
BalanceRefinementof MassiveLinearOctreeDatasets

TiankaiTu andDavid R. O’Hallaron

April, 2004
CMU-CS-04-129

Schoolof ComputerScience
Carnegie Mellon University

Pittsburgh,PA 15213

Abstract

Many applicationsthatuseoctreesrequirethattheoctreedecompositionbesmooththroughoutthedomain
with no sharpchangein sizebetweenspatiallyadjacentoctants,thusimposea so-called2-to-1constraint
on theoctreedatasets.Theprocessof enforcingthe2-to-1constrainton anexisting octreedatasetis called
balancerefinement.Althoughit is relatively easyto conductbalancerefinementonmemory-residentoctree
datasets,it representsa major challengewhenmassive linear octreedatasetsareinvolved. Differentfrom
othermassive dataproblems,thebalancerefinementproblemis characterizednotonly by thesheervolume
of data,but alsoby the intricacy of the 2-to-1 constraint.Our solutionconsistsof two major algorithms:
balanceby partsand prioritized ripple propagation. The key idea is to bulk load most of the datainto
memoryonly onceandenforcethe2-to-1constraintlocally usingsophisticateddatastructurebuilt on the
fly. Thesoftwarepackagewe developedhassuccessfullybalancedworld-recordlinearoctreedatasetsthat
areusedby real-world supercomputingapplications.

This work is sponsoredin partby theNationalScienceFoundationunderGrantCMS-9980063,in partby a subcontractfrom
SouthernCalifornia Earthquake Centeraspart of NSF ITR EAR-01-22464,and in part by a grant from the Intel Corporation.
Experimentsin Section10.3and 10.4wereperformedon theNationalScienceFoundationHP GS1280systemat thePittsburgh
SupercomputingCenter.

Keywords: linearoctree,balancerefinement,balanceby parts,prioritizedripple propagation

1 Intr oduction

The extensive applicationsof the octreedatastructurecanbe datedback to asearly as the 1970’s [14].
Giventhreedecadesof research,it is oftenconsideredthatoctreeshave beenfully studied.Unfortunately,
an indispensableoperationrequiredby many applicationscalled balancerefinementhassomehow been
largely ignoredin thepast.

The purposeof balancerefinementis to enforcea continuity conditionon an existing octreeso that the
octreedecompositionbecomesrelatively smooththroughoutthe domainand thereis no sharpchangein
sizebetweenspatiallyadjacentleafoctants.Althoughrediscoveredandrenamedmany timesby researchers
in differentfields, the continuity conditionbearsthe samecharacteristicsin all applications:no two leaf
octantsthatsharea faceor anedgeshoulddiffer by a factorof morethan2 in termsof their edgesizes.Or
equivalently, all spatiallyadjacentleafoctantsthatsharea faceor anedgeshoulddiffer by atmost1 in their
treelevels.To make thetermmoreintuitive,we referto thecontinuityconditionasthe2-to-1constraint.

Importantapplicationsthat requirethe2-to-1constrainton octreesincludescientificcomputing[4, 19, 11,
2], quality meshgeneration[18, 7, 12, 15], andcomputergraphics[3]. Even thoughmany authorshave
basedtheirwork onthecritical conditionthatanoctreebebalanced,it hasoftenbeenconvenientlyassumed
thereexists somebalancerefinementalgorithm,for example,to facilitatefurther theoreticalanalysis.As
a result,thequestionof how to efficiently balanceanoctreeis left unanswered.Althoughthis maynot be
a big problemfor smallapplicationswherethedatasetcanbecompletelycachedin mainmemory, it does
representa seriousproblemwhenmassive linearoctreedatasetsareinvolved,esp. in scientificcomputing
area [19, 2]. Usually, in orderto simulatelarge andcomplex physicalphenomena,scientificapplications
requirebillions of octantsor even moreto model the domainof interest. The sizesof thesedatasetsare
commonly in the order of tensof gigabytes,with terabytedatasetson the horizon. How to efficiently
balancesuchmassive linearoctreedatasetsthatcannotbecompletelycachedin mainmemoryconstitutesa
majorchallenge.

Interestingly, theproblemof balancerefinementof massive linearoctreedatasetsfalls in-betweenthetwo
canonicalcategories: thebatchedproblemsandtheonlineproblems[17]. It is a batchedproblembecause
every item (octant)in the datasethasto be processedin order to enforceor verify the 2-to-1 constraint.
It is an online problembecausechangesto the dataset(linear octree)areonly performedin responseto
violationsof thecontinuitycondition,andaremostlyconfinedto a smallportionof thedataset.Extending
the taxonomydefinedby Vitter [17], we refer to the balancerefinementproblemand the like ashybrid
problems.

This paperpresentsanefficient andscalablebalancerefinementsolution. Like many otherdatabasealgo-
rithms,our solutionexploits locality of referenceto reducedisk I/O. Themainalgorithmis calledbalance
by parts. The key ideais to divide the domainrepresentedby an linear octreeinto 3D volumes(volume
parts) thatcancompletelyfit in mainmemory. Eachvolumeis streamedinto mainmemoryby asequential
scanandis cachedin a temporarypointer-basedoctreecalledcacheoctree. Interactionsbetweenvolumes
areresolvedby balancingoctantson theinter-volumeboundaries(boundaryparts). Octantsof a boundary
partarefetchedby rangequeriesissuedonthelinearoctreeandarealsostoredin a temporarycacheoctree.
Oncea cacheoctreeis initialized,we applyanalgorithmcalledprioritized ripple propagation to balanceit
efficiently. While adjustingthestructureof thecacheoctree,weupdatethelinearoctreedatasetaccordingly.
Evaluationresultsshow thatour solutionis bothefficient andscalable.It runs3 timesfasterthanexisting

1

algorithmswhenusedto balancea 20GBdatasetwith 1.2billion octantson a Linux workstationwith 3GB
mainmemory. It alsokeepshigh throughputratewhenusedto balanceextremelylargedataset(56GB).

Ourpapermakesthefollowing contributions:

� Real-worldimpact:Weshow thatbesidestheconventionalquery-basedservices,databasetechniques,
when combinedwith new algorithms,can deliver unprecedentedcapability to supportlarge-scale
scientific applications. The software packagewe developedis usedin practiceto solve problems
previously undoable.

� Databasedesignprinciple: We introducea unifieddesignframework to simultaneouslyaddressthe
problemsof reducingdisk I/O time andimproving therunningtime of theoperation(balancerefine-
ment)itself. Ournew algorithmsareprovably efficient andeasyto implement.

Section2 introducesthebasicconceptsrelatedto octreesandbalancerefinement.Section3 briefly surveys
therelatedwork. Section4 definestheperformanceproblemswetargetto resolve. Section5 is anoverview
of the balanceby part algorithm. Section6 proves its correct. Section7 explains how to retrieve data
efficiently. Section8 illustrateshow to build a temporaryinternaldatastructureto cachethedata.Section9
presentsanalgorithmthatefficiently balancethecacheddata.Section10 evaluatestheperformanceof our
solution.Section11 concludesourwork.

2 Background

2.1 Octreesand Linear Octrees

An octree recursively subdivides a three-dimensionaldomain into eight equalsize octantsuntil certain
criteriaaresatisfied [14]. Onecommonway to representanoctreeis to link thetreenodesusingpointers.
Figure1 shows thepointer-basedoctree1 representationandits correspondingthedomaindecomposition.
A nodewith no childrenis a leaf node. Otherwise,it is a non-leafnode. Thenumberof hopsfrom a node
to theroot nodedefinesthe level of thenode.Thelarger thevalue,the lower thelevel. Thecorresponding
domaindecompositionis shown is Figure2.

