miss. Some prefetches were filtered by the

caching layer because the object was present in the cache (Filtered prefetches). The final category was

of those prefetches that were issued speculatively, and never used (wasted prefetches). This category of

prefetches wastes bandwidth and CPU cycles. As the figure shows, the fraction of such prefetches is

fairly small, which justifies our decision for issuing speculative prefetches in Section 5.2.

From Table 5.1 we expect many prefetches to be issued for theBOOKSTOREapplication. Figure 5.12

shows that while this is true, most of the prefetches turn outto be useless since they are filtered by the

caching layer. Still, this transformation is able to hide latency for around 10% of the misses. For the

AUCTION application, even though fewer prefetches are issued, it isstill able to hide latency for around

10% of the misses. For theBBOARD application, fewest prefetches are issued, and the transformation is

able to hide latency for only about 4% of the misses. The scalability improvement due to this transfor-

mation depends to some degree on the percentage of misses that the prefetches are able to hide: whereas

we see a small impact of this transformation on the scalability of the AUCTION and theBOOKSTORE

applications, the impact is almost zero on the scalability of the BBOARD application (Figure 5.9).

121



Chapter 5 Holistic Query Transformations for Dynamic Web Applications

5.4 Related Work

Related research can be classified into two main areas: (1) prior work related to theNONBLOCKING

transformation, and (2) prior work related to theMERGING transformation. We discuss each in turn.

5.4.1 Work Related to theNONBLOCKING Transformation

TheNONBLOCKING transformation aims to hide the latency of a miss in the DBSS cache by prefetching

the query result. A lot of prior work has been done on prefetching. A commonly used technique is to

issue prefetches by detecting patterns in misses. This technique has been used widely for hiding latency

of page faults in virtual memory systems [35], reducing access times of static web pages [40, 80, 86], and

improving the overall performance of file systems [65]. Of course, for this technique to work, a pattern

must be established. No prefetches can be issued while the patterns are being established. Second, this

technique no longer remains useful when the access pattern changes.

Patterson et al. [88] propose an alternative approach to detecting patterns in misses. Applications

must be manually modified to generate hints about their access patterns. Follow-up work by Chang et

al. [28] automates this process of generating the access hints. Similarly, Mowry et al. [76] and Brown

et al. [21], show how compiler analysis integrated with simple OS support and a runtime layer, to adjust

to dynamic conditions, can be used to effectively manage physical memory for out-of-core applications.

The compiler analysis was used to insert prefetch and release instructions in the application code. While

the goal of using application-specific knowledge to hide latencies is the same in these efforts as in our

system, we focus on a different domain than virtual memory references and file reads and writes. Their

work did not require analysis of SQL code embedded in a program.

5.4.2 Work Related to theMERGING Transformation

The work closest to ourMERGING transformation is Cassyopia [91], a vision paper that proposes the

use of compiler techniques for clustering system calls so that the overhead of crossing address spaces

122



Section 5.4 Related Work

is reduced. Our technique is fundamentally similar to Cassyopia: we want to reduce the latency due

to multiple database queries by clustering these database queries. However, there are significant differ-

ences. First, the domains are different – our work seeks to hide the overhead of network latency whereas

their work seeks to hide the overhead of context switching between processes. Second, we identify im-

portant patterns where theMERGING transformation can be applied. Third we argue why such patterns

will continue to exist in future Web applications.

Most database vendors support stored procedures [100] which allow applications to invoke a block

of procedural and declarative code at the database. Our approach of merging queries has several key

advantages over using stored procedures. First, it is significantly harder for the database to optimize the

execution of queries that use stored procedures than to optimize the execution of SQL queries [29, 30].

Second, it is significantly harder to maintain the consistency of a cache containing results of stored

procedures. (If the results of stored procedures are not cached, no work is offloaded from the home

server database.)

Work on optimizing the execution of nested queries [47] has mostly focused on decorrelation tech-

niques [45, 64], which try to transform a given nested query into a form that does not use the nested

subquery construct. Guravannavar et al. [53] propose improved nested iteration methods as an alter-

native to decorrelation. Decorrelation techniques enablethe query optimizer to use better plans such

as hash join for evaluating the nested query. TheMERGING transformation for the loop-to-join pattern

essentially performs decorrelation. Compared to nested query optimization, the differences are: (1) the

transformation is carried out by the compiler instead of thedatabase optimizer, and (2) the primary mo-

tivation for the transformation is to reduce the number of round-trips an application needs to make to

access its data instead of improving the performance.

Some database optimizers implement multi-query optimization [94, 98], where they identify common

sub-expressions in a sequence of queries to speed up all the queries. However, to be applicable, these

optimizers need to see a batch of queries at once – a model different from how the Web applications

normally work, where they have at most one outstanding query. Moreover, in a multi-query optimization

setting, the database does most of the work, while for theMERGING transformation, the compiler does

123



Chapter 5 Holistic Query Transformations for Dynamic Web Applications

most of the work – it needs to understand database queries as well as the procedural code surrounding

them, identify patterns in the application code, and then transform the patterns accordingly.

Object relational mapping tools like Java’s Hibernate [41]and Ruby-on-Rails’s Active Records [85]

result in Web application code that issue several simple, inter-related queries, all of which can be merged

into a single query. Both Hibernate and Active Records providehooks to replace these inter-related

queries by a single query – Hibernate users can write queriesin HQL, the Hibernate Query Language,

where as Active Record users can write explicit SQL queries. Our work seeks to automate this process

of merging inter-related queries.

TheMERGING transformation can be viewed as a repartitioning of work between the application and

database server. Yang et al. [108] present techniques to automatically partition a Web application into

client and server parts, in order to optimize the application’s response time. To be applicable, the Web

application must be written in a custom language Hilda [109]. Similarly, the Abacus system [10] auto-

mates the placement of objects written in a custom language.In contrast, theMERGING transformation

does not require applications to be rewritten in a custom language; it can be applied directly to legacy

applications.

5.5 Summary

A single HTTP request in a dynamic Web application typicallyissues multiple database queries. In a

DBSS setting, database queries that miss in the cache of the DBSS node, have to endure the high latency

of accessing the home server database. In this chapter we proposed two holistic transformations –MERG-

ING andNONBLOCKING – which can be implemented in a source-to-source compiler [39, 81]. These

transformations reduce the latency by either clustering related queries or overlapping query execution.

