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Abstract

This dissertation presents the complete integrated planning, executing and learn-
ing robotic agent Rogue.

Physical domains are notoriously hard to model completely and correctly.
Robotics researchers have developed learning algorithms to successfully tune op-
erational parameters. Instead of improving low-level actuator control, our work
focusses instead at the planning stages of the system. The thesis provides tech-
niques to directly process execution experience, and to learn to improve planning
and execution performance.

Rogue accepts multiple, asynchronous task requests, and interleaves task
planning with real-world robot execution. This dissertation describes howRogue
prioritizes tasks, suspends and interrupts tasks, and opportunistically achieves
compatible tasks. We present how Rogue interleaves planning and execution
to accomplish its tasks, monitoring and compensating for failure and changes in
the environment.

Rogue analyzes execution experience to detect patterns in the environment
that a�ect plan quality. Rogue extracts learning opportunities from massive,
continual, probabilistic execution traces. Rogue then correlates these learning
opportunities with environmental features, thus detecting patterns in the form of
situation-dependent rules. We present the development and use of these rules for
two very di�erent planners: the path planner and the task planner. We present
empirical data to show the e�ectiveness of Rogue's novel learning approach.

Our learning approach is applicable for any planner operating in any physi-
cal domain. Our empirical results show that situation-dependent rules e�ectively
improve the planner's model of the environment, thus allowing the planner to
predict and avoid failures, to respond to a changing environment, and to create
plans that are tailored to the real world. Physical systems should adapt to chang-
ing situations and absorb any information that will improve their performance.

i



ii Abstract



Acknowledgements

It's often said that the only important decision one makes in graduate school is who their
advisor will be. I have never doubted my choice. Without Manuela's unending enthusiasm
and unfailing support, I would never have completed my PhD. Manuela's vision and creativ-
ity made everything seem worthwhile. I thank her for giving me the freedom to pursue my
ideas and interests, while providing me with guidance through the tough parts.

I am indebted to everyone in the Xavier and prodigy research groups, especially Joseph,
Sven, Rich, Greg and Jim. Robotics research can be very frustrating, and Joseph's cynical
humour made it a lot more fun. I thank Greg in particular for his many hours �xing the
robot and following it around to help me collect data.

I also thank Henry, Po, Arup, Darrell and the SCS facilities sta� for keeping my machines
running, particularly after a few too many late nights and stupid errors.

Outside school, I want to thank the Dinner Co-op, particularly Sonia and Sanjiv, and
Barry and Ev. They kept me sane (or insane, depending on how you look at it), and
distracted me from the agony. Lisa kept me healthy, Will and Wayne kept me amused. Rob
has been a rock through all the turbulent waters, his love and unconditional support the
foundation upon which I build my dreams.

iii



iv Acknowledgements



Contents

1 Introduction 1
1.1 Approach : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2
1.2 The Domain : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.2.1 Capabilities of the Robot : : : : : : : : : : : : : : : : : : : : : : : : : 5
1.3 Task Planning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6
1.4 Learning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

1.4.1 Learning for the Path Planner : : : : : : : : : : : : : : : : : : : : : : 10
1.4.2 Learning for the Task Planner : : : : : : : : : : : : : : : : : : : : : : 12

1.5 Contributions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12
1.6 Reader's Guide : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

2 The Task Planner 17
2.1 Planning and Execution Architecture : : : : : : : : : : : : : : : : : : : : : : 17
2.2 Planning for Asynchronous Requests : : : : : : : : : : : : : : : : : : : : : : 19

2.2.1 Receiving a Request : : : : : : : : : : : : : : : : : : : : : : : : : : : 20
2.2.2 Planning in prodigy4.0 : : : : : : : : : : : : : : : : : : : : : : : : : 22

2.2.2.1 Operators : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22
2.2.2.2 Building the Plan : : : : : : : : : : : : : : : : : : : : : : : : 24
2.2.2.3 Search Control Rules : : : : : : : : : : : : : : : : : : : : : : 26

2.2.3 Suspending and Interrupting Tasks : : : : : : : : : : : : : : : : : : : 29
2.2.4 Example: Asynchronous Requests : : : : : : : : : : : : : : : : : : : : 29

2.3 Execution and Monitoring : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33
2.3.1 Sensing in Control Rules : : : : : : : : : : : : : : : : : : : : : : : : : 34
2.3.2 Executing Actions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

2.3.2.1 prodigy4.0's Mechanisms for Supporting Execution : : : : 35
2.3.2.2 Deciding When to Execute : : : : : : : : : : : : : : : : : : 35
2.3.2.3 Rogue's Execution Behaviour : : : : : : : : : : : : : : : : 35

2.3.3 Monitoring : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39
2.3.4 Example: Sensing to Make Planning Decisions : : : : : : : : : : : : : 40
2.3.5 Example of how Rogue Handles Failures : : : : : : : : : : : : : : : : 44
2.3.6 Example of how Rogue Handles Side-e�ects : : : : : : : : : : : : : : 45

2.4 Alternative Approaches : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46

v



vi CONTENTS

2.5 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

3 Learning for the Path Planner 51

3.1 Architecture and Representation : : : : : : : : : : : : : : : : : : : : : : : : : 52

3.1.1 The Path Planner : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53

3.1.2 Navigation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

3.2 Features : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 58

3.3 Events : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

3.3.1 Identifying the Most Likely Traversed Markov Sequence : : : : : : : : 61

3.3.1.1 Problems with the Viterbi Sequence : : : : : : : : : : : : : 64

3.3.1.2 Possible Modi�cations to Viterbi's Algorithm : : : : : : : : 65

3.3.1.3 Multi/Markov Viterbi : : : : : : : : : : : : : : : : : : : : : 67

3.3.2 Identifying the Planner's Arcs : : : : : : : : : : : : : : : : : : : : : : 69

3.4 Costs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73

3.5 Learning Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 75

3.6 Updating the Path Planner : : : : : : : : : : : : : : : : : : : : : : : : : : : 79

3.7 Experimental Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 79

3.7.1 Simulated World 1: Learning Patterns : : : : : : : : : : : : : : : : : 80

3.7.1.1 Data and Rule Learning : : : : : : : : : : : : : : : : : : : : 81

3.7.1.2 E�ect on Path Planner : : : : : : : : : : : : : : : : : : : : : 84

3.7.2 Simulated World 2: Stability and Generalization : : : : : : : : : : : : 88

3.7.3 Simulated World 3: Learning Rates : : : : : : : : : : : : : : : : : : : 91

3.7.3.1 Data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 91

3.7.4 Real Robot : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 94

3.7.4.1 31 July 1997 : : : : : : : : : : : : : : : : : : : : : : : : : : 97

3.7.4.2 31 October 1997 : : : : : : : : : : : : : : : : : : : : : : : : 97

3.8 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 99

4 Learning for the Task Planner 101

4.1 Features : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103

4.2 Events : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103

4.3 Costs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 104

4.4 Learning Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 105

4.5 Creating Control Rules for the Task Planner : : : : : : : : : : : : : : : : : : 105

4.6 Experimental Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 108

4.6.1 Experiment 1: Execution Features : : : : : : : : : : : : : : : : : : : : 108

4.6.2 Experiment 2: High-level features : : : : : : : : : : : : : : : : : : : : 112

4.6.3 Experiment 3: Feature Costs & Combining High- and Execution-level
Features : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 117

4.7 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 119



CONTENTS vii

5 Related Work 121
5.1 Task Planning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 121
5.2 Learning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 124

5.2.1 Learning Action Costs : : : : : : : : : : : : : : : : : : : : : : : : : : 124
5.2.2 Learning Symbolic Descriptions of Actions : : : : : : : : : : : : : : : 125
5.2.3 Learning Plan Quality : : : : : : : : : : : : : : : : : : : : : : : : : : 126

6 Conclusion 129
6.1 Important Issues : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 130

6.1.1 Planning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 130
6.1.2 Learning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133

6.2 Other Applications : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 134
6.3 Future Research Directions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 135

6.3.1 Improvements to the Task Planner : : : : : : : : : : : : : : : : : : : 135
6.3.2 Improvements to the Learning Architecture : : : : : : : : : : : : : : 136

Appendices 138

A Setting up PRODIGY4.0 with TCA 139
A.1 init.lisp : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 139
A.2 short-init.lisp : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 141

B Sending Task Requests 147

C Changes to the Path Planner 151

D Collecting Execution Features 153
D.1 Data Structure for Execution Features : : : : : : : : : : : : : : : : : : : : : 153
D.2 Querying for Execution Features : : : : : : : : : : : : : : : : : : : : : : : : : 154
D.3 Execution Feature Query Handler : : : : : : : : : : : : : : : : : : : : : : : : 154

E AmalgamViterbi 157
E.1 Markov Models with High Branching Factors : : : : : : : : : : : : : : : : : : 157
E.2 AmalgamViterbi : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 158
E.3 A Comparison of Viterbi Algorithms : : : : : : : : : : : : : : : : : : : : : : 159
E.4 AmalgamViterbi as a Heuristic : : : : : : : : : : : : : : : : : : : : : : : : : 161
E.5 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 162

References 163



viii CONTENTS



List of Figures

1.1 Xavier the robot. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2
1.2 Xavier's primary software layers. : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.3 Rogue architecture. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4
1.4 Robot's map (half of the 5th 
oor of our building). : : : : : : : : : : : : : : : : : 11

1.5 Closeup of map. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11
1.6 A high-level view of a sample learned rule for the path planner. : : : : : : : : : : : 12

1.7 A high-level view of two sample rules learned for the task planner. : : : : : : : : : : 13
1.8 Reader's guide. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

2.1 Rogue task planning architecture. : : : : : : : : : : : : : : : : : : : : : : : : : 18
2.2 User request interface. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

2.3 Example representation of an incomplete plan in prodigy4.0. : : : : : : : : : : : : 24
2.4 Plan for single task problem. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

2.5 Calculating the priority rank of the deadline. : : : : : : : : : : : : : : : : : : : : : 27
2.6 Plan for a two-task problem. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

2.7 Partial plan after room 5309 has been observed. : : : : : : : : : : : : : : : : : : : 43
2.8 Partial plan after backtracking and immediately before room 5311 has been observed. 43

2.9 Executed plan. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 44
2.10 Summary of Rogue's mediation between users, prodigy4.0 and Xavier. : : : : : : 48

3.1 Learning for the path planner. : : : : : : : : : : : : : : : : : : : : : : : : : : : 51
3.2 Two paths from A to B. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

3.3 Corridor representation which captures length uncertainty for the navigation module. : 55
3.4 An example of POMDP transition calculations. : : : : : : : : : : : : : : : : : : : 56

3.5 Markov state probability distribution, (a) before and (b) after observing the wall at the

end of the corridor. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57

3.6 Extracting arc traversals from Markov state distributions. : : : : : : : : : : : : : : 60
3.7 A map showing why the most likely state sequence may be di�erent from the most

likely states. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62

3.8 Viterbi transition calculations. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63
3.9 Fan-in: Example of how the map representation a�ects Viterbi's algorithm.. : : : : : 64

3.10 Fan-out: Example of how the map representation a�ects Viterbi's algorithm. : : : : : 65

ix



x LIST OF FIGURES

3.11 The set of last sequences: Viterbi sequences generated from each of the possible Markov

states at the last time step in the execution trace, T . : : : : : : : : : : : : : : : : 68
3.12 Map used in the example of how multiple sequences are used. : : : : : : : : : : : : 68
3.13 Di�erent representations of a foyer. : : : : : : : : : : : : : : : : : : : : : : : : : 71
3.14 Di�erent representations of junctions in corridors. : : : : : : : : : : : : : : : : : : 71
3.15 Multiple arcs corresponding to multiple Markov nodes. : : : : : : : : : : : : : : 71
3.16 An example of when the greedy heuristic may fail. : : : : : : : : : : : : : : : : 72
3.17 Learned tree for arc 208 from the Exposition world described in Section 3.7.1. : : : : 76
3.18 The cross validation results for arc 208. : : : : : : : : : : : : : : : : : : : : : : : 77
3.19 The learned tree from arc 208 after pruning. : : : : : : : : : : : : : : : : : : : : : 78
3.20 Exposition world. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 80
3.21 Arc cost frequency. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82
3.22 Learned trees for the six arcs in corridor 3. : : : : : : : : : : : : : : : : : : : : : : 83
3.23 Learned corridor cost (average over all arcs in that corridor) for Wednesdays. : : : : : 84
3.24 Expensive arcs in corridor 2 for situation: Wednesday, 01:05am. : : : : : : : : : : : 85
3.25 Expensive arcs in corridor 3 for situation: Wednesday, 01:05am. : : : : : : : : : : : 85
3.26 Expensive arcs in corridor 8 for situation: Wednesday, 01:05am. : : : : : : : : : : : 85
3.27 Expensive arcs for situation: Wednesday, 01:05am. : : : : : : : : : : : : : : : : : : 86
3.28 Expensive arcs for situation: Tuesday, 09:45am. : : : : : : : : : : : : : : : : : : : 86
3.29 Comparison of path planner's behaviour before and after learning. : : : : : : : : : : 87
3.30 Maximum node deviance vs. learned tree size. : : : : : : : : : : : : : : : : : : : : 89
3.31 Corridor cost (average over all arcs in that corridor) for Wednesdays. : : : : : : : : : 89
3.32 Learned trees for the six arcs in corridor 3. : : : : : : : : : : : : : : : : : : : : : : 90
3.33 Corridor-switch world. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92
3.34 E�ect of window size on stability, learning rate and forgetting data. : : : : : : : : : 93
3.35 Typical rule inside the crossover region, Z. : : : : : : : : : : : : : : : : : : : : : : 93
3.36 Window size: 20 trial runs. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 95
3.37 Window size: 30 trial runs. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 96
3.38 Distribution and length of robot running times, April-July 1997. : : : : : : : : : : : 97
3.39 Learned costs for Wean Hall lobby on Wednesday, August 6. : : : : : : : : : : : : : 98
3.40 Distribution and length of robot running times, April-October 1997. : : : : : : : : : 98
3.41 Learned costs for Wean Hall lobby on Wednesday, November 11. : : : : : : : : : : : 99

4.1 Regression trees learned for the \Should I wait?" task. : : : : : : : : : : : : : : : : 111
4.2 Expected and actual trees for door-open times. : : : : : : : : : : : : : : : : : : : 116
4.3 Expected tree for door-open times with all features. : : : : : : : : : : : : : : : : : 117

E.1 Groups, G of Markov states. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 160
E.2 Processing data from a trace collected on the real robot. : : : : : : : : : : : : : 161
E.3 Viterbi's algorithm in the Maze World. : : : : : : : : : : : : : : : : : : : : : : 161
E.4 Viterbi's algorithm in the Exposition World. : : : : : : : : : : : : : : : : : : : : 162
E.5 An example of when AmalgamViterbi incorrectly estimates the most likely path. 162



List of Tables

1.1 Examples of Events, E , Features, F , and Costs, C, for sample planners. : : : : : : : 9
1.2 General approach for learning situation-dependent costs. : : : : : : : : : : : : : : : 10

2.1 Request data structure for TCA. : : : : : : : : : : : : : : : : : : : : : : : : : : : 21
2.2 Registering the request handler and connecting to TCA. : : : : : : : : : : : : : : : 21
2.3 Integrating new task requests into prodigy4.0. : : : : : : : : : : : : : : : : : : : 22
2.4 The primary operators in Rogue's task planning domain. : : : : : : : : : : : : : : 23
2.5 prodigy4.0 algorithm and decision points. : : : : : : : : : : : : : : : : : : : : : 25
2.6 Goal selection search control rule. : : : : : : : : : : : : : : : : : : : : : : : : : : 27
2.7 A control rule to select execution order. : : : : : : : : : : : : : : : : : : : : : : : 28
2.8 Final execution sequence. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33
2.9 The prodigy4.0/execute search algorithm. : : : : : : : : : : : : : : : : : : : : 36
2.10 The set of actions taken for executing the prodigy4.0 operator <GOTO-DELIVER-LOC

mitchell r-5309>. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38
2.11 Partial trace of Rogue interaction, in which direct observation is used to make planning

decisions. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42
2.12 An outline of the monitoring and recovery procedure used for the navigation operators. 45
2.13 The complete planning and execution cycle in Rogue. : : : : : : : : : : : : : : : : 48

3.1 Bayesian probability updates. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55
3.2 Sample observation probabilities. : : : : : : : : : : : : : : : : : : : : : : : : : : 57
3.3 Viterbi's Algorithm. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61
3.4 Small example of � and � probability distributions. : : : : : : : : : : : : : : : : : : 66
3.5 Multi/Markov Viterbi. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70
3.6 Events matrix. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74
3.7 Identifying arc traversal events E from the execution trace. : : : : : : : : : : : : : : 75
3.8 Text version of the learned tree for arc 208. : : : : : : : : : : : : : : : : : : : : : 77
3.9 Text version of the learned tree from arc 208 after pruning. : : : : : : : : : : : : : 78
3.10 The average cost of all the arcs in each type of corridor. : : : : : : : : : : : : : : : 82
3.11 Path length calculation for a path between room 231 and room 319. : : : : : : : : : 87
3.12 Path length calculation for a variety of paths under three di�erent situations. : : : : : 88
3.13 General learning approach as instantiated for the path planner. : : : : : : : : : : : : 100

xi



xii LIST OF TABLES

4.1 Rogue's learning approach as instantiated for the task planner. : : : : : : : : : : : 102
4.2 Important tests for generating prodigy4.0 control rules from learned trees. : : : : 106
4.3 A sample tree. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 107
4.4 Learned prodigy4.0 control rules for the tree in Table 4.3. : : : : : : : : : : : : : 107
4.5 The meta-predicate function for current time. : : : : : : : : : : : : : : : : : : : : 108
4.6 The meta-predicate function for sonar readings. : : : : : : : : : : : : : : : : : : : 108
4.7 Sampling from the events matrix for the \Should I wait?" task. : : : : : : : : : : : 110
4.8 prodigy4.0 control rules generated for the learned pruned trees. : : : : : : : : : : 112
4.9 prodigy4.0 trace using the control rules of Table 4.8. : : : : : : : : : : : : : : : 113
4.10 Sampling from the events matrix for the \Reject until..." task. : : : : : : : : : : : : 115
4.11 Timeout data between 10:00 and 20:00. : : : : : : : : : : : : : : : : : : : : : : : 116
4.12 Learned tree for both high-level and execution-level features at cost 1.0. : : : : : : : 118
4.13 Learned tree for high-level features at cost 1.0, execution-level features at cost 2.0. : : 118
4.14 Learned tree for high-level features at cost 1.0, execution-level features at cost 3.25. : 119

E.1 AmalgamViterbi. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 159



Chapter 1

Introduction

Robots that aim at fully operating in the real world need to be able to perform many
tasks autonomously. Reliability and e�ciency are key issues. The robot must be able to
e�ectively deal with noisy sensors and actuators and consistently achieve its tasks. It must
create high-quality plans, and it must act e�ciently, in real time, to deal with unexpected
situations.

Moreover, since most physical world domains are hard to model completely and correctly,
the robot should be able to learn from its experiences. The robot should be able to adapt
to a changing environment. A learning robot will be more 
exible and adaptive than a
pre-programmed system. An o�ce delivery robot, for example, would be able to move from
working in a university classroom building to a hospital with few, if any, design changes.
Since Shakey the robot [Nilsson, 1984], researchers have been trying to build autonomous
robots that are capable of planning and executing high-level tasks, as well as learning from
the analysis of execution experience.

This thesis addresses the concrete technical challenge of building a complete planning,
executing and learning robotic agent operating in the real world. We present a robotic
system which creates and executes plans for multiple, asynchronous, interacting tasks. We
aim at showing that a real robot can learn from execution experience to improve planning
and execution models, and therefore its performance.

The speci�c research foci are to investigate:

� real execution in a fully autonomous robot,
� challenging the agent with multiple interacting tasks,
� using planning and real execution as a source for learning.

One of the important scienti�c questions is to understand the interaction between an au-
tonomous agent and its environment, especially when there are many interdependent tasks
to be performed. The second important scienti�c question is to understand the impact of
using past experience to improve planning performance in a challenging domain. Our learn-
ing is applicable in any physical domain where the costs or probabilities of actions are hard
to capture or may change over time.

1
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Figure 1.1: Xavier the robot.

1.1 Approach

In this dissertation we explore the interaction of perception, cognition, action and learning
in a complete integrated autonomous agent.

We have built a system called Rogue [Haigh & Veloso, 1997; Haigh & Veloso, 1998a;
Haigh & Veloso, 1998b] that forms the task planning and learning layers for a real mobile
robot, Xavier1. One of the goals of the project is to have the robot move autonomously in
an o�ce building, reliably performing o�ce tasks, such as picking up and delivering mail
and computer printouts, picking up and returning library books, and carrying recycling cans
to the appropriate containers.

Xavier is a mobile robot being developed at Carnegie Mellon University [O'Sullivan et al.,
1997; Simmons et al., 1997] (see Figure 1.1). It is built on an RWI B24 base and includes
bump sensors, a laser range �nder, sonars, a color camera and a speech board. The software
controlling Xavier includes both reactive and deliberative behaviours, integrated using the
Task Control Architecture (TCA) [Simmons, 1994]. Much of the software can be classi�ed
into �ve layers, shown in Figure 1.2: Obstacle Avoidance, Navigation, Path Planning, Task
Planning (provided by Rogue), and the User Interface.

Rogue provides a setup where users can post tasks for which the planner generates

1In keeping with the Xavier theme, Rogue is named after the \X-men" comic-book character who absorbs
powers and experience from those around her. The connotation of a wandering beggar or vagrant is also
appropriate.
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Figure 1.2: Xavier's primary software layers. Reproduced from Simmons et al. [1997].

appropriate plans, delivers them to the robot, monitors their execution, and learns from
evaluation of execution performance.

Rogue's task planner is based on the prodigy4.0 planning and learning system [Veloso
et al., 1995]. The challenges for a task planner in this domain are due to the asynchronous
goals and the dynamics and uncertainty of the world. The task planner generates and exe-
cutes plans for multiple interacting goals, which arrive asynchronously and whose structure
is not known a priori. The task planner interleaves tasks, reasoning about task priority and
task compatibility. Rogue enables the communication between the planner and the robot,
and controls the interleaved planning and execution process. Rogue can detect execution
failures, side-e�ects (including helpful ones), and opportunities. The task planner controls
the execution of a real robot to accomplish tasks in the real world. The planning and ex-
ecution capabilities of Rogue form the foundation for a complete, learning, autonomous
agent.

Rogue uses a planner-independent learning approach that processes the execution data
to improve planning. The challenges for a learning system in a physical world include (1)
automatically extracting relevant learning information from the execution data, and (2)
correlating that information with features of the domain to improve planning models. Our
approach relies on examining the execution data to identify situations in which the planners'
behaviour need to change. It then correlates features of the domain with the learning
opportunities, and creates situation-dependent rules for each of the planners. The planners
then use these rules to select between alternatives to create better plans. We demonstrate
the generality of the approach in two di�erent planners: Xavier's path planner, and the task
planner. Rogue learns situation-dependent rules that a�ect the planners' decisions.

Rogue's overall architecture is shown in Figure 1.3. Rogue exploits Xavier's reliable
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Figure 1.3: Rogue architecture.

lower-level behaviours, including path planning, navigation, speech and vision. Rogue
provides Xavier with a high-level task planning component, and a learning component. The
learning component extracts information from low-level execution data to improve high-level
planning.

1.2 The Domain

The o�ce delivery domain provides a reasonably rich and challenging environment for a
robotic system, while remaining reasonably structured. Tasks include picking up printouts,
picking up and returning library books, and delivering mail and packages within the building.
User requests are, for example, \Pickup a package from my o�ce and take it to the mailroom
before 4pm today." In general, requests involve acquiring an item at some location, and then
delivering it to another.

The domain requires a reliable, e�cient, autonomous mobile robot. When the system is
not reliable, tasks are not successfully achieved, and users will not utilize the system. When
the system is not e�cient, it misses deadlines and otherwise annoys users, and either users
only request nonessential tasks, or the set of authorized users must be restricted.

Task requests arrive asynchronously, the locations and details of which are not known a
priori. Plans for achieving tasks may interact; the task planner is responsible for �nding an
appropriate ordering to interleave and combine compatible tasks.

We can expect the environment to be dynamic at two levels. At the navigation level,
temporary obstacles, including people and objects, may appear at any time. Permanent
obstacles or changes may also occur; for example the hallways in our building were recently
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carpeted and several doors added. These changes may lead to changes in navigation e�-
ciency, reliability or even achievability.

At the task planning level, temporary changes include, for example, people going to
meetings, or changing work hours. More permanent changes might include new sta�, people
changing o�ces, or new task capabilities. For example, one goal of the system is to have the
robot identify and collect aluminium cans for recycling.

Creating a pre-programmed model of these dynamics would be not only time-consuming,
but very likely would not capture all relevant information. Rogue can reduce the burden
on the programmer because its learning capabilities modify the existing domain model to
re
ect real world experience. Rogue extracts relevant information from the execution data
to create situation-dependent rules to improve default cost or probability estimates. Rogue
learns patterns and identi�es changes in the environment, creating situation-dependent rules
that the planners can then use to improve plan quality.

1.2.1 Capabilities of the Robot

The software controlling Xavier includes both reactive and deliberative behaviours. The
various software modules communicate with each other through the Task Control Architec-
ture (TCA) [Simmons, 1994; Simmons et al., 1990]. TCA provides facilities for scheduling
and synchronizing tasks, resource allocation, environment monitoring and exception han-
dling. The reactive behaviours enable the robot to handle real-time local navigation, ob-
stacle avoidance, and emergency situations (such as detecting a bump). The deliberative
behaviours include vision interpretation, maintenance of occupancy grids and topological
maps, and path planning and global navigation (an A� algorithm).

Rogue exploits Xavier's reliable lower-level behaviours, including path planning, nav-
igation, speech and vision. If Xavier were given other abilities, for example manipulation,
elevator riding, or extended vision skills, they could be easily incorporated into Rogue.

The path planner creates plans for moving from one location in the environment to
another. The path planner uses a decision-theoretic A* algorithm on a topological map with
metric information [Goodwin, 1996]. The planner creates a plan with the best expected travel
time, taking into account distance, blockage probability, traversal weight, and recovery costs
(for, say, missing di�cult turns).

Rogue depends most heavily on Xavier's reliable navigation module, which reaches its
destination approximately 95% of the time. Navigation is done using Partially Observable
Markov Decision Process Models (POMDPs) [Simmons & Koenig, 1995]. In the period
from December 1, 1995 to August 31, 1997 Xavier attempted 3245 navigation requests and
reached its intended destination in 3060 cases, where on average each job required it to move
43 meters, for a total travel distance of over 125 kilometers. Detailed navigation results are
presented elsewhere [Simmons et al., 1997].

Xavier does not currently have the ability to manipulate objects itself. It therefore relies
on humans in the environment to place or remove objects from its basket.

Xavier's vision system is minimally used by researchers in the group. Current abilities
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include face detection, door identi�cation and door-label reading. The door identi�cation
skill is used by Rogue only indirectly | the navigation module uses it to centre the robot
in front of the door.

Xavier has a speech board that can convert ASCII English to recognizable accented
speech. Rogue uses this speech capability to interact with users, for example, asking for
mail or verifying its location. To reply to Rogue, users type on the keyboard.

In the near future, we expect that the robot will be able to autonomously ride the elevator
(it currently does so with assistance), and thereby increasing the variety of tasks the system
can perform.

1.3 Task Planning

The challenges for a task planner in this domain are due to the asynchronous goals and
the dynamics and uncertainty of the world. Rogue's task planner is based on prod-
igy4.0 [Veloso et al., 1995], a domain-independent nonlinear state-space planner that uses
means-ends analysis and backward chaining to reason about multiple goals and multiple al-
ternative operators to achieve the goals. It has been extended to support real world execution
of its symbolic actions [Haigh et al., 1997b; Stone & Veloso, 1996]. Rogue handles multiple
asynchronous task requests and controls the real-world execution of Xavier to achieve tasks
in this dynamic o�ce delivery domain.

Any system operating in a dynamic world needs to be able to respond e�ciently and
e�ectively to changes in the environment. Actions may fail, actions may have unexpected
side-e�ects (bene�cial, irrelevant or harmful), and unexpected opportunities may arise. The
system must have mechanisms to detect and respond to such failures and changes.

Asynchronous goals can have a serious e�ect on both planning and execution e�ciency.
The �rst important issue is that the system cannot delay execution until it has completed
planning for all goals; it must instead interleave planning and execution.

Interleaving planning with execution not only allows the system to start executing tasks
when requests arrive, but also allows the system to respond to changes in the environment
as well as to reduce its planning e�ort. An interleaved framework provides the planner
with feedback about execution, for example by pruning alternative outcomes of an action, or
noticing opportunities. For example, the planner can notice limited resources such as battery
power, or notice external events like doors opening and closing. The planner can remove
planned actions when exogenous events or side-e�ects unexpectedly make them irrelevant.

Rogue controls the task planner to interleave planning with execution. Each time
prodigy4.0 generates an executable plan step, Rogue maps the action into a sequence of
navigation and other commands which are sent to the Xavier module designed to handle
them. Rogue then monitors the outcome of the action to determine its success or failure.
Rogue can detect execution failures, side-e�ects (including helpful ones), and opportunities.

Since the o�ce delivery domain involves multiple users and multiple tasks, another im-
portant issue is that the task planner be able to interleave compatible tasks but not get so
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side-tracked that it gets nothing done. Rogue provides prodigy4.0 with mechanisms to
reason about task priority and task compatibility, and successfully and competently inter-
leaves compatible tasks.

Because Rogue interleaves planning with execution and handles asynchronous goals,
Rogue's ability to easily suspend and reactivate tasks is crucial. When important requests
arrive, Rogue suspends the execution of lower priority tasks. Once the important request
has been ful�lled, Rogue reactivates the less important task(s). Some systems respond to
asynchronous goals by restarting the planner, losing planning e�ort as well as placing high
demands on sensing to determine the current status of the environment and interrupted
tasks [Pell et al., 1997; Bonasso & Kortenkamp, 1996]. Rogue, however, suspends and
reactivates tasks e�ciently, without losing any of the prior planning information. It monitors
the environment to identify unexpected changes, such as side-e�ects and exogenous events,
that can a�ect the validity and applicability of plans.

The o�ce delivery domain involves multiple users and multiple tasks in a dynamic world.
Rogue interleaves planning and execution to create a task planner with the ability

� to integrate asynchronous requests,
� to prioritize goals,
� to suspend and reactivate tasks,
� to recognize compatible tasks and opportunistically achieve them,
� to execute actions in the real world, integrating new knowledge which may help plan-
ning, and
� to monitor and recover from failure.

Rogue can control the execution of a real robot to accomplish tasks in the real world.

1.4 Learning

A complete autonomous agent must learn from its experiences. Most physical worlds are
hard to model completely and correctly, and hence, regardless of the skill and thoughtfulness
of its creator, the agent is bound to encounter situations that have not been speci�ed in its
design. The agent should adapt to these situations and absorb any information that will
improve its performance. As completely embodied autonomous agents, robots generally deal
with more complex environments than software or network agents do. The added modelling
di�culty and greater dynamics of these environments make learning an even more critical
component of a complete system.

The challenges for learning in a physical domain are primarily due to representation
di�erences between the planners and the executors. It is hard to extract information from
the execution data that will be relevant for planning, and hard to transform that data into
useful planning knowledge. Moreover, it is hard to design a learning mechanism that will be

exible enough to acquire initial information about the environment, and then to modify it
to incorporate future changes in the domain.
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Prior Learning E�orts for Robotics. Learning has been applied to robotics problems
in a variety of manners. Common applications include map learning and localization (e.g.
[Koenig & Simmons, 1996; Kortenkamp &Weymouth, 1994; Thrun, 1996]), or learning oper-
ational parameters for better actuator control (e.g. [Baroglio et al., 1996; Bennett & DeJong,
1996; Grant & Feng, 1989; Pomerleau, 1993]). Instead of improving low-level actuator con-
trol, our work focusses at the planning stages of the system.

Arti�cial intelligence researchers have explored this area extensively, but have generally
limited their e�orts to simulated worlds with no noise or exogenous events. AI research that
most closely resembles ours has explored how to learn and correct action models (e.g. [Gil,
1992; Pearson, 1996; Wang, 1996]). These systems observe or experiment in the environment
to correct action descriptions, which are then directly used for planning.

In the robotics community, closely related work comes from those who have explored
learning costs and applicability of actions (e.g. [Lindner et al., 1994; Shen, 1994; Tan, 1991]).
These systems learn improved domain models and this knowledge is then used by the system's
planner, as costs or control knowledge, so that the planner can then select more appropriate
actions.

Situation-dependent Learning Approach. Current systems learn that each action has
an associated average probability or cost. However, actions may have di�erent costs under
di�erent conditions. Instead of learning a global description, we would like the agent to
learn the pattern by which these situations can be identi�ed. The agent needs to learn the
correlation between features of the environment and the situations, so that its planners can
predict and plan for those situations. Hence we introduce the concept of situation-dependent
rules that determine costs or probabilities of actions.

We would like a path planner to learn, for example, that a particular highway is ex-
tremely congested during rush hour tra�c. We would like a network routing planner to
learn, for example, that packets are more easily lost at a particular router when the network
is congested. We would like a task planner to learn, for example, that a particular secretary
doesn't arrive before 10am, and tasks involving him can not be completed before then. We
would like a multi-agent planner to learn, for example, that every Monday heavy packages
arrive, requiring two agents to carry them. Once these patterns have been identi�ed and
correlated to features of the environment, the planner can then predict and plan for them
when similar conditions occur in the future.

Learning consists of processing execution episodes situated in a particular task context,
identifying successes and failures, and then interpreting this feedback into reusable knowl-
edge. Our approach relies on examining the execution data to identify situations in which
the planner's behaviour needs to change. Our approach requires that the execution agent
de�nes the set of available situation features, F , while the planner de�nes a set of relevant
learning events, E, and a cost function, C, for evaluating those events.

Events are learning opportunities in the environment for which additional knowledge
will cause the planner's behaviour to change. Features discriminate between those events,
thereby creating the required additional knowledge. The cost function allows the learner to
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evaluate the event. We give some examples of events, costs and features in Table 1.1. The
learner then creates a mapping from the execution features and the events to the costs:

F � E ! C:

For each event " 2 E, in a given situation described by features F , this learned mapping
predicts a cost c 2 C that is based on prior experience. We call this mapping a situation-
dependent rule.

Once the rules have been created, the learner then gives the information back to the plan-
ners so that they will avoid re-encountering the problem events. When the current situation
matches the features of a given rule, the planners will avoid (or exploit) the corresponding
event when appropriate.

These steps are summarized in Table 1.2. Learning occurs incrementally and o�-line;
each time a plan is executed, new data is collected and added to previous data, and then all
data is used for creating a new set of situation-dependent rules.

In this incremental way, the planners can not only detect patterns in the environment,
but also notice when the environment changes. For example, the bottleneck router may be
replaced by new hardware so that it can handle more packets. The secretary may change
his work hours. The incremental learner can notice these changes and incorporate them into
the rules, thereby responding to the changing environment.

The approach is relevant for all planners that would bene�t from feedback about plan
execution. Every planner can bene�t from understanding the patterns of the environment

E F C

Path Planner
A highway is congested
during rush hour.

driving a highway
time-of-day
day-of-week

traversal time
gas consumption

Network Router
Packets are lost at a par-
ticular router when the net-
work is congested.

routing packets tra�c volume
router

packet loss rate
throughput
time-to-destination

Task Planner
A particular secretary
doesn't arrive until 10am.

achieving tasks
location
secretary
time-of-day

success rate

Multi-Agent Planner
Heavy packages arrive on
Mondays, requiring two
agents.

achieving tasks
number of agents
package weight
day-of-week

success rate
time-to-completion

Table 1.1: Examples of Events, E , Features, F , and Costs, C, for sample planners.
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1. Create plan.
2. Execute; record the execution data and features F .
3. Identify events E in the execution data.
4. Learn mapping: F � E ! C.
5. Create rules to update each planner.

Table 1.2: General approach for learning situation-dependent costs.

that a�ect task achievability. This situation-dependent knowledge can be incorporated into
the planning e�ort so that tasks can be achieved with greater reliability and e�ciency.
Situation-dependent features are an e�ective way to capture the changing nature of a real-
world environment.

The approach is also relevant for planners and executors whose data representations di�er
widely. Features are de�ned as by the executor and the task environment, while events and
costs are de�ned by the planner. These are mapped into an intermediate data representation
that is independent of both the executor and the planner. As a result, planners can be
designed independently from their hardware, thereby allowing designers to select the best
planner for a given task.

To demonstrate the e�ectiveness of the approach, we have implemented it in two planners:
Xavier's path planner, and the task planner. Rogue processes execution data to create
improved domain models for both of its planners, thereby allowing them to create better
quality, more e�cient plans. Rogue incorporates the situation-dependent learning approach
to equip a real robot with the ability to learn from its own execution experiences.