��� ��� ��� ����	
���
�
� � � ����	
�����

����	
���
�
���
� ��� �

�
�����

� �

����	
���

����	
���
!

��� �"� � � ���
��� ���#� � ���
��� ��� � � ���

$ %�&'%�(� � � � %'& ��� $ � � � � %'& �'�

Figure1: Pointer-basedoctreerepresentation.

1Wemaydraw 2D quadtreesin figuresto illustrateconcepts.Butweusetheterm“octrees”and“octants”consistently, regardless
of thedimension.

2

The othercommonway to representan octreeis the linear octree [10, 1]. The linear octreetechnique
assignsa uniquekey to eachnodeandrepresentsan octreeasa collectionof leaf nodecomprisingit. With
keys assigned,leaf nodescanbeorganizedon disk by anindex structuresuchasa B-tree[8, 6]. Thus,the
sizesof linear octreesaredisk boundratherthanmemorybound. They areextremelyuseful in practice
wheremainmemorycannotaccommodateanpointer-basedoctree. In this paper, we only considerlinear
octreedatasetsindexedby B-trees.

Thekey assignedto a nodeis generallyreferredto asits locationalcode, which encodesthe locationand
sizeof the node. Oneparticularlocationalcodethat is commonlyusedis obtainedby concatenatingthe
branches(bit-patterns)on the path from the root nodeto the leaf node. Zeroesmay be paddedto make
all the locationalcodesof equallength. To distinguishthetrailing zeroesof branchbit-patternsfrom zero
paddings,the level of the nodeis attachedto the path information. An equivalentway [9] to derive the
locationalcodeis basedonbit-shuffling of thecoordinates,which is oftenusedin practice.

)+* ,
-.0/132

4 5
6

7 8

Figure2: Thecorrespondingdomaindecomposition.

For example,assumethemaximumtreelevel supportedis 4, thenthelocationalcodeof nodea in Figure1
is 9:9:9:9:9:9:9:9 9:9<;�= . Theunderscoreis for illustrationpurposeonly; a locationalcodeis just a fixed-length
bit string. Notethat the lastsix zeroesin thepathinformation(beforetheunderscore)arepaddingsadded
to make the codeof equal length as others. Similarly, we can derive the locationalcodeof nodef as
9<;�9:9<;�9<;�9 ;�9:9 = . Sincef is alreadyat the lowestlevel, no paddingsarenecessary. Obviously, whengiven
a locationalcode,we caneasilyidentify a nodein a pointer-basedoctreeby descendingfrom theroot node
accordingto thepathandlevel informationencoded.

Whenwe sort the leaf nodesaccordingto their locationalcodes(treatedasbinaryscalarvalue),theorder
we obtainis thesameasthepreordertraversalof theoctree.Thereforewhenwe index a linearoctreein a
B-tree,octantsarestoredsequentiallyonB-treepagesin theorderof preordertraversal2.

2.2 2-to-1constraint and Ripple Effect

The2-to-1constraintrequiresthat theedgesizeof two leaf octantssharinga faceor anedgeshouldbeno
morethantwice aslargeor small. For example,octantf in Figure2 is adjacentto octanta andj, bothof
which aremorethantwice aslarge. Figure3 shows the resultof refining thedomainto a balancedform.

2In thecontext of disk-residentlinearoctree,we referto theleafnodessimplyasoctants,sincenonon-leafnodesarestoredon
disk

3

Thecorrespondingtreestructureadjustmentis shown in Figure4. Notethatin 2D,weonly needto consider
edge-neighbors.

>+? @
AB0CD3E

F G H

I�J

K
L G

I G I"M
I�N I"O

I"P I�Q F J
F M F N

LRJ

L:M L'N

Figure3: A balanceddomaindecomposition.

Oneinterestingpropertyof therefinementprocessis theso-calledripple effect. That is, a tiny octantmay
propagateits impactout in theform of a “ripple”, causingsubdivisionsof octantsnot immediatelyadjacent
to it. In our example,octantm is not directly adjacentto octantf, but it is forced to subdivide by the
subdivision of octantj, which is triggereddirectly by f.

S�T
UWV�X Y

Z
[\

] ^
_

`

a b�c U Ved
f S'U�[g
[U V U

Figure4: A balancedoctreeresultedfrom aseriesof subdivisions.

3 RelatedWork

Moorestudiedthespacecostof balancinggeneralizedquadtreesandprovedthatthereis auniqueleastcom-
monbalancerefinementof anoctree [13]. In otherwords,if webalanceanoctreewith asfew subdivisions
aspossible,thenwhichever valid3 orderwe take to conductthe subdivisions,we obtainthe sameunique
balancedoctree. This theoremenablesa greedyalgorithm (suchas ours) to subdivide too-large octants
immediatelyandguaranteesthatthefinal resultis correct.

YerryandShepardpioneeredthework of automatic3D meshgenerationbasedonoctrees.They introduced
a balancealgorithmon a breath-firstexpandedoctreein [18]. This algorithmproceedsin two steps. In
the first step,an unbalancedoctreeis traversedin breath-firstorder. On visiting a leaf octant,a seriesof
neighbor-findings areperformedto determinewhetherit is more than twice as large asany of its (leaf)
neighbors.If so,the leaf octantis addedto a list of subdivision. In thesecondstep,eachleaf octantin the

3We cannotsubdivide a child beforesubdividing its parent.

4

list of subdivision is subdivided andits eight childreninsertedinto theoctree.Becauseany octantcanbe
subdivided at mostoncein oneiterationof the two-stepprocedure,multiple iterationsmaybe invoked to
resolve theripple effect.

More recently, we proposedanalgorithmcalledlocal balancingfor thebalancerefinementof large linear
octrees [15]. The idea is to partition the domainmodeledby an octreeinto equal-sizeblocksand then
traversethedomainblock by block. Eachblock is cachedin memoryin a blocking array. A variantof the
Yerry andShepard’s algorithmis invoked to balanceeachblock. Interactionsbetweenadjacentblocksare
handledby a post-processingstepcalledboundarybalancing, which may take multiple iterations. After
eachiteration,anew list of boundaryoctantsis generatedandtakenasinput for thenext iteration.

4 ProblemStatement

Thebalancerefinementprocessbasicallyinvolvestwo operations:(1) neighbor-finding, finding neighbors
to obtain their edgesizesinformation in order to make comparison;(2)subdivision, deletea “too-large”
octantfrom thedatasetandinsertits eightchildren. Thedeletionis necessaryin thesubdivision operation
becausethelinearoctreedatasetswe arebalancingshouldcontainonly leafoctants.

Supposewe have a completelist that recordsthe octantsthat needto be subdivided, thenthe processof
balancerefinementboils down to a sequenceof simpleB-treedeletionsandinsertions.Unfortunately, we
donotalist of subdivisionwhengivenanunbalancedlinearoctreedataset.Worse,therippleeffectexcludes
theexistenceof sucha completelist, which shouldgrow graduallyduring the refinementprocess.So the
only way to decidewhetheranoctantis too-largeandneedsto besubdivided is by comparingits edgesize
with thoseof its neighbors.Therefore,neighbor-finding is thekey operationfor balancerefinement.

