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Abstract

We give the first polylogarithmic-competitive online algorithms for two-metric
network design problems. These problems are very general, including as special
cases such problems as steiner tree, facility location, and concave-cost single
commodity flow.
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1 Introduction

Network design problems require purchasing various graph edges in order to
connect a set of vertex demands. Problems within this domain include various
integer flow problems, the steiner tree problem [38], facility location variants [29,
23, 3, 15, 25, 14, 13, 18, 37], access network design [2, 21], and buy-at-bulk
network design[39, 5, 19]. Perhaps the most general formulation of network
design is the problem of finding concave-cost flows. This problem has been well-
studied in the operations research literature [40, 10, 9]. From a computer science
theory standpoint, assuming that concave functions can be approximated in a
piecewise linear manner, an O(logn) approximation for concave cost flow was
given by [34] and later derandomized by [12].

Applications for network design are numerous. Some of the first applications
in operations research involved transportation networks [17, 7] and placement
of warehouses [30, 27]. In the computer science domain, similar techniques have
been used to design telecommunications networks [2], select locations for web
caches [26, 28], and classify large databases [20, 36].

We observe that many of the natural applications for network design are
effectively online. New demands (customers, network users) will arrive after
some portion of our network structure has been created. We would like to
maintain a low-cost network (when compared to the best we could have done)
at all times, avoiding “mistakes” due to a lack of foreknowledge as well as keeping
our computation time reasonable.

This observation is not new; previous work has dealt with online versions of
network design problems including flows [4, 6], steiner trees [8, 1, 22], facility
location [32, 33], and even access network design [35].

We present the first online competitive algorithms for the problems of bounded
diameter network design [31] and cost-distance network design [34], two of the
most general problems which have been considered in the network design regime.
The cost-distance network design problem includes as special cases such prob-
lems as steiner tree, facility location (with soft capacities), buy-at-bulk network
design, the maybecast problem [24], and various natural combinations of those
problems. For full details of these reductions, the reader is referred to [34].
For the problems we discuss, the best polynomial-time (offline) approximation
known is O(logn), although there are no matching lower bounds and a constant
approximation could potentially be feasible. No previous online approximations
were known for these problems. In general, since steiner tree is a special case of
the problems presented, we will not be able to produce better than an O(logn)
online competitive result regardless of the computation time used or the relevent
offline hardness results. We will present the first polylogarithmic-competitive
algorithms for each problem.

Our techniques resemble those used for access network design [35]. The
main idea is to divide the solution into a number of levels and assign each
incoming demand to a level randomly, then connect through solely increasing
levels. However, we are dealing with a much more general problem than access
network design, and we will not be able to obtain the competitivity bounds



of [35] (in fact, there are lower bounds indicating that no online algorithm can
obtain such competitivity for the problems we study). Because of this, our
analysis is quite different.

Several previous papers have made use of an assumption that the demands
arrive in random (rather than adversarial) order [35, 33] to improve the com-
petitivity results. In our case, the lower bound from online steiner tree will
hold even if the order of arrival is random. With this in mind we will con-
sider only adversarial order of arrival, as is traditional in the online algorithms
community [11].

2 Online Bounded Diameter Network Design

We are given a graph G = (V, E) along with a set of steiner nodes S. We
additionally have two measures on the edges, [ : E — RT and ¢ : E — RT,
which we call cost and length. We would like to select a subtree T of the graph
such that all the steiner nodes are members of the subtree S C 7. We must
guarantee that the diameter of 7' along the length metric is bounded by D
(diam;(T) < D), and would like to minimize the cost of the tree (3., c(e))
with these constraints.

This problem was introduced by Marathe et al [31]; they provided an algo-
rithm with an O(logn) stretch on both the cost and diameter. We will consider
the online version of the problem where the steiner nodes are not known in ad-
vance. Nodes announce themselves as members of S one at a time, and we must
add them to the tree while maintaining bounded diameter and approximately
optimum cost. If we set the diameter D to be infinitely large, this problem be-
comes equivalent to online steiner tree, giving us a logn lower bound for online
competitivity [8, 1, 22].

