BalanceRefinemenbf Massve Linear OctreeDatasets

Tiankai Tu andDavid R. O’Hallaron
April, 2004
CMU-CS-04-129

Schoolof ComputerScience
Carngyie Mellon University
Pittshurgh, PA 15213

Abstract

Many applicationghatuseoctreegequirethatthe octreedecompositiorbe smooththroughoutthe domain
with no sharpchangein size betweenspatiallyadjacentoctants,thusimposea so-called2-to-1 constraint
ontheoctreedatasetsThe procesf enforcingthe 2-to-1 constrainton anexisting octreedatasets called
balancerefinementAlthoughit is relatively easyto conductbalancerefinemenbn memory-residenvctree
datasetsit represents& major challengewhenmassie linear octreedatasetareinvolved. Differentfrom

othermassie dataproblemsthebalancerefinemenproblemis characterizeaot only by the sheewolume
of data,but alsoby theintricagy of the 2-to-1 constraint. Our solution consistsof two major algorithms:
balanceby partsand prioritized ripple propagation. The key ideais to bulk load mostof the datainto

memoryonly onceandenforcethe 2-to-1 constraintiocally usingsophisticatediatastructurebuilt on the
fly. The software packagewne developedhassuccessfullybalancedvorld-recordlinear octreedatasetshat
areusedby real-world supercomputingpplications.

Thiswork is sponsoredn partby the NationalScienceFoundationunderGrantCMS-9980063in partby a subcontracfrom
SouthernCalifornia Earthquak Centeras part of NSFITR EAR-01-22464,andin part by a grantfrom the Intel Corporation.
Experimentsn Section10.3and 10.4were performedon the National ScienceFoundationHP GS1280systemat the Pittskurgh
Supercomputin@enter

Keywords: linearoctree balancerefinementpalanceuy parts,prioritizedripple propagation

1 Intr oduction

The extensve applicationsof the octreedatastructurecan be datedbackto asearly asthe 19705 [14].

Giventhreedecade®f researchit is often consideredhat octreeshave beenfully studied.Unfortunately
an indispensableperationrequiredby mary applicationscalled balancerefinementassomeha been
largely ignoredin the past.

The purposeof balancerefinementis to enforcea continuity condition on an existing octreeso that the
octreedecompositiorbecomegelatively smooththroughoutthe domainandthereis no sharpchangein
sizebetweerspatiallyadjacenteaf octants Althoughrediscoeredandrenamednary timesby researchers
in differentfields, the continuity condition bearsthe samecharacteristicsn all applications:no two leaf
octantsthatsharea faceor anedgeshoulddiffer by afactorof morethan2 in termsof their edgesizes.Or
equialently all spatiallyadjacenteaf octantghatshareafaceor anedgeshoulddiffer by atmost1 in their
treelevels. To make thetermmoreintuitive, we referto the continuity conditionasthe 2-to-1 constaint.

Importantapplicationghatrequirethe 2-to-1 constrainton octreesncludescientificcomputing[4, 19, 11,
2], quality meshgeneratior[18, 7, 12, 15|, and computergraphics[3]. Eventhoughmary authorshave
basedheirwork onthecritical conditionthatanoctreebebalancedit hasoftenbeencorvenientlyassumed
thereexists somebalancerefinementalgorithm, for example,to facilitate further theoreticalanalysis. As
aresult,the questionof how to efficiently balancean octreeis left unansweredAlthoughthis may not be
a big problemfor smallapplicationswherethe datasetanbe completelycachedn main memory it does
represent seriousproblemwhenmassve linear octreedatasetg&reinvolved, esp. in scientificcomputing
area [19, 2]. Usually in orderto simulatelarge andcomplex physicalphenomenascientificapplications
requirebillions of octantsor even moreto modelthe domainof interest. The sizesof thesedatasetare
commonlyin the order of tensof gigabytes,with terabytedatasetson the horizon. How to efficiently
balancesuchmassie linearoctreedatasetshatcannotbe completelycachedn mainmemoryconstitutesa
majorchallenge.

Interestingly the problemof balancerefinemeniof massie linear octreedatasetdalls in-betweenthe two
canonicalatayories: the batched problemsandthe online problems[17]. It is a batchedoroblembecause
every item (octant)in the datasethasto be processedn orderto enforceor verify the 2-to-1 constraint.
It is an online problembecausechangedo the datasef(linear octree)are only performedin responseo
violationsof the continuity condition,andare mostly confinedto a small portion of the dataset Extending
the taxonomydefinedby Vitter [17], we refer to the balancerefinementproblemandthe like as hybrid
problems

This paperpresentsan efficient andscalablebalancerefinementsolution. Like mary otherdatabasalgo-
rithms, our solutionexploits locality of referenceo reducedisk I/O. The mainalgorithmis calledbalance
by parts The key ideais to divide the domainrepresentedby an linear octreeinto 3D volumes(volume
partg thatcancompletelyfit in mainmemory Eachvolumeis streamednto mainmemaoryby a sequential
scanandis cachedn a temporarypointerbasedoctreecalledcade octree Interactionsbetweenvolumes
areresolhed by balancingoctantson the intervolumeboundariegboundaryparts). Octantsof a boundary
partarefetchedby rangequeriesssuedonthelinearoctreeandarealsostoredin atemporarycacheoctree.
Oncea cacheoctreeis initialized, we apply analgorithmcalledprioritized ripple propagationto balancat
efficiently. While adjustingthestructureof thecacheoctree we updatethelinearoctreedataseticcordingly
Evaluationresultsshav thatour solutionis both efficient andscalable.lt runs3 timesfasterthanexisting

algorithmswhenusedto balancea 20GB datasetwvith 1.2 billion octantson a Linux workstationwith 3GB
mainmemory It alsokeepshigh throughputratewhenusedto balancesxtremelylarge datase{56GB).

Our papemakesthefollowing contrikutions:

¢ Real-worldimpact: We shav thatbesideshecorventionalquery-basedervicesdatabaséechniques,
when combinedwith new algorithms, can deliver unprecedentedapability to supportlarge-scale
scientific applications. The software packagewe developedis usedin practiceto solve problems
previously undoable.

e Databasedesignprinciple: We introducea unified designframework to simultaneoushaddresshe
problemsof reducingdisk I/O time andimproving the runningtime of the operation(balancerefine-
ment)itself. Our new algorithmsareprovably efficientandeasyto implement.

Section2 introduceghe basicconceptgelatedto octreesandbalanceefinement.Section3 briefly suneys
therelatedwork. Sectiord defineshe performanceroblemswetamgetto resole. Sections is anovervien
of the balanceby part algorithm. Section6 provesits correct. Section7 explains how to retrieve data
efficiently. Section8 illustrateshow to build atemporaryinternaldatastructureto cachethedata.Section9
present@analgorithmthatefficiently balancehe cacheddata. Section10 evaluateshe performancef our
solution. Section11 concludesur work.

