
A Simplified Account of the Metatheory of Linear LF

Joseph C. Vanderwaart and Karl Crary

April 17, 2002
CMU-CS-01-154

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present a variant of the linear logical framework LLF that avoids the restriction that well-typed forms
be in pre-canonical form and adds λ-abstraction at the level of families. We abandon the use of β-conversion
as definitional equality in favor of a set of typed definitional equality judgments that include rules for
parallel conversion and extensionality. We show type-checking is decidable by giving an algorithm to decide
definitional equality for well-typed terms and showing the algorithm is sound and complete. The algorithm
and the proof of its correctness are simplified by the fact that they apply only to well-typed terms and may
therefore ignore the distinction between intuitionistic and linear hypotheses.

This material is based on work supported in part by NSF grants CCR-9984812 and CCR-0121633. Any opinions,
findings, and conclusions or recommendations in this publication are those of the authors and do not reflect the views
of this agency.

Keywords: Logical Frameworks, Type Theory, Linear Logic

1 Introduction

Decidability of type-checking and the existence of canonical forms for well-typed terms are arguably the
two most important metatheoretic results for a logical framework such as LF [5]. Type-checking is essential
because the checking of proofs reduces to type-checking of the terms that represent them; canonical forms are
crucial because it is the canonical terms (of certain types) that may be proven via an “adequacy” theorem
to be in a meaningful correspondence with propositions and proofs in a logic.

Canonical forms in the LF type theory are β-normal, η-long forms. It therefore seems reasonable to
take definitional equality to be βη-conversion, and decide whether two terms are equal by reducing them
to βη-normal form and comparing; unfortunately, η-reduction is not as well behaved as β-reduction and
so this approach encounters significant problems. The original presentation of LF by Harper, Honsell and
Plotkin [5] (hereafter “HHP”) avoided the difficulties of η-reduction by using β-conversion as definitional
equality even though this destroyed the property that every term is equal to some canonical form.

Felty’s Canonical LF [4] is a version of LF where all well-typed objects and families are in canonical form,
avoiding all issues of definitional equality. Felty showed that Canonical LF is essentially the same as full
LF if typing derivations are restricted to pre-canonical terms (those whose β-normal forms are canonical)
with β-conversion as definitional equality. A similar approach was taken by Cervesato and Pfenning for
their presentation of the linear logical framework LLF [1] (hereafter “CP”). The typing rules of LLF forced
well-formed terms into η-long form, making all well-typed β-normal forms canonical and rendering any η
rules for definitional equality unnecessary.

Subsequent to the original definition of LLF, Harper and Pfenning [6, 7] (hereafter, “HP”) gave an
alternate formulation of ordinary LF that allowed a clean treatment of definitional equality without having
to restrict terms to pre-canonical form. Their approach was based on the use of a typed definitional equality
judgment as opposed to an untyped reduction relation—that is, they focused on comparing two objects at a
certain type and in a certain typing context, rather than βη-normalizing them in isolation. The decidability
of type-checking and the existence of canonical forms for well-typed terms were then established by giving
a set of algorithmic judgments that are sound and complete with respect to definitional equality and can
be instrumented to extract canonical forms from the terms they compare. The algorithm is similar to one
introduced by Coquand [2], except that Coquand’s algorithm performs η-expansion based on the shapes
of terms, while HP’s is directed by types and kinds. The type-directed nature of the algorithm has the
advantage of making it scalable to theories such as LLF that contain unit types. Apart from the typed,
declarative formulation of definitional equality, the LF type theory considered by HP was essentially the
same as that of HHP, except that the λ-abstraction construct at the level of type families had to be removed
for technical reasons. This was not considered a problem, as experience with LF had shown that this form
of abstraction was not needed in practice.

In this paper, we present a variant of LLF that employs a typed formulation of definitional equality in
the style of HP and extend HP’s equality algorithm to handle the linear constructs of LLF. We also resolve
the technical issues that necessitated the removal of the family-level λ-abstraction, and so we are able to
give a variant of LLF that includes abstraction at the family level even though CP’s LLF did not have this
feature. This result has been applied by the authors to establish the decidability of typing in the LTT type
theory for certified code [3], and has been extended by Polakow for the Ordered Linear Logical Framework
[9].

1.1 Overview

The structure of this report is as follows. In Section 2 we present our variant of the Linear LF type theory,
which will essentially be an extension of HP’s formulation of LF with linear implication, additive conjunction
and additive truth. We will also add a family-level λ-abstraction construct similar to the one that appeared
in HHP. Our presentation of the theory will include the typed definitional equality rules we are using to
replace the untyped conversion relation of CP. Section 3 will establish some elementary properties of the
typing and definitional equality judgments, most notably the regularity, inversion and functionality lemmas
that will play a major role in the rest of our discussion of the theory. Another property of the system, which
we call injectivity, will be proved in Section 4. HP proved their analogue of injectivity by straightforward

1

induction, but the family-level λ-abstraction construct we have added to the language makes this simple
proof impossible; we will use a logical relation to prove our version.

With the fundamental properties of the type theory established, the remainder of the report focuses on
proving that definitional equality is decidable. Section 5 defines a set of “algorithmic equality” judgments, in
the style of HP, that are directed by the shapes of the types of the objects being compared. Some elementary
properties of the algorithmic judgments are also proven in that section. Sections 6 and 7 prove that the
new judgments are correct—that is, sound and complete with respect to definitional equality—for well-typed
terms; soundness is established in Section 6 and completeness in Section 7. Both of these proofs more or
less follow the method of HP, although the linear features of Linear LF make the soundness proof somewhat
more complicated. Finally in Section 8 we verify that the “algorithmic” judgments we introduced in Section
5 do in fact define an algorithm—that is, that the search for an algorithmic equality derivation between two
well-typed terms will always terminate. This result is equivalent to the decidability of definitional equality
and thus implies the decidability of typing in Linear LF.

2 A Variant of Linear LF

In this section we will present our variant of Linear LF type theory. This version of Linear LF has essentially
the same syntax as that presented by CP, with the addition of λ-abstraction at the level of families. The
typing rules we give here, however, differ from CP’s in that we do not restrict terms to pre-canonical form.
Another minor difference is that we use two separate contexts in our typing judgments, one for intuitionistic
and one for linear assumptions, rather than combining the two. Since none of the variables declared in
the linear context will appear in any types, we may identify linear contexts that differ only in the order of
declarations and thus we do not need a formal context-splitting judgment for the linear application rules.
Our variant of Linear LF can also be thought of as a linear version of the LF type theory as presented by
HP.

The syntax of Linear LF terms is given by the following grammar.

Kinds K ::= Type | Πu:A.K
Families A ::= a | λu:A1.A2 | AM |

Πu:A1.A2 |
A1 (A2 | A1 & A2 | >

Objects M ::= u | c |
λu:A.M | M1M2 |
λ̂u:A.M | M1ˆM2 | 〈M1,M2〉 | πiM | 〈〉

Contexts Γ ::= ε | Γ, a:K | Γ, u:A
Linear Contexts ∆ ::= ε | ∆, û:A

There are three classes, or levels, of terms: objects, families and kinds. Kinds classify families: families
of kind Type are called types, and classify objects, while Πu:A.K is the (possibly dependent) kind of a
function from objects of family A to families of kind K. At the family level we have constants (a), function
abstractions and applications as well as (intuitionistic) dependent function types, linear implication ((),
additive conjunction (&), and additive truth (>). The object level contains variables (u), constants (c),
intuitionistic λ-abstraction and application (M1M2), linear λ̂-abstraction and application (M1ˆM2), pairs
(〈M1,M2, 〉), projections (πiM) and the object 〈〉 that inhabits >.

Contexts, both intuitionistic (Γ) and linear (∆), will be used in the typing and definitional equality rules.
Note that the order of assumptions in an intuitionistic context may be significant, since term variables may
appear in types. The typing rules will prevent types from depending on any linear assumptions, which
justifies our grouping all the linear assumptions into a separate linear context. We regard linear contexts
that differ only in the ordering of assumptions as identical.

If the variable u does not appear in the family B, then we may write A → B for Πu:A.B. Similarly,
A→ K will mean Πu:A.K if u does not appear in K. As usual, we denote by E[E′1, . . . , E

′
n/u1, . . . , un] the

simultaneous capture-avoiding substitution of the terms E′1 through E′n for the corresponding variables u1

through un in E.

2

2.1 Typing Rules

Signatures and Contexts (` S sig, ` Γ context, Γ ` ∆ context)

In LF and LLF, the types and kinds of constants are given by a signature. It is by the choice of signature
that the logical framework is instantiated to represent a particular logic. For simplicity, in the bulk of this
paper we will tacitly assume a fixed signature S; the exception is in the well-formedness rules for signatures,
where we use a subscripted turnstile (`S) to indicate that certain premises are to be understood with respect
to the signature mentioned in the conclusion.

The validity judgment for linear contexts specifies an intuitionistic context giving types to all the free
variables that may occur in the linear assumptions.

` ε sig

` S sig `S K : kind

` S, a:K sig
(a /∈ Dom(S))

` S sig `S A : Type

` S, c:A sig
(c /∈ DomS)

` ε context

` Γ context Γ ` A : Type

` Γ, u:A context
(u /∈ Dom(Γ))

Γ ` ε context

Γ ` ∆ context Γ ` A : Type

Γ ` ∆, û:A context
(u /∈ Dom(Γ),Dom(∆))

Kinds (Γ ` K : kind)

The restriction that linear assumptions not appear in types or kinds is enforced by using only an intuitionistic
context for kind and family judgments, and forcing the linear context in which an object is typed for
dependent application to be empty.

Γ ` Type : kind

Γ ` A : Type Γ, u:A ` K : kind

Γ ` Πu:A.K : kind

Families (Γ ` A : K)

Γ ` a : K
(S(a) = K)

Γ ` A1 : Type Γ, u:A1 ` A2 : K
Γ ` λu:A1.A2 : Πu:A1.K

Γ ` A : Πu:A1.K Γ; ε `M : A1

Γ ` AM : K[M/u]

Γ ` A1 : Type Γ, u:A1 ` A2 : Type

Γ ` Πu:A1.A2 : Type

Γ ` A1 : Type Γ ` A2 : Type

Γ ` A1 (A2 : Type

Γ ` A1 : Type Γ ` A2 : Type

Γ ` A1 & A2 : Type

Γ ` > : Type
Γ ` A : K ′ Γ ` K ′ = K : kind

Γ ` A : K

Objects (Γ; ∆ `M : A)

Γ; ε ` c : A
(S(c) = A)

Γ; ε ` u : A
(Γ(u) = A)

Γ; û:A ` u : A

Γ ` A : Type Γ, u:A; ∆ `M : B
Γ; ∆ ` λu:A.M : Πu:A.B

Γ ` A : Type Γ; ∆, û:A `M : B

Γ; ∆ ` λ̂u:A.M : A(B

Γ; ∆ `M1 : A1 Γ; ∆ `M2 : A2

Γ; ∆ ` 〈M1,M2〉 : A1&A2

Γ; ∆ `M : A1&A2

Γ; ∆ ` πiM : Ai
(i = 1, 2)

Γ; ∆ ` 〈〉 : >

Γ; ∆ `M : A′ Γ ` A′ = A : Type

Γ; ∆ `M : A

3

Γ; ∆ `M1 : Πu:A.B Γ; ε `M2 : A
Γ; ∆ `M1M2 : B[M2/u]

Γ; ∆1 `M1 : A(B Γ; ∆2 `M2 : A
Γ; ∆1,∆2 `M1ˆM2 : B

2.2 Definitional Equality Rules

The definitional equality rules include compatibility rules for all the syntactic constructs of the calculus, as
well as parallel conversion rules and extensionality rules for each of the type and kind constructors of the
theory. Symmetry and transitivity of equality are explicitly included as rules; reflexivity is shown to be
admissible.

Kinds (Γ ` K = L : kind)

Γ ` Type = Type : kind

Γ ` K2 = K1 : kind

Γ ` K1 = K2 : kind

Γ ` K1 = K3 : kind Γ ` K3 = K2 : kind

Γ ` K1 = K2 : kind

Γ ` A1 : Type Γ ` A1 = A2 : Type Γ, u:A1 ` K1 = K2 : kind

Γ ` Πu:A1.K1 = Πu:A2s.K2 : kind

Families (Γ ` A = B : K)

Γ ` a = a : K
(S(a) = K)

Γ ` > = > : Type

Γ ` A2 = A1 : K
Γ ` A1 = A2 : K

Γ ` A1 = A2 : Type Γ ` B1 = B2 : Type

Γ ` A1 (B1 = A2 (B2 : Type

Γ ` A1 = A2 : Type Γ ` B1 = B2 : Type

Γ ` A1&B1 = A2&B2 : Type

Γ ` A1 = A2 : Type Γ, u:A1 ` B1 = B2 : Type

Γ ` Πu:A1.B1 = Πu:A2.B2 : Type

Γ ` A1 = A3 : K Γ ` A3 = A2 : K
Γ ` A1 = A2 : K

Γ ` A1 = A2 : Πu:B.K Γ; ε `M1 = M2 : B
Γ ` A1M1 = A2M2 : K[M1/u]

Γ ` A1 = A2 : K ′ Γ ` K ′ = K : kind

Γ ` A1 = A2 : K

Γ ` A1 = A : Type Γ ` A2 = A : Type Γ, u:A ` B1 = B2 : K
Γ ` λu:A1.B1 = λu:A2.B2 : Πu:A.K

Γ ` B : Type Γ, u:B ` A1 = A2 : K Γ; ε `M1 = M2 : B
Γ ` (λu:B.A1)M1 = A2[M2/u] : K[M1/u]

Γ ` B : Type Γ ` A1 : Πu:B.K Γ ` A2 : Πu:B.K Γ, u:B ` A1 u = A2 u : K
Γ ` A1 = A2 : Πu:B.K

Objects (Γ; ∆ `M = N : A)

Compatibility

4

Γ; ε ` u = u : A
(Γ(u) = A)

Γ; ε ` c = c : A
(S(c) = A)

Γ; û:A ` u = u : A

Γ; ∆ `M1 = M2 : Πu:A.B Γ; ε ` N1 = N2 : A
Γ; ∆ `M1N1 = M2N2 : B[N1/u]

Γ; ∆1 `M1 = M2 : A(B Γ; ∆2 ` N1 = N2 : A
Γ; ∆1,∆2 `M1ˆN1 = M2ˆN2 : B

Γ; ∆ `M1 = M2 : A1 Γ; ∆ ` N1 = N2 : A2

Γ; ∆ ` 〈M1, N1〉 = 〈M2, N2〉 : A1 & A2

Γ; ∆ `M1 = M2 : A1 & A2

Γ; ∆ ` πiM1 = πiM2 : Ai
(i = 1, 2)

Γ ` A1 = A : Type Γ ` A2 = A : Type Γ, u:A; ∆ `M1 = M2 : B
Γ; ∆ ` λu:A1.M1 = λu:A2.M2 : Πu:A.B

Γ ` A1 = A : Type Γ ` A2 = A : Type Γ; ∆, û:A `M1 = M2 : B

Γ; ∆ ` λ̂u:A1.M1 = λ̂u:A2.M2 : A(B

Type Conversion

Γ; ∆ `M1 = M2 : A′ Γ ` A′ = A : Type

Γ; ∆ `M1 = M2 : A

Equivalence

Γ; ∆ `M2 = M1 : A
Γ; ∆ `M1 = M2 : A

Γ; ∆ `M1 = M3 : A Γ; ∆ `M3 = M2 : A
Γ; ∆ `M1 = M2 : A

Parallel Conversion

Γ ` A : Type Γ, u:A; ∆ `M1 = M2 : B Γ; ε ` N1 = N2 : A
Γ; ∆ ` (λu:A.M1)N1 = M2[N2/u] : B[N1/u]

Γ ` A : Type Γ; ∆1, û:A `M1 = M2 : B Γ; ∆2 ` N1 = N2 : A

Γ; ∆1,∆2 ` (λ̂u:A.M1)ˆN1 = M2[N2/u] : B

Γ; ∆ `M1 = N1 : A1 Γ; ∆ `M2 = N2 : A2

Γ; ∆ ` πi〈M1,M2〉 = Ni : Ai
(i = 1, 2)

Extensionality

Γ ` A : Type Γ; ∆ `M1 : Πu:A.B Γ; ∆ `M2 : Πu:A.B Γ, u:A; ∆ `M1 u = M2 u : B
Γ; ∆ `M1 = M2 : Πu:A.B

Γ ` A : Type Γ; ∆ `M1 : A(B Γ; ∆ `M2 : A(B Γ; ∆, û:A `M1ˆu = M2ˆu : B
Γ; ∆ `M1 = M2 : A(B

Γ; ∆ `M1 : A1 & A2 Γ; ∆ `M2 : A1 & A2

Γ; ∆ ` πiM1 = πiM2 : Ai for i = 1, 2
Γ; ∆ `M1 = M2 : A1 & A2

Γ; ∆ `M : > Γ; ∆ ` N : >
Γ; ∆ `M = N : >

5

2.3 Substitutions

In our logical relations proofs, we will make use of the concept of a substitution: that is, a finite mapping
from variables (u) to object terms (M). As a matter of notation, we will use the letter γ to stand for a
substitution if we intend that all variables appearing free in γ(u) be intuitionistic, rather than linear. We will
call such a substitution an intuitionistic substitution; for substitutions that may produce free linear variables
we will use the letter σ.

If Γ is a context, then we will denote by idΓ the identity substitution on Dom(Γ). If σ is a substitution,
then σ[u 7→M] will denote the substitution that maps u to M and maps v to σ(v) for v 6= u.

