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Abstract

Sensing the shape and motion of an object from an image sequence is a central problem in
computer vision, having applications in such diverse fields as autonomous navigation, car-
tography, and virtual reality systems. When an observer moves relative to an object, shape
information is revealed through changes in the appearance of the object. In theory, the shape
of an object and motion of the observer can be recovered by matching as few as eight points
between two images. In practice, existing methods fail to work reliably in many noisy, real-
world situations.

This thesis presents two novel techniques for recovering the shape and motion of a rigid
object from a multi-image sequence. The paraperspective and projective factorization meth-
ods share a common approach with the orthographic factorization method developed by
Tomasi and Kanade. The paraperspective factorization method is based on a closer approxi-
mation to image projection than orthography, enabling it to account for several important
aspects of image projection that the original method could not. The projective factorization
method is based on a more accurate model of image projection which not only accounts for
standard perspective effects such as foreshortening, but can also model radial distortion, an
important effect rarely considered in the shape from motion literature. The non-linear nature
of the projection equations makes the projective factorization method more computationally
intensive than the paraperspective method; however, its more accurate projection model
allows its application to sequences in which the object is close to the camera or contains
large depth disparities.

This thesis also addresses other issues vital to accurate shape recovery, such as robust track-
ing of features in sequences with large motions between images. Both methods are formu-
lated to allow shape and motion recovery from sequences in which features become
occluded or leave the field of view, and to account for the varying confidences of the feature
tracking results.

The methods have been extensively tested and their behaviors systematically explored by
controlled experimentation on over four thousand synthetically generated images. They
have further been shown to successfully recover object shapes from real-world image
sequences recorded using unsteady hand-held consumer-quality cameras, demonstrating
their robustness to image noise and non-smooth camera motion.
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orthographic and paraperspective factorization methods, the non-linearity of the perspective
projection equations necessitates the use of quite different techniques. The non-linear tech-
niques applied to solve this problem tend to require more storage space and more computa-
tion than the bilinear methods. Therefore projective factorization is advantageous only when
foreshortening effects make the use of the paraperspective method impossible.

Techniques are developed in this thesis to address several other practical issues vital to accu-
rate shape recovery. One such technique enables robust tracking of features in sequences
with large motions between images. Another extends the basic shape and motion recovery
techniques to accommodate missing and uncertain data, which occur when points become
occluded, leave the field of view, or for some other reason cannot be tracked throughout the
entire sequence. This technique also improves the accuracy of shape and motion recovery
by incorporating confidence measures for each feature measurement. The non-linear mini-
mization technique developed for recovering shape and motion under a perspective projec-
tion model is also extended to account for unknown radial distortion in the image sequence,
allowing the methods to be applied to a wider range of cameras and closer objects. The tech-
nique is also shown to enable the use of image intensities directly for shape and motion
recovery rather than depending feature tracking measurements. While the technique is still
“feature-based” in a sense, it allows the use of features which might not otherwise be
tracked correctly, and therefore helps provide fuller shape recovery.

Successful techniques for accomplishing shape and motion recovery from image sequences
could enable mobile robots to autonomously map and navigate through unknown environ-
ments, or aircraft to map terrain despite unknown and arbitrary, non-uniform motion, while
simultaneously obtaining information about their own movement. Structure recovery tech-
niques could be used in graphical simulation or virtual reality systems, replacing the cur-
rently painstaking task of defining 3D object models by hand with a system for
automatically generating them from raw video footage. Such techniques also could prove
powerful for image compression; once the three-dimensional scene geometry and image
texture are transmitted, subsequent images could be reconstructed by sending only camera
motion information.

Through extensive experiments on simulated, laboratory, and real video data, we demon-
strate the performance of our methods, the relationships between them, and the particular
advantages of each method. We show that the paraperspective and projective factorization
methods can be used for shape and motion recovery in many practical scenarios.

1.1. Related Work

The problem of computing shape and motion from image streams finds its earliest roots in
stereo vision research. In the stereo problem, two or more cameras image the same scene.
The position and orientation of the second camera relative to the first is fixed, determined
once through advance calibration. The depths of various points in the scene are generally
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computed by matching corresponding points in the two images, and triangulating to com-
pute the depth.

Early structure from motion work by Longuet-Higgins and Tsai and Huang showed that it
was possible to recover the depths of the points and the relative orientations of two cameras
from two perspective views provided at least 8 point correspondences were known [23][45].
The solution put forth in [45], first solving for a set of essential parameters which can further
be analyzed to reveal the camera motion, requires only solving a system of linear equations
and computing the SVD of a small matrix. Faugeras, Lustman, and Toscani, as well as Spet-
sakis and Aloimonis developed similar approaches for recovering the positions of three-
dimensional lines viewed in three images, the minimum necessary to provide a unique solu-
tion [16][35]. Demey, Zisserman, and Beardsley, Faugeras, and Shashua have developed
numerous other techniques for recovering shape and motion from a small number of images
and feature points [11][14][33], based on more recent insights into projective and affine
geometry. However, without the advantage of data redundancy, these methods are highly
sensitive to even low levels of image noise, and therefore frequently fail on sequences taken
outside of a controlled laboratory environment.

Improved shape recovery can be achieved by restricting the range of allowable motions, by
requiring that the motion be known a priori, as was done by Matthies, Kanade, and Szeliski
[24], assuming the motion to be smooth, or by allowing only translational or only rotational
motion, as was done by Horn and Weldon [22]. In the case of general motion, however,
many reports have admitted that traditional methods have failed to produce reliable results
in many situations [8][13]. Since methods using the minimal number of features or the min-
imal number of images tended to be highly sensitive to image noise, researchers began to
look to longer sequences containing more points for methods that could provide improved
robustness.

Soatto, Perona, and Frezza applied Kalman filtering techniques to combine a sequence of
two-frame solutions to produce a single, more robust estimate [36], as did Azerbayejani and
Pentland [3], Harris [19], Thomas, Hansen, and Oliensis [40], and many others. Xiong and
Shafer have developed a efficient techniques for recovering a dense depth map as well as the
motion from an image sequence using Kalman filter integration of two-frame depth esti-
mates derived from optical flow values, in some ways an extension of the approach of Mat-
thies, Kanade, and Szeliski [24] to the case of unknown motion [47].

The factorization method developed by Tomasi and Kanade [42][43] is a “batch” method
which processes data from all frames simultaneously. It achieved its robustness by process-
ing large numbers of orthographically projected images with many points tracked through-
out the sequence. Basing the method on orthographic projection allowed them to avoid
complicated non-linear solution methods. In a sense, their work parallels the “essential
parameter” approach of Tsai and Huang [45]. In the decomposition stage, they use the SVD
to solve for a set of “essential motion parameters” and an affine shape estimate. In the nor-
malization stage, they solve for the affine transformation which transforms the affine shape
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into a Euclidean shape, by constraining the form of the essential motion parameter matrix.
Finally in the motion recovery stage, they compute the camera motion from the essential
parameters. In order to make use of many points and frames under a of perspective projec-
tion model, others have used non-linear optimization techniques. Taylor, Kriegman, and
Anandan [39] developed a solution method for the case of 1D images which involved sepa-
rately refining the shape and motion parameters. Szeliski and Kang [38] used Levenberg-
Marquardt iteration to find a least-squares solution to the large system of non-linear perspec-
tive projection equations, using sparse matrix techniques to efficiently represent and invert
the Hessian matrix.

Although methods based on projective geometry and projective invariants have recently
become popular, many of these methods still address only the two-frame problem. Mok,
Veillon, and Quan put forth an iterative non-linear method inspired by projective geometry
which simultaneously uses the information from all images and all frames [25]. They solve
for the projective shape and motion, and in [6] Boufama, Mohr, and Veillon show how to
convert this solution to Euclidean shape when additional scene knowledge is available.
Ponce, Marimont, and Cass present an analogous method which requires the selection of
five points to use as the basis for the projective coordinates and then reduces the problem to
a minimization involving only polynomial functions [30]. Szeliski and Kang [38] also
extend their framework to address projective shape and motion recovery, though they don'’t
address the problem of Euclidean reconstruction from projective shape and motion.

Faugeras, Luong, and Maybank developed a method for recovering intrinsic and extrinsic
camera calibration parameters from three images [15]. The epipolar geometry is estimated
between pairs of images, and constraints on the form of the computed fundamental matrices
are used to recover the camera parameters. They use the continuation method to solve a set
of non-linear equations which is known to have many local minima. Since the epipolar
geometry is only computed from pairs of images, scene rigidity throughout the three images
is not strictly enforced. The method was shown to be extremely sensitive to noise, and was
not demonstrated on real images. Hartley’s method [18] involves first computing the projec-
tive shape and motion, and then converting them to a Euclidean solution using a series of
steps including linear programming, Choleski decomposition, and Levenberg-Marquardt
iteration.

1.2. Contributions

* The scaled orthographic factorization method for shape and motion recovery,
which accounts for the scaling effect of the image projection.

* The paraperspective factorization method, which accounts for the scaling and posi-
tion effects of image projection.

* The separate refinement method, which iteratively improves a shape and motion
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estimate using a perspective projection model to accurately account for the fore-
shortening effect.

* A clarification of the relationships between the paraperspective projection model,
the general affine camera model, and the “fixed-intrinsic” affine camera model.

e A derivation of paraperspective projection as an mathematical first-order approxi-
mation to perspective projection.

* A robust hierarchical feature tracker which can track large feature motions.

e A method for accommodating occluded, missing, and uncertain feature tracking
data within the factorization methods.

e The projective factorization method, which accounts for foreshortening and radial
distortion effects, and has better convergence properties than the separate refine-
ment method.

e Convincing experimental evidence that solving for projective shape and motion
has superior convergence properties to directly solving for shape and motion using
a Euclidean formulation.

e Introduction of the notion of fill fraction as an important measure which effects the
accuracy and computational efficiency of shape and motion recovery in the pres-
ence of occlusion or missing data.

e A direct method for recovering shape and motion from an image sequence without
first tracking feature points.

e Detailed examination of the behaviors of the paraperspective and projective factor-
ization methods as functions of distance, noise level, fill fraction.

e Verification of the practicality of the factorization methods by demonstrating suc-
cessful shape recovery from noisy sequences taken with consumer-quality hand-
held video cameras.

1.3. Geometry and Notation

In a shape-from-motion problem, we are given a sequence of F images taken from a camera
that is moving relative to an object. Imagine that we locate P prominent feature points in the
first image. Each feature point corresponds to a single world point, located at position s, in
some fixed world coordinate system. This point will appear at varying positions in each of
the following images, depending on the position and orientation of the camera in that image.
We write the observed image position of point p in frame f as the two-vector u £ containing
its image x- and y-coordinates, which we will sometimes write as (u oV ) - These image
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positions are measured by tracking the feature from frame to frame using the tracking tech-
niques describe in chapter 3.

The camera position and orientation in each frame is described by a rotation matrix R ¢ and a
translation vector t - representing the transformation from world coordinates to camera coor-
dinates in each frame. We can physically interpret the rows of R ¢ as giving the orientation of
the camera axes in each frame - the first row, i s gives the orientation of the camera’s x-axis,
the second row, j s gives the orientation of the camera’s y-axis, and the third row, k s gives
the orientation of the camera’s optical axis, which points along the camera’s line of sight.
The vector t 7 indicates the position of the camera in each frame by pointing from the world
origin to the camera’s focal point. This formulation is illustrated in Figure 1.

Image
Plane
L Y Vrp
J P(f, p)
fA if f
J imaging ray
Camera k f
tf Sp
world focal
origin length [

Figure 1. Coordinate system and Notation

The process of projecting a three-dimensional point onto the image plane in a given frame is
referred to as projection. This process models the physical process by which light from a
point in the world is focused on the camera’s image plane, and mathematical projection
models of various degrees of sophistication can be used to compute the expected or pre-
dicted image positions P(f, p) as a function of s_, R;, and t. In fact, this process depends
not only on the position of a point and the position and orientation of the camera, but also on
the complex lens optics and image digitization characteristics. In this paper, at various
points we use the orthographic projection model P (f, p) , the scaled orthographic projection
model P_(f, p) , the paraperspective projection model PP, the perspective projection
model Pp(f, p), and the radial projection model P (f,p). These models have varying
degrees of mathematical sophistication and complexity, and account for the actual physics
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of image formation to increasingly accurate degrees. These projection models will be
defined in Chapter 2, with the exception of the radial projection model which is introduced
in Section 4.3, and are summarize for the reader’s convenience in the section following this
one.

