
Abstract 
Since the early 1960’s, researchers have built a number of programming languages and 
environments with the intention of making programming accessible to a larger number of 
people. This paper presents a taxonomy of languages and environments designed to make 
programming more accessible to novice programmers of all ages. The systems are organized 
by their primary goal, either to teach programming or to use programming to empower their 
users, and then by the authors’ approach to making learning to program easier for novice 
programmers. The paper explains all categories in the taxonomy, provides a brief description 
of the systems in each category, and suggests some avenues for future work in novice 
programming environments and languages. 
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1. INTRODUCTION

Learning to program can be very difficult for beginning students of all ages. In addition 

to the challenges of learning to form structured solutions to problems and understanding 

how programs are executed, beginning programmers also have to learn a rigid syntax and 

commands that may have seemingly arbitrary or perhaps confusing names. Tackling 

these challenges all simultaneously can be overwhelming and often discouraging for 

beginning programmers. Since the early 1960's, researchers have built a number of 

programming languages and environments with the intention of making programming 

accessible to a larger number of people. This paper presents a taxonomy of these 

languages and environments and discusses the challenges they address. 

For the purposes of this paper, we define programming as the act of assembling a set of 

symbols representing computational actions. Using these symbols, users can express their 

intentions to the computer and, given a set of symbols, a user who understands the 

symbols can predict the behavior of the computer. This definition excludes many of the 

programming through demonstration systems in which the computer develops sequences 

of instructions and when to execute those instructions internally by observing the user in 

such a way that the user cannot accurately predict the actions of a program in all 

circumstances. 

In this paper, we describe the high level organization of the taxonomy, present the 

taxonomy and briefly describe all of the categories and systems within those categories. 

We then present a table of the most influential systems and a table comparing the survey 

systems based on what programming constructs they support and their approaches to 

making programming more accessible to novice programmers. Finally, we summarize the 

approaches and discuss some possible avenues for future work in this area. 

2. TAXONOMY 

In creating a programming environment for novices, one of the first questions that must 

be answered is why novices need to program. There are a variety of possible motivations 

for learning to program: to pursue programming as a career path, to learn how to solve 

problems in a structured and logical way, to build software customized for personal use, 

to explore ideas in other subject areas, etc. The systems in this taxonomy (see Figure 1) 

fall into two large groups: systems that attempt to teach programming for its own sake 

and those that attempt to support the use of programming in pursuit of another goal. 



BASIC

SP/k

Turing

Blue

JJ

GRAIL

GNOME

MacGnome

Play

Show and Tell

My Make Believe Castle

Thinkin' Things Collection 3: Half Time

LogoBlocks

Pet Park Blocks

Electronic Blocks

Drape

Alice 2

Magic Forest

TORTIS

Roamer

LegoSheets

Curlybot

Provide Multiple Methods for 

Creating Programs

Leogo

Pascal

Smalltalk

Playground

Kara

Liveworld

Blue Environment

Karel++

Karel J Robot

J Karel

Tracking Program Execution Atari 2600 BASIC

Karel

Josef

Turingal

Toon Talk

Prototype 2

AlgoBlock

Tangible Programming Bricks

MOOSE Crossing

Pet Park

Cleogo

Rocky's Boots

Robot Odyssey

The Incredible Machine

Widget Workshop

AlgoArena

Robocode

Construct Programs Using Objects

Find Alternatives to Typing Programs

Simplify Typing Code

Make Programming Concrete

Models of Program Execution

New Programming Models
Teaching Systems

Simplify the Language

Create Programs Using Interface 

Actions

Prevent Syntax Errors

Mechanics of Programming

Side by Side

Solve Problems Using 

Code

Expressing Programs

Networked Interaction

Social Learning

Solve Problems by 

Positioning Objects
Providing Reasons to Program

Structuring Programs

Making New Models Accessible

Understanding Program 

Execution

Figure 1: Novice Programming Systems and Languages Taxonomy 



Pygmalion

Programming by Rehearsal

Mondrian

AgentSheets

ChemTrains

Stagecast

Pinball Construction Set

Alternate Reality Kit

Klik N Play

COBOL

Logo

Alice 98

HANDS

Body Electric

Fabrik

Tangible Programming with Trains

Squeak eToys

Alice 99

AutoHAN

Physical Programming

Flogo

Boxer

Hypercard

cT

Chart N Art

Bongo

Mindrover

SOLO

Gravitas

Starlogo

Hank

Improve Interaction with Language

Demonstrate Conditions and Actions

Specify Actions

Empowering

Systems

Activities Enhanced by 

Programming

Improve Programming 

Languages

Integration with Environment

Make the Language More 

Understandable

Entertainment

Mechanics of 

Programming

Code Is Too Difficult

Education

Demonstrate Actions in the Interface

Figure 1: Novice Programming Systems and Languages Taxonomy 



Because these two goals place very different constraints on systems, the taxonomy is 

organized first by the system goals, either teaching or using programming, and, second, 

by the primary aspect of programming that the system attempts to simplify. Each system 

appears in the taxonomy only once. However, many of the systems in the taxonomy have 

built on the ideas of earlier systems. So, a system that was influenced by natural language 

programming may not be classified with other natural language systems if the natural 

language influence was not the primary concern in building the system. 

3.  TEACHING SYSTEMS 

These systems were designed with the goal of helping people learn to program. Most of 

the systems in this category are (or include) simple programming tools that provide 

novice programmers exposure to some of the fundamental aspects of the programming 

process. After gaining experience with a teaching system, students are expected to move 

to more general-purpose languages such as Java, C, or C++. A few systems attempt to 

provide support in learning a more general language from the start. Because students 

interacting with teaching systems are expected to transition to general purpose languages, 

many teaching systems have similarities to general-purpose languages. Knowing that a 

student will eventually have to do for loops in a Java-style, the designers of teaching 

languages are less likely to introduce a different style of looping. Because general-

purpose languages are not always designed with beginners in mind, the systems in this 

category are juggling two possibly conflicting goals: making it easier for beginners to get 

started programming and giving students a background that makes it easy for them to 

transition from the teaching system to a general-purpose language. 

The teaching systems focus on several areas that can be difficult for novice programmers. 

The majority of the systems in this category address the mechanics of programming: both 

expressing intentions to the computer and understanding the actions of the computer. 

Other systems attempt to place programming in a context that is accessible and 

motivating to a wider audience of people, either by providing concrete reasons for 

programming or by supporting novice programmers working together and learning from 

one another. 

3.1 Mechanics of Programming 

The systems in this category are designed around the hypothesis that the primary barrier 

in learning to program lies in the mechanics of writing programs. To successfully write a 

program, users must understand several topics: how to express instructions to the 



computer (e.g. syntax), how to organize these instructions (e.g. programming style), and 

how the computer executes these statements. Systems in this category attempt to make it 

easier for beginners to learn one of these three skills. 

3.1.1 Expressing Programs  

In most general-purpose languages, users create programs by typing syntactic sentences 

into a text editor. Beginning programmers often have trouble translating their intentions 

into syntactically correct statements that the computer can understand. The systems in 

this category explore two possible avenues for making this process easier for beginning 

programmers: improve the language such that beginners have an easier time learning or 

find alternate ways for beginners to communicate their instructions to the computer. 

3.1.1.1 SIMPLIFY TYPING CODE 

Many general-purpose languages have been influenced by the need for sufficient power 

to tackle arbitrary programming tasks and a desire to make the programming language 

easier to implement, making the resulting languages unnecessarily difficult for beginning 

programmers. The systems in this category examine three approaches to making 

languages more approachable for beginning programmers: simplifying the language, 

tailoring the language for a specific, small domain of programming problems, and 

preventing syntax errors. 

1.1.1.1.1. Simplify the Language 

General-purpose languages typically include a large variety of syntactic elements that can 

be particularly difficult for beginners because these syntactic elements don’t have an 

obvious meaning. The languages in this category use a few simple observations to 

decrease the number of potentially confusing syntactic elements beginning users 

encounter while trying to maintain as much similarity as possible to general-purpose 

languages. General-purpose languages often contain unnecessary syntax, use commands 

whose names are unfamiliar or have different meanings in spoken English, have 

inconsistent uses for syntactic elements, or include features inappropriate for beginning 

programmers. Using these observations, it is possible to make a language syntactically 

easier for beginners to handle without fundamentally changing the common control 

structures found in general-purpose languages. Consequently, when a student moves from 

one of these languages to a general-purpose language, they should be able to transfer 

their knowledge from the teaching language.  



BASIC: J.G. Kemeny and T. Kurtz, Dartmouth College, 1963 [Kurtz, 1981] 

Basic was designed to teach Dartmouth’s non-science students about computing through 

programming. FORTRAN and ALGOL, the commonly used languages at the time, were 

both large and complex. Kemeny and Kurtz believed that the students would “balk at the 

seemingly pointless detail” (Kurtz, 1981). After considering using subsets of FORTRAN 

or ALGOL, Kemeny and Kurtz agreed they would have to create their own language. The 

BASIC (Beginners All-purpose Symbolic Instruction Code) language was designed to 

support a small set of instructions and remove unnecessary syntax. The environment was 

designed to have rapid turn-around time and sacrifice computer time for user time (in 

1963, the computer science community was arguing against high level languages because 

the compilation time was seemingly wasted computation).  

Statements in BASIC consist of three parts: a line number (e.g. 110), an operator (e.g. 

LET), and an operand (e.g. S = S + 1). All commands begin with an English word to 

make the language easier for the novice; the designers believed that LET S= S + I would 

be easier for students to understand than S = S + I. Figure 2 (below) shows a simple 

summation loop in both FORTRAN and BASIC. While the statements have a similar 

structure, the BASIC program uses language more suitable for a novice, removes 

elements like labels (e.g. 30) that require a more detailed understanding of the program 

counter, and does not depend on spacing for syntactic meaning. 

FORTRAN:

       do 30 i = 1, 10 

            m = m + I 

30   continue 

BASIC:

100 FOR I = 1 TO 10  

110 LET S = S + I 

120 NEXT I 
Figure 2.  A for loop to compute the sum of the numbers from 1 to 10 written in FORTRAN and 

BASIC.

SP/k: R.C Holt et al, University of Toronto, 1977 [Holt, 1977]

SP/k is a subset of PL/1 chosen for teaching introductory programming. The features of 

the SP/k language were chosen to remove redundant constructs, inconsistencies in the 

language that go against students’ intuitions (in PL/1 the expression 25 + 1/3 evaluates to 

5.3333), constructs that are easily misused such as pointers, and constructs like 

concurrent programming that are suited for advanced programmers. The difficulty of 

compiling constructs was also considered.  The result of pruning was a simpler language 

for introductory programming that both students and teachers generally preferred over 

FORTRAN. The authors also provided an order for introducing programming constructs 



as a sequence of subsets of SP/k. SP/1 introduces expressions and output. By SP/8, 

students have learned all of SP/k. By introducing things gradually, students can master a 

small piece of the language at a time, allowing them to devote more time to problem 

solving than memorizing the features of the language. 

Turing: R.C. Holt and J.R. Cordy, University of Toronto, 1988 [Holt and Cordy, 1988] 

The Turing language was developed as a general-purpose and instructional language for 

the Computer Science Department at the University of Toronto. Consequently, while the 

designers intended that Turing be used in teaching programming, the goals for the 

language included many programming power and implementation concerns. The Turing 

language contains all the features of Pascal (see section 3.1.2.1) and adds dynamic arrays, 

modules, and varying length strings. In addition, Turing simplifies the syntax by 

removing the requirement for headers declaring the name of the program and semi-colons 

at the end of each statement. 

Blue Language: M. Kolling and J. Rosenberg, University of Monash, 1996 [Kolling and 

Rosenburg, 1996]

Blue is an object-oriented language designed to be taught as a first language. After using 

Blue for a year, students are expected to move to an industrial language, such as C++. 

The designers of the language used four criteria in creating Blue: there should be only 

one way to do everything; the language should cleanly reflect the theoretical model; the 

language should be readable so students can learn by reading examples; and the language 

should explicitly support software engineering mechanisms like pre and post conditions. 

The Blue language is a pure object-oriented language that supports single inheritance, 

garbage collection, and strong static typing. Classes are defined in single files with a 

structure that clearly reflects which routines others can call and which routines are 

internal to the class by placing routines in separate internal and interface areas within the 

file. Routine definitions include explicit pre and post conditions.  Blue provides a single 

loop structure that consists of a set of statements followed by a list of conditions that 

should cause the loop to exit which can be used to create loops that function like 

traditional for and while loops. Each loop exit condition can include statements to 

execute if the loop exits on that particular condition. The designers of the language also 

created an environment for beginning programmers that will be discussed separately. 