If O is a kind, family or object term, then σO will denote the result of replacing every free occurrence
of every variable u ∈ Dom(σ) in O by σ(u). These replacements are performed simultaneously, and bound
variables are implicitly renamed to avoid capture. Note that variables not in Dom(σ) are left unchanged by
this operation.

For intuitionistic substitutions, we lift the well-formedness and equality judgments on objects in the usual
way, enforcing the non-occurrence of linear variables by keeping the linear context empty. Specifically, we
define:

1. Γ′ ` γ : Γ iff Dom(γ) = Dom(Γ) and for every u ∈ Dom(Γ), Γ′; ε ` γ(u) : γ(Γ(u)).

2. Γ′ ` γ1 = γ2 : Γ iff Dom(γ1) = Dom(γ2) = Dom(Γ) and for every u ∈ Dom(Γ), Γ′; ε ` γ1(u) = γ2(u) :
γ1(Γ(u)).

Using the typing rule for variables, we get Γ ` idΓ : Γ for any context Γ. We can also prove the
following lemma, which states that application of a substitution commutes with a single-point substitution
on a variable not in its domain.

Lemma 1 (Independent Substitutions Commute)
If Dom(σ) ⊆ S and u /∈ S and FV (M) ⊆ S, and FV (O) ⊆ S ∪ {u} (where O is a kind, family or object
term), then:

(σO)[σM/u] = σ(O[M/u])

Proof: Structural induction on O.
�

3 Elementary Properties

Lemma 2 (Weakening of Intuitionistic Contexts) Let J be any judgment.

1. If Γ,Γ′ ` J and u /∈ Dom(Γ) then Γ, u:A,Γ′ ` J .

2. If Γ,Γ′; ∆ ` J and u /∈ Dom(Γ,Γ′) then Γ, u:A,Γ′; ∆ ` J .

Lemma 3 (Reflexivity)

1. If Γ; ∆ `M : A then Γ; ∆ `M = M : A.

2. If Γ ` A : K then Γ ` A = A : K.

3. If Γ ` K : kind then Γ ` K = K : kind.

HP prove a simple substitution lemma, which allows a single well-typed term to be substituted for a
variable in the derivation of any judgment, and a simple functionality lemma which allows a single term
to be substituted into each side of an equality judgment. Since our proof of injectivity makes heavy use of
simultaneous substitutions of the form defined in Section 2.3, we will need more general substitution and
functionality lemmas. These may be proved using the single-point versions, or they may be proved directly
by induction on derivations. We have chosen the latter approach, and prove the single-point substitution
and functionality lemmas as special cases.

6

Lemma 4 (Free Variables)

1. If Γ ` J , then FV (J) ⊆ Dom(Γ).

2. If Γ; ∆ ` J , then FV (J) ⊆ Dom(Γ) ∪Dom(∆).

Proof: Trivial induction over derivations.
�

Lemma 5 (Extending Substitutions)

1. If Γ′ ` γ : Γ and u /∈ Dom(Γ) ∪Dom(Γ′), then Γ′, u:γA ` γ[u 7→ u] : Γ, u:A.

2. If Γ′ ` γ1 = γ2 : Γ and u /∈ Dom(Γ) ∪Dom(Γ′), then Γ′, u:γ1A ` γ1[u 7→ u] = γ2[u 7→ u] : Γ, u:A.

Proof: Direct, using the definition of well-formed and equal subsitutions. The proof requires Weakening
(Lemma 2).

�

Lemma 6 (Intuitionistic Substitution)

1. If Γ ` J and Γ′ ` γ : Γ, then Γ′ ` γJ .

2. If Γ; ∆ ` J and Dom(Γ) ∩Dom(∆) = ∅ and Γ′ ` γ : Γ, then Γ′; γ∆ ` γJ .

Proof: By induction on derivations, using the preceding lemmas.
�

Corollary 1 (One-Point Intuitionistic Substitution) Suppose ` Γ, u:A,Γ′ context and Γ; ε `M : A.

1. If Γ, u:A,Γ′ ` J then Γ,Γ′[M/u] ` J [M/u].

2. If Γ, u:A,Γ′; ∆ ` J and Dom(Γ, u:A,Γ′) ∩Dom(∆) = ∅, then Γ,Γ′[M/u]; ∆[M/u] ` J [M/u].

Lemma 7 (Intuitionistic Context Conversion) Assume ` Γ, u:A context and Γ ` B : Type and Γ `
A = B : Type.

1. If Γ, u:A ` J then Γ, u:B ` J .

2. If Γ, u:A; ∆ ` J and Dom(∆) ∩ (Dom(Γ) ∪ {u}) = ∅, then Γ, u:B; ∆ ` J .

Proof: Direct, using the preceding lemmas. The two parts are similar; we will only show part (2).
By rule, Γ, u:B; ε ` u : B.
By symmetry and type conversion, Γ, u:B; ε ` u : A.
By renaming, Γ, v:A; ∆[v/u] ` J [v/u].
By weakening (Lemma 2), Γ, u:B, v:A; ∆[v/u] ` J [v/u].
By substitution (Lemma 1), Γ, u:B; ∆[v/u][u/v] ` J [v/u][u/v].
That is, Γ, u:B; ∆ ` J .

�

Lemma 8 (Functionality for Typing) Assume Γ′ ` γ1 : Γ and Γ′ ` γ2 : Γ and Γ′ ` γ1 = γ2 : Γ.

1. If Γ; ∆ ` P : B and Dom(Γ) ∩Dom(∆) = ∅, then Γ′; γ1∆ ` γ1P = γ2P : γ1B.

2. If Γ ` B : K then Γ′ ` γ1B = γ2B : γ1K.

3. If Γ ` K : kind then Γ′ ` γ1K = γ2K : kind.

Proof: By induction on derivations.
�

7

Corollary 2 (One-Point Functionality for Typing) Assume ` Γ, u:A,Γ′ context, Γ; ε ` M = N : A,
Γ; ε `M : A and Γ; ε ` N : A.

1. If Γ, u:A,Γ′; ∆ ` P : B and Dom(∆) ∩ (Dom(Γ, u:A,Γ′) = ∅ then Γ,Γ′[M/u]; ∆[M/u] ` P [M/u] =
P [N/u] : B[M/u]

2. If Γ, u:A,Γ′ ` B : K then Γ,Γ′[M/u] ` B[M/u] = B[N/u] : K[M/u].

3. If Γ, u:A,Γ′ ` K : kind then Γ,Γ′[M/u] ` K[M/u] = K[N/u] : kind

Proof: Direct, from the preceding lemma.
�

Lemma 9 (Inversion on Simple Types and Kinds)

1. If Γ ` Πu:A1.A2 : K then Γ ` A1 : Type and Γ, u:A1 ` A2 : Type.

2. If Γ ` A(B : K then Γ ` A : Type and Γ ` B : Type.

3. If Γ ` A & B : K then Γ ` A : Type and Γ ` B : Type.

4. If Γ ` Πu:A.K : kind then Γ ` A : Type and Γ, u:A ` K : kind.

Proof: Parts (1) through (3) are proved by induction on typing derivations. Part (4) is immediate by
inspection of the kind formation rules.

�
We are now able to prove the important regularity property. This lemma states that all the terms that

appear on the right-hand side of any judgment are well-formed, provided the context is valid—in other words,
validity of what appears on the left of the turnstile implies validity of what appears on the right.

Lemma 10 (Regularity) Assume ` Γ context and Γ ` ∆ context.

1. If Γ; ∆ `M : A then Γ ` A : Type.

2. If Γ; ∆ `M = N : A then Γ; ∆ `M : A and Γ; ∆ ` N : A and Γ ` A : Type.

3. If Γ ` A : K then Γ ` K : kind.

4. If Γ ` A = B : K then Γ ` A : K and Γ ` B : K and Γ ` K : kind.

5. If Γ ` K = L : kind then Γ ` K : kind and Γ ` L : kind.

Proof: By induction on derivations, using Corollary 2 and Lemma 9. The inversion lemma is required
for elimination rules (and congruence rules for elimination forms) in order to establish well-formedness of
the classifying type or kind. The functionality property is required for the cases involving applications of
dependently-typed functions.

Case:
Γ; ∆ `M1 = M2 : Πu:A.B Γ; ε ` N1 = N2 : A

Γ; ∆ `M1N1 = M2N2 : B[N1/u]

By the i.h. on the first subderivation, Γ; ∆ `M1 : Πu:A.B and Γ; ∆ `M2 : Πu:A.B and Γ ` Πu:A.B : Type.
By Lemma 9, Γ ` A : Type and Γ, u:A ` B : Type.
By the i.h. on the second subderivation, Γ; ε ` N1 : A and Γ; ε ` N2 : A.
By Lemma 1, Γ ` B[N1/u] : Type, as required.
By rule, Γ; ∆ `M1N1 : B[N1/u], as required.
By rule, Γ; ∆ `M2N2 : B[N2/u].
By Corollary 2, Γ ` B[N1/u] = B[N2/u] : Type.
By the symmetry and type conversion rules, Γ; ∆ `M2N2 : B[N1/u], as required.

8

Case:
Γ ` A1 = A : Type Γ ` A2 = A : Type Γ, u:A; ∆ `M1 = M2 : B

Γ; ∆ ` λu:A1.M1 = λu:A2.M2 : Πu:A.B

By the i.h. on the first two subderivations, Γ ` A : Type and Γ ` A1 : Type and Γ ` A2 : Type.
By the i.h. on the third subderivation, Γ, u:A; ∆ `M1 : B and Γ, u:A; ∆ `M2 : B and Γ, u:A ` B : Type.
By rule, Γ ` Πu:A.B : Type, as required.
Using the symmetry rule and the context conversion lemma, Γ, u:A1; ∆ `M1 : B and Γ, u:A2; ∆ `M2 : B.
By rule, Γ; ∆ ` λu:A1.M1 : Πu:A1.B and Γ; ∆ ` λu:A2.M2 : Πu:A2.B.
By reflexivity, Γ, u:A ` B = B : Type.
By rule, Γ ` Πu:A.B = Πu:A1.B : Type and Γ ` Πu:A.B = Πu:A2.B : Type.
By symmetry and type conversion, Γ; ∆ ` λu:A1.M1 : Πu:A.B and Γ; ∆ ` λu:A2.M2 : Πu:A.B, as required.

�
It is a simple matter to lift the regularity property for the object equality judgment to substitutions.

Corollary 3 (Regularity for Substitution Equality) If ` Γ′ context and Γ′ ` γ1 = γ2 : Γ, then Γ′ `
γ1 : Γ and Γ′ ` γ2 : Γ.

Proof: Direct, using regularity and the definitions of well-formed and equal substitutions.
�

With regularity established, we can prove that performing equal substitutions on equal terms yields equal
terms. This property is called Functionality, and we will use it often.

Lemma 11 (Functionality for Equality) Assume Γ′ ` γ1 = γ2 : Γ.

1. If Γ; ∆ `M = N : A then Γ′; γ1∆ ` γ1M = γ2N : γ1A.

2. If Γ ` A = B : K then Γ′ ` γ1A = γ2B : γ1K.

3. If Γ ` K = L : kind then Γ′ ` γ1K = γ2L : kind.

Proof: Direct. The three parts are similar, so we will only show the first one.
By Corollary 3, Γ′ ` γ1 : Γ.
By Lemma 6, Γ′, γ1∆ ` γ1M = γ1N : γ1A.
By Lemma 10, Γ; ∆ ` N : A.
By Lemma 8, Γ′; γ1∆ ` γ1N = γ2N : γ1A.
By the transitivity rule, Γ′; γ1∆ ` γ1M = γ2N : γ1A, as required.

�
HP prove a one-point version of the functionality lemma, which is useful for us as well. It may either

be proved as a special case of the previous lemma, or be proved directly using the one-point versions of the
lemmas used in the proof just given.

Lemma 12 (One-Point Functionality for Equality) Assume ` Γ, u:A,Γ′ context and Γ, u:A,Γ′ ` ∆ context
and Γ; ε `M = N : A.

1. If Γ, u:A,Γ′; ∆ ` O = P : B then Γ,Γ′[M/u]; ∆[M/u] ` O[M/u] = P [N/u] : B[M/u].

2. If Γ, u:A,Γ′ ` B = C : K then Γ,Γ′[M/u] ` B[M/u] = C[N/u] : K[M/u].

3. If Γ, u:A,Γ′ ` K = L : kind, then Γ,Γ′[M/u] ` K[M/u] = L[N/u] : kind.

We can also use regularity to prove several inversion properties on typing derivations.

Lemma 13 (Typing Inversion) Assume ` Γ context and Γ ` ∆ context.

1. If Γ; ∆ ` u : A then either ∆ = ε and Γ(u) = B and Γ ` A = B : Type or ∆ = (û:B) and
Γ ` A = B : Type.

2. If Γ; ∆ ` c : A then ∆ = ε and S(c) = A′ and Γ ` A = A′ : Type.

9

3. If Γ; ∆ `M N : A then Γ; ∆ `M : Πu:A2.A1 and Γ; ε ` N : A2 and Γ ` A1[N/u] = A : Type.

4. If Γ; ∆ ` λu:A.M : B, then Γ ` B = Πu:A.A′ : Type, Γ ` A : Type and Γ, u:A; ∆ `M : A′.

5. If Γ; ∆ ` MˆN : A then ∆ = (∆1,∆2) and Γ; ∆1 ` M : A2 (A1 and Γ; ∆2 ` N : A2 and
Γ ` A1 = A : Type.

6. If Γ; ∆ ` λ̂u:A.M : B, then Γ ` B = A(A′ : Type and Γ ` A : Type and Γ; ∆, û:A `M : A′.

7. If Γ; ∆ ` πiM : A then Γ; ∆ `M : A1 & A2 and Γ ` Ai = A : Type.

8. If Γ; ∆ ` 〈M1,M2〉 : A then Γ ` A = A1 & A2 : Type and Γ; ∆ `M1 : A1 and Γ; ∆ `M2 : A2.

9. If Γ ` Πu:A.B : K then Γ ` K = Type : kind and Γ ` A : Type and Γ, u:A ` B : Type.

10. If Γ ` A(B : K then Γ ` K = Type : kind and Γ ` A : Type and Γ ` B : Type.

11. If Γ ` A & B : K then Γ ` K = Type : kind and Γ ` A : Type and Γ ` B : Type.

12. If Γ ` > : K then Γ ` K = Type : kind.

13. If Γ ` a : K then S(a) = L and Γ ` K = L : kind.

14. If Γ ` AM : K, then Γ ` A : Πu:A2.K1 and Γ; ε `M : A2 and Γ ` K1[M/u] = K : kind.

15. If Γ ` λu:A1.A2 : K then Γ ` K = Πu:A1.K
′ : kind and Γ ` A1 : Type and Γ, u:A1 ` A2 : K ′.

16. If Γ ` Πu:A1.K2 : kind then Γ ` A1 : Type and Γ, u:A1 ` K2 : kind.

Proof: Straightforward, by induction on typing derivations.
�

We will also state here an inversion lemma for kind equality judgments. HP’s equality inversion included
families as well as kinds, but that version of the lemma does not hold in the presence of family-level λ-
abstraction. Fortunately, HP’s only use of equality inversion was in proving their Injectivity of Products
lemma; we are going to prove injectivity separately, so we have no need for equality inversion on families at
this stage.

Lemma 14 (Equality Inversion for Kinds)

1. If Γ ` K = Type : kind or Γ ` Type = K : kind then K = Type.

2. If Γ ` Πu:A.K1 = L : kind or Γ ` L = Πu:A.K1 : kind then L = Πu:B.L1 where Γ ` A = B : Type and
Γ, u:A ` K1 = L1 : kind.

Proof: Straightforward by induction on derivations, since there are no parallel conversion or extensionality
rules for kinds.

�

4 Injectivity

The goal of this section is to prove a theorem that generalizes the “Injectivity of Products” lemma used by
HP in the proofs of subject reduction and soundness of algorithmic equality. For Linear LF we must extend
the idea of that lemma to all of the simple type constructors and so we will call it simply “injectivity.”

Injectivity states that if two families formed using the same connective are definitionally equal, then
corresponding subterms of those families will be equal as well. For example, if Γ ` A1 (B1 = A2 (
B2 : Type then, according to injectivity, Γ ` A1 = A2 : Type and Γ ` B1 = B2 : Type. (In other words,
the mapping from pairs of families to families embodied by each connective is one-to-one up to definitional
equality.) HP are able to prove injectivity by means of an inversion lemma which is in turn proved by
induction on derivations, but this is not possible in the presence of family-level λ-abstraction. The difficult

10

case to prove by induction is transitivity: even if A and B have the same primary connective, if they are
judged equal by virtue of their both being equal to C, then C may not have that same primary connective,
rendering the induction hypothesis useless.

Fortunately, the only way this can happen is if one of the parallel conversion rules is used in the derivations
of A = C and C = B. This suggests that the appropriate strengthening of the induction hypothesis should
apply not only to families with the same primary connective, but also to families that can be converted to
ones with the same primary connective. We can state such a hypothesis in the form of a logical relation: we
will define a relation on families that implies the injectivity property at base kind and extend it to higher
kinds in the usual way. It will then be possible to prove that definitionally equal terms are related under
this relation, and we will use this fact to prove the injectivity theorem.

To show that equal terms are related, we must strengthen the induction hypothesis once again, proving
instead their images under equal substitutions are related. To do this we will make use of several properties
of substitutions, and so before proving the main theorem of the section we will spend some time establishing
our terminology for substitutions and the properties of them that we need.