Certain camera and digitizer parameters effect the way that images are transmitted from the
world onto the image plane and into their final digital form. These parameters are the focal
length [, the aspect ratio a, the image center (o, oy) , and the radial distortion k. Some
projection models use only a subset of these parameters. In some cases we simplify our
equations by assuming “standard camera parameters”, which means / =a =1 and
0,=0,=¥X= 0. When the camera parameters are known, we can use them to transform

X
the image feature point measurements into images taken with this “standard camera.”

The shape from motion problem can be essentially stated as, given a sequence of images,
recover the camera position in every frame f and the three-dimensional position of every
point p. These values are computed so as to align the predicted position of each point in
each frame P(f,p) as closely as possible with the observed position u,. We sometimes
write our final estimated shape and motion, which of course due to noise may differ from the
actual shape and motion, as §p for each object point, and ff, jf, ﬁf and ff for each frame in
the sequence.

1.4. Imaging Effects and Projection Models

In the course of this thesis a number of different projection models are introduced, each
modeling various effects of real image projection. The projection models will be described
geometrically and derived mathematically as they are introduced. However, to help acquaint
the reader with the terms and projection models, the following two tables summarize the
effects of image projection and the various projection models used in this paper.
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Table 2: Projection Models’ Equations and Effects

projeciion rojection equations elieqls
model pro] d modeled
orthographic ly (s —t) o
P,f,p) = pof
lajf-- (sp - tf) +o,
scaled r . scaling
orthographic - (s, —t) to
Z P
Pohp) = | ‘
dp (579
L ¥ i
paraperspec- r c . scaling,
tive z i+ ll._fk s —(t,-i) [ +o position
| f oz, f| P TS x
PP = |7 g
pp la {[ jf' tf :| }
- +-—k. s —(t,-j)[+o0
B f oz 2 fl p S CF i
perspective . . scaling,
i,- (s —t) ..
S F ., position,
P (f.p) = Ky (sp—tf) * foreshortening
¢ i (s,=t)
laﬁ + 0y
| K g=t) )
radial r 7 scaling,
lPxp(f’ P) o position,
( L+x,P (f,p)?+ P, ( p)z) < foreshortening,
P p) = ’ ’ : radial
laPp p)
2 2] %
_(1 + %P, ()2 4%, P, (f, ) ) !

a. Radial projection first involves perspective projection using the “standard camera parameters” de-
fined in section 1.3.

1.5. Thesis Overview

Chapter 2 reviews the original factorization method, which was based on orthography, and
then extends the method to scaled orthography, and then to paraperspective. The chapter
includes a comparison of paraperspective to the standard perspective projection model, and
to the affine camera model. We show that the paraperspective results can be refined to
account for perspective effects using a non-linear refinement step. We conclude with the
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2. Paraperspective Factorization

The factorization method, developed by Tomasi and Kanade, assumes that world points are
projected onto the image plane using orthographic projection. Orthographic projection is
considered an appropriate model for use in many common imaging situations in which the
object is very distant from the camera, precisely the situations in which traditional triangula-
tion-based methods fail. Furthermore, it can be modeled by bilinear equations, which enable
an efficient and robust solution.

The method was shown to perform extremely well in situations in which the orthographic
assumption was valid. However, orthography cannot model several perspective effects such
as the scaling, position, and foreshortening effects, which are illustrated in Figure 2. The
scaling effect is apparent even in sequences in which the object is very distant from the cam-
era, but in which the object translates significantly toward or away from the camera. The
orthographic factorization method was unable to explain these scale changes, and therefore
either failed to produce a result or produced a deformed shape, in which deformities in the
object had been crafted to attempt to account for the scale change.

(@ (b) (©
Figure 2. Effects of perspective projection

(a) the initial image (b) the image after translating the camera towards the
object, demonstrating the scaling effect (c) the image after translating the cam-
era vertically. Notice that in (c) the top of the object in has become visible; due
to the position effect, the box is being effectively viewing from an angle. (c)
also demonstrates the foreshortening effect, which causes the rear of the box to
appear smaller than the front. This is the only effect of perspective projection
that is not modeled by paraperspective projection.

In this chapter, we extend the factorization method to model some of the effects of perspec-
tive projection which are not modeled by orthography. The scaled orthographic factorization
method accounts for the scaling effect and allows shape recovery from sequences containing
depth translation. The paraperspective factorization method accounts for the scaling and
position effects, allowing shape recovery from sequences in which the object is closer to the
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camera and not always centered in the image. Finally we present the separate refinement
method, an iterative method which refines the results of paraperspective projection using a
perspective model to account for the foreshortening effect.

2.1. The Orthographic Factorization Method

This section presents a summary of the orthographic factorization method developed by
Tomasi and Kanade. A more detailed description of the method can be found in [43].

2.1.1. Orthographic Projection

The orthographic projection model assumes that rays are projected from an object point
along the direction parallel to the camera’s optical axis, so that they strike the image plane
orthogonally, as illustrated in Figure 3.

Image
Plane

Pox(f’p) -

Figure 3. Orthographic projection in two dimensions
Dotted lines indicate perspective projection

A point p whose location is s, will be observed in frame f at image coordinates P (f,p),
where
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P. (P ) lip (s,—t) +o,
P o(f,p) lajf- (sp—tf) +o0

1)
¥

Simplifying using standard camera parameters, these equations can be rewritten as

an(f, p) = mg- s, + X Pya(f, p) = s, + Yy )

where
xf = "(tf' if) )’f = _(tf’ Jf) 3)
mp =i =g “)

2.1.2. Decomposition

All of the feature point coordinates (u Y fp) are entered in a 2F X P measurement matrix W .

Hyy = #1p
u oas W
w = |“F1 FP )
Vit == V1P
VE1L - YEP

Each column of the measurement matrix contains the observations for a single point, while
each row contains the observed u-coordinates or v-coordinates for a single frame. Setting
the observed positions equal to the predicted positions, equation (2) for all points and frames
can now be combined into the single matrix equation

W=MS+T[; .. ] )

where M is the 2F x 3 motion matrix whose rows are the m. and n ¢ vectors, S is the 3 x P
shape matrix whose columns are the s, vectors, and T is the 2F x 1 translation vector whose
elements are the 7 and Yy

Up to this point, Tomasi and Kanade placed no restrictions on the location of the world ori-
gin, except that it be stationary with respect to the object. Without loss of generality, they
position the world origin at the center of mass of the object, denoted by ¢, so that

P
1
°=FZISP=O @)
p:
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Because the sum of any row of S is zero, the sum of any row i of W is PT,. This enables
them to compute the i element of the translation vector 7 directly from W, simply by
averaging the i*# row of the measurement matrix. The translation is then subtracted from
W, leaving a “registered” measurement matrix W* = W- T[l 1].

W* is bilinear in the motion variables M and the shape variables S because it equals a sum
of products of them. The term “bilinear” refers to a problem whose variables can be parti-
tioned into two sets such that the problem is linear with respect to one set of variables when
the other set is held constant. Tomasi and Kanade pointed out that, since W* is the product
of a 2F x 3 motion matrix M and a 3 x P shape matrix S, its rank should be at most 3. When
noise is present in the input, W* is not exactly of rank 3. Tomasi and Kanade used the Sin-
gular Value Decomposition (SVD) to compute W* = UZVT, where £ is a diagonal matrix
containing the singular values of the matrix [42]. In general, only three of these values are
large, and the rest are extremely small, and are due primarily to noise in the measurement
data. Therefore they use only the three largest singular values and their associated singular
vectors to factor W* into the product

w* = M8 (8)
Using the SVD in this manner to perform the decomposition ensures that the product #3 is
the best possible rank 3 approximation to the full measurement matrix W*.

2.1.3. Normalization

The decomposition of equation (8) is only determined up to a linear transformation. In gen-
eral, if the world origin had not been fixed at the mass center of the object, # and § would
be determined up to an affine transformation, so for compatibility with standard terminology
M and § may be referred to as the affine motion and affine shape. Any non-singular 3 x 3
matrix A and its inverse could be inserted between #M and §, and their product would still
equal W*. Thus the actual motion and shape are given by

M = MA S = A-1§ ©9)

with the appropriate 3 x 3 invertible matrix A selected. The correct A can be determined
using the fact that the rows of the motion matrix M (which are the m " and n ; vectors) repre-
sent the camera axes, and therefore they must be of a certain form. Since i E and j - are unit
vectors, we see from equation (4) that

2 = 2 -
|m/i =1 |n/{ =1 (10
and because they are orthogonal,
mf- "f =0 (1)

Equations (10) and (11) give us 3F equations which we call the metric constraints. Using
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these constraints, we solve for the 3 x 3 matrix A which, when multiplied by M , produces
the motion matrix M that best satisfies these constraints. Once the matrix A has been found,
the shape and motion are computed from equation (9).

2.2. The Scaled Orthographic Factorization Method

Scaled orthographic projection, also known as “weak perspective” [26], is a closer approxi-
mation to perspective projection than orthographic projection, yet not as accurate as parap-
erspective projection. It models the scaling effect of perspective projection, but not the
position effect. The scaled orthographic factorization method can be used when the object
remains centered in the image, or when the distance to the object is large enough relative to
the size of the object that the position effect is negligible.

2.2.1. Scaled Orthographic Projection

Under scaled orthographic projection, object points are orthographically projected onto a
hypothetical image plane parallel to the actual image plane but passing through the object’s
center of mass c¢. This image is then projected onto the image plane using perspective pro-
jection, as shown in Figure 4.

Since the perspectively projected points all lie on a plane parallel to the image plane, they all
lie at the same depth

2 = (c—tf) -kf (12)

The scaled orthographic projection equations are very similar to the orthographic projection
equations, except that the image plane coordinates are scaled by the ratio of the focal length
to the depth Z-

r T

lif- (sp—tf) ‘o
P, (p z x
PG =] =] (13)
P, ¢p) lajp- (s, —t) o
2 y

To simplify the equations we assume the standard camera parameters l=1,a=1,and
(0,0)) = (0, 0) . The world origin is arbitrary, so we fix it at the object’s center of mass,
so that ¢ = 0, and rewrite the above equations as

me(f,p) = mf'sp+xf Pym(f,p) = nf-sp+yf (14)
where
zp = —tf- kf (15)
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Hypothetical
Image Image
Plane Plane

world
origin

Figure 4 Scaled Orthographic Projection in two dimensions
Dotted lines indicate true perspective projection

t.-i toeJ
X = LS = LT (16)
N i
i i
m=Z4 =Y 17
4 o

2.2.2. Decomposition

Because equation (14) is identical to equation (2), the measurement matrix W can still be
written as W = MS+ T just as in orthographic and paraperspective cases. We still compute
X and y ¢ immediately from the image data by subtracting the center of gravity, and use sin-
gular value decomposition to factor the registered measurement matrix W* into the product
of i and §.

2.2.3. Normalization

Again, the decomposition is not unique and we must determine the 3 x 3 matrix A which
produces the actual motion matrix M = MA and the shape matrix § = A™'S. From equation
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17,

2.1 2. 1

mf®== =3 (5
f f

The depth z ¢ is unknown, so we cannot impose individual constraints on m - and n - as we did

in the orthographic case. Instead, we combine the two equations to impose the constraint

|mf|2 = |nf{2. (19)

Because m . and n . are just scalar multiples of i ’ and j » We can still use the constraint that

m.en, = 0. (20)

Equations (19) and (20) are homogeneous constraints, which could be trivially satisfied by
the solution M = 0, so to avoid this solution we add the constraint that

lmI' = 1. @n

Equations (19), (20), and (21) are the scaled orthographic version of the metric constraints.
We can compute the 3 x3 matrix A which best satisfies them very easily, because the con-
straints are linear in the 6 unique elements of the symmetric 3 x 3 matrix Q = ATA.