JJ: J. Motil and D. Epstein, California State University and California Institute of 

Technology, 1998 [Motil and Epstein, 1998]



Full featured, general-purpose languages force beginning students to focus on the syntax 

rather than the problem they are trying to solve in writing a program. JJ (Junior Java) is a 

language designed to remove much of the syntactic complexity to allow students to focus 

on the concepts of programming. It removes much of the punctuation such as braces and 

semi-colons and has only one way to do anything; there is one integer type, one way to 

create a comment, etc.  The language also provides an easy migration to Java after the 

first half of the semester. Students can either do this by hand or the environment can 

convert their JJ code to Java automatically. Figure 3 shows an example of computing 

weekly pay in JJ and the equivalent code in Java. Due to lack of adoption, the designers 

of JJ have moved towards concentrating on better compilation error messages and 

allowing students to program over the web. 

Computing weekly pay in JJ: 
If (hours <= 40) then 

   Set pay = 10 * hours 

Else

   Set pay =

      400 + 15*(hours – 40) 

EndIf

Output “The pay is “ 

Outputln pay

The same code in Java: 
if  (hours <= 40) { 

   pay = 10 * hours; 

} else { 

   pay =

      400 + 15 * (hours – 40); 

} // EndIf 

System.out.print (“The pay is “ ); 

System.out.println( pay );

Figure 3.  A short segment of code to compute a worker’s weekly pay shown in both JJ and Java. Note 

the line by line correspondence. 

GRAIL: L. McIver, Monash University, 1999 [McIver, 1999, 2001] 

GRAIL was developed in response to the hypothesis that “it is the unfamiliarity of 

‘hieroglyphics’ (i.e. the language syntax) and the sheer complexity of the full theory that 

are the primary stumbling blocks for the novice” (McIver, 2001). Three guiding 

principles governed the design of GRAIL: maintain a consistent syntax; use terms that 

novice programmers are likely to be familiar with and avoid standard programming terms 

that have different meanings in English; and include only constructs that are fairly simple 

and have a “single, obvious syntax” (McIver, 2001).  These guidelines led to an 

imperative language with many small differences from commonly used teaching 

languages such as Pascal (see section 3.1.2.1). The list of changes is too long to 

reproduce here, but we list a few to give the reader a feel for the kinds of changes made 

for the GRAIL language. Rather than using * for multiplication, GRAIL uses x because it 

is a symbol that novice programmers will understand from mathematics classes. Values 

are assigned using an arrow indicating where the answer will be placed since a = b is 



ambiguous. McIver removed pointers because they are difficult to use correctly; using 

pointers it is very easy for beginners to create problems they cannot easily understand or 

explain. The full details of the GRAIL language can be found in McIver’s thesis. 

1.1.1.1.2. Prevent Syntax Errors 

One of the largest and most frustrating challenges for novice programmers is syntax. The 

Cornell Program Synthesizer [Teitelbaum and Reps, 1981], which was a prototype 

system that removed the ability for students to make syntax errors by presenting the set of 

allowed commands at each point in the program code, inspired the systems in this 

category. The prototype system was limited to 24 lines and included a limited subset of 

PL/1. The presentation of allowable commands made it impossible to compose a 

syntactically invalid program. The systems in this category were an attempt to make a 

more versatile structure editor that was useful to novice programmers. They are not 

languages, but environments that prevented novices from making syntax errors with 

existing languages such as Pascal and Fortran. 

GNOME: P. Miller et al, Carnegie Mellon University, 1984 [Miller et al, 1994] 

The GNOME environments were created for Karel the Robot, Pascal, Fortran, and Lisp 

and used an abstract syntax tree to detect syntax errors as they occurred. GNOME 

displayed programs hierarchically, encouraging students to think about programs as 

hierarchical collections of procedures. Students navigated through their programs using 

arrow keys that corresponded to movements in the abstract syntax tree; GNOME 

displayed program segments in the familiar textual form. When the programmer 

attempted to move the edit cursor, GNOME analyzed the program, reported any syntax 

errors, and prevented the programmer from moving on until the program was 

syntactically correct. The programmer could also request an analysis of the program at 

any time. While this environment prevented syntax errors, it actually required students to 

think more about syntax than they previously had: they needed to have a mental model of 

the syntax tree to navigate through the system; the abstract syntax representation 

sometimes differed from the textual representation (particularly with mathematical 

equations); and the requirement for syntactic correctness sometimes prevented students 

from making desired changes in the program because the fastest route to a correct 

program required intermediate stages that were not syntactically correct. 



MacGnome: P. Miller et al, Carnegie Mellon University, 1986 [Miller et al, 1994] 

The MacGnome project attempted to cleanly integrate structure-editing capabilities of 

GNOME with the text-editing model present in traditional programming editors. The 

GNOME project demonstrated that students have difficulty navigating in the abstract 

syntax tree; to alleviate this problem, MacGnome allowed students to navigate using 

point and click with a mouse. In GNOME, students often had trouble modifying code 

because of the requirement to maintain syntactic correctness. Rather than requiring 

syntactic correctness at all times, the MacGnome project editors converted the syntax tree 

into a textual representation to allow editing without syntactic constraints. Once the user 

finished editing, it converted the modified code back to tree representation using an 

incremental parser. By allowing students to edit code textually, the MacGnome 

environment could not prevent syntax errors. However, MacGnome detected and reported 

all syntax errors as soon as the code was parsed, allowing students to correct them before 

moving to other sections of the program. The novice programming environments 

produced as a result of the MacGnome project are called Genies.  

3.1.1.2 FIND ALTERNATIVES TO TYPING PROGRAMS 

Despite the attempts to make programming languages simpler and more understandable, 

many novices still struggle with syntax: remembering the names of commands, the order 

of parameters, whether or not they are supposed to use parentheses or braces, etc. 

Another large set of systems are designed around the belief that to enable novices to 

understand what programming really is, we need to bypass the syntax problems 

altogether.  The systems in this category represent three major approaches to bypassing 

syntax: creating objects that represent code that can be moved around and combined in 

different ways, using actions of the user within the interface to define programs, and 

providing multiple methods for creating programs. 

1.1.1.1.3. Construct Programs Using Objects 

The systems in this group use graphical or physical objects to represent elements of a 

program such as commands, control structures, or variables. These objects can be moved 

around and combined in different ways to form programs. Novice programmers need 

only to recognize the names of commands and the syntax of the statements is encoded in 

the shapes of the objects, preventing them from creating syntactically incorrect 

statements. 



Play: S. Tanimoto and M. Runyan, University of Washington, 1986 [Tanimoto and 

Runyan, 1986]

Play is a system designed to allow preliterate children to create graphical plays using an 

iconic language. Stories consist of a linear sequence of actions that is displayed at the top 

of the screen, above the story’s stage, as a sequence of icons similar to a comic strip. The 

character, what the character should do, and one additional piece of information, typically 

a direction to move, all selected from menus, specify each action in the story. Play also 

provides a character editor where children can draw additional images of their characters 

and compose those images to create new animations. Play does not allow children to use 

more complicated control structures such as loops and conditionals or define procedures. 

Show and Tell: T. Kimura et al, Washington University and Bell Labs, 1990 [Kimura et 

al, 1990]

Show and Tell is a data flow based visual language designed for children.  A program in 

Show and Tell consists of a series of connected boxes. A box can represent a value or an 

operation on values. The program includes boxes that represent basic arithmetic 

functions, system input and output, and some special purpose boxes that play sounds or 

act as timers, etc. Children can build procedures by drawing their own icon for a box and 

defining what should happen in the procedure using other boxes. Procedures can call 

themselves. Because boxes are not permitted to form cycles or loops, users cannot 

construct for and while loops. However, Show and Tell provides an iteration box that 

provides bounded iteration, in other words, the function will continue repeating until a 

boundary value is reached. If two connecting boxes contain different values (e.g. 2 and 

3), they and their parent box are marked “inconsistent” and become invisible to the other 

boxes. By checking for consistency and inconsistency in particular boxes, children can 

represent simple Boolean conditions. 

My Make Believe Castle: Logo Computer Systems Incorporated, 1995 [LCSI, 1995] 

My Make Believe Castle is a play program for children ages 4-7 that contains activities 

designed to help develop children’s problem solving, critical thinking, sequential 

planning, and memory. The castle consists of a number of rooms, each containing an 

activity. In the courtyard of the castle, characters such as the dragon, prince, princess, and 

horse move around. When the user clicks on them with a particular tool, they will dance, 

slip on banana peels, do somersaults, etc. After children have played in the courtyard 

space, they can be introduced to a very simple, rule-based programming system. Editors 

for each character allow children to specify which action a character should take when it 

meets another specific character. A typical rule might be “Nicky dances when it meets 



the horse” (see Figure 4). Rules are specified graphically; children select the action using 

icons and the character that should trigger the action by selecting a picture of that 

character. 

Figure 4.  A view of the My Magic Castle courtyard. The user is creating the rule “Nicky should 

dance when it meets the horse.” 

Thinkin’ Things Collection 3- Half Time: Edmark Corporation, 1995 [Edmark, 1995] 

Half Time is one of the activities in the computer game Thinkin’ Things Collection 3. 

The activity revolves around creating a half time show (see Figure 5). Users can select 

characters from the top left and drag them onto the field; each half time show can have a 

total of thirty characters across three types (such as tuba, percussion, and trumpet 

players). At the bottom of the screen, there is a line for each of the three types of 

characters in which users can drop instructions for them to perform. The available 

instructions are similar to those of the Logo (see section 4.1.2.1) turtle: move forward, 

turn left and right, turn randomly, pause, pen down and up, etc. Programs are created by 

dragging the icons for instructions (shown below the football field) into the lines for a 

particular type of character. Counted loops are supported, but no other block statements 

are available. 



Figure 5. A screenshot of Half Time from Thinkin Things Collection 3 

LogoBlocks: A Begel, MIT Media Lab, 1996 [Begel, 1996, MIT Media Lab]

LogoBlocks is a graphical programming language designed for the Programmable Brick, 

a precursor to the commercial Lego Mindstorms system [Lego], developed by the MIT 

Media Lab (see Figure 6). In LogoBlocks, labeled graphical shapes represent commands 

in BrickLogo, an extension of Logo (see section 4.1.2.1) that provides commands for the 

Programmable Brick. These graphical blocks can be dragged off a tool palette on the side 

of the screen to a main work area where they can be placed next to other blocks to form 

programs. Like many visual programming environments, changes to programs may 

require the user to move existing statements to make room for new ones. The parts in the 

palette can take several forms, for example a block marked ‘A’ specifies the motor A as 

the recipient of commands following it, but, by clicking on the ‘A’ block, the user can 

turn it into a ‘B’ or an ‘AB’ block. Commands and conditionals also have multiple forms; 

the blocks in the tool palette represent kinds of objects rather than all available objects. 

Commands and conditionals requiring arguments have shapes with cutouts for placing 

the arguments so that it is clear both that the command requires an argument, and the type 

of the argument which is specified by the shapes of blocks that will fit into the cutout. 

LogoBlocks includes support for procedures; users can attach commands to purple 

procedure blocks and name their procedures. 



Figure 6.  A LogoBlocks program that waits for a light sensor to get a reading of less than 10 and then 

turns motor A on for 20 seconds. 

Pet Park Blocks: A. Cheng, MIT Media Lab, 1998 [Cheng, 1998]

Pet Park Blocks is a graphical programming language, inspired by LogoBlocks, which 

was developed for the Pet Park collaborative environment (described later). Animations 

are represented by notched squares that fit together. Conditionals are represented by 

squares with half oval cutouts where conditions can be added. Like LogoBlocks, 

programming constructs are kept in a palette from which users can drag them onto an 

active area. Pet Park Blocks provides a button that allows users to see their Blocks 

program as a textual program. This allows users to gradually transition to text-based 

programming. 

Drape: M. Overmars, Universiteit Utrecht, 2000 [Overmars]

Drape is a programming environment that allows users to draw pictures (see Figure 8). 

There is a collection of pictorial icons on the left side of the interface that represent 

different commands similar to the Logo (see section 4.1.2.1) turtle commands: pen up, 

pen down, move in different directions, move in shapes, etc. The icons can be dragged to 

the lines at the bottom of the screen that represent the program; commands are executed 

from left to right. There are extra lines associated with their own icons that can serve as 

procedure calls. The system does have support for some predefined blocks such as repeat 

10 times (shown as x10) However, to apply the repeat 10 to more than a single object, the 



sequence needs to be enclosed in brackets, which introduces the possibility for syntax 

errors in the form of mismatched braces. 

