The Amulet V2.0 Reference Manual

Brad A. Myers,
Alan Ferrency, Rich McDaniel, Robert C. Miller,
Patrick Doane, Andy Mickish, Alex Klimovitski

February, 1996
CMU-CS-95-166-R1
CMU-HCII-95-102-R1

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

This manual describes Version 2.0 of the Amulet User Interface Toolkit, and replaces all previous
versions: CMU-CS-95-166/ CMU-HCII-95-102 (June, 1995), and all change documents.

Copyright © 1996 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N 66001-94-C-6037,
Arpa Order No. B326. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of NCCOSC or the U.S. Government.






Keywords: User Interface Development Environments, User Interface Management Systems,
Constraints, Prototype-Instance Object System, Widgets, Object-Oriented Programming, Direct
Maniuplation, Input/Output, Amulet, Garnet.






Abstract

The Amulet User Interface Development Environment con-
tains a comprehensive set of tools that make it significantly
easier to design and implement highly interactive, graphical,
mented in Amulet will run without modification on Unix,
PC, and Macintosh platforms. Amulet provides a high lev-
el of support, while still being Look-and-Feel independent
and providing applications with tremendous flexibility.
Amulet currently provides a low-level toolkit layer, which is
an object-oriented, constraint-based graphical system that allows
properties of graphical objects to be specified in a simple, declar-
ative manner, and the maintained automatically by the system.
The dynamic, interactive vehavior of the objects can be specified
separately by attaching high-level "interactor" objects to the
graphics. Higher-level tools are currently in production, which
will allow user interfaces to be layed out without programming.

standard Quickdraw on the Macintosh. This document

contains an overview of Amulet with download and instal-
lation instructions, a tutorial, and a full set of reference man-
uals for the Amulet system.












TABLE OF CONTENTS

1. AMUIELt V2.0 OVeIVIEW. o v v et vvveersseeenosscnnnsecesnnssesssl3

1.1 Introduction
1.2 Amulet Email Addresses
1.3 Using Amulet in Products: Copyright and Licensing
1.4 How to Retrieve and Install Amulet
1.4.1 The Amulet Manual
1.4.2 Retreiving the Amulet source code distribution
1.4.2.1 Retrieving the source distribution via FTP
1.4.2.2 Retrieving the source distribution via WWW
1.4.3 Installing Amulet on a PC
1.4.3.1 Unpacking amulet.zip
1.4.3.2 Windows Environment Variables
1.4.3.3 Configuring Visual C++
1.4.3.4 Visual C++ Project Files
1.4.3.5 Compiling The Amulet Library
1.4.3.6 Compiling Test Programs and Demos
1.4.3.7 Using console.cpp to Simulate a Terminal Window
1.4.3.8 Writing and Compiling New Programs Using Amulet
1.4.3.9 PC filenames
1.4.4 Installating Amulet on a Unix Workstation
1.4.4.1 Unpacking amulet.tar.Zz
1.4.4.2 Setting your Environment Variables
1.4.4.3 Generating the Amulet Library File
1.4.4.4 Compiling Test Programs and Examples
1.4.4.5 Writing and Compiling New Programs Using Amulet
1.4.4.6 Customizing the Makefile.vars.custom Variables
1.4.4.7 Why is my application so big?
1.4.5 Installing Amulet on a Macintosh
1.4.5.1 Unpacking amulet.sea.hgx
1.4.5.2 Macintosh Environment Variables
1.4.5.3 Creating the Precompiled Header file
1.4.5.4 Compiling The Amulet Library
1.4.5.5 Compiling Test Programs and Demos
1.4.5.6 Writing and Compiling New Programs Using Amulet
1.5 Test Programs and Demos
1.6 Amulet Header Files
1.6.1 Basic header files
1.6.2 Advanced header files
1.6.3 Standard Header File Macros
1.7 Parts of Amulet
1.8 Known Bugs
1.8.1 Linux bugs
1.8.2 Visual C++ bugs
1.8.3 Macintosh Bugs

15
16
16
17
17
18
18
18
18
19
19
19
19
20
20
21
21
22
2
22
22
24
24
24
25
27
28
28
28
28
29
29
30
30
31
31
32
33
34
34
34
35

35



1.9 Changes since Version 1.2

1.9.1 Changes from V2.0 beta to V2.0 official release
1.9.1.1 Minor Changes
1.9.1.2 Bug Fixes

1.9.2 Changes from V2.0 alpha to V2.0 beta
1.9.2.1 Major Changes
1.9.2.2 Minor Changes
1.9.2.3 Bug Fixes

1.9.3 Major Changes between V1.2 and V2.0alpha

1.9.4 Minor Changes between V1.2 and V2.0alpha

1.9.5 Very Minor Changes between V1.2 and V2.0alpha
1.9.6 Bug Fixes between V1.2 and V2.0alpha

1.9.7 Summary of Non-Backwards Compatible Changes
1.9.7.1 Details
1.10 Formal, Legal Language

2. Amulet Tutorial .....

2.1 Setting Up
2.1.1 Install Amulet in your Environment
2.1.2 Copy the Tutorial Starter Program
2.2 The Prototype-Instance System
2.2.1 Objects and Slots
2.2.2 Dynamic Typing
2.2.3 Inheritance
2.2.4 Instances
2.2.5 Prototypes
2.2.6 Default Values
2.2.7 Destroying Objects
2.2.8 Unnamed Objects
2.3 Graphical Objects
2.3.1 Lines, Rectangles, and Circles
2.3.2 Groups
2.3.3 Am_Group
2.3.4 Am_Map
2.3.5 Windows
2.4 Constraints
2.4.1 Formulas
2.4.2 Declaring and Defining Formulas
2.4.3 An Example of Constraints
2.4.4 Values and constraints in slots
2.4.5 Constraints in Groups
2.4.6 Common Formula Shortcuts
2.5 Interactors
2.5.1 Kinds of Interactors
2.5.2 The Am_One_Shot_Interactor
2.5.3 The Am_Move_Grow_Interactor



2.5.4 A Feedback Object with the Am_Move_Grow_Interactor
2.5.5 Command Objects
2.5.6 The Am_Main_Event_Loop
2.6 Widgets
2.7 Debugging
2.7.1 The Inspector
2.7.2 Tracing Interactors

3. ORE Object and Constraint System ...... ceeeianan

3.1 Introduction
3.2 Include Files
3.3 Objects and Slots
3.3.1 Get and Set
3.3.2 Slot Keys
3.3.3 Value Types
3.3.4 The Basic Types
3.3.5 Bools
3.3.6 The Am_String Class
3.3.7 Using Wrapper Types
3.3.7.1 Standard Wrapper Methods
3.3.8 Storing Methods in Slots
3.3.9 Using Am_Value To Get A Slot Without Errors
3.4 Inheritance: Creating Objects
3.5 Destroying Objects
3.6 Parts
3.6.1 Parts Can Have Names
3.6.2 How Parts Behave With Regard To Create and Copy
3.6.3 Other Operations on Parts
3.7 Formulas
3.7.1 Formula Functions

3.7.1.1 Declaring Formulas
3.7.1.2 Formulas Returning Multiple Types

3.7.2 Using GV
3.7.3 Putting Formulas into Slots
3.7.4 Slot Setting and Inheritance of Formulas
3.7.5 Calling a Formula Procedure From Within Another Formula
3.8 Lists
3.8.1 Current pointer in Lists
3.8.2 Adding items to lists
3.8.3 Other operations on Lists
3.9 Iterators
3.9.1 Reading Iterator Contents
3.9.2 Types of Iterators
3.9.3 The Order of Iterator Items
3.10 Errors
3.11 Advanced Features of the Object System

72
73
73
74
76
76
77

..79

81
81
82
82
83
84
85
86
86
87
87
88
89
9
92
92
93
93
94
94
95
96
96
97
98
99
99
100
100
101
101
102
102
103
103
104
104



3.11.1 Destructive Modification of Wrapper Values 104

3.11.2 Writing a Wrapper Using Amulet’s Wrapper Macros 106
3.11.2.1 Creating the Wrapper Data Layer 106
3.11.2.2 Using The Wrapper Data Layer 108
3.11.2.3 Creating The Wrapper Outer Layer 109

3.11.3 The Am_Web Constraint 110
3.11.3.1 The Validation Procedure 111
3.11.3.2 The Create and Initialization Procedures 112
3.11.3.3 Installing Into a Slot 113

3.11.4 Using Am_Object_Advanced 113

3.11.5 Controlling Slot Inheritance 114

3.11.6 Controlling Formula Inheritance 115

3.11.7 Writing and Incorporating Demon Procedures 115
3.11.7.1 Object Level Demons 116
3.11.7.2 Slot Level Demons 117
3.11.7.3 Modifying the Demon Set and Activating Slot Demons 118
3.11.7.4 The Demon Queue 119
3.11.7.5 How to Allocate Demon Bits and the Eager Demon 120

4. Opal Graphics System .......... chceseaaeans I s .. 121
4.1 Overview 123
4.1.1 Include Files 123
4.2 The Opal Layer of Amulet 123
4.3 Basic Concepts 124

4.3.1 Windows, Objects, and Groups 124

4.3.2 The “Hello World” Example 125

4.3.3 Initialization and Cleanup 126

4.3.4 The Main Event Loop 126

4.3.5 Am_Do_Events 126

4.4 Slots Common to All Graphical Objects 127

4.4.1 Left, Top, Width, and Height 127

4.4.2 Am_VISIBLE 127

4.4.3 Line Style and Filling Style 127

4.4.4 Amn_HIT_THRESHOLD and Am_PRETEND_TO_BE_LEAF 128

4.5 Specific Graphical Objects 128

4.5.1 Am_Rectangle 129

4.5.2 Am_Line 129

4.5.3 Am_Arc 130

4.5.4 Am_Roundtangle 130

4.5.5 Am_Polygon 132
4.5.5.1 The Am_Point_List Class 133
4.5.5.2 Using Point Lists with Am_Polygon 134

4.5.6 Am_Text 135
4.5.6.1 Fonts 136
4.5.6.2 Functions on Text and Fonts 136
4.5.6.3 Editing Text 137

4.5.7 Am_Bitmap 137

4.5.7.1 Loading Am_Image Arrays From a File 138



4.5.7.2 Using Images with Am_Bitmap
4.6 Styles

4.6.1 Predefined Styles

4.6.2 Creating Simple Line and Fill Styles
4.6.2.1 Thick Lines
4.6.2.2 Halftone Stipples

4.6.3 Customizing Line and Fill Style Properties
4.6.3.1 Color Parameter
4.6.3.2 Thickness Parameter
4.6.3.3 Cap_Flag Style Parameter
4.6.3.4 Join_Flag Style Parameter
4.6.3.5 Dash Style Parameters
4.6.3.6 Fill Style Parameters
4.6.3.7 Stipple Parameters

4.6.4 Getting Style Properties
4.7 Groups
4.7.1 Adding and Removing Graphical Objects

4.7.2 Layout
4.7.2.1 Vertical and Horizontal Layout
4.7.2.2 Custom Layout Procedures

4.7.3 Am_Resize_Parts_Group
4.8 Maps
4.9 Methods on all Graphical Objects
4.9.1 Reordering Objects
4.9.2 Finding Objects from their Location
4.9.3 Beeping
4.9.4 Filenames
4.9.5 Translate Coordinates
4.10 Windows
4.10.1 Slots of Am_Window
4.10.2 Destroying windows
4.11 Am_Screen
4.12 Predefined formula constraints

3. Interactors and Command Objects for Handling Input. . .

5.1 Include Files
5.2 Overview of Interactors and Commands
5.3 Standard Operation
5.3.1 Designing Behaviors
5.3.2 General Interactor Operation
5.3.3 Parameters
5.3.3.1 Events
5.3.3.2 Graphical Objects

5.3.3.3 Active
5.3.3.4 Am_Inter_Iocation

5.3.4 Top Level Interactor
5.3.5 Specific Interactors
5.3.5.1 Am_Choice_Interactor

138
138
139
139

139

140
140

141

141

142

142

142

143

143
144
145
146
146

147

148
148
149
151
151
151
152
152
153
154
155
156
156
156

161
161
162
162
163
164
164
167
169
169

171
171
172



5.3.5.2 Am_One_Shot_Interactor
5.3.5.3 Am_Move_Grow_Interactor
5.3.5.4 Am_New_Points_Interactor
5.3.5.5 Am_Text_Edit_Interactor
5.3.5.6 Am_Gesture_Interactor
5.4 Advanced Features
5.4.1 Output Slots of Interactors
5.4.2 Priority Levels
5.4.3 Multiple Windows
5.4.4 Running_Where
5.4.5 Starting, Stopping and Aborting Interactors
5.4.6 Support for Popping-up Windows and Modal Windows
5.5 Customizing Interactor Objects
5.5.1 Adding Behaviors to Interactors
5.5.1.1 Available slots of Am_Choice_Interactor and Am_One_Shot_Interactor
5.5.1.2 Available slots of Am_Move_Grow_Interactors
5.5.1.3 Available slots of Am_New_Point_Interactors
5.5.1.4 Available slots of Am_Text_Interactors
5.5.1.5 Available slots of Am_Gesture_Interactors
5.5.2 Modifying the Behavior of the Built-in Interactors
5.5.3 Entirely New Interactors
5.6 Command Objects
5.6.1 Implementation_Parent hierarchy
5.6.2 Undo
5.6.2.1 Enabling and Disabling Undoing of Individual Commands
5.6.2.2 Using the standard Undo Mechanisms
5.6.2.3 The Selective Undo Mechanism
5.6.2.4 Building your own Undo Mechanisms
5.7 Debugging

174
175
178
180
182

187
187
188
189
190
190
191
192
192
193
194
194
194
194
194
195
196
197
198
199
199

200
203

204

6. Widgets . ..ovvevinrieerenennossosoonscsssscsscnssensaanas 207

6.1 Introduction
6.1.1 Current Widgets
6.1.2 Customization
6.1.3 Using Widget Objects
6.1.4 Application Interface
6.1.4.1 Accessing and Setting Widget Values
6.1.4.2 Commands in Widgets
6.1.4.3 Undoing Widgets
6.2 The Standard Widget Objects
6.2.1 Slots Common to All Widgets
6.2.2 Border_Rectangle

6.2.3 Buttons and Menus
6.2.3.1 Commands in Buttons and Menus
6.2.3.2 Accelerators for Commands
6.2.3.3 Am_Menu_Line_Command
6.2.3.4 Am_Button
6.2.3.5 Am_Button_Panel
6.2.3.6 Am_Radio_Button_Panel

209
209
210
211
211
211
212
212
212
212
214
214
215
216
216
217
218
221



6.2.3.7 Am_Checkbox_Panel
6.2.3.8 Am_Menu
6.2.3.9 Am_Menu_Bar
6.2.3.10 Am_Option_Button
6.2.4 Scroll Bars
6.2.4.1 Integers versus Floats
6.2.4.2 Commands in Scroll Bars
6.2.4.3 Horizontal and vertical scroll bars
6.2.4.4 Am_Scrolling_Group
6.2.5 Am_Text_Input_Widget
6.2.5.1 Command in the Text Input Widget
6.2.5.2 Tabbing from Widget to Widget
6.2.6 Am_Selection_Widget
6.2.6.1 Application Interface for Am_Selection_Widget
6.2.6.2 User Interface to Am_Selection_Widget
6.3 Dialog boxes
6.3.1 Support functions for Dialog Boxes
6.3.2 Slots of dialog boxes
6.3.3 Am_Text_Input_Dialog slots
6.4 Supplied Command Objects
6.4.1 Graphics Clipboard
6.4.2 Am_Graphics_Set_Property_Command
6.5 Starting, Stopping and Aborting Widgets

7. Gem: Amulet Low-Level Graphics Routines. ...

7.1 Introduction
7.2 Include Files
7.3 Drawonables
7.3.1 Creating Drawonables
7.3.2 Modifying and Querying Drawonables
7.4 Drawing
7.4.1 General drawonable operations
7.4.2 Size Calculation for Images and Text
7.4.3 Clipping Operations
7.4.4 Regions
7.4.5 Drawing Functions
7.5 Event Handling
7.5.1 Am_Input_Event_Handlers

7.5.2 Input Events
7.5.2.1 Multiple Click Events
7.5.3 Main Loop

8. Debugging and the Inspector .............

8.1 Introduction
8.2 Include Files
8.3 Inspector
8.3.1 Invoking the Inspector



8.3.1.1 Changing the Keys 260

8.3.2 Overview of Inspector User Interface and Menus 261
8.3.3 Viewing and Editing Slot Values 265
8.4 Accessing Debugging Functions Procedurally 265
8.5 Hints on Debugging 266
10. Summary of Exported Objects and Slots. ......... ceseenseaed 209
10.1 Am_Style 271
10.1.1 Constructors and Creators 271
10.1.2 Style Accessors 272
10.1.3 Color styles 272
10.1.4 Thick and dashed line styles 272
10.1.5 Stippled styles 273
10.1.6 Am_No_Style 273
10.2 Am_Font 273
10.2.1 Constructors 273
10.2.2 Predefined Font 273
10.3 Predefined formula constraints 274
10.4 Opal Graphical Objects 275
10.4.1 Am_Graphical_Object 275
10.4.2 Am_Line 275
10.4.3 Am_Rectangle 276
10.4.4 Am_Arc 276
10.4.5 Am_Roundtangle 277
10.4.6 Am_Polygon 277
10.4.7 Am_Text 278
10.4.8 Am_Bitmap 278
10.4.9 Am_Group 279
10.4.9.1 Am_Resize_Parts_Group 279
10.4.10 Am_Map 280
10.4.11 Am_Window 281
10.5 Interactors 282
10.5.1 Am_Interactor 282
10.5.2 Am_Choice_Interactor 283
10.5.3 Am_One_Shot_Interactor 283
10.5.4 Am_Text_Edit_Interactor 284
10.5.5 Am_Move_Grow_Interactor 284
10.5.6 Am_New_Points_Interactor 285
10.5.7 Am_Gesture_Interactor 285
10.6 Widget objects 287
10.6.1 Am_Border_Rectangle 287
10.6.2 Am_Button 288
10.6.3 Am_Button_Panel 289
10.6.4 Am_Radio_Button_Panel: Am_Button_Panel 290
10.6.5 Am_Checkbox_Panel: Am_Button_Panel 290

10.6.6 Am_Menu: Am_Button_Panel 291



Page 11

10.6.7 Am_Menu_Bar: Am_Menu 291
10.6.8 Am_Vertical_Scroll_Bar 292
10.6.9 Am_Horizontal Scroll Bar 292
10.6.10 Am_Scrolling_Group 293
10.6.11 Am_Text_Input_Widget 294
10.6.11.1 Am_Tab_To_Next_Widget_Interactor 294
10.6.12 Am_Selection_Widget 295
10.6.13 Am_Option_Button 295
10.6.14 Am_Alert_Dialog 295
10.6.15 Am_Text_Input_Dialog 296
10.6.16 Am_Choice_Dialog 296
10.7 Command Objects 297
10.7.1 Am_Command 297
10.7.2 Am_Menu_Line_Command 297
10.7.3 Am_Selection_Widget_Select_All_Command 298
10.7.4 Am_Graphics_Set_Property _Command 298
10.7.5 Am_Graphics_Clear_Command 298
10.7.6 Am_Graphics_Clear_All_Command 299
10.7.7 Am_Graphics_Cut_Command 299
10.7.8 Am_Graphics_Copy_Command 299
10.7.9 Am_Graphics_Paste_Command 300
10.7.10 Am_Graphics_Duplicate_Command 300
10.7.11 Am_Graphics_Group_Command 300
10.7.12 Am_Graphics_Ungroup_Command 301
10.7.13 Am_Undo_Command 301
10.7.14 Am_Redo_Command 301
10.7.15 Am_Graphics_To_Top_Command 302
10.7.16 Am_Graphics_To_Bottom_Command 302
10.7.17 Am_Show_Undo_Dialog_Box_Command 302
10.7.18 Am_Quit_No_Ask_Command 303
10.8 Undo objects 303
10.8.1 Am_Undo_Handler 303
10.8.2 Am_Single_Undo_Object 304
10.8.3 Am_Multiple_Undo_Object 304
10.8.4 Am_Undo_Dialog_Box 305

1l.Index ....coiviiiiinnnnnnn. Ceeeseceeenanaases et eeeeaan 307



Page 12




1. Amulet V2.0 Overview

This section provides an overview of Amulet, and contains retrieval and installation instructions.

Copyright © 1996 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037,
Arpa Order No. B326. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of NCCOSC or the U.S. Government.






Amulet V2.0 Overview  Page 15

1.1 Introduction

The Amulet research project in the School of Computer Science at Carnegie Mellon University is
creating a comprehensive set of tools which make it significantly easier to create graphical, highly-
interactive user interfaces. The lower levels of Amulet are called the ‘Amulet Toolkit,” and these
provide mechanisms that allow programmers to code user interfaces much more easily. Amulet
stands for Automatic Manufacture of Usable and Learnable Editors and Toolkits.

This manual describes version 2.0 of Amulet.

Section 1.9 describes the differences between Amulet v2 and previous versions of Amulet. Code
written for Amulet v1 will need to be editied before it will compile and run properly with Am-
ulet v2.

The Amulet Toolkit is a portable toolkit designed for the creation of 2D direct manipulation grap-
ical user interfaces. It is written in C++ and can be used with Unix systems running X Windows,
PC’s running Microsoft Windows NT or ‘95, or Macintosh systems running MacOS.

Amulet has been sucessfully installed on several platforms. Some of these are at CMU, and some
installations are at other users’ sites:

Unix:

OS: SunOS, HP/UX, Linux, IBM AIX, SGI

Compilers: gee 2.6.3, gee 2.7.0, ObjectCenter 2.1.0, AIX xlc, SGI CC
PC

OS: Windows NT 3.5 and 3.51 and Windows 95

Compilers: Visual C++ 2.0, 2.1 or 4.0
Mac

Compilers: Metrowerks CodeWarrior 8

We are running SunOS, HP/UX, Windows NT 3.51, and Codewarrior 8, so we’ll be best able to
help you if you’re using one of these systems.

We have found that most users who try to use a vendor specific C++ compiler on a Unix worksta-
tion (for example, SGI’s CC) run into too many language inconsistencies to successfully build Am-
ulet. We will do what we can to help you install Amulet, but sometimes it’s easier to install a new
compiler (gcc is free) than to try to get Amulet to work on a native compiler.

There is a known bug in the gcc 2.5.8 compiler involving premature destruction of local variables
that prevents it from being able to compile Amulet.



Page 16 Amulet V2.0 Overview

Amulet provides support for color and gray-scale displays. Amulet runs on X/11 R4 through RS,
using any window manager such as mwm, uwm, twm, etc. It does not use any X toolkit (such as
Xtk or TCL). It has been implemented using the native Windows graphics system on the PC, and
standard QuickDraw on the Macintosh. Because of stack-size limitations on the 16-bit Windows
operating system, Amulet requires PC users to run Windows NT or Windows 95.

More details about Amulet are available in the Amulet home page on the World Wide Web:

http://www.cs.cmu.edu/~amulet

A previous project named Garnet was developed by the same group who is now writing Amulet.
It has features similar to those in Amulet, but is implemented in Lisp. For information about Gar-
net, please refer to the Garnet home page:

http://www.cs.cmu.edu/~garnet
1.2 Amulet Email Addresses

There is a mailing list called amulet-users@cs.cmu.edu where users and developers exchange
information about Amulet. Topics include user questions and software releases. To be added to
the list, please send your request to amulet-users-request@cs.cmu. edu.

Please send questions about installing Amulet to amulet@cs.cmu.edu.

You can also send bug reports directly to amulet-bugs@cs.cmu.edu. This mail is read only by the
Amulet developers.

Another mailing list, amulet-interest@cs.cmu.eduy, is available for people who are interested in
learning only about new releases of Amulet.

1.3 Using Amulet in Products: Copyright and Licensing

Amulet is available for free by anonymous FTP or WWW. Amulet has been put into the public
domain. This means that anyone can use Amulet for whatever they want. In particular, Amulet
can be used for commercial development without any license or fees. The resulting binaries and
libraries can also be distributed commercially or for free without payments or licenses to Carnegie
Mellon University (CMU). You can even include portions of the Amulet source code in your
projects or products. The only restriction is that the documentation for Amulet is copyrighted, so
you cannot distribute the Amulet manual or papers without permission from CMU. In return,
CMU assumes no responsibility for how well Amulet works, and will not guarantee to provide any
support. If you need more formal legal language, see Section 1.10 below. If you need this formally
signed, then replace your company’s name for COMPANY and send it back to us.

Of course, the Amulet research group would appreciate any corporate grants or donations to sup-
port the further development and maintenance of Amulet. We would also be interested in discuss-
ing grants to support adding specific features to the system that would make it more useful for your
needs. Please contact Brad Myers at bam@cs . cmu . edu to discuss this.



Amulet V2.0 Overview Page 17

If you decide to use Amulet, we would like to be able to mention this in our publicity and reports
to our sponsors. (We get recognition for having users, both commercial and research projects.)
Please send mail to amulet@cs.cmu. edu with the name of your project or product. We also like
to receive screenshots. If you write papers or advertizements about systems built with Amulet, we
would appreciate if you included a mention that you used Amulet, and a reference to this manual,
and we would like a copy of your paper for our files.

For complete license and legal information, please see Section 1.10.

1.4 How to Retrieve and Install Amulet

You will download a different file depending on whether you’re installing Amulet on a Unix, PC,
or Macintosh system. You will get only the files you need to compile Amulet on your machine. If
you plan to install Amulet on multiple platform types, you will need to download a different dis-
tribution for each platform type.

These instructions assume that a C++ compiler such as gce, cc, or Visual C++ has been installed
properly on your system, and you know the location of your window manager libraries, etc. Amulet
will not compile with gcc 2.5.8.

1.4.1 The Amulet Manual

The Amulet documentation is also available for free, but it is copyrighted. This means you cannot
distribute the Amulet manuals without written permission from the authors.

The Amulet manual is distributed separately from the Amulet source code. It is available in post-
script format, either uncompressed, or compressed with compress (for UNIX) or pkzip (for the
PC). The amulet manual is also available online. The table of contents is at:

http://www.cs.cmu.edu/afs/cs/project/amulet/amulet2/manual/Amulet. Manual TOC.doc. html

To retrieve the Amulet documentation via WWW, launch your favorite browser and go to the fol-
lowing URL:

http://www.cs.cmu. edu/~amulet /amulet2-documentation. html

Follow the instructions on that web page to download a copy of the Amulet manual.

To download the Amulet manual using FTP, connect to ftp.cs.cmu.edu (128.2.206.173) and login
as “anonymous” with your e-mail address as the password. Type "cd /usr0 /anon/project/am-
ulet/amulet2’ (note the double amulet’s). Do not type a trailing “/” in the directory name, and
do not try to change directories in multiple steps, since the intermediate directories are probably
protected from anonymous access.

Set the mode of your FTP connection to binary: Some versions of FTP require you to type *bina-
ry’ at the prompt, and others require something like *set mode binary’.



Page 18  Amulet V2.0 Overview

At the "ftp>" prompt, get the manual file you require using the get command: “ammanual.ps” is
raw postscript, “ammanual . zip” is PC zip format, and “ammanual.z” is UNIX compress format.

1.4.2 Retreiving the Amulet source code distribution

The Amulet source distribution can be retrieved via anonymous FTP, or from the Amulet WWW
pages.

1.4.2.1 Retrieving the source distribution via FTP

To download the compressed Amulet source code files via FTP, you’ll need an FTP client program.
FTP to ftp.cs.cmu.edu (128.2.206.173) and login as ’anonymous’ with your e-mail address as
the password.

Type ’cd /usr0/anon/project/amulet/amulet2’. Do not type a trailing */’ in the name of the
directory, and do not try to change directories in multiple steps, since the intermediate directories
are probably protected from anonymous access.

Set the mode of your FTP connection to binary: Some versions of FTP require you to type ’bina-
ry’ at the prompt, and others require something like ’set mode binary’.

At the “ftp>~ prompt, type “get” followed by the name of the source distribution you require.
The UNIX version of Amulet is called “amulet.tar.z”, the PC version is called “amu-
let.zip”,and the Macintosh version is called “*amulet.sea.hgx”. For example, if you wanted
the UNIX version, you’d type “get amulet.tar.z” and press return.

1.4.2.2 Retrieving the source distribution via WWW

To download the compressed Amulet source code files from the WWW you’ll need a web browser
such as Netscape, Mosaic, lynx, Or www. Run your browser and go to the following URL:

http://www.cs.cmu.edu/~amulet/amulet2-release.html

Scroll down to the section of the web page labelled “Downloading the current release of Amulet.”
Follow the link appropriate for the version of Amulet you want to download. This will automati-
cally download the compressed Amulet source code to your machine.

1.4.3 Installing Amulet on a PC

To install Amulet on your PC, you will need to retrieve the file amulet.zip as described in
Section 1.4.2.



Amulet V2.0 Overview  Page 19

1.4.3.1 Unpacking amulet.zip

Once you have retrieved the file amulet.zip via FTP or WWW, unzip it into the directory where
you want it to reside, preserving the directory structure. For example, if you use pkunzip and want
to have Amulet files in the c:\amuLET directory, at the DOS prompt type ’pkunzip -d amu-
let.zip C:\’.

It is easiest to use Amulet in the base directory \aMmuLeT. The tutorial and installation instructions
assume you installed amulet in ¢: \AMULET. The provided .mak and .mdp files expect to find all
your source files in that directory structure. If you place your Amulet directory somewhere else,
you may need to change the makefiles to find your source code elsewhere. The easiest but most
tedious way to do this is to use Visual C++ to remove all the old files from the project, and add all
the new ones.

People familiar with PC nmake files may directly edit the .mak files to specify the location of their
files. This is somewhat dangerous, because changing the wrong parts of the makefile may confuse
Visual C++ and cause it to reject the file. To manually edit the makefile, use your favorite editor
to search and replace all occurances of ¢:\amulet with your preferred pathname (for example,
D:\foo\bar\amulet). If you’re using Visual C++ version 4, it might be smart enough to find your
files without as much work.

1.4.3.2 Windows Environment Variables

Next you should set the environment variable AMULET_DIR to the directory where you installed
Amulet. In Windows NT, go to the Program Manager, and open the Control Panel. Choose Sys-
tem, and add AMULET_DIR = C:\amulet (substitute the appropriate pathname) to the User Envi-
ronment Variables section. Amulet uses this environment variable to look for its dynamic link
libraries, as well as some bitmap files in the demo programs. If the AMULET DTR is not set, Amulet
looks in c:\amulet by default.

1.4.3.3 Configuring Visual C++

In the Visual C++ menubar, choose Tools: Options to bring up the Visual C++ options window.
Choose the Directories panel to access the search paths. Add the Amulet include directory
C: \AMULET\INCLUDE to the include path, and add the Amulet library directory c: \AMULET\LIB to
the library path. (If you installed Amulet in some other directory, be sure to specify that directory
instead.)

1.4.3.4 Visual C++ Project Files

Amulet supports development with Visual C++ versions 2 and 4. These two development environ-
ments use different project files, so we’ve provided projects for all of the sample and demo pro-
grams for both versions of Visual C++.



Page 20 Amulet V2.0 Overview

Project files for use with Visual C++ version 2 have a ‘2’ at the end of the filename (before the
extension .mak). For example, the VC++ 2 project file that builds the Amulet library is called
amulet2.mak. Project files for Visual C++ version 4 do not have any special characters in their
names. The VC++ version 4 project files for building the Amulet library are amulet .mak and am-
ulet.mdp (both are required to build the project). Throughout the installation instructions, refer-
ence is made to specific .mak files. If you use Visual C++ version 2, you should be sure to use the
project file with the ‘2’ suffix. Most of the project files are located in ¢: \amulet\bin. The sample
projects are located in ¢:\amulet\samples\*. Be sure to use the correct project file for your ver-
sion of Visual C++.

1.4.3.5 Compiling The Amulet Library

To build any of the sample programs or to link your own application to Amulet, you must first build
the Amulet library file. The Amulet 2.0 distribution does not come with any precompiled libraries;
a different version would be required for Visual C++ 2 or 4.

Launch the Visual C++ application, and open the Amulet library Visual C++ project file. This is
c:\amulet\bin\amulet2.mak for Visual C++ V2, or c:\amulet\bin\amulet .mdp for Visual
C++ V4. You can do this all in one step by double-clicking on the file from the File Manager.

The project files generate either AMULETD.LIB for a debugging version of the Amulet library file,
or AMULET.LIB for a release build. These two options are called fargets in Visual C++ v2, and
project configurations in v4. There is an option box in the project workspace window which allows
you to choose which of the versions you’d like to compile.

Choose the Build All option. Go get a cup of coffee, this’ll take a while. Compiling Amulet may
generate many warnings in Visual C++, but there should not be any fatal errors.

Once you have a compiled version of AMULETD.LIB or AMULET.LIB, you are ready to write your
own Amulet programs and link them to the Amulet library. Section 1.4.3.6 discusses how you can
build and run some of the Amulet samples and test programs. Your first experience with Amulet
programming should involve the Amulet Tutorial, which includes a starter program and instruc-
tions to acquaint you with the compiling process. When you are ready to write your own Amulet
program, see Section 1.4.3.8 for instructions about linking your new program to the Amulet library.

1.4.3.6 Compiling Test Programs and Demos

There are about 10 test programs included in Amulet that test the lower levels of Amulet: the ORE
object system, GEM graphics routines, OPAL graphical objects, Interactors event handlers, and
Widgets. The project files for these tests appear in the amulet\bin\ directory. You can build and
run these programs to test your installation of Amulet, but they are not intended to be particularly
good examples of Amulet coding style. The makefiles for these programs assume you’ve installed
Amulet in \AMULET, so if you want to try these programs and have installed Amulet elsewhere, you
might have to change the makefiles.



Amulet V2.0 Overview Page 21

There are some other example programs in AMULET\SAMPLES\ *. Executables are provided in the
PC distribution for some of the samples. These programs are written how you should write code
as an Amulet user, and are intended to be exemplary code. Each of these programs have their own
.MaK file in their subdirectory, and depend on the Amulet library file AMuLET . LTB. To generate an
executable for any of these demos, open the project file for the program, located in its AMULET\ SAM-
PLES\ * subdirectory, and build it. You can only compile the samples after you have successfully
compiled the Amulet library. See Section 1.5 for descriptions of the demos, and Section 1.4.3.5
for information on compiling the Amulet library.

1.4.3.7 Using console.cpp to Simulate a Terminal Window

The Amulet test programs were designed in a Unix environment, and require a simulated terminal
window for text output. We provide a simple way to add a console to any of your Amulet programs,
using the file console.cpp. To include a console in your custom Amulet program, just add the file
amulet\src\gem\console.cpp to your Visual C++ project. A console will automatically be allo-
cated when your program starts, and destroyed when the program completes execution.

The Microsoft Windows NT console window allows selection, cutting, and pasting of text. Go to
the window’s menu (drag off the box in its upper left corner) to “edit,” and select the submenu item
“mark.” This will allow you to make a selection in the window. Selecting the “edit->copy” item
copies the selection to the cut buffer. If you want the default behavior to be selection mode, go to
the “Settings...” menu item, and check off “Quick Edit.” You can also make this the default for all
future console windows by using the “Configure Default Values” menu item. In Quick Edit mode,
the left button selects text, and the right button copies it to the cut buffer.

The default size of an Amulet console screen buffer is 80 by 100 characters. You can use the scroll
bars in the window to look at previous lines of text. By changing the values of the buffer size
structure in console.cpp and recompiling, you can change the size of the Amulet console buffer.

1.4.3.8 Writing and Compiling New Programs Using Amulet

The easiest way to create a project file for your own Amulet program is to copy the project file from
one of the sample programs (tutorial is a good one), remove the sample code from the project,
and add your application’s . cpp files instead. At that point you should be able to successfully com-
pile your Amulet application.

To start from scratch, you will need to set up your Visual C++ project as follows:

* Create a new Visual C++ project of type Application. You do not need to use MFC classes
in your project.

* Add your program to the project.

* If you want your program to handle terminal-style I/O, add the file
amulet\src\gem\console.cpp t0 your project.

* Make sure the Amulet include and library paths are set in your Visual C++ options, as
discussed in Section 1.4.3.3.



Page 22  Amulet V2.0 Overview

* In Visual C++ 2, choose the menu item Project: Settings to bring up your project
settings. In Visual C++ 4, choose the menu item Build: Settings.

* In the C/C++ preprocessor settings, define NEED_BOOL and SHORT_ NAMES. Also
define _wrnpows if it is not already defined.

* In the linker input settings, add the AMULETD. L1B library if you want to use the

"debugging’ version of the Amulet library, or AMULET . LIB for a streamlined
version.

Now you are ready to build your project.
1.4.3.9 PC filenames

To support as many users as possible, we are using 8 character file names with 3 character exten-
sions for the Windows Amulet files. This manual generally refers to Unix or machine independant
file names, which are often longer than 8 characters. The PC files are kept in the same directories
as their equivalent Unix or Mac files. In cases where the Unix filenames are too long for the PC,
the filename is logically shortened, either by truncation or removal of vowels. On the PC, the ex-
tension .cpp is used for all C++ code files, and headers use the extension .h.

1.4.4 Installating Amulet on a Unix Workstation

To install Amulet on your Unix workstation, you will need to retrieve the file amulet.tar.z as
described in Section 1.4.2.

1.4.4.1 Unpacking amulet.tar.z

Expanding amulet.tar.z into a usable Amulet directory structure is a two part process. At the
Unix prompt, first type "uncompress amulet.tar.z". Your copy of amulet.tar.z will be re-
placed with amulet.tar. Now type "tar -xvf amulet.tar" at the Unix prompt to generate the
amulet/ directory tree as a subdirectory of your current directory.

1.4.4.2 Setting your Environment Variables

The Amulet Makefiles have been written so that all Amulet users must set two environment vari-
ables in their Unix shell before they can compile any program. Consistent binding of these vari-
ables by all Amulet users ensures that the installed Amulet binaries will always be compatible with
user programs. Once Amulet has been installed and programs are being written that only depend
on its library file, it would be possible for users to write their own Makefiles without regard to these
variables. However, we recommend that all Amulet users at a site continue to use consistent values
of environment variables to facilitate upgrading to future versions of the system. Typically, these
environment variables will be set in your . login file:

* AMULET_DIR Set this to the root directory of the Amulet software hierarchy on
your machine. The csh command to do this is:



Amulet V2.0 Overview  Page 23

setenv AMULET DIR /usr/johndoe/amulet

AMULET_VARS_FILE Set this to the Makefile.vars.* file appropriate for
your compiler and machine. Use only the filename, not the complete pathname to
the file. This file will be included by the main Amulet Makefile.

If you are using SunOS or HP/UX, then set AMULET_VARS_FILE to one of the following files,
which have been tested by the Amulet group on our own machines.

Makefile.vars.gcc.Sun For gce on SunOS 4.x
Makefile.vars.gcc.HP For gce on HP/UX 9.x
Makefile.vars.CC.Sun For ObjectCenter's cc on SunOS 4.x
Makefile.vars.CC.HP For ObjectCenter's cc on HP/UX 9.x

For example, if you run csh, your .login might contain the lines

setenv AMULET DIR /usr/johndoe/work/amulet
setenv AMULET_VARS_FILE Makefile.vars.CC.HP

If you are using a different platform, you may find a file tailored to your platform in the contrib
directory. Files in contrib are provided by other Amulet users. Among them you will find:

Makefile.vars.gcc.Solaris For gce on Solaris
Makefile.vars.gecc.linux For gcc on linux (static library only)
Makefile.vars.gcc.linux-ELF  For gec on linux with ELF shared libraries
Makefile.vars.gcc.AIX For gec on AIX

Makefile.vars.CC.AIX For x1c on AIX

To use one of these files, first copy it to your bin directory, so that the Makefiles can find it, then
set your AMULET_VARS_FILE variable

If you run csh, your .login might include the lines:
setenv AMULET_DIR /usr/janedoe/amulet
setenv AMULET_VARS_FILE Makefile.vars.gcc.linux-ELF

If you can’t find your platform in either the bin or the contrib directory, then you should set
your AMULET_VARS_FILE variable to the file:

Makefile.vars.custom For any other configuration

If you run csh, your .login might include the lines:
setenv AMULET_ DIR /usr/jonwoo/amulet
setenv AMULET_VARS_FILE Makefile.vars.custom

If you use Makefile.vars.custom, try compiling Amulet first. If the compilation does not finish
smoothly, you probably need to make changes to the variables in Makefile.vars.custom. See
Section 1.4.4.6 for more information. Only edit amulet/bin/Makefile.vars.custom while in-
stalling Amulet.



Page 24  Amulet V2.0 Overview

1.4.4.3 Generating the Amulet Library File

After you have set your environment variables, cd into the bin/ directory and invoke make, with
no arguments. This generates many object files, and eventually the Amulet library will be depos-
ited in the amulet/lib/ directory. If you are using Makefile.vars.gcc.Sun, Make-
file.vars.gcc.HP, Makefile.vars.gcc.Solaris, Or Makefile.vars.gcc.linux—ELF, then
Amulet is compiled into a shared library called libamulet.* (The suffix indicating a shared li-
brary is platform-dependent, but it is typically .so or .s1.) If you are using any other compiler or
platform, then Amulet is compiled into a static library called 1ibamulet.a.

It is common to get many warning messages during the build, but you should have no fatal errors.
If the compile procedure is interrupted by an error, you may need to customize the Makefile vari-
ables for your platform. Set your AMULET_VARS_FILE environment variable to Make-
file.vars.custom, and refer to Section 1.4.4.6. Change appropriate variables in
Makefile.vars.custom, and recompile. If you are unable to compile Amulet after trying differ-
ent combinations of compiler switches, please send mail to amulet-bugs@cs.cmu.edu and we
will try to make the Amulet code more portable.

Once you have generated the library, you are ready to write your own Amulet programs and link
them to the Amulet library. Your first experience with Amulet programming should involve the
Amulet Tutorial, which includes a starter program and instructions to acquaint you with the com-
piling process. When you are ready to write your own Amulet program, see Section 1.4.4.5 for
instryctions on linking your new program to the Amulet library.

1.4.4.4 Compiling Test Programs and Examples

From the bin/ directory, doing 'make all’ generates about 10 executable binaries that test the low-
er levels of Amulet: ORE object system, GEM graphics routines, OPAL graphical objects, Inter-
actors event handlers, and Widgets. You can run these programs directly, such as ’. /testgem’.
You can build and run these programs to test your installation of Amulet, but they are not intended
to be particularly good examples of Amulet coding style.

There are also some example programs in amulet/samples/*. These programs are more like you
would write as an actual Amulet user, and are intended to be exemplary code. Each of these pro-
grams have their own Makefile in their subdirectory, and depend on the Amulet library file 1ibam-
ulet.a (see above). To generate binaries for these files, cd into their subdirectory and invoke make
with no parameters. See Section 1.5 for descriptions of these demos.

1.4.4.5 Writing and Compiling New Programs Using Amulet

It is important to set your AMULET DIR and AMULET_VARS_FILE environment variables, and to re-
tain the structure of the sample Makefiles in your local version. By keeping the line ’include
$ (AMULET_DIR) /bin/Makefile.vars’ at the top of your Makefile, and continuing to reference
the Amulet Makefile variables such as aM_cFrags and cc, you will be assured of generating binary
files compatible with the Amulet libraries.



Amulet V2.0 Overview  Page 25

When you are ready to write a new program using Amulet, it is easiest to start with an example
Makefile. The easiest way to start a new project is to copy the contents of samples/tutorial/
into a new directory, and edit the Makefile and tutorial.cc files to begin your project. Invoking
make in that directory generates a binary for your Amulet program. The examples presented in the
Amulet Tutorial all start from this point, and can be used as models for your programs.

1.4.4.6 Customizing the Makefile.vars.custom Variables

C++ is a standardized language, but many compilers do not fully support the ANSI standard com-
pletely or correctly. Because of this, Amulet requires different source code in certain places with
various platform/ compiler combinations. We handle this with conditional code that depends on the
compile-time definition of the variables defined in your AMULET_vaRs_FILE. These variables need
to be set apropriately for your system. This section is a guide to the variables that control the con-
ditional Amulet code. If, after experimenting with the compiler variables documented below, you
are still not able to successfully compile Amulet, please send mail to amulet-bugs@cs.cmu.edu
s0 we can try to make the Amulet code more portable.

Amulet will not compile in gcc 2.5.8, due to a compiler bug.

Before changing any of the Makefile variables, you should try compiling Amulet once with one of
the default Makefile.vars.* files. If the procedure does not terminate smoothly, you should have
some indication of what switches need to be added or changed. Make sure that your
AMULET_VARS_FILE environment variable is set to Makefile.vars.custom (found in amulet/
bin), and bring this file up in an editor. This is the only file that you should change.

The variables that control conditional Amulet code are defined with -D compiler switches. For ex-
ample, we have found that the cc libraries on Suns do not provide the standard function mem-
move (), $0 we have to define it ourselves in Amulet. The Amulet version of memmove () is only
defined when the compiler switch -DNEED_MEMMOVE is included in the compile call (which declares
the variable NEED_mEMMOVE). By adding or removing the -DNEED_MEMMOVE switch, you control
whether Amulet defines memmove ().

The interface for defining these variables is the AM_cFLAGS list in Makefile.vars.custom. For
each variable var, you would include the switch -Dvar in the aM_crracs list to define the vari-
able, or simply leave out the switch to avoid defining the variable. By iteratively adding or remov-
ing these variables from your aAM_cFLaGs list and recompiling Amulet, you should be able to install
Amulet on your system.

1.4.4.6.1 Compiler Variables
HP Including -puP in the aM_cFraGs list will cause some type casting

required for HP’s that is inappropriate on other machines.

elele! Including -pGec in the aM_crracs list causes different header files to
be referenced than when Amulet is compiled with cc or Visual C++.

NEED_BOOL Including -DNEED_BOOL in the aM_cFLAGS list causes Amulet to define



Page 26  Amulet V2.0 Overview

the bool type. This type is pre-defined in gcc.

NEED_MEMMOVE Including -DNEED_MEMMOVE in the aM_cFLaGs list causes Amulet to
define its own memmove () function. This function is missing in some C libraries.

NEED_STRING Including -DNEED_STRING in the amM_crracs list causes Amulet to
include the standard header file strings . h in special places required by some versions
of the cc compiler.

DEBUG Including -DDEBUG in the am_opP list causes Amulet debugging code to
be compiled into your binaries. If you do not define pEBUG, you will lose a lot of
runtime debugging information, such as slot, object, and wrapper names, and tracing
and breaking in the debugger, but your executable will be smaller and it will run faster.
This switch is not the same as the -g option, which compiles debugging symbols for a
debugger such as gdb into your executable. Using the DEBUG switch compiles in
Amulet-specific runtime debugging information which makes it easier to debug your
Amulet application while it’s running. The options -g and -DDEBUG are mutually
exclusive; neither is required to use the features the other provides.

1.4.4.6.2 Makefile Variables

cc Your compiler, such as /usr/local/bin/gce.
If you’re compiling using ObjectCenter’s CC, you may have to specify the pathname
explicitly. Otherwise, a default (non-Centerline) CC may be used which will not
successfully compile Amulet.

LD Your linker, such as /bin/1d. This command is used to link libraries into
archive files.

AM_OP Options you want to pass to your compiler, such as -g to put gcc debugging
information in the binaries, -0 to enable optimization, or -pg to enable profiling.

aM_CFLAGSA list of switches to pass to the compiler, including the Amulet compiler
variables listed above and any include and library paths you need to specify.

aM LDFLAGSA list of switches to pass to the linker.
aM_1.1BS A list of libraries to link with your program, such as -1x11 and -1g++.

AM_LIB_SHARING A symbol indicating which kind of library should be built: either static
to make a static Amulet library (1ibamulet.a), or shared to make a shared library.
This option will build shared libraries only if your compiler is gcc, version 2.7.0 or
newer.

aM_sHLIB_SUFFIXThe appropriate suffix for a shared library on your platform. On HP/
UX, for example, shared libraries end with “.s1”, but on Solaris and linux, shared

9

libraries end with “.so”.



Amulet V2.0 Overview  Page 27

1.4.4.6.3 Command Line make options

Make allows you to specify override values for makefile variables on the command line. This al-
lows quick testing of various Makefile configurations without having to edit the Makefile.vars.*
file every time you want to try something new. To override a makefile variable on the command
line, just type make <variable>=<value> <target>. For example, to try compiling testselec-
tionwidget with shared libraries turned off, type:

make AM_LIB_SHARING=static testselectionwidget

1.4.4.6.4 Xlib Pathnames

Some compilers on Unix systems do not know where to find the Xlib library and include files. You
may need to include the pathnames for your Xlib files in the aM cFLags list in Make-
file.vars.custom. The include path should be provided with the -1 switch, and the library path
should be provided with the -L switch.

For example, some HP machines store their Xlib include and library files in /usr/include/
x11R5/ and /usr/1ib/x11R5/. If this is how your machine is set up, your AM_cFLaGs definition
would look like this:

AM CFLAGS =-$(AM_OP) I$(AMULET DIR)/include -DGCC -DDERUG -DHP \
-I/usr/include/X11R5 -L/usr/lib/X11R5

Note that a backslash is required at the end of a line when the definition of a Makefile variable con-
tinues on the next line.

If you are having trouble finding your Xlib include and library files, try looking in these directories:

/usr/include/X11R?, /usr/lib/X11R?
/usr/local/X11R?/include, /usr/local/X11R?/1ib

1.4.4.7 Why is my application so big?

Many users complain that applications that link to the Amulet library are very large. It is not un-
usual to have a hello world program compile down to a few megabytes of executable. Obviously,
not all of this is useful, necessary information. There are several things you can do to reduce the

size of your executables. '

* Recompile the Amulet library and your application without the -DDEBUG -g switches to
produce your final release. This removes symbolic debugging information, so you can’t
debug the resulting executable with a debugger such as gdb. It also disables a lot of code
(such as the Inspector) that won’t be needed in applications that you plan to shipto a
customer.

* Compile Amulet into a shared library, if your platform allows it. Amulet is automatically
compiled to shared libraries if you use gce 2.7.0 or higher on SunOS, HP/UX, Solaris, or
linux. It may also be possible on other compilers; consult your compiler’s documentation.



Page 28 Amulet V2.0 Overview

Using a shared library will make all of your Amulet applications smaller, but you must
distribute all the shared libraries with your applications and install the libraries where they
can be found at run-time.

* Run strip on your executables. This is one of the most effective way of shrinking your
executables. Just type “strip” followed by the name of the program that’s to large. strip
takes out all of the symbol tables, which are necessary at compile and link time, but are
wasted space at run time. If you are using shared libraries, you may also want to also
strip the Amulet shared libraries before distributing them with your application.

1.4.5 Installing Amulet on a Macintosh

To install Amulet on your Macintosh, you will need to retrieve the file amulet.sea.hgx as de-
scribed in Section 1.4.2. The Macintosh version of Amulet is being developed with Metrowerks
CodeWarrior 8. The code will run with CodeWarrior 7 as well, but you will need to make your own
new project files (see Section 1.4.5.6) for the tests and demos. The project files we provide will
work on CodeWarrior 8, but not on CodeWarrior 7 without modification.

1.4.5.1 Unpacking amulet.sea.hqx

Once you have retrieved the file amulet . sea.hgx via FTP or WWW, unbinhex it. Some commu-
nications programs (such as Netscape and Fetch) do this for you automatically. If yours does not,
try using Stuffit Expander. Run the application amulet.sea and select the directory where want
the Amulet source tree to reside.

1.4.5.2 Macintosh Environment Variables

Amulet needs to know the location of your amulet directory for some bitmap files in the demo pro-
grams. Use SimpleText to create an ASCII text file called amulet .env in the Preferences folder
in the System Folder of your boot drive. This text file must contain the full pathname to your am-
ulet directory. For example, if your boot drive is called Hard Disk and the amulet folder is called
amulet then the pathname would be Hard Disk:amulet. Note that there should be no colon at the
end of the pathname and that this file must be an ASCII text file.

1.4.5.3 Creating the Precompiled Header file

Launch the CodeWarrior IDE application and open the CodeWarrior project file named
AmuletHeaders68K.proj if your Macintosh is running a 680x0 processor or open AmuletHead-
ersPPC.proj if your Macintosh is running a PowerPC processor. These project files are located in
amulet :MAC:pch. Then, select the AmuletHeaders.pch file in the project window and choose
Compile from the Project menu.



Amulet V2.0 Overview  Page 29

1.4.5.4 Compiling The Amulet Library

To build any of the sample programs or to link your own application to Amulet, you must first build
the Amulet library file. The Amulet 2.0 distribution does not come with any precompiled libraries.

Launch the CodeWarrior application, and open the Amulet library CodeWarrior project file called
amulet :MAC:amulet68K.proj if your Macintosh is running a 680x0 processor or open amu-
let:MAC:amuletPPC.proj if your Macintosh is running a PowerPC processor.

Choose Make from the Projct menu. Go get a cup of coffee, this’ll take a while. Compiling Amulet
may generate many warnings in Metrowerks, but there should not be any fatal errors. If you do get
any fatal errors, please send email to amulet-bugs@cs.cmu.edu so we can try to help you with
your installation.

Once you have a compiled version of the Amulet library you are ready to write your own Amulet
programs and link them to the Amulet library. Section 1.4.5.5 discusses how you can build and run
some of the Amulet samples and test programs. Your first experience with Amulet programming
should involve the Amulet Tutorial, which includes a starter program and instructions to acquaint
you with the compiling process. When you are ready to write your own Amulet program, see
Section 1.4.5.6 for instructions about linking your new program to the Amulet library.

If you would like to build a version of the Amulet libary without debugging code, you should open
the project file amulet :MAC:amuletNoDebug68K.proj if your Macintosh is running a 680x0 pro-
CESSor Or open amulet :MAC:amuletNoDebugPPC.proj if your Macintosh is running a PowerPC
processor. You should also change the Prefix file in the C/C++ Language Settings for your project
file (from the Preferences Command in the Edit Menu) to be “Am_Prefix.h” instead of
“Am_DebugPrefix.h”.

1.4.5.5 Compiling Test Programs and Demos

There are about 10 test programs included in Amulet that test the lower levels of Amulet: the ORE
object system, GEM graphics routines, OPAL graphical objects, Interactors event handlers, and
Widgets. The project files for these tests appear in the amulet:Mac directory. You can build and
run these programs to test your installation of Amulet, but they are not intended to be particularly
good examples of Amulet coding style.

There are some other example programs in AMULET : SAMPLES : *. These programs are written how
you should write code as an Amulet user, and are intended to be exemplary code. Each of these
programs have their own project files located within the sample’s directory, and depend on the Am-
ulet library file. To generate an executable for any of these demos, open the project file for the pro-
gram, and choose Make from the Project Menu. You can only compile the samples after you have
successfully compiled the Amulet library. See Section 1.5 for descriptions of the demos, and
Section 1.4.5.4 for information on compiling the Amulet library.

The Amulet demos currently have no feedback during the launch process so it may appear that the
program has crashed while it is still loading.



Page 30  Amulet V2.0 Overview

1.4.5.6 Writing and Compiling New Programs Using Amulet

The easiest way to create a project file for your own Amulet program is to start with the stationary
project files that are provided with the Amulet distribution. They are amu-
let:MAC:am_stationary68K.stat for 680x0 processors and amu-
let:MAC:am stationaryPPC.stat for PowerPC processors. Open the appropriate project file,
save it as your new project file and add your application’s . cpp files instead. At that point you
should be able to successfully compile your Amulet application.

To start from scratch, you will need to set up your CodeWarrior project as follows:
* Create a new Metrowerks project file of type MacOS C/C++
* Add your program to the project.

* Add the file amulet . rsrc to the project. This file contains important Amulet resources.
Without it, you will get titlebars on your Amulet Menus, and other ugly effects.

* Add an access path to the amulet directory in the Access Paths section of the Project
Preferences.

* The following settings should be turned on in the Language section of the Project Preferences:
Activate C++ Compiler, ANSTI Keywords Only, Enums always Int.ANSI Strict
should be turned off. Set the prefix file to am_DebugPrefix.h if you are using the
debugging version of the Amulet library or am_prefix.h if you are not using the debugging
version of the Amulet library.

* For 680x0 projects, the code Model should be set to Large and Far Data should be turned on
* Set the Project Type to be application (Type ‘APPL’) and set both the Preferred Heap Size
and Minimum Heap Size = 4096K..

Now you are ready to build your project.

1.5 Test Programs and Demos

The procedure for compiling and executing the demos and test programs is different depending on
your platform. See Section 1.4.3 for PC-specific instructions, or Section 1.4.4 for Unix-specific in-
structions on installing Amulet and compiling the tests and samples.

The following list describes each of the sample programs provided with Amulet:

hello This program creates a window and displays “hello world’ in it.
You can exit by hitting meta-shift-f1.

goodbye_button This program creates a button widget on the screen which quits
when pressed.

goodbye_inter This program displays “goodbye world” in a window, and an
interactor causes the program to quit when the text is clicked on.

tutorial This program simply creates a window on the screen. It is the
starting point for all the examples in the Amulet Tutorial.



Amulet V2.0 Overview  Page 31

checkers This is a two-player checkers game that demonstrates the multi-
screen capabilities of Amulet in Unix. You can run it on two screens by supplying the
names of the displays when the program is executed, as in ’checkers
my_machine:0.0 your_machine:0.0’. Onthe PC or Macintosh, you can still run this
program, but it can only be displayed on one screen.

space This program looks a little bit like NetTrek, and demonstrates
many features of Amulet: constraints, bitmaps, polylines, widgets, and scrolling
windows. Some of the interactions to try are:

* Leftdown in the background of the Short-Range Scan creates a ship
* Leftdown drag on an existing ship moves it

* Middledown-+drag (MeTA-leftdown+drag on PC, opTION-sHIFT-leftdown+drag on
the Macintosh) from one ship to another draws a phaser beam and destroys the
destination ship

» Rightdown+drag (opTION-leftdown+drag) from one ship to another establishes a
tractor beam which stays attached to the ships through constraints

* Dragging the white rectangle in the Long-Range Scan changes the visible area in the
Short-Range Scan. You can scroll the visible area with the scroll-bars or by
dragging the white feedback rectangle in the Long-Range Scan.

agate This program is used to train a new gesture classifier for use by
the gesture interactor. See Section 5.3.5.6 for more information about the gesture
interactor, agate, and gesture classifiers.

1.6 Amulet Header Files

Usually the only Amulet header file you’ll need to include in your Amulet programs is amulet .h,
which will include all of the others for you. If you like to use header files as a reference manual,
you can find them in the include/amulet/ directory.

Amulet header files fall into two categories, Basic, and Advanced. Basic header files define all the
standard objects, functions, and global variables that Amulet users might need to write various ap-
plications. Advanced header files define lower level Amulet functions and classes which would be
useful to an advanced programmer interested in creating custom objects in addition to the default
objects Amulet supports. Most users will only ever include the Basic header files.

1.6.1 Basic header files

The header file amulet . h includes all the headers most amulet programmers will ever need to use:
standard_slots.h,value_list.h,gdefs.h,idefs.h, opal.h, inter.h, and widgets.h. Here
is a summary of the basic header files, listing the major objects, classes, and functions they define.

®gdefs.h: Am_Style, Am_Font, Am_Point_List, Am Point_Array, Am Image_Array
* idefs.h: Am_Input_Char, predefined Am_Input_cChar’s

®* object.h: Am Object, Am_Slot, Am Instance_Iterator, Am Slot_Iterator,
Am Part_TIterator



Page 32  Amulet V2.0 Overview

®* types.h: Am _String, Am Value, Am_Error, Am_ Wrapper, Am_Method_ Wrapper

®* standard_slots.h: standard slot names, Am_Register_ Slot_Key,
Am_Register_Slot_Name, Am_Get_Slot_Name, Am_Slot Name Exists

* opal.h: predefined am_style’s, predefined Am_Font’s, Am_Screen,
Am_Graphical_Object, Am Window, Am Rectangle, Am_Roundtangle, Am Line,
Am_Polygon, Am_Arc, Am_Text, Am Bitmap, Am Group, Am_Map,predeﬁncd
formulas, Am_TInitialize, Am_Cleanup, Am Beep, Am Move_Object, Am_To_Top,
Am_To_Bottom, Am Create_Screen, Am Do_Events, Am_Main_Event_Loop,
Am_Exit_Main_Event_Loop, predefined am Point_In_ functions,

Am_ Translate_Coordinates

¢ formula.h: Am Formula, Am_Define_Formula, Am_Define Value_Formula
*value_list.h: Am Value_List
*text_fns.h: all text editing functions, Am Edit_Translation_Table

*inter.h: Am_Inter Location, defaultinteractor method types, Am_Interactor,
Am_Choice Interactor, Am_New_Points_Interactor, Am One_Shot_Interactor,
Am Move_Grow_Interactor, Am Text_ Edit_Interactor, Am_Where_Function’s,
interactor debugging functions, Am_Command, Am_Choice_Command,
Am_Move_Grow_Command, Am_New_ Points_Command, Am_Edit_Text_Command,
Am_Undo_Handler, Am_Single_Undo_Object, Am Multiple Undo_Object,
Am_Abort_TInteractor, Am_Stop_Interactor, Am Start_Interactor, interactor
tracing, undo handlers, am_Pop_ Up_Window_And_Wait, Am_Finish_Pop_Up_Waiting

*widgets.h: Am Border_Rectangle, Am_Button, Am Button_Panel,
Am_Checkbox_Panel, Am Radio_Button_Panel, Am_Menu, Am_Menu_BRar,
Am_ Option_Button, Am_Menu_Line_Command, Am_Vertical_Scroll_Bar,
Am Horizontal_Scroll_Bar, Am_Scrolling Group, Am_Text_ Input_Widget,
dialog boxes, Am_Selection_Widget,
Am_Selection Widget_Select_All_Command, Am_Text_Input_Dialog,
Am_Choice_Dialog, Am Alert_Dialog, Am Start_Widget, Am_Abort_Widget,
Am_Global_Clipboard, Am_Graphics_Set_Property Command,
Am_Graphics_Clear_Command, Am Graphics_Clear_All_Command,
Am_Graphics_Copy_Command, Am_Graphics_Cut_Command,
Am_Graphics_Paste_Command, Am_Undo_Command, Am Redo_Command,
Am_Graphics_To_Bottom Command, Am_Graphics_To_Top_Command,
Am_Graphics_Duplicate_Command, Am Graphics_Group_Command,
Am_ Graphics_Ungroup_Command, Am Show_Alert_Dialog,
Am_Get_Input_From_Dialog, Am Get_Choice_From_Dialog,
Am_Show_Dialog_And_Wait

* debugger .h: the inspector

*undo_dialog.h: the selective undo dialog box

1.6.2 Advanced header files

All other header files are considered Advanced header files. They support advanced Amulet fea-
tures, such as user-defined objects, daemons, constraints, and so on. Most users should never in-
clude these files explicitly. For users who will be using Amulet’s advanced features, here is a brief
summary of the contents of each advanced header file.

*gem.h: Am_ Drawonable, Am_Input_Event, Am_Input_Event_Handlers, Am_Region



Amulet V2.0 Overview  Page 33

¢am_io.h: Am_TRACE

®* object_advanced.h: Am_Demon_Queue, Am Demon_Set, Am_Constraint,
Am_Constraint_TIterator, Am Dependancy_ Iterator, Am_Slot_Advanced,
Am_Object_Advanced, Am Constraint_Context, Ore_Initialize

*priority list.h: Am Priority List_Item, Am_Priority List
® symbol_table.h: Am Symbol_Table

®* types.h: NULL, Am Error, Am Wrapper, Am WRAPPER_DECL, Am_ WRAPPER_IMPL,
Am_WRAPPER_DATA_DECL, Am_ WRAPPER_DATA_TIMPL

®* formula_advanced.h: Am_Formula_Advanced, Am_ Depends_Iterator

* opal_advanced.h: Am_Aggregate, advanced opal object slots, Am_Draw_Method,
Am Draw, Am_Invalid Method, Am_Invalidate, Am_Point_In_ Obj_Method,
Am Translate_Coordinates_Method, Am State_Store, Am_Item Function,
Am Invalid_Rectangle Intersect, Am Window_ToDo

¢ inter_advanced.h: Am_Initialize_ Interactors,
Am_Interactor_Input_Event_Notify, Am_Inter_Tracing,
Am_Get_Filtered_Input, Am Modify_ Object_Pos,
Am_Choice_Command_Set_Value, interactor methods, command methods, Undo
handler functions

* widgets_advanced.h: Computed_Colors_Record, Am_Checkbox,
Am_Radio_Button_Item, Am_Menu_Item, widget drawing functions, widget
formula constraints, other widget support functions

1.6.3 Standard Header File Macros

The actual names of the header files described above are slightly different on each machine. Long
names are truncated on the PC, as described in Section 1.4.3.9. Directory paths aren’t specified in
the same way on the Mac as they are on Unix. To allow these files to be included simply without
explicit conditional compilation on the various platforms, we’ve provided a set of C++ #defines
which give each .n file a standard identifier on all platforms. These #defines are in amulet/in-

clude/am_inc.h.

You should uvsually only need to #include <amulet.h> in your program. If you need to include
any of the other header files, you should #include <am_inc.h> and then include the #defined
names of the header files as found in am_inc . h, instead of the file’s actual name. This helps ensure
machine independant compilation. For example, if you needed to include object_advanced.h
and opal_advanced.h, the top of your program might look like:

#include <amulet.h>

#include <am_inc.h>

#include OBJECT_ADVANCED__H
#include OPAL_ADVANCED__ H

Visual C++ sometimes has problems with am_inc.h if you have the precompiled headers option
turned on in your project. Most of the time, building the project again fixes the problem (you don’t
need to do a Build All). If you get errors such as, *#include expected a filename, found an
indentifier, ” this is the problem you’re experiencing. To avoid it in the future, turn off precom-
piled headers in your project.



Page 34  Amulet V2.0 Overview

1.7 Parts of Amulet

Amulet is divided into several layers, which each have their own interface (and chapter of this man-
val). The overall picture is shown below.

Widgets

Opal Graphics Interactors and Commands

ORE objects and constraints

Gem low-level graphics routines

Window system (X11, Windows, Quickdraw)

The Gem layer provides a machine-independent interface so the rest of Amulet is independent of
the particular window system in use. Most programmers will not need to use Gem. Ore provides
a prototype-instance object system and constraint solving that is used by the rest of Amulet. Gem
and ORE can each be used as a standalone system without any of the rest of Amulet, if specific
functionality is required without the overhead of the higher levels of code. Opal provides an object-
oriented interface to the Gem graphics system, and the Interactors and Command objects handle
processing of input events from Gem. At the top is a set of Widgets, including scroll bars, buttons,
menus, text input fields, and dialog boxes.

1.8 Known Bugs

We know about several bugs in Amulet which users might come across, which we have not found
solutions for yet. Some of them are listed here.

1.8.1 Linux bugs

Many people experience various problems compiling and running Amulet on Linux platforms.
Some people get internal compiler errors when trying to compile with gcc, particularly gce 2.7. 2.
These internal compiler errors are not consistent. They happen in a different section of code each
compile, and usually a make clean prevents any of the errors from occurring. Some people com-
pile and link successfully, but then their executable won’t run because Linux claims it’s not a prop-
erly executable file. These bugs might be due to improper Linux/ gcc installations, or to bugs in
compiler or OS software. We haven’t found any way to fix these problems yet, and we can’t repro-
duce them on the Linux machines we have access to, so we’ve been unable to find workarounds



Amulet V2.0 Overview  Page 35

Other people have compiled and run Amulet successfully under Linux, but come across runtime
bugs, mostly dealing with the Inspector. Sometimes if you hit ~q or choose the objects : Done or
Objects:Done All menuitems, Amulet will crash. The menu items View:Hide Internal Slots
and View:Hide Inherited Slots, among others, don’t do anything. We’ve traced all of these
bugs down to a single problem where gcc seems to be passing a parameter by reference instead of
by value, giving us bogus pointers. We’re surprised that this bug doesn’t cause more widespread
problems. We believe it is a problem with the Linux gcc compiler, but so far we have been unable
to construct a small breaking test case, so we can’t be sure of this yet.

1.8.2 Visual C++ bugs

Visual C++ 4.1 gets an internal compiler error when trying to compile the dotted/dashed line code
in gwline.cpp. Because we don’t have access to VC++ 4.1 to debug the problem, we’ve added a
conditional compiler directive to compile out the inline assembly code when compiling with VC++
version 4.1 or newer. Your Amulet code shouldn’t crash, but dotted and dashed lines may not be
drawn correctly when you compile with VC++ 4.1.

1.8.3 Macintosh Bugs

Dotted and dashed lines aren’t supported correctly on the Macintosh. For best results using dotted
and dashed lines on any platform, you should use the predefined am_styles Am Dotted_Line and
Am_Dashed_Line instead of defining your own custom dashed and dotted lines. These predefined
styles will be supported in future versions of Amulet, but the dashing and dotting customizations
will probably not be supported.

