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Abstract

We reexamine the foundations of linear logic, developing a system of natural deduction following Martin-
Löf’s separation of judgments from propositions. Our construction yields a clean and elegant formulation
that accounts for a rich set of multiplicative, additive, and exponential connectives, extending dual intu-
itionistic linear logic but differing from both classical linear logic and Hyland and de Paiva’s full intu-
itionistic linear logic. We also provide a corresponding sequent calculus that admits a simple proof of the
admissibility of cut by a single structural induction. Finally, we show how to interpret classical linear logic
(with or without the MIX rule) in our system, employing a form of double-negation translation.
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1 Introduction

Central to the design of linear logic [13] are the beautiful symmetries exhibited by the classi-
cal sequent calculus. This has led to applications in the areas of concurrent computation and
games, among others, where the symmetry captures a related symmetry in the domain. How-
ever, in many situations, the asymmetry of intuitionistic natural deduction seems a better fit.
For example, functional computation has an asymmetry between a function’s arguments and
the value it returns. Logic programming maintains an asymmetry between the program and
the goal. Intuitionistic versions of linear logic have been used to explore interesting phenomena
in functional computation (see, for example, [18, 1, 6, 28, 15, 2, 5]), logic programming [14], and
logical frameworks [9].

In this paper, we analyze linear logic in an inherently asymmetric natural deduction formu-
lation following Martin-Löf’s methodology of separating judgments from propositions [19]. We
require minimal judgmental notions — linear hypothetical judgments, categorical judgments,
and ordinary hypothetical judgments suffice to explain a full range of intuitionistic linear propo-
sitional connectives: ⊗, 1,(, N, >, ⊕, 0, !, ?, ⊥, ¬, and O. The judgmental construction gives a
clean and elegant proof theory, both in natural deduction and the sequent calculus. For example,
we obtain proofs of cut-elimination by a simple structural induction. We refer to the resulting
system as judgmental intuitionistic linear logic (JILL).

As expected, the meaning of some of the connectives in JILL differs somewhat from that
in classical linear logic. Nonetheless, we do not sacrifice any expressive power because we can
interpret classical linear logic (with and without the MIX rule) into a fragment of JILL. Our
embedding proceeds in a compositional manner using a form of double-negation translation.
Reformulating this translation can give a direct judgmental account of classical linear logic,
showing that reasoning in classical linear logic corresponds to finding a contradication among
assumptions about truth and falsehood, and reasoning in classical linear logic with MIX corre-
sponds to finding a means to consume all resources and pay off all debts.

Much related work exists, so we only briefly touch upon it here. We view the judgmental re-
construction of modal logic and lax logic [23] as motivating our approach. We also owe much to
Polakow’s development of ordered logic [24], which employs linear and ordered hypothetical
judgments, but does not introduce possibility and related connectives. JILL contains, as frag-
ments, both dual intuitionistic linear logic (DILL) [4] and hereditary Harrop logic underlying
linear logic programming [14]. The contribution of JILL with respect to these systems is the
judgmental account, which gives rise to the new ?, ⊥, ¬, and O connectives. Full intuitionistic
linear logic (FILL) [16] does not have additives1 and does not proceed via a judgmental account.
It requires either proof terms [7] or occurrence labels [8] in order to formulate the rules for linear
implication, which makes it difficult to understand the meanings of the connectives in isolation.
On the other hand, multiplicative disjunction O in FILL seems closer to its classical counterpart;
furthermore, FILL has a clear categorical semantics [10] that we have not yet explored for JILL.

Related structural proofs of cut-elimination have appeared for intuitionistic and classical
logic [22], classical linear logic in an unpublished note [21], and ordered logic [25], but these
did not incorporate possibility and related connectives (?, ⊥, ¬, and O). To our knowledge,
the double-negation translation from classical into intuitionistic linear logic that can optionally
account for MIX is also new in this paper. Lamarche [17] has previously given a more complex
double-negation translation from classical linear logic into intuitionistic linear logic using a one-
sided sequent calculus with polarities.

The remainder of the paper has the following organization. In Sec. 2, we describe natural
deduction for JILL in terms of the required judgmental notions. In particular, we introduce the
possibility judgment (2.3), multiplicative contradiction and negation (2.4), and the modal dis-
junction O (2.5). In Sec. 3, we provide the sequent calculus for JILL and prove a structural cut

1 These were deemed to be straightforward, although this is not obvious to the present authors.



admissibility theorem (Thm. 2). In Sec. 4, we give an interpretation of classical linear logic into
JILL and further show how to modify it to give a logical justifiction for the classical MIX rule
(4.2).

2 Natural Deduction for JILL

We take a foundational view of logic based on the approach laid out by Martin-Löf in his Siena
lectures in 1983 [19], more recently extended to incorporate categorical judgments [23]. This
view separates judgments from propositions. Evident judgments become objects of knowledge
and proofs provide the requisite evidence. In logic, we concern ourselves with particular judg-
ments such as A is a proposition and A is true (for propositions A). To understand the meaning of
a proposition, we need to understand what counts as a verification of that proposition. Conse-
quently, the inference rules characterizing truth of propositions define their meaning, as long as
they satisfy certain consistency conditions that we call local soundness and local completeness [23].
We sharpen this analysis further when we introduce the sequent calculus in Sec. 3.

2.1 Linear Hypothetical Judgments

Before we describe any particular logical connective, we need to discuss the basic judgment
forms. Because we focus on propositional logic, we dispense with the formation judgment “A
is a proposition”. For propositions A, we write A true to express the judgment “A is true”. Rea-
soning from assumptions is fundamental in logic and captured by Martin-Löf in the form of
hypothetical judgments. In linear logic, we refine this notion by restricting assumptions to have
exactly one use in a proof, resulting in the notion of a linear hypothetical judgment.

B1 true, . . . , Bk true︸ ︷︷ ︸
∆

 C true

We refer to ∆ as the linear hypotheses. We allow free exchange among the linear hypotheses but
neither weakening nor contraction. The restriction that each linear hypothesis in ∆ must be used
exactly once in the proof of C true suggests a view of elements of ∆ as resources and C true as
a goal to be accomplished with the resources. A proof then corresponds to a plan for achieving
the goal with the given resources. This interpretation yields the following hypothesis rule.

A true  A true
hyp

Dual to the hypothesis rule, we have a principle of substitution that allows us to substitute a
proof for uses of a linear hypothesis in a derivation.

Principle 1 (Substitution).
Whenever ∆  A true and ∆′, A true  C true, also ∆, ∆′  C true.

We do not realize the substitution principle as an inference rule in the logic but intend it as a
structural property of the logic maintained by all other inference rules. In the end, once we fix a
set of connectives with their inference rules, we can prove the substitution principle as a meta-
theorem by induction over the structure of derivations. Meanwhile, we use the substitution
principle to show local soundness and completeness of the rules characterizing the connectives.

In the spirit of the judgmental approach, we now think of the meaning of a connective as
defined by its introduction rule. For example, A ⊗ B expresses the simultaneous truth of both
A and B. In order to achieve such a goal, we have to show how to divide up our resources,
devoting one portion to achieving A and the other to achieving B.

∆  A true ∆′  B true
∆, ∆′  A⊗B true

⊗I



Conversely, if we know A⊗B true, then we may assume resources A true and B true.

∆  A⊗B true ∆′, A true, B true  C true
∆, ∆′  C true

⊗E

Local soundness ensures that the elimination rules for connectives are not too strong: if we
have sufficient evidence for the premisses, we have sufficient evidence for the conclusion. We
show this by means of a local reduction, reducing any proof containing an introduction of a
connective immediately followed by its elimination to a proof without the connective. For ⊗,
we require the substitution principle twice, substitutingD1 for uses of A andD2 for uses of B in
E to yield E ′ .