Figure 7.  DRAPE Drawing and Programming Environment allows children to draw pictures. 

Electronic Blocks: P. Wyeth and H. Purchase, University of Queensland, 2000 [Wyeth, 

2000] 

Unlike the graphical objects used to construct programs in other systems, Electronic 

Blocks are physical Lego blocks designed to allow young children (ages 3-8) to create 

Lego forms with interesting behaviors (see Figure 7). Preschool children can build block 

towers that flash when they talk or cars that move when a flashlight shines on them. 

Three types of blocks are provided: sensor blocks that can detect light, sound, and touch; 

logic blocks that can compute AND, NOT, TOGGLE, and DELAY; and action blocks 

that can produce light, sound, and motion. The syntax of Electronic Blocks is very 

simple; the only requirements are that each stack includes a sensor block and an action 

block and that the action block be at the bottom of that stack. Action blocks are smooth 

on the bottom so they cannot be placed on top of other block types. 



Figure 8.  Electronic Blocks: the three sensing blocks are pictured on the 

left, the logic blocks in the middle, and the action blocks on the right. 

Alice 2: Carnegie Mellon University, 2002 [www.alice.org] 

Alice is a programming system for building 3D virtual worlds, typically short animated 

movies or games (see Figure 10). In Alice users construct programs by dragging and 

dropping graphical command tiles and selecting parameters from drop-down menus. 

Figure 1 shows an Alice screen as a user creates a simple animation. To add to the current 

animation, the user drags a graphical tile labeled with the name of the animation from the 

selected object’s animations, in this case the IceSkater’s animations, displayed in the 

lower left panel. When the user drops the tile, the system automatically cascades to 

menus that allow the user to select valid parameters for the chosen animation. In Figure 

x, the user has just dragged IceSkater turn from the panel and has chosen to have 

IceSkater turn right one full turn. Students can also add standard programming control 

structures such as if-statements and loops by dragging if and loop tiles from the top bar. 

Unlike many no-typing programming systems, Alice allows students to gain experience 

with all of the standard constructs taught in introductory programming classes in an 

environment that prevents them from making syntax errors 



Figure 9. Building my first animation in Alice. In my first animation, IceSkater moves forward while 

she raises her leg. Then, if IceSkater is close to a hole in the ice, she falls through it. 

Magic Forest: Logotron, 2002 [Logotron]

Magic Forest allows children ages four and up to play with, change, and create Activities

that consist of 2D sprites that can move around, change appearance, and react to simple 

events. Each sprite can be given a set of Rules (represented by a scroll containing stones), 

a combination of an event and a list of things that should happen, in order, after that event 

occurs. Both events and actions are represented by graphical stones that can be identified 

by their icons, making it possible for children to learn how to use Magic Forest without 

needing to know how to read. Magic Forest supports a variety of events, such as mouse 

based events, events based on the relative positions of objects, and message passing 

events. Actions might change the direction or speed of an object, the appearance of an 

object, send a message, play sounds, or update the score. To add a new rule to a sprite, a 

child selects an event from a scrolling list of available event stones, clicks on it to pick it 

up, and then drops it onto a scroll associated with that sprite. The child can then attach 

action tiles to the end of the event. As in Logoblocks, some tiles can have multiple forms; 



a single tile can be used to increase the speed, heading, or size of an object. Children can 

click on a tile to change which form it takes (increase speed, heading, or size).  

Figure 10. Magic Forest allows children to control the actions and appearances of 2D characters. This 

activity has five characters: a witch, a cat, and three spiders. The witch has two rules controlling her 

behavior. The top one (blue tile on a scroll) allows the user to move the witch around the scene. The 

second says that when the witch touches another object, she should make a sound (e.g. laugh). The 

witch also has an empty scroll to which the user can add new behaviors by selecting events and actions 

from the brown window at the top of the screen and placing them together on her scroll. 

1.1.1.1.4. Create Programs Using Interface Actions 

The systems in this category attempt to make programming more accessible using 

physical objects or the simulation of physical objects. User interface actions such as 

button presses or motion through space are mapped to commands in a programming 

language. Since most of these interfaces rely on the motion of or buttons on physical 

objects, the interfaces either tend to be fairly limited in the number and types of 

commands possible or require the user to perform interface actions (such as pressing 



buttons) in a specific sequence, introducing the possibility for sequences of actions that 

do not correspond to valid program instructions. 

TORTIS: R. Perlman, MIT Artificial Intelligence Lab, 1976 [Perlman, 1976] 

TORTIS provides two different physical interfaces for young children to control a robotic 

turtle inspired by the Logo turtle (see section 4.1.2.1); since the robotic turtle is very 

slow, a simulated version is also provided for more advanced students. The first interface 

is called the Button Box and provides a set of four boxes for controlling the turtle that can 

be given to a child gradually. The first box provides buttons that move and turn the turtle, 

pick up or put down the pen, turn a light on and off, and sound a horn. The second box 

adds numbers such that a child can repeat a command multiple times by pressing a 

number followed by a command. The third box adds a program area where children can 

get the turtle to “remember” commands and then play back remembered commands. The 

fourth and final box creates four procedures (named by colors) that can call each other. 

The button box system did not allow students to edit programs after creating them, 

making the gradual modification of programs difficult. The second interface, a Slot 

Machine with cards that represented commands, attempted to solve this problem. 

Children created programs by placing cards in the slot machine and having the turtle 

execute the cards in order. The Slot Machine supported the easy modification of 

programs since children could simply add cards, remove unwanted cards, or reorder cards 

if the program did not do what they wanted. 

Roamer: D. Catlin, Valiant Technologies, 1989 [Catlin]

Roamer is a programmable, mobile robot that has capabilities similar to those of the Logo 

turtle: the Roamer can move forward and back, turn left and right, wait, and make 

sounds. Programs are entered using a set of buttons, icons for the commands and a 

number pad to indicate how far to move or turn and what sound to play. Buttons are also 

provided for creating procedures and repeating statements. The Roamer can remember up 

to 59 instructions in either the main program (the GO program) or numbered procedures 

that can be called from the GO program or each other. An expansion set allows users to 

add on sensors, two-state outputs, and a stepper motor, allowing a greater variety of 

programs. 

LegoSheets: Gindling et al, University of Colorado, 1995 [Gindling, 1995] 

LegoSheets attempts to provide a gentle introduction to programming for the MIT 

Programmable Brick by beginning with manual control of the elements of the brick and 



gradually progressing to writing programs. Users are presented with a simulated version 

of the Programmable Brick in which the parts can be manipulated; users can change the 

speed of a motor connected to the simulated brick by typing in a value or using arrow 

buttons to increase or decrease the value. Once users are comfortable with manipulating 

the values of motors and observing the values of sensors in response to different types of 

actions, they can double click on the representation of a motor or sensor and bring up a 

rule editor for that object. The rule editor provides buttons to add conditionals or initial 

values to control the behavior of the brick. Conditionals are provided in a template form 

where users only have to type the names of objects they want to use and arithmetic 

operations. There are also buttons for increasing and decreasing the priority of the current 

rule.

Curlybot: P. Frei et al, MIT Media Lab, 2000 [Frei et al, 2000]

Curlybot is an educational toy for children aged four years and older. It consists of a two-

wheeled vehicle with electronics that allow it to record its motions. The Curlybot has a 

single button and a single LED. The LED is used to indicate whether it is in record mode 

(red) or playback mode (green). When a child wants to record a motion, he or she pushes 

the button, demonstrates the motion, and then pushes the button again, which stops 

recording and starts replaying the motion. The motion is repeated until the button is 

pushed again, turning Curlybot off. While Curlybot cannot provide the complexity of a 

full programming language, it does allow children to gain intuition about repeated 

motions. The designers describe how sensors could be added to Curlybot to allow 

children access to if and while statements, but these additions have not been 

implemented. 

3.1.1.3 PROVIDE MULTIPLE METHODS FOR CREATING PROGRAMS 

Entering programs as text can be much harder than alternatives such as direct 

manipulation or form filling but often gives the student more power. In a system that 

provides multiple methods for specifying programs and represents the resulting program 

in all program formats, students can use an easier method of program specification to 

help in learning a more complex, more powerful one. The system in this category 

provides multiple methods, including standard text, for specifying programs so that 

students can leverage the simpler methods to learn to program in a standard, textual 

format. 



Leogo: A. Cockburn and A. Bryant, University of Canterbury, 1997 [Cockburn and 

Bryant, 1997]

Leogo is a system that produces drawings similar to the Logo turtle (see section 4.1.2.1). 

However, rather than concentrating on one method for creating programs, it provides 

three: a typed syntax similar to Logo, a direct manipulation interface in which the turtle is 

dragged around and his actions are recorded, and an iconic language which contains 

templates for defining structures and using common turtle commands. Motions are 

expressed in all code styles simultaneously; when the turtle is dragged forward 15 units, 

the text window shows forward 15, and the iconic window shows forward 15 in icons so 

it is possible to learn some of the iconic and typed languages using direct manipulation. 

Figure 11. The Leogo interface showing iconic, direct manipulation, and textual programming. 



3.1.2 Structuring Programs 

These systems concentrate on the structure of code and how it is organized rather than on 

the syntax of short segments of code. This section includes systems that have tried “new” 

paradigms for programming. There are two groups here – ones that are changing the 

paradigm and ones that are trying to make changed paradigms more understandable 

3.1.2.1 NEW PROGRAMMING MODELS 

Instead of focusing on the syntax of specifying small sections of programs, these systems 

focus on how instructions are combined and organized to form more complex programs.  

Pascal: N. Wirth, Institut fur Computersysteme, 1970 [Wirth, 1970]

The first version of Pascal was created in 1970 for use in teaching programming, 

particularly systems programming. At the time, the other available languages were 

FORTRAN, COBOL, and Algol, none of which supported the Structured Programming 

proposed by Dijkstra [Dijkstra, 1969]. Pascal was introduced in beginning programming 

classes in 1971 to enable professors to teach Structured Programming to their students in 

their first course. Although Pascal was designed with teaching in mind, the improvements 

in the language can be seen as general improvements in programming languages. Algol, 

one of the primary influences, had ambiguities in the ways nested ifs could be 

interpreted; Pascal removed these. In addition, Pascal added new basic types and the 

ability to define special purpose types through struct statements.  

Smalltalk: A. Kay and A. Goldberg, Xerox PARC, 1971 [Kay, 1971] 

The first version of Smalltalk was created in 1971 at Xerox PARC as the language for the 

KiddyKomputer, Alan Kay’s original name for a portable computer designed for use by a 

child. Where BASIC attempted to provide a simpler programming language by reducing 

the number of commands and removing unnecessary syntax, the Learning Research 

Group (LRG) at PARC concentrated on the model of programming. The group wanted to 

create a programming language with a simple model of execution and a method of 

programming that could accommodate a wide variety of programming styles. Smalltalk 

was based around three ideas:  (1) everything is an object, (2) objects have memory in the 

form of other objects,  (3) and objects can communicate with each other through 

messages.   

Playground: J. Fenton and K. Beck, Apple Computer, 1989 [Fenton and Beck, 1989] 

Playground is an object oriented programming environment designed to allow children to 

create their own graphical objects and give them behavior. The programming model was 



based on a biological metaphor in which all objects are independent “organisms”; the 

model was influenced both by Minsky’s Society of Mind [Minsky, 1986] and by classical 

ethology (the study and description of animal behavior). Each object has its own sensors, 

effectors, and processing elements so it can act independently. Programming in 

Playground is rule-based; rules describe both the action and the circumstances under 

which it should occur. Students specify rules for each object using a natural-language-

influenced scripting language. One of the suggested projects for the system is a virtual 

aquarium with different species of fish and plankton that feed on each other. A fish might 

have a rule that caused it to eat an algae cell if it saw one and was hungry. A larger fish 

might eat a smaller fish. 

Kara: R. Reichert, W. Hartmann, J. Nievergelt, M. Braendle, T. Schlatter ETH Zurich, 

2001 [Hartmann, 2001]

Kara is a graphical programming language based on Karel the Robot that uses finite state 

machines to organize procedures. Kara can move, turn, pick up and place clovers, and 

detect tree stumps and clovers; these commands and questions are represented 

graphically. In each state, the user can ask questions of Kara’s current position and, based 

on the answers to these questions, supply a sequential list of instructions and the name of 

the next state in the machine. The finite state machine diagram of the program is provided 

to show the structure of the program and to allow the user to select a pre-existing state to 

edit. The use of the simple finite machine model for programming allows the Kara 

environment to be completely graphical; no typing is necessary, which is an advantage 

for beginning programmers. In addition, to aid the transition from  introductory 

programming in Kara to “real programming” the authors have supplied JavaKara, an 

environment that provides a transition to Java, MultiKara, an environment that introduces 

concurrent programming, and TuringKara, an environment that allows students to 

experiment with Turing machines in a two dimensional plane. 