2.2.4. Shape and Motion Recovery

Once the matrix A has been found, the shape is computed as S = A~15. We compute the
motion parameters as

m
s

s A W
A ) -

Unlike the orthographic case, we can now compute Zp the component of translation along
the camera’s optical axis, from equation (18).

2.3. The Paraperspective Factorization Method

Scaled orthography accurately models the scaling effect, and can therefore represents a sig-
nificant improvement over the original factorization method. The method can successfully
recover shape and motion from image sequences in which the object is relatively distant
from the camera translates towards or away from the camera. In such cases, the foreshorten-
ing and position effects are small and induce only minor errors in the recovered shape and
motion. Experiments indicate, however, that we must model the position effect in order to
successfully recover shape and motion in sequences in which an object is closer to the cam-
era and does not remain centered in the image. Paraperspective projection, introduced by
Ohta [28] in order to solve a shape from texture problem, more closely approximates per-
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spective projection by modeling both the scaling effect and the position effect, while retain-
ing the bilinear algebraic properties of orthography. Based on this model, in this section we
present a paraperspective factorization method similar to the original Tomasi-Kanade fac-
torization method.

2.3.1. Paraperspective Projection

The paraperspective projection of an object onto an image, illustrated in Figure 5, involves
two steps.

1. An object point is projected along a direction parallel to the line connecting the focal
point of the camera to the object’s center of mass, onto a hypothetical image plane par-
allel to the real image plane and passing through the object’s center of mass.

2. The point is then projected onto the real image plane using perspective projection.
Because the hypothetical plane is parallel to the real image plane, this is equivalent to
simply scaling the point coordinates by the ratio of the camera focal length and the dis-
tance between the two planes.

Hypothetical
Image Image
Plane Plane

world
origin

Figure 5. Paraperspective projection in two dimensions
Dotted lines indicate perspective projection
~2r indicates parallel lines
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In general, the projection of a point p along direction r, onto the plane defined by normal
vector n and distance from the origin d, is given by the equation

p-n—d
r-n

p=pP- r. (23)
In frame £, each object point s _ is projected along the direction ¢ —t 2 (the direction from the
camera’s focal point to the object’s center of mass) onto the plane defined by normal k ¢ and

distance from the origin c - k = The result s P of this projection is

k)
S B i L (c—t) (24)

The perspective projection of this point onto the image plane is given by subtracting t. from
s'. to give the position of the point in the camera’s coordinate system, and then scaling the
result by the ratio of the camera’s focal length  to the depth to the object’s center of mass

z. This yields the coordinates of the projection in the image plane,
e Gt L,
P_(f,p) Px"”(f’ A ¥ ’ where (c—t) -k (25)
,P) = = 5 Z, = (¢c— .
pp C (s — f i
Pypp(f» p) laj;- (s, —t)) o
L ’
Substituting (24) into (25) gives the general paraperspective equations.
_ L[ ey :
Px,,,,(f’ p) = %}{[lf— ——Z-f—-kf . (sp—c) + (c—tf) i +0,
; (26)
_talf. (et .
Pypp(f,p) = Z—f f———z}-—-kf : (sp—c)+(c—tf)-Jf +o,

Here we assume standard camera parameters [ = 1, a = 1, and (o, oy) = (0,0) . The
consequences of this action are discussed in section 2.3.9.

Without loss of generality we can simplify our equations by placing the world origin at the
object’s center of mass so that by definition

CcC =

ol=

P
Zsp=0. 27
p=1

This reduces (26) to
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i-t
P (p) = 2 { [if+ %“f] s (e if)}

z
f . ft 28)
R N .
Py P = Z{[’f" ka] s, Jf)}
£ f
These equations can be rewritten as
Pxpp(f,p) = mees, + X Pypp(f,p) =g+, (29)
where
t.-i t.-j
p v | vy = LS (31)
¥ ¥
i—x o=y
m.= & X i (v} (32)
f z F z

2.3.2. Relation of Paraperspective and Affine Models

The affine camera model has become popular among vision researchers because, like parap-
erspective projection, it can be described by linear equations. Many researchers have begun
referring to the paraperspective model as “a special case of the affine camera model,” since
both can be described by bilinear equations. This statement can be true or false depending
on what is meant by “the affine camera model”. When only a single image is considered,
one can use the phrase “the affine camera model” unambiguously. However, when multiple
images are considered simultaneously one must be careful to distinguish between two varia-
tions of the affine camera model commonly in use; the unrestricted affine camera model, and
the fixed-intrinsic affine camera model. This section examines both models and their rela-
tions to the paraperspective projection model. It points out that by modeling the position
effect and enforcing the constraint that camera calibration parameters do not change
throughout the sequence, paraperspective is a better model than affine for shape and motion
applications.

In an unrestricted affine camera, the image coordinates are given by

R}
My Mgy Mgy ! %

P fip) = Spa| * (33)
My Mgy Higy Y

Sp3

r

where the m,; are free to take on any values. In motion applications, this matrix is com-
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monly decomposed into a scaling factor, a 2 x 2 intrinsic parameter matrix, and a 2 x 3 rota-
tion matrix. The intrinsic parameters matrix contains camera calibration parameters which
are considered to remain constant throughout the sequence, while the rotation matrix and
scaling factor are allowed to vary with each image. This fixed-intrinsic affine camera is
given by

R)

.. . pl

1 i Qo b x

i = 119 ) o0

ils allin Jp g S y
p3

These parameters have the following physical interpretations: the i ¢ and j, vectors represent
the camera orientation in each frame, Xer Vpo and z, represent the object translation (z; is
scaled by the camera focal length, x, and Yy are offset by the image center), a is the pixel
aspect ratio, and s is a skew parameter. The skew parameter is non-zero only if the projec-
tion rays, while still parallel, do not strike the image plane orthogonally.

The fixed-intrinsic affine model simply assumes that the parameters s and a correspond to
intrinsic camera characteristics which do not change throughout the sequence. The other
variables are considered to correspond to actual rotation and translation between the object
and the camera, and are free to vary from one image to the next, provided i ¢ and j P remain
orthogonal unit vectors.

The paraperspective projection equations can be rewritten, retaining the camera parameters,
as

(ox—xf)

1o =L inin ip|*n| T,
P, (fip) = Y oy I I S| * |, (35)
0a —===|lkn k2 k3] |°3

& _ X
or defining b, = — =~

A}

Lo p1lininin

pl
Pt =L i indnl sl | (36)
e T | LR i I
k1 kg2 K3 5p3

In [37] Quan shows that this can be reduced to a form identical to that of the fixed-intrinsic
affine camera by Householder transformation.
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1 0 s
[[1+b2 A pl "
. i i 2.2/ 1723
Pofip) = S b, Jraozed|| ST 2P s L+ (37
f a a Jalmpl y
T+67  1+p2 LSRN

Here i'f and j'f are orthonormal unit vectors not necessarily equal to i L and j -

Both the fixed-intrinsic-parameter affine camera and the paraperspective models are special-
izations of the unrestricted affine camera model, yet they are different from each other. The
former has a constant skew parameter s, and thus projects all rays onto the image plane at
the same angle throughout the sequence. This can be an accurate model if the object does
not translate in the image or if the angle is non-perpendicular due to a lens misalignment.
Under paraperspective, equation (37) shows that the skew parameter and aspect ratio can
vary with each image, meaning that the direction of the image projection varies from image
to image. This projection direction depends in a physically realistic manner on the transla-
tion of the object in the image relative to the image center. This allows paraperspective to
accurately model the position effect, which the fixed-intrinsic affine camera cannot do,
while enforcing the constraint that the intrinsic camera calibration parameters remain con-
stant in all images, which the unrestricted affine camera cannot do.

2.3.3. Paraperspective as a Perspective Approximation

Perspective projection is a common model of image projection in use by shape and motion
researchers. It models the foreshortening effect as well as the scaling and position effects.
However, the equations describing it are non-linear and therefore much more cumbersome.
We show in this section that paraperspective projection can be derived mathematically as a
linear approximation to the standard perspective projection model.

In Section 2.3.1., we defined paraperspective projection geometrically. We can derive the
same equations mathematically as a first-order approximation to the perspective projection
equations. The perspective projection of point p onto the image plane in frame f is given by

P, (. p) i (s —t
Pfip)=| " "= Zi 4 N (39)
Py,,(f; P) fp Jf' (Sp_tf)
where
ip = Ky (s, =) (39)
For simplicity we assume unit focal length, ! = 1.
We define the term
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and then compute the Taylor series expansion of the above equations about the point

przzf 41
yielding
i (s —t) i (s —t) i.r (s —t)
_f e P _f ‘b f _ f p f o2
P (p) = =T - (gt + T (3 m ) T e
f f f )
i (s —t) e (s —t) e (s, —tp)
I A I i A B A Y )
Pyp(f, p) = :; - z} (zfp zf) + z}" (zfp zf) + ...

We combine equations (39) and (40) to determine that 20, =% = kf- S, and substitute this
into equation (42) to produce

i (s —t) i (s —t) i.- (s —t)
N A Y AR i S vy L P Fo(k.os )2
Pxp(f,p)- o Zf (kf sp)+ 3 (kf sp) + ...
(43)
Jer (s —t) jor (s —t) jer (s —t0)
ppy = Lp L L P sy + Ll (ks )2
Yp 2 ng fp zj; fp

Ignoring all but the first term of the Taylor series yields the equations for scaled ortho-
graphic projection (See 2.2.) However, instead of arbitrarily stopping at the first term, we
eliminate higher order terms based on the approximation that |s [12/ z? = 0, which will be
accurate when the size of the object is smaller than the distance of the object from the cam-
era. Eliminating these terms reduces the equation (43) to

i (s,—t) i (7t

P, (f,p)= - (ks)
' i g (44)
i (s,=t) iy (Y
P, (=t -T L ks
P Zf Zf

Factoring out the 1/ Z and expanding the dot-products i - (sp - tf) and j - (sp— t f) gives

i.

I R Al P
Px,'(fap)~;/(if sp+ Z (kf sp) (lf tf)J
(45)

pp=is 0y - Gt
y,,’szfp szn Sl

These equations are equivalent to the paraperspective projection equations given by equa-
tion (28).

The approximation that |s |2/ z2 = 0 preserves the portion of the second term of the Taylor
series expansion of order (|sp||tj|)/ zfz, while ignoring the portion of the second term of
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order |sp|2/ zj? and all higher order terms. Clearly if the translation that the object undergoes
is also small, then there is little justification for preserving this portion of the second term
and not the other. In such cases, the entire second term can be safely ignored, leaving only
the equations for scaled orthographic projection.

Note that we did not explicitly set the world origin at the object’s center of mass, as we did
in Section 2.3.1. However, the assumption that |sp|2/ zj? = 0 will be most accurate when the
magnitudes of the s_ are smallest. Since the s_ vectors represent the vectors from the world
origin to the object points, their magnitudes will be smaller when the world origin is located
near the object’s center of mass.

2.3.4. Decomposition

Notice that equation (29) has a form identical to its counterpart for orthographic projection,
equation (2), although the corresponding definitions of Xes Ypr Mg, and n differ. This
enables us to perform the basic decomposition of the matrix in the same manner that Tomasi
and Kanade did for the orthographic case. Equating the predicted positions with the
observed positions, we combine equation (29), for all points p from 1 to P, and all frames
f from 1 to F, into the single matrix equation

- -
F“n “Hip m |
u oo u m X
FL™TFPL o |7F [sl s,,]+ Al .. 1 (46)
V” - VlP nl yl
VF1 - Vep| | PF ia
or in short
W=MS+T[] .. 1], 7

where W is the 2F x P measurement matrix, M is the 2F x 3 motion matrix, S is the 3 x P
shape matrix, and T is the 2F x 1 translation vector.