Onemethodto implementtheneighbor-finding operationis to manipulatethe locationalcodeof anoctant
to generatethekeys for its neighborsandsearchtheB-treedirectly. Theaverage(alsoworse-case)costfor a
B-treesearchoperationis O h"ikj:lnmpo , whereN is thenumberof octantsindexedby theB-tree.As aresult,the
total costof neighbor-findingsfor every octantin thedatasetis O h"mqikj:lrmso . Theadvantageof this method
is that thereis no excessive requirementon thesizeof mainmemory, aslong asthereareenoughspaceto
cachea few B-treepages.

Another methodis to map the linear octreeto an incore pointer-basedoctreeand usethe conventional
pointer-basedalgorithmto find neighbors[14]. Theadvantageis thattheaveragecostof neighbor-finding is
reducedto O h
;to , with a totalcostof only O h"mso to conductall theneighbor-findings.But themainmemory
shouldbelargeenoughto build apointer-basedoctreeimagefor thelinearoctree.

How canwe take advantageof bothmethods?Thatis, howcanwefind neighbors efficiently(in O h
;to time)
withoutexcessivememoryrequirement(not mappingtheentire linear octreein memory)? This is thefirst
problemweneedto address.

The secondperformanceproblemis more subtleand is relatedto the ripple effect. After an octant is
checked to be balancedwith respectto its neighbors,one of its neighborsmay be subdivided later and
becomesmaller. Thismaycausetheoriginaloctantto become“too-large”. Consequently, anotherroundof
neighbor-findingsmustbeinvoked to discover this newly createdunbalancedsituation.However, multiple
iterationsof neighbor-findingsincreasethetotal runningtime by a constantfactor. Sothesecondproblem
we focuson is howto avoidmultipleiterationsof neighbor-findings?

5

5 Balanceby Parts

Oursolutionis basedonanobservationthatalthoughbalancerefinementmaycauserippleeffect,theimpact
diminish quickly due to the 2-to-1 edgesize ratio. In addition, most impact causedby a tiny octantis
localizedin a small region. For example,octantf in Figure2 causesthesubdivisionsof octanta andits
children.But botharespatiallyadjacenttof. In otherwords,theimpactof a tiny octantis absorbedmostly
by octantssurroundingit in asmallneighborhood.

Thestronglocality of referencesuggeststhatwe maymapa small region to a pointer-based(sub)octreein
memoryandresolve the2-to-1constraintandtherippleeffectwithoutworryingaboutoctantsoutsideof the
region. This is thetypeof solutionthatfits theparadigmof divide-and-conquer perfectly.

5.1 Overview

Figure5 shows the outline of our main algorithm,calledbalanceby parts. First the domainrepresented
by a linear octreeis partitioned(divided) into equal-sized3D volumescalledvolumeparts. The sizeand
alignmentof each3D volume shouldcorrespondto somenon-leafnode(of a conceptualpointer-based
octree)at certainlevel. Next, eachvolumeis cachedin memoryandbalanced.After all the 3D volumes
areprocessed,octantson thevolumefaceboundaries,calledfaceboundaryparts, arebalanced, followed
by thebalanceof octantson thevolumeline boundaries(line boundaryparts) andpoint boundaries(point
boundaryparts). Eachpart,regardlessof its type,is cachedin atemporarypointer-basedoctreecalledcache
octree. While balancingancacheoctreein memory, we updatetheB-treeto recordthesubdivisionsof leaf
octants.An algorithmcalledprioritize ripple propagation is usedto efficiently balancecacheoctrees(see
Section9).

An intuitive way to understandthe balanceby partsalgorithmis to imaginea moving window insidethe
3D domain.At any moment,thecontent(octants)insidethis window is retrieved from disk andcachedin
a temporarydatastructure(cacheoctree). Whenwe adjustthe datastructureto enforce2-to-1 constraint
in memory, thecontenton disk is updatedaccordingly(by deletingsubdivided octantsandinsertingtheir
childrenin theB-tree).Thewindow sizeis setdifferentlyfor four separatestages,rangingfrom thelargest
(for the3D volumes)to thesmallest(for thepointboundaryparts).

Althoughsimilar in principleof divide-and-conquer, this solutionis differentfrom our previouswork [15]
in many key aspects.First, insteadof cachingdatain aflat structure(blockingarray),we install octantsin a
temporarypointer-basedoctree.Second,noadditionaliterationsof boundarypost-processingarenecessary.
Interactionsbetween3D volumesgraduallydiminishafterbeingassimilatedby faceboundaries,thenline
boundariesandfinally pointboundaries.Third, weapplyasameroutineto balanceall theparts.No special
treatmentfor theboundaryoctantsis needed.Fourth,we have developeda new algorithmthatcanbalance
apointer-basedoctreeefficiently (O(n)), ratherthanusingavariantof YerryandShepard’s algorithm.

5.2 An Example

Hereis anexampleof applyingouron theoctreeof Figure1 andFigure2. Notethatin thecontext of linear
octrees,theglobalpointer-basedtreestructuredoesnotexist physicallyin memoryor on disk.

6

Algorithm 1 (Balanceby parts).

Input:
An unbalancedlinearoctreeindexed/storedin a B-tree.

Output:
A balancedlinearoctreeindex/storedin thesameB-tree.

Method:
Organizethedatasetassmaller, memorycacheable
parts,andbalanceeachpartindependently.

Step1: [Partition the domain into equal-sized3D vol-
umes.]
Based on the available memory size, decide
the maximum number of octants that can be
cachedand calculatethe correspondingsubtree
root level. Each3D volume mapsto a subtree
root.

Step2: [Balancethe3D volumeparts.]
Fetch data from database:Octantsbelongingto
each3D volumeis sequentiallyscannedfrom B-
tree pagesand cachedin an internal temporary
datastructurecalledcacheoctree.

Balancecacheoctree: Eachcacheoctreeis bal-
ancedindependently. Subdivisionsof leaf nodes
causesoctantsto be deletedfrom and inserted
into theB-tree.

Releasecache octree: After an cacheoctreeis
balancedandtheB-treeupdatedaccordingly, re-
leasememoryusedby thecacheoctree.

Step3: [Balancethefaceboundaryparts.]
Similar to Step2 except that range queriesare
issuedto fetchoctantson the faceboundarybe-
tweenadjacent3D volumesfor eachpart.

Step4: [Balancetheline boundaryparts.]
Similar to Step2 except that rangequeriesare
issuedto fetchoctantson the line boundariesof
adjacent3D volumesfor eachpart.

Step5: [Balancethepoint boundaryparts.]
Similar to Step2 except that rangequeriesare
issuedto fetchoctantsonthepointboundariesof
adjacent3D volumesfor eachpart.

Figure5: Balanceby parts.
7

u�v
w x
y<z|{ u�v
w x
y<z|}

u�v
w x
y<z|~ u�v
w x
y<z|�

Figure6: Partition thedomaininto 4 volumescorrespondingto treelevel 1.

Assumethe largest volumesthat can fit in memory correspondsto non-leaf nodes(of the conceptual
quadtree)at level 1, we partition the domaininto 4 volumes,shown conceptuallyin Figure6. Eachvol-
ume is cachedin memoryindependentlyas a temporarypointer-basedcacheoctreeand then balanced.
Figure7 shows thecacheoctreefor volume2.

���
�W��� �

�
� ��

� �'� � ���
� ���'� �
� � � �

� ���'�'���'� � � �e� � � � ���

Figure7: Thebalancedcacheoctreerepresentingvolume2.

