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Abstract

Virtual machine (VM) migration has been proposed as a building block for mobile computing. An important
challenge for VM migration is to optimize the transfer of large amounts of disk and memory state. We propose
a solution based on opportunistic replay of user actions. In contrast to other replay techniques, opportunistic
replay captures user interactions with applications at the GUI level, resulting in very small replay logs that
economize network utilization. Replay of user interactions on a VM at the migration target site can result in
divergent VM state. Cryptographic hashing techniques are used to identify and transmit only the differences. We
present a study of the implementation challenges of this approach, and encouraging results with a preliminary
prototype that show savings of up to 80.5% of bytes transferred.
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1 Introduction
The use of virtual machine (VM) technology in mobile computing has attracted significant attention in the

last few years [3, 4, 6, 7]. VM migration simplifies many aspects of moving computation from one site to
another by encapsulating an entire execution state with no need for kernel, library or language support at the
migration target. However, this simplification comes at a price: a VM is typically large, often tens of GB in
size. At the low bandwidths that are common in mobile computing, the transfer time for such a large amount of
VM state is excessive.

In this paper we introduce opportunistic replay, a technique that optimizes the migration of VMs between
frequently visited hosts. Opportunistic replay builds on the key observation that replay does not have to be
perfect to be useful. A complete log of user interactions with a VM, such as keystrokes and mouse movements,
is first captured. The log is then shipped to a remote site, and replayed there on an identically-configured VM
in the same initial state. Under ideal conditions, one would intuitively expect these steps to produce identical
final VM state at the remote site. However, as explained in Section 2, conditions are rarely ideal. Consequently,
some replays may produce final VM state that is close, but not identical, to the desired final state. We use
cryptographic hashes to detect overlapping VM state at source and destination, and only ship the missing pieces.
If the log is relatively small and if replay is close to ideal, this approach realizes significant reductions in total
network transmission. However, there is never any loss of correctness even in the worst case when replay
produces no overlapping state. The only negative impact in that case is performance degradation due to the
overhead of log capture, shipping and replay.

In this work we present a study on the feasibility of opportunistic replay. We explore the challenges and
implementation issues that a complete replay system will face. We present an experimental prototype that ad-
dresses an initial subset of the challenges identified, and study its performance when migrating a VM over
different domestic-class bandwidths and after performing four different types of representative end-user work-
loads. Our prototype is able to realize savings of up to 80.5% in terms of bytes transferred, and 80.6% in terms
of time saved.

2 Challenges of VM Replay
Many factors complicate the conceptual simplicity of opportunistic replay. These can be grouped into three

broad categories that we discuss below: (i) incomplete log capture; (ii) non-deterministic externalities; and (iii)
exactly-once size effects.

Incomplete log capture: An obvious prerequisite for ideal replay is complete capture of all external stim-
uli that could perturb VM state. This includes external interrupts and data transfers from storage devices and
networks, as well as user input via keyboard, mouse and other human interaction devices. A potential concern
is the size of the log necessary for complete capture. In their work on VM logging and replay for intrusion
analysis [5], Dunlap et al. report log growth ranging from 0.04GB per day to 1.2GB per day. Further, VMware
report for their ReTrace tool a compressed log size of roughly 776 KB, without accounting for network activity,
when rebooting a Windows XP VM [20]. Both sources report only modest CPU overhead for complete logging.
However, logs growing at these rates would be impractical for VM migration, since they can easily surpass the
size of the actual state changes that would be shipped with standard VM migration techniques. An additional
concern pertains to inserting logging code in closed-source VMMs such as VMware Workstation, and closed-
source guest operating systems such as Windows XP. Without access to the source code of these components, it
may be impossible to ensure complete log capture. Just capturing user interaction is simpler, since the window-
ing system provides a natural interface for interposition of logging code. This will produce short logs that, even
though incomplete, can still be leveraged by opportunistic replay to realize significant reductions in VM state
transmission.
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Non-deterministic externalities: Deterministic code execution is another obvious requirement for replay to
produce VM state identical to the original execution. A major source of non-determinism in interactive systems
is network access to Web sites with dynamically generated content. Consider, for example, Web access to a
site that offers current stock quotes. Replaying the Web access may result in different content being returned
because stock prices have changed. Even when the intrinsic content of a Web page is unchanged, there may
be parasitic content such as advertising that is different on replay. While there is no “solution” per se to the
problem of non-deterministic externalities, opportunistic replay is able to cope because replay does not have to
be perfect to be useful. Only when there is an excessive amount of non-determinism will the overlap between
local and remote VM state drop below a useful level.