D1

∆  A
D2

∆′  B

∆, ∆′  A⊗B
⊗I E

∆′′, A, B  C

∆, ∆′,∆′′  C
⊗E

R=⇒ E ′
∆, ∆′,∆′′  C

Note that this is somewhat informal; a more formal account would label linear hypotheses with
distinct variables, introduce proof terms, and carry out the corresponding substitution on the
proof terms. We omit this here due to space considerations since it is rather standard. We also
omitted the label true; we will often do so in the remainder of this paper when it is clear from
context.

Conversely, local completeness shows that the elimination rules are not too weak—we can
eliminate a propositional connective and reconstitute the judgment from the resulting evidence.
We show this by means of a local expansion, transforming an arbitrary proof of a proposition to
one that explicitly introduces its main connective.

D
∆  A⊗B

=⇒
E

D
∆  A⊗B

A  A B  B

A,B  A⊗B
⊗I

∆  A⊗B
⊗E

Because locally sound rules for a connective do not create spurious evidence, we can charac-
terize the connectives independently of each other, relying only on judgmental concepts and their
introduction and elimination rules. The computational interpretation (β-reduction) of proofs
depends on local reduction, and local expansion provides a source of canonical forms in logical
frameworks (η-expansion).

The remaining multiplicative (1, () and additive (N, >, ⊕, 0) connectives of intuitionistic
linear logic have justifications similar to that of ⊗. We skip the individual rules and just note
that we need no further judgmental constructs or principles for this fragment of linear logic.

2.2 Validity

The logic of the previous section permits only linear hypotheses. Therefore, it is too weak to
embed ordinary intuitionistic or classical logic. To allow such embeddings, we introduce a new
judgment, “A is valid”, which we write A valid. We view validity not as a primitive judgment,
but as a categorical judgment derived from truth in the absence of linear hypotheses. Similar
notions of categorical judgment apply in a wide variety of logics [11, 23].

If ·  A true, then A valid.

In the resource interpretation, A valid means that we can achieve A true without consuming
any resources. Dually, an assumption A valid allows generation of as many copies of A true as



needed, including none at all. Stated structurally, hypotheses of the form A valid allow weak-
ening and contraction. The resulting hypothetical judgment has some unrestricted hypotheses,
familiar from ordinary logic, and some linear hypotheses as described in the preceding section.
We write this as a judgment with two zones containing assumptions.

A1 valid, . . . , Aj valid︸ ︷︷ ︸
Γ

# B1 true, . . . , Bk true︸ ︷︷ ︸
∆

` C true

As has become standard practice, we use “#” to separate unrestricted hypotheses from linear
hypotheses. Using our above definition of validity, we may write Γ ` A valid to express Γ # · `
A true; however, because we define connectives via rules about their truth rather than validity,
we avoid using A valid as a conclusion of hypothetical judgments. Instead, we incorporate the
categorical view of validity in its hypothesis rule.

Γ, A valid # · ` A true
hyp!

We obtain a second substitution principle to account for unrestricted hypotheses: if we have a
proof that A valid we can substitute it for assumptions A valid.

Principle 2 (Substitution).

1. Whenever Γ # ∆ ` A true and Γ # ∆′, A true ` C true, also Γ # ∆, ∆′ ` C true.
2. Whenever Γ # · ` A true and Γ, A # ∆ ` C true, also Γ # ∆ ` C true.

Note that while ∆ and ∆′ are joined, Γ remains the same, expressing the fact that unrestricted
hypotheses may be used multiple times.

We internalize validity as the familiar modal operator !A. The introduction rule makes the
modality clear by requiring validity of A in the premiss. For the elimination rule, if we have a
proof of !A, then we allow A as an unrestricted hypothesis.

Γ # · ` A

Γ # · ` !A
!I

Γ # ∆ ` !A Γ, A # ∆′ ` C

Γ # ∆, ∆′ ` C
!E

To establish local soundness, we use the new substitution principle to substitute D for uses of A
in E to obtain E ′ . For local completeness, we require the new hypothesis rule.

D
Γ # · ` A

Γ # · ` !A
!I E

Γ, A # ∆ ` C

Γ # ∆ ` C
!E

R=⇒ E ′
Γ # ∆ ` C

D
Γ # ∆ ` !A =⇒

E

D
Γ # ∆ ` !A

Γ, A # · ` A
hyp!

Γ, A # · ` !A
!I

Γ # ∆ ` !A
!E

The modal operator ! introduces a slight redundancy in the logic, in that we can show 1 ≡
!>. We leave 1 as a primitive in JILL because it has a definition in terms of introduction and
elimination rules in the purely multiplicative fragment, that is, without additive connectives or
validity.



2.3 Possibility

The system so far considers only conclusions of the form A true, which does not suffice to ex-
press a contradiction among the hypotheses and therefore negation. In the usual view, contra-
dictory hypotheses describe a condition where an actual proof of the conclusion becomes un-
necessary. However, such a view violates linearity of the conclusion. Another approach would
be to define ¬A = A( 0, as in Girard’s translation from intuitionistic logic to classical linear
logic, but then we give up all pretense of linearity because A true and ¬A true prove anything,
independently of any other linear hypotheses that may remain.

To develop the notion of linear contradiction, we introduce a new judgment of possibility. Intu-
itively, a proof of A poss defines either a proof of A true or exhibits a linear contradiction among
the hypotheses. We allow conclusions of the form A poss in hypothetical judgments but elimi-
nate it from consideration among the hypotheses. Dual to validity, we characterize A poss via
its substitution principle.

Principle 3 (Substitution for Possibility).
Whenever Γ # ∆ ` A poss and Γ # A true ` C poss, also Γ # ∆ ` C poss.

We justify this principle as follows. Assume A poss. Then, there may exist a contradiction
among the assumptions, in which case also C poss. On the other hand, we may actually have
A true, in which case any judgment C poss we can derive from it is evident.

Two tempting generalizations of this substitution principle turn out to conflict with linearity.
If for the second assumption we admit Γ # ∆′, A true ` C poss, with the conclusion Γ # ∆, ∆′ `
C poss, then we weaken incorrectly if in fact we did not know that A true, but had contradictory
hypotheses. The other incorrect generalization would be to replace C poss with C true. This is
also unsound if the assumptions were contradictory, because we would not have any evidence
for C true.

Our explanation of possibility requires a new rule to conclude A poss if A true.

Γ # ∆ ` A true
Γ # ∆ ` A poss

poss

The situation here is dual to validity. With validity, we added a new hypothesis rule but no
explicit rule to conclude A valid, because we consider validity only as an assumption. With
possibility, we added an explicit rule to conclude A poss but no new hypothesis rule, because
we consider possibility only as a conclusion.

The previous substitution principles for truth and validity (2) require an update for possibil-
ity judgments on the right. We consolidate all cases of the substitution principle below, using J
schematically to stand for either C true or C poss.

Principle 4 (Substitution).

1. Whenever Γ # ∆ ` A poss and Γ # A true ` C poss, also Γ # ∆ ` C poss.
2. Whenever Γ # ∆ ` A true and Γ # ∆′, A true ` J , also Γ # ∆, ∆′ ` J .
3. Whenever Γ # · ` A true and Γ, A valid # ∆ ` J , also Γ # ∆ ` J .

Similar to our treatment of validity, we internalize possibility as a proposition ?A.

Γ # ∆ ` A poss
Γ # ∆ ` ?A true ?I

Γ # ∆ ` ?A true Γ # A true ` C poss
Γ # ∆ ` C poss ?E



Judgmental Rules

Γ # A ` A
hyp

Γ, A # · ` A
hyp!