1.4.1 Learning for the Path Planner

Knowledge in the path planner is represented as a topological map of the robot's navigation
environment. The map is a graph with nodes and arcs representing o�ce rooms, corridors,
doors and lobbies, and is augmented with metric information. The path planner uses an
estimate of the arcs' traversal costs to create path plans with the best expected travel
time. By learning appropriate arc-cost functions, Rogue helps the path planner to avoid
troublesome areas of the environmentwhen appropriate. Therefore events, E, for this planner
are arc traversals; features, F , include robot sensor data and high-level information such as
date and desired route; and costs, C, are travel time and position con�dence.

Consider the following example. For Xavier, the most challenging region of its environ-
ment is the lobby of our building. Figure 1.4 shows the map of the main 
oor, and Figure 1.5
shows a closeup of the lobby area, with typical obstacles added for the reader's bene�t (since
they often change, the robot does not know where they are). The lobby contains two food
carts, several tables, and is often full of people. The tables and chairs are extremely di�cult
for the robot's sonars to detect, and the people are (often malicious) moving obstacles. As
a result, navigating through the lobby is challenging and expensive for the robot. During
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Figure 1.4: Robot's map (half of the 5th 
oor of our building).

Figure 1.5: Closeup of map; typical obstacles added for the reader: small obstacles indicate people,
while larger ones indicate tables and food carts.

peak hours (co�ee and lunch breaks), it is virtually impossible for the robot to e�ciently
navigate through the lobby.

In this example, we would like Xavier to learn when to avoid the lobby completely. A
direct path from the 5200 corridor to room 5409 is very short through the lobby, but when
the lobby is crowded, the robot takes a lot of time to arrive at its destination. When the
lobby is empty, the robot rarely has problems. A rule modifying the cost of the arc, such as
the one shown in Figure 1.6, would force the planner to avoid the lobby during lunch break.
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Elevators Lobby

5409

5102     then high cost

else low cost

if (12pm < current-time < 1:30pm)

arc in topological map

Figure 1.6: A high-level view of a sample learned rule for the path planner; Rogue learns actual
traversal costs.

1.4.2 Learning for the Task Planner

Knowledge at the task planner level is represented and manipulated as symbolic information.
User requests are, for example, \deliver mail to the main o�ce." By learning rules that
govern the applicability of actions and tasks, Rogue helps the task planner select, reject
or delay tasks in the appropriate situations. Events, E, useful for learning include missed
deadlines and time-outs (e.g. waiting at doors); features, F , include robot sensor data and
high-level information such as date and other tasks; while costs, C, can be de�ned by task
importance, e�ort expended (travel plus wait time), and how much a deadline was missed
by.

For Rogue, an important aspect of achieving its tasks involves interacting with users.
For example, Rogue needs to request that a person place or remove the desired object in
its carrying basket. If Rogue has to wait for substantially long times before acquiring or
delivering objects, Rogue's e�ciency is severely compromised.

In this example, we would like Rogue to learn when people will be away from their
o�ces, and then to avoid the task during those times. For example, a particular user might
work 11am to 8pm, while another works 8am to 5pm. Rules guiding the task planner, like
the ones shown in Table 1.7, would help the task planner avoid tasks at appropriate times.

1.5 Contributions

This dissertation presents the full implementation of an integrated planning, executing and
learning robot system.
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if (or (current-time < 11am)

(current-time > 8pm))

then reject goals involving room1

if (or (current-time < 8am)

(current-time > 5pm))

then reject goals involving room2

Figure 1.7: A high-level view of two sample rules learned for the task planner.

Before the addition of Rogue to Xavier's architecture, Xavier reliably performed actions
requested of it, but had no task planning or learning abilities. prodigy4.0, meanwhile, is
a complex task planner that had never been used interleaved with execution in the real
world; as such, it had never been used for asynchronous goals or in an environment where
the state spontaneously changes. In combining prodigy4.0 and Xavier, the challenges for
Rogue included developing a communication mechanism for control and feedback, as well
as extending the planner to handle the dynamics of a real-world task.

In extending Rogue with learning capabilities, we have increased the 
exibility and
e�ciency of the system because it can adapt to its current environment and also respond to
changes in the environment. The challenges included developing techniques to overcome the
representation di�erences between the execution module and the planning modules, as well
as handling the massive, continual, probabilistic execution traces from this noisy domain.

The speci�c contributions of this thesis include:

� Task Planner:

� The transparent incorporation of asynchronous goals into planning.
� The ability to create plans for multiple interacting goals, taking into account task
priority and compatibility.
� The ability to suspend and reactivate tasks when necessary.
� The ability to detect and respond to failures, unexpected side-e�ects of actions,
and changes in the environment.
� The development of an interleaved planning and real robot execution procedure,
including the development of a communication mechanism between the planner
and the executor.

� Learning:

� The improvement of plans through examination of real-world execution data.
� The introduction of situation-dependent rules which set action costs or probabil-
ities at planning time as a function of situational features.
� The design of a general framework for learning across representations, in which
execution data representation di�ers widely from planning representations.
� The implementation and proof-of-concept of the planner-independent approach
for two di�erent planners, along with extensive empirical results.
� The demonstration of system adaptability to a changing domain.

Additional technical contributions are described in Chapter 6.
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1.6 Reader's Guide

In Figure 1.8 we show which sections need to be read for full comprehension of each of the
main contributions of this thesis.

Task Planner: In Chapter 2, we present the task planner. We describe how Rogue
handles multiple asynchronous goals to create plans that the robot executes. We describe
Rogue's mechanisms for determining task priority and compatibility, and for suspending
and interrupting tasks. We present Rogue's interleaved planning and execution paradigm,
including the mechanisms Rogue uses to monitor execution.

Situation-Dependent Learning: For an understanding of the general learning frame-
work only, we suggest reading the following Sections:

� Overview: 1.4
� Features: 3.2 and 4.1
� Events: the �rst paragraphs of 3.3 and all of 4.2
� Costs: 3.4 and 4.3
� Learning: 3.5

Learning for the Path Planner: In Chapter 3, we instantiate the general learning
framework for Xavier's path planner. We describe the mechanisms used to identify features,

Task Planning

Chapter 1

Chapter 2

(Section 5.1)

Learning for the

Path Planner

Chapter 1

Chapter 3

(Section 5.2)

Learning for the

Task Planner

Chapter 1

Section 2.2.2

Section 3.2

(Section 3.4)

Section 3.5

Chapter 4

(Section 5.2)

Figure 1.8: Reader's guide. For each of the three topics of this thesis, relevant sections are listed. Bold
face indicates that the primary topic of the chapter matches that of the heading; parentheses indicate
less critical sections.



1.6. READER'S GUIDE 15

events and costs and then present the learning algorithm. We present detailed empirical
results showing the e�ectiveness of the system.

Learning for the Task Planner: In Chapter 4, we present our learning framework in
a prototypical instantiation for the task planner. We present two manners by which our
learning approach can be used for this planner: to improve planning performance, and to
improve execution performance. We present the techniques used to identify learning events
for this planner, and describe how events are evaluated. We present sample empirical results
showing the applicability of the approach to this planner.

One of the contributions of the thesis is our planner-independent learning approach,
therefore the structure of the chapter parallels that of Chapter 3. In Chapter 4, we emphasize
the di�erences between the two implementations, and do not repeat overlapping technical
content; cross references are provided where appropriate. Note that for full comprehension of
this chapter, we suggest reading Sections 2.2.2 (planning), 3.2 (features), 3.4 (costs) and 3.5
(learning) beforehand.

In Chapter 5 we describe related work. In Chapter 6 we present our conclusions. We
describe some areas of future work, and provide an analysis of the general applicability of
the approach.
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Chapter 2

The Task Planner

In this chapter, we focus on presenting the techniques underlying the planning and execution
control in Rogue. The planning and execution capabilities of Rogue form the foundation
for a complete, learning, autonomous agent.

Rogue generates and executes plans for multiple interacting goals which arrive asyn-
chronously and whose task requirements are not known a priori. Rogue interleaves tasks
and reasons about task priority and task compatibility. Rogue enables the communication
between the planner and the robot, allowing the system to successfully interleave planning
and execution to detect successes or failures and to respond to them. Rogue controls the
execution of a real robot to accomplish tasks in the real world.

In Section 2.1, we present the Rogue's planning and executing architecture. In Sec-
tion 2.2, we describe prodigy4.0, describe how it plans for multiple asynchronous goals,
and introduce Rogue's mechanism for handling task priority and compatibility. We include
a detailed example of the system's behaviour for a simple two-goal problem, when the goals
arrive asynchronously. In Section 2.3, we present execution and monitoring, in particular
how the system detects, processes and responds to failure. Finally we provide a summary of
Rogue's capabilities in Section 2.5. Related work can be found in Section 5.1.

2.1 Planning and Execution Architecture

Rogue accepts tasks posted by users, calls the task planner, prodigy4.0, which generates
appropriate plans, and posts actions to the robot, Xavier, for execution. Figure 2.1 shows
the general architecture of the planning and execution part of Rogue's system.

Rogue interfaces with Xavier through the Task Control Architecture (TCA) [Simmons,
1994]. TCA provides the communication network between each of the processes controlling
the robot's behaviour, as well as facilities for scheduling and synchronizing tasks, resource
allocation, environment monitoring and exception handling. These processes include both
reactive behaviours and deliberative behaviours. Reactive behaviours include local naviga-
tion, obstacle avoidance, and emergency situations (such as detecting a bump). Deliberative

17
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OGUER(asynchronous)

User Request
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User Request
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Plan Step

Success/Fail

PRODIGY4.0

Figure 2.1: Rogue task planning architecture.

behaviours include vision, occupancy grids and topological maps, and path planning and
global navigation.

prodigy is a domain-independent planner that serves as a testbed for machine learning
research [Carbonell et al., 1990; Veloso et al., 1995]. The current implementation, prod-
igy4.0, is a nonlinear planner that follows a state-space search guided bymeans-ends analysis
and backward chaining. It reasons about multiple goals and multiple alternative operators
to achieve the goals. It reasons about interacting goals, exploiting common subgoals and
addressing issues of resource contention. Rogue provides appropriate search control knowl-
edge to the planner and monitors the outcome of execution.

There are several approaches for creating plans that can be executed. We take the
approach of interleaving planning with execution. Interleaving planning with execution can
create opportunities for the system as well as reduce the search space by removing alternative
outcomes of actions.

Two features inherent in prodigy4.0 are key to allowing an interleaved planning and
execution paradigm:

� prodigy4.0 is capable of generating partial plans for execution in a continuous way,
and
� prodigy4.0 continuously re-evaluates the goals-to-be-achieved based on its current
state information.

The �rst feature allowsRogue to interrupt the planning cycle and send actions for execution.
The second features allows Rogue to incorporate sensor information from the real world so
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that prodigy4.0 can respond to changes in the environment.
Rogue's interleaving of planning and execution can be outlined in the following proce-

dure for accomplishing a set of tasks:

1. Each time a user submits a request, and Rogue adds the task information to prod-
igy4.0's state.

2. prodigy4.0 creates a plan to achieve all current and new goals, constrained by
Rogue's priority and compatibility knowledge, taking into account any interactions
between the goals.

� As each action is selected for execution,Rogue sends it to the robot for execution,
�rst con�rming that its preconditions are valid, and suspending planning during
execution.
� Rogue con�rms the outcome of each action. Rogue incorporates any new knowl-
edge into prodigy4.0's state. In particular, if the action fails, Rogue noti�es
prodigy4.0 and forces replanning.

3. Continuously throughout planning, Roguemonitors the environment for changes that
may a�ect decisions, and updates prodigy4.0's state accordingly.

It is important to realize that prodigy4.0 does not continue planning while the robot
is executing an action. Rogue sends only one action at a time to TCA, and prodigy4.0
waits until the action has completed (Section 2.3 describes how actions are selected for
execution). Requests, however, may enter the system while executing; Rogue adds them
to prodigy4.0's state description, but prodigy4.0 does not plan for them until planning
resumes.

In this chapter, we introduce each of these steps in detail. Rogue's scienti�c contribution
includes the development of this procedure and using it with a real planner on a real executor
for real user requests. Given that it currently cannot ride the elevator autonomously, it is
very limited in the actual tasks that it can do. Rogue has made actual deliveries for several
users, but is not currently in general use in the department. Rogue has been thoroughly
tested in the simulator, and when Xavier is given the ability to ride elevators we fully expect
an easy transition to the more complex environment.

2.2 Planning for Asynchronous Requests

The o�ce delivery domain involves multiple users and multiple tasks. A planner functioning
in this domain needs to respond e�ciently to task requests, as they arrive asynchronously.
One common method for handling these multiple goal requests is simply to process them
in a �rst-come-�rst-served manner; however, this method leads to ine�ciencies and lost
opportunities for combined execution of compatible tasks [Goodwin & Simmons, 1992].

Rogue is able to process incoming asynchronous goal requests, to prioritize them, and to
suspend lower priority actions when necessary. It successfully interleaves compatible requests
and creates e�cient plans for completing all the tasks.
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2.2.1 Receiving a Request

User requests are standard o�ce delivery tasks. For example, a user might make the request:
\Pickup a package from my o�ce and take it to the mailroom before 4pm today." Important
information includes the user, the item, the pickup and delivery locations, and the deadline.
Users submit their task requests through one of three di�erent interfaces: the World Wide
Web [Simmons et al., 1997], Zephyr [DellaFera et al., 1988; Simmons et al., 1997], or a
specially designed graphical user interface (Figure 2.2) [Haigh & Veloso, 1996].

The slots in this last interface are automatically �lled in with default information related
to the task (e.g. FedEx delivery location) as well as information extracted from the user's
plan �le through a simple template-matching mechanism. The deadline time defaults to one
hour in the future. The interface can be extended with additional tasks at any time.

The user interface forwards the request to Rogue by TCA messages. Table 2.1 shows
the data structures used by the user interface and the prodigy4.0 planner, along with an
example request. Appendix B shows sample code used to generate multiple tasks; it shows
the use of the data structures, and the TCA command used to create the request.

prodigy4.0 connects to TCA with the command sequence shown in Table 2.2. The
�rst command sets up a prodigy4.0 interrupt, (tcaProdigyCheckMessage), to check for
new requests. A prodigy4.0 interrupt is a function that is called once during each decision
cycle of the planner. It then connects to TCA, registers the request handler, and �nally calls
(tcaProdigyListen), which is the top-level function that starts the planning cycle when
the �rst request arrives. Appendix A shows the full code of this initialization sequence.

When each new request comes in, either in the interrupt or in (tcaProdigyListen),
Rogue adds it to prodigy4.0's list of unsolved goals, and updates the task model, as
shown in Table 2.3. The literal (needs-item <user> <item>) indicates that a request,
sent by user <user>, is pending. G is prodigy4.0's list of top-level goals, the list of goals

Figure 2.2: User request interface.
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(tca::defstruct_tca (tcaRequest)

(userid "" :type string)

(rank 0 :type int)

(task "" :type string)

(task-rank 0 : type int)

(why "" :type string)

(when-request "" :type string)

(when-deadline "" :type string)

(where-pickup "" :type string)

(where-deliver "" :type string)

)

(a) Lisp.

mitchell

3

delivermail

2

""

Fri Dec 01 13:33

Dec 01 14:33

r-5303

r-5313

(b) Example.

struct {

char *userid;

int rank;

char *task;

int taskrank;

char *why;

char *whenrequest;

char *whendeadline;

char *wherepickup;

char *wheredeliver;

} prodigy_struct_ptrs;

(c) C.

Table 2.1: Request data structure for TCA, as de�ned for the C user interface and the Lisp planner.

;; install PRODIGY interrupt handler to check the socket

(define-prod-handler :always #'tcaProdigyCheckMessage)

;; register Request handler and connect to TCA

(tca::tcaConnectModule "Prodigy" (tca::tcaServerMachine))

(tca::tcaRegisterCommandMessage "Prodigy_PlanRequestCommand"

"{string,int,string,int,string,string,string,string,string}")

(tca::tcaRegisterHandler "Prodigy_PlanRequestCommand"

"PlanRequestHandler" 'PlanRequestHandler)

(tca::tcaEnableDistributedResponses)

(tca::tcaWaitUntilReady)

;; wait for initial request to arrive

(tcaProdigyListen)

Table 2.2: Registering the request handler and connecting to TCA.

which need to be satis�ed in the state before prodigy4.0 declares the planning cycle to
be complete; the literal (has-item <user> <item>) becomes satis�ed when the request is
completed1. The function shown in Table 2.3 is domain-dependent because the literals
added relate strictly to this domain; however, the structure would be identical for any other
domain with asynchronous tasks.

It should be noted that new goals may arrive during execution, while prodigy4.0's
planning cycle is suspended. prodigy4.0 will incorporate the new goals into the plan at
its next decision point. The example in Section 2.2.4 illustrates Rogue's behaviour when a

1Semantically, (has-item <user> <item>) might seem strange for a delivery task, or if a third person
made the request. However, the meaning of the symbol is irrelevant to the computer; humans should
consider it equivalent to \task for user <user> involving item <item> is complete, irrespective of who the
actual recipient is or where the item is located.
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De�ne: C  current state
De�ne: G top-level goals

Let R be the list of pending unprocessed requests
For each request 2 R, turn request to goal:

- C ( C [ f (needs-item request-userid request-object)
(pickup-loc request-userid request-pickup-loc)
(deliver-loc request-userid request-deliver-loc)
(deadline request-userid request-when-deadline) g

- G( (and G (has-item request-userid request-object))
- request-completed( nil

Table 2.3: Integrating new task requests into prodigy4.0.

new goal arrives during execution.

There is currently no explicit mechanism for a user to rescind a request; however prod-
igy4.0 will no longer plan for (or attempt to apply operators for) the associated top-level
goal if it is simply removed from G. Implementation details, such as reversing partially
executed plans when necessary, are left for future work.

2.2.2 Planning in prodigy4.0

prodigy4.0 creates a plan for its unsolved goals by selecting operators whose e�ects achieve
those goals. It continues adding operators to the incomplete plan until a solution to the
problem is found.

Planning involves specifying a task model including operators and search control rules.
Below, we describe the operator representation, and then present the planning algorithm,
and �nally describe how control rules are used to guide the planner's decisions.

2.2.2.1 Operators

A prodigy4.0 operator is de�ned by its preconditions and e�ects, described by literals
that may contain variables. Variables may be typed, or may be constrained by arbitrary
functions. Preconditions in the operators can contain conjunctions, disjunctions, negations,
and both existential and universal quanti�ers. E�ects may be conditional. Variables may
also have delayed bindings, where the value is not selected until the operator is applied.

The operators in Rogue's task planning domain rely heavily on Xavier's existing be-
haviours, including path planning, navigation, vision and speech. Rogue does not reason,
for example, about which path the robot takes to reach a goal, or about obstacles in its way.
By abstracting each request to the robot, such as which path the robot takes, Rogue can
more fully address issues arising from multiple interacting tasks, such as e�ciency, resource
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contention, and reliability.

Table 2.4 shows the primary operators used in this domain. In Table 2.4d, for example,
the robot cannot deliver a particular item unless it (i) has the item in question, and (ii) is
in the correct location. In Table 2.4a, we show how an operator represents that the robot
will not go to a pickup location unless it needs to pickup an item there. It does not matter
where the robot's current location is; the variable <current-location> is only instantiated
when the operator is applied, namely when Rogue knows where the robot is.

The representation of the operators, for example (GOTO-PICKUP-LOC) and (GOTO-DELIVER-

LOC), is not intrinsic to the task, but it can be relevant to planning e�ciency. We have
an implementation of the domain with a single (GOTO-LOC) operator with less constrained
preconditions, which leads to more backtracking while the planner selects the correct order
of desired locations. We can also create a search control rule to guide the planning choices
(see below for a description); this is logically equivalent to separating the operators, but
with some additional match cost.

(operator GOTO-PICKUP-LOC

(params <user> <new-room>)

(preconds ((<user> PERSON)

(<item> ITEM)

(<newloc> ROOM))

(and (needs-item <user> <item>)

(not (robot-has-item <user> <item>))

(pickup-loc <user> <new-room>)))

(effects ((<current-location> ROOM))

((del (robot-in-room <current-location>))

(add (robot-in-room <new-room>)))))

(a) Goto pickup location.

(operator ACQUIRE-ITEM

(params <room> <user> <item>)

(preconds ((<user>PERSON)

(<item> ITEM)

(<room> ROOM))

(and (needs-item <user> <item>)

(not (robot-has-item <user> <item>))

(pickup-loc <user> <room>)

(robot-in-room <room>)))

(effects ()

((add (robot-has-item <user> <item>)))))

(c) Acquire Item.

(operator GOTO-DELIVER-LOC

(params <user> <new-room>)

(preconds ((<user> PERSON)

(<item> ITEM)

(<new-room> ROOM))

(and (needs-item <user> <item>)

(robot-has-item <user> <item>)

(deliver-loc <user> <new-room>)))

(effects ((<current-location> ROOM))

((del (robot-in-room <current-location>))

(add (robot-in-room <new-room>)))))

(b) Goto deliver location.

(operator DELIVER-ITEM)

(params <room> <who> <item>)

(preconds ((<who> PERSON)

(<item> ITEM)

(<room> ROOM))

(and (needs-item <user> <item>)

(robot-has-item <user> <item>)

(deliver-loc <user> <room>)

(robot-in-room <room>)))

(effects ()

((add (has-item <user> <item>))

(del (needs-item <user> <item>))

(del (robot-has-item <user> <item>)))))

(d) Deliver Item.

Table 2.4: The primary operators in Rogue's task planning domain.
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2.2.2.2 Building the Plan

prodigy4.0 creates a plan for its unsolved goals by selecting operators whose e�ects achieve
those goals. It continues adding operators to the incomplete plan until a solution to the
problem is found. In Figure 2.3 we show a simple incomplete plan. An incomplete plan
consists of two parts, the head-plan and the tail-plan [Fink & Veloso, 1994].

The tail-plan is built by a backward-chaining algorithm, which starts from the list of goals,
G, and adds operators, one by one, to achieve its pending goals, i.e., to achieve preconditions
of other operators that are not satis�ed in the current state. Adding operators to the tail-
plan is known as subgoaling.

When all the preconditions of a given operator are satis�ed in the current state, prod-
igy4.0 can simulate the e�ects of the action by applying the operator, or moving an operator
from the tail-plan to the head-plan. The head-plan is a valid total-order plan, that is, a se-
quence of operators that can be executed in the initial state.

Each time an operator is applied, the current state is updated with the e�ects of the
action, e�ectively simulating the e�ects of the action. prodigy4.0 terminates planning
when each of the goals in G are satis�ed in the current simulated state. In Rogue, we use
this simulation step to to actually execute the action, and maintain the simulated state as
closely as possible to the actual state; we describe this process in Section 2.3.2, along with
other possible methods for deciding when to execute.

Tail-Plan

G11

O1

G1

Op1

G2

O2

G

Head-Plan

O21
O22

Op1 pre: G1, G2 O1 pre: G11 O2 pre: G21, G22 O21 pre: | O22 pre: |
add: G add: G1 add: G22 add: G2 add: G21
del: | del: | del: | del: | del: |

Figure 2.3: Example representation of an incomplete plan in prodigy4.0. G is the top-level goal,
and Op1 is the operator that achieves it. G1 and G2 are two preconditions of Op1 that are not satis�ed
in the current state, and are achieved by O1 and O2 respectively. Lines can be viewed as causal links.
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The planning cycle involves several decision points, including

� whether to apply or to subgoal,
� which goal to select from the set of pending goals, and
� which applicable operator to apply.

Table 2.5 shows the prodigy4.0 planning algorithm, with its main decision consisting of
whether to subgoal or apply an operator. Back-Chainer shows the subgoaling decisions
made while back-chaining on the plan, and Operator-Application shows how an operator
is applied.

Rogue runs under prodigy4.0's SABA mode (Subgoal Always Before Apply) [Stone
et al., 1994]. SABA delays operator application until all subgoals have been expanded.
Essentially, this behaviour is equivalent to planning as far in advance as possible, but note
that the plan may not be complete, since parts of the plan may depend on having applied
other operators.

In Rogue's o�ce delivery domain, prodigy4.0 takes the top level goal, (has-item
<user> <item>), and selects an operator that will achieve it. It continues building the plan

PRODIGY4.0
1. If the goal statement G is satis�ed in the current state, terminate.
2. Either (A) Subgoal: add an operator to Tail-Plan (Back-Chainer), or

(B) Apply: move an operator from Tail-Plan to Head-Plan
(Operator-Application).

Decision point: Decide whether to apply or to subgoal.
3. Recursively call PRODIGY4.0 on the resulting plan.

Back-Chainer
1. Pick an unachieved goal or precondition g.

Decision point: Choose an unachieved goal.
2. Pick an operator op that achieves g.

Decision point: Choose an operator that achieves this goal.
3. Add op to Tail-Plan.
4. Instantiate the free variables of op.

Decision point: Choose an instantiation for the variables of the operator.

Operator-Application
1. Pick an operator op in Tail-Plan which is an applicable operator, that is

the preconditions of op are satis�ed in the current state.
Decision point: Choose an operator to apply.

2. Move op from Tail-Plan to Head-Plan.
3. Update the current state with the e�ects of op.

Table 2.5: prodigy4.0 algorithm and decision points, adapted from Veloso et al. [1995].
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recursively, adding operators for each precondition that is not satis�ed in the state, until all
of the operators in the leaf nodes have no unsatis�ed preconditions, yielding a network of
plan steps and goals such as the one shown in Figure 2.4.

The variable <current-location> in Table 2.4 is known as a delayed binding. prod-
igy4.0 binds all free variables in step 4 of Back-Chainer (Table 2.5), when they appear
in the list of preconditions. By placing variables in the e�ects list of the operator, Rogue
forces prodigy4.0 to delay binding them until the operator is applied, thereby e�ectively
reducing backtracking e�ort.

has-item mitchell delivermail

robot-in-room r-5313robot-has-item mitchell delivermail

robot-in-room r-5303

acquire-item r-5303 mitchell delivermail goto-deliver-loc mitchell r-5313

goto-pickup-loc mitchell r-5303

deliver-item r-5313 mitchell delivermail

Figure 2.4: Plan for single task problem. Goal nodes are shown in ovals,
selected operators are shown in rectangles.

2.2.2.3 Search Control Rules

prodigy4.0 provides a method for creating search control rules that reduces the number
of choices at each decision point in Table 2.5 by pruning the search space or suggesting a
course of action while expanding the plan.

Control rules are if-then rules that indicate which choices should be made (or avoided)
depending on the current state and other meta-level information. In particular, control rules
can select, prefer or reject speci�c planning choices at every decision point [Carbonell et al.,
1992]. Control rules can be used to focus planning on particular goals and towards desirable
plans. Rogue primarily uses two types of control rules: those that control goal decisions,
and those that control applicable operator decisions.

In Chapter 4, we describe mechanisms to learn control rules that aid the planner in
making decisions that re
ect actual experiences encountered in the real world.

Goal Selection Rules: Each time prodigy4.0 examines the set of unsolved pending
goals, it �res its goal selection search control rules to decide which goal to expand. Rogue
interacts with prodigy4.0 by providing the set of control rules used to constrain prod-
igy4.0's decisions. Table 2.6 shows Rogue's goal selection control rule that calls two
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(control-rule SELECT-TOP-PRIORITY-AND-COMPATIBLE-GOALS

(if (and (candidate-goal <goal>)

(or (ancestor-is-top-priority-goal <goal>)

(compatible-with-top-priority-goal <goal>))))

(then select goal <goal>))

Table 2.6: Goal selection search control rule.

functions, forcing prodigy4.0 to select the goals with high priority as well as the goals that
can be opportunistically achieved (without compromising the main high-priority goal).

The test functions in a control rule are known as meta-predicates. The meta-predicate
(ancestor-is-top-priority-goal) calculates whether the goal is required to solve a high-
priority goal. Rogue prioritizes goals according to a modi�able metric. In the current
implementation, this metric involves looking at the user's position in the department, the
type of request and the deadline: Priority = PersonRank + TaskRank +DeadlineRank,
whereDeadlineRank is de�ned as shown in Figure 2.5. This function could easily be replaced
with alternatives (e.g. [Williamson & Hanks, 1994]).

When the deadline is reached, the goal is removed from prodigy4.0's pending goals list;
otherwise even an extremely low priority task would eventually be attempted after all other
pending tasks have been completed.

The meta-predicate (compatible-with-top-priority-goal) allows Rogue to deter-
mine when di�erent goals have similar features so that it can opportunistically achieve lower
priority goals while achieving higher priority ones. For example, if multiple people whose
o�ces are all in the same hallway asked for their mail to be picked up and brought to them,
Rogue would do all the requests in the same episode, rather than only bringing the mail
for the most \important" person. Compatibility is de�ned by physical proximity (\on the
path of") with a �xed threshold for being too far out of the way. prodigy4.0 uses the path
planner to calculate the route(s) to the next location(s) of the top priority goal(s), and then
adds any other goals whose routes are compatible.

DeadlineRank =

(
Rmax

t1�t0
� (t� t0) t0 � t � t1

0 otherwise

Where: t is the current time
Rmax is the maximum possible rank value
t1 = deadline � expected execution time
t0 = deadline � 2� expected execution time
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Figure 2.5: Calculating the priority rank of the deadline.
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These rules select which goals prodigy4.0 will focus on. prodigy4.0 will suspend
planning for goals that are low priority and too far out of the way.

It is possible that these rules will select too many compatible tasks, become \side-
tracked," and therefore fail on the high-priority task. A preset threshold would serve as
a pragmatic solution to this problem. We also do not deal with the issue of thrashing, i.e.,
receiving successively more important tasks resulting in no forward progress, because it has
not been an issue in practice. Again, a preset threshold would also handle this potential
problem. Learning techniques could also be applied.

The learning mechanisms described in Chapter 4 learn goal selection rules to improve
planning performance. Essentially, they re�ne the models of when tasks and actions can be
achieved, avoiding them when they cannot be achieved.

Applicable Operator Rules: Rogue also provides prodigy4.0 with a search control
rule that selects a good execution order of the applicable actions. Recall that when an action
is applied, Rogue sends it directly to Xavier for execution. (Other heuristics for deciding
when to execute an action are described in Section 2.3.2, and Chapter 4 describe one method
of learning when to execute.)

This control rule is an execution-driven heuristic, which tries to minimize the expected
total traveled distance from the current location. The heuristic uses the nearest-neighbour
approximation to the travelling salesman problem (TSP). The heuristic selects the next
closest location from the current location of the robot, where the distance estimates are
calculated by the path planner. The heuristic performs well in our environment. Table 2.7
shows one of the applied operator control rules.

When all n locations are known before-hand, this heuristic has been shown to be within
1
2
dlg ne of optimal [Rosenkrantz et al., 1977]. However, the asynchronous requests in our en-

vironment mean that some locations are not known before-hand; therefore each of Rogue's
decisions depend only on what it knows at that time. Plans are e�cient with respect to the
order that task requests arrive. By using the SABA delaying strategy, Rogue's execution
decisions are made with the maximum possible information.

Rogue's goal selection rules work in concert with its applicable operator rules to control

(control-rule SELECT-GOTO-CLOSEST-LOCATION-4

(if (and (candidate-applicable-op

(GOTO-DELIVER-LOC <user1> <item1> <loc1> <curloc1>))

(candidate-applicable-op

(GOTO-DELIVER-LOC <user> <item> <loc> <curloc>))

(diff <loc1> <loc>)

(true-in-state (robot-in-room <roboroom>))

(closer <roboroom> <loc1> <loc>)))

(then reject apply-op (GOTO-DELIVER-LOC <user> <item> <loc> <curloc>)))

Table 2.7: A control rule to select execution order.



2.2. PLANNING FOR ASYNCHRONOUS REQUESTS 29

prodigy4.0's behaviour. The goal selection rules prune the search space to create plans for
high priority and compatible goals. Then the applicable operator rules �re to select amongst
pending applicable operators for the selected goals. A lower priority, incompatible task will
not have pending applicable operators.

The learning mechanisms described in Chapter 4 learn applicable operator rules to im-
prove execution performance.

2.2.3 Suspending and Interrupting Tasks

Rogue needs to be able to respond quickly when new tasks arrive and also when priorities
of existing tasks change. prodigy4.0 supports these changing objectives by making it easy
to suspend and reactivate tasks.

prodigy4.0 grows the plan incrementally, meaning that each time it selects a goal to
expand, the remainder of the plan is una�ected. The system can therefore easily suspend
planning for one task while it plans for another. Rogue evokes this behaviour in prod-
igy4.0, through its control rules: when a rule rejects a particular goal, that goal is e�ectively
suspended, and when a rule selects a particular goal, other goals are suspended.

The planning already done for the suspended goals remains valid until prodigy4.0 is
able to return to them. When prodigy4.0 does in fact return to the suspended actions,
it validates their preconditions in the state, expanding the plan if necessary, or continuing
execution if appropriate.

Generally, the plans for the interrupted goals will not be a�ected by the planning and
execution for the new goal. (Because of the delayed bindings2 in the (GOTO) actions, moving
around the building does not a�ect planning for tasks; moving only a�ects the ordering of
applicable actions.)

Occasionally, however, actions executed to achieve the new goal might undo or achieve
parts of the interrupted plan. For example, the robot might have �nished its new task in
the pickup location of the interrupted task, allowing prodigy4.0 to ignore a (GOTO) action.
There are also occasions in which exogenous events may change the state, such as if a user
passed the robot in the corridor and took his mail at that time, in which case prodigy4.0
could remove the actions relating to delivering the mail.

In cases like these, Rogue's execution monitoring algorithm will update prodigy4.0's
state information and prodigy4.0will know which preconditions it needs to re-achieve or to
ignore. In Section 2.3.3 we discuss in more detail how side-e�ects of actions and exogenous
events may a�ect interrupted or pending plans.

2.2.4 Example: Asynchronous Requests

We now present a detailed example of how prodigy4.0, Rogue and Xavier interact in a
two goal problem: (has-item mitchell delivermail) and (has-item jhm deliverfax).

2See Section 2.2.2.2 for the description of delayed bindings.
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The second goal is higher priority, and arrives while Rogue is executing the �rst action for
the �rst goal.

Figure 2.6 shows the tail-plan generated by prodigy4.0. We describe below the details
of how it is generated. This example illustrates:

� how prodigy4.0 generates plans for task requests,
� how Rogue's search control rules a�ect prodigy4.0's selections,
� how an asynchronous task request a�ects the plan, and
� how the planner interacts with the executor.

We assume for the purposes of this example that no failures occur during execution. The
example is perhaps overly detailed for a reader familiar with back-chaining planners; those
readers could skip to the next section without loss of continuity.

We show the algorithmic sequence of steps of prodigy4.0. At each step, we show the
lists of pending goals, PG, applicable operators, Applicable-Ops, and executed operators,
Executed-Ops.

The plan shown in Figure 2.6 corresponds to prodigy4.0's tail-plan, while the Executed-
Ops correspond to prodigy4.0's head-plan. Recall that operators are executed at the op-
erator application phase of planning, that is, when they are moved from the tail-plan to the
head-plan.

1. Request (has-item mitchell delivermail) arrives. Rogue adds this goal to prod-
igy4.0's pending goals list, PG, and adds the following knowledge to prodigy4.0's
state information:

n5

n14

n10

n8n11

goto-deliver-loc mitchell r-5313

n18

n23

n24

robot-in-room r-5313

has-item jhm deliverfax

robot-has-item jhm deliverfax

robot-in-room r-5311

robot-in-room r-5313

goto-pickup-loc jhm r-5311

*finish*

deliver-item r-5313 mitchell delivermail

robot-has-item mitchell delivermail

acquire-item r-5303 mitchell delivermail

robot-in-room r-5303

n8

acquire-item r-5311 jhm deliverfax

deliver-item r-5313 jhm deliverfax

has-item mitchell delivermail

n13

n16

n7 n20

n21

n26
goto-pickup-loc mitchell r-5303

n17 apply goto-pickup-loc
n27 apply acquire-item

n31 apply deliver-item

n30 apply goto-deliver-loc n28 apply goto-pickup-loc
n29 apply acquire-item

n32 apply deliver-item

Figure 2.6: Plan for a two-task problem; goal nodes are in ovals, required actions are in rectangles.
Nodes are labelled with their node number; missing numbers correspond to uninstantiated operators.
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(needs-item mitchell delivermail)

(pickup-loc mitchell r-5303)

(deliver-loc mitchell r-5313)

PG is (has-item mitchell delivermail)

Applicable-Ops is nil
Executed-Ops is nil

2. prodigy4.0 �res its goal-selection search control rules, which selects this goal (node
5 of Figure 2.6) as the highest priority goal (since it is the only choice). prodigy4.0
examines this goal to �nd an appropriate operator. It �nds (DELIVER-ITEM <user>

<room> <object>), and instantiates the variables: <user> := mitchell, <room> :=

r-5313 and <object> := delivermail, yielding the instantiated operator shown in
node 7. Using means-ends analysis, prodigy4.0 identi�es two preconditions not sat-
is�ed in the state: (robot-has-item mitchell delivermail) and (robot-in-room

r-5313). prodigy4.0 adds these preconditions to the pending goals list.