Exactly-once side effects: A difficult problem for VM replay is the occurrence of events that should not be
replayed for reasons of correctness. Consider, for example, an interactive session in which a user sends an
email message. Replaying this action would result in duplicate message transmission, which clearly violates
correctness. A safe solution is to block any outbound network traffic during replay; this will result in divergent
and less beneficial replay, but will guarantee consistency with the outside world. A solution with better replay
performance would detect logged actions that have such exactly-once side effects and skip them during replay.
Although this is a very difficult problem in its most general form, it may be relatively simple to perform conser-
vative detection of common cases. For example, if there are a set of known Web sites at which a particular user
performs financial transactions, the log can be examined for operations that reference these Web sites. An even
more conservative approach is to suppress replay of all secure Web operations, on the grounds that high-value
transactions are almost certain to occur only within the scope of a secure Web session. Finally, one could ana-
lyze network traffic and permit “read-only” transactions on well-known protocols, such as POP3’s STAT, LIST
and RETR, but not DELE.

3 Prototype Implementation
We have implemented a prototype to explore the feasibility of opportunistic replay. In order to efficiently

detect modified disk blocks, we rely on a custom block device driver that exports a virtual disk to a VM. The
block device is coupled with a user space daemon that chunks the data written to it and keeps track of dirty
disk chunks. Our prototype uses Xen [2] version 3.1. To efficiently synchronize VM memory images, we use
the rsync utility [19]. For record and replay operations, we leverage Xnee [13], an off-the-shelf, open source
tool for the X11 environment. Our prototype does not yet address the problem of replaying interactions with
exactly-once side effects.

We refer to the source as the host at which a user is currently interacting with a VM, and destination as
the host to which the VM will eventually be migrated. We assume that both source and destination hosts have
initially identical copies of a suspended VM. Our implementation involves 3 steps:

• Capture: All keyboard and mouse input to the locally running VM is recorded to a log. During recording,
our virtual block device tags dirty disk state, and keeps track of the order in which disk chunks are
modified. This will make synchronization more efficient in later stages.

• Replay: The recorded interaction log is transferred to the destination and replayed on the VM at the
destination. Replay speed may be faster than capture speed. This exploits superior compute resources
at the destination, and also suppresses think time during replay. Modified disk chunks at the source
are shipped to the destination in the background while replay is in progress. This ensures that network
bandwidth is not wasted by being idle during replay. Since replay may be imperfect, state produced later
in the replay may diverge more than state produced at the beginning. To optimize for this tendency, dirty
disk chunks are shipped to the destination in reverse of the order that they were modified at the source.
New VM disk state generated by replay at the destination is also tagged for synchronization.
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Workload Description Duration Log Size Dirty Disk Dirty Memory
(minutes) [Gzipped] (MB) State (MB) State (MB)

General Web browsing 15.65 0.66 [0.15] 11.57 117.43
Document editing

Install Application installation 2.85 0.11 [0.02] 57.08 105.18
Kbuild Kernel download & build 7.23 0.20 [0.04] 153.51 144.47
Gimp Image manipulation 9.73 0.81 [0.18] 6.73 48.93

Table 1: Interactive workloads

Cable 0.375 / 6 DSL 0.75 / 3 EVDO Rev A 1.2 / 3.8
Table 2: Emulated bandwidths in Mbits/sec (upstream/downstream)

• Synchronization: After replay, any residual state at the source must be transferred to the destination
so that the resulting state at both hosts is identical. Under ideal conditions, the amount of overlapping
state generated at the source and destination is large, so there is little residual state to be transferred.
Differences between the state at the source and destination are detected via cryptographic hashing using
the SHA-1 algorithm, and propagated to the destination.