Figure 12.  A screenshot of Kara showing a finite state machine with 

three states: enter, exit, and stop. Below the state machine are Kara’s 

instructions based on whether there are tree stumps beside her. Each line 

contains instructions for a given scenario. For example, if there is a 

stump on Kara’s right and not on her left, she should move forward and 

go to state enter. 



3.1.2.2 MAKING NEW MODELS ACCESSIBLE 

Some programming styles, such as object-oriented programming, can be difficult for 

beginners to understand but can be helpful either in organizing larger programs or 

representing particular types of behaviors.  Rather than requiring novice programmers to 

learn multiple styles of programming, the systems in this category attempt to make these 

more complex, but ultimately helpful, styles of programming accessible to novice 

programmers. 

Liveworld: M. Travers, MIT Media Lab, 1994 [Travers, 1994] 

Liveworld is an object oriented programming environment built to improve on 

Playground (see section 3.1.2.1). In Playground, creating and interacting with graphical 

elements is very simple, but interacting with the rules and attributes that govern the 

behavior of the objects is much more difficult. Liveworld attempts to create a graphical 

interface for the rules and attributes of objects so they are more accessible to novice 

programmers. The interface is similar to a hierarchical browser; parts of objects can be 

opened, revealing the details of those objects. The user can dive down and change the 

Lisp code controlling the behavior of objects or simply use the objects, depending upon 

how much detail the user of the system wants to see. This allows novice programmers to 

use more complicated objects as black boxes, which would have been difficult in 

Playground. 

if (> (ask self :distance-senser) 

        (ask self :last-distance)) 

(ask self: turn-left (arand 0 180)) 

(ask self: turn-left (arand 0 10))) 

Figure 13.  (a) A simple world in Liveworld containing two objects, an oval and a turtle. The turtle is 

open so that the user can see its details. (b) An example of Lisp code used in Liveworld to turn a turtle. 

Blue Environment: M. Kolling and J. Rosenberg, University of Sydney, 1996 [Kolling, 

1996] 

There are a number of steps involved in creating an executable program: writing, editing, 

compiling, testing, debugging. While there are a variety of Integrated Development 

Environments (IDEs) available (e.g. Visual C++, JBuilder, etc), most of these were 

created to support a procedural style of programming. To make it easier for students to 



learn object-oriented programming in their first course, environments should be designed 

to support object-oriented programming. The Blue environment supports object-oriented 

programming by explicitly representing the relationship between the objects in a 

graphical tree. Users can click on a particular class to view the code for that class. In 

addition, a class-testing bench allows users to create an instance of any class and call its 

public methods. This allows users to test individual objects outside of the context of the 

running program, better supporting an object-based design. Compiling and debugging are 

also supported in the environment, similar to other commercially available IDEs. 

Karel++: J. Bergin et al, Pace University, 1997 [Bergin et al, 1997] 

Karel J Robot: J Bergin et al, Pace University, 2000 [Bergin et al, 2000] 

J. Karel: B. Becker, University of Waterloo, 2001 [Becker, 2001] 

Karel J Robot, J.Karel, and Karel++ are versions of Karel the Robot that concentrate on 

preparing students for object-oriented programming rather than procedural programming. 

Karel J Robot and J Karel use Java-style syntax; Karel++ uses C++ style syntax. Rather 

than creating procedures to teach Karel to turn right, students subclass a basic robot to 

create a right-turning robot. These systems all leverage off the success of the original 

Karel the Robot to attempt to introduce object-oriented programming early such that 

thinking and programming in an object-oriented manner will seem more natural to 

students. 

3.1.3 Understanding Program Execution  

A syntactically correct program may not perform the actions that the student author 

intended. For beginning programmers, understanding how programs are executed and 

how to find mistakes in their programs can be difficult. The systems in this category try 

to help students understand what happens during the execution of programs, either by 

placing programming into a concrete setting or by providing a physically based model of 

how programs are executed in more general-purpose languages. 

3.1.3.1 TRACKING PROGRAM EXECUTION 

Atari 2600 BASIC: W. Robbinett, Atari, 1979 [Robbinett, 1979]

The Atari BASIC Cartridge allowed children to write short programs in a variant of the 

BASIC language and watch them as they executed. Atari BASIC divided the screen into 

six regions: the Program region, which displayed the child’s program; the Stack region, 

which displayed expressions as they were evaluated; the Variables region, which 

displayed each variable and its current value; the Output region, which displayed all 



program output; the Graphics region, a 2D graphical region with sprites; and the Status 

region, which displayed the current execution speed of the interpreter and the amount of 

remaining memory. Atari BASIC contained simple support for observing what was 

happening as the program executed, similar to the supports found in many debuggers. As 

a child’s program ran, several parts of the display changed to reflect the current state of 

the program: a program cursor showed the current line of code being executed; the stack 

updated as expressions were added or evaluated; the values of variables changed as 

appropriate; sprites might move in the graphics region; and the program might play a 

sound. 

Figure 14.  A simple program in Atari 2600 BASIC. The areas of the screen update to show the current 

position and state of the program. 

3.1.3.2 MAKE PROGRAMMING CONCRETE: ACTORS IN MICROWORLDS 

Most introductory programs in general-purpose languages are fairly abstract; the 

computer performs arithmetic operations on numbers and stores the results in invisible 

registers, making it difficult for students to understand and correct problems in their 

programs. The micro-world, inspired by the Logo turtle (see section 4.1.2.1), attempts to 

make programming more concrete by introducing students to programming constructs 



through controlling the behavior of an actor in a simple, physically based world. The 

actors usually perform only a few actions, resulting in small languages that students can 

master more quickly than general-purpose languages. Micro-world based systems also 

typically include simulators that allow students to watch the progress of their programs. 

Using micro-worlds, students can quickly gain familiarity with many of the control 

structures like if-statements and loops, allowing them to devote more time and energy to 

mastering the syntax and new commands when they move on to general-purpose 

languages.  

Karel: R. Pattis, Carnegie Mellon University, 1981 [Pattis, 1981]

Karel the Robot is one of the most widely-used mini-languages, originally designed for 

use at the beginning of a programming course, before the introduction of a more general-

purpose language. Karel is a robot that inhabits a simple grid world (see Figure 15) with 

streets running east-west and avenues running north-south. Karel’s world can also contain 

immovable walls and beepers. Karel can move, turn, turn himself off, and sense walls 

half a block from him and beepers on the same corner as him. A Karel simulator allows 

students to watch the progress of their programs step by step. Unlike many of the systems 

discussed in this paper, Karel is supported by a short textbook, making it easier for 

teachers to incorporate Karel in their classes. 

BEGINNING-OF-PROGRAM

  DEFINE-NEW-INSTRUCTION 

turnright AS 

    ITERATE 3 TIMES 

      turnleft; 

  BEGINNING-OF-EXECUTION 

    turnright; 

    ITERATE 2 TIMES 

      move; 

    turnleft; 

    ITERATE 2 TIMES 

      move; 

    turnleft; 

    ITERATE 2 TIMES 

      move; 

    turnleft; 

    move; 

    pickbeeper; 

    turnoff; 

  END-OF-EXECUTION 

END-OF-PROGRAM

Figure 15.  Left, a simple Karel world with Karel in a room and a beeper outside the door. On the 

right, a program that will move Karel to the beeper’s location and have him pick up the beeper. 



Students can create procedures using DEFINE-NEW-INSTRUCTION (Figure 15), but 

variables and data structures are not supported in the language. The syntax was designed 

to be similar to Pascal (see section 3.1.2.1) to ease the transition from Karel to Pascal 

after the first few weeks of an introductory programming course. There are a number of 

other robot-based micro-worlds that are described in a survey of mini-languages 

(Brusilovsky et al, 1997). 

Josef the Robot: I. Tomek, Acadia University, 1983 [Tomek, 1983] 

Like Karel, Josef is intended to introduce programming to beginners using a robot, Josef, 

in a simulated world. Josef lives in Wolfville, which is represented by an ASCII map; 

users can replace the map of Wolfville with one of their own choosing. He knows how to 

turn left and right, and move forward. The user can also set the speed at which Josef 

moves. However, unlike Karel, Josef can say and listen for text strings, enabling input - 

output programs. Additionally, he can drop text markers (e.g. the string “cat”) similar to 

Karel’s beepers anywhere in his world. Unlike Karel, Josef was intended to be used for a 

full semester of programming for non Computer Science majors. To support a full 

semester of use, it includes many more programming constructs than Karel, such as 

parameters, variables, and recursion. 

Turingal: P. Brusilovsky, University of Pittsburgh, 1991 [Brusilovsky, 1991] 

Turingal is micro-world based language in which the actor is a Turing machine and the 

world is the infinite tape designed to give students exposure to the standard programming 

constructs as well as the classic Turing machine. The instructions in the language allow 

the actor to move left and right along the infinite tape as well as read and write symbols 

on the tape. Like Karel, the basic instructions are easy to visualize. The Turingal 

language supports conditional, loop and case statements and procedures so that students 

can gain experience with them in a visual setting. The language uses Pascal syntax (see 

section 3.1.2.1) to ease the transition from Turingal to Pascal. In support of a computer 

literacy course for Russian high school students, Brusilovsky also created Tortoise, a 

micro-world based on Turingal which uses a two-dimensional field of symbols to make it 

more attractive to younger students (Brusilovsky et al, 1997). 

3.1.3.3 MODELS OF PROGRAM EXECUTION 

Rather than creating a language that has a simple, physical interpretation, the systems in 

this category provide physically based metaphors for explaining actions in a more 

general-purpose language. These metaphors can help students both to imagine the 



execution of their programs and perhaps more clearly understand why their programs do 

not perform as expected.  

ToonTalk: K. Kahn, Animated Programs, 1996 [Kahn, 1996]

ToonTalk has a physical metaphor for program execution that is similar to that of 

Prototype 2. In ToonTalk, cities and the creatures and objects that exist in cities represent 

programs. Most of the computation takes place inside of houses; trainable robots live 

inside the houses. Communication between houses is accomplished with birds that carry 

objects back to their nests. Unlike Prototype 2, the ToonTalk environment places the user 

within the city (program). Using interaction techniques commonly found in videogames, 

users can navigate around the space, pick up tools, and use tools to affect other objects.  

By entering the thought bubbles of robots and showing them what they should do using 

standard ToonTalk tools, users construct programs. 

Figure 16. A view of ToonTalk from inside a house. Marty the Martian provides information about 

objects and what they can do. 



Prototype 2: D. Gilligan, Victoria University, 1998 [Gilligan, 1998]

Prototype 2 personifies the flow of control in a computer using a clerk following 

instructions. The clerk can interact with calculators, I/O devices, worksheet machines, 

and his clipboard in executing a program. Calculators represent the computer’s math 

processor, I/O devices represent communication with the computer user, the clipboard 

represents the program stack, and the worksheet machines produce stacks of worksheets 

that represent the instructions in user-defined subroutines. Rather than imagining the 

internals of a computer, a novice programmer can imagine the clerk walking around a 

room interacting with calculators, I/O devices, worksheet machines, and his clipboard, 

and executing the instructions specified on his clipboard. This model was used in the 

creation of a programming by demonstration-based system in which the user plays the 

part of the clerk and demonstrates the actions the clerk should take. The system records 

these actions. While Prototype 2 uses an anthropomorphic metaphor, the system does not 

include a graphical representation of the clerk and the objects in his world; instead it is a 

standard graphical user interface with sections of the interface that represent each of the 

objects in the clerk’s world (e.g. the calculator, I/O devices, etc.) that the novice 

programmer can use to demonstrate how the clerk should behave. 

3.2 Social Learning 

Some of the most effective learning is done in a social context where more than one 

person is working with a problem. Since programming is known to be hard and children 

often learn more effectively in groups, perhaps it may help the learning process to 

provide a social context in which learning can occur. The systems in this category 

investigate different methods for allowing students to work together: co-located and over 

a network connection. 

3.2.1 Side By Side  

Most computer interfaces are designed for single users. Consequently, when groups of 

children use a standard mouse, monitor, and keyboard setup in learning, one child tends 

to dominate the process. The systems in this category use tangible interfaces to allow 

multiple students in informal groups to work together in solving programming problems. 