2 Background

2.1 Octreesand Linear Octrees

An octree recursvely subdvides a three-dimensionatiomaininto eight equal size octantsuntil certain
criteriaaresatisfied [14]. Onecommonway to represenainoctreeis to link thetreenodesusingpointers.
Figure1 shaws the pointerbasedoctreé representatiomndits correspondinghe domaindecomposition.
A nodewith no childrenis aleaf node Otherwisejt is a non-leafnode The numberof hopsfrom a node
to theroot nodedefinesthe level of the node. Thelargerthe value,the lower thelevel. The corresponding
domaindecompositions shavn is Figure?2.

Level 0
Level 1

Level 2

Level 3

Level 4

O:non-leaf node O:leaf node

Figurel: Pointerbasedoctreerepresentation.

Wemaydraw 2D quadtreedn figuresto illustrateconceptsBut we usetheterm“octrees”and‘octants”consistentlyregardless
of thedimension.

The othercommonway to representn octreeis the linear octree [10, 1]. The linear octreetechnique
assignsa uniquekey to eachnodeandrepresentsan octreeasa collectionof leaf nodecomprisingit. With
keys assignedleaf nodescanbe organizedon disk by anindex structuresuchasa B-tree[8, 6]. Thus,the
sizesof linear octreesare disk boundratherthan memorybound. They are extremely usefulin practice
wheremain memorycannotaccommodat@n pointerbasedoctree. In this paper we only considetinear
octreedatasetsndexed by B-trees.

The key assignedo a nodeis generallyreferredto asits locational code which encodeghe locationand
size of the node. One particularlocationalcodethatis commonlyusedis obtainedby concatenatinghe
branchegbit-patterns)on the pathfrom the root nodeto the leaf node. Zeroesmay be paddedto make
all the locationalcodesof equallength. To distinguishthe trailing zeroesof branchbit-patternsrom zero
paddings.the level of the nodeis attachedo the pathinformation. An equialentway [9] to derie the
locationalcodeis basedn bit-shufling of the coordinateswhichis oftenusedin practice.

=

Figure2: The correspondinglomaindecomposition.

For example,assumeéhe maximumtreelevel supporteds 4, thenthe locationalcodeof nodea in Figurel
is 00000000_0015. Theunderscoras for illustration purposeonly; alocationalcodeis just a fixed-length
bit string. Notethatthe last six zeroesn the pathinformation(beforethe underscoreare paddingsadded
to make the code of equallength as others. Similarly, we canderive the locationalcode of nodef as
01001010_1002. Sincef is alreadyat the lowestlevel, no paddingsare necessaryOlviously, whengiven
alocationalcode,we caneasilyidentify a nodein a pointerbasedoctreeby descendindgrom theroot node
accordingo thepathandlevel informationencoded.

Whenwe sortthe leaf nodesaccordingto their locationalcodes(treatedasbinary scalarvalue), the order
we obtainis the sameasthe preordettraversalof the octree. Thereforewhenwe index a linearoctreein a
B-tree,octantsarestoredsequentiallyon B-treepagesn the orderof preordeitraversaf.

2.2 2-to-1constraint and Ripple Effect

The 2-to-1 constraintrequiresthatthe edgesize of two leaf octantssharinga faceor anedgeshouldbe no
morethantwice aslarge or small. For example,octantf in Figure2 is adjacento octanta andj , bothof
which aremorethantwice aslarge. Figure 3 shavs the resultof refining the domainto a balancedorm.

2In the context of disk-residentinearoctree we referto theleaf nodessimply asoctants sinceno non-leafnodesarestoredon
disk

Thecorrespondingreestructureadjustments shavnin Figure4

edge-neighbors.

. Notethatin 2D, we only needto consider

m3

m4

m2

ab a7

al

a2 |a3| b | c

Figure3: A balanceddlomaindecomposition.

Oneinterestingpropertyof the refinemenfprocesss the so-calledripple effect Thatis, atiny octantmay
propagatets impactoutin the form of a“ripple”, causingsubdvisionsof octantsnotimmediatelyadjacent
to it. In our example,octantmis not directly adjacentto octantf , but it is forcedto subdvide by the

subdvision of octantj , whichis triggereddirectly by f .

& :node subdivided

Figure4: A balancedctreeresultedrom a seriesof subdvisions.

3 RelatedWork

Moorestudiedthe spacecostof balancinggeneralizedjuadtreesandprovedthatthereis auniqueleastcom-
monbalanceefinemenbf anoctree [13]. In otherwords,if we balanceanoctreewith asfew subdvisions
aspossible thenwhichever valid® orderwe take to conductthe subdvisions, we obtainthe sameunique
balancedoctree. This theoremenablesa greedyalgorithm (suchas ours) to subdvide too-lage octants

immediatelyandguaranteethatthefinal resultis correct.

Yerry andShepargioneeredhework of automatic3D meshgeneratiorbasedn octrees.They introduced
a balancealgorithmon a breath-firstexpandedoctreein [18]. This algorithm proceedsn two steps. In
the first step,an unbalancedctreeis traversedin breath-firstorder On visiting a leaf octant,a seriesof
neighbosfindings are performedto determinewhetherit is more thantwice aslarge asary of its (leaf)
neighbors.If so,theleaf octantis addedto alist of subdvision. In the secondstep,eachleaf octantin the

3We cannotsubdiide a child beforesubdviding its parent.

list of subdvision is subdvided andits eight childreninsertedinto the octree. Becauseary octantcanbe
subdvided at mostoncein oneiterationof the two-stepprocedure multiple iterationsmay be invoked to
resohe theripple effect.

More recently we proposedan algorithmcalledlocal balancingfor the balancerefinementof large linear
octrees [15]. Theideais to partition the domainmodeledby an octreeinto equal-sizeblocks andthen
traversethe domainblock by block. Eachblockis cachedn memoryin a bloking array. A variantof the
Yerry andShepards algorithmis invoked to balancesachblock. Interactionsbetweenadjacenblocksare
handledby a post-processingtepcalled boundarybalancing which may take multiple iterations. After
eachiteration,anew list of boundaryoctantss generate@ndtakenasinputfor the next iteration.

4 Problem Statement

The balancerefinemeniprocesdasicallyinvolvestwo operations:(1) neighbotfinding finding neighbors
to obtaintheir edgesizesinformationin orderto make comparison;(2)subdivision deletea “too-large”
octantfrom the dataseandinsertits eightchildren. The deletionis necessaryn the subdvision operation
becausghelinearoctreedatasetsve arebalancingshouldcontainonly leaf octants.

Supposeave have a completelist that recordsthe octantsthat needto be subdvided, thenthe processof

balancerefinementoils down to a sequenc®f simple B-treedeletionsandinsertions.Unfortunately we

donotalist of subdvision whengivenanunbalancedinearoctreedatasetWorse theripple effectexcludes
the existenceof sucha completelist, which shouldgrow graduallyduring the refinementprocess.Sothe
only way to decidewhetheranoctantis too-lage andneedso be subdvided is by comparingits edgesize
with thoseof its neighbors.Therefore neighbosfinding is the key operationfor balancerefinement.