After all thevolumesareprocessed,line boundarypartsarebalancedoneby one,in arbitraryorder. Note
that for 2D cases,thereareonly line boundariesandpoint boundaries.Figure8 show the cacheoctree
representingoctantson the boundariesbetweenvolume1 andvolume2 andthe correspondingregion is
shown in Figure9. Notethatall thesubdivisionstriggeredby octantf areconfinedon theboundary. Also,
thecacheoctreeroot for boundarypartsis mappedto theentiredomain(level 0) insteadof thesubtreeroot
level asdoesthe cacheoctreefor the volumes. As a result, the cacheoctreehasnull branches.We will
justify thesedesigndecisionsin theremainderof thispaper.

�
� �

�

� �'� ���e
¡'���'¢ £
¢ �����

¤¦¥ ¤¨§

� � ¡'© ©
�'ª � ��«
¬

ª ����­'® �'¯ ­ � © �'£
��©
°

Figure8: Thebalancedcacheoctreerepresentingline boundarypartbetweenvolume1 andvolume2.

Thepoint boundarypart consistsof the four octantsanchorsat thecenterpoint of thedomain(thecorner

8

±
² ³
´ µ

¶�·¶ µ ¶�¸
¶�¹ ¶�º

¶�» ¶�¼ ´ ¸

½
¾"¿RÀ Á Â"¿R±�Ã�Ä"Â�² ¶�Å Æ ±�¿"Ç È:¿�¿"ÂÊÉ
Ã"À Ä�ËR¿Rµ ¶ Â"²ÊÉ
Ã"À Ä�ËR¿ ·�Ì

Figure9: Theboundarypartbetweenvolume1 andvolume2.

boundaryof the4 volumes). In this example,no subdivision occursinsidethepoint part. Sowe skip the
cacheoctreerepresentationfor thepointboundarypart.

5.3 Questionsto beAnswered

Although structurallysimple,our solutionmay raisemany questions.First of all, is it correct?How can
a linearoctreebebalancedwhenonly partsof the treearebeingbalanced?Second,how to fetchpartsof
differenttypesfrom a linearoctreedatasetandwhatis theI/O implication?Third, how to build theinternal
temporarycacheoctreeandspeedup thebalanceoperationitself?

A shortansweris thatthealgorithmis correctandall thedesignchoicesaremadeto resolvetheperformance
problemsstatedin Section4. Detailedanswersarepresentedin thenext threesections.

6 Corr ectness

Wefirst defineanimportantconceptcalledstableoctants:

Definition 1. An octantis stableif (1) it will not trigger otheroctantsto subdivide;and (2) it will not be
triggeredto subdivide.

Stableoctantsareisolatedfrom otheroctantsin termsof interactionsthatmight triggersubdivisions.While
otheroctantsareundergoing subdivisions,stableoctantsremainintact in thedataset.They exist in a bal-
ancedlinearoctreedatasetin thesameform aswhenthey becomestable.It is trivial to show:

Theorem 1. An octreeis balancedif andonly if all its octantsare stable.

Soinsteadof directly proving thateachindividual octantconformsto the2-to-1constraintwith respectto
its neighbors,weprove thecorrectnessof ouralgorithmby constructingthesetof stableoctantsÍ . Initially
empty, Í is augmentedmonotonouslyevery time we balancea part of sometype. When the algorithm
terminates,Í containsall theoctantsin thedomain.Thus,we have abalancedoctree.

To completetheproof by construction,we needto show: (1) which octantsbecomestableafter a part of
sometype is balanced;(2) why Í containsall theoctantson terminationof thealgorithm. Both problems
canbesolvedby usingtheconceptof internaloctantsandboundaryoctants.

9

6.1 Inter nal Octantsand Boundary Octants

As shown in Figure 5, our algorithm works on four different typesof parts in order: 3D volume, face
boundary, line boundary, andpoint boundary. After a part of sometypeis balanced, we canpartition its
octantsin two disjoint sets:boundaryset , which containstheoctantson boundaryof thepart (boundary
octants); andinternal set, whichcontainsall theremainingoctants(internal octants).

Obviously, differentdefinitionsfor “boundary”and“internal” areneededfor partsof differenttypes.

Definition 2.

� In a balanced3D volumepart, an octantis a boundaryoctantif it is adjacentto someoctantoutside
the3D volume. Otherwise, it is an internaloctant.

� In a balancedfaceboundarypart, anoctantis a boundaryoctantif it is onsomeline boundaryshared
by adjacent3D volumes.Otherwise, it is an internaloctant.

� In a balancedline boundarypart, an octant is a boundaryoctant if it is on a somepoint (corner)
boundarysharedby adjacent3D volumes.Otherwise, it is an internaloctant.

� In a balancedpoint boundarypart, all octantsare internal octants.

Boundaryoctantsassociatedwith balancedpartsof onetypecorrespondto thepartsof thenext type to be
balanced.For example,theboundaryoctantsof balanced3D volumesarethoseonvolumefaceboundaries
and,by definition(seeSection5.1),form thefaceboundaryparts.

If we perceive our algorithmasconsistedof four stagesasshown in Figure10, every stageprocessesthe
balanceinflow dataandseparatethe resultas internaloctantsandboundaryoctants. The latter form the
inflow datastreamto thenext stage.Thefinal stagedoesnot produceany boundaryoctants.So if we can
show all internaloctantsarestable,we aredonewith theproof.

ÎRÏ Ð�Ñ�ÒnÓÔRÕ3Ö Ð�×�Ï Ø ÎRÏ Ð'Ñ�ÒeÙÙ Õ3Ö Ð�×�Ï Ø ÎRÏ Ð�Ñ�Ò ÔÓ Õ3Ö Ð'×¨Ï Ø Î:Ï Ð�Ñ'Ò�ÚÛ#Õ3Ö Ð�×�Ï Ø
Ü�Ý Þ Ò�Ð�×
ß�à Ï ×�Ò�Òá Ð'Ï Ð�Ø
Ò�Ï

ÎRÏ Ð�â�ã Ò ß�à Ï Ð Þ Ï Ø
ä å Þ Ï Ò�× Þ Ð�ã ß�à Ï Ð Þ Ï Ø ä æ ß�ç Þ'á Ð'×¨è ß�à Ï Ð Þ Ï Ø

Figure10: Fourstagesof balancingpartsof differenttypes.

6.2 A Proof Template

Theproofsof internaloctantsbeingstablein thecontext of differenttypes(3D volumes,faceboundary, line
boundary, andpointboundary)areidenticalin theirstructures.So,without lossof generality, wepresent,as
a template,a detailedproof showing that internaloctantsof balanced3D volumesareindeedstable.Other
proofscanbeadaptedfrom this templateeasilyandarenotpresentedin thispaper.

10

In orderto prove internal octantsof a balanced3D volumearestable,we needto show that they satisfy
thetwo sufficient conditionsof Definition 1. Thefirst conditionis trivially true. Sinceall neighborsof an
internaloctantbelongto thesame3D volume,the internaloctantwill not causeany of themto subdivide
any more.Otherwise,the3D volumemusthave notbeenbalanced,contradictingtheassumption.

Thesecondconditionrequiresa morecarefulanalysis.If aninternaloctant’s neighborsareall internal,the
secondconditionholdsbecausenoneof its neighborswill trigger it to subdivide (by applyingcondition1
on all theneighbors).However, if an internaloctanthasa boundaryneighbor, theboundaryneighbormay
betriggeredto subdivide by someoctantoutsidethe3D volume.Thequestionis will theinternaloctantbe
triggeredto subdividedby theripple effect?Theansweris no. Theproof is built on thenext two lemmas.