1.9 Changes since Version 1.2

There have been many changes in Amulet since version 1. In particular, all code that worked with
V1.2 must be edited to compile with version 2 (for details, see Section 1.9.7). The following sec-
tions provide a summary of the changes, but you should look in the specific sections of this manual
for complete information about Amulet’s new features.

1.9.1 Changes from V2.0 beta to V2.0 official release

1.9.1.1 Minor Changes

* Unix/X now correctly maps some previously unmapped keysyms.
* Inspector startup keys can be reset at runtime from user code.

* Added out of memory dialog box on the Mac.

* Added minimal support for dotted and dashed lines on the Mac.

* Some options set correctly in Mac Project files.

* New 68k and PPC project files for goodbye demos.



Page 36 Amulet V2.0 Overview

* Mac now distinguishes between esc and clear keys correctly.

1.9.1.2 Bug Fixes

» Fixes for GIF files on the PC. Color GIF images only worked for certain bit depths on the
PC in older versions of Amulet. All GIF files were occasionally corrupted in the lower
right hand corner.

* Fix for fonts under Unix/X. Fonts constructed by name sometimes came up underlined when
they shouldn’t have.

* Bug fix on Mac to make inverted text styles work correctly.

* Bug fixes to prevent windows from shrinking and sliding around when they’re not supposed
to on Windows ‘95 and fvwm.

* Bug fix on PC for garbage-filled popup windows in menus.
* Bug fix in Windows ‘95 to support 16 color mode correctly.
* Patch so dotted/dashed line code doesn’t cause an internal compiler error on VC++ 4.1.

* Bug fix on Mac prevents applications from crashing on exit if you close windows from the
window manager.

1.9.2 Changes from V2.0 alpha to V2.0 beta

We have made a few changes between the alpha and beta releases of V2.0. They are described in
this section. These should not require editing your code, if you have already upgraded to
V2.0alpha.

1.9.2.1 Major Changes

* Added support for the Macintosh

1.9.2.2 Minor Changes
* New am_Tab_To_Next_Widget_Interactor for handling tabbing from text field to text field
in a dialog box.

* To support “weird” characters at the top of fonts, changed so META-character will set the
high bit when typed. Thus META-6 gets the paragraph sign (char 182, 0xb6). Using the
As_String or cout form still gets the META-6 version. Fixed Opal to pass through these
characters.

* Scrolling Groups have new Am_LINE_STYLE slot for the outline of the scrolling area, which
can be NULL.

1.9.2.3 Bug Fixes

* Got rid of memory leaks in testselectionwidgets.

* Makefiles for gcc with shared libraries now works



Amulet V2.0 Overview  Page 37

* Click in text field but not over the text makes cursor go to end instead of to the beginning
* Fixed bug where option_button popup menu didn’t start off in right place.

* Fixed bug where MS Win95 windows keep moving or shrinking after the user moves or
changes size.

* A fix for slots declared Am_Local, that showed up with instances of Am_Option_Buttons

1.9.3 Major Changes between V1.2 and V2.0alpha

* Support for gesture recognition, through the new Gesture_Interactor and the interactive tool
Agate which allows gestures to be defined by demonstration.

* A new undo model that supports selective undo, redo and repeat of all operations. The design
is described in a conference paper.

* New widgets:
* Graphics Selection Handles widget

* Built-in Command objects for cut, copy, paste, to top and bottom, group and ungroup,
etc.

* Option button widget, that shows one value and pops up a menu
* Built-in dialog boxes for errors and simple queries

* Significantly expanded debugging facilities.
In the interactive Inspector:

* PopUp windows for constraint dependencies, slot properties and object hierarchies
* Showing which constraints are inherited

* Ability to trace or break when slots are set

* Formulas and Methods now show their names

* Many more kinds of values can be edited

* Flashing the selected object

* Controlling the Interactor tracing options interactively

* Automatic update of the display when slots change
Also, tracing and breaking on slot change; many more types print out meaningfully for cout.

* Support for GIFs (pixmaps) on Unix, PC and Mac
* Support for double buffering.

1.9.4 Minor Changes between V1.2 and V2.0alpha

* Menubars now support accelerator characters.

* For text_interactor and text_input_widgets, clicking outside now stops the interactor or
widget, but passes through the click so it still does whatever other action is desired.



Page 38  Amulet V2.0 Overview

* Provided routines to start, stop and abort widgets and interactors: Am_Start_Widget,
Am_Stop_Widget, Am_Abort_Widget; Am_Start_Interactor, Am_Stop_Interactor,
Am_Abort_Interactor

* References in formulas to slots and objects that do not yet exist leave the formula
uninitialized, which means that now you need fewer calls to Valid(). In particular, it is safe
to do
obj .GV_Object (SLOT) .GV (Am_LEFT)

even if the SLOT of obj does not yet contain a value. The formula must return a “real” value

before the result of the formula is used (such as to draw the object).

* You can now destroy windows using the window manager’s Kill-Window or close box, and
this is converted into a message to the window. By default this deletes the window, but you
can override with other behaviors.

* Added support for popping up modal dialog boxes and waiting for the user to supply a value.

» We significantly sped up the execution. Polygons got about 10 times faster, other parts are
about twice as fast.

* A new type of group was added: Am_Resize_Parts_Group which acts like a regular group,
except that if you change the width and height of the group, it changes the width and height
of the parts correspondingly.

* The Amulet libraries can now be dynamically linked using gcc, which saves LOTS of time
when compiling and linking. This is the default.

* Amulet now works on some new platforms and compilers. List of known working platforms:
Unix:
OS: SunOS§, HP/UX, Linux, IBM AIX, SGI
Compilers: gcc 2.6.3, gee-2.7.0, ObjectCenter 2.1.0
PC
OS: Windows NT 3.5 and 3.51 and Windows 95
Compilers: Visual C++ 2.0, 2.1 or 4.0
Mac
Compilers: Metrowerks CodeWarrior 7 and 8

1.9.5 Very Minor Changes between V1.2 and V2.0alpha

» Under X, extra move events are flushed to get better performance

* Guarantee that Am_SAVED_OLD_OWNER of command in inter or widget is always the
inter or widget so you can use it in the DO method or constraints.

¢ In the PC version, we use console.cpp instead of GW Streams
* You can scroll and cut and paste in the DOS window for debugging

* obj.Text_Inspect(slot) prints out lots of information (like the inspector) which can be useful
for debugging. This can be invoked from many debuggers. Also, obj.Get_Name() can be
invoked from the debugger.



Amulet V2.0 Overview  Page 39

* New value list method: Append

* Under ObjectCenter, you no longer need to have 2-line definition of objects. Thus, it now
works to do Am_Object o = obj.Get(SLOT);

* Am_Point_In_Leaf and Am_Point_In_Part (in opal.h) have extra parameter want_groups,
that if false makes it not return a group. Default = true, which is the same as the v1.0
behavior.

* None of the debugging and printing code is included in the generated binaries if you compile
with DEBUG off. This significantly reduces code size.

*» Advanced slot properties can now be set from the object so you don’t need to use
object_advanced.h, including the inherit rule, read-only, single constraint mode, and
demon bits.

* Built-in support for moving objects across multiple windows in the Move-Grow Interactor.
The feedback object in the move-grow, new_point and gesture interactors can be a little
window (so you can see it in the background), or if you use a regular object, the interactors
will move the object into the appropriate window.

* Unnamed parts are now inherited.

* Interactors now will beep when aborted explicitly. You can turn this off using the
Am_INTER_BEEP_ON_ABORT slot.

* Support pending delete, where the text is deleted if you type something, in the text interactor
and text input widget.

* Am_Point_List class for polygons has many more features and has a consistent interface with
the other list-like classes. Polygons will now be scaled correctly if their Am_WIDTH and
Am_HEIGHT are set.

* Get_Object and GV_Object method in objects that declares that the return type of the slot is
an object, primarily to help construct long chains of GV’s without intermediate variable
assignments.

* Default start-when for all widgets changed to Am_Default_ Widget_Start_Char which is
“ANY_LEFT_DOWN?” to make widgets start even if shift and control keys are down, and
they work on double clicks.

* If double-click in a text object or text-input widget, the string is copied into X cut buffer, and
it is put into “pending-delete” mode so the next character will delete it. Using the middle
button on a text field or object while the cursor is visible will copy the current contents of
the X cut buffer.

1.9.6 Bug Fixes between V1.2 and V2.0alpha

* If an interactor or widget is in a scrolling window, but is outside the visible region, clicks no
longer go through to those interactors or widgets.

* Fix to make virtual window managers such as tvtwm work under Unix.

* Made interactors with Am_OTHER_WINDOWS = true work, especially for new windows
created after the interactor is created. Note that the slot was renamed to be
Am_MULTI_OWNERS.



Page 40  Amulet V2.0 Overview

* We eliminated some memory leaks from Amulet.

* New color allocation scheme under X uses a more intelligent color than black if it runs out of
color cells.

* Bounding box for thick, mitred polygons works correctly
* Point_In_Part for polygons works correctly.

» Caps Lock key only affects alphabetic characters on Unix.

1.9.7 Summary of Non-Backwards Compatible Changes

1) All methods must now be declared using the Am_Define_Method_Type,
Am_Define_Method_Type_Impl, and Am_Define_Method macros. Details are below.

2) All formulas when assigned into slots should not use Am_Formula::Create. No longer ever use
Am_Declare_Formula: instead, just declare the type to be extern Am_Formula. Details are below.

3) Changed a number of slot names to adhere to a consistent naming scheme. Details are below.

4) Moved the functions that control interactors from the COMMAND object to the interactor itself.
Thus, if you were customizing a DO_METHOD, you now set that method into the interactor itself
instead of into the COMMAND of the interactor. Similarly, moved
Am_CREATE_NEW_OBIJECT_METHOD to interactor.

5) Changed Am_Create_New_Object_Method to take a Am_Inter Location, because the former
signature did not include the reference object.

6) The various Get routines all return an Am_Value& instead of various kinds of slot references.
This should not affect very much code unless you are using advanced features.

7) New default where: Am_Inter_In_Object_Or_Part and Am_Inter_In_Text_Object_Or_Part.
These try to be smart about selecting a part of a group or the object itself. If you want to select a
group itself, be sure to override the default with Am_Inter_In.

8) You should no longer call Am_Initialize_Inspector in your code, because it does not need to be
called on each window anymore. Instead, the inspector is initialized as part of the standard
Am_Initialize.

9) The names of the UNDO handlers were changed to match the Macintosh and Windows termi-
nology, including slot names and method names and types. In particular, UNDO_THE_UNDO
changed to REDO. There are also new methods to support the selective undo and redo.

10) Changed the Am_OTHER_WINDOWS slot to be Am_MULTI_OWNERS and can be a list of
objects, not just windows. Can NO LONGER be a single object: must be a list, and inter’s owner
(or its window) MUST also be on the list. This is to support the multi-window move-grow inter-
actor.



Amulet V2.0 Overview Page 41

11) Unnamed parts are now inherited, so you don’t have to invent names for parts just to get them
inherited. If you want a part to NOT be inherited, you must pass false as the second parameter to
Add_Part.

12) Modified Am_Demon_Set and Am_Demon_Queue to have a more C++ like interface.

13) Interface to Am_Point_List class has entirely changed, to be more consistent with other Amulet
lists.

14) Removed Am_Button_Command, Am_Scroll_Command, and Am_Text_Input_Command be-
cause they are no longer needed. Use Am_Command instead. Details are below.

1.9.7.1 Details

1) Removed Am_Call, Am_Function_Call, Am_Object_Proc type, all of the Function_Narrow
routines, and the old *function* types

- Predefined types of methods include Am_Object_Method, Am_Where_Method,
Am_Custom_Gridding_Method, Am_Create_New_Object_Method, Am_Text_Edit_Method,
Am_Register_Command_Method, (advanced opal method types = Am_Draw_Method,
Am_Invalid Method, Am_Point_In_Method, Am_Translate_Coordinates_Method,
Am_Item_Method)

- Assign the method to the slot just using the method_name (which is really a pointer to a method
description structure).

- Define the methods in .h files using the type, e.g.:
extern Am Where_Method Am_Inter_ 1In;

- If you need a new new type, put Am_Define_Method_Type in a .h file for each new type of meth-
od (new signature of parameters or return type)

- Put Am_Define_Method_Type_Impl with same name in one .cc file (or if the
Am_Define_Method_Type goes in a .cc file, put Am_Define_Method_Type_Impl just below it)

- For each method of that type, use Am_Define_Method instead of the former procedure header.

- To call the method, use code like:
Am_Object_Method method;
method = undo_handler.Get (Am_PERFORM_UNDO_THE_UNDO) ;
method.Call (undo_handler) ;

instead of Am_Call or Am_Function_Call.

- Operationally:
- For every procedure that is used as a method, change its definition to use the
Am_Define_Method macro.



Page 42 Amulet V2.0 Overview

- If any of your methods require a new method TYPE, use the define_method_type and
define_method_type_impl macros

- Change the storing of the method in the slot to NOT have any casts and NOT have an & in
front of it.

- Replace all calls of methods to use the new form.

2)
// in .h file:
extern Am Formula get_window_height;
// in .cc file:
Am_Define_Formula(int, get_window_height) {
. code ...

}

.Set (Am_HEIGHT, get_window_height)

--- Operationally: replace all Am Formula::Create(*) with just * and replace all
Am_Decclare_Formula’s with extern Am_Formula

3) Changed the names of all slots that had _ PROC or _ACTION to be _METHOD instead, includ-
ing all interactor slots. Also changed “_POSSIBLE” to _"ALLOWED?” in slots names for undo
handlers.

14) Do a global replace of Am_Button_Command with Am_Command. Do a global replace of
Am_Scroll_Command with Am_Command. Do a global replace of Am_Text_Input_Command
with Am_Command.

1.10 Formal, Legal Language

1. This License Agreement, effective as of April 1, 1996, is between: Carnegie Mellon University
having a principal place of business at 5000 Forbes Avenue, Pittsburgh, PA 15213-3890 (“CMU”);
and a company (“COMPANY”).

2. CMU owns intellectual property rights to the computer software, electronic information and da-
ta, in all forms and versions, identified as Amulet, described in CMU Docket 96-050 (“Software”™),
and associated documentation (“Document”), collectively (‘“Program™).

3. CMU grants to COMPANY, upon the terms and conditions set out below, a fully-paid, nonex-
clusive, world-wide, royalty-free, non-revocable, commercial license to use the Program, or any
portion thereof, for any purpose, including, but not limited to, the right to grant sublicenses under
CMU’s patent and trade secret rights, and copyrights, including any renewals and extensions, the
right to use, copy adapt, prepare derivative works of, distribute, sell, lease, or otherwise dispose of,
reverse engineer, or disassemble the Software, or any portion thereof (including all subsequent edi-
tions, revisions, supplements, and versions thereof), and CMU acknowledges that COMPANY
hereby grants no reciprocal rights.

4. COMPANY acknowledges that the Program is a research tool still in the development stage,
that it is being supplied “as is,” without any accompanying services or improvements from CMU.



Amulet V2.0 Overview  Page 43

5. CMU MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED AS
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE, OR MERCHANTABILITY, EXCLUSIVITY OR RESULTS OBTAINED FROM
SPONSOR’S USE OF ANY INTELLECTUAL PROPERTY DEVELOPED UNDER THIS
AGREEMENT, NOR SHALL EITHER PARTY HERETO BE LIABLE TO THE OTHER FOR
INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES SUCH AS LOSS OF PROFITS OR
INABILITY TO USE SAID INTELLECTUAL PROPERTY OR ANY APPLICATIONS AND
DERIVATION THEREOE. -CMU DOES NOT MAKE ANY WARRANTY OF ANY KIND
WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT IN-
FRINGEMENT, OR THEFT OF TRADE SECRETS AND DOES NOT ASSUME ANY LIABIL-
ITY HEREUNDER FOR ANY INFRINGEMENT OF ANY PATENT, TRADEMARK, OR
COPYRIGHT ARISING FROM THE USE OF THE PROGRAM, INFORMATION, INTELLEC-
TUAL PROPERTY, OR OTHER PROPERTY OR RIGHTS GRANTED OR PROVIDED TO IT
HEREUNDER. THE USER AGREES THAT IT WILL NOT MAKE ANY WARRANTY ON BE-
HALF OF CMU, EXPRESSED OR IMPLIED, TO ANY PERSON CONCERNING THE APPLI-
CATION OF OR THE RESULTS TO BE OBTAINED WITH THE PROGRAM UNDER THIS
AGREEMENT.

6. COMPANY hereby agrees to defend, indemnify and hold harmless CMU, its trustees, officers,
employees, attorneys and agents from all claims or demands made against them (and any related
losses, expenses or costs) arising out of or relating to COMPANY’s and/or its sublicensees’ use of,
disposition of, or conduct regarding the Licensed Technology and/or Licensed Product including
but not limited to, any claims of product liability, personal injury (including, but not limited to,
death) damage to property or violation of any laws or regulations including, but not limited to,
claims of active or passive negligence.

7. COMPANY agrees that it will not make any warranty on behalf of CMU, express or implied, to
any person concerning the application of or the results to be obtained with the Program.

8. Title to copyright to the Program and to Document shall at all times remain with CMU, and
COMPANY agrees to preserve same. COMPANY agrees not to make any copies of the Document
except for COMPANY’s internal use, without prior written consent of CMU. COMPANY agrees
to place the appropriate copyright notice on any such copies. Nothing herein shall be deemed to
grant any license or rights in any other technology owned by CMU related to the Program.

9. COMPANY owns the rights to derivative works made by or on behalf of COMPANY. Nothing
herein shall be deemed to grant to CMU, or any other party, any license or any rights in any tech-
nology owned by COMPANY whether or not related to the Program, or any license or any rights
to COMPANY’s products whether or not incorporating any portion of the Software, or any portion
of any derivative works thereof, and CMU acknowledges that CMU has no rights to same.

10. This Agreement shall be construed, interpreted and applied in accordance with the laws of the
Commonwealth of Pennsylvania.

11. Nothing in this Agreement shall be construed as conferring rights to use in advertising, pub-
licity or otherwise any trademark or the name of “CMU”.



Page 44  Amulet V2.0 Overview

12. COMPANY understands that CMU is not responsible for support or maintenance of the Pro-
gram.

The complete list of people at CMU by whom Amulet has been developed by so far is: Brad A.
Myers, Alan Ferrency, Rich McDaniel, Robert C. Miller, Patrick Doane, Andy Mickish, Alex Kli-
movitski, Amy McGovern, William Moher, Robert Armstrong, Ashish Pimplapure, Patrick Doane,
Patrick Rogan, Qiang Rao, and Chun K. So.



2. Amulet Tutorial

Amulet is a user interface development environment that makes it easier to create highly interac-
tive, direct manipulation user interfaces in C++ for Windows NT or Unix X/11. This tutorial in-
troduces the reader to the basic concepts of Amulet. After reading this tutorial and trying the
examples with a C++ compiler, the reader will have a basic understanding of: the prototype-in-
stance system of objects in Amulet; how to create windows and display graphical objects inside
them; how to constrain the positions of objects to each other using formulas; how to use interactors
to define behaviors on objects (such as selecting objects with the mouse); how to collect objects
together into groups; how to use the Amulet widgets; and how to use some of the debugging tools
in Amulet.

Copyright © 1996 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037,
Arpa Order No. B326. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of NCCOSC or the U.S. Government.






Amulet Tutorial Page 47

2.1 Setting Up

2.1.1 Install Amulet in your Environment

Before beginning this tutorial, you should have already installed Amulet in your computing envi-
ronment, and you should have a compiled version of the Amulet library. Instructions on how to do
this can be found in the Amulet Overview, Section 1.4. This tutorial assumes that you are familiar
with c++ and with the c++ development environment on your system.

In this tutorial, you will be introduced to the most commonly used parts of Amulet; the ORE Object
system, Opal graphical object, Interactors, Command Objects, and Widgets. It includes code ex-
amples that can you can type in and compile yourself, along with discussions of Amulet program-
ming techniques.

There is another programming interface to Amulet at the Gem layer (the Graphics and Events Mod-
ule). By accessing the Gem layer, you can explicitly call the functions that Amulet uses to draw
objects on the screen. Most Amulet users will not need to call Gem functions directly, because
Amulet graphical objects redraw themselves automatically once they are added to a window. Gem
is only needed by programmers who cannot get sufficient performance using the higher level inter-
face.

2.1.2 Copy the Tutorial Starter Program

Throughout this tutorial, you will be typing and compiling code to observe its behavior. A starter
program is installed with Amulet in the directory samples/tutorial/ in Unix, orin samples\tu-
torial\ in Windows NT and samples:tutorial in Macintosh. By following the instructions in
this tutorial, you will iteratively edit and recompile this program in your local area while learning
about Amulet.

Copy the tutorial/ directory and its contents into your local filespace. You will edit this copy
of the tutorial files while going through the tutorial, and not the original copy. Your copy of the
directory should contain the files Makefile and tutorial.cc, if you’re on a Unix platform, the
files tutorial.cpp, tutorial.mak, and tutorial .mdp if you’re on the PC, the files tutori-
al.cpp and tutorial68K.proj if you’re on the Macintosh .

You should now build the initial tutorial program to make sure everything is installed correctly. In
Unix, simply type make on the command line. On the PC, open tutorial.mak with Visual C++
2.0, or tutorial.mdp with Visual C++ 4.0. You might need to add the file tutorial.cpp to the
project if Visual C++ can’t find it. On the Macintosh, open tutorial68K.proj with CodeWarrior.
Next, build the project.

You should now be able to execute the tutorial program, which creates an empty window in the
upper-left corner of the screen. Exit the program by placing the mouse in the Amulet window (and
clicking in the window to make it active, if necessary) and typing the Amulet escape sequence,
META_SHIFT_F1.



Page 48  Amulet Tutorial

If you have trouble copying the starter program or generating the tutorial executable, there may
be a problem with the way that Amulet was installed at your site. Consult Section 1.4 for detailed
instructions about installing Amulet.

2.2 The Prototype-Instance System

Amulet provides a prototype-instance object system built on top of the c++ class-object hierarchy.
C++ classes are defined at compile time, and the amount and type of data stored in a c++ object can-
not change at run time. The c++ class is an abstract description of how to make an object, but con-
tains no data by itself. In Amulet, every object is “real,” and there is no underlying abstract class
that describes an Amulet object at compile time. The prototype for an object in Amulet is another
object, not an abstract class as in c++. All Amulet objects have the c++ type Am_oObject.

The Amulet library provides many prototype objects which you can instantiate and customize in
your programs. Examples include lines, circles, groups, windows, polygons, and so on. These pro-
totypes have default values for all of the important properties of the object, such as size, position,
and color. You can change these values in your instances of the objects, to customize their appear-
ance and behavior. Any properties you do not customize will be inherited from the object’s proto-
type.

While most of the objects we’ll be working with in this Tutorial are graphical objects, Amulet ob-
jects are not necessarily tied down to graphical representations. Command objects and interactors
are examples of nongraphical Amulet objects.

For a complete list of all of Amulet’s default prototype objects, see Chapter 10, Summary of Ex-
ported Objects and Slots.

2.2.1 Objects and Slots

The properties of an Amulet object are stored in its slots, which are similar to a class’s member
variables in c++. A rectangle’s slots contain values for its position (left, top), size (width, height),
line-style, filling-style, and so on. In the following code, a rectangle is created and some of its
slots are set with new values (it is not necessary to type in this code, it is just for discussion):
Am Object my_rect = Am_Rectangle.Create (“my_rect”)
.Set (Am_LEFT, 20)
.Set (Am_TOP, 20)

.8et (Am_LINE_STYLE, Am Black)
.Set (Am_FILL_STYLE, Am_Red);

int my_left = my_ rect.Get (Am_LEFT); // my_left has value 20

The set operation sets the values of the objects’ slots, and the corresponding Get operation re-
trieves them. set takes a slot key, such as Am_LEFT, and a new value to store in the slot. cet takes
a slot key and returns the value stored in the slot. A slot key is an index into the set of slots in an
object.



Amulet Tutorial Page 49

There are many predefined slot keys used by Amulet objects, all starting with the “am_" prefix, de-
clared in the header file standard_slots.h. Slot keys that you create for your own use need to
be explictly declared with special Amulet functions, as in:

Am_Slot_Key MY _SLOT = Am Register_Slot_Name ("MY_ SLOT");
There are many examples of setting and retrieving slot values throughout this tutorial.

An important difference between c++ classes and Amulet objects is that Amulet allows the dynam-
ic creation of slots in objects. An Amulet program can add and remove slots from an object as
needed. In c++ classes, the value of the class’s data can be modified at runtime, but changing the
amount of data in an object requires recompiling your code.

2.2.2 Dynamic Typing

Another difference between Amulet objects and C++ classes involves the type restrictions of the
values being stored. In C++ classes, you are restricted to declaring member variables of a specific
type, and you can only store data of that type in the variables. In contrast, Amulet uses dynamic
typing, where the type of a slot is determined by the value currently stored in it. Any slot can hold
any type of data, and a slot’s type can change whenever a new value is set into the slot.

Amulet achieves dynamic typing by overloading the set and Get operators. There are versions of
Set and Get that handle most simple C++ types including int, float, double, char, and bool.
They also handle more general types like strings, Amulet objects, functions, and void*. Other
types are encapsulated in a type called Am_wrapper, which allows C++ data structures to be stored
in slots.

For example:
int i = obj.Get (Am_LEFT) ;

Amulet looks in the object obj and tries to find its slot am_r.ErFT. If the slot exists, and its value is
an integer, it is assigned to i. If the value there is not an integer, however, this causes an error. If
you do not know what type a slot contains, you can get the slot into a generic am_value type or ask
the slot what type it contains using obj .Get_Slot_Type (see Section 3.3).

2.2.3 Inheritance

When instances of an Amulet object are created, an inheritance link is established between the pro-
totype and the instance. Inheritance allows instances to use slots in their prototypes without setting
those slots in the instances themselves. For example, if we set the filling style of a rectangle to be
gray, and then we create an instance of that rectangle, then the instance will also have a gray fill
style.



Page 50 Amulet Tutorial

This inheritance creates a hierarchy among the objects in the Amulet system. There is one object,
Am_Graphical_Object, that all graphical objects are instances of. Figure 2-1 shows some of the
objects in Amulet and how they fit into the inheritance hierarchy. Objects shown in bold are used
by all Amulet programmers, while the others are internal, and intended to be accessed only by ad-
vanced users. The am_Map and am_Group objects are both special types of aggregates, and they
inherit most of their properties from the am_Aggregate prototype object. Some of their slots are
inherited from Am_Graphical_Object through Am_Aggregate. The Widgets (the Amulet gad-
gets) are not pictured in this hierarchy, but most of them are instances of the am_aggregate object

Am_Rectangle]

Am_ Roundt angle]

&m_Graphical_Obj ect Am_Arc]

Am_Po 1ygon)

Figure 2-1:The inheritance hierarchy among some of the Amulet prototype objects.

Am_Aggregate




Amulet Tutorial Page 51

To demonstrate inheritance, let's create an instance of a window and look at some of its inherited
values. If you have followed the instructions in Section 2.1.2, you should have the file tutori-
al.cc (Unix and Mac) or tutorial.cpp (PC) in your local area. Edit the file. You should see:.

#include <amulet.h>

main (void)
{
Am_Initialize ();

Am_Object my win = Am_Window.Create (“my win”)
.Set (Am_LEFT, 20)
.Set (Am_TOP, 50);

Am_Screen.Add_Part (my_win):;

/* AR R SRR R SRS SRR SRR R TSR LR EE R R R R R R R R R R R X R R R R */

/* During the Tutorial, do not add or edit text below this line */
/* LR R R R RS SRR SRR RS L REEEREEREEEERE R R R EE SRR R R R R g T g 3 */

Am Main_Event_Loop ();
Am_Cleanup ();
}

If you have not already compiled this file, do so now. In UNIX, invoke make in your tutorial/
directory to generate the tutorial binary. On the PC and Macintosh, select “Build” from the
“Project” menu. Execute tutorial to create a window in the upper-left corner of the screen.

The tutorial program creates an object called my_win, which is an instance of Am_Window. A
value of 20 was installed in its am_LEFT slot and 50 in its am_ToP slot. These values are reflected
in the position of the window on the screen.

To check that the slot values are correct, bring up the Amulet Inspector to examine the slots and
values of the window. Move the mouse over the window and press the 71 key. The Amulet In-
spector will pop up a window that displays the slots and values of my_win, as shown in Figure 2-
2 You will see many slots displayed, some of which are internal and not intended for external use.
The slots with “~” in their names are internal slots. You can hide these internal slots by selecting
the menu option View: Hide Internal Slots. Some of the other slots are “advanced” and
should not be needed by most programmers. Chapter 10, Summary of Exported Objects and Slots,
lists the primary exported slots of the main Amulet objects.

By default, object slots are sorted alphabetically by name in the Inspector. To turn this option off,
choose view: Stop Sorting By Name from the Inspector’s menu.



Page 52 Amulet Tutorial

[nspecting <ny_win> (Oxeab2s)

§ Objects Edit View Windews Break/Trace Interactors

I Inspecting: ©my_win®
Inztance of<hm Window»
|[Part of<hm Boreen>
Elets:
HINDOW (oonstraint =return self Oxdiedd) :<ny win>
IEFT :20
TOF ;50
WIDTH 100
HEIGHT :100

MAX WIDTH ;0
MAX HEIGHT :0
MIN WIDTH :1
MIN HEIGHT :1
TITLE :Amulet
/| ICON TITIE :Bmulet

Flgure 2 2 The Amulet Inspector d1sp1ay1ng the slots and values of my_win. (The set of slots
actually displayed has been abridged in this picture so that it will fit on the page.)

The am_LEFT and am_TOP slots of my_win shown in the Inspector contain the expected values.
The am_wIDTH and Am_HEIGHT slots contain values that were not set by the tutorial program.
These values were inherited from the prototype. They were defined in the Am_window object when
it was created, and now my_win inherits those values from am_window as if you had set those slots
directly into my_win. The Inspector shows they are inherited by displaying the slots in blue.
Slots with local values are displayed in black. You can use the menu command View: Hide In-
herited Slots to hide all of my win’s inherited slots.

To exit the tutorial program and destroy the Amulet window, position the mouse over the window
(and click to select the window, if necessary) and type META_SHIFT F1. You could also choose the
Inspector’s Objects: Quit Application menu item.

Let's change the width and height of my_win using set, the function that sets the values of slots.
Edit the source code, and add the following lines immediately after the definition of my_win:

my_ win.Set (Am_WIDTH, 200)
.Set (Am_HEIGHT, 400);



Amulet Tutorial Page 53

Notice that we can cascade the calls to set without placing semi-colons at the end of each line.
set makes this possible by returning the object that is being changed, so that the return value of
set can be used without intermediate binding. After compiling and executing the file, and hitting
F1 to invoke the Inspector, you can see that we have successfully overridden the am wipTH and
Am_HEIGHT slots in my_win with our local values. If you move and resize the window from the win-
dow manager, the values in the inspector should change to reflect these changes as well.

The counterpart to set is Get, which retrieves values from slots. The Inspector uses Get on
my_win to obtain the values to print in the Inspector window. We can use cet directly by typing
the following code into the source code, after the definition of my_win:

int left = my win.Get (Am_LEFT);

int width = my_win.Get (Am_WIDTH) ;

cout << "left == " << left << endl;
cout << "width == " << width << endl;

Delete the code we used to set the left, top, width, and height of the window, and see what values
are printed by the cout statement when the program is run. You can see that am_rL.EFT defaults to
0, and am_w1DTH defaults to.100 if you don’t set the slots explicitly.

The inheritance hierarchy shown in Figure 2-1 is traced from the leaves toward the root (from right
to left) during a search for a value. Whenever we use Get to retrieve the value of a slot, the object
first checks to see if it has a local value for that slot. If there is no value for the slot in the object,
then the object looks to its prototype to see if it has a value for the slot. This search continues until
either a value for the slot is found or the root object is reached. When no inherited or local value
for the slot is found, an error is raised. This might occur if you are asking for a slot from the wrong
object, or if you forget to initialize a slot’s value.

2.2.4 Instances

All of the objects displayed in a window are instances of other objects. In tutorial, my win isan
instance of am_window. Let’s create several instances of graphical objects and add them to my_win.
First, make sure that your window is large enough, at least 200x200. Change your definition of
my_win to look something like this:
Am_Object my_win = Am_Window.Create ("my win")
.Set (Am_LEFT, 20)
.Set (Am_TOP, 50)

.Set (Am_WIDTH, 200)
.Set (Am_HEIGHT, 200);

Am Screen.Add_Part (my_win); // Puts my_win on the screen

Now we can create several graphical objects and add them to the window. Type the following code
into the tutorial program after the definiton of my_win, then recompile and execute tutorial.



Page 54  Amulet Tutorial

Am_Object my arc = Am_Arc.Create ("my_arc")
.Set (Am_LEFT, 10)
.Set (Am_TOP, 10);

Am _Object my_text = Am Text.Create ("my_text")
.Set (Am_LEFT, 80)
.Set (Am_TOP, 30)
.Set (Am_TEXT, "This is my text");

Am_QObject my_rect = Am Rectangle.Create ("my_rect")
.Set (Am_LEFT, 10)
.Set (Am_TOP, 100)
.Set (Am_WIDTH, 180)
.Set (Am_HEIGHT, 80)
.Set (Am_FILL_STYLE, Am_Red):;

my_win.Add_Part (my arc)
.Add_Part (my_text)
.Add_Part (my_rect);

The circle, text, and rectangle will be displayed in the window. You can position the mouse over
any of the objects and hit F1 to display the slots of the object in the Tnspector. If you hit 1 while
the mouse is over the background of the window, you will raise the Inspector for the window it-
self. While inspecting my_win, you can see at the bottom of the Tnspector display that the new
objects have been added as parts of the window.

Amulet supplies a large collection of objects that you can instantiate, including the basic graphical
primitives like rectangles and circles, and the standard widgets like menus, buttons and scroll bars.
Chapter 10, Summary of Exported Objects and Slots, lists the exported Amulet objects you can
make instances of.

2.2.5 Prototypes

When programming in Amulet, inheritance among objects can eliminate a lot of duplicated code.
If we want to create several objects that look similar, we could create each of them from scratch
and copy all the values that we need into each object. However, inheritance allows us to define
these objects more efficiently, by creating several similar objects as instances of a single prototype.

Figure 2-3:Three instances created from one prototype rectangle.

To start, look at the picture in Figure 2-3. We are going to define three rectangles with different
filling styles and put them in the window. Using your current version of tutorial, make sure it
will create a window of size at least 200x200.



Amulet Tutorial Page 55

Let's consider the design for the rectangles. The first thing to notice is that all of the rectangles
have the same width and height. We will create a prototype rectangle which has a width of 40 and
a height of 20, and then we will create three instances of that rectangle. To create the prototype
rectangle, type the following.

Am_Object proto_rect = Am Rectangle.Create ("proto_rect")

.Set (Am_WIDTH, 40)
.Set (Am HEIGHT, 20);

This rectangle will not appear anywhere, because it will not be added to the window. We will cre-
ate three instances of this prototype rectangle, which will be displayed. Since the prototype has the
correct values for the width and height, we only need to specify the left, top, and filling styles of
our instances.
Am_Object rl = proto_rect.Create ("rl")
.Set (Am_LEFT, 20)

.Set (Am_TOP, 20)
.Set (Am_FILL_STYLE, Am White);

Am_Object r2 = proto_rect.Create ("r2")
.Set (Am_LEFT, 40)
.Set (Am_TOP, 30)
.Set (Am FILL STYLE, Am Opaque_Gray_Stipple);

Am_Object r3 = proto_rect.Create ("r3")
.Set (Am_LEFT, 60)
.Set (Am_TOP, 40)
.Set (Am_FILL_STYLE, Am_Black):

my_win.Add_Part (rl)
.Add_Part(r2)
.Add_Part(r3);

When you recompile and execute, you can see that the instances r1, r2, and r3 have inherited their
width and height from proto_rect. You may wish to use the Inspector to verify this. With these
three rectangles still in the window, we are ready to look at another important use of inheritance by
changing values in the prototype.

Inspect proto_rect. You can do this by inspecting one of the three rectangles in the window, and
using the right mouse button to click on <proto_rect> on the “Instance of <proto_rect>"
line. Other ways to inspect this object include double left clicking on the object name, and choos-
ing the Objects: Inspect Object menu item, or choosing objects: Inspect Object
Named. . . and typing “proto_rect” into the dialog box.

When you inspect proto_rect, the contents of the Inspector window will be replaced by the
slots and values of proto_rect. You can bring up the new object in its own inspector window by
holding down the shift key while clicking the right mouse button over proto_rect, or by double
clicking on the object name and choosing Objects: Inspect In New Window.



Page 56  Amulet Tutorial

The values of certain types of slots in the inspector can be changed by clicking on the slot’s value,
editing the value, and then hitting return. When you click the left mouse button in an integer or
wrapper (object, style, font) value, a cursor appears and you can use standard Amulet text editing
commands to change the value. Here is a brief summary of text editing commands (note: “~£”
means control-f).

~£ Or rightarrow
“bor leftarrow
~a

~e

~h, DELETE, BACKSPACE

“w, “DELETE, "BACKSPACE

forward one character
backward one character
go to beginning of line
go to end of line

delete previous character

delete previous word

~d delete next character

*u delete entire string

~k kill (or delete) rest of line

"y, INSERT insert the contents of the cut buffer into the string at the
current point

~c copy the current string into the cut buffer

~g aborts editing and returns the string to the way it was

before editing started

leftdown (inside the string)  move the cursor to the specified point

All other characters go into the string (except other control characters which beep).

By editing the values in the Inspector window, change the width of proto_rect to 30 and change
its height to 40. The result should look like the rectangles in Figure 2-4. Just by changing the val-
ues in the prototype rectangle, we were able to change the appearance of all its instances. This is
because the three instances inherit their width and height from the prototype, even when the pro-
totype changes.

Figure 2-4:The instances change whenever the prototype object changes.




Amulet Tutorial Page 57

For our last look at inheritance in this section, let's override the inherited slots in one of the instanc-
es. Suppose we now want the rectangles to look like Figure 2-5. In this case, we only want to
change the dimensions of one of the instances. Bring r3 (the black rectangle) up in the Inspector,
and change the value of its width slot to 100.

The rectangle r3 now has its own value for its am _wIDTH slot, and no longer inherits it from
proto_rect. If you change the width of the prototype again, the width of »3 will not be affected.
However, the width of r1 and r2 will change with the prototype, because they still inherit the val-
ues for their Am_wIDTH slots. This shows how inheritance can be used flexibly to make specific
exceptions to the prototype object.

Figure 2-5:The width of r3 is overridden by a local value, and is no longer inherited from the pro-
totype.

2.2.6 Default Values

Because of inheritance, all instances of Amulet prototype objects have reasonable default values
when they are created. As we saw in Section 2.2.4, the Am_Window object has its own Am_wIDTH
value. If an instance of it is created without an explicitly defined width, the width of the instance
will be inherited from the prototype. This inherited value can be considered a default value for slots
in an instance. Section 10 contains a complete list of Amulet objects and the default values of their
slots.

2.2.7 Destroying Objects

After objects have fulfilled their purpose, it is appropriate to destroy them. All objects occupy
space in memory, and continue to do so until explicitly destroyed (or the program terminates). A
Destroy() method is defined on all objects, so at any point in a program you can do obj.De-
stroy() to destroy obj.

When you destroy a graphical object (like a line or a circle), it is automatically removed from any
window or group that it might be in and erased from the screen. Destroying a window or a group
will destroy all of its parts. Destroying a prototype also destroys all of its instances.



Page 58  Amulet Tutorial

2.2.8 Unnamed Objects

Sometimes you will want to create objects that do not have a particular name. Or, you might not
care what the name of an object is, so you’d rather not bother thinking of a name. For example,
you may want to write a function that returns a rectangle, but it will be called repeatedly and should
not return multiple objects with the same name. In this case, you should allow Amulet to generate
a unique name for you.

As an example, the following code creates unnamed objects and displays them in a window. In-
stead of supplying a quoted name to Create, we invoke it with no parameters.
Am_Object obj;
for (int 1i=0; 1i<10; i++) {
obj = Am_Rectangle.Create()
.Set (Am_LEFT, 1i*10)
.Set (Am_TOP, 1i*10);

my win.Add_Part (obj);
}

When no name string is supplied to create, Amulet generates a unique name for the object being
created. In this case, something like <Am Rectangle_5>. This name has a unique number as a
suffix that prevents it from being confused with other rectangles in Amulet.

2.3 Graphical Objects

2.3.1 Lines, Rectangles, and Circles

The Opal module provides different graphical shapes including circles, rectangles, roundtangles,
lines, text, bitmaps, and polygons. Each graphical object has special slots that determine its appear-
ance, which are fully documented in chapter 4, Opal Graphics System and summarized in chapter
10, Summary of Exported Objects and Slots. Examples of creating instances of graphical objects
appear throughout this tutorial.

2.3.2 Groups

In order to put a large number of objects into a window, we might create all of the objects and then
add them, one at a time, to the window. However, this is usually not how we organize the objects
conceptually. If we were to create a sophisticated interface with tool palettes, icons with labels,
and feedback objects, we would not want to add each line and rectangle directly to the window.
Instead, we would think of creating each palette from its composite rectangles, then creating the
labeled icons, and then adding each assembled group to the window.

Grouping objects together like this is the function of the am_Group object. Any graphical object
can be part of a group - lines, circles, rectangles, widgets, and even other groups (note: Am_window
is not considered a graphical object, even though it does appear on the screen). Usually all the parts
of a group are related in some way, like all the selectable icons in a tool palette.



Amulet Tutorial Page 59

Groups define their own coordinate system, meaning that the left and top of their parts is offset
from the origin of the group. Changing the position of the group transiates the position of all its
parts. Groups also clip their parts to the bounding box of the group, meaning that objects outside
the left, top, width, or height of the group are not drawn.

In Amulet terminology, a group is the owner of all of its parts. The add_prart() and
Remove_Part () methods are used to add and remove parts. You can optionally provide a slot key
(a slot name, such as My_PART) in an Add_Part () call. If a slot key is provided, then in addition
to becoming a part of the group, the new part will be stored in that slot of the group. Parts with slot
keys are always instantiated when instances of an existing group are created, and parts without a
key are instantiated unless you specify otherwise. It is often convenient to provide slot keys for
parts so that functions and formulas can easily access these objects in their groups.

Objects may be added directly to a window or to a group which, in turn, has been added to the win-
dow. When groups have other groups as parts, a group hierarchy is formed.

Gray Backgrouncﬂ

Indicator

[Scroll Bar

Top Trill Box

Bottom Trill Box

Figure 2-6:One possible hierarchy for the objects that make up a scroll bar.

In the scroll bar hierarchy, Figure 2-6, all of the leaves correspond to shapes that appear in the scroll
bar. The leaves are always Amulet graphic primitives, like rectangles and text. The nodes
Top_Trill_Box and Bottom_Trill_Box are both groups, each with two parts. And, of course,
the top-level scroll_Bar node is a group.



Page 60 Amulet Tutorial

This group hierarchy should not be confused with the inheritance hierarchy discussed earlier. Parts
of a group do not inherit values from their owners. Relationships among groups and their parts
must be explicitly defined using constraints, a concept which will be discussed shortly in this tuto-
rial.

2.3.3 Am_Group

Am_Group and Am_Map are used to form groups of other objects. They both define their own coor-
dinate system, so that their parts are offset from the origin of the group.

You may create a group and add components to it in distinct steps, or you can use the cascading
style of method invocation to perform all the Set and Add_Part operations in one expression. Here
is an example of code implementing a group that contains an arc and a rectangle.

// Declared at the top-level, outside of main ()

// You may install new slots in any object, but if they are not pre-defined Amulet slots,
// starting with the “Am_" prefix, then you must define them seperately at the top-level.
// See Section 2.2.1

Am_Slot_Key ARC_PART
Am_Slot_Key RECT_PART

Am_Register_Slot_Name ("ARC_PART");
Am_Register_Slot_Name ("RECT_PART");

// Defined inside of main ()
Am_Object my_group = Am_Group.Create ("my_group")
.Set (Am_LEFT, 20)
.Set (Am_TOP, 20)
.Set (Am_WIDTH, 100)
.Set (Am_HEIGHT, 100)
.Add_Part (ARC_PART, Am_Arc.Create ("my_circle")
.Set (Am_WIDTH, 100)
.Set (Am _HEIGHT, 100))
.Add_Part (RECT_PART, Am_Rectangle.Create ("my_rect")
.Set (Am WIDTH, 100)
.Set (Am_HEIGHT, 100)
.Set (Am_FILL_STYLE, Am No_Style));

// Instances of my_group
Am_Object my_group2 = my group.Create ("my_group2")
.Set (Am_LEFT, 150);

Am_Object my group3 = my_group.Create ("my_group3")
.Set (Am_TOP, 150);

// Don’t forget to add the graphical objects to the window!
my_win.Add_Part (my group)

.Add_Part (my_group?2)

.Add_Part (my_group3);



Amulet Tutorial Page 61

The Ada_part () method works like set. It takes an optional slot key, and an object to install in
the group. In addition to making the object an official part of the group, it is installed in the given
slot in the group, if a slot key is supplied. The objects my_circle and my_rect are stored in slots
ARC_PART and RECT_PART of my_group. The slots ARC_PART and RECT PART are pointer slots be-
cause they point to other objects. These slots provide immediate access to these objects through
my_group, which is useful when defining constraints among the objects. Once installed, the parts
can be retrieved by name from the group with the methods Get () and Get_Part ().

When an instance of my group is created, its parts are duplicated in the new group. Groups
my_group2 and my_group3 have the same structure as my_group, but at different positions. You
can explicitly specify that a part should not be duplicated in instances of its owner by providing a
second boolean parameter to Add_Part without a slot key. Object.Add_part (my_part, false)
will add my_part as a part to object, but my_part will not be instantiated as a part of instances of
Object.

2.3.4 Am_Map

A map is a kind of group that has many similar parts, all generated from a single prototype. In an
Am_Map, a single object is defined to be an item-prototype, and instances of this object are generated
according to a set of items. See chapter 4, Opal Graphics System, for details and examples of
maps.

2.3.5 Windows

Any object must be added to a window in order for it to be shown on the screen. Or, the object
must be added to a group that, in turn, has been added to a window. All objects in a window are
continually redrawn as necessary while the Am Main_Event Loop() iS running (see
Section 2.5.6).

As shown in previous examples, objects are added to windows using the add_part () method.
Subwindows can also be attached to windows using Add_prart (), using exactly the same syntax
for adding groups or other graphical objects.

2.4 Constraints

In the course of putting objects in a window, it is often desirable to define relationships among the
objects. You might want the tops of several objects to be aligned, or you might want a set of circles
to have the same center, or you may want an object to change color if it is selected. Constraints are
used in Amulet to define these relationships among objects.

Constraints can be arbitrary C++ code, and can contain local variables and calls to functions. They
may also have side effects on unrelated data structures with no ill effect, including setting slots and
creating and destroying other Amulet objects.



Page 62  Amulet Tutorial

Although all the examples in this section use constraints on the positions of objects, it should be
clear that constraints can be defined for filling styles, strings, or any other property of an Amulet
object. Many examples of constraints can be found in the following sections of this tutorial.

2.4.1 Formulas

A formula is an explicit definition of how to calculate the value for a slot. If we want to constrain
the top of one object to be the same as another, then we define a formula, and put it in the am_ToP
slot of the dependent object. With constraints, the value of one slot always depends on the value
of one or more other slots, and we say the formula in that slot has dependencies on the other slots.

An important point about constraints is that they are always automatically maintained by the sys-
tem. They are evaluated once when they are first created, and then they are re-evaluated when any
of their dependencies change. If several objects depend on the top of a certain rectangle, then all
the objects will change position whenever the rectangle is moved.

Figure 2-7:Three objects that are all aligned with the same top. The top of the gray rectangle is
constrained to the white rectangle, and the top of the black circle is constrained to the top of the
gray rectangle.

2.4.2 Declaring and Defining Formulas

There are several macros that are used to define formulas. These macros expand to conventional
function definitions, but with special context information that Amulet uses to keep track of the con-
straint’s dependencies. The particular macro you should use to define your formula depends on the
type of the value to be returned from the formula.

Am_Define Formula (return_type, formula_name) -- General purpose: returns
specified return_type

Am_Define No_Self Formula (return_type, function_name) -- General purpose:
returns specified return_type. Used when the formula does not reference the special
self variable, so compiler warnings are avoided.

Am Define Value Formula (formula name) -- Return type 1S Am Value
Am_Define_Value_List_Formula (formula_name) -- Return type is Am_Value_List

2m Define Object Formula (formula_name) -- Return type is Am_Object



Amulet Tutorial  Page 63

Am_Define_Style_ Formula (formula_ name) -- Return type iS am_S tyle
Am_Define Font_Formula (formula_name) -- Return type is Am Font
Am_Define Point_List_Formula (formula name) -- Returntypeis Am_Point_List

Am_Define_Image_Formula (formula_name) -- Return type 1s Am_Tmage_Array

To declare a formula in a header file to be exported, you should declare it of type Am_Formula.

For example:

// inside my_file.h:
extern Am _Formula my_formula; /#my_formulais definedinmy_file.cc using Am_Define_Formula()

2.4.3 An Example of Constraints

As our first example of defining constraints among objects, we will make the window in Figure 2-
7. Let's begin by creating the white rectangle at an absolute position, and then create the other ob-
jects relative to it.

The constraints in the following examples will reference global values, and it is essential that the
object variables and formulas be defined at the top-level of the program, outside of main (). Create
the window and the first box with the following code.

// Defined at the top-level, outside of main ()
Am_Object my_win, white_rect, gray_rect, black_arc;

// Defined inside main ()

// Create the window and display it on the screen
my_win = Am_Window.Create ("my win")
.Set (Am_LEFT, 20)
.Set (Am_TOP, 50)
.8et (Am _WIDTH, 260)
.Set (Am_HEIGHT, 100);
Am_ Screen.Add_Part (my_win);

// Create the white rectangle
white_rect = Am Rectangle.Create ("white_ rect")
.Set (Am_LEFT, 20)
.Set (Am_TOP, 30)
.Set (Am_WIDTH, 60)
.Set (Am_HEIGHT, 40)
.Set (Am_FILL_STYLE, Am White);

// Add the rectangle to the window
my_win.Add_Part (white_rect);



Page 64  Amulet Tutorial

We are now ready to create the other objects that are aligned with white_rect: We could simply
create another rectangle and a circle that each have their top at 30, but this would lead to extra work
if we ever wanted to change the top of all the objects, since each object's am_Top slot would have
to be changed individually. If we instead define a constraint that depends on the top of

white_rect, then whenever the top of white_rect changes, the top of the other objects will au-
tomatically change, too.

Define and use a constraint that depends on the top of white_rect as follows:

// Define this at the top-level, outside of main()

Am_Define_ Formula (int, top_of_white_rect) {

// The formula is named top_of_white_rect, and returns an int
return white_rect.GV (Am_TOP);

}

// Define this inside main (), afterwhite_rect
gray_rect = Am_Rectangle.Create ("gray_rect")
.Set (Am_LEFT, 110)
.Set (Am_TOP, top_of_white_rect)
.Set (Am_WIDTH, 60)
.Set (Am_HEIGHT, 40)
.Set (Am_FILL_STYLE, Am Gray Stipple);

my_win.Add_Part (gray_rect);

Without specifying an absolute position for the top of the gray rectangle, we have constrained it to
always have the same top as the white rectangle. The formula in the am_ToP slot of the gray rect-
angle was defined using the macro Am Define_Formula. The Am Define_Formula macro helps
to define a function to be used as a constraint. The formula is named top_of_white_rect, and
returns an int.

The macro Gv () means “get value”, and it is just like Get (), except that Gv () causes a dependency
to be established on the referenced slot, so that the formula will be reevaluated when the value in
the referenced slot changes. You will usually want to use Gv () inside of formulas, and Get () in-
side of normal functions.

To see if our constraint is working, bring up the Inspector on white_rect by hitting 1 while the
mouse is positioned over the white rectangle. Change the top of white_rect and notice how the
gray rectangle stays aligned with its top. This shows that the formula in gray_rect is being re-
evaluated whenever its depended values change.

Now we are ready to add the black circle to the window. We have a choice of whether to constrain
the top of the circle to the white rectangle or the gray rectangle. Since we are going to be examining
these objects closely in the next few paragraphs, let's constrain the circle to the gray rectangle, re-
sulting in an indirect relationship with the white one.



Amulet Tutorial Page 65

Define another constraint and the black circle with the following code.

// Define this at the top-level, outside of main ()

Am_Define_Formula (int, top_of_gray_rect) {
return gray_rect.GV (Am_TOP) ;

}

// Define this inside main (), after gray _rect
black_arc = Am_Arc.Create ("black_arc")
.Set (Am_LEFT, 200)
.Set (Am_TOP, top_of_gray rect)
.Set (Am_WIDTH, 40)
.Set (Am_HEIGHT, 40)
.Set (Am_FILL_STYLE, Am_Black):;

my_win.Add_Part (black_arc);

At this point, you may want to inspect the white rectangle again and change its top just to make
sure the black circle follows the gray rectangle.

2.4.4 Values and constraints in slots

What happens if you set the am_ToP of the gray rectangle now? The default for most slots, includ-
ing the Am_ToP slot of Am_Rectangle, is that the new value replaces any formula in the slot. Bring
up the gray rectangle in the inspector. Notice that the inspector tells you there is a constraint in the
rectangle’s am_ToP slot. Change the am_Top of the gray rectangle by editing the value in the in-
spector window. You should see the grey rectangle move in the application window. Also, the in-
spector should no longer show a constraint in the rectangle’s am_ToP slot. The rectangle’s position
will not be recalculated by the constraint if white_rect moves, because the formula that was in
the slot has been destroyed and replaced with a constant value.

In some slots of certain objects, such as the button widgets, there are formulas in the slots by default
which are required to maintain proper behaviour of the objects. If the formulas were to be de-
stroyed, the object would no longer work as expected. These slots have a special flag set which
tells Amulet to keep the formula around even if you set the slot with a new value, and to reevaluate
the formula if any of its dependencies change. Setting these slots with a new value does not replace
the formula in the slot, it simply overrides the current cached value of the formula.

Any slot can be set so that formulas will not be destroyed when the slot is set. This feature is de-
scribed in chapter 3, ORE Object and Constraint System.

2.4.5 Constraints in Groups

As mentioned in Section 2.3.3, parts can be stored in pointer slots of their group, making it easier
for the parts to reference each other. Additionally, the owner is set in each part as they are added
to a group. In this section, we will examine how pointer slots and variations on the ¢v function can
be used to communicate among parts of a group.



Page 66  Amulet Tutorial

The group we will use in this example will make the picture of concentric shapes in Figure 2-8.

Suppose we want to be able to change the size and position of the shapes easily, and that this should
be done by setting as few slots as possible.

Figure 2-8:A group with two parts.

From the picture, we see that the dimensions of the rectangle are the same as the diameter of the
circle. It will be helpful to put slots for the size and position at the top-level of the group, and have
the parts reference these top-level values through formulas.

// Declared at the top-level, outside of main ()
Am_Slot_Key ARC_PART = Am_Register_Slot_Name ("ARC_PART"):
Am_Slot_Key RECT_PART = Am_Register_Slot_Name ("RECT_PART");

//self is an Am_Object parameter to all formulas that holds the object the constraint is in.
// The Am_Define_Formula macro expands to define self and some other necessary variables.
Am_Define_Formula (int, owner_width) {

return self.GV_Owner () .GV (Am_WIDTH) ;
}

Am_Define_Formula (int, owner_height) {
return self.GV_Owner () .GV{Am_HEIGHT) ;
}

// Defined inside of main ()
Am_Object my_group = Athroup.Create ("my_group")
.Set (Am_LEFT, 20)
.Set (Am_TOP, 20)
.Set (Am_WIDTH, 100)
.Set (Am_HEIGHT, 100)
.Add_Part (ARC_PART, Am Arc.Create ("my_circle")
.Set (Am_WIDTH, owner_width)
.Set (Am_HEIGHT, owner_height))
.Add_Part (RECT_PART, Am_Rectangle.Create ("my_rect")
.Set (Am_WIDTH, owner_width)
.Set (Am_HEIGHT, owner_height)
.Set (Am_FILL_STYLE, Am No_Style)):;
my_win.Add_Part (my_group) ;



Amulet Tutorial Page 67

Both parts of my_group get their position and dimensions from the top-level slots in my_group.
The reference tomy_group from the arc is through the Gv_owner () function, which links the part
to its group. The special variable self is used in the formulas to reference slots within the object
that the formula is installed on. The arc’s left and top are relative to the origin of my_group, so as
it inherits a position of (0,0) from the Am_Arc prototype, it will appear at (20,20) in the window.

Notice that the parts do not "inherit" any values from their owner. Adding parts to a group sets up
a group hierarchy, where values travel back-and-forth over constraints, not inheritance links. If you
want a part to depend on values in its owner, you have to define constraints.

The slot names for the parts could have been used to define the constraints, also. Instead of asking
its owner for its dimensions, the rectangle part could have asked the arc for its dimensions. In this
example the result would be the same, but here are alternate definitions for the rectangle’s width
and height formulas to illustrate the use of aggregate pointer slots:

Am_Define_ Formula (int, arc_width) {
return self.GV_Owner () .GV_Part (ARC_PART) .GV (Am_WIDTH) ;
}

Am_Define_Formula (int, arc_height) {-
return self.GV_Owner () .GV_Part (ARC_PART) .GV (Am_HEIGHT) ;
}

2.4.6 Common Formula Shortcuts

There are many constraints which are used very commonly, such as getting a slot value from the
object’s owner, or getting the value directly from another slot in the same object. There are some
built in functions in Amulet to make these common constraints easier to use.

*Am_Same_As (Am _Slot_Key key); // this slot gets its value from slot xey in this object.

*Am_From Owner (Am_Slot_Key key); //this slot gets its value from slot xey in this object’s
owner.

® Am_From_Part (Am_Slot_Key part, Am_Slot_Key key); //this slot gets its value from
slot key in the part of this object stored in slot part.

®*Am_From_Sibling (Am_Slot_Key sibling, Am_Slot_Key key); /this slot gets its value
Jrom slot key in the object stored in owner’s part slot.



Page 68  Amulet Tutorial

The following code can be used in main() to define my_group, instead of the code given above.
This code does not require the two Am_Define_Formula() calls:

// Defined inside of main()
Am Object my_group = Am_Group.Create (“my_group”)
.Set (Am_LEFT, 20)
.Set (Am_TOP, 20)
.Set (Am WIDTH, 100)
.Set (Am_HEIGHT, 100)
.Add_Part (ARC_PART, Am_ Arc.Create (“my_circle”)
.Set (Am_WIDTH, Am_From Owner (Am_WIDTH))
.Set (Am_HEIGHT, Am_From_Owner (Am_ HEIGHT)))
.Add_Part (RECT_PART, Am Rectangle.Create (“my rect”)
.Set (Am_WIDTH, Am From Sibling (ARC_PART, Am_WIDTH))
.Set (Am_HEIGHT, Am_From Sibling (ARC_PART, Am_HEIGHT))
.Set (Am_FILIL_STYLE, Am_No_Style));

2.5 Interactors

Amulet’s graphical objects do not directly respond to input events. Instead, you create invisible
interactor objects and attach them to graphical objects to respond to input. Sometimes you may
just want a function to be executed when the mouse is clicked, but often you will want changes to
occur in the graphics depending on the actions of the mouse. Examples include moving objects
around with the mouse, editing text with the mouse and keyboard, and selecting an object from a
given set.

Interactors are described in detail in chapter 5, Interactors and Command Objects for Handling In-
put, and a summary of interactors can be found in the object summary, Section 10.5. It is important
to note that all of the widgets (Section 2.6 and chapter 6, Widgets) come with their interactors al-
ready attached. You do not need to create interactors for the widgets.

Interactors communicate with graphical objects by setting slots in the objects in response to mouse
movements and keyboard keystrokes. Interactors generate side effects in the objects that they op-
erate on. For example, the Am_Move_Grow_Interactor sets the left, top, width, and height slots
of objects. The am_Choice_Interactor sets the Am_SELECTED and Am_INTERIM_SELECTED slots
to indicate when an object is currently being operated on. You might define formulas that depend
on these special slots, causing the appearance of the objects (i.e., the graphics of the interface) to
change in response to the mouse. The examples in the following sections show how you can use
interactors this way.

Another way to use interactors (and widgets) is through their command objects (Section 2.5.5).
Command objects contain methods that support undo, help, and selective enabling of operations
associated with interactors and widgets. They can also contain a custom function that will be ex-
ecuted whenever the user operates the interactor or widget.



Amulet Tutorial  Page 69

Figure 2-9 shows the general data flow when input events occur: the user hits a keyboard key or a
mouse event, which is passed to the window manager. The Gem layer of Amulet converts it into a
machine-independent form and passes it to the Interactors which finds the right interactor object to
handle the event. Each interactor has an embedded command object that causes the appropriate
action to take place. If this interactor is part of a widget, then the command object in the interactor
calls the widget’s command object. Eventually, some graphics will be modified in the Opal layer,
which is automatically transformed into drawing calls at the Gem level, and then to the window
manager.

._: Opal

G Manager
™ || Window | S

Command . Command in

in Widget [ Widget < [nteractor Interactors

Figure 2-9:The data flow when events come from the user.

In this section we will see some examples of how to change graphics in conjunction with interac-
tors. Section 2.7.2 describes how to use an important debugging function for interactors called
Am_Set_Inter_Trace(). Although this tutorial only gives examples of using the
Am_One_gshot_Interactor and Am_Move_Grow_Interactor, there are examples of interactors in
the demo and test programs included with the Amulet files. See samples/space/space.cc in
your Amulet source files. Instructions for compiling and running the samples are in the Overview
chapter.

2.5.1 Kinds of Interactors

The design of the interactors is based on the observation that there are only a few kinds of behaviors
that are typically used in graphical user interfaces. Below is a list of the available interactors.

* Am_Choice_Interactor - This is used to choose one or more of a set of objects. The user
is allowed to move around over the objects (getting interim feedback) until the correct item
is found, and then there will often be final feedback to show the final selection. The
Am_Choice_Tnteractor can be used for selecting among a set of buttons or menu items,
or choosing among the objects dynamically created in a graphics editor.

* Am_One_Shot_Interactor - This is used whenever you want something to happen
immediately, for example when a mouse button is pressed over an object, or when a
particular keyboard key is hit. Like the Am_Choice_TInteractor, the
Am_One_shot_Interactor can be used to select among a set of objects, but it will not
provide interim feedback—the one where you initially press will be the final selection. The
Am_One_sShot_Interactor is also useful in situations where you are not selecting an
object, such as when you want to get a single keyboard key.

* Am_Move_Grow_Interactor - This is useful in all cases where you want a graphical object
to be moved or changed size with the mouse. It can be used for moving and growing
objects in a graphics editor.



Page 70  Amulet Tutorial

* Am_New_Points_Interactor - This interactor is used to enter new points, such as when
creating new objects. For example, you might use this to allow the user to drag out a
rubber-band rectangle for defining where a new rectangle should go.

* Am_Text_Edit_Interactor - This supports editing the text string of a text object. It
supports a flexible key translation table mechanism so that the programmer can easily

modify and add editing functions. The built-in mechanisms support basic text editing
behaviors.

* Am_Gesture_Interactor - This interactor supports free-hand gestures, such as drawing an
X over an object to delete it, or encircling a set of objects to be selected. An interactive
gesture training program called Agate is provided to create new gestures for your program
to use. See Section 5.3.5.6 for more information on Agate and the gesture interactor.

2.5.2 The Am_One_Shot_Interactor

In this example, we will perform an elementary operation with an interactor. We will create a win-
dow with a white rectangle inside, and then create an interactor that will make it change colors
when the mouse is clicked inside of it. First, make sure you have working code that creates a win-
dow (maybe from Section 2.2.4), then add the following definitions to your program. Remember
to add the rectangle to your window using Add_part ().

// Defined at the top-level, outside of main ()
Am_Define_Style_Formula (compute_ fill) {
// bool is a Boolean type defined by Amulet. Often you need to cast the value returned from GV,
// since a slot can contain any type of object.
if ((bool) self.GV (Am_SELECTED))
return Am_Black;
else
return Am White;

// Defined inside main ()
Am_Object changing_rect = Am_Rectangle.Create ("changing rect")
.Set (Am_LEFT, 20)
.Set (Am_TOP, 30)
.Set (Am_WIDTH, 60)
.Set (Am_HEIGHT, 40)
.Set (Am_SELECTED, false) // Setby the interactor
.Set (Am_FILL_STYLE, compute_fill);

my_win.Add_Part (changing rect);

From the definition of the compute_£i11 formula, you can see that if the Am_SELECTED slot in
changing_rect were set to true, then its color would turn to black. You can test this by bringing
up the Inspector on changing rect, and changing the value of the slot to 1. Setting the



Amulet Tutorial  Page 71

Am_SELECTED slot is one of the side effects of the Am_one_shot_Interactor. The following code
defines an interactor which will set the am SELECTED slot of an object, and attaches it to
changing_ rect.

Am Object color_inter = Am One_Shot_Interactor.Create ("color_inter");

changing rect.Add_Part (color_inter);:

Now you can click on the rectangle repeatedly and it will change from white to black, and back
again. From this observation, and knowing how we defined the compute_fill formula of
changing_rect, you can conclude that the Am_One_shot_Interactor is setting (and clearing) the
am_sELECTED slot of the object. This is one of the functions of this type of interactor.

"Figure 2-10:The rectangle changing_rect when its Am_SELECTED slot is false (the default), an
when it is set to true by the interactor (when the mouse is clicked over it).

2.5.3 The Am_Move_Grow_Interactor

From the previous example, you can see that it is easy to change the graphics in the window using
the mouse. We are now going to define several more objects in the window and create an interactor
to move and grow them. The following code creates a prototype circle and several instances of it.
Am Object moving_circle = Am_Arc.Create ("moving circle")
.Set (Am_WIDTH, 40)

.Set (Am_HEIGHT, 40)
.Set (Am_FILL_STYLE, Am No_Style);

Am_Object objs_group = Am_Group.Create ("objs_group")
.S8et (Am WIDTH, Am_Width_Of_Parts)
.Set (Am_HEIGHT, Am Height_ Of_ Parts)
.Add_Part (moving_circle.Create())
.Add_Part (moving circle.Create().Set (Am_LEFT, 50))
.Add_Part (moving_circle.Create().Set (Am LEFT, 100));
my_win.Add_Part (ocbjs_group);

Now let's create an instance of the Am_Move_Grow_Interactor which will cause the moving cir-
cles to change position. The following interactor, when added to objs_group, works on all the

parts of that group.
Am_Object objs_mover = Am_Move_Grow_Interactor.Create ("objs_mover");

objs_group.Add_Part (objs_mover) ;



Page 72 Amulet Tutorial

By default, interactors try to figure out which graphical object they’re supposed to manipulate. If
the interactor is attached to a group-like object (am_window, Am Screen, Am Group Of
Am_Scrolling_Group), it looks for a part of that object to act on. Otherwise, it tests whether the
mouse is directly in the object the mouse is attached to. You can change this default when you want
to specify exactly what objects the interactor should operate on, by setting the interactor’s
An_START_WHERE_TEST slot. Other methods for the the am_START WHERE_TEST are described in
Section 5.3.3.2.1, or you can write your own start-where-test procedure to return the appropriate
object.

Compile and run tutorial again. Now you can drag the circles around using the left mouse button.
The interactor activates when you push the left button down inside any of the parts of objs_group.
As long as you hold the button down, it moves the objects around by setting their left and top slots.

While the tutorial is running, inspect the objs_mover interactor. To do this, first bring up the in-
spector window on any of the objects on the screen. Then choose the Objects: Inspect Object
Named... option from the menu, type in objs_mover, and hit return (or click Okay). Click in the
value field of the objs_mover’s am_GRoOWING slot and change the value to 1. Now dragging the cir-
cles will cause them to change size rather than move.

2.5.4 A Feedback Object with the Am_Move_Grow_Interactor

Now let's add a feedback object to the window that will work with the moving circles. In this case,
the feedback object will appear whenever we click on and try to drag a circle. The mouse will drag
the feedback object, and then the real circle will move to the final position when the mouse is re-
leased.