Onemethodto implementthe neighboffinding operationis to manipulatethe locationalcodeof anoctant
to generatéhekeysfor its neighborsandsearchthe B-treedirectly. Theaverage(alsoworse-casegostfor a
B-treesearctoperatioris O(log N), whereN is thenumberof octantindexedby theB-tree.As aresult,the
total costof neighboxfindingsfor every octantin thedatasets O(N log N). Theadwantageof this method
is thatthereis no excessie requiremenbn the size of main memory aslong asthereareenoughspaceo
cacheafew B-treepages.

Another methodis to map the linear octreeto an incore pointerbasedoctreeand usethe corventional
pointerbasedalgorithmto find neighborg14]. Theadwantagds thattheaveragecostof neighboffinding is
reducedo O(1), with atotal costof only O(V) to conductall the neighbosfindings. But themainmemory
shouldbelarge enoughto build a pointerbasedoctreeimagefor thelinearoctree.

How canwe take adantageof bothmethods?T hatis, howcanwe find neighbos efficiently (in O(1) time)
without excessivanemoryrequirement(not mappingthe entire linear octreein memoryy This is the first
problemwe needto address.

The secondperformanceproblemis more subtleandis relatedto the ripple effect. After an octantis
checled to be balancedwith respectto its neighbors,one of its neighborsmay be subdvided later and
becomesmaller This may causehe original octantto becomé‘too-large”. Consequentlyanotheroundof
neighbosfindings mustbe invoked to discover this newly createdunbalancedituation. However, multiple
iterationsof neighbotfindingsincreasehetotal runningtime by a constanfactor Sothe secondproblem
we focusonis howto avoid multipleiterationsof neighboffinding®

5 Balanceby Parts

Oursolutionis basednanobserationthatalthoughbalanceefinementaycauseipple effect, theimpact
diminish quickly dueto the 2-to-1 edgesizeratio. In addition, mostimpactcausedby a tiny octantis
localizedin a smallregion. For example,octantf in Figure2 causeghe subdvisionsof octanta andits
children.But botharespatiallyadjacento f . In otherwords,theimpactof atiny octantis absorbedanostly
by octantssurroundingt in asmallneighborhood.

The stronglocality of referencesuggestshatwe may mapa smallregion to a pointerbased(sub)octrean
memoryandresole the 2-to-1constrainandtheripple effect without worrying aboutoctantsoutsideof the
region. Thisis thetype of solutionthatfits the paradigmof divide-and-conqueperfectly

5.1 Overview

Figure 5 shaws the outline of our main algorithm, calledbalanceby parts First the domainrepresented
by a linear octreeis partitioned(divided) into equal-sizedBD volumescalledvolumeparts The sizeand
alignmentof each3D volume shouldcorrespondo somenon-leafnode (of a conceptualpointerbased
octree)at certainlevel. Next, eachvolumeis cachedn memoryandbalanced.After all the 3D volumes
areprocessedpctantson the volumefaceboundariescalledfaceboundaryparts arebalanced followed
by the balanceof octantson the volumeline boundariegline boundaryparts andpoint boundariegpoint
boundaryparts. Eachpart,regardles®f its type,is cachedn atemporarypointerbasedctreecalledcache
octree While balancingancacheoctreein memory we updatethe B-treeto recordthe subdvisionsof leaf
octants.An algorithmcalledprioritize ripple propagation is usedto efficiently balancecacheoctreessee
Section9).

An intuitive way to understandhe balanceby partsalgorithmis to imaginea moving window insidethe
3D domain. At ary moment,the content(octants)insidethis window is retrieved from disk andcachedn
a temporarydatastructure(cacheoctree). Whenwe adjustthe datastructureto enforce2-to-1 constraint
in memory the contenton disk is updatedaccordingly(by deletingsubdvided octantsandinsertingtheir
childrenin the B-tree). Thewindow sizeis setdifferently for four separatestagesrangingfrom thelargest
(for the 3D volumes)to the smallest(for the point boundaryparts).

Althoughsimilar in principle of divide-and-conquethis solutionis differentfrom our previouswork [15]
in mary key aspectsFirst,insteadof cachingdatain aflat structure(blockingarray),we install octantsin a
temporarypointerbasedctree.Secondno additionaliterationsof boundarypost-processingrenecessary
Interactionsbetween3D volumesgraduallydiminish after beingassimilatedoy faceboundariesthenline
boundarieandfinally pointboundariesThird, we apply a sameroutineto balanceall the parts.No special
treatmenfor the boundaryoctantsis needed Fourth, we have developeda new algorithmthatcanbalance
apointerbasedoctreeefficiently (O(n)), ratherthanusinga variantof Yerry andShepards algorithm.

5.2 An Example

Hereis anexampleof applyingour ontheoctreeof Figure1l andFigure2. Notethatin the context of linear
octreestheglobal pointerbasedreestructuredoesnot exist physicallyin memoryor on disk.

Algorithm 1 (Balanceby parts).

Input

An unbalancedinearoctreeindexed/storedn a B-tree.

Output

A balancedinearoctreeindex/storedin the sameB-tree.

Method

Organizethedatasetssmaller memorycacheable
parts,andbalancesachpartindependently

Stepl:

Step2:

Step3:

Step4:

Step5:

[Partition the domaininto equal-sized3D vol-

umes.]

Based on the available memory size, decide
the maximum number of octantsthat can be
cachedand calculatethe correspondingsubtree
root level. Each3D volume mapsto a subtree
root.

[Balancethe 3D volumeparts.]

Fetch datafrom database:Octantsbelongingto
each3D volumeis sequentiallyscannedrom B-
tree pagesand cachedin an internal temporary
datastructurecalledcacheoctree

Balancecadhe octree: Eachcacheoctreeis bal-
ancedindependentlySubdvisionsof leaf nodes
causesoctantsto be deletedfrom and inserted
into the B-tree.

Releasecadhe octree: After an cacheoctreeis
balancedandthe B-treeupdatedaccordingly re-
leasememoryusedby the cacheoctree.

[Balancethefaceboundaryparts.]

Similar to Step2 exceptthat range queriesare
issuedto fetch octantson the face boundarybe-
tweenadjacenBD volumesfor eachpart.

[Balancetheline boundaryparts.]

Similar to Step2 exceptthat rangequeriesare
issuedto fetch octantson the line boundariesof
adjacenBD volumesfor eachpart.

[Balancethe point boundaryparts.]
Similar to Step2 exceptthat rangequeriesare
issuedo fetchoctantson thepointboundarieof
adjacenBD volumesfor eachpart.

7
Figure5: Balanceby parts.

Volume 3 Volume 4

Volume 1 Volume 2

Figure6: Partition the domaininto 4 volumescorrespondingo treelevel 1.

Assumethe largest volumesthat can fit in memory correspond€o non-leaf nodes(of the conceptual
quadtreept level 1, we partition the domaininto 4 volumes,shavn conceptuallyin Figure6. Eachvol-

umeis cachedin memoryindependentlyas a temporarypointerbasedcacheoctreeand then balanced.
Figure7 shavs the cacheoctreefor volume2.

—»root maps to level 1

:node subdivided

Figure7: Thebalancedtacheoctreerepresentingolume?2.