PG is (and (robot-has-item mitchell delivermail)

(robot-in-room r-5313))

Applicable-Ops is nil
Executed-Ops is nil

3. prodigy4.0 continues expanding the plan for this task, yielding nodes 5 through 16.
At this moment, two operators in the plan have all their preconditions met in the
current state. Node 10 is not applied when it is expanded because of the SABA
delaying strategy.

PG is nil
Applicable-Ops is (and (GOTO-DELIVER-LOC mitchell r-5313)

(GOTO-PICKUP-LOC mitchell r-5303))

Executed-Ops is nil

4. prodigy4.0 examines the set of Applicable-Ops, and based on ordering constraints
(goal clobbering), selects (GOTO-PICKUP-LOC mitchell r-5303) to apply. Rogue
takes the applied operator, moves it to the head plan, and sends it to the robot for
execution. (It does not need to verify preconditions in the real world since none can
be changed by exogenous events.)

PG is nil
Applicable-Ops is (GOTO-DELIVER-LOC mitchell r-5313)

Executed-Ops is nil
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5. Request (has-item jhm deliverfax) arrives. Rogue adds this goal to PG. Note
that prodigy4.0 does not plan for it.
Rogue does not interfere with the currently executing action, namely (GOTO-PICK-

UP-LOC mitchell r-5303). Goodwin [1994] discusses methods to decide when to
interfere.

PG is (has-item jhm deliverfax)

Applicable-Ops is (GOTO-DELIVER-LOC mitchell r-5313)

Executed-Ops is nil

6. The navigation module �nally indicates completion of the action. Rogue veri�es
the outcome (post-conditions) of the action, i.e., that it has arrived at the location
r-5313 (see Section 2.3 for a description of this veri�cation step). Now the action
(ACQUIRE-ITEM r-5303 mitchell delivermail) is applicable.

PG is (has-item jhm deliverfax)

Applicable-Ops is (and (GOTO-DELIVER-LOC mitchell r-5313)

(ACQUIRE-ITEM r-5303 mitchell delivermail))

Executed-Ops is (GOTO-PICKUP-LOC mitchell r-5303)

7. prodigy4.0 �res Rogue's search control rules, which select the new goal (since it
is higher priority than the current task) (node 18). It expands the plan as for the
�rst task, except that instead of selecting an additional operator to achieve the goal
(robot-in-room r-5313), it notices that the operator (GOTO-DELIVER-LOC mitchell

r-5313) has the same e�ect, and does not redundantly add a new operator.

PG is nil
Applicable-Ops is (and (GOTO-DELIVER-LOC mitchell r-5313)

(ACQUIRE-ITEM r-5303 mitchell delivermail)

(GOTO-PICKUP-LOC jhm r-5311))

Executed-Ops is (GOTO-PICKUP-LOC mitchell r-5303)

8. Since the robot is standing in front of room 5303, a control rule �res to select the ap-
plicable operator (ACQUIRE-ITEM r-5303 mitchell delivermail) (node 27). Note
that while (GOTO-PICKUP-LOC jhm r-5311) is higher priority, this action is compati-
ble with it.
Rogue veri�es (ACQUIRE-ITEM)'s preconditions and then sends it to the robot for
execution. When the action is complete, Rogue veri�es the postconditions to check
that it now has mitchell's mail.

PG is nil
Applicable-Ops is (and (GOTO-DELIVER-LOC mitchell r-5313)

(GOTO-PICKUP-LOC jhm r-5311))

Executed-Ops is (GOTO-PICKUP-LOC mitchell r-5303)

(ACQUIRE-ITEM r-5303 mitchell deliver-mail)
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9. The execution constraint control rule now selects (GOTO-PICKUP-LOC jhm r-5311) as
the next applicable operator (node 28). Rogue sends it to Xavier for execution and
monitors its outcome.

PG is nil
Applicable-Ops is (and (GOTO-DELIVER-LOC mitchell r-5313)

(ACQUIRE-ITEM r-5311 jhm deliverfax))

Executed-Ops is (GOTO-PICKUP-LOC mitchell r-5303)

(ACQUIRE-ITEM r-5303 mitchell deliver-mail)

(GOTO-PICKUP-LOC jhm r-5311)

10. Rogue then acquires the fax.

11. Rogue then goes to room 5313.

12. Rogue delivers both items.

The �nal execution order described in this example is shown in Table 2.8, where the
second request arrives during the execution of the �rst. This example illustrates the asyn-
chronous handling of goals in Rogue, and our interleaved planning and execution paradigm.

Solution:

<GOTO-PICKUP-LOC mitchell r-5303>

[arrival of second request]

<ACQUIRE-ITEM r-5303 mitchell delivermail>

<GOTO-PICKUP-LOC jhm r-5311>

<ACQUIRE-ITEM r-5311 jhm deliverfax>

<GOTO-DELIVER-LOC mitchell r-5313>

<DELIVER-ITEM r-5313 jhm deliverfax>

<DELIVER-ITEM r-5313 mitchell delivermail>

Table 2.8: Final execution sequence.

2.3 Execution and Monitoring

In this section we describe how Rogue mediates the interaction between the planner and
the robot. There are three places where Rogue controls the robot's execution:

� when decisions are made about actions or tasks,
� when actions are executed, and
� when the environment or actions are monitored.

Rogue's control rules may use sensing actions to help make planning decisions. Below,
we describe how sensing may be integrated into planning, and discuss some of the limits
placed on execution at this phase.
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Each time prodigy4.0 generates a plan step, Rogue translates the abstract action
description into a sequence of commands for the robot. In this section, we show how prod-
igy4.0's symbolic action descriptions are turned into robot commands.

Before executing an action, Rogue monitors the environment to verify its preconditions
and postconditions. Also, Rogue continuously monitors changes in the environment that
may a�ect current goals. We describe below how robot sensor data is incorporated into the
planner's knowledge base so that the planner can compensate for changes in the environment
or unexpected failures of its actions.

The key to this communication model is based on a pre-de�ned language and model
translation between prodigy4.0 and Xavier. The procedures to do this translation are
manually generated, but are in a systematic format and may be extended at any time to
augment the actions or sensing capabilities of the system. It is an open problem to automate
the generation of these procedures because it is not only challenging to select what features
of the world may be relevant for replanning, but also how to detect those features using
existing sensors.

2.3.1 Sensing in Control Rules

While prodigy4.0 is expanding a plan, search control rules3 �re to guide the planner's
decisions. These rules traditionally rely on state information contained in prodigy4.0's
simulated state, but there is no inherent limitation preventing Rogue from sensing directly
from the external environment.

For example, current external state can be used to decide whether or not to execute an
action. One of Rogue's control rules could sense the battery power levels to decide whether
to return to a recharging station. The camera or sonars could be used to detect whether
a room is occupied, thereby deciding whether or not to try and acquire or deliver an item.
In Chapter 4, we show an example of this kind of rule, and how it can be learned from
experience.

Currently, none of the control rules that use sense the environment directly modify prod-
igy4.0's internal state. However, there may be times when it would be bene�cial to store
such information, and there is no inherent limitation on designing rules that do so.

While there are no implementation limitations on what execution can happen while �ring
a control rule, conceptually the rule should not modify the external state. Such behaviour
should be relegated to operators. Control rules should only sense the state, and it is the
designer's responsibility to ensure that they do not modify it.

2.3.2 Executing Actions

Each action that prodigy4.0 selects must be translated into a form that Xavier will under-
stand. Rogue translates the high-level abstract action into a command sequence appropriate
for execution.

3See Section 2.2.2.3 for a description of control rules.
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2.3.2.1 prodigy4.0's Mechanisms for Supporting Execution

prodigy4.0 allows arbitrary procedural attachments that are called during the operator
application phase of the planning cycle [Haigh et al., 1997b; Stone & Veloso, 1996]. Typically,
we use these functions to give the planner additional information about the state of the world
that might not be accurately predictable from the model of the environment. For example,
this new information might show resource consumption or action outcomes.

Rogue extends this information-gathering capability because, instead of simulating op-
erator e�ects, Rogue actually sends the commands to the robot for real world execution.
Actually executing the planner's actions in this way increases system reliability and e�-
ciency because the system can respond quickly to unexpected events, and the planner knows
the exact outcome of its uncertain actions, reducing the planning e�ort because the planner
does not need to plan for multiple outcomes.

In order to execute operators, several mechanisms were added to prodigy4.0 [Haigh
et al., 1997b; Stone & Veloso, 1996]. The new prodigy4.0/execute algorithm is shown
in Table 2.9. First, the designer needs to de�ne the execution behaviour of the operator
(Change-state-on-execute). Second, the designer needs to de�ne when to execute the
operator (Automatically-decide-to-execute). Finally, the designer needs to decide whether
to simulate the e�ects of execution at the apply state, so as to allow backtracking before
committing to execution (Change-state-on-apply).

2.3.2.2 Deciding When to Execute

It is an important problem to decide when it is safe to execute an operator. The default
behaviour of prodigy4.0/execute is to interactively exploit the user's intuition about
the domain [Stone & Veloso, 1996]. Rogue, on the other hand, eagerly executes actions,
primarily because we want the system to function autonomously.

Most domains fall into this second category; asking the user or de�ning a complex
decision-making function is more e�ective when (i) the domain is dangerous and modelling
is di�cult, or (ii) a lot of backtracking occurs to �nd the correct ordering of applicable
operators. It is an important open problem to design a domain-independent heuristic to
select execution points that will not backtrack. Some initial research e�orts are described in
Section 5.1.

Rogue solves these two problems through the use of control rules. Dangerous operator
e�ects are avoided with prefer rules: prefer a safer alternative until there are no other choices.
The correct ordering of applicable operators is de�ned by the TSP control rule (described
in Section 2.2.2.3).

2.3.2.3 Rogue's Execution Behaviour

The eager execution behaviour of Rogue simpli�es the prodigy4.0/execute algorithm.
Every operator is executed immediately after it is applied. Automatically-decide-to-

execute returns \t", and Change-state-on-apply does nothing. Change-state-on-execute
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PRODIGY4.0/EXECUTE
1. If the goal statement G is satis�ed in the current state, terminate.
2. Either (A) Subgoal: add an operator to Tail-Plan (Back-Chainer), or

(B) Apply: move an operator from Tail-Plan to Head-Plan
(Operator-Application), or

(C) Execute: execute an operator previously applied (Operator-Execution).
Decision point: Decide whether to apply, subgoal, or execute.

Calls Automatically-decide-to-execute.
3. Recursively call PRODIGY4.0/EXECUTE on the resulting plan.

Automatically-decide-to-execute
User-de�ned. Default behaviour is to ask the user.

Operator-Application
1. Pick an operator op in Tail-Plan which is an applicable operator, that is

the preconditions of op are satis�ed in the current state.
Decision point: Choose an operator to apply.

2. Move op from Tail-Plan to Head-Plan.
3. Simulate undetectable state changes (Change-state-on-apply).
4. Update the current state with the e�ects of op.

Change-state-on-apply
User-de�ned. Default behaviour is to do nothing.

Operator-Execution
1. Pick an operator op in Head-Plan which has already been applied.

Decision point: Choose an applied operator to execute.
2. Execute the operator and update the current state with the real-world e�ects

of op (Change-state-on-execute).

Change-state-on-execute
User-de�ned. Default behaviour is to do nothing.

Table 2.9: The prodigy4.0/execute search algorithm, reproduced from Haigh et al. [1997b].
The prodigy4.0 algorithm from Table 2.5 is modi�ed to decide whether to apply (Operator-
Application), or to subgoal (Back-Chainer), or to execute (Operator-Execution). Back-
Chainer remains unchanged from Table 2.5.
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contains all relevant execution behaviour. E�ectively, these two de�nitions reduce the
prodigy4.0/execute algorithm to the original prodigy4.0 algorithm, with the added
behaviour of executing the operator during the application phase of planning.

In the function Change-state-on-execute, each operator has a prede�ned behaviour. In
general, this behaviour is

1. to verify the preconditions of the operator,
2. to execute an associated command sequence,
3. to verify the postconditions of the operator, and
4. if necessary, to attempt to recover from simple failures.

These execution behaviours resemble schemas [George� & Ingrand, 1989; Hormann et al.,
1991] or RAPs [Firby, 1989; Gat, 1992; Pell et al., 1997], in that they specify how to execute
the action, what to monitor in the environment, and some internal recovery procedures.
Rogue's execution behaviours, however, do not contain complex recovery or monitoring
procedures, which we believe the planner should explicitly reason about.

The two veri�cation steps are part of the action monitoring sequence described in Sec-
tion 2.3.3, where we explain how Rogue monitors the outcome of the action, and how
failures may cause replanning or a�ect plans of interrupted tasks.

Below, we describe executing the command sequence, and internal failure recovery.

Executing an Action. Each operator has an associated command sequence for executing
the action. This command sequence may be executed directly by Rogue (e.g. a command
like finger to determine an o�ce location), or sent via the TCA interface to the Xavier mod-
ule designed to handle the command. The action (ACQUIRE-ITEM <room> <user> <item>),
for example, is mapped to a sequence of commands that allows the robot to interact with
a human. The action (GOTO-PICKUP-LOC <user> <room>) is mapped to the commands
shown in Table 2.10, extracted from an actual trace: (1) Announce intended action, (2) Ask
Xavier's path planner to �nd the coordinates of a door near the room, and (3) Navigate to
those coordinates. The outcome is then veri�ed by the action monitors. The example in
Section 2.3.4 shows some additional operators.

Only one action at a time is sent for execution, and while the robot is executing, the
planner waits for execution feedback. Hence, the planner remains fully in control of the robot
at all times. Some planners send the robot command sequences for multiple actions or even
complete plans, thereby assuming that action failures, bene�cial side-e�ects, and exogenous
events will be rare. Alternative approaches to planning and execution are discussed in
Sections 2.4 and 5.1.

In Rogue, there are two possible methods for permitting execution of parallel actions.
The �rst is through an explicit de�nition of a \continuous action," which would have two
parts: a \start" operator and an \end" operator. The planner would then be able to continue
planning during execution.

The second method is through an environment monitor, which would, for example, mon-
itor for objects to recycle. When such an object is noticed, execution could be halted, the
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<GOTO-DELIVER-LOC MITCHELL R-5309>

SENDING COMMAND (tcaExecuteCommand "C_say" "Going to room 5309")

ANNOUNCING: Going to room 5309

SENDING COMMAND (tcaQuery "nearRoomQ" "5309")

...Query returned #(TASK-CONTROL::NEARROOMREPLY 567.0d0 3483.0d0 90.0d0)

SENDING COMMAND (tcaExpandGoal "navigateToG" #(TASK-CONTROL::MAPLOCDATA 567.0d0 3483.0d0))

...waiting...

...Action NAVIGATE-TO-GOAL finished (SUCCESS).

SENDING COMMAND (tcaQuery "visionWhereAmI")

...Query returned #(TASK-CONTROL::VISIONWHEREAMI "5309")

Table 2.10: The set of actions taken for executing the prodigy4.0 operator <GOTO-DELIVER-LOC
mitchell r-5309>.

object acquired, and then execution continued. Rogue brie
y used this technique for incor-
porating new requests that arrived during the execution of a long continuous action: when a
new request came in, Rogue checked to see if the new goal might, in any way, have a�ected
the executing action. It might have higher priority, or be compatible with existing tasks.
When the new goal did a�ect the executing action, that action was halted, and prodigy4.0
was noti�ed that it had failed. prodigy4.0 then incorporated the new goal in its continued
planning. This behaviour was removed from Rogue because it was hard to make claims
about the system's performance when there are frequent requests.

Internal Failure Recovery. After the action has been executed, the action monitors
verify the outcome of the action. If the execution failed, then a simple recovery procedure
is invoked; this recovery procedure is completely internal to the action. Internal recovery
procedures handle common, known failures with simple, directly applicable behaviour.

For example, when the navigation module fails, the (GOTO) operators will simply request
a new path plan, and then reinvoke the navigateToGoal command. The command performs
well given incomplete or incorrect metric information about the environment and in the
presence of noisy e�ectors and sensors, arriving at its destination approximately 95% of the
time [Simmons & Koenig, 1995].

At the scene of a pickup or delivery, if Rogue times-out while waiting for a response to
a query, Rogue will prompt for a user a second time before failing.

Rogue's execution behaviours do not contain complex recovery or monitoring proce-
dures, since we feel that it is more appropriate for the planner to reason about when they
should be used. Di�erent recovery procedures may have di�erent costs, reliabilities, or rel-
evance, and it may be important to reason about the tradeo�s. For example, we prefer the
planner to plan whether to undo side e�ects | there may be situations when it is important
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to undo them, and other situations in which they can be ignored. Extracting complex re-
covery procedures from the actions allows the planner to reason about tradeo�s that would
be hard to explicitly enumerate (see Section 5.1 for a discussion on this point).

If the internal recovery procedures cannot recover from the failure, Rogue deletes the
desired e�ects from prodigy4.0's state, thereby forcing prodigy4.0 to replan to achieve
those e�ects.

2.3.3 Monitoring

In this section, we describe how Rogue monitors the environment, and how changes in the
environment may cause replanning. There are two types of events that Rogue needs to
monitor in the environment.

The �rst centres around actions. Each timeRogue executes an action, it needs to verify
its outcome because actions may have multiple outcomes or fail unexpectedly. Rogue
may need to invoke replanning, or select actions at a branching condition. Rogue also
needs to verify the preconditions of an action before executing it because the world may
change, invalidating one of the system's beliefs. Rogue uses a layered veri�cation process,
incrementally calling methods with greater cost and accuracy, until a prede�ned con�dence
threshold is reached. Action monitors are invoked only when the action is executed. A
detailed example is presented in Section 2.3.5.

The second centres around exogenous events in the environment. Certain events may
cause changes in the environment that a�ect current goals, or opportunities may arise that
Rogue can take advantage of. Environment monitors are invoked when relevant goals are
introduced to the system. For example, Rogue can monitor battery power, or examine
camera images for open doors or particular objects.

Both types of monitoring procedures specify (1) what to monitor and (2) the methods
that can be used to monitor it. Action monitors monitor the preconditions and e�ects of
the action, while environment monitors are a function of the goals the system can achieve.
Since action monitors are based on the planning domain model, they provide a focus for
execution monitoring. It is an open problem to autonomously decide what exogenous events
to monitor that will be relevant for planning.

Although action monitoring is sequential and of limited time-span, while environment
monitoring is parallel and continuous, the two sets of procedures have similar e�ects on
planning.

Once Rogue has done the required monitoring, Rogue needs to update prodigy4.0's
state description as appropriate. In execution monitoring, the update occurs when the object
is detected, or when battery power falls below a certain threshold. In action monitoring,
the critical update is when the actual outcome of the monitoring does not meet the expected
outcome. These updates will force prodigy4.0 to re-examine its plan, adding or discarding
operators as necessary.

If the primary e�ect of an action has been unexpectedly satis�ed, Rogue adds the
knowledge to prodigy4.0's state description and prodigy4.0 does not attempt to achieve
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it. For example, if a user passed the robot in the corridor and took his mail at that time,
Rogue could delete the goal from the state, allowing prodigy4.0 to remove actions relating
to delivering the mail. Observing the environment and maintaining a state description in
this way improves the e�ciency of the system because it will not attempt redundant actions.

If a required precondition is no longer satis�ed as a side-e�ect of some other action or
detected by environment monitoring, Rogue deletes the relevant precondition from prod-
igy4.0's state. prodigy4.0 will therefore replan in an attempt to �nd an action that will
re-achieve it. For example, if learning delays the execution of an acquire or deliver action,
then the precondition (robot-in-room <room>) is deleted when the robot moves. prod-
igy4.0 will need to re-navigate to the required room.

In action monitoring, if the action fails, Rogue will �rst try the internal recovery meth-
ods. These recovery methods are very simple; more complex ones are treated as separate
operators for prodigy4.0 to reason about explicitly. For example, Rogue will try calling
the navigation routine a prede�ned number of times before deciding that the action com-
pletely failed. If, despite these built-in recovery methods, Rogue determines that the action
has completely failed,Rogue will delete the e�ect from prodigy4.0's state description, and
prodigy4.0 will replan to achieve it. prodigy4.0 will not simply re-apply the same action,
since the backtracking rules would not allow it.

Occasionally during environment monitoring, knowledge will unexpectedly be added to
the state that causes an action to become executable, or a task to become higher priority.
Each time prodigy4.0 makes a decision, it re-examines all of its options, and will factor
the new action or goal into the process.

Autonomously deciding which preconditions and e�ects need to be veri�ed is an impor-
tant open problem. In Rogue, all e�ects need to be veri�ed since real world execution may
fail. However, the only preconditions that need to be veri�ed are those which can change
externally. For example, the precondition (needs-item <user> <item>) is completely inter-
nal to prodigy4.0; if a user were to delete the request, then an environment monitor would
delete the literal from the state and prodigy4.0 would no longer plan for it.

In this manner, Rogue is able to detect execution failures and compensate for them, as
well as to respond to changes in the environment. The interleaving of planning and execution
reduces the need for replanning during the execution phase and increases the likelihood of
overall plan success because the planner is constantly being updated with information about
changes in the world. It allows the system to adapt to a changing environment where failures
can occur.

2.3.4 Example: Sensing to Make Planning Decisions

One of the bene�ts of interleaving planning with execution is that sensor information can be
used to prune the search space directly. In this example, we show how Rogue deliberately
senses the environment at a branching operator.

We illustrate the incorporation of perception information from execution into planning
through an example corresponding to one of the events from the AAAI 1996 robot compe-
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tition. The environment consists of three conference rooms and several o�ces. The director
wishes to schedule a meeting in a conference room. Rogue needs to �nd an empty con-
ference room and then inform all the meeting attendees which room the conference will be
in, and at what time. The task requires Rogue to incorporate observation knowledge into
planning in order to accurately and e�ciently complete the task.

WhenRogue receives the task request, it spawns a prodigy4.0 run, giving prodigy4.0
relevant task information such as who are the attendees and which rooms are potential
conference rooms. The path planner knows the topological layout of the rooms, but does
not know the exact location of the doors.

prodigy4.0 starts creating a plan by alternating considering the goals and their subgoals
and the di�erent ways of achieving them. When prodigy4.0 �nds that there are several
possible conference rooms, a control rule �res to check the closest room for availability4.

Table 2.11 shows a partial trace of a run. When prodigy4.0 applies the (GOTO-ROOM)

operator in its simulated environment model (see node 17), Rogue sends the command to
Xavier for execution. Each line marked \SENDING COMMAND" indicates a direct command sent
through the TCA interface to one of Xavier's modules.

This trace uses three TCA commands: navigateToG(oal), C observe and C say. C observe

is a direct perception action. The observation routine can vary depending on the kind of
information needed. It can range from an actual interpretation of some of Xavier's sensors
or its visual images, to speci�c input by a user. During the competition, we used motion
detection and face detection routines [Simmons et al., 1996]. The command C say sends the
string to the speech board.

Once the navigate module has successfully completed, Rogue tells Xavier's vision mod-
ule to observe the room. In this example, the conference room is occupied, and Rogue
updates prodigy4.0's state by setting (room-empty 5309) to false, and (room-occupied

5309) to true. At this stage, the head-plan contains the two executed operators, while the
tail-plan contains the expanded search tree, as shown in Figure 2.7.

Because there are no operators in the domain model that can be used to empty a room,
replanning forces prodigy4.0 to use another conference room for the meeting (i.e. prod-
igy4.0 backtracks to node 6 and selects a di�erent conference room, node 19). Figure 2.8
shows the partial plan at this stage.

The run proceeds untilRogue �nds a conference room that is empty or until it exhausts
all the available conference rooms. The goal (people-informed) is expanded after a meeting
room has been selected, and then Rogue proceeds to tell the attendees where their meeting
will be. The announcement is made by navigation to each individual room. The �nal plan
executed by Xavier is shown in Figure 2.9. Xavier stops at all the conference rooms until
it correctly identi�es an empty one, and then tells all the attendees when and where the
meeting will be (within 3.5 minutes in 5311). This behaviour was developed in Xavier's
simulator and then applied successfully on the real robot.

4This control rule corresponds to the applicable operator TSP rule, Section 2.2.2.3, but at a much earlier
stage of planning, since the room location needs to be known well in advance.
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n2 (done)

n4 <*finish*>

n5 (mtg-scheduled)

n6 schedule-meeting

Firing prefer bindings LOOK-AT-CLOSEST-CONF-ROOM-FIRST #<5309> over #<5311>

n7 <schedule-meeting 5309> [1]

n8 (conference-room 5309)

n10 <select-conference-room 5309>

n11 (at-room 5309)

n13 <goto-room 5309>

n14 (room-empty 5309)

n16 <observe-room 5309>

n17 <GOTO-ROOM 5309>

SENDING COMMAND (tcaExecuteCommand "C_say" "Going to room 5309")

ANNOUNCING: Going to room 5309

SENDING COMMAND (TCAEXPANDGOAL "navigateToG" #(TASK-CONTROL::MAPLOCDATA 567.0d0 3483.0d0))

...waiting...

Action NAVIGATE-TO-GOAL finished (SUCCESS).

n18 <OBSERVE-ROOM 5309>

SENDING COMMAND (tcaExecuteCommand "C_observe" "5309")

DOING OBSERVE: Room 5309 conf-room

...waiting...

Action OBSERVE finished (OCCUPIED).

SENDING COMMAND (tcaExecuteCommand "C_say" "This room is occupied")

ANNOUNCING: This room is occupied

6 n6 schedule-meeting

7 n19 <schedule-meeting r-5311>

Table 2.11: Partial trace of Rogue interaction, in which direct observation is used to make planning
decisions.

Observing the real world allows the system to adapt to its environment and to make
intelligent and relevant planning decisions. Observation allows the planner to update and
correct its domain model when it notice changes in the environment. For example, it can
notice limited resources (e.g. battery), notice external events (e.g. doors opening/closing),
or prune alternative outcomes of an operator. In these ways, observation can create oppor-
tunities for the planner and it can also reduce the planning e�ort by pruning possibilities.
Real-world observation creates a more robust planner that is sensitive to its environment.
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meeting-scheduled

schedule-meeting 5309

*finish*

people-informed

goto-room 5309

observe-room 5309

Head-Plan

CAN NOT EXECUTE
(room-empty is not true)

Moved to Head Plan

goto-room 5309

at-room 5309 room-empty 5309

observe-room 5309

n7

n5

n11

n17

n14

n16

n18

n10

n13

n4

conference-room 5309

select-conference-room 5309

n8

Tail-Plan

Figure 2.7: Partial plan after room 5309 has been observed.

meeting-scheduled

*finish*

people-informed

goto-room 5309

at-room 5309 room-empty 5309

observe-room 5309

goto-room 5309

observe-room 5309

Tail-Plan

schedule-meeting 5311
n19

n4

n5

n11

n13 n15

n14

n23

n25

n26

n28goto-room 5311 observe-room 5311

at-room 5311 room-empty 5311

conference-room 5309

select-conference-room 5309 select-conference-room 5311

conference-room 5311

n22

n20

n10

n8

n17

n18

Head-Plan

Figure 2.8: Partial plan after backtracking occurred and immediately before room 5311 has been
observed.
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<goto-room 5309>

<observe-meeting-room 5309>

<goto-room 5311>

<observe-meeting-room 5311>

<select-meeting-room 5311>

<goto-room 5307>

<inform-person-of-meeting director 3.5 5311>

<goto-room 5303>

<inform-person-of-meeting professor-G 3.5 5311>

<goto-room 5301>

<inform-person-of-meeting professor-S 3.5 5311>

Figure 2.9: Executed plan

2.3.5 Example of how Rogue Handles Failures

One of Xavier's actions that Roguemonitors is the navigateToGoal command, used by both
the (GOTO-PICKUP-LOC <user> <room>) and the (GOTO-DELIVER-LOC <user> <room>) op-
erators. navigateToG reports a success when the robot arrives at the requested goal.
navigateToGmay fail under several conditions, including detecting a corridor or door block-
age, or lack of forward progress. The module is able to autonomously compensate for certain
problems, such as obstacles and missing landmarks. Navigation is done using Partially Ob-
servable Markov Decision Process models [Simmons & Koenig, 1995], and the inherent un-
certainty of this probabilistic model means that the module may occasionally report success
even when it has not actually arrived at the desired goal location.

When navigateToG reports a failure or a low-probability success, Rogue veri�es the
location. Rogue �rst tries to verify the location autonomously, using its cameras. The
vision module looks for a door in the general area of the expected door, and �nds the room
label, and reads it. If this module fails to �nd a door, fails to �nd a label, or returns low
con�dence in its template matching, Rogue falls back to a second veri�cation procedure,
namely using the speech module to ask a human. We assume that veri�cation step gives
complete and correct information about the robot's actual location; other researchers are
focussing on the open problem of sensor reliability [Hughes & Ranganathan, 1994; Thrun,
1996].

If Rogue detects that in fact the robot is not at the correct goal location, Rogue
updates the navigation module with the new information and re-attempts to navigate to the
desired location. If the robot is still not at the correct location after a constant number of
tries (three in our current implementation), Rogue updates prodigy4.0's task knowledge
to re
ect the robot's actual position, rather than the expected position.

In general, prodigy4.0 has several di�erent operators that can achieved a particular
e�ect, and will successfully replan for the failure. In this case, however, there are no other
alternative methods of navigating, and prodigy4.0 declares that the task can not be suc-
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goto-location( num-times, room )
if (num-times > max-retries)

report failure to execute, remove all planning info
else

(navigateToG room)
if (or ((where-am-i-now) 6= room)

((best-prob-markov-state) < threshold ))
actual-room  (verify-location room))
if (actual-room 6= room))

remove literal (robot-in-room room) from state
add literal (robot-in-room actual-room) to state
goto-location( num-times+1, room )

verify-location( room )
vision-room  (visionWhereAmI con�dence-threshold)
if (vision-room)

return vision-room

else return (ask-human \Where am I?")

Table 2.12: An outline of the monitoring and recovery procedure used for the navigation operators.
Courier font is used to indicate calls to Xavier.

cessfully achieved. Rogue removes the task from prodigy4.0's goals lists G and PG which
e�ectively kills the task.

The commands used for these navigation operators are outlined in Table 2.12. A short
trace appeared in Table 2.10.

2.3.6 Example of how Rogue Handles Side-e�ects

Occasionally, suspending one task for a second one will mean that work done for the �rst will
be undone by work done for the second. Rogue needs to detect these situations and plan
to re-achieve the undone work. Consider a simple situation that illustrates this re-planning
process:

Task one: Task two:
1a. goto 5301 2a. goto 5409
1b. pick up mail 2b. pick up fed-ex package
1c. goto 5315 2c. goto 4320
1d. drop o� mail 2d. drop package o�

Many possible interleaved planning and execution scenarios may occur; below are two
possibilities.
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� [Normal:] Rogue executes 1a and 1b. While executing, the request for task two
arrives. Rogue decides that task two is more important. Task one is suspended;
step 1c is pending. Rogue plans for and executes task two. Rogue returns to
step 1c, veri�es that it is still needed to complete the task and can still be done, then
does 1c and 1d.

� [Undone Action:] Rogue executes 1a. While executing 1b, the request for task two
arrives. 1b times-out, indicating that the mail-room person wasn't there to give the
robot the mail. Rogue decides task two is more important, and suspends task one;
step 1b is pending. Rogue plans for and executes task two. Rogue returns to step 1b,
discovers that a precondition is not true: (robot-in-room <5301>). Rogue re-plans
to achieve it, and then re-executes step 1a, and then �nishes the task as expected.

When Rogue's environment monitors detect a change in world state, either from an
exogenous event or as a side-e�ect of some other action, Rogue modi�es prodigy4.0's
internal state description.

� When Rogue deletes a relevant precondition, prodigy4.0 is forced to create a plan
for it.
� When Rogue adds a relevant precondition, prodigy4.0 will not execute any actions
that try to achieve it.
� When Rogue deletes a primary e�ect of an already-executed action, prodigy4.0 is
forced to replan for it.
� When Rogue adds a primary e�ect of a required-to-execute action, prodigy4.0 will
not execute that action.

Rogue thus gives prodigy4.0 the power to improve system e�ciency and correctness by
removing redundant actions and responding to detrimental changes in the environment.

2.4 Alternative Approaches

Rogue sends one action at a time for execution, and while the robot is executing, the
planner is suspended, waiting for execution feedback. New goals can be incorporated at this
time, but the planner does not reason about them.

An alternative design for Rogue would have been to allow prodigy4.0 to continue
planning while actions were being executed. Essentially, this approach would require

� explicitly monitoring for action completion, and then verifying its postconditions and
attempting internal failure recovery,
� adding signi�cant machinery to prodigy4.0 to support delayed action failures,
� setting (automatically-decide-to-execute) to return \t" when the execution of the
previous action has completed,
� modifying prodigy4.0 to continue monitoring execution after a complete plan has
been generated, instead of returning to the command line.
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This approach would, for example, have allowed prodigy4.0 to create plans for each pos-
sible outcome of an action, without \wasting time" after an action fails. In domains with
dangerous side-e�ects and no control rules to avoid them, prodigy4.0 would be able to
simulate their e�ects before execution, thereby directly eliminating them from the plan. In
this domain, however, dangerous side-e�ects are rare, and it takes very little time to plan
a failure recovery. Hence, the e�ort needed to implement the basic requirements did not
appear to have su�cient bene�t.

A second alternative design for Roguewould have been to send actions to Xavier without
waiting for them to return. TCA would then maintain sequencing constraints amongst them.
While this approach would have the same bene�ts as the �rst, it would require Rogue

� to autonomously add failure monitors and internal recovery procedures to the TCA
hierarchy each time an action is sent,
� to retract actions already sent to TCA when side-e�ects make them unnecessary, or
failures require replanning or reordering of actions, or a compatible asynchronous re-
quest is received.

The added overhead of these two requirements reduce the bene�ts of an interleaved paradigm.
Moreover, the learning mechanisms for improving plan execution (described in Chapter 4)
would have much less bene�t: they may reorder applicable operators at any time, and
Rogue would occur signi�cant overhead to notify TCA.

2.5 Summary

Rogue can successfully run errands between o�ces in our building.
This chapter has presented the integrated planning and execution aspect of Rogue. We

have described how prodigy4.0 gives Rogue the power

� to integrate asynchronous requests,
� to prioritize goals,
� to suspend and reactivate tasks,
� to recognize compatible tasks and opportunistically achieve them,
� to execute actions in the real world, integrating new knowledge which may help plan-
ning, and
� to monitor and recover from failure.

Rogue represents a successful integration of a classical arti�cial intelligence planner with
a real mobile robot. The complete planning and execution cycle for tasks can be summarized
as shown in Table 2.13. Rogue handles multiple goals, interleaving the individual plans to
maximize expected overall execution e�ciency.

Figure 2.10 summarizes the information exchanged between users, prodigy4.0, and
Xavier under Rogue's mediation. Rogue constrains prodigy4.0's decisions through
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In Parallel:

1. Rogue receives a task request from a user, and adds the information to prod-
igy4.0's state.

2. Rogue requests a plan from prodigy4.0.

Sequential loop; terminate when all top-level goals are satis�ed:

(a) Using up-to-date state information, prodigy4.0 generates a plan step,
considering task priority, task compatibility and execution e�ciency.

(b) Rogue translates and sends the planning step to Xavier.
(c) Rogue monitors execution and identi�es goal status; in case of failure, it

modi�es prodigy4.0's state information.

3. Rogue monitors the environment for exogenous events; when they occur,
Rogue updates prodigy4.0's state information.

Table 2.13: The complete planning and execution cycle in Rogue. Note that Steps 1 to 3 execute in
parallel.

Perception

State

ConfirmMonitorTranslate

Actions

Actions

OGUER

Xavier

PRODIGY4.0

CompatibilityPriorities TSP

Goal
Selection

Action
Selection

Path plans

Translate

Goals

RequestsUsers

Figure 2.10: Summary of Rogue's mediation between users, prodigy4.0 and Xavier.

calculations on task priority, task compatibility, and execution e�ciency. Rogue trans-
lates prodigy4.0's symbolic action descriptions into Xavier commands, and also translates
Xavier's perception information into prodigy4.0 domain description.

The contributions of our work to the Xavier project are in the high-level reasoning parts
of the system, allowing the robot to e�ciently handle multiple, asynchronous interacting
goals, and to e�ectively interleave planning and execution in a real world system. Execution
monitoring based on a planning model allows the systematic identi�cation of environment
monitors: literals that appear as preconditions need to be monitored either in an environment
monitor or in an action monitor; literals that appear as postconditions need to be veri�ed
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in the action monitors.
Rogue advances the state of the art of the integration of planning and execution in

robotic agent. In a unique novel way, Rogue is designed as the integration of two inde-
pendently developed platforms. prodigy4.0 is a general-purpose planner and Xavier can
be viewed as a general-purpose navigation robot. Rogue merges the functionality of these
two systems in a real implementation that demonstrates the feasibility of connecting both
systems in a rich task environment, namely the achievement of asynchronous user requests.
(Rogue therefore also shows how the prodigy4.0 planner and the TCA approach in Xavier
are in fact robust architectures.)