Our feedback object will be a circle with a thick line. The feedback_circle object defined below
will have its left, top, and visible slots set by the interactor. Given our moving circle prototype,
the feedback object is easy to define:

Am_Object feedback _circle = moving circle.Create ("feedback_circle")

.Set (Am_LINE_STYLE, Am Line_38)
.Set (Am_VISIBLE, false);

my_win.Add_Part (feedback_circle);

// The definition of the interactor, with feedback object

Am_Object objs_mover = Am Move_Grow_Interactor.Create ("objs_mover")
.Set (Am_START WHERE_TEST, Am Inter_In Part)
.Set (Am_GROWING, true) // Makes the circles grow instead of move
.Set (Am_FEEDBACK_OBJECT, feedback_circle);

objs_group.Add_Part (objs_mover);

// Don’t forget to add feedback_circle and objs_mover to the right owners!



Amulet Tutorial  Page 73

The am_vISIBLE slot of feedback_circle is set to false, because we do not want it visible unless
itis being used by objs_mover. The interactor will set the am_vISIBLE slot to true and false when
appropriate. Now when you move or grow the circles with the mouse, the feedback object will fol-
low the mouse, instead of the real circle following it directly.

2.5.5 Command Objects

All interactors and widgets have command objects associated with them stored as their
Am_coMMAND part. Command objects contain functions that determine what the interactor will do
as it operates. For example, you can store a function in a command object that will be executed as
the interactor runs in order to cause side-effects in your program. See Section 5.6 for more infor-
mation on command objects inside interactors.

You can also store methods in a command object to support undo, help, and selective enabling of
operations. There is a library of pre-defined command objects, so you can often use a command
object from the library without writing any code. Section 6.4, Supplied Command Objects, de-
scribes the predefined command objects. See space and testselectionwidget for sample code
that uses command objects.

Most interactors do three different things. As they run, they directly modify the associated graph-
ical objects or feedback objects (like setting the am_sELECTED slot). When they’re finished run-
ning, they set their Am_vaALUE slot and the Am_value slot of their attached command object, and
finally they call the am_po_mETHOD of the attached command object.

To use the am_vaLUE slot of the interactor or its command object, you can establish a constraint
from your object to either of these slots. If you want to make the interactor do a certain action only
after it’s finished running, it’s best to build a custom command object. This is similar to providing
a callback for the interactor to call when it’s finished running. Both of these methods of using the
results of an interaction are described in Section 2.6.

2.5.6 The Am_Main_Event_Loop

In order for interactors to perceive input from the mouse and keyboard, the main event loop must
be running. This loop constantly checks to see if there is an event, and processes it if there is one.
The automatic redrawing of graphics also relies on the main-event-loop. Exposure events, which
occur when one window is uncovered or exposed, cause Amulet to refresh the window by redraw-
ing the objects in the exposed area.

All Amulet programs should call two routines at the end of main(). Am_Main_Event Loop!()
should be called, followed by Am_cleanup (), which destroys the resources Amulet allocated.
Your program will continue to run until Amulet perceives the escape sequence, which by default is
META_SHIFT_F1. Typically, your program will have some sort of Quit button. Its do method should
call am Exit_Main_Event_Loop (), which will cause the main-event-loop to terminate.



Page 74  Amulet Tutorial

2.6 Widgets

The Amulet Widgets are a set of ready made gadgets that can be be added directly to a window or
a group just like other graphical objects. You do not have to define separate interactors to operate
the gadgets, they already have their own interactors. They have slots that can be set to customize
their apperance and behavior. The Amulet Widgets are common interface building objects such as
scroll bars, menus, buttons and editable text fields. Section 10.6 summarizes the widget objects,
and chapter 6, Widgets, discusses them all in detail.

The Widgets will eventually be available in several versions, simulating the look-and-feel of the
standard widgets available in the Motif, Windows, and Macintosh toolkits. Currently only the Mo-
tif style widgets have been implemented in Amulet. These widgets work on all platforms, but al-
ways look like Motif widgets. Examples that use widgets can be found in several Amulet demos,
including src/widgets/testselectionwidget and samples/space. See Section 1.5 for infor-
mation about the samples and demo programs.

o Fed £
Ay Qoo i
W anas

s ¥ollow

-

Figure 2-11:A panel of radio buttons and a vertical scroll bar, affecting a rectangle.

In this section we will use a radio button panel and a scroll bar to change the appearance of a rect-
angle.

There are two ways to interact with widgets. You can define a formula that depends on the value
of the widget, or you can define a method to be executed by the widget’s command object whenever
the user activates the widget.



Amulet Tutorial Page 75

The code below defines the radio button panel pictured in Figure 2-14. Here, we define a formula
for the filling style of the rectangle that depends on the value of the button panel. This formula is
reevaluated every time the buttons are operated, so the rectangle changes color.

// Declared at the top-level, outside of main ()
Am_Object color_buttons, color_ rect;

// Declared at the top-level, outside of main ()

Am _Define_Style Formula {(color_from panel) {
Am_String s = color_buttons.GV (Am VALUE) ;
if ({const char*)s) {

if (strcmp(s, "Red") == 0) return Am_Red;

else if (strcmp(s, "Blue") == 0) return Am Blue;
else if (strcmp(s, "Green") == 0) return Am Green;
else if (strcmp(s, "Yellow") == 0) return Am Yellow;
else if (strcmp(s, "Orange") == 0) return Am Orange;

else return Am White;
}
else return Am White;
}...

// Defined inside main ()

color_buttons = Am Radio_Button_Panel.Create("color_buttons")
.Set (Am_LEFT, 10)
.Set (Am_TOP, 10)

.Set (Am_ITEMS, Am Value_ List ()  //AnAm_Value_List supports an arbitrary list
.Add("Red") //  of dynamically typed values
.Add ("Blue")
.Add ("Green")

Add("Yellow™)
.Add ("Orange"))
.Set (Am_FILL_STYLE, Am Motif_ Gray);

// Defined inside main ()
color_rect = Am_Rectangle.Create("color rect")
.Set (Am_LEFT, 100)
.Set (Am_TOP, 50)
.Set (Am_WIDTH, 50)
.Set (Am_HEIGHT, 50)
.Set (Am_FILL_STYLE, color_from_panel);

my_win.Add_Part (color_ buttons)
.Add_Part (color_rect);

Now let’s create the scroll bar to change the position of the rectangle. We could define a formula
that depends on the value of the scroll bar. Instead, let’s use the am_Do_METHOD of the scroll bar's
command object to call a function each time the widget is operated.

// Defined at the top-level, outside of main ()
Am_Object my_scrollbar;

// Defined at the top-level, outside of main ()
Am_Define Method(Am_Object_Method, void, my_scrollbar_ do, (Am_Object cmd))



Page 76  Amulet Tutorial

{
int value = cmd.Get (Am_VALUE) ;
color_rect.Set (Am_TOP, 20 + value);
}

// Defined inside main ()

my_scrollbar = Am Vertical_ Scroll_Bar.Create ("my_scrollbar")
.Set (Am_LEFT, 250)
.8et (Am_TOP, 10)
.Set (Am_SMALI,_ INCREMENT, 5)
.Set (Am_LARGE_INCREMENT, 20)
.Set (Am_VALUE_1, 0)
.Set (Am_VALUE_2, 100);

my_scrollbar.Get_Part (Am_ COMMAND) .Set (Am_DO_METHOD, my_scrollbar_do);

my_win.Add_Part (my_scrollbar);

Am_Define_ Method is a macro that defines a method of an Amulet object. The first parameter is
the type of the method being defined. Do methods are of type Am Object_Method, meaning they
take one parameter, an Amulet object, and have return type void. The second parameter to
Am_Define_Method is the return type of the method, and then comes the method’s name. Last is
the method’s parameter list, with an extra set of parentheses. For more information about Amulet
method type declaration and method definition, see Section 3.3.8.

Compile and run the tutorial. The radio buttons will control the color of the rectangle, and the
scrollbar will control its position on the screen.

2.7 Debugging

2.7.1 The Inspector

The Inspector is an important tool for examining properties of objects. As long as you compile
with the DEBUG switch set on in your makefile or project, you will get all of the inspector code.
The inspector will be automatically initialized when you call am_Initialize(). While running
your program, press the F1 key over an object to inspect it.

If your keyboard does not have an 1 key, or hitting it does not seem to do anything, you can start
the Inspector from your program by calling the function Am_Inspect (obj) with the object you
want to inspect as its argument. The method obj . Text_Inspect () prints the object’s slots and
values to stdout instead of popping up an interactive window, and is sometimes useful in a debug-
ging environment such as gdb.

By default, the Inspector shows all of an object’s inherited and local slots, sorted by name, with
the inherited slots shown in blue, and the local slots shown in black. You can hide inherited slots
by choosing the menu item View: Hide Inherited Slots. You can hide an object’s internal slots
(those you shouldn’t modify) with the menu item view: Hide Internal Slots.



Amulet Tutorial Page 77

By defaults, the parts of an object are displayed. This can be turned off with the view: Hide
parts command. You can show instances of the object being displayed by choosing the View :
Show Instances menu item.

You can edit the value of many slots in the inspector. Editing an inherited value causes the value
to become local, and changes its color in the inspector from blue to black. You can edit integers,
strings, Amulet Objects, Styles, Fonts, Images, and Methods from the inspector. You cannot edit
Value Lists, Constraints, or parts and instances of an object.

In the Inspector window, clicking the right mouse button over a value that is an object will in-
spect that object in the same inspector window. To display an object in a new window, hold down
the suTFT key while pressing the right mouse button over its name in the Inspector window. You
can specify the name of an object to inspect by using the Objects: Inspect Object
Named. . .option. When you are finished with the Inspector, you can choose the 0bjects: Done
menu item to make the current Inspector window disappear, or choose Objects: Done A1l if
you want all of the inspector windows to be destroyed.

By default, the inspector automatically updates its contents if slots in the objects you’re inspecting
change. This can bog down performance when you’re inspecting certain active objects. To turn
off automatic refresh, choose view: Manual Refresh. To refresh the display in manual refresh
mode, choose Objects: Refresh Display.

You can select slots, constraints, or objects by double clicking on their name in the Inspector. This
will enable various menu items such as showing the object’s prototype and instances, showing a
slot’s properties, or displaying a constraint’s dependencies.

Sometimes you might not know exactly which object you’re inspecting. Or, you might want to find
out why you can’t see a particular object which you think should be on the screen. With the mys-
terious object on the screen, choose Objects: Flash object. This will cause the bounding box
of the object to blink several times so you can see where it is. If you wouldn’t be able to see the
object flash (it’s not attached to a window, it’s invisible, etc.), Amulet tries to figure out why not,
and prints a message to cerr describing why it thinks the object could not flash.

2.7.2 Tracing Interactors

The interactors and widgets provide a number of mechanisms to help programmers debug their in-
teractions. The primary one is a tracing mechanism that supports printing to standard output
(cout) whenever an “interesting” interactor event happens. Amulet supplies many options for con-
trolling when printout occurs, as described below (full details are in the Interactors chapter). You
can either set these parameters in your code and recompile, or they can be dynamically changed as
your application is running, using the Interactors menu of the Inspector window.

The tracing choices in the Inspector’s Interactors menu are:

* Turn Off Interactor Tracing This turns off all interactor tracing.



Page 78 Amulet Tutorial

*Trace This Interactor When an interactor object is selected by double
clicking its name, this option will start tracing the selected interactor.

* Trace Interactor Named... This option brings up a dialog box prompting the
user for the name of an interactor to start tracing.

*Trace All Interactors This starts tracing on all interactors in the
application.

* Trace Next Interactor To Run If you don’t know the name of the interactor you
want to trace, this is often a useful choice. Tracing is turned on for the next interactor which
starts running.

* Trace Input Events This prints out incoming input events, but not what
happens as a result of the events. When you turn on any other tracing, Amulet
automatically traces input events.

* Trace Interactor Set Slots This option prints a message whenever an interactor
sets any slot of any object. It is useful for determining why an object’s slot is being set
during a particular interaction.

*Trace Interactor Priorities Changes to interactors’ priority levels are printed.

* Short Trace Interactors This prints out only the names of the interactors
which run, and is good for getting a general idea of what’s going on in a program without
all of the details.



3. ORE Object and Constraint
System

This chapter describes ORE, the object and constraint level of Amulet. ORE allows programmers
to create objects as instances of other objects, and define constraints among objects that keep prop-
erties consistent. For advanced users and researchers, ORE allows demons to be defined on various
object operations, slot inheritance to be controlled, and even entirely new constraint solvers to be
written.

Copyright © 1996 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037,
Arpa Order No. B326. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of NCCOSC or the U.S. Government.






ORE Object and Constraint System  Page 81

3.1 Introduction

This is the chapter for the Amulet object and constraint system, nicknamed ORE which stands for
Object Registering and Encoding. This portion of the manual covers the basic operation and use of
ORE and its facilities. The basic operation of ORE covers general use of objects and the kinds of
values that can be stored in them. Also covered is how to make and use formulas that can be used
to attach values together. At the end of this chapter, the means for writing new kinds of value types
called wrapper types is covered.

ORE is used in Amulet as the means for representing all higher-level graphical concepts. Rectan-
gles, for instance, are created using an exported object called Am_Rectangle. The process for mov-
ing a rectangle is also represented as an object. It is called Am_Move_Grow_Interactor. Lower-
level graphical features like colors and fonts are not ORE objects in Amulet. Instead they are
“wrapper types” or “wrapper values,” “wrapper objects,” or just plain “wrappers.” What makes
wrappers different from regular C++ objects is that they contain data that derives from the class

am_Wrapper. This makes it easy to fetch and store them in ORE objects.

The coding style for ORE objects is declarative. That means the values and behaviors of objects
are specified mostly at the time an object gets created by storing initial values and declaring con-
straints in the needed slots. All high level objects defined in Amulet are designed to be used in a
declarative way. Normal programming practice consists of choosing the kinds of objects your pro-
gram needs, finding out what slots these objects contain and what the semantics of the slots do, and
finally assigning values to the slots and grouping the objects together to make the final application.

Many of the concepts and processes in ORE are derived from the Garnet object system called KR.
KR differs from ORE in that it was originally designed to be a artificial intelligence knowledge rep-
resentation framework. The graphics came later and KR underwent an evolution that made it more
compatible with the demands of a graphical system. ORE begins where KR left off. In ORE, some
KR features were abandoned like multiple inheritance. Many of the good KR features that only
made it into KR in the last couple releases have been put into ORE right from the start. These fea-
tures include dynamic type checking and an efficient algorithm for formula propagation and eval-
uation. And, of course, there are many brand new features in ORE that were never part of KR.
Things like the owner-part hierarchy and the ability to install multiple constraint solvers which are
hoped to become very useful to Amulet programmers.

ORE features like defining new wrapper types and writing a new constraint solver are quite ad-
vanced and are covered in Section 3.11 of this chapter. These sorts of features are not necessary for
the novice Amulet programmer to make working applications, but are intended to be used by sys-
tem programmers or researchers that want to extend Amulet.

3.2 Include Files

The various objects, types and procedures described in this chapter are spread out though several
-h files. Typically, one will include amulet.h in the code which automatically includes all the files
needed. This chapter tells where various things are defined so one can look up their exact defini-
tions. The main include files relevant to ORE are:



Page 82  ORE Object and Constraint System

* types.h: Definitions for all the basic types including Am_value_Type, Am_value,
Am_Wrapper, and Am_Method_Wrapper.

* standard_slots.h: The functions for defining slot names, and the list of Amulet-defined
slots.

* objects.h: All of the basic object methods including slot and part iterators.

* objects_advanced.h: Needed for using any of the advanced features discussed in
Section 3.11.

*value_list.h: Defines the type am_value_List and all its related methods.

For more information on Amulet include files, and how you should use them in your program see
Section 1.6 in the Overview chapter.

3.3 Objects and Slots

The Amulet object system, ORE, supports a “prototype-instance” object system. Essentially, an
object is a collector for data in the form of “slots.” Each slot in an object is similar to a field in a
structure. Each slot stores a single piece of data for the object. A Am_Rectangle object, for exam-
ple, has a separate slot for its left, top, width, and height.

An ORE object is different from a C++ object in many ways. The slots of ORE objects are dynam-
ic. A program can add and remove slots as required by the given situation. Whole new types of ob-
jects can be created on demand without requiring anything to be recompiled. In C++, only the
object's data can be modified and not its structure without recompiling. Furthermore in ORE, the
types stored into each slot can change. For instance, the am_vALUE slot can hold an integer at one
time, and then a string later. ORE keeps track of the current type stored in the slot, and supports
full integration with the C++ type system, including dynamic type checking.

3.3.1 Get and Set

The basic operations performed on slots are Get and Set. A slot is essentially a key—value pair. Get
takes a slot key and returns the slot's value. set takes a key and value and replaces the slot’s previ-
ous value with the one given. Creating new slots is done by performing set using a key that has
not been used before in that object. Another way to think of an object is as a name space for slot

keys. A single key can have only one value in a given object.

my_object.Set (Am LEFT, 5); /Setleftslottovalues
int position = my_object.Get (Am_TOP); / Getthe value of slot Am_TOP
my_object.Set (Am_ANGLEl, 45.3f); // Setthe anglel slot to float 45.3

Calling Get on a slot which does not exist raises an error. Make sure slots are initialized with values
to avoid this problem. To test whether a slot exists yet, use the cet_Slot_Type method on objects
(see Section 3.3.3), or else use the Am_value form of Get (see Section 3.3.9).



ORE Object and Constraint System  Page 83

For convenience, a special cet_object method is available to fetch slots that are known to store a
Am_object value. This is useful for chaining together a series of Gets onto a single line without
having to store into a variable or use an explicit cast. It is an error to use this method on a slot which

does not store an object.
int 1 = object.Get_Object (OBJECT_SLOT) .Get_ Owner ().
Get_Part (PART SLOT).Get (Am_LEFT);

3.3.2 Slot Keys

A slot key in ORE is an unsigned integer. An example of a slot key is Am_LEFT. Most slot keys are
defined by the Am_standard_slot_Xeys enumeration in the file standard_slots.h. Am LEFT
turns out to be the integer 100, but one uses the name am_LEFT because it is more descriptive. The
Am_LEFT slot is used in all the graphical objects like rectangles, circles, and windows and it repre-
sents the leftmost position of that object. Potentially, the slot key 100 could be used in another ob-
ject with semantics completely different from those used in graphical objects, in essence 100 could
be a key besides am_LEFT. However, ORE provides mechanisms to avoid this kind of inconsistency
and makes certain that integers and slot names map one to one. The string names associated with
slots are mainly used for debugging. For example, they are printed out by the inspector. The string
names for slots are not used during normal program execution.

Programmers can define new slot keys for their own use by using functions defined in
standard_slots.h. There are four essential functions to do this: Am_Register_Slot_Name,
Am_Register_Slot_Key, Am_Get_Slot_Name, and Am_Slot_Name_ Exists.

Am_Register_Slot_Name is the major function for defining new slot keys. The function returns a
key which is guaranteed not to conflict with any other key chosen by this function (it is actually
just a simple counter). The return value is normally stored in a global variable which is used
throughout the application code. If the string name passed already has a key associated with it,
Am_Register_Slot_Name Wwill return the old key rather than allocating a new one. Thus,
Am_Register_Slot_Name can also be used to look up a name to find out its current key assignment.
Am_Slot_Key MY_FOO_SLOT = Am Register_Slot_Name ("My Foo Slot");

We recommend that programmers define their slots this way, as shown in the various example pro-
grams.

Am_Register_Slot_Key is for directly pairing a number with a name. This is useful for times
when one does not want to use a global variable to store the number returned by
Am_Register_Slot_Name. The number and name chosen must be known beforehand not to con-
flict with any other slot key chosen in the system. The range of numbers that programmers are al-
lowed to use for their own slot keys is 10000 to 29999. Numbers outside that range are allocated
for use by Amulet. The number of new slot keys needed by an application is likely to be small so
running out of numbers is not likely to be a problem. The main concern will be conflicting with
numbers chosen by other applications written in Amulet.

#define MY BAR_SLOT 10500
Am_Register_ Slot_Key (MY_BAR_SLOT, "My Bar Slot");



Page 84  ORE Object and Constraint System

Am_NONE The value of the slot does not exist.

Am_UNINIT The value of the slot was set by a formula that did not have a valid
value

Am_WRAPPER A reference-counted, C++ object..

Am_OBJECT An ORE object.

Am_INT A signed integer.

Am_LONG A signed long integer.

Am_BOOL The boolean value of type bool.
Am_FLOAT A single-precision floating point value.
Am_DOUBLE A double precision floating point value.
Am_CHAR A single character.

Am_STRING A character string (stored as class am_String [section 3.3.6], which
is a form that can be readily converted into a const char*).

Am_VOIDPTR  void* in Unix and unsigned char* in Windows. A typedef called
Am_Ptr can be used as a cast to make code portable between Unix and
Windows.

Am_METHOD A method. See Section 3.3.7 for a full description on defining and
using methods.

The functions Am_Get_Slot_Name and Am_slot_Name Exists are used for testing the library of
all slot keys for matches. This is especially useful when generating keys dynamically from user re-

quest.
const char* name = Am Get_Slot_Name (MY_BAR_SLOT);
cout << "Slot " << MY_BAR_SLOT << " is named " << name << endl;

if (Am_Slot Name_Exists (name)) cout << "Slot already exists\n";

3.3.3 Value Types

The value of Am_LEFT in a graphical object is an integer specifying a pixel location. Hence slot val-
ues have types, specifically the am_LEFT slot has integer type in graphical objects. The type of a
slot's value is determined by whatever value is stored in the slot. A slot can potentially have differ-
ent types of values at different times depending on how the slot is used, but a given value has only
one type so that a slot has only one type at a time. Thus, slots are “dynamically typed” like variables
in Lisp.

The types supported in ORE are the majority of the simple C++ types including integer, float, dou-
ble, character, and boolean. Also supported are some more high-level types like strings, ORE ob-
jects, a function type, and void pointers. Although void* can be used to store any type of object,
ORE supports a type called am_wrapper which is used to encapsulate C++ classes and structures
so that general C++ data can be stored in slots while still maintaining a degree of type checking.



ORE Object and Constraint System  Page 85

my_object.Set (Am LEFT, 50);

Am_Value Type type = my_object.Get_Slot_Type (Am_LEFT);

// slot_type == Am_INT

my_object.Set (Am_FILL_STYLE, Am Blue);

Am_Value Type type = my_object.Get_S8lot_Type (Am_FILL_STYLE) ;
// type == Am Style

A Am_value_Type is an unsigned short with two bit-fields. The lower 12 bits are the type base.
These bits are used to distinguish individual members of a type. The upper 4 bits are the type class.
Currently, there are four kinds of classes, the basic types, Am_WRAPPER, Am_METHOD, and
Am_CONSTRAINT. The basic types include C++ types like Am_1NT and Am_FLOAT. The Am_WRAPPER
class is used to denote wrappers like Am_object and am_Style. Am_Method denotes types that are
methods like am _Object_Method and Am Where_Method. Am_CONSTRAINT types are usually not
stored in slots. Testing the class of a value type is performed using the macro, Am_Type_Class,
which will strip off the type’s base bits so that the class can be compared. A similar macro,
Am_Type_Base Will strip off the class bits so that the base can be compared.
Am Value_Type type = object.Get_Slot_Type (Am_FILL_STYLE); // A Am_Style.

Am Value_Type type_class = Am_Type_Class {(type) ;
// type class == Am_WRAPPER

3.3.4 The Basic Types

As shown by the examples above, the set and Get operators are overloaded so that the normal
built-in C++ primitive types can be readily used in Amulet. This section discusses some details of
the primitive types, and the next few sections discuss some specialized types.

Usually, the C++ compilers can tell the appropriate types of slots from the various declarations.
Thus, the compiler will correctly figure out which set to use for each of the following:

my_object.Set (Am_LEFT, 50); //uses int

my_object.Set (Am_TEXT, "Foo"); //uses Am STRING
my_object.Set (Am_PERCENT_VISIBLE, 0.75); //uses Am_FLOAT
long 1ng = 600000

my_object.Set (Am_VALUE_1, lng);

However, in some cases, the compiler cannot tell which version to use. In these cases, the program-

mer must put in an explicit type cast:
//without cast, compiler doesn't know whether to use bool, int, void*,
if ((bool)my_object.Get (Am_VISIBLE))
//without cast, compiler doesn't know whether to use int, long or float
int 1 = 5 + (int)my_object.Get (Am_LEFT) ;

Am_INT is the same as Am_r.oNG on Unix, Windows 95, and NT (32 bits), but on the Macintosh, an
Am_INT is only 16 bits, so one must be careful to use long whenever the value might overflow 16
bits when one wants to have portable code.

The am_ptr type (defined in types.h) should be used wherever one would normally use a void*
pointer, because Visual C++ cannot differentiate void* from some more specific pointers used by
Amulet. Am_ptr is defined as void+* in Unix and unsigned char* in Windows.



Page 86  ORE Object and Constraint System

3.3.5 Bools

Amulet makes extensive use of the bool type supplied by some C++ compilers (like gcc). For com-
pilers that do not support it (Visual C++, ObjectCenter, etc.), Amulet defines bool as int and de-
fines true as 1 and false as 0, so a programmer can still use bool in one’s code. When boo1s are
supported by the compiler, Amulet knows how to return a bool from any kind of slot value. For
example, if a slot contains a string and it is cast into a boo1, it will return true if there is a string
and false if the string is null. However, for compilers that do not support boo1l, conversion to an
int is not provided, so counting on this conversion is a bad idea. Instead, it would be better to get
the value into a Am_value type and test that for valid (see Section 3.3.9).

3.3.6 The Am_String Class

The am_string type (defined in object .h) allows simple, null terminated C++ strings (char*) to
be conveniently stored and retrieved from slots. It is implemented as a form of wrapper (see
Section 3.3.7). An am_sString can be created directly from a char* type, likewise it can be com-
pared directly against a char*. Because am_String iS a Am Wrapper which is a reference counted
structure, the programmer need not worry about the string's memory being deallocated in a local
variable even if an object slot that holds a pointer to the same string gets destroyed.

The am_string class will make a copy of the string if the programmer wants to modify its contents.
The am_string class does not allow the programmer to perform destructive modification on the
string's contents.

Listed below are the basic methods defined for am_string:
Am_String ()
Am_String (const char* initial)

The constructor that takes no parameters essentially creates a NULL char pointer. It is not equivalent
to the string “”. The second constructor creates the Am_string object with a C string as its value.
The C string must be '\0' terminated so as to be usable with the standard string functions like
strcpy and strcmp. The am_string object will allocate memory to store its own copy of the string
data.

operator const char* ()
operator char* ()

These casting operators make it easy to convert a Am_String to the more manipulable chax* for-
mat. When a programmer casts to const char*, the string cannot be modified so no new memory
needs to be allocated. When the programmer casts to char*, however, the copy of the string stored
in object slots are protected by making a local copy that can be modified. The modified string can
be set back to an object slot by calling set.



ORE Object and Constraint System  Page 87

3.3.7 Using Wrapper Types

Although one could store C++ objects into ORE slots as a void*, ORE provides the Am_wrapper
type to “wrap” C++ objects. Am_Wrappers provide dynamic type checking and memory manage-
ment to the objects. These wrapper objects add a degree of safety to slots without sacrificing the
dynamic aspects. Making new wrapper types is discussed in Section 3.11.2 and requires some
practice. On the other hand, using wrapper types is simple. Notable wrapper types in Amulet are
Am_Style, Am_Font, Am_String, Am_Value_List (see Section 3.8), and especially am_ob7ject, it-
self. Getting and setting a wrapper is syntactically identical to getting and setting an integer.

Am_Style blue (0.0, 0.0, 1.0); // Am_Style is a wrapper type.
my_object.Set (Am FILL_STYLE, blue); // Using a wrapper with Set.
Am_Style color = my_object.Get (Am_FILL_STYLE); // Using a wrapper with Get.

A wrapper’s slot type is available for testing purposes. Common wrapper types have a constant slot
type such as Am_OBJECT and Am_sTRING. Other wrapper types can be found using the class’ static
Type_ID method.

if (object.Get_Slot_Type (MY _SLOT) == Am_Style::Type_ID ())
Am_Style color = object.Get (MY_SLOT):

3.3.7.1 Standard Wrapper Methods

Amulet wrappers provide a number of useful methods for querying about their state and for testing
whether a given am_wrapper* belongs to a given class. These methods are common across all
wrapper objects that Amulet provides. The methods are also available when programmers build
their own wrapper objects using the standard macros.

The first thing that all built-in wrappers have is not a method but a special NULL object. The name
of the NULL object is Am_No_Typename Where typename is replaced by the actual name for the type.
Examples are Am No_Font, Am_No_Object, Am_No_Value, and am_No_style. All of the NULL
wrapper types are essentially equivalent to a NULL pointer. To test whether a wrapper is NULL or not
one uses the method valid (). If a wrapper is not valid, then it should not be used to perform op-
erations.

// Here the code checks to see that my_obj is not a NULL pointer by using
// the Valid method.
Am_Object my_obj = other_obj.Get (MY OBJ):
if (my_obj.vValid ()) {
my_obj.Set (OTHER_SLOT, 6);
}

Besides using the Type_ID method, a programmer can check the type of a value using the static

Test method. Test takes a am Value as its parameter and returns a bool.
// Here the Test method is used to test which kind of wrapper type the
// value holds.
Am Value_List my_list;
Am_Object my_object;
Am_Value val = obj.Get (MY _VALUE); // Am Value is discussed later
if (Am_Value_List::Test (val))
my_list = val;
else if (Am Object::Test (val))
my_object = val;



Page 88  ORE Object and Constraint System

3.3.8 Storing Methods in Slots

ORE treats methods (procedures) stored in slots exactly the same as data. Thus, method slots can
be dynamically stored, retrieved, queried and inherited like all other slots. Method types are dy-

namically stored just as wrapper types. Macros are provided to make defining and using methods
easier.

First, to define a method whose type already exists, one uses the Am_Define_Method macro. In the
following example, an am _Object_Method is defined. An object method has a void type and takes

a single Am_Object as a parameter. Other method types can have different signatures.

Am Define_Method (Am_Object_Method, void, my_method, (Am_Object self))
{

self.Set (A_SLOT, 0});
}

By using the macro, the compiler can check to make sure that the actual method signature matches
the one defined in the type. To set the value into a slot and retrieve the typename value, one uses
Set and Get in the usual way.

object.Set (SOME_SLOT, my_ method);
Am_Object_Method hold_method = object.Get (SOME_SLOT);

To call a method, one invokes the call field of the method’s class. For instance, an
Am_Object_Method has a call field that is a procedure pointer that returns void and takes an
Am_Object parameter.

Am_Object_Method my_method = object.Get (SOME_METHOD) ;
my_method.Call (some_object);

To check the type of method one can use its type’s static *_1p method. The ID methods are named
using the method’s name so an Am_Object_Method’s ID is named Am_Object_Method_ID.
if (object.Get_Slot_Type (MY_SLOT) ==
Am_Object_Method: :Type_ID ()) {
Am_Object_Method method = object.Get (MY_SLOT);

method.Call (some_object);
}

Like common wrapper types, method wrappers also have a static Test method.

Am_Value value = object.Get (MY_SLOT);
if (Am_Object_Method::Test (value))
Am_Object_Method method = wvalue;

To define other method types, use the macros am_Define_Method Type and
Am_Define_Method_Type_Impl. The first macro declares the type of the method. It is normally
put into a .h file so that other parts of the code can use it. The TMPL macro is used to store the ID
number of the method type. It must be stored in a . cc file to be compiled together with the program.

In this example, a method is defined that takes two integers and returns a boolean.
// In the .h file
Am_Define_Method_Type (My_ Method, bool, (int, int));

// In the .cc file
Am_Define_Method_Type_ Impl (My_Method);



ORE Object and Constraint System Page 89

With these defined, a programmer can create methods of type My_Method and they will behave as

all other ORE methods.
Am_Define_Method (My_Method, bool, equals, (int paraml, int param?) )
{

return paraml == param?2;

}

object.Set (EQUALS_SLOT, equals);

The procedure stored in the global method declaration can be used directly by calling its ca11 field.

For example, using the equals method defined above, one can call:
bool result = equals.Call (5, 12);

3.3.9 Using Am_Value To Get A Slot Without Errors

Most of the time a programmer knows precisely what sort of value is stored in a slot. For these sit-
vations, the most convenient form of cet is the one that returns the value directly. This form has

the declaration:
const Am Value& Get (Am_Slot_Xey key) const;

Am_Value is a union for all the ORE types. The Am_value type can be coerced to all the standard
Amulet types including wrappers. Normally, the programmer simply sets the return value directly
into the final destination variable. But there are times when the programmer will want to call et
on a slot but does not know what type the slot contains (or whether the slot even exists). To deter-
mine the type, one can either query the type of the slot using the Get_Sslot_Type method for ob-
jects, or the programmer can use the other form of Get that ORE provides. This form takes a
Am_Value& as parameter instead of returning one. It has the declaration:
void Get (Am_Slot_Key key, Am _Value& value) const;

It is always valid to use the parameter style of Get. The return value form of et will generate an
error if the slot does not exist or is uninitialized. The paramter style generates an error only if it is
called on an invalid or destroyed object. If the slot does not exist, the parameter form will set the
Am_value With type Am_NONE. If the slot is not initialized, then the type will be am_uninIT. (Un-

initialized values concern slots with formulas [see Section 3.7].)
int i_value; float f_value;
Am _Value value;
my_object.Get (SOME_SLOT, value); / Get the value regardless of type

if (value.type == Am_INT) // The type field contains the type of value retrieved
i_value = value; // Am_Value defines many casting operators

else if (value.type == Am_ FLOAT) /' as assignment and constructors to aid
f_value = value; // setting and retrieving the value from

// the Am_Value

The Am_value type has a number of methods, including printing (<<), ==, !=, Exists, and Valid.
Exists and valid are used to check the contents of the Am_value. Exists returns true only if the
type is not Am_NONE or Am_UNINIT which would happen if the slot has no value or is uninitialized.
valid returns true if the value exists (as in Exists) and if the value is not zero as well:

Am_Value value;
my_object.Get (SOME_SLOT, value); // Get the value regardless of type
if (value.Exists()) {



Page 90 ORE Object and Constraint System

// then it is safe to use value, but value could still be zero

}
my_object.Get (SOME_SLOT, value); // This time we know slot must be an Am_Object
// or uninitialized.
if (value.valid ()) { // Checks both existing and value I= 0
// safe to use value.

3.4 Inheritance: Creating Objects

The inheritance style of ORE objects is prototype-instance (as opposed to C++ which is class-in-
stance). A prototype-instance object model means that objects are used directly as the prototypes
of other objects. There is no distinction between instances and classes; in essence, there are only
instances. Specialization of sub-objects into new types is performed by adding slots to the sub-ob-
ject or changing the contents of existing slots defined by the prototype.

Here is an example of creating an ORE object and setting some of its slots:

Am_Object my_rectangle = Am_Rectangle.Create {("my rect")
.Set (Am_LEFT, 10)
.Set (Am_TOP, 20)
.Set (Am WIDTH, 100)
.Set (Am_HEIGHT, 150)

12

A major style convention in ORE is to write an object all in one expression. This is so that the pro-
grammer need not repeat the name of the object variable over and over. This works because set
returns the original object. The main components of the creation action involves:

* Choose a prototype object. In the above case, the prototype is Am_Rectangle which is defined
as one of the Amulet graphical objects.

* Call the create method on the prototype. The optional parameter to Create is a string which
is used if one prints out the name of the object and can be used for other sorts of debugging.
The alternative to Create is the copy method which is described below.

* set the initial values of slots. This includes making new slots if desired.

Although this manual uses the one expression convention for brevity and to familiarize program-
mers with its use, it would be just as correct to write out each individual create and set call on
its own line.

Am_Object my_rectangle;

my_ rectangle = Am_Rectangle.Create ("my rect");

my_rectangle.Set (Am_LEFT, 10);

my_rectangle.Set (Am_TOP, 20);

my_rectangle.Set (Am WIDTH, 100);

my_rectangle.Set (Am _HEIGHT, 150);



ORE Object and Constraint System  Page 91

Objects inherit all the slots of their prototype that are not set locally. Thus, if the Am_Rectangle
object defines a color slot called am_LINE_STYLE with a value of Am_Black, then my rectangle
will also have a am_1.INE_STYLE slot with the same value. If a slot is inherited, it will change value
if the prototype's value changes. Thus, if Am_LINE_STYLE of Am_Rectangle is set to Am_Blue, then
my_rectangle's Am_LINE_ STYLE will also change. However, the Am_LEFT of my_rectangle will
not change if the am_LEFT of Am_Rectangle is set because my_rectangle sets a local value for
that slot. See Section 3.11.5 for a discussion about how a programmer can control the inheritance
of slots.

The inheritance of Amulet objects’ print names is dealt with slightly differently. Objects created
with a name parameter to the create call will keep that name. Objects created without a string pa-
rameter will get the name of their prototype plus a number appended at the end to distinguish it
from the prototype.

The root of the inheritance tree is Am_Root_Object. Programmers will typically create instances
of the pre-defined objects exported by the various Amulet files (as shown in the examples in this
manual), but am_Root_Object is useful if one defines application-specific objects that do not con-
cern the Amulet toolkit per se.

The copy method can also be used to make new objects. Instead of being an instance of the proto-
type object, a copied object will become a sibling of the object. Every slot in the prototype is copied
in the same manner as in the original. If a slot is local in the original, it will be local in the copy
likewise if the slot is inherited, the copy will also be inherited.

Other useful methods relevant to inheritance include:

* Is_Instance_Of (object) - Returns true if the object is an instance of the parameter.
Objects are defined to be instances of themselves so obj .Is_Instance_0Of (obj) will
return true.

* Get_Prototype () - Returns the prototype for the object.

* Is_Slot_Inherited (slot_key) - Returns true if the slot is not local, and the value is
inherited from a prototype.

* obj.Destroy () - Destroys the object and all its parts.

* Get_Name () - Returns the string name of the object defined when the object was created.
ORE also defines operator<< so name can be printed using C++ cout statements.

* Print_Name (ostreamé&) - Prints the string name of the object to the given stream. Acts like
the << operator.

* Text_Tnspect () - This prints out all of the object’s data including slots and parts to cout.
It is commonly used for debugging and has been designed to be unlikely to crash when
invoked inside a debugger.

* Objects can be tested for == and 1= with other objects.

* Remove_Slot (slot_key) - Removes the slot from the object.



Page 92  ORE Object and Constraint System

3.5 Destroying Objects

Objects are wrapper types which means that there is an internal reference counter within them that
counts how many times the object is used. For objects which do not contain a reference to them-
selves, this means that simply eliminating all references to the object will destroy it. Am_Command
objects (see the Interactor chapter, Section 5.6) are like this. A command object never stores a ref-
erence to itself so when all variables that refer to the command object are reset or destroyed, the
command object will go away. Unfortunately, this kind of automatic deallocation is not guaranteed.
Objects are containers that can hold arbitrary wrapper objects including references to itself. Any
circularity will defeat the reference counting scheme; hence, most objects have to be explicitly de-
stroyed.

To destroy an object, call the method Destroy. This method cleans out the contents of the objects
making it have no slots, parts, or instances. Some operations, like Get_Name, will still work on a
destroyed object but most methods will generate an error. Destroy will also destroy the object’s
instances and parts (parts are described in the next section). If one wants to preserve any parts of a
destroyed object, one must be certain to call Remove_From_Owner or Remove_Part before the call
to Destroy to salvage them. Note that objects that are not parts but simply stored in a slot will not
be destroyed if the slot is destroyed. The vast majority of objects defined by Amulet require the
programmer to call Destroy in order to free their memory. Forgetting to call bestroy is the most
likely source of memory leaks.

3.6 Parts

In ORE, it is possible to make objects become part of another object. The subordinate object is
called a “part” of the containing object which is called the “owner.” The part-owner relationship is
used heavily in Amulet programs.

The Opal level of Amulet defines the Am_window and am_Group objects which are designed to hold
graphical parts (rectangles, circles, text, etc.). Thus, if you want to make a composite of graphical
objects, they should be added as part of a window or group. Non-graphical objects can be made
parts of any kind of object. Thus, an Interactor object can be a part of a rectangle, group, or any
other object. Similarly, any kind of object that an application defines can be added as a part of any
other object. For a graphical object, its “owner” will be a window or a group, but the owner of an
interactor or application object can be any kind of object. Opal does not support adding graphical
objects as parts of any other graphical objects (so that one cannot add a rectangle directly as a part
of a circle; instead, one creates a group object and adds the rectangle and circle as parts of the
group).



ORE Object and Constraint System  Page 93

3.6.1 Parts Can Have Names

A very important distinction among parts is whether or not the part is named. A “named” part has
a slot key. One can generate a key for a part the same way that they are generated for slots. When
a part is named, it becomes possible to refer to it by that name in the method Get_prart (or by reg-
ular Get) and it also takes on other properties. If the part is unnamed, then the part cannot be ac-
cessed from the owner except through the part iterator (Section 3.9) or else by reading it from a list
like the Am_GRAPHICAL PARTS slot in group objects (described in the Opal chapter, Section 4.7. ).

In some ways, a named part of an object is like a slot that contains an object. A named part has a
value and can have dependencies just like a slot. Parts are different from slots in that their type can
only be am_object and that any particular object can only be assigned as a part to only one owner.
Parts cannot be generated by a constraint and the inheritance mechanism for parts is not as sophis-
ticated as that for slots.

New names for parts are defined the same way as new slot keys:
Am_Slot_Key MY_FOO_PART = Am_ Register_Slot_Name ("MY_FOO_PART") ;
Am_Object my_obj = Am Group.Create("My_Obj")
.Add_Part (MY_FOO_PART, Am_Rectangle.Create("foo")); //named part

3.6.2 How Parts Behave With Regard To Create and Copy

When an instance is made of an object which has parts, then instances are made for each of the
parts also. When an object is copied, copies are made for each part. This instancing and copying
behavior can be overridden by specifying false in the Ada_part call when the part is added. Only
unnamed parts can be set to be not inherited. Regular slots which contain objects will share the
same object when the slot is instanced or copied.

Thus:
Am_Object my_obj = Am_Group.Create ("My Obij")
-Add_Part (MY_PART, Am Rectangle.Create("foo")) // named part
.Add_Part (Am_Roundtangle.Create ("bar") // unnamed part
.Add_Part (Am_Circle.Create ("do not instance"), false)

// unnamed part that isn’t inherited
.Set (Am_PARENT, other_object); //slot containing an object

Am_Object my _obj2 = my_obj.Create();

// my_obj2 now has a rectangle part called MY _PART which is an instance of foo.

// It also has a roundtangle part that is not named. It does not have a circle part,
// since that part was unnamed and specified not to be inherited by the false paramter
// given in the Add_Part call. The Am PARENT slot of both my_obj and my_obj2 point
// to the same value, other_object.

When an object is copied using the copy method, all parts are copied along with the object. Both
named and unnamed parts are copied unless the part is specified not to be inherited. Uninherited
parts are never copied. If a part has a string name (the string given in the create call, not the slot
name), the same name will be used in the copy but a number is appended to the end of the name to
distinguish it from the original.



Page 94 ORE Object and Constraint System

3.6.3 Other Operations on Parts

Other methods on objects relevant to parts are listed below.
*Get_Part (part_key) - Returns the part of an object.
* Get_Owner () - Returns the owner of an object.
*Get_Sibling (part_key) - Equivalent to obj.Get_Owner () .Get_Part (part_name) ;
* Remove_From_Owner ()- Removes an object from its owner.
* Remove_Part (part_key) - Removes the part named part_name.
* Remove_Part (object) - Removes object part from owner obj

*Is_Part_Of (object) - Returns true if the object is a part of the given parameter object.
Objects are considered to be parts of themselves i.e. obj.Is_Part_Of (obj) returns true.

*Get_Key () - If the object is a named part, then this will return the slot key name for the part.
If it is unnamed it will return am_NoONE if it can be inherited and Am_No_INHERIT if it cannot.

For example:
Am_Slot_Key RECT = Am_Register_Slot_Name ("RECT");
Am_Object my_window = Am Window.Create ("a window")
.Add_Part (RECT, Am Rectangle.Create ("a rectangle"))
.Add_Part (Am_Line.Create ("a line"));

Am_Object rect = my window.Get_Part (RECT);
my_ window.Remove_Part (RECT);

As mentioned above, when one destroys an object, all of its parts are destroyed also. Removing a
part does not destroy the part.

3.7 Formulas

Formulas are used to connect together the values of slots. With formulas, the programmer assigns
the value of one slot to be dependent on the value of other slots. When the dependent slots change,
the value of the formula will be recomputed and the formula’s slot will take on the computed value.

This method of computing values from dependencies is often called constraint maintenance. ORE's
mechanisms for constraint maintenance are actually more general (and complicated) than the for-
mula constraint mentioned here. The full ORE constraint mechanism will be described in a later
revision of this manual. The general mechanism allows more than one constraint system to be in-
cluded in the system at the same time. The formula constraint is just one of many possible con-
straints that may be used in ORE. For example, Amulet currently also contains a “Web” constraint
used to support multi-way interactions described in Section 3.11.3.



ORE Object and Constraint System  Page 95

3.7.1 Formula Functions

An ORE formula consists of a C++ function that defines the dependencies of a slot and returns the
value to set into the slot. The parameter list of a formula function is always the same two parame-
ters. The first parameter, self, is an Am_object which points to the object containing the slot. The
second parameter, cc, is an Am_Constraint_Contexts&. The cc is an opaque handle (which means
that its internal representation is not visible) to the state of the formula. It is used internally by the
constraint system, but is not meant to be manipulated directly by the programmer. The cc param-
eter is used to distinguish the two forms of Get: one which just returns the value of the slot, dis-
cussed above, the other which returns the value and also sets up a dependency link. There are also
constraint versions for most of the Get_xx functions like Get_part and Get_owner. The return val-
ue of the formula function is the same type that the slot will be when it takes on the returned value.

This example creates a new formula constraint. Since it uses no macros, it looks more complicated

than needed.
// Example of a formula function. This formula returns a value for
// Am_LEFT which will center itself within its owner's dimensions.
static int my_left formula_proc (Am_Constraint Context& cc, Am_Object self)
{
Am_Object owner self.Get_Owner (cc);
int owner_width owner.Get (cc, Am_WIDTH) ;
int my_width = self.Get (cc, Am _WIDTH);
return (owner_width - my width) / 2;
}
Am_Formula my_left_formula (my_left_formula_ proc, "my_left_formula");

The above example uses no macros so it is clear where variables are defined, and which methods
take the special cc parameter. The global variable my_left_formula is the actual constraint which
one would use to set a slot. Because formula functions have such a generic format, the macro
Am_Define_Formula is usually used to save writing. Likewise, using the cc parameter in Get is
common enough that macros like Gv are available that automatically add the cc parameter. Using
macros, the function above would look like the function below. (This particular formula definition

could easily be reduced to one line.)

// Example of a formula function. This formula returns a value for
// Am_LEFT which will center itself within its owner's dimensions.
Am_Define Formula (int, my_ left_formula) {

Am _Object owner = self.GV_Owner {):

int owner_width = owner.GV (Am_WIDTH);

int my _width = self.GV (Am_WIDTH) ;

return (owner_width - my width) / 2;

}

There also exists a set version of Gv called sv, that is used in other kinds of constraints like, in
particular for constraints with multiple outputs, like Am_web constraints. Though it is possible to
use sv in a formula, it is generally easier to return the desired value. None of the formulas defined
in the sample code in this section use sv.



Page 96 ORE Object and Constraint System

There are also macros for defining formulas that return many of the built-in wrapper types. For in-
stance, the macro Am_Define_Style_Formula returns the type am_style. Actually, all wrapper
formulas return the same type, Am_Wrapper=. Since it is confusing to look at a formula function
that is supposed to return Am_Style or Am_oObject and see that it returns Am_Wrapper*, these mac-
ros are available to make the code better reflect what is really intended. The various wrapper types
are described in the Opal chapter:

Am_Define Formula (type, formula_name) - General purpose: returns specified type.

Am_Define_No_Self_ Formula (type, function name) - General purpose: returns
specified type. Used when the formula does not reference the special
self variable, so compiler warnings are avoided.

Am Define_Value_Formula (formula_name) - Return type is void. This formula has a
Am_Value& parameter named value which the programmer uses to return
a value. Used when the formula might return different types, described in
Section 3.7.1.2.

Am_Define_Object_Formula (formula_name) - Return type is Am_Object.
Am_Define_String Formula (formula_name) - Return type 1S Am_String.

Am Define_Style_Formula (formula_name) - Return type is Am_Style.

Am Define_ Font_Formula (formula_name) - Return type is am Font.

Am Define_Point_List_ Formula (formula_name) - Return type 1S Am_Point_List.
Am_Define_Image_Formula (formula_name) - Return type is Am_Image Array.
Am_Define_Value_List_Formula (formula name) - Return type 1S Am_Value_List.

Am Define Cursor_Formula (formula_name) - Return type iS Am_Cursor.
3.7.1.1 Declaring Formulas

In order to use a formula constraint outside of the file that defines it, C++ expects an external dec-
laration. The formula procedure does not need to externally declared. In fact formula procedures
are normally declared static so that they do not infringe on the C++ external namespace. The

Am_Formula variable is the name that needs to be externally declared. For example:
extern Am_Formula my_formula;

The type of the formula is not important in this case. All formula procedures get put into an
Am_Formula variable that remembers the type internally.

3.7.1.2 Formulas Returning Multiple Types

Some formulas do not return only one type of value. For these formulas, the programmer cannot
define a single return type. To remedy this situation, the formula constraint system can use the
Am_value as return value or a parameter instead of using a normal return value.



ORE Object and Constraint System  Page 97

One kind of value formula declaration has return value of void and it has one extra parameter of
type Am_value& whose name is “value.” The self and cc parameters are the same as in normal
formulas and are used in the same way. The standard macro for declaring a multiple-type formula
of this kind is Am_Define_value_Formula. Note that this type of formula does not have return val-
ue. Instead, the value is returned by setting the am_values value parameter.

Am_Define Value_Formula (my_formula)

{
if ((bool)self.GV (Am_SELECTED) )
value = 5;
else
value = Am Blue;

}

In the above example, if the slot Am_SELECTED is true, the formula will return an integer value of
5. If it is false, it returns the color blue.

Here is an example that passes a value from a different slot and without checking what type it is:

Am_Define_Value_Formula (my copy_formula) {
other_obj.GVM (SOME_SLOT, value); // value is what is returned from
// this formula

}

To read a slot set with a value formula the programmer can use either the am_value form of Get or
can call Get_Slot_Type.

One can also create a formula that returns a const Am_Value as a return type:
Am_Define_ Formula (const Am Value, my_ formula)

{
if ((bool)self.GV (Am_SELECTED)

return 5;
else
return Am_Blue;

3.7.2 Using GV

When the et method is used with a constraint context (or equivalently, when the v macro is
used), the constraint solver decides how the actual Get is performed. The formula constraint solver
sets up a dependency to the slot being fetched. Whenever the fetched slot changes value, the for-
mula will be notified by the system and will automatically update its value by calling the formula

procedure. The formula:
Am_Define Formula (int, my left) {
int owner_width = self.GV_Owner ().GV (Am_WIDTH) ;
int my _width = self.GV (Am_WIDTH);
return (owner_width - my width) / 2;
}

defines three slots as dependencies: the object's Am_OwNER slot (the GV_owner macro expands into
a Gv on the Am_OWNER slot), the owner's am_wIDTH slot, and the object's am_wrDTH slot. A formula
changes dependencies when it calls cv on different slots. For instance, the above formula’s depen-
dency on the owner’s width will change if the object ever gets moved to a new owner.



Page 98  ORE Object and Constraint System

A programmer can use a regular Get without the constraint context in a formula function, but the
slot fetched will not become a dependency. Forgetting to use Gv instead of Get is a common mis-
take for Amulet programmers. If it ever seems that a formula is not updating when it is supposed
to, check to make sure that gv is being used in the right places.

There exists a form of v for all forms of cet but one, Get_Prototype. Since the prototype of an
object is fixed and can never change, there is never a need to install a dependency to it. The full list
of gv forms is:

°GV (slot) - Getthe specified slot, setting up a constraint.

*GVM (s1, value) - Getthe specified slotinto a Am_value parameter, setting up a constraint.
Unfortunately, macros cannot be overloaded like procedures; hence the different name.

*GV_owner () - Getthe owner of an object, setting up a constraint.
*GV_Part (part_name) - Get the specified part of an object, setting up a constraint.
*GV_sibling (part_name) - Get the specified sibling of this object, setting up a constraint.

*GV_Object (slot) - Get the value of a slot, setting up a constraint. The slot must contain an
Am_Object.

3.7.3 Putting Formulas into Slots

To install a formula in a slot, one needs a Am_Formula variable. Normally, the Am_Formula variable
will be defined using the standard macros in which case the programmer calls set with the formula
name to install it. If the programmer has defined the formula procedure without using the macros,
then one then needs to create a formula object using that procedure. The formula object is then set
into a slot.

Am_Define_Formula (int, rect_left)

{

return (int)self.GV_Owner ().GV (Am_WIDTH) / 2;
}

// Here the formula is used.
Am_Object my_rectangle = Am Rectangle.Create ("my rect")
.Set (Am_LEFT, rect_left))

I3

In this example, the programmer defines a Am_Formula variable explicitly:
static int rect_left_proc (Am_Object& self, Am Constraint_Context& cc)
{
return (int)self.GV_Owner ().GV (Am WIDTH) / 2;
}

// Here the formula procedure is used.
Am_Object my rectangle = Am_Rectangle.Create ("my rect")
.Set (Am_LEFT, Am Formula (rect_left_proc, "name of formula"))

2



ORE Object and Constraint System  Page 99

Formulas are evaluated eagerly, which means that the formula expression may be evaluated even
before all the slots it depends on are defined. Since a formula cannot detect when external refer-
ences are changed, it is wise to make sure that any global variable that a formula references are
defined before the formula is set into a slot. Formulas that reference undefined slots or NULL objects
will return the value am_unINIT. It is an error to fetch the value of an uninitialized slot from outside
a formula so it is important that anything that a formula will depend on becomes valid as soon as
possible. One can check if a slot is uninitialized by using Get_Slot_Type or fetching the slot as a

Am Value.
// This formula will become uninitialized if
// a) it doesn’t have an owner.
// b) the owner’s left slot doesn’t exist.
// ¢) the owner'’s left slot is uninitialized.
Am_Define Formula (int, my form)
{
return self.GV_Owner ().Get (Am_LEFT);

}
3.7.4 Slot Setting and Inheritance of Formulas

When a slot is set, any formula that was previously in that slot will be removed by default. Just like
setting a slot with a new value removes the old value of the slot, setting a slot with a value or a new
formula removes the old value that was there, even if the old value was a formula.

Like values, formulas are inherited from prototypes to their instances. However, the formula in the
instance might compute a value different from the formula in the prototype if the formula contains
indirect links. For example, the formula that computes the width of a text object depends on the
text string and font, and even though the same formula is used in every text object, most will com-
pute different values.

Sometimes, constraints from a prototype should be retained in instances even if the local value is
set. This requires declaring that the slot is not single_constraint_Mode, which is an advanced
feature covered in Section 3.11.5.

3.7.5 Calling a Formula Procedure From Within Another Formula

Given a Am_Formula variable it is possible to call the formula procedure embedded within it. This
process is typically done within another formula since one needs to have both a se1 £ reference and
a cc parameter. Typical use for this ability is to reuse the code of another formula instead of rewrit-
ing it. An Am_Formula’s procedure call method returns type const Am_vValue which can be cast
to the desired return type.

Am_Define_Formula (int, complicated_formula)

{

// Perform some hairy computation.

}

Am Define_Fomula (int, complicated_formula_plus_one)

{

return (int)complicated_formula (cc, self) + 1;:

}



Page 100 ORE Object and Constraint System

3.8 Lists

Lists are widely used in Amulet. For example, many widgets require a list of labels to be displayed.
The standard ORE list implementation is the Am_value_List type. ORE defines this list class so
that it can be a wrapper and more easily be stored as slot values. The operations on
Am_Value_Lists are provided in the file value_list.h. Like slots, Lists can hold any type of val-
ue. A single list can also contain many different types of values at the same time.

Because the am_value_List is a form of wrapper, it supports all the standard wrapper operations,
including:
* assignment (=), which copies the list: Am_value_List 12 = 11;

» test for equality (==), which tests whether the two lists contain identical values (it iterates
through each element testing for ==).

* test whether the list is valid: list.Valid ().

* test whether a value is a Am_Value List: Am_Value List::Test (value).

3.8.1 Current pointer in Lists
In addition to data, Am_Value_Lists contain a pointer to the “current” item. This pointer is manip-
ulated using the following functions:

*void Start () -Make first element be current. This is always legal, even if the list is empty.

*void End () - Make last element be current. This is always legal, even if the list is empty.

*void Prev () - Make previous element be current. This will wrap around to the end of the
list when current is at the head of the list.

*void Next () - Make next element be current. This will wrap around to the beginning of the
list when current is at the last element in the list.

*bool First () - Returns true when current element passes the first element.

*bool Last () - Returns true when current element passes the last element.

The standard way to iterate through all items in a list in forward order is:

for (my _list.Start (); !my list.Last (); my list.Next ()) {
something = my list.Get ();
// Use something here

}

Similarly, to go in reverse order, one would use:

for (my_list.End (); !my_list.First (); my_list.Prev ()} {
something = my_list.Get ();
// Use something here

}

Note that the pointer is not initialized automatically in a list, so the programmer must always call
Start or End on the list before accessing its value with Get.



ORE Object and Constraint System Page 101

Am_Value_Lists are circular lists. prev() and Next () wrap around, but be aware that there is a
NULL list item, which you cannot do a Get () on, between the Last and First elements in the list,
To wrap around, you should do an extra Next () or Prev () at the end of the list:
my_list.Start();
while (true) { // endless circular loop
do_something_with(my_list.Get());
my_list.Next();
if (my_list.Last()) my_list.Next(); // an extra Next at the end of the list
}

3.8.2 Adding items to lists

There are two mechanisms for adding items to a list one element at a time: either always at the be-
ginning or end, or at the position of the current pointer. One can also append two lists together.

To add items at the beginning or end of the list, use the Add method. Since this does not use the
current pointer, one do not need to call start. The first parameter to Add is the value to be added,
which can be any primitive type, an object, a wrapper, or a Am_value. The second parameter to Add
is either Am_TAIL or Am_HEAD which defaults to am_TaTL. This controls which end the value goes.
Add returns the original Am_value_List so multiple adds can be chained together:
Am Value_List 1;
1.Add(3)
.Add (4.0)
.Add (Am_Rectangle.Create())
.Add (Am_Blue)

7

To add items at the current position, the programmer must first set the current pointer. First, start,
End, Next, and Prev are used to position the current pointer as the desired location then Tnsert is
called. The first parameter of Insert is the value to be stored, and the second parameter specifies
whether the new item should go Am_BEFORE or Am_AFTER the current item. There is no default for
this parameter. The current pointer does not change in this operation.

Lists can be appended with the append method. Append is called on the lists whose elements will
be at the beginning of the final result. The parameter is a list whose elements will be appended. The
result is stored directly in the list on which the method is called. This method returns this just as
the Add method so that it can be cascaded.

Am Value_List start = Am Value_List ().Add (1).Add (2)Y; 7/ 1ist (1, 2)

Am Value List end = Am_Value List ().Add (3).Add (4): // list (3, 4)
start.Append (end); // start == (1, 2, 3, 4)

3.8.3 Other operations on Lists

The et method retrieves the value at the current position. Like Am_object's Get, it returns an
Am_vValue which can be cast into the appropriate type. Another Get is available that returns

2Am_Value as a parameter. For example:

Am_Value v;
for (my_list.End (); !my_list.First (); my_list.Prev ()) {
my_list.Get(v);



Page 102 ORE Object and Constraint System

cout << "List item type is " << v.type << endl << flush;

}

To find the type of an item without fetching the value use Get_Type ().

Set is used to change the current item in the list. This is differs from Insert in that it deletes the
old current item and replaces it with the new value.

The Delete method destroys the item at the current position. It is an error to call pelete if there
1s no current element. The current pointer is shifted to the element previous to the deleted one.
Make_Empty deletes all the items of the list.

Am_Value_ListS support a membership test, using the Member method. This starts from the current
position, so be sure to set the pointer before calling Member. For example, to find the first in-
stance of 3 in a list:

1.Start();
if (1.Member(3)) cout << "Found a 3";

Member leaves the current pointer at the position of the found item. Calling Set or Delete after a
search will affect the found item. Calling Member again finds the next occurrence of the value.

Length returns the current length of the list.

Empty returns true if the list is empty. Note that there is a difference between being valid and being
Empty. Not being valid means that the list is NULL that is, it does not exist. An invalid list is also
empty by definition, but an empty list is not always invalid. The list may exist and be made empty
by deleting its last element, for instance. In this case, Empty would return true and valid will also
return true.

3.9 Iterators

For efficiency, ORE does not allocate an am_value_List for some types of list-like information,
and instead supplies an “iterator.” An iterator object contains a current pointer and allows the pro-
grammer to examine the elements one at a time. There are three kinds of iterators available in ORE:
one for slots, one for instances, and another for parts. Each of the iterators has the same basic form,
and the interface is essentially the same as for Am_value_Lists.

3.9.1 Reading Iterator Contents

The iterator methods treat the list of items like a linked list rather than as an array. The main oper-
ations are Start, Next, and Get. Start places the iterator at the first element. Next moves the it-
erator to the next element. And Get returns the current element. To initialize the list, assign the
iterator with the object that contains the information that the programmer want to iterate upon. For
example:

cout << "The instances of " << my_object << " are:" << endl;

Am_Instance_Iterator iter = my_object;
for (iter.Start (); !iter.Last (); iter.Next ()) {



ORE Object and Constraint System Page 103

Am_Object instance = iter.Get ();
cout << instance << endl;

}

The first line of the example is used to initialize the iterator. The example prints out the instances
of my_object 50 my_object is the object to assign to the iterator. The Last method is used to de-
tect when the list is complete. These iterators can only be traversed in one direction.

3.9.2 Types of Iterators

The Am_Part_Iterator iterates over the parts of an object. Its Get method returns an Am_object
which is the part. To list the parts stored in Am_Groups and Am_windows, however, it is better to use
the Am_value_ List stored in the Am_GRAPHICAL_PARTS slot instead of the part iterator. The part
iterator would list all parts in the object including many that are not graphical objects.

To iterate over the instances of an object, use an Am_Instance_Iterator. Its Get method returns
an Am_Object which is the part. To list an object’s slots (both inherited and local), use the
Am_Slot_TIterator. Its Get method returns the am_slot_Key of the current slot. You can use the
object method Is_slot_Inherited to see if the slot is inherited or not.

3.9.3 The Order of Iterator Items

When an iterator is first initialized, there is no particular order imposed on the list. The order of the
elements will be such that a single element will not repeat if the list is read from beginning to end,
but the order may change if the iterator is restarted from the beginning. (Opal keeps track of the Z
order [stacking or covering order] of the parts by using the Am_GRAPHTCAL_PARTS slot which con-
tains an Am_value_List of the graphical parts, sorted correctly).

When items are added to an iterator’s list while the list is being searched, the items added are not
guaranteed to be seen by the iterator. The iterator may have already skipped them. The value re-
turned by the Length method will be correct, but the only way to make certain all values have been
seen is to restart the iterator.

Likewise, the order in which the elements are stored in each iterator is not guaranteed to be main-
tained when an item is deleted from the list. The iterators themselves cannot be used to destroy an
item, but other methods like obj . Destroy, obj. Remove_Part, and obj.Remove_Slot will affect
the contents of iterators that hold those values.

When an iterator has a slot or object as its current position, and that item gets removed, the affect
on the iterator is not determined. An iterator can be restarted by calling the Start method in which
case it will operate as expected. Though an iterator will not likely cause a crash if its current item
is deleted, continued use of it could cause odd results.



Page 104 ORE Object and Constraint System

For iterators that iterate over objects (specifically Am_Part_Iterator and
Am_Instance_Iterator), it is possible to continue using the iterator even when items are deleted.
If the programmer makes certain that the iterator does not have the deleted object as the current
position when the object is removed, then the iterator will remain valid. For example:

// Example: Remove all parts of my_object that are instances of Am_Line.
Am_Part_TIterator iter = my_object;
iter.Start ();
while (!iter.Last ()) {
Am_Object test_obj = iter.Get ();
iter.Next ();
if (test_obj.Is_Instance_Of (Am_Line))
test_obj.Remove_From_Owner ();

}

In the above example, the call to Next occurs before the call to Remove_From_owner. If these meth-
od calls were reversed, then iterator would go into an odd state and one would get undetermined
results.

The am_slot_Iterator type does not have the same deletion properties as the object iterators. If
a slot gets removed from an object used by a slot iterator (or the prototype of the object assuming
the slot is defined there), then the affect on the iterator is undetermined. The slot iterator must be
restarted whenever a slot gets added or removed from the list in order to guarantee that all slots are
seen. »

3.10 Errors

Whenever Amulet notices an error, it calls the am_Error routine which prints out the error and then
aborts the program. If you have a debugger running, it should cause the program to enter the de-
bugger.

3.11 Advanced Features of the Object System

3.11.1 Destructive Modification of Wrapper Values

Some wrappers, like am_style's, are immutable, which means that once created, the programmer
cannot change their values. Other wrapper objects, like am_value_Lists are mutable. The defauit
Amulet interface copies the wrapper every time it is used and automatically destroys the copies
when the programmer is finished with them (explained in Section 3.11.2.2). This design prevents
the programmer from accidentally changing a wrapper value that is stored in multiple places, and
it helps prevent memory leaks. However, for programmers that understand how Amulet manages
memory, it is unnecessarily wasteful since making copies of wrappers is not always required. This
section discusses how you can modify a wrapper value without making a copy. See also the discus-
sion of the wrapper implementation in Section 3.11.2.



ORE Object and Constraint System Page 105

When the programmer retrieves a wrapper value out of a slot, it points to the same value that is in
the slot. If the value of the wrapper is changed destructively, then both the local pointer and the
pointer in the slot will point to the changed value. To control this, most mutable wrappers provide
amake_unique optional parameter in their data changing operations. The default for this parameter
is true and makes the method create a copy of the value before it modifies it. If you call the pro-
cedure with false, then it will not make a copy and the value you modify will be the same as the
value pointed to by all the other references. If the wrapper is pointed to in a slot, the object system
will not know that the value has changed. To tell the object system that a slot has changed destruc-
tively, the programmer calls Note_Changed on the object after the modifications are complete.
ORE responds to Note_Changed the same way it would respond if the slot were set with a new val-
ue. Thus, Amulet will redraw the object if necessary and notify any slots with a constraint depen-
dent on this slot. For example:

obj.Make_Unique (MY _LIST SLOT); // make sure that only one value is modified

Am_Value_List list = obj.Get (MY_LIST SLOT);

list.Start ();

list.Delete (false); // destructively delete the first item
obj.Note_Changed (MY_LIST SLOT); // tell Amulet that T modified the slot

The purpose of the Make_unique call at the beginning of the previous segment concerns whether
the wrapper value is unique to the slot My_LIST_SLOT or not. Amulet shares wrappers between
multiple slots that are not explicitly made unique. A major source of sharing occurs when an object
is instantiated. For example, if one makes an instance of obj in the example above called
obj_instance, then both obj_instance and obj will point to the same list in the MY_LIST SLOT.
In that case, the above code would modify the list for both obj and obj_instance, but Amuler
would not know about the change to obj_instance. Thus, to make sure the MY_LIST_SLOT is
unique, the programmer explicitly calls Make_Unique before the value of the slot is fetched. If it is
beyond doubt that a wrapper value is not shared or that it is only shared in places which the pro-
grammer knows will be affected, then the Make_Unique call can be eliminated. Make_Unigue will
do nothing if the slot is already unique.

It is important that Make_Unique be called before one actually et’s the value. By storing the wrap-
per in a local variable, the wrapper will not be unique and Make_Unique will make a unique copy
for the slot. If the programmer would like to examine the contents of a slot before deciding whether
to perform a destructive change, then one can use the Is_Unique method. Is_Unique returns a
bool that tells whether the slot’s value is already unique. By storing the value from Is_unique be-

fore calling Get, the programmer can decide whether to perform destructive modification or not.
// Example which uses Is_Unique to guarantee the uniqueness of MY _SLOT's value.
bool unigque = obj.Is_Unique (MY_SLOT) ;
Am_Value_List list = obj.Get (MY_SLOT) ;
if (... 1list ...) {
list.Add (5, Am_TAIL, !'unique); // perform destructive change if unique
if (unique)
obj .Note_Changed (MY_SLOT);
else
obj.Set (MY_SLOT, list);



Page 106 ORE Object and Constraint System

3.11.2 Writing a Wrapper Using Amulet’s Wrapper Macros

You should consider creating a new type of wrapper whenever you need to store a C++ object into
a slot of an Amulet object. A wrapper manages two things. First, it has a simple mechanism that
supports dynamic type checking, so it is possible to check the type of a slot’s value at run time.
Second, wrappers use a reference counting scheme to prevent the value's memory from being de-
leted while the value is still in use.