Because of the difficulty of representing the wide variety of programming constructs in a 

tangible form, these systems concentrate on small subsets of programming. 



AlgoBlock: H. Suzuki and H. Kato, NEC Information Technology Research 

Laboratories, 1995 [Suzuki and Kato, 1995]

The authors of AlgoBlock wanted to create an active learning community among children 

learning to program in which children can share notes and techniques, and learn from 

each other. They created AlgoBlock, a set of blocks, each of which corresponds to a 

simple command in Logo (see section 4.1.2.1). The blocks can be connected together to 

form programs that control the movements of a submarine in a maze. The blocks are 

tangible and large enough that they can be arranged on a desk that several students can 

work around. This allows students to work with the blocks in a social context, learn from 

each other, and communicate what they are learning. The tangible nature of the blocks 

made it easy for children to take turns manipulating the blocks and communicate about 

which pieces should be placed where. The AlgoBlock project demonstrates that, in a 

suitable environment, children will work together in building programs. However, the 

blocks supported a limited set of programming constructs; the children were not able to 

explore concepts like procedures, parameters, or control structures. 

Tangible Programming Bricks: T. McNerney, MIT Media Lab, 2000 [McNerney, 

2000] 

Tangible Programming Bricks are Lego blocks that can be stacked together to form 

programs. The designer’s intent in creating these was to provide a simple interface to 

appliances and toys and to create a programming environment that would allow children 

to collaboratively explore ideas.  While the work concentrated on the hardware 

implementation of the Lego blocks, the designer created three prototype environments 

using Lego blocks that represent commands. To allow a greater variety of commands, 

users could insert a small card (e.g. microchip) into a block. Each block could accept a 

single card, allowing users to communicate with other blocks via IR transmission, supply 

parameters to commands, sense the environment, or display variables. The three 

prototype languages allowed children to teach toy cars to dance, kitchen users to program 

microwaves, and toy trains to react to signals along the side of the tracks in unique ways. 

By stacking blocks together with accompanying cards, if necessary, users could construct 

simple programs. 

3.2.2 Networked Interaction 

Rather than trying to move away from the common single user, single computer 

paradigm, the systems in this category attempt to allow students using different machines 

to work together over the network. While the systems designed for students working side-

by-side can assume all children can see the state of the current program and what other 



children are doing, programming systems designed for network use need to explicitly 

support the exchange of this kind of information.  

MOOSE Crossing: A. Bruckman, MIT Media Lab, 1997 [Bruckman, 1997]

MOOSE Crossing is a networked programming environment built for children. It is an 

adapted text-based MUD (multi-user dungeon) in which children can use an object-

oriented scripting language to create spaces and characters that inhabit a textual world 

(see Figure 17). Children often create spaces and characters similar to those found in text 

adventure games such as castles complete with secret passages that other children can 

explore. Once their projects are completed, any child in the MOOSE Crossing 

environment can interact with them. In addition, the environment allows children to view 

the scripts controlling any object or character in the environment and chat with children 

that are currently logged onto MOOSE Crossing.  In general, children work alone on 

projects but one child will often use another child’s project as an example. Children may 

also ask another user for help or advice. The MOOSE Crossing community has provided 

a source of help, role models, and positive feedback for users of the system as they create 

their own projects. 

on pet this 

    tell player “You pet Rover.” 

    if player member_of my friends 

         emote “wags his tail.” 

end
Figure 17. A MOOSE Crossing script that allows MOOSE users to pet Rover. When a user pets Rover, 

they are told “You pet Rover.” If they are one of Rover’s friends, then Rover wags his tail. 

Pet Park: A. DeBonte, MIT Media Lab, 1998 [DeBonte, 1998]

Pet Park is an exploration of the ideas of MOOSE Crossing in a 2D graphical domain 

rather than a textual one. Children can choose one of 5 dogs to be their pet. Each dog 

comes with a few animations, such as wagtail, jump, walk, laugh as well as basic ones 

like wait, turnLeft, say, etc. Users can combine these simple commands to create their 

own animations using a textual scripting environment or a set of graphical blocks 

representing each command. As in MOOSE Crossing, Pet Park is a networked 

programming environment in which children can talk, ask each other for help, and show 

off their creations. While in MOOSE Crossing, children create spaces by describing them 

with text; in Pet Park, creating a space requires graphical objects. In response, the system 



provides a variety of furniture, objects, and rooms. Furniture and rooms can be 

programmed to react to simple events such as avatars coming near them.  

Cleogo: A. Cockburn, University of Canterbury, 1998 [Cockburn, 1998] 

Cleogo is a networked version of Leogo (described earlier) that allows children to see and 

interact with the same Leogo workspace. Rather than concentrating on building a 

community of programmers, Cleogo creates a shared environment, the current program 

being edited, and allows multiple children to see and manipulate that environment. 

Cleogo does not attempt to provide children with a way to communicate with each other 

about their project. Instead, it assumes that they are either in the same room or can talk to 

each other using the phone or some equivalent. 

3.3 Providing Reasons to Program 

Beginning programmers often do not know exactly what they want to build, what is 

possible in the programming system they are using, or how difficult certain kinds of 

projects will be to complete. The systems in this category provide starting points in 

learning to program. By providing specific activities for beginning programmers, these 

systems can introduce programming constructs gradually which may help to prevent 

beginning students from getting overwhelmed. In addition, these systems often use 

themes they believe children will find appealing. 

3.3.1 Solve Problems by Positioning Objects 

In these systems, students position objects to solve a series of puzzles. As students get 

more advanced, the puzzles become more difficult. The gradual progression of difficulty 

allows the designers of the system to introduce constructs and problems and provides 

students with a series of realizable and interesting goals.  

Rocky’s Boots / Robot Odyssey: W. Robbinett, The Learning Company, 1982 

[Robbinett, 1982] 

Rocky’s Boots was one of the first educational software products for personal computers 

to successfully use an interactive graphical simulation as a learning environment. The 

game allows children to connect logic gates (AND, OR, NOT and flip-flop) together to 

create circuits using a joystick (see Figure 18). When the circuits are active, users can 

watch the wires turn from white to orange as the electricity passes through them. The 

game provides a series of puzzles in which the player is supposed to separate the shapes 

matching a certain criteria from those that do not using logic gates, sensors that can detect 

certain kinds of shapes, and a boot that, when activated by a true value, kicks the current 



shape out of the line and off to one side. Robot Odyssey follows the same basic pattern; 

the player connects gates together to solve problems. However, Robot Odyssey includes a 

larger selection of objects like the shape-kicking boot that perform physical actions when 

they are activated, creating a wider set of possibilities for the behaviors of circuits. 

Figure 18. A puzzle from Rocky’s Boots in which the player is asked to create a circuit that separates 

blue crosses from the other shapes. When the circuit is switched on, shapes move up the right side of 

the screen. When they enter the white rectangle, the shape sensors to the right of the rectangle can 

detect them. The player is asked to attach a sequence of logic gates to the sensor that will activate the 

boot (center) when a blue cross enters the box. The boot, when activated, will kick the shape out of the 

rectangle.

The Incredible Machine: Sierra Entertainment, 1993. [Sierra, 1993] 

In the Incredible Machine, the player is given a series of Rube Goldberg style challenges 

(see Figure 19). For example, the player may be asked to construct a way to get a ball to 

fall into a basket. Each challenge includes a short description and all the parts necessary 

to create the machine described. Players can select parts and position them in the world 

and then start the simulation to test their machine. When the simulation is running, the 

parts respond as they would in the physical world.  If users run into trouble, they can ask 

for hints. More advanced users can use a free play mode to create their own machines.  



Figure 19.  An easy challenge in The Incredible Machine: the player needs to help Mel (top left) get 

back to his house. The puzzle has been solved by positioning the grey pipe, ramp, and a trampoline so 

that Mel will go through the pipe, slide down the ramp, and bounce off the trampoline and over the 

barrier to get home. 

Widget Workshop: Maxis, 1995 [Maxis, 1995] 

Widget Workshop provides a series of puzzles that players attempt to solve by 

connecting different components together using graphical wires. Each puzzle poses a 

specific question (e.g. what colors of light do you add together to get white) and provides 

a context in which to experiment with that question (e.g. red, green, and blue lights 

controlled by switches that connect to a “light box” where they are combined). Widget 

Workshop also provides a free play mode in which users can create their own widgets by 

connecting pre-made parts together. 

3.3.2 Solve Problems Using Code 

Motivation can be a key element in learning; if students want to learn to do something, 

obstacles will not deter them as much. These systems concentrate on providing a reason 

that a novice would want to program by creating an environment in which the novice 

programmer gets to do something fun. 



AlgoArena: H. Kato and A. Ide, NEC Information Technology Research Laboratories, 

1995 [Kato and Ide, 1995] 

In AlgoArena, players write programs to control the behavior of sumo wrestlers fighting 

tournaments. The programs are written in a language based on Logo (see section 4.1.2.1). 

When a player has completed a program, the player can log onto a website and have his 

or her wrestler fight against another student’s wrestler. Over time, by analyzing the 

circumstances in which the player’s sumo wrestler loses tournaments, the player is 

expected to learn more complex ways to control the wrestler, perhaps querying the 

position and posture of their opponent before deciding which moves to execute.  

Robocode: M. Nelson, IBM Advanced Technology, 2001 [Nelson, 2001]

Robocode is designed to help novices learn Java through programming a robotic 

battletank for a “fight to the finish”. The tutorial teaches novices to subclass an existing 

battletank robot and extend the robot’s capabilities using standard Java and a set of 

classes written for the Robocode environment. Upon completion of a robot, users can 

upload their creation to a number of websites or join a robotic battle league. The designer 

of the system believes that the ability to program robotic battles will provide enough 

motivation to get a novice programmer over the hurdles of beginning to program. 

4. EMPOWER PEOPLE 

The systems in this category are built with the belief that the important aspect of 

programming is that it allows people to build things that are tailored to their own needs. 

Consequently, the designers of these systems are not concerned with how well users can 

translate knowledge from these systems to a standard programming language. Instead, 

they focus on trying to create languages and methods of programming that allow people 

to build as much as possible. 

4.1 Mechanics of Programming 

The systems in this category are designed around the hypothesis that the primary barrier 

for people attempting to use programming as a tool is the mechanical difficulties of 

creating programs. Systems in this category examine ways of improving programming 

languages and alternative ways for creating. 

4.1.1 Code is Too Difficult 

Many researchers have examined the problem of making languages more understandable 

and usable for novices. While progress has been made making programming languages 

more understandable, there still are many barriers for novices trying to build their own 



programs. These systems examine creating programs either through demonstrating 

correct behavior or selecting actions through the interface. 

4.1.1.1 DEMONSTRATE ACTIONS IN THE INTERFACE 

The systems in this category examine ways that users can program a system by showing 

the system what to do through manipulating the interface, without relying on a 

programming language. 

Pygmalion: D. Smith, Stanford University, 1975 [Smith, 1993]

Pygmalion was the first programming by demonstration system. Unlike many of the 

systems that came after it which concentrated on graphical objects, Pygmalion attempted 

to get people to write more abstract programs, such as a program to compute the factorial 

of a number. However, rather than building factorial by typing statements in a 

programming language, Pygmalion relied on editing an artifact. To create a factorial 

program, the user creates an icon with two sub-icons, one for the input and one for the 

output, and draws a symbol to represent factorial. The user can then enter remember 

mode, in which all of the actions made by the user are remembered by the system. 

Consequently, the user can program the computer by working out an example of how to 

compute factorial. However, the user must anticipate the handling of the value one and 

test whether or not the current value, say three, is equal to one, something that novices 

may not be well prepared to do. If the user does not demonstrate his or her current actions 

as the case for the current value not being equal to one, Pygmalion will not know that one 

should be handled differently and, consequently, will not prompt the user to demonstrate 

how one should be handled. 

Programming by Rehearsal: W. Finzer and L. Gould, Xerox PARC, 1984 [Finzer and 

Gould, 1984] 

Programming by Rehearsal was built to help non-programmers create educational 

software. It is designed around a theater metaphor in which components of the interface 

are performers that interact with one another on a stage by sending and responding to 

cues. A user of the system would begin creating a piece of software by auditioning 

performers to use as building blocks, selecting their cues via a pop-up menu and 

observing their responses to those cues. The user would then copy the chosen performers 

onto the stage, placing and sizing them appropriately. The rehearsal portion of 

development consists of showing the performers what actions they should take in 

response to user input or cues sent by other performers. Objects that accept user input, 

such as buttons, have cue sheets that allow users to fill in their responses to those user 



inputs. Users can press a closed eye icon to tell the system to observe what their actions. 