As each node arrives online, we will assign it a level between 1 and logn (here
n = |S|). The first steiner node is effectively assigned infinite level. Subsequent
nodes are assigned level ¢ with probability % When a new steiner node arrives,
we will find path P from the new node to some existing steiner node of strictly
larger level. We select this path such that ¢(P) is minimized, subject to the
constraint that [(P) < D.

Lemma 2.1. The algorithm described produces a tree with diameter at most
diam(T) < O(logn)D.

Proof. Consider the path from any steiner node to the first node to arrive. This
path passes through at most 1 + logn levels. The path from each node to the
node of the next level has length at most D because of the way the paths are
selected. It follows that the total length of the path from any steiner node to
the first-arriving node is at most D logn, giving the tree a diameter bounded
by 2Dlogn = O(logn)D. O

Lemma 2.2. The cost of the tree constructed is at most O(log? n)C* where C*
is the cost of the optimum offline solution satisfying the required properties.



Proof. We decompose the optimum tree into two disjoint components each con-
taining at least 3 nodes. We repeat this process recursively, yielding a decom-
position of the optimum tree structure through O(logn) levels.

Instead of connecting each steiner node to the closest node of higher level,
we consider connecting to a node of higher level in our current component of
the optimum. If no such steiner node has arrived yet, we look at the next level
of the decomposition, and so forth, until we find a node of higher level. Since
this process may connect the current steiner node to a further place, its cost is
only higher than the algorithm’s cost.

Consider any given component of the optimum, decomposed into two re-
gions. How many times will we connect a node of level i from one side of this
decomposition to a node on the other side? We expect 1 node of level i to arrive
on one side before a node of level i+ 1 arrives. Once a node of level i+ 1 arrives,
future nodes of level ¢ will connect to this node rather than crossing to the other
side of the set. It follows that we expect a total of log n connections which cross
from one region to the other. Each such connection has cost at most the entire
cost of the optimum component. Any edge of the optimum solution appears in
at most O(logn) components (one at each level of the decomposition), so the
edge will be charged at most O(log?n) times (once for each connection which
crosses the divide in a region which includes the edge). It follows that the cost
of our tree is at most O(log®n) times the cost of the optimum. O

Theorem 2.3. The algorithm described gives an O(log®n),0(logn) competi-
tive algorithm (where the first number is the increase over optimum cost and
the second is the increase in the diameter).

If the value of n is not known in advance, we can start with only one level and
increase the number of levels as more nodes arrive. Already-arrived nodes of the
maximum level will join the next higher level with probability %, maintaining
the desired structure of level probabilities.

3 Online Cost-Distance

We are given a graph G = (V, E) along with a sink node t € V' and a set of
steiner nodes S. Each edge has a cost (¢ : E — RT) and length (I : E — R*).
Our goal is to select a subset T' of the edges such that ), c(e)+> g dr(s,t)
is minimized, where dr(s,t) is the total length I(e) of edges along the shortest
path from s to ¢t in 7.

This problem was introduced by Meyerson et al [34] and an O(logn) approx-
imation was given. We will consider the online version of the problem where
the steiner nodes are not known in advance. Nodes announce themselves as
members of S one at a time, and we must add them to 7' while maintaining a
cost which is competitive against the optimum. We will give a polylogarathmic-
competitive algorithm for this problem.

We will first define a new cost and length metric. For each edge and integer
i between 1 and logn, we will define a new edge with cost C(e) = c(e) + 2%(e)



and length L(e) = 3:c(e) + I(e). Note that this new cost and length is strictly
greater than the old. On the other hand, if we consider the optimum solution
according to the old edges, if the solution sends flow 2¢ < f < 2¢+! on some
edge, we can use the new edge copy number ¢ and the cost increases by at most
a factor of 3. It follows that the optimum on the new costs is at most 3 times
more expensive than the old optimum.