Γ # ∆ ` A

Γ # ∆ ` A poss
poss

Multiplicative Connectives

Γ # ∆ ` A Γ # ∆′ ` B

Γ # ∆, ∆′ ` A⊗B
⊗I

Γ # ∆ ` A⊗B Γ # ∆′, A, B ` J

Γ # ∆, ∆′ ` J
⊗E

Γ # · ` 1
1I

Γ # ∆ ` 1 Γ # ∆′ ` J

Γ # ∆, ∆′ ` J
1E

Γ # ∆, A ` B

Γ # ∆ ` A ( B
(I

Γ # ∆ ` A ( B Γ # ∆′ ` A

Γ # ∆, ∆′ ` B
(E

Additive Connectives

Γ # ∆ ` A Γ # ∆ ` B

Γ # ∆ ` A N B
NI

Γ # ∆ ` A N B

Γ # ∆ ` A
NE1

Γ # ∆ ` A N B

Γ # ∆ ` B
NE2

Γ # ∆ ` > >I
Γ # ∆ ` 0

Γ # ∆, ∆′ ` J
0E

Γ # ∆ ` A

Γ # ∆ ` A⊕B
⊕I1

Γ # ∆ ` B

Γ # ∆ ` A⊕B
⊕I2

Γ # ∆ ` A⊕B Γ # ∆′, A ` J Γ # ∆′, B ` J

Γ # ∆, ∆′ ` J
⊕E

Exponentials

Γ # · ` A

Γ # · ` !A
!I

Γ # ∆ ` !A Γ, A # ∆′ ` J

Γ # ∆, ∆′ ` J
!E

Γ # ∆ ` A poss
Γ # ∆ ` ?A

?I
Γ # ∆ ` ?A Γ # A ` C poss

Γ # ∆ ` C poss ?E

Fig. 1. Natural deduction for JILL

Local reduction and expansion for ? demonstrate the new case of the substitution principle (4.1)
applied to D and E to obtain E ′ .

D
Γ # ∆ ` A poss
Γ # ∆ ` ?A true ?I E

Γ # A true ` C poss
Γ # ∆ ` C poss ?E

R=⇒ E ′
Γ # ∆ ` C poss

D
Γ # ∆ ` ?A true =⇒

E

D
Γ # ∆ ` ?A true

Γ # A true ` A true
hyp

Γ # A true ` A poss
poss

Γ # ∆ ` A poss ?E

Γ # ∆ ` ?A true ?I

The system so far with the primitive connectives ⊗, 1, N, >, ⊕, 0, !, and ? we call JILL for
judgmental intuitionistic linear logic. Figure 1 lists the complete set of rules for these connectives.
As a minor complication, various rules must now admit either a judgment C true or C poss. For



example, the rule for ⊗ elimination takes the schematic form

Γ # ∆ ` A⊗B Γ # ∆′, A, B ` J

Γ # ∆, ∆′ ` J
⊗E

where we intend J as either C true or C poss. The substitution principle already uses such a
schematic presentation, so all local reductions remain correct.

2.4 Negation and Contradiction

Conceptually, in order to prove ¬A true, we would like to assume A true and derive a contra-
diction. As remarked before, we want this contradiction to consume resources linearly, in order
to distinguish it from the (non-linear) negation of A, definable as A( 0. In other words, this
contradiction should correspond to multiplicative falsehood, not additive falsehood (0). This
requirement suggests a conservative extension of JILL with the following additional judgment:

Γ # ∆ ` ·

with the meaning that the hypotheses are (linearly) contradictory. Because we have described
contradictory hypotheses as one of the possibilities for the judgment C poss, we obtain a right-
weakening rule:

Γ # ∆ ` ·
Γ # ∆ ` C poss

poss′

The pair of rules poss and poss′ completely characterize our interpretation of C poss as either
C true or a condition of contradictory hypotheses. The right-hand side J in various elimination
rules (Fig. 1) and substitution principles (4) must extend to allow for this new judgment. In
particular, the case for possibility (4.1) must also allow for · in addition to C poss.

Multiplicative contradiction ⊥ internalizes this new hypothetical judgment, having obvious
introduction and elimination rules.

Γ # ∆ ` ·
Γ # ∆ ` ⊥ true ⊥I

Γ # ∆ ` ⊥ true
Γ # ∆ ` · ⊥E

Multiplicative negation ¬ is also straightforward, having a multiplicative elimination rule.

Γ # ∆, A ` ·
Γ # ∆ ` ¬A true ¬I

Γ # ∆ ` A true Γ # ∆′ ` ¬A true
Γ # ∆, ∆′ ` ·

¬E

Note that it is possible to view poss’ as an admissible structural rule of weakening on the right
by allowing the conclusion of ⊥E and ¬E to be either · or C poss. We take this approach in the
next section.

Local soundness and completeness of the rules for ⊥ and ¬ are easily verified, so we omit
them here. Instead, we note that in JILL, we can define ⊥ and ¬ notationally (as propositions).

⊥ def= ?0 ¬A
def= A(⊥

Thus, we have no need to add empty conclusions to JILL in order to define linear contradiction
and negation. Note, however, that in the absence of additive contradiction 0 this definition is im-
possible. However, the extension with empty conclusions does not require additive connectives,
so negation can be seen as belonging to the multiplicative-exponential fragment of JILL.



Without giving the straightforward verification of soundness and completeness of the defi-
nitions for ⊥ and ¬ with respect to the extended judgment Γ # ∆ ` ·, we present the following
proof of A⊗ ¬A( ?C for arbitrary C.

· # A⊗ ¬A ` A⊗ ¬A
hyp

· # ¬A ` ¬A
hyp

· # A ` A
hyp

· # A,¬A ` ?0 (E
· # 0 ` 0

hyp

· # 0 ` C poss 0E

· # A,¬A ` C poss ?E

· # A,¬A ` ?C
?I

· # · ` A⊗ ¬A( ?C
⊗E

If in this derivation we try to replace ?C by C, then the instance of ?E becomes inapplicable,
for this rule requires possibility on the right. To show formally that indeed A⊗¬A(C cannot
hold for arbitrary C (i.e. ¬ behaves multiplicatively), we rely on the sequent calculus for JILL in
Sec. 3.

2.5 A Modal Disjunction

Because natural deduction a priori admits only a single conclusion, a purely multiplicative dis-
junction seems conceptually difficult. Generalizing the right-hand side to admit more than one
true proposition would violate either linearity or the intuitionistic interpretation in our setting.
However, multiple conclusions do not necessarily conflict with natural deduction (see, for ex-
ample, [20]), even for intuitionistic [26] and linear logics [16]. Indeed, we can readily incor-
porate such an approach in our judgmental framework by introducing a new judgment form,
C1 poss | · · · | Ck poss, on the right-hand side of a hypothetical judgment. This judgment means
that either the hypotheses are contradictory or one of the Ci is true. This gives the following rule
for possibility (replacing the earlier poss)

Γ # ∆ ` C true
Γ # ∆ ` C poss |Σ

poss

where Σ stands for some alternation C1 poss | · · · |Ck poss, with free exchange assumed for “|”.
Since introduction rules define truth, this rule forces a commitment to the truth of a particular
proposition, which retains both the intuitionistic and linear character of the logic. Structurally,
Σ behaves as the dual of Γ on the right-hand side of hypothetical judgments, with weakening
and contradiction as admissible structural rules. The multiplicative contradiction sketched in
the previous section becomes a special case with no possible conclusions, i.e., an empty Σ. We
obtain some unsurprising substitution principles that we omit here.

Armed with this new judgment form, we define a multiplicative and modal disjunction O
with the following rules:

Γ # ∆ ` A poss |B poss
Γ # ∆ ` A O B true

OI
Γ # ∆ ` A O B true Γ # A true ` Σ Γ # B true ` Σ

Γ # ∆ ` Σ
OE

By the nature of poss and the substitution principles, this disjunction has both linear and modal
aspects.