Then, by selecting cues from the menus of other performers, they can show the system 

how to react to those cues. By pressing the eye icon again, users indicate they have 

finished. The system comes with 18 basic performers users can audition and use in their 

own creations. Additionally, the system allows users to create new performers by 

combining existing performers and teaching them new cues.  

Mondrian: H. Lieberman, MIT, 1992 [Lieberman, 1993] 

Mondrian is a programming by demonstration system for drawing and graphical editing 

in which commands are shown with “domino” icons that depict the before and after states 

for that command. To execute a command, users select the command icon and select the 

object or area to which the command should be applied. The user can create new 

commands in a storyboarding style by showing how to do each step in the new command. 

These steps are displayed at the bottom of the screen in comic book format with a short 

caption describing each step. Drawing a rectangle on the screen would show a box with 

the new screen state captioned by “rectangle”. If the user then moves the rectangle, a 

“move” domino would appear beside the “rectangle” domino in the definition of the new 

command. New commands created by the user are displayed in the same domino style as 

the commands built into the system. In addition, the system provides speech synthesis 

capabilities to give an English description of what a command does.  

4.1.1.2 DEMONSTRATE CONDITIONS AND ACTIONS 

Like the previous category, the systems in this category try to avoid forcing users to 

express their intentions in code. However, instead of demonstrating programs by 

performing actions in the user interface, as the systems in the previous category did, the 

systems in this category allow users to depict the conditions in which they want the 

program to perform an action and the results of that action. 

AgentSheets: A. Repenning, University of Colorado, 1991 [Repenning, 1993] 

AgentSheets is an environment for building simulations consisting of graphical agents 

(represented by icons) in a grid-based world. In early versions of the system users 

specified the behaviors of their simulations by graphical rewrite rules in which the user 

selected conditions (configurations of icons in the world or relative to each other) and 

showed the system what should happen under these conditions by moving the agents to 

their new positions in the world. However, graphical rewrite rules on their own are 

insufficient for creating more realistic simulations and complex games. To support a 



broader range of simulations, AgentSheets now uses Tactile Programming in which users 

still specify a list of conditions and a list of actions to take if all of those conditions are 

true. Conditions can check information such as the appearance of agents, read data from 

other agents or web pages. Actions might change the appearance of agents, destroy 

agents, create new agents, or open web pages. 

Figure 20.  A screenshot of a traffic light simulation in AgentSheets containing two rules. The first rule 

runs continuously: every three seconds it triggers the second rule. The second rule looks at the current 

color of the traffic light and changes it to the next one in the sequence green, yellow, red. 

ChemTrains: B. Bell and C. Lewis, US West Advanced Technologies, University of 

Colorado, 1993 [Bell and Lewis, 1993]

ChemTrains is a pictorial rule-based language that attempts to make it easy for people to 

create a wide variety of “behaving pictures”. ChemTrains is similar to Stagecast (see 

below) in that users show both the conditions and results of a rule through pictures. In 

ChemTrains the pictures used to specify conditions and results are interpreted as patterns 

of connections rather than collections of pixels. For example, in simulating an AND gate, 

if there is any box with a zero connected to the AND gate (from any direction and any 

distance away), the output of that gate should become zero. A similar statement in 

Stagecast would only work if the zero connected to the AND gate was always in the same 



relative position to the AND gate. As in Stagecast, the order of the ChemTrains rules 

dictates how they are applied; only the first matched rule is applied in each time slot. 

Additionally, the ChemTrains pattern matcher can use variables; in ChemTrains, 

variables are specially marked pictorial elements that can match any element of the 

simulation display. The addition of variables allows users to create a wider range of 

simulations. 

Stagecast: D. Smith, A. Cypher, and J. Spohrer, Apple Computer, 1995 [Smith, 1997] 

Stagecast, a commercial version of KidSim (see below), is an environment for creating 

simulations. Children are presented with a grid-based world in which they can create their 

own actors. Users define rules for the simulation by selecting a before condition from the 

grid world and then demonstrating how that condition should change (see Figure 21). 

When the simulation is started, when a section of the grid matches a condition of one of 

the rules, the rule is applied. Stagecast applies only the first rule (in top to bottom order) 

that matches a section of the grid.  

Figure 21. This drawing shows an example of how users create rules in Stagecast. On the left side are 

the conditions in which each rule should be applied.  On the right, the results of each rule are shown. In 

this drawing, if there is a raindrop with an empty space between below it, the raindrop should move 

down. Likewise, if there is a raindrop with an empty space on its right, it should move right.   

4.1.1.3 SPECIFY ACTIONS 

In these systems, the user creates programs by using the interface to specify the desired 

behavior. The user does not see any code, but unlike in programming by demonstration 

systems, the user does not show the computer what to do, he or she selects the program’s 

actions.   



Pinball Construction Set: B. Budge, Exidy Software, 1983 [Budge, 1983] 

The Pinball Construction Set was written in 1983 to allow users to design and build their 

own pinball machine simulations (see Figure 22). It provided a construction space, a set 

of pinball parts, and bitmap editing capabilities to allow users to build themed pinball 

machine simulations. Physical laws and behaviors were written into each part; each part 

provided could be seen as acting on balls that collide with it in defined ways. In this 

system, users can program by placing pinball parts in well-defined relationships; this 

method of programming is similar that employed by The Incredible Machine (see section 

3.3.1). For example, users may want to specify that when a ball hits a certain target, it is 

diverted onto a ramp, and its path affected by a magnet. 

Figure 22.  A screenshot of the Pinball Construction Set. On the right is an empty pinball game; on the 

left are a variety of parts that users can put into their pinball games. 

Alternate Reality Kit: R. Smith, Xerox PARC, 1987 [Smith, 1987]

The Alternate Reality Kit (ARK) is an environment in which users can build interactive 

simulations. Users interact with objects built on a physical-world metaphor; each object 

has an image, position, velocity, and can be influenced by forces. Users can pick up 

objects, move them, drop them, or throw them using mouse gestures. Users can query or 

change the state of objects by sending messages, represented by buttons, to those objects. 



To connect a button with a particular object, the user drops the button onto that object. If 

the object understands the message the button represents, the button “sticks” to the 

object, otherwise it falls through. Buttons that require a parameter have a little “plug” 

where users can hook up a value for the parameter. 

Klik N Play: F. Lionet and Y. Lamoureux, Europress, 1994 [Lionet and Lamoureux, 

1994] 

Klik N Play is designed to allow the user to create simple level-based games. The 

application has three modes: a storyboard editor, which allows the user to see all levels as 

thumbnails, a level editor, and an event editor. The level editor allows the user to select 

the background, add predefined objects to the level, and provides users with the ability to 

create their own objects and animations for those objects. Users create animations frame 

by frame with a bitmap editor and use controls to set the speed and motion of objects. 

The event editor uses a table format and allows the user to specify actions for a variety of 

predefined events (see Figure 23). Klik N Play’s events are based on collisions between 

objects, mouse and keyboard input, time, the state of players, and the states of variables 

and objects in the level.  

Figure 23. A view of the event editor in Klik N Play while the user builds a graphical piano program. 

The user is currently specifying that when the  “User clicks with left button on white piano key,” the 

game should play “sample piano1.” The events are organized in table form based on their effects: all 

sound events are in the first column, events on the user’s objects, piano keys in this screenshot, begin 

at column 5. 



4.1.2 Improve Programming with Languages 

The designers of many of the teaching languages are concerned with how well students 

can transfer the knowledge they gain in the teaching language to more general-purpose 

languages. Consequently, the designers of teaching languages have been hesitant to 

deviate very far from these general-purpose languages. However, the systems in this 

category endeavor to empower their users to create interesting programs; whether the 

users of these systems can transfer their programming knowledge to more general 

purpose languages is not important. Consequently, the designers of these systems can 

make changes to standard programming languages that the authors of teaching languages 

might hesitate to make. 

4.1.2.1 MAKE THE LANGUAGE MORE UNDERSTANDABLE 

These systems include languages that were developed with a focus on the language and 

words novices use to describe situations. Most previous languages have been developed 

with a focus on consistency between languages or on mathematical simplicity. These 

languages instead focus on choosing words that the users of the system understand and 

can use effectively without having to translate their words in their everyday vocabularies 

into the words that the computer language uses for the same concept. 

COBOL: C. Phillips et al, Department of Defense, 1960 [Sammet, 1981] 

COBOL is the COmmon Business Oriented Language, designed to support the creation 

of business applications. It was intended to be usable by novice programmers and 

readable by management; spoken English influenced many of the programming 

constructs (see Figure 24). The designers also added “noise” words to increase the 

readability of the language: ADD X TO Y rather than ADD X,Y. 

IF X = Y <…> 

IF GREATER <…> 
           OTHERWISE <…>

Figure 24.  A conditional statement in COBOL. Conditionals can use implied subjects and objects as 

seen in the second and third lines of the conditional statement. 

Logo: Seymour Papert, MIT, 1967 [Papert, 1980]

The Logo programming language is a dialect of Lisp with much of the punctuation 

removed to make the syntax accessible to children. It was intended to allow children to 

explore a wide variety of topics, from mathematics and science to language and music. 

The most well known part of Logo is the Logo turtle, which began as a robotic turtle that 

could draw on the ground. It was later replaced by a simulated actor in a two dimensional 



graphical world that can move, turn, and leave trails. The turtle’s directions are object-

centric; if a child tells the turtle to “forward 10”, the turtle will move in his own forward 

direction rather than a direction defined by the screen. Many children have been 

introduced to programming through making the turtle draw simple pictures. However, the 

Logo language includes a wider variety of possibilities. Classes of children have written 

music programs, programs that translate English to French, and many others. The Logo 

language is an interpreted language with descriptive error messages. For example, if a 

student typed “foward 10” instead of “forward 10” the system would respond with “I 

don’t know how to foward.”  

Alice98: M. Conway et al, Carnegie Mellon University, 1997 [Conway, 1997] 

Alice98 is a programmable 3D authoring tool, designed to make authoring interactive 3D 

graphical worlds accessible to college-level, non-science majors. The authoring tool 

consists of a scene layout editor in which the user can create their opening scene, and a 

script tab in which the user can specify the behavior of the world. The programming 

language in Alice is Python, with a few changes suggested by user testing: it is not case 

sensitive and ½ evaluates to 0.5 rather than 0. However, Alice provides domain-specific 

commands for manipulation of objects in 3D. The structure and naming of these domain-

specific commands were influenced greatly by user testing. As in Logo, commands 

utilize object-centric notation: forward, backward, up, down, left and right are used to 

describe direction. This description is equivalent to XYZ notation, but is much easier for 

novices to understand. Similarly, the names of commands are drawn from the language 

that users would choose to describe those actions; for example, translate became move, 

scale became resize, and rate became speed. Alice commands can also be accessed with 

varying degrees of detail. At the simplest, bunny.move only needs a direction. The user 

can also specify how far bunny should move, how long the animation should take, what 

speed he should move at, whether he should move in someone else’s coordinate system, 

and different interpolation styles. This allows novices to begin by learning a very simple 

command for moving the bunny and, as they gain more experience, learn to express 

greater control over how the bunny moves through additional options. Alice98 also 

animates all commands so that the user can understand what has happened. Because 

Alice98 animates all changes to the state of the program, the user can more easily 

understand the behavior of their programs. 



HANDS: J. Pane, Carnegie Mellon University, 2001 [Pane, 2001] 

The HANDS system was designed to allow children in 5th grade and older to create 

games and simulations similar to the ones with which they play. The design of the system 

was informed by studies of the language that children with no programming experience 

use in expressing solutions to programming problems. The environment provides a 

concrete model of computation, represented by an agent, HANDY the dog, who 

manipulates a deck of cards. All information used in a program is stored on two-sided 

cards. The front of each card contains object-related data; the back displays a picture of 

the object. The user can place cards on the surface of the table, which represents the end-

users’ view of the program. The HANDS language was designed based on the ways that 

non-programmers describe solutions to programming problems. It includes queries and 

aggregate operations that reduce the need for data structures and iteration through lists of 

items. Children using the HANDS system perform better than children using a version of 

the HANDS system that does not include queries and aggregate operations. 

Figure 25. All data in HANDS is stored in cards, which the user can draw from a pile shown on the top 

right of the screen. Two cards are shown, face down, on the lower left. One card on the right has been 

flipped to face up so that the user can see and edit it's properties. When cards are on the board (in the 

center of the screen), only the image on their backs are visible. Users of HANDS can add code into 

Handy's thought bubble by clicking on his picture in the upper left corner. 