By manually inspecting our application code, we found opportunities to apply these transformations in

over 15%, 49%, and 74% of all dynamic interactions for theAUCTION, BBOARD, and theBOOKSTORE,

respectively. These transformations had almost no impact on the scalability in a centralized setting.

However, in a DBSS setting, these transformations increase scalability by over 10%.

124



Section 5.5 Summary

These transformations are useful in any setting where the latency of accessing the query results from

the machine executing the application is non-negligible. For example, in a shared web-service hosting

scenario where the application and the database server typically run on separate clusters of machines,

latencies are often between 16ms and 20ms [99], and therefore these transformations will be useful.

We believe that these two transformations will continue to be useful. First, as users of Web applica-

tions become more demanding, these applications will increasingly be deployed in environments where

there is a significant latency in accessing their data from their code. Second, as Web applications be-

come functionally more complex, they will issue more database requests per HTTP requests. Finally,

just like queries, we believe that even updates could be coalesced to reduce the number of round-trips an

application has to make to access its data.

125



Chapter 5 Holistic Query Transformations for Dynamic Web Applications

126



Chapter 6

Conclusions

The world is gradually moving to a service oriented architecture, as is evident by the increasing popular-

ity of Web services offered bygoogle.com and traditional software services offered bysalesforce.com .

The growing popularity of CDNs is another facet of the same trend. CDNs allow Web applications to

outsource the delivery of content at an economical pay-per-usage model, freeing application administra-

tors from the difficult task of creating and maintaining infrastructure for delivering content. However,

CDN technology is not sufficient for dynamic Web applicationswhere the database is the bottleneck. In

this thesis we proposed a DBSS which can offload the work from anapplication’s database server(s). The

DBSS forms the key component of a scalability service, which can provide the same benefit as CDNs to

dynamic Web applications. We addressed two key issues in designing a DBSS: (a) the privacy concerns

in caching applications’ data, and (b) the performance concerns due to the high latency applications face

in accessing their data in a DBSS setting.

In assuaging applications’ privacy concerns, we discovered that there is an important privacy-scalability

tradeoff in the scalability service setting. We studied this tradeoff both formally and empirically. We

provided two solutions for managing this tradeoff: (i) An algorithm for identifying data that can be kept

private without any scalability penalty, (ii) A more general approach called invalidation clues for fine-

grained control over this privacy-scalability tradeoff. We verified the effectiveness of both our solutions

by executing three benchmark applications on our prototypescalability service system.

127



Chapter 6 Conclusions

To address the performance concerns arising due to the high latency applications face in accessing

their data in a DBSS setting, we proposed two transformationsthat reduce the number of times appli-

cations must access their data. We confirmed that these transformations apply widely and are indeed

effective in reducing the number of times applications mustaccess their data. We verified the effective-

ness of our transformations by executing the three benchmark applications in a traditional centralized

setting as well as our prototype scalability service system.

6.1 Contributions

This thesis made the following contributions:

• We designed, built, and evaluated thefirst prototype of a DBSS, which comprised the centerpiece

of our scalability service architecture for dynamic applications. We used our prototype scalabil-

ity service to scale three benchmark applications (anAUCTION, a BBOARD, and aBOOKSTORE

benchmark) – for each application, we increased the scalability by a factor of at least 2. To identify

the bottlenecks in the system, we also presented a breakdownof the latency a user experiences in

a centralized setting as well as a DBSS setting.

• We presented a convenient shortcut to managing the security-scalability tradeoff that appears in

the DBSS setting. Our solution is to (statically) determine which data can be encrypted without

any impact on scalability. We confirmed the effectiveness ofour static analysis method, by apply-

ing it to three benchmark applications. In all three cases, our static analysis identified significant

portions of the data that could be secured without impactingscalability. Moreover, a large part

of this identified data was “moderately sensitive,” which application administrators would want

to encrypt, if they knew that doing so did not have a scalability penalty. The security-scalability

tradeoff did not need to be considered for the data that was identified by our static analysis, sig-

nificantly lightening the burden on the application administrator managing the tradeoff.

• We presentedinvalidations clues, a general framework that enabled applications to reveal little

data to the DBSS, yet provide sufficient information to limit unnecessary invalidations of results

128



Chapter 6.2 Future Work

cached at the DBSS. Compared with previous approaches, invalidation clues provided increased

scalability to the DBSS for a target security/privacy level,as well as more fine-grained control

of this tradeoff. Using three realistic Web benchmark applications, we illustrated the issues and

solutions for generating effective clues, e.g., by identifying categories requiring database clues,

and then evaluated the solutions on our DBSS prototype.

• We described two complementary compiler-driven holistic transformations that lowered the total

delay an application code had to endure to access its data, onan HTTP request. We presented

algorithms for automating these transformations in a source-to-source compiler [39, 81]. Using an

AUCTION, a BBOARD, and aBOOKSTOREbenchmark, we confirmed that these transformations:

(i) applied to around 25%, 75%, and 50% of the runtime interactions for theAUCTION, BBOARD,

and theBOOKSTOREbenchmark applications, and (ii) indeed reduced the user latency in a DBSS

setting. Our results showed that applying both transformation simultaneously improves scalability

the most – the scalability improved by over 10% for each application benchmark.

6.2 Future Work

DBSSs and scalability services for dynamic content applications are natural extensions of CDNs. In

this thesis we introduced scalability services and addressed two key problems that applications using a

scalability service would encounter. Our system is not ready for real world deployment yet. A large-

scale evaluation of the DBSS is needed to understand the performance of the scalability service in the

real world. There is another promising avenue for future work. As we saw in Chapter 5, multiple round-

trips over the wide-area network can result in significantlyhigher user latency. A compiler-analysis

based tool coupled with a runtime component that can automatically place code and data together in the

scalability service infrastructure will be extremely useful in this framework.

129



Chapter 6 Conclusions

130



Appendix A

Proofs for Chapter 3

A.1 Proofs for Section 3.4.4

Lemma 4. Let the update template be an insertion, and the query template be a SPJ query having

conjunctive selection predicates, with equality as the joinoperator, augmented by an optional order-by

construct. For the update/query template pair, whenever a minimal statement-inspection strategy (MSIS)

evaluates to invalidate (denoted I), a minimal view-inspection strategy (MVIS) also evaluates to I, i.e.,

(UT
i ∈ I )∧ (QT

j ∈ E ∩N ) ⇒Ci j = Bi j .