Instead of completing the details of this sketch, we proceed in a manner similar to the previ-
ous section. Just as with multiplicative falsehood, it turns out that we can define O notationally
in JILL by combining additive disjunction with the ?-modality.

A O B
def= ?(A⊕B)



This definition allows us to retain our presentation of JILL (Fig. 1) with a single conclusion. On
the other hand, this definition requires the additive disjunction ⊕, so the definitional view does
not hold for the multiplicative-exponential fragment of JILL.

In either definition, judgmental or notational, O does not correspond exactly to the multi-
plicative disjunction from classical linear logic (CLL) or FILL because of its modal nature. For
example,⊥ does not function as the unit of O, but we instead have the equivalence A O⊥ a` ?A.
Other laws, such as associativity or commutativity of O, however, do hold as expected.

2.6 Other Connectives and Properties

To summarize the preceding two sections, ⊥ and O have two different presentations. One re-
quires a generalization of the judgment forms and presents them via their introduction and
elimination rules. The other uses ?, ⊕, and 0 to define them notationally. The fact that both
explanations are viable and coincide confirms their status as logical connectives, not just abbre-
viations.

Like with intuitionistic logic, we can extend JILL with other connectives, either via introduc-
tion and elimination rules or directly via notational definitions. Two new forms of implication
corresponding to the two modals ! and ? appear particularly useful.

name proposition definition

unrestricted implication A⊃B !A(B
partial implication A B A( ?B

Under the Curry-Howard isomorphism, A ⊃ B corresponds to the type of function that uses
its argument arbitrarily often or possibly never. Similarly, A B corresponds to a linear partial
function from type A to B. Other types such as !A(?B can be given a sensible interpretation, in
this case simply the partial functions from A to B. We expect the ? modality and various partial
function types to be particularly useful when recursion and perhaps also effectful computations
are added to obtain more practical languages, yet one does not want to sacrifice linearity entirely.

We close this section by stating explicitly the structural properties and the validity of the
substitution principle.

Theorem 1 (Structural Properties). JILL satisfies the substitution principles 4. Additionally, the fol-
lowing structural properties hold.

1. If Γ # ∆ ` C true then Γ, A valid # ∆ ` C true. (weakening)
2. If Γ, A valid, A valid # ∆ ` C true then Γ, A valid # ∆ ` C true. (contraction)

Proof. By straightforward structural inductions. The substitution principle for possibility

Γ # ∆ ` A poss and Γ # A true ` C poss, also Γ # ∆ ` C poss.

requires a somewhat unusual proof in that we have an induction over the structure of both
given derivations and not just the second. This is not unexpected, however, given the analogy
to the judgmental system for modal logic [23]. ut

3 Sequent Calculus for JILL

Critical to the understanding of logical connectives is that the meaning of a proposition de-
pends only on its constituents. Martin-Löf states [19, Page 27] that “the meaning of a proposition
is determined by [. . .] what counts as a verification of it”, but he does not elaborate on the notion
of a verification. It seems clear that as a minimal condition, verifications must refer only to the
propositions constituting the judgment they establish. In other words, they must obey the sub-
formula property. We argue for a stronger condition that comes directly from the justification of
rules, where we do not refer to any extraneous features of any particular proof.



Every logical inference in a verification must proceed purely by decomposition of one logical
connective.

For the natural deduction view, introduction rules should only decompose the goal we are try-
ing to achieve, while elimination rules should only decompose the assumptions we have. Since
introduction rules have the subformula property when read bottom-up, and elimination rules
have the subformula property when read top-down, any proof in this style will therefore satisfy
this condition. The notion of a verification can thus be formalized directly on natural deductions
(see, for example, [27]), but we take a different approach here and formalize verifications as cut-
free proofs in the sequent calculus. Not only is it immediately evident that the sequent calculus
satisfies our condition, but it is easier to prove the correctness of the interpretations of classical
linear logic in Sec. 4, which is usually presented in the form of sequents.

The fundamental transformation giving rise to the sequent calculus splits the judgment
A true into a pair of judgments for resources and goals, A res and A goal. We then consider
linear hypothetical judgments of the form

B1 res, . . . , Bk res  C goal.

We never consider C goal as a hypothesis or B res as a conclusion. Therefore, we do not have a
hypothesis rule with the same judgment on both sides of , like for natural deduction. Rather, if
we have the resource A we can achieve goal A; i.e., we have a rule relating the judgments A res
and A goal.

A res  A goal init

Because we do not allow resources on the right and goals on the left, we cannot write its dual
as A goal  A res. Instead, we obtain a form of cut as a proper dual of the init rule.

Principle 5 (Cut).
Whenever ∆  A goal and ∆′, A res  C goal, also ∆, ∆′  C goal.

In words, if we have achieved a goal A, then we may justifiably use A as a resource. Because
we distinguish resources and goals, cut does not correspond exactly to a substitution principle
in natural deduction. But, similar to the substitution principles, cut must remain an admissible
rule in order to preserve our view of verification; otherwise, a proof can refer to an arbitrary cut
formula A that does not occur in the conclusion. Similarly, if we did not distinguish two judg-
ments, the interpretation of hypothetical judgments would force the collapse back to natural
deduction.

To capture all of JILL as a sequent calculus, we also need to account for validity and pos-
sibility. Fortunately, we already restrict their occurrence in hypothetical judgments—to the left
for validity and to the right for possibility. These judgments therefore do not require splits. We
obtain the following general judgment forms, which we call sequents following Gentzen’s termi-
nology.

A1 valid, . . . , Aj valid # B1 res, . . . , Bk res =⇒ C goal
A1 valid, . . . , Aj valid # B1 res, . . . , Bk res =⇒ C poss

As before, we write the left-hand side schematically as Γ # ∆. The division of the left-hand side
into zones allows us to leave the judgment labels implicit. We employ a symmetric device on
the right-hand side, representing C goal by C # · and C poss by · # C. For left rules where the
actual form of the right-hand side often does not matter, we write it schematically as γ. We use
=⇒ instead of ` for the hypothetical judgment to visually distinguish the sequent calculus from
natural deduction.



We now systematically construct the rules defining the judgments of the sequent calculus.
The introduction rules from natural deduction turn into right rules that operate only on goals
and retain their bottom-up interpretation. For the elimination rules, we reverse the direction
and have them operate only on resources, thus turning them into left rules, also read bottom-
up. Rules in the sequent calculus therefore have a uniform bottom-up interpretation, unlike the
rules for natural deduction.

With the inclusion of valid and poss judgments, the init rule has the following most general
form.

Γ # A =⇒ A # · init

We allow copying valid hypotheses in Γ into the linear context ∆ (reading bottom-up) by means
of a copy rule. This rule corresponds to hyp! of natural deduction.

Γ, A # ∆, A =⇒ γ

Γ, A # ∆ =⇒ γ
copy

Finally, we include the counterpart of the poss, which in the sequent calculus promotes a possi-
bility goal · # C in the conclusion into a true goal C # · in the premiss.

Γ # ∆ =⇒ C # ·
Γ # ∆ =⇒ · # C

promote

Figure 2 lists the remaining left and right rules for the various connectives. Structurally,
weakening and contraction of the valid context Γ continue to hold; we omit the easy verification.
Cut comes in three forms, dualizing init, copy, and promote, respectively.

Principle 6 (Cut).

1. Whenever Γ # · =⇒ A # · and Γ, A # ∆ =⇒ γ, also Γ # ∆ =⇒ γ.
2. Whenever Γ # ∆ =⇒ A # · and Γ # ∆′, A =⇒ γ, also Γ # ∆, ∆′ =⇒ γ.
3. Whenever Γ # ∆ =⇒ · # A and Γ # A =⇒ · # C, also Γ # ∆ =⇒ · # C.