After all the volumesareprocessedijne boundarypartsarebalancedneby one,in arbitraryorder Note
that for 2D casesthereare only line boundariesand point boundaries.Figure 8 shov the cacheoctree
representingpctantson the boundariesetweenvolume 1 and volume 2 andthe correspondingegion is
shawvn in Figure9. Notethatall the subdvisionstriggeredby octantf areconfinedon theboundary Also,
the cacheoctreeroot for boundarypartsis mappedo the entiredomain(level 0) insteadof the subtreeroot
level asdoesthe cacheoctreefor the volumes. As a result, the cacheoctreehasnull branches.We will
justify thesedesigndecisiondn theremainderof this paper

> root maps to level 0

& :node subdivided —:null branch

Figure8: Thebalancedcacheoctreerepresentindine boundarypartbetweenvolumel andvolume?2.

The point boundarypart consistsof the four octantsanchorsat the centerpoint of the domain(the corner

a6 a’ [

f
a4 asﬂ

a2 | a3 b‘

al

The line boundary between volume 1 and volume 2.

Figure9: Theboundarypartbetweenvolumel andvolume?2.

boundaryof the 4 volumes). In this example,no subdvision occursinsidethe point part. Sowe skip the
cacheoctreerepresentatiofor the pointboundarypart.

5.3 Questionsto be Answered

Although structurallysimple, our solutionmay raisemary questions.First of all, is it correct? How can
alinear octreebe balancedvhenonly partsof the treearebeingbalanced?Secondhow to fetch parts of
differenttypesfrom alinearoctreedataseandwhatis the I/O implication?Third, how to build theinternal
temporarycacheoctreeandspeedup the balanceoperatioritself?

A shortanswelis thatthealgorithmis correctandall thedesignchoicesaremadeto resole theperformance
problemsstatedn Sectiond. Detailedanswersarepresentedn the next threesections.

6 Correctness

We first defineanimportantconceptalledstableoctants

Definition 1. An octantis stableif (1) it will nottrigger otheroctantsto subdivide;and (2) it will not be
triggeredto subdivide

Stableoctantsareisolatedfrom otheroctantsn termsof interactionghatmighttriggersubdvisions. While
otheroctantsare undegoing subdvisions, stableoctantsremainintactin the dataset.They exist in a bal-
ancedinearoctreedatasetn the sameform aswhenthey becomestable.lt is trivial to shaw:

Theorem 1. Anoctreeis balancedf andonlyif all its octantsare stable

Soinsteadof directly proving that eachindividual octantconformsto the 2-to-1 constraintwith respecto
its neighborswe prove thecorrectnessf our algorithmby constructinghe setof stableoctantsS. Initially

empty S is augmentednonotonouslyevery time we balancea part of sometype. Whenthe algorithm
terminatesS containsall the octantsin thedomain.Thus,we have abalancedctree.

To completethe proof by constructionwe needto shav: (1) which octantsbecomestableafter a part of
sometypeis balancedf2) why S containsall the octantson terminationof the algorithm. Both problems
canbesolvedby usingthe concepiof internaloctantsandboundaryoctants.

6.1 Internal Octantsand Boundary Octants

As shavn in Figure 5, our algorithmworks on four differenttypesof partsin order: 3D volume, face
boundary line boundary and point boundary After a part of sometypeis balanced we can partition its

octantsin two disjoint sets: boundaryset, which containsthe octantson boundaryof the part (boundary
octantg; andinternal set which containsall theremainingoctants(internal octants.

Obviously, differentdefinitionsfor “boundary”and“internal” areneededor partsof differenttypes.

Definition 2.

¢ In a balanced3D volumepart, an octantis a boundaryoctantif it is adjacentto someoctantoutside
the 3D volume Otherwiseit is aninternal octant.

¢ In abalancedaceboundarypart, anoctantis a boundaryoctantif it is on somdine boundaryshaed
by adjacent3D volumes Otherwisgit is aninternal octant.

¢ In a balancedline boundarypart, an octantis a boundaryoctantif it is on a somepoint (corner)
boundaryshaedby adjacent3D volumes Otherwisgit is aninternal octant.

¢ In abalancedpointboundarypart, all octantsare internal octants.

Boundaryoctantsassociatedavith balancedartsof onetype correspondo the partsof the next typeto be
balancedFor example,the boundaryoctantsof balancedBD volumesarethoseon volumefaceboundaries
and,by definition(seeSection5.1), form thefaceboundaryparts.

If we perceve our algorithmas consistedf four stagesasshawvn in Figure 10, every stageprocesseshe
balanceinflow dataand separatdhe resultasinternal octantsand boundaryoctants. The latter form the
inflow datastreamto the next stage.The final stagedoesnot produceary boundaryoctants.Soif we can
shaw all internaloctantsarestable we aredonewith the proof.

Lintear Stage 1 \—)(Stage 2 \—>(Stage 3 \=—(Stage 4
octree 3D parts 2D parts 1D parts 0D parts

dataset E f /
Stable octants

@:Internal octants |:>:Boundary octants

Figure10: Four stagesf balancingpartsof differenttypes.

6.2 A Proof Template

Theproofsof internaloctantsbeingstablein the contect of differenttypes(3D volumes faceboundaryline
boundaryandpointboundary)areidenticalin their structures So,withoutlossof generalitywe presentas
atemplate a detailedproof shaving thatinternaloctantsof balancedBD volumesareindeedstable.Other
proofscanbeadaptedrom this templateeasilyandarenot presentedhn this paper

10

In orderto prove internal octantsof a balanced3D volume are stable,we needto shav that they satisfy
thetwo sufficient conditionsof Definition 1. Thefirst conditionis trivially true. Sinceall neighborsof an
internaloctantbelongto the same3D volume,the internaloctantwill not causeary of themto subdvide
ary more.Otherwise the 3D volumemusthave not beenbalancedcontradictingghe assumption.

Thesecondconditionrequiresa morecarefulanalysis.If aninternaloctants neighborsareall internal,the
secondconditionholdsbecauseaoneof its neighborswill triggerit to subdvide (by applyingcondition1
on all theneighbors).However, if aninternaloctanthasa boundaryneighboy the boundaryneighbormay
betriggeredto subdviide by someoctantoutsidethe 3D volume. The questionis will theinternaloctantbe
triggeredto subdvided by theripple effect? Theansweris no. The proofis built onthe next two lemmas.

Lemma 2. Suppose 3D volumeis balancedtheedg sizeof a boundaryoctantis either(1) twiceaslarge,
or (2) aslarge asthoseof its internal neighbos.

Proof. Whena3D volumeis balancedthereareonly threepossibilitiesof edgesizeratio betweerabound-
ary octantandits internalneighbors:(1) twice aslarge, (2) aslarge, or (3) half aslarge. We now prove that
thethird possibility doesnot exist.

Recallthata 3D volumemusthave the samesizeandalignmentassomenon-leafnode(of a conceptually
pointerbasedoctree)at certainlevel. Thus,every octantinsidethe 3D volumemustbeachild of thesubtree
root correspondingo the 3D volume.