Proof. See Appendix A.2.

Lemma 5. If the update template is a deletion, and the query template is result-unhelpful with respect to

the update template, then for the update/query template pair, whenever a minimal statement-inspection

strategy (MSIS) evaluates to invalidate (denoted I), a minimal view-inspection strategy (MVIS) also

invalidates to I, i.e.,(UT
i ∈ D)∧ (〈UT

i ,QT
j 〉 ∈ H ) ⇒Ci j = Bi j .

Proof. If the query template is result-unhelpful with respect to the update template, then by definition,

no attribute used in the selection conditions of the update is preserved by the query, i.e.,〈UT
i ,QT

j 〉 ∈

H ⇒ S(UT
i )∩P(QT

j ) = {}. Therefore there is no information in the query result that can aid in reducing

invalidations. HenceCi j equalsBi j .

131



Chapter A Proofs for Chapter 3

Lemma 6. If the update template is a modification and either the updatetemplate is ignorable with

respect to the query template, or, the query template is result-unhelpful with respect to the update tem-

plate, then for the update/query template pair, whenever a minimal statement-inspection strategy (MSIS)

evaluates to invalidate (denoted I), a minimal view-inspection strategy (MVIS) also evaluates to I, i.e.,

(UT
i ∈ M )∧ (〈UT

i ,QT
j 〉 ∈ G ∪H ) ⇒Ci j = Bi j .

Proof. Lemma 6 can be proved in two parts:

Part 1 (〈UT
i ,QT

j 〉 ∈ G ⇒ Cij = Bij ): If the update template is ignorable with respect to the query

template, then Lemma 1 states thatAi j equals 0, i.e.,〈UT
i ,QT

j 〉 ∈ G ⇒ Ai j = 0. Further, property 3

(Section 3.2.3) implies that ifAi j = 0, then the equalityAi j = Bi j = Ci j = 0 holds. HenceCi j equalsBi j .

Part 2 (〈UT
i ,QT

j 〉 ∈ H ⇒ Cij = Bij ): If the query template is result-unhelpful with respect to the

update template, then by definition, no attribute used in theselection conditions of the update is preserved

by the query, i.e.,〈UT
i ,QT

j 〉 ∈ H ⇒ S(UT
i )∩P(QT

j ) = {}. Therefore there is no information in the query

result that can aid in reducing invalidations. HenceCi j equalsBi j .

A.2 Proof of Lemma 4

In this section we prove Lemma 4. To keep the proof simple, we restrict the query language so that no

tuple of the result uses more than one tuple from any single base relation. (This restriction, for example,

rules out self-joins.) Our proof can, however, be extended so that this assumption is not needed. We start

by providing background on evaluation of a SPJ query in Appendix A.2.1. Then, in Appendix A.2.2,

we describe additional database operations we use in our proof. In Appendix A.2.3, we discuss under

what conditions the result of a query changes because of an insertion. Finally, we formulate intermediate

results as lemmas and prove Lemma 4 in Appendix A.2.4.

132



Chapter A.2 Proof of Lemma 4

A.2.1 Evaluation of a query

Let there ben relationsR1, . . . ,Rn over which queryQ is defined. Any queryQ that meets our assump-

tions can be evaluated in the following four steps:

1. EvaluateRCP as the Cartesian Product ofR1, . . . ,Rn, i.e.,RCP = R1× . . .×Rn.

2. Keep tuples of the Cartesian Product that satisfy all selection predicates.

3. Order the tuples according to the order-by construct, if present.

4. Prune the attributes of the tuple, according to the projection operation. (Note that duplicates are

not eliminated because of the multi-set semantics.)

Recall that for any databaseD, we useQ[D] to denote the result of evaluatingQ over D. Let a tuple

t in the Cartesian ProductRCP be a cross product of tuplest1, . . . , tn belonging to relationsR1, . . . ,Rn,

respectively, i.e.,tCP = t1× . . .× tn, wheretCP ∈ RCP∧ ti ∈ Ri,∀1≤ i ≤ n. If tCP satisfies the selection

predicates of queryQ, then some tuplet ′, same astCP but perhaps with fewer attributes, is present in

Q[D]. Now, consider a databaseD′ with the same schema asD, and only one tupleti in each relation

Ri. Then,Q[D′] = {t ′}. In fact, for any tuplet ′ in Q[D], a databaseD′ with the same schema asD,

but only one tuple per relation can be constructed so thatQ[D′] = {t ′}. We call such a databaseD′ as

a Single-Tuple-Per-Relation (STPR) databaseand denote the set of such databases for a database/query

pair asDS(D,Q).

We next introduce database operations permitted in our framework.

A.2.2 Additional Database Operations

We define the following three additional database operations:

1. Subset relation for databases (denoted⊆): For given database instancesD1 andD2, D1 is asubset

of D2 (denotedD1 ⊆ D2) if D1 has the same schema asD2 and each relation inD1 is a subset of

corresponding relation inD2.

133



Chapter A Proofs for Chapter 3

2. Union function for databases (denoted∪): For given database instancesD1 andD2 with the same

schema, the union ofD1 andD2 is a database where each relation inD1∪D2 is the set union of

the corresponding relations inD1 andD2.

3. Minimize function for databases(denotedm): For a given databaseD and queryQ, the output,

which we call min-Database and denotem(D,Q), of the minimize function is database that satisfies

the following two properties: a) The result of evaluating the query on the database is the same,

irrespective of whether the evaluation is done before or after applying the minimize function , i.e.,

Q[D] = Q[m(D,Q)], and b) The query when evaluated on any subset of the min-Database that is

not the min-Database itself, yields a result other thanQ[m(D,Q)], i.e.,∀D1 ⊆m(D,Q) (m(D,Q)⊆

D1 ∨ Q[D1] 6= Q[m(D,Q)]). To evaluate a minimize function, we use the following result, which

we state without proof: A tuplet is present in a relationR of the min-Database if and only if

the tuple is present in relationR of any of the STPR databases corresponding to the database and

query. Using our union function,m(D,Q) = ∪D′∈DS(D,Q)D
′.

A.2.3 Does the result of a query change on an insertion?

We start by defining two terms: local selection predicates and join-attributes, which are relevant for the

discussion of whether query resultQ[D] changes on insertionU or not. Assume that insertionU adds a

tuplet to relationRi.