With our logic fixed, we prove the admissibility of the cut principles.

Theorem 2 (Admissibility of Cut).
The principles of cut (Prin. 6) are admissible rules in JILL.

Proof. First we name all the derivations (writing D :: J if D is a derivation of judgment J):

D1 :: Γ # · =⇒ A # · E1 :: Γ, A # ∆′ =⇒ γ F1 :: Γ, ∆′# =⇒ γ (row 1)
D2 :: Γ # ∆ =⇒ A # · E2 :: Γ # ∆′, A =⇒ γ F2 :: Γ # ∆, ∆′ =⇒ γ (row 2)
D3 :: Γ # ∆ =⇒ · # A E3 :: Γ # A =⇒ · # C F3 :: Γ # ∆ =⇒ · # C (row 3)

The computational content of the proof is a way to transform correspondingD and E into F. For
the purposes of the inductive argument, we may appeal to the induction hypotheses whenever

a. the cut formula A is strictly smaller;
b. the cut formula A remains the same, but we select the inductive hypothesis from row 3 for

proofs in rows 2 and 1, or from row 2 in proofs of row 1;
c. the cut formula A and the derivations E remain the same, but the derivations D becomes

smaller; or
d. the cut formula A and the derivations D remain the same, but the derivations E become

smaller.

The cases in the inductive proof fall into the following classes, which we will explicitly name
and for which we provide a characteristic case.



Judgmental Rules

Γ # A =⇒ A # · init
Γ, A # ∆, A =⇒ γ

Γ, A # ∆ =⇒ γ
copy

Γ # ∆ =⇒ A # ·
Γ # ∆ =⇒ · # A

promote

Multiplicative Connectives

Γ # ∆, A, B =⇒ γ

Γ # ∆, A⊗B =⇒ γ
⊗L

Γ # ∆ =⇒ A # · Γ # ∆ =⇒ B # ·
Γ # ∆, ∆′ =⇒ A⊗B # ·

⊗R

Γ # ∆ =⇒ γ

Γ # ∆, 1 =⇒ γ
1L

Γ # · =⇒ 1 # · 1R

Γ # ∆ =⇒ A # · Γ # ∆′, B =⇒ γ

Γ # ∆, ∆′, A ( B =⇒ γ
(L

Γ # ∆, A =⇒ B # ·
Γ # ∆ =⇒ A ( B # · (R

Additive Connectives

Γ # ∆, A =⇒ γ

Γ # ∆, A N B =⇒ γ
NL1

Γ # ∆, B =⇒ γ

Γ # ∆, A N B =⇒ γ
NL2

Γ # ∆ =⇒ A # · Γ # ∆ =⇒ B # ·
Γ # ∆ =⇒ A N B # · NR

Γ # ∆ =⇒ > # · >R
Γ # ∆, 0 =⇒ γ

0L

Γ # ∆, A =⇒ γ Γ # ∆, B =⇒ γ

Γ # ∆, A⊕B =⇒ γ
⊕L

Γ # ∆ =⇒ A # ·
Γ # ∆ =⇒ A N B # ·

⊕R1

Γ # ∆ =⇒ B # ·
Γ # ∆ =⇒ A N B # ·

⊕R2

Exponentials

Γ, A # ∆ =⇒ γ

Γ # ∆, !A =⇒ γ
!L

Γ # · =⇒ A # ·
Γ # · =⇒ !A # · !R

Γ # A =⇒ · # C

Γ # ?A =⇒ · # C
?L

Γ # ∆ =⇒ · # A

Γ # ∆ =⇒ ?A # · ?R

Fig. 2. Sequent calculus for JILL

Initial Cuts. Here, we find an initial sequent in one of the two premisses, so we eliminate these
cases directly. For example,

D2 = Γ # A =⇒ A # · init E2 arbitrary

∆ = A this case
Γ # ∆′, A =⇒ γ derivation E2

Principal Cuts. The cut formula A was just inferred by a right rule in the first premiss and a
left rule in the second premiss. In these cases, we appeal to the induction hypotheses, possibly
more than once on smaller cut formulas. For example,

D2 =
D′

2

Γ # ∆ =⇒ · # A

Γ # ∆ =⇒ ?A # · ?R
E2 =

E ′2
Γ # A =⇒ · # C

Γ # ?A =⇒ · # C
?L

Γ # ∆ =⇒ · # C by i.h. (row 3) (case a) on D′
2 and E ′2 using cut formula A

Copy Cut. We treat the cases for the cut! rule as right commutative cuts (below), except for the
copy rule, where we require an appeal to an induction hypothesis on the same cut formula.

D1 arbitrary E1 =
E ′1

Γ, A # ∆′, A =⇒ γ

Γ, A # ∆′ =⇒ γ
copy



Γ # · =⇒ A # · derivation D1

Γ # ∆′, A =⇒ γ by i.h. (row 1) (case d) on A, D1, and E ′1
Γ # ∆′ =⇒ γ by i.h. (row 2) (case b) on A, D1, and above

Promote Cut. We treat the cases for the cut? rule as left commutative cuts (below), except for
the promote rule, where we appeal to an inductive hypothesis with the same cut formula.

D3 =
D′

3

Γ # ∆ =⇒ A # ·
Γ # ∆ =⇒ · # A

promote E3 arbitrary

Γ # A =⇒ γ derivation E3

Γ # ∆ =⇒ γ by i.h. (row 2) (case c) on A, D′
3, and E3.

Left Commutative Cuts. The cut formula A exists as a side-formula of the last inference rule
used in the derivation of the left premiss. In these cases, we appeal to the induction with the
same cut formula but smaller left derivation. For example,

D2 =
D′

2

Γ # ∆, B1 =⇒ A # ·
Γ # ∆, B1 N B2 =⇒ A # ·

NL1
E2 arbitrary

Γ # ∆′, A =⇒ γ derivation E2

Γ # ∆, ∆′, B1 =⇒ γ by i.h. (row 2) (case c) on A, D′
2, and E2

Γ # ∆, ∆′, B1 N B2 =⇒ γ by NL1

Right Commutative Cuts. The cut formula A exists as a side-formula of the last inference rule
used in the derivation of the right premiss. In these cases, we appeal to the induction hypotheses
with the same cut formula but smaller right derivation. For example,

D2 arbitrary E2 =
E ′2

Γ # ∆′, A =⇒ C1 # ·
Γ # ∆′, A =⇒ C1 ⊕ C2 # ·

⊕R1

Γ # ∆ =⇒ A # · derivation D2

Γ # ∆, ∆′ =⇒ C1 # · by i.h. (row 2) (case d) on A, D2, and E ′2
Γ # ∆, ∆′ =⇒ C1 ⊕ C2 # · by ⊕R1

All cases in the induction belong to one of these categories. ut

Comparing this proof of cut-admissibility for JILL with other proofs of cut-admissibility
or cut-elimination in the literature, we find it remarkable that a nested structural induction
suffices, requiring no additional restrictions or induction measures. Similar structural proofs
for the admissibility of cut have been demonstrated for classical linear logic [21] and ordered
logic [25].

Sequents have valid interpretations in the natural deduction calculus, which we state as a
soundness theorem for the sequent calculus.

Theorem 3 (Soundness of =⇒ wrt `).