Wrappers are created in two layers. The outermost layer is the C++ object layer used by program-
mers to refer to the object. The type am_style is the object layer for the am_style wrapper. Inside
the object layer is the data layer. For am_style, the type is called am_style_bata. Normally, pro-
grammers are not permitted access to the data layer. The object layer of the wrapper is used to ma-
nipulate the data layer which is where the actual data for the wrapper is stored.

3.11.2.1 Creating the Wrapper Data Layer

Both the typing and reference counting is embodied by the definition of the class Am_wrapper from
which the data layer of all wrappers must be derived. The class am_wrapper is pure virtual with
seven methods, six of which all wrappers must define. Most of the time, the programmer can use
the pre-defined macros Am_WRAPPER DATA_ DECL and Am _WRAPPER_DATA_IMPL to define these six
methods.

void Note_Reference ()

unsigned Ref_Count ()

Am_Wrapper* Make_Unique ()

void Release ()

operator== (Am_Wrapper& test_value)
Am ID_Tag ID ()

Of the six methods, three are used for maintaining the reference count and making sure that only a
unique wrapper value is ever modified. These are Note_Reference, Make_Unique, and Release.
The seventh method is void Print_Name (ostreams) wWhich is used to print out the value of the
wrapper in a human-readable format. Unlike the other methods, this method has a default imple-
mentation though it may be defined by programmers. This method is used mostly for debugging as
in the inspector or for printing out values in a property sheet. It is good to implement this method
for wrappers that one intends to release for use by the public.

Note_Reference tells the wrapper object that the value is being referenced by another variable.
The reference could be a slot or a local variable or anything else. The implementation of
Note_Reference is normally to simply add one to the reference count. Release is the opposite of
Note_Reference. It says that the variable that used to hold the value does not any longer. Typical
implementation is to reduce the reference count by one. If the reference count reaches zero, then
the memory should be deallocated. Ref_Count returns the value of the reference count so that ex-
ternal code can count how many of the total references it holds.



ORE Object and Constraint System Page 107

Make_Unique is the trickiest of these methods to understand. The basic idea is that a programmer
should not be allowed to modify any wrapper value that is not unique. For example, if the program-
mer retrieves a Am_value_List from a slot and adds an item to the list, this destructive modifica-
tion should normally not affect the list that is still in the slot. The way to maintain this paradigm is
for the method used to modify the wrapper's data to first call Make_uUnique. If the reference count
is one, the wrapper value is already unique and Make_Unique simply returns this. If the reference
count is greater than one, then Make_Unique generates a new allocation for the value that is unique
from the original and returns it. Either way only a unique wrapper value will be modified. Some
wrapper types have boolean parameters on their destructive operations that turn off the behavior of
Make_Unique to allow the programmer to do destructive modifications (see Section 3.11.1).

The operator== method allows the object system to compare two wrapper values against one an-
other. The system will automatically compare the pointers so the == method must only compare
the actual data. Simply returning false is sufficient for most wrappers.

The final operator is used to handle a primitive dynamic typing system. Each wrapper type is as-
signed a number called an Am_TD_Tag which is an unsigned integer. Integers are dispensed using
the function Am_Get_Unique_ID_Tag. Normal procedure is to define a static member to the wrap-
per data class called id which gets initialized by calling Am_Get_Unique_ID_Tag. This function
takes a name and a class ID number to generate an ID for the wrapper. ID tags and value types are
one and the same concept. The wrapper ID is the same value that is stored as the wrapper’s type.

All of the methods can be defined instantly by using the Am_WRAPPER DATA DECL and
Am_WRAPPER_DATA_IMPL macros. The macros require that the user define at least two methods in
the wrapper data class. The first required method is a constructor to be used by Make_Unique. The
method is used to create a copy of the original value which can be modified without affecting the
original. This can be done by making a constructor that takes a pointer to its own class as its pa-
rameter. Make sure that in all the data class constructors to initialize the refs member (defined by
Am_WRAPPER_DECL) to 1. The second required method is an operator== to test equality. The ==
method does not need to check that the parameter is of the correct type because that is handled by
the default implementation of the operator== that takes a Am_Wrappers& and which calls the spe-
cific == routine if the types are the same.

For example:

class Foo_Data : public Am_Wrapper {
Am_WRAPPER_DATA_ DECIL (Foo)
public:
Foo_Data (Foo_Data* prev)
{
. // initialize member values
refs = 1; // Do not forget this line!
}
operator== (Foo_Data& test_value)
{
// compare test_value to this
}
protected:
// define own members

};



Page 108 ORE Object and Constraint System

// typically this part goes in a .cc file
Am_WRAPPER_DATA_IMPL (Foo, (this))

All the standard wrapper macros take the name of the type as their first parameter. The string
“_Data” is always automatically appended to the name meaning your wrapper data classes must
always end in _Data. If one wants the name of the wrapper type to be Foo, the data layer type must
be named Foo_Data. The Am WRAPPER_DATA_IMPL macro takes a second parameter which is the
parameter signature to use when the Make_Unique method calls the data object's constructor. In the
above case, “(this)” is used because the parameter to the Foo_Data constructor is equivalent to
the this pointer in the Make_Unique method. That is, the Make_unigque method will sometimes
have to create a new copy of the wrapper object. The new copy will be created using one of the
object's constructors. In the above case, the programmer wants to use the constructor
Foo_Data(Foo_Data* prev). This constructor requires Make_Unique to pass in its this pointer
as the parameter. Therefore, the parameter signature declared in the macro
Am_WRAPPER_DATA_IMPLis “(this).” If the programmer wanted a different constructor to be used,
the parameter set put into the macro would be different.

3.11.2.2 Using The Wrapper Data Layer

The wrapper data layer is normally manipulated only by the methods in the wrapper outer layer.
One can take the Am_Foo_Data* and manipulate it as a normal C++ object with the following ca-
veat. One must be sure that the reference count is always correct. When one uses the data pointer
directly, the methods Note_Reference Or Release are not being called automatically so it must be
done locally in the code.

Consider the following example: The programmer wants to return a Am_Foo type but currently has
a Am_Foo_Data* stored in his data.

// Here we move a Foo_Data pointer from one variable to another. The

// object that lives in the first variable must be released and the

// reference of the object moved to the new variable must be incremented
Foo_Data* foo_datal;

Foo_Data* foo_data2;

//... assume that foo_datal and foo_data2 are somehow initiallized with
// real values...

if (foo_datal)
foo_datal->Release ();

foo_datal = foo_data2l;

foo_datal->Note_Reference ();

To keep changes in a wrapper type local, one must call the Make_Unique method on the data before
making a change to it. If the wrapper designer wants to permit the wrapper user to make destructive
modifications, a boolean parameter should be added to let the user decide which to do.

void Foo::Change_Data (bool destructive = false)

{
if (!destructive)
data = data->Make_Uniqgue ();
data->Modify Somehow ();



ORE Object and Constraint System Page 109

}

Sometimes a programmer will want to use the wrapper data pointer outside the outer wrapper layer
of the object. To convert from the wrapper layer to the data layer, one uses Narrow.

Foo my_ foo;

Foo_Data* data = Foo_Data::Narrow (my_foo);
data->Use_Data ();

data->Release (); // Release data when through

The way to test if a given wrapper is the same type as a known wrapper class is to compare IDs.
The static method TypeName_1D is provided in the standard macros.

Am Wrapper* some_wrapper_ ptr = something;
Am_ID Tag id = some_wrapper_ptr->ID ();
if (id == Foo_Data::Foo_Data_ID ())

cout << "This wrapper is foo!" << endl;

Other functions provided for wrapper data classes by the standard macro are Is_unique, and
Is_zero with are boolean functions that query the state of the reference count.

3.11.2.3 Creating The Wrapper Outer Layer

The standard macros for building the wrapper outer layer assume that the class for the wrapper data
is called TypeName_Data where TypeName is the name for the wrapper outer layer. Like the data
layer macros, there are two outer layer macros, one for the class declaration part and one for the
implementation.

// Building the outer layer of Foo. This definition normally goes in
// a .h file.
class Foo { // Note there is no subclassing.
Am_WRAPPER_DECL (Foo)
public:
Foo (params) ;
Use ():
Modify ();
Yi

// This normally goes in the .cc file.
Am_WRAPPER_IMPL (Foo)

The wrapper outer layer is given a single member named data which is a pointer to the data layer.
In all the wrapper methods, one performs operations on the data member.

// A Foo constructor - initializes the data member.
Foo::Foo (params)

{

data = new Foo_Data (params);

}

For methods that modify the contents of the wrapper data, one must be sure that the data is unique.
One uses the Make_Unique method to manage uniqueness.

Foo::Modify ()
{



Page 110 ORE Object and Constraint System

if (!data)

Am_FError ("not initialized!");
data = data->Make_Unique ();
data->Modify ();

}

Methods that do not modify data do not need to force uniqueness so they can use the wrapper data

directly.
Foo::Use ()
{
if (!data)

Am_Frror ("not initialized!");
data->Use ();
}

Somewhere in the code, the wrapper will actually do something: calculate an expression, draw a
box, whatever. Whether the programmer puts the implementation in the data layer or the outer layer
is not important. Most wrapper implementations will put define their function wherever it is most
convenient.

Putting a wrapper around an existing C++ class is not difficult. One can make the original class a
piece of data for the wrapper data layer. If the programmer does not want to reimplement all the
methods that come with the existing class, one provides a single method that returns the original
class and calls the methods on that. Be certain that Make_Unique is called before the existing object
is returned. If the object can be destructively modified, then the wrapper must be made safe before
the modifications occur. However, if the programmer wants the wrapper object to behave as if it
were the original class then some reimplementation may be required.

3.11.3 The Am_Web Constraint

The Aam_web constraint is a multi-way constraint solver. That means it can store values to more than
one slot at a time. On the other hand, the one-way Am_Formula constraint can only store values to
one slot, the slot in which the formula is stored. Multi-way constraints tend to be more difficult to
use and understand than one-way constraints, which is am web is described here in the advanced
section. One would use a web instead of a formula to build a constraint that involves tying several
slots together so that their values act as a unit. Also, sometimes it is more efficient to make a single
web where many formulas would be required to accomplish the same task. For example, Opal uses
a web to tie together the left, top, width, height slots with the x1, y1, x2, y2 slots in the Am_Line
object. Finally, the web provides information about which dependencies have been changed during
re-validation which may be required to implement certain kinds of constraints.

A web constraint consists of three procedures as opposed to one procedure in a formula. The types
of these procedures are Am Web_Create_Proc, Am_Web_Initialize_Proc, and
Am_Web_Validate_Proc. These procedures always use the same signature since there is no return
type to worry about. The validation procedure is the most similar to the formula’s procedure. It is
executed everytime the web is reevaluated and it typically consists of the most code. The initializa-
tion procedure is run once when the web is first created. Its purpose is to set up the web’s depen-



ORE Object and Constraint System Page 111

dencies, especially the output dependencies. The create procedure concerns what happens when a
slot containing a web constraint is copied or instantiated. Since a web can have multiple output de-
pendencies, it does not really belong to any one slot. So, a slot is chosen by the programmer to be
the “primary slot.” That slot is considered to be the web’s owner and the location where a new web
will be instantiated. The create procedure lets the programmer identify the primary slot.

3.11.3.1 The Validation Procedure

For the example, we will construct a multi-direction web constraint that ties together three slots:
ADDEND1, ADDEND2, and SUM. SUM is constrained to be ADDEND1 + ADDEND2, and ADDEND1 is con-
strained to be SUM - ADDEND2. ADDEND? is not constrained. First, we will write the validation pro-

cedure:
void sum_two_slots_val (Am_Constraint_Context& cc, Am _Web Eventsé& events)
{
events.End ();
if (events.First ()) // No events
return;
Am_Slot slot = events.Get ();
Am Object self = slot.Get_Owner ();
switch (slot.Get_Key ()) {
case ADDENDl: { // ADDEND1 has changed last.
int addendl = self.GV (ADDEND1) ;
int addend2 = self.GV (ADDEND2) ;
self.SvV (SUM, addendl + addend2):
}
break;
case ADDEND2: { // ADDEND2 has changed last.
int prev_value = events.Get_Prev_vValue ();
int addend2 = self.GV (ADDEND2) ;
events.Prev ();
if (events.First () || events.Get ().Cet_Key () != SUM) {
int addendl = self.GV (ADDEND1);
self.SV (SUM, addendl + addend2);
}
else { // SUM was set before ADDEND2. Must propagate previous result to ADDENDI.
int sum = self.Get (SUM);
self.SV (ADDEND1, sum - prev_value);
self.SV (SUM, sum - prev_value + addend2);
}
}
break;
case SUM: { // SUM has changed last.
int sum = self.GV (SUM);
int addend2 = self.GV (ADDEND2) ;
self.SV (ADDEND1, sum - addend2);
}
break;

}



Page 112 ORE Object and Constraint System

If the code looks complicated, it is because it is complicated. What makes writing web constraints
difficult is that more than one slot can change between validations. The code above has to first
check to see what slots have changed. Then it sees if something else has changed before that and
then finally carries out the computation. To read which slots have changes, one uses the
Am_Web_Events class. This contains a list of the slots that have changed value since the last time
the web was validated in the order in which they were changed. This class is structured like the
other iterator classes. It has start, End, Next, Prev, First, and Last methods for traversing its
items. Its Get method returns a Am_slot. There is no self parameter because webs are not attached
to a specific slot or object. A web could hypothetically float around between objects as it gets re-
evaluated; though, this is generally not the case. To get a se1f pointer, one reads the owner of one
of the slots in the event list. It should always be possible to determine a web’s location using any
one of its slots as a reference. The other method available in the events list is Get_pPrev_value
which returns the value that the slot contained before it was changed. To get the slot’s current value,
one uses Get Or GV.

Using sv in a web is similar to using Gv except that it is used for output instead of input. Every slot
set with sv will be assigned a constraint pointer to that web making the slot dependent on the web.
It is legal to both Gv and sv a single slot. In that case, the web would both be a constraint and a
dependency on that slot. Both the constraint and dependency are kept whenever either are used in
the validation procedure. Thus, in the above example, when av is called on the sum slot, the web’s
constraint on that slot will be kept. If neither gv or sv are called on a slot during validation, the
dependency and/or constraint will be removed.

3.11.3.2 The Create and Initialization Procedures

The next procedure examined will be the create procedure. The semantics of the create procedure
is that it returns true when it is passed the primary slot. For our example web, we have a choice of

primary slots. It could be any of ADDEND1, ADDEND2, or suM. We will choose sum.
bool sum_two_slots_create (const Am_Slot& slot)

{
return slot.Get_Key () == SUM;
}

Although our sum_two_slots web will normally be connected to three slots, when it is inherited,
it is only connected to the primary slot. The purpose of the initialize procedure is to reconnect the
web to all its other dependencies. Essentially, it is used to fix up the lost connections caused by
inheritance.
void sum_two_slot_init (Am Constraint_Context& /*cc*/, const Am_Slot& slot,
Am_Web_Init& init)
{
Am_Object_Advanced self = slot.Get_Owner ();
init.Note_Input (self, ADDEND1):
init.Note_Input (self, ADDEND2);
init.Note_TInput (self, SUM);
init.Note_Output (self, ADDEND1);
init.Note_Output (self, ADDEND2) ;
init.Note_Output (self, SUM);



ORE Object and Constraint System Page 113

The am_web_Init class is used to make dependency and constraint connections without perform-
ing a v or sv on any slot. The method Note_Input creates a dependency and the method
Note_Output creates a constraint. Some programmers may want to perform computation during
initialization, in which case the usual cc parameter is available for calling cv or sv. The slot pa-
rameter provides the primary slot to which the web was attached.

3.11.3.3 Installing Into a Slot

A web is put into an object by setting it into its primary slot. First, a Am_web variable is created
using the three procedures defined above. This variable is stored into the primary slot just as a

Am_Formula is stored, by calling set.
Am_Web my web (sum_two_slots_create, sum two_slots_init,
sum_two_slots_val);
object.Set (SUM, my_web) ;

Once a web is stored in the primary slot, its initialization procedure will take over and attach the
web to any other slots it needs.

3.11.4 Using Am_Object_Advanced

There are several extra methods that can be used on any Amulet object that are not available in the
regular Am_Object class. A programmer can manipulate these methods by typecasting a regular
Am_Object Into @ Am_Object_Advanced class. For instance, in order to retrieve the am_slot form
for a slot one uses Get_slot:

#include OBJECT_ADVANCED__H // Note need for special header file

Am_Object_Advanced obj_adv = (Am_Object_Advanced&)my object;
Am_Slot slot = obj_adv.Get_Slot (Am_LEFT);

A programmer must be careful using the advanced object and slot classes. Many operations can
break the object system if used improperly. A general principle should be to use the advanced fea-
tures for a short time right after an object is first created. After the object is manipulated to add or
change whatever is needed, the object should never need to be cast to advanced again.

A number of methods in the advanced object class are used to fetch slots. The method Get_slot
retrieves a slot and returns it as the advanced class am_Slot. Get_slot will always return a slot
local to the object. If the slot was previously not local because it is still inherited or for other rea-
sons, Get_sSlot will make a placeholder slot locally in the object and return that. If the slot does
not exist at all, cet_slot will return am_NuLL_sLoT. There are two other methods used for fetching
slots: Get_Owner_Slot, and Get_Part_Slot. These methods are similar to get_Slot except they
are to be used only for fetching part or owner slots. It is entirely possible to use Get_slot instead
of these specialized methods, but the specialized methods are more efficient. Other
Am_Object_Advanced method are: '

* Get_Slot_Locale (slot_key) - Returns the object where the given slot is locally defined.
Note that being locally defined does not mean that the slot is not inherited for that object.
Slots can become local when they are depended on by constraints for other similar reasons.



Page 114 ORE Object and Constraint System

*Disinherit_slot (slot_key) - Breaks the inheritance of a slot from the prototype object.
This will delete formulas and values that were not set locally.

* Print_Name_And Data (ostreams) - Used for debugging, this prints the contents of the
object out in ASCII text.

3.11.5 Controlling Slot Inheritance

An innovation in Amulet is that the programmer can control the inheritance of each slot. This is
useful if you want to make sure that certain slots are not shared by a prototype and its children. For
example, the Amulet am_window object has a slot that points to the actual X/11 or MS Windows
window object associated with that window. This slot should not be shared by multiple objects. The
choices are defined by the enum Am_TInherit_Rule and are:

* am_INHERIT: The default. Slots are inherited from prototypes to instances, and subsequent
changes to the prototype will affect all instances that do not override the value.

* am_r.0cAL: The slot is never inherited by instances. Thus, the slot will not exist in an instance
unless explicitly set there.

* am_coPY: When the instance is created, a copy is made of the prototype's value and this copy
is installed in the instance. Any further changes to the prototype will not affect the instance.

* am_sTaTIC: All instances will share the same value. Changing the value in one object will
affect all objects that share the slot. We have found this to be rarely useful.

To set the inheritance rule of the Am_DRAWONABLE slot of new_win to be local:
new_win.Set_Inherit_Rule (Am_DRAWONABLE, Am_LOCAL);

The inherit rule may also be set directly on a Am_slot:

#include <am_inc.h> // defines OBJECT ADVANCED _H for machine independance
#include OBJECT_ADVANCED_ H // for slot_advanced

Am_Object_Advanced obj_adv = (Am_Object_Advanced&)new _win;
Am_Slot slot = obj_adv.Get_Slot (Am_ DRAWONABLE) ;
slot.Set_Inherit_Rule(Am LOCAL) ;

Using the am_s1ot method is useful when one wants to perform several manipulations on a single
slot. By fetching the am_slot once and reusing the value, one can save the time needed to search
for the slot.

The default rule with which an object will create all new slots added to an object can be changed
using the set_Default_Inherit_Rule method. Likewise, the current inherit rule can be exam-
ined using Get_Default_Inherit_Rule.

((Am_Object_Advanced&)my object) .Set_Default_Inherit_Rule (Am_COPY) ;
Am_Inherit_Rule rule = my adv_object.Get_Default_Inherit_Rule ();



ORE Object and Constraint System Page 115

3.11.6 Controlling Formula Inheritance

For slots that are inherited normally, sometimes you still might want to control Formula inheritance
separately. Remember from Section 3.7.4 that instances inherit formulas from their prototypes, but
that setting the instance’s slot normally removes the inherited formulas. There are times, however,
when constraints from a prototype should be retained in instances even if the instance’s value is set.
For example, the am_vALUE slot of widgets contain formulas that compute the value based on the
user’s actions. However, programmers are also allowed to set the am VALUE slot if they want the
widget to reflect an application-computed value. In this case, the default formula in the am_VALUE
slot should not be removed if the programmer sets the slot. To achieve this, the programmer must
set the slot’s Single_Constraint_Mode to false (the default is true).
obj.Set_Single Constraint_Mode (Am_VALUE, false);

The same parameter can be set directly on the slot as well:
Am Object_Advanced obj_adv = (Am_Object_Advanceds)obi;
obj_adv.Get_Slot (Am VALUE).Set_Single_Constraint_Mode (false);

Now, if obj contains a constraint, any instances of obj will always retain that constraint, even if
another constraint or value is set into the instance. Furthermore, calls like Remove _Constraint on
the instance’s slot will still not remove the inherited constraint (though it will remove any addition-
al constraints set directly into the instance).

3.11.7 Writing and Incorporating Demon Procedures

Amulet demons are special methods that are attached directly to an object or slot. Demons are used
to cause frequently occurring, autonomous object behavior. The demons are written as procedures
that are stored in an object's “demon set.” The demon set is shared among objects that are inherited
or copied from another.

The demon procedures that operate on an object have very specific purpose. There are five demons
that can be overridden on the object level. Three of the demons deal with object creation and de-
struction, the other two handle part management.

Demons that are attached to slots behave similar to formulas. The slot demons are more generic
than object level demons. Slot demons can detect when the slot value changes or is invalidated.
Several slot demons can be assigned to a single slot making it possible for the slot to have multiple
effects with a single event.

When a demon event occurs, the demon affected is put into the demon queue to be invoked later.
All the demons put into demon queue are invoked, in order, whenever any slot is fetched by using
Get. By invoking the demons on Get, Amulet can simulate the effects of eager evaluation because
any demon that affects the value of different slots will be invoked whenever a slot is fetched.



Page 116 ORE Object and Constraint System

3.11.7.1 Object Level Demons

The three demons that handle object creation and destruction are the create, copy, and destroy de-
mons. Each demon is enqueued on its respective event. The create and copy demons get enqueued
when the object is first created depending on whether the method create or copy was used to make
the object. The destroy demon is never enqueued. Since the Destroy operation will cause the ob-
ject to no longer exist, all demons that are already enqueued will be invoked and then the destroy
demon will be called directly. This allows the programmer to still read the object while the destroy
demon is running.

The creation/destruction demon procedures have the same parameter signature which takes the ob-

ject affected by the demon. The type of the procedure is Am_Object_Demon.

// Here is an example create demon that initializes the slot MY_SLOT to
// be zero.

void my create_demon (Am Object self)

{
self.Set (MY_SLOT, 0);
}

Two object-level demons are used to handle part-changing events. These are the add-part and the
change-owner demons. The add-part and change-owner demons are always paired: the add-part de-
mon for the part and the change-owner demon for the part's owner. Both demon procedures have
the same parameter signature, three objects, which has the type Am_part_Demon, but the semantics
of each demon is different. The first parameter for both procedures is the self object -- the object
being affected by the demon. The next two objects represent the change that has occurred. In the
add-part demon, the second object parameter is an object that is being removed or replaced. The
third parameter is an object that is being added or is replacing the object in the second parameter.
For the change-owner demon, the semantics are reversed -- the second and third parameters repre-
sent the change that a part sees in its owner. The second parameter is the owner the part used to
have, the third parameter is the new owner that has replaced the old owner.

// This owner demon checks to make sure that it's owner is a window. Any

// other owner will cause an error.

void my_owner_demon (Am_Object self, Am Object prev_owner,

Am_Object new_owner)
{ if (!new_owner.Is_Instance_Of (Am_Window))
Am_Error ("You can only add me to a window!");

}

The events that generate add-part and change-owner demon events are methods such as Add_rart,
Remove_Part, Destroy, and other methods that change the object hierarchy. Note that a given add-
part demon always has a corresponding change-owner demon. The correspondence is not neces-
sarily one to one because one can conceive of situations where one part is replacing another and
thus two add-part calls can be associated with a single change-owner and vice versa.

Important note: The Opal and Interactor layers of Amulet define important demons for all of these
object-level operations, so before setting a custom demon, the code should fetch the demon proce-
dure currently stored in the demon set and call these in addition to the new demon. In a future re-
lease, we will make this more convenient to do.



ORE Object and Constraint System Page 117

void my_create_demon (Am_Object self)

{
Am_Object_Demon_Type* proto_create = self.Get_Prototype ().

Get_Demon_Set ().Get_Object_Demon (Am CREATE_OBJ) ;
if (proto_create)
proto_create (self); // Call prototype create demon.

// Do my own code.

}

3.11.7.2 Slot Level Demons

Slot demons are not given permanent names like the object level demons. The slot demons are as-
signed a bit in a bit field to serve as their name. The slot demon procedure pointer is stored in the
object. By turning on the bit in the slot, the slot will activate the demon procedure from the demon
set whenever a triggering event occurs.

There are two parameters that control a slot demon. The first parameter distinguishes what event
will trigger the demon. Slot demons can be triggered by one of two slot messages: the invalidate
message or the value changed message. Most demons trigger on the value changed message be-
cause the demon's purpose is to note the change to other parts of the system. This can also be used
to implement an active value scheme with a slot. Triggering using the invalidate message makes
the demon act more like a formula. The demon can be used to revalidate the slot if desired. The
eager demon uses this message to make Amulet formulas eager.

The other slot demon parameter is used to determine how often the demons will be triggered. Quite
often, several slots affect the same demon in the same object. For instance, in a graphical object,
the am_TOP and am_LEFT slots both affect the position of the object. A demon that handles object
motion only needs to be triggered once if either of these slots changes. For this case, we use the
per-object style. Whenever multiple slots change in a single object, the per-object demon will only
be enqueued once. Only after the demon has been invoked will it reset and be allowed to trigger
again. The other style of demon activation is per-slot. In this case, the demons act independently
on each slot they are assigned. The demon triggers once for each slot and after it is invoked, it will
be reset. The per-slot demon does not check to see if other demons have already been enqueued for
the same object.

The slot demon procedure takes as its only parameter the slot that triggered the demon. If the de-
mon could have been triggered by more than one slot (as can be the case when the demon is set to
be per object), the slot provided is the very first one that triggered it.

// Here is an example slot demon. This demon does not do anything
// interesting, but it shows how the parameter can be used.
void my_slot_demon (Am_Slot slot)
{
Am_Object_Advanced self = slot.Get_Owner ();
self.Set (MY_SLOT, 0);
}



Page 118 ORE Object and Constraint System

3.11.7.3 Modifying the Demon Set and Activating Slot Demons

To activate any demon, the object must know the demon procedure. Objects keep the list of avail-
able procedures in a structure called the demon set which is defined by the class Am_Demon_Set.
Objects inherit their demon set from their prototype. The demon set is shared between objects in
order to conserve memory. To modify the demon set of an object, one must first make the set a local

copy. The demon set's copy method is used to make new sets.

// Here we will modify the demon set of my_adv_obj by first making
// a copy of the old set and modifying it. The new demon set is then
// placed back into the object.

Am_Demon_Set my_ demons (my_adv_obj.Get_Demon_Set () .Copy ());
my_demons.Set_Object_Demon (Am_DESTROY_OBJ, my_destroy_ demon) ;
my_adv_obj.Set_Demon_Set (my_demons) ;

When demon procedures are installed for object level demons, the demons will trigger on the next
occurrence of their corresponding event. Note that the create and copy demon's events have already
occurred for the prototype object where the demon procedures are installed. However, instances of
the prototype as well as new copies will cause the new procedures to run. To make the demon pro-
cedure run for the current prototype object, one calls the demon procedure directly.

The demon set holds all demon procedures for the object, including the demons used in slots. The
slot demons are installed by assigning each demon a bit name that will be stored in the slot. By
setting the demon bit in a slot, events on that slot will activate the corresponding demon procedure.
The bit name is represented by its integer value so bit 0 is number 1, bit 5 is number 32 (hex

0x0020). Section 3.11.7.5 discusses how to allocate demon bits.

// Here we install a slot demon that uses bit 5. The slot demon's semantics
// are to activate when the slot changes value and only once per object.
// Make sure that the demon set is local to the object (see above section).
my_demons.Set_Slot_Demon (0x0020, my slot_demon,

Am_DEMON_ON_CHANGE | Am_DEMON_PER_OBJECT) ;

After the demon procedure is stored, one sets the bits on each slot that is able to activate the demon.
// Here we set a new bit to a slot. To make sure we do not turn off
// previously set bits, we first get the old bits and bitwise-or the new one.
Am_Slot slot = my adv_obj.Get_Slot (MY_SLOT);
unsigned short prev_bits = slot.Get_Demon_Bits ();
slot.Set_Demon_Bits (0x0020 | prev_bits);

To cause newly created objects to have certain demon bits set, one changes the default demon bits.
// Make the new slot demon default.
unsigned short default_bits = my_adv_obj.Get_Default_Demon_Bits ();
default_bits |= 0x0020;
my_adv_obj.Set_Default_Demon_Bits (default_bits);

Another factor in slot demon maintenance is the demon mask. The demon mask is used to control
whether the presence of a demon bit in a slot will force the slot to make a temporary slot in every
instance. A temporary slot is used by ORE to provide a local slot in an object even when the value
of the slot is inherited. If a temporary slot is not available, then there will be no demon run for that
object. This is necessary when one wants inherited objects to follow the behavior of a prototype



ORE Object and Constraint System Page 119

object. For instance, in a rectangle object, if one changes the am_LEFT slot in the prototype, one
would like a demon to be fired for the am_LEFT slot in every instance. That requires there to be a
temporary slot for every instance. Set the demon mask bit for all demons that require a temporary
slot. For all other demons put zero. A temporary slot will be created for slots whose demon bits

contain at least one bit stored in the demon mask.

// Setting the demon mask

unsigned short mask = my_adv_obj.Get_Demon_Mask ();
mask |= 0x0020; // add the new demon bit.
my_adv_obj.Set_Demon_Mask (mask);

3.11.7.4 The Demon Queue

The demon queue is where demon procedures are stored when their events occur. Objects hold the
demon queue in the same way that they keep their demon set: the same queue is shared when ob-
jects are instanced or copied. However, Amulet never uses more than one demon queue. There is
only one global queue for all objects. It is possible to make a new queue and store it in an object,

but it never happens.
// Here is how to make a new queue.
// It is unlikely that anyone will need to do this.
Am_Demon_Queue my_Jueue;
my_adv_obj.Set_Queue (my_gueue);

To find and manipulate the global demon queue, one can take any object and read its queue.

Am_Demon_Queue global_gueue =
((Am_Object_Advanced&)Am_Root_Object) .Get_Queue ();

The demon queue has two basic operations: enqueuing a new demon into the list and causing the
queue to invoke. Invoking the queue causes all stored demon procedures to be read out of the queue,
in order, and executed. While the queue is invoking, it cannot be invoked recursively. This prevents
the queue from being read out of order while a demon is still running.

The demon queue is automatically invoked in some circumstances. First, the queue is invoked
whenever the method, Get, is called on an object. This makes sure that any demons that affect the
slot being retrieved are brought up to date. Another time is when the Destroy method is called on
the object. The other time the queue is invoked is when updating occurs in the main loop and other
window updating procedures. When windows are updated, the demon queue is invoked to update
changed object values.

The demon queue is not a true queue in that it does not have a dequeue operation. The dequeue is
wrapped in the Invoke method. The queue does have a means for deleting entries. One deletes all
the demons that have a given slot or object as a parameter by using the Delete method.



Page 120 ORE Object and Constraint System

3.11.7.5 How to Allocate Demon Bits and the Eager Demon

In order to develop new slot demons, one must provide a bit name for it. Presently, Amulet does
not provide a means for dispensing bit names for demons. To see if a demon bit is being used by
an object, read the slot demons from the demon set and see which bits are not being used. This pro-
cedure is presently sufficient since one never modifies an object's demon set more than once. Gen-
erally, only prototype objects need to be manipulated and one can often know which demons are
set in a given prototype object.

Some of the demon bits are off limits to Amulet programmers. Amulet reserves two bits for use by
the object system and another three bits for opal. The object system uses bits 0 and 1, opal uses bits
2, 3, and 4. Bits 5, 6, and 7 are available for programmers. Presently there are only the eight bits
available for slot demons.

Bit 0 in the object system is for the eager demon. The eager demon is a default demon that all slots
use. The demon is used to validate the slot whenever it becomes invalid. This makes the formula
validation scheme eager hence the name. A programmer can turn off eager evaluation by turning
off the eager bit in all the slots that one wants to be lazy. One can also set the eager demon proce-
dure to be NULL in the demon set. When adding new demons to a slot, one must be careful not to
turn off the eager bit by accident.



4. Opal Graphics System

ST e St
———
o

|
! ;

This chapter describes simple graphical objects, styles, and fonts in Amulet. “Opal” stands for the
Object Programming Aggregate Layer. Opal makes it easy to create and manipulate graphical ob-
jects. In particular, Opal automatically handles object redrawing when properties of objects are
changed.

Copyright © 1996 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N 66001-94-C-6037,
Arpa Order No. B326. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of NCCOSC or the U.S. Government.






Opal Graphics System Page 123

4.1 Overview

This chapter describes the Opal graphical object system. The text assumes that the reader is famil-
iar with Amulet Objects, Slots, and Constraints, as presented in the Amulet Tutorial and the ORE
chapter.

4.1.1 Include Files

There are several data types documented in this chapter, declared in several different header files.
You only need to include amulet.h at the top of your files, but some programmers like to look at
header files. Here is a list of most of the objects and other data types discussed in this chapter, along
with the header file in which they are declared.

®* gdefs.h: Am_Style, Am _Font, Am Point_List, Am_TImage_Array

* opal.h: default am_style’s, default Am_Font’s, Am_Screen, Am_Graphical_Object,
Am_Window, Am_Rectangle, Am_Roundtangle, Am_Line, Am_Arrow, Am_Polygon,
Am_Arc, Am_Text, Am Bitmap, Am Group, Am Map, default constraints,
Am Initialize, Am_Cleanup, Am_Beep, Am_Move_Object, Am_To_Top,
Am_To_Bottom, Am_Create_Screen, Am_Update, Am Update_All, Am_Do_Events,
Am_Main_Event_Loop, Am_Exit_Main_Event_Loop,dcﬂﬂﬂtAm_Point_In_funcﬁon&
Am_Translate_Coordinates, Am_Merge_Pathname

« value_list.h: Am_Value_List

° text_fns.h: all text editing functions, Am_Edit_Translation Table

For more information on Amulet header files and how to use them, see Section 1.6 in the Overview
chapter.

4.2 The Opal Layer of Amulet

Opal, which stands for the Object Programming Aggregate Layer, provides simple graphical ob-
jects for use in the Amulet environment. The goal of Opal is to make it easy to create and edit
graphical objects. To this end, Opal provides default values for all of the properties of objects, so
simple objects can be drawn by setting only a few parameters. If an object is changed, Opal auto-
matically handles refreshing the screen and redrawing that object and any other objects that may
overlap it. Objects in Opal can be connected together using constraints, which are relations among
objects that are declared once and automatically maintained by the system. An example of a con-
straint is that a line must stay attached to a rectangle. Constraints are discussed in the Tutorial and
the ORE chapter.

Opal is built on top of the Gem module, which is the Graphics and Events Module that refers to
machine-specific functions. Gem provides an interface to both X windows and to Windows NT, so
applications implemented with Opal objects and functions will run on either platform without mod-
ification. Gem is described in chapter 7.



Page 124 Opal Graphics System

To use Opal, the programmer should be familiar with Amulet objects and constraints as presented
in the Tutorial. Opal is part of the Amulet library, so all objects discussed in this chapter are ac-
cessible by linking the Amulet library to your program (see the Overview for instructions). Opal
will work with any window manager on top of X/11, such as mwm, uwm, twm, etc. Opal provides
support for color and gray-scale displays.

Within the Amulet environment, Opal forms an intermediary layer. It uses facilities provided by
the ORE object and constraint system, and provides graphical objects that can be combined to build
more complicated gadgets. Opal does not handle any input from the keyboard or mouse -- that is
handled by the separate Interactors module, which is described in chapter 5. The Amulet Widgets,
such as scroll-bars and menus, are partially built out of Opal objects and partly by calling Gem di-
rectly (for efficiency). Widgets are generally more complicated than the Opal objects, usually con-
sisting of interactors attached to graphics, and are discussed in chapter 6.

4.3 Basic Concepts

4.3.1 Windows, Objects, and Groups

X/11, Windows NT, and Mac Quickdraw all allow you to create windows on the screen. In X they
are called “drawables”, and in Windows NT and on the Mac they are just called “windows”. An
Opal window 1s an ORE data structure that contains pointers to these machine-specific structures.
Opal windows can be nested inside other windows to form subwindows. Windows clip all graphics
so they do not extend outside the window's borders.

Each window defines a new coordinate system with (0,0) in the upper-left corner. The coordinate
system uses the pixel as its unit of measurement. Amulet does not support other coordinate spaces,
such as inches or centimeters, and it does not support transformations that take the display’s aspect
ratio into account. Amulet windows are discussed fully in Section 4.10.

The basics of Object Oriented Programming are beyond the scope of this chapter. The objects in
Opal use the ORE object system, and therefore operate as a prototype-instance model. This means
that each object can serve as a prototype (like a class) for any further instances; there is no distinc-
tion between classes and instances. Each graphic primitive in Opal is implemented as an object.
When the programmer wants to cause something to be displayed in Opal, it is necessary to create
instances of these graphical objects. Each instance remembers its properties so it can be redrawn
automatically if the window needs to be refreshed or if objects change.

A group is a special kind of object that holds a collection of other objects. Groups can hold any
kind of graphic object including other groups, but an object can only be in one group at a time.
Groups form a pure hierarchy. The objects that are in a group are called parts of that group, and
the group is called the owner of each of the parts. Groups, like windows, clip their contents to the
bounding box defined by their left, top, width, and height. Groups also define their own coordinate
system, so that the positions of their parts are relative to the left and top of the group.



Opal Graphics System Page 125

The graphical hierarchy in Amulet has Am_Screen, the display device, at its root. Am_Screen’s
graphical parts are windows. Those windows can contain other windows, groups, or graphical ob-
jects as parts. No object is drawn unless Am_Screen is one of its ancestors in the graphical hierar-
chy. It is important to remember to add all windows to Am_Screen, or to another window on the
screen, and to add all groups and objects to a window. If you do not, nothing will be displayed.

Non-graphical objects, like Interactors and Command objects (and application specific objects)
can be added as parts to any kind of object, but graphical objects will only be displayed if they are
added as parts to an Am_Window Or a Am_Group (or an instance of thse objects).

4.3.2 The “Hello World” Example

An important goal of Opal is to make it simple to create pictures, hiding most of the complexity of
the machine dependant graphics toolkits. We provide default values for all of the properties of
graphical objects in Amulet, which makes it easy to use these objects in the most common way,
while still providing the option of complete customization for more specialized applications.

A traditional introductory program is called Hello World. This program displays the string "Hello
world" in a window on the screen, and automatically refreshes the window if it is obscured. In Am-

ulet, Hello World is a very short program:
#include <amulet.h>

main (void)
{
Am Initialize ();

Am_Screen
.Add_Part (Am Window.Create ("window")
.Set (Am_WIDTH, 200)
.Set (Am_HEIGHT, 50)
.Add_Part (Am_Text.Create ("string")
.Set (Am_TEXT, "Hello World!")));

Am_Main_Event_Loop ();
Am Cleanup ();
}

This code is provided in the Amulet source code in the directory samples/hellos. The same
source code is used on all three platforms: Unix/X, Windows NT/*95, and Mac.

Note that the Amulet code has a declarative programming feel to it, instead of standard imperative
programming. Instead of giving Amulet step by step instructions on how to draw things, such as,
“first draw a window, then draw a string,” and so on, you tell Amulet, “Create a window. Create
some text, and add it to the window. Go!” The programmer never calls “draw” or “erase” methods
on objects. Once you set up the graphical world how you want it, and “Go” (start the main event
loop), Opal automatically draws and erases the the right things at the right time.

Section 4.5 presents all the kinds of objects available in Opal.



Page 126 Opal Graphics System

4.3.3 Initialization and Cleanup

Amulet requires a call to am_Initialize() before referencing any Opal objects or classes. This
function creates the Opal prototypes and sets up bookkeeping information in Amulet objects and
classes. Similarly, a call to Am_Cleanup () at the end of your program allows Amulet to destroy
the prototypes and classes, explicitly releasing memory and graphical resources that might other-
wise remain occupied after the program exits.

4.3.4 The Main Event Loop

In order for interactors to perceive input from the mouse and keyboard, the main-event-loop must
be running. This loop constantly checks to see if there is an event, and processes it if there is one.
The automatic redrawing of graphics also relies on the main-event-loop. Exposure events, which
occur when one window is uncovered or exposed, cause Amulet to refresh the window by redraw-
ing the objects in the exposed area.

A call to Am_Main_Event_Loop() should be the second-to-last instruction in your program, just
before Am_Cleanup (). Your program will continue to run until you tell it otherwise. All Amulet
programs running Am_Main_Event_Loop () can be aborted by pressing the escape sequence, which
by default is META_SHIFT_F1. Most programs will have a Quit option, in the form of a button or

menu item, that calls the Am_Exit_Main_Event_Loop () routine, which will cause the main event
loop to terminate.

4.3.5 Am_Do_Events

Amulet does not yet have support for animation, or other mechanisms for connecting to outside
applications and databases. To implement these using Amulet, you have to write your own event
loop (instead of using Am_Main_Event_Loop) and perform the external or time-based actions your-
self. This section explains how to write your own loop.

Normally, in response to an input event, applications will make some changes to graphics or their
internal state and then return. Sometimes, however, an application might want to make a graphical
change, have it seen by the user while waiting a little, and then make another change. This might
be necessary to make something blink a few times, or for a short animation. To do this, an appli-
cation must call Am_Do_Events () to cause Amulet to update the screen based on all the changes
that have happened so far. Eventually, Amulet will contain an Animation Interactor, but it is not
implemented yet.

You might also use am_Do_Events () to create your own event loop when Amulet’s default event
loop is not adequate. This might happen if you use Amulet with some other toolkit which also has
its own main event loo. You might need to monitor non-Amulet queues, processes or inter-pro-
cess-communication sockets. Calling Am _Do_Events () repeatedly in a loop will cause all the In-
teractors and Amulet activities to operate correctly, because the standard Am_Main_Event_Loop
essentially does the same thing as calling am Do_Events() in a loop. Am_Do_Events() never



Opal Graphics System Page 127

blocks waiting for an event, but returns immediately whether there is anything to do or not. The
return boolean from Am_Do_gvents tells whether the whole application should quit or not. A main-
loop might look like:

main (void) {

Am_Tnitialize ();
. // do any necessary set up and object creation

// use the following instead of Am_Main_FEvent_Loop (),
bool continue_looping = true;
while (continue_looping) ({
continue_looping = Am_Do_Events();
. // check other queues or whatever

}
Am_Cleanup ();
}

4.4 Slots Common to All Graphical Objects

4.4.1 Left, Top, Width, and Height

All graphical objects have Am_LEFT, Am_TOP, Am_WIDTH, and Am_HEIGHT slots that determine their
position and dimensions. Some objects have simple numerical values in these slots, and some have
formulas that compute these values based on other properties of the object. Check the section be-
low for a specific object to find its default values for these slots. All values must be ints.

For all graphical objects, Opal never draws outside the bounding box specified by the am_LEFT,
Am_TOP, Am WIDTH, and Am_HEIGHT of the object.

4.4.2 Am_VISIBLE

The am_vIs1BLE slot of all windows and graphical objects contains a bool value which determines
whether the object is visible or not. Objects that are not visible are not drawn on the screen. In a
window, Am_vISIBLE controls whether the window is drawn on the screen. To make a group and
all of its parts invisible, it is sufficient to set the Am_vIsIBLE slot of the group to false.

Invisible objects are typically ignored by interactors and graphics routines. For example, you can-
not use interactors to select an invisible object with the mouse, even if you click on the area where
the invisible object would appear. Also, invisible parts of a group are generally not taken into ac-
count when the size of the group is computed.

4.4.3 Line Style and Filling Style

The Am_LINE_STYLE and Am_FILL_STYLE slots hold instances of the am_Style class. If an object
has a style in its am_LINE_STYLE slot, it will have a border of that color. If it has a style in the
Am_FILL_STYLE slot, it will be filled with that color. Other properties such as line thickness and
stipple patterns are determined by the styles in these slots.



Page 128 Opal Graphics System

Often you do not have to create customized instances of am_style to change the color of an object.
You can use a predefined style such as am_Red instead. Styles are fully documented in Section 4.6.

Using special value Am_No_Style or NULL in the Am LINE_STYLE oOr Am_FILL_STYLE slot will
cause the object to have no border or no fill.

4.4.4 Am_HIT_THRESHOLD and Am_PRETEND_TO_BE_LEAF

The Am_HIT_ THRESHOLD, Am_PRETEND_TO_BE_LEAF, and Am_VISIBLE slots are used by functions
which search for objects given a rectangular region or an (x,y) coordinate. For example, suppose
a mouse click in a window should select an object from a group of objects. When the mouse is
clicked, Amulet compares the location of the mouse click with the size and position of all the ob-
jects in the window to see which one was selected.

First of all, only visible objects can be selected this way. If an object’s Am_vISIBLE slot contains
false, it will not respond to events such as mouse clicks with conventional Interactors program-
ming techniques.

The am_HIT THRESHOLD slot controls the sensitivity of functions that decide whether an event (like
a mouse click) occurred “inside” an object. If the am HIT THRESHOLD of an object is 3, then an
event 3 pixels away from the object will still be interpreted as being “inside” the object. The default
value of am_uIT_THRESHOLD for all Opal objects is 0. Note: it is often necessary to set the
Am_HIT_ THRESHOLD slot of all groups that are owners of the target object; if an event occurs “out-
side” of a group, then the selection functions will not check the parts of the group.

When the value of a group’s Am_PRETEND_TO_BE_LEAF slot is true, then the selection functions
will treat that group as a leaf object (even though the group has parts). See Section 4.9.2 regarding
the function Am_Point_In_Leaf. Also, consult the Interactors chapter regarding the function
Am_Inter_In_Leaf.

4.5 Specific Graphical Objects

The descriptions in this section highlight aspects of each object that differentiate it from other ob-
jects. Some properties of Opal objects are similar for all objects, and are documented in
Section 4.4. All of the exported objects in Amulet are summarized in chapter 10.



Opal Graphics System Page 129

4.5.1 Am_Rectangle

Am_Rectangle is a rectangular shaped object with a border of am_LINE_sTyLE and filled with
am_rILL_sTYLE. The default rectangle is a 10 by 10 pixel square located at (0, 0), drawn with
black line and fill styles.

Slot Default Value Type
Am_VISIBLE true bool
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH 10 int
Am HEIGHT 10 int
Am_FILL_STYLE Am_Black Am_Style Inside of rectangle
Am_LINE_STYLE  Am_Black Am_Style Edge of rectangle

4.5.2 Am_Line

Am_Line is a single line segment with endpoints (Am_X1, Am_¥1) and (Am_X2, Am_v2) drawn in
Am_LINE_STYLE (Am FILL_STYLE is ignored). Am X1, Am_ Y1, Am X2, Am Y2, Am LEFT,
Am_TOP, Am_WIDTH, and Am_HEIGHT are constrained in such a way that if any one of them changes,
the rest will automatically be updated so the endpoints of the line and its bounding box are always
consistent.

Slot Default Value Type

Am_ LINE_STYLE Am_Black Am_Style

Am_X1 0 int Am_X1,Am_YI, Am_X2, Am_Y2,

Am_ X2 0 int Am_WIDTH, amli Am_HEIGHT
. are constrained in such a way

Am_Y2 0 int that if any one of them changes,

Am_LEFT 0 int the rest will automatically be

Am_TOP 0 int updated to reflect that change.

Am_WIDTH 1 int

Am_ HEIGHT 1 int

Am_VISIBLE true bool

Am_HIT THRESHOLD 0 int




Page 130 Opal Graphics System

4.5.3 Am_Arc

Am_Arc is used to draw circles, ellipses, and arc and pie shaped segments of circles and ellipses.
Am_ANGLE]1 determines the origin of the segment, measured in degrees counterclockwise from
3 o’clock. Am_ANGLE?2 specifies the end of the arc segment, measured in degrees counterclock-
wise from Am_ANGLE]. Some examples: To draw a circle, Am_ANGLE] can have any value,
but Am_ANGLE?2 must be 360 degrees or greater. To draw a semicircle from 12 o’clock counter-
clockwise to 6 o’clock, Am_ANGLE1 would be 90, and Am_ANGLE2 would be 180.

Arcs are filled as pie pieces to the center of the oval when a colored filling style is provided.

Slot Default Value Type
Am_VISIBLE true bool
Am_LEFT 0 int
Am_TOP 0 int
Am WIDTH 10 int
Am_ HEIGHT 10 int
Am_ANGLEL 0 0..360 Origin, degrees from 3 o’clock
Am_ANGLE2 360 0..360 Terminus, distance from origin
Am_FILL_STYLE Am_Black Am_Style Inside of arc
Am_LINE_STYLE Am_Black Am_Style Edge of arc

4.5.4 Am_Roundtangle

Instances of the Am_Roundtangle prototype are rectangles with rounded corners.

Slot Default Value Type

Am_VISIBLE true bool

Am LEFT 0 int

Am_TOP 0 int

Am_ WIDTH 10 int

Am_HEIGHT 10 int

Am_RADIUS Am_SMALL_RADIUS Am_Radius_Flag {Am_SMALL_RADIUS,

or int Am_MEDIUM_RADIUS,

Am_LARGE RADIUS }

Am_FILL_STYLE Am Black Am_Style Inside of roundtangle

Am_LINE_STYLE Am_Black Am_Style Edge of roundtangle




Opal Graphics System Page 131

The slots in this object are the same as Am_Rectangle, with the additional slot Am_RADIUS, which
specifies the curvature of the corners. The value of the am_RADIUS slot can either be an integer,
indicating an absolute pixel radius for the corners, or an element of the enumerated type
Am_Radius_Flag, indicating a small, medium, or large radius (see table below). The keyword val-
ues do not correspond directly to pixel values, but rather compute a pixel value as a fraction of the
length of the shortest side of the bounding box.

Value of am_RaDIUS Fraction
Am_SMALL_RADIUS 1/5
Am_MEDIUM_RADIUS 1/4
Am_LARGE_RADIUS 1/3

Figure 4-1 shows the meanings of the slots of Am_Roundtangle. If the value of am_RADTUS is 0,
the roundtangle looks just like a rectangle. If the value of am_RADIUS is more than half the shortest
side (which would mean there is not room to draw a corner of that size), then the corners are drawn
as large as possible, as if the value of am_RrRaDIUS Were half the shortest side.

----------- / \' = Am_TOP
Am_HEIGHT
) 1
: ! Am_RAD{US
i ]
| b a.o N V_.
1 1
] ]
1 ]
] 1
1 1
] i
] ]
< o
' Am_WIDTH 1
1 1
Am_LEFT

Figure 4-1:The parameters of a roundtangle.




Page 132 Opal Graphics System

4.5.5 Am_Polygon

The interface to the Am_polygon object is more complicated than other Opal objects. To specify
the set of points that should be drawn for the polygon, you must first create an instance of
Am_Point List with all your (X,y) coordinates, and then install the point list in the
Am_POINT_LIST slot of your am Polygon object.

Slot Default Value Type
Am_VISIBLE true bool
Am_LEFT <formula> int
Am_TOP <formula> int
Am_WIDTH <formula> int
Am_ HEIGHT <formula> int
Am_POINT LIST empty Am_Point_List Am_ Point_List
Am_LINE_STYLE Am_Black Am_Style
Am_FILL_STYLE Am_Black Am_Stvyle
Am HIT THRESHOLD 0 int
Am WANT_PENDING_DELETE false bool
Am_SELECT_OUTLINE_ONLY 0 bool
Am_ SELECT_FULL_INTERIOR 0 bool

Section 4.5.5.1 lists all of the functions that are available for the Am_Point_List class, including
how to create point lists and add points to the list. Section 4.5.5.2 provides an example of how to
create a polygon using the am_Polygon object and the Am_Point_ List class.

A polygon’s point list (am_POINT_LIST) and bounding box (Am_LEFT, Am_TOP, Am WIDTH, and
Am_HEIGHT) are related by a web constraint that reevaluates whenever one of these slots changes.
Whenever one of the bounding box slots is changed, all the points in the point list are translated or
scaled so that the resulting polygon has that bounding box. The am_1INE_sTYLE slot is also in-
volved in this constraint, since the polygon’s bounding box may change when the thickness or cap
style of its border changes.

Conversely, whenever a new point list is installed in the am PoINT LIST slot, the bounding box
slots are recalculated. If you make a destructive modification to the point list class currently in-
stalled in the slot, such as adding a point to it with add (), then you must call Note_Changed() on
the polygon’s am_POINT_LIST slot to reevaluate and redraw the polygon. (For more details about
destructive modification of slot values and formula evaluation, see Section 3.11.1.)

Because of the web in the polygons’ bounding box and point list slots, the effects of certain set
operations will change depending on the order of the sets. If you set the am_PoINT_LIST slot of
a polygon, and then set its Am_wIDTH and Am_HEIGHT, the polygon will first get the correct point
list, and then be scaled to the correct size. If you set the size first, however, that change will be
masked by the calculate size of the point list. You should always make changes to the size and
location of a polygon after you set its point list, to make sure those changes are actually seen.



Opal Graphics System Page 133

The shape defined by an am_Polygon object does not have to be a closed polygon. To draw a
closed polygon, make the first and last points in the Am_pPoint_List the same. If they are not the
same, and a fill style is provided, the border of the fill style will be along an invisible line between
the first and last points.

Which sections of a self-intersecting polygon (such as a 5-pointed star) are displayed is controlled
by the Am Fill_poly Flag part of the Am_FILL_STYLE used for the polygon. See Section 4.6.3.6.

4.5.5.1 The Am_Point_List Class

Am_Point_List is a list of x-y coordinates, stored as pairs of floats, in the coordinate system of
the polygon’s owner. Itis implemented as a wrapper class with an interface very similar to the stan-
dard Am_value_List class (Section 3.8). Each am_proint_List object contains a current-element
pointer which can be moved forward and backward in the list. The current point is used for retriev-
ing, replacing, inserting, and deleting points in the list.

In addition to the standard list-management functions, am_Point_List also provides methods for
finding the points’ bounding box, translating all the points by an x-y offset, and scaling all the
points relative to an origin.

The Am_Point_rList is designed to be used to specify the vertices of a polygon object.
Section 4.5.5.2 contains an example of how to use the am_Point_List class with the Am_Polygon
object

These methods are constructors for Am_roint_List:

*Am_Point_List () Return an empty list. (This constructor is implicitly called when you
declare a variable of type Am_Point_List.)

*Am_Point List(ar, size) Return a list initialized from ar, which is a flat array of values
{ x1 y1 x2 y2 ... xn yn }, where size is 2n, and the points may be either ints or
floats.

These methods add new points to the list. In each case, if destructive modification is desired, pass
false as an additional, final argument.

*Add(x, y) Adds anew point (x, y) to the tail of the list. Returns a reference to the list, so
multiple Add() calls can be chained together like “list. Add(x,y).Add(x,y)...”

*Add(x, y, Am_HEAD) Adds anew point (X, y) to the head of the list. Returns a reference to
the list.

* Append (other_list) Appends the points from another am_point_Tist to the end of the
list. Returns a reference to the list.
These methods move the current point:
* start () Makes the first point current. (Legal even if the list is empty.)
*End() Makes the last point current. (Legal even if the list is empty.)

* Prev() Makes the previous point current, wrapping around if current is first point of list.



Page 134 Opal Graphics System

* Next () Makes the next point current, wrapping around if current is last point of list.
*First () Returns true when current passes first point of list.

*Last () Returns true when current passes last point of list.

These methods get the current point and other list information:

*Get (int &x, int &y) Sets x and y to the (rounded) x-y coordinates of current point. Error
if no point is current.

*Get (float &x, float &y) Sets X andy to the x-y coordinates of current point. Error if no
point is current.

* Length () Returns length of the list.

* Empty () Returns whether list is empty.

These methods modify the list at the current point. In each case, if destructive modification is de-
sired, pass false as an additional, final argument.

*set(x, y) Sets the current point to (x,y). Error if no point is current.
* Insert(x, y, Am_BEFORE) Inserts (X,y) before the current point.
* Insert(x, y, Am_AFTER) Inserts (x,y) after the current point

*Delete() Deletes the current point.

These methods operate on the list as a set of points. For Translate() and Scale(), if destructive
modification is desired, pass false as an additional, final argument.

*Get_Extents(int &min_x, int &min_y, int &max_x, int &max_y) Sets its arguments
to the coordinates of the smallest rectangle (with integral coordinates) that completely
encloses the points in the list.

*Translate (offset_x, offset_y) Transforms every point in the list by adding offset_x
to its x coordinate and offset_y to its y coordinate.

* Scale(scale x, scale y, origin x, origin_y) Transforms every point in the list by
scaling its vector from (origin_x, origin_y) by scale_x in the x direction and scale_y
in the y direction.

The member functions of the am_Point_List class are invoked using the standard C++ dot nota-
tion, as in “my_point_list.Add (10, 20);”.

4.5.5.2 Using Point Lists with Am_Polygon

The list of points for a polygon should be installed in an instance of Am_Point_List, and then that
point list should be set into the am_POINT_LIST slot of your am_Polygon object. The constructors
for am_Point List allow you to initialize your point list with some, all, or none of the points that
you will eventually use. After the point list has been created, you can add and remove points from
it.



Opal Graphics System Page 135

Here is an example of a triangle generated by adding points to an empty point list. The point list
is then installed in an Am _Polygon object. To see the graphical result of this example, add the

triangle_polygon object to a window.
Am_Point_List triangle pl;

triangle_pl
.Add (15, 50)
.Add (45, 10)

.Add (75, 50);

Am_Object triangle_polygon = Am_ Polygon.Create ("triangle_polygon")
.Set (Am_POINT_LIST, triangle_pl)
.Set (Am_LINE_STYLE, Am_Line_2)
.Set (Am_FILL_STYLE, Am_Yellow):;

Here is an example of a five-sided star generated from an array of integers. To see the graphical

result of this example, add the star_polygon object to a window.
static int star_ar[12] = {100, 0, 41, 181, 195, 69, 5, 69, 159, 181,
100, 0};

Am_Point_List star_pl (star_ar, 12);
Am Object star_polygon = Am_Polygon.Create ("star_polygon")

.Set (Am _POINT_LIST, star_pl)
.Set (Am _FILL_STYLE, Am_No_Style);

4.5.6 Am_Text

The am_Text object is used to display a single line of text in a specified font. The am_TExT slot
holds the string to be displayed, and the am_ronT slot holds an instance of am_Font.

Slot Default Value Type
Am_VISIBLE true bool
Am LEFT 0 int
Am_TOP 0 int
Am_WIDTH <formula> int
Am_HEIGHT <formula> int
Am_TEXT L Am_String String to display
Am_FONT Am_Default_Font Am_Font
Am_CURSOR_INDEX Am NO_CURSOR int Position of cursor in string
Am_LINE_STYLE Am_Line_2 Am Style Color of text, cursor
Am_FILL_STYLE Am_No_Style Am_Style Background behind text
Am_X_OFFSET <formula> int
Am_INVERT false bool Exchanges line and fill style

The Am_CURSOR_INDEX slot determines where a text insertion cursor (a vertical line) will be drawn.
The slot contains an integer specifying the position of the cursor, measured in number of characters
from the start of the string. A value of zero places the cursor before the text, and a value of
Am_NO_CURSOR turns off the cursor.



Page 136 Opal Graphics System

The am_wiDTH and Am HEIGHT slots contain formulas that calculate the size of the object accord-
ing to the string and the font being displayed. If the value of either of these slots is set, the formula
will be removed, and the text object will no longer change size if the string or font is changed. In
that case, a formula in the am_x_OFFSET slot scrolls the text left and right to make sure the cursor
is always visible.

The am_LINE_STYLE slot controls the color of the text and the thickness of the cursor. If a style is
provided in the am_FILL_STYLE slot, then the background behind the text will be filled with that
color, otherwise the background is transparent. Setting Am_INVERT to true causes the line and fill-
ing styles to be switched, which is useful for “highlighting” the text object. If Am_INVERT is true

but no fill style is provided, Amulet draws the text as white against a background of the line style
color.

4.5.6.1 Fonts

am_Font is a C++ class defined in gdefs.n. Its creator functions are used to make customized
instances describing the desired font. You can create fonts either with standard parameters that are
more likely to be portable across different platforms, or by specifying the name of a specific font.
The properties of fonts are: family (fixed, serif, or sans-serif), face (bold, italic, and/or underlined),
and size. Am_Default_Font, exported from opal.h, is the fixed-width, medium-sized font you
would get from calling the am_Font constructor with its default values. Allowed values of the stan-
dard parameters appear below.

In the creator functions for Am_Font, the allowed values for the family parameter are:
* Am_FONT_FIXED a fixed-width font, such as Courier.
* Am_FONT_SERIF a variable-width font with “serifs”, such as Times.

* Am_FONT_SANS_SERIF a variable-width font with no serifs, such as Helvetica.

The allowed values for the size parameter are:

* Am_FONT_SMALL a small size: about 10 pixels tall
* Am_FONT_MEDIUM a normal size: about 12 pixels tall
* Am_FONT_LARGE a large size: about 18 pixels tall

* Am_FONT_VERY_LARGE a larger size: about 24 pixels tall
4.5.6.2 Functions on Text and Fonts

There are additional functions that operate on am_Text objects, strings, and fonts declared in the
header file text_fns.h. These functions are included in the standard Amulet library, but are not
automatically included by amulet .h because of their infrequent use. The Am_Text_Interactor
uses these functions to edit strings. To access these functions directly, add the following lines to
the top of your Amulet program:

#include <am_inc.h> /defines TEXT _FNS__H for machine independance
#include TEXT_FNS__H



Opal Graphics System Page 137

4.5.6.3 Editing Text

Text editing is a feature provided by the Interactors module. To make a text object respond to
mouse clicks and the keyboard, you need to use an am_Text_Interactor. For details on this and
other Interactors, see chapter 5.

4.5.7 Am_Bitmap

To specify the image that should be drawn by the am_Bitmap object, you must first create an in-
stance of Am_Image_Array containing the image data, and then install the image in the am_TMAGE

slot of your Am_Bi tmap object.

Slot Default Value Type

Am_VISIBLE true bool

Am_LEFT 0 int

Am_TOP 0 int

Am_WIDTH <formula> int

Am_HEIGHT <formula> int

Am_LINE_STYLE Am_Rlack Am_Style Color of on pixels

Am_FILL_STYLE Am_ No_Style 2Am Style Color of off pixels if
opaque stipple

Am_TIMAGE Am_No_TImage Am_TImage_Array  Stipple pattern

The formulas in the Am_wIDTH and Am_HEIGHT slots reevaluate whenever a new image is installed
in the am_1MAGE slot. If a destructive modification is made to the image class currently installed
in the slot, then Note_changed () will have to be called to cause the formulas to reevaluate and to
cause the object to be redrawn (for details about destructive modification of slot values and formula
evaluation, see the ORE chapter).

Am_TImage Array is a regular C++ class, defined in gdefs.h. Here is a list of the member func-
tions that are available for the Am_Image_array class. The creator functions are used to make cus-
tomized instances containing images described by data arrays or data stored in files. The other
functions are for accessing, changing, and saving images to a file. Section 4.5.7.2 contains an ex-
ample of how to use the Am_Image_Array class with the am Bitmap object. Section 4.6.3.7 dis-
cusses how to use the am_Image_Array class with am_style.

Am_ TImage_Array (int percent); // Halftone pattern (see Section 4.6.2.2)
Am_Tmage_Array (unsigned int width, // Solid rectangular image
unsigned int height,
int depth,
Am _Style intial_color);
Am_Image Array (const char* file name); / Image read from a file.

// The size of an image will be zero until drawn, & depends on the window in which the image is displayed.
void Get_Size (int& width, int& height);



Page 138 Opal Graphics System

4.5.7.1 Loading Am_Image_Arrays From a File

Am_TImage_Array images can be loaded from several different image file formats depending on

what platform you’re using. Amulet decides which type of image to load based on the filename’s
suffix.

Full color GIF images are available on all three platforms. Files with names ending in ‘gif’ will be
loaded as GIF images. Both 87a and 89a formats are supported, but only the first image in a file is
loaded. Amulet reads the GIF colormap from the file, and provides the closest colors available on
the display’s current color map. Amulet does not install its own colormap, and Amulet does not
support changing colormaps or image colors.

On Unix/ X machines, all GIF images are treated as multiple bit depth pixmaps (except on mono-
chrome displays). You cannot specify the foreground and background pixel values for these imag-
es, and you cannot draw them transparent. You cannot specify them as stipple fill styles.

PC BMP bitmap images are available only on Windows NT/ ‘95 machines. On the PC, files with
names ending in ‘bmp’ are loaded as Windows bitmap files.

XWindows XBM bitmap format is available only on Unix/ X machines. Under Unix, files with
names that do not end in “gif” are assumed to be XBM format bitmaps. These bitmaps are loaded
as single bit pixmaps under X, and can be used as stipple fill styles. Specifying foreground and
background colors explicitly, and creating transparent bitmaps are possible with XBM format im-
ages.

To make your code as machine-independant as possible, you should use GIF image format when-
ever feasible to prevent conditional compilation of different image filenames. For code examples
of using Am_Bitmap with these file formats, see the space sample program in your Amulet direc-
tory.

4.5.7.2 Using Images with Am_Bitmap

To display an image whose description is stored in a file, you must first create an instance of
Am_Tmage_Array initialized with the name of the file, and then install that image in the Am_IMAGE
slot of your am_Bitmap object.

4.6 Styles

The C++ class am_style is used to specify a set of graphical properties, such as color and line
thickness. The am_rINE_STYLE and am FILL_STYLE slots present in all graphical objects hold
instances of am_style. The definition of the am_style class is in gdefs.h, and the predefined
styles are listed in opal.h.



Opal Graphics System Page 139

There are many predefined styles, like am_Red, that provide the most common colors and thick-
nesses. You can also create your own custom styles by calling the constructor functions for
am_style with your desired parameters. Whether you use a predefined style or create your own,
you can set it directly into the appropriate slot of a graphical object. The style placed in the
Am_LINE_STYLE slot of a graphical object controls the drawing of lines and outlines, and the style
in the Am_FILL_STYLE slot controls the inside of the object.

Instances of Am_Style are immutable, and cannot be changed after they are created.

4.6.1 Predefined Styles

The most frequently used styles are predefined by Amulet. You can use any of the styles listed in
this section directly in the Am_LINE_STYLE or Am_FILL_STVLE slot of an object.

The following color styles have line thickness zero (which really means 1, as explained in
Section 4.6.3.2)

Am_Red Am_Cyan Am Motif_Gray Am Motif Light_Gray
Am_Green Am_Orange Am_Motif_ Blue Am_Motif_ TLight_Blue
Am_Blue Am_Black Am_Motif_ Green Am Motif_Light_ Green
Am_Yellow Am_White Am_Motif_ Orange Am_Motif Light_Orange
Am_Purple Am_Amulet_Purple

The following styles are black.

Am_Thin_ Line Am Line_ 1 Am_Line_4 Am_ Dashed_Line
Am_Line_ 0 Am_Line_2 Am_Line_8 Am_Dotted_Line

The following styles are all black transparent or black and white opaque fills

Am_Gray Stipple Am_Opaque_Gray_Stipple
Am_Light_Gray_Stipple Am Diamond_Stipple
Am_Dark_Gray_Stipple Am_Opaque_Diamond_Stipple

4.6.2 Creating Simple Line and Fill Styles

4.6.2.1 Thick Lines

To quickly create black line styles of a particular thickness, you can use the following special

Am_Style creator function:
Am_Style::Thick_Line (unsigned short thickness);

For example, if you wanted to create a black line style 5 pixels thick, you could say “black5 =
Am_Style::Thick_Line (5)”. To specify the color or any other property simultaneously with the
thickness, you have to use the full am_style creator functions discussed in Section 4.6.3.