Local selection predicatesof a queryQ with respect to an insertionU are selection predicates of the

query that do not involve attributes of any relations other thanRi. For example, “toyname = ?” would

be a local selection predicate ofQT
1 for any insertion to thetoys relation of theTOYSTOREapplication

(Table 3.3).

Join-attributesof a queryQ with respect to an insertionU are attributes of relationRi that occur in

any selection predicate that also involves attributes of any relation other thanRi. For example, attribute

cid is a join attribute of queryQT
3 with respect to insertionUT

2 of theTOYSTOREapplication.

InsertionU affects the result of queryQ if and only if:

134



Chapter A.2 Proof of Lemma 4

1. The inserted tuplet satisfies the local selection predicates.

2. Tuplet joins with other tuples of the database. Whether or not the tuple can join with other tuples

depends only on the tuple’s values for the join attribute.

Next for an insertion/query pair, we define a special class ofdatabases for which the insertion changes

the result of a query.

Complementary database:A complementary database for an insertionU , queryQ pair, denotedDC, is

a database which becomes a STPR database after updateU is applied to it, i.e.,DC+U ∈DS(DC+U,Q).

It is easy to see that a complementary database exists only ifthe inserted tuple satisfies the local selection

predicates.

A.2.4 Intermediate Lemmas and Proofs

Lemma 7. For any given database D, insertion U, and query Q, the results of evaluating the query before

and after applying the insertion to the database are different, if and only if a complementary database

DC corresponding to the insertion/query pair is a subset of thedatabase, i.e., Q[D] 6= Q[D +U ] ⇔

∃DC (DC +U ∈ DS(DC +U,Q)).

Proof. Proof of the “if” part : Let tupletCP represent the Cartesian Product of tuples of the comple-

mentary database with insertionU . TupletCP satisfies all selection predicates of the query and so, some

tuplet ′, same astCP but perhaps with fewer attributes, is present in the result of the query evaluated after

the insertion. Further, since duplicates are not eliminated when projection is applied, the result of the

query evaluated over the database containing the inserted tuple has one tuple more than the result of the

query evaluated over the database not containing the inserted tuple.

Proof of the “only if” part by construction : If the result of queryQ changes because of insertionU ,

then because of the evaluation process in Appendix A.2.1, there cannot be fewer tuples in the result after

the insertion. In fact,Q[D+U ] will have one tuple more thanQ[D], which means the setDS(D+U,Q)

will have one more member than the setDS(D,Q). Let insertionU inserts tuplet in relationRi. Database

135



Chapter A Proofs for Chapter 3

DC can be constructed by removingt from the database that is present inDS(D +U,Q), but not in

DS(D,Q). It can be verified thatDC is indeed a complementary database.

Lemma 8. Assume there exists a complementary database DC for an insertion/query pair. Then for any

database, either the results of evaluating the query on the minimal database before and after applying

insertion U are different, or the results of evaluating the query on the min-Database before and after the

union with the complementary database are same, i.e.,(Q[m(D,Q)] 6= Q[m(D,Q)+U ])∨ (Q[m(D,Q)] =

Q[m(D,Q)∪DC]).

Proof. If the results of evaluating the query on the minimal database before and after applying insertion

U are different, then the proof is complete. Otherwise, the result of evaluating the query on the minimal

database before and after applying insertionU are the same, i.e.,

Q[m(D,Q)] = Q[m(D,Q)+U ] (A.1)

From Appendix A.2.3, we know that for logic expression (A.1)to hold, either the inserted tuple fails

to a) satisfy the local selection predicates, or b) join withother tuples. Because of the assumption in

Lemma 8 about existence of complementary database, the inserted tuple must fail to join with other

tuples for logic expression (A.1) to hold.

Assume the insertion adds tuplet to relationRi. Also assumev is the value of the inserted tuple’s

join attributes. Sincet does not join with other tuples, and min-Database has no tuples that do not

contribute to the result, there can be no tuple inRi with value of join attributes equal tov. So when

union of complementary databaseDC is taken withm(D,Q), the result of the query does not change, i.e.,

Q[m(D,Q)] = Q[m(D,Q)∪DC].

We are now ready to prove Lemma 4.

Proof. Proof of Lemma 4 by contradiction. Assume to the contrary that there exists queryQ, an

instance ofQT
i , insertionU , an instance ofUT

i , current database instanceDP (before the application

of updateU), and a current viewVp so that insertionU causes a minimal statement-inspection strategy

136



Chapter A.2 Proof of Lemma 4

(MSIS) S1 to invalidate the cached result of the query but does not cause a minimal view-inspection

strategy (MVIS)S2 to invalidate the cached result of the query.

By definition of a MSIS (Section 3.2.2), it follows that there exists database instanceD such that

applying insertionU changes the result of evaluating queryQ on the database instance, i.e.,

∃D (Q[D) 6= Q[D+U ]) (A.2)

Applying Lemma 7 to logic expression (A.2) implies that there exists complementary databaseDC

corresponding to the insertion/query pair.

Further, from the definition of a MVIS, it follows that on any databaseD, if queryQ evaluates toVp,

then applying updateU to the database does not affect the result of evaluating query Q on the database,

i.e.,

¬∃D ((Q[D] = Vp)∧ (Q[D] 6= Q[D+U ])) (A.3)

or, ∀D ((Q[D] = Vp) ⇒ (Q[D] = Q[D+U ])) (A.4)

We now construct a databaseD′ that does not obey logic expression (A.4), i.e.,Q[D′] = Vp ∧Q[D′] 6=

Q[D′ +U ].

Recall that databaseDC is a complementary database corresponding to theU/Q pair and database

DP is the current database instance before application of the update. We claimD′ = m(Dp,Q)∪DC.

Mathematically,Q[DP] = Vp. By definition of a minimize function (Appendix A.2.2), we know that

the result of evaluating the query on the minimal databasem(DP,Q) is alsoVp, i.e.,Q[m(DP,Q)] = Vp.

Further, because a complementary database exists for the insertion/query pair and logic expression (A.4)

applies, the second condition of Lemma 8 holds, and the result of evaluating the query on the minimal

database both before and after the union with a complementary databaseDC remains the same, i.e.,

Q[m(DP,Q)] = Q[m(DP,Q)∪DC] (A.5)

Using Lemma 7 in conjunction with logic expression (A.5) yields that the result of the query changes on

applying the insertion to the databasem(DP,Q)∪DC, i.e.,Q[m(DP,Q)∪DC] 6= Q[m(DP,Q)∪DC +U ].