4.1.2.2 IMPROVE INTERACTION WITH THE LANGUAGE 

In addition to changing the language and the words used to describe programming 

commands and constructs, another area for improvement is in the ways that people 

interact with language. This includes the interaction involved in entering programs and 

the process involved in running programs users have written.  

1.1.1.1.5. Manipulation of Language 

Traditionally, users program systems by typing program statements into a text editor. For 

novice programmers, typing programs and the strict syntax of most programming 

languages can be particularly difficult and frustrating. The systems in this category 

examine different methods for creating programs in ways that are easier for novice 

programmers to understand and less prone to errors. The systems use a variety of 

techniques from dataflow metaphors, to menu selection, to physical proximity to allow 

users to express their intentions without having to type traditional programming 

statements. 

Body Electric: J. Lanier, VPL [Blanchard et al, 1990]

Body Electric was designed as an authoring tool for a two-person virtual reality system. 

Programs in Body Electric are data driven; raw data from sensors (such as positional 

sensors on people) can be passed to the representation of the virtual world through 

modules that are capable of transforming the data or generating events. These modules 

are represented in the authoring environment as boxes connected by arrows in a flow 

diagram. Users can create programs that modify and react to sensor data by sending the 

sensor data through a sequence of modules. Programs are always live, allowing the 

author to immediately see the results of changes. This allows worlds to be quickly 

prototyped, tested, and modified. 

Fabrik: Ingalls et al, Apple Computer, 1988 [Ingalls et al, 1988] 

Fabrik is a computational construction kit in which pieces of functionality (procedures) 

appear as boxes with connectors. These boxes can be wired together to create a variety of 

programs (see Figure 26). The user is supplied with a parts bin that includes simple 

computational elements, such as string and integer manipulation, as well as interface 

elements such as buttons, images, and lists. By dragging boxes into a working area and 

connecting them together, the user can create programs. These programs are always live 

so they can be tested as they are being built. During development, user interface elements 

and computational elements share screen space. However, once a program is finished, the 



user can choose to view only the interface elements. In addition, finished programs can 

be used as elements in subsequent programs, so the user can extend the capabilities of the 

construction kit. 

Figure 26. A Fabrik program to create a simple text file editor. In the top left text field, the user can 

enter a search string for file names. The user’s string is passed to a file name pattern matcher and then 

to a GUI list element. The user can then select the file they want to edit. When a file is selected, the 

name of the file is passed to a module to retrieve its contents and the contents are passed into a text 

field for the user to edit. 

Tangible Programming with Trains: F. Martin et al, MIT Media Lab, 1996 [Martin et 

al, 1996] 

Tangible Programming with Trains is a train set and collection of active train toys that 

influence the behavior of the train. The Tangible Programming with Trains system was 

designed to allow children to explore “pre-programming concepts – causality, interaction, 

logic, and emergence” (Martin et al). For example, a stop sign that causes the train to stop 

or a sign that asks the train to turn on its lights. The active train toys and the train can 

communicate via IR signals such that when the train is close to one of these toys, the train 



will change its behavior appropriately. Children can place these objects around the path 

of the train such that it will stop at a station or turn its lights on when it goes through a 

tunnel. 

Squeak Etoys: A. Kay et al, Disney, 1997 [Kay]

Squeak Etoys are designed to allow children to learn ideas by “building and playing 

around with them” (Kay) either through interacting with simulations others have built or 

creating their own simulations (see Figure 27). The Etoys environment provides students 

with a variety of pre-made objects, from simple shapes to trashcans, and a simple 

drawing tool with which students can create their own objects. All objects have viewers 

that contain object-specific information as well as tiles that the student can drag out of the 

viewer to build programs that control the behavior of the object. Programs can change the 

position, orientation, size, and appearance of objects as well as play sounds. Users can 

create simple if-statements in their program, but no other standard control structures are 

included in the Etoys system. Users can trigger object behaviors based on a variety of 

mouse events, or the behaviors can be started, stepped and stopped with a set of pre-made 

buttons users can add to their simulations. 

Figure 27. An Etoys simulation that makes the LadyBug follow the track. The user has dragged 

statements from the LadyBug’s viewer (right) into a script (left) so that the LadyBug continually 

moves forward, turning right when she is over red and left when she is over yellow. The script is 

currently paused, but if the user pressed the “go” button, the LadyBug would start following the track. 



Alice99: Carnegie Mellon University, 1999 [www.alice.org]

The developers of Alice98 (see section 4.1.2.1) noticed that typing was difficult for many 

users. This system is a follow-on system to Alice98 that focuses on exploring ways to 

reduce the amount of text users have to type. In Alice98, users create both animations and 

events by typing statements in a programming language. In Alice99, users create basic 

animation using drag and drop: the user selects the character of interest from the tree of 

characters on the left of the screen and drags that character into the animations window. 

When the user drops the character in the animations window, a series of menus appears 

showing the actions the character can take, such as move, turn, resize, etc, and the options 

for each of those choices; a character can move forward, backward, left, right, etc. The 

drag and drop system in Alice99 does not provide support for many of the traditional 

programming constructs present in the Alice98 system; to create more complex 

programs, users must still type. The animation editor can create only fully specified, 

linear animations. The scripting system was left in place to allow advanced users to build 

complex worlds. Alice99 also introduced an event editor that allowed users to specify 

events in a table form in which they selected the event and the animation they wanted to 

trigger in response to that event. 

AutoHAN: A. Blackwell and R. Hague, University of Cambridge, 2001[Blackwell and 

Hague, 2001]

The AutoHAN project grew out of the desire to provide a single programming interface 

for the many home appliances that are being shipped with customization or programming 

features. The goal of the project is to provide a language and interface that home users 

can use to program their appliances to do simple tasks such as recording a particular TV 

show, switching on an outside light when the doorbell rings, or starting the coffee pot 

when the alarm goes off in the morning. This language must be usable by people who can 

operate remote controls. The AutoHAN project elected to create a variety of physical 

“media” cubes for this purpose. At their simplest, they operate as single button remote 

controls that can be associated with a wide variety of appliances. For example, a play 

cube can be associated with a CD player by holding it close to the CD player. Once the 

association has been created, the user can press the cube’s button to play a CD. The user 

can later associate that same play cube with a VCR and use it to play a movie. 

Additionally, the cubes can be composed together to form programs, such as starting the 

coffee pot when the alarm goes off. These programs can be stored by the AutoHAN 

system for later use. The designers proposed two languages for the media cubes: one 

based on ontological abstraction, the other based on linguistic abstraction. The 



ontological language includes event cubes which reference changes of state in the home, 

channel cubes which grant access to different channels of information, and aggregate 

cubes which allow cubes to be grouped together to form a set (a set of events to react to, 

for example). The linguistic language includes cubes that are linked to particular words in 

English, for example, stop, go, and play. Cubes that support more abstract data roles such 

as variables and lists are also included. 

Physical Programming: J. Montemayor, University of Maryland, 2001 [Montemayor, 

2002] 

The Physical Programming work describes a method for children ages 4-6 to build 

interactive story spaces using StoryRoom Kits that provide sensors and actuators that can 

be used to augment everyday objects, such as chairs or teddy bears. The StoryRoom kits 

allow children to create stories in which objects in the real world represent characters or 

elements in the story the children are telling. Seeking stories in which one character is 

asking a series of other characters where to find an object, character, or piece of 

information work very well in this context. The Physical Programming method was 

prototyped using Wizard of Oz techniques and the following tools: a foam hand to 

indicate touch, a light for lighting up objects to draw attention to them, a sound box 

which had a different sound associated with each side of the box, and a magic wand for 

users to indicate when they were programming and when they wanted to tell a story using 

their augmented story room. To create a program, a child associates sensors, actuators, 

and props using the magic wand. For example, to have the teddy bear say something 

when it is touched, the child would tap the hand and the teddy bear to indicate that the 

bear should respond when touched, and one side of the sound box to indicate which 

sound should be played when the teddy bear is touched. When the wand is put away, the 

StoryRoom goes into “story” mode and the rules the child created are active.   

Flogo: C. Hancock, MIT Media Lab, 2001 [Hancock, 2001]

Flogo is a visual dataflow language designed to enable children to build more complex 

robotic behaviors with their lego robotics kits. The designers of the system believe that 

visualizing the temporal structure of a program is helpful in understanding how it works 

(or why it does not work). The visual dataflow model is well suited to showing the 

temporal structure of a program. Consequently, Flogo programs use a visual dataflow 

model. Sensor outputs can be connected in the box and wires style to arithmetic 

operations, Boolean tests, and motor controls. Flogo programs are always live; a change 

in the inputs to the sensors will be immediately reflected in the representation of the 



program, making Flogo a tinkering-friendly language even when the program a child is 

working on is incomplete.  

1.1.1.1.6. Integration with Environment 

To write a program in most general-purpose languages, a user must type their program 

into a text editor, compile the program, fix any syntax errors, build the program, and then 

run it. For a novice programmer, this is a lot of steps and the time and effort involved in 

making changes to a program can discourage experimentation. The systems in this 

category integrate the environment in which users write programs with the environment 

in which users run programs. Many of these systems also allow users to test the effects of 

individual program statements so that they can experiment while building programs. 

Boxer: A. diSessa and H. Abelson, University of California at Berkeley, 1986 [diSessa 

and Abelson, 1986]

Like Hypercard, Boxer is one of the first environments designed to allow non-expert 

programmers to program. It presents a hierarchical world composed of boxes that can 

contain other boxes (see Figure 28). Rather than separating the act of programming, 

programming is integrated into an environment that a typical person might use, primarily 

for text editing and graphical layout. Boxer programs contain three types of boxes: 

standard boxes which can contain text or program code, data boxes which contain string 

literals for use in programs, and graphics boxes which contain graphical displays. The 

composition of the boxes has meaning; it indicates that sub-procedures are parts of 

procedures and records are part of databases. In general, sub-boxes are only accessible 

from inside a box. The boxes provide the novice programmer with a simple mechanism 

for abstracting program and data elements. Boxes also allow the novice to view program 

elements as black boxes that they can use in their programs without fully understanding. 

As users gain experience, they can return to these black boxes and open them to discover 

how they work. 



Figure 28.  A phone number look up program written in Boxer. If a user enters a name in the “name” 

box and presses the Function-1 key, Boxer will search through the entries in “list”, another box shown 

at the top of the screen, and display the phone number associated with that name. 

Hypercard: Bill Atkinson, Apple Computer, 1987 [Goodman, 1987] 

Hypercard is described by its creator Bill Atkinson as “an authoring tool and a sort of 

cassette player for information.” The application itself allows users to create stacks of 

cards, somewhat like a Rolodex program, that contain images, text, and buttons. At their 

simplest, buttons can trigger visual changes, make sounds, or show a new card. A 

scripting language called Hypertalk is provided to allow users to build more functionality 

into the stacks they author. Spoken English heavily influenced the Hypertalk language 

itself; the language provides constructs such as the first card and the last card, descriptors 

that are easily understandable to most users. In designing the system, Atkinson 

concentrated on the user’s first experience with the tool. He focused on supporting the 

user’s immediate success using Hypercard and tried to reveal features gradually. A 

beginning user could learn to create cards and used text-editing tools before moving on to 

graphics editing. The user could learn about using the message box as a calculator before 

moving onto placing values in fields. By the time the user was ready to write a full script, 

he or she would already be familiar with how to access information in different parts of 

the interface. 



cT: B. Sherwood and J. Sherwood, Carnegie Mellon, 1988 [Sherwood and Sherwood, 

1988]

This system attempts to simplify the process of creating graphics-oriented programs by 

providing higher-level primitives. Programs are created in an integrated environment 

where users can see the results of their programs immediately. The cT environment also 

provides a method for users to specify shapes using mouse clicks on the screen. Finished 

programs can be executed as separate programs. 

Chart N Art: C. Digiano, University of Colorado, 1996 [Digiano, 1996]

Chart N Art is a graphical editor similar to MacDraw that reveals a programming 

language. As designers manipulate the interface to create drawings and charts, the 

equivalent programming statements are printed in a scrolling history area at the bottom. 

These statements can be copied from the history area into an interaction pane, edited, and 

executed. The interface provides operations on sets of objects as well as single objects, 

allowing designers to learn how to specify sets of objects to manipulate using the 

scripting language. The goal of the interface is to allow designers to automate the 

creation of custom designed charts, giving them more control than graphing and charting 

packages, but removing the necessity to draw every aspect of the chart by hand.  

4.2 Activities Enhanced by Programming 

The systems in this group look at programming as a way to enhance activities, either by 

allowing greater control or creating opportunities to explore particular domains. Rather 

than trying to create full general-purpose programming environments, the designers of 

these systems have tailored the functionality in the programming languages to specific 

domains. 