1. If Γ # ∆ =⇒ C # ·, then Γ # ∆ ` C true.
2. If Γ # ∆ =⇒ · # C, then Γ # ∆ ` C poss.



Proof. Proceed by simultaneous induction on the derivations D1 :: Γ # ∆ =⇒ C # · and D2 ::
Γ # ∆ =⇒ · # C. For the right rules, we appeal to the induction hypothesis and apply the corre-
sponding introduction rule. For the left rules, we either directly construct a derivation or appeal
to the substitution principle after applying the inductive hypothesis. We show in detail some
representative cases:

1. The last rule in D1 is init, i.e.,

D1 = Γ # A =⇒ A # · init

Γ # A ` A true by hyp

2. The last rule in D1 or D2 is copy, i.e.,

D1 or D2 =
D′

Γ, A # ∆, A =⇒ γ

Γ, A # ∆ =⇒ γ
copy

Γ, A # ∆, A ` γ by the i.h. on D′

Γ, A # · ` A true by hyp!
Γ, A # ∆ ` γ by the substitution principle for truth (4.2)

3. The last rule in D2 is promote, i.e.,

D2 =
D′

2

Γ # ∆ =⇒ C # ·
Γ # ∆ =⇒ · # C

promote

Γ # ∆ ` C true by the i.h. on D′
2

Γ # ∆ ` C poss by poss

4. The last rule in D2 is ?L, i.e.,

D2 =
D′

2

Γ # A =⇒ · # C

Γ # ?A =⇒ · # C
?L

Γ # A ` C poss by the i.h. on D′
2

Γ # ?A ` ?A true by hyp
Γ # ?A ` C poss. by ?E

5. The last rule in D1 or D2 is(L, i.e.,

D1 or D2 =
D′

Γ # ∆ =⇒ A # ·
D′′

Γ # ∆′, B =⇒ γ

Γ # ∆, ∆′, A(B =⇒ γ
(L

Γ # ∆ ` A true by the i.h. on D′

Γ # A(B ` A(B true by hyp
Γ # ∆, A(B ` B true by(E
Γ # ∆′, B ` γ by the i.h. on D′′

Γ # ∆, ∆′, A(B ` γ by the substitution principle for truth (4.2)

6. The last rule in D2 is ?R, i.e.,

D2 =
D′

2

Γ # ∆ =⇒ · # A

Γ # ∆ =⇒ ?A # · ?R



Γ # ∆ ` A poss by the i.h. on D′
2

Γ # ∆ ` ?A true by ?I

All remaining cases have one of the above patterns. ut

Note that from the judgmental point of view, this defines a global completeness property for
natural deduction: every judgment that has a verification can indeed be proven.

Conversely, the cut-free sequent calculus is complete with respect to natural deduction. For
this direction, we need the admissibility of cut.

Theorem 4 (Completeness of =⇒ wrt `).

1. If Γ # ∆ ` A true then Γ # ∆ =⇒ A # ·.
2. If Γ # ∆ ` A poss, then Γ # ∆ =⇒ · # A.

Proof. Proceed by simultaneous induction on the structure of the derivationsD1 :: Γ #∆ ` A true
and D2 :: Γ # ∆ ` A poss. The cases for the introduction rules (and poss) are mapped directly
to the corresponding right rules (and promote, respectively). For the elimination rule, we have
to appeal to cut-admissibility for truth (Thm. 2) to cut out the connective being eliminated. We
show in detail some representative cases:

1. The last rule in D1 is hyp!, i.e.,

D1 = Γ, A # · ` A
hyp!

Γ, A # A =⇒ A # · by init
Γ, A # · =⇒ A # · by copy

2. The last rule in D1 is hyp, i.e.,

D1 = Γ # A ` A
hyp

Γ # A =⇒ A # · by init

3. The last rule in D2 is poss, i.e.,

D2 =
D′

2

Γ # ∆ ` A

Γ # ∆ ` A poss
poss

Γ # ∆ =⇒ A # · by i.h. on D′
2

Γ # ∆ =⇒ · # A by promote

4. The last rule in D1 is a multiplicative elimination rule, say(E.

D1 =
D′

1

Γ # ∆ ` A(B

D′′
1

Γ # ∆′ ` A

Γ # ∆, ∆′ ` B
(E

Γ # A =⇒ A # · by init
Γ # B =⇒ B # · by init
Γ # A,A(B =⇒ B # · by(L
Γ # ∆ =⇒ A(B # · by i.h. on D′

1

Γ # A,∆ =⇒ B # · by cut (6.2) with cut formula A(B
Γ # ∆′ =⇒ A # · by i.h. on D′′

1

Γ # ∆′,∆ =⇒ B # · by cut (6.2) with cut formula A



5. The last rule in D1 is an additive elimination rule, say NE1.

D1 =
D′

1

Γ # ∆ ` A N B

Γ # ∆ ` A
NE1

Γ # A =⇒ A # · by init
Γ # A N B =⇒ A # · by NL1

Γ # ∆ =⇒ A N B # · by i.h. on D′
1

Γ # ∆ =⇒ A # · by cut (6.2) with cut formula A N B

6. The last rule in D1 is !E, i.e.,

D1 =
D′

1

Γ # ∆ ` !A
D′′

1

Γ, A # ∆′ ` J

Γ # ∆, ∆′ ` J
!E

Define pJ q as

pJ q =

{
C # · if J is C true
· # C if J is C poss

Then,
Γ, A # ∆′ =⇒ pJ q by i.h. on D′′

1

Γ # ∆′, !A =⇒ pJ q by !L
Γ # ∆ =⇒ !A # · by i.h. on D′

1

Γ # ∆, ∆′ =⇒ pJ q by cut (6.2) with cut formula !A

7. The last rule in D2 is ?E, i.e.,

D2 =
D′

2

Γ # ∆ ` ?A
D′′

2

Γ # A ` C poss
Γ # ∆ ` C poss ?E

Γ # A =⇒ · # C by i.h. on D′′
2

Γ # ?A =⇒ · # C by ?L
Γ # ∆ =⇒ ?A # · by i.h. on D′

2

Γ # ∆ =⇒ · # C by cut (6.2) with cut formula ?A.

All remaining cases have one of the above patterns. ut

Note that this completeness theorem for cut-free sequent derivation proves a global soundness
theorem for natural deduction: every judgment that has a natural deduction proof has a cut-free
sequent derivation, that is, it has a verification.

It is also possible to split the judgment A true into A intro and A elim, roughly meaning that
it has been established by an introduction or elimination rule, respectively. We can then define a
normal form for natural deductions in which one can go from eliminations to introductions but
not vice versa, which guarantees the subformula property. By adding commuting reductions to
the local reductions, one can reduce every natural deduction to a normal form that can serve as
a verification. On the whole we find this approach less perspicuous and more difficult to justify;
thus our choice of the sequent calculus.

The cut-free sequent calculus is an easy source of theorems regarding JILL. For example, if
we want to verify that A ⊗ ¬A( C true cannot be proven for parameters A and C, we just
explore all possibilities for a derivation of · # · =⇒ A ⊗ ¬A( C # ·, each of which fails after
only a few steps. The sequent calculus is also a useful point of departure for designing theorem
proving procedures for intuitionistic linear logic.



4 Interpreting Classical Linear Logic

It is well known that intuitionistic logic is more expressive than classical logic because it makes
finer distinctions and therefore has a richer set of connectives. This observation is usually for-
malized via a translation from classical logic to intuitionistic logic that preserves provability. A
related argument has been made by Girard [13] regarding classical linear logic: it is more ex-
pressive than both intuitionistic and classical logic since we can easily interpret both of these. In
this section we show that intuitionistic linear logic is yet more expressive than classical linear
logic by giving a simple compositional translation that preserves the structure of proofs. Be-
cause there are fewer symmetries, we obtain a yet again richer set of connectives. For example,
? and ! cannot be defined in terms of each other via negation, echoing a related phenomenon in
intuitionistic modal logic [23].