Lemma 2. Supposea 3D volumeis balanced,theedgesizeof a boundaryoctantis either(1) twiceaslarge,
or (2) aslarge asthoseof its internal neighbors.

Proof. Whena3D volumeis balanced,thereareonly threepossibilitiesof edgesizeratiobetweenabound-
ary octantandits internalneighbors:(1) twice aslarge,(2) aslarge,or (3) half aslarge.Wenow prove that
thethird possibilitydoesnotexist.

Recallthata 3D volumemusthave thesamesizeandalignmentassomenon-leafnode(of a conceptually
pointer-basedoctree)atcertainlevel. Thus,everyoctantinsidethe3D volumemustbeachild of thesubtree
root correspondingto the3D volume.

Now supposea boundaryoctant is only half as large as one of its internal neighbors,then the internal
neighboris not properlyalignedandcannotbea child of the3D volumesubtreeroot (seeFigure11). Thus
thethird possibilitydoesnotexist.

étê'ë�ì í�î�ïðî'í�ñ
ò ê'ó ê'ô
õ�î'ñ

öRí'÷�î'ø�õ ò�ù í'ú
ñ õ�î'ñ

û î'ñ ê ò î'õ�ó
í�ú
ñ õ'î�ñ

Figure11: Theboundaryoctantin abalanced3D volumecannotbehalf aslargeasits internalneighbors.

Lemma 3. Supposea 3D volumeis balanced,if oneof its boundaryoctant is triggered to subdivideby
an octantoutsidethe3D volume, the the3D volumecanbe re-balancedwithoutsubdividingany internal
octants.

Proof. Dueto Lemma2, if a boundaryoctantsubdivides,its children,half of its edgesize,areeither(1) as
largeor (2) half aslargeasits internalneighbors.Therefore,the2-to-1constraintis maintainedbetweenits
childrenoctantsandits internalneighbors.

Soif the3D volumebecomesunbalanced,it musthave beencausedby a violation of the2-to-1constraint
betweensomenew children octantsandother boundaryoctants. In order to re-balancethe 3D volume,
theseboundariesoctantsneedto besubdivided. Althoughthey maytriggersubdivision of moreboundary
octants,noneof theboundaryoctantsubdivisionwill triggersubdivisionof any internaloctants,by thesame
argumentsin thepreviousparagraph.

11

Considertheinteractionsbetweenatiny octantoutsideaninitially balanced3D volume.Every timethetiny
octanttriggersa subdivision of a boundaryoctant,the3D volumecanbere-balancedwithout subdividing
any internaloctants(Lemma3). This processterminateswhenthe tiny outsideoctantis adjacentto some
boundaryoctants(descendantsof theoriginalboundaryoctant)thatarenomorethantwiceaslarge.There-
fore, theripple effect of a tiny octantoutsideof a balanced3D volumeonly propagateson thevolumeface
andnever getsinto the3D volume.

The applicationof Lemma3 is critical in the above reasoning. The claim that internal octantsare not
subdivided arebasedon thepremisethat the3D volumeis balanced.Lemma3 providesa “self-healing”
mechanismto re-balancea3D volumesothatits premisebecomesvalid repeatedly.

It is worthnotingthatafteraboundaryoctantis subdivided,its childrenwhoarenotontheboundarybecome
new internaloctants.Thus,whenweapplyLemma3 again,weareactuallyreferringto anexpandedinternal
set.Nevertheless,theoriginal internaloctants,whichbelongto theexpandedset,arestill notsubdivided.

Thisprovesthatall internaloctantssatisfythesecondsufficient conditionof stableoctants.Sowehave:

Theorem 4. Internal octantsof a balanced3D volumearestable.

In a similar way, we can prove that internal octantsof balancedpartsof other typesare stable. So on
completionof thefour stagesof balancing,all theoctantsin thedomainbecomestable.

Thisconcludesthetheoreticalproofof thecorrectnessof ouralgorithm.Next, weexplainthesystemsaspect
of ouralgorithmandshow how theperformanceproblemsstatedin Section4 areresolved.

7 Data Retrieval

We retrieve datafrom a linear octreedatasetin two different ways: bulk-loading and range query. 3D
volumepartsareretrievedby bulk-loading.Becausea3D volumemapsto avirtual subtreerootwhoseleaf
octantsareclusteredsequentiallyonB-treepages(seeSection2.1). Wecanidentify thepositionof thefirst
octantof a 3D volumein the B-treeby a simplesearchoperation,andthensequentiallyscaneachoctant
from the B-treein constanttime until we encounteran octantthat is outsideof the 3D volume. The first
octantof a 3D volumeis well-defined.It refersto theoctantthatoccursfirst in thepreordertraversalof the
subtreerepresentedby the3D volume.Sincethefirst octantis alwaysanchoredat theleft-lower cornerof a
3D volume,we caneasilyderive its locationalcode.

To retrieveoctantsfor partsof othertypes,we implementrangequerieson linearoctreedatasets.For exam-
ple, faceboundarypartsarefetchedby searchingfor octantstangentiallyintersectingparticularrectangles
(sharedby 3D volumes)in space. Sinceour solution reducesinteractionsfrom faceboundaries,to line
boundariesandfinally to point boundaries,thesizesof rangequeriesarereducedover thestages.In fact,
our experiments(seeSection10.3)show thatonly about ;Rü¨ýÿþ of a linearoctreedatasetis fetchedby range
queries.

In summary, thestructuraldesignof our algorithmresultsin an I/O optimal casewheremostdatais effi-
ciently retrievedby bulk-loadingandtheremainderis retrievedby standardspatialdatabaserangequeries.

12

8 CacheOctree

Whentheoctantsfor apart(of any type)areretrievedfrom thelinearoctree,we cachethemin a temporary
datastructurecalledcacheoctree. A cacheoctreeis apointer-basedoctreewith speciallink listsembedded
(seeFigure 12). We usethis single datastructurerepeatedlyto cacheall the parts, regardlessof their
types.Theadvantageis thatwe canapplythesamealgorithmon all cacheoctrees.No specialtreatmentof
boundarypartsis needed.Theproceduresof building cacheoctreesfor partsof differenttypesarealmost
identicalexceptfor a few minor details.

Beforea part is fetchedfrom database,we initialize an cacheoctreewith a singleroot node4. For a 3D
volumepart, we map this nodeto the non-leafnodecorrespondingthe 3D volume. For otherparts,we
mapthis nodeto theroot node(level 0) thatrepresentsthewholedomain.Wewill justify this arrangement
shortly. For eachoctantretrieved,we install it in thecacheoctreeasa leaf node.The installationprocess
is straightforward. As we have shown in Section2.1, it is trivial to descendfrom the root nodeto find a
leaf nodeby extractingthe path information(branchbit-patterns)from the its locationalcode. The only
differencehereis that we do not have a treestructurein place. So someextra work needsto be doneto
createnon-leafnodesasnecessarywhenwe descenddown acacheoctreeto install a leaf node.Leaf nodes
atsametreelevel arelinkedtogetherandis accessiblefrom anarraycalledlevel table.

����������� ��	�� �

�
�

Figure12: A cacheoctreeis apointer-basedoctreewith leafnodesat thesamelevel linkedtogether.