Using equations (27) and (29) we can write

P
mf-sp+xf) = m, Z sp+Pxf = Pxf
r- (48)
f

|
=
n M ~

n -sp+yf) =

P

z “
r=1

P
zlvfp sp+ny = ny
p:

P
=Z(
p=1
p
=Z(
p=1

Therefore we can compute X and Y which are the elements of the translation vector T,
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There is also a constraint on the angle relationship of m r and n . From equation (32), and

the knowledge that i, j £ and k ¢ are orthogonal unit vectors,
i—xk, jo—y Xy
mn, = L e I Y% _ P 54

The problem with this constraint is that, again, Zp is unknown. We could use either of the
two values given in equation (53) for 1/ zj? , but in the presence of noisy input data the two
will not be exactly equal, so we use the average of the two quantities. We choose the arith-
metic mean over the geometric mean or some other measure in order to keep the solution of
these constraints linear. Thus our second constraint becomes

1( [y + MJ (55)

m, N,= Xy
VA B i ) 2 2
l+xf 1+yf

This is the paraperspective version of the orthographic constraint given by equation (11),

which required that the dot product of m - and n ¢ be zero.

Equations (53) and (55) are homogeneous constraints, which could be trivially satisfied by
the solution Vf m o= n, = 0, or M = 0. To avoid this solution, we impose the additional
constraint

|my| =1 (56)
This does not effect the final solution except by a scaling factor.

Equations (53), (55), and (56) gives us 2F + | equations, which are the paraperspective ver-
sion of the metric constraints. We compute the 3 x 3 matrix A such that M = #A best satis-
fies these metric constraints in the least sum-of-squares error sense. This is a simple problem
because the constraints are linear in the 6 unique elements of the symmetric 3 x 3 matrix
Q = ATA. We use the metric constraints to compute Q, compute its Jacobi Transformation
Q = LALT, where A is the diagonal eigenvalue matrix, and as long as Q is positive defi-
nite, A = (LA'/2)T, The case of non-positive definite Q is discussed in section 2.3.7.

2.3.6. Shape and Motion Recovery

Once the matrix A has been determined, we compute the shape matrix S = A~!S and the
motion matrix M = MA . For each frame f, we now need to recover the camera orientation
vectors if, jf, and fcf from the vectors m y and n,, which are the rows of the matrix M. From

f’
equation (32) we see that

i= zam .+ xjf(f jf =z + yjf(f (57)

From this and the knowledge that if, jf, and fcf must be orthonormal, we determine that
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irxjp= (Zf‘“f'”fﬁf)xkzj"f'*yfﬁfj = ky
B = ymy ] = 1 o
i = oyl =

Again, we do not know a value for z., but using the relations specified in equation (53) and
the additional knowledge that |f(f{ =1, equation (58) can be reduced to

fo(f =H,, (59)
where
(ﬂnfx ﬂf) 1
G, = m, H, = ~Xp (60)
ﬁf ")’f

m n
, = ,1+xf2|_nﬁ iy = /1+y}|_';ﬁ (61)
We compute k, simply as

ke = Gf'IHf (62)

and then compute
if = X f(f jf = fo g (63)

There is no guarantee that the if and jf given by this equation will be orthonormal, because
m, and n , may not have exactly satisfied the metric constraints. Therefore we actually use
the orthonormals which are closest to the if and jf vectors given by equation (63). We fur-
ther refine these values using a non-linear optimization step to find the orthonormal if and
i a8 well as depth z, which provide the best fit to equation (63). Due to the arbitrary world
coordinate orientation, to obtain a unique solution we then rotate the computed shap; and
motion to align the world axes with the first frame’s camera axes, SO that i; = [[ 0 0] and

jl=[010]'

All that remain to be computed are the translations for each frame. We calculate the depth z,
from equation (53). Since we know x¢, y¢, 27, i jp, and ks, we can calculate i, using equa-
tions (30) and (31).

2.3.7. Normalization Failure

In image sequences containing very high levels of noise, sometimes the normalization step
fails. Solving the metric constraints in the manner described in section 2.3.5. produces a
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matrix Q which has negative eigenvalues. In this case the recovered Q cannot be written as
a product ATA for any A. This indicates a serious degeneracy in the tracking data, and how
to handle such situations remains an open research question.

The problem of finding the matrix A which best satisfies the metric constraints was sepa-
rated into two steps, first computing Q and then computing A from Q, primarily because
that solution technique involved only linear operations. However, we should have added the
constraint that, in order to be a valid solution, 0 must have no negative eigenvalues, since a
Q with negative eigenvalues does not correspond to a valid solution to the problem at hand.

Since the metric constraints are linear in the elements of Q, the sum of the squares of the
error in the metric constraints as a function of the six elements of Q is quadratic in the ele-
ments of Q. A quadratic error surface has a single minimum, which can be computed using
standard linear least squares techniques. Suppose we turn the problem into a constrained lin-
ear least squares problem by adding the constraint that 0 have no negative eigenvalues.
This would have the effect of marking some regions of the error surface as “off limits”,
since those portions of the error surface represent solutions which do not satisfy the addi-
tional constraint. If the absolute minimum of the quadratic error surface happens to lie in
one of these regions, then the minimum subject to the additional constraint that Q have no
negative eigenvalues must lie along the border of that constraint, since there are no other
points on the error surface which could be the minimum. Solutions lying along the border of
that constraint are solutions with one or more zero-valued eigenvalues.

To test this theory, we developed a system to solve the metric constraints directly for A
rather than first solving for 0. This approach guarantees that all solutions are valid solu-
tions, since there are no additional constraints on the members of A. Since these equations
are non-linear, we solved them using Levenberg-Marquardt iteration and a random initial
value. In cases where the original method produced a Q with non-negative eigenvalues, the
nonlinear method produced exactly the same result. However, when the original method
produced a Q with one or more negative eigenvalues, in every case the nonlinear method
produced a matrix A with one or more zero eigenvalues. This shows that the occurrence of a
Q matrix with negative eigenvalues is not an shortcoming in our linear approach to solving
the metric constraints, but is fundamentally tied to the metric constraints themselves.

When A has one or more zero eigenvalues, the resulting motion matrix M becomes degen-
erate, having rank one or two instead of rank three. The physical interpretation of such a
motion is a pure rotation of the camera about its optical axis. When the motion matrix has
degenerate rank, then the corresponding shape matrix is under-determined; a variety of
shape matrices will result in the same observation matrix W since they are being multiplied
by a rank two matrix. This corresponds to our expectations, since such degenerate motions
provide no shape information at all. In fact, images produced from a rotation about the cam-
era’s optical axis will all be simple two-dimensional rotations of each other, so the shape’s
depth values cannot be determined. In other words, a Q@ with one or more negative eigenval-
ues indicates that the best motion solution available is one that is insufficient to compute the
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object shape.

In practice, this occurs when the third column of the unnormalized motion matrix #, which
is the singular vector corresponding to the third largest singular values of the measurement
matrix W, is so corrupted by noise that the normalization step can achieve the best fit by
ignoring that column. In other words, the combination of image noise and insufficient cam-
era rotation was large enough to make accurate shape recovery impossible. This also corre-
sponds to our intuition. In the complete absence of noise, even a tiny rotation should suffice
to recover the object’s shape. When the tracking results are high contaminated by noise, the
feature motion caused by a small rotation is indistinguishable from motion due to noise, so
accurate shape and motion recovery cannot be expected.

Another possibility is that the object shape is a flat surface or a line. In this case, the shape
matrix S will have a rank of 2 or 1, respectively. Even if the rank of the motion matrix M is
3, the measurement matrix, which is the product of M and S, will be of rank of 2 or 1.
Therefore the unnormalized motion matrix # will also have a reduced rank, and the nor-
malization step may produce a Q matrix with negative eigenvalues. The third component of
M has been irretrievably lost by multiplying it by a degenerate matrix. At this point we
should simply admit that information has been lost, assume the object is planar, and solve
for a 2 x2 Q matrix to rotate M into the correct form.

An examination of the singular values of the measurement matrix should provide some
insight as to the source of the problem. If the third and fourth singular values are near the
same magnitude as the second singular value, then noise or perspective distortion have cor-
rupted the matrix and made shape and motion recovery impossible. If they are far smaller
than the second singular value, then a flat object shape or insufficient rotation have made
shape and motion recovery impossible.

This explanation coincides with observations by other researchers, who reported frequently
recovering Q matrices with negative eigenvalues when applying the paraperspective factor-
ization method to sequences with insufficient rotational motion [10]. They also applied non-
linear techniques to solve for the elements of A which best satisfy the metric constraints
directly, without first solving for Q. They used Lagrange’s method of indeterminate multi-
plier to replace the last constraint, which fixed the magnitude of |ml = 1, with the con-
straint that det(A) = 1, and reported acceptable results. However, their failure to get
accurate results using the linear versions of the constraints even in noiseless images with
adequate motion makes it impossible to judge whether their method is actually an improve-
ment over the linear approach.

2.3.8. Solution Ambiguity Removal

In order to solve for the shape and motion at the end of Section 2.3.5., we computed the

matrix Q = ATA that best satisfied the metric constraints, and then computed A from Q.
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+1 0 O
There is a sign ambiguity in this process, since any matrix of the form A| o +; ¢ | pro-

0 0 =1

duces the same matrix @ when multiplied by its transpose. Thus there are actually several
equally plausible motion and shape matrices, since changing the sign of a column of M and
the corresponding row of S still produces a solution that satisfies the metric constraints
equally well. This sign ambiguity in the first two columns of M was removed when we
aligned the world coordinate axes with the first frame’s camera axes, at the end of Section
2.3.6. However, the ambiguity in the third column of M and the third row of S is a genuine
ambiguity. There are two equally valid solutions, whose shapes differ only by a reflection
about the z-axis.

This is a genuine ambiguity due to the nature of paraperspective projection, not merely a
mathematical one. This can be seen by looking at the motion sequence of a rotating cube
shown in the first column of Figure 6. The reader can imagine that the thick square is the
front square of a cube rotating clockwise when viewed from above, or that the thick square
is the back of a cube rotating counterclockwise when viewed from above; both interpreta-
tions are plausible. However, in general real image sequences will contain additional queues
which should clearly define which of the two solutions is the correct solution. For example,
in real images some points will become occluded so the images will actually be either as
shown in Figure 6(b), in which the thick square is clearly at the back of the cube, or as in
Figure 6(c), in which the thick square is clearly at the front of the cube. By examining the
pattern of occlusion in the image sequence, it should be possible to determine which of the
two solutions provided by the paraperspective method is the correct solution. Alternatively,
perspective foreshortening effects which were ignored during factorization could be used to
determine which solution is correct. For example, if the actual images are as shown in Fig-
ure 6(d), clearly the thick square is at the front of the object, while if they are as shown in
Figure 6(e), then the thick square is at the back of the object. (This cannot be determined by
looking at a single image, since clearly the object could be a strangely shaped frustum, but if
foreshortening effects are present, one of the two solutions will be more consistent with the
feature measurements over entire sequence.) It should be a simple matter to analyze the fill
pattern to determine which points are near and which points are far, or to determine which of
the two possible solutions is most consistent with the measurement data using a perspective
projection model.

2.3.9. Camera Calibration Requirements

When the paraperspective equations were derived in section 2.3.1, standard camera parame-
ters were assumed. The scaling effect of perspective projection depends on the camera focal
length, and the position effect of perspective projection depends significantly on the position
of the object in the image relative to the center of projection, as well as the focal length.
Since paraperspective projection models both of these effects, camera calibration data is
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Figure 6 Ambiguity of Solution
(a) Sequence of images with two valid motion and shape interpretations.
(b), (c) Ambiguity removed due to occlusion information.
(d), (¢) Ambiguity removed due to perspective distortion of the object.

needed for the paraperspective factorization method to work properly. The image data must
be preprocessed by shifting the image so that the center of projection is at (0,0) and by
scaling the measurements to have unit focal length and aspect ratio.