4.1 A Logical Relation

In defining this logical relation, and later the equality algorithm, we will use the following definition of the
weak head reduction relation wh−→:

(λu:A.M1)M2
wh−→M1[M2/u] (λ̂u:A.M1)ˆM2

wh−→M1[M2/u] πi〈M1,M2〉
wh−→Mi

M1
wh−→M ′1

M1M2
wh−→M ′1M2

M1
wh−→M ′1

M1ˆM2
wh−→M ′1ˆM2

M
wh−→M ′

πiM
wh−→ πiM

′

(λu:A1.A2)M wh−→ A2[M/u]

A
wh−→ A′

AM
wh−→ A′M

The reflexive, transitive closure of wh−→ will be denoted wh−→∗. It will be important that weak head
reduction is deterministic.

Lemma 15 (Determinacy of Weak Head Reduction)

1. If M wh−→M ′ and M wh−→M ′′ then M ′ = M ′′.

2. If A wh−→ A′ and A wh−→ A′′ then A′ = A′′.

Proof: By induction on weak head reduction derivations.
�

Now we can define the logical relation we will use to prove injectivity. Intuitively, we want the relation
at base kind to imply the injectivity property we are aiming for. We strengthen this definition and require
that the injectivity hold for all possible weak head contracta of the two families in question. Thus we will
effectively prove that any family that is definitionally equal to, say, a(-family will weak head reduce to one
with definitionally equal domain and codomain. This rescues the problematic transitivity case by removing
the sensitivity to the exact structure of the terms being compared. Our logical relation is defined as follows:

1. Γ ` A1 ≈ A2 : Type iff all of the following hold:

• A1
wh−→∗Πu:B1.C1 iff A2

wh−→∗Πu:B2C2.

• A1
wh−→∗B1 (C1 iff A2

wh−→∗B2 (C2.

• A1
wh−→∗B1 & C1 iff A2

wh−→∗B2 & C2.

11

• If A1
wh−→∗Πx:B1.C1 and A2

wh−→∗Πx:B2C2, then Γ ` B1 = B2 : Type and Γ, u:B1 ` C1 = C2 : Type.

• If A1
wh−→∗B1 (C1 and A2

wh−→∗B2 (C2 then Γ ` B1 = B2 : Type and Γ ` C1 = C2 : Type.

• If A1
wh−→∗B1 & C1 and A2

wh−→∗B2 & C2 then Γ ` B1 = B2 : Type and Γ ` C1 = C2 : Type.

2. Γ ` A1 ≈ A2 : Πu:B.K iff ∀M1,M2, if Γ; ε `M1 = M2 : B then Γ ` A1M1 ≈ A2M2 : K[M1/u].

3. Γ ` K1 ≈ K2 : kind iff ∀A1, A2, Γ ` A1 ≈ A2 : K1 iff Γ ` A1 ≈ A2 : K2.

The construction of this logical relation is unusual in that in the function case, the arguments are required
to be definitionally equal, rather than logically equivalent. Also, there is no need to extend the context in the
function case as in the Kripke logical relation we will use later to prove the completeness of our algorithm.
This turns out to be sufficient (because the terms on which a family depends cannot affect the shape of its
weak head normal form), and simplifies the proof considerably.

Note also that the definition does not require that families be definitionally equal to be related at base
kind. That’s not necessary, and might make closure under head expansion tricky to prove.

4.2 Definitionally Equal Terms are Logically Related

Several lemmas are required in order to show that all definitionally equal terms are related by the logical
relation we have defined. For the most part, the proofs of these lemmas are independent of one another,
and each one is relevant to a few particular cases in the main structural induction proof at the end of this
subsection.

The first lemma will allow us to conclude that any family-level constant is logically related to itself.

Lemma 16 (Logically Related Paths) If (a : Πu1:A1. · · · .Πuk:Ak.K) ∈ S, and Γ; ε ` Mi = M ′i :
Ai[M1, . . . ,Mi−1/u1, . . . , ui−1] for each i, then Γ ` aM1 · · · Mk ≈ aM ′1 · · · M ′k : K[M1, . . . ,Mk/u1, . . . , uk].

Proof: By induction on the number of Π’s in K.

Case: K = Type. Since (aM1 · · · Mk) and (aM ′1 · · · M ′k) are weak head normal forms, we have
Γ ` aM1 · · · Mk ≈ aM ′1 · · · M ′k : Type.

Case: K = Πv:B.K ′. Suppose that Γ; ε ` N = N ′ : B[M1, . . . ,Mk/u1, . . . , uk]. We need to show that
Γ ` aM1 · · · MkN ≈ aM ′1 · · · M ′kN ′ : K ′[M1, . . . ,Mk, N/u1, . . . , uk, v]. But K ′ has fewer Π’s in it
than K, so this follows by the induction hypothesis.

�
We need the logical relations to be closed under head expansion in order to show that families proven

equal by the parallel conversion rule are logically related. This fact is also used in the case for the congruence
rule on λ-abstractions.

Lemma 17 (Closure under Head Expansion) If Γ ` A ≈ B : K and Γ ` A′ : K and Γ ` B′ : K and
A′

wh−→∗A and B′ wh−→∗B, then Γ ` A′ ≈ B′ : K.

Proof: By induction on the size (number of Π’s) of K.

Case: K = Type.
Suppose A′ wh−→∗Πu:A1.B1.
Using Lemma 15, Awh−→∗Πu:A1.B1.
By definition of ≈, B reduces to a Π-family and therefore so does B′.
So, suppose A′ wh−→∗Πu:C1.D1 and B′

wh−→∗Πu:C2D2.
Using Lemma 15, Awh−→∗Πu:C1.D1 and B

wh−→∗Πu:C2D2.
By definition of ≈, Γ ` C1 = C2 : Type and Γ, u:C1 ` D1 = D2 : Type.
Similarly, the parts of the definition of ≈ pertaining to (and & are satisfied.
So, Γ ` A′ ≈ B′ : Type.

12

Case: K = Πu:C.K ′.
Suppose Γ; ε `M1 = M2 : C.
By definition of ≈, Γ ` AM1 ≈ BM2 : K ′[M1/u].
Observe that A′M1

wh−→ AM1 and B′M2
wh−→ BM2 and K ′[M1/u] is smaller than K.

Thus by the i.h., Γ ` A′M1 ≈ B′M2 : K ′[M1/u].
So, by definition of ≈, Γ ` A′ ≈ B′ : K.

�
The next lemma, which allows equal substitutions to be extended to map a new variable to equal terms,

will be required for some of the later lemmas leading up to the main lemma of this section, as well as for
the main lemma itself.

Lemma 18 If Γ′ ` γ1 = γ2 : Γ and Γ′; ε ` M1 = M2 : γ1A and ` Γ context and u /∈ Dom(Γ), then
Γ′ ` γ1[u 7→M1] = γ2[u 7→M2] : Γ, u:A.

The next thing we need to establish is that the logical relation on families is symmetric. (Symmetry
of the relation on kinds is obvious.) To overcome the asymmetry in the way substitutions are applied to
kinds in the definition of the relation, we first prove the following lemma which states that performing equal
substitutions on a kind will produce results that are logically related.

Lemma 19 (Equivalent Substitutions of a Valid Kind are Logically Related) If Γ ` K : kind and
Γ′ ` γ1 = γ2 : Γ and ` Γ context and Γ′ ` A ≈ B : γ1K, then Γ′ ` A ≈ B : γ2K.

Proof: By induction on the derivation of Γ ` K : kind.

Case: Γ ` K : kind because K = Type. Then γ1K = γ2K, so the lemma trivially holds.

Case: Γ ` K : kind because K = Πx:C.K ′, Γ ` C : Type and Γ, x:C ` K ′ : kind.

WLOG, we may assume x /∈ Dom(Γ),Dom(Γ′), so ` Γ, x:C context.
Suppose that Γ′; ε `M1 = M2 : γ2C. We need to show that Γ′ ` AM1 ≈ BM2 : (γ2K

′)[M1/x].
By Lemma 8, Γ′ ` γ2C = γ1C : Type, since equality of substitutions is symmetric.
By the type conversion rule, Γ′; ε `M1 = M2 : γ1C.
From the assumption, Γ′ ` AM1 ≈ BM2 : (γ1K

′)[M1/x].
For i = 1, 2, let γ′i = γi[x7→M1].
Now, Γ′ ` AM1 ≈ BM2 : γ′1K

′.
By symmetry and transitivity, Γ′; ε `M1 = M1 : γ1C.
By Lemma 18, Γ′ ` γ′1 = γ′2 : Γ, x:C.
By the induction hypothesis, Γ′ ` AM1 ≈ BM2 : γ′2K

′.
That is, Γ′ ` AM1 ≈ BM2 : (γ2K

′)[M1/x], which is what we needed.

�
Now we can prove that the logical relation is symmetric.

Lemma 20 (Symmetry of the Logical Relations) If Γ ` K : kind and ` Γ context and Γ ` B ≈ A : K,
then Γ ` A ≈ B : K.

Proof: By induction on the size (number of Π’s) of K.

Case: K = Type. There are several things to show. We will show the parts concerning reduction to
Π-families; the others are similar.

– A weak head reduces to a Π-family (or a (-family or a &-family) iff B does, by definition of ≈
and the assumption that Γ ` B ≈ A : Type.

13

– Suppose that Awh−→∗Πu:C1.D1 and B
wh−→∗Πu:C2.D2. WLOG, we may assume u /∈ Dom(Γ).

By the assumption, Γ ` C2 = C1 : Type.
By the symmetry rule, Γ ` C1 = C2 : Type, as required.
By the assumption, Γ, u:C2 ` D2 = D1 : Type.
By Lemma 10, Γ ` C1 : Type and Γ ` C2 : Type.
Hence, ` Γ, u:C2 context.
By Lemma 7, Γ, u:C1 ` D2 = D1 : Type.
by the symmetry rule, Γ, u:C1 ` D1 = D2 : Type, as required.

Case: K = Πu:C.K ′.
Suppose Γ; ε `M1 = M2 : C.
By the symmetry rule, Γ; ε `M2 = M1 : C.
By definition of ≈, Γ ` BM2 ≈ AM1 : K ′[M2/u].
By the i.h., Γ ` AM1 ≈ BM2 : K ′[M2/u].
Using Lemma 3, Γ ` idΓ = idΓ : Γ.
By Lemma 18, Γ ` idΓ[u 7→M2] = idΓ[u 7→M1] : Γ, u:C.
By Lemma 13, Γ ` C : Type and Γ, u:C ` K ′ : kind.
Hence, ` Γ, u:C context.
By Lemma 19, Γ ` AM1 ≈ BM2 : K ′[M1/u].
Hence by definition of ≈, Γ ` A ≈ B : K.

�
Finally, the following lemma handles the transitivity case in the proof of the main theorem of this section.

Lemma 21 (Transitivity of the Logical Relations) If ` Γ context and Γ ` A ≈ C : K and Γ ` C ≈
B : K, then Γ ` A ≈ B : K.

Proof: By induction on the size (number of Π’s) of K.

Case: K = Type. There are several things to show. The parts concerning reduction to (- and
&-families are similar to those for Π-families, so we omit them here.

– Suppose B weak head reduces to a Π-family. By assumption, so does C. By the other assumption,
so does A.
Similarly, if A weak head reduces to a Π-family, so does B.

– Suppose that Awh−→∗Πu:D1E1 and B
wh−→∗Πu:D2E2.

(WLOG, we may assume u /∈ Dom(Γ).)
By an assumption, C wh−→∗Πu:D3E3.
Also, Γ ` D1 = D3 : Type and Γ ` D3 = D2 : Type.
By the transitivity rule, Γ ` D1 = D2 : Type, as required.
By the assumptions again, Γ, u:D1 ` E1 = E3 : Type and Γ, u:D3 ` E3 = E2 : Type.
By Lemma 10, Γ ` D1 : Type and Γ ` D3 : Type.
Hence, ` Γ, u:D3 context.
By Lemma 7, Γ, u:D1 ` E3 = E2 : Type.
By the transitivity rule, Γ, u:D1 ` E1 = E2 : Type.

Case: K = Πu:F.K ′.
Suppose Γ; ε `M1 = M2 : F .
By Lemma 10, Γ; ε `M1 : F .
By the reflexivity rule, Γ; ε `M1 = M1 : F .
By the assumptions, Γ ` AM1 ≈ CM1 : K ′[M1/u] and Γ ` CM1 ≈ BM2 : K ′[M1/u].
By the i.h., Γ ` AM1 ≈ BM2 : K ′[M1/u], as required.

�
Now we can prove that all definitionally equal families and kinds are logically related under equal substi-

tutions. Since identity substitutions are equal to themselves, this implies that definitionally equal families
and kinds are logically related. The injectivity property follows easily.

14

Lemma 22 (Definitionally Equal Terms are Logically Related under Subsitutions)

1. If Γ ` A1 = A2 : K and Γ′ ` γ1 = γ2 : Γ and ` Γ context then Γ′ ` γ1A1 ≈ γ2A2 : γ1K.

2. If Γ ` K1 = K2 : kind and Γ′ ` γ1 = γ2 : Γ and ` Γ context then Γ′ ` γ1K1 ≈ γ2K2 : kind.

Proof: By induction on derivations.

Case:
Γ ` a = a : K

(S(a) = K)

Since S is well-formed, K is closed.
By Lemma 16, Γ′ ` a ≈ a : K.
Since a and K are closed, Γ′ ` γ1a ≈ γ2a : γ1K.

Case:
Γ ` > = > : Type

Note that γi> = > and γiType = Type.
Also, > cannot weak-head reduce to anything but itself.
Thus by definition, Γ ` γ1> ≈ γ2> : γ1Type.

Case:
Γ ` A1 = A2 : Type Γ, u:A1 ` B1 = B2 : Type

Γ ` Πu:A1.B1 = Πu:A2.B2 : Type

WLOG, assume u /∈ Dom(Γ′).
Need to show Γ′ ` Πu:γ1A1.γ1B1 ≈ Πu:γ2A2.γ2B2 : Type.
Observe that both of these trivially reduce to Π-families, and that neither will ever reduce to a (- or &-
family.
Also, neither may reduce to any Π-family but itself; that is, if Πu:γiAi.γiBi

wh−→∗Πu:Ci.Di then Ci = γiAi
and Di = γiBi.
So, we must show that Γ′ ` γ1A1 = γ2A2 : Type and Γ, u:γ1A1 ` γ1B1 = γ2B2 : Type.
By Lemma 11, Γ′ ` γ1A1 = γ2A2 : Type, as required.
By Lemma 10, Γ′ ` γ1A1 : Type. Thus ` Γ′, u:γ1A1 context.
By Lemma 10, Γ ` A1 : Type.
Thus, ` Γ, u:A context.
By Lemma 5, Γ′, u:γ1A1 ` γ1[u 7→u] = γ2[u 7→u] : Γ, u:A1.
By Lemma 11, Γ′, u:γ1A1 ` γ1[u 7→u]B1 = γ2[u 7→u]B2 : Type.
That is, Γ′, u:γ1A ` γ1B1 = γ2B2 : Type, as required.

Case:
Γ ` A1 = A2 : Type Γ ` B1 = B2 : Type

Γ ` A1 (B1 = A2 (B2 : Type

We need to show Γ′ ` γ1A1 (γ1B1 ≈ γ2A2 (γ2B2 : Type.
Observe that both of these trivially reduce to a (-family, and that neither will ever reduce to a Π- or
&-family.
In fact, neither may reduce to any family but itself; thus, if γiAi (γiBi

wh−→∗Ci (Di then Ci = γiAi and
Di = γiBi.
So, we must show that Γ′ ` γ1A1 = γ2A2 : Type and Γ′ ` γ1B1 = γ2B2 : Type.
This follows by Lemma 11.

Case:
Γ ` A1 = A2 : Type Γ ` B1 = B2 : Type

Γ ` A1 & B1 = A2 & B2 : Type

15

Similar to the previous case.

Case:
Γ ` A1 = A : Type Γ ` A2 = A : Type Γ, u:A ` B1 = B2 : K

Γ ` λu:A1.B1 = λu:A2.B2 : Πu:A.K

WLOG, assume u /∈ Dom(Γ),Dom(Γ′).
Need to show Γ′ ` λu:γ1A1.γ1B1 ≈ λu:γ2A2.γ2B2 : Πu:γ1A.γ1K.
So, suppose Γ′; ε `M1 = M2 : γ1A.
Since Γ ` A : Type, we know ` Γ, u:A context.
By Lemma 18, Γ′ ` γ1[u 7→M1] = γ2[u 7→M2] : Γ, u:A.
By the i.h., Γ′ ` γ1[u 7→M1]B1 ≈ γ2[u 7→M2]B2 : γ1[u 7→M1]K.
That is, Γ′ ` (γ1B1)[M1/u] ≈ (γ2B2)[M2/u] : γ1K[M1/u].
Now, note that (λu:γiAi.γiBi)Mi

wh−→ (γiBi)[Mi/u].
Thus by Lemma 17, Γ′ ` (λu:γ1A1.γ1B1)M1 ≈ (λu:γ2A2.γ2B2)M2 : γ1K[M1/u].
By definition of ≈, Γ′ ` λu:γ1A1.γ1B1 ≈ λu:γ2A2.γ2B2 : Πu:γ1A.γ1K.

Γ ` A1 = A2 : Πu:B.K Γ; ε `M1 = M2 : B
Γ ` A1M1 = A2M2 : K[M1/u]

By the i.h., Γ′ ` γ1A1 ≈ γ2A2 : Πu:γ1B.γ1K.
By Lemma 11, Γ′; ε ` γ1M1 = γ2M2 : γ1B.
By definition of ≈, Γ′ ` (γ1A1) (γ1M1) ≈ (γ2A2) (γ2M2) : γ1K[γ1M1/u].
That is, Γ′ ` γ1(A1M1) ≈ γ2(A2M2) : γ1(K[M1/u]).