4 Results
We conducted several experiments using different workloads at various emulated bandwidths. In our ex-

perimental configuration, the source host was configured with an Intel Pentium 4 3.60GHz CPU, 2MB cache
and 2GB of RAM, and the destination host was configured with a 2.66GHz Intel Core 2 quad-core CPU, 4MB
cache, and 4GB RAM. We used Ubuntu 7.04 as the guest OS and as the host OS on both machines. The VM
was configured with 512MB of RAM and a 4GB virtual disk.

Experimental setup: Table 1 describes the workloads we used in our experiments. For the General work-
load we simulate a user conducting everyday tasks such as reading news websites (e.g, CNN.com) with Mozilla
Firefox, and editing documents with the OpenOffice.org software suite and the Gedit text editor. For the Install
workload, we install applications such as the Emacs text editor and the Mozilla Thunderbird email client using
Synaptic, a graphical package managing tool available for the Ubuntu distribution. The Kbuild workload down-
loads the Linux kernel version 2.6.23.1 from www.kernel.org and builds it without modules enabled. The
Gimp program is used in the last workload to edit and manipulate sample images.

Each workload was acquired by recording a user’s actions with a VM. As shown in the right hand columns
of Table 1, the size of the captured logs for each workload is three orders of magnitude smaller than the total
amount of dirty state generated. Experiments were conducted using emulated bandwidths, shown in Table 2.
The Cable and DSL bandwidth values were selected from the current offerings of two large ISPs. The EVDO
Revision A standard is currently in use by wireless network providers such as Verizon and Sprint. We note that
by emulating advertised peak bandwidths we bias against the benefits of opportunistic replay.

We ran each workload at the source host on VMs in the same initial state and saved the resulting VM
state and interaction log. For each experimental run, we performed opportunistic replay of the saved log at the
destination, followed by transfer of residual disk and memory state from the source. For comparison, we also
transferred all modified memory and disk state to the destination without replay. All results we present below
are an average of 3 runs.

Replay at native speed: Our first set of experiments demonstrates the benefits of replay when the log is
replayed at native (capture) speed at the destination. Figure 1 (a) and Figure 1(b) show the amount of memory
and disk state transferred during migration with and without replay at the destination at various bandwidths.
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Figure 1: Bytes transferred during replay at native speed
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Figure 2: Total state transfer time at native speed. (“Replay” bars superimposed on top of “No
Replay” bars)

The figure shows that the wins are greatest for the Kbuild workload, where disk and memory state transferred at
Cable speed shrink from 153.51MB to 29.74MB, and from 144.47MB to 28.9MB, respectively. As described in
Section 3, dirty disk state is shipped in the background while replay is in progress at the destination. A higher
upstream bandwidth results in more disk state shipped in the background and not being generated through
replay. For example, at EVDO speeds, disk state transfer for the Install workload is reduced from 57.08MB to
44.73MB. In contrast, at cable speeds, disk state transfer is reduced to 14.06MB. If the amount of modified state
is small or bandwidth is high, the background disk state transfer might finish before replay is complete, and
replay is terminated; this holds true for the General and Gimp workloads. Early replay termination also limits
the amount of memory state being generated. For example, with the General workload, 107.55MB of memory
state is shipped at EVDO speeds, which is reduced to 58.63MB at Cable speeds. Thus, even for interactive
workloads that generate little dirty disk state, significant savings in terms of memory state shipping can be
realized.

Figure 2 (a) and (b) show the corresponding reduction in migration time using replay at native speed for
both disk and memory state. Replay accounts for significant time savings in disk state transfer, which is most
apparent at the lowest bandwidths. At Cable speed, transfer time for disk state reduces from 1373 seconds to
342 seconds for the Install workload, and from 3615.6 seconds to 767 seconds, for Kbuild. This trend is also
true of memory state transfer, with the Install workload obtaining the largest reduction in transfer times at Cable
speed. For Install, transfer times are reduced from 2459.8 seconds to 400 seconds. For the General & Gimp
workloads, transfer times at Cable speed go down from 2744.5 to 1365.5 seconds, and from 1137.2 to 894.5
seconds, respectively.