Strictly looking at Rogue only from the viewpoint of the integration of planning and
execution,Rogue compares well with other integrated planning and execution systems such
as NMRA [Pell et al., 1997] and 3T [Bonasso & Kortenkamp, 1996] (Section 5.1 discusses
this comparison in more detail). Given the general-purpose character of the prodigy4.0
planner, Rogue could easily be applied to other executing platforms and tasks by a 
exible
change of prodigy4.0's speci�cation of the domain.

Interleaving planning with execution enhances a deliberative robot system in numerous
ways. One such bene�t is that the system can sense the world to acquire necessary domain
knowledge in order to continue planning. For example, it could actively ask directions, or
passively use control rules to check whether it needs to recharge its batteries, or whether
doors are open or closed. Another bene�t is reduced planning e�ort because the system does
not need to plan for all possible failure contingencies; instead, it can execute an action to
�nd out its actual outcome.

The interleaved planning and execution portion of Rogue provides an appropriate plat-
form to collect execution data for the learning portion.
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Chapter 3

Learning for the Path Planner

The goal of learning in our system is to identify events (E) during execution that do not
meet expectations, and to then correlate situational features (F) to those events. Events are
then evaluated by a cost function (C). The learner will then create a mapping from features
and events to costs:

F � E ! C:

These situation-dependent costs are used to improve the quality and reliability of generated
plans. The challenges are to automatically extract relevant information from the execution
data in order to improve cost estimates, and to correlate that information to high-level
features of the domain.

In this chapter, we present the learning algorithm as it applies to Xavier's path planner,
where our concern is to improve the reliability and e�ciency of selected paths. Rogue
demonstrates the ability to learn situation-dependent costs for the path planner's arcs. It
extracts relevant training data from the massive, continual, probabilistic execution traces,
and creates appropriate situation-dependent costs that the path planner can use to create
more e�cient paths. Figure 3.1 shows how our algorithm �ts into the framework of the
Xavier architecture.

The path planner uses a A* algorithm on a topological map that has additional metric
information [Goodwin, 1996]. Knowledge in the path planner is represented as a topological
map of the robot's navigation environment. The map is a graph with nodes and arcs repre-
senting o�ce rooms, corridors, doors and lobbies. Learning appropriate arc-cost functions
will allow the path planner to avoid troublesome areas of the environment when appropriate.
Therefore we identify events, E, for this planner as arc traversals, and costs, C, as travel time

Path
Planner

Navigation
(POMDP)

Learning

Execution 

Trace

Weighted Arcs

Path

Topological Map

(nodes, arcs and lengths)

Figure 3.1: Learning for the path planner.
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and position con�dence. Features, F , include both robot sensor data and high-level features
such as date and goals.

The execution traces from which learning can occur are provided by the navigation
module. Navigation is done using Partially Observable Markov Decision Process Models
(POMDPs) [Simmons & Koenig, 1995]. The execution trace includes observed features
of the environment as well as the probability distribution over the Markov states at each
time step. Identifying the path planner's events from this trace is challenging because the
execution traces contain a massive, continual stream of probabilistic data. At no point in
the robot's execution does the robot know where it actually is. It maintains a probability
distribution, making it more robust to sensor and actuator errors, but making the learning
problem more complex because the training data is not guaranteed to be correct.

The primary challenges of our learning approach include:

� processing vast amounts of uncertain, continual navigation data,
� creating arc costs that depend on high-level features of the environment.

The approach is valid for any path planner paired with any navigation module. If
Xavier were to directly plan paths within the POMDP, then Rogue would learn situation-
dependent transition probabilities between Markov states. The important point is that
Rogue must process the execution data to extract information relevant for planning, and
then correlate that information with features of the domain. The designer must specify
how to extract relevant learning opportunities from the execution data, and how to use the
learned information within the planner.

We present the representations of the path planner and the navigation module in Sec-
tion 3.1. In Section 3.2, we discuss features F , including the characteristics of a good feature.
In Section 3.3, we present events E. We brie
y describe the execution trace, and then de-
scribe how we extract and identify the robot's traversal from the uncertain data. Costs C are
presented in Section 3.4, along with the mechanismRogue uses to create an events matrix
of training data for the learning algorithm.

In Section 3.5, we present the learning mechanism we use to create the mapping from
situation features (F) and arc traversals (E) to arc costs (C).

In Section 3.6, we brie
y describe how the path planner uses these situation-dependent
arc costs to create e�cient paths. We present our experimental results in Section 3.7, and
then �nally summarize the main points of the chapter in Section 3.8. Related work can be
found in Section 5.2.

3.1 Architecture and Representation

Our goal is to learn situation-dependent arc costs to improve the e�ciency of constructed
paths. The training data for this learning is provided by the navigation module.

The path planner uses an A* algorithm with an arc/node representation [Goodwin, 1996].
Navigation, meanwhile, uses a Markov state representation inside a Partially Observable
Markov Decision Process (POMDP) model [Simmons & Koenig, 1995; Koenig, 1997].
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There is, unfortunately, no clear correspondence between the representation used in the
navigation module and the representation used in the path planning module. Hence, the
representation gap between the path planner and navigation is one of the challenges in this
research. More discussion on this point follows in Section 3.3.2 (page 69).

We now describe in detail the representations of the path planning and navigation mod-
ules.

3.1.1 The Path Planner

The path planner determines how to travel e�ciently from one location to another. The en-
vironment is modelled as a topological map with nodes and arcs. Nodes represent junctions,
such as those between corridors or at doors. Arcs represent connections between junctions.
Topological arcs are augmented with length estimates.

Plans are generated using a decision-theoretic A* search strategy [Goodwin, 1996]. The
path planner operates on the augmented topological map rather than using the POMDP
model directly.1

The path planner creates a path with the best expected travel time. The travel time of
a complete path is calculated as a function of four parameters: distance, traversal weight,
blockage probability and recovery costs.

� The distance is an estimate of the straight-line length of the arc. It is an estimate
because topological maps are not necessarily generated from building blue-prints: they
may be hand sketched or learned.
� The traversal weight describes the di�culty of the route (e.g. door arcs are more
expensive than corridor arcs).
� Blockage probability indicates the probability a given arc cannot be traversed (e.g. a
closed door).
� Recovery costs estimate the di�culty of recovering from a failure, such as missing a
turn or discovering a closed door. These costs estimate local recovery costs, i.e. for
each missed turn.

Recovery costs are an important part of the expected time calculation. Actuator and
sensor uncertainty means that the robot may not be able to accurately follow a path, and
the shortest distance path is not necessarily the fastest. Consider, for example, the two
paths from A to B shown in Figure 3.2. Although path 1 is shorter than path 2, the robot
might miss the �rst turn on path 1 and have to backtrack. This problem cannot occur on
the other path, since the end of the corridor prevents the robot from missing the turn. In
this particular example, the recovery cost of path 1 is very high, and so the path planner
determines that the longer path might take less time on average.

1It is infeasible to determine optimal POMDP solutions given our real-time constraints and the size of
our state spaces (over 3000 states for the map shown in Figure 1.4, page 11) [Cassandra et al., 1994; Lovejoy,
1991]. Reasoning about blockage probabilities and recovery costs is also notably easier in the topological
map.
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path 2

path 1

A

B

Figure 3.2: Two paths from A to B. Although path 1 is shorter, the robot might miss the turn and
get trapped in the dead end. Reproduced from Simmons et al. [1997].

Xavier currently travels in a restricted environment, namely three of the 
oors in our
o�ce building. The weights of the topological map of this environment have been hand-tuned
and provide a good initial approximation of the unoccupied environment. However, these
default costs do not capture the variations created by human use. The patterns describing
these variations can be detected.

Rogue learns traversal weights (or costs) that depend on high-level features of the sit-
uation. These learned weights e�ectively modify the estimated traversal time to re
ect
experienced traversal time. Learning situation-dependent costs will allow the path planner
to respond to patterns and changes in the environment.

3.1.2 Navigation

Navigation on the robot is done using Partially Observable Markov Decision Process models
(POMDPs) [Simmons & Koenig, 1995]. The navigation module estimates the robot's current
location, determines the direction the robot should be heading at that location to follow the
path, and then sets a directional heading.

The navigation module estimates the robot's current location by maintaining a probabil-
ity distribution over the robot's current pose (position and orientation). Given the current
pose distribution and new sensor information, the navigation module uses Bayes' rule to
update the pose distribution. The updated probabilities are based on probabilistic mod-
els of the actuators, sensors, and the environment. In Xavier, the primary actuators are
the wheels, for which the probabilistic models describe the robot's dead-reckoning skills.
Xavier's primary sensors are its sonars, whose probabilistic models describe the likelihood of
observing given features in the sonar data. The environment is the map, where the models
describe variance on its metric information. This information is automatically compiled into
a POMDP model.

The metric variance of the map alters the structure of the Markov model. In our system,
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Markov node, including
    direction heading

A B Forward transition; each

Key

arc represents one metre

Figure 3.3: Corridor representation which captures length uncertainty for the navigation module. Each
transition corresponds to 1 metre, and hence this corridor is represented as being 2, 3 or 4 metres long.
Only forward transitions are marked. Reproduced from Simmons & Koenig [1995].

we use parallel Markov chains, where each corresponds to one of the possible lengths of the
edge [Simmons & Koenig, 1995]. Figure 3.3 illustrates an example for a corridor that may
be two, three or four metres long. This representation is an e�ective way to represent worlds
in which lengths are not known with certainty.

Table 3.1 shows the probability update calculation. Figure 3.4 shows an example of
how Bayes' rule is used to update state probabilities (for a forward action, disregarding
observations). At time t, states s1; :::; s4 have the marked probabilities, and for a given
action, the marked transition probabilities to s5; :::; s8. Denote �(si; t) to be the probability
of state i at time t; denote Aa(si; sj) to be the transition probability between si and sj for
a given action a; denote O(si; ot) to be the probability of observing ot in state si. At time

De�ne S to be the set of all Markov states; Let s; s0 2 S.
De�ne A to be the probability distribution over successor states; Aa(s; s

0) is the
transition probability for an action a between state s and state s0.

De�ne O to be the probability distribution over observations; O(s; o) is then the
probability of obverving o in state s.

De�ne � to be the probability distribution over S; �(s; t) is then the probability of the
robot being in state s at time t. (Technically, �(s; t) is shorthand for
�(s; t j o0; :::; ot; a0; :::; at�1; �(s; 0)) for the observation sequence o0; :::; ot
and the action sequence a0; :::; at�1.)

At time t = 0:
8s 2 S; let �(s; 0) = initial state distribution.

For time t + 1 � 1, action a was selected, and then observation ot+1 was made:
8s0 2 S; �(s0; t+ 1) =

P
s2S �(s; t)� Aa(s; s

0)�O(s0; ot+1).

Table 3.1: Bayesian probability updates.
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Figure 3.4: An example of POMDP transition calculations (for a forward action, disregarding obser-
vations). �(si; t) indicates the probability of the state (circle size is proportional to probability). At
time t+ 1, POMDP state probabilities are calculated as the sum of all incoming transitions.

t+ 1, for a given action a, the POMDP's Bayesian probabilities are calculated as:

�(sj; t+ 1) =
X
i

�(si; t)�Aa(si; sj)�O(sj; ot+1): (3.1)

Each of the states at time t+ 1 has updated probabilities that are calculated as the sum of
all incoming transitions.

Observations of the world help prune unlikely states from the probability distribution.
Observations can help prune unlikely states because a low probability observation will make
a low probability state essentially impossible2, while a high probability observation will
improve con�dence in medium or high probability states. Table 3.2 shows some sample
observation probabilities; note that none of the observation probabilities are zero. In general
there is signi�cant probability of sensor error; however it is very unlikely the robot will
\hallucinate" the end-of-corridor (EOC).

Regular observations can keep the robot fairly certain of its location. However, if the
robot does not receive any observations for a long time (e.g. in a long featureless corridor),
the probability distribution may spread over many states, making it impossible to determine
with any precision the robot's exact location.

Note that a new observation may signi�cantly change the probability distribution. For
example, when the robot observes the end of a corridor, that state is extremely likely. At the

2In the implemented algorithm, all states with less than 10�9 probability are reset to zero.
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P ( EOC jWall ) = 0:98
P ( Nothing jWall ) = 0:02

P ( EOC j Open ) = 0:15
P ( Nothing j Open ) = 0:85

P ( Wall jWall ) = 0:65
P ( SmallOpening jWall ) = 0:10
P ( MediumOpening jWall ) = 0:10
P ( LargeOpening jWall ) = 0:10
P ( Nothing jWall ) = 0:05

Table 3.2: Sample observation probabilities. P (ojs) = O(s; o), which is the probability that the sensor
will report o given that the state is of type s.

previous time step, however, the robot might have had a very poor estimate of its location,
in which the probability distribution was very 
at and centred some distance from the end
of the corridor. Figure 3.5 demonstrates this change. Figure 3.5a shows the probability
distribution before the robot sees the wall at the end of the corridor, while Figure 3.5b
shows the distribution after.

The navigation module is very reactive to unexpected sensor reports, since probabilities
are maintained for all possible poses, not just the most likely pose. Thus, if the robot strays
from the nominal path, it will automatically execute corrective actions once it realizes its
mistake. Consequently, the navigation module can gracefully recover from sensor noise and
misjudgments about landmarks. The drawback to this approach is that the robot is never
completely sure where it is. This introduces uncertainty into the learning data, and therefore
further complicates the learning algorithm because the training data may contain errors.

(a) (b)

Figure 3.5: Markov state probability distribution, (a) before and (b) after observing the wall at the
end of the corridor. Circles indicate probability distribution; large circles have high probability. At each
time step, the most likely state is marked with a dot.
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3.2 Features

Features, F , of the environment are used to discriminate between di�erent learning events.
It is crucial to �nd a good set of relevant features, since the hypothesis space can only be
described in terms of the available features. If critical features are omitted, then the learner
will be unable to converge on the correct target function. It is an important open problem
to autonomously determine a good set of features.

Features are de�ned by the robot architecture and the environment. Usually they are not
dependent on the tasks. For this reason, the execution module de�nes and collects features.

Features available in Xavier include speed, time of day, sonar observations (walls, open-
ings), camera images (which could also be abstracted to indicate \empty," \crowded," \clut-
tered," etc.), other goals, and the desired route. For example, travelling too fast past a par-
ticular intersection might lead to missing a turn. Images with lots of people might indicate
di�cult navigation.

Characteristics that make a good feature include:

� it is easy to detect (in terms of accessibility and cost),
� it is informative, and
� it is projective.

Easy detection is important because features are recorded frequently, usually once per
time step in the trace. The system cannot spend most of its time calculating and recording
feature values, nor can it spend all its time gathering the information before making decisions.
We brie
y explore the e�ect of feature costs on learning in Section 4.6.3.

Informative features are ones that contain information relevant to learning. A good
learning system will be able to prune out irrelevant features, but we do not want the system
expending e�ort to collect data that will later be ignored.

By a \projective" feature, we mean one for which the gathered information at one moment
can help the system make decisions about the future. Usually these features are \high-level,"
that is, they do not depend exclusively on execution. For example, a feature like time can
be easily projected into the future. Similarly, a feature such as the goal location will not
change for the duration of the task. \Robot-level" features can be projective when we can
control them; for example, the robot's speed can a�ect the reliability of navigation because
the robot misses fewer openings and travels more smoothly.

Most execution-level features, such as sonar readings or images, are not usually projective
because what the system sees now may have little or no bearing on what it sees in the future.
It is not often the case that current sonar readings relate to future sonar readings at a di�erent
location.

There are rare cases in which execution-level features may be projective. For example, if
the robot saw many people in the lobby, it could predict that in a few minutes, the classroom
corridor would be crowded and that it should avoid tasks in that corridor for a little while.
It would be possible to use camera images, I, from all locations, L, at all times, t, as
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features. However, learning this correlation would be extremely computationally expensive,
and therefore we do not store this information.

There are also features which may be projective with respect to execution, but not pro-
jective with respect to planning, such as travel direction. Travel direction can have direct
impact on the cost of an arc; for example, an arc near a corridor intersection may be very
expensive when making a turn, but when travelling straight from within the corridor, may
be much cheaper. Travel direction, however, cannot be predicted before planning, and hence
the path planner needs to carefully consider each route.

For the experiments in this chapter, we only use the high-level features such as time
of day, route and other goals, along with execution-level features we can control such as
the robot's speed. We incorporate sonar readings as one of the features for the learning
in Chapter 4, where the current reading (whether or not a door is open) a�ects the next
immediate decision.

3.3 Events

Events (E) in any planner can be identi�ed by asking the question: \What will change the
planner's behaviour?" In Rogue, we would like the path planner to predict and avoid areas
of the environment which are di�cult to navigate (and similarly, exploit areas that are easy
to navigate). Improved cost estimates on arcs will cause the path planner to select more
appropriate plans. Learning events are therefore arc traversals that do not meet expectations.

The available execution data is generated by the navigation module, and is therefore
stored using the probability distribution over Markov states. Our algorithm examines the
execution trace, identi�es the most likely path that the robot traversed, and then identi�es
the corresponding path planner arcs. It then maps situational features to the arc traversals
to create situation-dependent costs.

An execution trace from the robot includes:

� the features describing the situation,
� the sequence of actions executed by the robot, and
� the probability distribution over the Markov states at each time step.

In particular, an execution trace does not include arc traversals. We therefore need to extract
the traversed arc sequence from the Markov state distributions. The steps in this process
are:

1. Identify the robot's most likely traversed sequence through the Markov states.
2. Calculate the most likely traversed sequence through the path planner's arcs.

The POMDP navigation module keeps track of the most likely states but not the most
likely sequence of states. Viterbi's algorithm is guaranteed to �nd the single best state
sequence with the highest probability, given the actions, observations and initial state distri-
bution [Rabiner & Juang, 1986]. However, Viterbi's algorithm was not designed for use in a
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Markov model that represents uncertain length information. We extend Viterbi's algorithm
to compensate for this uncertainty, giving us a powerful way to identify likely paths through
the environment.

Once these likely state sequences have been identi�ed, we then need to identify the cor-
responding arc sequences. The environment representations used by the navigation module
and the path planner are di�erent enough that the mapping is not direct.

Finally, once the arc sequences have been identi�ed, Rogue can calculate cost estimates
for the arcs, and then correlate those costs with the available features, thereby creating
situation-dependent arc costs.

This process can be described pictorially as in Figure 3.6. As the robot wanders down
the corridor, it sees doors at time steps 6 and 8. The Markov state distribution changes
as shown. In order to modify the arc cost estimates for the path planner, Rogue needs to
determine which arcs the robot travelled, and for how long.

Below, we describe the workings of Viterbi's algorithm and our extension of it. We then
present the techniques used to calculate the arc sequence so that arc traversal events can be
identi�ed.
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Figure 3.6: Extracting arc traversals from Markov state distributions.
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3.3.1 Identifying the Most Likely Traversed Markov Sequence

Since the robot does not know where it is at any given moment, it consequently cannot
identify with certainty its path. In order to reconstruct the arc traversal sequence, we must
�rst reconstruct the Markov state traversal sequence.

The algorithm to calculate this sequence is known as Viterbi's algorithm [Rabiner &
Juang, 1986]. The algorithm is reproduced in full in Table 3.3. In step 1, variables are
initialized. In step 2, Viterbi's algorithm maintains an estimate of which state the robot was
in at the previous time step, for each possible state. In step 3, the algorithm calculates the
complete Viterbi sequence by recursing backwards through time.

De�ne S to be the set of all markov states; s; s0 2 S.
De�ne A to be the probability distribution over successor states; Aa(s; s

0) is the
transition probability for an action a between state s and state s0.

De�ne O to be the probability distribution over observations; O(s; o) is the
probability of obverving o in state s.

De�ne � to be the POMDP probability distribuion over S; �(s; t) is the
probability of the robot being in state s at time t.

De�ne � to be the Viterbi probability distribution over S; �(s; t) is the
probability of the sequence ending at s at time t.

De�ne 	(s; t) to be the unique state from time t� 1 that most likely leads to state s.
De�ne Seq

T
to be the most likely sequence generated from time T ; s = Seq

T
(t) is

the state at time t in Seq
T
.

1. At time t = 0:
8s 2 S; let �(s; 0) = initial state distribution = �(s; 0)

let 	(s; 0) = NULL

2. For time t + 1 � 1, action a was selected, and observation ot+1 was made:
8s 2 S; 	(s; t+ 1) = s0 such that s0 gives MAX8s02S [�(s

0; t)� Aa(s0; s)] :
�(s; t+ 1) = 1

k
�(	(s; t+ 1); t)� Aa(	(s; t+ 1); s0)� O(s; ot+1):

where k is a normalization factor.

3. To calculate the most likely sequence at time T , Seq
T
:

Seq
T
(T ) = s such that s gives MAX8s2S [�(s; T )],

i.e. the most likely Viterbi state at time T .
8t; 0 � t < T Seq

T
(t) = 	(Seq

T
(t+ 1); t+ 1):

Table 3.3: Viterbi's Algorithm, reproduced from Rabiner & Juang [1986].
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Viterbi's algorithm is a slight modi�cation to the standard POMDP algorithm used for
navigation. The primary di�erence is that:

the POMDP algorithm calculates the most likely states, while
Viterbi's algorithm calculates the most likely state sequence.

The two may di�er, for example, when there are multiple parallel corridors that the robot
may have travelled down. Consider Figure 3.7, where the robot travelled from X to Y, along
either path 1 or 2. When the robot nears Y, the most likely states re
ect the possibility of
having arrived along either route, while the most likely state sequence is only one of the two
routes.

X

Y

1 2

Figure 3.7: A map showing why the most likely state sequence may be di�erent
from the most likely states.

The POMDP algorithm is well-suited to most robotics tasks because it is very important
for the robot to have a good idea where it is. Viterbi's algorithm, on the other hand, is
more commonly used in applications where the whole sequence is needed. For example, it
is widely used in speech recognition, where the most likely sentence is desired, rather than
simply the most likely last word.

For our robot learning application, we need the complete path of the robot, and hence
use Viterbi's algorithm. Viterbi's algorithm, however, was not designed for use when the
desired trajectory is actually an abstraction of the Markov states. Our models represent
length uncertainty, and hence we need an estimate of the trajectory that integrates over
the length variable. We extend Viterbi's algorithm to compensate for this representation
di�erence.

Mathematically, the POMDP algorithm calculates the transition probability as a sum
of the probabilities on connecting states, that is, looking at all possible ways of arriving
at a particular state. Viterbi's algorithm, on the other hand, �nds the single most likely
prior state, so as to reconstruct a path. (Note that Viterbi's algorithm does not use �, the
standard POMDP state probability distribution, but instead uses �, the probability of the
sequence.)

Figure 3.8 illustrates the di�erence between the standard POMDP calculations and the
calculations in Viterbi's algorithm. In this �gure, the �(s; t = 0) probabilities equal the
�(s; 0) probabilities of Figure 3.4, and the transition probabilities, A, are also the same.
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Figure 3.8: Viterbi transition calculations (for a forward action, disregarding observations). �(si; t)
indicates the Viterbi probability of the sequence ending in si at time t (circle size is proportional to
probability); 	(si; t) indicates the most likely prior state (thick line shows the selected transition). At
time t + 1, Viterbi sequence probabilities are calculated as the most likely prior sequence times the
transition probability (and then normalized).

Recall that POMDP probabilities are calculated as shown in equation 3.1 (page 56). Viterbi's
algorithm, meanwhile, maintains the probability distribution of the sequence, �, calculated
as:

�(sj; t+ 1) =
1

k
�(	(sj; t+ 1); t)�Aa(	(sj; t+ 1); sj)�O(sj; ot+1); (3.2)

where k is a normalization factor3 and 	(sj; t+1) is the most likely sequence at time t+ 1.
	(sj; t + 1) is calculated from the transition probability and the probability of the most
likely sequence at time t:

	(sj; t+ 1) = si such that si gives MAX8si2S
[�(si; t)�Aa(si; sj)]

= ARGMAX8si2S [�(si; t)�Aa(si; sj)] : (3.3)

Viterbi's algorithm �nds the sequence at time t that contributed the most probability to
the sequence at time t+1. For example, the most likely prior state for state s7 is s1, because
s1 contributed 0.10 (0.2 � 0.5) probability, while s2 contributed 0.04, and s3 contributed
0.06. Note that, in hind-sight, Viterbi's algorithm eliminates the possibility that the robot
was in state s4 at time t, while the two paths it generates from states s5 and s8 converge,
both passing through s2.

3If k is not used, � re
ects the exact probability of the sequence; however, round-o� error causes serious
miscalculations when these numbers become very small.
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3.3.1.1 Problems with the Viterbi Sequence

Viterbi's algorithm is guaranteed to �nd the most likely sequence of Markov states [Rabiner &
Juang, 1986]. However, the Markov models we use for robot navigation di�er from standard
Markov models used by speech systems: we represent length uncertainty.

This representation change leads to a serious problem that needs to be addressed before
using the information in our learning algorithm: the fact that a given node may \fan-
out" leads to information loss and a poor estimate of the best path. Essentially,
we want the algorithm to identify the robot's trajectory in the topological map, which is
an abstract representation of the Markov model. The fan-in/fan-out representation of the
model e�ectively captures the length uncertainty of the environment, but Viterbi's algorithm
is unable generate a good estimate of the abstracted trajectory.

For example, consider Figure 3.9. Because node s1 splits into three parallel Markov
chains, while the lower probability state, s2, splits into two, Viterbi's algorithm selects s2
as the most likely previous state for s3. In a Markov model that does not represent length
uncertainty, Viterbi's algorithm would correctly identify s1 as the more likely previous state.

Consider the reverse situation, shown in Figure 3.10, in which one outgoing arc has
a greater weight than other outgoing arcs, such as when a node is connected to a door.
Although it is clear that the robot travelled to s2 rather than s3, Viterbi's algorithm selects s2
as the most likely generating state. In this situation, since room states have high-probability
self-transitions, Viterbi's algorithm will very often never correct itself, instead claiming that

0.33
0.33

0.33

s1
0.56

0.
5

0.5
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0.44
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δ0.186

0.186 0.186
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Figure 3.9: Fan-in: Example of how the map representation a�ects Viterbi's algorithm. Although it is
more likely that the robot passed through s1, the Viterbi sequence generated from s3 passes through
s2 instead.



3.3. EVENTS 65

1.00.234 1.0

= 0.3
= 0.3

π
δ

s1
1.0

0.234

0.233

0.233

s3

1.0

1.0

1.01.0

0.234

0.233 0.233

0.3

0.233

0.233
s2

= 0.7π
δ = 0.234

Figure 3.10: Fan-out: Example of how the map representation a�ects Viterbi's algorithm. Although
s2 has a greater � probability than s3, Viterbi's algorithm selects s3 as the sequence-generating state.

the robot's most likely path was only within the room.

The problem continues to compound so that after a long execution run, Viterbi's al-
gorithm selects sequences that are extremely unlikely according to the standard POMDP
calculations. In fact, in most cases, the �nal state in the most likely sequence did not even
appear in the list of possible POMDP states �, which prunes out extremely low probability
states, i.e. 6 9s 2 S such that �(s; T ) > 0 and s = Seq

T
(T ) = ARGMAX8s02S [�(s0; t)] :.

Table 3.4 shows a small example of the � and � distributions. These distributions were
collected approximately 4 minutes (70 time steps) after starting the robot (recall that at
t = 0, the � and � distributions are identical). The maximum � state, number 86, has no �
probability because the POMDP prunes out low probability states. In fact, the top �ve �
states have zero probability in the � distribution.4 The set of states for which �(s; t) > 0 is
always a superset of the states for which �(s; t) > 0.

3.3.1.2 Possible Modi�cations to Viterbi's Algorithm

Recall that our primary goal is to evaluate arc traversals. In order to do that, we need
to determine the best estimate for the robot's trajectory. Ideally, we would like Viterbi's
algorithm to correctly identify the robot's trajectory in the topological map, rather than
directly in the Markov model. Essentially, Viterbi's algorithm would have to identify a fan-
in situation, and correctly sum probabilities over those edges. However, our Markov model
representation does not lend itself to easy detection of these situations (see Section 6.3.2),
and so we instead use an approximate method.

Viterbi from �(smax; T ): Our �rst modi�cation to Viterbi's algorithm is to use the most
likely POMDP state as the sequence generator. We know that the � distribution is always

4Recall that all states with less than 10�9 probability are reset to zero.
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� �
State Probability Rank State Probability Rank

86 0.4422119 (1)
94 0.0796982 (5)
170 0.0148035 (8)
174 0.1639655 (3)
270 0.0159902 (7) 270 0.4202660 (1)
318 0.0060332 (11)
498 0.0796982 (4)
510 0.1639655 (2)
698 0.0063961 (9) 698 0.1344851 (3)
702 0.0183418 (6) 702 0.3856558 (2)
902 0.0000153 (14) 902 0.0001228 (5)
906 0.0000200 (13) 906 0.0000555 (6)
1914 0.0060332 (10)
1918 0.0000050 (15) 1918 0.0000831 (7)
2058 0.0028218 (12) 2058 0.0593317 (4)

Table 3.4: Small example of � and � probability distributions, collected after four minutes of execution.

a better estimate of the robot's current location than the � distribution, since these proba-
bilities are based on all possible ways of reaching a given state. In other words, instead of
using the default generating state

Seq
T
(T ) = ARGMAX8s2S [�(s; T )] (3.4)

(the most likely Viterbi state at time T ), we use

Seq
T
(T ) = ARGMAX8s2S [�(s; T )] (3.5)

(the most likely POMDP state at time T ). E�ectively, this change forces Viterbi's algorithm
to use the POMDP position estimate as an \oracle" of the �nal state. The intuitive justi-
�cation for this change is that if the �nal state selected sequence has a high � probability,
then the generated sequence is more likely to re
ect the actual traversal sequence. In speech
recognition, for example, this modi�cation would be equivalent to having a good estimate
of the last word of the sentence; instead of calculating the most likely sentence, P (s), we
calculate the most likely sentence given the most likely last word, P (sjw).

Although the Viterbi sequence generated from �(smax; T ) improves the sequence estimate,
it still falls short in two ways. First, it can still be mislead by the fan-out problem described
above. Second, the most likely � state at the end of the trace might have a low probability,
such as if the robot stopped in the middle of a long corridor, or in the example shown
in Table 3.4, where the best two states have similar probabilities. Hence, the sequence
generated from this state might not be as reliable as we would like.
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Viterbi fromMAX[�(s; t)]: To solve the low probability problem, we could use the Viterbi
sequence generated from the highest probability recent POMDP state. That is, instead of
using equation 3.5 we select t � T such that

Seqt(t) = ARGMAX8s2S;8t�T [�(s; t)] : (3.6)

We would then ignore all data between t and T . This sequence more probably re
ects the
actual sequence, but may still su�ers from the fan-out problem above, in which only the
most likely Viterbi sequence is identi�ed. This method also su�ers in that t may be much
smaller than T and hence much data is lost, or that a threshold must be set for the smallest
value of t.

Multiple Viterbi from 8s; [�(s; T )]: Another alternative method is to use the set of
Viterbi sequences generated from the complete set of POMDP states:

8s 2 S; [Seqs;T (T ) = �(s; T )] (3.7)

Each sequence could then be weighted for the learning algorithm by the probability of the
generating state. Figure 3.11 illustrates the concept: each state in the �nal � distribution
is used as a generating state; there will then be several Viterbi sequences used for learning.
This method eliminates captures the entire probability distribution at the last time step. It
therefore covers more of the likely paths. However, this method still su�ers from the fan-out
problem above.

3.3.1.3 Multi/Markov Viterbi

Each of the possible extensions described above solves a small part of the problem. By using
the best � state as the sequence-generating state, the sequence is more likely to re
ect the
robot's actual trajectory. If we set a threshold for that state's probability, we are even more
con�dent in the generated sequence. By using multiple sequences, we again improve odds
that the actual sequence will be captured. However, we still need to solve the ambiguity
problem raised by the fan-out representation.

Rogue uses the Viterbi sequences generated from many high probability states through-
out the trace:

8t � T; Seqt(t) = ARGMAX8s2S [�(s; T )]

^ Seqt(t) > �; (3.8)

where � is a threshold to select high probability sequences and eliminate low probability
ones. We call the modi�ed algorithm Multi/Markov Viterbi because we use multiple trajec-
tories generated from the most likely POMDP (Markov state. By using many sequences,
Multi/Markov Viterbi collects evidence for the most likely actual trajectory, and thereby
compensates for the poor estimates made by Viterbi's algorithm.
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Figure 3.11: The set of last sequences: Viterbi sequences generated from each of the possible Markov
states at the last time step in the execution trace, T . Each table entry contains a Markov state with
probability > 0.0; connections between entries indicate the Viterbi sequence. (Note that the number
of possible states may vary, and that not all possible states were believed possible in hind-sight (light
circles). If there are time steps with very few or highly con�dent states, most sequences will include
that node, and converge for all earlier time steps, such as at time step t.)

Consider the probabilities and transitions shown in Figure 3.9 (page 64). Unmodi�ed,
Viterbi's algorithm would generate a sequence passing from s3 through s2 to the initial
state. Our modi�ed Viterbi's algorithm uses that path as well as the sequence generated
from s1. By using both sequences, Rogue is more likely to capture the robot's actual
traversal sequence.

For a second example, consider the map shown in Figure 3.12. Imagine that the robot
travels up one of the central corridors, and then turns right towards point C. Assume the

Figure 3.12: Map used in the example of how multiple sequences are used.
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robot initially believes it is heading towards point A, in the \300" corridor. Because of
position uncertainty, it might be in the \400" corridor, heading towards point B. When the
sonars detect a wall in front of the robot, the robot becomes very certain that it has arrived
at the end of the corridor. The probability masses around points A and B. Point A has a
higher probability, say 0.60, while point B is 0.30 and other places with the remaining 0.10.
The sequence generated at this moment (from point A) is then used for learning. Later in the
episode, the robot arrives at point C with 0.90 probability. The Viterbi sequence generated
from here shows that it is more likely that the robot travelled up the \400" corridor, going
through point B. This second sequence is also used for learning. Neither of the two sequences
is necessarily correct: imagine that the robot had not reached point C, but instead that an
obstacle had been placed in the corridor directly above room 435, which the robot believed
to be the end of the corridor. If the trace had ended at this point, and Rogue only used
the second sequence for learning, the system would learn incorrectly. Using both sequences
allows Rogue to cover both possibilities.

By recording each of these multiple sequences as training data for the learner, Rogue
is in some sense \hedging its bets." It knows that the robot traversed only one unique path
through the environment, but it does not know which. By recording all possibilities, Rogue
gathers a body of evidence that collectively captures the robot's actual path.

In the cases that a later sequence subsumes an earlier sequence, the earlier sequence
has more evidence of being correct. Throughout an execution trace, an early sequence may
acquire a substantial amount of corroborating evidence. Moreover, since arc sequences are
generalizations of Markov sequences, minor variations in the Markov sequence will appear
as minor variations in time estimates of the arcs. It is then the responsibility of the learning
algorithm to generalize the data, by grouping similar data and eliminating noise. Enough ev-
idence of the correct path will allow Rogue to learn situation-dependent rules that correctly
re
ect the dynamics of the environment.

To summarize, Viterbi's algorithm �nds the most likely sequence of Markov states that
the robot traversed. However, we need the most likely trajectory in the topological map,
rather than the most likely trajectory in the Markov model. Since our Markov models
represent length uncertainty, Viterbi's algorithm can become misled by the fan-out/fan-in
nature of the representation. To get a good estimate of the robot's actual state sequence,
we use the most likely � state as the sequence generator. We also utilize multiple sequences,
thus eliminating ambiguity raised by the fan-out representation. Multi/Markov Viterbi is
summarized in Table 3.5.

3.3.2 Identifying the Planner's Arcs

Once the set of most-likely Markov sequences has been constructed, we need to identify
which of the path planner's arcs the robot traversed. The representation of the path planner
and of the POMDP are signi�cantly di�erent and the mapping is not direct. Only the need
to reverse-engineer the data for learning has identi�ed this representation gap. Although the
details of this process are dependent on our particular implementation, the representation
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De�ne � to be the threshold for a high probability state.
De�ne V to be the set of selected Viterbi sequences; Seqt 2 V is then

the most likely sequence generated from the most likely � state at
time t; s = Seqt(t

0) is the state at time t0 in Seqt, for 0 � t0 � t.

Calculate �, � and 	 as in Tables 3.1 and 3.3. Recall that 	 depends on �.
Let V = ;.
Foreach t, 0 < t � T :

Let smax = ARGMAX8s2S�(s; t)
if �(smax; t) > �

Let Seqt(t) = smax

Foreach t0, from t� 1 down to 0
Seqt(t

0) = 	(Seqt(t
0 + 1); t0 + 1)

Let V = V [ Seqt

Table 3.5: Multi/Markov Viterbi: Viterbi's algorithm for generating abstract trajectories in Markov
models with a high degree of fan-in/fan-out. It takes into account the state probability distribution, �,
and uses multiple sequences to eliminate ambiguities created by the data representation.

gap problem is a general one. Each module in a given architecture may require a special-
purpose representation that is well suited for its task, and mapping the information between
layers may be non-trivial. Careful design of the architecture may reduce the representation
gap, but it is extremely unlikely that the problem will be entirely eliminated.