Case:
Γ ` B = A : K
Γ ` A = B : K

Since equality of substitutions is symmetric, Γ′ ` γ2 = γ1 : Γ.
By the i.h., Γ′ ` γ2B ≈ γ1A : γ2K.
By Lemma 20, Γ′ ` γ1A ≈ γ2B : γ2K.
By Lemma 19, Γ′ ` γ1A ≈ γ2B : γ1K.

Case:
Γ ` A = C : K Γ ` C = B : K

Γ ` A = B : K

Using symmetry and transitivity, Γ′ ` γ1 = γ1 : Γ.
By the i.h., Γ′ ` γ1A ≈ γ1C : γ1K and Γ′ ` γ1C ≈ γ2B : γ1K.
By Lemma 21, Γ ` γ1A ≈ γ2B : γ1K.

Case:
Γ ` B : Type Γ, u:B ` A1 = A2 : K Γ; ε `M1 = M2 : B

Γ ` (λu:B.A1)M1 = A2[M2/u] : K[M1/u]

WLOG, assume u /∈ Dom(Γ),Dom(Γ′).
Need to show Γ′ ` (λu:γ1B.γ1A1) γ1M1 ≈ (γ2A2)[γ2M2/u] : (γ1K)[γ1M1/u].
By Lemma 11, Γ′; ε ` γ1M1 = γ2M2 : γ1B.
Since Γ ` B : Type, we have ` Γ, x:B context.
By A LEMMA, Γ′ ` γ1[u 7→γ1M1] = γ2[u 7→γ2M2] : Γ, u:B.
By the i.h., Γ′ ` γ1[u 7→γ1M1]A1 ≈ γ2[u 7→γ2M2]A2 : γ1[u 7→γ1M1]K.
That is, Γ′ ` (γ1A1)[γ1M1/u] ≈ (γ2A2)[γ2M2/u] : (γ1K)[γ1M1/u].
Note that (λu:γ1B.γ1A1) γ1M1

wh−→ (γ1A1)[γ1M1/u].
Thus by Lemma 17, Γ′ ` (λu:γ1B.γ1A1) γ1M1 ≈ (γ2A2)[γ2M2/u] : (γ1K)[γ1M1/u].

16

Case:
Γ ` B : Type Γ ` A1 : Πu:B.K Γ ` A2 : Πu:B.K Γ, u:B ` A1 u = A2 u : K

Γ ` A1 = A2 : Πu:B.K

WLOG, assume u /∈ Dom(Γ),Dom(Γ′).
Need to show Γ′ ` γ1A1 ≈ γ2A2 : Πu:γ1B.γ1K.
So, suppose, Γ′ `M1 = M2 : γ1B.
Since Γ ` B : Type, we have ` Γ, u:B context.
By Lemma 18, Γ′ ` γ1[u 7→M1] = γ2[u 7→M2] : Γ, u:B.
By the i.h., Γ′ ` γ1[u 7→M1](A1 u) ≈ γ2[u 7→M2](A2 u) : γ1[u 7→M1]K.
That is, Γ′ ` (γ1A1)M1 ≈ (γ2A2)M2 : γ1K.
By definition of ≈, Γ′ ` γ1A1 ≈ γ2A2 : Πu:γ1B.γ1K.

Case:
Γ ` A1 = A2 : K ′ Γ ` K ′ = K : kind

Γ ` A1 = A2 : K

Using symmetry and transitivity, Γ′ ` γ1 = γ1 : Γ.
By the i.h., Γ′ ` γ1K

′ ≈ γ1K : kind and Γ′ ` γ1A1 ≈ γ2A2 : γ1K
′.

By definition of ≈ for kinds, Γ ` γ1A1 ≈ γ2A2 : γ1K.

Case:
Γ ` Type = Type : kind

Note that γ1Type = γ2Type = Type.
Trivially, Γ′ ` A ≈ B : Type iff Γ′ ` A ≈ B : Type.

Case:
Γ ` A1 = A2 : Type Γ, u:A1 ` K1 = K2 : kind

Γ ` Πu:A1.K1 = Πu:A.K2 : kind

WLOG, assume u /∈ Dom(Γ),Dom(Γ′).
Need to show Γ′ ` Πu:γ1A1.γ1K1 ≈ Πu:γ2A2.γ2K2 : kind,
i.e., Γ′ ` C1 ≈ C2 : Πu:γ1A1.γ1K1 iff Γ′ ` C1 ≈ C2 : Πu:γ2A2.γ2K2.
(We will only show one direction. The other is similar, except for one additional use of the symmetry rule
for family equality.)
Suppose Γ′ ` C1 ≈ C2 : Πu:γ2A2.γ2K2.
Need to show Γ′ ` C1 ≈ C2 : Πu:γ1A1.γ1K1.
So, suppose Γ′; ε `M1 = M2 : γ1A1.
Need to show Γ′ ` C1M1 ≈ C2M2 : (γ1K1)[M1/u].
By Lemma 1, Γ′ ` γ1A1 = γ2A2 : Type.
By the type conversion rule, Γ′; ε `M1 = M2 : γ2A2.
Using an assumption, Γ′ ` C1M1 ≈ C2M2 : (γ2K2)[M1/u].
By Lemma 10, Γ ` A1 : Type, so ` Γ, u:A1 context.
For i = 1, 2, define γ′i = γi[u 7→M1]. Then (γiKi)[M1/u] = γ′iKi.
Using regularity, reflexivity, and Lemma 18, Γ′ ` γ′1 = γ′2 : Γ, u:A1.
By the I.H., Γ′ ` γ′1K1 ≈ γ′2K2 : kind.
Therefore, since Γ′ ` C1M1 ≈ C2M2 : γ′2K2, Γ′ ` C1M1 ≈ C2M2 : γ′1K1.
That is, Γ′ ` C1M1 ≈ C2M2 : (γ1K1)[M1/u] as required.

Case:
Γ ` K2 = K1 : kind

Γ ` K1 = K2 : kind

Using regularity, symmetry, substitution and type conversion, Γ′ ` γ2 = γ1 : Γ.
By the i.h., Γ ` γ2K2 ≈ γ1K1 : kind.

17

So Γ′ ` A ≈ B : γ2K2 iff Γ′ ` A ≈ B : γ1K1.
In other words, Γ′ ` γ1K1 ≈ γ2K2 : kind.

Case:
Γ ` K1 = K3 : kind Γ ` K3 = K2 : kind

Γ ` K1 = K2 : kind

Using various lemmas, Γ′ ` γ1 = γ1 : Γ.
By the i.h., Γ′ ` γ1K1 ≈ γ1K3 : kind and Γ′ ` γ1K3 ≈ γ2K2 : kind.
So, Γ′ ` A ≈ B : γ1K1 iff Γ′ ` A ≈ B : γ1K3 iff Γ′ ` A ≈ B : γ2K2.
So, Γ′ ` γ1K1 ≈ γ2K2 : kind.

�

Theorem 1 (Injectivity)

1. If Γ ` Πu:A1.A2 = Πu:B1.B2 : Type and ` Γ context then Γ ` A1 = B1 : Type and Γ, u:A1 ` A2 =
B2 : Type.

2. If Γ ` A1 (A2 = B1 (B2 : Typeand ` Γ context then Γ ` A1 = B1 : Type and Γ ` A2 = B2 : Type.

3. If Γ ` A1 & A2 = B1 & B2 : Type and ` Γ context then Γ ` A1 = B1 : Type and Γ ` A2 = B2 : Type.

Proof: Direct, using Lemma 22 and the definition of ≈.
�

5 Equality Algorithm

5.1 Erasure

To avoid serious difficulties with dependencies on terms, the algorithm and Kripke logical relation presented
by HP use simple types and simple kinds in place of ordinary families and kinds. Not only are the type-
directed phase of HP’s algorithm directed by simple types and the Kripke logical relation indexed by simple
types and kinds, but the contexts (or “worlds”) in both the algorithmic judgments and the logical relation
give only simple types to variables. The process of erasing ordinary families and kinds into simple ones
effectively identifies types that differ only in the terms that appear in them.

We adopt this practice of erasure as well, extending it to erase the distinction between intuitionistic and
linear assumptions in a context. The need for this arises because of the splitting of the linear context that
occurs in the typing and definitional equality rules for linear function applications. If this context-splitting
were to be enforced in the algorithmic judgments, then the transitivity proof for those judgments would be
upset by the possibility that different derivations mentioning the same linear application term might split
the context differently.

Essentially, we want to avoid this problem by not requiring the algorithmic equality rule for linear
applications to split the linear context. Such a change by itself would destroy the property that every
linear assumption in a judgment must be used, so we also have to remove the restriction on linear variable
use. However, this leaves us with two separate contexts that are treated in exactly the same way, so we
go a step further and combine the intuitionistic and linear contexts into one. Consequently there is no
distinction between intuitionistic and linear assumptions in the algorithm or logical relation. This does not
affect soundness, since we only wish to prove the algorithm sound for well-typed terms, which must respect
linearity.

5.1.1 Grammar for Simple Kinds, Types and Contexts

Our grammar for families and kinds with no term dependencies, and contexts that combine intuitionistic
and linear assumptions, is as follows.

Simple Kinds κ ::= t− | τ → κ
Simple Types τ ::= α | τ1 → τ2 | τ1 (τ2 | τ1 & τ2 | >
Simple Contexts Σ ::= ε | Σ, u:τ

18

Σ `M1 ⇐⇒M2 : τ Type-Directed Object Equality
Σ `M1 ←→M2 : τ Structural Object Equality
Σ ` A1 ⇐⇒ A2 : κ Kind-Directed Family Equality
Σ ` A1 ←→ A2 : κ Structural Family Equality
Σ ` K1 ←→ K2 : kind− Algorithmic Kind Equality

Figure 1: Algorithmic Equality Judgment Forms

5.1.2 Erasing Kinds, Types and Contexts

The erasure function (·)− maps ordinary families, kinds and contexts to simple ones.

(a)− = α (Type)− = t−

(λu:A1.A2)− = A−2 (Πu:A.K)− = A− → K−

(AM)− = A−

(Πu:A1.A2)− = A−1 → A−2 (ε)− = ε
(A1 (A2)− = A−1 (A−2 (Γ, u:A)− = Γ−, u:A−

(A1 & A2)− = A−1 & A−2 (∆, û:A)− = ∆−, u:A−

(>)− = >

To validate our intuition that erasure should remove all dependencies on terms, we prove the following
lemma which states that substitutions into a family do not affect its erasure.

Lemma 23 (Erasure Preservation: Substitution)
For any family A, variable u and object M , (A[M/u])− = (A)−.

Proof: By structural induction on A.
�

Another useful feature of erasure is that definitionally equal families and kinds have identical erasures.

Lemma 24 (Erasure Preservation: Equality)

1. If Γ ` A = B : K, then A− = B−.

2. If Γ ` K = L : kind, then K− = L−.

Proof: By induction on the equality derivation.
�

5.2 The Equality Algorithm

Our algorithmic equality judgment forms are shown in Figure 1. For objects and families we give both
classifier-directed rules (that is, type-directed rules for comparing objects and kind-directed rules for com-
paring families) and structural rules. The classifier-directed rules apply extensionality until a base classifier
is reached, then reduce to weak head normal form and compare structurally. The structural rules compare
the constant, variable or primitive head and revert to the classifier-directed phase of the algorithm for any
other subterms. Since there are no classifiers for kinds (or, put another way, every kind is of the same sort),
we only need structural rules to compare kinds.

Intuitively, the classifier-directed portion of the algorithm takes a context, two terms, and a classifier
and attempts to derive the corresponding algorithmic equality judgment, returning either success or failure;
the structural portion takes a context and two terms in weak-head normal form and attempts to synthesize
a simple type or kind for which the structural equality judgment is derivable, returning that classifier if it
exists.

Notice that the algorithm ignores all issues of linearity. There is no distinction between intuitionistic and
linear assumptions—the algorithm does not enforce any restrictions on the number of times something may

19

be used—and the structural rule for linear applications does not split the context. Later, we will see that in
the soundness proof, all the necessary information about allocation of linear assumptions is extracted from
the typing derivations rather than the derivations of algorithmic equality.

Type-Directed Object Equality (Σ `M1 ⇐⇒M2 : τ)

M
wh−→M ′ Σ `M ′ ⇐⇒ N : α

Σ `M ⇐⇒ N : α
N

wh−→ N ′ Σ `M ⇐⇒ N ′ : α
Σ `M ⇐⇒ N : α

Σ `M ←→ N : α
Σ `M ⇐⇒ N : α

Σ, u:τ1 `M u⇐⇒ N u : τ2
Σ `M ⇐⇒ N : τ1 → τ2

Σ, u:τ1 `Mˆu⇐⇒ Nˆu : τ2
Σ `M ⇐⇒ N : τ1 (τ2 Σ `M ⇐⇒ N : >

Σ ` π1M ⇐⇒ π1N : τ1 Σ ` π2M ⇐⇒ π2N : τ2
Σ `M ⇐⇒ N : τ1 & τ2

Structural Object Equality (Σ `M1 ←→M2 : τ)

Σ ` u←→ u : τ
(Σ(u) = τ)

Σ ` c←→ c : A−
(S(c) = A) Σ `M1 ←→M2 : τ1 & τ2

Σ ` πiM1 ←→ πiM2 : τi

Σ `M1 ←→M2 : τ2 → τ1 Σ ` N1 ⇐⇒ N2 : τ2
Σ `M1N1 ←→M2N2 : τ1

Σ `M1 ←→M2 : τ2 (τ1 Σ ` N1 ⇐⇒ N2 : τ2
Σ `M1ˆN1 ←→M2ˆN2 : τ1

Kind-Directed Family Equality (Σ ` A1 ⇐⇒ A2 : κ)

A
wh−→ A′ Σ ` A′ ⇐⇒ B : t−

Σ ` A⇐⇒ B : t−
B

wh−→ B′ Σ ` A⇐⇒ B′ : t−

Σ ` A⇐⇒ B : t−

Σ ` A←→ B : t−

Σ ` A⇐⇒ B : t−
Σ, u:τ ` Au⇐⇒ B u : κ

Σ ` A⇐⇒ B : τ → κ

Structural Family Equality (Σ ` A1 ←→ A2 : κ)

Σ ` a←→ a : K−
(S(a) = K)

Σ ` A1 ⇐⇒ A2 : t− Σ ` B1 ⇐⇒ B2 : t−

Σ ` A1 (B1 ←→ A2 (B2 : t−

Σ ` A1 ←→ A2 : τ → κ Σ `M1 ⇐⇒M2 : τ
Σ ` A1M1 ←→ A2M2 : κ

Σ ` A1 ⇐⇒ A2 : t− Σ ` B1 ⇐⇒ B2 : t−

Σ ` A1 & B1 ←→ A2 & B2 : t−

Σ ` A1 ⇐⇒ A2 : t− Σ, u:A−1 ` B1 ⇐⇒ B2 : t−

Σ ` Πu:A1.B1 ←→ Πu:A2.B2 : t− Σ ` > ←→ > : t−

Structural Kind Equality (Σ ` K1 ←→ K2 : kind−)

Σ ` t− ←→ t− : kind−
Σ ` A1 ⇐⇒ A2 : t− Σ, u:A−1 ` K1 ←→ K2 : kind−

Σ ` Πu:A1.K1 ←→ Πu:A2.K2 : kind−

20

5.3 Some Properties of Algorithmic Equality

There are some elementary properties of the algorithmic equality judgments that may be proved immediately.
We begin with weakening, which is easy to prove for the algorithmic judgments since they do not pay attention
to linearity.

Lemma 25 (Weakening for Algorithmic Equality) Let J be any algorithmic equality judgment. If
Σ,Σ′ ` J then Σ, u:τ,Σ′ ` J .

Proof: Straightforward, by induction on derivations.
�

The division of the algorithm into classifier-directed and structural rules constrains the structure of
algorithmic equality derivations in a useful way. In particular, only weak head normal forms can be equated
by the structural rules, and the context and terms in the structural judgments uniquely determine the
classifier. These properties are formalized in the following lemma, which we call Determinacy because
it essentially guarantees that no non-deterministic choices need ever be made in a bottom-up search for
algorithmic equality derivations. For that reason, the lemma will play a role in proving decidability of
equality, but we need it first to establish transitivity.

Lemma 26 (Determinacy of Algorithmic Equality)

1. If Σ `M ←→ N : τ then there is no M ′ such that M wh−→M ′.

2. If Σ `M ←→ N : τ then there is no N ′ such that N wh−→ N ′.

3. If Σ ` A←→ B : κ then there is no A′ such that A wh−→ A′.

4. If Σ ` A←→ B : κ then there is no B′ such that B wh−→ B′.

5. If Σ `M ←→ N : τ and Σ `M ←→ N ′ : τ ′ then τ = τ ′.

6. If Σ ` A←→ B : κ and Σ ` A←→ B′ : κ′ then κ = κ′.

Proof: By induction on the given derivations.
�

In order to prove the algorithmic equality relation is symmetric, we need another erasure preservation
result in addition to Lemmas 23 and 24: the following lemma states that algorithmically equal families have
the same erasure. Later, this will appear to be a trivial consequence of soundness and Lemma 24, but it is
not difficult to prove directly. With this lemma established, the proof of symmetry is not complicated. The
transitivity proof requires careful case analysis on the two derivations, using determinacy to rule out some
cases that are impossible.