As each steiner node v arrives, we will assign it a level 4 < logn with proba-
bility % Let S; represent the subset of steiner nodes which are assigned to level
i. We select a path which visits existing nodes in increasing order of assigned
level. Nodes of level ¢ will use outgoing edge copies of type i, such that their
cost and length are in a 2° ratio with one another.

Suppose the path P, from node v = w; visits (in order) wit1, Wit2, ..., Wiog n, t-
We select these nodes and the paths between them such that we will minimize
the value of E;i?g" l(wj,wjt1). We show that the total length generated by
this algorithm is not too large. On the other hand, the fixed cost could be
expensive, since a given node v might “change its mind” about the best path to
the sink any number of times (thus paying fixed cost over and over again). We
will describe how to modify the algorithm to bound the cost of these changes
without greatly increasing total lengths.

Lemma 3.1. There is a solution which takes the form of a binary tree, such
that the demand on every edge is a power of two, which has cost C* + L* <
OPT(logn).

Proof. Consider sending flow upwards along the optimum tree from the steiner
nodes. Instead of accumulating all the flow at a given point, we will send
separately all powers of two. The total flow along any edge in this model is
unchanged. However, we have separately purchased each edge up to logn times
(once for each power of two amount of demand). This produces a new tree with
cost at most logn times the original cost, where every edge sends a power of
two. If we have a node of high degree (in other words, the tree is not binary)
we can place dummy nodes and edges of length zero to produce the required
binary tree. O

Lemma 3.2. E[Y[5" Y, s 2/L(P,)] < 2L*log® n.

Proof. We consider the following routing scheme. We will send each node’s
demand upward along the optimum tree until we find that we are at the root
of a subtree which contains a steiner node of level at least ¢ + 1. We will then
route downwards to this node, then progress upwards once again until we find
a node of higher level, and so on. This routing scheme sends node v of level i to
some w;y1,w;+2 and so forth. Sine our original routing scheme finds the best
such sequence of nodes, this modified routing scheme can only increase L(FP,).

Now consider a single edge in the optimum solution. Suppose this edge
emerges from a subtree which contains 2° nodes from S. How much will our
routing scheme pay to send demand across this edge? We assume the optimum
tree is binary and has depth at most logn by lemma 3.1. Consider each branch



along the path from our edge to the root. Demand travels from this branch
across our edge from vertices of type i only if this branch does not contain its
own type i + 1 vertex. We expect only 2¢t! nodes to arrive in this branch before
it builds its own type ¢ + 1 vertex, and the expected demand carried by these
nodes is at most 2+ logn. We conclude that the total demand crossing our
edge from level i vertices is at most an expected 2¢7!logZ n. On the other hand,
if there is no vertex of level ¢ + 1 in our subtree, there cannot be any demand
from level i or higher vertices. It follows that with probability at least 20—,
there is no demand from level i vertices crossing the edge. Level i vertices pay
27%(e) + I(e) on our edge e, so the total expected payment is bounded by:

Y27 (og® n) (277 e(e) +U(e) + D 272 (log? n) (2 e(e) + U(e))

i<6 i>6

We can bound this sum by 29+ (log® n)l(e) + 2(log® n)c(e). The optimum
solution pays 29 L(e) = 2°(e) + c(e) on this edge so we are within O(log®n) of
optimum. O

Of course, this algorithm could pay very high fixed cost in terms of ) | - C(e)
because any given vertex could purchase many outgoing edges (in effect chang-
ing its mind many times about the shortest path) as new destinations arrive.
We modify the algorithm as follows. When a node of type ¢ arrives, we as-
sume it comes with 2¢ demand. When demand reaches some node v of type i,
the demand simply accumulates at v (rather than being sent on to the sink via
shortest path). Demand continues to accumulate at v until 2! demand has accu-
mulated, at which point we compute the shortest path through existing vertices
(increasing values of i) to the sink. We send all 2¢ demand along to the next
node on this path (say w;+1). The demand accumulated at v is reset to zero and
now 2¢ more demand is waiting at w;;1. Using this delaying tactic guarantees
that we will always send 2¢ demand together from a node of type i, preventing
us from sending tiny amounts of demand along many different outgoing edges.
This enables us to bound the fixed cost as shown by the following lemma.