137



Chapter A Proofs for Chapter 3

Moreover, sinceQ[m(DP,Q)] = Vp, logic expression (A.5) impliesQ[m(DP,Q)∪DC] = Vp. SoQ[D′] =

Vp ∧Q[D′] 6= Q[D′ +U ] for D′ = m(DP,Q)∪DC. Hence contradiction.

138



Bibliography

[1] AdventNet Inc. Zoho Creator.http://creator.zoho.com .

[2] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Motwani, U. Srivastava,

D. Thomas, and Y. Xu. Two can keep a secret: A distributed architecture for secure database

services. InProc. CIDR, 2005.

[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, andYirong Xu. Order preserving encryp-

tion for numeric data. InProc. SIGMOD, 2004.

[4] Rakesh Agrawal, Ramakrishnan Srikant, and Dilys Thomas. Privacy preserving OLAP. InProc.

SIGMOD, 2005.

[5] Fuat Akal, Can T̈urker, Hans-J̈org Schek, Yuri Breitbart, Torsten Grabs, and Lourens Veen. Fine-

grained replication and scheduling with freshness and correctness guarantees. InProc. VLDB,

2005.

[6] M. Altinel, C. Bornhvd, S. Krishnamurthy, C. Mohan, H. Pirahesh, and B. Reinwald. Cache

tables: Paving the way for an adaptive database cache. InProc. VLDB, 2003.

[7] Amazon Web Services.http://aws.amazon.com .

[8] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy: Adynamic data cache for Web

applications. InProc. ICDE, 2003.

[9] K. Amiri, S. Sprenkle, R. Tewari, and S. Padmanabhan. Exploiting templates to scale consistency

maintenance in edge database caches. InProc. Eighth International Workshop on Web Content

Caching and Distribution, Hawthorne, New York, September 2003.

[10] Khalil Amiri, David Petrou, Gregory R. Ganger, and GarthA. Gibson. Dynamic function place-

ment for data-intensive cluster computing. InUSENIX Annual Technical Conference, 2000.

139

http://creator.zoho.com
http://aws.amazon.com


A Bibliography

[11] C. Amza, A. Cox, and W. Zwaenepoel. Conflict-aware scheduling for dynamic content applica-

tions. InUSENIX Symposium on Internet Technologies and Systems, 2003.

[12] Cristiana Amza, Gokul Soundararajan, and Emmanuel Cecchet. Transparent caching with strong

consistency in dynamic content web sites. InICS ’05: Proceedings of the 19th annual interna-

tional conference on Supercomputing, New York, NY, USA, 2005.

[13] Martin Arlitt, Ludmilla Cherkasova, John Dilley, Rich Friedrich, and Tai Jin. Evaluating content

management techniques for Web proxy caches. InProceedings of the Workshop on Internet

Server Performance (WISP99), 1999.

[14] Roberto J. Bayardo and Rakesh Agrawal. Data privacy through optimal k-anonymization. In

ICDE ’05: Proceedings of the 21st International Conference onData Engineering (ICDE’05),

Washington, DC, USA, 2005.

[15] Philip A. Bernstein, Alan Fekete, Hongfei Guo, Raghu Ramakrishnan, and Pradeep Tamma.

Relaxed-currency serializability for middle-tier cachingand replication. InSIGMOD ’06: Pro-

ceedings of the 2006 ACM SIGMOD international conference on Management of data, New York,

NY, USA, 2006.

[16] Philip A. Bernstein and Nathan Goodman. An algorithm forconcurrency control and recovery in

replicated distributed databases.ACM Transactions on Database Systems, 9(4), 1984.

[17] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman.Concurrency Control and Recov-

ery in Database Systems. Addison-Wesley, 1987.

[18] Jośe A. Blakeley, Neil Coburn, and P. Larson. Updating derived relations: Detecting irrelevant

and autonomously computable updates.ACM Transactions on Database Systems, 14(3), 1989.

[19] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.Commun. ACM,

13(7), 1970.

[20] Daniel Brodie, Amrish Gupta, and Weisong Shi. Accelerating dynamic web content delivery

using keyword-based fragment detection.Journal of Web Engineering, 2005.

[21] Angela Demke Brown and Todd C. Mowry. Taming the memory hogs: using compiler-inserted

releases to manage physical memory intelligently. InOSDI’00: Proceedings of the 4th conference

on Symposium on Operating System Design & Implementation, Berkeley, CA, USA, 2000.

140



A Bibliography

[22] Erik Brynjolfsson, Yu (Jeffrey) Hu, and Michael D. Smith. Consumer surplus in the digital econ-

omy: Estimating the value of increased product variety at online booksellers.Management Sci-

ence, 49(11), 2003.http://www.heinz.cmu.edu/˜mds/cs.pdf .

[23] CacheFly.http://www.cachefly.com .

[24] California Senate. Bill SB 1386.http://info.sen.ca.gov/pub/01-02/bill/sen/sb_1351-1 400/sb_1386

2002.

[25] K. Candan, D. Agrawal, W. Li, O. Po, and W. Hsiung. View invalidation for dynamic content

caching in multitiered architectures. InProc. VLDB, 2002.

[26] Michael J. Carey, Michael J. Franklin, Miron Livny, and Eugene J. Shekita. Data caching tradeoffs

in client-server dbms architectures. InProc. SIGMOD, 1991.

[27] Jim Challenger, Arun Iyengar, Karen Witting, Cameron Ferstat, and Paul Reed. A publishing

system for efficiently creating dynamic web content. InProc. INFOCOM, 2000.

[28] Fay Chang and Garth A. Gibson. Automatic i/o hint generation through speculative execution. In

OSDI ’99: Proceedings of the third symposium on Operating systems design and implementation,

Berkeley, CA, USA, 1999.

[29] Surajit Chaudhuri. An overview of query optimization inrelational systems. InPODS ’98:

Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of

database systems, New York, NY, USA, 1998.

[30] Surajit Chaudhuri and Kyuseok Shim. Optimization of queries with user-defined predicates.ACM

Transactions on Database Systems, 24(2), 1999.

[31] B. Chen and R. Morris. Certifying program execution with secure processors. InUSENIX HotOS

Workshop, 2003.

[32] Chun Yi Choi and Qiong Luo. Template-based runtime invalidation for database-generated web

contents. InAsia Pacific Web Conference, 2004.