Page 140 Opal Graphics System

4.6.2.2 Halftone Stipples

Stippled styles repeat a pattern of “on” and “off” pixels throughout a line style or fill style. A half-
tone is the most common type of stipple pattern, where the “on” and “off” bits are regularly spaced
to create darker or lighter shades of a color. When mixing black and white pixels, for example, a
50% stipple of black and white bits will look gray. A 75% stipple will look darker, and a 25% stip-
ple will look lighter. Some gray stipples are predefined in Amulet, and listed in Section 4.6.1.
More complicated stipples, such as diamond patterns, are discussed in Section 4.6.3.7.

To create a simple halftone style with a regular stipple pattern, use this special Am_style creator
function:

Am_Style::Halftone_Stipple (int percent,
Am_Fill_Solid_Flag fill_flag = Am_FILL_STIPPLED);

The percent parameter determines the shade of the halftone (0 is white and 100 is black). The
fill_flag determines whether the pattern is transparent or opaque (see Section 4.6.3.6). In order to
create a halftone that is one-third black and two-thirds white, you could say “gray33 =
Am Style::Halftone Stipple (33)”. There are only 17 different halftone shades available in
Amulet, so several values of percent will map onto each built-in shade.

4.6.3 Customizing Line and Fill Style Properties

Any property of a style can be specified by creating an instance of am_style. The properties are
provided as parameters to the Am_style constructor functions. All the parameters have convenient
defaults, so you only have to specify values for the parameters you are interested in. Since styles
are used for both line styles and fill styles, some of the parameters only make sense for one kind of
style or the other. The parameters that do not apply in a particular drawing situation are silently
ignored.

Am_Style (float red, float green, float blue, /color part
short thickness = 0,
Am_Line_Cap_Style_Flag cap_flag = Am_CAP_BUTT,
Am Join_Style_Flag join_flag = Am_JOIN_MITER,
Am_Line_Solid_Flag line_flag = Am_LINE_SOLID,
const char* dash_list = Am DEFAULT DASH_LIST,
int dash_list_length = Am DEFAULT DASH LIST LENGTH,
Am Fill_ Solid Flag fill_flag = Am_FILL_SOLID,
Am_Fill_Poly Flag poly flag = Am_FILI, POLY_ EVEN_ODD,
Am_Image_Array stipple = Am_No_Image)

Am_Style (const char* color_name, /fcolor part
short thickness = 0,
Am_Line_Cap_Styvle_Flag cap_flag = Am_CAP_BUTT,
Am Join_Style Flag join_flag = Am JOIN_MITER,
Am Line_Solid_Flag line flag = Am LINE_SOLID,
const char *dash_list = Am_DEFAULT DASH LIST,
int dash_list_length = Am_DEFAULT DASH_LIST_ LENGTH,
Am_Fill_Solid_Flag fill_flag = Am_FILL_SOLID,
Am_Fill_Poly Flag poly_flag = Am_FILL_POLY_ EVEN_ODD,
Am_Tmage_Array stipple = Am_No_Image)

static Am_Style Thick Line {(unsigned short thickness);



Opal Graphics System Page 141

static Am_Style Halftone_ Stipple (int percent,
Am_Fill Solid Flag fill_flag = Am_FILL_STIPPLED) ;

The only required parameters for these style constructors are for the colors. Before you read the
details below about what all the other parameters mean, be aware that most applications will just
use the default values.

4.6.3.1 Color Parameter

The am_style constructor functions allow color to be specified in two ways: either with red,
green, and blue values, or with a color_name such as “pink”. The RGB values should be floats
between 0.0f and 1.0f, where 1.0f is full on. Gem maintains a table of color names and their
corresponding red, green, and blue values. In X, all standard X color names on your server are sup-
ported. A small common subset was chosen on the Mac and PC to get color indices.

Amulet does not install its own colormap, to be friendlier to other applications on your system. Not
all colors will be available on your platform. When a color is not available on your machine, Am-
ulet finds the closest available color, and uses that instead. On Unix/ X, a warning is printed to your
console saying that a color cell could not be allocated. Quitting applications that use many colors
will help Amulet applications get the colors they need. On the PC, Windows automatically dithers
solid colors together to get a closer match than possible with a single color. This sometimes pro-
duces undesirable results, but it is unavoidable.

4.6.3.2 Thickness Parameter

The thickness parameter holds the integer line thickness in pixels. Zero thickness lines are drawn
with line thickness one. On some platforms, there may be a subtle difference between lines with
thickness zero and lines with thickness one. Zero thickness lines might be drawn on some plat-
forms with a more efficient device-dependent line drawing algorithm than is used for lines with
thickness of one or greater. For this reason, a thickness zero line parallel to a thick line may not
be as aesthetically pleasing as a line with thickness one.

For instances of am_Rectangle, Am_Roundtangle, and Am_arc, increasing the thickness of the line
style will not increase the width or height of the object. The object will stay the same size, but the
colored boundary of the object will extend inwards to occupy more of the object. Increasing the
thickness of the line style of an Am Line or Am_Polygon (objects which calculate their bounding
box, instead of having it provided by the user) will increase the object’s width and height. For these
objects the thickness will extend outward on both sides of the line or polyline.



Page 142 Opal Graphics System

4.6.3.3 Cap_Flag Style Parameter

The cap_flag parameter determines how the end caps of line segments are drawn in X11. This pa-
rameter is ignored on the PC and Mac. Allowed values are elements of the enumerated type
Am_Line_Cap_Style_Flag:

cap_{flag Result

Am_CAP_BUTT Square at the endpoint (perpendicular to the slope of
the line) with no projection beyond.

Am_CAP_NOT_LAST Equivalent to am_cap_BUTT, except that for thickness 0
or 1 the final endpoint is not drawn.

Am_CAP_ROUND A circular arc with the diameter equal to the thickness
centered on the endpoint.

Am_CAP_PROJECTING Square at the end, but the path continues beyond the
endpoint for a distance equal to half of the thickness.

4.6.3.4 Join_Flag Style Parameter

The join_flag parameter determines how corners (where muitiple lines come together) are drawn
for thick lines as part of rectangle and polygon objects in X11. This parameter is ignored on the
PC. This does not affect individual lines (instances of am_Line) that are part of a group, even if
they happen to have the same endpoints. Allowed values are elements of the enumerated type
Am_Join_Style_Flag:

join_flag Result

Am_JOIN_MITER The outer edges of the two lines extend to meet at an
angle.

Am_JOIN_ROUND A circular arc with a diameter equal to the thickness is

drawn centered on the join point.

Am_JOIN_BEVEL Endpoints of lines are drawn with am_caP_BUTT style,
with the triangular notch filled.

4.6.3.5 Dash Style Parameters

The line_flag parameter determines whether the line is solid or dashed, and how the spaces be-
tween the dashes should be drawn. Valid values are elements of the enumerated type
Am_Line_Solid Flag:

line_{flag Result

Am LINE_SOLID No dashes

Am_LINE_ON_OFF_DASH Only the “on” dashes are drawn, and nothing is
drawn in the “off” dashes.




Opal Graphics System Page 143

The dash_list and dash_list_length parameters describe the pattern for dashed lines. The dash_list
should be a const char* array that holds numbers corresponding to the pixel length of the “on”
and “off” pixels. The default Am_DEFAULT DASH_LIST valueis {4 4}. Adash_listof (1 1 1 1
3 1) is atypical dot-dot-dash line. A list with an odd number of elements is equivalent to the list
being appended to itself. Thus, the dash_list {3 2 1} is equivalentto {3 2 1 3 2 1}.

The following code defines a dash pattern with each “on” and “off” dash 15 pixels long. To see the
result of this code, store the thick_dash style in the Am_LINE_sTYLE slot of a graphical object.

static char thick_dash_list[2] = {15, 15};
Am_Style thick_dash ("black", 8, Am_CAP_BUTT , Am_JOIN_MITER,
Am_LINE_ON_OFF_DASH, thick_dash_list);

Dashed and dotted lines are not supported on the Macintosh. In a future version of Amulet,
we will either support the current implementation of dashed and dotted lines on all platforms, or
more likely, we’ll provide a few predefined dashed and dotted line styles. The dotted and dashed
line styles are guaranteed to look different from each other and from normal lines, but we will not
provide as much support for complex dashed lines. To maintain forward compatability, you should
only use the predefined dotted and dashed line styles Am_Dashed_Line and Am_Dotted_Line.

4.6.3.6 Fill Style Parameters

The fill_flag determines the way “off” pixels in the stippled pattern (see Section 4.6.3.7) will be
drawn. The “on” pixels are always drawn with the color of the style. Allowed values are elements
of the enumerated type Am Fill Solid_Flag:

fill_flag Result

Am_FILL_SOLID Draw “off” pixels same as “on” pixels.

Am FILL_TILED Not implemented yet

Am_FILL_STIPPLED Only the “on” pixels are drawn, and nothing is
drawn for the “off” pixels (transparent stipple).

Am_FILL_OPAQUE_STIPPLED Draw the “off” pixels in white.

The value of the poly flag parameter should be an element of the enumerated type
Am_Fill_Poly_ Flag, either Am FILI_POLY_EVEN_ODD O Am_FILL_POLY WINDING. This param-
eter controls the filling for self-intersecting polygons, like the five-pointed star example in
Section 4.5.5.2.

4.6.3.7 Stipple Parameters

A stippled style consists of a small pattern of “on” and “off” pixels that is repeated throughout the
border or filling of an object. The simplest stipple pattern is the halftone, discussed in
Section 4.6.2.2. You should only need to specify the stipple parameter in the full am_Style creator
functions when you are specifying some other property (like color) along with a non-solid stipple,
or you are specifying an unconventional image for your stipple pattern.



Page 144 Opal Graphics System

The value of the stipple parameter should be an instance of Am_Image_Array. An image array
holds the pattern of bits, which can either be a standard halftone pattern or something more exotic.

The creator functions and other member functions for Am_Image_Array are discussed in
Section 4.5.7.1.

On Unix/X, only XBM images can be used as stipples. GIF stipples and transparent GIFs are not
currently supported on Unix.

Here is an example of a colored style with a 50% halftone stipple, created using the halftone ini-
tializer for Am_Image_Array:
Am_Style red_stipple ("red", 8, Am_CAP_BUTT, Am_JOIN MITER, Am LINE_SOLID,
Am_DEFAULT_DASH_LIST, Am_ DEFAULT DASH_LIST_LENGTH,
Am_FILL_STIPPLED, Am FILL_POLY_EVEN_ODD,
(Am_Image_Array (50)) );

Here is an example of a stipple read from a file. The “stripes” file contains a description of a bitmap
image. On Unix, the “stripes” file must be in X11 bitmap format (i.e., generated with the Unix
bitmap utility). On the PC, the “stripes” file must be in either BMP or GIrF format. This means
that for portable code, you will need to use the #ifdef macro to load different files depending on
your platform.
Am_Style striped_style ("black", 8, Am_CAP BUTT, Am JOIN_MITER,
Am_LINE_SOLID, Am DEFAULT_DASH_LIST,
Am_DEFAULT_DASH_LIST LENGTH, Am FILL_STIPPLED,
Am_FILL_POLY_EVEN_ODD, -
(Am_Image_Array ("stripes")) );

4.6.4 Getting Style Properties

You can query certain properties of an already-created style. This is useful if you want to create a
style with the same color as another style, but with a different line thickness, for example.

Here are the am_style methods available for getting the values of a style’s properties:

void Get_Values (float& red, float& green, float& blue) const;
void Get_Values (short& thickness,
Am_Line Cap_Style_Flag& cap, Am_Join_Style_Flag& join,
Am Line_Solid_Flag& line_flag,const char*& dash_1,
int& dash_1_length, Am_Fill_Solid_Flag& fill_flag,
Am_Fill_Poly_Flag& poly, Am Image_Array& stipple) const;

void Get_Values (float& r, floats& g, float& b, short& thickness,
Am_Line_Cap_Style_Flag& cap, Am_Join_Style_Flag& join,
Am_Line_Solid_Flag& line_flag, const char*& dash_ 1,
int& dash_1_length,Am Fill Solid_Flag& fill_ flag,
Am Fill Poly_ Flag& poly,Am Image Array& stipple) const;



Opal Graphics System Page 145

Am Fill_Solid_Flag Get_Fill_Flag() const;
Am_Tmage_Array Get_Stipple() const;
Am_Fill_Poly Flag Get_Fill_Poly_Flag () const;

//Get the properties needed to calculate the line width
void Get_Line Thickness_Values (short& thickness,
Am_Line Cap_Style_ Flag& cap) const;

const char* Get_Color_Name () const; /Zreturns a pointer to the string, don’t dealloc

4.7 Groups

Groups hold a collection of graphical objects (possibly including other groups). The objects in a
group are called its parts, and the group is the owner of each of its parts. The concept of part/owner
relationships was introduced in the ORE chapter, but groups treat their parts specially, by drawing
them in windows. In Opal, the part-owner hierarchy corresponds to a graphical hierarchy, when
graphical objects are involved.

Here are the slots of Am_Group:

Slot Default Value Type
Am_VISIBLE true bool
Am_LEFT 0 int
Am_TOP 0 int
Am WIDTH 10 int
Am_ HETIGHT 10 int
Am_GRAPHICAL_PARTS empty Am_Value_List Am_Value_List Read only
Am X OFFSET 0 int
Am_Y OFFSET 0 int
Am_H_SPACING 0 int
Am_V_SPACING 0 int

Am_H ALIGN

Am _V_ALIGN

Am_FIXED WIDTH
Am FIXED_HEIGHT
Am_TNDENT
Am_MAX_ RANK

Am MAX SIZE

Am_CENTER_ALIGN

Am_CENTER_ALIGN

Am_NOT_FIXED SIZE
Am_NOT_FIXED SIZE
0

false

false

{Am_LEFT_ALIGN,
Am_RIGHT ALIGN,
Am_CENTER_ALIGN)}

{Am_TOP_ALIGN,
Am_BOTTOM_ALIGN,
Am_CENTER_ALIGN}

int
int
int
int, bool

int, bool




Page 146 Opal Graphics System

Groups define their own coordinate system, meaning that the left and top of their parts is offset
from the origin of the group. Changing the position of the group translates the position of all its
parts. By using a special group called Am_Resize Parts_Group, you can also have the group scale
the size of its parts when the group’s size changes.

Groups also clip their parts to the bounding box of the group. Parts of objects that extend outside
the left, top, width, or height of the group are not drawn. The default width and height of a group
is 10x10, so you must be careful to set the am wIDTH and Am_HETIGHT slot of your instances of
Am_Group. The predefined constraints Am_width_of_parts and Am_Height_Of_Parts may be
used to compute the size of a group based on its parts

4.7.1 Adding and Removing Graphical Objects

The read only am_GRAPHICAL_PARTS slot of a group contains an Am_Value_List of objects. It can
be used to iterate over the graphical parts of an object. Parts of a group should be manipulated
with the following member functions defined on Am_Object:

Am Object Add_Part (Am_Object new_part, bool inherit = true);
Am_Object Add_Part (Am Slot_Key key, Am Object new_part);

void Remove_Part (Am_Slot_Key key);
void Remove_Part (Am_Object part);

Graphical parts added to an object with add_part will automatically be added to the
Am_GRAPHICAL_PARTS list of the object.

Parts of an object may or may not be inherited (instantiated) in an instance of that object. All parts
added with a slot key (using the second form of Add_part, above) to an owner are instantiated in
instances of the owner. Parts added without a slot key (using the first form of Add_part, above)
are only instantiated in instances of their owner if the second parameter, inherit, is true (the default
is true).

Parts that are added with a slot key can be accessed with Get_pPart () or Get (). It is often conve-
nient to provide slot keys for parts so that functions and formulas can easily access these objects in
their groups. All graphical parts can be accessed through the Am_GRAPHICAL_PARTS list.

You can add any kind of object (graphical, non-graphical, windows, screens) as a part of any other

object. However, things only “work right” if graphical objects are added to groups or windows,
which are added to windows or the screen.

4.7.2 Layout

Most groups do not use a layout procedure. In these groups, each part has its own left and top,
which places it at some user-defined position relative to the left and top of the group.



Opal Graphics System Page 147

It is sometimes convenient for the group itself to decide where its graphical parts should be located.
If the parts should all be in a row or column, it’s often easier and more extensible to tell the group
that all of its parts should be arranged in a specific way, than to try to keep track of the locations of
all of the objects in the group individually. To support this, a formula in the am_rayour slot of an
am_Group object can lay out all of the parts of the group. This formula operates by directly setting
the am_LEFT and am_ToP of the parts.

4.7.2.1 Vertical and Horizontal Layout

Amulet provides two built-in layout procedures:

Am_Formula Am_Vertical_Layout
Am_ Formula Am_Horizontal_Layout

These layout procedures arrange the parts of a group according to the values in the slots listed be-
low. To arrange the parts of a group in a vertical list (like a menu), set the am_LayouT slot to
Am_Vertical_Layout. You may then want to set other slots of the group, like am_v_spacINg, to
control things like the spacing between parts or the number of columns.

These procedures set values in the am LEFT and am_ToP slots of the graphical parts of the group,
overriding whatever values (or formulas) were there before.

The slots that control layout when using the standard vertical or horizontal layout procedures are:

* Am_X_OFFSET The horizontal space to leave between the origin of the group and the
first part that is placed, measured in number of pixels (default is 0)

* Am_Y_ OFFSET Same as Am_X_OFFSET, only vertical (default is 0)

* Am_H_SPACING The horizontal space to leave between parts, measured in pixels
(default is 0)

* Am_V_SPACING Same as Am_H_SPACING, only vertical (default is 0)

*Am H_ALIGN Justification for parts within a column: when a narrow part appears

in a column with other wider parts, this parameter determines whether the narrow part is
positioned at the left, center, or right of the column (default is Am_CENTER_ALIGN)

* Am_V_ALIGN Same as am_H_ALIGN, only vertical (default is Am_CENTER_ ALIGN)

¢ Am FIXED WIDTH The width of each column, probably based on the width of the widest
part. When Am_NOT_FIXED_SIZE is used, the columns are not necessarily all the same
width; instead, the width of each column is determined by the widest part in that column.
(default is Am_NOT_FIXED_SIZE)

* Am_FIXED_HEIGHT Same as Am_FIXED_WIDTH, only vertical (default is
Am_NOT_FIXED_SIZE)

* Am_TNDENT How much to indent the second row or column (depending on
horizontal or vertical orientation), measured in number of pixels (default is 0)

* Am_MAX RANK The maximum number of parts allowed in a row or column,
depending on horizontal or vertical orientation (default is false)



Page 148 Opal Graphics System

® Am_MAX_ SIZE The maximum number of pixels allowed for a row or column,
depending on horizontal or vertical orientation (default is false)

The following will create a group with a column containing a rectangle and a circle:
Am_Object my group = Am _Group.Create ("my_group")
.Set (Am_LEFT, 10)
.Set (Am_TOP, 10)
.Set (Am_LAYOUT, Am _Vertical_Layout)
.Set (Am_V_SPACING, 5)
.Add_Part (Am_Rectangle.Create())
.Add_Part (Am_Circle.Create()};

4.7.2.2 Custom Layout Procedures

You can provide a customized layout procedure for arranging the parts of a group. The procedure
should be defined as a constraint, using Am_Define_Formula or a related function, and the con-
straint should be installed in the am_ravouT slot of the group. The parts of the group should be
arranged as a side effect of evaluating the formula (the return value is ignored). To do this, GV
the list in the Am_GRAPHICAL_PARTS slot (which is in Z-order) and iterate through it, setting each
part’s Am_LEFT and am _TOP slots appropriately.

4.7.3 Am_Resize_Parts_Group

This group operates like a regular am_Group except that if the width or height of the
Am_Resize_Parts_Group is changed, then the width and height of all the components is scaled
proportionately. The width and height of the Am_Resize_Parts_Group should not be a formula
depending on the parts, and the parts should not have formulas in their width and height slots. In-
stead, the width and heights will usually be integers, with the original size of the group set to be
the correct size based on the parts. Be sure to adjust the width and height of a
Am_Resize_Parts_Group when new parts are added or removed. Since you cannot use formulas
that depend on the parts’ sizes, you must explicitly make sure the group is always big enough to
hold its parts.

All of the parts of a am_Resize_Parts_Group are expected to be able to resize themselves when
their width and heights are set. It is fine to use a Am_Resize_Parts_Group in another one, but it
would usually be an error to include a regular Am_Group inside a Am Resize_Parts_Group.

The am Resize Parts_Group is created automatically by the am Graphics_Group_ Command
when the user selects a number of objects and executes a “Group” command (see Section 6.4 in the
Widgets chapter).

Note: the am_Resize Parts_Group currently scales the parts using integers, so if the size gets
very small, the parts will not retain their original proportions, and if the size of the group goes to
zero, the objects will stay small forever.



Opal Graphics System Page 149

4.8 Maps

The am_map object is a special kind of group that generates multiple graphical parts from a single
prototype object. Maps should be used when all the parts of a group are similar enough that they
can be generated from one prototype object (for example, they are all rectangles, or all the same
kind of group.). This part-generating feature of maps is often used in conjunction with the layout
feature of groups, in a situation such as arranging the selectable text items in a menu. For details

on laying out the components of groups and maps, see Section 4.7.2.

Slot Default Value Type
Am_VISIBLE true bool
Am_LEFT 0 int
Am_TOP 0 - int
Am_WIDTH Am_Width_Of_Parts int
Am_HEIGHT Am_Height_Of_Parts int
Am_GRAPHICAL_PARTS <formula> Am Value_List
Am_TTEMS 0 int, Am_Value List
Am_TITEM_PROTOTYPE Am_No_Object Am_Object
Am_LAYOUT NULL <formula>
Am_X_ OFFSET Q int
Am_Y_OFFSET 0 int
Am_H_SPACING 0 int
Am_V_SPACING 0 int
Am_H_ALIGN Am_CENTER_ALIGN {Am_LEFT_ALIGN,

Am_RIGHT ALIGN,
Am_CENTER_ALIGN}

Am_V_ALIGN Am_CENTER_ALIGN {Am_TOP_ALIGN,
Am_ BOTTOM_ALIGN,
Am CENTER_ALIGN}

Am_FIXED_ WIDTH Am_NOT_FIXED SIZE int
Am_FIXED_HEIGHT Am_NOT_FIXED SIZE int
Am_TINDENT 0 int
Am_MAX_ RANK false int, bool
Am_MAX SIZE false int, bool

You must set two slots in the map to control the parts that are generated:

* Am_ITEMS The value should be either a number, specifying how many parts
should be generated, or an instance of Am_value_List, containing elements corresponding
to each part to be generated.

* Am_ITEM_PROTOTYPE A graphical group, to serve as the prototype for each part.
There are two slots automatically installed in each of the generated parts, that are useful for distin-

guishing the parts from each other. These slots can be referenced by formulas in the item prototype
to make each part different.



Page 150 Opal Graphics System

* Am_RANK The position of this part in the list, from 0

* Am_ITEM The element of the map’s am_1TEMS list that corresponds to this part

The am_RANK of each created part is set with the count of this part. The am Rank of the first part
created is set to 0, the second part’s Am_RANK is set to 1, and so on. If the am_ITEMS slot of the map

contains an Am_value_List, then the am_ITEM (note: singular) slot of each created part is set with
the corresponding element of the list.

The following code defines a map whose am_ITEMS slot is a number. The map generates 4 rectan-
gles, whose fill styles are determined by the formula map_fill_from_ rank. The formula com-
putes a halftone fill from the value stored in the Am_Rank slot of the part, which was installed by

the map as the part was created. This uses a horizontal layout formula so the rectangles will be in
a row.

// Formulas are defined in the global scope, outside of main()
Am_Define_Style Formula (map_fill_from_rank) {
int rank = self.GV (Am_RANK);
return Am_Style::Halftone_Stipple (20 * rank);
1

// This code is inside main()
Am_Object my_map = Am Map.Create ("my_map")
.Set (Am_LEFT, 10)
.Set (Am_TOP, 10)
.Set (Am_LAYOUT, Am Horizontal_ Layout)
.Set (Am_H_SPACING, 5)
.Set (Am_ITEMS, 4)
.Set (Am_ITEM_PROTOTYPE, Am Rectangle.Create ("map item")
.Set (Am_FILL_STYLE, map_£fill_from_ rank)
.Set (Am _WIDTH, 20)
.Set (Am_HEIGHT, 20));

The next example defines a map whose am_ITEMS slot contains a list of strings. The map generates
4 text objects, whose text strings are determined by the object’s Am_ITEM slot.

// This code is inside main()
Am_Object my_map = Am_Map.Create ("my_map")
.Set (Am_LEFT, 10)
.Set (Am_TOP, 10)
.Set (Am_LAYOUT, Am_Vertical_Layout)
.S8et (Am_V_SPACING, 5)
.8et (Am_ITEMS, Am Value_ List ()
.Add (*This is the first item in the map.”)
.Add (“I’'m number two”)
.Add (“Three”)
.Add (“The last item in the list.”))
.Set (Am_ITEM PROTOTYPE, Am_Text.Create ("map text item")
.Set (Am_ITEM, ““) /initialize the slot so the formula won’t crash
.Set (Am_TEXT, Am_ Same_As (Am_ITEM) )
);



Opal Graphics System Page 151

To add another item to the map in the second example, you could install a new list in the Am_ITEMS
slot containing all the old items plus the new one:

my_map.Make Unique (Am_ITEMS); /in case slot shared with another object

Am Value_List map_items = (Am Value List) my_map.Get (Am_TTEMS) ;

map_items.Add (“A new item!”);
my_map.Set (Am ITEMS, map_items);

A more efficient way to add an item to the list is to destructively modify the list that is already in-
stalled (note the use of the false parameter in the add method for Am_value_List):
Am_Value_List map_items = (Am Value_List) my map.Get (Am_TTEMS) ;

map_items.Add (“A new item!”, false): // false means destructively modify, don’t copy.
my_map.Note_Changed (Am_ITEMS) ;

The list in the am_1TEMS slot can also be calculated with a formula, and the items in the map will
change whenever the formula is reevaluated.

4.9 Methods on all Graphical Objects

4.9.1 Reordering Objects

As you add objects to a group or window, each new object by default is on top of the previous one.
This is called the “Z” or “stacking” or “covering” order.

The following functions are useful for changing the Z order of an object among its siblings. For
example, Am_To_Top (obj) will bring an object to the front of all of the other objects in the same
group or window. To promote an object just above a certain target object, use am_Move_Object
(obj, target_obj, true). These functions work for windows as well as for regular graphical
objects.

void Am To_Top (Am _Object object);

void Am To_ Bottom (Am_Object object);

void Am_Move_Object (Am Object object, Am Object ref_object,
bool above = true); /false means below ref object

4.9.2 Finding Objects from their Location

The following functions are useful for determining whether an object is under a given (x,y) coor-
dinate:
bool Am_Point_In_ All Owners(Am Object in_obj, int x, int v,
Am_Object ref_obj);

Am Cbject Am_Point_In_Obj (Am Object in_obj, int x, int vy,
Am_Object ref_obj);

Am_Object Am_Point_In_Part (Am_Object in_obj, int x, int y,
Am Object ref_obj,
bool want_self = false,
bool want_groups = true);

Am Object Am_Point _In Leaf (Am_Object in_obj, int x, int v,



Page 152 Opal Graphics System

Am Object ref_obj,
bool want_self = true,
bool want_groups = true);

Am_Point_In_All_Owners checks whether the point is inside all the owners of object, up to the
window. Also validates that all of the owners are visible. If not, returns false. Use this to make
sure that the user is not pressing outside of an owner since the other operations do not check this.

Am_Point_In_Obj checks whether the point is inside the object. It ignores covering (i.e., it just
checks whether point is inside the object, even if the object is behind another object). If the point
is inside, the object is returned; otherwise the function returns Am_No_object. The coordinate sys-
tem of X and y is defined with respect to ref_ob3, that is, the origin of x and y is the left and top
of re f_obj.

Am_Point_In_part() finds the front-most (least covered) immediate part of in_obj at the spec-
ified location. If there is no part at that point, it returns Am_No_object. The coordinate system of
x and y is defined with respect to ref_obj. If there is no part at that point, then if want_self then
if inside in_obj, returns in_obj. If notwant_self or not inside in_ob7, returns Am_No_Object.
The coordinate system of x and y is defined with respect to ref_obj. If want_groups is true, then
returns the part even if it is a group. If want_groups is false, then will not return a group (so if x,y
is not over a “primitive” object, returns Am_No_Object).

Am_Point_In_Leaf () issimilarto Am Point_In_Part (), except that the search continues to the
deepest part in the group hierarchy (i.e., it finds the leaf-most object at the specified location). If
(x,y) 1s inside the bounding box of in_obj but not over a leaf, it returns in_obj. The coordinate
system of x and y is defined with respect to ref_obj. Sometimes you will want a group to be treated
as a leaf in this search even though it isn’t really a leaf. In this case, you should set the
Am_PRETEND_TO_BE_LEAF slot to true for each group that should be treated like a leaf. The search
will not look through the parts of such a group, but will return the group itself. The slots
want_self and want_groups work the same as for Am_Point_In_ Part.

Am_Point_In_Part() and Aam_Point_In_Leaf () use the function am_Point_In_0Obj () on the
parts.

4.9.3 Beeping
void Am Beep (Am_Object window = Am_No_Object);
This function causes the computer to emit a “beep” sound. Passing a specific window is useful in

Unix, when several different screens might be displaying windows, and you only want a particular
screen displaying a particular window to beep.

4.9.4 Filenames

char *Am_Merge_Pathname (char *name);



Opal Graphics System Page 153

Am_Merge_ Pathname () takes a filename as a parameter, and returns the full Amulet directory path-
name prepended to that argument. For example, “Am_Merge_Pathname ( *lib/images/
ent.bmp”)” will return the full pathname to the PC compatible Enterprise bitmap included with
the Amulet source files.

On the Macintosh, Am_Merge_Pathname automatically converts the Unix-standard path separa-
tion character “/” into the Mac-specific path separator “:”. In Windows NT/’95, this conversion is
done automatically by the OS. On all systems, you should specify pathnames with slashes (“/") as
the path separator to avoid machine dependancy.

4.9.5 Translate Coordinates

bool Am Translate_Coordinates (Am Object src_obj, int src_x, int sSre_y,
Am_Object dest_obj, int& dest_x, int& dest_y,
Am_Constraint_Context& cc = *Am_FEmpty Constraint_Context);

Am_Translate_Coordinates () converts a point in one object's coordinate system to that of an-
other object. It works for windows and all graphical objects. If the objects are not comparable
(windows on separate screens, or windows not attached to any screen) then the function will return
false. Otherwise, it will return true and dest_x and dest_y will contain the converted coordinates.

The destination coordinates are for the inside of dest_obj. This means that if obj was at src_x, src .y
with respect to the left and top of src_obj, and you remove it from src_obj and add it to dest_obj
at dest_x, dest_y then it will be at the same physical screen position. You can provide an
Am_Constraint Context parameter inside a formula to make the formula dependent on the rel-

ative positions of the objects.

Since each group and window defines its own coordinate system, you must use
Am_Translate_Coordinates Whenever you define a formula that depends on the left or top of an
object that might be in a different group or window.



Page 154 Opal Graphics System

4.10 Windows

Objects are added to windows in the same way they’re added to groups, with add_part (). All
graphical objects added to a window will be displayed in that window. When a window is added
as a part to another window, it becomes a subwindow. Subwindows do not have any window man-

ager decoration (title bars).

Slot Default Value Type
Am_VISIBLE true bool
Am_LEFT 0 int
Am_TOP 0 int
Am_ WIDTH 100 int
Am_HEIGHT 100 int
Am_GRAPHICAIL_PARTS empty Am Value_List Am_Value_List  read only
Am_FILL_STYLE Am_White Am_Style
Am_MAX_WIDTH 0 int
Am_ MAX HETIGHT 0 int
Am_MIN_WIDTH 1 int
Am_MIN_HEIGHT 1 int
Am_TITLE “Amulet” char*
Am_TCON_TITLE “Amulet” char>*
Am_TICONIFIED false bool
Am_USE_MIN_WIDTH false bool
Am USE_MIN_HEIGHT false bool
Am USE_MAX WIDTH false bool
Am_USE_MIN_HEIGHT false bool
Am_QUERY_POSITION false bool
Am_ QUERY_SIZE false bool
2Am_IS_COLOR formula bool read only
Am OMIT_TITLE_BAR false bool
Am_CLIP_CHILDREN false bool
Am_DESTROY_WINDOW_ Am_Default_Window_ Am_Object_

METHOD Destroy_Method Method
Am_ DOUBLE_BUFFER true bool
Am_SAVE_UNDER false false




Opal Graphics System Page 155

4.10.1 Slots of Am_Window

The initial values of Am_LEFT, Am_TOP, Am_wIDTH, and Am_HEIGHT determine the size and position
of the window when it appears on the screen. These slots can be set later to change the window’s
size and position. If the user changes the size or-position of a window using the window manager
(e.g., using the mouse), this will be reflected in the values for these slots.

Note that under Unix/X, it’s not always possible to know exactly where a window is on the screen.
Some window managers specify screen position as the location of the titlebar, some specify it as
the location of the client region, and some allow the user to choose the coordinate reference system.
It’s impossible for Amulet to enumerate all the possible things that a window manager might do,
and take them into account. In this case, our goal is to have code that never breaks and that main-
tains internal consistency.

The am_F1LL_sTYLE determines the background color of the window. All parameters of am_style
that affect fillings, including stipples, affect the fill style of windows. Using the fill style of a win-
dow is more efficient than putting a window-sized rectangle behind all the other objects in the win-
dow.

When values are installed in the Am MAX WIDTH, Am_MAX HEIGHT, Am_MIN_WIDTH, Or
Am_MIN_HETGHT  slots, and the corresponding Am USE_MAX_WIDTH, Am USE_MAX_HETIGHT,
Am_USE_MIN_WIDTH, Of Am_USE_MIN_HEIGHT slot is set to true, then the window manager will
make sure the user is not allowed to change the window’s size to be outside of those ranges. You
can still set the Am_wIDTH and Am_HEIGHT to be any value, but the window manager will eventually
clip them back into the allowed range.

When Am_QUERY_POSITION Or Am_QUERY_SIZE are set to true, then the user will have the oppor-
tunity to place the window on the screen when the window is first added to the screen, clicking the
left mouse button to position the left and top of the window, and dragging the mouse to the desired
width and height.

The border widths applied to the window by the window manager are stored in the
Am_LEFT_BORDER_WIDTH, Am_TOP_BORDER_WIDTH, Am_RIGHT_BORDER_WIDTH, and
Am_BOTTOM_BORDER_WIDTH. These slots are read only, set by Amulet when the window becomes
visible on the screen.

The am_omrT_TITLE_BAR slot tells whether the Amulet window should have a title bar. If the slot
has value false (the default), and the window manager permits it, then the window will have a title
bar; otherwise the window will not have a title bar.

In the rare case when you want to have graphics drawn on a parent window appear over the en-
closed (child) windows, you can set the am_cLIP_CHILDREN slot of the parent to be true. Then
any objects that belong to that window will appear on top of the window’s subwindows (rather than
being hidden by the subwindows).



Page 156 Opal Graphics System

When the am_DOUBLE_BUFFER slot is set to true (the default), Opal updates the window by first
drawing everything offscreen, and then copying the region over the old contents of the window.
This is slightly slower than updating without double buffering and it uses a lot of memory, because
you need to copy the contents of the offscreen buffer back to the screen. However, using double
buffering is much more visually pleasing, and flicker is reduced tremendously, because you don’t
see each object being drawn to the screen in succession; it all appears at once.

4.10.2 Destroying windows

Users might destroy Amulet windows using the window manager’s Kill-Window command or
close box. This action is converted into a destroy message to the window. By default this deletes
the window, but you can override the default with other behaviors by providing a new destroy
method. The am_DESTROY_WINDOW_METHOD slot of Am wINDOwW holds an Am_Object_Method that
is called when the window is destroyed. The default method is:

*Am_Default_Window_Destroy_Method, which destroys the window and exits the main event
loop (causes the application to quit) if no windows are left.

Other predefined methods may be useful for various applications (defined in opal.h):

* Am_Window_Hide_Method makes the window be invisible and does not destroy it, which is
useful for dialog boxes.

* Am_Window_Destroy_And_Exit_Method always destroys the window and quits the
application. This might be useful for an application’s main window.

To actually destroy a window object, just use the regular object destroy method: win.Destroy ().
This does not cause the Am DESTROY_WINDOW_METHOD to be called. That is only called when the
user destroys the window using the window manager’s commands.

4.11 Am_Screen

Windows are not visible until they are added to the screen. The Am_Screen object can be thought
of as a root window to which all top-level windows are added. In the “hello world” example of
Section 4.3.2, the top-level window is added to Am_Screen with a call to Add_Part ().

Am_Screen can be used in calls to Am_Translate_Coordinates() to convert from window co-
ordinates to screen coordinates and back again.

4.12 Predefined formula constraints

Opal provides a number of constraints that can be put into slots of objects that might be useful.
Some of these constraints were described in previous sections.

Am_Fill_To_Bottom - Putin an object’s am_HEIGHT slot, causes the object to size itself
so it’s tall enough to fill to the bottom of its owner. Am_Fill_To_Bottom leaves a
border below the object, with a size equal to the object’s Am_v_OFFSET slot.



Opal Graphics System Page 157

Am_Fill_To_Right - Analogous to Am_Fill_To_Bottom, used in the am_WIDTH slot of an
object. The am_x_oFFSET slot of the object is used to measure the border to the right
of the object.

Am_Width_Of_parts - Useful for computing the width of a group: returns the distance
between the group’s left and the right of its rightmost part. You might put this into a
group’s Am_WIDTH slot.

Am_Height_ Of_ Parts - Analogous to Am_Width_Of_Parts, but for the Am_HETGHT of a
group.

Am_Right_Is_Right Of_ oOwner - Useful for keeping a part at the right of its owner. Put
this formula in the am_rEFT slot of the part.

Am_Bottom_Is_Bottom Of_Owner - Useful for keeping a part at the bottom of its owner.
Put this formula in the am_ToP slot of the part.

Am_Center X Is_Center_Of Owner - Useful for centering a part horizontally within its
owner. Put this formula in the am_LEFT slot of the part.

Am_Center_Y Is_Center_Of_ Owner - Useful for centering a part vertically within its
owner. Put this formula in the am_TOP slot of the part.

Am_Center_X_ Ts_Center_Of - Useful for horizontally centering obj1 inside obj2. Put
this formula in the Am_LEFT slot of obj1, and put obj2 in the Am CENTER_X_oOBJ slot
of obj1.

Am_Center_Y_Is_Center Of - Useful for vertically centering obj1 inside obj2. Put this
formula in the am_ToP slot of obj1, and put obj 2 in the Am_CENTER_Y_0BJ slot of ob 1.

Am_Horizontal Layout - Constraint which lays out the parts of a group horizontally in
one or more rows. Put this into the am_ravour slot of a group.

Am_Vertical Layout - Constraint which lays out the parts of a group vertically in one or
more columns. Put this into the am_1.AYOUT slot of a group.

Am_Same As (Am_Slot_Key key) - This slot gets its value from the specified slot (key)
in the same object. Equivalent to { return self.GV(key); }

Am_From Owner (Am_Slot_Key key) - This slot gets its value from the specified slot
(key) in the object’s owner. Equivalentto { return self.GV_Owner().GV(key); }

Am_From_Part (Am_Slot_Key part, Am Slot_Key key) - This slot gets its value from
the specified slot (key) in the specified part (part) of this object. Equivalent to
{ return self.GV_Part(part).GV(key); }

Am_From_Sibling (Am_Slot_Key sibling, Am_Slot_Key key) - This slot gets its
value from the specified slot (key) in the specified sibling (sibling) of this object.
Equivalent to { return self.GV_Sibling(sibling) .GV(key); }



Page 158 Opal Graphics System




3. Interactors and Command Objects
for Handling Input

Graphical objects in Amulet do not respond to input events; they
are purely output. When the programmer wants to make an object re-
spond to a user action, an Interactor object is attached to the graphical
object. The built-in types of Interactors usually enable the programmer
to simply choose the correct type and fill in a few parameters. The inten-
tion is to significantly reduce the amount of coding necessary to define be-
haviors.

When an Interactor or a widget (see the Widgets chapter) finishes its operation, it allocates a Com-
mand object and then invokes the ‘do’ method of that Command object. Thus, the Command ob-
jects take the place of call-back procedures in other systems. The reason for having Command
objects is that in addition to the ‘do’ method, a Command object also has methods to support undo,
help, and selective enabling of operations. As with Interactors, Amulet supplies a library of Com-
mand objects so that often programmers can use a Command object from the library without writ-
ing any code.

Copyright © 1996 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037,
Arpa Order No. B326. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of NCCOSC or the U.S. Government.






Interactors and Command Objects for Handling Input Page 161

5.1 Include Files

The primary include files that control the Interactors and Command objects are inter.h for the
main, top-level objects and procedures, idefs.h for the definitions specific to input events, and
inter_advanced.h for what you might need if you are going to create your own custom Interac-
tors. All the slots of the Interactor and Command objects are defined in standard_slots.h. Some
of the functions and types needed to customize the text editing Interactor are defined in
text_fns.h. For more information on the Amulet header files and how to use them, see
Section 1.6 in the Overview chapter.

5.2 Overview of Interactors and Commands

The graphical objects created with Opal do not respond to input devices: they are just static graph-
ics. In order to handle input from the user, you create an “Interactor” object and attach it to the
graphics. The Interactor objects have built-in behaviors that correspond to the normal operations
performed in direct manipulation user interfaces, so usually coding interactive interfaces is quick
and easy using interactors. However, like programming with constraints, programming with Inter-
actors requires a different “mind set” and the programming style is probably different than what
most programmers are used to.

All of the Interactors are highly parameterized so that you can control many aspects of the behavior
simply by setting slots of the Interactor object. For example, you can easily specify which mouse
button or keyboard key starts the interactor. In order to affect the graphics and connect to applica-
tion programs, each Interactor has multiple protocols. For example, the “Move-Grow” interactor,
for moving graphical objects with the mouse, explicitly sets the am_r.EFT and am_TOP slots of the
object, and also calls the am_po_METHOD method stored in the Command object attached to the In-
teractor. Therefore, there are multiple ways to use an Interactor, to give programmers flexibility in
what they need to achieve.

When an Interactor or a widget (see the Widgets chapter) finishes its operation, it allocates a Com-
mand object and then invokes the ‘do’ method of that Command object. Thus, the Command ob-
jects take the place of call-back procedures in other systems. The reason for having Command
objects is that in addition to the‘do’ method, a Command object also has methods to support undo,
redo, selective undo and redo, help, and enabling of operations. Each Interactor and Widget has a
Command object as the part named am_coMvanD, and Interactors set the am_vALUE and other slots
in its command object, and then call the am_Do_METHOD method. This and other methods in the
Command objects implement the functionality of the Interactors.

Amulet currently supports two undo models, fully described in Section 5.5.2. The first is a simple
single undo, like on the Macintosh. The second is a sophisticated new undo model which provides
undo, redo (undo the undo), and selective undo and repeat of any previous command. The sections
about the various Interactors discuss their default operation for undo, redo and repeat.



Page 162 Interactors and Command Objects for Handling Input

5.3 Standard Operation

We hope that most normal behaviors and operations will be supported by the Interactors and Com-
mand objects in the library. This section discusses how to use these. If you find that the standard
operations are not sufficient, then you can override the standard methods, as described in
Section 5.5.2. If you want an additional operation in addition to the regular operation, then you
can just add a command object to the Interactor, as explained in Section 5.5. If neither of these is
sufficient, you may need to create your own Interactor as discussed in Section 5.7.

5.3.1 Designing Behaviors

The first task when designing the interaction for your interface is to choose the desired behavior.
The first choice is whether one of the built-in widgets provides the right interface. If so, then you
can choose the widget from the Widgets chapter and then attach the appropriate Command object
to the widget. The widgets, such as buttons, scroll bars and text-input fields, combine a standard
graphical presentation with an interactive behavior. If you want custom graphics, or you want an
application-specific graphical object to be moved, selected or edited with the mouse, then you will
want to create your own graphics and Interactors.

The first step in programming an Interactor is to pick one of the fundamental built-in styles of be-
havior that is closest to the interaction you want. The current choices are (these are exported in
inter.h):

* Am_Choice_Interactor. This is used to choose one or more from a set of objects. The user
is allowed to move around over the objects (getting interim feedback) until the correct item
is found, and then there will often be final feedback to show the final selection. The
Am_Choice_Interactor can be used for selecting among a set of buttons or menu items,
or choosing among the objects dynamically created in a graphics editor.

* Am_One_Shot_Interactor. This is used whenever you want something to happen
immediately when an event occurs, for example when a mouse button is pressed over an
object, or when a particular keyboard key is hit. Like the Am_cChoice_Interactor, the
Am_One_Shot_Interactor can be used to select among a set of objects, but the
Am_One_sShot_Interactor will not provide interim feedback the object where you initially
press will be the final selection. The Am _oOne_sShot_Interactor is also useful in situations
where you are not selecting an object, such as when you want to get a single keyboard key.

* Am_Move_Grow_Interactor. Thisis useful in all cases where you want a graphical object to
be moved or changed size with the mouse. It can be used for dragging the indicator of a
scroll bar, or for moving and growing objects in a graphics editor.

* Am_New_Points_Interactor. This Interactor is used to enter new points, such as when
creating new objects. For example, you might use this to allow the user to drag out a
rubber-band rectangle for defining where a new object should go.

*Am_Text_ Edit_Interactor. This supports editing the text string of a text object. It supports
a flexible key translation table mechanism so that the programmer can easily modify and
add editing functions. The built-in mechanisms support basic text editing behaviors.



Interactors and Command Objects for Handling Input Page 163

* Am_Gesture_Interactor. This Interactor supports free-hand gestures, such as drawing an
X over an object to delete it, or encircling the set of objects to be selected.

*Am_Rotate_Interactor. This Interactor will support rotating graphical objects. It is not yet
implemented.

*Am Animation_Interactor. This Interactor will support animations and time-based events.
It is not yet implemented.

5.3.2 General Interactor Operation

Once an Interactor is created and its parameters are set (see Section 5.3.3), the programmer will
then attach the Interactor to some object in a window (see Section 5.3.3.2.1). Amulet then waits
for the user to perform the Interactor’s start event (for example by pressing the left mouse button,
see Section 5.3.3.1.5) over the graphical object to which the Interactor is attached.
Am_One_shot_Interactors then immediately execute their Command’s po method and go back
to waiting. Other types of Interactors, however, usually show interim feedback while waiting for
a specific stop event (for example, left mouse button up). While Interactors are operating, the user
might move the mouse outside the Interactor’s operating area, in which case the Interactor stops
working (for example, a choice Interactor used in a menu will turn off the highlighting if the mouse
goes outside the menu). If the mouse goes back inside, then the Interactor resumes operation. If
the abort_event is executed while an Interactor is running, then it is aborted (and the Command’s
Do method is not executed). Similarly, if the stop event is executed while the mouse is outside, the
Interactor also aborts. The operation is summarized by the following diagram.

Start_Event mouse moves outside
Waiting = Running > Outside )
while over object o

mouse moves back inside

Stop_Event
while over object
Abort_Event (aborts) %
L
Abort_Event or Stop_Event_ (aborts) v
=i

Multiple Interactors can be running at the same time. Each Interactor keeps track of its own status,
and for each input event, Amulet checks which Interactor or Interactors are interested in the event.
The appropriate Interactor(s) will then process that event and return.



Page 164 Interactors and Command Objects for Handling Input

5.3.3 Parameters

Once the programmer has chosen the basic behavior that is desired, then the various parameters of
the specific Interactor must be filled in. The next sections give the details of these parameters.
Some, such as the start and abort events, are shared by all Interactors, and other parameters, such
as gridding, are specific to only a few types of Interactors.

The parameters are set as normal slots of the objects. The names of the slots are defined in
standard_slots.h and are described below. As an example, the following creates a choice Inter-
actor called ‘Select It’ assigned to the variable select_it and sets its start event to the middle
mouse button. See the ORE chapter for how to create and name objects.

select_it = Am_Choice_Interactor.Create("Select It")
.Set (Am_START WHEN, "MIDDLE_DOWN");

5.3.3.1 Events

One of the most important parameters for all Interactors are the input events that cause them to
start, stop and abort. These are encoded as an Am_TInput_Char which are defined in idefs.h. Nor-
mally, you do not have to worry about these since they are automatically created out of normal C
strings, but you can convert a string into an Am_Input_char for efficiency, or if you want to set or
access specific fields.

Note: Do not use a C++ char to represent the events. It must be a C string or an Am_Input_Char
object.

5.3.3.1.1 Event Slots

There are three slots of Interactors that can hold events: Am START WHEN, Am ABORT WHEN, and
Am_STOP_WHEN.

Am_START WHEN determines when the Interactor begins operating. The default value is
Am Default_Start_Char whichis "LEFT_DowN" with no modifier keys (see Section 5.3.3.1.3) but
with any number of clicks (see Section 5.3.3.1.4). So by default, all interactors will operate on both
single and double clicks.

Am_ABORT_WHEN allows the Interactor to be aborted by the user while it is operating. The default
value is "CONTROL_g". Aborting is different from undoing since you abort an operation while it is
running, but you undo an operation after it is completed. All interactors can be aborted while they
are running.

Am_STOP_WHEN determines when the Interactor should stop. The default value is
Am_Default_Stop_Char whichis "ANY_MOUSE_UP" so even if you change the start_when, you can
often leave the stop_when as the default value.



Interactors and Command Objects for Handling Input Page 165

5.3.3.1.2 Event Values

In any of these slots, you can provide an Am_Input_Char, a string in the format described below,
or the special values true or false. The value true matches any event, and false will never
match any event. You might use false in the Am_ABORT wHEN slot of an Interactor to make sure it
is never aborted.

The general form for the events is a string with the modifiers first and the specific keyboard key or
mouse button last. The specific keys include the regular keyboard keys, like "a", "z", (v, and
"\"* (use the standard C++ mechanism to get special characters into the string). The various func-
tion and special keys are generally named the same thing as their label, such as "F1v, "mr5",
"HELP", and "DELETE". Sometimes, keys have multiple markings, in which case we usually use
the more specific or textual marking, or sometimes both markings will work. Also, the arrow keys
are always called "LEFT_ARROW", "UP_ARROW", "DOWN_ARROW", and "RIGHT ARROW". Note that
keys with names made out of multiple words are separated by underscores. For keyboard keys, we
currently only support operations on the button being pressed, and no events are generated when
the button is released. You can specify any keyboard key with the special event "ANY_KEYBOARD"
(see Section 5.4.1 for how to find out which key was hit). You can find out what the mapping for
a keyboard key is by running the test program testinput, which is in the src/gem directory. We
have tried to provide appropriate mappings for all of the keyboards we have come across, but if
there are keyboard keys on your keyboard that are not mapped appropriately, then please send mail
to amulet@cs.cmu.edu and we will add them to the next release.

For the mouse buttons, we support both pressing and releasing. The names of the mouse buttons
are "LEFT", "MIDDLE" and "RIGHT" (on a 2-button mouse, they are "LEFT" and "RIGHT* and on a
I-button mouse, just "LEFT" ), and you must append either "up" or "powN". Thus, the event for the
left button down is "LEFT_powN". You can specify any mouse button down or up using
"ANY_MOUSE_DOWN" and "ANY_MOUSE_UP". On the Macintosh, you can generate the right mouse
down event using OPTION-mouse down, and the middle mouse event using OPTION-SHIFT-
mouse down. On the PC with a two-button mouse, there is no way to generate the middle button
event.

5.3.3.1.3 Event Modifiers

The modifiers can be specified in any order and the case of the modifiers does not matter. There
are long and short prefix forms for each modifier. You can use either one in strings to be converted
into am_Input_Chars. For example "coNTROL_£" and "~£" represent the same key. Note that
the short form uses a hypen (it looks better in menus) and the long form uses an underscore (to be
consistent with other Amulet symbols).

The currently supported modifiers are:

*shift_ or sHFT- One of the keyboard shift keys is being held down. For letters, you can
also just use the upper case. Thus, "F" is equivalent to *SHIFT f". However, do not use
shift to try to get the special characters. Therefore "shift_5" is not the same as "s* . For
alphabetic characters only, the Caps Lock key produces a shi £t modifier.



Page 166 Interactors and Command Objects for Handling Input

* control_ or ~ The control key is being held down.

*meta_ or MET- The meta key is the diamond key on Sun keyboards, the EXTEND-CHAR key
on HPs, the Command (Apple) key on Macintosh keyboards, and the arT key on PC
keyboards. On other Unix keyboards, it is generally whatever is used for “meta” by Emacs
and the window manager. Note that on the Macintosh, the Option key with the mouse
button generates middle and right button events, and with keyboard keys, just returns
whatever is at that point in the font. Similarly, the default text interactor uses the Meta key
on Unix to generate characters at the top of the font (see Section 5.3.5.5.1).

* any_ This means that you don’t care which modifiers are down. Thus "any_f* matches
"shift_fraswellas "F" and "meta_control_shift_f£". Note that "ANY KEYBOARD" Or
"ANY_MOUSE_DOWN" also specifies any modifiers.

5.3.3.1.4 Multiple Clicks

Amulet supports the detection of multiple click events from the mouse. To double-click, the user
must press down on the same mouse button quickly two times in succession. The clicks must be
faster than Am_Double_cClick_Time (which is defined in gem.h), which defaults to 250, and is
measured in milliseconds. (On the Macintosh, Am_Double_Click_ Time isignored, and the system
constant for double click time is used instead, which is set with the Mouse control panel.)

On the PC, Amulet detects single and double clicks, and on Unix and the Mac, Amulet will detect
up to five clicks. The multiple clicks are named by preceding the event name with the words
"DOUBLE_", "TRIPLE_", "QUAD_*, and "FIVE_". For example, "double_left_down", Or
"shift_meta_triple_right_down". When the user double clicks, a single click event will still
be generated first. For example, for the left button, the sequence of received events will be
"LEFT_DOWN", "LEFT_UP", "DOUBLE_LEFT_DOWN", "DOUBLE_LEFT_UP". The "any_" prefix can be
used to accept any number of clicks, so "any_LEFT DowN" will accept single or multiple clicks with
any modifier held down.

5.3.3.1.5 Am_Input_Char type

The Am_TInput_char is defined in idefs.h. It is a regular C++ object (not an Amulet object). It
has constructors from a string or from the various pieces:

Am_Input_Char (const char *s); /froma string like "META_LEFT_DOWN"
Am_TInput_Char (short ¢ = 0, bool shf = false,
bool ctrl = false,
bool meta = false, Am_Button_Down down = Am NEITHER,
Am_Click_Count click = Am_NOT_MOUSE,
bool any mod = false);

It can be converted to a string, to a short string, to a long (which is only useful for storing the
Am_Input_Char into a slot of an object) or to a character (which returns O if it is not an normal ascii
character). An Am_Input_Char will also print to a stream as a string. If ic is an Am_Input_Char:

* ic.As_String(char *s); convert to a string by writing into s, which should be at least
Am_LONGEST_CHAR_STRING characters long.



Interactors and Command Objects for Handling Input Page 167

*ic As_Short_String(char *s); Convert to a short string like “AC” such as might be used
in amenu. s should be at least Am_LONGEST_CHAR_STRING characters long.

* (long)ic; convert ic into a long, for storing it into a slot.

*char ¢ = ic.As_Char(); Returns acharific represents a simple ascii character, otherwise
returns \0.

*cout << ic; you can printan Am_Input_Char directly, in which case it prints the same as
As_String.

®ic = Am_Input Char::Narrow (obj.Get(SLOT)); can be used to convert a slot holding a
long into an Am_Input_Char.

The member variables of an Am_TInput_cChar are:

typedef enum { Am_NOT_MOUSE = 0, //When nota mouse button.
Am_SINGLE_CLICK 1, /Also for mouse moved, with Am_NEITHER,
Am_DOUBLE_CLICK 2, Am TRIPLE_CLICK = 3,
Am_QUAD_ CLICK = 4, Am FIVE_CLICK = 5, Am MANY_CLICK = 6,
Am_ANY CLICK = 7 //whendon't care about how many clicks
} Am _Click_Count;

typedef enum { Am NEITHER = 0, Am BUTTON_DOWN = 1,

Am_ BUTTON_UP = 2, Am_ANY_ DOWN_UP 3} Am_Button_Down;

short code; // the base code.

bool shift; / whether these modifier keys were down

bool control;

bool meta;

bool any_modifier; /trueifdon't care about modifiers

Am_Button_Down button_down; /# whether a down or up transition.
/ For keyboard, only support down.

Am_Click_Count click_count; /0==not mouse, otherwise # clicks

5.3.3.2 Graphical Objects

5.3.3.2.1 Start_Where

For an Interactor to become active, it must be added as a part to a graphical object which is part of
a window. To do this, you use the regular Add_Part method of objects. For example, to make the
select_it Interactor defined above in Section 5.3.3 select the object my_rect, the following code
could be used:

my_rect.Add_Part (select_it);

Interactors can be added as parts to any kind of graphical object, including primitives (like rectan-
gles and strings), groups, and windows. You can add multiple Interactors to any object, and they
can be interspersed with graphical parts for groups and windows. Interactors can be removed or
queried with the standard object routines for parts. If you make instances of the object to which
the Interactor is attached, then an instance will be made of the Interactor as well (see the ORE chap-
ter). For example:

Am_Slot_Key INTER_SLOT = Am Register_Slot_Name ("INTER_SLOT");
my_rect.Add_Part (INTER_SLOT, select_it); /named part



Page 168 Interactors and Command Objects for Handling Input

rect2 = my_rect.Create () ; #rect2 will have its own which is an instance of select_it

It is very common for a behavior to operate over the parts of a group, rather than just on the object
itself. For example, a choice Interactor might choose any of the items (parts) in a menu (group),
or a move_grow Interactor might move any of the objects in the graphics window. Therefore, the
slot Am_START WHERE_TEST can hold a function to determine where the mouse should be when the
start-when event happens for the Interactor to start. The built-in functions for the slot (from in-
ter.h) are as follows. Each of these returns the object over which the Interactor should start, or
NULL if the mouse is in the wrong place so the Interactor should not start.

*Am_Inter_ In_Object_Or_pPart: If the interactor is attached to a group-like object (a
Am_Window, Am_Screen, Am_Group OF Am_Scrolling_Group), then looks for a part of that
object for the mouse to be in. Otherwise, tests whether the mouse is directly in the object
the mouse is attached to. This is the default Am_START WHERE_TEST for most interactors.

*Am_Inter In_Text_Object_Or_part: If the interactor is attached to a group-like object (a
Am_Window, Am_Screen, Am_Group Of Am_Scrolling_Group), then looks for a part of that
object of type am_Text for the mouse to be in. Otherwise, tests whether the mouse is
directly in the object the mouse is attached to and that object is a Am_Text. This is the
default Am_START WHERE_TEST for Am_Text_Edit_Interactors.

* am_Inter_In: If the mouse is inside the object the Interactor is part of, this returns that
object.

*Am_Inter_In_Part: The Interactor should be part of a group or window object. This tests
if the mouse is in a part of that group or window object, and if so, returns the part of the
group or window the mouse is over.

*Am_Inter_In_Leaf: This is useful when the Interactor is part of a group or window which
contains groups which contain groups, etc. It returns the lowest level object the mouse is
over. If you want Aam_Inter_In_Leaf to return a group rather than a part of the group, set
the Am_PRETEND_TO_BE_LEAF slot of the group to be true.

*Am_Inter_TIn_Text: If the mouse is inside the object the Interactor is part of, and that object
is an instance of am_Text, then returns that object. This is useful for
Am_Text_ TInteractors.

* Am_Inter_In_Text_Part: If the mouse is in a part of the object the Interactor is part of, and
that the part the mouse is over is an instance of Am_Text, then returns that part. This is
useful for Am Text_TInteractors.

*Am_Inter_In_Text_Leaf: If the mouse is in a leaf of the object the Interactor is part of, and
that leaf part is an instance of Am_Text. This is useful for Am_Text_Interactors.

For example, the following interactor will move whichever part of the group my_group that the user
clicks on. Since the interactor is also a part of the group, an instance of the interactor will be cre-
ated whenever an instance is made of the group, as explained in Section 3.6.2.

Am_Slot_Xey INTER_SLOT = Am_Register_Slot_Name ("INTER_SLOT");

my_group.Add_Part (INTER_SLOT, Am_Move_Grow_Interactor.Create()

.Set (Am_START_WHERE_TEST, Am_Inter_In_Part));

my_group .Add (rect) ;

my_group.Add(rect?);

//now the interactor will move either rect or rect2

group?2 = my_group.Create();



Interactors and Command Objects for Handling Input Page 169

//group? will have its own interactor as well as instances of rect and rect2

If none of these functions returns the object you are interested in, then you are free to define your
own function. It should be a method of type Am_where_Method, and should return the object the
Interactor should manipulate, or Am_No_object if none. For example:
Am_Define Method(Am_Where_Method, Am_Object, in_special_obj_part,
(Am_Object /* inter */,
Am Object object, Am_Object event_window,
Am_Input_Char /*ic*/, int x, int v))} {
Am Cbject val = Am Point_In_Part(object, x, v, event_window) ;
if (val.valid() && (bool)val.Get (MY_SPECIAL_SLOT)) return wval;
else return Am_No_Object;
}

Note that this means that the Interactor may actually operate on an object different from the one to
which it is attached. For example, Interactors will often be attached to a group but actually modify
a part of that group. With a custom am_sTART wHERE_TEST function, the programmer can have the
Interactor operate on a completely independent object.

5.3.3.3 Active

It is often convenient to be able to create a number of Interactors, and then have them turn on and
off based on the global mode or application state. The am_acTIVE slot of an Interactor can be set
to false to disable the Interactor, and it can be set to true to re-enable the Interactor. By default,
all Interactors are active. Setting the am_acTIVE slot is more efficient than creating and destroying
the Interactor. The am_AcTIVE slot can also be set with a constraint that returns true or false.

5.3.3.4 Am_Inter Location

Some interactors require a parameter to describe a location and/or size of an object. Since the co-
ordinate system of each object is defined by its group, just giving a number for X and Y would be
meaningless without also supplying a reference object. Therefore, we have introduced a wrapper
type, called am_Inter_Location, which encapsulates the coordinates with a reference object. As
described in the Opal manual, some objects are defined by their left, top, width and height, and oth-
ers by two end points, and this information is also included in the Am_Tnter Location. The meth-
ods on an Am_Inter_ Location (from inter.h) are:
class Am_TInter_Location {

public:
Am_TInter_ Location (); /empty

Hcreate a new one. If as_line, then a,b is x1, vl andc,dis x2, y2.
// If not as_line, then a,b is left, top and c,d is width, height
Am_Inter_Location (bool as_line, Am_Object ref_obj,
int a, int b, int ¢, int 4);

//change the values of an existing one
void Set_Location (bool as_line, Am Object ref_obj,

int a, int b, int ¢, int d, bool make_unique = true);

//change just the first coordinate of an existing one



Page 170 Interactors and Command Objects for Handling Input

void Set_Location (bool as_line, Am_Object ref_obj,
int a, int b, bool make_unique = true);

/Hreturn all the values
void Get_Location {(bool &as_line, Am_Object &ref_obj,
int &a, int &b, int &c, int &d) const;

/return just the coordinates, the reference object, whether it is a line or not
void Get_Points (int &a, int &b, int &c, int &d) const;
Am_Object Get_Ref_0Obj () const;

void Get_As_Line (bool &as_line) const;

/fcopy from or swap with another Am_Inter_Location
void Copy_From (Am_Inter_Location& other_obj, bool make_unigue true);
void Swap_With (Am_Inter_Location& other_obj, bool make_unique = true);

/ftranslate the coordinates so they now are with respect to dest_obj
bool Translate_To(Am_Object dest_obj);

Am_Inter Location Copy() const; /make anew one like me
virtual void Print_Name (ostream& os); //print my contents on the stream



Interactors and Command Objects for Handling Input  Page 171

5.3.4 Top Level Interactor

Am_Interactor is used to build new, custom interactors. This object won’t do anything if you sim-
ply instantiate it and add it to a window.

Slot Default Value Type
Am_START_WHEN Am_Default_ Am_TInput_Char
Start_Char
Am_START_WHERE_TEST Am_Inter In__ Am_Where__
Object_Or_Part Method

Am_ABORT_ WHEN

Am_TInput_Char

Am_Input_Char

(“*CONTROL_g”)
Am_TINTER_BEEP_ON_ABORT true bool
Am_RUNNING_WHERE_OBJECT true Am_Object,
bool
Am RUNNING_WHERE_TEST Am_TInter_In Am_Where_
Object_Or_ Part Method

Am_STOP_WHEN Am Default_ Am_Input_Char
Stop_Char
Am_ACTIVE true bool Section 5.3.3.3
Am_START_OBJECT 0 Am_Object Section 5.4.1
Am_START_ CHAR 0 Am_Tnput_Char Section 5.4.1
Am_CURRENT_OBJECT 0 Am_Object Section 5.4.1
Am_RUN_ALSO false bool Section 5.4.2
Am_PRIORITY 1.0 float Section 5.4.2
Am_MULTI_OWNERS NULL Am_Value_List Section 5.4.3
or NULL

Am_MULTI_FEEDBACK _ NULL Am_Value_List Section 5.4.3

OWNERS or NULL
Am_WINDOW NULL Am_Window Set with current

window

Am_COMMAND Am_Command Am_Command Section 5.6

These are the default values of am_Interactor’s slots. Most of these are advanced features and
are discussed in Section 5.4.

5.3.5 Specific Interactors

All of the interactors and command objects are summarized in Chapter 10, Summary of Exported
Objects and Slots. The next sections discuss each one in detail.



Page 172 Interactors and Command Objects for Handling Input

5.3.5.1 Am_Choice_Interactor

The Am_Choice_Interactor is used whenever the programmer wants to choose one or more out
of a set of objects, such as in a menu or to select objects in a graphics window. The standard be-
havior allows the programmer to choose whether one or more objects can be selected, and special
slots called Am_INTERIM_SELECTED and Am_SELECTED of these objects are set by default. Typical-
ly, the programmer would define constraints on the look of the object (e.g. the color) based on the
values of these slots. Note that Am INTERIM SELECTED and Am_SELECTED are set in the graphical
object the Interactor operates on, not in the Interactor itself.

Slot Default Value Type
All of ths slots of Am_Interactor, with the following changes:
Am_RUNNING_WHERE_ <formula> Am_Object, computes owner
OBJECT bool
Am_RUNNING_WHERE_TEST <formula> Am_Where_ same as start
Method
Am_HOW_SET Am _CHOICE_TOGGLE Am Choice_
How_Set
Am_FIRST ONE_ONLY false bool whether menu-
or button-like
Am_VALUE NULL Am_Object or

Am Value_List
of objects

5.3.5.1.1 Special Slots of Choice Interactors

Two slots of choice Interactors can be set to customize its behavior:

* am_HOW_SET: This controls whether a single or multiple values will be selected. Legal values
are from the following type:

typedef enum (Am_CHOICE_SET, Am_CHOICE_CLEAR, Am_CHOICE_TOGGLE,
Am_CHOICE_LIST_TOGGLE }; Am_Choice_How_Set;

These mean:

* Am_CHOICE_SET: the object under the mouse becomes selected, and the previously
selected object is de-selected (useful for single selection menus and radio buttons).
Unlike am_CHOICE_TOGGLE, clicking on an already-selected object leaves it
selected.

* Am_CHOICE_CLEAR: the object under the mouse becomes de-selected. This is rarely
useful.

* Am_CHOICE_TOGGLE: if the object under the mouse is selected, it becomes deselected,
otherwise it becomes selected and any previous object become de-selected. This is
useful when you want zero or one selection (the user is able to turn off the
selection).



Interactors and Command Objects for Handling Input Page 173

* Am_CHOICE_LIST_TOGGLE: if the object under the mouse is selected, then it is de-
selected, otherwise it becomes selected, but other objects are left alone. This allows
multiple selection, and is useful for check boxes.

The default value for the am_HoOW_SET slot is Am_CHOICE_TOGGLE.

* Am_FIRST_ONE_ONLY: If false (the default), then the selection is free to move from one item
in the group to another, as in menus. If true, then only the initial object the mouse is over
can be manipulated, and the user must release outside and then press down in another object
to change objects. This is how radio button and check box widgets work on most systems.

5.3.5.1.2 Standard operation of the Am_Choice_Interactor

As the Choice_Interactor is operating, it calls the various internal methods. The default operation
of these methods is as follows. If this is not sufficient for your needs, then you may need to override
the methods, as explained in Section 5.5.2.