For our embedding, we use a one-sided sequent calculus for CLL with two zones as intro-
duced by Andreoli [3], who proves it equivalent to Girard’s formulation. This is closely related
to our judgmental distinction between truth and validity. In the judgment CLL−−→ Γ # ∆ (which
may be read as CLL−−→ !Γ, ∆), we reuse the letters Γ and ∆, but note that they do not correspond
directly to valid or true hypotheses. However, Γ satisfies weakening and contraction, while ∆
does not. As usual, we take exchange for granted and rely on the admissibility of cut, which can
be proven in a variety of ways, including a structural induction similar to the one for Thm. 2
(see also [3, 21]).

CLL−−→ Γ # P, P⊥
init

CLL−−→ Γ, A # ∆, A
CLL−−→ Γ, A # ∆

copy

CLL−−→ Γ # ∆1, A
CLL−−→ Γ # ∆2, B

CLL−−→ Γ # ∆1, ∆2, A⊗B
⊗

CLL−−→ Γ # 1
1

CLL−−→ Γ # ∆, A, B
CLL−−→ Γ # ∆, A O B

O
CLL−−→ Γ # ∆

CLL−−→ Γ # ∆,⊥
⊥

CLL−−→ Γ # ∆, A
CLL−−→ Γ # ∆, B

CLL−−→ Γ # ∆, A N B
N

CLL−−→ Γ # ∆,>
>

CLL−−→ Γ # ∆, A
CLL−−→ Γ # ∆, A⊕B

⊕1

CLL−−→ Γ # ∆, B
CLL−−→ Γ # ∆, A⊕B

⊕2 no rule for 0

CLL−−→ Γ, A # ∆
CLL−−→ Γ # ?A, ∆

?
CLL−−→ Γ # A

CLL−−→ Γ # !A
!

For arbitrary propositions A, the negation A⊥ is defined using DeMorgan’s laws, i.e., (A⊗B)⊥ =
A⊥ O B⊥, etc. It is easy to see that (A⊥)⊥ = A and CLL−−→ · # A⊥, A. We write A

CLL≡ B if both
CLL−−→ · # A⊥, B and CLL−−→ · # A,B⊥ are provable.

Structural properties of CLL (see [3, 13])
1. For any Γ and A, CLL−−→ Γ # A⊥, A. (init’)
2. If CLL−−→ Γ # ∆, then CLL−−→ Γ, A # ∆ for any A. (!weak)

4.1 Double Negation Translation

The intuitionist views a classical proof of A as a refutation of its negation. In our setting, this
would correspond to a proof of · # JAK =⇒ ⊥ # ·, where JAK is the translation of A. It is more
economical and allows some further applications if we instead parameterize the translation by a
propositional parameter p and verify that ·#JAKp =⇒ p#·, an idea that goes back to Friedman [12]
and was also employed by Lamarche [17] in the linear setting. It is convenient to introduce the
parametric negation∼p A = A(p, where∼⊥ A is the usual negation in JILL. Since the translation



of A becomes a linear hypothesis, all connectives except ⊗, 1, and ! can simply be dualized. For
the remaining three we need to introduce a double negation.

JP Kp = P JP⊥Kp =∼p P

JA⊗BKp =∼p (∼p JAKp⊗ ∼p JBKp) J1Kp =∼p 1
JA O BKp = JAKp ⊗ JBKp J⊥Kp = 1
JA N BKp = JAKp ⊕ JBKp J>Kp = 0
JA⊕BKp = JAKp N JBKp J0Kp = >

J!AKp =∼p ! ∼p JAKp J?AKp = !JAKp

We lift this definition to contexts of propositions by translating every proposition in the context.
Unsurprisingly, this translation preserves provability.

Theorem 5 (Preservation). If CLL−−→ Γ #∆, then JΓKp # J∆Kp =⇒ p # · for any propositional parameter p.

Proof. By structural induction on the derivation C :: CLL−−→ JΓKp # J∆Kp. We highlight the non-trivial
cases.

1. C a structural rule.

C = CLL−−→ JΓKp # JP Kp, JP⊥Kp

init

JΓKp # p =⇒ p # · by init
JΓKp # JP Kp =⇒ JP Kp # · by init
JΓKp # JP Kp, JP⊥Kp =⇒ p # · by(L

The copy and promote rules are similar.

2. The last rule in C is ⊗.

C =
CLL−−→ Γ # ∆1, A

CLL−−→ Γ # ∆2, B
CLL−−→ Γ # ∆1,∆2, A⊗B

⊗

JΓKp # J∆1Kp, JAKp =⇒ p # · by i.h.
JΓKp # J∆1Kp =⇒∼p JAKp # · by(R
JΓKp # J∆2Kp =⇒∼p JBKp # · similarly
JΓKp # J∆1Kp, J∆2Kp =⇒∼p JAKp⊗ ∼p JBKp by ⊗R
JΓKp # p =⇒ p # · by init
JΓKp # J∆1Kp, J∆2Kp, JA⊗BKp =⇒ p # · by(L

3. The last rule in C is ⊥.

C =
CLL−−→ Γ # ∆

CLL−−→ Γ # ∆,⊥
⊥

JΓKp # J∆Kp,=⇒ p # · by i.h.
JΓKp # J∆Kp, J⊥Kp =⇒ p # · by 1L

4. The last rule in C is !.

C =
CLL−−→ Γ # A

CLL−−→ Γ # !A
!



JΓKp # · =⇒∼p JAKp by(R and i.h.
JΓKp # · =⇒ ! ∼p JAKp by !R
JΓKp # p =⇒ p # · by init
JΓKp # J!AKp =⇒ p # · by(L

All other cases are trivial. ut

By inspection of the proof we can see that the translation on classical derivations preserves
their structure. Note that we do not need to employ ?, ⊥, ¬, or O in the image of the translation,
a property achieved by introducing the parameter p.

The converse of the preservation theorem presents the more interesting property. We want
to show soundness of the translation, i.e., that provability of the image of this translation in JILL
guarantees provability of the source in CLL. Such a statement cannot be shown by induction on
the derivation of JΓKp # J∆Kp =⇒ p # · because the JILL derivation may refer to propositions that
are not in the image of the translation. Instead, we use the fact that classical linear logic admits
more proofs on the same connectives: the reverse translation is simply the identity, where A(B

has its classical definition as A⊥ O B. We write ∆⊥ to denote the classical negation of each
proposition in ∆.

Theorem 6 (Reverse Preservation).

1. If Γ # ∆ =⇒ A # ·, then CLL−−→ Γ⊥ # ∆⊥, A.
2. If Γ # ∆ =⇒ · # A, then CLL−−→ Γ⊥, A # ∆⊥.

Proof. By examination of the last rule used in the derivationD1 :: Γ #∆ =⇒ A# · orD2 :: Γ #∆ =⇒
· # A. We have the following cases.

1. init, i.e.,

D1 = Γ # A =⇒ A # · init

CLL−−→ Γ⊥ # A⊥, A by init’

2. copy, i.e.,

D1 =
Γ, B # ∆, B =⇒ A # ·
Γ, B # ∆ =⇒ A # ·

copy

CLL−−→ Γ⊥, B⊥ # ∆⊥, B⊥, A by i.h.
CLL−−→ Γ⊥, B⊥ # ∆⊥, A by copy

3. promote, i.e.,

D1 =
Γ # ∆ =⇒ A # ·
Γ # ∆ =⇒ · # A

promote

CLL−−→ Γ⊥ # ∆⊥, A by i.h.
CLL−−→ Γ⊥, A # ∆⊥, A by !weak
CLL−−→ Γ⊥, A # ∆⊥ by copy

4. a multiplicative right rule, say ⊗R.