The scaled orthographic factorization method does not model the position effect, and there-
fore does not require that the center of projection be known. It does model the scaling effect,
for which the focal length is required. However, the focal length enters the equations only
multiplied by the depth z Therefore an incorrect focal length does not effect the quality of
the shape or rotation recovery; its only effect is to scale the recovered depth translation val-
ues by a constant factor. Thus the focal length is needed only to evaluate the magnitude of
the depth translation relative to the other translations and the object size. The aspect ratio.
however, must be known for both the orthographic and scaled orthographic factorization
methods, since the i, and j i vectors will not have equal magnitudes if the aspect ratio is not

_ f
unity.

As the focal length is increased, the magnitude of the position effect is diminished, and
paraperspective projection gradually approaches scaled orthographic projection. Thus if the



page 46

focal length is not precisely known, using an overestimate of the focal length with the parap-
erspective method will produce results no worse than using the scaled orthographic method.

2.4. Separate Perspective Refinement Method

This section presents an iterative method used to recover the shape and motion using a per-
spective projection model. The method requires accurate initial shape and motion estimates,
as can be provided by paraperspective factorization, and then refines those estimates to
remove distortion caused by unmodeled foreshortening. Shape and motion are refined sepa-
rately, hence we call it “separate perspective refinement.” First the motion is held fixed
while the shape is refined, and subsequently the refined shape is held constant while the
motion is refined. When the initial approximation is fairly accurate, this is a simpler and
more efficient solution than [38], in which all parameters are refined simultaneously. How-
ever, it converges more slowly or even fails to definitively converge when the initial values
are inaccurate. Although our algorithm was developed independently and handles the full
three dimensional case, this method is quite similar to a two dimensional algorithm reported
in [39].

2.4.1. Perspective Projection

Under perspective projection, often referred to as the pinhole camera model, object points
are projected directly towards the focal point of the camera. An object point’s image coordi-
nates are determined by the position at which the line connecting the object point with the
camera’s focal point intersects the image plane, as illustrated in Figure 7.

Simple geometry using similar triangles produces the perspective projection equations

[ s - ]
Sy
P, (. p) ke (s,=t) "
Pfp) = | ™ = (64)
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1 a— 0
Y (s, —tp y

Assuming standard camera parameters, we rewrite the equations in the form

i.-s +x joos +y
PUp = = I (65)
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where
Y=oty Y=gty =kt (66)
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Figure 7. Perspective Projection in two dimensions

2.4.2. Review of Levenberg-Marquardt Minimization

In general, a non-linear least-squares minimization problem is formulated as finding the
vector of unknowns a that minimizes differences between a set of observed values y,, and
the values Y (a) predicted by the model and a. The total error € is measured by summing
the squares of the differences between these values, possibly weighting each error term by
an uncertainty measure g, so that

N [ 2
y i Y,'(a)]
gE= — (67)
i=1 i
The goal is to find the set of variable values a which minimizes this total error sum. Except
for global search techniques, which exhaustively search for an absolute minimum, most
non-linear minimization methods require an initial value for the variables a, and then itera-

tively adjust or refine that set of values to reduce the error €.

Perhaps the most common technique for performing this error minimization is the gradient
descent method. From the initial set of values, the derivative of the error with respect to
each variable a; is computed to form the gradient vector. The method then adjusts a by
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moving some distance in the direction of the gradient, so that the solution is adjusted in a
“downhill” direction which reduces the error. Sometimes a constant step size is used, while
more often it is varied over time. No matter how non-linear an error surface is, as long as the
step size is made small enough, the error can always be decreased by moving in the direc-
tion of the gradient, until a minimum or point of zero gradient is reached.

A more complicated technique is the inverse-Hessian method, which approximates the local
shape of the error surface as a multi-dimensional quadratic bowl. Given a point on the error
surface, the slope of the surface in all directions, and the second derivatives, the method
moves to the point on the surface which, if the surface were actually a quadratic bowl,
would represent the minimum point of that bowl. This enables much quicker convergence
than the gradient descent method, since as long as the error surface is accurately modeled by
a quadratic, it can “jump” directly to the minimum point rather than wander towards the
minimum through a series of steps. However, if the error surface in the vicinity of the cur-
rent point is not accurately modeled by a quadratic bowl, using this method can cause very
large jumps and instabilities.

Levenberg-Marquardt combines the two methods. When the solution is far from the mini-
mum, in areas not well-modeled by the quadratic assumption, gradient descent is used to
keep moving towards the minimum. As the minimum is approached, however, the quadratic
approximation should become more accurate, so the inverse Hessian method is used. Mar-
quardt’s insight was that a smooth weighting between the two methods can be achieved sim-
ply by multiplying the diagonal elements of the Hessian matrix by 1+ A, where the A
parameter is varied dynamically. High values of A cause the method to behave mostly like
the gradient descent method, while low values of A cause the method to approach the
inverse Hessian method.

Press, et al. [31] recommends using the approximate Hessian matrix o, defined by

2 N
10 € layiaYi
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rather than the full Hessian matrix. The full Hessian matrix includes the second derivatives
of ¥; with respect to the a, . Inclusion of these terms can sometimes improve the method’s
convergence rate, but can also lead to unstable behavior. The weighting between the gradi-
ent descent method and the inverse Hessian method is performed by introducing the
weighted Hessian matrix

(69
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The vector B is defined by
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At each iteration of the algorithm, the vector containing the variable values a is updated by
solving a linear system of equations for the step vector da.

oda = B an)

The step vector is added to the parameter set a to determine the new position. If the value of
g at the new position a + 8a is lower than the prior value, then a + 8a is accepted as the new
estimate and the parameter A is decreased, so that the next step will more closely follow the
inverse Hessian method. If the error at a + 8a is greater than the error at a, then the step is
rejected and A is increased, so that the next step will be more steeply downhill. This process
is repeated until convergence is achieved, defined as consecutive iterations producing little
or no reduction in €.

A more thorough review of the Levenberg-Marquardt method, as well as gradient descent
and inverse Hessian methods, can be found in [31] or [12].

2.4.3. Iterative Solution Method

The perspective projection equations are non-linear in the shape and motion variables. We
formulate the problem as an non-linear least squares problem in the motion and shape vari-
ables, in which we seek to minimize the error

F P
= 3 3 (4P G2+ (P 0P (1)
f=1p=1
or equivalently
F P i-s +x,)2 Jers +y.\2
fp °f f p °f
R () N ARerih
f=lp=1 o kst gy P kps, + g

If each if, J £ kf, Xpr Vpo and z, were allowed to vary arbitrarily, there would be 12 motion
variables for each frame, since each of the camera axis vectors contains three elements.
However, we can enforce the constraint that if, j s and kf are orthogonal unit vectors by
writing them as functions of three independent rotational parameters 6., O and @.

cosefcostpf (cosﬂfsin(pfsinmf— sinejcosmf) (cosefsin(pfcoscof+ siansinO)f)
[ifjf kj] = sinefcoscpf (sinefsin(pfsin(of+ cosefcoswf) (sinefsin(pfcoscof— cosefsino)f)
—sin(pf cos<pfsincof COSP,COsW,
(74)
This gives six motion parameters for each frame (x, Yer Zps Of, 0 and (of) and three shape
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parameters for each point (sp = [Spl Spa sp3] ) for a total of 6F + 3P variables.

We could apply any one of a number of non-linear techniques to minimize the error € as a
function of these 6F + 3P variables. Such methods begin with a set of initial variable values,
and iteratively refine those values to reduce the error. If there are many points and many
frames, however, this can become a huge optimization problem. Our method takes advan-
tage of the particular structure of the equations by separately refining the shape and motion
parameters. First the shape is held constant while solving for the motion parameters which
minimize the error. Then the motion is held constant while solving for the shape parameters
which minimize the error. This process is repeated until an iteration produces no significant
reduction in the total error €.

While holding the shape constant, the minimization with respect to the motion variables can
be performed independently for each frame. Each of these minimizations requires solving
an overconstrained system of six variables in P equations. Likewise while holding the
motion constant, we can solve for the shape separately for each point by solving a system of
2F equations in three variables. This not only reduces the problem to manageable complex-
ity, but as pointed out by Szeliski and Kang in [39], it lends itself well to parallel implemen-
tation.

We perform the individual minimizations, fitting six motion variables to P equations or fit-
ting three shape variables to 2F equations, using the Levenberg-Marquardt method
described in the previous section. Since we know the mathematical form of the expression
of &, the Hessian matrix is easily computed by taking derivatives of £ with respect to each
variable.

A single iteration of the Levenberg-Marquardt method requires a single inversion of a 6 x 6
matrix when refining a single frame of motion, or a single inversion of a 3 x 3 matrix when
refining the position of a single point. Generally about six iterations were required for con-
vergence of a single point or frame refinement, so a complete refinement step requires 6P
inversions of 3 x 3 matrices and 6F inversions of 6 x 6 matrices.

In theory we do not actually need to vary all 6F + 3P variables, since the solution is only
determined up to a scaling factor, the world origin is arbitrary, and the world coordinate ori-
entation is arbitrary. We could choose to arbitrarily fix each of the first frame’s rotation vari-
ables at zero degrees, and similarly fix some shape or translation parameters to reduce the
problem to 6F + 3P -7 variables. However, it was experimentally confirmed that the algo-
rithm converged significantly faster when all shape and motion parameters are all allowed to
vary. The final shape and translation are then adjusted to place the origin at the object’s cen-
ter of mass and scale the solution so that the depth }'n the first frame is Tl This shape and the
final motion are then rotated so that i, = [1 0 0] and j, = [0 1 0] , or equivalently, so
that 6, = ¢, = 0, = 0.

A common drawback of iterative methods on complex non-linear error surfaces is that they
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do not find the global minimum, and therefore the final result can be highly dependent on
the initial value. Taylor, Kriegman, and Anandan [39] require some basic odometry mea-
surements as might be produced by a navigation system to use as initial values for their
motion parameters, and use the 2D shape of the object in the first image frame, assuming
constant depth, as their initial shape. To avoid the requirement for odometry measurements,
which will not be available in many situations, we use the paraperspective factorization
method to supply initial values to the iterative perspective refinement process.

2.5. Comparison

In this section we compare the performance of our new paraperspective factorization and
perspective refinement methods with the previous orthographic factorization method. The
comparison also includes the scaled orthographic projection in order to demonstrate the
importance of modeling the position effect for objects at close range. Our results show that
the paraperspective factorization method is a vast improvement over the orthographic
method, and underscore the importance of modeling both the scaling and position effects.
We also show the results of perspectively refining the paraperspective solution. This demon-
strates that modeling of perspective distortion is important primarily for accurate shape
recovery of objects at close range.

2.5.1. Data Generation

The synthetic feature point sequences used for comparison were created by moving a known
“object” - a set of 3D points - through a known motion sequence. We tested three different
object shapes, each containing approximately 60 points. Each test run consisted of 60 image
frames of an object rotating through a total of 30 degrees each of roll, pitch, and yaw. The
“object depth” - the distance from the camera’s focal point to the front of the object - in the
first frame was varied from 3 to 60 times the object size. In the sequences whose graphs are
shown in the following sections, the object also translated across the field of view by a dis-
tance of one object size horizontally and vertically, and translated away from the camera by
half its initial distance from the camera. For example, when the object’s depth in the first
frame was 3.0, its depth in the last frame was 4.5. Each “image” was created by perspec-
tively projecting the 3D points onto the image plane, for each sequence choosing the largest
focal length that would keep the object in the field of view throughout the sequence. The
coordinates in the image plane were perturbed by adding gaussian noise, to model tracking
imprecision. The standard deviation of the noise was 2 pixels (assuming a 512x512 pixel
image), which we consider to be a rather high noise level from our experience processing
real image sequences. For each combination of object, depth, and noise, we performed three
tests, using different random noise each time. Two sample synthetic image sequences are
shown in Figure 8.
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Figure 8. Sample Synthetic Image Sequences

The object used to generate these images consisted of the edges three sides of
a cube of unit size. The far side was given a “notch” in one corner to make it
easier to visually distinguish the front of the object from the back. In the top
sequence, the depth (distance from the camera to the object) in the first frame
was 3 and the depth in the last frame was 4.5. In the bottom sequence, the
depth in the first frame was 30 and the depth in the last frame was 45. Gauss-
ian noise with a standard deviation of 2 pixels was added to each image posi-
tion.