The POMDP represents the world in a set of discrete square blocks. In our environment,
1 meter squares have been found to be empirically reliable while remaining e�ciently com-
putable. The path planner, on the other hand, represents the world in a set of arcs, where
nodes correspond to topological junctions like doors and corridors.

Although these representations clearly make sense for each module, there is no direct
correspondence between the Markov states and the arcs. The original Xavier system was
designed to create the Markov model from the topological map, not to extract the topological
map from the Markov model. Figure 3.13 demonstrates the di�erence for a lobby area. There
is no clear mapping from the Markov nodes to the path planners' arcs.

A similar problem exists at junctions in corridors. Our hallways are wider than the
Markov precision, but along the corridor, we do not represent the full width. This deci-
sion increases e�ciency while maintaining reliability. At junctions, however, we need �ner
control of the robot, and therefore �ner location estimates, and therefore we retain the full
representation. Figure 3.14 shows the di�erent representations. There is a direct mapping
from the four Markov states in the junction to a node in the topological map; however, the
path planner does not consider nodes to have \space," and so we need to assign nodes to
arcs. Unfortunately, it is unclear which Markov states correspond precisely to which arcs.
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a) Markov Representation b) Path Planner Arc Representation

Figure 3.13: Di�erent representations of a foyer.

a) Markov Representation b) Path Planner Arc Representation

Figure 3.14: Di�erent representations of junctions in corridors.

We have addressed these problems by calculating the path using a greedy heuristic based
on expected execution times.

First we calculate all the arcs that could possibly correspond to a single Markov node.
For example, the four nodes at junctions in corridors would correspond to all the path
planner arcs that meet there. Hence, there are often Markov nodes associated with multiple
arcs. This fact complicates the reconstruction of the arc sequence because a single Markov
sequence may map to multiple arc sequences.

We then reduce the number of possible arc sequences by permitting only the arcs that
correspond to the transition between sequential Markov states in the Viterbi sequence. How-
ever, for a single Viterbi sequence, we are still left with many possible arc sequences.

The mapping function then assigns states to arcs in a greedy manner, based on ex-
pectation times. Consider Figure 3.15, in which arc1 corresponds to s1; :::; sj, while arc2
corresponds to si; :::; sn. If we have an expected time e(arci) to traverse arci, and time-
stamps on each state sk, t(sk), then we say that states s1 through sk correspond to arc1

s1 si sj sn

arc1
arc2

Figure 3.15: Multiple arcs corresponding to multiple Markov nodes. arc1
corresponds to s1; :::; sj; and arc2 corresponds for si; :::; sn.
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ar
c3

arc2
arc1

Figure 3.16: An example of when the greedy heuristic may fail.

for:

k =

8><
>:

i� 1; if t(si�1)� t(s1) > e(arc1); or
l; if, for some l such that i � l < j; t(sl) � t(s1) � e(arc1) < t(sl+1)� t(s1);
j; if t(sj)� t(s1) � e(arc1):

arc2 then corresponds to states sk+1 through sn. We greedily add states to arcs until the
Viterbi sequence is exhausted, thereby creating the complete arc sequence. We do this
mapping for each of the Viterbi sequences returned by Multi/Markov Viterbi.

Experiments show that selecting arc sequences in this greedy manner yields good results.
There are occasions however when the heuristic may fail. For example, imagine that the
corridor intersection in Figure 3.16 contains many obstacles. If most of the execution traces
contained paths from arc1 to arc2, then ideally, the excess traversal weight of the intersection
should be evenly distributed between them. Instead, the heuristic will make the weight of
arc1 smaller, closer to the default value of an empty corridor, while arc2 would be much
larger, containing all the weight of the di�cult intersection.

Any newly generated paths that pass through both arc1 and arc2 would have the correct
total weight. However, any new paths passing through arc3 and only one of arc1 and arc2
would have a poor estimate of the true traversal weight.

Empirically, this problem has not occurred. In general, the paths used as training data
are a fair representation of the paths used at execution: if Rogue travels certain typical
routes, then it is likely that it will continue to do so. Moreover, the incremental nature of
the learning algorithm means that Rogue will self-correct with additional experience: if
Rogue starts travelling new routes, new data will be collected, and the combined body of
evidence will create more accurate estimates of costs.

The probabilistic representation of the navigation module creates signi�cant challenges
in reconstructing the robot's path through the environment. Rogue needs to estimate the
most likely sequence of Markov states that the robot passed through, which can be done
through a merging of the Bayesian POMDP state probabilities and Viterbi's algorithm. Then
Rogue needs to reverse-engineer the path planner's arcs from the Markov states. Rogue
collects each of the possible sequences into one body of data that collectively describes the
robot's true path.
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The process for extracting arc traversal events can be summarized as follows:

1. Apply Multi/Markov Viterbi; i.e. accumulate likely sequences of traversed Markov
states.

2. Apply the heuristic to break the representation-gap; i.e. map the Markov state se-
quences into topological arc sequences.

These arc traversal events, E, become input for the learning algorithm after they have been
evaluated.

3.4 Costs

Once arc traversal events have been identi�ed from the execution trace, updated costs need
to be calculated. These costs become the value predicted by the learning algorithm as a
function of the situational features. The learned costs are used by the path planner as
traversal weights.

Rogue uses the cost evaluation function, C, to determine the degree of success or failure
of an event. When learning for the path planner, C yields an updated arc traversal weight
for each arc traversal event " 2 E.

In our current implementation, this weight is equal to the product of the desired velocity
on that arc and the actual time spent traversing it, divided by the modelled length:

C(") = vt=l:

This cost represents the experienced di�culty of the arc traversal. When the robot travels in
a straight line at the desired speed, the cost is 1.0, indicating that the default cost estimate
was correct.

Weights may be greater than one for the following reasons:

� The robot travels in a straight line more slowly than desired.
� The robot travels along a sinuous path at the desired speed.
� The modelled length of the arc were shorter than the actual length.

Weights may be less than one for the following reasons:

� The modelled length of the arc is longer than the actual length. (For the experiments
conducted in our environment, the modelled length is 10% longer than the actual
length.)
� The heuristic incorrectly assigns traversal times to arcs.

Another possible function includes position con�dence. There may be occasions when
it is more important for the robot to know where it is, than to move quickly through the
environment. An expensive arc would then be one for which the robot's position estimates
are very poor. Position con�dence can be situation-dependent because of transitory obstacles
that occlude landmarks or a�ect sensor reliability.
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The data is stored in a matrix along with the cost evaluation and the environmental fea-
tures observed when the event occurred. Those environmental features which change during
the traversal are averaged. Table 3.6 shows a sampling from an events matrix generated by
Rogue.

This collection of feature-value vectors is presented in a uniform format for use by any
learning mechanism. Additional features from the execution trace can be trivially added; this
particular matrix was recorded for the path planner experiments described in Section 3.7,
while sonar readings were added for the task planner experiments described in Chapter 4.

The events matrix is grown incrementally; most recent data is appended at the bottom.
Each time the robot is idle, the execution trace is processed and new events are added to the
matrix. The learning algorithm then processes the entire body of data, and creates a new
set of situation-dependent rules by compressing the many examples. By using incremental
learning, Rogue can notice changes and respond to them on a continual basis.

The process for identifying and storing arc traversal events from the trace is summarized
in Table 3.7. Step 1 corresponds to Section 3.3.1, step 2 corresponds to Section 3.3.2, and
step 3 corresponds to Section 3.4. Each arc traversal event is stored in the events matrix
along with the relevant situational features and the cost evaluation. The matrix is then used
as input for the learning algorithm, described next.

The A* path planner uses these learned weights to improve its estimate of traversal time,
as described in Sections 3.1.1 and 3.6.

ArcNo Weight CT Speed PriorArc Goal Year Month Date DayOfWeek

233 0.348354 38108 34.998001 234 90 1997 06 30 1

192 0.777130 37870 33.461002 191 90 1997 06 30 1

196 3.762347 37816 34.998001 195 284 1997 06 30 1

175 0.336681 37715 34.998001 174 405 1997 06 30 1

168 1.002090 60151 34.998001 167 31 1997 07 07 1

246 0.552367 60099 34.998001 247 253 1997 07 07 1

201 1.002090 64282 34.998001 202 379 1997 07 07 1

134 16.549173 61208 34.998001 234 262 1997 07 09 3

238 0.640905 54 34.998001 130 379 1997 07 10 4

169 0.429588 39477 27.998402 168 31 1997 07 13 0

165 1.472222 8805 34.998001 164 379 1997 07 17 4

196 5.823351 3983 34.608501 126 253 1997 07 18 5

194 1.878457 85430 34.998001 193 262 1997 07 18 5

Table 3.6: Events matrix; each feature-value vector (row of table) corresponds to an arc traversal event
" 2 E . Weight is arc traversal cost, C("). The remaining columns contain environmental features, F ,
valid at the time of the traversal: CT is CurrentTime (seconds since midnight), Speed is velocity, in
cm/sec, PriorArc is the previous arc traversed, Goal is the Markov state at the goal location, Year,
Month, Date and DayOfWeek form the date of the traversal.
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Foreach time step t < T in the execution trace
Let smax = ARGMAX8s2S�(s; t)
If �(smax; t) > � , for some threshold �
1. Let Seqt be the Viterbi sequence generated from smax:

Seqt(t) = smax

Foreach t0 from t� 1 down to 0
Seqt(t

0) = 	(Seqt(t
0 + 1); t0 + 1)

2. Calculate the arc sequence that corresponds to Seqt
3. For each arc traversal event " 2 E in the arc sequence

Estimate the cost of " from C: C(") = vt=l
Store the arc traversal event ", the features F , and

the weight C(") in the events matrix

Table 3.7: Identifying arc traversal events E from the execution trace.

3.5 Learning Algorithm

We now present the learning mechanism that creates the mapping from situation features
F and events E to costs C.

The input to the algorithm is the events matrix described in Section 3.4. The desired
output is situation-dependent knowledge in a form that can be used by the planner.

We selected regression trees [Breiman et al., 1984] as our learning mechanism because

� the data often contains disjunctive descriptions,
� the data may contain irrelevant features,
� the data might be sparse, especially for certain features,
� the learned costs are continuous values.

Bayesian learning would not successfully handle disjunctive functions, k-Nearest Neighbour
algorithms would not handle irrelevant features well, neural networks would not generalize
well for sparse data, and standard decision trees do not handle continuous valued output
particularly well [Mitchell, 1997; Quinlan, 1993]. Other learning mechanisms may be appro-
priate in di�erent robot architectures with di�erent data representations.

We selected an o�-the-shelf package, namely S-PLUS [Becker et al., 1988], as the regres-
sion tree implementation. A regression tree is created for each event, in which features are
splits and costs are learned values.

A regression tree is �tted for each arc using binary recursive partitioning, where the data
is successively split until data is too sparse or nodes are pure. A pure node has a deviance
below a preset threshold. Deviance of a node is calculated as D =

P
(yi��)

2, for all examples
i and predicted values yi within the node5. Section 3.7.2 presents experiments with di�erent

5The average deviance, 1

n

P
(yi � �)2, is not used because we want a node to be split when su�cient

evidence accumulates; there is more value in splitting leaves with large numbers of examples.
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Figure 3.17: Learned tree for arc 208 from the Exposition world described in Section 3.7.1. Leaves
represent learned costs (traversal weights); CT is current time, in seconds since midnight.

preset thresholds.
Splits are selected to maximize the reduction in the deviance of the node. Chambers

& Hastie [1992] discuss the method in more detail. Figure 3.17 shows one sample learned
regression tree built with our data. Each internal node in the tree represents one feature
comparison. The left subtree indicates data for which the feature was less than the com-
parison value; the right subtree contains data for which the feature was greater than the
comparison value. Leaf nodes show the arc's learned costs. For comparison, Table 3.8 shows
the text version, which provides additional information including the number of examples
covered by each node, as well as the deviance of each node.

We prune the tree using 10-fold random cross validation, in which a tree is built using
90% of the data, and then the remaining 10% of the data is used to test the tree, resulting
in the relationship between tree size and misclassi�cation rates. This calculation is done 10
times, each time holding out a di�erent 10% of the data. The results are averaged, giving us
the best tree size so as not to over-�t the data. The least important splits are then pruned
o� the tree until it reaches the desired size.

The graph in Figure 3.18 shows the cross validation results for the tree learned for arc
208. Figure 3.19 shows the learned tree after pruning, and Table 3.9 shows the text version.
Note again that the text version provides additional information including the number of
examples covered by each node, as well as the deviance of each node.

This pruned tree represents the situation-dependent arc costs of arc 208. (This rule was
generated from 340 examples from the Exposition world described in Section 3.7.1. Arc 208
appears in corridor 2.) When coming from the direction of arc 209, arc 208 has cost 0.7548.
Otherwise, in the second half of the month, arc 208 has cost 0.6967. In the �rst half of the
month, from midnight to 14:39:58 the traversal weight is 1.5610. From 14:39:59 to 15:07:29,
it costs 1.0450 and for the rest of the day its traversal weight is 2.0320.

Although there are signi�cant advantages to using an o�-the-shelf package for learning,
there is a disadvantage in that certain capabilities described in the literature may not be
available. In this particular implementation, the selection criterion for a split is �xed: the
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node), split, number of examples, deviance, learned value

* denotes terminal node

1) root 60 1.084e+001 1.4240

2) PriorArc<208 52 6.671e+000 1.5270

4) Date<14.5 48 3.681e+000 1.5970

8) CT<54449.5 40 1.834e+000 1.5100

16) CT<52798 36 8.749e-001 1.5610

32) Date<13.5 32 5.124e-001 1.5970

64) CT<4202.5 4 3.698e-032 1.3930 *

65) CT>4202.5 28 3.236e-001 1.6260

130) Date<11.5 24 2.607e-001 1.6060

260) CT<50752.5 4 3.698e-032 1.3930 *

261) CT>50752.5 20 4.315e-002 1.6490

522) CT<50947.5 4 0.000e+000 1.7420 *

523) CT>50947.5 16 2.847e-030 1.6260 *

131) Date>11.5 4 0.000e+000 1.7420 *

33) Date>13.5 4 0.000e+000 1.2770 *

17) CT>52798 4 0.000e+000 1.0450 *

9) CT>54449.5 8 2.697e-002 2.0320

18) CT<57218.5 4 0.000e+000 2.0900 *

19) CT>57218.5 4 3.698e-032 1.9740 *

5) Date>14.5 4 9.244e-033 0.6967 *

3) PriorArc>208 8 2.697e-002 0.7548

6) Date<11 4 9.244e-033 0.6967 *

7) Date>11 4 0.000e+000 0.8128 *

Table 3.8: Text version of the learned tree for arc 208.

tree size, number of leaf nodes
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Figure 3.18: The cross validation results for arc 208.
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Figure 3.19: The learned tree from arc 208 after pruning.

node), split, number of examples, deviance, learned value

* denotes terminal node

1) root 60 1.084e+001 1.4240

2) PriorArc<208 52 6.671e+000 1.5270

4) Date<14.5 48 3.681e+000 1.5970

8) CT<54449.5 40 1.834e+000 1.5100

16) CT<52798 36 8.749e-001 1.5610 *

17) CT>52798 4 0.000e+000 1.0450 *

9) CT>54449.5 8 2.697e-002 2.0320 *

5) Date>14.5 4 9.244e-033 0.6967 *

3) PriorArc>208 8 2.697e-002 0.7548 *

Table 3.9: Text version of the learned tree from arc 208 after pruning. CT is current time, in seconds
since midnight.

selected split is the one that maximizes the reduction in deviance of the node.

This restriction was somewhat limiting because real world domains often have di�erent
costs associated with di�erent features, and we would like to have the system select splits
with some consideration of cost. A good example is Ming Tan's technique of selecting the
feature with the maximummarginal information gain: I2=C where I is the information gain
and C is the cost of measuring the feature [Tan, 1991].

In Section 4.4 we describe our re-implementation of the regression tree analysis to cope
with feature costs. Feature costs were not an issue for the path planner experiments because
the selected features were all high level, with a constant cost to acquire their values.

Section 3.7 presents the results of using regression trees to learn situation-dependent costs
for path planner arcs. Our experiments show that regression trees adequately describe the
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situations found in Xavier's environment, and that situation-dependent costs are a feasible
extension to the path planner, and signi�cantly enhance the system.

3.6 Updating the Path Planner

Once the regression trees have been created (one for each arc), they are ready for use by
the path planner. Each path from the root node of the tree to each leaf of the tree can be
viewed as a situation-dependent rule.

The path planner requests the new arc costs from the update module each time it is
preparing to generate a path. These costs are generated by matching the current situation
against each arc's learned tree.

The update module parses the learned tree, matching each feature against the calculated
or current value. When it reaches a leaf node, it updates the path planner with the learned
value.

The mechanism for extracting the value of the feature from the current situation is pro-
vided a priori. For robot-dependent situation data, such as speed and vision, the update
module monitors TCA messages from the other executing modules, and makes explicit in-
formation requests when necessary.

Using the A* algorithm described in Section 3.1.1, the path planner then uses the updated
costs to calculate the best path. If the updated arc cost is high, then the path planner is
more likely to avoid using that arc in a route. In this way, the path planner can successfully
predict and avoid areas of the environment that are di�cult to navigate.

In the event of a failure during navigation, for example a closed door, the path planner is
re-invoked, at which point it re-requests the learned arc costs. A particular set of arc costs
is valid for the calculation of a single path; any replanning forces an update of the costs.

Several changes were made to the path planner to support learned traversal weights. The
original path planner used a constant traversal weight that was a function of the type of arc
(corridor-corridor, corridor-room, etc). The arc data structure was extended to include a
traversal weight, and the planner now uses that value if one exists (if not, it uses the default
value). TCA commands were added to support dynamic changing of the probabilities and
traversal weights of the arcs. Appendix C enumerates in more detail the changes made to
the path planner.

3.7 Experimental Results

We have conducted four sets of experiments. The �rst three sets involve a simulated world for
controlled experiments, while the fourth set were on the real robot. The �rst simulated-world
set demonstrates that Rogue can learn patterns. The second set explores rule stability and
data generalization. The third set explores learning rates and the ability to detect a change
in the environment. The �nal was run on the real robot, validating the algorithm and the
need for it.
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Xavier's simulator is primarily used to test and debug code before running it on the real
robot. The simulator allows software to be developed, extensively tested and then debugged
o�-board before testing and running it on the real robot. The simulator closely approximates
the real robot: it creates noisy sonar readings, it has poor dead-reckoning abilities, and it
gets stuck going through doors. Most of these \problems" model the actual behaviour of
the robot, allowing code developed on the simulator to run successfully on the robot with no
modi�cation [O'Sullivan et al., 1997]. The simulator allows the tight control of experiments,
to ensure that the learning algorithm is indeed learning appropriate situation-dependent
costs.

3.7.1 Simulated World 1: Learning Patterns

The �rst environment tests Rogue's ability to learn situation-dependent costs. Figure 3.20
shows the Exposition World: an exposition of the variety one might see at a conference.
Rooms are numbered; corridors are labelled for discussion purposes only. Figure 3.20a
shows the simulated world, complete with a set of possible obstacles. Figure 3.20b shows
the topological map used by the path planning module; this map displays everything the
robot \knows" about its environment.

(a) (b)

Figure 3.20: Exposition world. (a) Simulator: operating environment. Obstacles marked with dark
boxes. (b) Path Planner: topological map. Arcs shown in light grey, a sample path shown darker.
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The simulator has limited capabilities for dynamism: currently doors can only be opened
and closed only at the whim of the user, and obstacles are static. For our experimental
stage, we needed the robot to be operating in a dynamic world. We added dynamism by
running each experiment in a variation of the map shown in Figure 3.20a. The position of
the obstacles in the simulated world changes according to the following schedule:

� corridor 2 always clear
� corridor 3 with obstacles

{ EITHER Monday, Wednesday, or Friday between (midnight and 3am) and be-
tween (noon and 3pm)

{ OR one of the other days between (1 and 2am) and (1 and 2pm)

� corridor 8 always with obstacles
� remaining corridors with random obstacles (approximately 10 per map)

In each map, we ran a �xed path through the environment: from corridor 1 to booth 303
to 411 to 327 to 435 to 210, collecting the execution trace. (We ran random routes for the
experiments in Section 4.6.1, and actual user requests in Section 3.7.4.)

This set of environments allowed us to test whether Rogue would successfully learn:

� permanent phenomena (corridors 2 and 8),
� temporary phenomena (random obstacles), and
� patterns in the environment (corridor 3).

The events matrix was generated as described in Sections 3.3 and 3.4, and then processed
as described in Section 3.5.

3.7.1.1 Data and Rule Learning

Over a period of two weeks, 651 execution traces were collected. Almost 306,500 arc traver-
sals were identi�ed, creating an events matrix of 15.3 MB. The average training value of the
arc traversals was 1.65. Figure 3.21 shows the frequency of arcs for a given cost.

The 17 arcs with fewer than 25 traversal events were discarded as insigni�cant, leaving
100 arcs for which the system learned trees. (There are a total of 331 arcs in this environment,
of which 116 are doors, and 32 are in the lobby.) Trees were generated with as few as 25
events, and as many as 15,340 events, averaging 3060. A low number of traversals usually
indicates that the robot strayed from the nominal path, while a large number indicates that
the robot went over that arc more than one time. Generated trees had an average size of
18.04 total nodes and 9.02 leaf nodes.6

Figure 3.22 shows a sampling of learned trees. All arcs shown are from corridor 3. Both
DayOfWeek and CT are prevalent in all the trees. (CT is CurrentTime, in seconds since
midnight.) In Arc 244, for example, before 02:08:57, DayOfWeek is the dominant feature. In

6All presented data is for deviance = 0.10; see Section 3.7.2 for a discussion of deviance.
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Figure 3.21: Arc cost frequency: most arcs in the training set have a cost close
to 1.0, the default value.

Arc 240, between 02:57:36 and 12:10:26, there is one 
at cost for the arc. After 12:10:26 and
before 15:00:48, DayOfWeek again determines costs. Lack of data accounts for Date being
used as a feature in this tree and DayOfWeek not being used before 3am.

Figure 3.23 shows the cost, averaged over all the arcs in each corridor, as it changes
throughout the day. Rogue has correctly identi�ed that corridor 3 is di�cult to traverse
between midnight and 3am, and also noon and 3pm. During the rest of the day, it is close
to default cost of 1.0. This graph shows that Rogue is capable of learning patterns in the
environment. Corridor 8, meanwhile, is always well above the default value, while corridor
2 is slightly below default, demonstrating that Rogue can learn permanent phenomena.
Minor variations in the value are a result of noise in the training data.

Table 3.10 shows the overall average cost of each of the three types of corridor: one that
never has obstacles, one that occasionally contains random obstacles, and one that always
contains obstacles. This data shows that Rogue successfully separates di�erent types of
phenomena.

Corridor 2 Empty 0.73
Corridor 4 Random Obstacles 1.13
Corridor 8 Many Obstacles 3.28

Table 3.10: The average cost of all the arcs in each type of corridor.

Figure 3.24 to 3.26 shows learned arc costs for Wednesday at 01:05am. As expected,
corridor 2 is considered inexpensive, while corridors 3 and 8 are considered expensive. As
the cost threshold increases, fewer arcs are considered expensive. Arcs near turns can be
more expensive, because the robot may be recovering from the turn. Also, short arcs may be
more a�ected by an error in the heuristic mapping from the Multi/Markov Viterbi sequence.

These �gures are closeups of the complete maps shown in Figure 3.27. When costs are
only slightly more expensive than default (costs > 1.25, Figure 3.27a), numerous arcs are
highlighted, demonstrating that the system has successfully identi�ed areas where obstacles
may appear: corridors 3 and 8, plus most of the arcs in which random obstacles may appear.
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(a) Arc 238 (b) Arc 240

(c) Arc 242 (d) Arc 244

(e) Arc 246 (f) Arc 248

Figure 3.22: Learned trees for the six arcs in corridor 3.
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(c) Corridor 8

Figure 3.23: Learned corridor cost (average over all arcs in that corridor) for Wednesdays.

Figure 3.27b shows those arcs somewhat more expensive than default, and Figure 3.27c
shows those arcs much more expensive than default. Again, note that as the cost threshold
increases, fewer arcs are considered expensive. Note that all arcs containing random obstacles
have been eliminated from these images; only extremely di�cult turns continue to be marked.

For comparison, Figure 3.28 shows learned costs for Tuesday at 09:45am. Note that
corridor 3 is not considered expensive at any time.

The data collected for this experiment has shown that Rogue's learning algorithm suc-
cessfully identi�ed patterns in the environment. Rogue also successfully identi�ed both
permanent and temporary phenomena.

3.7.1.2 E�ect on Path Planner

Figure 3.29 illustrates the e�ect of learning on the path planner. The goal is to have Rogue
learn to avoid expensive arcs (those with many obstacles). Figure 3.29a shows the path nor-
mally generated. Figure 3.29b shows the path generated by the path planner after learning;
note that the expensive arcs have been avoided.

Table 3.11 shows a sample path calculation, for a path from room 231 to room 319. It
shows the default path, evaluating it with both the default cost values and the learned costs.
It also shows the new path, evaluated with the learned values. Assuming the learned costs
closely re
ect reality, the new path is 60% of the cost of the default path.

Table 3.12 shows the total weight � length values for several routes, using the learned
costs to evaluate both the default path and the new path. The new path is consistently
better than the default path.
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(a) Costs > 1.25 (b) Costs > 2.00 (c) Costs > 2.50 (d) Costs > 5.00

Figure 3.24: Expensive arcs in corridor 2 for situation: Wednesday, 01:05am. Note that this corridor
is not considered expensive. (Dark, thick edges are expensive.)

(a) Costs > 1.25 (b) Costs > 2.00 (c) Costs > 2.50 (d) Costs > 5.00

Figure 3.25: Expensive arcs in corridor 3 for situation: Wednesday, 01:05am. Note that most arcs are
expensive until the cost threshold is very high. (Dark, thick edges are expensive.)

(a) Costs > 1.25 (b) Costs > 2.00 (c) Costs > 2.50 (d) Costs > 5.00

Figure 3.26: Expensive arcs in corridor 8 for situation: Wednesday, 01:05am. Note that most arcs are
expensive until the cost threshold is very high. (Dark, thick edges are expensive.)
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(a) Costs > 1.25 (b) Costs > 2.00 (c) Costs > 5.00

Figure 3.27: Expensive arcs for situation: Wednesday, 01:05am. Note that corridors 3 and 8 are
expensive, along with arcs containing random obstacles and di�cult turns. (Dark, thick edges are
expensive.)

(a) Costs > 1.25 (b) Costs > 2.00 (c) Costs > 5.00

Figure 3.28: Expensive arcs for situation: Tuesday, 09:45am. Note that corridor 3 is not considered
expensive.
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(a) Default Path (b) New Path

Expensive arc

Path

Start location

Goal location

Figure 3.29: Comparison of path planner's behaviour before and after learning. (a) Default path
(when all corridor arcs have default value). (b) New path (when corridor arcs have been learned) on
Wednesday 01:05am; note that the expensive arcs have been avoided (arcs with cost > 2.50 are denoted
by very thick lines).

Default Path
Default Costs

Arc W L W * L

176 1.00 82.00 82.00
175 1.00 189.00 189.00
174 1.00 205.00 205.00
173 1.00 69.00 69.00
172 1.00 347.50 347.50
171 1.00 82.50 82.50
170 1.00 108.00 108.00
169 1.00 355.50 355.50
291 1.00 749.50 749.50
201 1.00 190.50 190.50
199 1.00 274.00 274.00

Total: 2652.50

Default Path
Learned Costs

Arc W L W * L

176 1.14 82.00 93.32
175 0.53 189.00 100.40
174 0.44 205.00 89.52
173 1.45 69.00 100.05
172 1.69 347.50 585.88
171 2.57 82.50 212.11
170 3.53 108.00 381.35
169 3.34 355.50 1185.95
291 1.00 749.50 749.50
201 1.00 190.50 190.88
199 1.43 274.00 392.09

Total: 4081.05

New Path
Learned Costs

Arc W L W * L

176 1.14 82.00 93.32
175 0.53 189.00 100.40
174 0.44 205.00 89.52
173 1.45 69.00 100.05
172 1.69 347.50 585.88
265 0.61 796.50 483.63
205 1.18 190.50 225.55
203 0.84 272.00 227.23
202 1.61 83.50 134.18
201 1.00 190.50 190.88
199 1.43 274.00 392.09

Total: 2622.74

Table 3.11: Path length calculation for a path between room 231 and room 319. W is weight and L
is length. The path chosen after learning is 60% the total learned cost of the default path, or a 40%
improvement.
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Start Goal Situation Default Path Default Path New Path Percent
Room Room Default Costs Learned Costs Learned Costs Improvement

231 303 Mon, 15:40 4503.50 6481.96 5969.99 8%
303 411 Mon, 15:40 2908.00 6753.12 3768.66 44%
411 327 Mon, 15:40 3343.00 5438.67 5438.67 0%
327 435 Mon, 15:40 2683.00 2759.07 1274.97 55%
435 210 Mon, 15:40 4969.50 6502.58 5595.47 14%

Total: 27423.43 22047.76 20%

231 303 Wed, 01:00 4503.50 6433.49 5586.48 13%
303 411 Wed, 01:00 2908.00 6250.80 3768.66 40%
411 327 Wed, 01:00 3343.00 5002.09 5002.09 0%
327 435 Wed, 01:00 2683.00 8902.85 1280.35 86%
435 210 Wed, 01:00 4969.50 12351.17 5305.65 57%

Total: 38940.40 20943.23 46%

231 303 Thu, 01:00 4503.50 6432.49 5586.18 13%
303 411 Thu, 01:00 2908.00 6090.72 3768.67 38%
411 327 Thu, 01:00 3343.00 4842.02 4842.02 0%
327 435 Thu, 01:00 2683.00 3447.87 1280.34 63%
435 210 Thu, 01:00 4969.50 6896.18 5305.66 23%

Total: 27709.28 20782.87 25%

Table 3.12: Path length calculation for a variety of paths under three di�erent situations. We show
the default estimate of path length, evaluate the default path with the learned costs, and the length of
the path that A* �nds with the learned costs. Finally, we show the percent improvement in path length
between the default path and the new path.

The data we have presented here demonstrates that Rogue successfully learns situation-
dependent arc costs. It correctly processes the execution traces to identify situation features
and arc traversal events. It then creates an appropriate mapping between the features and
events to arc traversal weights. The path planner then correctly predicts the expensive arcs
and creates plans that avoid di�cult areas of the environment.

3.7.2 Simulated World 2: Stability and Generalization

In Section 3.5 we described how the learned regression trees are built. In particular, a node is
split when its deviance grows beyond a preset threshold. This section presents experiments
to explore di�erent thresholds and their e�ect on data generalization and rule stability.
One important consideration is that data can be over-generalized. It is important to �nd a
reasonable level of data generalization so that rules are neither over-speci�c nor over-general.

Using the Exposition World, we collected four sets of trees, with the maximum node
deviance set to each of 0.00, 0.10, 0.25 and 0.50. A deviance of 0.00 corresponds to a
tree exactly �tting the data. A larger deviance means that more training examples will be
classi�ed together. For example, two training examples with weights of 0.75 and 1.0 will be
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the data. None of them capture the DayOfWeek feature required to correctly �t the data.

(a) Arc 238 (b) Arc 240

(c) Arc 242 (d) Arc 244

(e) Arc 246 (f) Arc 248

Figure 3.32: Learned trees for the six arcs in corridor 3. Deviance is 0.25. Compare to Figure 3.22
(page 83), which displays trees for deviance set to 0.10. Note that these over-generalize the data
because the feature DayOfWeek is completely ignored, and the CT is oversimpli�ed.
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3.7.3 Simulated World 3: Learning Rates

In this experiment, we explored (i) the system's learning rate, and (ii) the need to forget old
data.

Learning rate: Rogue is an incremental learning system. Each time it collects execution
data, it adds the newly experienced events to the eventsmatrix, generates a new set of learned
rules, and then uses those new rules for its next execution.

Issue 1: Stability. We need to determine how much data is required before Rogue has
a reasonably stable concept of its environment.

Issue 2: Learning Rate. We also need to determine how quicklyRogue can absorb and
respond to changes in its environment.

Data Relevance vs. Processing Power: As data ages, it may become less and less
relevant for current planning. For example, a conference may lead to a week of very crowded
corridors and data showing expensive arc traversals. Although the learning system will
correctly create situation-dependent rules that state \if current-date-is-during-conference,
then cost-is-high," these rules will never match the current situation, and hence the e�ort
expended to create these rules is wasted.

The massive amount of data we collected for the above experiments could lead to a lot of
wasted e�ort when old, irrelevant data is processed. For this reason, the system will need to
have some scheme for \forgetting" data. However, it is important not to forget everything,
since long-term patterns would never be detected. For example, unless the system maintains
data over a span of years, it will never detect annual patterns such as New Year's Day;
instead such patterns will be treated as noise.

Issue 3: Forgetting. We need to determine the e�ect of forgetting data on learning
patterns in the environment.

3.7.3.1 Data

We collected data to explore these three issues in the corridor-switch world, shown in Fig-
ure 3.33. We collected 74 execution traces in which the robot did laps around the environ-
ment (�ve laps in one direction per trace, changing directions between traces). In the �rst
34 runs, corridor A was �lled with obstacles while corridor B was clear. In the remaining 40
traces, corridor A was cleared while corridor B contained the obstacles shown.

We then analyzed the data in the form of \windows" of size n, in which only n consecutive
execution traces were analyzed to form events matrices. For a working system, window size
is equivalent to maintaining an execution history of n traces. We then plotted a graph of
the average cost of each corridor for that window, shown in Figure 3.34. For a window size
of n,

� Region X is the �rst (34 � n) traces, which contain only data showing corridor A to
be expensive,
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Figure 3.33: Corridor-switch world.

� Region Y is the last (40 � n) traces, which contain only data showing corridor B to
be expensive, and
� Region Z is the central n traces, which contain data of both types.

The plot in regions X and Y demonstrates the stability of the learned rules: substantial
changes from point to point indicate that the system is highly susceptible to noise. The plot
in region Z demonstrates the learning rate of the system: the crossover point shows how
quickly the system has identi�ed the environmental change. The plot in region Y shows the
e�ect of forgetting data: all data showing corridor A to be expensive has been lost.

It should be noted that the graphs shown in Figure 3.34 are somewhat misleading: plotted
points are an average, for all features and for all arcs, of the cost of the corridor. The learned
rules, however, remain situation-dependent: Figure 3.35 shows a \typical" rule taken from
the learned rules of a window in region Z, where some of the data shows that corridor A is
more expensive, and some of the data shows that corridor B is more expensive. In particular
corridor A was more expensive for data collected between September 9 through September
19, while data collected after September 20 showed that corridor B was more expensive.
This rule correctly identi�es the change.

All tested window sizes show the same trend: that corridor A is more expensive than B
in region X, corridor B is more expensive than A in region Y, and they crossover in region Z.
Noise in the data accounts for the short unexpected overlaps, and is more noticeable in the
smaller window sizes. Noise and a minor bug in the simulator7 account for the unexpected
peaks; the robot gets stuck often enough that Rogue can detect the pattern.

Figure 3.34a shows the graph for a window size of 10. It is very unstable, in that
exchanging one execution trace for another leads to substantial changes in the estimate of
the corridor cost. The small amount of data also means that Rogue responds to the change

7The simulator bug is that when the robot bumps into an obstacle, it can become \stuck" more easily
than the real robot; this problem raises the value of the learned arc costs.
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Figure 3.34: E�ect of window size on stability, learning rate and forgetting data.

|
PriorArc<14

Date<19.5

0.7335 1.2550

4.9290

Figure 3.35: Typical rule inside the crossover region, Z. This rule is for an arc
in corridor B, which is more expensive after September 20, or while recovering
from a turn.)
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very quickly; one execution trace corresponds to 10% of the data. Windows 40 through
48 contain two traces in which the robot had problems in corridor A, accounting for the
unexpected rise in cost.

Figure 3.34b shows the graph for a window size of 20. This graph is considerably more
stable than the previous one, but noise can still strongly a�ect the data. Figure 3.36 shows
how corridor cost changes as a function of current time for the �rst 6 windows of size 20.
These graphs show that exchanging one execution trace can immediately and signi�cantly
change the average estimate of the cost of the corridor. Figure 3.34c shows the average
corridor costs for a window size of 30. This plot is very stable, in that point-to-point
estimates of cost are generally much smaller. The large peaks in all three graphs come from

The graphs in Figures 3.36 and 3.37 shows cost estimates in consecutive windows. Each
consecutive window changes exactly one �le, so that in Figure 3.36, 5% of the data is changed,
while in Figure 3.37, 3.3% of the data changes. Notice that the graphs in Figure 3.37 show
much more stability than those in Figure 3.36, in that each window is very similar to the
previous one. For example, notice that the change from Figure 3.36c to Figure 3.36d is quite
dramatic: costs between 1am and 7am drop by roughly 0.5, while costs after 7am increase
by roughly 1.0. The change from Figure 3.36d to Figure 3.36e is again quite dramatic.
Meanwhile, each window in Figure 3.37 is very similar to the one before.