Lemma 27 (Erasure Preservation: Algorithmic Equality)

1. If Σ ` A⇐⇒ B : t−, then A− = B−.

2. If Σ ` A←→ B : κ, then A− = B−.

3. If A wh−→ B, then A− = B−.

Proof: By induction on the given derivation.
�

Lemma 28 (Symmetry of Algorithmic Equality)

1. If Σ `M ⇐⇒ N : τ then Σ ` N ⇐⇒M : τ .

2. If Σ `M ←→ N : τ then Σ ` N ←→M : τ .

21

3. If Σ ` A⇐⇒ B : κ then Σ ` B ⇐⇒ A : κ.

4. If Σ ` A←→ B : κ then Σ ` B ←→ A : κ.

5. If Σ ` K ←→ L : kind− then Σ ` L←→ K : kind−.

Proof: By induction on the given derivations. The proof is entirely straightforward, except that Lemma 27
is required for the cases of structural comparison of dependent products. The case for product kinds is
similar to that for product families, so we will only show the latter.

Case:
Σ ` A1 ⇐⇒ A2 : t− Σ, u:A−1 ` B1 ⇐⇒ B2 : t−

Σ ` Πu:A1.B1 ←→ Πu:A2.B2 : t−

By the i.h. on the first subderivation, Σ ` A2 ⇐⇒ A1 : t−.
By the i.h. on the second subderivation, Σ, u:A−1 ` B2 ⇐⇒ B1 : t−.
By Lemma 27, A−1 = A−2 , so Σ, u:A−2 ` B2 ⇐⇒ B1 : t−.
By the same rule, Σ ` Πu:A2.B2 ←→ Πu:A1.B1 : t−.

�

Lemma 29 (Transitivity of Algorithmic Equality)

1. If Σ `M ⇐⇒ N : τ and Σ ` N ⇐⇒ O : τ , then Σ `M ⇐⇒ O : τ .

2. If Σ `M ←→ N : τ and Σ ` N ←→ O : τ , then Σ `M ←→ O : τ .

3. If Σ ` A⇐⇒ B : κ and Σ ` B ⇐⇒ C : κ, then Σ ` A⇐⇒ C : κ.

4. If Σ ` A←→ B : κ and Σ ` B ←→ C : κ, then Σ ` A←→ C : κ.

5. If Σ ` K ←→ L : kind− and Σ ` L←→ L′ : kind−, then Σ ` K ←→ L′ : kind−.

Proof: By simultaneous induction on the two given derivations, using determinacy (Lemmas 15 and 26).
We will show several cases; the others are all straightforward.

Case: The first derivation ends with

M
wh−→M ′ Σ `M ′ ⇐⇒ N : α

Σ `M ⇐⇒ N : α

By the i.h., Σ `M ′ ⇐⇒ O : α.
By the same rule, Σ `M ⇐⇒ O : α.

Case: The second derivation ends with

O
wh−→ O′ Σ ` N ⇐⇒ O′ : α

Σ ` N ⇐⇒ O : α

By the i.h., Σ `M ⇐⇒ O′ : α.
By the same rule, Σ `M ⇐⇒ O : α.

Case:
N

wh−→ N ′ Σ `M ⇐⇒ N ′ : α
Σ `M ⇐⇒ N : α and

N
wh−→ N ′′ Σ ` N ′′ ⇐⇒ O : α

Σ ` N ⇐⇒ O : α

By Lemma 15, part (1), N ′ = N ′′.
Thus, we may apply the i.h. and get Σ `M ⇐⇒ N : α.

22

Case:
N

wh−→ N ′ Σ `M ⇐⇒ N ′ : α
Σ `M ⇐⇒ N : α and

Σ ` N ←→ O : α
Σ ` N ⇐⇒ O : α

This case is impossible by Lemma 26, part (1).
The symmetric case is impossible by part (2) of the same lemma.

Case:
Σ `M ′ ←→ N ′ : τ2 → τ1 Σ `M ′′ ⇐⇒ N ′′ : τ2

Σ `M ′M ′′ ←→ N ′N ′′ : τ1

and
Σ ` N ′ ←→ O′ : τ3 → τ1 Σ ` N ′′ ⇐⇒ O′′ : τ3

Σ ` N ′N ′′ ←→ O′O′′ : τ1

By Lemmas 28 and 26, τ2 = τ3.
By the i.h., Σ `M ′ ←→ O′ : τ2 → τ1 and Σ `M ′′ ⇐⇒ O′′ : τ2.
By the same rule, Σ `M ′M ′′ ←→ O′O′′ : τ1.

Case:
Σ `M1 ←→M2 : τ2 (τ1 Σ ` N1 ⇐⇒ N2 : τ2

Σ `M1ˆN1 ←→M2ˆN2 : τ1

and
Σ `M2 ←→M3 : τ ′2 (τ1 Σ ` N2 ⇐⇒ N3 : τ ′2

Σ `M2ˆN2 ←→M3ˆN3 : τ1

Similar to the previous case.

Case:
Σ `M ′ ←→ N ′ : τ1 & τ2
Σ ` π1M

′ ←→ π1N
′ : τ1 and

Σ ` N ′ ←→ O′ : τ1 & τ ′2
Σ ` π1N

′ ←→ π1O
′ : τ1

By Lemmas 28 and 26, τ2 = τ ′2.
By the i.h., Σ `M ′ ←→ O′ : τ1 & τ2.
By the same rule, Σ ` π1M

′ ←→ π1O
′ : τ1

Case:
Σ `M ′ ←→ N ′ : τ1 & τ2
Σ ` π2M

′ ←→ π2N
′ : τ2 and

Σ ` N ′ ←→ O′ : τ ′1 & τ2

Σ ` π2N
′ ←→ π2O

′ : τ2

Similar to the previous case.

Case: The first derivation ends with

A
wh−→ A′ Σ ` A′ ⇐⇒ B : t−

Σ ` A⇐⇒ B : t−

By the i.h., Σ ` A′ ⇐⇒ C : t−.
By the same rule, Σ ` A⇐⇒ C : t−.

Case: The second derivation ends with

C
wh−→ C ′ Σ ` B ⇐⇒ C ′ : t−

Σ ` B ⇐⇒ C : t−

Similar to the previous case.

23

Case:
B

wh−→ B′ Σ ` A⇐⇒ B′ : t−

Σ ` A⇐⇒ B : t− and
B

wh−→ B′′ Σ ` B′′ ⇐⇒ C : t−

Σ ` B ⇐⇒ C : t−

By Lemma 15, part (2), B′ = B′′.
Thus, we may apply the i.h. and get Σ ` A⇐⇒ C : t−.

Case:
B

wh−→ B′ Σ ` A⇐⇒ B′ : t−

Σ ` A⇐⇒ B : t− and
Σ ` B ←→ C : t−

Σ ` B ⇐⇒ C : t−

This case is impossible by Lemma 26, part (4).
The symmetric case is impossible by part (5) of the same lemma.

Case:

Σ ` A1 ←→ A2 : τ → κ Σ `M1 ⇐⇒M2 : τ
Σ ` A1M1 ←→ A2M2 : κ and

Σ ` A2 ←→ A3 : τ ′ → κ Σ `M2 ⇐⇒M3 : τ ′

Σ ` A2M2 ←→ A3M3 : κ

By Lemmas 28 and 26, τ = τ ′.
By the i.h., Σ ` A1 ←→ A3 : τ → κ and Σ `M1 ⇐⇒M3 : τ .
By the same rule, Σ ` A1M1 ←→ A3M3 : κ.

Case:

Σ ` A1 ⇐⇒ A2 : t− Σ, u:A−1 ` B1 ⇐⇒ B2 : t−

Σ ` Πu:A1.B1 ←→ Πu:A2.B2 : t− and
Σ ` A2 ⇐⇒ A3 : t− Σ, u:A−2 ` B2 ⇐⇒ B3 : t−

Σ ` Πu:A2.B2 ←→ Πu:A3.B3 : t−

By Lemma 27, A−1 = A−2 .
By the i.h., Σ ` A1 ⇐⇒ A3 : t− and Σ, u:A−1 ` B1 ⇐⇒ B3 : t−.
By the same rule, Σ ` Πu:A1.B1 ←→ Πu:A3.B3 : t−.

Case:
Σ ` A1 ⇐⇒ A2 : t− Σ, u:A−1 ` K1 ←→ K2 : kind−

Σ ` Πu:A1.K1 ←→ Πu:A2.K2 : kind−

and

Σ ` A2 ⇐⇒ A3 : t− Σ, u:A−2 ` K2 ←→ K3 : kind−

Σ ` Πu:A2.K2 ←→ Πu:A3.K3 : kind−

By Lemma 27, A−1 = A−2 .
By the i.h., Σ ` A1 ⇐⇒ A3 : t− and Σ, u:A−1 ` K1 ←→ K3 : kind−.
By the same rule, Σ ` Πu:A1.K1 ←→ Πu:A3.K3 : kind−

�

6 Soundness of Algorithmic Equality

In this section we will prove the soundness result for our algorithm; essentially, we want to show that if two
terms are algorithmically equal then they are definitionally equal. It is clear, however, that this can only be
true for well-typed terms. (Consider the type-directed rule at type >!) Our soundness theorem will therefore
have to require that typing derivations exist for the terms being compared. Since our algorithm does not
enforce the linearity restrictions present in the definitional equality rules, the proof must also rely on the
typing derivations to determine how linear contexts should be split among premises when dealing with linear
function applications.

This can pose some difficulty if the two typing derivations disagree on how the context should be split.
This can’t be avoided, as equal terms may sometimes use their resources differently if unit expressions are

24

involved. For example, in the context ∆ = u:>, v:>, w:>(>(A, the terms (wˆ〈〉)ˆu and (wˆ〈〉)ˆv are
equal, but there is no linear context in which u and v may be simultaneously well-typed, let alone equal.

To solve this problem, we follow a suggestion proposed by Pfenning [8]. The key is to observe that the
way to prove those two problematic applications equal is to use the fact that any variable of type > is equal
to 〈〉. Using this extensionality rule and congruence rules, we prove that both of the above terms are equal to
(wˆ〈〉)ˆ〈〉; thus by transitivity they are equal to each other. But changing an expression of type > into 〈〉 is
just η-expansion, and HP showed that the type-directed algorithm can be instrumented to find η-long forms.
Therefore, the soundness proof should, rather than directly proving the algorithmically equal terms to be
definitionally equal, extract a mediating term and prove that it is definitionally equal to both. Comparison
with HP’s discussion of pseudo-canonical forms strongly suggests that in the classifier-directed cases of the
proof, this mediating term will be canonical except for the type labels on λ-abstractions, but we will not
prove this.

Before we tackle the main soundness theorem, we must prove a subject reduction lemma. We have ex-
pressed this property a little differently from HP, but Regularity (Lemma 10) ensures these two formulations
are equivalent provided all the contexts involved are valid.

Lemma 30 (Subject Reduction)

1. If ` Γ context and Γ ` A : K and A wh−→ A′, then Γ ` A = A′ : K.

2. If ` Γ context and Γ ` ∆ context and Γ; ∆ `M : A and M wh−→M ′, then Γ; ∆ `M = M ′ : A.

Proof: By induction on weak head reduction derivations. Injectivity (Theorem 1) is required in the cases
for the β-reduction axioms for projections and applications. We will show a few representative cases; the
rest are analogous.

Case:

(λ̂u:B.M1)ˆM2
wh−→M1[M2/u]

By Lemma 13, ∆ = (∆1,∆2) where Γ; ∆1 ` λ̂u:B.M1 : A1 (A2 and Γ; ∆2 ` M2 : A1 and Γ ` A2 = A :
Type.
By Lemma 13, Γ ` A1 (A2 = B(A′2 : Type and Γ ` B : Type and Γ; ∆1, û:B `M1 : A′2.
By injectivity, Γ ` A1 = B : Type and Γ ` A2 = A′2 : Type.
By type conversion, Γ; ∆2 `M2 : B.
By reflexivity, Γ; ∆2 `M2 = M2 : B and Γ; ∆1, û:B `M1 = M1 : A′2.
By parallel conversion, Γ; ∆ ` (λ̂u:B.M1)ˆM2 = M1[M2/u] : A′2.
By symmetry and transitivity, Γ ` A′2 = A : Type.
By type conversion, Γ; ∆ ` (λ̂u:B.M1)ˆM2 = M1[M2/u] : A.

Case:
M1

wh−→M ′1

M1ˆM2
wh−→M ′1ˆM2

By Lemma 13, ∆ = (∆1,∆2) where Γ; ∆1 `M1 : A1 (A2 and Γ; ∆2 `M2 : A1 and Γ ` A2 = A : Type.
By the i.h., Γ; ∆1 `M1 = M ′1 : A1 (A2.
By reflexivity, Γ; ∆2 `M2 = M2 : A1.
By congruence, Γ; ∆ `M1ˆM2 = M ′1ˆM2 : A2.
By type conversion, Γ; ∆ `M1ˆM2 = M ′1ˆM2 : A.

Case:

(λu:A1.A2)M wh−→ A2[M/u]

By Lemma 13, Γ ` λu:A1.A2 : Πu:B1.K1 and Γ; ε `M : B1 and Γ ` K1[M/u] = K : kind.
By Lemma 13, Γ ` Πu:B1.K1 = Πu:A1.K

′
1 : kind and Γ ` A1 : Type and Γ, u:A1 ` A2 : K ′1.

25

By Lemma 14, Γ ` B1 = A1 : Type and Γ, u:B1 ` K1 = K ′1 : kind.
By type conversion, Γ; ε `M : A1.
By reflexivity, Γ; ε `M = M : A1 and Γ, u:A1 ` A2 = A2 : K ′1.
By parallel conversion, Γ ` (λu:A1.A2)M = A2[M/u] : K ′1[M/u].
By reflexivity, Γ; ε `M = M : B1.
By substitution, Γ ` K1[M/u] = K ′1[M/u] : kind.
By symmetry and transitivity, Γ ` K ′1[M/u] = K : kind.
By type conversion, Γ ` (λu:A1.A2)M = A2[M/u] : K.

Case:
A

wh−→ A′

AM
wh−→ A′M

By Lemma 13, Γ ` A : Πu:B1.K1 and Γ; ε `M : B1 and Γ ` K1[M/u] = K : kind.
By the i.h., Γ ` A = A′ : Πu:B1.K1.
By reflexivity, Γ; ε `M = M : B1.
By congruence, Γ ` AM = A′M : K1[M/u].
By type conversion, Γ ` AM = BM : K.

�
Now we can prove the main lemma of this section, which will imply soundness of the algorithm. Given

two terms that are well-formed and algorithmically equal, the proof constructs a term that is definitionally
equal to each of them. Decisions about how the linear context should be split in the definitional equality
derivations are made based on the given typing derivations, and since two separate equality derivations are
being constructed, there is no need to attempt to resolve differences between the two typing derivations.
Soundness of algorithmic equality follows directly from this lemma, using transitivity.

Lemma 31 (Well-Formed Terms that are Algorithmically Equal have Mediating Terms) Assume
` Γ context and, where applicable, Γ ` ∆i context. Assume further that if (û:C) ∈ ∆1 and (û:C ′) ∈ ∆2),
then C = C ′.

1. If Γ; ∆1 `M : A and Γ; ∆2 ` N : A and Σ `M ⇐⇒ N : A− and Γ−,∆−i ⊆ Σ for each i, then there is
some P such that Γ; ∆1 ` P = M : A and Γ; ∆2 ` P = N : A.

2. If Γ; ∆1 ` M : A and Γ; ∆2 ` N : B and Σ ` M ←→ N : τ and Γ−,∆−i ⊆ Σ for each i, then
Γ ` A = B : Type and there is some P such that Γ; ∆1 ` P = M : A and Γ; ∆2 ` P = N : A and
A− = B− = τ .

3. If Γ ` A : K and Γ ` B : K and Γ− ` A⇐⇒ B : K−, then Γ ` A = B : K.

4. If Γ ` A : K and Γ ` B : L and Γ ` A ←→ B : κ, then Γ ` A = B : K and Γ ` K = L : kind and
K− = L− = κ.

5. If Γ ` K : kind and Γ ` L : kind and Γ− ` K ←→ L : kind− then Γ ` K = L : kind.

Proof: By induction on the algorithmic equality derivation, using inversion and injectivity properties.

Case:
M

wh−→M ′ Σ `M ′ ⇐⇒ N : α
Σ `M ⇐⇒ N : α

By Lemma 30, Γ; ∆1 `M = M ′ : A.
By Lemma 10, Γ; ∆1 `M ′ : A.
By the i.h., Γ; ∆1 ` P = M ′ : A and Γ; ∆2 ` P = N : B.
By symmetry and transitivity, Γ; ∆1 ` P = M : A.

26

Case:
N

wh−→ N ′ Σ `M ⇐⇒ N ′ : α
Σ `M ⇐⇒ N : α

Similar to the previous case.

Case:
Σ `M ←→ N : α
Σ `M ⇐⇒ N : α

By the i.h., Γ ` C = A : Type and Γ; ∆1 ` P = M : C and Γ; ∆2 ` P = N : C.
By type conversion, Γ; ∆1 ` P = M : A and Γ; ∆2 ` P = N : A.

Case:
Σ, u:τ1 `M1 u⇐⇒M2 u : τ2

Σ `M1 ⇐⇒M2 : τ1 → τ2

Since A− = τ1 → τ2, A = Πu:A1.A2 where A−1 = τ1 and A−2 = τ2.
By Lemmas 10 and 13, Γ ` A1 : Type, and so ` Γ, u:A1 context.
Thus by weakening and rules, Γ, u:A1 ` ∆i context for each i, and Γ, u:A1; ∆1 `M1 u : A2

and Γ, u:A1; ∆2 ` N1 u : A2.
Also, note that (Γ, u:A1)− ⊆ (Σ, u:τ1).
By the i.h., Γ, u:A1; ∆1 ` P = M1 u : A2 and Γ, u:A1; ∆2 ` P = M2 u : A2.
By symmetry and transitivity, Γ, u:A1; ∆i ` P = P : A2.
Let v be a fresh variable. By renaming, Γ, v:A1; ∆i ` P [v/u] = P [v/u] : A2[v/u].
By weakening, Γ, u:A1, v:A1; ∆i ` P [v/u] = P [v/u] : A2[v/u].
By rule, Γ, u:A1; ε ` u = u : A1.
By parallel conversion, Γ, u:A1; ∆i ` (λv:A1.P [v/u])u = P [v/u][u/v] : A2.
By transitivity, Γ, u:A1; ∆i ` (λv:A1.P [v/u])u = Mi u : A2.
By extensionality (and renaming), Γ; ∆i ` λu:A1.P = Mi : Πu:A1.A2.