Wemustguaranteethateachoctantof aparticularpartcanbeproperlyinstalledby traversingdown acache
octreefrom its root node. This is not a problemfor a 3D volumepart sinceall the octantsbelongto the
samesubtreeandwe have mappedthecacheoctreeroot nodeto that level. For a partwith typeotherthan
3D volumes,two octantsmayhave differentbit-patternat thefirst branchin their locationalcodes.To see
anexample,checkthelocationalcodesof octanta andf in Figure2. Therefore,wehave to to mapacache
octreerootnodeto level 0 to ensureproperinstallationof all octantsof thepart. In thiscase,somebranches
of non-leafnodesmaybeempty(null) andthecacheoctreebecomessparse.

Till this point,we have developedall thetechniquesneededto resolve thefirst performanceproblemstated
in Section4. The solution is to divide the domaininto small pieces(balanceby parts)andbuild incore
pointer-basedoctreefor eachpiece(cacheoctrees).In thisway, we canwork with smallmainmemoryand
still take advantageof thefasterpointer-basedneighbor-finding algorithm.

9 Prioritized Ripple Propagation

The algorithmpresentedin this sectionresolvesthe secondperformanceproblem(voiding multiple itera-
tionsof neighbor-findings). Thekey ideais to (1) decouplenodevisiting from treestructuretraversal;and

4We usenodesto referto octantsin a cacheoctreeto avoid confusionwith octantsstoredin thelinearoctreeon disk.

13

Algorithm 2 (Prioritized ripple propagation).

Input:
An unbalancedpointer-basedoctree.

Output:
A balancedpointer-basedoctree.

Method:
Visit leafnodesdirectly from thelevel link list and
changethetreestructureimmediatelywhena too-large
(neighbor)leaf nodeis identified.

Step1: [Setthecurrentlevel to thelowestlevel.]

Step2: [Initialize a link list traversal for the current
level.]

Step3: [Apply ripple routineoneachnodeat thecurrent
level.]
For eachnode,searchfor its neighborsto check
their sizes. If a neighboris too large, divide it
(andits descendants)asmany timesasneeded.

Step4: [Setcurrentlevel to onelevel up.]

Step5: [Goto Step2 if the currentlevel is more than1
below thehighestlevel recorded;Otherwise,ter-
minate.]

Figure13: Prioritizedripplepropagation.

14

(2) combineneighbor-findingswith nodesubdivisions.

Figure13 shows theoutlineof our algorithmnamedprioritized ripple propagation (PRP).It workson the
cacheoctrees.Theoverall structureis to visit the link lists of leaf nodesat differentlevels in a prioritized
manner. The link list of eachlevel is accessiblefrom the level tableassociatedwith an cacheoctree.We
startfrom thelowestlevel (with thelargestvalue)andmoveonelevel upafterprocessingleafnodesateach
level. Thebenefitof visiting leafnodesdirectly from thelink lists is thatwecannow takeaneagerapproach
of subdividing neighbor(leaf) nodesandchangingthe treestructureon thefly. Hadwe tied nodevisiting
with treestructuretraversalin whateverorder, aneagerapproachwouldcausegreatdifficulty if apreviously
visitednodewereto besubdivided.Wewouldhave to interruptthetreetraversalandroll backto thenewly
subdividednodeto checkits impacton others.

Thekey of this algorithmis Step3 wherea ripple routineis invoke to implementour eagerstrategy. The
ripple routinecombinesneighbor-findingswith nodesubdivisions. It is basedon thewell-known pointer-
basedneighbor-finding algorithm[14], which consistsof two stages:(1) ascendingtheoctreeto locatethe
nearestcommonancestor;and (2) descendingthe octree(on a mirror-reflectedpath) to find the desired
neighborof equalsizeor larger.

Theripple routineimplementsthefirst stagewithoutmodificationandrecordthepathtracedin astack.But
in thesecondstage,theripple routinemaysubdivide neighborleaf nodesin orderto descenddeepenough
in theoctree.A neighborleaf nodeneedsto besubdivided if it is morethantwice aslargeastheleaf node
we arevisiting. Threeactionsaretakenwhenaneighborleafnodeis subdivided:

1. Allocateeightnew childrennodesandlink themto thesubdividing node.

2. Remove thesubdividing nodefrom the leaf nodelink list of its level andaddits childrenleaf nodes
to thelink list onelevel lower.

3. Deletethesubdividing nodefrom thelinearoctreeandinsertits eightchildren.

The first two actionsadjustthe incore cacheoctreeto maintaina valid datastructure. The third action
performstheactualdatabaseupdateto synchronizetheimageondisk.

After a too-large neighborleaf nodeis subdivided,we obtainthenext level’s branchinformationfrom the
stackanddescenddown to oneof its newly createdchildrennodewhonow becomesthenew neighbor. This
subdivide-descendprocesscontinuesuntil we reacha level that is 1 above thelevel of theleaf nodewe are
processing.Whenthe ripple routine is completed,a leaf nodeis surroundedby neighborsno morethan
twice aslarge.

Theintuition of theprioritizedripple propagationalgorithmis thatwe shouldeliminate“problemmakers”
level by level, startingfrom themosttroublesomelevel. Thuswe first look at thesmallestleaf nodesin the
domain,andsubdivide their neighborsasnecessaryto ensurethat all their impactsareabsorbedby their
immediateneighborsandthey will not directlycauseany otherleaf nodesto subdivide in thefuture. Then
we move up to thenext level, which maycontainleaf nodesnewly createdasa resultof thepreviousstep.
While subdividing neighborsof leaf nodesat this level, we areactuallycarryingon possibleripple effects
originatedfrom lower levels. The “problem maker” elimination processstopswhen we reachthe level
that is 1 below the highestlevel. Leaf nodesin the uppertwo levels aretoo big to causeany “problems”
(subdivisionsof otherleafnodes).

15

With thePRPalgorithm,we avoid multiple iterationsof neighbor-findings.Theproof of thecorrectnessof
the algorithmconsistsof threeparts. First, the algorithmterminates.Sincethe smallestleaf nodesnever
subdivide, the total numberof leaf nodesto beprocessedis bounded.Second,a leaf nodebecomesstable
(seeDefinition 1) after we apply the ripple routineon it (proof by induction). Third, all the leaf nodes
areprocessedby the ripple routineandthusbecomestable.This is becausenewly createdleaf nodesare
alwaysaddedto link lists at leastonelevel above thecurrentlevel beingprocessed(dueto the2-to-1edge
sizeratio). Giventheprioritizedlevel processingorder, we areguaranteedto processall newly createdleaf
nodes.

Sincetheaveragerunningtime of pointer-basedneighbor-finding algorithmis O(1), theripple routineruns
in O(1) on average.Thusthe PRPalgorithmhasan averagecostof O(n), wheren is the numberof leaf
nodesin acacheoctree.SincethePRPalgorithmis appliedrepeatedlyonall cacheoctrees,thetotal costof
runningthePRPalgorithmis O(N) on average,whereN is thetotalnumberof octantsin thelinearoctree.

10 Evaluation

In thissection,wepresenttheperformanceevaluationof ourbalancerefinementsolution.A seriesof exper-
imentsareconductedto answerthefollowing questions:(1) Is oursolutionefficient in termsof runningtime
ascomparedwith otheralgorithms?Referringbackto the two performanceproblemsstatedin Section4,
what is the impactof performingneighbor-findingsusingpointer-basedcacheoctreesratherthandirectly
searchingtheB-tree? And what is the impactof avoiding multiple iterationsof neighbor-findings? (2) Is
our solutionscalable?What is its behavior whenusedto balanceextremelylarge linearoctrees?(3) What
is theimpactof memorysizeonperformance?