Lemma 3.3. For the modified algorithm with delays, E[) .

Proof. The new algorithm sends 2° demand along any outgoing edge from a
vertex of type i. This is easy to see, since we only purchase edges after waiting
for 2¢ demand to accumulate. Additionally, vertices of type i use edges which
have C'(e) = 2'L(e). It follows that the total cost of edges is bounded by the total
cost of in terms of L(e) of moving demands from one vertex to another. Consider
any demand. We send it along the shortest path, except that we might possibly
delay at some intervening vertices. Delaying can only make paths shorter (as
additional nodes might arrive while we wait), so we can conclude that L(P,)
for any vertex v is at most the shortest path through the network of increasing
vertex types when v arrived. Tt follows that Y, > g 2°L(P,) will be only
less in the delaying version of the algorithm than it would have been for the

C(e)] < O(log® n)L*.



version where we immediately sent all demands along shortest path. Making
use of lemma 3.2, we conclude that E[}_, .. C(e)] < E[}2; > s, 2°L(P,)] <

2L*log® n yielding the desired bound. O

We must now bound the total incremental cost of the solution, )~ ¢ dr(s,1).
At first glance, this appears to be just the sum of the path lengths L(P,) for
every vertex v € S. However, our algorithm delays some demands while waiting
for 2! to accumulate at a type i vertex.

Lemma 3.4. At any time the algorithm with delays has E[)_ g dr(s,t)] <
O(log®n)L*.

Proof. We split the nodes s € S into two groups. First, we have the nodes
whose demand actually reached ¢ in the routing solution of our algorithm. For
these nodes, we will have dr(s,t) < L(P,). However, there are other demands
which were still being delayed at some intermediate node. The total demand
waiting at a node of type i is bounded by 2¢ —1 at any given time. On the other
hand, we observe that our algorithm assumed a demand of 2! arrived with each
node of type i, whereas in reality only 1 unit of demand arrived at this time.
It follows that each node of type i is sending out 2! — 1 units of “fake” demand
in our algorithm. We can send the delayed demand along the path used by
this “fake” demand, incurring the same cost. It follows that 3 s dr(s,t) <
2 2oves; 2'L(Py), and using lemma 3.2 along with the observation that the
paths are only shorter because of the delay mechanism gives the required result.

O

Theorem 3.5. We have designed an O(log4 n) competitive algorithm for online
cost-distance.

Proof. We combine lemmas 3.4 and 3.3 to show that the cost of our solution is
at most an expected O(log®n) times the cost of the best binary tree solution
L* + C*. Using lemma 3.1, this solution has cost at most O(logn) times the
optimum cost, yielding the O(log4 n) expected competitivity result. O

There is an alternate formulation of the problem in which we must select
a path P, for each steiner node v € S as it arrives. Our current algorithm
does not do this, since we may choose to delay the selection of the path beyond
some particular node until more demand arrives. However, we can send each
demand along the path of a preceding demand (from 2¢ steps ago). Effectively,
instead of amortizing the cost of the final delayed demands against the initial
“fake” demand, we will amortize each set of 2! demands against the preceding 2°
(with the initial demands being amortized against the initial “fake” demands).
The algorithm is essentially the same and obtains the identical competitivity
bounds.



4 Open Problems

This paper gives the first online algorithms for several network design problems.
Of course, the competitive ratios could potentially be improved (to no better
than O(logn)).

The major remaining open problems in network design are in the offline do-
main. In particular, the problem of multicommodity concave flow remains open
from an approximation standpoint. No non-trivial approximation algorithms
are known for this problem. Assuming that the concave function is the same
over all graph edges, an O(logn) approximation can be devised by combining
the work of [5] with [16]. Another important open problem involves the approx-
imability of cost-distance in the offline case. The best known approximation
is O(logn) by [34] with a derandomization by [12] but the only known lower
bound is from facility location, leaving the problem complexity open.
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