2.5.2. Error Measurement

We ran each of the three factorization methods on each synthetic sequence and measured the
rotation error, shape error, X-Y offset error, and Z offset (depth) error. The rotation error is
the root-mean-square (RMS) of the size in radians of the angle by which the computed cam-
era coordinate frame must be rotated about some axis to produce the known camera orienta-
tion. The shape error is the RMS error between the known and computed 3D point
coordinates. Since the shape and translations are only determined up to scaling factor, we
first scaled the computed shape by the factor which minimizes this RMS error. The term
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“offset” refers to the translational component of the motion as measured in the camera’s
coordinate frame rather than in world coordinates; the X offset is if- ff, the Y offset is if* jf,
and the Z offset is Ef- Rf. These error measures are used directly rather than using them to
first solve for t SO that errors reported in the translation are not also influenced by the errors
in the recovered orientation variables. The X-Y offset error and Z offset error are the RMS
error between the known and computed offset; like the shape error, we first scaled the com-
puted offset by the scale factor that minimized the RMS error. Note that the orthographic
factorization method supplies no estimation of translation along the camera’s optical axis, so
the Z offset error cannot be computed for that method.

2.5.3. Discussion of Results

Figure 9 shows the average errors in the solutions computed by the various methods, as a
functions of object depth in the first frame. We see that the paraperspective method performs
significantly better than the orthographic factorization method regardless of depth, because
orthography cannot model the scaling effect, which occurs due to the motion along the cam-
era’s optical axis. The figure also shows that the paraperspective method performs substan-
tially better than scaled orthographic method at close range, while the errors from the two
methods are nearly the same when the object is distant. This confirms the importance of
modeling the position effect when objects are near the camera. Perspective refinement of the
paraperspective results only marginally improves the recovered camera motion, while it sig-
nificantly improves the accuracy of the computed shape, even up to fairly distant ranges.
This implies that unmodeled perspective distortion in the images effects primarily the shape
portion of the paraperspective factorization method’s solution, and that the effects are sig-
nificant only when the object is within a certain distance of the camera.

The separate refinement method often did not converge to a clear minimum. Instead, after
significantly improving the solution, it began reducing the error by increasingly tiny incre-
ments, at which point iteration was halted. Unfortunately “refinement” of the true shape and
motion values, also shown in Figure 9, is not an alternative in real systems. However, start-
ing at the correct solution shows what is essentially the best we can hope for using the cur-
rent least squares error formulation. Its closeness to the results of perspectively refining the
paraperspective solution shows that the latter method approaches the best results that can be
expected without taking additional knowledge into account. The fact that the two lines of
the graph are not identical could indicate that the error surface contains local minima, or it
could simply be the result of our halting refinement when the error reduction slows drasti-
cally.

In other experiments, whose graphs are not shown, translation in the image plane was elimi-
nated and the object was kept centered in the image. In these experiments, the paraperspec-
tive method and the scaled orthographic method performed equally well, as we would
expect since such image sequences contain no position effects. In still other experiments, the
depth translation was eliminated as well, so that the object remained at a fixed distance from
the camera. The orthographic factorization method performed very well in these experi-
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ments, and the paraperspective factorization method provided no significant improvement
since such sequences contain neither scaling effects nor position effects.

When the object was placed extremely close to the camera, i.e. when the depth is one or two
times the object size, normalization failure occasionally became a problem. Even when the
paraperspective normalization succeeded, separate refinement was unable to remove the dis-
tortions in the object.

The methods were all implemented in C using double floating point precision versions of
the Numerical Recipes in C routines for most of the numerical processing. The factorization
methods each required about 4 seconds to solve the systems of 60 frames and 60 points on a
Sparc 5/85 workstation, with most of the time spent computing the SVD of the measurement
matrix. The separate refinement method required about 85 seconds to solve the same sys-
tem.

2.6. Analysis of Paraperspective Method using Synthetic Data

Now that we have shown the advantages of the paraperspective factorization method over
the previous orthographic factorization method, we further analyze the performance of the
paraperspective method to determine its behavior at various depths and its robustness with
respect to noise. The synthetic sequences used in these experiments were created in the
same manner as in the previous section, except that the standard deviation of the noise was
varied from O to 4.0 pixels.

In Figure 10, we see that at high depth values, the error in the solution is roughly propor-
tional to the level of noise in the input, while at low depths the error is inversely related to
the depth. This occurs because at low depths, perspective distortion of the object’s shape is
the primary source of error in the computed results. At higher depths, perspective distortion
of the object’s shape is negligible, and noise becomes the dominant cause of error in the
results. For example, at a noise level of 1 pixel, the rotation and XY-offset errors are nearly
invariant to the depth once the object is farther from the camera than 10 times the object
size. The shape results, however, appear sensitive to perspective distortion even at depths of
30 or 60 times the object size.

2.7. Paraperspective Factorization Applied to Laboratory Image
Sequence

A hotel model was imaged by a camera mounted on a computer-controlled movable plat-
form. The camera motion included substantial translation away from the camera and across
the field of view, as shown in Figure 11. The feature tracker (described in [42], essentially a
non-hierarchical version of the tracker described in Chapter 3) automatically identified and
tracked 197 points throughout the sequence of 181 images.



page 56

Shape Error x 10e-3

X and Y Offset Error x 10e-6

8.00 I
[ — -- — Noise sigma=4 pixels §
--------- Noise sigma=3 pixels =
7.00 |- —— Noise sigma=2 pixels §
— — = Noise sigma=1.5 pixelsE
— - — Noise sigma=1 pixels ¢
6.00 L — — - Noise sigma=0.5 pixels-S
—— Noise sigma=0 pixels £
~
5.00 |
4.00 |-
3.00
2.00 |-
1.00 |-
0.00 1 ] 1 1 [l ]
0 10 20 30 40 50 60
Depth in 1st Frame
800.00 i 2
— -+ — Noise sigma=4 pixels 7
RS Noise sigma=3 pixels =
0000 & ——— Noise sigma=2 pixels £
L\ — — - Noise sigma=1.5 pixels ™
— = --—- .. Noisesigma=1.pixels 3
600.00 |- y — — - Noise sigma=0.5 pixels%’
: —— Noise sigma=0 pixels
500.00 |-
400.00
300.00
200.00
100.00
0.00 1 1 1 1 1 ]
0 10 20 30 40 50 60

Depth in 1st Frame

3.50 +

3.00

2.50

0.50

0.00

— -+ — Noise sigma=4 pixels
--------- Noise sigma=3 pixels
Noise sigma=2 pixels
. — — Noise sigma=1.5 pixe

—~.._Noise sigma=1 pixels

—_——— ise sigma=0.5 pixe
Noise sigma=0 pixels

1 1 1

——ss |

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

10 20 30 40 50 60
Depth in 1st Frame

— - — Noise sigma=4 pixels
--------- Noise sigma=3 pixels
— Noise sigma=2 pixels
— — — Noise sigma=1.5 pixels/
— - — Noise sigma=1 pixels.-
— — - Noise sigma=0.5 pixtls
—— Noise sigma=0 pi/xels

10 20 30 40 50 60
Depth in Ist Frame

Figure 10. Paraperspective shape and motion recovery by noise level
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Frame 1 Frame 61

Frame 121 Frame 151

Figure 11. Hotel Model Image Sequence

Both the paraperspective factorization method and the orthographic factorization method
were tested with this sequence. The shape recovered by the orthographic factorization
method was rather deformed (see Figure 12) and the recovered motion incorrect, because
the method could not account for the scaling and position effects which are prominent in the
sequence. The paraperspective factorization method, however, models these effects of per-
spective projection, and therefore was able to determine the correct Euclidean shape and
motion.

Several features in the sequence were poorly tracked, and as a result their recovered 3D
positions were incorrect. While they did not disrupt the overall solution greatly, we found
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Figure 12. Comparison of Orthographic and Paraperspective Shape Results

that we could achieve improved results by automatically removing these features in the fol-
lowing manner. Using the recovered shape and motion, we computed the reconstructed mea-
surement matrix W °“" | and then eliminated from W those features for which the average
error between the elements of W and W' °“°" was more than twice the average such error.
We then ran the shape and motion recovery again, using only the remaining 179 features.
Eliminating the poorly tracked features decreased errors in the recovered rotation about the
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camera’s x-axis in each frame by an average of 0.5 degrees, while the errors in the other
rotation parameters were also slightly improved. The final rotation values are shown in Fig-
ure 13, along with the values we measured using the camera platform. The computed rota-
tion about the camera x-axis, y-axis, and z-axis was always within 0.29 degrees, 1.78
degrees, and 0.45 degrees of the measured rotation, respectively.

The system of 181 frames and 197 points required 42 seconds to solve on a Sparc 5/85. This
is in addition to the feature tracking, which required 16 seconds to automatically detect the
features and 6 seconds per image to perform the tracking, for a total of 100 seconds or over
18 minutes.
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3. Confidence-Weighted Tracking and Shape Recovery

This chapter shows how the addition of confidence information to the factorization method
can be used to improve both the tracking and the shape recovery aspects of the factorization
method. We first explain our basic tracking method, and show how to estimate the “track-
ability” of a region of the image to determine whether it would be a good feature. This track-
ability estimate is combined with the tracking residue to provide confidence estimates for
our tracking measures. We then show how these confidence values are used to provide com-
putationally inexpensive inter-level smoothing in our multi-resolution tracking approach.
Finally, we generalize the decbmposition step of the factorization method to incorporate
confidence measures for each feature. This extension allows the method to be applied to
sequences in which features become occluded or leave the field of view, and improves the
accuracy of the shape recovery by weighting the measurements of precisely tracked features
more heavily than those for poorly tracked features.

3.1. Image Motion Estimation

We use the tracking method developed by Lucas and Kanade [17]. This method assumes a
translational model of image feature motion, so that the intensity values of any given region
of an image do not change, but merely shift from one position to another. Given an intensity
feature template F defined over some region R, and an intensity image /, we wish to find the
translation h which minimizes the tracking residue E defined as

E= Y [I(x+h)-F(x)]? (75)

X€ R

The minimum error occurs when the derivative of E with respect to h is zero, or

%E = ¥ 20 (x+h) -F(x)}-aa—hl(x+h) =0 (76)

x€ R

Making the linear approximation that / (x + h) =1/ (x) + h%l (x) , we can solve for the trans-
lation h as

T @

Because a linear approximation for / (x + h) was used, the above formula provides only an
approximate solution for h. However, by iteratively applying this step, the method quickly
converges to the h which yields the minimum error E, using the following formulation.

h, ., =hn+[2(%)T [p(x)—l(x+hn)]:|[z (g_i)(gix)T :I—l (78)
X x+h, x+h,

e[ & o] 3

xX€ R

€ R xX€ R
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Here h, the initial estimate, can be taken as zero if only small displacements are involved.

This method is computationally simple. At each iteration, five quantities are computed by
summation over the image region.