10.1 Methodology

We implementedour balancerefinementalgorithmsusingtheetree library [16], a runtimesystemfor ma-
nipulatinglargelinearoctreesstoredondisk. For convenience,wereferto thisprogramasBBP(balanceby
parts).

Besides,weimplementedanout-of-coreversionof YerryandShepard’salgorithm(YS) [18] (seeSection3
for details). Like its incoreversion,theout-of-coreYS algorithmconstructsa list of subdivision for each
iterationandneedsmultiple iterationsto balancealinearoctree.Neighbor-findingsareperformedby B-tree
searchoperations.

Wealsodevelopedanimprovedversionof ourpreviousalgorithm(IMR) [15]. In particular, wereplacedthe
original post-processingstepby balancingthepartson faceboundaries,line boundariesandpoint bound-
aries.Every partwasstill balancedby theincoreversionof theYS algorithm.Two caveats.First, themod-
ification is definitelyan improvementbecausemultiple iterationsof post-processingareno longerneeded.
Second,the purposeof this modificationis that we cancomparethe performanceof cacheoctreebased
balancingalgorithm(PRP)andconventionalbalancingalgorithm(YS) directly.

Our experimentswereconductedon a collectionof real-world massive linearoctreedatasets.Thedatasets,
afterbeingbalanced,weretransformedto asetof world-recordunstructuredhexahedralmeshesusedby the
Quake project(2003GordonBell Award) [5, 2] to assessseismichazard. In fact, a long-timeblocker to

16

high-resolutionsimulationshasbeenthelack of capabilityto dealwith massive linearoctreedatasets.Our
databasesolutionturnedout to betheblocker-remover.

Figure 14summarizesthecharacteristicsof thelinearoctreedatasets.Thecolumns“Octants(before/after)”
recordthenumbersof octantsin thelinearoctreebeforeandafterthebalancerefinement,respectively. The
column“Subdivisions” recordsthenumberof subdivisionstriggered.Thecolumn“Size”reportsthesizes
of theB-treefilesstoringthelinearoctreesafterthebalancerefinement.Theunbalanceddatasetsareabout
;�9 þ smaller.

Name Octants(before) Octants(after) Subdivisions Size
la0.5h 9,903,330 9,922,286 2,708 139MB
la1h 113,642,903 113,988,717 49,402 1.6GB
la2h 1,192,888,861 1,224,212,902 4,474,863 20GB
la3h 3,656,944,427 3,734,593,936 11,092,787 56GB

Figure14: Summaryof massive linearoctreedatasets.

10.2 Is the solution efficient?

Thissetof experimentswereconductedonaLinux 2.4workstationwith PIII 1GHZprocessor(Coppermine)
and3GBphysicalmemory. Thepurposeis to evaluatetheefficiency of oursolutionin termsof therunning
timeascomparedwith existing algorithms.

Weranthethreedifferentalgorithmsonall thedatasetsexceptfor thelargestone,respectively. Thisresultis
shown in Figure15. While performingtheexperimentsfor theYS algorithm,weallocatedasmuchmemory
asavailable(up to 3GB) to cacheB-treepages(with anunderlyingLRU buffer manager).

First of all, theexperimentresultsshow thatour solutionis very efficient andrunsmuchfasterthanother
existing algorithms.Whenappliedon a largedataset(la2h),it only usesabout3 timesfasterthanIMR and
2 orderof magnitudefasterthanYS.

Second,thebenefitof finding neighborsusinganincoreoctreeratherthansearchinga B-treeis significant.
TheYS algorithmsuffers from theO h"i j:lrmpo costof searchinga neighborfrom theB-tree. With total cost
of O h"m i j:lnmso for neighbor-findings,its runningtime is not linearlyscalable.Worse,whenthedatasetsize
far exceedsthatof mainmemory, neighbor-findingsmaycausepagefaultsanddisk I/O. Theperformance
degradationis detrimental.For example,theYS algorithmran for morethan2 weekson the la2hdataset
whosesizeis 20GB.

Third, the benefitof avoiding multiple iterationsof neighbor-findings is evidencedby the performance
differencebetweenIMR, which usesthe conventionalmultiple-iterationalgorithmandBBP, which uses
prioritizedripple propagation.Althoughnot a critical issuein complexity analysis,suchconstantfactoras
introducedby multiple iterationsdoesmake abig differencein practice,esp.for largedatasets.

10.3 Is the solution scalable?

Weconductedthissetof experimentson aHP AlphaServer with 64 1.15GHz EV7 processorsand256GB
of sharedmemory, runningtheTru64Unix operatingsystem.Eachexperimentwassubmittedto thesystem

17

Name YS IMR BBP
la0.5h 00:29:36 00:05:37 00:01:57
la1h 10:07:09 1:44:55 00:28:06
la2h ��� weeks 19:48:24 05:51:30

Figure15: Therunningtime of differentalgorithmson thesamedatasets.

asa job throughPBS(PortableBatchSystem).A job mustexplicitly specifythenumberof processorsto
useandthesizeof memoryneeded.All of our experimentswererun on oneprocessorandrequested2GB
memory. Thepurposeof theseexperimentsis to evaluatethescalabilityof our solution.

Figure 16 summarizesthestatisticsof runningtheBBP algorithmondatasetla2handla3h.The“Queries”
columnreportsthenumberof octantsreturnedby rangequeries.The“Lev” specifiesthesubtreeroot level
correspondingto the 3D volume parts. The “Time” column reportsthe total running time of balancing
the datasetsin the form of hh:mm:ss.The “DB” columnshows the percentageof time spentin database
operations,including rangequeriesandB-treeupdates(bulk-loading time not included). The “Thruput”
columnpresentsthethroughputratesof octants/second.

Name Queried Lev Time DB Thruput
la2h 15,595,416 3 03:04:50 ����� ��� 111k
la3h 55,340,273 4 10:00:15 ������� 104k

Figure16: High throughputsustainedfor extremelylargedatasets

Themoststrikingresultis thethroughputof balancingthela3hdataset(104koctants/sec)is almostidentical
to thatof thela2hdataset(111koctants/sec),while its sizeis almostthreetimesaslarge(56GBvs. 20GB).
Giventhefact thatbothexperimentsrequestedonly 2GB memory, thesustainedthroughputrateis a solid
proof thatouralgorithmscalesgracefullyto handlevery largedatasetswithoutextramemoryrequirement.

A secondinterestingresult is thatalthoughthememory(2GB) canonly accommodatesmall 3D volumes
of a dataset(in fact,1/27of thela2hdatasetand1/64of thela3hdataset),rangequeriesretrieved lessthan
;Rü¨ýÿþ of theoctantsin thedataset.Therefore,mostoctants(��� ü¨ýÿþ of thedataset)arestreamedinto memory
via efficient sequentialscanof B-treepages.

Third, thetimespentin standarddatabaseoperations(rangequeries,insertionsanddeletions)only accounts
for about ;�9 þ of the total runningtime, we candeducethat mostof the runningtime (�R9 þ) is spentin
“real computation”,i.e. theconstructionof cacheoctreesandtheexecutionof prioritizedripplepropagation
algorithm. Sincethetotal costof runningthePRPalgorithmis O(N) on average,thescalability(sustained
high throughputrate)we achievedhasastrongtheoreticalsupport.

We noticethat the numberof subdivisions (seeFigure14) in both casesarelessthan 9|ü � þ andthe total
numberof octantsincreasedis no more than !ÿþ . We argue that this low subdivision rate and dataset
sizeincrease,thoughspecificto our datasets,is not uncommonin real-world datasets,wherethe original
(unbalanced)octreesareusuallybuilt to modelaphysicalfield or geometrywith inherentcontinuityatmany
locations.