Now supposea boundaryoctantis only half aslarge asone of its internal neighbors,then the internal
neighboris not properlyalignedandcannotbe a child of the 3D volumesubtreeoot (seeFigurell). Thus
thethird possibility doesnot exist. O

Regions not
relevant Internal octant

i

i

oundary octant

Figurell: Theboundaryoctantin abalance®D volumecannotbe half aslarge asits internalneighbors.

Lemma 3. Suppose 3D volumeis balanced,if one of its boundaryoctantis triggered to subdivideby
an octantoutsidethe 3D volume the the 3D volumecan be re-balancedvithout subdividingany internal
octants.

Proof. Dueto Lemmaz, if aboundaryoctantsubdvides,its children,half of its edgesize,areeither(1) as
large or (2) half aslarge asits internalneighbors.Thereforethe 2-to-1 constrainis maintainedetweerits
childrenoctantsandits internalneighbors.

Soif the 3D volumebecomesainbalancedit musthave beencauseddy a violation of the 2-to-1 constraint
betweensomenew children octantsand other boundaryoctants. In orderto re-balancehe 3D volume,
theseboundariectantsneedto be subdvided. Althoughthey may trigger subdvision of moreboundary
octantsnoneof theboundaryoctantsubdvision will triggersubdvisionof ary internaloctantspy thesame
argumentdn the previous paragraph. O

11

Considettheinteractiondbetweeratiny octantoutsideaninitially balance®D volume.Everytimethetiny
octanttriggersa subdvision of a boundaryoctant,the 3D volume canbe re-balancedvithout subdviding
ary internaloctants(Lemma3). This procesgerminatesvhenthetiny outsideoctantis adjacento some
boundaryoctantgdescendantsf the original boundaryoctant)thatareno morethantwice aslarge. There-
fore, theripple effect of atiny octantoutsideof abalancedD volumeonly propagatesn the volumeface
andnever getsinto the 3D volume.

The applicationof Lemmaa3 is critical in the abose reasoning. The claim that internal octantsare not
subdvided are basedon the premisethatthe 3D volumeis balanced.Lemma3 providesa “self-healing”
mechanisnio re-balancea 3D volumesothatits premisebecomewalid repeatedly

It isworthnotingthatafteraboundaryoctantis subdvided,its childrenwhoarenotontheboundarybecome
new internaloctants.Thus,whenwe applyLemma3 again,we areactuallyreferringto anexpandednternal
set.Neverthelessthe original internaloctantswhich belongto theexpandedset,arestill notsubdvided.

This provesthatall internaloctantssatisfythe secondsufiicient conditionof stableoctants.Sowe have:

Theorem 4. Internal octantsof a balanced3D volumeare stable

In a similar way, we can prove that internal octantsof balancedpartsof othertypesare stable. So on
completionof the four stagef balancingall the octantsin the domainbecomestable.

Thisconcludeghetheoreticaproofof thecorrectnessf ouralgorithm. Next, we explainthesystemsaspect
of our algorithmandshav how the performanceroblemsstatedn Section4 areresohed.

7 Data Retrieval

We retrieve datafrom a linear octreedatasetin two differentways: bulk-loading andrange query 3D

volumepartsareretrieved by bulk-loading. Becausea 3D volumemapsto avirtual subtreeoot whoseleaf
octantsareclusteredsequentiallyon B-treepagegseeSection2.1). We canidentify the positionof thefirst
octantof a 3D volumein the B-tree by a simple searchoperation,andthen sequentiallyscaneachoctant
from the B-treein constantiime until we encounteran octantthatis outsideof the 3D volume. The first

octantof a 3D volumeis well-defined.It refersto the octantthatoccursfirst in the preordertraversalof the
subtreeepresentetly the 3D volume. Sincethefirst octantis alwaysanchoredt theleft-lower cornerof a
3D volume,we caneasilyderie its locationalcode.

To retrieve octantsfor partsof othertypes,we implementrangequerieson linearoctreedatasetsFor exam-
ple, faceboundarypartsarefetchedby searchingor octantstangentiallyintersectingparticularrectangles
(sharedby 3D volumes)in space. Sinceour solution reducesinteractionsfrom faceboundariesto line
boundariesandfinally to point boundariesthe sizesof rangequeriesarereducedover the stages.In fact,
our experimentgseeSection10.3)shav thatonly about1.5% of alinearoctreedatasets fetchedby range
queries.

In summary the structuraldesignof our algorithmresultsin an /O optimal casewheremostdatais effi-
ciently retrieved by bulk-loadingandtheremaindeiis retrieved by standardspatialdatabaseangequeries.

12

8 CacheOctree

Whenthe octantsfor a part(of ary type)areretrievedfrom thelinearoctree we cachethemin atemporary
datastructurecalledcache octree A cacheoctreeis a pointerbasedoctreewith specialink lists embedded
(seeFigure 12). We usethis single datastructurerepeatedlyto cacheall the parts, regardlessof their
types.Theadwantagds thatwe canapply the samealgorithmon all cacheoctrees No specialtreatmeniof
boundarypartsis needed.The procedure®f building cacheoctreedor partsof differenttypesarealmost
identicalexceptfor afew minor details.

Beforea part is fetchedfrom databasewe initialize an cacheoctreewith a singleroot nod¢!. For a 3D
volume part, we mapthis nodeto the non-leafnode correspondinghe 3D volume. For other parts,we
mapthis nodeto theroot node(level 0) thatrepresentshewhole domain.We will justify this arrangement
shortly For eachoctantretrieved, we installit in the cacheoctreeasa leaf node. The installationprocess
is straightforvard. As we have shavn in Section2.1, it is trivial to descendrom the root nodeto find a
leaf nodeby extractingthe pathinformation (branchbit-patterns)from the its locationalcode. The only
differencehereis that we do not have a tree structurein place. So someextra work needsto be doneto
createnon-leafnodesasnecessaryhenwe descendlown a cacheoctreeto install aleaf node.Leaf nodes
atsametreelevel arelinkedtogetherandis accessiblérom anarraycalledlevel table

A
Level table
Figurel2: A cacheoctreeis a pointerbasedoctreewith leaf nodesatthe sameevel linked together

We mustguarante¢hateachoctantof aparticularpartcanbe properlyinstalledby traversingdown acache
octreefrom its root node. This is not a problemfor a 3D volume part sinceall the octantsbelongto the

samesubtreeandwe have mappedhe cacheoctreeroot nodeto thatlevel. For a partwith type otherthan

3D volumes,two octantsmayhave differentbit-patternat thefirst branchin their locationalcodes.To see
anexample,checkthelocationalcodesof octanta andf in Figure2. Thereforewe have to to mapacache
octreerootnodeto level 0 to ensureproperinstallationof all octantsof thepart. In this case somebranches
of non-leafnodesmaybe empty(null) andthe cacheoctreebecomespaise

Till this point, we have developedall thetechniquesieededo resol\e thefirst performanceroblemstated
in Section4. The solutionis to divide the domaininto small pieces(balanceby parts)and build incore
pointerbasedoctreefor eachpiece(cacheoctrees)In this way, we canwork with smallmainmemoryand
still take advantageof the fastemointerbasedheighboffinding algorithm.