As the Interactor moves over various graphical objects, the Am_INTERIM_SELECTED slot of the ob-
ject is set to true for the object which is under the mouse, and false for all other objects. Typically,
the graphical objects that the Interactor affects will have a constraint to the Am_INTERIM_SELECTED
slot from the am_FILL_STYLE or other slot. At any time, the Interactor can be aborted by typing
the key in Am_ABORT_WHEN (the default is "control_g"). When the Am_STOP_WHEN event occurs,
the Am_INTERIM_SELECTED slot is set to false, and the am HOwW_SET slot of the Interactor is used
to decide how many objects are allowed to be selected (as explained above). The objects that
should end up being selected have their am_SELECTED slot set to true, and the rest of the objects
have their am SELECTED slot set to false. Also the am_vaLUE slot of the Interactor and the
Am_VALUE slot of the command object in the am_commanD slot of the Interactor will contain the cur-
rent value. If Am_HOW_SET is not Am_CHOICE_LIST TOGGLE, then the am vALUE slot will either
contain the selected object or am_No_object (NULL). If Am_HOW_SET iS Am_CHOICE_LIST_ TOGGLE,
then the am_VALUE slot of the Command object will contain a am Value_ List containing the list
of the selected objects (or it will be the empty list).

The default undo of the am_Choice_Interactor simply resets the am_SELECTED slots of the se-
lected object(s) and the am_value of the Interactor and the command object to be as they were be-
fore the Am_Choice_Interactor was run. Redo restores the values.

5.3.5.1.3 Simple Example

See the file testinter.cc for lots of additional examples of uses of Interactors and Command objects.
The following Interactor works on any object which is directly a part of the window. Due to the
constraints, if you press the mouse down over any rectangle created from rect_proto that is in the
window, it will change to having a thick line style when they mouse is over it (when it is “interim-
selected”), and they will turn white when the mouse button is release (and it becomes selected).

Am_Define_Style_Formula (rect_line) {
if ((bool)self.GV (Am_INTERIM_SELECTED)) return thick_line;
else return thin_line;

}



Page 174 Interactors and Command Objects for Handling Input

Am_Define_Style Formula (rect_fill) {
if ((bool)self.GV (Am_SELECTED)) return Am White;
else return self.GV (Am _VALUE); /the real color
}
rect_proto = Am Rectangle.Create ("rect_proto")
.Set (Am _WIDTH, 30)
.Set (Am _HEIGHT, 30)
.Set (Am_SELECTED, false)
.Set (Am_INTERIM_SELECTED, false)
.Set (Am_VALUE, Am_Purple) //putthe real color here
.Set (Am_FILL_STYLE, rect_fill)
.Set (Am_LINE_STYLE, rect_line)
select_inter = Am Choice_Interactor.Create("choose_rect™)
.Set (Am_START WHERE_TEST, Am_Inter_In_Part);
window.Add_Part (select_inter):;

5.3.5.2 Am_One_Shot_Interactor

The Am_oOne_shot_Interactor is used when you want something to happen immediately on an
event. For example, you might want a command to be executed when a keyboard key is hit, or
when the mouse button is first pressed. The parameters and default behavior for the
Am_One_sShot_Interactor are the same as for a Am_Choice_Interactor, in case you want to
have an object be selected when the start_when event happens. The programmer can choose wheth-
er one or more objects can be selected, and the slots am_INTERIM SELECTED and Am_SELECTED of
these objects are set by the Am_One_Shot Interactor the same was as the
Am_Choice_Interactor.

The slots for the am_one_shot_Interactor are identical to those for the Am_Choice_TInteractor
(see above).

5.3.5.2.1 Simple Example

In this example, we create a Am_One_Shot_Interactor which calls the am_po_METHOD of the
change_setting_ command (Whichis do_change_setting) when any keyboard key is hit in the
window. The change_setting_command’s Am_UNDO_METHOD (which is undo_change_setting)
will be used to undo this action. The programmer would write the methods for do and undo.

Am_Object change_setting_command = Am Command.Create()
.Set (Am_DO_METHOD, do_change_setting)
.Set (Am_UNDO_METHOD, undo_change_setting);

Am_Object how_set_inter =
Am_One_Shot_Interactor.Create{"change_settings")
.Set (Am_START WHEN, "ANY_KEYBOARD")
.Add_Part (Am_COMMAND, change_setting_command)

window.Add_Part (how_set_inter);



Interactors and Command Objects for Handling Input Page 175

5.3.5.3 Am_Move_Grow_Interactor

The Am_Move_Grow_Interactor is used to move or change the size of graphical objects with the
mouse. The default methods in the Am_Move_Grow_iInteractor directly set the appropriate slots
of the object to cause it to move or change size. For rectangles, circles, groups and most other ob-
jects, the default methods set the Am_LEFT, Am_TOP, am wIDTH and Am_HEIGHT. For lines (more
specifically, any object whose am_AS_LINE slot is true), the methods may instead set the am_x1,
Am_Y1, Am_X2 and am_y2 slots.

Slot Default Value Type
All of ths slots of Am_Interactor, with the following changes:
Am_GROWING false bool
Am_AS_LINE <formula> bool
Am_FEEDBACK_OBJECT NULL Am_Object interim feedback
Am_GRID_X 0 int
Am GRID_Y 0 int
Am_GRID_ORIGIN_X 0 int
Am_GRID_ORIGIN_Y 0 int
Am_GRID METHOD NULL Am_Custom_
Gridding_Method
Am_WHERE_ATTACH Am_ATTACH_ Am_Move_Grow_ Am_ATTACH_.. {WHERE_HIT,
WHERE_HIT Where_Attach NW, N, NE, E, SE, S, SW, W,
Am_MINIMUM_WIDTH 0 int END_I, END_2, CENTER]
Am_MINIMUM HEIGHT 0 int
Am_MINIMUM_LENGTH 0 int
Am_VALUE NULL Am_Inter_Location

5.3.5.3.1 Special Slots of Move_Grow Interactors

* am_GROWING: If false or zero, then object is moved without changing its size (or for lines,
without changing the orientation or length). If true or non-zero, then adjusts the size (or
a single end-point for a line). The default is false.

* am_AS_LINE: If false or zero, then treats the object as a rectangle and adjusts the am_LEFT,
Am_TOP, Am WIDTH and Am HEIGHT slots. If true or non-zero, then if the object is being
changed size, then sets the sm_x1, Am_v1, am x2 and am_v2 slots (lines can be moved by
setting their Am_LEFT and Am_ToP slots). The default is a formula that looks at the value
of the am_as_vINE slot of the object the Interactor is modifying.

* Am_FEEDBACK_OBJECT: If NULL (0) (the default), then the actual object moves around with
the mouse. If this slot contains an object, however, then that object is used as an interim-
feedback object, and it moves around with the mouse, and the actual object is moved or
changed size only when the stop-when event happens (e.g., when the mouse button is
released). Don’t forget to add the feedback object to a group or window in addition to



Page 176 Interactors and Command Objects for Handling Input

adding it as the am_FEEDBACK_OBJECT. While the feedback object is moving around, the
original object simply stays in its original position. See Section 5.4.3 about using a window
as the feedback object.

* Am_WHERE_ATTACH: This slot controls what part of the object is attached to the mouse as the
object is manipulated. The options are defined by the enum type
Am_Move_Grow_Where_Attach in inter.h. They are:

* Am_ATTACH WHERE_HIT: (This is the default.) The mouse is attached where the
mouse is pressed down. If growing the object, then checks which edge the mouse
is closest to, and grows from there.

* am_ATTACH_CENTER: The center of the object. This is illegal if growing the object.

* Am_ATTACH_NW, Am_ATTACH N, Am ATTACH NE, Am_ATTACH E,Am ATTACH SE,
Am ATTACH_S, Am ATTACH sSw, Am_ATTACH_w: The mouse is attached at this
corner or at the center of this side of the object.

* Am_ATTACH_END_1, Am_ATTACH_END_2: Only available for lines. End_1 is the end
defined by Am_x1 and am_v1.

* Am_MINIMUM_WIDTH, Am_MINIMUM_HEIGHT : When growing, these are the minimum legal
size. Default is O.

* Am_MINIMUM_LENGTH: Minimum length when growing lines. Default is O.

5.3.5.3.2 Gridding

There are two ways to do gridding for Am_Move_Grow_Interactors and
Am_New_Point_Interactors. The first is to provide a method, and the second is the provide the
gridding origin and multiples:

* am_GRID_METHOD: (Default is NULL (0)). If supplied, this should be a method of the type
Am_Custom_Gridding_Method. This function will be given the current x and y and should
return the new x and y to use. This kind of gridding is also useful for snapping, “gravity,”
and keeping the object being dragged inside a region. For example:

Am_Define_Method{Am Custom_ Gridding_ Method, wvoid, keep_inside_window,
(Am_Object inter, int x, int v,
int& out_x, int & out_vy)) { ... }
//see the file samples/space/space. cc for the complete code of this function
* Am_GRID_X, am_GRID_Y: If am GRID_PROC is not supplied, then these slots can hold the
number of pixels the mouse skips over. Default is 0.

* Am_GRID_ORIGIN_X, Am_GRID_ORIGIN_Y: These can hold the offset in pixels from the edge
of the window for the origin of the gridding. Default is 0.

5.3.5.3.3 Standard operation of the Am_Move_Grow_Interactor

As the Am_Move_Grow_Interactor is operating, it calls the various internal methods. The default
operation of these methods is as follows. If this is not sufficient for your needs, then you may need
to override the methods, as explained in Section 5.5.2.



Interactors and Command Objects for Handling Input Page 177

If the Interactor’s am_GROWING slot is set to true, the interactor grows the object, otherwise the in-
teractor moves the object. If the Interactor’s am _As_LINE slot is false, the object is moved or
grown by setting its Am_LEFT, Am_TOP, Am_WIDTH and Am_HEIGHT slots. If the Interactor’s
Am_AS_LINE slot is true, the object is moved or grown by setting its Am_x1, Am_ Y1, Am_x2 and
am_v2 slots. If there is a feedback object in the Am_FEEDBACK_OBJECT slot then its size is set to the
size of the object being manipulated, and its am_vISIBLE slot is set to true. Then it is moved or
its size is changed with the mouse. Otherwise, the object itself is manipulated. At any time while
the Interactor is running, the abort event can be hit (default is "control-g") to restore the object
to its original position and size. When the stop event happens, then the feedback object is made
invisible, and the object is moved or changed size to the final position.

The default Undo method of the am_Move_Grow_Interactor simply resets the object to its origi-
nal size and position. Redo undoes the undo. When selectively repeating the operation, there are
two possible interpretations: change the object by the same absolute values, or change by the same
relative amounts. We chose to use the absolute values, so repeating the move or grow will put the
object in the same place the original object was moved or grown to. Similarly, selective undo will
always return the object to where the original object was before the move or grow.

5.3.5.3.4 Simple Example

See the file testinter . cc for additional examples that use Interactors and Command objects. The
following Interactor will move any object in the window when the middle button is held down.

Am_Object move_inter = Am Move_Grow_Interactor.Create("move_object")
.Set (Am_START_WHERE_TEST, Am Inter In_ Part)
.Set (Am_START WHEN, "MIDDLE_DOWN") ;

window.Add_Part (move_inter);



Page 178 Interactors and Command Objects for Handling Input

5.3.5.4 Am_New_Points_Interactor

The Am_New_Points_Interactor is used for creating new objects. The programmer can specify
how many points are used to define the object (currently, only 1 or 2 points are supported), and the
Interactor lets the user rubber-band out the new points. It is generally required for the programmer
to provide a feedback object for a am_New_Points_Interactor sothe user can see where the new
object will be. If one point is desired, the feedback will still follow the mouse until the stop event,
but the final point will be returned, rather than the initial point. Gridding can be used as with a
Am_Move_Grow_Interactor. To create the actual new objects, the programmer provides a call-
back function in the Am_CREATE_NEW_OBJECT_METHOD slot of the Interactor.

Slot Default Value Type
All of ths slots of Am_Interactor, with the following changes:
Am_AS_LINE 0 bool
Am_FEEDBACK_OBJECT NULL Am_Object
Am HOW_ MANY POINTS 2 int
Am FLIP_TF_ CHANGE_SIDES true bool
Am_ABORT_IF TOO_SMALL false bool
Am_GRTID_X 0 int
Am GRID_Y 0 int
Am GRID_ORIGIN_X 0 int
Am GRID_ORIGIN_ Y 0 int
Am_GRID_METHOD 0 Am Custom_

Gridding_Method

Am MINIMUM WIDTH 0 int
Am_MINIMUM_HEIGHT 0 int
Am MINIMUM_ LENGTH int
Am_ CREATE_NEW_OBJECT__ NULL Am_Create_New_

METHOD
Am_START WHERE_TEST
Am_VALUE

Am_ Inter_ In

NULL

Object_Method
Am_Where_Method

Am_Object newly created object

5.3.5.4.1 Special Slots of Am_New_Points_Interactors

* am_AS_LINE: If true, then creates the new object as a line, and sets the am_x1, am_v1, etc.
slots of the feedback object. If false, the default, then creates the new object as a rectangle,
and sets the am_LEFT, am_TOP, etc. of the feedback object.

* Am_FEEDBACK_OBJECT: Object to rubber band to show where the new object will be.

* Am_HOW_MANY_POINTS: The number of points that are desired. Lines, rectangles, etc. are
normally defined by two points, which is the default. Currently, the only supported values

are 1 and 2.



Interactors and Command Objects for Handling Input Page 179

®* Am_MINIMUM_WIDTH, Am_MINIMUM HEIGHT, Am MINIMUM_LENGTH: Same as for
Am_Move_Grow_Interactor (Section 5.3.5.3.1).

* Am_ABORT_IF_TOO_sMALL: If true, and if the size is less than the minimum, then no object
will be created (if the stop event happens while the object is less than the minimum, then
the Interactor aborts). If false (the default), then an object is created with the minimum size.

*Am_FLIP_IF_CHANGE_SIDES: If true, then if the cursor goes above and/or to the left of the
original point, the object is flipped. If false, then the new object is pegged at its minimum
size. This is only relevant if Am_As_LINE is false.

®Am_GRID_X, Am_GRID_Y, Am GRID_ORIGIN_X, Am_GRID_ORIGIN_Y, Am_GRID_PROC:
Same as for Am_Move_Grow_Interactor (Section 5.3.5.3.2).

* Am_CREATE_NEW_OBJECT METHOD: Set with a method to create the object; see next section.

5.3.5.4.2 Standard operation of the Am_New_Point_Interactor

As the Am_New_Point_Interactor is operating, it calls the various internal methods. The default
operation of these methods is as follows. If this is not sufficient for your needs, then you may need
to override the methods, as explained in Section 5.5.2.

While the Interactor is operating, the appropriate slots of the feedback object are set, as controlled
by the parameters described above. If the user hits the abort key while the Interactor is running
("control_g" by default), the feedback object is made invisible and the Interactor aborts. If the
user performs the Am_sTop_wHEN event (usually by releasing the mouse button), then the
Am_CREATE_NEW_OBJECT_METHOD is called. (If there is no procedure, then nothing happens.) The
method must be of type am_Create_New_Object_Method which is defined as:

// type of method in the Am_CREATE_NEW_OBJECT_METHOD slot of Am_New_Points_Interactor.
// Should return the new object created.
// ** old_object is Valid if this is being called as a result of a Repeat undo call, and means that a new
// object should be created like that old_object.
Am_Define_Method Type(Am Create New_Object_Method, Am_Object,
(Am_Object inter, Am Inter_Location location,
Am_Object o0ld_object));

The am_Tnter_Location type is explained in Section 5.3.3.4. (Note: this interface may change
when we support more than 2 points). After creating the new object and adding it as a part to some
group or window, the procedure should return the new object.

The default undo and selective undo methods remove the object from its owner, and the default
redo method adds it back to the owner again. The default repeat method calls the
Am_CREATE_NEW_OBJECT_METHOD again passing a copy of the original object, and the method is ex-
pected to make a new object like the old one. If the create has been undone, then when redo or
repeat is no longer possible (determined by the type of undo handler in use--Section 5.5), and the
saved objects are automatically destroyed.



Page 180 Interactors and Command Objects for Handling Input

Note: if you use the Am_Create_New_Object_Method for something other than creating objects,
then do not have a am_Create_New_Object_Method return the affected object, because the buily-
in undo methods may automatically delete the object. For example, in space.cc, a
Am_New_Points_Interactor is used to draw the phaser which deletes objects, and this is handled
in the command’s DO method. It would be an error to do this from the
Am_Create_New_Object_Method since the Undo method might delete the object.

5.3.5.5 Am_Text_Edit_Interactor

The am_Text_Edit_Interactor is used for single-line, single-font editing of the text in am_Text
objects. (Support for multi-line, multi-font text editing will be in a future release.) The default
behavior is to directly set the am_TEXT and Am_CURSOR_INDEX slots of the am_Text object to reflect
the wuser’s changes. Most of the special operations and types used by the
Am_Text_FEdit_Interactor are defined in text_fns.h.

Slot Default Value Type

All of ths slots of Am_Interactor, with the following changes:

Am_START WHERE_TEST Am_TInter In_Text_ Am_Where_Method
Object_Or_Part

Am_STOP_WHEN Am_TInput_Char (*RETURN”") Am_TInput_Char

Am_VALUE wu Am_String

Am_WANT PENDING__ false bool

DELETE

Am TEXT_EDIT METHOD Am_Default_Text__ Am_Text_Edit_
Edit_Method Method

Am_EDIT_TRANSLATION_ Am_Edit_Translation_ Am_Edit_

TABLE Table: :Default_Table() "Translation_Table

When the Am_START_WHEN event occurs, the Interactor puts the text object’s cursor where the start
event occurred. Subsequent events are sent to the editing method in the Am_TEXT EDIT METHOD
slot which modifies the am_Text object. When the stop_when event happens, the cursor is turned
off and the command object’s DO_METHOD method is called. The stop_when event is not en-
tered into the string.

The default Am RUNNING_WHERE_OBJECT is true, meaning the Interactor will run no matter where
the user moves the cursor. If this slot is set to be a particular object, leaving that object causes the
Interactor to hide the text object’s cursor until the user moves back into the object.

Notice that Am_Text_Edit_Interactor's Am_START WHERE_TEST slot is set to the value
Am_Inter_In_Text_Object_Or_Part. Am Text_ Edit_Interactors only work properly on
am_Text objects, so one of the text tests should be used for the Am_START_WHERE_TEST slot.



Interactors and Command Objects for Handling Input Page 181

5.3.5.5.1 Special Slots of Text Edit Interactors

* Am_WANT_PENDING_DELETE: If this is true (the default is false), then if the user double-clicks
in the string, then the entire string is selected. The next character to be typed (unless it is a
cursor movement) will delete the entire string.

* Am_TEXT_EDIT_METHOD: This is a method of type Am_Text_Edit_Method (in inter.h)
which is defined as:
Am_Define Method_Type (Am Text_Edit_Method, wvoid,
(Am_Object text, Am_Input_Char ic, Am Object inter));

The text edit function should edit the text object's am_TExT field given the input character ic.
It can also modify the Am_CURSOR_INDEX slot of the object, but shouldn’t change other slots.
The default function: Am_Default_Text_Edit_Method, uses the
Am_Edit_Translation_Table specified in the Interactor’s Am_EDIT_TRANSLATION_ TABLE
slot to provide the basic editing operations (see the description of the
Am_EDIT_TRANSLATION_TABLE slot below). If the input character doesn’t match any opera-

tion in the translation table, the default edit function does the following:

* ASCII characters between ' ' (SPACE)and '~ are inserted into the string before
the cursor.

« If the META key is held down while typing a character, then the high (eighth) bit of
the character is set, so that you can access symbols at the top of the fonts.

* All other keyboard events make the Interactor beep and do nothing.
* Non-keyboard events are ignored.

*Am_EDIT_TRANSLATION_TABLE: Thisis an am Edit_Translation_Table (defined in the file
text_fns.h), a table that maps input characters to Am_Text_Edit_Operations.
Am_Edit_Translation_Table::Default_Table() defines the following mappings:

®* CONTROL_h, BACKSPACE, DELETE: delete character before cursor

® CONTROL_w, CONTROL_BACKSPACE, CONTROL_DELETE: delete word before cursor
* CONTROL_d: delete character after cursor

* CONTROL_u: delete the entire string

* CONTROL_k: delete string from cursor to end of line

* CONTROL_b, LEFT_ARROW: move cursor one character to the left

* CONTROL_f, RIGHT_ARROW: MOVE cursor one character to the right

* CONTROL_a: move cursor to beginning of line

* CONTROL_e: move cursor to end of line

* CONTROL_y: insert the contents of the X cut buffer at the cursor position
* CONTROL_c: copy the current string into the X cut buffer

« left mouse button inside the string: move the cursor

» middle mouse button inside the string: paste X cut buffer

* any mouse button down outside the string: stop the interactor, as if the user had typed
the am_sTOP_WHEN character, but pass the mouse down event on so it can do other



Page 182 Interactors and Command Objects for Handling Input

actions as well.

5.3.5.5.2 Standard operation of the Am_Edit_Text_Interactor

The text interactor's start action saves a copy of the text object's original Am_TEXT slot in the
Am_OLD_VALUE slot of the Interactor, and it moves the cursor to the location specified by where the
Interactor start event occurred. All subsequent events are passed to the Am_Text_Edit_Method
specified in the Interactor's Am_TEXT_EDIT METHOD slot. An abort event causes the original text
object's text to be restored, and the object's Am_CURSOR_INDEX is set to Am NO_CURSOR. When the
stop event occurs, the Command object's am_VALUE slot is set to the new value of the text object's
am_TEXT slot, and the text object's Am_CURSOR_INDEX is set to Am_NO_CURSOR. The stop_when
event is not entered into the string.

Undo and selective undo restore the text object to its previous value, and redo undoes the undo.
Repeat sets the text object to have the string that the user edited it to.

5.3.5.6 Am_Gesture_Interactor

The Am_Gesture_Interactor records a gesture, which is the path traced out by the mouse (or
other pointing device) while the interactor is running. Beginning with its start event, the gesture
interactor records the location of every input event until the interactor stops or aborts. When the
interactor stops, it saves the gesture as a list of points (a Am_Point_ List) in its Am _POINT_LIST
slot. This behavior (which is the default) is also useful for a free-hand drawing tool, which would
retrieve the point list and install it in a Am_Polygon object to create a curve duplicating the mouse
path.

The real power of the gesture interactor, however, lies in its ability to recognize and classify ges-
tures into categories defined by the programmer. The categories are defined by a
Am_Gesture_Classifier object installed in the gesture interactor’s Am_CLASSIFIER slot. (The
procedure for creating a classifier is explained in Section 5.3.5.6.1) When a classifier is installed,
the gesture interactor attempts to classify each gesture into one of the categories. If a gesture is
successfully recognized, the name of its category (a Am_String) is stored in the Am_VALUE slots of
the interactor and its command object. If a gesture is unrecognized -- that is, if it is too different
from the prototypical gestures in each category -- then Am_VALUE is set to 0.

In addition, to simplify applications where gestures represent commands (such as cut, copy, or
paste), the gesture interactor can take a list of command objects in its am_1TEMS slot. Before the
interactor invokes its command object, it first searches the am ITEMS list for a command object
whose Am_LABEL is identical to am_vALUE (which is the gesture’s name if it was recognized and
NULL if not). The first matching command object in the list is invoked instead of the interactor’s
command object. If no command object in am_1TEMS matches the gesture, then the interactor’s
command object is invoked instead. Thus, a gesture interactor can be configured much like a menu
widget or button panel widget, by supplying a list of commands.



Interactors and Command Objects for Handling Input Page 183

By default, the gesture interactor provides no visible feedback while the user is tracing out a ges-
ture. To provide feedback, set the am_FEEDBACK_OBJECT slot to a graphical object which has a
Am_POINT_LISTslot. As the interactor records a gesture, it updates the feedback object’s point list.
The usual feedback object is a am_Polygon with no fill style, which draws an unfilled, black curve
as the user gestures. Here is some code that creates a feedback object:

Am_Polygon.Create()
.Set (Am_FILI_STYLE, 0);

Note: the feedback object must be added to a window or group, or it will never be drawn.

The list below summarizes the three most common ways to use a gesture interactor, showing how
the interactor’s slots should be initialized in each case.

* The gesture is uninterpreted (used as a raw sequence of points).
° Am_CLASSIFIER: default (0).
* am_ITEMS: default (0).

* Am_cOMMAND of the interactor: a command that gets the list of points from the
interactor’s Am_POINT_LIST slot and uses it.

* Am_FEEDBACK_OBJECT: & Am_Polygon With no fill style which is part of a group or
window.

* The gesture is interpreted as a command.
® Am_CLASSIFIER: a Am_Gesture_Classifier object.

* Am_ITEMS: a Am_Value_List of command objects whose labels correspond to the
category names in the classifier.

* am_coMMAND of the interactor: a command that handles the case when the gesture is
not recognized.

* Am_FEEDBACK_OBJECT: a Am_Polygon With no fill style which is part of a group or
window.

* The gesture is interpreted as data.
* Am_CLASSIFIER: a Am Gesture_Classifier object.
* am_ITEMS: default (0).

* am_coMMAND of the interactor: the “DO” method will access the command’s
am_vALUE, which will be the name of the gesture’s category, or 0 if the gesture was
unrecognizable.

* Am_FEEDBACK_OBJECT: 2 Am_Polygon With no fill style which is part of a group or
window.



Page 184 Interactors and Command Objects for Handling Input

5.3.5.6.1 Creating and Using a Gesture Classifier

A gesture classifier maps gestures into named categories. Amulet uses a statistical classifier devel-
oped by Rubine!. Tn Rubine’s algorithm, the classifier is trained by giving it a number of examples
for each gesture category. Each example is converted into a feature vector (containing global fea-
tures like path length and initial direction), and the examples in each category are combined to give
a mean feature vector for the category and a covariance matrix for the entire classifier. After train-
ing, the classifier can be used to recognize a gesture. To recognize a gesture, the classifier converts
it to a feature vector and determines the most likely gesture category to which it belongs (using a

maximum likelihood estimator). For more information, see Rubine’s thesis!.

In Amulet, gesture classifiers are trained in a standalone application, called Agate. Agate may be
found in samples/agate under the Amulet root directory. To create a classifier using Agate, add
a class for each different type of gesture, giving a unique name to each class. For instance, a draw-
ing program might have a class called “line” which contains straight-line gestures, and a class
called “circle” which contains looping gestures. To demonstrate examples for a gesture class, se-
lect the class, then draw its gestures in the large empty area at the bottom of the Agate window. To
produce the most forgiving classifier, try to include examples with varying size, orientation, and
direction (except where your gesture classes rely on such information for uniqueness), and provide
10 to 20 examples for each class. At any point while training a classifier, you can switch from Train
mode to Recognize mode in order to test the classifier. In Recognize mode, the classifier attempts
to recognize the gesture you draw, highlighting the class to which it most likely belongs.

After training a classifier, save it to a file. Classifiers can be saved either with or without the ex-
amples that constructed them, depending on a checkbox in Agate’s Save-File dialog. If you want
to change the classifier later, then you should save it with examples, otherwise editing will be im-
possible. If you want to make the saved classifier as small as possible (perhaps to distribute with
your application), then you can save it without examples. Either kind of file can be read into an
Amulet program and used in a gesture interactor.

To use a saved classifier in an Amulet program, create an instance of the wrapper
Am_Gesture_Classifier and load the classifier file into it. A classifier can be loaded in either of
two ways: by specifying the filename in the constructor:

Am_Gesture_Classifier my_classifier ("my-classifier-file.cl”);

or by opening the file as a stream and using >>:

Am_Gesture_Classifier my classifier;
ifstream in(“my-classifier-file.cl”);
in >> the_classifier;

After the Am_Gesture_Classifier object is initialized with a classifier, it can be installed into the
Am_CLASSIFIER slot of a gesture interactor:
gesture_interactor.Set (Am_CLASSIFIER, my classifier);

1. Dean Rubine, The Automatic Recognition of Gestures, School of Computer Science, Carnegie Mellon
University, December, 1991, Technical Report CMU-CS-91-202



Interactors and Command Objects for Handling Input Page 185

5.3.5.6.2 Special Slots of Gesture Interactors

* Am_CLASSIFIER! a Am_Gesture_Classifier wrapper, which defines the classes of gestures
that can be recognized. If this slot is O (the default), then gestures are left uninterpreted.

* Am_FEEDBACK_OBJECT: a graphical object that displays a trace of the gesture as it is drawn.
The interactor controls the feedback object by setting its am_PoINT _LIST slot, so typically
a Am_Polygon object is used. The feedback object must be part of a visible group and/or
window in order to be seen.

* am_ITEMS: a list of Am_Command objects whose Am_LABEL slots correspond to the gesture
names in the classifier. When the interactor recognizes a gesture matching one of these
command objects, the am_Do_METHOD of the matching command object is invoked instead
of the interactor’s own command object.

* Am_POINT_LIST: set by the interactor with the list of points in the gesture. This slot is updated
while the interactor is running, reflecting the points that have been traced out up to that
moment. This slot can be accessed by the DO methods to get the actual points used in the
gesture.

* Am_VALUE: set by the interactor with the name (a Am_string) of the recognized gesture. If
the gesture is unrecognizable, this slot is set to 0.

* Am_MIN_NONAMBIGUITY_PROB: the minimum allowable probability that a recognized gesture
has been correctly classified. Whenever the interactor classifies a gesture in category X, it
calculates the probability that the gesture actually belongs to X. If this estimate is lower
than Am_MTN_NONAMBIGUITY_PROB, then the classification is rejected, and the gesture is
considered unrecognized. Intuitively, this parameter determines whether the gesture
interactor will refuse to recognize gestures in the “gray arcas” where gesture classes
overlap, and controls how large the unrecognizable areas should be. The default for this
slot is 0, so even the most ambiguous gesture is given a classification. If a stricter classifier
1s desired, values between 0.90 and 0.99 are reasonable. See Rubine’s thesis for a full
explanation.

¢ Am_MAX DIST_TO_MEAN: the maximum allowable Mahalanobis distance that a recognized
gesture may lie from the mean feature vector of its class. Intuitively, this parameter
determines whether the gesture interactor will reject gestures that are dissimilar from all
gesture classes, and controls the degree of dissimilarity required for rejection. Larger
values of this slot accept more outlying gestures, but the special value of 0 (the default)
turns off distance detection, so even the most outlying gesture is given a classification. If
a stricter classifier is desired, values between 50 and 200 are reasonable.

* Feature slots: as part of classifying a gesture, the interactor must compute a number of
features of the gesture. The results are stored by the interactor in slots of the interactor in
case the command object needs them. For instance, a “selection” gesture might look at the
gesture’s bounding box to determine the range of the selection.

® Am_MIN_X, Am_MIN_Y, Am MAX_X, Am MAX_Y: the bounding box of the path.

* Am_TOTAL_LENGTH: the total length of the path, computed as the sum of the lengths
of its segments,

* Am_TOTAL_ANGLE: the total angle traversed by the path, in radians, computed as the
sum of the signed angles of its segments (treated as vectors). For example, a zig-
zag path which turns left 90 degrees, then turns right 90 degrees, has zero total



Page 186 Interactors and Command Objects for Handling Input

angle.

* Am_ABS_ANGLE: the total absolute angle of the path, in radians, computed as the sum
of the abolute values of the segment angles.

* Am_SHARPNESS: the sum of the squares of the angles traversed, in radians. (Thus, a

path which smoothly turns has a lower sharpness value than a path which makes an
abrupt turn.)

* Am_START_X, Am_START_Y: the starting point on the path.

® Am_INITIAL_SIN, Am_INITIAL_COS: the sine and cosine of the initial segment of the
path, i.e., the vector from the first point to the second point.

* Am_DX2, Am_DY?2: the horizontal and vertical differences between the last two points.
* am_MAGSQ2: the length of the last segment on the path.
* Am_END_X, Am_END_Y: the last point.

5.3.5.6.3 Standard operation of the am_Gesture_Interactor

As the gesture interactor is operating, it calls various internal methods. The default operation of
these methods is as follows. If this is not sufficient for your needs, then you may need to override
the methods, as explained in Section 5.5.2.

While the Interactor is running, it appends the points visited by the user’s mouse to the
Am_Point_List inits Am_POINT_LIST slot. If a feedback object has been provided, it also appends
the points to the feedback object’s am_poINT_LIST slot. If the user hits the abort key while the

Interactor is running ("control_g" by default), the feedback object is made invisible and the In-
teractor aborts.

Otherwise, when the user performs the am_sToP_wHEN event (usually by releasing the mouse but-
ton), then the interactor attempts to recognize the gesture using the classifier in its Am_CLASSIFER
slot. If the gesture is successfully recognized, then its name is stored in am_vaLue. Otherwise, if
Am_CLASSIFIER is O, or if the gesture cannot be recognized because it is too ambiguous (by
Am_MIN_NONAMBIGUITY_PROB) or too different from the known gestures (by
Am MAX _DIST_TO_MEAN), then O is stored in Am_VALUE.

After classifying the gesture, the interactor looks for a command object to invoke. First, it searches
the list in its am_TTEMS slot for a command object whose Am_LABEL matches am_vALUE (which, re-
call, is either the gesture name or 0 if the gesture was unrecognized). If a matching command is
found, the interactor invokes its DO method; otherwise, it invokes the DO method of the command
in the interactor’s Am_COMMAND slot.



Interactors and Command Objects for Handling Input Page 187

5.4 Advanced Features

5.4.1 Output Slots of Interactors

As they are operating, Interactors set a number of slots in themselves which you can access from
the Command’s Do procedure, or from constraints that determine slots of the object. The slots set
by all Interactors are:

*Am_START_OBJECT: Set with the object returned by the Am_START WHERE_TEST each time the
Interactor starts. This might be useful, for example, if there are two types of “handles”
connected to objects that are to be modified: one for moving and one for growing,
distinguished by the value of the Is_a_MovING_ HANDLE slot. Then you might have a
formula in the Am_Growing slot of a Am_Move_Grow_Interactor as follows:

Am_Define Formula (bool, grow_or_move) {
Am_Object start_object;
start_object = self.GV{Am_START OBJECT) ;
if ((bool)start_object.GV(IS_A_MOVING HANDLE)) return false;
else return true;

}

* Am_START_CHAR: The initial Am_TInput_char that started the Interactor. This is most useful
when the Am_START_WHEN slot is something like Am ANY_XEYBOARD, or
Am_ANY_MOUSE_DOWN. For example, you might put a constraint in the am_aAs_ILine slot that
depends on which mouse button starts the Interactor. In the following, a line is created
when the SHIFT key is held down, otherwise to a rectangle is created:

Am_Define_Formula (bool, as_line_if_ shift) {
Am_TInput_Char start_char =
Am_TInput_Char: :Narrow(self .GV (Am_START CHAR));
if (start_char.shift) return true;
else return false;

}

*Am_FIRST_X, Am_FIRST_Y: The initial X and Y locations of the mouse when the Interactor
started. These are in the coordinate system of the window the initial event was in.

* am_WINDOW: The window the Interactor is currently running in. Like graphical objects, this
slot shows which window the Interactor is currently attached to. For Interactors that run
over multiple windows (see Section 5.4.3), this slot is continuously updated with the
current window.

* Am_CURRENT_OBJECT: The current object the Interactor is working on. This will be object
returned by Am_START_WHERE_TEST when the Interactor starts running, and then by the
Am_RUNNING_WHERE_TEST while the Interactor is running. This is most useful for
Am_Choice_Interactors Where the object the Interactor is running over changes as the
Interactor runs. Most interactors use Am_RUNNING_WHERE_TEST of true, in which case the
Am_CURRENT_OBJECT is set to the window.

The specific Interactors also set special slots in themselves as they are running, and then in their
Command objects when they finish. These are described below in Section 5.5.3 about each specific
type of Interactor.



Page 188 Interactors and Command Objects for Handling Input

5.4.2 Priority Levels

When an input event occurs in a window, Amulet tests the Interactors attached to objects in that
window in a particular order. Normally, the correct Interactor is executed. However, there are cas-
es where the programmer needs more control over which Interactors are run, and this section dis-
cusses the two slots which control this:

Am_PRIORITY: The priority of this Interactor. The default is 1. 0.

Am_RUN_ALSO: If true, then let other Interactors run after this one is completed. The
default is false.

All the Interactors that can operate on a window are kept in a sorted list. The list is sorted first by
the Interactor’s priority number, and then by the display order of the graphical object the Interactor
is attached to. The result is that for Interactors of the same priority, the one attached to the least
covered (front-most) graphical object is handled first.

The priority of the Interactor is stored in the am_PRTORITY slot and can be any positive or negative
number. When an Interactor starts running, the priority level is increased by a fixed amount (de-
fined by Am_INTER_PRIORITY DIFF which is 100.0 and is defined in inter_advanced.h). This
makes sure that Interactors that are running take priority over those that are just waiting. If you
want to make sure that your Interactor runs before other default Interactors which may be running,
then use a priority higher than 101.0. For example, the debugging Interactor which pops up the
inspector (see Section 5.6) uses a priority of 300.0.

For Interactors with the same priority, the Interactor attached to the front and leaf most graphical
object will take precedence. This is implemented using the slots Am_OWNER_DEPTH and Am_RANK
of the graphical objects which are maintained by Opal. What this means is that an Interactor at-
tached to a part has priority over an Interactor attached to the group that the part is in, if they both
have the same value in the am_PRTIORITY slot. Note that this determinations does not take into ac-
count which objects the Interactor actually affects, just what object the Interactor is a part of. Thus,
if Interactor A is attached to group G and has a Am_START_WHERE_TEST Of Am_Inter_In_Part, and
Interactor B is attached to part P which is in G and has a Am_START WHERE_TEST of Am_Inter In,
then the Interactor on B will take precedence by default, even though both A and B can affect P.

If the Interactor that accepts the event has its Am_RUN_ALSO slot set to true (the default is false),
then other Interactors will also get to process the current event. Thus, the run-also Interactor op-
erates without grabbing the input event. This might be useful for Interactors that just want to mon-
itor the activity in a window, say to provide a “tele-pointer” in a multi-user application. In this case,
you would want the Interactor with am RUN_ALSO set to true to have a high priority.

Furthermore, if an Interactor that has am_RUN_ALSO slot set to false accepts the current event, the
system will continue to search to find if there are any other Interactors with am_RrRuN_aLSO slot set
to true that have the same priority as the Interactor that is running. These are also allowed to pro-
cess the current event.



Interactors and Command Objects for Handling Input Page 189

5.4.3 Multiple Windows

A single Interactor can handle objects which are in multiple windows. Since an Interactor must be
attached to a single window, graphical object or group, a special mechanism is needed to have an
Interactor operate across multiple windows. This is achieved by using the Am_MULTT_OWNERS slot.
The value of this slot can be:

* false or zero: which means that this slot is ignored, and the Interactor only works on the
window of the object it is attached to. This is the default.

* true (or any non-zero integer): the Interactor operates on all windows created using Amulet,
now or in the future.

*a Am_Value_List containing a list of objects or windows, which means that the Interactor
works in all the windows of the objects. This list must include the “main” window of the
object that the interactor is part of.

Of course, the function in the am_START_WHERE_TEST slot must search for objects in all of the ap-
propriate windows. It might use the value of the am_wInpow slot of the Interactor, which will con-
tain the window of the current event. This is normally sufficient for am_Choice_Interactors,
Am_One_Shot_Interactors, and Am_Text_Edit_Interactors that want to operate on objects in
multiple windows. For these interactors, the Am_MULTI_OWNERS slot can be either a list of windows
or a list of objects in those windows. Be sure to include the window to which the interactor is
attached.

Special features are built-in to support interactors that might want to move an object from one win-
dow to another, such as Am_Move_Grow_Interactors, Am_New_ Points_Interactors, and
Am_Gesture_Interactors. In this case, the am_MULTI_OWNERS slot should contain a list of ob-
Jects which should serve as the owners of the graphical objects as they are moved from one window
to another. Then, the interactor will automatically search the am_MuLTI_owNERs list for an object
in the window that the cursor is currently in, and if found, then the object being moved (returned
by the am_START_WHERE_TEST) will change to have that object as its owner.

Often the feedback objects should be in a different owner than the “real” objects being moved. In
this case, you can set the Am_MULTI_FEEDBACK_OWNERS slot with a list of owner objects for the
feedback object. In this case, the feedback object of the interactor (specified in the
Am_FEEDBACK_OBJECT slot of the interactor) will automatically be changed to be in the object of
the appropriate window. If the Am_MULTI_FEEDBACK_OWNERS slot is NULL, then the owners in the
Am_MULTI_OWNERS slot are used for the feedback object as well.

The Am_FEEDBACK_OBJECT can also be a top-level window object, in which case the various types
of interactor objects will move the object around on the screen. This is particularly useful when
you want to be sure to see the feedback even when the cursor is not over an Amulet window. For
move-grow interactors when using a window as the feedback, you should use something like
Am_ATTACH_NW for the Am WHERE ATTACH slot.

Examples of using multi-window interactors are in the test file inter/testinter. cc.



Page 190 Interactors and Command Objects for Handling Input

5.4.4 Running_Where

Section 5.3.2 mentioned that Interactors can be defined so that they stop operating when the mouse
goes outside of their active area. The active area is defined by the value of the
Am_RUNNING_WHERE_OBJECT slot. This slot should contain either a graphical object or true, which
means anywhere (so the Interactor never goes outside). The default for most Interactors for this
slot is true, but for Choice Interactors, this slot contains a constraint that makes it have the same
object as where the Interactor starts. To refine where the Interactor should be considered outside,
the programmer can also supply a value for the Am_RUNNING WHERE_TEST slot, which defaults to
Am_Inter_TIn except for choice Interactors, where it contains a constraint that uses the same func-
tion as the Am_sSTART wHERE_TEST. We have found that programmers rarely need to spec1fy the
running where of Interactors.

5.4.5 Starting, Stopping and Aborting Interactors

Interactors normally start, stop and abort due to actions by the user, but it is sometimes useful for
the programmer to be able to explicitly control the Interactors. The following functions are useful
for controlling this. If you have a widget, you would use the corresponding widget functions in-
stead (Am_Start_Widget, Am_Stop_Widget, and Am_Abort_Widget -- Section 5.5).

extern void Am_Abort_Interactor (Am_Object inter);

Am_Abort_Interactor causes the Interactor to abort (stop running). The command associated
with the Interactor is not queued for Undo.

extern void Am Stop_Interactor (Am Object inter,
Am Object stop_obj = Am No_Object,
Am Input_Char stop_char = Am Default_ Stop_Char,
Am_Object stop_window = Am No_Object, int stop_x = 0,
int stop_y = 0);

Am_Stop_Interactor explicitly stops an interactor as if it had completed normally (as if the stop
event had happened). The command associated with the interactor is queued for Undo, if appro-
priate. If the interactor was not running, Am_Stop_Interactor raises an error. If the stop_obj
parameter is not supplied, then am_Stop_Interactor uses the last object the interactor was oper-
ating on (if any). stop_char is the character sent to the Interactor’s routines to stand in for the final
event of the Interactor. If stop_window is not supplied, then will use stop_obj's window, and
stop_x and stop_y Will be stop_obj’s origin. If stop_window is supplied, then it should be the
window that the final event is with respect to, and you must also supply stop_x and stop_y as the
coordinates in the window at which the interactor should stop.

extern void Am_Start_Interactor (Am Object inter,
Am_Object start_obj = Am_No_Object,
Am_Input_Char start_char = Am Default_Start_Char,
Am_Object start_window = Am_No_Object, int start_x = 0,



Interactors and Command Objects for Handling Input Page 191

int start_y = 0);

Am_start_Tnteractor is used to explicitly start an Interactor. If the interactor is already running,
this does nothing. If start_obj is not supplied, then will use the inter's owner. If
start_window is not supplied, then uses start_obj's and sets start_x and start_y to
start_obj's origin. start_char is the initial character to start the interactor with. If
start_window is supplied, then you must also supply start_x and start_y as the initial coordi-
nate (with respect to the window) for the Interactor to start at.

If you want an interactor to never start by itself, you can have the am_sTART_wHEN slot be NULL,
and then start it explicitly using the Am_Start_Interactor procedure. Stmilarly, the
Am_STOP_WHEN slot can be NULL for an Interactor that should never stop by itself.

5.4.6 Support for Popping-up Windows and Modal Windows

It is often useful to be able to pop up a window, and wait for the user to respond. This can eliminate
having to chain a number of DO methods together when you just want to ask the user a question.
Amulet provides low-level functions to support this. If the window to ask the question is one of a
few standard types, you might alternatively use the built-in dialog boxes described in Section 6.3
of the widgets chapter.

The way the low level routines are used is that the programmer calls
Am_Pop_Up_Window_And_Wait passing in the window to wait on, and then that window contains a
number of widgets, at least one of which (usually the “OK” button) calls
Am _Finish _Pop_Up_Waiting as part of its DO method. The value passed to
Am _Finish Pop_ Up_Waiting is then returned by the am_Pop_Up_window_aAnd_Wait call.

extern void Am Pop_Up_Window_And_Wait (Am Object window,
Am_Value &return_value,
bool modal = true);

Am_Pop_Up_Window_And_Wait sets the visible of the window to true, and then waits for a routine
in that window to call Am_Finish_Pop_Up_ aiting on that window. Returns the value passed to
Am_Finish_Pop_Up_Waiting by setting the return_value parameter. If modal is true, the de-
fault, then the user will only be able to work on this one window, and all other windows of this
application will be frozen (input attempts to other windows will beep). Note that input can still be
directed to other applications, unlike modal dialog boxes on the Macintosh.

It is legal to call am_Pop_Up_wWindow _And_wait from inside a DO method, so a modal window

might pop up another modal window.

extern void Am_Finish Pop_Up_Waiting(Am_Object window,
Am Value return_value) ;



Page 192 Interactors and Command Objects for Handling Input

Am Finish Pop Up Waiting sets window’s Am VISIBLE to FALSE, and makes the
Am_Pop_Up_Window_And_Wait called on the same window return with the value passed as the

return_value. Although there is no default, it is acceptable to pass Am _No_value as the return
value.

This allows code like:
Am_Value val;
Am_Pop_Up_Window_And_Wait (my_ query window, wval);
if (val.valid())
else ...;

5.5 Customizing Interactor Objects

Amulet allows the programmer to customize the behavior of Interactors at multiple levels. As de-
scribed in the previous sections, many aspects of the behavior of Interactors can be controlled
through the parameters of the Interactors. We believe that in almost all cases, programmers will be
able to create their applications by using these built-in parameters of the pre-defined types of In-
teractors. If you are happy with the standard behavior, but want some additional actions to happen
when the interactor is finished, then you can attach a custom Command object to the interactor, as
described in Section 5.5.1. If you want behavior similar to a standard Interactor,. but slightly dif-
ferent, then you might want to override some of the standard methods that implement the Interac-
tor’s behavior, as described in Section 5.5.2. However, there might be rare cases when an entirely
new type of Interactor is required, as described in Section 5.5.3. For example, in Garnet which had
a similar Interactor model, none of the applications created using Garnet needed to create their own
Interactor types. However, when the Garnet group wanted to add support for Gesture recognition,
this required writing a new Interactor. Since Amulet is designed to support investigation into new
interactive styles and techniques, new kinds of Interactors may be needed to explore new types of
interaction beyond the conventional direct manipulation styles supported by the built-in Interac-
tors. In summary, we feel you should only need to create a new kind of Interactor when you are
supporting a radically different interaction style.

5.5.1 Adding Behaviors to Interactors

If you want the standard behavior of an interactor plus some additional behavior, you can override
the methods of the Command object in the Interactor. (See Section 5.6 for a complete discussion
of Command objects.) The command object in the Interactors all have empty methods, so you can
override the methods without concern. The methods that you can override include:

* am_START_DO_METHOD: Called once each time the Interactor starts running.
* Am_TINTERIM_DO_METHOD: Called each time there is an input event.
* Am_ABORT_DoO_METHOD: Called when the Interactor should abort.

* am_Do_METHOD: Called when the stop action happens and the Interactor should terminate
normally.



Interactors and Command Objects for Handling Input Page 193

There are three different kinds of methods that you can put into any of these slots of the command
objects:

* Am_Object_Method: which just takes the command object as a parameter.

* Am_Mouse_Event_Method: which takes the command object, the mouse x and y and ref_obj
of the command, and the input character. For example:
Am_Define_Method (Am_Mouse_Event_Method, void, my_mouse_method,
(Am_Object inter_or_cmd, int mouse_x, int mouse_y,
Am_Object ref_obj, Am Input_Char ic));
* Am_Current_Location_Method: which takes the command object, the object_modified,
which is usually the object that the Interactor is modifying, and the description of the
current input event position (see Section 5.3.3.4). This type of method can only be used

for move_grow and new_point interactors. An example:
Am_Define_Method (Am_Current_Location_Method, void, my do_method,
(Am_Object inter, Am Object object_modified,
Am_Inter_Location data)) { ... }

Note that the am_Mouse_Event_Method and the Am_Current_Location_Method cannot be used
Jor command objects in widgets, only for the command objects in Interactors. The command
objects in widgets only support am_Object_Method.

In addition to the information passed as parameters to the command object, slots of the command
object and of the Interactor are set by the Interactor and may be of use to the methods. For all com-
mand objects, the following slots are available:

In the command objects:

* am_OWNER: While the methods are running, the Am_owNER of the command is the Interactor,
so you can use Get_Owner() to access the slots. However, the command object is no longer
part of the Interactor at Undo time, so all of the unpo methods should use the
Am_SAVED_OLD_OWNER slot instead.

° Am_SAVED_OLD_OWNER: Set with the Interactor. This stays the Interactor the command was
attached to, so you can use this in Undo methods.

Each of the types of Interactor sets specific slots in the Interactor that the command object might
want to access, as described in the following sections. Remember that these slots are set in the
Interactor, not in the Command object. The slots described below are in addition to the slots
described with the specific interactors in Section 5.3.5 and the slots set into all interactors, de-
scribed in Section 5.4.1.

5.5.1.1 Available slots of Am_Choice_Interactor and Am_One_Shot_Interactor

* Am_OLD_INTERIM_VALUE which is set with an object or NULL which is the previously interim
selected object.

* Am_INTERIM_VALUE which is set with the newly selected object.

* am_VALUE which is set with the final result which may be NULL, an object (if only a single
object can be selected) or a am_value_List of objects.



Page 194 Interactors and Command Objects for Handling Input

* Am_OLD_VALUE which is set with the previous value of am_vaLuk for use if the command is
undone.

5.5.1.2 Available slots of Am_Move_Grow_Interactors

* Am_OBJECT_MODIFIED which is the object being moved or changed size.

* Am_INTERIM_VALUE which contains a Am_Inter_Location of the current position and size of
the object.

* am_oLD_VALUE which holds a copy of the old (original) value as an Am_Inter Location,
used in case the Interactor is aborted or later undone.

* am_VALUE (only availableto the DO and various UNDO methods) which contains the final
Am_Inter_Location used to set the position and size of the object.

5.5.1.3 Available slots of Am_New_Point_Interactors

* Am_TOO_SMALL (a bool) which is set by the interactor if the size is currently smaller than the
minimum allowed. The default method turns off the feedback if Am_ToO_sMALL is true.

* Am_INTERIM_VALUE which contains a Am_Inter_Location for the current position and size
of the feedback object.

* Am_vaLUE (only available in the DO and various UNDO methods) which holds the object
which was created as a result of this Command.

5.5.1.4 Available slots of Am_Text_Interactors

* Am_OBJECT_MODIFIED - the object being edited, which will be an instance of Am_Text.

* Am_OLD_VALUE - the original string for the object, as a Am_string, in case the user aborts or
calls Undo.

* am_VALUE (only available to the DO and various UNDO methods) which is the new (final)
string for the object.

5.5.1.5 Available slots of Am_Gesture_Interactors

* Am_POINT_ LIST - the list of points so far.

5.5.2 Modifying the Behavior of the Built-in Interactors

If you need to override the standard behavior of an Interactor, and the supplied parameterization is
not sufficient, then you may need to override one of the standard methods of the Interactor that con-
trol its behavior. All Interactors internally use the same state machine, as shown in the Figure in
Section 5.3.2. At each input event, Amulet will call an internal method of the Interactor, which
typically sets some internal slots of the Interactor, and first calls a customizable method described
below, and then calls the corresponding method of the command object, described in Section 5.5.1.
The methods of the Interactor you can override are the same as the methods in the command object
described above:



Interactors and Command Objects for Handling Input Page 195

* Am_START_DO_METHOD: Called once each time the Interactor starts running.
* Am_INTERIM DO_METHOD:Called each time there is an input event.
* Am_ABORT_DO_METHOD: Called when the Interactor should abort.

* am_DO_METHOD: Called when the stop action happens and the Interactor should terminate
~ normally.

As with the command objects in Interactors, the methods directly in the Interactors can take one of
the three types: Am_Object_Method, Am Mouse_Event_Method, or
Am_Current_location_Method, as defined in Section 5.5.1.

Remember that if you override the various DO methods, this will remove the standard be-
havior of the Interactors, so there may be some of the behavior you may want to re-imple-
ment in your code. For example, the am_ABORT_pO_METHEOD and the Am_DO_METHOD take care of
making the feedback object (if any) invisible. The Am_ABORT_DO_METHOD is also responsible for
restoring the object to its original state.

5.5.3 Entirely New Interactors

This section gives an overview of the how to build an entirely new type of Interactor. As said
above, we believe this almost never be necessary. You may need to look at the source code for one
of the built-in Interactors to see how they operate in detail.

The main event loop in Amulet takes each input event and looks at the sorted list of Interactors with
each window, and then asks each Interactor in turn if they want to handle the input event. This is
done by sending the Interactor one of the messages listed below, based on the current state of the
Interactor, held in the slot Am_CURRENT_STATE (see the state machine figure in Section 5.3.2). The
different Interactors are distinguished by having different functions for these messages. All of the
messages are of type Am Inter_Tnternal Method (defined in inter_advanced.h). Most of
these methods set up some slots of the Interactor, and then call the appropriate Interactor DO meth-
od. The specific internal methods you need to write for a new type of Interactor are stored in the
following slots:

* Am_INTER_START_METHOD: This is called when the Interactor should first start running.
Typically, the method would initialize various fields and then call the
Am_START_DO_METHOD of the Interactor and then the Command object. It will then call the
Am_INTERIM_DO_METHOD of the Interactor and then the Command object on the first point.

* Am_INTER_RUNNING_METHOD: This is called for each incremental mouse movement or
keyboard key while the Interactor is executing. Typically, it would set some slots and then
call the am_INTERIM_DO_METHOD of the Interactor and then the Command object.

* Am_INTER_OUTSIDE_METHOD: This is called if the mouse moves outside of the
Am_RUNNING_WHERE_OBJECT While the Interactor is running. Typically it will call the
Am_ABORT_DO_METHOD of the Interactor and then the Command object.



Page 196 Interactors and Command Objects for Handling Input

* Am_INTER_BACK_INSIDE METHOD: This is called if the mouse moves back inside the
Am_RUNNING_WHERE_OBJECT while the Interactor is running. Typically it will call the
Am_START DO_METHOD followed by the Am_INTERIM Do_METHOD of the Interactor and then
the Command object.

* Am_INTER_ABORT_METHOD: This is called when the user executes the abort key to cause the
Interactor to abort while it is executing. Typically, this will call the Am_ABORT_DO_METHOD
of the Interactor and then the Command object.

* Am_INTER_STOP_METHOD: This is called when the Interactor stops (finishes). Typically it will
set some slots in the Command object and then call the am_Do_METHOD of the Interactor and
then the Command object.

* Am_INTER_OUTSIDE_sToP_METHOD: This is called when the user executes the stop event while
the Interactor is outside. For all the built-in Interactors, this method is not needed because
the default is to call the Am_INTER_ABORT METHOD.

5.6 Command Objects

Unlike other toolkits where the widgets call “call-back” procedures, the widgets and Interactors in
Amulet allocate Command Objects and call their “Do” methods. Whereas so far this is pretty much
equivalent, Command Objects also have slots that handle undoing, enabling and disabling, and
help. Command objects must be added as parts of the objects they are attached to, so every Inter-
actor and widget has a part named am_coMMAND which contains a Am_command object. For all wid-
gets and Interactor commands, the default methods are empty, so you can freely supply any method
you want. There are also a set of command objects supplied in the library which you might be able
to use in applications, as described in Section 6.4 of the Widgets chapter. If you create your own
custom command objects, be sure to create UNDO methods, as described in Section 5.6.2.

The top-level definition of a Command object is:

Am_Command = Am_Root_Object.Create ("Am_Command")
.Set (Am_DO_METHOD, NULL)
.Set (Am_UNDO_METHOD, NULL)
.Set (Am_REDO_METHOD, NULL)
.Set (Am_SELECTIVE_UNDO_METHOD, NULL)
.Set (Am_SELECTIVE_REPEAT SAME_METHOD, NULL)
.Set (Am_SELECTIVE_REPEAT_ ON_NEW_METHOD, NULL)
.8et (Am_SELECTIVE_UNDO_ALLOWED, Am_Standard_Selective_Allowed)
.Set (Am_SELECTIVE_REPEAT SAME_ALLOWED, Am Standard_Selective_Allowed)
.Set (Am_SELECTIVE_REPEAT_NEW_ALLOWED,
Am_ Standard_Selective_New_Allowed)

.Set (Am_ACTIVE, true)

.Set (Am_LABEL, "A command")

.Set (Am_SHORT_ LABEL, 0) /if0 then uses Am_LABEL
.Set (Am _ACCELERATOR, 0) //eventto also execute this

.Set (Aam_ID, 0) /ifnon-zero, identifies the cmd instead of label
.Set (Am_VALUE, 0)

.Set (Am_OLD_VALUE, 0) Husually for undo

.Set (Am_OBJECT_MODIFIED, 0)

.Set (Am_SAVED_OLD_OWNER, NULL)

.Set (Am_IMPLEMENTATION_PARENT, 0)

’



Interactors and Command Objects for Handling Input Page 197

Most Command objects supply a am_po_METHOD procedure which is used to actually execute the
Command. It will typically also store some information in the Command object itself (often in the
Am_VALUE and Am_OLD_VALUE slots) to be used in case the Command is undone. The
Am_UNDO_METHOD procedure is called if the user wants to undo this Command, and usually swaps
the object’s current values with the stored old values. The am_REDO_METHOD procedure is used
when the user wants to undo the undo. Often, it is the same procedure as the am_UNDO_METHOD.
The various SELECTIVE_ methods support selective undo and repeat the command, as explained
in Section 5.6.2.3. The am_aAcTIVE slot controls whether the Interactor or widget that owns this
Command object should be active or not. This works because widgets and Interactors have a con-
straint in their active field that looks at the value of the am_acT1VE slot of their Command object.
Often, the am_acTIVE will contain a constraint that depends on some state of the application, such
as whether there is an object selected or not. The am_rABEL slot is used for Command objects
which are placed into buttons and menus to show what label should be shown for this Command.
If supplied, the am_SHORT_LABEL is used in the Undo dialog box to label the command. For com-
mands in button and menu widgets, the Am_ACCELERATOR slot can contain an Am_Input_Char
which will be used as the accelerator to perform the command (see Section 6.2.3.2 of the Widgets
chapter). For commands in button widgets, the widgets use the command to determine the value
to return when the button is hit. If the am_1D slot is set, then this value, which can be of any type,
isused. If am_1Dis O, then the value of the Am LABEL slot is returned.

Various slots are typically set by the DO method for use by the UNDO methods. The am_vaLue
slot is set with the value for use. You have to look at the documentation for each Interactor or Wid-
get to see what form the data in the am_vaLUE slot is. The DO method typically also sets the
Am_OBJECT_MODIFIED slot with the object (or a am_value_List of objects) that the Command af-
fects. The Am_SAVED_OLD_OWNER slot is set by the Interactors and Widgets to contain the Interactor
and widget itself. Finally, the Am_TMPLEMENTATION_PARENT supports the hierarchical decomposi-
tion of commands, as described in the next section (Section 5.6.1).

As mentioned above in Section 5.5.1, command objects which are used in Interactors also support
the Am_START_DO_METHOD, Am_INTERIM_DO_METHOD, and the Am_ABORT_DO_METHOD.

5.6.1 Implementation_Parent hierarchy

Normal objects are part of two hierarchies: the prototype-instance hierarchy and the part-owner hi-
erarchy. The Command objects has an additional hierarchy defined by the
Am_IMPLEMENTATION_PARENT slot. Based on the Ph.D. research of David Kosbiel, we allow low-
er-level Command objects to invoke higher-level Command objects. For example, the Command
object attached to a move-grow Interactor which is allowing the user to move a scroll bar indicator
calls the Command object attached to the scrollbar itself.

1. David S. Kosbie and Brad A. Myers, “Extending Programming By Demonstration With Hierarchical
Event Histories” The 1994 East-West International Conference on Human-Computer Interaction. St.
Petersburg, Russia, August, 1994. pp. 147-157.



Page 198 Interactors and Command Objects for Handling Input

This novel model for Command objects is more completely described in a conference p.aper1
which is available from the Amulet WWW site (http://www.cs.cmu.edu/~amulet/papers/
commandsCHI . html),

Simply, the system calls the am_po_METHOD of the lowest level command associated with the Inter-
actor or widget, and then looks in the Am_IMPLEMENTATION_PARENT slot of that command. If that
slot contains a command object, then the am_po_METHOD of that command is also called, and so on.
Internally, all the widgets use this mechanism to chain commands together, and you can use it also
to execute multiple commands on an event.

When a command is queued for undo, all the commands along the Am_TIMPLEMENTATION_ PARENT
chain are queued. When the user requests an undo or selective undo or redo, then all the commands
in the Am_IMPLEMENTATION_PARENT chain are undone in the same order as they were originally ex-
ecuted (from child to parent). This is in case lower-level commands set state which is used by high-
er-level commands.

The advantage of this design is that the low-level Command objects do not need to know how they
are being used, and can just operate normally, and the higher-level Command objects will update
whatever is necessary. Note that the Am_IMPLEMENTATION_PARENT hierarchy is not usually the
same as the part-owner hierarchy. Unfortunately, it seems to be difficult or impossible for Amulet
to deduce the parent hierarchy from the part-owner hierarchy, which is why the programmer must
explicitly set the Am_IMPLEMENTATION_PARENT slot when appropriate. Of course, the built-in wid-
gets (like the scroll bar) have the internal Command objects set up appropriately.

You might use the Am_IMPLEMENTATION_PARENT slot for the Command object in the ‘OK’ button
widget inside a dialog box, so the OK widgets’s action will automatically call the dialog box’s
Command obje:ct.2 Another example is that for the button panel widget (see the Widgets chapter),
you can have a Command object for each individual item and/or a Command object for the entire
panel. If you want the individual item’s Command to be called and the top-level Command to be
called, then you would make the top-level Command be the Am_IMPLEMENTATION_PARENT of each
of the individual item Commands.

5.6.2 Undo

All of the Command objects built into the Interactors and widgets automatically support full undo,
redo and selective undo and repeat. This means that the default am_Do_METHOD procedures store
the appropriate information. Built-in “undo-handlers” know how to copy the command objects
when they are executed, save them in a list of undoable actions, and execute the undo, redo and
selective methods of the commands. Thus, to have an application support undo is generally a sim-
ple process. You need to create an undo-handler object and attach it to a window, and then have
some button or menu item in your application call the undo-handler’s method for undo, redo, etc.

1. Brad A. Myers and David S. Kosbie. “Reusable Hierarchical Command Objects,” Proceedings CHI’96:
Human Factors in Computing Systems. Vancouver, BC, Canada. April 14-18, 1996. To Appear.

2. The conference paper on commands also discusses another chain using the Am_COMPOSITE_ PARENT
slot which is useful for dialog boxes. This chain is not implemented in the released version of Amulet.



Interactors and Command Objects for Handling Input Page 199

5.6.2.1 Enabling and Disabling Undoing of Individual Commands

If there are operations in the application that are not undoable, for example like File Save, then you
should have the Am_UNDO_METHOD and Am_REDO_METHOD slots as null. As explained below, there
are special methods that determine whether the command is selective undoable and repeatable.

If there are operations that should not go on the undo list at all, for example like scrolling, there is
an easy way to specify this. Simply set the Am_IMPLEMENTATION_PARENT slot of the top-level com-
mand to be the constant value Am_NOT_USUALLY_UNDONE, which is defined in inter.h. (All com-
mands whose Am_IMPLEMENTATTON_PARENT slot is null are assumed to be top-level commands and
are queued for undo.)

5.6.2.2 Using the standard Undo Mechanisms

There are three styles of undo supplied by Amulet. These are described in this and the next sec-
tions. Section 5.6.2.3 discusses how programmers can implement other undo mechanisms. The
undo mechanisms are implemented using Am_Undo_Handler objects.

‘The three kinds of undo supplied by Amulet are:

* Single undo, like on the Macintosh. This is implemented using the
Am_Single_Undo_Object. This handler supports undoing a single command. The last
operation can be undone, and the last undone operation can be redone. As soon as another
operation is performed, the previous Command is discarded so it can no longer be undone
or redone.

* Multiple undo, like in Microsoft Word V6. This is implemented using the
Am_Multiple_Undo_oObject. This handler supports undoing an arbitrary number of
Commands, all the way back to the first command. This is implemented by saving all the
commands executed since the application is started, so the list can grow quite long. Ifa
command is undone, then it can be redone, but only the last undone command is saved.
Thus, after undoing a series of commands, after undoing the last undo (redo), there is
nothing available to redo. The Undo itself is not part of the command history.

* A novel form of Selective undo, where, in addition to the multiple undo, it also allows
previous commands to be selected and explicitly undone or repeated, as described in
Section 5.6.2.3. This is also implemented by the Am_Multiple_Undo_Object.

To make an application support undo, it is only necessary to put an instance of an undo handler

object into the Am_UNDO_HANDLER slot of a window. For example:
my_win = Am Window.Create("my win")
.Set (Am_LEFT, ...)

.Set (Am_ UNDO_HANDLER, Am_Multiple_Undo_Object.Create("undo"))

You can put the same undo-handler object into the Am_uNDO_HANDLER slot of multiple windows, if
you want a single list of undo actions for multiple windows (for example, for applications which
use multiple windows). Now, all the Commands executed by any widgets or Interactors that are
part of this window will be automatically registered for undoing.



Page 200 Interactors and Command Objects for Handling Input

Next, you need to have a widget that will allow the user to execute the undo and redo. The
Am_Undo_Command object provided by widgets.h encapsulates all you typically need to support un-
do, and the Am_Redo_Command supports redo (see Section 5.6 of the widgets chapter). There is also
a dialog box provided to support selective undo (next section).

If the built-in undo and redo commands are not sufficient, then you can easily create your own. The
command’s Am_ACTIVE slot should depend on whether the undo and redo are currently allowed.
The undo_handler objects provide the am_uNDO_ar1.0WED slot to tell whether undo is allowed. This
slot contains the command object that will be undone (in case you want to have the label of the
Undo Command show what will be undone). The am_REDO_ATLOWED slot of the undo object tells
whether redo is allowed and it also will contain a command object or NULL. To actually perform
the undo or redo, you call the method in the Am_PERFORM_UNDO Or Am_PERFORM_REDO slots of the
undo object. These methods are of type Am_oObject_Method.

5.6.2.3 The Selective Undo Mechanism

In addition to the regular multiple-undo mechanism, Amulet now supports a novel selective undo
mechanism. This allows the user to select previously executed commands from the history and
undo or repeat them. See the conference paper mentioned above for a complete description.

We use the terminology from Windows and the Macintosh, where “undo” means to undo the com-
mand, “redo” means to undo-the-undo (make the command no longer be undone), and “repeat” to
do the command again. The mechanism supports the conventional undo and redo, as described
above. In addition, the user can select a command from a visible list. At this point, the user can
ask that the command be undone, it can be repeated on the original objects, or repeated on the cur-
rently selected objects. For example, for a command that changes an object that was originally blue
to be red, undo would clearly restore the object to be blue, and redo would make it red again. Imag-
ine the object was later turned green. Selective undo of the original change-color command would
restore the object to be blue, and selective repeat would make it be red again. Since the selective
commands add a new command to the history list, the user might undo the selective operation itself,
which would make the object be green again. If a new object was selected, selectively repeating
the original command on this new object would make it be red.

All of the built-in commands support the complete selective undo mechanism. The next section
describes what you need to implement to create your own commands that support selective undo.
Next is described the commands you would add to your application to allow access to the selective
undo features.



Interactors and Command Objects for Handling Input Page 201

5.6.2.3.1 Supporting Selective Undo in your own Command Objects

Regular undo and redo operate on the original command object, and remove or add it to the undo
list. However, selective undo and repeat create a copy of the original command object, and then
add this copy to the top of the undo list. Thus, using the regular undo method or selective undo of
the most recent command should both have the same effect to the application, they have very dif-
ferent affects on the undo list. (Thus, you can implement an undo like in the Emacs editor, where
all undo’s are added to the command history, by simply always using selective undo instead of the
“regular” undo.) This copying is automatically handled by the default undo handlers (including
renaming the command to have “Undo” or “Repeat” in front of the name).

When a selective undo or repeat operation is requested by the end user, the standard undo handler
first makes a copy of the command object, and then executes the appropriate methods. This means
that the methods are free to set local data into the commands to support possible subsequent undo
of the command.