[33] Coghead Inc.http://www.coghead.com .

[34] E. Cohen, E. Halperin, and H. Kaplan. Performance aspects of distributed caches using TTL-

based consistency. InProc. Twenty-Eighth International Colloquium on Automata, Languages

and Programming, Crete, Greece, July 2001.

141

http://www.heinz.cmu.edu/~mds/cs.pdf
http://www.cachefly.com
http://info.sen.ca.gov/pub/01-02/bill/sen/sb_1351-1400/sb_1386_bill_20020926_chaptered.html
http://www.coghead.com


A Bibliography

[35] Kenneth M. Curewitz, P. Krishnan, and Jeffrey Scott Vitter. Practical prefetching via data com-

pression. InSIGMOD ’93: Proceedings of the 1993 ACM SIGMOD internationalconference on

Management of data, 1993.

[36] Anindya Datta, Kaushik Dutta, Helen Thomas, Debra VanderMeer, Suresha, and Krithi Ramam-

ritham. Proxy-based acceleration of dynamically generated content on the world wide web: an

approach and implementation. InProc. SIGMOD, New York, NY, USA, 2002.

[37] David J. DeWitt, Philippe Futtersack, David Maier, andFernando Velez. A study of three al-

ternative workstation-server architectures for object oriented database systems. InProc. VLDB,

1990.

[38] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl. Globally distributed content

delivery. IEEE Internet Computing, 6(5):50–58, 2002.

[39] Laurie J. Hendren et al. Soot: a java optimization framework.

http://www.sable.mcgill.ca/soot/ .

[40] Li Fan, Pei Cao, Wei Lin, and Quinn Jacobson. Web prefetching between low-bandwidth clients

and proxies: potential and performance. InSIGMETRICS ’99: Proceedings of the 1999 ACM SIG-

METRICS international conference on Measurement and modeling of computer systems, 1999.

[41] Hibernate: Relational Persistence for Java and .NET.http://www.hibernate.org .

[42] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Paul Gauthier. Cluster-

based scalable network services. InSymposium on Operating Systems Principles, 1997.

[43] M. Franklin and M. Carey. Client-server caching revisited. In Proc. International Workshop on

Distributed Object Management, Edmonton, Canada, August 1992.

[44] Michael J. Franklin, Michael J. Carey, and Miron Livny. Global memory management in client-

server database architectures. InProc. VLDB, San Francisco, CA, USA, 1992.

[45] Richard A. Ganski and Harry K. T. Wong. Optimization of nested sql queries revisited.SIGMOD

Record, 16(3), 1987.

[46] Charlie Garrod, Amit Manjhi, Anastassia Ailamaki, Phillip B. Gibbons, Bruce M. Maggs,

Todd C. Mowry, Christopher Olston, and Anthony Tomasic. Scalable consistency man-

agement for web database caches. Technical report, CarnegieMellon University, 2006,

http://www.cs.cmu.edu/˜manjhi/scalableConsistency.p df .

142

http://www.sable.mcgill.ca/soot/
http://www.hibernate.org
http://www.cs.cmu.edu/~manjhi/scalableConsistency.pdf


A Bibliography

[47] G. Graefe. Executing nested queries. InConference on Database Systems for Business, Technol-

ogy and the Web, 2003.

[48] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution. InProc.

SIGMOD, Montreal, Canada, June 1996.

[49] Hongfei Guo, Per-Ake Larson, and Raghu Ramakrishnan. Caching with ”good enough” currency,

consistency, and completeness. InVLDB ’05: Proceedings of the 31st international conference

on Very large data bases, 2005.

[50] Hongfei Guo, Per-Ake Larson, Raghu Ramakrishnan, and Jonathan Goldstein. Relaxed currency

and consistency: how to say ”good enough” in SQL. InSIGMOD ’04: Proceedings of the 2004

ACM SIGMOD international conference on Management of data, New York, NY, USA, 2004.

[51] Ashish Gupta and Jose A. Blakeley. Using partial information to update materialized views.

Information Systems, 20(9), 1995.

[52] Ashish Gupta and Iderpal Singh Mumick, editors.Materialized views: techniques, implementa-

tions, and applications. MIT Press, Cambridge, MA, USA, 1999.

[53] Ravindra Guravannavar, H. S. Ramanujam, and S. Sudarshan. Optimizing nested queries with

parameter sort orders. InVLDB ’05: Proceedings of the 31st international conferenceon Very

large data bases, 2005.

[54] Hakan Hacigumus, Bala Iyer, Chen Li, and Sharad Mehrotra.Executing SQL over encrypted data

in the database service provider model. InProc. SIGMOD, 2002.

[55] Hakan Hacigumus, Bala Iyer, and Sharad Mehrotra. Providing database as a service. InProc.

ICDE, 2002.

[56] Hakan Hacigumus, Bala Iyer, and Sharad Mehrotra. Efficient execution of aggregation queries

over encrypted relational databases. In9th International Conference on Database Systems for

Advanced Applications, 2004.

[57] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A privacy-preserving index for range queries. In

Proc. VLDB, 2004.

[58] Akamai Technologies Inc. Akamai and IBM unveil edge computing solution.

www.akamai.com/html/about/press/releases/2002/press _050802.html .

143

www.akamai.com/html/about/press/releases/2002/press_050802.html


A Bibliography

[59] Akamai Technologies Inc. and Jupiter Research Inc. Akamai and Jupiter Research iden-

tify ’4 seconds’ as the new threshold of acceptability for retail web page response times.

http://www.akamai.com/html/about/press/releases/200 6/press_110606.html .

[60] Akamai Technologies Inc. and Quocirca. Akamai and quocirca identify ’4

second’ performance threshold for european web-based enterprise applications.

http://www.edgejava.net/html/about/press/releases/2 007/press_110707.html .

[61] Time Inc. Who’s really participating in web 2.0.http://www.time.com/time/business/article/0,8599,16 14751,

[62] Jakarta Project. Apache Tomcat.

[63] Murat Kantarcioglu and Chris Clifton. Security issues inquerying encrypted data. Technical

Report TR-04-013, Purdue University, 2004.

[64] Won Kim. On optimizing an sql-like nested query.ACM Transactions on Database Systems, 7(3),

1982.

[65] Thomas M. Kroeger and Darrell D. E. Long. Predicting filesystem actions from prior events. In

ATEC’96: Proceedings of the Annual Technical Conference on USENIX 1996 Annual Technical

Conference, Berkeley, CA, USA, 1996.