9 Prioritized Ripple Propagation

The algorithmpresentedn this sectionresolhesthe secondperformanceproblem(voiding multiple itera-
tions of neighbotfindings). Thekey ideais to (1) decouplenodevisiting from treestructuretraversal;and

“We usenodesto referto octantsin a cacheoctreeto avoid confusionwith octantsstoredin thelinearoctreeon disk.

13

Algorithm 2 (Prioritized ripple propagation).

Input
An unbalancegbointerbasedctree.

Output
A balancedointerbasedctree.

Method
Visit leaf nodesdirectly from thelevel link list and
changehetreestructureéimmediatelywhenatoo-lage
(neighbor)leaf nodeis identified.

Stepl: [Setthecurrentleveltothelowestlevel.]

Step2: [Initialize a link list traversal for the current
level.]

Step3: [Apply ripple routineon eachnodeatthe current
level.]
For eachnode,searchfor its neighborsto check
their sizes. If a neighboris too large, divide it
(andits descendantggsmary timesasneeded.

Step4: [Setcurrentlevel to onelevel up.]
Step5: [Goto Step?2 if the currentlevel is morethan1

belon the highestlevel recordedOtherwise ter-
minate.]

Figure13: Prioritizedripple propagation.

14

(2) combineneighbotfindingswith nodesubdvisions.

Figure 13 shows the outline of our algorithmnamedprioritized ripple propagation (PRP).It works on the
cacheoctrees.The overall structureis to visit thelink lists of leaf nodesat differentlevelsin a prioritized
manner Thelink list of eachlevel is accessibldrom the level table associatedvith an cacheoctree. We
startfrom thelowestlevel (with thelargestvalue)andmove onelevel up afterprocessindeaf nodesateach
level. Thebenefitof visiting leaf nodeddirectly from thelink listsis thatwe cannow take aneagerpproach
of subdviding neighbor(leaf) nodesand changingthe tree structureon the fly. Hadwe tied nodevisiting
with treestructurdraversalin whatever order aneagempproactwould causeagreatdifficulty if apreviously
visitednodewereto be subdvided. We would have to interruptthetreetraversalandroll backto the newly
subdvided nodeto checkits impacton others.

Thekey of this algorithmis Step3 wherearipple routineis invoke to implementour eagerstratgy. The
ripple routine combinesneighboffindings with nodesubdvisions. It is basedon the well-knovn pointer

basedeighbotfinding algorithm[14], which consistsof two stages(1) ascendinghe octreeto locatethe
nearesttommonancestor;and (2) descendinghe octree(on a mirror-reflectedpath)to find the desired
neighborof equalsizeor larger.

Theripple routineimplementghefirst stagewithout modificationandrecordthe pathtracedin a stack.But
in the secondstage theripple routinemay subdvide neighborleaf nodesin orderto descendieepenough
in theoctree.A neighboreaf nodeneedso be subdvidedif it is morethantwice aslarge astheleaf node
we arevisiting. Threeactionsaretakenwhena neighboreaf nodeis subdvided:

1. Allocateeightnew childrennodesandlink themto the subdviding node.

2. Remore the subdviding nodefrom the leaf nodelink list of its level andaddits childrenleaf nodes
to thelink list onelevel lower.

3. Deletethe subdviding nodefrom thelinearoctreeandinsertits eightchildren.

The first two actionsadjustthe incore cacheoctreeto maintaina valid datastructure. The third action
performsthe actualdatabasepdateto synchronizéheimageon disk.

After atoo-lage neighborleaf nodeis subdvided, we obtainthe next level’s branchinformationfrom the
stackanddescendiown to oneof its newly createcchildrennodewhonow becomeshenew neighbor This
subdvide-descengrocessontinuesuntil we reacha level thatis 1 above thelevel of theleaf nodewe are
processing.Whenthe ripple routineis completed,a leaf nodeis surroundedby neighborsno morethan
twice aslarge.

Theintuition of the prioritized ripple propagatioralgorithmis thatwe shouldeliminate“problem malkers”
level by level, startingfrom the mosttroublesomdevel. Thuswe first look atthe smallestieaf nodesin the
domain,and subdvide their neighborsasnecessaryo ensurethat all their impactsare absorbecdy their
immediateneighborsandthey will not directly causeary otherleaf nodesto subdvide in thefuture. Then
we move up to the next level, which may containleaf nodesnewly createdasaresultof the previous step.
While subdviding neighborsof leaf nodesat this level, we areactuallycarryingon possibleripple effects
originatedfrom lower levels. The “problem maker” elimination processstopswhen we reachthe level
thatis 1 belown the highestlevel. Leaf nodesin the uppertwo levels aretoo big to causeary “problems”
(subdvisionsof otherleaf nodes).

15

With the PRPalgorithm,we avoid multiple iterationsof neighbosfindings. The proof of the correctnessf

the algorithm consistsof threeparts. First, the algorithmterminates.Sincethe smallestieaf nodesnever

subdvide, the total numberof leaf nodesto be processeds bounded.Seconda leaf nodebecomesstable
(seeDefinition 1) after we apply the ripple routineon it (proof by induction). Third, all the leaf nodes
areprocessedy the ripple routineandthusbecomestable. This is becauseewly createdeaf nodesare
alwaysaddedto link lists at leastonelevel abore the currentlevel beingprocesseddueto the 2-to-1edge
sizeratio). Giventhe prioritizedlevel processingrder we areguaranteedo processall newly createdeaf
nodes.

Sincethe averagerunningtime of pointerbasedneighbotfinding algorithmis O(1), theripple routineruns
in O(1) on average. Thusthe PRPalgorithmhasan averagecostof O(n), wheren is the numberof leaf
nodesn acacheoctree.Sincethe PRPalgorithmis appliedrepeatediyon all cacheoctreesthetotal costof
runningthe PRPalgorithmis O(N) on averagewhereN is thetotal numberof octantsin thelinearoctree.

10 Evaluation

In this sectionwe presentheperformancevaluationof our balanceefinemensolution. A serieof exper
imentsareconductedo answeitthefollowing questions(1) Is our solutionefficientin termsof runningtime
ascomparedwvith otheralgorithms?Referringbackto thetwo performanceroblemsstatedin Section4,
whatis theimpactof performingneighbo#findings using pointerbasedcacheoctreesratherthandirectly
searchinghe B-tree? And whatis the impactof avoiding multiple iterationsof neighbo#findings? (2) Is
our solutionscalableVhatis its behaior whenusedto balancesxtremelylarge linear octrees?3) What
is theimpactof memorysizeon performance?

10.1 Methodology

We implementedbur balancerefinementalgorithmsusingthe etreelibrary [16], a runtime systemfor ma-
nipulatinglargelinearoctreesstoredon disk. For conveniencewe referto this programasBBP (balanceby
parts).

Besideswe implementedanout-of-coreversionof Yerry andShepard algorithm(YS) [18] (seeSection3
for details). Like its incoreversion,the out-of-coreYS algorithmconstructsa list of subdvision for each
iterationandneedsmultiple iterationsto balancea linearoctree.Neighborfindingsareperformedby B-tree
searcloperations.