The messages in each command that support selective undo are:

* Am SELECTIVE_UNDO_ALLOWED: This method determines whether the command can be
undone given the current context. For example, if the command was a change color, this
method might check whether the object operated on is still visible. This method is of type
Am_Selective_Allowed_Method which takes the command object and returns a boolean.
Most commands will find the default method, Am_standard_Selective_allowed, is
sufficient for their needs, if they store the information into the standard slots. This method
checks whether the object or list of objects in the am_0BIECT MODIFIED slot of the
command object is valid and still visible in the window. However, some commands, like
deleting, are undoable when the object is not visible, so these commands will need a custom
Am_SELECTIVE_UNDO_ALLOWED method.

* Am_SELECTIVE_UNDO_METHOD: This method performs the undo on the original object or
objects. The method is of the type Am_object_Method and just takes the command object
to be undone.

* Am_SELECTIVE_REPEAT SAME_ALLOWED: This determines whether the command can be
repeated on the original object. The type of the method is
Am_Selective_Allowed_Method, and the default method is
Am_Standard_Selective_Allowed, which is the same as for the
Am_SELECTIVE_UNDO_ALLOWED method.

* Am_SELECTIVE_REPEAT_SAME_METHOD: This does the command again. The method is of the
type Am_Object_Method and just takes the command object to be undone.

* Am SELECTIVE_REPEAT_ NEW_ALLOWED: This returns true if the command can be selectively
redone on a new object or list of objects (typically, the current selection). The type of the
method i8S Am_Selective_New_Allowed_Method, which takes the command object, the
new object or list of objects to be operated on, and returns a boolean. The default method
is Am_Standard_Selective New_Allowed, which determines whether the new object is
valid and visible.



Page 202 Interactors and Command Objects for Handling Input

* Am_SELECTIVE_REPEAT_ON_NEW_METHOD: This performs the repeat on the new object, and is

of type Am_Selective_Repeat_New_Method, which takes the command object and the
new object or objects selected.

In addition to the methods described above, additional methods that might be useful that are pro-
vided include:

'Am_Standard_Se1ective_Return_True:CanbeusedintheAm_SELECTIVE_UNDO_ALLOWED
and Am_SELECTIVE_REPEAT SAME_ALLOWED slots to always return true (the command is
always allowed).

* Am_Selective_Allowed_Return_False: same as above, except to always return false (the
command is never allowed)

* Am Selective_New_ Allowed_Return_True: can be used in the
Am_SELECTIVE_REPEAT_NEW_ALLOWED to always return true.

*Am Selective_New_Allowed Return_ False: can be used in the
Am_SELECTIVE_REPEAT_NEW_ALLOWED to always return false.

5.6.2.3.2 Interface to Selective Undo in Applications: Undo Dialog Box

Amulet comes with an experimental interface to selective undo, in the form of the
Am_Undo_Dialog_Box object which implements one form of undo dialog box. This is exported
from undo_dialog.h (Of undo_dia.h on the PC). You can see an example of this dialog box in
the test file testselectionwidgets.cc (or testselw.cpp on the PC).

This dialog box is not part of the standard system, so you have to initialize it explicitly using
Am Initialize_Undo_Dialog_Box() . You can then create an instance of the
Am_Undo_Dialog_Box, and set its required slots, which are:

* Am_UNDO_HANDLER_TO_DISPLAY: Set with the undo handler from the main window.

* Am_SELECTION_WIDGET: Set with the selection widget (see Section 6.2.6 of the Widgets
chapter) for the main window.

* Am_SCROLLING_GROUP: If this is set with a scrolling group, then the Am_Undo_Dialog Box
will allow scrolling in that window to be queued for undoing or redoing.

To display the undo dialog box, you might use the Am_show_Undo_Dialog_Box_Command from
undo_dialog.h. This command requires that the dialog box object be put into the
Am_UNDO_DIALOG_BOX slot of the command object.

For example, the set up of the undo dialog box in the test program testselectionwidgets.cc is:
Am_TInitialize_Undo_Dialog_Box();
my_undo_dialog = Am_Undo_Dialog Box.Create("My_Undo_Dialog")
.Set (Am_LEFT, 550)
.Set (Am_TOP, 200)
.Set (Am_UNDO_HANDLER_TO_DISPLAY, undo_handler)
.Set (Am_SELECTION_WIDGET, my_selection)
.Set (Am_SCROLLING_GROUP, scroller)
.Set (Am_VISIBLE, false)



Interactors and Command Objects for Handling Input Page 203

Am_Screen.Add_Part(my_undo_dialog); /don’tforgetto add the db to the screen
menu_bar = Am_Menu_Bar.Create("menu_bar")
.Set (Am_ITEMS, Am_Value_List ()

.Add (Am_Show_Undo_Dialog_Box_Command.Create ()
.Set (Am_UNDO_DIALOG_BOX, my_undo_dialog))

5.6.2.4 Building your own Undo Mechanisms

Usually, one of the two the supplied Undo objects will do what you want, but Amulet is designed
to be easily extensible with new kinds of undo mechanisms. For example, you might want to sup-
port arbitrary numbers of redo’s or put a limit on the number of Commands that can be undone. To
implement these, you would make your own undo handler object as an instance of
Am_Undo_Handler and supply values in the following slots:

* Am_REGISTER_COMMAND, a method to be called to register a newly executed Command. This
method should correctly handle the case when the command has an Implementation Parent
command object, in which case the command will usually not be queued directly since it
will be queued indirectly when the top-level command in the implementation-parent chain
is queued. The method in this slot is of type Am_Register_Command_Method.

* Am_PERFORM_UNDO, a method of type Am_object_Method to be called to execute the undo of
the next command to be undone.

* Am_PERFORM_REDO, a method of type am_Object_Method to be called to execute the redo of
the last undone Command.

* Am_UNDO_ALLOWED, should contain a formula which returns a command object or NULL, to
say whether undo is currently allowed and if so, on which command object it will be
performed.

* Am_REDO_ALLOWED, should contain a formula which returns a command object or NULL, to
say whether redo (undo the undo) is currently allowed and if so, on which command object
it will be performed.

If your undo handler will support selective undo, then the following slots should also be supported:

* Am_SELECTIVE_UNDO_ALLOWED, a method of type am_selective_Allowed_Method, which
takes a command object and returns true if that command can be selectively undone.

* Am_SELECTIVE_UNDO_METHOD, a method of type Am_Handler_Selective_Undo_Method to
be called to perform the selective undo.

* Am_SELECTIVE_REPEAT_SAME ALLOWED which contains a method of type
Am_Selective_Allowed Method which returns true if the specified command can be
selectively repeated.

* Am_SELECTIVE_REPEAT_SAME_METHOD which contains a method of type
Am_Handler_Selective _Undo_Method and which performs the repeat.

* Am_SELECTIVE_REPEAT_NEW_ALLOWED Which contains a method of type
Am_Selective_New_Allowed Method and returns true if the specfied command can be
repeated on the specified new object or objects.



Page 204 Interactors and Command Objects for Handling Input

* Am_SELECTIVE_REPEAT_ON_NEW_METHOD which contains a method of type
Am_Handler_Selective_Repeat_New_Method which performs the repeat on new.

5.7 Debugging

The Inspector and Interactors provide a number of mechanisms to help programmers debug pro-
grams. The primary one is a tracing mechanism that supports printing to standard output (cout)
whenever an “interesting” Interactor or Command event happens. Amulet supplies many options
for controlling when printout occurs, as described below. You typically would set these in the In-

spector, but you can also set these parameters in your code.
typedef enum { Am INTER_TRACE_NONE, Am_INTER TRACE_ALL,
Am_INTER_TRACE_EVENTS, Am_INTER_TRACE_SETTING,
Am_INTER TRACE_PRIORITIES, Am_INTER_TRACE_NEXT,
Am_TINTER_TRACE_SHORT } Am_Inter_Trace_Options;

void Am_Set_Inter_Trace(); /prints current status

void Am_Set_Inter_Trace(Am_Inter_ Trace_Options trace_code);
void Am_Set_TInter Trace (Am_Object inter_to_trace):

void Am_Clear_Inter_ Trace():;

By default, tracing is off. Each call to Am_Set_Inter_Trace adds tracing of the parameter to the
set of things being traced (except for Am_INTER_TRACE_NONE which clears the entire trace set). The
options for Am_Set_Inter_Trace are:

* no parameters: If Am_Set_Inter_Trace is called with no parameters, it prints out the current
tracing status.

* Am_INTER_TRACE_NONE: If Am Set_Inter_ Trace is called with zero or
Am_INTER_TRACE_NONE, then it sets there to be nothing be traced. This is the same as
calling Am_Clear_Inter_Trace.

* Am_INTER_TRACE_ ALL: Traces everything.

* Am_INTER_TRACE_EVENTS: Only prints out the incoming events, and not what happens as a
result of these events. When you trace anything else, Amulet automatically also adds
Am_INTER_TRACE_EVENTS to the set of things to trace, so you can tell the event which
causes things to be updated.

* Am_INTER_TRACE_SETTING: This very useful option just shows which slots of which objects
are being set by Interactors and Commands. It is very useful for determining why an object
slot is being set.

* Am_INTER_TRACE_PRIORITIES: This prints out changes to the priority levels.

* am_INTER_TRACE_NEXT: This turns on tracing of the next Interactor to be executed. This is
very useful if you don’t know the name of the Interactor to be traced.

* Am_INTER_TRACE_SHORT: This prints out only the name of the Interactors which are run.

* an Interactor: This prints lots of information about the execution of that one Interactor.



Interactors and Command Objects for Handling Input  Page 205

We have found that tracing an interactor will usually tell you why it didn’t run when you expected
it to, what it is changing, in case the right objects do not seem to be set, and what interactors are
running and why, if wrong ones seem to be running. It is also useful to set breakpoints or traces
on object slots using the Inspector to figure out why a slot is being set with incorrect values.



Page 206 Interactors and Command Objects for Handling Input




6. Widgets

Amulet provides a full set of widgets, including buttons, menus, scroll bars, and text input fields.
Eventually, these will display themselves in different looks, corresponding to the various plat-
forms. The built-in widgets have a large number of parameters to allow programmers to customize
them, and the programmer can also create new kinds of widgets by writing new methods.

Copyright © 1996 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037,
Arpa Order No. B326. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of NCCOSC or the U.S. Government.






Widgets Page 209

6.1 Introduction

Many user interfaces, spanning a wide variety of applications, have several elements in common,
Menus and scroll bars, for example, are used so frequently that an interface designer would waste
considerable time and effort recreating those objects each time they were required in an applica-
tion.

The intent of the Amulet Widget set is to supply several frequently used objects that can be easily
customized by the designer. By importing these pre-constructed objects into a larger Amulet in-
terface, the designer is able to specify in detail the desired appearance and behavoir of the interface,
while avoiding the programming that this specification would otherwise entail.

This document is a guide to using Amulet’s Widgets. The objects were constructed using the com-
plete Amulet system, and their descriptions assume that the reader has some knowledge of the com-
ponents of this system: Opal, Interactors, and ORE.

All of the widgets (except the Am_Selection_wWidget) are set up to operate with the left mouse
button, and ignore the modifier keys. Thus, clicking on a scroll bar with
SHIFT_CONTROL_LEFT_DOWN does the same as regular left down. The default widget start character
is exported as Am_Default_Widget_Start_Char.

6.1.1 Current Widgets

Amulet currently supports the following widgets. These widgets are described in this chapter in
detail, and summarized in chapter 8.

* Am_Border_Rectangle: arectangle with a raised (or lowered) edge, but no interaction.

* Am_Button: a single button

* Am_Button_Panel: a panel consisting of multiple buttons with the labels inside the buttons.
* Am_Checkbox_Panel: a panel of toggle checkboxes with the labels next to the checkboxes.

* Am_Radio_Button_Panel: a panel of mutually exclusively selectable radio buttons with the
labels next to the radio buttons.

* Am_Menu: a menu panel

* Am_Menu_Bar: a menu bar used to select from several different menu panels

* Am_Option_Button: a button showing the current choice that pops up a menu of choices.
* Am_Vertical_Scroll_Bar: scroll bar for choosing a value from a range of values.

* Am_Horizontal Scroll Bar: scroll bar for choosing a value from a range of values.

* Am_Scrolling Group: an Amulet group with (optional) vertical and horizontal scrollbars
* Am_Text_TInput_Widget: a field to accept text input, like for a filename.

* Am_Selection_widget: which supplies the conventional square selection handles around
one or more graphical objects and allows them to be moved and grown.



Page 210 Widgets

There are four dialog boxes that provide facilities many applications will find useful:

*Am_Alert_Dialog: pops up a window that contains a text prompt and an OK button to
dismiss the window.

* Am_Choice_Dialog: pops up a window that contains a text prompt and allows the user to
choose among a set of buttons.

* Am_Text_Input_Dialog: pops up a window that contains a text prompt and allows the user
to fill in a text input field.

* Am_Undo_Dialog_Box: which supports the standard selective undo mechanism and is
described in the Interactors chapter, Section 5.6.2.3.2.

In addition, there are a set of command objects that can be put into widgets to perform many of the
standard editing operations:

*Am Selection_Widget_Select_All_Command: used with the selection widget to cause
everything to be selected (“Select All”).

* Am_Graphics_Set_Property_Command: to set the color, line style or other property of the
selected objects.

* Am_Graphics_Clear Command: delete the selected ObjeCtS (“Clear”)

®* Am Graphics_Clear All_Command: “Clear all”

* Am Graphics_Copy_Command: Copy to the clipboard.

* Am_Graphics_Cut_Command: Copy objects to the clipboard and then delete them
* Am Graphics_Paste_Command: Paste a copy of the objects in the clipboard.

* Am_Undo_Command: Perform a single undo.

* Am_Redo_Command: Perform a single redo.

* am_Graphics_To_Bottom_Command: Make the selected objects be covered by all other
objects.

* Am Graphics_To_Top_Command: Make the selected objects be covered by no other objects.
* Am_Graphics_Duplicate_Command: Duplicate the selected objects.

* Am_Graphics_Group_Command: Make a group out of the selected objects.

* Am Graphics_Ungroup_Command: Ungroup the selected objects.

* Am_Quit_No_Ask_Command: Quit the application immediately without asking for
confirmation.

6.1.2 Customization

We have tried to make the widgets flexible enough to meet any need. Each widget has a large num-
ber of slots which control various properties of its appearance and behavior, which you can set to
customize the look and feel. The designer may choose to leave many of the default values un-
changed, while modifying only those parameters that integrate the object into the larger user inter-
face.



Widgets Page 211

The visual appearance and the functionality of a widget is affected by values set in its slots. When
instances of widgets are created, the instances inherit all of the slots and slot values from the pro-
totype object. The designer can then change the values of these slots to customize the widget. In-
stances of the custom widget will inherit the customized values. The slot values in a widget
prototype can be considered “default” values for the instances.

6.1.3 Using Widget Objects

Include files necessary to use Amulet widgets are widgets . h for the widget object definitions, and
standard_slots.h for the widget slot definitions. These files are included in amulet .h, provid-
ing a simple way to make sure all needed files are included. Programmers who are designing their
own custom widget objects will also need widgets_advanced.h. For a complete description of
Amulet header files and how to use them most effectively in your project, see Section 1.6 in the
Overview chapter.

Widgets are standard Amulet objects, and are created and modified in the same way as any other
Amulet object. The following sample code creates an instance of Am_Button, and changes the val-

ues of a few of its slots.
Am_Object my_button = Am_Button.Create("My Button")
.Set (Am_LEFT, 10) // setthe position of the button
.Set (Am_TOP, 10)
.Set (Am_COMMAND, "Push Me") ;
// a string in the Am_COMMAND slot specifies the button’s label: see below

6.1.4 Application Interface

Like interactors, widgets interface to application code through command objects added as parts of
the widgets. Please see Section 5.6 on Commands in the Interactor’s chapter. In summary, instead
of executing a call-back procedure as in other toolkits, Amulet widgets call the Am_DO_METHOD of
the command object stored as the am_coMMaND part of the widget.

6.1.4.1 Accessing and Setting Widget Values

In addition to the Am_DO_METHOD, each command also contains the other typical slots of command
objects. In particular, the am VALUE slot of the command object is normally set with the result of
the widget. Of course, the type of this value is dependent on the type of the widget. For scroll bars,
the value will be a number, and for a checkbox panel, it will be a list of the selected items.

The am_vaLUE slot of the widget is also set with the current value of the widget. If you want to set
the value of the widget (change the displayed value of the widget), you can set the value of the
Am_VALUE slot of the widget to the correct value. Note: Set the Am_VALUE slot of the widget
not of the command object, to change the value of the widget. It is also appropriate to put a con-
straint into the am_vALUE slot of the widget if you want the value shown by the widget to track a
slot of another object.



Page 212 Widgets

In some situations, the programmer might want to have a constraint dependent on the Am_VALUE
slot. This constraint can perform side effects like updating an external data base or even setting
slots in Amulet objects or creating or destroying new objects. Other times, the programmer will
need to write an Am_Do_METHOD which will typically access the value in the command’s Am_VALUE
slot. An example of each of these methods can be found below. Of course, if you write your own
am_po_METHOD and you want the widget to be undo-able, you will also need to write a correspond-
ing Am_UNDO_METHOD, etc. See Section 5.6 in the Interactors chapter on commands for more infor-
mation.

6.1.4.2 Commands in Widgets

All of the widgets are designed so the command objects are completely replaceable. Thus, you can
put the commands from the library or your new commands into any widget. Alternatively, you
can get the default commands in the widgets (which has all blank methods) and override the meth-
ods. For example:

vscroll = Am Vertical_Scroll_Bar.Create()
.Set (Am_LEFT, 450)
.Set (Am_TOP, 80)

vscroll.Get_Part (Am_COMMAND)
.Set (Am_DO_METHOD, my_do)
.Set (Am_UNDO_METHOD, my_undo)

12

6.1.4.3 Undoing Widgets

Internally, each widget is implemented using graphical objects and interactors. Each internal in-
teractor has its own associated command objects, but these are normally irrelevant to the program-
mer, since the internal command objects will call the top-level widget command object
automatically. This is achieved because the internal commands have their
Am_IMPLEMENTATION_PARENT slot of the internal command objects to be the widget’s command
object, and then Amulet automatically does the right thing.

By default, when commands that are put into widgets are undone, the widget’s internal commands

are also undone. This means that the widget will typically go back to their original value when the
user selects undo, redo or selective undo or repeat.

6.2 The Standard Widget Objects

This section describes the widgets in detail. Each object contains customizable slots, but the de-
signer may choose to ignore many of them in any given application. Any slots not explicitly set by
the application are inherited from the widget’s prototype.

6.2.1 Slots Common to All Widgets

There are several slots the programmer can set which are used by all widgets in a similar way:



Widgets Page 213

*am_TOP, Am LEFT: As with all graphical objects, these slots describe the location of the
widget, in coordinates relative to the object’s parent’s location. Default values are 0 for
both top and left.

* am_vISIBLE: If this boolean is true, the object is visible; otherwise, it is not drawn on the
screen. Default is true.

* am_vALUE: The current value computed by the widget. This slot can also be set to change the
widget’s value.

* Am_WIDGET_LOOK: The value of this slot tells Amulet how you want your widgets to look
when drawn on the screen. Possible values are am_MOTIF LOOK, Am_WINDOWS_LOOK, Or
Am_MACINTOSH_LOOK. Any look will eventually be available on any platform, but currently
only Am_MOTIF_LOOK is implemented.

° am_FILL_STYLE: This slot determines the color of the widget. Amulet automatically figures
out appropriate foreground, background, shadow, and highlight colors given a fill color.
Acceptable values are any am_style, and the default is Am_amulet_purple. The only part
of the style used is the color of the style. On a black and white screen, a default set of
stipples are used to make sure the widgets are visible.

* am_ACTIVE_2: This slot turns off interaction with the widget without turning it grey. This is
mainly aimed at interactive tools like Interface Builders that want to allow users to select
and move widgets around. It might also be useful in a multi-user situation where users who
do not have the “floor” should not have their widgets responding. For a widget to operate,
both Am ACTIVE_2 and Am_ACTIVE must be true. The default value is true.

The command objects in all widgets have the following standard slots:

* am_ACTIVE: This slot in the command is used to determine whether the widget is enabled or
not (greyed out). Often, this slot will contain a formula dependent on some system state.
The default value is true. (Actually, the widget itself also contains an Am_ACTIVE slot, but
this one should not normally be used. The widget-level slot contains a constraint that
depends on the am_acT1vE slot of the command object part of the widget.)

* am_VALUE: This slot is set to the current value of the widget. Do not set this slot in the
command object to try to change the widget’s value (see the Am_VALUE of the widget
instead).

* am_DO_METHOD: The method to be called when the widget executes. This procedure takes one
parameter: the command object.

* All the various undo, redo and selective methods, as described in Section 5.6.2.3 of the
Interactors chapter.

* Am_IMPLEMENTATION PARENT: If you want the command to invoke another command, you
can set this slot in the widget’s command to the other command object. For example, if the
widget is the “OK” button of a dialog box, the Am_TMPLEMENTATION_ PARENT of the OK
widget’s command might be the command object for the entire dialog box. Then Amulet
will correctly know how to handle Undo, and it will call the parent command automatically.



Page 214 Widgets

6.2.2 Border_Rectangle

The am Border_ Rectangle has a raised or lowered edge of a lighter or darker shade of the
Am_FILL_STYLE. Itignores the Am_LINE_STYLE. It looks pressed in if Am_SELECTED is
true, and sticking out of the screen if Am_SELECTED is false. This widget has no interaction or
response to the mouse.

Slot Default Value Type

Am_SELECTED false bool

Am_WIDGET_ LOOK Am_MOTIF_LOOK Am_Widget_Look {Am_MOTIF_LOOK,
Am_MACINTOSH_LOOK,
Am_WINDOWS_LOOK }

Am_WIDTH 50 int

Am_HETGHT 50 int

Am_TOP 0 int

Am_LEFT 0 int

Am_VISIBLE true bool

Am FILI_STYLE Am Amulet_Purple Am Style

6.2.3 Buttons and Menus

All of the buttons and menus operate fairly similarly.

For a single, stand-alone button, the am_coMMaND slot can either be the string or object to display
in the button, or it can be an am_coMMAND object, in which case, the label of the widget is deter-
mined by the am_LABEL slot of the am_comvanD part of the widget, which itself should be a string
or object, as described below.

The various panel objects (that display a set of buttons) and the menus (that display a set of buttons)
all take an am_1TEMS slot which must contain an am_vALUE_LIsT. The items in this value list can
be:

* a C string (char*), in which case this string is displayed as the label,

» a graphical object, in which case this object (or an instance of this object if the object is
already a part of another object) is displayed as the label. This object can of course be a
group, so arbitrary pictures can be displayed as the value of a widget.

* a command object, in which case the value of the am_r.ABEL field of the command object is
used as the item’s label. The am_1.ABEL field itself can contain either a C string or a
graphical object.

There are two basic ways to use the panel-type objects, including menus:

1. Each individual item has its own command object, and the am_Do_METHOD of this
command does the important work of the item. This would typically be how menus of



Widgets Page 215

operations like Cut, Copy, and Paste would be implemented.

2. The top-level panel itself has a command object and the individual items do not have a
command object. For example, the am_ITEMS slot of the widget contains an
Am_VALUE_LIST of strings. In this case, the top-level command object’s Am_Dpo_METHOD
will be called, and it typically will look in its am_VALUE slot to determine which item
was selected. This method is most appropriate when the panel or menu is a list of
values, like colors or fonts, and you do not want to create a command for each item.

Note that the top-level command object is not called if the individual item has a command object,
unless you explicitly set the Am_IMPLEMENTATION_PARENT of the item’s command to be the wid-
get’s command. It would be unusual, but is perfectly legal, to have a Am_value_List that contains
some commands and some strings.

6.2.3.1 Commands in Buttons and Menus

Slots of the command object used by buttons and menus are as follows. More details are available
in Section 5.6 of the Interactor chapter.

* am_LABEL: This slot can contain a string or a graphical object, which will be drawn as the label
for this item.

* am_1ID: Normally, buttons set the am_vaLuk slot to the am_LABEL of the command. However,
this typically requires doing string matching. Therefore, if the am_1p field is non-zero, then
the Am_VALUE slot is set with the value of the am_1D slot instead of the am_LABEL slot. The
Am_1D slot can contain any type of value.

* am_ACTIVE: This controls whether the widget is active or not (greyed out). If the Am_ACTIVE
slot of the top-level command in a panel or menu is set to false, then all the items are greyed
out. More typically, the Am_acTIVE slot of the command associated with a single item will
be false, signaling that just that one item should be greyed out.

* Am_ACCELERATOR: For menus, menu-bars and option-buttons, this can contain an
Am_Input_Char or a string representing the character, and will make that character be an
accelerator for this command in the window. See Section 6.2.3.2 for more details.

* am_VALUE: This slot is set by the widget with the label(s) or ID(s) of currently the selected
button(s). In a single button, this contains O if the button is not selected, or the button’s
label or 1D if it is selected. Thus, you can use Valid() to determine if the button is pressed.
If multiple items can be selected, as in a check box panel or for a button panel if you set
Am_HOW_SET to be Am_CHOICE_LIST TOGGLE, then this slot will always contain an
am_Value_List with the labels or IDs of the selected items. If no items are selected, then
the list will be empty. Note: the value of the am_vaLuE slot will not be 0; it will be a list
that is empty, so you cannot use Valid() since an empty am_value_List is still valid. For
panels where only a single item can be selected, such as a radio button panel or button
panels with am_HOW_SET set to be Am_CHOICE_SET, the am_VALUE slot is set to the single
button’s label or ID, or O if nothing is selected.



Page 216 Widgets

6.2.3.2 Accelerators for Commands

If the Am_ACCELERATOR slot of a Command object for a menu item is set with an Am_Input_Char
(see Section 5.3.3.1) or a string that can be converted into a character description, like
"CONTROL_F7", then Amulet will automatically create an accelerator for that command in the win-
dow the widget is attached to. In addition, the menu item will show the accelerator using the “short
string” form of am_Tnput_chars. This accelerator will only be active when the command is active.

The interface to the accelerator lists for windows is available in widget_advanced.h through the
functions Am Add_Accelerator_Command_To_Window and
Am_Remove_Accelerator_Command_From_Window, which take the window and command object.

6.2.3.3 Am_Menu_Line Command

Am_Menu_Line_Command is a special purpose type of command object provided by Amulet to draw
horizontal dividing lines in menus. To add a horizontal line in a menu, simply include an instance
of Am_Menu_Line_Command in the menu’s am_TTEMS list. An example of this can be found in sec-
tion 6.2.3.7. Am_Menu_Line_Command has no customizable slots, and it is an inactive menu item.

Slot Default Value Type
Am_LABEL “Menu_Line_ Command” Am_String
Am_ACTIVE false bool

Am_VALUE NULL Am_Value




Widgets Page 217

6.2.3.4 Am_Button

The am_Button object is a single stand-alone button. A button can have a text label, or can contain
an arbitrary graphical object when drawn.

Slot Default Value Type
Am_VALUE NULL Am_Value
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH <formula> int
Am HEIGHT <formula> int
Am_H_ALIGN Am_CENTER_ALIGN {Am_LEFT_ALIGN,

Am_RIGHT_ALIGN,
Am_CENTER_ALIGN}

Am_FIXED WIDTH Am_NOT_FIXED_SIZE int
Am_FIXED HEIGHT Am_NOT_FIXED_SIZE int
Am_TINDENT 0 int
Am_MAX_RANK false bool
Am_MAX SIZE false bool
Am_TITEM_OFFSET 5 int
Am ACTIVE <formula> bool
Am_ACTIVE_2 true bool

Am_WIDGET_ LOOK

Am_MOTIF_LOOK

Am_Widget_Look

Am_KEY_SELECTED false bool

Am_FONT Am_Default_Font Am_Font

Am_FINAL _ false bool
FEEDBACK_WANTED

Am_FILL_STYLE Am_Amulet_Purple Am_Style

Am_COMMAND

Am_Command

Am_Command

Special slots of am_BUTTONS are:

{Am_MOTIF_LOOK,
Am_MACINTOSH_LOOK,
Am_WINDOWS_LOOK])

* Am_WIDTH, Am HEIGHT: By default, the width and height of the button are automatically

calculated by formulas in these slots. A button is made big enough to contain its text label
or graphical object, including borders, and offset pixels (see below). A user can replace the
width and height formulas by setting these slots directly. Once the values are set with new
values or formulas, the formulas will be removed.

*Am_ITEM_OFFSET: The string or object displayed inside the button is set away from the border

of the button by am_ITEM_OFFSET pixels, in both the horizontal and vertical directions. The

default is 3.

* am_FONT: The button’s text label (if any) is drawn in this font. Acceptable values are any
Am_Font, and the default is Am_Default_Font.



Page 218 Widgets

* Am_FINAL_FEEDBACK_ WANTED: This determines if the button should be drawn as if it is still
selected, even after user interaction has stopped. This is useful if you want to use the button
to show whether it is selected or not. The default is false.

6.2.3.5 Am_Button_Panel

An Am_Button_Panel is a panel of Am_Buttons, with a single interactor in charge of all the but-
tons. Since an Am_Button_Panel’s prototype object is a Am_Map, all the slots that Am_Map uses are
also used by am_Button_panel. See the Opal chapter for a description of Am_Map. Some Am_Map
slots are described below along with slots specific to Am_Button_Panel.

Slot Default Value Type
Am_VALUE NULL Am_Value
Am_WIDTH Am Width_ Of_Parts int
Am_HEIGHT Am_Width_Of_Parts int
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH <formula> int Read-only
Am_HEIGHT <formula> int Read-only
Am_HOW_SET Am_CHOICE_SET Am_How_Set
Am_TITEM_ OFFSET 3 int
Am ACTIVE <formula> bool
Am_ACTIVE_2 true bool

Am_WIDGET__LOOK

Am_KEY_SELECTED
Am_FONT
Am FILL_STYLE

Am_FINAL_
FEEDBACK_WANTED

Am_LAYOQUT

Am H ALIGN

Am ITEMS

Am_COMMAND

Am MOTIF_LOOK

false
Am_Default_Font
Am_Amulet_Purple

false

Am_Vertical_
Layout

Am_LEFT_ALIGN

Am_ Command

Am_Widget_Look [Am_MOTIF_LOOK,

Am_MACINTOSH_LOOK
, Am_WINDOWS_LOOK]}

bool
Am_Font
Am_Style
bool

{Am_Vertical_Layout,
Am_Horizontal_Layout,
NULL, etc.}
{Am_LEFT_ALIGN,
Am_ RIGHT ALIGN,
Am_CENTER_ALIGN}
int, Am_Value_List
of commands or
strings, etc.

Am_Command

Special slots of Am_Button_panel are:



Widgets Page 219

* am_FONT: The font used for the button labels.

* Am_FINAL_FEEDBACK_WANTED: Whether to show which item is selected or not. The default is
false.

* Am_WIDTH, Am_HEIGHT: The width and height slots contain the standard Amulet formulas
Am_wWidth Of_parts and Am_Height_Of_Parts, respectively. If these slots are set to
specific values by the designer, those values replace the formulas, and the panel will no
longer resize itself if its contents change.

*am_FIXED WIDTH: This slot determines how the buttons in a panel get their width. An inte ger
value of 0, or a boolean value of false, means each button is as wide as its calculated width
based on the contents. Thus, each button will be a different size. An integer value of 1, or
a boolean value of true, means that all the buttons in the panel are set to be as wide as the
calculated width of the widest button in the panel. An integer value greater than 1 sets the
width of all buttons in the panel to that specific value. The default is true.

* Am_FIXED_HEIGHT: This slot determines the height of buttons in a panel. It acts the same
way as Am_FIXED WIDTH. The defaultis faise.

* am_HOW_SET: This slot determines whether single or multiple buttons can be selected. Its
default value is Am_CHOICE_sET, which allows a single selection. Changing this to
Am_CHOICE_TOGGLE will allow the selected item to be turned off by clicking it again.
Am_CHOICE_LIST_TOGGLE allows there to be multiple selections. See the Interactors
manual for a complete description of the legal values.

* am_rayouT: This specifies a function determining how the button panel should be arranged.
A more complete description of the slot can be found in section 4.7.2.
Am_Vertical_Layout is the default, and am_Horizontal_Layout is another good value.

*am_H_ALIGN: In a vertically arranged button panel with variable width buttons, this
determines how the buttons should be arranged in the panel. The default is
Am_LEFT_ALIGN, and other possible values are Am_CENTER_ALIGN and Am RIGHT ALIGN.

* am_v_aLIGN: This slot works like am_H_ALIGN, except is only used in horizontally arranged
panels width variable height buttons. Possible values are am_TOP_ALIGN,
Am_CENTER_ALIGN, and Am_BOTTOM_ALIGN.

* am_ITEMS: This slot specifies the items which are to be put in the button panel. An
Am_value_List should be used to specify specific items to add to the panel. See section
6.2.3.1 for a complete description. In summary, elements of the value list can be either
strings, graphical objects, or command objects. A string value is used as the label for the
button in the panel. A graphical object is displayed in the button. A command object is
used to specify a custom command for that particular button in the panel. For commands,
the button’s string label or graphical object is taken from the command object’s Am_LABET,
slot.

* am_comMaND: This slot contains an Am_Command object. See section 6.2.3.1 for a complete
description.



Page 220 Widgets

6.2.3.5.1 Example of Using a Button Panel

Each button in the panel is drawn with a text label or a graphical object inside it. An
Am_Value_List in the Am_ITEMS slot tells the button panel what to put inside each button. If a
string is specified, it is used as the button’s label. If a graphical object is specified, it is drawn in
the button. If a command object is specified, that command object’s am_Do_METHOD method is
called each time the button is pressed, and the button’s label or graphical object is obtained from
the command object’s am_LABEL slot. The following code specifies a button panel with three but-
tons in it.

// a graphical object and custom do action, defined elsewhere:
extern Am Object My_Graphical_Object;
extern void My_Custom_Do_METHOD (Am Object command_obj);
Am_ Object my_command;
// my button panel:
Am_Object My Button_Panel = Am Button_Panel.Create ("My Button Panel")
.Set (Am_ITEMS,
Am_Value_List ()
.Add ("Push me.")
.Add (My_Graphical_Object)
.Add (my_command = Am_Command.Create ()
.Set (Am_LABEL, "Push me too.")
.Set (Am_DO_METHOD, My_Custom_Do_Method)));

The first button in the panel is drawn with the text label “Push me.” and does not have its own com-
mand object. The second button in the panel is drawn containing My_Graphical_Object drawn
inside it, and also does not have its own command. The third button in the panel is drawn with the
text label “Push me too.” and has its own command object associated with it.

When the third button is pressed, My_Custom_Do_Method is called, with the button’s command ob-
ject (my_command) as an argument. The command object’s am_VALUE slot will already have been
set with either O, if the button was not selected, or “Push me too.” if the button was selected. We
assume that this command is not undoable since there is no custom Undo action to go with
My_Custom_Do_Method.

If any of the other buttons in the panel are pressed, the do action of My_Button_panel’s command
object (in its Am_coMMAND slot) will be called, with the command object as an argument. The
am_VALUE of the command object is set with the labels or objects corresponding to the currently
selected buttons.

If you wanted the button panel’s command to be invoked when the third button was pressed, you
would have to set the third button’s command object’s Am_IMPLEMENTATION_PARENT slot to con-
tain the button panel’s command object. For example, after executing the following code,

My_Other_Custom Do_Method in the panel will be called when any of the buttons are selected.

Am_Object panel_command = My_Button_Panel.Get (Am_COMMAND) ;
panel_command.Set (Am_DO_METHOD, My _Other_Custom_Do_Method);
my_command.Set (Am_IMPLEMENTATION_PARENT, panel_command) ;



Widgets Page 221

6.2.3.6 Am_Radio_Button_Panel

A radio button panel is a set of small buttons with items appearing either to the right or left of each
button. Exactly one button from the set can be selected at any particular time, and the button stays
selected after the user stops interacting with it. The radio button panel is often used to present a
user with several different options, only one of which can be in effect at any particular time.

Slot Default Value Type
all the slots of the button panel, with the following changes
Am_BOX_WIDTH 15 int
Am_BOX_HEIGHT 15 int
Am_BOX_ON_LEFT true bool
Am_FIXED_WIDTH false int, bool
Am FINAL_FEEDBACK true bool
_WANTED
Am H ALIGN <formula> {Am_LEFT_ ALIGN,

Am_RIGHT ALIGN,
Am_CENTER_ALTIGN}

An Am_Radio_Button_Panel is essentially the same as an Am_Button_Panel, with a few excep-
tions. There are a few new slots, and some of the defaults of the other slots are different. All other
slots not listed below act the same way as in an Am_Button_Panel. Since radio buttons always
only allow a single selection, the am_vALUE slot of the top-level am_coMManD is always set with ei-
ther O or the ID or label of the selected item.

* Am_BOX_HEIGHT, Am_BOX_WIDTH: These specify the size in pixels of the small radio button
box that is drawn next to the item in the button. The defaults are 15 for each.

* am_BOX_ON_LEFT: This boolean determines whether the radio box should be drawn to the left
of the item, or to the right. If true, the box is drawn on the left, and if false, it is drawn
on the right. The default is true.

* am_H_ALIGN: This slot contains a formula which evaluates to am_LEFT ArLTGN if the
Am_BOX_ON_LEFT i$ true, Or Am_RIGHT_ALIGN if it is false.

* am_FIXED_WIDTH: The default is false for this slot in a radio button panel.

® Am_FINAL_FEEDBACK_WANTED: The default is true for this slot in a radio button panel. This
makes sure the user selected button stays selected after interaction is complete.

* Am_HOW_SET: Since radio buttons are only allowed to have a single selection, this slot defaults
to Am_CHOICE_SET. However, if you want to allow the user to turn off the current selection
by clicking on it again, you can set this slot to be Am_cHOICE_ToceLE. It would be wrong
t0 use Am_CHOICE_LIST_TOGGLE.



Page 222 Widgets

6.2.3.7 Am_Checkbox_Panel

A checkbox panel is a set of small buttons with items appearing either to the right or left of each
button. Zero or more buttons from the set can be selected at any particular time, and the buttons
stay selected after the user stops interacting with the panel. The checkbox panel is often used to
present a user with several different options that can be in effect at the same time.

Slot Default Value Type

all the slots of the button panel, with the following changes

Am_HOW_SET Am_CHOICE__ Am_How_Set
LIST_TOGGLE

Am_ BOX_WIDTH 15 ‘ int

Am_BOX_ HETIGHT 15 int

Am_BOX_ON_LEFT true bool

Am_FIXED_ WIDTH false int, bool

Am FINAL_FEEDBACK_ _WANTED true bool

Am_H_ ALIGN <formula> {Am_LEFT_ALIGN,

Am_RIGHT_ALIGN,
Am CENTER_ALIGN}

An Am_Checkbox_Panel is essentially the same as an am_Radio_Button_Panel. It is drawn
slightly differently, and the following slot is different:

* am_HOwW_SET: The default for a checkbox panel is am_CHOICE_LIST_TOGGLE, which allows
multiple items to be selected at the same time.

Since multiple items can be selected in an am_Checkbox_Panel, the am_vALUE slot of the top-level
Am_COMMAND contains an am_VALUE_LIST of the labels or IDs of the selected items.

6.2.3.8 Am_Menu

An Am_Menu is a single menu panel, implemented as another form of Am_Button_Panel. A menu
panel has a background rectangle behind it, and the items are drawn differently than in
Am_Buttons.

Slot Default Value Type

all the slots of the button panel

Am_ FINAL_FEEDBACK_WANTED false bool
Am_WIDTH <formula> int
Am_HEIGHT <formula> int

Am X OFFSET 2 int

Am_Y_ OFFSET 2 int
Am_V_SPACING -2 int

The following slots of an Am_Menu differ from those in an Am_Button_Panel:



Widgets Page 223

* Am WIDTH, Am HEIGHT: The default formulas in these slots calculate the width and height of
the menu’s items, and add enough width and height to contain the menu’s outer border.

e Am_How_SET: The default for a menu is Am_CHOICE_SET.

*Am_X_OFFSET, Am Y OFFSET: These slots cause the menu items to be offset from the upper
left corner of the menu. The defaults are 2 for X and Y, to make room for the outer border
around the menu;

* am_v_SPACING: This creates extra space between the items in a menu. The default value is -
2, which pushes the menu items vertically closer together in the menu.

* am_TEXT_OFFSET: This offset is used only in the horizontal direction when a text label is
being displayed in the menu item (as opposed to a graphical object). This allows greater
horizontal spacing for text, while keeping the standard vertical spacing. The default value
1s 2 pixels.

6.2.3.8.1 Simple Example

Here is an example of creating an Am_Menu object.

Am_Object my_menu = Am_Menu.Create("my menu")
.Set (Am_LEFT, 150)
.Set (Am_TOP, 200)
.Set (Am_ITEMS, Am Value_List()
.Add ("Menu item")
-Add (Am _Menu_Line_Command.Create ("my menu line"))
.Add (Am_Command.Create("item2")
.Set (Am_ACTIVE, false)
.Set (Am_LABEL, "Not active"))
.Add (Am_Command.Create("item2")
.Set (Am_LABEL, ({("Active item"))
.Set (Am_ACCELERATOR, "CONTROL_a"));
my_window.Add_Part (my menu) ;

The menu has three menu items with a line between the first and second items. The first item ap-
pears as “Menu item” in the menu, and has no corresponding command object. If that item is se-
lected by the user, the do action of my_menu’s command object will be called with “Menu item”
in its am_VALUE slot. Since there is no command object associated with the first menu item, there
is no way to make it inactive without making the whole menu inactive.

The second menu item appears in the menu as “Not active”. It will be grayed out, because the
Am_ACTIVE slot of its corresponding button command object is set to false. This item cannot be
chosen from the menu because it is inactive.

The third menu item appears in the menu as “Active item "a”. It does have a command object
associated with it, so if it is selected by the user, that command’s do action will be executed, and
the widget’s top level command will not be executed. The widget’s top level command object is not
called unless you set the individual button command object’s Am_IMPLEMENTATION PARENT slot to
point to it. This command has an accelerator, so if the user hits control-a in my_window, the com-
mand will be executed.



Page 224 Widgets

6.2.3.9 Am_Menu_Bar

The Am_Menu_Bar is a menubar like you might find at the top of a window that has a horizontal row
of items you can select, and each one pops down a menu of further options. Sometimes it is called
apull-down menu. Amulet’s menu bar currently supports a single level of sub-menus (no pull-outs
from the pull-downs). However, any menu item (either at the top level or a sublevel) can be an
abitrary Amulet object, just like with other button-type objects.

Slot Default Value Type
Am_ LEFT 0 int
Am_TOP 0 int
Am_WIDTH <formula> int width of owner
Am_HEIGHT <formula> int height of text in menubar
Am ACTIVE <formula> bool
Am_ACTIVE_2 true bool
Am WIDGET LOOK Am_ MOTIF_LOOK Am_Widget_Look
Am_FONT Am Default_Font Am_Font
Am FILIL_STYLE Am_Amulet_Purple Am_Style
Am_TTEMS NULL Am_Value_List
Am_COMMAND Am_Command Am_Command

The interface to menu bars is similar to other button widgets: the am_1TEMS slot of the menu_bar
object should contain an am_value_List. However, unlike other objects, the list must contain
command objects. The label field of this command object serves as the top-level menubar item. In
the command object should be an am_ITEMS slot containing an am_value_List of the sub-menu
items. This list can contain command objects, strings or Amulet objects, as with other menus and
button panels. For example:
my_menu_bar = Am_Menu_Bar.Create()
.Set (Am_ITEMS, Am_Value_List ()
.Add (Am_Command.Create("File_Command")
.Set (Am_LABEL, "File")
.Set (Am_DO_METHOD, my_file_do)
.Set (Am_ITEMS, Am Value_ List ()
.Add ("Open...")
.Add ("Save As...")
.Add (Am Command.Create("Quit_Command")
.Set (Am_DO_METHOD, my quit)
.Set (Am_LABEL, "Quit")
.Set (Am_ACCELERATOR, "~g"))
)
)
.Add (Am_Command.Create("Edit_Command")
.Set (Am_LABEL, "Edit")
.Set (Am_DO_METHOD, my_edit_do)
.Set (Am_ITEMS, Am_Value_List ()
.Add (undo_command.Create())
.Add ("Cut")
.Add ("Copy")
.Add ("Paste")
.Add (Am Menu_Line_Command.Create ("my menu line"))



Widgets Page 225

.Add ("Find...")
)

)

If a sub-menu item has a command (like Quit or Undo above), then its am_D0o_METHOD is called
when the item is chosen by the user. If it does not have a command object (like Cut and Paste
above), then the command object of the main item is used (here, the do method called my_edit_do
in the command object named Edit_Command will be called for Cut and Paste, and the am_vaLUE
slot of the Eqit_command will be set to the string of the particular item selected). Note that because
the first level value list must contain command objects, the command object stored in the menu_bar
object itself will never be wused unless the programmer explicitly sets the
Am_TIMPLEMENTATION_PARENT slot of a command to the menu_bar’s command object. The
am_VALUE of whatever command object is executed will be set to the label or ID of the selected
item. Menu bars can also contain accelerators, as shown by the Quit command in the example.

Am_Menu_Bars allow the top level item to be chosen (unlike, say the Macintosh), in which case its
command object is called with its own label or ID as the am_varLUE. The programmer should ignore
this selection if, as usually is the case, pressing and releasing on a top-level item should do nothing.

Individual items can be made unselectable by simply setting the am_acT1VE field of the command
object for that item to false. If the am_acT1vE field of a top-level command object is false, then the
entire sub-menu is greyed out, although it will still pop up so the user can see what’s in it.

Unlike regular menus and panels, the Am_Menu_Bar will not show the selected value after user
lets up with the mouse. That is, you cannot have Am_FINAL_FEEDBACK_WANTED as true.

Slots that behave different for the Am_Menu_Bar are:

* Am_WIDTH, Am_HEIGHT: By default, these slots contain formulas that make the menubar
be the width of its owner (usually the width of the window) and the height of the current
font. However, you can override these defaults with constant values or other formulas.

6.2.3.10 Am_Option_Button

An Option Button is a widget that acts like a menu, but displays only the current value. It looks
like a button, with a little notch at the right, and when the user clicks on it, a menu pops up listing
all the choices. If the user releases, the value does not change, but if the user moves the mouse and
releases, the new selection is shown in the button. The parameters to an Am_Option_Button are
the same as those to a Menu, except that Am_FINAL_FEEDBACK_WANTED is ignored, and Am_HOW_SET
must stay Am_CHOICE_SET.



Page 226 Widgets

6.2.4 Scroll Bars

Am_Vertical_Scroll_Bar and Am_Horizontal_ Scroll Bar are widget ObjeCtS that allow the
selection of a single value from a specified range of values, either as a int or a f1loat (see section
6.2.4.1). You specify a minimum and maximum legal value, and the scroll bar allows the user to
pick any number in between. The user can click on the indicator and drag it to set the value. As
the indicator is dragged, the value is updated continuously. If the user clicks on the arrows, in the
scroll bar, the scroll bar increments or decrements the current value by Am_SMALL_INCREMENT. If
the user clicks above or below the scroll bar, the value jumps by Am_LARGE_INCREMENT. Unfortu-
nately, auto-repeat (repeatedly incrementing while the mouse button is held down) is not imple-

mented yet. You can also adjust the indicator’s size to show what percent of the entire contents is
visible.

Like all other widgets, the Am_Vertical Scroll_Bar and am_Horizontal_Scroll_Bar store the
value in the am_vALUE slot of the widget and in the Am_VALUE slot of the Am_coMMaND object. As
the value is changed by the user, the am_po_METHOD of the command is also continuously called.

The am_vaLUE slot of the widget can also be set by a program to adjust the position of the scroll
bar indicator.

The Am_Scrolling Group provides a convenient interface for a scrollable area. It operates simi-
larly to a regular am_Group (see the Opal chapter), except that it optionally displays two scroll bars
which the user can use to see different parts.

6.2.4.1 Integers versus Floats

There are four slots that control the operation of the scroll bars: Am_VALUE_1, Am_VALUE_ 2,
Am_SMALL_INCREMENT, and Am_LARGE_INCREMENT. If all of these slots hold values of type integer,
then the result stored into the am_VALUE slot will also be an integer. If any of these values is a float,
however, then the result will be a float. The default values are 0, 100, 1 and 10, so the default
result is an integer. Note that the Inspector and cout display floats without decimal parts as inte-
gers, but the scroll bar still treats them as floats.

6.2.4.2 Commands in Scroll Bars

The command objects in scroll bars work similarly to other widget commands. The main differ-
ence is in the Am_vALUE slot.

* am_ACTIVE: This determines whether the scroll bar is active or not. Inactive scroll bars do
not respond to user input. However, in the default Motif look and feel, they are not drawn
any differently.

* am_VALUE: This holds the currently selected value on the scroll bar. As discussed above, it
will either be an integer or float value.



Widgets Page 227

The scroll bar command supplies undo methods which resets the am_vALUE slot and the displayed
value to the previous value. However, most applications do not allow scrolling operations to be
undone, in which case, you should make sure that the scrolling command is not queued on the undo
list (see the section on Undo in the Interactors manual).

For scrolling groups, the default is not to be undoable. If you want the scrolling group commands
to be queued for undoing, set the am_coMMaND slot of the scrolling group to be NULL.

6.2.4.3 Horizontal and vertical scroll bars

These are the default slots OfAm_Vertical_Scroll_Bar. An Am_Horizontal_ Scrollbar has the
same defaults, except it’s 200 pixels wide and 20 pixels high.

Slot Default Value Type
Am_VALUE 50 Am_Value
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH 20 int
Am_HEIGHT 200 int

Am WIDGET_LOCK

Am FILL_STYLE
Am_VALUE_1

Am VALUE_2
Am_SMALIL_TINCREMENT
Am_LARGE_INCREMENT
Am_PERCENT_ VISIBLE
Am_COMMAND

Am_MOTIF_ LOOK
Am Amulet_Purple
0

100

1

10

0.2

Am_Command

Am_Widget_Look

Am_Style

int or float
int or float
int or float
int or float
float
Am_Command

Here is a description of the customizable slots of a scroll bar:

Value at top

Value at bottom
When click arrow
When click “page”
Size of indicator

* am_WIDTH: This determines the width of the scroll bar. This includes the height of the arrows

at the ends of horizontal scroll bars. The default is 20 for vertical bars, and 200 for

horizontal bars.

* am_HEIGHT: This determines the height of the scroll bar. This includes the height of the

arrows at the ends of vertical scroll bars. The default is 200 for vertical bars, and 20 for

horizontal bars.

* am_VALUE_1: This is the value selected in the scroll bar when the indicator is at the top (for
vertical scroll bars) or left (for horizontal) end of the scroll bar. The default type is an int,
but it can also be a float. The default is 0. Note that Am_vALUE_1 is not required to be less
than am_VALUE_2, in case you want the bigger value to be at the top or left.

* am VALUE_2: This is the value selected in the scroll bar when the indicator is at the bottom
(for vertical scroll bars) or right (for horizontal) end of the scroll bar. The defauls type is
an int, but it can also hold a float. The defaultis 100. Note that Am_VALUE_2 is not required
to be bigger than Am_VALUE_1.



Page 228 Widgets

* Am_SMALL_INCREMENT: This is the amount the value is changed when the user clicks on the
arrows at the end of the scroll bar. The default value is 1 of type int. The slot can contain
either an int or a float.

* Am_LARGE_INCREMENT: This is the amount the value is changed when the user clicks on the
scroll area on either side of scroll handle. The default value is 10 of type int. The slot can
contain either an int or a float.

* Am_PERCENT_VISIBLE: This slot specifies how large the indicator will be with respect to the
region it is dragged back and forth in. The slot should hold a float between 0.0 and 1.0, and
the default is 0.2. If this value determines a thumb smaller than 6 pixels long, a 6 pixel
thumb is drawn instead.

6.2.4.4 Am_Scrolling_Group

An Amulet scrolling group is useful when you want to display something bigger than will fit into
a window and allow the user to scroll around to see the contents. You can use the
Am_Scrolling_Group just like a regular group, but the user will be able to scroll around using the
optional vertical and horizontal scrollbars.

Slot Default Value Type
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH 150 int
Am_ HETGHT 150 int
Am_X_OFFSET 0 int Where scrolled to
Am_Y_ OFFSET 0 int Where scrolled to
Am_WIDGET LOOK Am_ MOTIF_LOOK Am_Widget_Look
Am_FILL_STYLE Am_Amulet_Purple Am_Style
Am_TNNER_FILL_STYLE 0 Am_Style or 0 If O uses FILL STYLE
Am_LINE STYLE Am_Thin_ Line Am_Style Border of scrolling area
Am_H_SCROLL_BAR true bool Whether show horiz bar
Am_V_SCROLL_BAR true bool Whether show vertical bar
Am_H_SCROLL_BAR_ON_TOP false bool
Am_V_SCROLL_BAR_ON_LEFT false bool
Am_H_SMALL_INCREMENT 10 int
Am_H_LARGE_INCREMENT <formula> int Computed from page size
Am_V_SMALL_TINCREMENT 10 int
Am_V_LARGE_INCREMENT <formula> int Computed from page size
Am_TINNER_WIDTH 400 int Size of scrollable area
Am_TINNER_HEIGHT 400 int Size of scrollable area




Widgets Page 229

A scrolling group has two distinct rectangular regions. One is the region that is drawn on the
screen, and contains scroll bars, and a rectangle with a visible portion of the group. This region is
defined by the Am_LEFT, Am TOP, Am_WIDTH and Am_HEIGHT of the Am_Scrolling_Group itself.
The other region is called the inner region which is the size of all the objects, some of which might
not be visible. This area is controlled by the am_INNER_wIDTH and Am_INNER_HEIGHT slots.

By default, the am_aAcTIVE slots of the scroll bars are calculated based on whether the scroll bars
are needed (whether any of the group is hidden in that direction). The percent-visible is also cal-
culated based on the amount of the group that is visible. The Am_H_LARGE_INCREMENT and
Am_V_LARGE_INCREMENT are also calculated based on the screen size.

6.2.4.4.1 Members of a Am_Scrolling_Group

You can add and remove members to a scrolling group using the regular add_rart and
Remove_Part methods (be sure to adjust the inner size of the group if the new members change it-
-you can arrange for this to happen automatically by putting an appropriate constraint into the
Am_INNER_WIDTH and Am_INNER_HEIGHT slots, such as Am width Of_parts and
Am_Height_Of_Parts.). However, when enumerating the parts of a Am_Scrolling Group, do
-not use a Am Part_Iterator, since this will also list the scroll bars. Instead, use the
Am_Value_List stored in the Am_GRAPHICAL_PARTS slot of the group, which will only contain the
objects you added. The am_GRAPHICAL_PARTS slot can also be used for normal groups (instances
of Am_Group and Am_Map), S0 you can write code that will operate on either scrolling groups or reg-
ular groups.

6.2.4.4.2 Am_Scrolling_Group Slots

* Am_WIDTH, Am_HEIGHT: These default to 150 in a scrolling group. The width and height
determine the size of the group’s graphical appearance on the screen, including space for
scroll bars.

* Am_X_OFFSET, Am_Y_OFFSET: These are the coordinates of the visual region, in relation to the
origin of the inner region. The slots always contain a nonnegative integer, with 0
corresponding to no offset (meaning that the scrollable region’s top and left are the same at
the top, left of the visible area). The default is O for both X and Y offset. You may also
Get or Set these slots, and the slots can even contain formulas. Getting the slot gives you
the current scrollbar position, and setting the slot changes the current scrollbar position and
scrolls the area.

* am_FILL_STYLE: The filling style (color) used to draw the scroll bars (and the background of
the window if Am_INNER_FILL_STYLE is 0).

* Am_INNER_FILL_STYLE: This determines what the background fill of the group will be. If it
1S an Am_Style, that style is used. If it contains 0, the am_FILL_STYLE slot is used.

* Am_LINE_STYLE: This determines what the border of the scrolling region. The default is
Am_Thin_Line. The size of the scrolling area is adjusted inward to make room for the
specified line thickness. If O, then no line is drawn.

* Am_H_SCROLL_BAR, Am_V_SCROLL_BAR: These booleans determine whether the group will
have vertical and/or horizontal scroll bars. These slots default to true.



Page 230 Widgets

*Am_H_SCROLL_BAR_ON_TOP, Am_V_SCROLL_BAR_ON_LEFT: These booleans determine which
side of the group the scroll bars appear on. The defaults are false for both, which puts the
horizontal scroll bar at the bottom of the group, and the vertical scroll bar at the right of the
group as on most standard windows.

*Am H_SMALL_INCREMENT, Am V_SMALL_INCREMENT: This is the small increment in pixels of
the horizontal and vertical scroll bars. The value determines how much the scrolling group
is moved when the user clicks on the scroll arrows. The default is 10 pixels.

®Am_H_LARGE_INCREMENT, Am V_LARGE_INCREMENT: This is the large increment, in pixels,
of the horizontal and vertical scroll bars. The value determines how much the scrolling
group is moved when the user clicks on the scroll areas beside the scroll indicators. The
default is calculated by a formula to jump one visible screen full.

*Am_INNER_WIDTH, Am_INNER_HEIGHT: This is the size of the entire group, not just the visible
portion. The defaults are 400 for both. This will usually be calculated by a formula based
on the contents of the scrolling group (e.g., Am_width_Of_parts and
Am_Height_ Of_ Parts). It is OK if these are smaller than the scrolling group’s Am_wIDTH

and Am_HETGHT: this just means that the entire area is visible, and so the appropriate scroll
bars will be disabled.

* Am_COMMAND: You rarely will need to call a method when the scrolling group is used, so the
Am_COMMAND slot has the value am_NOT_USUALLY_UNDONE. You can change it to NULL to

get the internal scrolling operations queued for undo, or you can supply a command to be
executed after each scrolling operation.

6.2.4.4.3 Using a Scrolling Group

To use an Am_Scrolling Group, simply create an instance of it, customize the Am_TOP, Am_LEFT,
Am_WIDTH, and Am_HEIGHT slots of the group to define its size, set the Am_INNER_WIDTH and
Am_INNER_HEIGHT based on the contents, and add graphical parts to the group.

6.2.4.4.4 Simple Example

Here is a simple example of using a scrolling group.
my_scrolling group = Am_Scrolling_Group.Create(“"scroll_group")
.Set (Am_LEFT, 10)
.Set (Am_TOP, 10)
.Set (Am_WIDTH, 200)
.Set (Am_HEIGHT, 300))
.Add_Part (Am_Rectangle.Create()
.Set (Am_LEFT, 0}
.Set (Am_TOP, 0)
.Set (Am_WIDTH, 15)
.Set (Am_HEIGHT, 15)
.Set (Am_FILL_STYLE, Am_ Blue)
)i
my_window.Add_Part (my_scrolling group) ;



Widgets Page 231

This creates a scrolling group with an area of 200 by 300 pixels, and an internal region 400 by 400
pixels (the default values are inherited since none were specified). The scrolling group is displayed
at location 10,10 in my_window. It contains a single object, a blue square 15 pixels on a side, in the
upper left corner of the inner region. The scrolling group will have a vertical scroll bar on the right
side of the group, and a horizontal scroll bar on the bottom of the group, as specified by the defaults.

6.2.5 Am_Text_Input_Widget

The Am_Text_Input_Widget is used to get a single line of text input from the user, for example
for filenames.

Slot Default Value Type
Am_VALUE ww Am_String
Am_LEFT 0 int
Am_TOP 0 int
Am_ WIDTH 150 int
Am_HEIGHT <formula> int
Am_WIDGET_ LOOK Am_MOTIF_LOOK Am_Widget_Look
Am_FONT Am_Default_Font Am_Font
Am_LABEL_FONT bold_font Am_Font
Am FILL_STYLE Am_Amulet_Purple Am_Stvyle
Am_ACTIVE_2 true bool
Am_COMMAND Am_Command Am_Command

The widget has an optional label to the left of a text type-in field. The label is the value of the
am_LABEL field of the command object (and can be a string or arbitrary Amulet graphical object,
or an empty string for no label). The user can click the mouse button in the field, and then type in
anew value. The Am_vaLUE of the command in the Am_coMMaND slot is set to the new string, and
the command's am_Do_METHOD is called. The command’s default Am_UNDO_METHOD restores the
Am_vALUE and the displayed string to its previous value. As the user types, if the string gets too
long to be displayed, it scrolls left and right as appropriate so the cursor is always visible. The user
can finish the typing by typing return on the keyboard, or by clicking outside the text input field.

The text input widget could also be used as an output-only text display by setting the am_acTIVE_2
slot (see Section 6.2.1) to false, which will disable the interactors.

The special slots of the Am_Text_Input_widget are:

* Am_WIDTH - unlike most widgets, the default width is a constant (150) since the widget scrolls
the text to fit. You will probably want to set the width to some other constant or formula.

* Am_HEIGHT - the default formula for the height uses the maximum of the height of the label
and the height of the string.

* Am_FONT - this slot holds the font of the string that the user edits, and the default is the regular
default font.



Page 232 Widgets

* Am_LABEL_FONT - this slot holds the font used for the label if the label is a string (the label

comes from the am_LABEL slot of the command object in the widget). The default is a bold
font.

* Am_FILL_STYLE - the color used for the user type-in field.

* Am_WANT_PENDING_DELETE - if true (the default) then when the widget is explictly started
(using Am_Start_Widget -- Section 6.5), the entire string is selected so the next character
(unless it is a cursor movement character) will delete the entire string. Also,
Am_WANT_PENDING_DELETE enables a double-click of the mouse to select the entire string
so that the next character will delete the entire string.

6.2.5.1 Command in the Text Input Widget

The Am_12BEL of the command in the Am_Text_Input_widget is used as the label of the input
field, so if you do not want a label, make the slot be the null string "". The Am_VALUE of the widget
is set with the value the user types, and the Am_Do_METHOD is called.

6.2.5.2 Tabbing from Widget to Widget

A built-in interactor, Am_Tab_To_Next_Widget_Interactor, and its command object support tab-
bing from one Am_Text_Input_Widget to another in the same window.

Slot Default Value Type
Am_START WHEN Am_TInput_Char Am_Input_Char how starts
(“ANY_TAB")
Am_LIST OF_TEXT <formula> Am Value_List of  default is all parts of
WIDGETS Am_Text_Input_ owner of Interactor
Widgets that are text widgets
Am_PRTIORITY 105 float or int should be larger than

running priority (100)

If you add an instance of the am_Tab_To_Next_Widget_Interactor to a window or group, then
by default, hitting the TaB key will move from the one Am_Text_Input_Widget to the next, and
SHIFT_TAB will move backwards. As the cursor is moved to the Am_Text_Input_widget, a box
is drawn around the widget to show it is selected, and the widget is started with the old contents of
the widget selected in “pending-delete” mode, so that if the next character typed is a normal print-
ing character, it will replace the old string. If another widget was operating when the TaR key was
hit, then that widget is stopped, which will call its po_MeTHOD. There is no way to distinguish leav-
ing a Am_Text_Input_Widget because the user hit RETURN to confirm the value, versus clicking
outside, versus hitting TaB to go to the next field. Therefore, it is recommended that you do not use
the po_meTHOD of the command in the widget to anything if you are using the
Am_Tab_To_Next_Widget_Interactor. The command used by this interactor is not undoable,
so moving from field to field is not queued on the undo history.



Widgets Page 233

Note: In toolkits such as Motif and MS Windows, you can TAB to other widgets besides text input
widgets, for example to use the arrow keys to select which button to press. This is not yet supported
in Amulet, so the TAB interactor just goes from text widget to text widget, skipping all other kinds
of widgets.

The Am_Tab_To_Next_Widget_Interactor has a number of slots that can be used to customize
the behavior:

* Am_START WHEN: Default value is Am_Inter_Char (*aNy_TaB~), which accepts the TAB key
with any modifier. The internal code checks for the suIFT modifier down to decide
whether to go forwards or backwards, but you can use any character to start this interactor.

® Am_LIST_OF_TEXT_WIDGETS: This must contain a list of Am_Text_Input_widgets. By
default, it contains a formula which computes the list of text widgets by looking through
the owner of the interactor for all of its parts which are instances of
Am_Text_ Input_Widget. The default order of the widgets is back to front, so if you add
your Am_Text_Input_Widgets to the group from top to bottom, left to right, this will be
the correct order. If you want to compute the list of Am Text_Input_widgets some other
way, simply set the Am_LIST_OF_TEXT WIDGETS slot with the list sorted in the correct way,
or else set it with a formula which returns the desired list.

6.2.6 Am_Selection_Widget

Am_Selection Widget is used for selecting, moving, and resizing graphical objects.

Slot Default Value Type
Am_VALUE NULL Am_Value_List list of selected objects
Am_START_ WHEN Am_TInput_Char Am_TInput_Char

(“ANY_LEFT DOWN" )

Am_FILL_STYLE Am_Black Am_Style color of handles
Am_VALUE © Am_Value_List () Am_Value_List
Am_ACTIVE true bool
Am_OPERATES_ON NULL Am_Object group to select from
Am_START WHERE_TEST Am_ Inter_ In_Part Am_Where_Method
Am_COMMAND Am_Command Am_Command object selected
Am_MOVE_GROW_COMMAND Am_Command Am_Command object moved/ grown

Most graphical applications need to have "selection handles," which are small squares that show
which object(s) are selected and which allow the objects to be moved and changed size. Surpris-
ingly, most toolkits require each application to reimplement this basic functionality. Amulet sup-
plies this behavior through the supplied Am_selection_widget object, which you simply can add
to your application, and then its objects will be selectable and manipulatable

Slots that control the Am_Selection_Wwidget are:

* Am_OPERATES_ON: Must be set with a group, scrolling group or window that contains the
objects that can be selected. The am_selection_widget will allow the user to select any
element of this group.



Page 234 Widgets

* am_FILL_STYLE: The color of the selection handles. The default is am_Black. The handles
are drawn with this color on the inside, and a line style of Am_White. This insures that the
handles are almost always visible, independent of the color of the objects and the

background (XOR is not used, as in most other toolkits, since this often results in invisible
handles).

* am_ACTIVE: Controls whether the widget is active. Default is true.

* am_START_WHEN: This is the character that the widget will start on. The default is
Am_TInput_Char ("ANY_LEFT_DOWN").

* Am_START_WHERE_TEST: How to test the group in am_0OPERATES_ON for which objects to
select. The default is Am_Inter In_part.

* am_VALUE: The set of selected objects is supplied as an am value_List in this slot. You can
also set this slot with a am_value_List of objects you want to have selected.

6.2.6.1 Application Interface for Am_Selection_Widget

The am_selection_widget you create should be added to a window or group in which you want
the selection handles to appear. In general, it is a good idea to make the Am_OPERATES_ON group
be a different group from the group that the am_Selection_widget is in. Typically, there will be
a top level group, and the Am_OPERATES_ON group and the Am Selection_Widget will be put into
the top level group. For example:

//scroller is the top-level scrolling group to put things in
scroller = Am_Scrolling Group.Create("scroller")
.Set (Am_LEFT, 55)
.Set (Am_TOP, 40)
.Set (Am_INNER_WIDTH, 1000)
.Set (Am_INNER_HEIGHT, 1000)
.Set (Am_INNER_FILL_STYLE, Am White)
.Set (Am_WIDTH, scroll_width_formula) /fwidth and height will be
.Set (Am_HEIGHT, scroll_height_formula) / based on window’s

/all objects that will be created and that can be selected and moved will be put into created_objs
created_objs = Am_Croup.Create("created_objs")
.Set (Am_LEFT, 0)
.Set (Am_TOP, 0)
.Set (Am WIDTH, 1000)
.Set (Am HEIGHT, 1000)
//the selection widget operates on the group created_objs
my selection = Am Selectilion_Widget.Create("my_selection")
.Set (Am_OPERATES_ON, created_objs)
//put the scroller in the window
my_window.Add_Part (scroller);
//put the selection widget and the created_objs as parts of the scrolling group
scroller.Add_Part (created_objs);
scroller .Add_Part (my_selection);

As mentioned above, you can access the list of selected objects in the am_vALUE slot of the
Am_Selection_Widget. You can also set this slot to change the set of selected objects. Be sure to
only set this slot to an am_value_List, even if you want no objects or a single object selected. For
example, to clear the selection, use:



Widgets Page 235

my_selection.Set (Am_VALUE, Am_Value_List());

There are also two command objects you can use to monitor the selection widget’s activities. The
Am_COMMAND part is used when the selection changes. The am_VALUE of the Am COMMAND object is
set with the current selection, and its Am_Do_METHOD is called whenever the selection changes. The
Am_IMPLEMENTATTON_PARENT of this command is Am_NOT USUALLY_ UNDONE by default, since nor-
mally changing the selection is not undoable. If you want the selections to be undoable, set the
Am_IMPLEMENTATION_PARENT slot of the am_commanD of the selection widget to be NULL. This is
done automatically by the undo dialog box (see Section 5.6.2.3.2) when the user clicks on the undo
selections check box.