Replay at speeds higher than native: The goal of higher speed replay is to suppress idle or think time during
replay, in order to generate more VM state in less time at the destination. Figures 3 (a) and (b) show the benefits
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Figure 3: Bytes transferred and transfer time for memory state using higher speed replay

of higher speed replay for General and Gimp, our most interactive workloads. In the figures, 2X replay indicates
that think time between interactions was compressed by half during replay. We show results only for EVDO
speeds; by compressing think time, more of the log is replayed before the background transfer of disk state
finishes. This reduces the amount of memory state transferred. The results at other bandwidths do not show
improvements as the entire log is replayed even at native speed. Kbuild and Install also show little improvement,
since they are CPU intensive workloads that expose almost no compressible think times. Finally, the amount of
dirty disk state for Gimp and General is small and not significantly affected by faster replay.

The General workload benefits from higher speed replay, with memory state transfer decreasing from
117.43MB with no replay to 59.64MB when the session is replayed at four times the native speed. The same
trends translate to Figure 3 (b), with transfer time decreasing from 576.17 seconds to 299.17 seconds. The
Gimp workload does not significantly benefit from higher speed replay as it does not generate much dirty mem-
ory state.

5 Related Work
Closest in spirit to opportunistic replay is the work of Lee et al. on operation shipping for mobile file sys-

tems [8, 9]. That work showed how logging and replay could significantly improve performance in propagating
large files from a weakly-connected client to a server. Our work differs in two major ways. First, our focus is on
re-creating VM state rather than file system state. Second, we use an opportunistic approach and can therefore
benefit even from replays that diverge from the original execution.

Our use of an opportunistic approach to exploiting data similarity was inspired by the work of Tolia et
al. in distributed file systems [15, 16] and relational databases [17, 18]. A recurring theme in that work is
the description of a large data object in recipe form using cryptographic hashes, and the synthesis of parts
of that object from local data sources in order to reduce transmissions over a bandwidth-challenged network.
More recently, Annapureddy et al. have used similar techniques in the context of cooperative caching for
file servers [1]. Our work extends the opportunism underlying these approaches to the realm of VMs, using
techniques specific to log capture and replay. At an even deeper level, the idea of using cryptographic hashing
for detecting similarity of data content has been used in file systems such as Venti [12] and LBFS [11], and the
rsync file transfer protocol [19].

As mentioned in Section 2, the concept of VM logging and replay was introduced by Dunlap et al. [5] in
the context of the ReVirt system for intrusion analysis. Since their work was dependent on complete log capture
and ideal replay, it required complex source code modifications to the VMM, and generated very large logs. In
contrast, opportunistic replay can afford to be less strict. As we have shown in this paper, a profitable level of
fidelity of log capture and replay can be implemented without VMM modifications.
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6 Conclusion and Future Work
We have presented opportunistic replay, a technique that replays user actions on a target site to recreate VM

state and minimize the overhead of VM migration. By acknowledging that replay for VM migration does not
need to be perfect to be useful, we are able to attack the problem at the GUI level, greatly reducing complexity
and producing brief logs, while still yielding byte transfer reductions of up to 80.5%.

While our current prototype presents encouraging evidence, a number of implementation aspects remain
unexplored. First, tracking VM memory state as it is dirtied will further optimize our network transfer savings.
In addition, since we tolerate imperfect replay, the likelihood that final VM state diverges from state produced
by replay increases with the length of the interaction log. To tackle this problem, we plan to explore incremental
replay, in which a single user work session is divided into a number of segments of shorter duration. Each
segment has its own interaction log and VM state at the destination is synchronized with that at the source when
replay for a segment is complete. As a result, state at the destination only lags slightly behind that at the source.
This bears resemblance to the concept of trickle reintegration in the Coda file system [10]. Finally, policies to
prevent replay from altering outside-world state (such as email inboxes or bank accounts) need to be developed.
Based on the promising results reported here, we also plan to integrate opportunistic replay into the Internet
Suspend/Resume system [6, 14].
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