We alsodevelopedanimprovedversionof our previousalgorithm(IMR) [15]. In particular we replacedhe

original post-processingtepby balancingthe partson faceboundariesline boundariesand point bound-
aries.Every partwasstill balancedy theincoreversionof the YS algorithm. Two caveats.First, themod-

ification is definitely animprovementbecausenultiple iterationsof post-processingreno longerneeded.
Second,the purposeof this modificationis that we cancomparethe performanceof cacheoctreebased
balancingalgorithm(PRP)andcorventionalbalancingalgorithm(YS) directly.

Our experimentsvereconductecn a collectionof real-world massie linearoctreedatasetsThe datasets,
afterbeingbalancedyeretransformedo a setof world-recordunstructuredhexahedraimeshesisedby the
Quale project (2003 GordonBell Award) [5, 2] to assesseismichazard. In fact, a long-time blocker to

16

high-resolutiorsimulationshasbeenthe lack of capabilityto dealwith massve linearoctreedatasetsOur
databassolutionturnedout to bethe blocker-remover.

Figure 14 summarizeshecharacteristicef thelinearoctreedatasetsThecolumns‘Octants(before/after)”
recordthe numbersof octantsan thelinearoctreebeforeandafterthe balanceaefinementrespecirely. The
column“Subduisions” recordsthe numberof subdvisionstriggered. The column*“Size"reportsthe sizes
of the B-treefiles storingthelinearoctreesafterthe balancerefinement.The unbalancediatasetareabout
10% smaller

Name | Octants(before) Octants(after)| Subdvisions | Size
la0.5h 9,903,330 9,922,286 2,708 | 139MB
lalh 113,642,903 113,988,717 49,402| 1.6GB
la2h 1,192,888,861| 1,224,212,902 4,474,863| 20GB
la3h 3,656,944,427| 3,734,593,936/ 11,092,787 56GB

Figure1l4: Summaryof massie linearoctreedatasets.

10.2 Is the solution efficient?

Thissetof experimentsvereconductednalinux 2.4workstationwith Pl 1GHZ processofCoppermine)
and3GB physicalmemory The purposés to evaluatethe efficiengy of our solutionin termsof therunning
time ascomparedwith existing algorithms.

We ranthethreedifferentalgorithmson all the datasetgxceptfor thelargestone,respectirely. Thisresultis
shavn in Figurel5. While performingtheexperimentgor the YS algorithm,we allocatedasmuchmemory
asavailable(upto 3GB)to cacheB-treepagegwith anunderlyingLRU buffer manager).

First of all, the experimentresultsshav that our solutionis very efficient andrunsmuchfasterthanother
existing algorithms.Whenappliedon a large datasetla2h), it only usesabout3 timesfasterthanIMR and
2 orderof magnitudefasterthanyYsS.

Secondthe benefitof finding neighborsusinganincoreoctreeratherthansearchinga B-treeis significant.

The YS algorithmsuffers from the O(log N)) costof searchinga neighborfrom the B-tree. With total cost

of O(NV log N) for neighbo#findings, its runningtime is notlinearly scalable Worse whenthe datasetize

far exceedghat of main memory neighboffindings may causepagefaultsanddisk I/0. The performance
degradationis detrimental.For example,the YS algorithmran for morethan2 weekson the la2h dataset
whosesizeis 20GB.

Third, the benefitof avoiding multiple iterationsof neighboffindings is evidencedby the performance
differencebetweenlMR, which usesthe conventionalmultiple-iterationalgorithm and BBP, which uses
prioritizedripple propagation Althoughnot a critical issuein compleity analysissuchconstanfactoras
introducedby multiple iterationsdoesmake a big differencein practice esp.for large datasets.

10.3 Is the solution scalable?

We conductedhis setof experimentson a HP AlphaSerer with 64 1.15GHz EV7 processorand256 GB
of sharedmemory runningthe Tru64Unix operatingsystem Eachexperimentwassubmittecto the system

17

Name YS IMR BBP

[a0.5h| 00:29:36| 00:05:37| 00:01:57
lalh 10:07:09| 1:44:55| 00:28:06
la2h > 2 weeks| 19:48:24| 05:51:30

Figure15: Therunningtime of differentalgorithmson the samedatasets.

asajob throughPBS (PortableBatch System).A job mustexplicitly specifythe numberof processorso
useandthe sizeof memoryneededAll of our experimentsnvererun on oneprocessoandrequeste@GB
memory The purposeof theseexperimentss to evaluatethe scalabilityof our solution.

Figure 16 summarizeshe statisticsof runningthe BBP algorithmon dataseta2handla3h. The“Queries”
columnreportsthe numberof octantsreturnedby rangequeries.The“Lev” specifieghe subtreeroot level
correspondingo the 3D volume parts. The “Time” columnreportsthe total running time of balancing
the datasetsn the form of hh:mm:ss.The “DB” columnshaws the percentagef time spentin database
operationsjncluding rangequeriesand B-tree updategbulk-loading time not included). The “Thruput”
columnpresentshethroughputatesof octants/second.

Name| Queried | Lev Time DB | Thruput
la2h | 15,595,416 3 | 03:04:50| 10.3% 111k
la3h | 55,340,273] 4 | 10:00:15| 6.1% 104k

Figure16: High throughputsustainedor extremelylarge datasets

Themoststriking resultis thethroughpubf balancinghela3hdatase{104koctants/seds almostidentical
to thatof thela2hdatase{111koctants/sec)vhile its sizeis almostthreetimesaslarge (56 GBvs. 20GB).
Giventhefactthatboth experimentsrequesteanly 2GB memory the sustainedhroughputrateis a solid
proofthatour algorithmscalegyracefullyto handlevery large datasetsvithout extra memoryrequirement.

A secondnterestingresultis thatalthoughthe memory(2GB) canonly accommodatemall 3D volumes
of adatase(in fact,1/27 of thela2h datasetand1/64 of the la3h dataset)rangequeriesretrieved lessthan
1.5% of theoctantsdn thedatasetThereforemostoctant98.5% of thedatasetarestreamednto memory
via efficient sequentiakcanof B-treepages.

Third, thetime spentin standardlatabaseperationgrangequeriesjnsertionsanddeletions)nly accounts
for about10% of the total runningtime, we candeducethat mostof the runningtime (90%) is spentin
“real computation”j.e. theconstructiorof cacheoctreesandthe executionof prioritizedripple propagation
algorithm. Sincethe total costof runningthe PRPalgorithmis O(N) on average the scalability (sustained
highthroughputate)we achiezed hasa strongtheoreticalsupport.

We notice that the numberof subdvisions (seeFigure 14) in both casesarelessthan0.4% andthe total
numberof octantsincreaseds no more than3%. We argue that this low subdvision rate and dataset
sizeincreasethoughspecificto our datasetsis not uncommonin real-world datasetsywherethe original
(unbalancedctreesareusuallybuilt to modelaphysicalfield or geometrywith inherentcontinuityatmary
locations.