18

10.4 What is the impact of memory size?

Experimentresultsshown in thissectionareobtainedfrom thesameHPAlphaServermentionedearlier. We
areinterestedin findingout theimpactof memorysizeonouralgorithm.Doesthealgorithmrunfasterwith
unboundedmainmemorysize?

Figure17 summarizesthe resultof runningour algorithmon la2h datasetwith differentmemoryusage.
The“Memory” row lists theactualpeakmemoryusageby theexperimentsandthe“Time” row shows the
runningtime.

Memory 418MB 1.43GB 5.39GB 15.4GB 43.8GB
Time 03:07:15 03:04:50 03:08:00 03:23:37 03:25:23

Figure17: Theimpactof thememorysizeon therunningtime.

It is clearlyshown thatoursolutionperformsequallywell nomatterhow muchmemoryis available.In fact,
therun using418MB memoryis asfast(if not faster)astherun using43.8GB.A factorof morethan100
in termsof memoryusage!

Thereasonwhy thememoryusage(for the43.8GBcase)exceedsthesizeof thedataset(20GBfor la2h)is
thatwe have loadedthewhole linearoctreein a giganticcacheoctree.With theextra overheadassociated
with pointer-basedoctreeandotherinternaldatastructures,theactualmemoryusagedoubledthe sizeof
thedatasetitself.

It is surprisingto seethatthefastestrun is theonethatusedonly 1.43GB,which is followedby the418MB
run, andthenthe5.39GB,the15.4GBandfinally the43.8GB.A contradictionto thecommonbelief that
themorememoryyou have, thefastera programruns. However, a brief studyof thesystem’s architecture
shedssomelight on thisabnormalphenomenon.Thoughclaimedto beanSMParchitecture,theEV7 based
AlphaServer is actuallyaCC-NUMA (CacheCoherentNon-UniformMemoryAccess)system.Sinceeach
processorhas4GB local memory, memoryallocatedbeyondthis thresholdrequiresremotememoryaccess
that is slower thanaccessinglocal cache.Thereforeour explanationfor the unexpectedresultsis that the
performanceis indeedimproved whenmorememoryis allocatedlocally but thebenefitof largermemory
vanisheswhenmostmemoryis allocatedremotely.

In summary, ourexperimentsshow thatourbalancerefinementsolutionis bothefficientandscalable.

11 Conclusion

Thispaperpresentsthesolutionto theproblemof balancerefinementof massive linearoctrees.Wecombine
existingdatabasetechniques(B-tree,bulk-loading,andrangequery)with new algorithms(balanceby parts,
prioritized ripple propagation)anddatastructure(cacheoctree)in a unified framework that deliversnew
capabilityto supportlargescientificapplications.

In general,hybrid problemssuchasbalancingmassive linear octreedatasetspresenta new challengeto
dealingwith massive data. The fundamentalnatureof suchproblemsis that the entiredatasethasto be
processed,iteratively sometimes,to locatedataitemsthat needto be modified. Given the complexity of
suchproblems,agoodsolutionshouldnotonly reducethedisk I/O timebut alsoimprove thecomputational

19

costof datamanipulation.As a result,conventionaldatabasetechniquesshouldbeusedwith discretionin
orderto avoid creatingunexpectedperformancebottleneck.

References

[1] D. J.Abel andJ.L. Smith.A datastructureandalgorithmbasedonalinearkey for arectangleretrieval
problem.ComputerVision,Graphics,andImage Processing, 24:1–13,1983.

[2] V. Akcelik, J. Bielak, G. Biros, I. Epanomeritakis,A. Fernandez,O. Ghattas,E. J. Kim, J. Lopez,
D. O’Hallaron,T. Tu, andJ. Urbanic. High resolutionforward andinverseearthquake modelingon
terasacalecomputers.In Proceedingsof SC2003, Phoenix,AZ, 2003.

[3] B. Aronov andH. Bönnimann.Costpredictionfor ray shooting. In Proceedingsof the18thAnnual
ACM SymposiumonComputationalGeometry, pages293–302,june2002.

[4] R.E.Bank,A. H. Sherman,andA. Weiser. Refinementalgorithmsanddatastructuresfor regularlocal
meshrefinement.ScientificComputing, pages3–17,1983.

[5] H. Bao, J. Bielak, O. Ghattas,L. Kallivokas,D. O’Hallaron, J. Shewchunk,andJ. Xu. Large-scale
simulationof elasticwave propagationin heterogeneousmediaon parallel computers. Computer
Methodsin AppliedMechanicsandEngineering, 1998.

[6] R. BayerandE. M. McCreight. Organizationandmaintenanceof large orderedindices. Acta Infor-
matica, 1:173–189,1972.

[7] M. Bern,D. Eppstein,andJ.Gilbert. Provably goodmeshgeneration.In Proceedingsof 31stSympo-
siumon Foundationof ComputerScience, pages231–241,1990.

[8] D. Comer. TheubiquitousB-Tree.ACM ComputingSurveys, 11(2):121–137,Jun1979.

[9] C. Faloutsos.Searching MultimediaDatabasesbyContent. Kluwer AcademicPress,1996.

[10] I. Garnagntini.Linearoctreefor fastprocessingof three-dimensionalobjects.ComputerGraphics,and
Image Processing, 20:365–374,1982.

[11] M. GriebelandG. W. Zumbusch. Parallelmultigrid in anadaptive pdesolver basedon hashingand
space-fillingcurves.Parallel Computing, 25(7):827–843,July1999.

[12] S.A. Mitchell andS.A. Vavasis.Quality meshgenerationin threedimensions.In Proceedingsof the
EighthSymposiumon ComputationalGeometry, pages212–221,Feb1992.

[13] D. Moore.Thecostof balancinggeneralizedquadtrees.In Proceedingsof the3rd SymposiumonSolid
ModelingandApplications, pages305–312,1995.

[14] H. Samet.Applicationsof SpatialData Structures: ComputerGraphics,Image ProcessingandGIS.
Addison-Wesley PublishingCompany, 1990.

20

[15] T. Tu, D. O’Hallaron,andJ. Lopez. Etree: A database-orientedmethodfor generatinglarge octree
meshes.In Proceedingsof the EleventhInternationalMeshingRoundtable, pages127–138,Ithaca,
NY, Sep2002.

[16] T. Tu,D. O’Hallaron,andJ.Lopez.Theetreelibrary: A systemfor manipulatinglargeoctreesondisk.
TechnicalReportCMU-CS-03-174,Schoolof ComputerScience,Carnegie Mellon University, 2003.

[17] J.S.Vitter. Externalmemoryalgorithmsanddatastructures:Dealingwith massive data.ACM Com-
puting Survey, 33(2):209–271,june 2001. A shorterversionappearedin Proceedingsof the 17th
AnnualACM SymposiumonPrinciplesof DatabaseSystems(PODS’98).

[18] M. A. YerryandM. S.Shepard.Automaticthree-dimensionalmeshgenerationby themodified-octree
technique.InternationalJournal for NumericalMethodsin Engineering, 20:1965–1990,1984.

[19] D. P. Young,R.G.Melvin, M. B. Bieterman,F. T. Johnson,S.S.Samant,andJ.E.Bussoletti.A locally
refinedrectangulargridfiniteelement:Applicationtocomputationalfluid dynamicsandcomputational
physics.Journalof ComputationalPhysics, 92:1–66,1991.

21