1T
[
s 2L Fe-1(xehy)
e xe R°71
e = [ 1] - x+hn (79)
e
Yoz (Fe-rxeeny)
_XER x2x+h,l ]
| Al )2 (81 )[az J
2 o 2 o)\ a%
= = G“G12 _ xeR[ X x+h, XeR 1 2 x+h )
C12 Oz v oL |9 v | oL ?
. dx; |\ 9x, ” dx,
_xe x+h, X€ x+h, |
Since G is a symmetric 2 x 2 matrix, we compute its inverse simply as
G,, -G
G-l = 1 —| 2 81
G11Gyy -Gy |-Gy, Gy
and the image motion is then given by
h,,, =h +eG! (82)

The image intensity data /(x) is generally defined only for integer values of x, yet the
above equations require calculation of 7 (x + h,) , where h, is not generally an integer. We
use simple bilinear interpolation to estimate the image intensities at non-integral values.

i = Lxl_l

iy =[x
. ; i . . i +1
I(x) = (x)=i)) (xy=iy) I(| Y+ (i +1-x) (k=) I(| * D+ (83)
i i
2

2
Ly + ly

( & o4 ) . . i+
(xl—zl) (12+l—x2)1( et )+ (i, +1-x) (12+l—x2)1( ‘ +1)

Here the function | r | represents the greatest integer of . The same scheme is used to inter-
polate derivatives o1/ ax|x ,p_ At non-integer positions.
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Figure 14. Feature trackability of example image regions
These simple binary images are used to illustrate the trackability of various
image regions. (a) contains no image texture so it would make a poor feature.
(b) and (c) have high gradients, but because the x- and y- gradients are highly
correlated with each other, they also are not trackable. Only feature (d) can
be used as a trackable feature.
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presence of image noise. Features with lower values of A . contain smoother texture, so
image noise is more likely to cause shifts in the computed position of the points. We can
estimate the confidence in the tracking results of a feature as

_ “min
YR = Toan (85)

where n is the noise intensity in the gfven region of the image. We estimate the amount of
noise using the tracking residue E, which is an indicator of the total level of noise and other
deviation from the “translational patch” assumption. Therefore our confidence measure is

_ “min
g = logE (86)
Clearly the scaling factor of these confidence values is arbitrary, as they have units of
(intensity) 2/log (intensity) . Therefore they should only be used to estimate the confi-
dence of feature measurements relative to each other.

3.3. Tracking Despite Large Image Motion

Typical image sequences may contain large inter-frame image motions due to unsteady or
rapid camera motion. Traditional correlation-based tracking techniques using exhaustive
search over a large region of the image are computationally expensive, and gradient-based
techniques cannot follow large image motions due to local minima in the search space. Hier-
archical methods have been studied to address these problems in the optical flow domain
[11(5]. A “pyramid” of reduced resolution or spatially smoothed copies of each original
image is produced, and flow computation proceeds from the lowest resolution or lowest fre-
quency levels of the pyramid to the highest. Eliminating the image’s high-frequency spatial
components enables gradient descent methods to avoid local minima in the search for the
optimal feature displacement values, and allows them to search over a larger region of the
image.

We apply these techniques to the feature tracking domain. Our approach is to first compute a
sparse optical flow map using a novel hierarchical method that incorporates image-based
confidence measures. We then interpolate this map to determine an initial estimate for the
feature tracking stage. The final feature tracking is then performed using the gradient
descent technique described in section 3.1.

3.3.1. Hierarchical Confidence-Weighted Sparse Optical Flow Estimation

The iterative tracking method outlined above produces feature translation results accurate to
within sub-pixel resolution, provided that the initial flow estimate h,, transforms the feature
to within a few pixels of the correct minimum. (The actual range in which the method will
converge to the correct solution depends on the spatial frequency of the image in the track-
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ing region.) However, image sequences taken from unsteady platforms, or sequences with
low temporal sampling frequency often contain motions of 50 pixels or more.

Multi-resolution techniques could be applied to this problem by tracking each feature
throughout the levels of the image pyramid, using windows centered on our initial features,
using the results of tracking this larger version of the feature in one level of the pyramid as a
starting value for tracking in the next higher resolution level of the pyramid. However, there
is no certainty that features identified based on their trackability in the highest resolution
images will still be trackable in low-resolution versions of the same images. This technique
would encounter difficulty when feature points lie near the image borders, and would result
in redundant computation at the highest levels of the pyramid, where all features would
largely overlap.

We use a multi-resolution method to compute a sparse optical flow map between pairs of
consecutive images, which we then interpolate to initially estimate each feature’s transla-
tion. Unfortunately, a major drawback of optical flow is that many regions of typical images
do not contain sufficient texture to produce reliable optical flow estimates. Optical flow
researchers have developed a variety of methods for post-smoothing flow results. However,
all of these methods are computationally expensive, some require very dense optical flow
computation, and some smooth optical flow results even in regions where sufficient texture
information to compute the flow is available, thereby “smoothing over” already accurate
flow results [20][21][27][34]. Extremely accurate flow results are not required for our pur-
poses, since our flow field will simply be interpolated to determine initial values for the fea-
ture tracking, so instead we propose an inexpensive method similar to the method put forth
by Nagel [27].

Rather than post-smoothing the optical flow estimates, we incorporate confidence-weighted
smoothing between the levels of the pyramid into the optical flow computation itself. We
perform the basic optical flow computation using the Lucas-Kanade method described in
section 3.1., expressing our confidence in each flow measurement using the y measure
described in section 3.2. However, at each iteration of the flow computation, the effective
flow estimate is computed by combining the current flow estimate and the flow estimate
from the previous level, weighting each by their respective confidences. The resulting flow
will take advantage of the texture in the current image whenever possible, and inherit the
flow of the larger region from the previous level of the pyramid when insufficient texture
exists in the current image. Since there is no expensive post-smoothing step, and no reliance
on dense flow estimates, this method requires very little additional computation.

To compute the flow at some position (x,y) in pyramid level /, we interpolate from the
flow estimates computed at pyramid level /- 1. The optical flow estimates are sparse, and
have only been computed at certain image positions. Let (x,,y.), (x,y,), (x,5,), and
(x,, ¥,)» be the four points surrounding (x, y) at which flow estimates have been computed.
These four points form a rectangle which (x, y) lies within, as shown in Figure 15. Let the
flow estimates for these four points be u__, u ., u, ,and u,,, and their associated confi-
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Figure 15. Interpolation of Sparse Optical Flow
The flow at the point (x, y) is interpolated from the computed flow values at
the four nearest points where flow has been computed, (x 2V (pyp),
(xb’ ya) , and (xb’ yb) .

dencesbe v, , v, ¥,,> and v,, , respectively. We interpolate between these four measure-
ments to estimate the flow and confidence for (x,y) from level /—1. We first adjust the
confidences to account for the interpolation, by defining

Yaa = (xb‘x) (yb—y)yaa
Yab = (xb_x) (y_ya) Yab
(87)
Yba = (x“xa) (y,-¥) Yba
Ybb = (x‘xa) (.Y'.ya) Yob

These four measurements with associated confidences are combined in the manner sug-
gested by the information fusion theorem [1] to compute the optimal flow estimate and its
associated confidence value.

Yo (xy) = [Yaa + Yab & Yba + Ybb]
(88)
w_ (6y) = [V e T Y gqua + Y gl + Y g, + Y bpUp]

We now modify the standard image motion computation described in section 3.1 to use
u,_,(xy) and y,_,(xy) in the computation of the image motion in level /. We use
u, _, (x,y) asthe initial value h, for iteratively computing the flow at level /. At each iter-
ation, we compute a flow estimate h, using equation (82) and compute the corresponding
confidence y, of the estimate using equation (86). We weight this estimate with the estimate
from the previous level of the pyramid to obtain the actual flow estimate for iteration .



page 68

Y, (53) = (1=0Y+kY,_, (%)
(89)
w, (%) = 7 L= (ighy) +kY,_y Gy hy_y (5,9)]

Here k is a constant weighting factor between 0 and 1 that determines how much confidence
to attach to estimates from lower levels of the pyramid. A weighting factor k = 1 will cause
all flow estimates to be strictly inherited from the previous level without regard to the image
or flow estimates computed at the current level. Using k = O causes each level’s computa-
tion to use the previous level’s flow estimate only as an initial value, but it is does not influ-
ence the flow computation beyond the initialization.

3.3.2. Sparse Optical Flow Results

Our initial hierarchical implementation did not incorporate any confidence-based weighting
from one level to the next. Rather, each level of the pyramid simply interpolated the flow
estimates from the previous level and used that flow estimate as its initial motion estimate
h,, equivalent to the k = O case in the above formulation. This system successfully tracked
feature motions over pixel motions as large as 100 pixels, and worked well for images con-
taining sufficient texture information at all points in the image, such as the aerial image
sequence shown in Figure 16. However, in image sequences containing large, homoge-
neous, textureless regions, the flow results were very poor. Therefore the initial feature posi-
tion estimates of any features near those regions were incorrect, and the feature tracker was
unable to find the correct minimum. The flow computation of this method on a pair of
images from one such sequence is shown in Figure 17. Note that the flow estimates in the
highly textured parts of the image, such as the stovetop, the sink, the calendar, and the upper
portion of the refrigerator, are correct.

Figure 18 shows the results on the same pair of images using an inter-level weighting con-
stant of k = 0.5, though we observed roughly equivalent behavior with & ranging from 0.3
to 0.7. The flow results were substantially improved in portions of the image which lacked
significant image texture, enabling the correct tracking results shown in Figure 19. Notice
that in many cases the correct position of a feature in the second image did not overlap the
feature’s position in the first image at all, so clearly a non-hierarchical method which uses
initial position estimates based on the previous frame would fail. Figure 20 shows the track-
ing results for the aerial sequences, demonstrating that the tracker successfully tracked fea-
ture motions of over 30 pixels.
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Level 3 image and flow Level 4 image and flow

Figure 17. Unsmoothed optical flow - Kitchen Sequence
While the flow results are correct in highly textured regions of the image, the
flow results are very poor in regions containing insufficient texture. The box
in the upper-left corner of each image indicates the size of the region used for
flow computation.
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Level 3 iage and flow Level 4 image and flow

Figure 18. Optical flow using inter-level confidence-based smoothing
In regions containing little or no image texture, the flow at the high-resolu-
tion level of the image pyramid is primarily inherited from the flow in the
previous level of the pyramid, yielding better flow estimates in those regions.
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(a) Image 1 (b) Image 2

Figure 19. Tracking Results for Kitchen Sequence
(a) The features for this sequence were automatically chosen from the first
image according to their A . values. (b) The tracked position of each fea-
ture in the second image is shown in black, while white squares mark the
same coordinates at which each feature was detected in the first frame.



frame 72 frame 73

Figure 20. Tracking Results for Aerial Image Sequence
This pair of images was chosen for the large inter-frame displacement. The
right image shows the feature positions in the 73rd image of the sequence,
with lines pointing to the positions in the previous image. Many of the fea-
tures are displaced by 30 or more pixels.
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3.4. Factorization Despite Occluded and Uncertain Tracking Data

So far, our formulation of the factorization method has assumed that all of the entries of the
measurement matrix are known and are equally reliable. In real image sequences, this is not
generally the case. Some feature points are not tracked throughout the entire sequence
because they leave the field of view, become occluded, or change their appearance signifi-
cantly enough that the feature tracker can no longer track them. As the object moves, new
feature points can be detected on parts of the object which were not visible in the initial
image. Thus the measurement matrix W is not entirely filled; there are some pairs (f, p) for
which (u oV fp) was not observed.

Not all observed position measurements are known with the same confidence. Some feature
windows contain sharp, trackable features, enabling exact localization, while others may
have significantly less texture information. Some matchings are very exact, while others are
less exact due to unmodeled change in the appearance of a feature. Previously, using some
arbitrary criteria, each measurement was either accepted or rejected as too unreliable, and
then all accepted observations were treated equally throughout the method.

We address both of these issues by assigning a confidence value to each measurement using
equation (86), and modify the shape and motion recovery to weight each measurement by its
corresponding confidence value. If a feature is not observed in some frames, the confidence
values for the measurements corresponding to those frames are set to zero.

3.4.1. Confidence-Weighted Formulation

We can view the decomposition step of Section 2.3.4 as a way, given the measurement
matrix W, to compute an M, S, and T that satisfy the equation

W = M§+T[1 1] (90)

There, our first step was to compute T directly from W. We then used the SVD to factor the
matrix W* = W- T[l 1] into the product of i and 3. In fact, using the SVD to perform
this factorization produced an M and § that, given W and the T just computed from W,

minimized the error

2F P 2

-y ¥ ( ~(#e 181y 4 0,035, + W38, 4T, )) ©1)

r=1p=
In our new confidence-weighted formulation, we associate each element of the measure-
ment matrix W __ with a confidence value Yy . We incorporate these confidences into the
factorization method by reformulating the decomposmon step as a standard weighted least
squares problem where each measurement W _  has a standard deviation inversely propor-
tional to Yyp We seek the #, §, and T which minimize the error
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7 S 7 S 7 S 2
2F P [wrp_(Mrlslp+M,2szp+M,3s3p+Tr)] o
1

l/Y,,,

Note that the scale of the v, ' is arbitrary, as is the constant of proportionality relating these
confidence values to the standard deviations of the feature measurements. However, this
effects € only by a constant factor, and will not effect the values of the final M,S,and T
chosen to minimize €. Once we have solved this minimization problem for 41, S,and T, we
will proceed with the normalization step and the rest of the shape and motion recovery pro-
cess precisely as before.