The graphs in Figure 3.34 demonstrate clearly that the system should use as large a
history as physically and computationally possible. Any data that is explicitly forgotten
will never again in
uence learned rules, and hence small window sizes means that long-term
patterns will never be detected. Any pattern whose period is greater than the window size
will be considered permanent by the system.

Larger windows create greater rule stability and con�dence in the validity of the environ-
mental knowledge captured. Rogue can learn situation dependent rules that separate old
data from recent data, thereby successfully identifying temporary phenomena, and it can do
so in a fairly small number of execution traces.

3.7.4 Real Robot

The �nal set of data was collected from real Xavier runs on the �fth 
oor of our building
(part of which was shown previously in Figure 1.4, page 11).

Goal locations and tasks were selected by the general public through Xavier's web page,
http://www.cs.cmu.edu/�Xavier. This data has allowed us to validate the need for the
algorithm in a real environment, as well as to test the predictive ability given substantial
amounts of noise.

We show the incremental nature of Rogue through an analysis of the data at two
snapshots in time.
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(c) Corridor A, Window 3.
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(d) Corridor A, Window 4.
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(e) Corridor A, Window 5.
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(f) Corridor A, Window 6.

Figure 3.36: Window size: 20 trial runs. Note that window 3 and window 4 have quite di�erent
shapes, as do window 4 and window 5.
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(b) Corridor A, Window 2.
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(c) Corridor A, Window 3.
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(e) Corridor A, Window 5.
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(f) Corridor A, Window 6.

Figure 3.37: Window size: 30 trial runs. Note that the shape of the curve from each window to the
next changes only minimally.
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Figure 3.38: Distribution and length of robot running times, April-July 1997.

3.7.4.1 31 July 1997

Over a period of three months, 17 robot execution traces were collected. These traces were
run between 9:30 am and 3:40pm and varied from 10 minutes (0.35 MB) to 82 minutes (14
MB). Figure 3.38 shows the distribution and length of running times.

More than 15,000 arc traversal events were recorded, for a total of 766 KB of training
examples. Trees were learned for 89 arcs from an average of 169 traversals per arc. At
deviance = 0.25, the average tree size was 10.2 nodes (5.1 leaf nodes). At deviance = 0.10,
the average tree size was 20.4 nodes (10.2 leaf nodes).

Figure 3.39 shows the average learned costs for all the arcs in the lobby. The his-
togram below the graph shows number of execution traces per time step (calculated from
Figure 3.38). Note that the graph is shown for a particular Wednesday; date might be a
relevant feature. Values di�erentiated by other features were averaged. The system correctly
identi�ed lunch-time as a more expensive time to go through the lobby. The minimal morn-
ing data was not signi�cant enough to a�ect costs, and so the system generalized, assuming
that morning costs were re
ected in the earliest lunch-time costs.

3.7.4.2 31 October 1997

During the subsequent three months, an additional 42 traces were collected, yielding a total
of 59 execution traces. Figure 3.40 shows the distribution and length of running times.

An additional 57,249 arc traversal events were recorded, for a total of 72,516 events and
3.6 MB of data in the events matrix. Trees were learned for 115 arcs from an average of 631
traversal events per arc (min 38, max 1229). Data from nine arcs were discarded because
they had fewer than 25 traversal events. At deviance = 0.25, the average tree size was 16.3
nodes (8.1 leaf nodes). At deviance = 0.10, the average tree size was 23.1 nodes (11.5 leaf
nodes).

Figure 3.41 shows the average learned costs for all the arcs in the lobby. The histogram
shows the number of execution traces per time step (calculated from Figure 3.40). Note that
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Figure 3.39: Learned costs for Wean Hall lobby on Wednesday, August 6. (Data from April-July 1997.)
The histogram below the graph indicates volume of training data, in terms of number of execution traces;
most data was collected between 1:30pm and 2:45pm.
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Figure 3.40: Distribution and length of robot running times, April-October 1997.

the graph is shown for a particular Wednesday; date might be a relevant feature. Values
di�erentiated by other features were averaged.

This graph shows that the system is still con�dent that the lobby is expensive to traverse
during the lunch hour. The greater volume of data reduced the cost estimate, but the
morning data was still not su�cient to reduce the morning cost. To our surprise, the graph
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Figure 3.41: Learned costs for Wean Hall lobby on Wednesday, November 11. (Data from April-
October 1997.) The histogram below the graph indicates volume of training data, in terms of number
of execution traces; most data was collected between 1pm and 6pm.

shows a slightly higher cost during the late afternoon.8 Investigation reveals that it re
ects
a period when afternoon classes have let out, and students come to the area to study and
have a snack.

This data shows Rogue's robustness to a changing world, even in an environment where
many of the default costs were tediously hand tuned by the researchers. The added 
exibility
of situation-dependent arc costs increases the reliability and e�ciency of the overall robot
system.

3.8 Summary

We have presented a general framework for learning situation-dependent rules. These rules
are extracted from execution data, and then used by a planner to improve the quality of
generated plans.

We instantiated this framework with Xavier's path planner, presenting a learning robot
with the ability to learn from its own execution experience. Rogue uses predictive features
of the environment to create situation-dependent costs for the arcs in the topological map
used by the path planner to create routes for the robot. Rogue e�ectively identi�es arc
traversal events, E, from the execution trace so that the learning algorithm can correlate
them with situational features, F , and create updated costs, C. These costs, represented as
learned regression trees, will re
ect the patterns detected in the environment, and the path
planner will know which areas of the world to avoid (or exploit), and therefore �nd the most
e�cient path for each particular situation.

Rogue processes the execution trace generated by the navigation module to extract
events relevant for learning. The execution trace contains a massive, continual stream of
probabilistic, low-level data. To identify which arcs the robot traversed in the topological

8Note that the April-July data did not contain many traces during this time period.
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map, wemodi�ed Viterbi's algorithm to operate directly in the Markovmodel; Multi/Markov
Viterbi e�ectively generates abstract trajectories in Markov models with a high degree of
fan-in/fan-out. In this manner, Rogue e�ectively abstracts the information in the execution
trace to identify arc traversals. Each of these arc traversals is then evaluated, and the cost
recorded along with the situational features existing at the time of the traversal event.

This data is then correlated by a regression tree algorithm to create situation-dependent
arc costs for each of the traversed arcs. Finally, the path planner uses the updated costs to
create e�cient, situation-dependent routes for the robot. The algorithmworks incrementally,
improving the situation-dependent rules after each run of the robot. The process as used
for the path planner is summarized in Table 3.13 (compare to Table 1.2, which outlines the
process for a general planner).

We presented empirical data from both controlled, simulated environments as well as
from the real robot. Our data demonstrates the e�ectiveness and utility of our approach.

1. Create route plan.
2. Navigate route; record the execution trace.
3. Identify events " 2 E: arc traversals.
4. Learn mapping: F � E ! C.
5. Create rules to update arc costs.

Table 3.13: General learning approach as instantiated for the path planner.



Chapter 4

Learning for the Task Planner

Rogue's learning goal is to extract from execution knowledge which will help a planner make
better decisions. The general situation-dependent learning approach involves extracting
learning events, E, from the execution trace, evaluating them with a cost function, C, and
then correlating those events with situational features of the environment, F . The learned
information can then be used by a planner to improve the quality and reliability of generated
plans.

In Chapter 3, the general approach was used to calculate action costs for an A* robotic
path planner. The path planner used these situation-dependent action costs to create plans
plans with the best expected execution time in the given situation.

In this chapter, we instantiate the general approach to calculate action probabilities
for a symbolic task planner. Rogue creates situation-dependent search control rules that
guide the task planner towards actions with higher probability of success. Rogue collects
execution data to record the success or failure of learning events, E. Events in the task
planner result from operator applications, such as moving from one location to another,
or delivering an item. Each event is evaluated with a cost function, C, that determines
the probability of action success, including for example missing deadlines or having timeouts
while waiting for someone. The learner then correlates situational features, F , to the learning
events to create prodigy4.0 search control rules.

Two features of Rogue's task planner make learning both e�ective and useful.

� Rogue is able to interleave the plans for multiple compatible tasks. This ability
allows Rogue to create control rules to improve the compatibility estimates and also
the interleaved order of di�erent tasks.
� Rogue interleaves planning with execution. This ability allows Rogue to create rules
that improve the order of executed actions.

These two features lead to two distinct goals for learning inside the task planner. The �rst is
to create a better plan given the set of requests from users. This process primarily includes
using the learned situation-dependent control rules to avoid tasks when they cannot be
achieved. The rules depend on high-level features of the environment that can be detected
well before actions need to be executed.

101
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1. Interleave planning and execution for asynchronous requests
Record execution events " 2 E and features F

2. Learn mapping: F � E ! C
3. Create control rules to guide planner

Table 4.1: Rogue's learning approach as instantiated for the task planner.

The second goal is to execute the plan more e�ectively. This goal does not exist for
the path planner since the POMDP navigation module is completely disconnected from the
planner; navigation occurs after the path planner has created the complete plan1. The task
planner, however, determines when to send a plan step for execution, and hence can bene�t
from using learned experience to improve the execution performance of the robot. These
rules depend on features in the environment that can only be detected when the action is
about to be executed; we call these features execution-level features.

The learning approach used by Rogue is identical to that described in Chapter 3. How-
ever, Rogue needs to identify the task planner's events from execution data, and to process
the learned trees to form search control rules for the task planner. The common learning
approach is one of the contributions of this research. The approach as used in the task plan-
ner is summarized in Table 4.1 (compare to Table 1.2, page 10, which outlines the approach
for a general planner).

The primary reason we implemented our learning framework in the task planner was to
show the general applicability of the approach; the implementation described in this chapter
is a prototype. We also extended the number and type of features available for learning.

In each of the sections below, we describe only the parts of Rogue which are di�erent
from the path planner, making references to areas of overlap. In particular, the feature
de�nition, F , is essentially the same as for the path planner, while events, E, and costs, C,
are planner-dependent. In Section 4.1 we describe the mechanism Rogue uses to acquire
features from Xavier. We also extend the set of available features to incorporate those from
the execution-level. In Section 4.2 we describe the events relevant for learning in the task
planner. In Section 4.3 we describe the cost function.

F , E and C are transformed into an events matrix as for the path planner, and Rogue
uses the same learning algorithm to process the data. In Section 4.4, we present the one
extension made to the learning algorithm so that it correctly handles execution-level features.
In Section 4.5 we describe the mechanism use to transform the learned information into
prodigy4.0 control rules.

We present experimental data in Section 4.6, and summarize the main contributions in
Section 4.7. Related work can be found in Section 5.2.

1Our learning approach could be applied to the navigation module; see Section 6.2.
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4.1 Features

In the feature discussion of Section 3.2, we described the features available in Xavier, includ-
ing speed, time of day, sonar observations, camera images, other goals, and the desired route.
We argued that execution-level features are generally not useful for learning in a planner
because they are not projective. For that reason, the feature set used in the experiments of
Chapter 3 included only high-level features.

However, the task planner controls the execution of the plan it creates (whereas the path
planner's routes are executed by the navigation module). Hence, execution-level features
such as sonar and camera become relevant. In particular, there are a number of occasions
when the robot needs to stand in one place and wait. On these occasions, the current value
of the execution-level feature clearly correlates to a future value (they essentially become
projective in the short-term). For this reason, we extended the stored feature values to
incorporate sensors.

The execution trace that Rogue analyzed to create situation-dependent arc costs for
the path planner was created by the navigation module. The task planner, however, records
its own execution trace since much of the detail recorded by the navigation module is not
necessary. However, it is still the navigation module which has access to and de�nes the set
of available features. To make them accessible to other modules, we implemented a TCA
query that can be used to collect all current execution features.

The current list of features includes:

� robot odometer readings
� robot speed and acceleration
� robot sonar readings
� the Markov state probability distribution
� time and date

It can, of course, be incrementally expanded to incorporate new features. Appendix D
shows the data structures and code used to implement the TCA query to report execution
features.

4.2 Events

The two goals of learning control knowledge for the planner is to have Rogue learn when
tasks and actions can and cannot be easily achieved. To change the planner's behaviour, we
need to create control rules that tell the planner when to attempt or avoid a task. Therefore
learning events, E, for this planner are actions related to task achievement, for example,
missing or meeting a deadline, or acquiring or not acquiring an object.

Careful analysis of the domain model yields these learning opportunities. Most events
correspond directly to operator applications, although execution monitors may also record
events. For example, if the user meets the robot in the corridor and takes his mail, Rogue's
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execution monitor does two things: (i) it would indicate task completion in prodigy4.0's
domain knowledge, and (ii) it would record an event of premature task completion. Addi-
tional events, not explored in this thesis, might include checking preconditions and postcon-
ditions, or other things relating to task completion that do not directly correspond to single
operators.

Each time the task planner records the event in an execution trace, it requests current
situational features from the execution module using the query described above.

It should be noted that events for the task planner are much more rare than for the route
planner. Events can be collected constantly for the route planner, whereas the task planner
only has relevant events when an action succeeds or fails. Progress towards the goal, such as
acquiring a necessary object, is recorded as a successful event. Lack of progress is recorded
when the corresponding action fails.

4.3 Costs

One possible approach for assigning event costs in a task planner involves considering task
and user importance, and e�ort expended (travel plus wait time). For an event " 2 E, a
possible function could be:

C(") =

8>><
>>:

[tdist + twait]�
1

Ranktask+Rankuser
if " was a success

k � [tdist + twait]� [Ranktask + Rankuser] if " was a failure

Ranktask and Rankuser are extracted from the task knowledge, and correspond directly to
the event. The travel time, tdist, would cover the time dedicated solely to this one event. k
is a factor weighting failures much more expensively than successes; k's value would depend
on the particular domain and how critical it would be to avoid failures in the future. Other
possible functions might include penalties for missed deadlines, especially in domains when
deadlines are more critical. Learned rules would be of the form if cost-is-unreasonable, then
avoid-task.

In many planners, including Rogue's task planner, this function can be reduced to a
binary function, in which successes are assigned a cost of zero, while failures are assigned a
cost of one:

C(") =

(
0 if " was a success
1 if " was a failure

Rules are then of the form if cost-is-one, then avoid-task. The abstraction provided by this
function simpli�es the learning task, but loses some forms of knowledge; for example, we can
no longer represent the concept if taskA-is-easier-than-taskB, attempt taskA.

The loss of representation is not important in our domain because Rogue rarely has
enough tasks that it needs to di�erentiate between them at such a �ne-grained level. More-
over, the priority and compatibility calculations prune out the set of tasks considered by the
learned rules.
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In the same manner as for the path planner, the event is stored in an events matrix along
with the cost evaluation and the environmental features observed when the event occurred.

4.4 Learning Algorithm

Following the general situation-dependent learning approach, we use regression trees to learn
prodigy4.0 control rules for the task planner, as we did for Xavier's path planner. The
regression tree algorithm is presented in Section 3.5. The input to the algorithm is an events
matrix and the output is a set of learned regression trees from which control rules can be
built.

For the task planner, we made one extension to the basic regression tree algorithm: we
incorporate the cost of measuring the value of a feature.

Incorporating sensor values into the feature set raised the problem that low-level exe-
cution features are more predictive of performance than high-level features. However, the
cost of calculating a value for an execution-level feature is much greater than for a high-level
feature. For example, to calculate a sonar value, the robot would have to navigate to the
location in which they are valid.

The regression tree algorithm therefore needed to consider feature costs when making
a decision about splitting a node. Standard techniques exist to do this, e.g. Tan [1991],
however S-PLUS does not support changing the default split function, which only considers
node deviance.

We therefore re-implemented the regression tree analysis to cope with feature costs for
the experiments described in Section 4.6.3. We select splits greedily to minimize total De-
viance*Cost in the tree2;3. Since S-PLUS provides more data analysis tools and a graphical
user interface, we prefer to use this package whenever possible. We therefore use S-PLUS to
create the regression trees of Sections 4.6.1 and 4.6.2, because the costs of the features are
constant within the category.

4.5 Creating Control Rules for the Task Planner

Once the set of regression trees has been created (one for each type of event), each tree
needs to be translated into prodigy4.0 search control rules. Control rules can be used to
focus planning on particular goals and towards desirable plans, and to prune out undesirable
actions, as was described in Section 2.2.2.3.

There are two locations where learned control rules can be useful in Rogue. The �rst
type decide which tasks to focus on achieving; these are goal selection control rules. Goal
selection rules aim at creating better plans. The second type decide what order to achieve

2This function is the closest regression-tree application of Tan's decision-tree technique.

3When costs of features do not vary, minimizing total Deviance*Cost is mathematically equivalent to
S-PLUS's strategy of maximizing reduction in Deviance.
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actions; these are applicable operator rules. Applicable operator rules aim at executing the
plan more e�ciently.

A control rule is created at each leaf node; it corresponds to the path from the root node
to the leaf. We decide whether to make a rule a select, prefer-select, prefer-reject or a reject
based on the learned value of the leaf node.

The training data identi�ed the success or failure of an event, indicating each with a
value of 0.0 or 1.0 respectively. Leaf nodes with values close to 0.0 are considered select
rules, and those close to 1.0 are considered reject rules. Intermediate values become prefer
rules. Table 4.2 summarizes the important decisions made when generating the rules.

Table 4.3 shows a sample tree learned for this domain. The tree indicates that between
10:00 and 20:00, tasks are more likely to succeed than at night (recall that CT is Current-
Time, in seconds since midnight). There are four control rules created for this tree: one for
each leaf node. They are shown in Table 4.4. Rules auto-timeout-0 and auto-timeout-3

are reject rules, while rule auto-timeout-1 is a select rule. Rule auto-timeout-2 is a
prefer-reject rule because <G2> is preferred over <G>.

Tests in the search control rules are generated directly from the branch nodes of the
tree. For example (current-time LT 71749) is generated from node 6 of Table 4.3, while
(location <G> GT 5314.0000) is generated from node 13. A given rule will have the same
number of tests as the depth of the corresponding leaf node. Notice that \redundant" tests
may appear in a rule (auto-timeout-3); these occur when a given feature is used multiple
times in the tree, each time with di�erent values.

Each split in the tree is of the form feature-comparison-value. A meta-predicate function
needs to be provided that will perform this comparison. For each feature in the domain,
the corresponding meta-predicate determines how to extract the feature from the world.
Table 4.5 shows the meta-predicate function that tests current time. Table 4.6 shows the

Let execution-tests be the set of all tests that may only occur in an apply-op rule
Let leafval be the learned value of the leaf node generating the rule. In the training

data, leafval = 1.0 is a failure, leafval = 0.0 is a success.
Let rule be the set of tests generated by each of the branch nodes in the tree.

1. if (execution-tests \ rule) 2. if (0 � leafval < 0.25)
/* this is an apply-op rule */ /* this is a select rule */

else else if (0.25 � leafval < 0.50)
/* this is a goal rule */ /* this is a prefer-select rule */

else if (0.50 � leafval < 0.75)
/* this is a prefer-reject rule */

else
/* this is a reject rule */

Table 4.2: Important tests for generating prodigy4.0 control rules from learned trees.
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node), split, n, deviance, learned value

* denotes terminal node

1) root 856 186.70 0.6787

2) CT<35889.5 264 0.00 1.0000 *

3) CT>35889.5 592 147.30 0.5355

6) CT<71749 418 94.08 0.3421

12) CurrLoc<5314 211 0.00 0.0000 *

13) CurrLoc>5314 207 44.21 0.6908 *

7) CT>71749 174 0.00 1.0000 *

(a)

|
CT < 35889.5

CT < 71749

CurrLoc < 5314

1.0000

0.0000 0.6908

1.0000

(b)

Table 4.3: A sample tree. (a) The text version, which lists the number of examples n, deviance value
and learned value for each node. (b) The graphical version.

;;;Deviance is 0.0000 on value of 1.0000

;;;264 examples

(CONTROL-RULE auto-timeout-0

(if (and (real-candidate-goal <G>)

(current-time LT 35889)))

(then reject goal <G>))

;;;Deviance is 44.2099 on value of 0.6908

;;;207 examples

(CONTROL-RULE auto-timeout-2

(if (and (real-candidate-goal <G>)

(current-time GT 35889)

(current-time LT 71749)

(location <G> GT 5314.0000)

(real-candidate-goal <G2>)

(diff <G> <G2>)))

(then prefer goal <G2> <G>))

;;;Deviance is 0.0000 on value of 0.0000

;;;211 examples

(CONTROL-RULE auto-timeout-1

(if (and (real-candidate-goal <G>)

(current-time GT 35889)

(current-time LT 71749)

(location <G> LT 5314.0000)))

(then select goal <G>))

;;;Deviance is 0.0000 on value of 1.0000

;;;174 examples

(CONTROL-RULE auto-timeout-3

(if (and (real-candidate-goal <G>)

(current-time GT 35889)

(current-time GT 71749)))

(then reject goal <G>))

Table 4.4: Learned prodigy4.0 control rules for the tree in Table 4.3.

meta-predicate function that tests sonar readings.

In addition to the cost of calculating a value for an execution-level feature, we must also
consider the possibility that they would change the state. As discussed in Section 2.3.1, it
is important to ensure that the external state is not modi�ed while �ring a control rule.
For example, to collect a sonar value, the robot might have to change locations, potentially
a�ecting the plan. For this reason, we do not use them in goal-selection rules; rules containing
execution-level features are only used at the operator application stage.
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(defun current-time (comparetype value)

(let ((currtime nil))

(multiple-value-bind (sec min hr date month year dayOfWeek)

(get-decoded-time)

(setf currtime (+ (+ (* 3600 hr) (* 60 min)) sec)))

(format t "~%Testing time ~S ~S ~S" currtime comparetype value)

(if (eq comparetype 'user::LT)

(if (< currtime value) t)

(if (> currtime value) t))))

Table 4.5: The meta-predicate function for current time.

(defun sensor-test (sensor-num comparetype value)

(let ((sonar (tca::SONAR_STATUS_TYPE-data SonarDataCache)))

(format t "~%Testing (sensor ~S) ~S ~S ~S"

sensor-num (aref sonar sensor-num)

comparetype value)

(if (eq comparetype 'LT)

(if (< (aref sonar sensor-num) value) t)

(if (> (aref sonar sensor-num) value) t))))

Table 4.6: The meta-predicate function for sonar readings.

4.6 Experimental Results

We conducted three experiments to test the ability to learn from execution experience to
create knowledge for the task planner. Each experiment explores one of the classes of learned
search control rules.

The �rst experiment explores using only execution-level features to create applicable
operator rules. These rules are designed to improve execution performance of the task
planner.

The second set explores using only high-level features to create goal selection control
rules. These rules improve planning performance of the task planner.

The �nal set explores using both high-level and execution-level features to create both
types of control rules: applicable operator and goal selection. We use feature costs to select
splits in the regression trees.

All experiments were conducted in the simulator.

4.6.1 Experiment 1: Execution Features

The �rst experiment was designed to improve the task planner's execution performance.
Rogue uses execution-level features to create applicable operator search control rules. Re-
call that the planner selects which plan step to execute by choosing which plan step to
apply. Hence, the task planner uses applicable operator rules to decide when to execute an
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action. Using current execution-level features of the domain allows the task planner to make
execution more e�cient.

The goal was to have Rogue autonomously determine \Should I wait?" by detect-
ing closed doors and inferring that the task could not be completed. In particular, we
wanted Rogue to learn an applicable operator search control rule that avoided applying an
(ACQUIRE-ITEM) or (DELIVER-ITEM) operator when it sees that the door is closed.

We generated training data that had the robot fail at a task every time the door to a
required location was closed. A map was generated for each trial run in which each door
was opened with 50% probability. In each trial run, the task planner handled �ve user
requests, randomly generated as described in Appendix B. Every door closure was treated
as a timeout event for learning. Rogue recorded a timeout event every time the average
length of the front three sonars was less than 1.5m:

Sonar23 + Sonar0 + Sonar1

3
< 150cm

Table 4.7 shows a sampling from the events matrix generated for this task. A total of
3987 events were recorded, of which 2419 (61%) were door-open events and 1568 (39%) were
door-closed events. The Status, or cost, variable indicates whether the door was open; a
value of 1 indicates that it was closed. Notice that Status does not depend on features such
as time or location. A close examination of the data reveals that it depends on the three
front-most sonar values.

The regression tree algorithm created rules that depend primarily on Sonar0 (the front-
most sonar). Sonar1 appears regularly in the unpruned trees, as do several other sonar values.
In the pruned trees, only Sonar0 appears; all other features were ignored, for all deviance
levels. Figure 4.1 shows the unpruned and pruned trees generated for three deviance levels.
Leaf values correspond to the learned value of the event in the situation described by each
split. In the pruned trees, then, when sensor 0 has a reading of less than 150.144cm, the
door is closed 81.96% of the time. When sensor 0 has a reading greater than 150.144cm, the
door is open 99.76% of the time.

Table 4.8 shows the control rules generated from the pruned trees for prodigy4.0 accord-
ing to the method described in Section 4.5. Notice that each leaf in the pruned tree forms a
rule, and that the single split value on the path from the root is now a meta-predicate. The
generated rules were used at operator application time, i.e. when the operator is released for
execution, since sonar readings are relevant only at the robot's current location.4

Table 4.9 shows part of a trace generated by prodigy4.0 for two requests when using
the control rules of Table 4.8. The door to 5302 was closed on the �rst visit (after node 31),
and the control rule rejects applying the operator <ACQUIRE-ITEM mitchell delivermail

r-5302>. The robot goes to room 5304, where the reject control rule does not �re5, so
prodigy4.0 applies the operator <ACQUIRE-ITEM jhm deliverfax r-5304>. The robot

4See Sections 2.3.1, 3.2, and 4.5 for more discussion on this point.

5The select control rule does not �re when it would not change prodigy4.0's default decision.
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Status CurrLoc Year Month Date DayOfWeek CT Who WhoRank Task TaskRank PickupLoc

0 5301 1997 9 29 1 81982 JAN 2 DELIVERFAX 2 5310

1 5301 1997 10 1 3 12903 WILL 5 DELIVERFAX 2 5302

0 5303 1997 10 1 3 23526 MITCHELL 3 PICKUPMAIL 6 5303

1 5336 1997 10 3 5 1200 JEAN 2 DELIVERMAIL 3 5336

0 5321 1997 10 4 6 8522 MCOX 4 DELIVERMAIL 3 5321

1 5304 1997 10 4 6 76641 THRUN 3 DELIVERFEDEX 1 5304

1 5415 1997 10 5 0 48733 REIDS 3 PICKUPCOFFEE 8 5415

0 5304 1997 10 6 1 9482 MMV 3 DELIVERMAIL 3 5304

0 5310 1997 10 6 1 76701 THRUN 3 PICKUPFAX 5 5320

1 5301 1997 10 7 2 22746 SKOENIG 5 DELIVERFAX 2 5313

1 5409 1997 10 8 3 1320 REIDS 3 PICKUPMAIL 6 5427

0 5427 1997 10 8 3 81802 JEAN 2 DELIVERFEDEX 1 5321

0 5303 1997 10 9 4 4141 SKOENIG 5 DELIVERMAIL 3 5301

1 5313 1997 10 10 5 83303 MMV 3 DELIVERFEDEX 1 5313

0 5409 1997 10 10 5 29768 JBLYTHE 5 DELIVERFEDEX 1 5409

1 5321 1997 10 11 6 78501 JRS 4 PICKUPMAIL 6 5310

0 5427 1997 10 12 0 19745 KHAIGH 5 PICKUPMAIL 6 5427

1 5307 1997 10 12 0 29888 MCOX 4 DELIVERMAIL 3 5307

DeliverLoc Sensor0 Sensor1 Sensor2 Sensor3 ...Sensor20 Sensor21 Sensor22 Sensor23

5301 596.676 224.820 224.820 93.756 ... 173.004 163.860 163.860 773.460

5301 81.564 84.612 84.612 90.708 ... 166.908 157.764 157.764 154.716

5311 599.724 87.660 87.660 87.660 ... 166.908 157.764 157.764 154.716

5302 78.516 78.516 78.516 84.612 ... 261.396 243.108 243.108 243.108

5328 456.468 166.908 166.908 169.956 ... 87.660 84.612 84.612 84.612

5313 148.620 148.620 148.620 160.812 ... 96.804 90.708 90.708 87.660

5321 102.900 99.852 99.852 105.948 ... 154.716 139.476 139.476 133.380

5303 773.460 133.380 133.380 142.524 ... 115.092 108.996 108.996 108.996

5310 773.460 733.836 733.836 182.148 ... 102.900 96.804 96.804 96.804

5301 81.564 81.564 81.564 87.660 ... 169.956 154.716 154.716 154.716

5409 81.564 78.516 78.516 84.612 ... 169.956 157.764 157.764 157.764

5427 773.460 773.460 773.460 90.708 ... 176.052 169.956 169.956 173.004

5303 642.396 136.428 136.428 136.428 ... 121.188 115.092 115.092 112.044

5313 130.332 136.428 136.428 148.620 ... 112.044 105.948 105.948 105.948

5317 773.460 773.460 773.460 773.460 ... 179.100 163.860 163.860 160.812

5321 145.572 148.620 148.620 160.812 ... 96.804 90.708 90.708 90.708

5311 773.460 773.460 773.460 84.612 ... 182.148 169.956 169.956 169.956

5415 148.620 148.620 148.620 163.860 ... 93.756 90.708 90.708 87.660

Table 4.7: Sampling from the events matrix for the \Should I wait?" task. Status (cost) indicates
whether the door was open; 1 is closed.
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Figure 4.1: Regression trees learned for the \Should I wait?" task.
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;;;Deviance is 208.40 on value of 0.827200 (1907 examples)

(CONTROL-RULE auto-timeout-0

(if (and (candidate-applicable-op <OP>)

(or (inst-op-name-eq <OP> ACQUIRE-ITEM)

(inst-op-name-eq <OP> DELIVER-ITEM))

(sensor-test 0 LT 150.144)))

(then reject apply-op <OP>))

;;;Deviance is 4.99 on value of 0.002404 (2080 examples)

(CONTROL-RULE auto-timeout-1

(if (and (candidate-applicable-op <OP>)

(or (inst-op-name-eq <OP> ACQUIRE-ITEM)

(inst-op-name-eq <OP> DELIVER-ITEM))

(sensor-test 0 GT 150.144)))

(then select apply-op <OP>))

Table 4.8: prodigy4.0 control rules generated for the learned pruned trees.

then returns to 5302, where the door has been opened, and it successfully acquires Mitchell's
mail. If the door were still closed, Rogue would deliver jhm's mail and return. Rogue
would continue returning until either the door was open, or the deadline was reached, or
there were no more pending tasks.

Any action that is rejected by an applicable operator control rule will be reselected later
in the trace, assuming there are other pending tasks. If there are other pending tasks, the
planner will reconsider this task at each decision point. When it is no longer rejected by the
control rule, the planner will attempt the action. When there are no other pending tasks,
the planner will fail on the plan, rather than waiting for conditions to be more favourable;
the implementation details are left for future work.

This experiment shows that Rogue can use real-world execution data to learn when to
execute actions. As a result, Rogue learns to execute plans more e�ectively.

4.6.2 Experiment 2: High-level features

This experiment was designed to test Rogue's ability to identify and use high-level features
to learn to create better plans. The goal was to have Rogue identify times for which tasks
could not be completed, and then create goal selection rules of the form \reject task until: : :"

For training data, we generated two maps for the simulator. Between 10:00 and 19:59, all
doors in the map were open. At other times, all doors were closed. When a door was closed,
we de�ned the task as incompletable. We used a single route: from the starting location
of 5310, go to room 5312 then to room 5316. The user remained constant and tasks were
selected randomly from a uniform distribution. Table 4.10 shows a sampling of the data
in the events matrix. The primary di�erence between this dataset and the dataset shown
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Message from tca: "mitchell" 3 "delivermail" 2 "Oct 24 16:16" "Fri Oct 24 17:15"

"r-5302" "r-5316"

Message from tca: "jhm" 1 "deliverfax" 1 "Oct 24 16:16" "Fri Oct 24 17:15"

"r-5304" "r-5312"

2 n2 (done)

4 n4 <*finish*>

5 n5 (has-item mitchell delivermail)

7 n7 <deliver-item r-5316 mitchell delivermail>

8 n8 (has-item jhm deliverfax)

10 n10 <deliver-item r-5312 jhm deliverfax>

11 n11 (robot-has-item jhm deliverfax)

13 n13 <acquire-item r-5304 jhm deliverfax>

14 n14 (robot-in-room r-5304)

16 n16 <goto-pickup-loc jhm r-5304>

17 n17 (robot-in-room r-5312)

18 n18 goto-pickup-loc ...no choices for bindings (I tried)

19 n20 <goto-deliver-loc jhm r-5312>

22 n23 <acquire-item r-5302 mitchell delivermail>

23 n24 (robot-in-room r-5302)

25 n26 <goto-pickup-loc mitchell r-5302>

26 n27 (robot-in-room r-5316)

27 n28 goto-pickup-loc ...no choices for bindings (I tried)

28 n30 <goto-deliver-loc mitchell r-5316>

29 n31 <GOTO-PICKUP-LOC MITCHELL R-5302>

SENDING COMMAND (TCAEXPANDGOAL "navigateToG"

#(TASK-CONTROL::MAPLOCDATA 748.0d0 2083.0d0))

Waited:2144 Total-to-wait:600000

...

Waited:39032 Total-to-wait:600000

Action NAVIGATE-TO-GOAL-ACHIEVED finished.

SENDING COMMAND (TURN-TO-FACE R-5302)

Asking room location: "5302"

SonarDataCache:
#(127.536d0 142.776d0 188.496d0 389.664d0 648.744d0 319.56d0 209.832d0

164.11d0 142.776d0 136.68d0 ...)
Testing (sensor 0) 127.536d0 LT 150.144...T

Firing reject applied-operator AUTO-TIMEOUT-0 to remove
#<ACQUIRE-ITEM MITCHELL DELIVERMAIL R-5302>

(continued...)

Table 4.9: prodigy4.0 trace using the control rules of Table 4.8. The door of 5302 was closed at the
�rst visit; prodigy4.0 returns to the room at node 35 (next page), and �nds that the door has been
opened.
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30 n32 <GOTO-PICKUP-LOC JHM R-5304>

SENDING COMMAND (TCAEXPANDGOAL "navigateToG"

#(TASK-CONTROL::MAPLOCDATA 748.0d0 2672.0d0))

Waited:619 Total-to-wait:600000

...

Waited:13406 Total-to-wait:600000

Action NAVIGATE-TO-GOAL-ACHIEVED finished.

SENDING COMMAND (TURN-TO-FACE R-5304)

Asking room location: "5304"

31 n33 (robot-in-room r-5302)

33 n35 <goto-pickup-loc mitchell r-5302>

SonarDataCache:
#(596.928d0 87.912d0 84.864d0 90.96d0 100.104d0 124.488d0

176.304d0 456.72d0 596.928d0 310.416d0 ...)
Testing (sensor 0) 596.928d0 LT 150.144...NIL

34 n36 <ACQUIRE-ITEM R-5304 JHM DELIVERFAX>

... "Please place Jim Morris's fax delivery on my tray."

... "Please indicate on my keyboard when you are finished."

... "Are you finished placing Jim Morris's fax delivery on my tray?"

35 n37 <GOTO-PICKUP-LOC MITCHELL R-5302>

SENDING COMMAND (TCAEXPANDGOAL "navigateToG"

#(TASK-CONTROL::MAPLOCDATA 748.0d0 2083.0d0))

Waited:809 Total-to-wait:600000

...

Waited:21031 Total-to-wait:600000

Action NAVIGATE-TO-GOAL-ACHIEVED finished.

SENDING COMMAND (TURN-TO-FACE R-5302)

Asking room location: "5302"

SonarDataCache:
#(441.48d0 209.832d0 188.496d0 444.528d0 441.48d0 301.272d0 209.832d0

170.208d0 148.872d0 142.776d0 ...)
Testing (sensor 0) 441.48d0 LT 150.144...NIL

36 n38 <ACQUIRE-ITEM R-5302 MITCHELL DELIVERMAIL>

... "Please place Tom Mitchell's mail delivery on my tray."

... "Please indicate on my keyboard when you are finished."

... "Are you finished placing Tom Mitchell's mail delivery on my tray?"