18

10.4 What is the impact of memory size?

Experimentesultsshavn in this sectionareobtainedrom thesameHP AlphaSerer mentionecearlier We
areinterestedn finding outtheimpactof memorysizeon our algorithm. Doesthealgorithmrun fasterwith
unboundednainmemorysize?

Figure 17 summarizeghe resultof runningour algorithm on la2h datasetwith differentmemoryusage.
The“Memory” row lists the actualpeakmemoryusageby the experimentsandthe “Time” row shavs the
runningtime.

Memory | 418MB | 1.43GB| 5.39GB| 15.4GB| 43.8GB
Time 03:07:15| 03:04:50| 03:08:00| 03:23:37| 03:25:23

Figurel7: Theimpactof thememorysizeon therunningtime.

It is clearlyshawn thatour solutionperformsequallywell no matterhow muchmemoryis available.In fact,
therun using418MB memoryis asfast(if notfaster)astherun using43.8GB.A factorof morethan100
in termsof memoryusage!

Thereasonwvhy thememoryusage(for the43.8GBcase)exceedshesizeof thedatasef20GB for la2h)is
thatwe have loadedthe whole linear octreein a giganticcacheoctree.With the extra overheadassociated
with pointerbasedoctreeand otherinternal datastructuresthe actualmemoryusagedoubledthe size of
thedatasettself.

It is surprisingto seethatthefastestunis theonethatusedonly 1.43GB,whichis followed by the 418MB
run, andthenthe 5.39GB,the 15.4GBandfinally the 43.8GB.A contradictionto the commonbelief that
themorememoryyou have, the fastera programruns. However, a brief studyof the systems architecture
shedssomelight onthisabnormalphenomenonThoughclaimedto bean SMP architecturethe EV7 based
AlphaSereris actuallya CC-NUMA (CacheCoherentNon-UniformMemory Access)system.Sinceeach
processohas4GB local memory memoryallocatedoeyondthis thresholdrequiresremotememoryaccess
thatis slower thanaccessindocal cache. Thereforeour explanationfor the unexpectedresultsis thatthe
performancas indeedimproved whenmorememoryis allocatedocally but the benefitof larger memory
vanishesvhenmostmemoryis allocatedremotely

In summaryour experimentsshav thatour balancerefinemensolutionis both efficientandscalable.

11 Conclusion

This paperpresentshe solutionto the problemof balanceaefinemenbf massie linearoctreesWe combine
existing databas¢echniquegB-tree,bulk-loading,andrangequery)with new algorithms(balanceby parts,
prioritized ripple propagationjand datastructure(cacheoctree)in a unified framework that delivers new

capabilityto supportlarge scientificapplications.

In general,hybrid problemssuchas balancingmassie linear octreedatasetgpresenta nev challengeto
dealingwith massie data. The fundamentahatureof suchproblemsis that the entire datasethasto be
processediteratively sometimesto locatedataitemsthat needto be modified. Given the compleity of
suchproblemsagoodsolutionshouldnotonly reducethedisk I/O time but alsoimprove thecomputational

19

costof datamanipulation.As a result,corventionaldatabasgéechniqueshouldbe usedwith discretionin
orderto avoid creatingunexpectedoerformanceéottleneck.

References
[1] D.J.AbelandJ.L. Smith. A datastructureandalgorithmbasednalinearkey for arectangleetrieval
problem.Computenision,Graphics,andmage Processing24:1-13,1983.

[2] V. Akcelik, J. Bielak, G. Biros, I. EpanomeritakisA. FernandezQ. GhattasE. J. Kim, J. Lopez,
D. O’Hallaron, T. Tu, andJ. Urbanic. High resolutionforward andinverseearthqua& modelingon
terasacaleomputersin Proceeding®f SC2003Phoenix,AZ, 2003.

[3] B. Aronov andH. Bonnimann. Costpredictionfor ray shooting. In Proceedingf the 18th Annual
ACM Symposiunon ComputationalGeometrypages293—302june 2002.

[4] R.E.Bank,A. H. ShermanandA. Weiser Refinemenalgorithmsanddatastructuregor regularlocal
meshrefinement.ScientificComputing pages3—17,1983.

[5] H. Bao, J.Bielak, O. GhattasL. Kallivokas,D. O’Hallaron, J. Shevchunk,andJ. Xu. Large-scale
simulation of elasticwave propagationin heterogeneoumediaon parallel computers. Computer
Methodsin AppliedMecanicsand Engineering 1998.

[6] R.BayerandE. M. McCreight. Organizationand maintenancef large orderedindices. Acta Infor-
matica 1:173-1891972.

[7] M. Bern,D. EppsteinandJ. Gilbert. Provably goodmeshgenerationn Proceeding®f 31stSympo-
siumon Foundationof ComputerSciencepages231-241,1990.

[8] D. Comer TheubiquitousB-Tree. ACM ComputingSurvegs 11(2):121-137Jun1979.
[9] C.Faloutsos.Seaching MultimediaDatabasesy Content Kluwer AcademicPress1996.

[10] I. GarnagntiniLinearoctreefor fastprocessin@f three-dimensionaibjects.ComputeiGraphics,and
Image Processing20:365-3741982.

[11] M. GriebelandG. W. Zumhusch. Parallelmultigrid in an adaptve pde solver basedon hashingand
space-fillingcurves. Parallel Computing 25(7):827—-843July 1999.

[12] S.A. Mitchell andS. A. Vavasis. Quality meshgeneratiorin threedimensions.n Proceeding®f the
EighthSymposiunon Computationalceometrypages212—-221Feb1992.

[13] D.Moore. Thecostof balancinggeneralizedjuadtreesln Proceeding®fthe 3rd Symposiunon Solid
Modelingand Applications pages305-312,1995.

[14] H. Samet.Applicationsof SpatialData Structues: ComputerGraphics,Image Processingand GIS
Addison-Wesley PublishingCompary, 1990.

20

[15] T. Tu, D. O’Hallaron,andJ. Lopez. Etree: A database-orientethethodfor generatingarge octree
meshes.In Proceedingof the Eleventhinternational MeshingRoundtable pagesl27-138,lthaca,
NY, Sep2002.

[16] T.Tu,D. O’Hallaron,andJ.Lopez.Theetredibrary: A systenfor manipulatingargeoctreesondisk.
TechnicalReportCMU-CS-03-174 Schoolof ComputerScienceCarngjie Mellon University 2003.

[17] J.S.Vitter. ExternalmemoryalgorithmsanddatastructuresDealingwith massie data. ACM Com-
puting Surve, 33(2):209-271june 2001. A shorterversionappearedn Proceeding®of the 17th
AnnualACM Symposiurmon Principlesof Databas&ystemgPODS’98).

[18] M. A. YerryandM. S.Shepard Automaticthree-dimensionaheshgeneratiorby themaodified-octree
technique InternationalJournal for NumericalMethodsin Engineering 20:1965-19901984.

[19] D.P Young,R.G.Melvin, M. B. BietermanF. T. JohnsonS. S. SamantandJ. E. Bussoletti.A locally
refinedrectangulagrid finite element:Applicationto computationafluid dynamicsandcomputational
physics.Journal of ComputationaPhysics$92:1-66,1991.

21