3.4.2. Iterative Solution Method

There is sufficient mathematical constraint to compute #/, S, and T, provided the number of
known elements of W, i.e. elements of W for which y, >0, exceeds the total number of
variables (8F + 3P). The minimization of equation (91) 1s a nonlinear least squares problem
because each term contains products of the variables Mr/ and S . However, it is separable;
the set of variables can be partitioned into two subsets, the motxon variables and the shape
variables, so that the problem becomes a simple linear least squares problem with respect to
one subset when the other is known. Unfortunately there does not appear to be any exten-
sion of the SVD method to address the problem of weighted decomposition. Instead, we use
a variant of an algorithm suggested by Ruhe and Wedin [32] for solving such problems - one
that is equivalent to alternately refining the two sets of variables. In other words, we hold §
fixed at some value and solve for the # and T which minimize €. Then holding # and T
fixed, we solve for the § which minimizes €. Each step of the iteration is simple and fast
since, as we will show shortly, it is a series of linear least squares problems. We repeat the
process until a step of the iteration produces no significant reduction in the error €.

To compute # and T for a given S, we first rewrite the minimization of equation (91) as

P
Y e, where g = ) erp( W,,- (M”Sl,, + M5S0, + M,355, + Tr))z . (93)
r=1 =
For a fixed 3, the total error € can be minimized by independently minimizing each error
€,, since no motion variable appears in more than one € _ equation. Each & describes a
weighted linear least squares problem in the variables #,,, #,,, M,3, and T,. For every
row r, the four variables are computed by finding the least squares solution to the overcon-
strained linear system of 4 variables and P equations
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A n A Mrl
S1Yer S21% S31Y Vi ., Wt
=1 .. (94)
$1pY,p S2pY,p § M) W,y
1PYrp O2PY,p 93PY,p Yyrp T rPlrp
i

Many of the Y,, may be zero, so we only include those rows of the above equation which
are not zero.

Similarly, for a fixed # and T, each p*# column of § can be computed independently of the
other columns, by finding the least squares solution to the linear system of 3 variables and
2F equations

My, Moy, Mgy, S Wi,=TPT,
= (95)

Wag, p=Tap) Yap,,

S2p
M2F; 1Y2F,p M2F, 2Y2F,p MZF, 3Y2F,p 3'317

As in any iterative method, an initial value is needed to begin the process. Our initial exper-
iments showed, however, that when the confidence matrix contained few zero values, the
method consistently converged to the correct solution in a small number of iterations, even
beginning with a random initial value. For example, in the special case of Y,, = 10 (which
corresponds to the case in which all features are tracked throughout the entire sequence and
are known with equal confidence), the method always converged in 5 or fewer iterations,
requiring even less time than computing the singular value decomposition of W; when the
Y,, were randomly given values ranging from 1 to 10, the method generally converged in 10
or fewer iterations; and with a y whose fill fraction (fraction of non-zero entries) was 0.8,
the method converged in 20 or fewer iterations. However, when the fill fraction decreased to
0.6, the method occasionally failed to converge even after 100 iterations.

In order to apply the method to sequences with lower fill fractions, it is critical that we
obtain a reasonable initial value before proceeding with the iteration. We developed an
approach analogous to the propagation method described in [43]. We first find some subset
of the rows and some subset of the columns of W for which all of the confidences of mea-
surements belonging to both subsets are non-zero. A simple choice would be to select all of
the features which are visible in the first frame, and all of the frames from the first frame to
the first frame in which one of those features disappears. These subsets could be enlarged by
a simple greedy algorithm in which points with short feature tracks are discarded, enabling
more features to be included in the subset, until the total number of measurements included
in the subset reaches a maximum. The method we actually use improves over this approach
slightly. We first choosing the point which was seen in the largest number of frames and
place it in the subset. We then consider other points to add in descending order of the total
number of frames in which they were observed, and use the simple greedy heuristic
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described above. In practice, it seems to work well for realistic fill patterns.

Once we have chosen our initial subset, we solve for the corresponding rows of # and T
and columns of § for the subset by running the iterative method starting with a random ini-
tial value. As indicated above, since this subset has a fill fraction of 1, this converges
quickly, producing estimated values for this subset of #7, S, and T. We can solve for one
additional row of # and T by solving the linear least squares problem of equation (94)
using only the known columns of §. We can solve for one additional column of S by solv-
ing the linear least squares problem of equation (95) using only the known rows of # and
T. We continue solving for additional rows of #1 and 7 or columns of § until #7, §, and T
are completely known. Using this as the initial value allows the iterative method to converge
in far fewer iterations.

3.4.3. Analysis of Weighted Factorization using Synthetic Data

We tested the confidence-weighted paraperspective factorization method with artificially
generated measurement matrices and confidence matrices whose fill fraction (fraction of
non-zero entries) was varied from 1.0 down to 0.2. Creating a confidence matrix that has a
given fill fraction and a fairly realistic fill pattern (the arrangement of zero and non-zero
confidence values) is a non-trivial task. First, a surface was manually created to connect the
three dimensional points of the synthetic object. This allowed us to automatically determine
at what point in a motion sequence any given point would become occluded, and when it
would become visible again, producing a synthetic fill pattern. These feature tracks are then
extended or shortened until the desired fill fraction is achieved. In the case of lengthening
the feature tracks, this is not a strictly realistic fill pattern since it is assuming that a point
remains visible for a few frames after some occluding surface has passed in front of it. How-
ever, it was an effective way to test the shape reconstruction using the same object for a vari-
ety of fill fractions.

Figure 21 shows how the performance degrades as the noise level increases and fill fraction
decreases. The synthetic sequences were of a single object consisting of 99 points, initially
located 60 times the object size from the camera. Each data point represents the average
solution error over 5 runs, using a different seed for the random noise. The motion, method
of generating the sequences, and error measures are as described in Section 2.5.

Errors in the recovered motion only increase slightly as the fill fraction decreases from 1.0
to 0.5. At a very low noise level, such as 0.1 pixels, this behavior continues down to a fill
fraction of 0.3. When the fill fraction is decreased below this range, however, the error in the
recovered motion increases very sharply. The shape results appear more sensitive to
decreased fill fractions; as the fill fraction drops to 0.8 or lower, the shape error increases
sharply, and then increases dramatically when the fill fraction reaches 0.6 or 0.5. While the
system of equations defined by equation (91) is still overconstrained at these lower fill frac-
tions, apparently there is insufficient redundancy to overcome the effects of the noise in the
data.
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The methods were implemented in C using the Numerical Recipes in C routines for matrix
operations and numerical methods. The time required to solve the system of 60 frames and
99 points depends on the number of iterations required for convergence, which seemed to
vary significantly even for scenarios with the same parameters. Typical numbers of itera-
tions and running times on a Sparc 5/85 workstation are summarized in the following table.

Table 3: Running Time of Confidence-Weighted Factorization

Fill Fraction Number of Iterations | Total Solution Time
0.7-1.0 4-7 5-7.5 seconds
0.6 5-11 6-12
0.5 10-25 9-14
04 20-50 16-24
0.3 50-100 38-45
0.2 100+ 38-40%

a. For the case of a 0.2 fill fraction, each iteration requires examining on av-
erage 33% fewer measurements than for the 0.3 fill fraction case, so its typ-
ical solution time is the same or lower even when it executes more iterations.

3.4.4. Discussion

The weighted factorization method is able to handle moderate amounts of occlusion quite
effectively and account for varying feature confidences at nearly the same computational
cost as the unweighted version of the factorization method. It’s behavior degrades gracefully
up to a certain point at which it tends to fail catastrophically, even though theoretically in
those situations the problem is still overconstrained. For problems with low fill fractions, the
initial value is determined by first solving a very small system and then extending the solu-
tion one row or column at a time while keeping estimates for all previous rows or columns
fixed. Small errors at any step of the process can have large effects on the values subse-
quently. Additionally the refinement method is limited to refining the affine shape and
motion separately. In some cases, the error could be reduced significantly by rotating a por-
tion of the shape and motion by some rotation matrix so that it better aligns with other parts
of the solution. However, the shape and motion cannot be updated simultaneously, and rotat-
ing only the shape or only the motion is likely to cause large increases in the error rather
than reductions. Therefore the method must proceed in tiny steps, rotating the motion by a
small amount, subsequently rotating the shape by that amount, and so on. This explains the
observed behavior of the method at low fill fractions; rather than clearly converge, reduction
of the error slows drastically, improving by tiny amounts until the limit of 100 iterations is
reached. The limitation of this method is nearly the same as that of the separate refinement
method - inability to refine shape and motion simultaneously.
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While we have detailed our experimental results as functions of the fill fraction, the errors in
fact seem to depend on more than simply the fill fraction. Smaller sized problems than the
ones used here tend to experience failure at higher fill fractions, while for larger sized prob-
lems the methods seem to work even at lower fill fractions (see next section). This may be
attributable to the fact that a given fill fraction indicates less redundancy in the information
for a smaller problem than for a larger problem. The performance may be more closely
related to the number of non-zero confidences per row or column, or to some measure which
also accounts for the overall length of the sequence or total number of points in addition to
the fill fraction. Even for problems of the same size and fill fraction, the performance of the
method seems to vary according depending on the particular fill pattern of observed and
unobserved measurements.

3.5. Application to Aerial Image Sequence

An aerial image sequence was taken from a small airplane overflying a suburban Pittsburgh
residential area adjacent to a steep, snowy valley, using a small hand-held video camera.
The plane altered its altitude during the sequence and also varied its roll, pitch, and yaw
slightly. Several images from the sequence are shown in Figure 22.

Due to the bumpy motion of the plane and the instability of the hand-held camera, features
often moved by as much as 30 pixels from one image to the next, but the multi-resolution
feature tracker was able to accurately track these motions accurately. The sequence covered
a long sweep of terrain, so none of the features were visible throughout the entire sequence.
As some features left the field of view, new features were automatically detected and added
to the set of features being tracked. A vertical bar in the fill pattern (shown in Figure 22)
indicates the range of frames through which a feature was successfully tracked. Each
observed data measurement was assigned a confidence value based on the gradient of the
feature and the tracking residue. A total of 1026 points were tracked in the 108 image
sequence with each point being visible for an average of 30 frames of the sequence, for an
overall fill fraction of 28%.

Feature detection required 22 seconds to detect the initial 300 features, and tracking
between frames required about 7 seconds per frame on a Sparc 5/85 workstation. New fea-
tures were detected 26 times during the course of the sequence, whenever the number of vis-
ible features dropped below 250. These feature detections took only 12-16 seconds, since
much of the image was “blocked out” by the existing features. The total time spent in the
feature detection and tracking stage was 1068 seconds, or just under 18 minutes.

The confidence-weighted paraperspective factorization method was used to recover the
shape of the terrain and the motion of the airplane. An initial block was chosen in which 36
points were seen in the same 57 frames. Solving this 144 x 36 system converged in only 7
iterations. The solution was extended one row or column at a time and then all variables
were iteratively refined. The entire solution required an additional 48 iterations to converge
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to a solution. Total computation to compute the shape and motion of the 1026 point object
over 108 frames was 460 seconds, or 7 minutes and 40 seconds. Two views of the recon-
structed terrain map are shown in Figure 23. While no ground-truth was available for the

Figure 23. Reconstructed Terrain from Two Viewpoints

shape or the motion, we observed that the terrain was qualitatively correct, capturing the flat
residential area and the steep hillside as well, and that the recovered positions of features on
buildings were elevated from the surrounding terrain.