Table 4.9: (cont) prodigy4.0 trace using the control rules of Table 4.8.
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Status CurrLoc Year Month Date DayOfWeek CT Who WhoRank Task TaskRank

0 5312 1997 10 17 5 56235 KHAIGH 5 PICKUPFAX 5

0 5312 1997 10 17 5 56595 KHAIGH 5 PICKUPCOFFEE 8

1 5316 1997 10 18 6 660 KHAIGH 5 DELIVERFEDEX 1

1 5312 1997 10 18 6 1200 KHAIGH 5 DELIVERMAIL 3

1 5316 1997 10 19 0 86183 KHAIGH 5 DELIVERFEDEX 1

0 5312 1997 10 20 1 42851 KHAIGH 5 DELIVERFAX 2

0 5316 1997 10 20 1 42911 KHAIGH 5 DELIVERFAX 2

PickupLoc DeliverLoc Sensor0 Sensor1 Sensor2 Sensor3 Sensor4 Sensor5

5312 5316 96.804 99.852 99.852 108.996 108.996 139.476

5312 5316 773.460 105.948 105.948 112.044 112.044 136.428

5312 5316 81.564 81.564 81.564 87.660 87.660 115.092

5312 5316 72.420 72.420 72.420 78.516 78.516 93.756

5312 5316 84.612 81.564 81.564 87.660 87.660 108.996

5312 5316 90.708 93.756 93.756 102.900 102.900 136.428

5312 5316 72.420 72.420 72.420 78.516 78.516 99.852

Sensor6 Sensor7 ... Sensor18 Sensor19 Sensor20 Sensor21 Sensor22 Sensor23

139.476 182.148 ... 313.212 148.620 148.620 142.524 142.524 139.476

136.428 166.908 ... 291.876 145.572 145.572 133.380 133.380 133.380

115.092 142.524 ... 188.244 166.908 166.908 154.716 154.716 154.716

93.756 115.092 ... 212.628 182.148 182.148 166.908 166.908 166.908

108.996 133.380 ... 200.436 166.908 166.908 154.716 154.716 154.716

136.428 179.100 ... 169.956 151.668 151.668 148.620 148.620 148.620

99.852 124.236 ... 221.772 328.452 328.452 166.908 166.908 163.860

Table 4.10: Sampling from the events matrix for the \Reject until..." task. (Note: CT=36000 is
10:00, and CT=72000 is 20:00.)

in Table 4.7 is that the Status, or cost, variable was dependent on time, rather than being
random.

We ran the data through the learner, allowing the tree to be built using only high-level
features of the environment.

We were expecting the learned tree to resemble the example shown in Figure 4.2a, in
which time was the only feature used to build the tree. Figure 4.2b shows the actual
regression tree learned for this data (the same pruned tree was created for all tested deviance
levels).

The unexpected appearance of the feature CurrLoc caused us to re-examine the data.
We found that there was indeed a di�erence between room 5312 and 5316. The Markov
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|
CT <  36000

CT <  72000
1.00

0.00 1.00

(a) Expected Tree.

|
CT < 35889.5
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CurrLoc < 5314
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0.0000 0.6908

1.0000

(b) Learned Tree.

Figure 4.2: Expected and actual trees for door-open times. (Note: CT=36000 is 10:00, and CT=72000
is 20:00.)

Room Timeouts No timeouts Percentage Timeouts
5312 0 211 0%
5316 145 64 69%

Table 4.11: Timeout data between 10:00 and 20:00. The robot often does not
�nd the door of 5316, and so the training data records a timeout event.

navigation module stopped the robot several feet away from the door of 5316 approximately
69% of the attempts, while centering the robot perfectly in front of 5312. Standing in front
of a wall rather than at an open door caused the system to record a closed door and hence a
failed task. Table 4.11 shows the exact success/fail data6. In the real robot, this failure rate
is considerably reduced because the vision module is used to help centre the robot correctly
on the door.

Rogue created four control rules for prodigy4.0, one for each leaf node, shown in
Table 4.4 (page 107). prodigy4.0 uses the reject control rules (0 and 3) to reject tasks
before 09:58:09 and after 19:55:59. Rule 1 is used to select tasks between those times
involving rooms \less than" 5314: : : namely room 5312. The prefer-reject control rule (rule
2) is used to prefer tasks other than those involving room 5316.

This experiment shows an inherent bias of the learning approach. In particular, the \true"
feature that should have been used for learning is \distance-travelled-along-this-corridor."
The learner would then have created a rule stating that the further the robot travels along a
long, featureless corridor, the more likely that it will not stop at exactly the right location.
Since this \true" feature was not part of the available feature set, the learner could not learn
the \true" rule, and instead learned the best approximation. Automatically identifying
features from the execution trace is an important open problem.

6There are more events at room 5312 because the robot occasionally gets trapped somewhere and does
not arrive at room 5316.
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This experiment also shows that Rogue is able to use high-level features of the domain
to learn situation-dependent control rules for Xavier's task planner. These control rules
guide the planner's decisions towards tasks that can be easily achieved, while guiding the
task planner away from tasks that are hard or impossible to achieve.

4.6.3 Experiment 3: Feature Costs & Combining High- and

Execution-level Features

This experiment was designed to test Rogue's response to feature costs. In Section 4.6.2
we explicitly eliminated execution-level features from the dataset. In these experiments, we
tested preset costs for execution-level features, and allowed Rogue to determine automat-
ically whether rules were to be used as goal selection rules or applicable operator rules, as
described in Section 4.5.

We expanded the dataset of Section 4.6.2 to include the �ve most probable Markov nodes,
and collected additional data. We expected the learned trees to look much like the one in
Figure 4.2b, with additional features splitting the most ambiguous node, as in Figure 4.3. We
expected these additional split(s) to involve execution-level features, most probably sonar
values or Markov states.

We set the cost of all features to be 1.0, and ran the modi�ed regression tree algorithm
described in Section 4.4. The learned, pruned tree is shown in Table 4.12. The primary split
is on the value of Sonar 0 (the front-most). While it is clear that the robot's sensor values
a�ect task completion, this rule is not valuable for the task planner since it cannot be used
to make goal decisions.

We then increased the value of the execution-level features. At a cost value of 2.0, the
learned pruned tree eliminated all execution-level features below the root node, but Sonar 0
remains the most important feature (Table 4.13). A cost of 3.0 yields the same tree.

A cost of 3.25 yielded the tree shown in Table 4.14. It is essentially the same tree shown

1.000
CT < 71749

CT < 35889.5

1.0000

0.0000

? ?

CurrLoc < 5314

Figure 4.3: Expected tree for door-open times with all features. We expected
the dotted split to contain execution-level features such as Markov nodes or
sonar values. (Note: CT=36000 is 10:00, and CT=72000 is 20:00.)
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node), split, (n, deviance), learned value

* denotes terminal node

1) root (n=2670, dev=379.4267) 0.8285

2) Sensor0 < 86.136 (n=2265, dev=74.3813) 0.9660

4) MN1prob < 0.24371 (n=1939, dev=0.9995) 0.9995 *

5) MN1prob > 0.24371 (n=326, dev=58.2821) 0.7669

10) MN4 < 47 (n=16, dev=0.0000) 0.0000 *

11) MN4 > 47 (n=310, dev=48.3870) 0.8065

22) Sensor17 < 238.536 (n=210, dev=19.6952) 0.8952 *

23) Sensor17 > 238.536 (n=100, dev=23.5600) 0.6200 *

3) Sensor0 > 86.136 (n=405, dev=22.5777) 0.0593 *

Table 4.12: Learned tree for both high-level and execution-level features at cost 1.0.

node), split, (n, deviance), learned value

* denotes terminal node

1) root (n=2670, dev=379.4267) 0.8285

2) Sensor0 < 86.136 (n=2265, dev=74.3813) 0.9660

4) CT < 37930 (n=1335, dev=0.0000) 1.0000 *

5) CT > 37930 (n=930, dev=70.6250) 0.9172

10) CT < 71629 (n=316, dev=58.2374) 0.7563

20) CurrLoc < 5314 (n=17, dev=0.0000) 0.0000 *

21) CurrLoc > 5314 (n=299, dev=47.9599) 0.7993

42) Date < 5.5 (n=35, dev=8.1714) 0.6286 *

43) Date > 5.5 (n=264, dev=38.6326) 0.8220

86) TaskRank < 3.5 (n=94, dev=17.3723) 0.7553 *

187 TaskRank > 3.5 (n=170, dev=20.6117) 0.8588 *

11) CT > 71629 (n=614, dev=0.0000) 1.0000 *

3) Sensor0 > 86.136 (n=405, dev=22.5777) 0.0593 *

Table 4.13: Learned tree for high-level features at cost 1.0, execution-level features at cost 2.0.

in Figure 4.2b; in particular it does not involve and execution-level features as had been
expected. (The slightly higher value for the leaf corresponding to CurrLoc > 5314 re
ects
the additional data accurately.)

Although this experiment did not show any conclusive results, it is important for a
learning algorithm to consider feature costs. The learning algorithm could then trade o� the
bene�t of the information with the cost of acquiring the feature's value. There may indeed
be situations when a little e�ort would give the planner a lot of bene�t.

It is still important to remember, however, that a control rule can not change the external
state. All actions that change the external state should be relegated to operator descriptions
so that the planner can explicitly reason about their e�ect on plans.
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node), split, (n, deviance), learned value

* denotes terminal node

1) root (n=2670, dev=379.4267) 0.8285

2) CT < 36130 (n=1326, dev=0.0000) 1.0000 *

3) CT > 36130 (n=1344, dev=301.9224) 0.6592

6) CT < 71989.5 (n=733, dev=171.8278) 0.3752

12) CurrLoc < 5314 (n=368, dev=0.0000) 0.0000 *

13) CurrLoc > 5314 (n=365, dev=67.8081) 0.7534 *

7) CT > 71989.5 (n=611, dev=0.0000) 1.0000 *

Table 4.14: Learned tree for high-level features at cost 1.0, execution-level features at cost 3.25.

4.7 Summary

Rogue is the only system we are aware of that learns through interaction with a real
environment with noisy sensors and actuators, and exogenous events.

The regression tree algorithm is well-suited for learning search control rules for prod-
igy4.0 in this domain. Through its statistical analysis of the data, it is less sensitive to
noise and exogenous events. Moreover, the symbolic representation of the features in the
trees leads to an easy translation to search control rules.

Our experiments show that situation-dependent rules are a useful extension to the task
planner. They create better plans because they guide the planner away from hard-to-achieve
tasks, and towards easy-to-achieve tasks. They also reduce execution e�ort by learning when
to execute the action.

The experiments in this chapter illuminate three important issues. The �rst is that the
learning algorithm can learn an incorrect rule if the correct feature is not available since the
hypothesis space can only be described in terms of the available features. Automatically
extracting additional features from the data is an important open problem.

The second issue is that execution-level features are useful for making decisions about
when to execute an action, but it is important to ensure that they do not change the state.

The third issue is that the learning algorithm should not create rules that ignore the
cost of calculating the current value of a feature. Some features, for example vision pro-
cessing, are considerably more expensive to acquire than others. The learned rules should
make a reasonable tradeo� between the information gained and the cost of acquiring that
information.

In addition to highlighting these issues, the speci�c contributions of this chapter are

� to demonstrate that our situation-dependent learning approach is planner-independent;
� to show how execution data can be incorporated into a symbolic task planner;
� to highlight the di�erence between learning to create a better plan and learning to
execute the plan more e�ectively; and
� to demonstrate one method for deciding when to execute an action.
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Chapter 5

Related Work

This section describes research closely related to that presented in this thesis. Our work
contributes to the planning community, the machine learning community and the robotics
community. In Section 5.1, we present work related to the task planner. In Section 5.2 we
present research related to our learning framework.

5.1 Task Planning

There are a few approaches to creating plans for execution. Shakey [Nilsson, 1984] was
the �rst system to use a planning system on a robot. This project was based on a classical
planner which ignored real world uncertainty [Fikes et al., 1972] and followed a deterministic
model to generate a single executable plan. When execution failures occurred, replanning
was invoked.

This pioneering approach has been acknowledged as partly successful, but also has been
criticized for its lack of reactivity, and has led to signi�cant research into planning systems
that can handle the uncertainty of the real world. Conditional planning is one approach that
aims at considering in the domain model all the possible contingencies of the world and plan
ahead for each individual one [Atkins et al., 1996; Mansell, 1993; Pryor, 1994; Schoppers,
1989]. In most complex environments, the large number of possible contingencies means
that complete conditional planning becomes infeasible, but may nevertheless be appropriate
in particularly dangerous domains.

Probabilistic planning takes a more moderate approach in that it only creates conditional
plans for the most likely problems [Blythe, 1994; Dean & Boddy, 1988; Gervasio & DeJong,
1991; Kushmerick et al., 1993]. It relies on replanning when unpredictable or rare events
take place. Although this approach generates fast responses to most contingencies, it may
miss potential opportunities that arise from changes in the world. It should be noted that
none of these systems have ever been applied to a real robotic system.

Another moderate approach is that of parallel planning and execution, in which the
planner and the executor are decoupled [Drummond et al., 1993; Lyons & Hendriks, 1992;
McDermott, 1992; Pell et al., 1997]. The executor can react to the environment without a
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plan. The planner continually modi�es the behaviour of the executor to increase the goal
satisfaction probability. This approach leads to a system with fast reactions, but a set of
default plans need to be pre-prepared, and in some situations may lead away from the desired
goal. Furthermore, the planner creates its plans based on assumptions about the world that
may have changed during planning time.

We take a third approach: that of interleaving planning and execution, as do several
other researchers [Ambros-Ingerson & Steel, 1988; Dean et al., 1990; George� & Ingrand,
1989; Nourbakhsh, 1997]. Interleaving planning with execution allows the system to reduce
its planning e�ort by pruning alternative possible outcomes immediately, and also to respond
quickly and e�ectively to changes in the environment. For example, the system can notice
limited resources such as battery power, or notice external events like doors opening and
closing. In these ways, interleaving planning with execution can create opportunities for the
system while reducing the planning e�ort.

One of the main issues raised by interleaved planning and execution is when to stop
planning and start executing. Dean et al. [1990] selects between alternative actions by
selecting the one with the highest degree of information gain, but is therefore limited to
reversible domains. Nourbakhsh [1997] on the other hand, executes actions that pre�x all
branches of a conditional plan created after making simplifying assumptions about the world.
The assumptions are built so that the planner always preserves goal reachability, even in an
irreversible world. Gervasio & DeJong [1991] take a slightly di�erent approach by creating
general complete plans upfront, and then at execution time uses sensor information to select
between alternative actions.

Rogue has three methods for selecting when to take an action. The �rst method selects
an action when it is the �rst in a chain of actions that are known to lead towards the
goal. prodigy4.0 uses means-ends analysis to build plans backwards, working from the
goal towards the initial state. Each action is described in terms of required preconditions
and possible e�ects; actions are added to the plan when their e�ects are desirable. When all
the preconditions of an action are believed to be true in the current state, Rogue executes
the action. Since prodigy4.0 already has a partial plan from the initial state to the goal
state, the action Rogue selects is clearly relevant to achieving the goal. Actions whose
failures may lead to irreversible states are avoided until it has exhausted all other possible
ways of reaching the goal.

The second method is used when there are multiple actions available for selection. Rogue
selects between these actions to maximize overall expected execution e�ciency.

The third method Rogue uses to decide when to execute an action is through learning.
It collects execution data and statistically estimates when it would be bene�cial to execute
the action.

When Rogue selects an action for execution, it executes a procedure that con�rms the
preconditions of the action, then executes the action, and �nally con�rms the e�ects. In
addition to the explicit con�rmation of preconditions and e�ects of actions, our system also
monitors events that may a�ect goals. Each goal type has a set of associated monitors that
are invoked when a goal of that type enters the system. These monitors run parallel to
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planning and may modify the planner's knowledge at any time. A given monitor may, for
example, monitor battery power or examine camera images for particular objects.

The ability to handle asynchronous goals is a basic requirement of a system executing in
the real world. A system that only handles asynchronous goals in a �rst-come-�rst-served
manner is ine�cient and loses many opportunities for combined execution. Rogue easily
incorporates asynchronous goals into its system without losing any context of existing tasks,
allowing it to take advantage of opportunities as they arise. By intelligent combining of
compatible tasks, Rogue can respond quickly and e�ciently to user requests.

Amongst the other interleaving planners, only PRS [George� & Ingrand, 1989] handles
multiple asynchronous goals. Rogue however abstracts much of the lower level details that
PRS explicitly reasons about, meaning that Rogue can be seen as more reliable and e�cient
because system functionality is suitably partitioned [Pell et al., 1997; Simmons et al., 1997].
NMRA [Pell et al., 1997] and 3T [Bonasso & Kortenkamp, 1996] both function in domains
with many asynchronous goals, but both planners respond to new goals and serious action
failures by abandoning existing planning and restarting the planner. As stated by Pell et al.
[1997], establishing standby modes prior to invoking the planner is \a costly activity, as it
causes [the system] to interrupt the ongoing planned activities and lose important opportu-
nities." Throwing out all existing planning and starting over not only delays execution and
but also can place high demands on sensing to determine current status of partially-executed
tasks.

raps [Firby, 1994; Firby, 1989], like TCA, is an architecture that enables a library of
behaviours and reactions to be controlled by a deliberative system. raps and TCA have been
used as the underlying control mechanism on a variety of robots, from indoor mobile robots
[Gat, 1992; Simmons et al., 1997] to outdoor legged robots [Simmons, 1991] to planetary
rovers [Krotkov et al., 1995] and spacecraft [Bonasso & Kortenkamp, 1996]. TCA provides
facilities for scheduling and synchronizing tasks, resource allocation, environmentmonitoring
and exception handling. raps allow you to specify the methods and context for actions, and
can therefore be constructed to provide the same facilities as TCA.

Neither architecture inherently contains a planner. raps in particular was explicitly
designed to interact with a planner:

It de�nes a well-structured, 
exible and extensible mechanism for describing
modular behaviors that can be both executed and reasoned about... the ability
to reason about them independently provides a hook for interfacing the system
to more deliberative planning and problem solving processes.

[Firby, 1989]

To build a set of raps, the programmer must explicitly account for all goal interactions,
pre-determine all preference rankings between actions, and eliminate all accidental paths
to dangerous states. Attaching a planner to raps gives the system the ability to simulate
actions, to reason about goal interactions, preferences and dangerous states. These abilities
reduce the programmer's e�ort because the programmer can specify the building blocks from
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which a rap can be constructed. A rap can be viewed as a fully worked out plan; Rizzo et
al. [1997][1998] present methods to automatically translate prodigy4.0 plans intro raps.

The behaviours demonstrated by Rogue under TCA could be easily transferred to an-
other robot control architecture.

5.2 Learning

Although there is extensivemachine learning research in the arti�cial intelligence community,
very little of it has been applied to real-world domains. Common applications include map
learning and localization (e.g. [Koenig & Simmons, 1996; Kortenkamp & Weymouth, 1994;
Thrun, 1996]), or learning operational parameters for better actuator control (e.g. [Baroglio
et al., 1996; Bennett & DeJong, 1996; Pomerleau, 1993]). Instead of improving low-level
actuator control, our work focusses instead at the planning stages of the system.

In this section, we describe some of the work related to our learning approach. There are
three primary groups of related work:

� learning action costs from a real-world environment,
� learning symbolic descriptions of actions, and
� learning plan quality.

5.2.1 Learning Action Costs

The situation-dependent rules that Rogue learns for the path planner determine arc traver-
sal costs. Other researchers have also explored the area of learning action costs.

CSL [Tan, 1991] and Clementine [Lindner et al., 1994] both learn sensor utilities, in-
cluding which sensor to use for what information. CSL represents very early work in the
area, since its \sensors" were actually features of the object, e.g. the \height-sensor." The
approach, however, is general, and it is clear that learning is a good method for predicting
sensor reliability. Clementine explicitly uses utility theory to de�ne the tradeo� between
sensor cost and sensor reliability, and is applied to multiple sensors on a mobile robot. Even
though they explicitly state \the ultrasonic sensors were reliable for other settings, they are
less desirable for sensing [glass]," they do not incorporate situation-dependent features in
their utility estimates.

LIVE [Shen, 1994] learns a model of the environment, as well as the costs of applying
actions in that environment. For example, it can learn that a particular corridor has a
higher-than-average cost. It does not, however, consider the possibility that costs may
change according to a predictable pattern.

Haigh et al. [1997a] used situational features in a case-based reasoning system to assign
costs to cases. Their route planning system used these costs to select a good set of cases
for planning under the given conditions. Our current approach essentially assigns costs at a
�ner-grained level, that of the actions rather than of a set of consecutive actions.
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Reinforcement Learning (overviewed by Kaelbling et al. [1996]) learns the value of being
in a particular state, which is then used to select the optimal action. This approach can
be viewed as learning the integral of action costs. However, most Reinforcement Learning
techniques are unable to generalize learned information, and as a result, they have only been
used in small domains.

Recently, several research have been exploring techniques for allowing generalization in
Reinforcement Learning [Baird, 1995; Boyan & Moore, 1995; McCallum, 1995]. Essentially,
these systems replace Reinforcement Learning's standard table-lookup mechanism with al-
ternative function approximation techniques, such as decision trees or neural networks. Ex-
perimentally, these algorithms seem to produce reasonable policies. However, they may be
very computationally intense since a single generalization might require the entire space to
be recalculated.

Moreover, Reinforcement Learning techniques typically learn a universal action model
for a single goal. Our situation-dependent learning approach learns knowledge that will be
transferrable to other similar tasks.

5.2.2 Learning Symbolic Descriptions of Actions

Situation-dependent rules control the applicability of actions as a function of the current
features of the environment. In the arti�cial intelligence community, several researchers
have explored techniques for learning or changing action models. Most of these systems
rely on complete and correct sensing, in simulated environments with no noise or exogenous
events.

OBSERVER [Wang, 1996] and ARMS [Segre, 1991] learn action models by observing
another agent's solution; they rely on complete observation of the environment and external
agents or noise. Learning is assumed to be correct and irreversible. EXPO [Gil, 1992]
learns operators by experimentation; it designs experiments, and explicitly monitors e�ects
in environment. It also assumes complete and immediate sensing with no external events or
noise.

Learning in real world domains, however, cannot utilize techniques that rely on closed-
world assumptions such as complete observation, single agents, or exogenous events.

LIVE [Shen, 1994], like EXPO, also uses experimentation to learn a model of the envi-
ronment. It extends EXPO's abilities by learning stochastic e�ects from incomplete sensing,
but does not handle environments with noise or exogenous events.

IMPROV [Pearson, 1996] is one system which relaxes the assumption about complete
and correct sensing, but still manages to learn operator descriptions. The planner learns
through experimentation, by trying alternative operators until it achieves a success. It then
compares the successful episode with the failures, and modi�es operators to compensate for
the errors.

Performance in IMPROV degrades dramatically with the noise introduced from sensing,
but remains better than the system without learning of any kind. Part of the reason for
this degradation is because the system uses only training data generated from the most
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recent version of the operator. Changing the operator means that old data is invalidated,
and hence must be ignored. As a result, the system cannot explicitly identify and eliminate
noise through analysis of long term trends in the data. In Rogue, the operators remain
constant, while search control rules change. As a result, data remains valid over the lifetime
of the robot, and Rogue can statistically identify and eliminate noise from the large body
of data.

Although both IMPROV and LIVE aim at relaxing the closed-world assumptions made
by most arti�cial intelligence learning systems, neither has been applied to a real-world
robotics domain. The di�culties posed by real-world domains have generally limited learning
to action parameters, such as manipulator widths, joint angles or steering direction. For
example, Grant & Feng [1993] built a system that also tunes parameters in for grasping
actions; Zhao et al. [1994] use genetic algorithms to �nd an optimal sequence of base
positions and manipulator con�gurations to perform a series of di�erent manipulation tasks
on a mobile manipulator; Pomerleau [1993] uses neural networks to select good steering
directions in an autonomous land vehicle. Bennett & DeJong's [1996] permissive planning
paradigm tunes parameters in actions.

Salganico� & Ungar[1995] built another system that learns action parameters for a ma-
nipulator arm. It uses a decision tree approach similar to ours, in that it uses perceptual
features to discriminate between actions, with the goal of maximizing action probability.
However, their features are strictly a function of the object being grasped, such as height,
length, and width, while our system uses high-level features of the domain.

Rogue learns patterns in the environment that a�ect planning. Mitchell et al. [1994]
also built a system that learned patterns from the environment. The CAP system sched-
uled meetings after learning patterns in the environment for determining meeting location,
duration and day of week.

5.2.3 Learning Plan Quality

The above-mentioned systems all learn action models, focussing on operator correctness
rather than planning e�ciency or plan quality. Rogue does not learn action models; it
assumes that actions are correct, but that their costs or applicability may vary according
to the task and the environment. This applicability function is implemented in the form of
search control rules. Search control rules can be viewed as equivalent to learning precondi-
tions for action models, but for the reasons outlined in the above description of IMPROV,
we feel that control rules are more appropriate in this domain.

Most of the research towards learning search control rules has focussed on making plan-
ning more e�cient, rather than on making better quality plans. In the robot control domain,
execution e�ciency is extremely important, while planning e�ciency is much less so. As
pointed out by Kibler [1993], the major concern for real-world problems is the quality of the
solution and not the speed at which the solution is reached.

Pyrrhus [Williamson & Hanks, 1994] supports the generation of high quality plans
through the use of utility functions. Hand-built domain-dependent control rules use the



5.2. LEARNING 127

utility function to determine which plans to expand and which 
aws to �x. The system
learns neither the control rules nor the utility function.

quality [P�erez, 1995] learns control rules to generate high quality plans, where quality
can be de�ned in terms of execution cost, reliability or user satisfaction, and operators may
have di�erent costs. It relies on a comparison of pairs of complex plans to learn control rules
that bias the planner towards the higher quality plan. New learned knowledge overrides
previous knowledge, but noise is not accounted for.

hamlet [Borrajo & Veloso, 1994] learns control rules that improve planning e�ciency
and the quality of plans generated. It assumes that all operators have equivalent cost. It
relies on training the system with simple problems for which it can �nd optimal solution(s),
and then uses bounded explanation and induction to learn control rules. Rules are incremen-
tally re�ned and with more training examples will converge towards a possibly disjunctive
set of correct rules. Noise is also not accounted for in this system.

CHEF [Hammond, 1987], prodigy/analogy [Veloso, 1994] and Haigh & Veloso [1997a]
use analogical reasoning to create plans based on past successful experiences, where the belief
is that past success might help lead to future success. Only Haigh & Veloso's route planning
system explicitly aims at creating better quality plans; it assigns situation-dependent costs
to cases with the goal of selecting the best case for the given user under the given tra�c
conditions. Noise and exogenous events are not handled in any of these systems; all successful
cases are stored.

Rogue uses statistical analysis of real world execution to create situation-dependent
control rules for the task planner. These control rules guide the planner towards more e�cient
plans in which failures can be predicted and avoided. Statistical analysis and incremental
learning allow Rogue to explicitly account for noise in both its sensors and its actuators.
Exogenous events that a�ect planning are explicitly identi�ed and incorporated into the
search control rules.
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Chapter 6

Conclusion

In this thesis we have examined the problem of combining planning, execution and learning
within a real-world environment.

A planning and executing agent can perform more tasks than a simple reactive executing
agent because it can reason about tradeo�s between various system requirements. Learning
abilities increase the 
exibility and e�ciency of the system because it can autonomously
respond to changes in the environment.

We presented a robotic system, Rogue, that creates and executes plans in a complex,
real-world environment, and then learns from its experiences to improve both planning and
execution performance.

Rogue's task planner handles asynchronous requests from multiple users in an o�ce
delivery environment. Rogue reasons about task priority and task compatibility to create
interleaved plans that minimize execution cost. Rogue monitors the execution of plan
steps, and detects and responds to action failures, exogenous events in the environment, and
unexpected side-e�ects of actions. Rogue represents a speci�c instantiation of a general
framework for interleaving planning and execution in a complex, dynamic domain. The
speci�c scienti�c contributions of the task planner include:

� The transparent incorporation of asynchronous goals into planning.
� The ability to create plans for multiple interacting goals, taking into account task
priority and compatibility.
� The ability to suspend and reactivate tasks when necessary.
� The ability to detect and respond to failures, unexpected side-e�ects of actions, and
changes in the environment.
� The development of an interleaved planning and real robot execution architecture,
including the development of a communication mechanism between the planner and
the executor.

Rogue's learning system collects data from the real-world execution of plans to im-
prove the quality of generated plans. The planner-independent approach relies on extracting
learning opportunities from the execution traces, evaluating them according to a pre-de�ned
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cost function, and then correlating them with features of the environment. Rogue learns
situation-dependent rules that a�ect the planners' decisions. Rogue's learning approach
was demonstrated for two planners: a path planner and the task planner. Extensive empiri-
cal results were presented, demonstrating both the e�ectiveness and utility of the approach.
Speci�c scienti�c contributions of our learning approach include:

� The improvement of plans through examination of real-world execution data.
� The design of situation-dependent rules which set action costs at planning time as a
function of situational features.
� The implementation and proof-of-concept of the domain-independent approach for two
di�erent planners, along with extensive empirical results.
� The design of a general framework for learning across representations, in which execu-
tion data representation di�ers widely from planning representations.
� The demonstration of system adaptability to a changing domain through incremental
re�nement of learned rules.
� The development of techniques for handling noisy, probabilistic training data.

- A modi�cation to Viterbi's algorithm that that generates abstract sequences in
Markov models with additional uncertainty variables such as time or length.

� The distinction between learning to improve planning and learning to improve execu-
tion.

A single learning paradigm successfully learns arc costs for the path planner and also learns
control knowledge for the task planner. It guides both planners away from hard-to-achieve
tasks, and towards easy-to-achieve tasks. Better quality plans are thus generated, leading
to greater system e�ciency and e�ectiveness.

Since the learning approach is planner-independent, it is usable from any execution mod-
ule to any planner, regardless of data representations. The designer must specify how to
extract relevant learning opportunities from the execution data, and how to use the learned
information within the planner.

6.1 Important Issues

Several important issues were identi�ed through the research conducted for this dissertation.

6.1.1 Planning

Which module is in control: the planner, or the executor. In Rogue, the task
planner remains in control of the robot at all times. It sends one action at a time to the robot,
deciding which action to execute next after the previous one has completed. The alternative
approach is to commit earlier to the execution order, sending a sequence of actions to the
executor, which then constrains their execution ordering.
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The primary bene�t of this interaction is that dynamic reordering of actions and eventual
replanning is extremely easy: the task planner does not have to retract actions when side-
e�ects make them redundant, or when failures require replanning or reordering of actions,
or when a compatible asynchronous request is received. Another bene�t of this approach
is that a learning opportunity is created: the system can learn when to send an action for
execution.

An additional bene�t is that the task planner can reduce planning e�ort because it
doesn't have to explicitly plan for contingencies; it can wait for feedback from execution.

One of the main drawbacks of this approach is that it is hard to represent actions that
need to occur in parallel. The designer would need to put them all in one operator, since
one action is sent at a time. If the multiple actions don't need to be explicitly synchronized,
then another possibility would be to represent them each with instantaneous \start" and
\end" operators.

A second drawback is that, since the planner is not exploring contingencies until they
occur, it may have a slower response time than an executor with a complete plan.

Because of the asynchronous goals in our domain, the ability to dynamically reorder
actions is very important. Since our domain is not very dangerous, and does not have hard
real-time constraints, the potentially slower response time and di�culty representing parallel
actions are non-critical issues.

How much planning to do before executing. Rogue's task planner creates as much
of the plan as possible before executing. Rogue then uses control rules, both pre-coded and
learned, to decide on the execution order of available actions, and also to incorporate any
new asynchronous goals. The task planner will not plan beyond a point where the outcome
of an action a�ects planning, such as at conditional branches.

Other methods include (i) eagerly executing, namely executing an action at the �rst
opportunity, e�ectively making it a reactive system, (ii) creating a fully conditional plan up-
front, and invoking replanning if unexpected conditions arise, (iii) ensuring that all branches
of a conditional plan have the same initial actions, and (iv) executing a default plan, allowing
the planner to update it in an \anytime" manner.

Which method to choose depends on the type of planner and the requirements of the do-
main. A dangerous domain, for example, would need more foresight than an eager execution
policy would provide. A rapidly changing domain may need a very tight interaction between
the planner and the executor, such as in the anytime method. A conditional planner may
not be able to �nd a universally common operator domain with many possible actions, and
hence be unable to make any forward progress.

Rogue's method works well in our domain because there are few dangerous actions and
they can be easily avoided, and it is acceptable to have a slower reaction time to action
failures.

Whether to plan while executing. Rogue's task planner does not plan while executing
(although it will accept new goals while executing). The main bene�t of this ability is to
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reduce overall planning and execution time: the planner can explore contingency actions,
thereby reducing its response time when the outcome of an action is determined.

In a more dangerous domain, or if it takes a long time to plan a failure recovery, a planner
would need to have this ability.

What knowledge should be put into control rules and what into operators. It
could be argued that control rules should contain only meta-level control that only depends
on properties of the domain, not on the current state. For example, train travel is preferred
between cities, while vehicle travel is preferred within a city. Operators, meanwhile, would
encode all information that depends on the current state.

Rogue's task planner instead describes operators in very abstract terms, using control
rules to reorder them or re�ne their applicability. For example, the task planner puts the
TSP information into a control rule, since it a�ects the quality of the plan but not the
correctness. However, since the rule depends on the current state of the robot, alternative
approaches might directly put that information into the operators.

We believe that control rules are useful for both planning e�ciency as well as execution
e�ciency. This belief is re
ected in the fact that Rogue learns control rules for planning
and execution quality, instead of modifying operators.

Putting execution into control rules. In prodigy4.0, search control rules have tra-
ditionally relied on the internal model of the state. Rogue, however, often senses directly
from the external environment, as described in Chapter 4.

While there are no implementation limitations on what execution can happen while �ring
a control rule, conceptually the rule should not modify the external state. Such behaviour
should be relegated to operators so that the planner can explicitly reason about their in-
teraction with the rest of the plan. Control rules should only sense the state, and it is the
designer's responsibility to ensure that they do not modify it.

How much \recovery" to put into an operator. The execution paradigm in Rogue's
task planner does not allow complex recovery mechanisms, since we believe the planner
should reason about when they should be used, and how they will a�ect the remaining plan.
Di�erent recovery procedures may have di�erent costs, reliabilities, or relevance, and it may
be important to reason about the tradeo�s.

Incorporating complex recovery procedures into the command sequence for an action re-
quires the designer to explicitly account for all goal interactions, pre-determine all preference
rankings between recovery methods, and ensure the elimination of all accidental paths to
dangerous states.

By extracting complex recovery methods, the designer can reduce his e�ort to build the
domain. The designer can specify the individual building blocks, while the planner reasons
about their interactions.
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6.1.2 Learning

How to extract learning opportunities, and designing the system to exploit them.
Learning opportunities for any planner can be identi�ed by asking the question: \What will
change the planner's behaviour?"

The path planner makes decisions based on estimates of the arc's length, blockage prob-
ability and traversal weight. Therefore improved estimates of these factors would improve
the planner's performance. The task planner, meanwhile, makes decisions based on opera-
tor descriptions and control rules that a�ect goal and action selection. Therefore improved
descriptions { correctness, costs, or probabilities { about tasks and actions would aid the
planner in improving plans.

It is important to design the planner so that learned information can be seamlessly
incorporated. Adding control rules to prodigy4.0, required no changes to the internal
algorithm. When we added learned arc costs to the path planner, however, we had to
modify some of its internal structures (data and control) to support the changes. Adding
learned sensor reliabilities to the POMDP navigation module would require a massive e�ort
to change the way these probabilities are stored and used in the code. One of the lessons
learned in this thesis is that it is important to make the critical components accessible to
external modules.

How to identify features for learning. Features of the environment are used to discrim-
inate between di�erent learning events. It is crucial to �nd a good set of relevant features,
since the hypothesis space can only be described in terms of the available features.

A good feature will have the following characteristics: it is easy to detect, in terms of
accessibility and cost; it is informative, so that the system doesn't waste time gathering
information about irrelevant features; and it is projective, in that gathered information at
one moment can help the system make decisions about the future.

If critical features are omitted, then the learner will not converge on the correct target
function. It is an important open problem to autonomously extract relevant features from
the data.

It is also important to design the system so that new features can be added at any
time. In Rogue there are several missing features, including the distance travelled since
the last turn, the length of time since the battery was last recharged, and the length of
time since the batteries (or other equipment) were last replaced. As we identify additional
relevant features, the learner should seamlessly incorporate them into the data and learned
information. This design consideration will be more important when systems are capable of
autonomously identifying relevant features.

Putting execution-level features into control rules. By de�nition, execution-level
features need to have their value calculated through direct sensing of the environment. They
may be very useful for learning, but since they can not modify the environment, it is very
important to consider how they will be used. Moreover, most execution-level features are not
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projective when making decisions at planning time. A sonar value in one location will not
tell the planner whether a corridor is blocked elsewhere.

Rogue's task planner uses execution-level features to decide when to execute an action.
In other words, these features become projective in the short-term: the current value of the
feature is correlated to a the value when the action is executed. When the planner is about
to send the robot through a door, checking whether it is open can tell the planner whether
to make the attempt.

Forgetting data. The massive amount of data that can be collected in a system that
interacts with a real environment could lead to a lot of wasted e�ort when old, irrelevant
data is processed. For this reason, it has been argued that the system will need to have some
scheme for \forgetting" data.