Case:
Σ, û:τ1 `M1ˆu⇐⇒M2ˆu : τ2

Σ `M1 ⇐⇒M2 : τ1 (τ2

Since A− = τ1 (τ2, A = A1 (A2 where A−1 = τ1 and A−2 = τ2.
By Lemmas 10 and 13, Γ ` A1 : Type and so Γ ` ∆i, û:A1 context for each i.
By rules, Γ; ∆1, û:A1 `M1ˆu : A2 and Γ; ∆2, û:A1 `M2ˆu : A2.
Also, note that (∆i, û:A1)− ⊆ (Σ, u:τ1).
By the i.h., Γ; ∆1, û:A1 ` P = M1ˆu : A2 and Γ; ∆2, û:A1 ` P = M2ˆu : A2.
By symmetry and transitivity, Γ; ∆i, û:A1 ` P = P : A2.
By rule, Γ; û:A1 ` u = u : A1.
By parallel conversion, Γ; ∆i, û:A1 ` (λ̂u:A1.P)ˆu = P : A2.
By transitivity, Γ; ∆i, û:A1 ` (λ̂u:A1.P)ˆu = Miˆu : A2.
By extensionality, Γ; ∆i ` λ̂u:A1.P = Mi : A1 (A2.

Case:
Σ ` π1M ⇐⇒ π1N : τ1 Σ ` π2M ⇐⇒ π2N : τ2

Σ `M ⇐⇒ N : τ1 & τ2

Since A− = τ1 & τ2, A = A1 & A2 where A−1 = τ1 and A−2 = τ2.
Thus by rules, Γ; ∆1 ` πiM : Ai and Γ; ∆2 ` πiN : Ai, for i = 1, 2.
By the i.h., there exist P1, P2 such that Γ; ∆1 ` P1 = π1M : A1 and Γ; ∆2 ` P1 = π1N : A1 and
Γ; ∆1 ` P2 = π2M : A2 and Γ; ∆2 ` P2 = π2N : A2.
By parallel conversion, Γ; ∆1 ` πi〈P1, P2〉 = πiM : A1 and Γ; ∆2 ` πi〈P1, P2〉 = πiN : A2.
By extensionality, Γ; ∆1 ` 〈P1, P2〉 = M : A1 & A2 and Γ; ∆2 ` 〈P1, P2〉 = N : A1 & A2.

27

Case:
Σ `M ⇐⇒ N : >

Since A− = >, A = >.
By rule, Γ; ∆1 ` 〈〉 : > and Γ; ∆2 ` 〈〉 : >.
Thus by extensionality, Γ; ∆1 ` 〈〉 = M : > and Γ; ∆2 ` 〈〉 = N : >.

Case:
Σ ` u←→ u : τ

(Σ(u) = τ)

Lemma 13 gives two subcases:

Sub-Case: ∆1 = ∆2 = ε, Γ(u) = C, Γ ` C = A : Type and Γ ` C = B : Type.
By symmetry and transitivity, Γ ` A = B : Type. Using erasure preservation, A− = B− = C− = τ .
Let P = u. By rule, Γ; ∆i ` P = u : C. By type conversion, Γ; ∆i ` P = u : A.

Sub-Case: ∆1 = ∆2 = (û:C), Γ ` C = A : Type and and Γ ` C = B : Type.
By symmetry and transitivity, Γ ` A = B : Type.
Using erasure preservation, A− = B− = C− = τ .
Let P = u. By rule, Γ; ∆i ` P = u : C.
By type conversion, Γ; ∆i ` P = u : A.

Case:
Σ `M1 ←→M2 : τ2 → τ1 Σ ` N1 ⇐⇒ N2 : τ2

Σ `M1N1 ←→M2N2 : τ1

By Lemma 13, Γ; ∆1 `M1 : Πu:A2.A1 and Γ; ε ` N1 : A2 and Γ ` A1[N1/u] = A : Type.
Similarly, Γ; ∆2 `M2 : Πu:B2.B1 and Γ; ε ` N2 : B2 and Γ ` B1[N2/u] = B : Type.
By the i.h. on the first subderivation, Γ ` C = Πu:A2.A1 : Type and Γ ` C = Πu:B2.B1 : and Γ; ∆1 ` P =
M1 : C and Γ; ∆2 ` P = M2 : C.
Also (using the definition of erasure), A−1 = B−1 = τ1 and A−2 = B−2 = τ2.
By symmetry and transitivity, Γ ` Πu:A2.A1 = Πu:B2.B1 : Type.
By injectivity, Γ ` A2 = B2 : Type and Γ, u:A2 ` A1 = B1 : Type.
By type conversion, Γ; ε ` N2 : A2 and Γ; ∆1 ` P = M1 : Πu:A2.A1 and Γ; ∆2 ` P = M2 : Πu:A2.A1.
By the i.h. on the second subderivation, Γ; ε ` Q = N1 : A2 and Γ; ε ` Q = N2 : A2.
By functionality, Γ ` A1[Q/u] = A1[N1/u] : Type and Γ ` A1[Q/u] = B1[N2/u] : Type.
By transitivity, Γ ` A1[Q/u] = A : Type and Γ ` A1[Q/u] = B : Type.
By symmetry and transitivity, Γ ` A = B : Type.
By a congruence rule, Γ; ∆1 ` P Q = M1N1 : A1[Q/u] and Γ; ∆2 ` P Q = M2N2 : A1[Q/u].
By type conversion, Γ; ∆i ` P Q = MiNi : A.
Finally, using erasure preservation, A− = B− = τ1.

Case:
Σ `M1 ←→M2 : τ2 (τ1 Σ ` N1 ⇐⇒ N2 : τ2

Σ `M1ˆN1 ←→M2ˆN2 : τ1

By Lemma 13, ∆1 = (∆′1,∆
′′
1) where Γ; ∆′1 `M1 : A2 (A1 and Γ; ∆′′1 ` N1 : A2 and Γ ` A1 = A : Type.

Similarly, ∆2 = (∆′2,∆
′′
2) where Γ; ∆′2 `M2 : B2 (B1 and Γ; ∆′′2 ` N2 : B2 and Γ ` B1 = B : Type.

Observe that Γ ` ∆′i context and Γ ` ∆′′i context, for i = 1, 2.
By the i.h. on the first subderivation, Γ ` C = A2 (A1 : Type and Γ ` C = B2 (B1 : and Γ; ∆′1 ` P =
M1 : C and Γ; ∆′2 ` P = M2 : C.
Also (using the definition of erasure), A−1 = B−1 = τ1 and A−2 = B−2 = τ2.
By symmetry and transitivity, Γ ` A2 (A1 = B2 (B1 : Type.
By injectivity, Γ ` A2 = B2 : Type and Γ ` A1 = B1 : Type.
By symmetry and transitivity, Γ ` A = B : Type.

28

By type conversion, Γ; ∆′′2 ` N2 : A2 and Γ; ∆′1 ` P = M1 : A2 (A1 and Γ; ∆′2 ` P = M2 : A2 (A1.
By the i.h. on the second subderivation, Γ; ∆′′1 ` Q = N1 : A2 and Γ; ∆′′2 ` Q = N2 : A2.
By a congruence rule, Γ; ∆1 ` PˆQ = M1ˆN1 : A1 and Γ; ∆2 ` PˆQ = M2ˆN2 : A1.
By type conversion, Γ; ∆i ` PˆQ = MiˆNi : A.
Finally, using erasure preservation, A− = A−1 = B− = τ1.

Case:
Σ `M1 ←→M2 : τ1 & τ2
Σ ` πiM1 ←→ πiM2 : τi

By inversion, Γ; ∆1 ` M1 : A1 & A2 and Γ; ∆2 ` M2 : B1 & B2 and Γ ` Ai = A : Type and Γ ` Bi = B :
Type.
By the i.h., Γ ` C = A1 & A2 : Type and Γ ` C = B1 & B2 : Type and Γ; ∆1 ` P = M1 : C and
Γ; ∆2 ` P = M2 : C and (A1 & A2)− = (B1 & B2)− = C− = τ1 & τ2.
Using the definition of erasure, A−1 = B−1 = τ1 and A−2 = B−2 = τ2.
By symmetry and transitivity, Γ ` A1 & A2 = B1 & B2 : Type.
By injectivity, Γ ` Ai = Bi : Type.
By symmetry and transitivity, Γ ` A = B : Type.
By transitivity, Γ ` Ai = B : Type.
By type conversion, Γ; ∆1 ` P = M1 : A1 & A2 and Γ; ∆2 ` P = M2 : A1 & A2.
By a congruence rule, Γ; ∆1 ` πiP = πiM1 : Ai and Γ; ∆2 ` πiP = πiM2 : Ai.
By type conversion, Γ; ∆j ` πiP = πiMj : A.

Case:
A

wh−→ A′ Γ− ` A′ ⇐⇒ B : t−

Γ− ` A⇐⇒ B : t−

Since K− = t−, K = Type.
By Lemma 30, Γ ` A = A′ : Type.
By Lemma 10, Γ ` A′ : Type.
By the i.h., Γ ` A′ = B : Type.
By transitivity, Γ ` A = B : Type.

Case:
B

wh−→ B′ Γ− ` A⇐⇒ B′ : t−

Γ− ` A⇐⇒ B : t−

Similar to the previous case.

Case:
Γ− ` A←→ B : t−

Γ− ` A⇐⇒ B : t−

Since K− = t−, K = Type. By the i.h., Γ ` A = B : Type.

Case:
Γ−, u:τ ` Au⇐⇒ B u : κ

Γ− ` A⇐⇒ B : τ → κ

Since K− = τ → κ, K = Πu:C.K ′ where C− = τ and K ′− = κ.
By Lemma 10, Γ ` Πu:C.K ′ : kind.
By Lemma 13, Γ ` C : Type.
Thus by weakening and rules, ` Γ, u:C context and Γ, u:C ` Au : K ′ and Γ, u:C ` B u : K ′.
Also, note that (Γ, u:C)− = (Γ−, u:τ).
By the i.h., Γ, u:C ` Au = B u : K ′.
Thus by extensionality, Γ ` A = B : K.

29

Case:

Γ− ` a←→ a : K ′−
(S(a) = K ′)

By Lemma 13, Γ ` K ′ = K : kind and Γ ` K ′ = L : kind.
By symmetry and transitivity, Γ ` K = L : kind.
By rule, Γ ` a = a : K ′.
By kind conversion, Γ ` a = a : K.
Using erasure preservation, K− = L− = K ′

− = κ.

Case:
Γ− ` > ←→ > : t−

By Lemma 13, Γ ` Type = K : kind and Γ ` Type = L : kind.
By symmetry and transitivity, Γ ` K = L : kind.
By rule, Γ ` > = > : Type.
By kind conversion, Γ ` > = > : K.
Using erasure preservation, K− = L− = t−.

Case:
Γ− ` A1 ←→ A2 : τ → κ Γ− `M1 ⇐⇒M2 : τ

Γ− ` A1M1 ←→ A2M2 : κ

Using Lemma 13, Γ ` A1 : Πu:B1.K1 and Γ ` A2 : Πu:B2.K2 and Γ; ε ` M1 : B1 and Γ; ε ` M2 : B2 and
Γ ` K1[M1/u] = K : kind and Γ ` K2[M2/u] = L : kind.
By the i.h. on the first subderivation, Γ ` A1 = A2 : Πu:B1.K1 and Γ ` Πu:B1.K1 = Πu:B2.K2 : kind and
(Πu:B1.K1)− = (Πu:B2.K2)− = τ → κ.
By injectivity, Γ ` B1 = B2 : Type and Γ, u:B1 ` K1 = K2 : kind.
By symmetry and type conversion, Γ ` A2 : Πu:B1.K1 and Γ `M2 : B1.
By definition of erasure, B−1 = τ and K−1 = κ.
By the i.h. on the second subderivation, Γ; ε ` P = M1 : B1 and Γ; ε ` P = M2 : B1.
By symmetry and transitivity, Γ; ε `M1 = M2 : B1.
By a congruence rule, Γ ` A1M1 = A2M2 : K1[M1/u].
By type conversion, Γ ` A1M1 = A2M2 : K.
By kind functionality, Γ ` K1[M1/u] = K2[M2/u] : kind.
By erasure preservation, K− = K−1 = K−2 = L− = τ1.

Case:
Γ− ` A1 ⇐⇒ A2 : t− Γ−, u:A−1 ` B1 ⇐⇒ B2 : t−

Γ− ` Πu:A1.B1 ←→ Πu:A2.B2 : t−

By Lemma 13, Γ ` K = Type : kind and Γ ` L = Type : kind and Γ ` A1 : Type and Γ ` A2 : Type and
Γ, u:A1 ` B1 : Type and Γ, u:A2 ` B2 : Type.
By the i.h. on the first subderivation, Γ ` A1 = A2 : Type.
By symmetry and context conversion, Γ, u:A1 ` B2 : Type.
Note that ` Γ, u:A1 context and (Γ, u:A1)− = (Γ−, u:A−1).
By the i.h. on the second subderivation, Γ, u:A1 ` B1 = B2 : Type.
By a congruence rule, Γ ` Πu:A1.B1 = Πu:A2.B2 : Type. Using erasure preservation, K− = L− = t−.

Case:
Γ− ` A1 ⇐⇒ A2 : t− Γ− ` B1 ⇐⇒ B2 : t−

Γ− ` A1 (B1 ←→ A2 (B2 : t−

By Lemma 13, Γ ` K = Type : kind and Γ ` L = Type : kind and Γ ` A1 : Type and Γ ` A2 : Type
and Γ ` B1 : Type and Γ ` B2 : Type.

By symmetry and transitivity, Γ ` K = L : kind.
Using equality preservation, K− = L− = t−.

30

By the i.h., Γ ` A1 = A2 : Type and Γ ` B1 = B2 : Type.
By a congruence rule, Γ ` A1 (B1 = A2 (B2 : Type.

Case:
Γ− ` A1 ⇐⇒ A2 : t− Γ− ` B1 ⇐⇒ B2 : t−

Γ− ` A1 & B1 ←→ A2 & B2 : t−

Similar to the previous case.

Case:
Γ− ` Type←→ Type : kind−

By rule, Γ ` Type = Type : kind.

Case:
Γ− ` A1 ⇐⇒ A2 : t− Γ−, u:A−1 ` K1 ←→ K2 : kind−

Γ− ` Πu:A1.K1 ←→ Πu:A2.K2 : kind−

By Lemma 13, Γ ` A1 : Type and Γ ` A2 : Type and Γ, u:A1 ` K1 : kind and Γ, u:A2 ` K2 : kind.
By the i.h. on the first subderivation, Γ ` A1 = A2 : Type.
By symmetry and context conversion, Γ, u:A1 ` K2 : kind.
Note that ` Γ, u:A1 context.
By the i.h. on the second subderivation, Γ, u:A1 ` K1 = K2 : kind.
By a congruence rule, Γ ` Πu:A1.K1 = Πu:A2.K2 : kind.

�

Theorem 2 (Soundness of Algorithmic Equality) Assume ` Γ context and Γ ` ∆ context.

1. If Γ; ∆ `M : A and Γ; ∆ ` N : A and Γ−,∆− `M ⇐⇒ N : A−, then Γ; ∆ `M = N : A.

2. If Γ ` A : K and Γ ` B : K and Γ− ` A⇐⇒ B : K−, then Γ ` A = B : K.

3. If Γ ` K : kind and Γ ` L : kind and Γ− ` K ←→ L : kind−, then Γ ` K = L : kind.

Proof: Direct, by Lemma 31, symmetry and transitivity.
�

7 Completeness of Algorithmic Equality

In this section we prove that algorithmic equality is complete — that is, that any two terms that are
definitionally equal will also be algorithmically equal. To do this, we will define a Kripke logical relation
in the style of HP such that logically related terms are algorithmically equal. We will then prove that
definitional equality implies the logical relation, thereby establishing completeness.

7.1 A Kripke Logical Relation

Our Kripke logical relation is defined inductively over the same simple types and kinds as were used in the
algorithm, and is extended to include substitutions, where it is defined inductively over simple contexts. The
worlds are simple contexts, ordered by inclusion. More formally, we will say that a context Σ′ extends Σ,
written Σ′ � Σ, if Σ′ contains all the declarations in Σ and possibly more. Our logical relations on terms,
families and substitutions are defined as follows:

1. Σ `M = N ∈ [[α]] iff Σ `M ⇐⇒ N : α.

2. Σ ` M = N ∈ [[τ1 → τ2]] iff for every Σ′ � Σ and every M1, N1 such that Σ′ ` M1 = N1 ∈ [[τ1]] we
have Σ′ `MM1 = N N1 ∈ [[τ2]].

31

3. Σ ` M = N ∈ [[τ1 (τ2]] iff for every Σ′ � Σ and every M1, N1 such that Σ′ ` M1 = N1 ∈ [[τ1]] we
have Σ′ `MˆM1 = NˆN1 ∈ [[τ2]].

4. Σ `M = N ∈ [[τ1 & τ2]] iff Σ ` π1M = π1N ∈ [[τ1]] and Σ ` π2M = π2N ∈ [[τ2]].

5. Σ `M = N ∈ [[>]], always.

6. Σ ` A = B ∈ [[t−]] iff Σ ` A⇐⇒ B : t−.