4.2.1 Entertainment 

These systems use programming to support entertaining activities. These systems use 

programming models inspired by earlier systems to make programming more realizable 

to novices and provide activities that the designers believe users will find enjoyable. 

Bongo: A. Begel, MIT Media Lab, 1997 [Begel, 1997]

Bongo enables children to create their own video games and share them with others 

through the web. Bongo builds upon Starlogo (see section 4.2.2), and adds primitives for 

playing sounds, changing shapes, and detecting collisions between characters on the 

screen; it customizes Starlogo for use in the domain of games programming. High-level 

movement of objects in the system can be done using drag and drop, but procedures are 



created with text-based programming. Bongo supplies a command center that allows 

users to test out code and observe its results.  

Mindrover: Cognitoy, 2001 [Cognitoy, 2001]

Mindrover is a commercial game in which the user is a researcher on Europa, one of the 

moons of Jupiter. In the researcher’s free time, he or she programs robotic rovers to race 

around hallways and battle other rovers. The game allows users to program their rovers 

using a drag and drop programming system, inspired by a data-flow visual programming 

model and The Incredible Machine (see section 3.3.1). Users select pre-built components 

(such as thrusters and steering wheels) and sensors, place them in a limited number of 

slots on their rovers, and wire the components and sensors together to give their vehicles 

certain behaviors. The programming model is similar to the box and wires approach seen 

in Fabrik, Flogo, and Body Electric. Wires contain information about when signals are 

sent from sensors to components and the actions triggered by those signals. Boolean gates 

are provided to allow users to create more complex behaviors. 

4.2.2 Education 

These systems use programming to allow users to explore different domains of 

knowledge and how they are affected by different factors. They are intended to allow 

users to explore and experiment with specific domains of knowledge; the programming 

languages are tailored for these specific domains. 

SOLO: M. Eisenstadt, The Open University, 1983 [Eisenstadt, 1983]

SOLO is a Logo-inspired (see section 4.1.2.1), interpreted textual programming language 

designed for cognitive psychology modeling. The typical psychology student has little 

computer experience, no programming experience, occasional access to a computer, and 

often works on projects in groups. The SOLO language provides psychology students 

with a simple way to model cognitive processes through accessing and manipulating a 

simple database of triples. Each triple represents a relationship: for example, “Fido isa

dog”. The language provides 10 commands that allow students to store triples, remove 

triples, test for relationships via pattern matching, define procedures, iterate through 

triples, and view and edit procedures. Students are able to quickly create simple models 

of human memory and reasoning, similar to those discussed in introductory psychology 

classes, and use these programs to reason about how cognition works. 



Gravitas: R. Sellman, The Open University, 1992 [Sellman, 1992]

Gravitas is an object-oriented discovery learning environment that allows students to 

experiment with Newtonian Gravitation. The environment includes both a graphical 

interface controlled by the mouse and a textual Logo-based (see section 4.1.2.1) 

programming interface. Students can control the x and y position, x and y velocity, x and 

y accelerations, and the mass of the spherical objects in the world. Students typically start 

with the graphical interface to Gravitas, and, as they gain more experience progress to 

typing Logo commands. 

Starlogo: M. Resnick, MIT Media Lab, 1996 [Resnick, 1996]

Starlogo is a programmable modeling environment designed to allow students to explore 

decentralized systems, such as ant colonies and traffic patterns. Users can write simple 

rules that control thousands of objects and observe the patterns that arise as a result of 

these rules. The Starlogo programming language is based on Logo (see section 4.1.2.1). 

However, instead of controlling a single turtle, users control thousands of turtles. The 

Starlogo turtles have improved senses: they can detect each other, nearby turtles, and 

scents in the world. Each pixel in the world has additional capabilities. Rather than 

containing a single piece of information (color), each pixel is modeled as a turtle that 

cannot move; it can contain an arbitrary amount of information. Pixels in the world can 

affect the state of other pixels, causing growth or dispersal of scent, for example.  

Hank: Mulholland and Watt, The Open University, 1998 [Mulholland and Watt, 1998]

Hank is a visual programming language designed for cognitive psychology students to 

use in the construction of cognitive models of human behavior. The typical psychology 

student has little computer experience, no programming experience, occasional access to 

a computer, and often works on projects in groups. Consequently, the Hank language was 

designed with five goals in mind: support the creation of cognitive models; consider the 

requirements of the non-programmer; support group work; clearly show the execution 

path; and support paper-based use of the language. Based on findings that spreadsheets 

tend to allow a number of interested people to understand how the spreadsheet is being 

developed, Hank is a spreadsheet-based language. The architecture of Hank is similar to 

the information processing architectures taught to psychology students. There are three 

components: a database where information can be stored and represented (i.e. long term 

memory), a workspace where information can be worked upon (i.e. short term memory), 

and an executive component that carries out processing, input, and output. Data is 

represented with fact cards that typically represent relationships between entries, similar 



to a typical spreadsheet. Programs are expressed on instruction cards using queries for 

entries on cards and arrows to indicate what to do when entries are found or not.  The 

execution model is explained using a dog named Fido who performs programs according 

to a few simple rules. The authors designed Fido to be similar to the Logo turtle (see 

section 4.1.2.1), in the sense that he gives students a physical being to imagine executing 

their programs, increasing the likelihood that they will be able to accurately simulate their 

programs on paper. In addition, the environment provides a comic strip representation of 

the execution of each program; by double clicking on a cell in the comic strip, at student 

can view the related part of the program.  

5. ADDITIONAL SYSTEM INFORMATION 

We placed systems in our taxonomy based on the primary problem that particular system 

was trying to address. However, many of the systems described in this paper have 

incorporated ideas drawn from earlier systems. In this section, we try to pinpoint some of 

the most influential systems, identify which approaches to making programming more 

accessible each system has incorporated, and provide information about which 

programming constructs are included. 

5.1 System Influences 

Figure 29 attempts to provide some insight into which systems have most influenced the 

design of later programming systems for novice programmers using the number of 

citations. The system with the most citations (from papers referenced by this survey) 

appears first. Underneath the system name is the list of all references to it.  

5.2 System Attributes 

The systems presented in this paper vary in a number of dimensions. Figure 30 is 

intended to allow readers to quickly compare some aspects of the systems discussed in 

this survey: programming style, supported programming constructs, how programs are 

constructed and represented, and some of the ways in which the designers of these 

systems have tried to make programming more accessible to novice programmers. Each 

system appears in the taxonomy once but many have built on the lessons of systems that 

have come before. This table attempts to show the major design influences, including 

those that were not the primary contribution of the system. 



Logo 1967  
AgentSheets
Alice 98
Bongo
Boxer
Cleogo
Curlybot
Drape
Electronic Blocks
GRAIL
HANDS
Hank
Josef
Kara
Karel
LegoSheets
Leogo
LogoBlocks
Magic Forest
Mindstorms
MOOSE Crossing
Pet Park
Pet Park Blocks
Physical Programming
Playground
Smalltalk
StarLogo
Tangible Programming Bricks
TORTIS
Turingal

29

Stagecast 1995
AgentSheets
Bongo
Cleogo
Electronic Blocks
HANDS
Kara
Leogo
LogoBlocks
Pet Park Blocks
Physical Programming
Prototype 2
Tangible Programming Bricks
Toontalk

13

AgentSheets 1991
Bongo
Chemtrains
HANDS
LegoSheets
LogoBlocks
Pet Park Blocks
Prototype 2
Stagecast
Tangible Programming Bricks

9

Karel 1981
GNOME
GRAIL
HANDS
Kara
MacGNOME
Turingal

6

Programming by
Rehearsal 1984

Alternate Reality Kit
Fabrik
HANDS
Liveworld
Prototype 2

5

LogoBlocks 1996
Bongo
Flogo
Mindstorms
Pet Park Blocks
Physical Programming
Tangible Programming Bricks

6 Algoblock 1995
AutoHAN
Cleogo
Leogo
Tangible Programming Bricks
Toontalk

5

Hypercard 1987
GRAIL
HANDS
Leogo
MOOSE Crossing

4

Pascal 1970
GRAIL
Karel
SP/k
Turing
Turingal

5

MOOSE Crossing 1997
Bongo
Pet Park
Pet Park Blocks

3

Toontalk 1996
Cleogo
Electronic Blocks
HANDS
Kara
Leogo
Tangible Programming Bricks

6

Alternate Reality
Kit 1987

Alice 98
Liveworld
Playground
Prototype 2

4

Smalltalk 1971
Alice 98
Alternate Reality Kit
Blue
HANDS
GRAIL
MOOSE Crossing
Playground

7

Pygmalion 1975
Leogo
Physical Programming
Prototype 2
Toontalk
TORTIS

5

Blue 1996
Blue environment
GRAIL
JJ

3
BASIC 1961

Atari 2600 basic
GRAIL
MOOSE Crossing

3

Figure 29 System Influences.

Boxer 1986
HANDS
Liveworld
MOOSE Crossing
Prototype 2
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6. SUMMARY AND FUTURE DIRECTIONS 

The systems presented in this paper have tried to make programming accessible in three 

main ways: simplifying the mechanics of programming, providing support for learners, 

and providing students with motivation to learn to program. The majority of the systems 

have focused on the mechanics of programming. Clearly, beginners need to feel that they 

can make progress in learning to program. However, pure difficulty is not the only reason 

that people hesitate to learn to program. There are a variety of sociological factors 

(including students not seeing the relevance of programming or perceiving computer 

science as being a socially isolating career path) that can prevent people from learning to 

program. Creating environments that address some of these sociological barriers to 

programming by supporting learners or providing interesting reasons to program have the 

potential to attract a more diverse group of people to computer science. If the population 

of people creating software is more closely matched to the population using software, the 

software designed and released will probably better match users’ needs. 

6.1 Mechanical Barriers to Programming 

Most of the programming systems built for children and novice adults have focused on 

making the mechanics of programming more manageable. Systems have removed 

unnecessary syntax, designed languages that are closer to spoken English, introduced 

programming in visible contexts (such as the Logo turtle) in which students can see the 

immediate results of their commands, and explored alternatives to typing programs. 

Using these ideas, it is possible to create a system that will allow a wider audience of 

people to begin programming. While these systems do not take all of the challenges out 

of programming, they can allow students to focus on the logic and structures involved in 

programming rather than worrying as much about the mechanics of writing programs. 

However, even with these improvements to a beginner’s first programming experience, 

there are a number of questions that remain. 

Many of the teaching languages have been heavily influenced by the prevalent general-

purpose languages of their time. Designers of these systems chose to make the 

programming constructs and syntax very similar to those of the general-purpose 

languages to ease the transition from teaching languages to general-purpose languages. 

While it seems obvious that students need to understand the parallels between the 

programming constructs in teaching and general-purpose languages, it is not clear how 

closely and in what ways teaching languages must resemble general-purpose languages. 



We can now more easily introduce beginners to programming; perhaps it is time to begin 

studying the intermediate programmer, someone who has been introduced to 

programming through a system designed for beginners and wants to apply that experience 

to learning a general language. What are the hardest aspects of that transition and how are 

those aspects affected by the teaching system? What are the trade-offs between 

presenting issues of syntax and program expression earlier or later in the process?  

6.2 Sociological Barriers to Programming 

In some ways, sociological barriers can be harder to address than mechanical ones 

because they are harder to identify and some cannot be addressed through programming 

systems. However, by studying particular groups of people who choose not to learn to 

program, identifying the reasons behind their decisions, and trying to address those 

reasons in our programming systems and textbooks, we may be able to attract a broader 

audience of people to programming and Computer Science. The systems in the taxonomy 

have identified and are beginning to address two kinds of sociological barriers to 

programming: the lack of a social context for programming and the lack of compelling 

contexts in which to learn programming.  

6.2.1 Social Support 

It can be easier and more fun to learn with a group of people. MOOSE Crossing and, 

later, Pet Park added support for social interaction so that students using these systems 

can share projects, provide examples for each other, and chat. Future communities might 

provide support for students helping each other learn the interface and programming 

constructs, support students working on projects together, or try to capture and strengthen 

the positive feedback that members of the community give to each other through looking 

at and using each other’s work. 

6.2.2 Reasons to Program 

Several systems have tried to provide motivating contexts such as building robots, 

fighting battles, and constructing machines in which to learn programming. While these 

systems have been very effective for a segment of the population, they do not have broad 

appeal. What programming activities can we provide that will interest girls or artistic or 

musical students? Future systems might provide contexts for programming that are 

relevant to under-represented groups in computer science. 
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