D1 =
Γ # ∆ =⇒ A # · Γ # ∆′ =⇒ B # ·

Γ # ∆, ∆′ =⇒ A⊗B # ·
⊗R



CLL−−→ Γ⊥ # ∆⊥, A by i.h.
CLL−−→ Γ⊥ # ∆′⊥, B by i.h.
CLL−−→ Γ⊥ # ∆⊥,∆′⊥, A⊗B by ⊗

5. a multiplicative left rule, say(L.

D1 =
Γ # ∆ =⇒ B # · Γ # ∆′, D =⇒ A # ·

Γ # ∆, ∆′, B(D =⇒ A # ·
(L

CLL−−→ Γ⊥ # ∆⊥, B by i.h.
CLL−−→ Γ⊥ # ∆⊥, D⊥, A by i.h.
CLL−−→ Γ⊥ # ∆⊥,∆′⊥, B ⊗D⊥, A by ⊗

6. an additive rule, which is similar to the cases for the multiplicative rules.
7. an exponential right rule, say !R.

D1 =
Γ # · =⇒ A # ·
Γ # · =⇒ !A # · !R

CLL−−→ Γ⊥ # A by i.h.
CLL−−→ Γ⊥ # !A by !

8. an exponential left rule, say ?L.

D2 =
Γ # B =⇒ · # A

Γ # ?B =⇒ · # A
?L

CLL−−→ Γ⊥, A # B⊥ by i.h.
CLL−−→ Γ⊥, A # !B⊥ by !

All other cases are straightforward. ut

The reverse translation is an inverse, but only up to classical equivalence.

Theorem 7 (Equivalence). For any proposition A, if p
CLL≡ ⊥, then (JAKp)

⊥ CLL≡ A.

Proof. By structural induction on the proposition A. The interesting cases are the double-negation
cases, for which the assumption p

CLL≡ ⊥ is required.

(JB ⊗ CKp)
⊥ =

(
(JBKp)

⊥ O p
)
⊗

(
(JCKp)

⊥ O p
)
⊗ p⊥

CLL≡ (JBKp)
⊥ ⊗ (JCKp)

⊥

(J1Kp)
⊥ = 1⊗ p⊥

CLL≡ 1

(J!BKp)
⊥ =

(
! (JBKp)

⊥ O p
)
⊗ p⊥

CLL≡ ! (JBKp)
⊥ ut

Soundness of the interpretation now follows directly from the previous two theorems.

Theorem 8 (Soundness). If JΓKp # J∆Kp =⇒ p # · with p a propositional parameter, then CLL−−→ Γ # ∆.

Proof. From Thm. 6, we know that CLL−−→ (JΓKp)⊥#(J∆Kp)⊥, p. By instantiating the parameter p = ⊥
and using the admissibility of cut with CLL−−→ · # 1, we get CLL−−→ (JΓK⊥)⊥ # (J∆K⊥)⊥. To complete the
proof, we just appeal to Thm. 7. ut



4.2 Exploiting Parametricity

By design, the J−Kp translation works even in the absence of linear contradiction on the intu-
itionistic side, but we already know that JILL allows a definition of contradiction⊥ as ?0. Using
p = ⊥ we obtain an elegant characterization of CLL with our interpretation as a consequence of
the above theorems.

Theorem 9 (Characterizing CLL). CLL−−→ Γ # ∆ iff JΓK⊥ # J∆K⊥ =⇒ ⊥ # ·.

Proof. From Theorems 5 and 6 as in the proof of Theorem 8. ut

Of course, not all choices for p give the same behavior. Remarkably, choosing p = 1 produces
an interpretation of CLL with the following additional MIX rules, first considered by Girard [13]
and since attracted considerable interest.

CLL+−−−→ Γ # ·
MIX0

CLL+−−−→ Γ # ∆
CLL+−−−→ Γ # ∆′

CLL+−−−→ Γ # ∆, ∆′
MIX2

We write CLL+ for CLL with these MIX rules. Like Thm. 9, J−K1 characterizes CLL+.

Theorem 10 (Characterizing CLL+). CLL+−−→ Γ # ∆ iff JΓK1 # J∆K1 =⇒ 1 # ·.

Proof. For the forward direction, we note the admissibility of the following rule in JILL, by using
1L on the second premiss and admissibility of cut (Thm. 2).

Γ # ∆ =⇒ 1 # · Γ # ∆′ =⇒ 1 # ·
Γ # ∆, ∆′ =⇒ 1 # ·

We use preservation (Thm. 5) for all rules of CLL, and 1R and the above admissible rule for the

MIX rules. For the reverse direction, we use Thm. 6 and admissibility of cut with CLL+−−−→ · # ⊥ to

conclude that CLL+−−−→
(
JΓK1

)⊥ #
(
J∆K1

)⊥. Now note that
(
JAK1

)⊥ CLL+≡ A for any A by Thm. 7 and

the collapse 1
CLL+≡ ⊥ in the presence of the MIX rules. ut

Therefore, a proof in CLL+ corresponds to a JILL proof of 1. In other words, a classical
proof using the MIX rules can be seen as an intuitionistic proof that can consume all resources.
This analysis interprets A⊥ as a consumer of A, that is, A( 1. This finally provides a clear
understanding of the MIX rules from a logical and constructive viewpoint. Note that, classically,
this explanation does not work, because (A( 1)( 1 is not equivalent to A.

The remarkable uniformity of the parametric translation J−Kp demands the question: what
about other choices for p? A full examination lies beyond the scope of this paper; however, at
least one further result is easy to obtain: choosing p = 0 so that ∼p A = A( 0 interprets CLL
with the following additional weakening rule, i.e., classical affine logic (CAL).

CAL−−→ Γ # ∆
CAL−−→ Γ # ∆, A

weak

Theorem 11 (Characterizing CAL). CAL−−→ Γ # ∆ iff JΓK0 # J∆K0 =⇒ 0 # ·.

Proof. For the forward direction, we use preservation (Thm. 5) for all rules of CLL, and the
following additional admissible rule in JILL:

Γ # ∆ =⇒ 0 # ·
Γ # ∆, A =⇒ 0 # ·



(Use cut-admissibility (Thm. 2) with cut-formula 0 and the evident sequent Γ # A, 0 =⇒ 0 # ·.)
For the reverse direction, we use Thm. 6 and admissibility of cut with CAL−−→ · # > to conclude

that CAL−−→
(
JΓK0

)⊥ #
(
J∆K0

)⊥, and then use Thm. 7 with the characteristic collapse 1
CAL≡ > (dually

0
CAL≡ ⊥) of affine logic. ut

5 Conclusion and Future Work

We have presented a formulation of intuitionistic linear logic with a clear distinction between
judgments and propositions. In this system, the full range of additive, multiplicative, and expo-
nential connectives seen in classical linear logic—including ?,⊥, ¬, and O—admit definitions ei-
ther directly with introduction and elimination rules or as notational definitions. The judgmen-
tal treatment allows the development of a sequent calculus with a structural cut-admissibility
proof, which formalizes Martin-Löf’s notion of verification as cut-free proofs in the sequent cal-
culus. By design, the sequent calculus has a natural bottom-up reading, and we can prove the
admissibility of cut in a straightforward manner. Using our sequent calculus, we develop a
parametric interpretation of classical linear logic and give a constructive interpretation of the
structural MIX rules.

Term calculi for the natural deduction formulation of JILL and their computational inter-
pretation provides an interesting area for future work. For example, a natural interpretation of
A( ?B allows linear partial functions, while O and ⊥ may be related to concurrency. Finally,
the nature of possibility requires a categorical explanation as a dual of the standard comonad
constructions for !.

For the parametric interpretations of CLL, one interesting topic for future work is an explo-
ration of similar embeddings of other substructural logics—for example, FILL, classical strict
logic, or even JILL itself—into JILL.
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