7. Σ ` A = B ∈ [[τ → κ]] iff for every Σ′ � Σ and every M,N such that Σ′ ` M = N ∈ [[τ]] we have
Σ′ ` AM = BN ∈ [[κ]].

8. Σ ` σ1 = σ2 ∈ [[ε]] iff σ1 = σ2 = ·, the empty substitution.

9. Σ′ ` σ1[u 7→M1] = σ2[u 7→M2] ∈ [[(Σ, u:τ)]] iff Σ′ ` σ1 = σ2 ∈ [[Σ]] and Σ′ `M1 = M2 ∈ [[τ]].

Lemma 32 (Monotonicity of Logical Relations) Let R be any logical relation. If (Σ,Σ′) ` R then
(Σ, u:τ,Σ′) ` R.

Proof: By induction on the type or kind, using the weakening property of algorithmic equality.
�

7.2 Logically Related Terms are Algorithmically Equal

In stating this theorem, we follow HP and prove simultaneously that structurally equal terms are logically
related.

Lemma 33 (Logically Related Terms are Algorithmically Equal)

1. If Σ `M = N ∈ [[τ]] then Σ `M ⇐⇒ N : τ .

2. If Σ ` A = B ∈ [[κ]] then Σ ` A⇐⇒ B : κ.

3. If Σ `M ←→ N : τ then Σ `M = N ∈ [[τ]].

4. If Σ ` A←→ B : κ then Σ ` A = B ∈ [[κ]].

Proof: By simultaneous structural induction on types and kinds.

Case: Part (1), τ = α. By definition of [[α]], Σ `M ⇐⇒ N : α.

Case: Part (2), κ = t−. By definition of [[t−]], Σ ` A⇐⇒ B : t−.

Case: Part (3), τ = α.
By a rule, Σ `M ⇐⇒ N : α.
By definition, Σ `M = N ∈ [[α]].

Case: Part (4), κ = t−.
By a rule, Σ ` A⇐⇒ B : t−.
By definition, Σ ` A = B ∈ [[t−]].

Case: Part (1), τ = τ1 → τ2.
By the structural equality rule for variables, Σ, u:τ1 ` u←→ u : τ1.
By the i.h. on τ1, Σ, u:τ1 ` u = u ∈ [[τ1]].
By definition of [[τ1 → τ2]], Σ, u:τ1 `M u = N u ∈ [[τ2]].
By the i.h. on τ2, Σ, u:τ1 `M u⇐⇒ N u : τ2.
By the type-directed equality rule for →, Σ `M ⇐⇒ N : τ1 → τ2.

32

Case: Part (1), τ = τ1 (τ2.
By the structural equality rule for variables, Σ, u:τ1 ` u←→ u : τ1.
By the i.h. on τ1, Σ, u:τ1 ` u = u ∈ [[τ1]].
By definition of [[τ1 (τ2]], Σ, u:τ1 `Mˆu = Nˆu ∈ [[τ2]].
By the i.h. on τ2, Σ, u:τ1 `Mˆu⇐⇒ Nˆu : τ2.
By the type-directed equality rule for (, Σ `M ⇐⇒ N : τ1 (τ2.

Case: Part (1), τ = τ1 & τ2.
By definition of [[τ1 & τ2]], Σ ` π1M = π1N ∈ [[τ1]] and Σ ` π2M = π2N ∈ [[τ2]].
By the i.h., Σ ` π1M ⇐⇒ π1N : τ1 and Σ ` π2M ⇐⇒ π2N : τ2.
By the type-directed equality rule for &, Σ `M ⇐⇒ N : τ1 & τ2.

Case: Part (1), τ = >.
By the type-directed equality rule for >, Σ `M ⇐⇒ N : >.

Case: Part (2), κ = τ1 → κ2.
By the structural equality rule for variables, Σ, u:τ1 ` u←→ u : τ1.
By the i.h. on τ1, Σ, u:τ1 ` u = u ∈ [[τ1]].
By definition of [[τ1 → κ2]], Σ, u:τ1 `M u = N u ∈ [[κ2]].
By the i.h. on κ2, Σ, u:τ1 `M u⇐⇒ N u : κ2.
By the kind-directed equality rule for arrow kinds, Σ `M ⇐⇒ N : τ1 → κ2.

Case: Part (3), τ = τ1 → τ2.
Suppose that Σ′ � Σ and that Σ′ `M ′ = N ′ ∈ [[τ1]].
By the i.h. on τ1, Σ′ `M ′ ⇐⇒ N ′ : τ1.
By Lemma 25, Σ′ `M ←→ N : τ1 → τ2.
By the structural equality rule for application, Σ′ `MM ′ ←→ N N ′ : τ2.
By the i.h. on τ2, Σ′ `MM ′ = N N ′ ∈ [[τ2]].
Thus by definition of [[τ1 → τ2]], Σ `M = N ∈ [[τ1 → τ2]].

Case: Part (3), τ = τ1 (τ2.
Suppose that Σ′ � Σ and that Σ′ `M ′ = N ′ ∈ [[τ1]].
By the i.h. on τ1, Σ′ `M ′ ⇐⇒ N ′ : τ1.
By Lemma 25, Σ′ `M ←→ N : τ1 (τ2.
By the structural equality rule for application, Σ′ `MˆM ′ ←→ NˆN ′ : τ2.
By the i.h. on τ2, Σ′ `MˆM ′ = NˆN ′ ∈ [[τ2]].
Thus by definition of [[τ1 (τ2]], Σ `M = N ∈ [[τ1 (τ2]].

Case: Part (3), τ = τ1 & τ2.
By the structural equality rule for projections, Σ ` π1M ←→ π1N : τ1 and Σ ` π2M ←→ π2N : τ2.
By the i.h., Σ ` π1M = π1N ∈ [[τ1]] and Σ ` π2M = π2N ∈ [[τ2]].
By definition of [[τ1 & τ2]], Σ `M = N ∈ [[τ1 & τ2]].

Case: Part (4), κ = τ1 → κ2.
Suppose that Σ′ � Σ and that Σ′ `M = N ∈ [[τ1]].
By the i.h. on τ1, Σ′ `M ⇐⇒ N : τ1.
By Lemma 25, Σ′ ` A←→ B : τ1 → κ2.
By the structural equality rule for family application, Σ′ ` AM ←→ BN : κ2.
By the i.h. on κ2, Σ′ ` AM = BN ∈ [[κ2]].
Thus by definition of [[τ1 → κ2]], Σ ` A = B ∈ [[τ1 → κ2]].

�

33

7.3 Definitionally Equal Terms are Logically Related

It takes a little more work to prove the next part of completeness, namely that any two terms that are
definitionally equal will be related by our Kripke logical relation. As with the logical relation used to prove
injectivity, we must prove symmetry, transitivity and closure under head expansion before tackling the proof
by induction on definitional equality derivations.

Lemma 34 (Closure under Head Expansion)

1. If M wh−→M ′ and Σ `M ′ = N ∈ [[τ]], then Σ `M = N ∈ [[τ]].

2. If N wh−→ N ′ and Σ `M = N ′ ∈ [[τ]], then Σ `M = N ∈ [[τ]].

3. If A wh−→ A′ and Σ ` A′ = B ∈ [[κ]], then Σ ` A = B ∈ [[κ]].

4. If B wh−→ B′ and Σ ` A = B′ ∈ [[κ]], then Σ ` A = B ∈ [[κ]].

Proof: Each part is proved by structural induction on the type or kind. We will only show parts (1) and
(3); parts (2) and (4) are similar.

Case: Part 1, τ = α.
By definition of [[α]], Σ `M ′ ⇐⇒ N : τ .
By a type-directed equality rule, Σ `M ⇐⇒ N : τ .
By definition of [[α]], Σ `M = N ∈ [[τ]].

Case: Part 3, κ = t−.
By definition of [[t−]], Σ ` A′ ⇐⇒ B : t−.
By a kind-directed equality rule, Σ ` A⇐⇒ B : t−.
By definition of [[t−]], Σ ` A = B ∈ [[t−]].

Case: Part 1, τ = τ1 → τ2.
Suppose that Σ′ � Σ and Σ′ `M1 = N1 ∈ [[τ1]].
By definition of [[τ1 → τ2]], Σ′ `M ′M1 = N N1 ∈ [[τ2]],
By a weak head reduction rule, MM1

wh−→M ′M1.
By the i.h. on τ2, Σ′ `MM1 = N N1 ∈ [[τ2]],
By definition of [[τ1 → τ2]], Σ `M = N ∈ [[τ1 → τ2]].

Case: Part 1, τ = τ1 (τ2.
Suppose that Σ′ � Σ and Σ′ `M1 = N1 ∈ [[τ1]].
By definition of [[τ1 (τ2]], Σ′ `M ′ˆM1 = NˆN1 ∈ [[τ2]],
By a weak head reduction rule, MˆM1

wh−→M ′ˆM1.
By the i.h. on τ2, Σ′ `MˆM1 = NˆN1 ∈ [[τ2]],
By definition of [[τ1 (τ2]], Σ `M = N ∈ [[τ1 (τ2]].

Case: Part 1, τ = τ1 & τ2.
By definition of [[τ1 & τ2]], Σ ` πiM ′ = πiN ∈ [[τi]] for each i.
By weak head reduction rules, πiM

wh−→ πiM
′ for each i.

By the i.h. on each τi, Σ ` πiM = πiN ∈ [[τi]].
By definition of [[τ1 & τ2]], Σ `M = N ∈ [[τ1 & τ2]].

Case: Part 1, τ = >.
By definition of [[>]], trivially Σ `M = N ∈ [[>]].

Case: Part 3, κ = τ1 → κ2.
Suppose that Σ′ � Σ and Σ′ `M = N ∈ [[τ1]].
By definition of [[τ1 → κ2]], Σ′ ` A′M = BN ∈ [[κ2]].

34

By a weak head reduction rule, AM wh−→ A′M .
By the i.h. on κ2, Σ′ ` AM = BN ∈ [[κ2]].
By definition of [[τ1 → κ2]], Σ ` A = B ∈ [[τ1 → κ2]].

�

Lemma 35 (Symmetry of the Logical Relations)

1. If Σ `M = N ∈ [[τ]], then Σ ` N = M ∈ [[τ]].

2. If Σ ` A = B ∈ [[κ]], then Σ ` B = A ∈ [[κ]].

Proof: Straightforward, by induction on types and kinds and using Lemma 28.
�

Lemma 36 (Transitivity of the Logical Relations)

1. If Σ `M = N ∈ [[τ]] and Σ ` N = O ∈ [[τ]] then Σ `M = O ∈ [[τ]].

2. If Σ ` A = B ∈ [[κ]] and Σ ` B = C ∈ [[κ]] then Σ ` A = C ∈ [[κ]].

Proof: By induction on types and kinds, using the previous lemma and Lemma 29.
�

Now we can prove the main lemma of this section, namely that logically related substitutions map
definitionally equal terms to logically related terms. Once we have done this we can use the fact that
identity substitutions are logically related to establish completeness of the algorithm. Because the definitional
equality judgments enforce linearity but the logical relations do not, the statement of the main lemma must
allow the domain of the substitutions to contain variables that are not declared in the context of the equality
judgment.

Lemma 37 (Definitionally Equal Terms are Logically Related under Substitutions)

1. If Γ; ∆ `M1 = M2 : A and Σ ` σ1 = σ2 ∈ [[Γ−,∆−,Θ]] then Σ ` σ1M1 = σ2M2 ∈ [[A−]].

2. If Γ ` A1 = A2 : K and Σ ` σ1 = σ2 ∈ [[Γ−,Θ]] then Σ ` σ1A1 = σ2A2 ∈ [[K−]].

Proof: By induction on the derivation of definitional equality.

Case:
Γ; ε ` u = u : A

(Γ(u) = A)

By Lemmas 10 and 13, Γ(u) = B where Γ ` A = B : Type.
By erasure preservation, A− = B−.
By the definition of erasure, ∆− = ε and (u:A−) ∈ Γ−.
Thus by definition of [[Γ−,∆−,Θ]], Σ ` σ1(u) = σ2(u) ∈ [[A−]].

Case:
Γ; ε ` c = c : A

(S(c) = A)

Observe that σic = c for each i.
By the structural equality rule for constants, Σ ` c←→ c : A−.
That is, Σ ` σ1c←→ σ2c : A−.
By Lemma 33, Σ ` σ1c = σ2c ∈ [[A−]].

Case:
Γ; û:A ` u = u : A

35

By definition of erasure, ∆− = û:A−.
Thus by definition of [[Γ−,∆−,Θ]], Σ ` σ1(u) = σ2(u) ∈ [[A−]].

Case:
Γ ` A1 = A : Type Γ ` A2 = A : Type Γ; ∆, û:A `M1 = M2 : B

Γ; ∆ ` λ̂u:A1.M1 = λ̂u:A2M2 : A(B

WLOG, we may assume u /∈ Dom(Θ).
Note that (A(B)− = A−(B−.
So, suppose Σ′ � Σ and Σ′ ` N1 = N2 ∈ [[A−]].
By Lemma 32, Σ′ ` σ1 = σ2 ∈ [[Γ−,∆−,Θ]].
By definition of the logical relation, Σ′ ` σ1[u 7→N1] = σ2[u 7→N2] ∈ [[Γ−,∆−, u:A−,Θ]].
By the i.h., Σ′ ` σ1[u 7→N1]M1 = σ2[u 7→N2]M2 ∈ [[B−]].
That is, Σ′ ` (σ1M1)[N1/u] = (σ2M2)[N2/u] ∈ [[B−]].
By Lemma 34, Σ′ ` (λ̂u:σ1A1.σ1M1)ˆN1 = (σ2M2)[N2/u] ∈ [[B−]].
By Lemma 34, Σ′ ` (λ̂u:σ1A1.σ1M1)ˆN1 = (λ̂u:σ2A2.σ2M2)ˆN2 ∈ [[B−]].
Thus by definition of [[A−(B−]], Σ ` λ̂u:σ1A1.σ1M1 = λ̂u:σ2A2.σ2M2 ∈ [[A−(B−]].
That is, Σ ` σ1(λ̂u:A1.M1) = σ2(λ̂u:A2.M2) ∈ [[A−(B−]].

Case:
· · · Γ, u:A; ∆ `M1 = M2 : B

Γ; ∆ ` λu:A1.M1 = λu:A2M2 : Πu:A.B

Similar to the previous case.

Case:
Γ; ∆ `M1 = M2 : A1 Γ; ∆ ` N1 = N2 : A2

Γ; ∆ ` 〈M1, N1〉 = 〈M2, N2〉 : A1 & A2

By the i.h., Σ ` σ1M1 = σ2M2 ∈ [[A−1]] and Σ ` σ1N1 = σ2N2 ∈ [[A−2]].
Using Lemma 34, Σ ` π1〈σ1M1, σ1N1〉 = π1〈σ2M2, σ2N2〉 ∈ [[A−1]]

and Σ ` π2〈σ1M1, σ1N1〉 = π2〈σ2M2, σ2N2〉 ∈ [[A−2]].
By definition of [[A−1 & A−2]], Σ ` 〈σ1M1, σ1N1〉 = 〈σ2M2, σ2N2〉 ∈ [[A−1 & A−2]].
That is, Σ ` σ1〈M1, N1〉 = σ2〈M2, N2〉 ∈ [[A−1 & A−2]].

Case:
Γ; ∆1 `M1 = M2 : A(B Γ; ∆2 ` N1 = N2 : A

Γ; ∆1,∆2 `M1ˆN1 = M2ˆN2 : B

First, note that (A(B)− = A−(B−.
Let Θ1 = ∆−2 ,Θ. Then Σ ` σ1 = σ2 ∈ [[Γ−,∆−1 ,Θ1]].
By the i.h. on the first subderivation, Σ ` σ1M1 = σ2M2 ∈ [[A−(B−]].
Let Θ2 = ∆−1 ,Θ. Then Σ ` σ1 = σ2 ∈ [[Γ−,∆−2 ,Θ2]].
By the i.h. on the second subderivation, Σ ` σ1N1 = σ2N2 ∈ [[A−]].
By definition of [[A−(B−]], Σ ` (σ1M1)ˆ(σ1N1) = (σ2M2)ˆ(σ2N2) ∈ [[B−]].
That is, Σ ` σ1(M1ˆN1) = σ2(M2ˆN2) ∈ [[B−]].

Case:
Γ; ∆ `M1 = N1 : Πu:A.B Γ; ε ` N1 = N2 : A

Γ; ∆ `M1N1 = M2N2 : B[N1/x]

Similar to the previous case.

Case:
Γ; ∆ `M1 = M2 : A1 & A2

Γ; ∆ ` πiM1 = πiM2 : Ai

36

By the i.h., Σ ` σ1M1 = σ2M2 ∈ [[A−1 & A−2]].
By definition of [[A−1 & A−2]], Σ ` πi(σ1M1) = πi(σ2M2) ∈ [[A−i]].
That is, Σ ` σ1(πiM1) = σ1(πiM2) ∈ [[A−i]].

Case:
Γ; ∆ `M1 = M2 : A′ Γ ` A′ = A : Type

Γ; ∆ `M1 = M2 : A

By the i.h., Σ ` σ1M1 = σ2M2 ∈ [[A′−]].
By Lemma 24, A− = A′

−.
Thus, Σ ` σ1M1 = σ2M2 ∈ [[A−]].

Case:
Γ; ∆ `M2 = M1 : A
Γ; ∆ `M1 = M2 : A

By Lemma 35, Σ ` σ2 = σ1 ∈ [[Γ−,∆−,Θ]].
By the i.h., Σ ` σ2M2 = σ1M1 ∈ [[A−]].
By Lemma 35, Σ ` σ1M1 = σ2M2 ∈ [[A−]].