[66] Per-Ake Larson, Jonathan Goldstein, and Jingren Zhou.Mtcache: Transparent mid-tier database

caching in sql server. InICDE ’04: Proceedings of the 20th International Conference onData

Engineering, Washington, DC, USA, 2004.

[67] Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. Incognito: efficient full-domain

k-anonymity. InProc. SIGMOD, New York, NY, USA, 2005.

[68] A. Y. Levy and Y. Sagiv. Queries independent of updates.In Proc. VLDB, 1993.

[69] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy beyondk-

anonymity and̀ -diversity. InProc. ICDE, 2007.

[70] W. Li, O. Po, W. Hsiung, K. S. Candan, D. Agrawal, Y. Akca, and K. Taniguchi. CachePortal

II: Acceleration of very large scale data center-hosted database-driven web applications. InProc.

VLDB, 2003.

[71] Limelight Networks.http://www.limelightnetworks.com .

144

http://www.akamai.com/html/about/press/releases/2006/press_110606.html
http://www.edgejava.net/html/about/press/releases/2007/press_110707.html
http://www.time.com/time/business/article/0,8599,1614751,00.html
http://www.limelightnetworks.com


A Bibliography

[72] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B.G. Lindsay, and J. F. Naughton.

Middle-tier database caching for e-business. InProc. SIGMOD, 2002.

[73] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrishnan Venkitasub-

ramaniam. l-diversity: Privacy beyond k-anonymity. In22nd IEEE International Conference on

Data Engineering, 2006.

[74] Amit Manjhi, Anastassia Ailamaki, Bruce M. Maggs, Todd C.Mowry, Christopher Olston, and

Anthony Tomasic. Simultaneous scalability and security for data-intensive web applications. In

SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD internationalconference on Management

of data, New York, NY, USA, 2006.

[75] Mark Matthews. Type IV JDBC driver for MySQL.

[76] Todd C. Mowry, Angela K. Demke, and Orran Krieger. Automatic compiler-inserted i/o prefetch-

ing for out-of-core applications. InOSDI ’96: Proceedings of the second USENIX symposium on

Operating systems design and implementation, New York, NY, USA, 1996.

[77] Steven S. Muchnick.Advanced compiler design and implementation. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 1997.

[78] L. Mummert and M. Satyanarayanan. Large granularity cache coherence for intermittent connec-

tivity. In USTC’94: Proceedings of the USENIX Summer 1994 Technical Conference on USENIX

Summer 1994 Technical Conference, Berkeley, CA, USA, 1994.

[79] MySQL AB. MySQL database server.

[80] Alexandros Nanopoulos, Dimitrios Katsaros, and Yannis Manolopoulos. A data mining algorithm

for generalized web prefetching.IEEE Transactions on Knowledge and Data Engineering, 15(5),

2003.

[81] ObjectWeb Consortium. ASM.http://asm.objectweb.org .

[82] ObjectWeb Consortium. Rice University bidding system.http://rubis.objectweb.org/ .

[83] ObjectWeb Consortium. Rice University bulletin board system.

http://jmob.objectweb.org/rubbos.html .

[84] Christopher Olston, Amit Manjhi, Charles Garrod, Anastassia Ailamaki, Bruce M. Maggs, and

Todd C. Mowry. A scalability service for dynamic web applications. InProc. CIDR, 2005.

145

http://asm.objectweb.org
http://rubis.objectweb.org/
http://jmob.objectweb.org/rubbos.html


A Bibliography

[85] Ruby on Rails.http://www.rubyonrails.org .

[86] Venkata N. Padmanabhan and Jeffrey C. Mogul. Using predictive prefetching to improve world

wide web latency.SIGCOMM Comput. Commun. Rev., 26(3), 1996.

[87] Panther Express.http://www.pantherexpress.com .

[88] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed prefetching

and caching. InSOSP ’95: Proceedings of the fifteenth ACM symposium on Operating systems

principles, New York, NY, USA, 1995.

[89] Christian Plattner and Gustavo Alonso. Ganymed: Scalable replication for transactional web

applications. InMiddleware, 2004.

[90] Dallan Quass, Ashish Gupta, Inderpal Singh Mumick, andJennifer Widom. Making views self-

maintainable for data warehousing. InProc. Fourth International Conference on Parallel and

Distributed Information Systems, 1996.

[91] Mohan Rajagopalan, Saumya K. Debray, Matti A. Hiltunen,and Richard D. Schlichting. Cassy-

opia: compiler assisted system optimization. InHOTOS’03: Proceedings of the 9th conference

on Hot Topics in Operating Systems, 2003.

[92] Lakshmish Ramaswamy, Arun Iyengar, Ling Liu, and Fred Douglis. Automatic detection of frag-

ments in dynamically generated web pages. InWWW ’04: Proceedings of the 13th international

conference on World Wide Web, New York, NY, USA, 2004.

[93] Relationals, Inc.http://www.longjump.com .

[94] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and extensible algorithms

for multi query optimization.SIGMOD Record, 29(2), 2000.

[95] Mahadev Satyanarayanan. Fundamental challenges in mobile computing. InFifteenth Annual

ACM Symposium on Principles of Distributed Computing, 1996.

[96] Bruce Schneier.Applied Cryptography: Protocols, Algorithms, and Source Code in C. John

Wiley & Sons, 1996.

[97] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter.Open versus closed: a cautionary

tale. InNSDI’06: Proceedings of the 3rd conference on 3rd Symposium on Networked Systems

Design & Implementation, Berkeley, CA, USA, 2006.

146

http://www.rubyonrails.org
http://www.pantherexpress.com
http://www.longjump.com


A Bibliography

[98] Timos K. Sellis. Multiple-query optimization.ACM Transactions on Database Systems, 13(1),

1988.

[99] Simple measurements on the infrastructure of Dreamhost, a leading Web-hosting company.

http://www.dreamhost.com/ .

[100] Michael Stonebraker, Jeff Anton, and Eric Hanson. Extending a database system with procedures.

ACM Transactions on Database Systems, 12(3), 1987.

[101] L. Sweeney. k-anonymity: A model for protecting privacy. International journal of uncertainty,

fuzziness, and knowledge-based systems, 2002.

[102] Latanya Sweeney. Achieving k-anonymity privacy protection using generalization and suppres-

sion. International journal of uncertainty, fuzziness, and knowledge-based systems, 10(5), 2002.