However, our experiments show that the system should use as large a history as physically
and computationally possible. Any data that is explicitly forgotten will never again in
uence
learned rules, and hence a short history means that long-term patterns will never be detected.
Unless the system maintains data over a span of several years, it will never detect annual
patterns such as New Year's Day; instead such patterns will be treated as noise. Moreover,
any situation that lasts longer than the history length will be considered permanent.

A longer history improves con�dence in the validity of the environmental knowledge
captured. Our situation-dependent learning approach learns rules that separate old data
from recent data, thereby successfully identifying temporary phenomena, and it can do so
in a fairly small number of execution traces.

6.2 Other Applications

Situation-dependent rules are useful in any domain where actions have speci�c costs, proba-
bilities, or achievability criteria that depend on a complex de�nition of the state.

The approach is generally applicable in domains where:

� the environment changes according to some predictable pattern,
� action costs or probabilities change as function of world state,
� it is hard to pre-specify costs or probabilities, or patterns are likely to change over
time, and
� a planner will bene�t from increased knowledge of the environment.

Methods that learn an average cost or probability for an action will improve a system's
behavior on average. If there are many patterns in the domain, however, there may be
times when the system's default behaviour is actually better than the learned behaviour.
Situation-dependent rules will change the cost or probability of an action according to the
current environment. The system will not only be able to respond e�ectively to changes in
the environment, but also behave in a manner that is directly tailored to their environment.

Some possible applications include:
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Learning operator or action costs for planners that try to optimize total plan execution
cost. (Rogue learns action costs for the route planner.) A Martian path planner might
decide on one route when there is a dust storm and di�erent route otherwise. A network
routing planner may select one route when congestion is high, and another otherwise.

Learning operator probabilities for probabilistic or conditional planners, such as for
Weaver [Blythe, 1994] or U-PLAN [Mansell, 1993], or Xavier's navigation module. In
Xavier's navigation module, the transitions between Markov states are currently as-
signed default probabilities; situation-dependent probabilities would probably improve
performance of the system,. (Rogue's control rule learning for the task planner can
be viewed as a form of learning operator probabilities.)

Learning sensor probabilities or reliabilities, in any system (planner or otherwise) that
relies on sensor information. For example, Xavier's navigation module uses a default
value for P (observationjstate), where state is a very simple state description.

Learning sensor costs and utilities, in any system (planner or otherwise) that relies on
sensor information. For example, under certain conditions some sensors may be easier
or better to use than others. Medical domains are a good example of when the utility
of di�erent tests may change according to each patient's symptoms.

Learning case costs in case-based reasoning systems for which quality of the �nal solution
depends on the current environment. In such systems, di�erent cases may be more
appropriate than others. For example, Haigh et al.'s route planner [1997a] selected
cases depending on likely tra�c congestion.

6.3 Future Research Directions

This thesis has opened up several areas for future research, both in the task planning frame-
work and in the learning framework.

6.3.1 Improvements to the Task Planner

There is room for many extensions to the task planner. Mentioned in Chapter 2 were:

� adding the ability to rescind requests,
� improving the ability to reason about deadlines,
� adding the ability to identify when too many compatible tasks are being attempted,
� adding the ability to avoid thrashing issues as progressively more important tasks
arrive, and
� exploring representations for continuous and parallel actions.

It will also be interesting to research the task planner's behaviour in a more complex
domain. For example, as Xavier acquires more abilities, such as elevator riding or manipula-
tion, the robot's autonomy will need to noticeably increase. As a result, it will be necessary
to adapt the task planner to reason about multiple action-veri�cation procedures and to rely
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somewhat less on human users. Rogue is designed to make it easy to incorporate new abil-
ities: the designer would need to specify (i) an abstract action description for the planner's
use, (ii) a map from that action to Xavier-level commands, and (iii) when that action would
be bene�cial for plans.

Another future research direction is to examine the possibility of using prodigy4.0's
environment simulation abilities in greater depth. Currently, Rogue sends an action for
execution when prodigy4.0 applies it in the current state. In more dangerous domains,
operators will model dangerous side-e�ects, and this greedy execution heuristic will lead to
task failure. Extending Rogue to support parallel planning and execution will give the
system the ability to simulate such dangerous e�ects.

This change to Rogue's planning and execution approach will also require researching
domain-independent heuristics for when to execute actions.

6.3.2 Improvements to the Learning Architecture

One area of possible research involves extending the cost evaluation function for events.
In particular, the cost function for arc traversals in the path planner currently involves
velocity, time and length. It would be interesting to extend this function to incorporate
position con�dence and other metrics, because they would aid in showing the applicability
of the approach.

Another valuable research direction would be to explore methods to have Viterbi's al-
gorithm correctly sum probabilities over fan-out edges. Our approximate algorithm gives
good results, but an exact algorithm would likely do better. We see two possible approaches
for making this change: (i) to reverse the Viterbi/ArcIdenti�cation phases, and the (ii) to
change the Markov model to indicate fan-out groupings.

In the �rst case, Viterbi's algorithm would then be applied directly to the topological
map. Challenges in this approach would include developing techniques to evaluate traversal
time correctly, and to appropriately amalgamate Markov state probabilities into arc proba-
bilities.

In the second case, Viterbi's algorithm would have to be modi�ed to sum over groups of
incoming transitions, while selecting the maximum amongst di�erent groups. The 	 data
structure and the forward calculations of � would have to be modi�ed to correctly capture
the robot's motion. Another challenge in this approach would come from the same data
representation di�erences described in Section 3.3.2. Appendix E describes AmalgamViterbi,
an algorithm that meets exactly these requirements, developed after the bulk of the thesis
work. However, AmalgamViterbi is also a heuristic method, for reasons explained in the
Appendix.

Another area for research is to extend the types and number of events learned, for both
planners. For example, the path planner would bene�t from improved probability estimates
on arc traversals, since it reasons about trade-o�s between path reliability and path e�ciency.
Currently, Rogue learns only arc traversal weights, a�ecting the planner's estimate of path
e�ciency.
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It would also be interesting to see our learning approach implemented with another
learning algorithm. Regression trees were well-adapted to our domain and our data; neural
networks or Bayesian learning might be more suited to other other domains.

Learned environment costs would also be useful for customizing the environment. Hu-
mans already customize environments greatly for children and the handicapped. It seems
only appropriate to also consider customizing the environment for our future co-workers:
robots. Areas of the environment that the learning system identi�es as being di�cult or
expensive to achieve tasks could be modi�ed to improve system performance. An example
modi�cation would be to include location information in the packets sent from radio ethernet
connections.

Another area of possible research is to have the system identify what areas of the envi-
ronment need to be explored. Currently, Rogue will only un-learn information when it is
forced to re-execute an action it would otherwise avoid. For example, if Rogue learns that
a particular corridor is extremely expensive, Rogue will only go into that corridor when a
task demands that it must. It would also be useful for Rogue to explore the environment
where data is particularly sparse.

A last area of possible research, and perhaps with the greatest potential for improving
the performance of learning systems, is to automatically decide what features to add to the
data set. Klingspor et al. [1996] have already designed techniques for learning high-level
feature concepts from low-level data. It remains an open research problem to automatically
incorporate those features into learning.
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Appendix A

Setting up PRODIGY4.0 with TCA

The two initialization programs in this Appendix set up the Lisp process. init.lisp is
called to create a binary image of Lisp after loading prodigy4.0, TCA and the Wean Hall
5th 
oor map. short-init.lisp is called every time the binary image is loaded; it sets

ags and loads the domain: : : code which changes frequently.

A.1 init.lisp

init.lisp shows what code is needed to

� to load prodigy4.0,
� to load TCA
� to load the Wean Hall 5th 
oor map,
� to load several \helper" functions,
� to create a binary image of the process, so that restarts are faster.

Ignore any error messages with a :cont 0 command.

;;===============================================================================

;; init.lisp

;;===============================================================================

;; this file contains all the setup needed to hook up to

;; load prodigy

;; load TCA

;; load the Xavier map

;; create a binary with all this stuff

;; It runs on Allegro CL 4.2.beta2.0, which supports foreign functions

;; To load the Xavier domain (with code that changes a lot), load short-init.lisp

(load "/afs/cs/project/prodigy/version4.0/working/loader.lisp")

(load "/afs/cs/project/prodigy-1/khaigh/src/print-rules")

(load "/afs/cs/project/prodigy-1/khaigh/src/merge-static")
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(load "/afs/cs/project/prodigy-1/khaigh/tca/tca.lisp")

(load "/afs/cs/project/prodigy-1/khaigh/tca/tca-commands.lisp")

(excl:chdir "/afs/cs/project/prodigy-1/khaigh/domains/xavier")

(setf *always-remove-p* t)

(setf *world-path* "/afs/cs/project/prodigy-1/khaigh/domains/")

(load "/afs/cs/project/prodigy-1/khaigh/domains/xavier/weh5th-obj")

(load "/afs/cs/project/prodigy-1/khaigh/domains/xavier/weh5th")

;;----------

;; Execute code

(defun use-execute ()

(load "/afs/cs/project/prodigy-1/khaigh/src/execute.lisp"))

(use-execute)

;;----------

;; a helper function :)

(defun print-xavier (state)

(if (eq 'state (car state))

(print-xavier (cadr state))

(dolist (s state)

(if (and (not (eq s 'and))

(not (eq (car s) 'coords))

(not (eq (car s) 'robot-home-orientation))

(not (eq (car s) 'robot-position))

(not (eq (car s) 'robot-home-position))

(not (eq (car s) 'connected-room))

(not (eq (car s) 'connected))

(not (eq (car s) 'in-room))

(not (eq (car s) 'close-door))

(not (eq (car s) 'open-door))

(not (eq (car s) 'robot-radius))

(not (eq (car s) 'robot-orientation)))

(format t "~% ~S" s)))))

;;----------

;; These functions provide wrappers to C functions that

;; maintain a trace file.

;; open a trace file

;; call navigate to get the execution features,

;; write the execution features,

;; write arbitrary string

;; close the trace file

;; make sure the directory is correct
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(load "~/xavier/src/markov/obj/learningfeatures.o"

:foreign-files '("/afs/cs/project/robocomp/tca/lib/libDevUtils.a"))

(ff:defforeign 'mc_print_execution_features_wrapper :return-type :void)

(ff:defforeign 'mc_get_execution_features_wrapper :return-type :fixnum)

(ff:defforeign 'mc_open_features_file :arguments '(string) :return-type :fixnum)

(ff:defforeign 'mc_close_features_file :return-type :void)

(ff:defforeign 'mc_write_string_to_features_file :arguments '(string)

:return-type :fixnum)

;; These functions were written in C because writing lisp for some things

;; is just too agonizing.

(load "~/xavier/src/karen/obj/prodigyWrappers.o")

(ff:defforeign 'is_front_sonar_free

:return-type :fixnum)

(ff:defforeign 'place_on_path

:arguments '(string string)

:return-type :fixnum)

;;----------

;; stores a Lisp binary with all the loaded stuff

(excl:dumplisp :name "~/Prodigy-tca-lisp")

;;===============================================================================

A.2 short-init.lisp

short-init.lisp is the �le that needs to be loaded every time Lisp is reloaded. It de�nes
several 
ags and functions and loads the domain; this code changes much more frequently
than the code de�ned in init.lisp. Run ~/Prodigy-tca-lisp, then the �rst two com-
mands are:

(load "short-init.lisp")

(connect tca)

Calling (connect tca) without the optional argument will cause it to connect to TCA and
wait for a user request. Typing (connect tca nil) will cause it to connect to TCA, but
return to the command line without waiting for requests. Disconnect from TCA before
re-calling (connect tca), even if the TCA server died.

;;===============================================================================

;; short-init.lisp

;;===============================================================================

;; This file relies on running ~/Prodigy-tca-lisp

;;



142 APPENDIX A. SETTING UP PRODIGY4.0 WITH TCA

(defvar *do-execution* t) ;; set to nil if you want to simulate

(defvar *debug-Q* 0)

(defvar *debug-goto-location* 0)

(defvar *debug* 0)

(defvar *debug-new-requests* 1)

(defvar *debug-similar-goal* 0)

(defvar p4::*debug-goals-and-actions* 0)

(defvar *new-request* nil)

(defvar *time-of-last-execution* nil)

(defvar *max-wait-time* (* 600 internal-time-units-per-second))

(defvar *max-wait-for-user-time* (* 60 internal-time-units-per-second))

(defvar *waiting-for-stop-to-complete* nil)

(defvar *xavier-execution-queue* nil)

(defvar *xavier-executed* nil)

(use-execute)

(domain 'xavier)

(set-running-mode 'saba)

;; What to do when all tasks are done.

(setf XAVIER_FINISHED_MESSAGE

`((tca::tcaExecuteCommand ,tca::SAY_COMMAND "I'm finished. Returning to Lab")

(goto-location 1 r-5310 nil)))

(defun register_handlers ()

(format t "Registering Handlers~%")

(tca::tcaRegisterInformMessage "tapNavToGoal" tca::NAVIGATE_TO_FORMAT)

(tca::tcaRegisterHandler "tapNavToGoal" "tap_NavigateToG" 'tap_NavigateToG)

(tca::tcaTapMessage tca::WhenAchieved tca::NAVIGATE_TO_GOAL "tapNavToGoal")

(tca::tcaRegisterCommandMessage "Prodigy_PlanRequestCommand"

"{string,int,string,int, string,string,string,string,string}")

(tca::tcaRegisterHandler "Prodigy_PlanRequestCommand"

"PlanRequestHandler" 'PlanRequestHandler))

(defun connect_tca (&optional (startwait t))

(reset-vars)

(set-new-goal-point 'always)

(define-prod-handler :always #'tcaProdigyCheckMessage)

;;open log file

(mc_open_features_file "/usr0/khaigh/prodigy-output")

(format t "~%Connect...~%")

(tca::tcaConnectModule "Prodigy" (tca::tcaServerMachine))

(register_handlers)

(tca::tcaEnableDistributedResponses)
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(tca::tcaWaitUntilReady)

(if startwait

(tcaProdigyListen)))

(defun disconnect_tca ()

(setf *waiting-for-stop-to-complete* nil)

(setf *new-request* nil)

(setf *time-of-last-execution* nil)

(clear-prod-handlers)

(tca::tcaClose))

(defun kill-handlers

(mp:process-kill (mp:process-name-to-process "Listen to TCA")))

;;----------

;; this is my tcaModuleListen

;; it is the one used whenever prodigy is not running.

;;

;; if I call it in the first line of allegro, it will wait until a request

;; comes in, process that request, then invoke a (run). When the (run) is

;; complete, this function will resume, and wait until the next request comes

;; in. if requests come in *while* prodigy is running, then

;; tcaProdigyCheckMessage will deal with it.

;;

(defun tcaProdigyListen ()

(loop

(format t "~%-----~%New loop of tcaProdigyListen:~%")

;;check if there's a message, wait 5 seconds

(tca::tcaHandleMessage 5)

(when *new-request*

(setf *new-request* nil)

(format t "~%Handled an incoming request~%")

;; if prodigy is running, it should pick it up by itself

(when

(or (not (boundp 'p4::*prodigy-running*))

(not p4::*prodigy-running*))

(setf finished-executing nil)

(format t "~%Spawning a Prodigy Run~%")

(problem 'default)

(setf p4::*execution-queue* nil)

(run :output-level 3 :same-objects t :depth-bound 500)

(setf p4::*prodigy-running* nil)

(when *do-execution*

(dolist (op XAVIER_FINISHED_MESSAGE)

(apply (car op) (cdr op))))))
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(when *xavier-execution-queue*

(check-why-not-finished-executing))))

;;----------

;; this function is the one used whenever prodigy is already running.

;; prodigy will invoke it at every interrupt handler point

;; and whenever it's waiting for an action to finish

(defun tcaProdigyCheckMessage (signal)

(let ((result))

(when (> *debug* 0)

(format t "~%Prodigy Checking Socket ~S" signal))

(if (eq signal 'timeout)

(setf result (tca::tcaHandleMessage 1))

(setf result (tca::tcaHandleMessage 0)));;0 = just check

(when (and *xavier-execution-queue* (not (eq signal 'no-timeout)))

(check-why-not-finished-executing))

result))

;; checks for timeouts

(defun check-why-not-finished-executing ()

(when (and (not *waiting-for-stop-to-complete*) *time-of-last-execution*)

(cond ((not p4::*robot-working-on-op*)

(send-*execution-queue*-operator))

((> (- (get-internal-real-time) *time-of-last-execution*)

*max-wait-time*)

(format t "~%Option B")

(when (> *debug-Q* 1)

(format t " Q: ~S~%" *xavier-execution-queue*))

(report-timeout))

(t (format t "~%Waited:~S Total-to-wait:~S"

(- (get-internal-real-time) *time-of-last-execution*)

*max-wait-time*)))))

(defun reset-vars ()

(setf *current-executing-action* nil)

(setf *top-level-goals-priorities* nil)

(setf p4::*execution-ops* nil)

(setf *xavier-execution-queue* nil)

(setf *xavier-executed* nil)

(setf *requests* nil))

;;----------

;; some interesting functions to trace

(trace ancestor-is-top-priority-goal)
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(trace similar-to-top-priority-goal)

(trace p4::completed-action)

(trace p4::remember-action-for-goal)

(trace p4::change-state-on-execute)

(untrace)

(problem 'mail-fax1)

(set-new-goal-point 'always)

(format t "~%Current Directory: ~S~%" (excl:current-directory))

;;===============================================================================



146 APPENDIX A. SETTING UP PRODIGY4.0 WITH TCA



Appendix B

Sending Task Requests

This program was used to generate the training data for the experiments described in Chap-
ter 4. It generates �ve requests between pairs of rooms. There are 21 users to select
randomly from; none have multiple requests. There are 8 possible tasks, and 22 rooms from
the weh5th.param environment; these may be repeated.

/* =============================== DATA ==================================== */

#include <stdio.h>

#include <tca/tcaDev.h>

#include <time.h>

#define NUM_REQUESTS 5

int used_users[NUM_REQUESTS];

/* USER PRIORITY (small is good)

# 6 = undergrad student

# 5 = grad student

# 4 = research staff

# 3 = faculty

# 2 = secretary

# 1 = dept head

*/

#define NUM_USERS 21

struct {

char *name;

int rank;

} users[NUM_USERS] = {{"illah", 3}, {"jan", 2}, {"jblythe", 5},{"will", 5},

{"jean", 2}, {"jgc", 3}, {"jhm", 1}, {"joan", 2},

{"johnson", 3}, {"josullvn", 5}, {"jrs", 4},

{"khaigh", 5}, {"mcox", 4}, {"mitchell", 3},

{"mmv", 3}, {"reddy", 1}, {"reids", 3}, {"thrun", 3},

{"robd", 5}, {"satya", 3}, {"skoenig", 5}};
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#define NUM_TASKS 8

struct {

char *name;

int rank;

} tasks[NUM_TASKS] = {{"deliverfax", 2}, {"delivermail", 3},

{"pickupcoffee", 8}, {"pickupfax", 5},

{"pickupfedex", 4}, {"deliverfedex", 1},

{"pickupmail", 6}, {"pickupprintout", 7}};

#define NUM_ROOMS 22

char *rooms[NUM_ROOMS] = {"r-5301","r-5303","r-5307","r-5309","r-5311",

"r-5313","r-5315","r-5317","r-5321","r-5302",

"r-5304","r-5310","r-5312","r-5316","r-5320",

"r-5328","r-5336","r-5427","r-5419","r-5415",

"r-5409","r-5403"};

char *WHY = "nothing";

char request_date[20];

char deadline_date[25];

struct {

char *userid;

int rank;

char *task;

int taskrank;

char *why;

char *whenrequest;

char *whendeadline;

char *wherepickup;

char *wheredeliver;

} prodigy_struct_ptrs;

/* =============================== CODE ==================================== */

void SendRequestCmd()

{

int i,id,j;

struct timeval tv;

struct timezone tz;

struct tm* tm1;

time_t tt;

(void) gettimeofday( &tv, &tz );

(void) srand( tv.tv_usec );

tt = time( NULL );

tm1 = localtime(&tt);
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for (i=0 ; i< NUM_REQUESTS; i++) {

j=0;

do { /* make sure no repeated users */

id = rand() % NUM_USERS;

for (j=0; j<i; j++)

if (id == used_users[j]) break;

} while (j<i);

used_users[i] = id;

prodigy_struct_ptrs.userid = (users[id].name);

prodigy_struct_ptrs.rank = (users[id].rank);

id = rand() % NUM_TASKS;

prodigy_struct_ptrs.task = (tasks[id].name);

prodigy_struct_ptrs.taskrank = (tasks[id].rank);

prodigy_struct_ptrs.why = (WHY);

strftime(request_date,20,"\"%B %d %H:%M\"", tm1);

prodigy_struct_ptrs.whenrequest = (request_date);

tm1->tm_hour += 1;

strftime(deadline_date,25,"\"%a %b %d %H:%M\"", tm1);

prodigy_struct_ptrs.whendeadline = (deadline_date);

id = rand() % NUM_ROOMS;

prodigy_struct_ptrs.wherepickup = (rooms[id]);

id = rand() % NUM_ROOMS;

prodigy_struct_ptrs.wheredeliver = (rooms[id]);

printf("Requesting for user %s (%d) to go to rooms %s / %s for %s purpose (%d)\n",

prodigy_struct_ptrs.userid, prodigy_struct_ptrs.rank,

prodigy_struct_ptrs.wherepickup, prodigy_struct_ptrs.wheredeliver,

prodigy_struct_ptrs.task, prodigy_struct_ptrs.taskrank);

tcaExecuteCommand( "Prodigy_PlanRequestCommand", &prodigy_struct_ptrs);

printf("Done Requesting\n");

}

}

static void registerAll(void)

{

}

int main(int argc, char *argv[])

{

static const char *reqRequires[] = {"Prodigy", NULL};

TCA_connect("Test Move", registerAll, NULL, NULL, NULL, reqRequires);

SendRequestCmd();

return 1;

}

/* ========================================================================= */
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Appendix C

Changes to the Path Planner

This appendix outlines the changes made to the path planner to support learned traversal
weights and probabilities. In the original code, traversal weight was calculated as a function
of the arc: all corridor-corridor arcs had a certain default cost, all corridor-room arcs had a
certain default cost, and so on.

1. Added traversalWeight to QMAP ARC TYPE data structure. (The default values were
constant.)

2. Modi�ed the traversalWeight() function in qmap.c to return the updated cost if it
exists; if not, it returns the default value.

3. Added a TCA command UPDATE QMAP ARC PROBABILITY COMMAND which updates arc
probabilities.

UPDATE QMAP ARC PROBABILITY TYPE arc Data;

arc Data.arcid = arc;

arcData.prob low = low;

arcData.prob high = high;

tcaExecuteCommand(UPDATE QMAP ARC PROBABILITY COMMAND, &arcData);

4. Added a TCA command UPDATE QMAP ARC WEIGHT COMMAND which updates arc traver-
sal weights.

UPDATE QMAP ARC WEIGHT TYPE arcData;

arcData.arcid = arc;

arcData.traversalWeight = node.yval;

tcaExecuteCommand(UPDATE QMAP ARC WEIGHT COMMAND, &arcData);
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Appendix D

Collecting Execution Features

This appendix contains the current implementation of the TCA query to get current exe-
cution features. The data structures are de�ned in markov/learningfeatures.h, and the
current de�nition is shown in Section D.1. The �le markov/learningfeatures.c contains
several library functions that can be used to manipulate the data. Section D.2 shows a
sample piece of code that asks for the execution features, and then uses the library function
mc print execution features to store the data to the trace �le. Section D.3 shows the
implementation of the MC REPORT EXECUTION FEATURES query. The query is handled in the
Xavier �le markov/mcpos.c.

D.1 Data Structure for Execution Features

Below is the de�nition for the current set of available execution features. The de�nition
appears in markov/learningfeatures.h.

#define SEND_MARKOV_NODES 50

typedef struct {

MarkovNodeIndexType mn;

ProbabilityType prob;

} SIMPLIFIED_MARKOV_STATES_TYPE;

typedef struct {

MOTION_TYPE motion_data;

int time_data_hour;

int time_data_min;

int time_data_sec;

int num_markov_states;

SIMPLIFIED_MARKOV_STATES_TYPE markov_states[SEND_MARKOV_NODES];

CMS x, y, orientation;

CMS sonarData[24];

} NAV_FEATURES_TYPE;
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D.2 Querying for Execution Features

This sample piece of code queries the navigation module for the execution features, and then
uses the library function mc print execution features to store the data to the trace �le.
FILE *trace_fp;

NAV_FEATURES_TYPE LispFeatures;

if (tcaQuery(MC_REPORT_EXECUTION_FEATURES, NULL, &LispFeatures) == NullReply) {

return 0;

} else {

mc_print_execution_features( trace_fp, &LispFeatures );

return 1;

}

D.3 Execution Feature Query Handler

Below is the current implementation of the query handler which returns the current set of
execution features.

/* =========================================================================== */

void mc_get_execution_features_query_handler( TCA_REF_PTR ref, void *data )

{

FILE *fp;

NAV_FEATURES_TYPE features;

PROBABILITY_ARRAY_PTR currentProbs;

int i;

SONAR_STATUS_TYPE sonarStatus;

time_t tp1;

struct tm *tm1;

tp1 = time(&tp1);

tm1 = localtime(&tp1);

bzero(&features,sizeof(features));

tcaQuery(CTR_MOTION_REPORT_QUERY, NULL, &( features.motion_data ));

features.time_data_hour = tm1->tm_hour;

features.time_data_min = tm1->tm_min;

features.time_data_sec = tm1->tm_hour;

features.num_markov_states=0;
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currentProbs = GetProbabilities();

DO_PROBS(currentProbs, markov_index, prob,

{

if (features.num_markov_states >= SEND_MARKOV_NODES) {

printf("Warning: there are more than %d relevant markov nodes.\n",

SEND_MARKOV_NODES);

printf(" Change SEND_MARKOV_NODES in mcpos.h\n");

continue;

}

if (prob > 0.0005) {

features.markov_states[features.num_markov_states].mn = markov_index;

features.markov_states[features.num_markov_states].prob = prob;

(features.num_markov_states)++;

}

});

tcaQuery( CTR_SONAR_STATUS_QUERY, NULL, &sonarStatus);

features.x = sonarStatus.x;

features.y = sonarStatus.y;

features.orientation = sonarStatus.orientation;

for (i=0; i<24; i++) {

features.sonarData[i] = sonarStatus.data[i];

}

tcaReply(ref, &features);

tcaFreeData(tcaReferenceName(ref), (void *)data);

}

/* =========================================================================== */
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Appendix E

AmalgamViterbi

This appendix represents recent work done to create an exact version of Viterbi's algorithm
for Markov models with a high, local branching factor that e�ectively capture additional
uncertainty variables such as time or length. In Section 3.3.1, we presented Multi/Markov
Viterbi, a heuristic method that works reasonably well in our environment.

Ideally, however, we would like an exact algorithm that identi�es when multiple trajec-
tories should be abstracted into a single one.

This appendix presents AmalgamViterbi, an algorithm that does this calculation for
our Markov models. AmalgamViterbi calculates an extremely good estimate of the robots
trajectory, but, as we discuss in Section E.4, AmalgamViterbi is also a heuristic method.

We present a comparison between Viterbi's algorithm, Multi/Markov Viterbi and Amal-
gamViterbi in three di�erent environments.

E.1 Markov Models with High Branching Factors

Viterbi's algorithm is guaranteed to �nd the most likely sequence of Markov states [Rabiner
& Juang, 1986]. Unfortunately, Viterbi's algorithm was not designed for use in Markov
models with additional uncertainty factors that change the structure of the model.

In the context of navigation, standard Markov models represent only position uncertainty.
Our models represent length uncertainty too; in other words, our models are a probability
distribution over position, p, and length, l, while standard models only represent a probability
distribution over p.

Representing length uncertainty is conceptually the same as if speech models incorporated
the length of time to say a word; e.g. a slow Southern Drawl vs. rapid New York speech.
Speech researchers do not model time because they claim it would be too computationally
complex.

Recall that we use parallel Markov chains to represent length uncertainty (Section 3.1.2.)
The length uncertainty in our Markov models causes Viterbi's algorithm to lose information,
become confused, and generate a poor estimate of the best path. Viterbi's algorithm picks
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the single most likely incoming transition; when a node \fans-out" into a set of parallel
Markov chains, Viterbi's algorithm is unable to identify them as being related.

As a result of this problem, we have developed a modi�cation to Viterbi's algorithm that
compensates for the \fan-out" problem introduced by modelling this additional uncertainty
variable, in our case, length. Our modi�cation amalgamates the probabilities from within
each group of parallel chains, hence correctly identifying the robot's most likely trajectory.

E.2 AmalgamViterbi

In order to make a good estimate of the robot's trajectory, we need to identify when multiple
possible trajectories should be abstracted into a single one. For our Markov model, we do
this by amalgamating the probabilities from all the incoming transitions from a single group
of parallel Markov chains. Our Markov models are a probability distribution over position, p,
and length, l. AmalgamViterbi essentially integrates over l, giving a probability distribution
over p.

Table E.1 shows the complete algorithm. For a given Markov node s, AmalgamViterbi
separates all the incoming transitions into groups, gs, where a group, g 2 G, corresponds
to one parallel chain. In other words, in a long corridor, each node might have only one
incoming group from each of the two directions. At intersections, there will be a group
corresponding to each incoming direction. Multiple nodes at a corridor intersection will also
be considered a single group. For example, consider Figure E.1. Nodes j, k, and l are one
group, as are m, n, o, and p.

Then, AmalgamViterbi �nds the probability of group g incoming to s, P (gs) = P (Xy), by
summing all the transitions Aa(s0; s) in that group (line 1). Then, AmalgamViterbi sets the
� probability of s as the probability of the maximum incoming group (line 2). In Figure E.1,
AmalgamViterbi sets �(o; t) = MAX[P (Bo); P (Mo)]; P (Mo) is the sum of the transitions
from m and p, P (Bo) is the sum of the transitions from d and h.

For each group, g, AmalgamViterbi then calculates its set of the incoming groups, G
(line 3). For example, at a four-node corridor intersection, each node may have two incoming
groups (one from a parallel Markov chain, and one from other nodes in the intersection).
All the states in a group, however, may have jointly many more incoming groups. Node b
has only one incoming group: group A. Similarly, node d also has only one incoming group:
group B. Therefore group B as a whole has two incoming groups: groups A and B. Similarly,
group M has three incoming groups: groups B, J and M.

AmalgamViterbi then calculates the total probability of each of these incoming groups,
g0 2 G (line 4). For group M, then, AmalgamViterbi calculates the incoming probabilities
of groups B, J and M, P (BM), P (JM), and P (MM).

AmalgamViterbi �nally sets the the � probability of each group g to be the maximum
of all the incoming groups (line 5). For group M, �(M; t) = MAX[P (BM); P (JM); P (MM)].
It then sets 	 of the group accordingly (line 6).

To generate the estimate of the robot's trajectory, we recurse through the 	 data struc-



E.3. A COMPARISON OF VITERBI ALGORITHMS 159

De�ne G to be the set of all groups, s 2 g 2 G.
De�ne � to be the AmalgamViterbi probability distribution over S; �(s; t) is the

probability of the best sequence ending at s at time t.
De�ne � to be the AmalgamViterbi probability distribution over G; �(g; t) is the

probability of the best sequence ending at g at time t.
De�ne 	(g; t) to be the group g0 2 G at time t� 1 that most likely leads to g.
De�ne Seq

T
to be the most likely sequence generated from time T ; g = Seq

T
(t) is

the group at time t in Seq
T
.

1. At time t = 0:
8s 2 S; let �(s; 0) = initial state distribution = �(s; 0)
8g 2 G, let 	(g; 0) = NULL

2. For time t+ 1 � 1, action a was selected, and observation ot+1 was made:
Let G(s) be the set of groups incoming to node s; gs 2 G(s) 2 G.
8s 2 S, 8gs 2 G(s); P (gs) =

P
s02g

s
[�(s0; t)�Aa(s0; s)�O(s; ot+1)] 1

�(s; t+ 1) = MAXgs2G(s)P (gs) 2
8g 2 G, Let G be all the groups incoming to g, i.e. G =

S
s2g gs: 3

8g0 2 G; P (g0g) =
P

s02g0 P (gs0) 4
�(g; t+ 1) = MAXg02GP (g0g) 5
	(g; t+ 1) = ARGMAXg02GP (g

0
g) 6

3. To calculate the most likely sequence at time T , Seq
T
:

Seq
T
(T ) = ARGMAX8g2G [�(g; T )] 7

8t; 0 � t < T; Seq
T
(t) = 	(Seq

T
(t+ 1); t+ 1): 8

Table E.1: AmalgamViterbi.

ture, in the same manner as for the standard Viterbi algorithm. The sequence Seq
T
however

contains only group information; we no longer consider the concept of \what node robot was
in at what time," we instead consider \what group the robot was in at what time."

AmalgamViterbi does dynamic programming in the same basic manner as Viterbi's al-
gorithm, but instead of �nding the maximum over singleton incoming transitions, it �nds
the maximum incoming group.

E.3 A Comparison of Viterbi Algorithms

To demonstrate the e�ectiveness of AmalgamViterbi, we collected data in several environ-
ments, both in the simulator and from a real robot. We compare the performance of Viterbi's
algorithm with AmalgamViterbi through illustrative examples.

The �rst example is generated from a trace on Xavier. Figure E.2 shows a comparison
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Figure E.1: Groups, G of Markov states.

between the most likely route selected by each of the algorithms, after the robot has travelled
from outside room 5310 to outside room 5403. Figure E.2a shows the most likely route
selected by the unmodi�ed Viterbi's algorithm, while Figure E.2b shows the most likely
route selected by AmalgamViterbi. Viterbi's algorithm provides a good estimate of the
robots' trajectory the robot makes a turn; by the time the robot has made two turns and
reached its goal, Viterbi's algorithm has been completely mislead.

The second example was generated in a maze world: a world we use to test the behaviour
of the POMDPs. Execution traces were collected in the simulator; with 20% length uncer-
tainty, Viterbi's algorithm is unable to track the robot through its zigzag route from the
upper left to the lower right (Figure E.3).

The third example was generated in the exposition world of Section 3.7.1. Execution
traces were collected in the simulator which closely approximates the behaviour of the real
robot: it creates noisy sonar readings, it has poor dead-reckoning abilities, and it gets stuck
going through doors. With 20% length uncertainty, Viterbi's algorithm is unable to track
the robot through its route from booth 231 to booth 311 (Figure E.4).

We could not �nd a convincing example when AmalgamViterbi provides better results
than Multi/Markov Viterbi, hence showing that Multi/Markov Viterbi was adequate for our
learning task in our environment, where uncertainty is constant in all corridors. However,
we believe that AmalgamViterbi will be more accurate when it must disambiguate between
many possible trajectories, in an environment where uncertainty is more varied.
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(a) Standard (b) Multi/Markov (c) Amalgam

Figure E.2: Processing data from a trace collected on the real robot, after 175 actions; from
room 5310 to 5403. (Large �lled circles indicate most likely sequence.) (a) Standard Viterbi's
algorithm: most likely route is from inside room 5309 to inside room 5321. (b) Multi/Markov
Viterbi: most likely route closely approximates true route. (c) AmalgamViterbi: most likely route
closely approximates true route.

(a) Standard (b) Multi/Markov (c) Amalgam

Figure E.3: Viterbi's algorithm in the Maze World, after 250 actions. (a) Standard Viterbi's
algorithm: most likely route does not detect any turns. (b) Multi/Markov Viterbi. (c) Amal-
gamViterbi.

E.4 AmalgamViterbi as a Heuristic

It is clear that AmalgamViterbi makes a better estimate of the robot's most likely trajectory
than the standard Viterbi's algorithm. However, it is not guaranteed to be correct. For
example, consider Figure E.5. Assume that the distance from A to B is two metres, while
B to C may be two or four metres long. The initial probability distribution is �(A; 0) =
�(B; 0) = 0:5. At time t = 4, AmalgamViterbi calculates �(C; 4) as the sum of the two
paths: A-v-B-w-C and B-x-y-z-C, even though they should be considered distinct paths.
The 	 connections will arbitrarily select one of the two paths as the route estimate, but
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(a) Standard (b) Multi/Markov (b) Amalgam

Figure E.4: Viterbi's algorithm in the Exposition World, after 125 actions; from booth 231 to
booth 311. (a) Standard Viterbi's algorithm: most likely route goes along the \top" corridor,
back, and into booth 231. (b) Multi/Markov Viterbi. (c) AmalgamViterbi.

BA
x y z

v

w

C

A B C

Figure E.5: An example of when AmalgamViterbi incorrectly estimates the most likely path.
Below the corridor are the Markov states and transitions, indicating that the corridor segment
from B to C may be two or four metres long.

its � probability will be double the actual value. There is no way to correctly calculate the
probability while still maintaining the dynamic programming property of the algorithm.

E.5 Summary

For the purposes of learning, Viterbi's algorithm does not provide an accurate enough es-
timate of the robots trajectory. Multi/Markov Viterbi is an improvement on the standard
algorithm and works well in our environment where uncertainty is uniformly distributed.
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AmalgamViterbi is another, more accurate, method of estimating the robot's trajectory
through the environment.
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