Case:
Γ; ∆ `M1 = M3 : A Γ; ∆ `M3 = M2 : A

Γ; ∆ `M1 = M2 : A

By Lemmas 35 and 36, Σ ` σ1 = σ1 ∈ [[Γ−,∆−,Θ]].
By the i.h. on the first subderivation, Σ ` σ1M1 = σ1M3 ∈ [[A−]].
By the i.h. on the second subderivation, Σ ` σ1M3 = σ2M2 ∈ [[A−]].
By Lemma 36, Σ ` σ1M1 = σ2M2 ∈ [[A−]].

Case:
Γ ` A : Type Γ; ∆1, û:A `M1 = M2 : B Γ; ∆2 ` N1 = N2 : A

Γ; ∆1,∆2 ` (λ̂u:A.M1)ˆN1 = M2[N2/u] : B

Let Θ1 = ∆−2 ,Θ and Θ2 = ∆−1 ,Θ.
Then we know Σ ` σ1 = σ2 ∈ [[Γ−,∆−1 ,Θ1]] and Σ ` σ1 = σ2 ∈ [[Γ−,∆−2 ,Θ2]].
By the induction hypothesis on the second equality subderivation, Σ ` σ1N1 = σ2N2 ∈ [[A−]].
By definition of the logical relation, Σ ` σ1[u 7→σ1N1] = σ2[u 7→σ2N2] ∈ [[Γ−,∆−1 , u:A−,∆−2 ,Θ]].
By the induction hypothesis on the first equality subderivation,

Σ ` σ1[u 7→σ1N1]M1 = σ2[u 7→σ2N2]M2 ∈ [[B−]].
That is, Σ ` σ1M1[σ1N1/u] = σ2M2[σ2N2/u] ∈ [[B−]].
Now, observe that σ1((λ̂u:A.M1)ˆN1) = (λ̂u:σ1A.σ1M1)ˆ(σ1N1) wh−→ σ1M1[σ1N1/u]
and that σ2(M2[N2/u]) = σ2M2[σ2N2/u].
Thus by Lemma 34, Σ ` σ1((λu:A.M1)N1) = σ2(M2[N2/u]) ∈ [[B−]].

Case:
Γ ` A : Type Γ, u:A; ∆ `M1 = M2 : B Γ; ε ` N1 = N2 : A

Γ; ∆ ` (λu:A.M1)N1 = M2[N2/u] : B[N1/u]

Similar to the previous case.

Case:
Γ; ∆ `M1 = N1 : A1 Γ; ∆ `M2 = N2 : A2

Γ; ∆ ` πi〈M1,M2〉 = Ni : Ai
By the i.h., Σ ` σ1Mi = σ2Ni ∈ [[A−i]] for i = 1, 2.

Observe that σ1(πi〈M1,M2〉) = πi〈σ1M1, σ1M2〉
wh−→ σ1Mi.

37

Thus by Lemma 34, Σ ` σ1(πi〈M1,M2〉) = σ2Ni ∈ [[A−i]].

Case:
· · · Γ; ∆, û:A `M1ˆu = M2ˆu : B

Γ; ∆ `M1 = M2 : A(B

WLOG, we may assume u is fresh, i.e. it does not appear free in M1 or M2 and is not in Dom(Θ).
So, suppose Σ′ � Σ and Σ′ ` N1 = N2 ∈ [[A−]].
By Lemma 32, Σ′ ` σ1 = σ2 ∈ [[Γ−,∆−,Θ]].
By definition of the logical relation, Σ′ ` σ1[u 7→N1] = σ2[u 7→N2] ∈ [[Γ−,∆−, u:A−,Θ]].
By the i.h., Σ′ ` σ1[u 7→N1](M1ˆu) = σ2[u 7→N2](M2ˆu) ∈ [[B−]].
That is, Σ′ ` (σ1M1)ˆN1 = (σ2M2)ˆN2 ∈ [[B−]].
By definition of [[A−(B−]], Σ ` σ1M1 = σ2M2 ∈ [[A−(B−]].

Case:
· · · Γ, u:A; ∆ `M1 u = M2 u : B

Γ; ∆ `M1 = M2 : Πu:A.B

Similar to the previous case.

Case:
· · · Γ; ∆ ` πiM1 = πiM2 : Ai for i = 1, 2

Γ; ∆ `M1 = M2 : A1 & A2

By the i.h., Σ ` σ1(πiM1) = σ2(πiM2) ∈ [[A−i]] for i = 1, 2.
That is, Σ ` πi(σ1M1) = πi(σ2M2) ∈ [[A−i]].
By definition of [[A−1 & A−2]], Σ ` σ1M1 = σ2M2 ∈ [[A−1 & A−2]].

Case: · · ·
Γ; ∆ `M = N : >

By definition of [[>]], Σ ` σ1M1 = σ2M2 ∈ [[>]].

Case:
Γ ` a = a : K

(S(a) = K)

By the structural family equality rule for constants, Σ ` a←→ a : K−.
That is, Σ ` σ1a←→ σ2a : K−.
By Lemma 33, Σ ` σ1a = σ2a ∈ [[K−]].

Case:
Γ ` > = > : Type

Note that σi> = >.
By the structural familiy equality rule for >, Σ ` > ←→ > : t−.
By Lemma 33, Σ ` > = > ∈ [[t−]].

Case:
· · · Γ, u:A ` B1 = B2 : K

Γ ` λu:A1.B1 = λu:A2.B2 : Πu:A.K

WLOG, we may assume u /∈ Dom(Θ).
Note that (Πu:A.K)− = A− → K−.
So, suppose Σ′ � Σ and Σ′ ` N1 = N2 ∈ [[A−]].
By Lemma 32, Σ′ ` σ1 = σ2 ∈ [[Γ−,Θ]].
By definition of the logical relation, Σ′ ` σ1[u 7→N1] = σ2[u 7→N2] ∈ [[Γ−, u:A−,Θ]].

38

By the i.h., Σ′ ` σ1[u 7→N1]B1 = σ2[u 7→N2]B2 ∈ [[K−]].
That is, Σ′ ` (σ1B1)[N1/u] = (σ2B2)[N2/u] ∈ [[K−]].
By Lemma 34, Σ′ ` (λu:σ1A1.σ1B1)N1 = (σ2B2)[N2/u] ∈ [[K−]].
By Lemma 34, Σ′ ` (λu:σ1A1.σ1B1)N1 = (λu:σ2A2.σ2B2)N2 ∈ [[K−]].
Thus by definition of [[A− → K−]], Σ ` λu:σ1A1.σ1B1 = λu:σ2A2.σ2B2 ∈ [[A− → K−]].
That is, Σ ` σ1(λu:A1.B1) = σ2(λu:A2.B2) ∈ [[A− → K−]].

Case:
Γ ` A1 = A2 : Πu:B.K Γ; ε `M1 = M2 : B

Γ ` A1M1 = A2M2 : K[M1/u]

By Lemma 23, (K[M1/u])− = K−.
By the i.h. on the first subderivation, Σ ` σ1A1 = σ2A2 ∈ [[B− → K−]].
By the i.h. on the second subderivation, Σ ` σ1M1 = σ2M2 ∈ [[B−]].
By definition of [[B− → K−]], Σ ` (σ1A1)(σ1M1) = (σ2A2)(σ2M2) ∈ [[K−]].
That is, Σ ` σ1(A1M1) = σ2(A2M2) ∈ [[K−]].

Case:
Γ ` A1 = A2 : Type Γ, u:A1 ` B1 = B2 : Type

Γ ` Πu:A1.B1 = Πu:A2.B2 : Type

WLOG, assume u /∈ Dom(Θ).
By Lemma 32, Σ, u:A−1 ` σ1 = σ2 ∈ [[Γ−,Θ]].
By the structural object equality rule for variables, Σ, u:A−1 ` u←→ u : A−1 .
By Lemma 33, Σ, u:A−1 ` u = u ∈ [[A−1]].
By definition of the logical relation, Σ, u:A−1 ` σ1[u 7→u] = σ2[u 7→u] ∈ [[(Γ−, u:A−1),Θ]].
By the i.h. on the second subderivation, Σ, u:A−1 ` σ1[u 7→u]B1 = σ2[u 7→u]B2 ∈ [[t−]].
That is, Σ, u:A−1 ` σ1B1 = σ2B2 ∈ [[t−]].
By definition of [[t−]], Σ, u:A−1 ` σ1B1 ⇐⇒ σ2B2 : t−.
By the i.h. on the first subderivation, Σ ` σ1A1 = σ2A2 ∈ [[t−]].
By definition of [[t−]], Σ ` σ1A1 ⇐⇒ σ2A2 : t−.
By the structural family equality rule for Π-families, Σ ` σ1(Πu:A1.B1)←→ σ2(Πu:A2.B2) : t−.
By the kind-directed family equality rule for t−, Σ ` σ1(Πu:A1.B1)⇐⇒ σ2(Πu:A2.B2) : t−.
By definition of [[t−]], Σ ` σ1(Πu:A1.B1) = σ2(Πu:A2.B2) ∈ [[t−]].

Case:
Γ ` A1 = A2 : Type Γ ` B1 = B2 : Type

Γ ` A1 (B1 = A2 (B2 : Type

By the i.h. on the first subderivation, Σ ` σ1A1 = σ2A2 ∈ [[t−]].
By definition of [[t−]], Σ ` σ1A1 ⇐⇒ σ2A2 : t−.
By the i.h. on the second subderivation, Σ ` σ1B1 = σ2B2 ∈ [[t−]].
By definition of [[t−]], Σ ` σ1B1 ⇐⇒ σ2B2 : t−.
By a structural family equality rule, Σ ` (σ1A1)((σ1B1)←→ (σ2A2)((σ2B2) : t−.
That is, Σ ` σ1(A1 (B1)←→ σ2(A2 (B2) : t−.
By the kind-directed family equality rule for t−, Σ ` σ1(A1 (B1)⇐⇒ σ2(A2 (B2) : t−.
By definition of [[t−]], Σ ` σ1(A1 (B1) = σ2(A2 (B2) ∈ [[t−]].

Case:
Γ ` A1 = A2 : Type Γ ` B1 = B2 : Type

Γ ` A1&B1 = A2&B2 : Type

Similar to the previous case.

39

Case:

Γ ` A2 = A1 : K
Γ ` A1 = A2 : K or

Γ ` A1 = A3 : K Γ ` A3 = A2 : K
Γ ` A1 = A2 : K or

Γ ` A1 = A2 : K ′ Γ ` K ′ = K : kind

Γ ` A1 = A2 : K

Similar to the corresponding cases for objects.

Case:
· · · Γ, u:B ` A1 = A2 : K Γ; ε `M1 = M2 : B

Γ ` (λu:B.A1)M1 = A2[M2/u] : K[M1/u]

By the i.h. on the object equality subderivation, Σ ` σ1M1 = σ2M2 ∈ [[B−]].
By definition of the logical relation, Σ ` σ1[u 7→σ1M1] = σ2[u 7→σ2M2] ∈ [[Γ−, u:B−,Θ]].
By the i.h. on the family equality subderivation, Σ ` σ1[u 7→σ1M1]A1 = σ2[u 7→σ2M2]A2 ∈ [[K−]].
That is, Σ ` σ1A1[σ1M1/u] = σ2A2[σ2M2/u] ∈ [[K−]].
Now, observe that σ1((λu:B.A1)M1) = (λu:σ1B.σ1A1) (σ1M1) wh−→ σ1A1[σ1M1/u]
and that σ2(A2[M2/u]) = (σ2A2)[σ2M2/u].
Thus by Lemma 34, Σ ` σ1((λu:B.A1)M1) = σ2(A2[M2/u]) ∈ [[K−]].

Case:
Γ ` B : Type Γ ` A1 : Πu:B.K Γ ` A2 : Πu:B.K Γ, u:B ` A1 u = A2 u : K

Γ ` A1 = A2 : Πu:B.K

WLOG, we may assume u is fresh.
Note that (Πu:B.K)− = B− → K−.
So, suppose Σ′ � Σ and Σ `M1 = M2 ∈ [[B−]].
By Lemma 32, Σ′ ` σ1 = σ2 ∈ [[Γ−,Θ]].
By definition of the logical relation, Σ′ ` σ1[u 7→M1] = σ2[u 7→M2] ∈ [[Γ−, u:B−,Θ]].
By the i.h., Σ′ ` σ1[u 7→M1](A1 u) = σ2[u 7→M2](A2 u) ∈ [[K−]].
That is, Σ′ ` (σ1A1)M1 = (σ2A2)M2 ∈ [[K−]].
By definition of [[B− → K−]], Σ ` σ1A1 = σ2A2 ∈ [[B− → K−]].

Lemma 38 (Identity Substitutions are Logically Related) Σ ` idΣ = idΣ ∈ [[Σ]].

Proof: By Lemma 33 and the definition of the logical relation for substitutions.

Theorem 3 (Completeness of Algorithmic Equality)

• If Γ; ∆ `M = N : A then Γ−,∆− `M ⇐⇒ N : A−.

• If Γ ` A = B : K then Γ− ` A⇐⇒ B : K−

Proof: By Lemmas 33, 37 and 38.

8 Decidability of Equality

Having established soundness and completeness for our algorithmic equality judgments, we may prove that
equality is decidable — in effect, that the algorithmic rules do in fact define an algorithm — in exactly the
same way as HP.

The proof of decidability is split into two parts. First, we prove that algorithmic equality is decidable
when each of the terms being compared is algorithmically equal to some other term. Then, we can use this
fact to prove that definitional equality is decidable for all well-typed terms by noting that any well-typed
term is algorithmically equal to itself. Following HP, we will call a term normalizing if it is algorithmically
equal to some other term—this terminology reflects the fact that a canonical form for the two terms can be
extracted from the algorithmic equality derivation.

Lemma 39 (Decidability for Normalizing Terms)

40

1. If Σ `M ⇐⇒M ′ : τ and Σ ` N ⇐⇒ N ′ : τ then it is decidable whether Σ `M ⇐⇒ N : τ .

2. If Σ `M ←→M ′ : τ1 and Σ ` N ←→ N ′ : τ2 then it is decidable whether Σ `M ←→ N : τ3 for some
τ3.

3. If Σ ` A⇐⇒ A′ : κ and Σ ` B ⇐⇒ B′ : κ then it is decidable whether Σ ` A⇐⇒ B : κ.

4. If Σ ` A ←→ A′ : κ1 and Σ ` B ←→ B′ : κ2 then it is decidable whether Σ ` A ←→ B : κ3 for some
κ3.

5. If Σ ` K ←→ K ′ : kind− and Σ ` L←→ L′ : kind− then it is decidable whether Σ ` K ←→ L : kind−.

Proof: By induction on the given derivations, using determinacy (Lemmas 15 and 26).
�

Theorem 4 (Decidability for Well-Formed Terms)

1. If Γ; ∆ `M : A and Γ; ∆ ` N : A then it is decidable whether Γ; ∆ `M = N : A.

2. If Γ ` A : K and Γ ` B : K then it is decidable whether Γ ` A = B : K.

3. If Γ ` K : kind and Γ ` L : kind then it is decidable whether Γ ` K = L : kind.

Proof: Because algorithmic equality is sound (Theorem 2) and complete (Theorem 3), it suffices to check
algorithmic equality in each case. Furthermore, by reflexivity (Lemma 3) and completeness, each term is
algorithmically equal to itself. Thus by Lemma 39, algorithmic equality of the two terms is decidable.

�

9 Conclusion

We have presented a variant of the LLF type theory in which terms need not be in pre-canonical form in
order to be well-typed. Our variant differs from the original presentation of LLF by Cervesato and Pfenning
by employing a set of typed definitional equality judgments rather than taking definitional equality to be
untyped β- or βη-conversion. We have proved that this notion of definitional equality for well-typed terms
is decidable by giving a type-directed algorithm and proving it sound and complete. The equality algorithm
is simplified by the identification of intuitionistic and linear assumptions, relying on the well-formedness of
the terms being compared to ensure linearity is respected.

We have not addressed the problem of finding canonical forms for terms, or proving that they exist.
However, we believe that our algorithm, like that of Harper and Pfenning on which it is based, can be
instrumented to extract canonical forms for the terms it compares. In fact, a trick very similar to this
instrumentation is performed implicitly in our soundness proof, where algorithmically equal terms are proved
definitionally equal by extracting a mediating term. It appears that this mediating term is canonical except
for the type labels on λ- (and λ̂-) abstractions.

References

[1] Iliano Cervesato and Frank Pfenning. A linear logical framework. In Eleventh IEEE Symposium on Logic
in Computer Science, pages 264–275, July 1996.

[2] Thierry Coquand. An algorithm for testing conversion in type theory. In Gérard Huet and Gordon
Plotkin, editors, Logical Frameworks, pages 255–279. Cambridge University Press, 1991.

[3] Karl Crary and Joseph C. Vanderwaart. An expressive, scalable type theory for certified code. Technical
Report CMU-CS-01-113, Carnegie Mellon University, May 2001.

[4] Amy Felty. Encoding dependent types in intuitionistic logic. In Gérard Huet and Gordon D. Plotkin,
editors, Logical Frameworks, pages 214–251. Cambridge University Press, 1991.

41

[5] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of the
Association for Computing Machinery, 40(1):143–184, January 1993.

[6] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type theory. Technical
Report CMU-CS-99-159, Carnegie Mellon University, September 1999.

[7] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type theory. Technical
Report CMU-CS-00-148, Carnegie Mellon University, July 2000.

[8] Frank Pfenning. Personal communication.

[9] Jeff Polakow. Ordered Linear Logic and Applications. PhD thesis, Carnegie Mellon University, August
2001. Available as Technical Report CMU-CS-01-152.

42