[103] The Washington Post. Advertiser charged in massive database theft.

http://www.washingtonpost.com/wp-dyn/articles/A4364 -2004Jul21.html , July,

2004.

[104] Transaction Processing Council. TPC-W specification, version 1.7.

[105] Trusted Computing Group. Trusted Platform Module MainSpecification, Version 1.2.

http://www.trustedcomputing.org .

[106] Mark Tsimelzon, Bill Weihl, Joseph Chung, Dan Frantz, John Basso, Chirs Newton, Mark Hale,

Larry Jacobs, Conleth O’Connell, and Mark Nottingham (editor). ESI Language Specification

1.0. http://www.w3.org/TR/2001/NOTE-esi-lang-20010804 .

[107] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold, Mike

Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experimental environment for distributed

systems and networks. InProc. OSDI, 2002.

[108] Fan Yang, Nitin Gupta, Nicholas Gerner, Xin Qi, Alan Demers, Johannes Gehrke, and Jayavel

Shanmugasundaram. A unified platform for data driven web applications with automatic client-

server partitioning. InWWW, New York, NY, USA, 2007.

[109] Fan Yang, Jayavel Shanmugasundaram, Mirek Riedewald,and Johannes Gehrke. Hilda: A high-

level language for data-driven web applications. InProc. ICDE, 2006.

147

http://www.dreamhost.com/
http://www.washingtonpost.com/wp-dyn/articles/A4364-2004Jul21.html
http://www.trustedcomputing.org
http://www.w3.org/TR/2001/NOTE-esi-lang-20010804

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Example Scenarios
	1.1.1 E-Commerce
	1.1.2 Civic Emergency Management

	1.2 Challenges in Creating a Scalability Service for Dynamic Web Applications
	1.3 Related Work
	1.3.1 Database Services
	1.3.2 Database Caching and Replication
	1.3.3 Privacy
	1.3.4 Commercial Efforts

	1.4 Our Approach
	1.4.1 Overall Architecture
	1.4.2 Guaranteeing Privacy and Security in a DBSS Setting
	1.4.3 Scalability-Conscious Security Design Methodology
	1.4.4 Invalidation Clues
	1.4.5 Holistic Transformations to Reduce User Latencies

	1.5 Contributions
	1.6 Thesis Organization

	2 Architecture of the Scalability Service
	2.1 Home Server
	2.2 DBSS Node
	2.2.1 Cache Structure
	2.2.2 Handling Database Queries
	2.2.3 Handling Database Updates
	2.2.4 Consistency
	2.2.5 Other Implementation Details

	2.3 CDN Node
	2.4 Clients
	2.5 Invalidation Flow
	2.6 Benchmark Applications
	2.7 Methodology
	2.7.1 Evaluation Metrics
	2.7.2 Scenarios

	2.8 Preliminary Evaluation
	2.9 Summary

	3 Simultaneous Scalability and Security for Data Intensive Web Applications
	3.1 Security-Scalability Tradeoff
	3.1.1 Managing the Security-Scalability Tradeoff

	3.2 Framework for Studying the Security-Scalability Tradeoff
	3.2.1 Query and Update Model
	3.2.2 Formal Characterization of View Invalidation Strategies
	3.2.3 Mixed Invalidation Strategies

	3.3 Overview of Approach
	3.3.1 Our Approach
	3.3.2 Example

	3.4 IPM Characterization
	3.4.1 Query and Update Classification
	3.4.2 Blind vs. Template-Inspection (Does Aij=1?)
	3.4.3 Template-Inspection vs. Statement-Inspection (Does Bij=Aij?)
	3.4.4 Statement-Inspection vs. View-Inspection (Does Cij=Bij?)
	3.4.5 Database Integrity Constraints

	3.5 Evaluation
	3.5.1 IPM Characterization Results
	3.5.2 Magnitude of Security-Scalability Tradeoff
	3.5.3 Security Enhancement Achieved

	3.6 Chapter Contributions
	3.7 Summary

	4 Invalidation Clues for Database Scalability Services
	4.1 Introduction
	4.2 An Illustrative Example
	4.3 Using Clues for Invalidations
	4.3.1 Architecture
	4.3.2 Query and Update Model
	4.3.3 The Attack Model of the DBSS
	4.3.4 Database-Inspection Strategy
	4.3.5 Types of Clues

	4.4 Database Clues
	4.4.1 Templates Requiring Database Clues
	4.4.2 Implementing Database Clues
	4.4.3 Beyond Precise Invalidations

	4.5 Privacy-Scalability Tradeoffs
	4.5.1 The Limit Cases
	4.5.2 Trading Off Scalability for Privacy
	4.5.3 Equality Comparisons
	4.5.4 Order Comparisons
	4.5.5 Discussion

	4.6 Evaluation
	4.6.1 Characteristics of the Benchmark Applications
	4.6.2 Scalability Benefits of Invalidation Clues
	4.6.3 Privacy Experiments

	4.7 Chapter Contributions
	4.8 Summary

	5 Holistic Query Transformations for Dynamic Web Applications
	5.1 The merging Transformation: Clustering Related Queries
	5.1.1 Impact on the Total Work in the System
	5.1.2 Code Patterns Where the merging Transformation Applies
	5.1.3 Algorithm for Automating the merging Transformation
	5.1.4 Other Tradeoffs

	5.2 The nonblocking Transformation: Prefetching Query Results
	5.2.1 Algorithm for Automating the nonblocking Transformation
	5.2.2 Implementation Issues

	5.3 Evaluation
	5.3.1 Scalability Impact of the Transformations
	5.3.2 Latency Impact of the Transformations
	5.3.3 Applicability of the Transformations
	5.3.4 Coverage of the merging Transformation
	5.3.5 Coverage of the nonblocking Transformation

	5.4 Related Work
	5.4.1 Work Related to the nonblocking Transformation
	5.4.2 Work Related to the merging Transformation

	5.5 Summary

	6 Conclusions
	6.1 Contributions
	6.2 Future Work

	A Proofs for Chapter 3
	A.1 Proofs for Section 3.4.4
	A.2 Proof of Lemma 4
	A.2.1 Evaluation of a query
	A.2.2 Additional Database Operations
	A.2.3 Does the result of a query change on an insertion?
	A.2.4 Intermediate Lemmas and Proofs


	Bibliography