The other command is used when the user moves or grows an object. This command is in the
Am_MOVE_GROW_COMMAND named part. You should probably not replace this command, because it
has a built-in formula to make the label be correct based on the operation, but it is fine to override
the various DO and UNDO methods. By default, the move and grow operations are undoable, if
there is an undo handler attached to the window the selection widgets are in.

6.2.6.2 User Interface to Am_Selection_Widget

The selection widget operates in the standard way of the selection handles on the Macintosh and
Windows. The user can click with the specified button (usually the left button) over an object to
select it. Holding down the shift key while clicking will add or remove the object under the mouse
to the selected set. Thus, to select multiple objects, you can click on them with the shift key held
down. If you click in the background, all objects will be de-selected. Unfortunately, selecting ob-
jects by dragging out a region is not yet supported.

If you press down on an object and move the mouse, the object will be moved. If multiple objects
are selected, they all will be moved. If you click on a selection handle, the object attached to the
handle will be changed size. Note that it is currently not possible to grow multiple objects at the
same time; only the object that the specific handle is attached to is grown.

6.3 Dialog boxes

Amulet provides three standard dialog box widgets with different appearances but similar opera-
tion to be used for simple messages and queries. We also provide several functions to make the
dialog boxes easier to use. The dialog boxes are:

*Am_Alert_Dialog displays several lines of informational text, and an "OK" button below the
text. It is used to alert the user of an error or to give the user information, and returns no
value.

* Am_Choice_Dialog displays several lines of prompt text, and "OK" and "Cancel" buttons
below the text. It is used to prompt the user to make a choice, and returns the value of the
button they chose (either "OK" or "Cancel").



Page 236 Widgets

*Am_Text_Input_ Dialog displays several lines of prompt text, a text input widget, and "OK"
and "Cancel" buttons. It is used to prompt the user for text input. It returns the value of the
text input widget if the user clicks on "Okay" or presses the RETURN key, and
Am_No_Value if the user cancels.

6.3.1 Support functions for Dialog Boxes

Several functions are available to make it easier to use dialog boxes in common situations.
void Am_Show_Alert_Dialog (Am Value_List alert_texts, int x = 100,
int y = 100, bool modal = false)

This routine brings up an alert dialog box at the location (x, y) on the main screen, and waits for
the user to close it by clicking the "OK" button. The list alert_texts is a list of char* or
Am_String values which will be displayed, one per line, above the "Okay" button. If modal is true,
the dialog box will be run modally, otherwise it will be run non-modally. This routine does not
return until the user clicks on either OK or Cancel.

Am_Value Am_Get_Choice_From_Dialog (Am_Value_List prompt_texts,
int x = 100, int y = 100, bool modal = false);

This routine brings up a choice dialog box at the location (x, y) on the main screen, and waits for
the user to close it by clicking either the "OK" or "Cancel" button. The list prompt_texts is a list
of char* or Am_String values which will be displayed, one per line, above the buttons. If modal
is true, the dialog box will be run modally, otherwise it will be run non-modally. The return value
will be a string, either "OK" or "Cancel" depending on which button the user pressed.

Am_Value Am_Get_TInput_From Dialog (Am Value_List prompt_texts,
Am_String initial_value = "",
int x = 100, int y = 100,
bool modal = false)

This routine brings up an input dialog box at the location (x, y) on the main screen, and waits for
the user to close it by clicking either the "OK" or "Cancel" button. The list prompt_texts is a list
of char* or Am_string values which will be displayed, one per line, above the text input line and
buttons. If modal is true, the dialog box will be run modally, otherwise it will be run non-modally.
The return value will be a string, the value of the text widget, if the user clicks "OK" or presses
RETURN to close the dialog box. The routine returns Am_No_value if the user clicks "Cancel."

Am Value Am Show_Dialog And_Wait (Am Object the_dialog,
bool modal = false)



Widgets Page 237

This routine displays a preconfigured dialog box, waits for the user to complete interaction with it,
and then returns its value. The only slots the dialog box changes before displaying the dialog box
are its command's Am_DO_METHOD and Am_aABORT_METHOD. This routine is useful for reusing a com-
monly displayed dialog box without the overhead of reallocating and reinitializing the dialog box
each time it is displayed. The dialog is added to am_screen if it is not already there, but it is not
removed when the routine is finished.

6.3.2 Slots of dialog boxes

* Am_X OFFSET: 5

* am_Y_OFFSET: 5, The elements of the dialog box are put in a group inside the dialog box
window. The Am_x_OFFSET and am_v_OFFSET are the size of the empty border area
between this group and the edge of the window.

* am_wIDTH: formula depending on contents.

* am_HEIGHT: formula depending on contents. Dialog boxes automatically resize themselves
to fit the dialog box elements with a border around them. You may override the formula by
explicitly setting the Am_wIDTH and Am_HEIGHT slots, but then the dialog box will no longer
resize itself.

* Am_FILL_STYLE: Am_Motif_Gray. This specifies the fill style of the dialog box window and
all widgets contained in it.

® Am_WIDGET_LOOK: Am_ MOTIF_LOOK

*am_ITEMS: 0. Mustbe NULL or an am value_List Of char* or Am_string. This is a list of
string items which will be displayed, one per line, above the dialog box widgets.

* am_v_SPACING: 5. These slots control the layout of the multiple strings specified in am_ITEMS
* Am_H_SPACING: 10

* Am_H_ALIGN: Am_CENTER_ALIGN

* Am_WIDGET_START_METHOD: Am_Show_Dialog_Method

* Am_WIDGET_STOP_METHOD: Am_Finish Dialog_Method

* Am_WIDGET_ABORT_METHOD: Am Finish_Dialog_Method

"nn

* Am_VALUE: "" or a formula depending on the user’s selection. This contains the current value
of a dialog box for choice and input dialog boxes. In input dialog boxes, it can be set with
an initial value to be displayed in the text input widget.

¢ Other slots are inherited from Am_WINDOW.

6.3.3 Am_Text_Input_Dialog slots

* Am_VALID_INPUT: true. In text input dialog boxes, this slot tells the dialog box whether the
text input field is a valid input or not. If Am_VALID_INPUT is false, the "OK" button will be
inactive (greyed out), and the RETURN key will not close the dialog box (making "Cancel"
the only valid operation). The intended use of this slot is to contain a constraint on the
dialog’s am_VALUE slot which determines whether the input value is valid or not, and
returns true or false appropriately.



Page 238 Widgets

6.4 Supplied Command Objects

Many operations should work the same way across many different applications. In particular,
graphical editing commands such as cut, copy and paste should always work in a standard fashion.
To help with this, Amulet supplies a set of pre-built Command objects that you can simply add to
your menus or buttons to perform standard operations. These commands come complete with the
complete UNDO methods, enabling methods, labels and accelerators, but you can of course over-
ride any of these as desired.

Most of these commands operate on the currently selected objects, so they require that you pass in
an instance of a selection widget (Section 6.2.6) in the Am_SELECTION_WIDGET slot of the com-
mand object. If you implement your own selection handles and do not use the selection widget,
you still may be able to use the following commands, if your selection handles object provides the
set of selected objects in the am_vaALUE slot, and allows that slot to be set to change the selection.

The supplied command objects are as follows. See the tables in the Summary chapter, Section 10.7
for a list of the slots to be set in each.

*Am_Selection Widget_Select_All_Command: used with the selection widget to cause
everything to be selected. The label is “Select All” and the accelerator is “CONTROL_a”.
Must be passed a Am_SELECTION_WIDGET.

* Am_Graphics_Clear_ Command: delete the selected objects. The label is “Clear” and the
accelerator is “DELETE”. Must be passed a Am_SELECTION_WIDGET.

* Am_Graphics_Clear_All_command: The label is “Select All” and the accelerator is
“CONTROL_a”. Must be passed a Am_SELECTION_WIDGET.

* Am_Graphics_Copy_Command: Copy to the clipboard. The label is “Copy” and the
accelerator is “CONTROL_c”. Must be passed a Am_SELECTION_WIDGET.

* Am_Graphics_Cut_Command: Copy objects to the clipboard and then delete them. The label
is “Cut” and the accelerator is “CONTROL_x”. Must be passed a Am_SELECTION_WIDGET.

* Am_Graphics_Paste_Command: Paste a copy of the objects in the clipboard. The label is
“Paste” and the accelerator is “CONTROL_v”. Must be passed a Am_SELECTION_WIDGET.

* Am_Graphics_To_Bottom_Command: Make the selected objects be covered by all other
objects. The label is “To Bottom” and the accelerator is “CONTROL_<". Must be passed
a Am_SELECTION_WIDGET.

* Am_Graphics_To_Top_Command: Make the selected objects be covered by no other objects.
The label is “To Top” and the accelerator is “CONTROL_>". Must be passed a
Am_SELECTION_WIDGET.

*Am_Graphics_Duplicate_Command: Duplicate the selected objects. The label is “Duplicate”
and the accelerator is “CONTROL_d”. Must be passed a Am_SELECTION_WIDGET.

*Am_Craphics_Group_Command: Make a group out of the selected objects. Creates an instance
of Am_Resize_Parts_Group (see Section 4.7.3 in the Opal chapter) and adds the selected
objects to it. The new group has its Am_CREATED_GROUP slot set to true, which is used by



Widgets Page 239

ungroup and change property. The label of the command is “Group” and the accelerator is
“CONTROL_p”. (We would have made it G, but that is used for aborting all interactors
and widgets). Must be passed a Am_SELECTION_WIDGET.

* Am_Graphics_Ungroup_Command: Ungroup the selected objects. This will only operate on
objects that have the Am_CREATED_GROUP slot set to true, which are typically those groups
created by the Am_Graphics_Group_cCommand. The label is “Select All” and the accelerator
is “CONTROL_h”. Must be passed a Am_SELECTION_WIDGET.

® Am_Undo_Command: Perform a single undo. The label is “Undo” and the accelerator is
“CONTROL_z”. This finds the undo handler by looking for the window of the object in
the Am_SELECTION_WIDGET slot (which can be any object whose Am_WINDOW is the
window containing the undo handler--for this command, this slot doesn’t have to contain a
selection widget). If the Am_SELECTION_WIDGET slot is null, then gets the window from the
widget the command is attached to, and looks for that window’s undo handler.

* Am_Redo_Command: Perform a single redo. The label is “Redo” and the accelerator is
“CONTROL_SHIFT_Z”. Looks for an undo handler the same way as Am_Undo_Command.

* Am_Quit_No_Ask_Command: Quit the application immediately without asking for
confirmation. The label is “Quit” and the accelerator is “CONTROL_g”. Does not use an
the Am_SELECTION_WIDGET.

* Am_Graphics_Set_Property_Command: to set the color, line style or other property of the
selected objects. This has a slightly more complicated interface, as described in
Section 6.4.2. Must be passed a Am_SELECTION_WIDGET.

As an example of the use of many of these commands, here is part of the menu bar definition for

testselectionwidgets:
menu_bar = Am Menu_Bar.Create{“menu_bar”)
.Set (Am_ITEMS, Am_Value_ List ()
.Add (Am_Command.Create(“File_Command”)
-Set (Am_IMPLEMENTATION_PARENT, true) /fop command not queued for undo
.Set (Am_LABEL, “File”)
.Set (Am_ITEMS, Am_ Value_List ()
.Add (Am_Quit_No_Agk_Command.Create())
)
)
.Add (Am_Command.Create (“Edit_Command”)
.Set (Am_LABEL, “Edit”)
.Set (Am_TIMPLEMENTATION_PARENT, true) /top command not queued for undo
.Set (Am_ITEMS, Am_ Value_List ()
.Add (Am_Undo_Command.Create()) /these get the undo_handler from
.Add (Am_Redo_Command.Create()) #  menubar’s window
.Add (Am_Show_Undo_Dialog_Box_Command.Create ()
.Set (Am_UNDO_DIALOG_BOX, my_undo_dialog))
.Add (Am_Menu_Line_Command.Create())
.Add (Am_Graphics_Cut_Command.Create ()
.Set (Am_SELECTION_WIDGET, my_selection))
.Add (Am_Graphics_Copy_Command.Create ()
.Set (Am_SELECTION_WIDGET, my_selection))
.Add (Am_Graphics_Paste_Command.Create ()
.Set (Am_SELECTION_WIDGET, my_ selection))
.Add (Am_Graphics_Clear_Command.Create ()
.Set (Am_SELECTION_WIDGET, my_selection))
.Add (Am_Graphics_Clear_All_Command.Create ()



Page 240 Widgets

.Set (Am_SELECTION_WIDGET, my_selection))
.Add (Am_Menu_Line_Command.Create())
.Add (Am Graphics_Duplicate Command.Create ()
.Set (Am_SELECTION_WIDGET, my_ selection))
.Add (Am_Selection Widget_Select_All_Command.Create()
.Set (Am_SELECTION_WIDGET, my_selection))
)
)
.Add (Am_Command.Create (“Arrange_Command”)
.Set (Am_LABEL, “Arrange”)
.Set (Am_DO_METHOD, my_do)
.Set (Am_TMPLEMENTATION_PARENT, true) /Htop command not queued for undo
.8et (Am_ITEMS, Am_Value_List ()
.Add (Am_Graphics_To_Top_Command.Create()
.Set (Am_SELECTION_WIDGET, my_selection))
.Add (Am_Graphics_To_Bottom Command.Create ()
.Set (Am_SELECTION_WIDGET, my_selection))
.Add (Am_Menu_Line_Command.Create())
.Add (Am Graphics_Group_Command.Create ()
.Set (Am_SELECTION_WIDGET, my_selection))
.Add (Am_Graphics_Ungroup_Command.Create()
.Set (Am_SELECTION _WIDGET, my_selection))

6.4.1 Graphics Clipboard

The cut, copy, and paste commands operate on a clipboard object, which can be an arbitrary object
whose am_vALUE slot contains an Am_Value_List of objects. You can specify a particular clip-
board to use by passing a clipboard object in the Am_cLIPBOARD slot of the command object. If this
is NULL, Amulet uses the global am_clobal_clipboard object. Note that Amulet does not yet
interoperate with the standard Windows or Macintosh clipboards. The “clipboard” is current-
ly just local to the Amulet application.

6.4.2 Am_Graphics_Set_Property_ Command

The Am_Graphics_Set_Property_Command is designed to set properties like fill color, line style
and fonts of graphical objects from menus or palettes. It iterates through all the selected objects
setting a specified property to the value gotten from a widget (such as a palette or menu). If a se-
lected object has the am_CREATED_GROUP slot set to true (as do all groups created by the
Am_Graphics_Group_Command), then the Am Graphics_Set_Property_Command will recursively
change the property of all of its parts. Of course, the Am Graphics_Set_Property_ Command iS
fully undoable and repeatable.



Widgets Page 241

Because the command does not necessarily know how to get the correct value out of the palette or
menu or how to update and read the property from the graphical object, a number of methods can
be overridden in the command to control how the command gets and sets the value from the palette
and from the graphical object. The slots that control the Am_Graphics_Set_Property Command
are:

* am_SLOT_FOR_VALUE: The slot of the object and widget that the default methods use to get
the value of. The default value is the am_FILI_STYLE slot.

* Am_SELECTION_WIDGET: As with other commands in this section, the Am_SELECTION WIDGET
slot should be set with the selection widget that contains the list of selected objects whose
property should be changed.

* Am_GET_WIDGET_VALUE_METHOD: The method in this slot should be of type
Am_Get_Widget_Property_Value_Method:
Am_Define_ Method_Type (Am_Get_Widget_Property_Value_Method, void,

(Am_Object command_obj, Am Value &new value));

The method should return (by setting the new_value parameter) the value that the widget cur-

rently is providing as the new value of the property. The default method uses the object the

command is attached to as the widget, and gets that widget’s Am_vaLUE. If the contents of the

Am_VALUE is an object, then that object’s am_sLoT_FOR_VALUE slot is accessed to get the

value. Thus, if the widget is a button panel of where each item is a rectangle having the cor-

rect color, then the default method will correctly return the color of the item. Alternatively, if

the widget is a menu, where each command in the menu has an am_1D containing the correct

value to use, the default method will return the correct value.

* Am_GET_OBJECT_VALUE_METHOD: The method in this slot should be of type
Am_Get_Object_Property_ Value_Method:
Am_Define_Method_Type(Am_Get_Object_Property_Value_Method, void,
(Am_Object command_obj, Am_Object object,
Am Value &old_value));
The method should return (by setting o1d_value) the current value of the property for
object, which is used in case the command needs to be undone. The default method just gets

the value of the Am_s1.0T_FOR_VALUE slot of object.

* Am_SET_OBJECT_VALUE_METHOD: The method in this slot should be of type
Am_Set_Object_Property Value_Method;
Am_Define_Method_Type (Am_Set_Object_Property_Value_Method, void,
(Am_Object command_obj, Am_Object object,
Am_Value new_value));
The method should set object so its property now has value new_value. The default method

just sets the am_sS1.0T_FOR_VALUE slot of object to be new_value.

* Am_SAVED_OLD_OWNER: As in all other command objects, this slot is automatically set with the
widget the command is attached to. (Do not set this slot.) This is assumed by the default
methods to be the widget from which the value is to be fetched.

6.5 Starting, Stopping and Aborting Widgets

Normally, widgets start, stop and abort running in response to the user’s input events, but some-
times it is convenient to explicitly start and stop a widget. The routines in this section are useful
for this.



Page 242 Widgets

extern void Am Start_Widget (Am_Object widget,
Am Value initial_wvalue = Am No_Value);

Explicitly start a widget running. If already running, does nothing. If an initial value is provided,
then the widget is started with this as its value. It is up to the programmer to make sure the
initial value is legal for the type of widget. If no initial_value is supplied, the widget is
started with its current value, if any.

extern void Am Abort_Widget (Am_Object widget_or_inter_or_command) ;

Explicitly abort a widget, interactor or command object. Often, this will be called with a command
object, and the system will then find the associated widget or interactor and abort it. If that widget
or Interactor is not running, then this does nothing. The function tries to make sure the command
object passed in (or the command object associated with the widget or Interactor) is not entered
into the command history.

extern void Am_Stop_Widget (Am_Object widget,
Am_Value final_value = Am_No_Value);

Explicitly stop a widget. If not running, raises an error. If final_value is supplied, then this is
the value used as the value of the widget. If final value is not supplied, the widget uses its cur-
rent value. Commands associated with the widget will be invoked just as if the widget had com-
pleted normally.



7. Gem: Amulet Low-Level Graph-
ics Routines

This manual describes GEM, the low-level graphics system in Amulet. Gem provides a machine-
independent layer so the rest of Amulet can work on different window managers without changing
the code. Most programmers will not use the Gem layer, but it is available for advanced program-
mers who need especially efficient code.

Copyright © 1996 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037,
Arpa Order No. B326. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of NCCOSC or the U.S. Government.






Gem: Amulet Low-Level Graphics Routines Page 245

7.1 Introduction

Gem is the low-level graphics and input interface in Amulet that provides a machine independent
API to all of the supported platforms’ graphics and and event routines. Most Amulet programmers
will not use the Gem layer, since Opal and Interactors provide all the functionality of the Gem lay-
er, with the added convenience of automatic redrawing and functionality of the ORE object system.
Opal, Interactors and the Amulet Widgets are written using Gem. We provide the Gem interface
for advanced programmers who are concerned about performance, who want to extend Opal or cre-
ate new widgets, and those who need the convenience of a machine independant graphical toolkit
without the overhead of the Amulet object system.

Gem, which stands for the "Graphics and Events Manager", can be used independent of most of
the rest of the Amulet. Gem uses the wrapper mechanism (for styles and fonts), but it does not use
the ORE object system.

7.2 Include Files

The primary include file for Gem is gem.h. Gem also uses types.h for wrappers, gdefs.h for
styles, images, point lists, and fonts, and idefs.h for the input events. For a complete description
of Amulet include files and how to use them, see Section 1.6 in the Overview chapter.

7.3 Drawonables

The primary data structure in gem is the Am_Drawonable, which is a C++ object that corresponds
to a window-manager window or off-screen buffer (for example, in X/11 it corresponds to a "draw-
able"). We called it a "Drawonable" because it is something that you can draw on. We also wanted
to reserve the word "Window" for the Opal level object that corresponds to the drawonable. In this
manual, sometimes "window" is used for "drawonable" since drawonables are implemented as
window-manager windows.

7.3.1 Creating Drawonables

Programmers create a "root" drawonable at initialization, and then create other drawonables as
children of the root (or as children of another drawonable). The typical initialization is:
Am_Drawonable *root = Am Drawonable: :Get_Root_Drawonable () ;

At the Opal level, this is called automatically by am_Initialize to set up the exported Am_Screen
object. Under X/11, Get_Root_Drawonable takes an optional string parameter which is the name
of the screen. You can call therefore call Get_Root_Drawonable multiple times to support multi-
ple screens.

Creating subsequent drawonables uses the create method. If you use root .create you get a top-
level window, and if you use another drawonable, then it creates a sub-window. All of the param-
eters of the create call are optional, and are:



Page 246 Gem: Amulet Low-Level Graphics Routines

*int 1

0: the left of the new window in the coordinates of its parent.

*int t = 0:the top of the window

* unsigned int w = 100: width of the window

*unsigned int h = 100: height

* const char* tit = "": the title for the window

* const char* icon_tit = "":the string to display with the icon for the window.

*bool vis = true: whether the window is initially visible on the screen on not.

*bool initially_iconified = false: whether the window starts out as an icon.

* Am_Style back_color = Am_No_Style: the initial color for the background of the window.

*unsigned int border_w = 2:the size of the border of the window. This is ignored by most
window managers for the top-level windows.

*bool save_under_flag = false: save the bitmaps underneath the window (useful for pop-
up menus).

*int min_w = 1: The minimum size allowed for this window (when the user or program
resizes it). You can't have O size windows.

*int min h = 1: Minimum height.

*int max_w = 0: The maximum width allowed for the window. 0 is illegal so means no
maximum.

*int max_h = 0: Maximum height.

*bool title bar_flag = true: Whether the title line is displayed or not. Under X/11 having
no title line means the window is not managed by the window manager.

*bool query user_for_position = false: If true, then the initial left and top are ignored
and the user is queried instead.

*bool query_user_for_size = false: If true, then the initial width and height are ignored
and the user is queried instead.

*bool clip_by children flag = true: If false, then graphics drawn on the window show
through all children windows (drawonables) created as children of this window.

*Am_Input_Event_Handlers *evh = NULL) = 0: How input is handled for this window, see
Section 7.5.1.

To create an off-screen drawonable, you can use the shorter form:

virtual Am_Drawonable* Create_Offscreen (
int width = 0, int height = 0,
Am_Style background_color = Am_No_Style) = 0;

7.3.2 Modifying and Querying Drawonables

There are a number of methods on drawonables that query and set the various properties:



Gem: Amulet Low-Level Graphics Routines Page 247

* Am_Drawonable* Am Drawonable::Narrow (Am_Ptr ptr): given an arbitrary pointer, this
casts it to be a Am_Drawonable. Because drawonables are not wrappers, no checking is
done.

*void Destroy (): Destroys the drawonable and all its children (including removing them
from the screen).

®*bool Inquire_Window_Borders(int& left_border, int& top_border, ints&
right_border, int& bottom_border, int& outer left, ints outer_top): return
the current window border sizes. For X/11, this may be inaccurate for windows that are not
yet visible.

®*void Raise_Window (Am Drawonable *target_d): Move the window to the "tOp" of all
its siblings in Z order. If target_ais NULL, then the window is moved so it is not covered
by any other windows. If target_d is a valid Am_Drawonable, then the window is put
above target_d in Z order.

®*void Lower_Window (Am_Drawonable *target_d): Move the window to the "bottom" of
all its siblings (if target_d is NULL), or just until it is below target_d.

*void Set_Iconify (bool iconified): Make the window be iconified or not iconified.
*void Set_Title (const char* new title): Change window title.

*void Set_Icon Title (const char* new_title): Change icon title.

*void Set_Position (int new_left, int new_top): Move the drawonable.

*void Set_Size (unsigned int new _width, unsigned int new_height): Change the
size.

*void Set_Max_Size (unsigned int new_width, unsigned int new_height): Changc
the maximum size.

*void Set_Min Size (unsigned int new_width, unsigned int new_height) : Change
the minimum size.

* void Set_Visible (bool vis): Make the window visible or not.

®*void Set_Border (bool new_title_bar, unsigned int new_width): Set whether has a
title bar and how thick the border is..

®*void Set_Background Color (Am_Style new_color)

®* bool Get_Iconify ()

* const char* Get_Title ()

® const char* Get_Icon_Title ()

*void Get_Position (int& 1, ints& t): Setsland t with current left and top.
®*void Get_Size (int& w, inté& h)

* void Get_Max_Size (int& w, int& h)

®*void Get_Min Size (int& w, int& h)

®*bool Get_Visible ()

®*void Get_Border (bool& title_bar_flag, unsigned int& width)



Page 248 Gem: Amulet Low-Level Graphics Routines

® Am_Style& Get_Background Color ()
*int Get_Depth (): Returns the current pixel depth in bits (e.g. 8 for 8-bit color).
*bool Is_Color ():Returns true if the window is color or false if not.

*void Get_Values (int& 1, int& t, int& w, int& h, const char*& tit, const
char*& icon_tit, bool& vis, bool& iconified_now, Am_Style& back color,
unsigned int& border_w, bool& save_under flag, int& min_w, int& min_h,
int& max_w, int& max_h, bool& title_bar flag, bools
clip_by children_flag, int& bit_depth): returns all of the parameters at once.

7.4 Drawing

Drawing in a drawonable is a three step process. First set the drawonable’s clip region to the region
you want to draw in. Then draw using the various drawing methods provided. Finally, you should
“flush” the drawonable to process all pending drawing requests. The flush is necessary on X/11 to
make the graphics appear. Itis not strictly necessary on the PC or Macintosh, but to create machine
independant code you should always explicitly call Flush_Output() on your drawonable if you
want the output to appear.

The actual pixels drawn in a drawonable by the various drawing routines are described in detail in
the Opal chapter of the Amulet manual. The Opal objects’ slots are passed as parameters to the
Gem level drawing routines. The Am_Style, Am Image_ Array, and Am Font structures are also
described there. That information will not be repeated here.

7.4.1 General drawonable operations

*void Beep (): Causes a sound on the machine this drawonable is displayed on. This is called
by the Opal-level am_Beep () routine.

*void Set_Cursor(Am_Image_Array image, Am_Image_Array mask, Am Style
fg_color, Am_Style bg_color): Set the cursor for the drawonable. The mouse pointer
will display the specified cursor whenever the mouse is within the bounds of this
drawonable, and it will display the default cursor whenever the mouse exits a drawonable
with a specific cursor. Amulet does not support setting a cursor globally, so that it has a
custom image no matter where the mouse is pointing.

*virtual void Bitblt (int d_left, int d_top, int width, int height,
Am_Drawonable* source, int s_left, int s_top, Am Draw_Function 4f =
Am_DRAW_COPY): Bitblt copies a rectangular area from one drawonable to another, using
the specified drawing function. The destination for bitblt is the Am_Drawonable this
message is sent to.

®*void Clear_Area (int left, int top, int width, int height): This clears a
rectangular region in the drawonable to the drawonable’s backgound style.

*void Flush_output (): This causes all pending output to be displayed on the screen. Under
X/11, you will not see any graphics until this is called, unless you’re running an event loop.
Calling this routine is not strictly necessary on the PC or Mac, but you should call it
occasionally to maintain machine independancy.



Gem: Amulet Low-Level Graphics Routines Page 249

®*void Translate_Coordinates (int src_x, int src_y, Am Drawonable *src_d,
int& dest_x_return, int& dest_y return): Convert the coordinates in one window
to be coordinates in another window. To translate to or from screen coordinates, pass the
root drawonable as the source or destination drawonable. Translating coordinates from a
child of one root drawonable to a child of another root causes an 2am_Error (). If the source
or destination drawonable are offscreen drawonables, an am_Error () will result.

°void Translate_From_Virtual_Source (int src_x, int src_y, bool title_bar,
int border_width, int& dest_x_return, int& dest_y_return): Translates a point
from drawonable that hasn't neccessarily been created to screen coordinates. This function
only works on root drawonables.

7.4.2 Size Calculation for Images and Text

In general, you cannot know the size of an image or a piece of text until you know where that image
or text is going to be displayed. The same font may look different on different screens, depending
on screen resolution, aspect ration, and so on. Therefore, the following are methods of drawon-
ables rather than of images and font objects.

®* void Get_Image_Size (Am_Image Array& image, int& ret_width, ints
ret_height): Sets ret_widthand ret_height with the width and height of the specified
image array as if it were displayed on this drawonable.

*int Get_Char_Width (Am_Font Am_font, char c): Returns the width in pixels of
character ¢ as if displayed in the font am_font on this drawonable.

®* int Get_String Width (Am_Font Am font, const char* the_string, int
the_string_length): Returns the width, in pixels, of the first the_string length
characters of the_string, as if it were displayed in font am_font on this drawonable

*void Get_String Extents (Am _Font Am_font, const char* the_string, int
the_string length, int& width, int& ascent, int& descent, int&
left_bearing, int& right_bearing): This returns the extents of the first
the_string length characters of the_string, as if drawn in font am_font on this
drawonable. The total height of the bounding rectangle for this string is ascent +
descent. left_bearing is the distance from the origin of the text to the first "inked" pixel.
The right_bearing is the distance from the origin of the text to the last "inked" pixel.

®* void Get_Font_Properties (Am_Font Am_font, int& max_char_width, inté&
min_char_width, int& max_char_ ascent, int& max_char descent): The max
ascent and max_descent include vertical spacing between rows of text. The
max_char_width and min_char_width are the width, in pixels, of the widest and
narrowest characters in am_font on this drawonable.

7.4.3 Clipping Operations

Gem supports clipping of all graphic operations to a specified clip region. Once a clip region is
specified, all subsequent drawing operations are clipped so only parts inside the current clip region
will show. To change the clip region of a drawonable, invoke one of the member functions listed
below.



Page 250 Gem: Amulet Low-Level Graphics Routines

There is only one clip mask per root drawonable. All drawonables which have the same root share
the same clip region. It is necessary to set the clip region for each window before drawing the con-
tents of that window. For efficiency, it’s a good idea to complete drawing in one window before
resetting the clip region and drawing in other windows.

The clip region can be set with a rectangular region, or with an arbitrarily shaped Am_Region. Re-
gions are described in Section 7.4.4. The root drawonable stores a stack of clipping regions. Use
Push_Clip() and Pop_Clip () to push regions onto this stack, or to pop them off. The current clip
region is the intersection of all of the regions currently on the stack.

*void Clear_Clip(): Clear the clip region and empty the clip region stack: no clipping will
occur.

*void Set_Clip (Am Region* region): This empties the clip region stack and sets the
clipping region to the specified am_Region.

*void Set_Clip (short left, short top, unsigned short width,unsigned short
height) : This empties the clip region stack and sets the clipping region to the rectangular
region specified by left, top, width, and height.

*void Push_Clip (Am_Region* region): This pushes the specified Am _Region onto the
drawonable’s clip region stack.

*void Push_Clip (short left, short top, unsigned short width, unsigned short
height): This pushes the rectangular region specified by 1eft, top, width, and height
onto the drawonable’s clip region stack.

*void Pop_Clip (): This pops the most recently pushed region off of the drawonable’s clip
region stack. Popping when there’s nothing on the stack is silently ignored.

The In_clip () routines provide a way to ask a drawonable if a point is inside its clip region. When
asking if a given region is inside the drawonable’s clip region, you can use the total parameter to
determine whether the given region is completely inside the clip region, or whether it just intersects
it.
*bool In Clip (short x, short y):Returns true if the point (x,y) is inside this
drawonable’s clip region, and false otherwise.

*bool In_Clip (short left, short top, unsigned short width, unsigned short
height, bool &total): Returns true if the rectangular region specified by left, top,
width, and height intersects this drawonable’s clip region. total is setto true if the clip
region completely contains the rectangle, and false if part of the rectangle is outside the
clip region.

*bool In_Clip (Am Region *rgn, bool &total):Returns true if region intersects this
drawonable’s clip region. total is set to true if the clip region completely contains
region, and false if part of it is outside the clip region.

7.4.4 Regions

Instances of the am_Region class describe arbitrarily shaped regions. Am_Region is a generaliza-
tion of a drawonable’s clip region, discussed in Section 7.4.3. By using the member functions list-
ed below, you can build a region of arbitrary shape to install as the clip region of a drawonable.



Gem: Amulet Low-Level Graphics Routines Page 251

class Am Region {
public:

static BAm_Region* Create ();
virtual void Destroy () = 0;
virtual void Clear () = 0;
virtual void Set (short left, short top, unsigned short width,
unsigned short height) = 0;
virtual void Push (Am_Region* region) = 0;
virtual void Push (short left, short top, unsigned short width,
unsigned short height) = 0;
virtual void Pop () = 0;
virtual void Union (short left, short top, unsigned short width,
unsigned short height) = 0;
virtual void Intersect (short left, short top, unsigned short width,
unsigned short height) = 0;
virtual bool In (short x, short y) = 0;
virtual bool In (short left, short top, unsigned short width,
unsigned short height, bool &total) = 0;
virtual bool In (Am Region *rgn, bool &total) = 0;
};

7.4.5 Drawing Functions

All of the drawing functions take a Am_Draw_Function parameter which controls how the pixels
of the drawn shape affect the screen. Since most programmers will use color screens, draw func-
tions are not usually useful. The supported values for Am_Draw_Function are Am_DRAW_COPY,
Am_DRAW_OR and Am_DRAW_XOR.

All of the following drawing routines draw in either an onscreen or offscreen drawonable. The pa-
rameters 1s and fs specify the line style and fill style for the drawing operations.

®*void Draw_Arc (Am_Style ls, Am Style fs, int left, int top, unsigned int
width, unsigned int height, int anglel = 0, int angle2 = 360,
Am Draw_Function £ = Am_DRAW_COPY, Am_Arc_Style_Flag asf =
Am_ARC_PIE_SLICE ):Draw an optionally filled arc. To draw a circle, let angle2 = 360.

®*void Draw_Image (int left, int top, int width, int height, Am_Image_ Array
image, int i_left = 0, int i_top = 0, Am_Style ls = Am_No_Style, Am_Style
fs = Am_No_sStyle, Am Draw_Function f = Am_DRAW_COPY): This draws the contents
of an Am_TImage_Array onto this drawonable. Bitmaps are treated differently than GIF
pixmaps. With bitmaps, 1s is used to control the color of 'on' bits, and s is used for the
background behind the image. If £s is Am_No_style, the background pixels will be
transparent- whatever was behind the image will show through. We do not support
transparent GIF images on X/11 platforms. For GIFs and full color pixmaps, fs and 1s are
ignored.

®* void Get_Polygon_Bounding_Box (Am_Point_List pl, Am_Style ls, int&
out_left, int& out_top int& width, int& height): Calculates the bounding box of
the specified polygon.

®* void Draw _Line (Am Style ls, int x1, int yl, int x2, int y2,
Am_Draw_Function f = Am DRAW_COPY): Draws a single straight line with style 1s.



Page 252 Gem: Amulet Low-Level Graphics Routines

*void Draw_Lines (Am_Style ls, Am Style fs, Am_Point_List pl,
Am_Draw_Function £ = Am DRAW_COPY): Draws an optionally filled polygon.

*void Draw_2_Lines (Am_Style ls, Am_Style fs, int x1, int y1, int x2, int
y2, int x3, int y3, Am Draw_Function f = Am DRAW_COPY): This is provided for
more efficient drawing of an optionally filled polygon with exactly 2 lines.

*void Draw_3_Lines (Am_Style ls, Am Style fs, int x1, int y1, int =2, int
y2, int x3, int y3, int x4, int y4, Am Draw_Function f = Am_DRAW_COPY):
This is provided for more efficient drawing of an optionally filled polygon with exactly 3
lines.

*void Draw_Rectangle (Am Style ls, Am_Style fs, int left, int top, int width,
int height, Am_Draw_Function f = Am_DRAW_COPY ): This draws an optionally filled
rectangle.

®*void Draw_Roundtangle (Am Style ls, Am Style fs, int left, int top, int
width, int height, unsigned short x radius, unsigned short y radius,
Am_Draw_Function £ = Am_DRAW_cOPY): This draws a rectangle with rounded corners.

*void Draw_Text (Am Style ls, const char *s, int str_len, Am_Font Am font,
int left, int top, Am Draw_Function f = Am DRAW_COPY, Am_Style fs =
Am No_Style, bool invert = false): This draws a single line of text in the specified
font. 1s specifies the style of the text, and £s specifies the style of the rectangular region
behind the text. If £s is am No_Style, the background is transparent.

7.5 Event Handling

Gem is usually used in event driven programs. In this style of program, there is a loop constantly
running, checking for input events from the user, or other events the window manager might gen-
erate. These events are sent to Gem. When your program is ready to handle them, you tell Gem,
and it dispatches one or more events to event handlers you have specified.

7.5.1 Am_Input_Event_Handlers

Gem dispatches events to the rest of your application by calling event handler routines you provide.
The event handlers are stored as virtual methods of the C++ class Am_Input_Event_Handlers.
You can specify one instance of this class for each of the drawonables in your application. The
event handler methods take the drawonable and event information as parameters.

For example, each time the user hits a keyboard key over a certain window, that window’s event
handlers are retreived, and, the Input_Event_Notify member function is called, with information
about what key was pressed, which drawonable received the keypress, and where the mouse was
positioned within the window when the key was pressed.



Gem: Amulet Low-Level Graphics Routines Page 253

Opal defines standard event handlers, so anyone programming at the Opal layer or above will not
have to provide these event handlers. Instead, you should use an interactor for event handling, or
create a new interactor if none of the available interactors is appropriate. To add or change the
functionality of the standard opal event handlers, derive a new class from the C++ class
Am_Standard_Opal_Handlers (exported in opal_advanced.h), and replace some of the virtual
functions with your own event handlers.

Am_TInput_Event_Handlers is defined as:
class Am Input_Event_Handlers {
public:

virtual void Iconify_Notify (Am_Drawonable* draw, bool iconified) = 0;
virtual void Frame_Resize Notify (Am_Drawonable* draw, int left,
int top, int right, int bottom) = 0;
virtual void Destroy Notify (Am_Drawonable *draw) = 0;
virtual void Configure_Notify (Am_Drawonable *draw, int left, int top,
int width, int height) = 0;

virtual void Exposure_Notify (Am_ Drawonable *draw,
int left, int top,
int width, int height) = 0;
virtual void Input_Event_Notify (Am Drawonable *draw,
Am_TInput_Event *ev)=0;
}:

The member functions are:

* Iconify Notify: Called when the window is being iconified or de-iconified. The parameter
iconified is true if the window is now iconified, and false if it was just de-iconified.

* Frame_Resize_Notify: Called whenever the window's border size changes (for example, if
title bars are added or removed).

* Destroy_Notify: Called when the user requests that the window be destroyed. Note that
window managers often don't actually destroy the windows, but rather call this routine to
tell the programs to destroy the window.

* Configure_Notify: Called whenever the user changes the window's size or position.

* Exposure_Notify: Called when the window becomes uncovered and part of it needs to be
redrawn. The rectangle specified by 1eft, top, width, and height is the bounding box of
the region that should be redrawn.

* Input_Event_ Notify: Called for all input events from the keyboard and mouse. The
Am_TInput_Event is described below.

You can set and get the handlers in a particular drawonable using the following functions. If the
event handlers are not set for a drawonable, they are inherited from the drawonable it was created

from.
void Set_Input_Dispatch Functions (Am Input_Event_Handlers* evh)
void Get_Input_Dispatch_Functions (Am Input_Event_ Handlers*s& evh)



Page 254 Gem: Amulet Low-Level Graphics Routines

7.5.2 Input Events

The input event passed to the Input_Event_Notify method is a C++ class containing the position
of the mouse when the event occured, the drawonable of the event, a timestamp, and an
Am_Input_Char describing the event. Am TInput_chars are described in Chapter 5, Interactors
and Command Objects for Handling Input.

class Am_Input_FEvent {
public:

Am_TInput_Char input_char; #the char and modifier bits; see idefs.h
int x;

int y;

Am_Drawonable *draw; // Drawonable this event happened in
unsigned long time_stamp;

}:

You can control which input events are generated for a drawonable using the following member
functions of drawonables:

®*void Set_Enter_Leave (bool want_enter leave_events(): If you want

Input_Event_Notify () to be called when the mouse enters or leaves this drawonable,
Set_FEnter_Leave (true). The default is false.

*void Set_Want_Move (bool want_move_events) : If you want a window to receive move
events, set this to true. The default is false.

*void Set_Multi_wWindow (bool want_multi_window): When an interactor should run
over multiple windows, this method should be called on each window. Otherwise, the
cursor is "reserved" for the original window the mouse is clicked in.

*void Get_Window_Mask (bool& want_enter_leave_events, boolk

want_move_events, bool& want multi_window): This returns information about which
input events a drawonable is receiving.

7.5.2.1 Multiple Click Events

On Unix and the Macintosh, we support multi-click events up to seven clicks. On the PC, we only
support single and double clicks. You can control the time threshold interval between mouse
downs for multiple click eventss. The exported global variable am_Double_click_Time is the in-
ter-click wait time in milliseconds. The default value is 250. If it is 0, then no double-click pro-
cessing is done. On the Mac, am_Double_Click_Time is ignored. The global system click time
is used instead. It is usually set from the Mouse Control Panel.



Gem: Amulet Low-Level Graphics Routines Page 255

7.5.3 Main Loop

The normal Amulet program calls am_Initialize (which among other things, calls
Get_Root_Drawonable), then sets up a number of objects, and then calls Am Main_Event_Loop
or am Do_Events (Section 4.3.4). These routines then call a Gem level level routine where the
events are actually processed. This routine is Am_Drawonable: : Process_Event (). An Gem-lev-
el programmer who wants to process events, but not use any of the higher-level Amulet operations
like demons and Opal might use Am_Drawonable::Main_Loop. This just repeatedly calls
Am_Drawonable: : Process_Event (). To stop any of the main loops, you can set the exported
bool called am_Main_ Loop_Go to false.

The difference between Process_Event and Proces s_Immediate_Event IS that Proces s_Event
waits for the next event, and processes exactly one input event and all non-input events (like refresh
and configure_notify events) before and after that input event before returning. For example:

before after
xxxIyyylzzz -——> Izzz

Process_Event returns when it encounters a second input event or when the queue is empty

Process_Immediate Event does not wait for an event, but processes the first event in the queue
and all non-input events after it until an input event is seen. Process_Immediate_Event returns
when it encounters an input event (excluding the case where the first event is an input event) or

when the queue is empty.
// Should Am_Drawonable: :Main_Loop and Am Main_Event Loop keep running?
extern bool Am Main_Loop_Go;

class Am_Drawonable {
public:

static void Main_Loop ();
static void Process_Event ();
static void Process_Immediate_Event ();

Am_Main_Event_Loop uses Process_Event, and Am_Do_Events uses
Process_TImmediate_Event.



Page 256 Gem: Amulet Low-Level Graphics Routines




8. Debugging and the Inspector

Amulet contains many features to aide in debugging programs.
Many of these are available interactively through the “Inspector”. Oth-
er features are available programmatically. This chapter provides a ref-
- erence manual for the Inspector and the other debugging facilities, and

concludes with a set of recommendations about how to debug various sit-
uations that we have seen frequently.

Copyright © 1996 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-
6037, Arpa Order No. B326. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of NCCOSC or the U.S. Govern-
ment.



eR



Debugging and the Inspector Page 259

8.1 Introduction

We want to make Amulet programs very easy to develop and debug. Therefore, we have added
extensive error checking to Amulet, as well as a number of interactive and tracing tools. These
are designed to work with your regular C++ debugging tools like breakpoints. For example,
the Inspector will allow you to break into the debugger when a slot is set, but then you need to
use your regular C++ debugger to figure out why the slot was set. The debugging features are
all implemented using machine-independent code, except for a single routine that breaks into
the debugger. Therefore, we assume you can do stack traces and look at variables in your de-
bugger, rather than needing to do this in our tools.

We would very much like to enhance the debugging capabilities of Amulet. If you think of a
facility that would be useful, please let us know. An article about the debugging facilities in
Amulet is available from the Amulet web site.

8.2 Include Files

The interactive Inspector is included by default in the Amulet library when you build the de-
bugging option (see Section 8.4 of the Overview document). To use the Inspector, if you have the
debugging library, you do not need to do anything special in your application. However, if you
want to use any of the debugging features procedurally, you must include the debugger . h file, be-
cause it is not included by default when you include amulet.h. The most portable way to include
the debugger header file is:

#include <am_inc.h>
#include DEBUGGER__H

8.3 Inspector

The Inspector is an interactive program that provides access to a large number of debugging
features. At its most basic, it displays the slots of an object in a window. The values of most
types of slots can be edited. The properties of the slots and the object can be inspected, as well
as dependencies of any formulas in the slots. Traces and breakpoints can be set when slots are
accessed or set. The Interactor’s tracing mechanisms are also available from the Inspector.

8.3.1 Invoking the Inspector

To pop up the Inspector on an object, you can put the cursor over the object, and hit the F1 key (see
Section 8.3.1.1 about how to change the keys, if necessary). The inspector will first print out the
window and location in the window of the cursor to the transcript (console) window, and then a
new top-level window will appear displaying all the slots of the object and their current values. If
no object is under the cursor, then the window itself will be inspected. The Inspector first tries to
find a primitve (leaf) object under the cursor, but if that fails, then it presents the front-most group
object. If the correct object does not appear, it is usually best to get to the object by going up and
down the owner/part tree, as will be explained below.



Page 260 Debugging and the Inspector

If you press the F2 key over an object, the Inspector will do the same search for an object, but
will only print out the position in the window and the object at that position. This is also very useful
for finding out the coordinates of a point in the window.

The F3 key will ask in the console window for the name of an object to inspect. The name
typed must be the exact name of the object, which is sometimes an easy-to-remember constant
name (like Amulet’s or the user’s prototypes) or often cut and pasted from the output of one of
the tracing functions.

The inspector can also be invoked procedurally using either of the functions:
// inspect the specific object
void Am_Inspect (Am_Object object);

// The next one takes the name of the object. This is useful from an interpreter.
void Am_Inspect{const char * name);

8.3.1.1 Changing the Keys

If you want to use F1, F2, and F3 for your own functions, you can always eliminate all of debugging

facilities, including the inspector, by building a non-debug version of the library (see the Overview
Chapter).

If you want to bind the editing functions to different keys, you can use the function:

extern void Am_Set_Inspector_Keys (Am _Input_Char show_key,
Am_TInput_Char show_position_ key,
Am_TInput_Char ask_key);

which is exported from debugger.h. This function takes an Am_Input_Char, but a string will also
work. Passing in the null character to any of these, by using am_Input_char (), will mean that that
function is not available. The first parameter controls the normal popping up of the Inspector (nor-
mally bound to F1), the second parameter is for just printing the object under the mouse (normally
F2), and the third is to prompt from the keyboard (normally F3). The test program testinter has a
test of rebinding the Inspector’s keys using this function.



Debugging and the Inspector Page 261

8.3.2 Overview of Inspector User Interface and Menus

\ Inspecting: <xindow>

Instance of <fm VA rdow: [

Part of <fm_Screen>

Slots: Sorted by name.

&S LINE :- 0

BEOTTOM BORDER WIDTH : @

CLIP CHILDREN : 0

CURSOR : O

DOUELE_BUFFER : 1

FILL_STYLE : Fm fmulet Purple

GRAPHICAL_PARTS : LIST(4) [ <scroller>
<color_ panel> <menu bar> ]

HEIGHT : 461

ICONIFIED : O

ICON TITLE : fmulet

I3 _COLOR (constraint = window_is_color 0x00386C280) : 1

LEFT : 20

LEFT_EBORDER WIDTH : 0O

r HMax HETGHT : 0

= L____MaX WIDTH : O

The inspector window is shown above. All of the slots of the objects are shown along with their
current values. Inherited slots are shown in blue, and local slots are shown in black. You can click
on a slot value to show a cursor, and then the value can be edited.

You can double-click on a slot name, an object name, or a constraint name to select it, and then
perform other operations on that slot, object or constraint (such as viewing its properties). For the
commands which pop-up windows, you can select names in those windows as well by double-
clicking on them. The name which is selected by double-clicking is also copied into the cut buffer
(clipboard) so it can be pasted into this or other applications.

Also shown in the Inspector window, below the list of slots (in this case, you would need to scroll
down using the scroll bar on the left) is (optionally) a list of the parts of the object, and the instanc-
es of the object.

Commands available from the menus are (many of these are described in detail below):



Page 262 Debugging and the Inspector

* Objects: This menu contains commands that operate on objects, and also the “Done”
commands (that would normally be in a “File” menu). Commands in this menu are:

* Inspect Object: If an object is selected (by double-clicking with the left button
on an object name), then this command inspects that object in this window.
Accelerator for this is /i (for “Inspect”), but you can also point at an object name
with the right button, without even selecting the name first.

* Inspect in New Window: If an object name is selected, then this will cause it to
be inspected in a new window. Accelerators are A-shift-I, or pointing at the
object name using SHIFT-right-button.

* Inspect Object Named...: This pops up a dialog box into which you can type an
object name. If the name has been put into the window manager’s clipboard
(using cut or copy, or equivalent), then you can paste the name using the middle

mouse button or My (for “yank”). The new object is inspected in the same
window.

* Inspect Previous: Shows the previous object shown in this window again. There
is a stack of all the objects shown in each inspector window, and this effectively
does a “pop”. Accelerator is *p.

* Refresh: Most of the time, the inspector window will correctly refresh to show
the current values of the object. Sometimes, however (especially if you turn off
Automatic Refresh) the display will not correctly show the state of the object, in

which case you should use the Refresh command to get the current values of all
of the slots.

* Flash Object: If an object is selected (by double-clicking on its name), then this
will cause the object’s window to come to the front, and the object to flash. If
the object is not visible for some reason, then this prints an explanation of why
not to the console window (eventually, we will print it to a dialog box). Thus,
this command is useful for seeing where objects are, or why they might not be
visible. If no object is selected, then this command operates on the current
object being inspected. Accelerator is f.

* Done: This gets rid of the current inspector window. Accelerator is Aq (for quit).
You can also use the regular window manager mechanism for getting rid of

windows, like “Kill Window” under Motif, or the “Close” command under
Windows NT.

* Done All: This gets rid of all inspector windows.

* Quit Application: This kills the application and all the inspector windows. This
does not ask for confirmation, and it does not notify the application or try to
recover gracefully, it just exits the main event loop.

* Edit: This menu will eventually contain all the commands to edit the values of slots. For
now, it only has one sub-command:

* Remove Slot: If a slot name is selected (by double-clicking on the slot name), then
this command will allow that slot to be removed. This can be used to cause a
local slot to go back to being inherited.



Debugging and the Inspector Page 263

* View: This menu contains various commands for specifying what is viewed in the main
window, and how. Most of the sub-commands are toggles, and switch between two
labels.

* Hide Inherited Slots / Show Inherited Slots: By default the inherited and local
slots are all shown. This command will toggle whether the inherited slots are
shown at all.

* Hide Internal Slots / Show Internal Slots: By default, the internal and normal
slots of the object are all shown. By convention, the internal slots are those
whose names begin with a tilde (~). There is no system-defined enforcement of
internal vs. regular slots currently. It is generally a bad idea to change the values
of internal slots. This toggles whether the internal slots are shown.

* Show Parts / Hide Parts: By default, all of the parts of an object are shown below
the list of the slot names (you may need to scroll down). This command toggles
whether the parts are shown.

* Show Instances / Hide Instances: By default, the instances of the object are not
shown. This command will toggle whether all the instances of the object are
shown below the list of parts at the bottom of the window (you may need to
scroll down).

* Automatic Refresh / Manual Refresh: By default, whenever a value in the
inspected object changes, the display is refreshed to always show the current
value (rote that this is not guaranteed, it is best to use the Refresh command if
you want to guarantee the values are up-to-date). However, updating the
inspector may substantially slow down the execution of your program.
Therefore, you might want to toggle to Manual Refresh, which means that the
inspector window will not be updated until you explicitly call the Refresh
command (in the Object menu).

* Show Old Slot Values: This is an experimental feature that displays the old
values of the slot, as well as the current value. It only works for some types of
values, and there is currently no way to get rid of the display except to get rid of
the inspector window. Let us know if you find this feature useful, and we may
make it more robust.

* Sort by Name / Stop sorting by Name: By default, the display of the slots is
sorted by the slot name in alphabetical order. This toggle will cause the slots to
instead be shown in the order they appear in the object, which is somewhat
faster.

* Windows: This menu contains commands that pop up property windows that give more
information about the selected object, slot or constraint. If you select a different object,
slot or constraint, the pop-up window will move and show the properties of that one
instead. You can get rid of these pop-up windows using the regular window manager
mechanism (such as the close box or Kill Window window-manager command). Just
like in the main Inspector window, you can double-click on objects, slots and
constraints listed in these pop-up windows to select them (or right-button clicking for
objects). However, you cannot change (edit) any values in the pop-up windows,

* Show Prototypes and Owners: If an object name is selected, then this pops up a
window that shows the object’s name, its prototype’s name, and that object’s



Page 264 Debugging and the Inspector

prototype, etc. all the way up to the root object. Similarly, it also shows the
owners all the way up to the screen (or to an object with no owner for objects
that are not on the screen). If no object name is selected, then this operates on
the object being inspected.

* Show Constraint Dependencies: If the name of a formula is selected, then this
pops up a window that shows the slots that the formula is currently depending
on, and the current values of those slots. If those slots also contain a formula,
then the dependencies of those are shown also, down to a depth of three. You
can always double-click on a constraint in this window, to see its dependencies.

« Show Slot Properties: If a slot name is selected, then this pops up a window that
displays a number of properties of the slot. Most of these are the advanced
properties such as declarations for inheritance and the demon bits. The most
useful non-advanced properties are that for inherited slots, it shows the object
from where the slot is being inherited from (which will be somewhere up the
prototype chain), and the current type of the value in the slot.

* Show Slot Uses: If a slot name is selected, then pops up a window that shows all
the formulas which use this slot. This will show you what will be affected if the
slot value changes.

* Break/Trace: This menu contains commands that allow breaks and traces to be set on slot
setting, either by direct setting or by constraints being re-evaluated. “Traces” print to
the console, and “breaks” cause your C++ debugger to be entered (so you should be
running the application in the debugger before using breaks).

* Break into C++ Debugger Now: Breaks into the debugger.

* Trace When This Slot Set: If a slot name is selected, then if the slot is set, then
prints information about why it was set to the console.

* Break into C++ Debugger When This Slot Set: If a slot is selected, then when
the slot is set, the reason why is printed to the console, and then breaks into the
C++ debugger so you can look at the stack trace to figure out what procedures
or constraints are being executed.

* Interactors: This menu provides access to the various Interactor tracing facilities
described in Section 5.7 of the Interactors chapter. All of these output to the console
window.

* Turn off Interactor Tracing: Cause there to be no tracing.

* Trace This Interactor: If an object is selected and that object is an Interactor,
then traces all actions by that interactor.

* Trace Interactor Named...: Pops up a dialog box that allows the user to type in
the name of an Interactor to be traced.

* Trace All Interactors: Prints complete information for all interactors that run.

* Trace Next Interactor To Run: Waits for the next interactor to run, and then
starts complete tracing of only that interactor.

* Trace Input Events: Only prints out information about the input events that
happen in any window.

* Trace Interactor Set Slots: Prints out information about any slot set by any



Debugging and the Inspector Page 265

interactor. This is very useful if the problem is that a slot appears to be set
erroneously.

* Trace Interactor Priorities: Prints out information about when interactors
change priority levels. This is not particularly useful.

* Short Trace Interactors: Just prints out which interactors start, run, stop and
abort.

8.3.3 Viewing and Editing Slot Values

When you inspect an object, the values of the slots are displayed. You can control which slots
are viewed, by hiding or showing the inherited slots and/or the internal slots. You can also con-
trol the sorting of the slots (either alphabetical or in the order they appear in the object).

If you single click with the left mouse button over a slot value, a cursor will appear and you
can edit the slot’s value. The editing keys are the same as for all other text interactors
(Section 5.3.5.5.1 of the Interactors chapter). Currently, the inspector will nor let you change the
type of the value in the slot. Therefore, it uses the current type of the value to decide how to parse
the input value. You can edit primitive values, like integers, floats and strings. Depending on
whether your compiler supports bools as a primitive type, they will either print out as true and false
or 1 and 0. Floating point values print out just like integers if there is no fraction part. You can use
the slot properties pop-up window to find out the exact slot type.

For slots which contain named values, like styles (Am Red, Am_Line_8), objects
(Am_Rectangle_123), constraint names (windows_is_color) and method names
(rectangle_draw), you can type in a new name. Amulet remembers the names of all built-in
or user-defined objects, methods and formulas. If you create your own styles or wrappers, you
can arrange for them to have names registered in the database using the “registry” mechanism
defined in registry.h. For any wrapper object, you can register its name using the

Am_Register_Name procedure, such as:
Am_Register_Name (my_color_object, "my_color");
Then, the user will be able to type in my_color as the value of a slot.

Unfortunately, you cannot yet set the value of slots that are am_value_Lists, and you cannot
set the items of an Am_value_List.

8.4 Accessing Debugging Functions Procedurally

Sometimes it might be useful to access the debugging functions from a program, instead of in-
teractively from the Inspector. For example, you program might be crashing even before it ful-
ly starts up, so you cannot access the inspector. If you program gets past the Am_Initialize(),
then you can still trace slot setting and print the values of the slots of objects. Also, some of
these procedures might be executed from a debugger such as gdb that supports calling func-
tions.

The functions for invoking the Inspector procedurally have already been listed:



Page 266 Debugging and the Inspector

// inspect the specific object

void Am_Inspect (Am_Object object);

// The next one takes the name of the object. This is useful from an interpreter.
void Am_Inspect(const char * name):

You can cause an object to be “flashed” so you can see where it is on the screen. If it is not
visible, then this functions writes the reason to the specified stream:
void Am_Flash (Am_Object o, ostream &flashout = cout);

The tracing functions provide significantly more features than are available interactively from
the inspector. The tracing and breaking function takes an optional object, an optional slot, and
an optional value. Whatever ones of these are supplied will control whether to trace or break.
Thus, if only the object is supplied, then the trace or break will happen whenever any of the
slots of that object are set. If only a value is supplied, then a trace or break will happen when-
ever any slot of any object is set to that value. If all three parameters are supplied, then a trace
or break will happen only when that slot of that object is set to that value.
void Am Notify On_Slot_Set (Am_Object object = Am_No_Object,
Am_Slot_Key key = 0,
Am_Value value = Am No_Value);
void Am Break_On_Slot_Set (Am Object object = Am No_Object,
Am_Slot_Key key = 0,
Am Value value = Am_No_Value);

The next procedure clears a slot notify or break set with the above procedures:
void Am Clear_Slot_Notify (Am_Object object = Am No_Object,
Am_Slot_Key key = 0,
Am_Value value = Am No_Value);

8.5 Hints on Debugging

This section lists some hints of procedures we have found useful for debugging certain situa-

tions that we have found occur more than once. If you know anything that should be added to
this list, please let us know!

1) I click on an object but nothing happens: If you think that an interactor should be
running, but it doesn’t, it is usually very helpful to turn on Interactor tracing from the
Inspector, and see what interactors are running, and what slots they are setting.
Although this often prints out a tremendous amount of information, and significantly
slows down execution, it is usually worth it. Typical reasons that Interactor’s don’t
seem to execute include:

1.1) The Interactor was never added as a part to an object which is a part of a
window (or a group in a window, recursively).

1.2) The am_sTaART WHERE_TEST of the Interactor does not return an object when
you expect it to. Debugging this usually involves seiting breakpoints in your
start where function.

1.3) The Interactor is running, but you can’t see the feedback object, because the
feedback object was never added to a window or group in a window.

1.4) The Interactor is running, but the object it is setting slots of is not the object



Debugging and the Inspector Page 267

you expected, so setting the slots is not having any effect.

2) My Interactor is modifying the group itself instead of the members of the group,
or affecting the members of a group, and I want it to affect the group itself: The
default am_sTART_wHERE_TEST of Interactors tries to be smart about which object to
affect, based on the type of the object the Interactor is attached to. You can specifically
tell the Interactor which to affect by setting the Am_START wHERE_TEST slot to one of
the built-in functions (such as Am_Inter_In or Am_Inter_In_Part) or to a custom
function.

3) The slot has the wrong value: There are various reasons this might happen:

3.1) If the value is supposed to be calculated by a constraint, see if the constraint
was accidentally removed (see number 8).

3.2) Check if there are accidentally two or more constraints in the slot. Sometimes
the system sets single-constraint-mode to false and installs an important
constraint in the slot, which might override the value you set. To get rid of an
inherited constraint, you need to delete the slot in the prototype object, or set the
slot to single constraint mode and set its value.

3.3) Maybe the code is setting the slot of the wrong object: put a breakpoint in your
code to see what object is being set.

3.4) Maybe your code is setting the slot, but then some other code, like an Interactor
or command object’s DO method, is setting it afterwards to a different value: put
a break or trace on the slot using the Inspector to see when it is being set.

4) I want to set a widget to have a certain value, but it isn’t working: To set the value
of a widget, you have to set the am_vALUE slot of the widget itself. Although the
am_VALUE slot of the command object usually provides the same value, it does not affect
the widget to set this slot in the command object. For button-type widgets, the value
should either be NULL, or the label or ID of the particular item to become the value
(based on the value of the am_r.ABEL slot or am_1D slot of the command object for that
item).

5) Iset the value of a button, or click on it, but I can’t see the value: By default, buttons
do not stay “indented” when they are pressed. If you want a button to show the value,
you have to set its Am_FINAL_FEEDBACK_WANTED slot to true.

6) My constraint is crashing or calculating the wrong value: Because constraints are
normal C++ code, you can used your debugger to set breakboints in the constraint code
to see why it is calculating its current value. Also, in the Inspector, you can select the
slot the constraint is in and set a trace or break on the slot to see when the slot is
changing value.

7) My application crashes at start up: Usually this is caused by constraints calculating
incorrect values. Amulet supports “Uninitialized” values for constraints, but sometimes
this is not sufficient to allow constraints to work. You probably need to put a few
obj.valid() tests, or instead of getting a slot value directly into a variable, use an
intermediate Am_value. For example:

i=3 / Lint)ebiOV{STOT); ferashes becansereturns-O-whennot-initialized
Am_Value v;
obJj.GVM{SLOT, v); /remember to change macro to be GVM
if (v.valid()) {
i =3/ (int)v;




Page 268 Debugging and the Inspector

8) The constraint in my slot disappeared: Remember that constraints go away by default
when the slot is set, so if an interactor or your program sets the slot, the constraint will
be removed. You can see when the slot value is set by setting a break or trace on slot
setting using the Inspector. To make sure the constraint is retained, you can set single-

constraint-mode to be false for the slot. See Section 3.11.5 of the Ore chapter.
obj.Set_Single_Constraint_ Mode (SLOT, false);

9) The constraint is not being re-evaluated when it should be: Usually, this is because there
isn’t a dependency where there should be. Make sure that the references in the formula use
Gv or GvM and not Get or else no dependency will be established. You can select the
constraint in the Inspector and check its dependencies. Also, it might be useful to trace or

break when the slot’s value changes and when the depended on slot’s value changes, to
make sure that they are really changing.



10. Summary of Exported Objects
and Slots

This chapter provides a summary of all the objects and slots exported by Amulet that the normal
Amulet programmer will use. The specifics of the operation of the objects are discussed in other
chapters of this manual.

Copyright © 1996 - Carnegie Mellon University

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037,
Arpa Order No. B326. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of NCCOSC or the U.S. Government.



S n



Summary of Exported Objects and Slots Page 271

10.1 Am_Style

10.1.1 Constructors and Creators
Am_Style (float red, float green, float blue, Heolor part

short thickness = 0,
Am_Line_Cap_Style Flag cap_flag = Am_CAP_BUTT,
Am_Join_Style Flag join_flag = Am_JOIN_MITER,
Am_Line_Solid_Flag line_flag = Am_LINE_SOLID,
const char* dash_list = Am DEFAULT DASH LIST,
int dash_list_length = Am_ DEFAULT DASH LIST_LENGTH,
Am_Fill Solid_Flag fill_flag = Am_FILI,_SOLID,
Am_Fill_Poly Flag poly_flag = Am_FILL_POLY_EVEN_ODD,
Am_TImage Array stipple = Am_No_Image)

Am_Style (const char* color_name, Hcolor part
short thickness = 0,
Am Line Cap_Style Flag cap_flag = Am_CAP BUTT,
Am Join_Style Flag join_flag = Am_JOIN_MITER,
Am_Line_Solid_Flag line_flag = Am_LINE_SOLID,
const char *dash_list = Am_DEFAULT_DASH LIST,
int dash_list_length = Am DEFAULT_ DASH_LIST_LENGTH,
Am_Fill_Solid_Flag fill_flag = Am_FILL_SOLID,
Am_Fill Poly Flag poly flag = Am_FILL_POLY_EVEN_ODD,
Am_Image_Array stipple = Am_No_TImage)

static Am_Style Thick_Line (unsigned short thickness);
static Am_Style Halftone_Stipple (int percent,
Am_Fill Solid Flag fill_flag = Am_FILL_STIPPLED) ;



Page 272 Summary of Exported Objects and Slots

10.1.2 Style Accessors

The following methods of am_style are available to query the properties of styles:

void Get_Values (float& red, float& green, float& blue) const;
void Get_Values (short& thickness,
Am_Line_Cap_Style Flagé& cap, Am_Join_Style Flags join,
Am_Line_Solid_Flag& line_flag,const char*s dash 1,
int& dash_1_length, Am Fill_Solid_Flag& fill_flag,
Am_Fill_Poly Flag& poly, Am_Image_Array& stipple) const;

void Get_vValues (float& r, float& g, float& b, short& thickness,
Am_Line Cap_Style_Flag& cap, Am Join_Style_Flag& join,
Am_Line_Solid_Flagk line_flag, const char*s dash_1,
int& dash_ 1 _length,Am_Fill_Solid_Flagé& fill_ flag,
Am Fill_Poly_Flag& poly,Am_Image_Array& stipple) const;

Am_Fill_Solid_Flag Get_Fill_Flag() const;
Am_TImage_ Array Get_Stipple() const;
Am_Fill Poly Flag Get_Fill_Poly Flag () const;

//Get the properties needed to calculate the line width
vold Get_Line Thickness_Values (short& thickness,
Am_Line_Cap_Style_Flag& cap) const;

const char* Get_Color_Name () const; /returns a pointer to the string, don’t dealloc

10.1.3 Color styles
The following color styles have line thickness zero (which really means 1, as explained in
Section 4.6.3.2)

Am_Red Am_Cyan Am_Motif_Gray Am_Motif Light_Gray
Am_Green Am_Orange Am_Motif_Blue Am_Motif_ Light_Blue
Am_Blue Am_Black Am_Motif_Green Am Motif_ Light_ Green
Am_Yellow Am_White Am_Motif_Orange Am_Motif_Light_Orange
Am_Purple Am_Amulet_Purple

10.1.4 Thick and dashed line styles
The following styles are black.

Am_Thin_Line Am Line_1 Am_Line_4 Am_Dashed_ Line
Am_Line_0 Am_Line_2 Am Line_38 Am_Dotted_Line



Summary of Exported Objects and Slots Page 273

10.1.5 Stippled styles
The following styles are all black transparent or black and white opaque fills

Am_Gray_Stipple Am_Opaque_Gray_Stipple
Am_Light_Gray_Stipple Am_Diamond_Stipple
Am_Dark_ Gray_ Stipple Am_Opaque_Diamond_Stipple

10.1.6 Am_No_Style

The special Am_style am_No_style is used when you do not want an object to have a line or fill
style (transparent fill or line style). It can be used interchangeably with NULL .

10.2 Am_Font

10.2.1 Constructors

Am_Font (Am_Font_Family Flag family = Am_FONT FIXED,
bool is_bold = false,
bool is_italic = false,
bool is_underline = false,
Am_Font_Size_Flag size = Am_FONT_MEDIUM)

Am Font (const char* the_name)

10.2.2 Predefined Font

Am_Default_Font - afixed, medium-sized font



Page 274 Summary of Exported Objects and Slots

10.3 Predefined formula constraints
Am_Fill To_ Bottom - Putin an object’s Am_HEIGHT slot, causes the object to size itself
so it’s tall enough to fill to the bottom of its owner. am_Fill_To_Bottom leaves a
border below the object, with a size equal to the object’s am_y_oFFSET slot.

Am_Fill_To_Right - Analogous to Am Fill To_Bottom, used in the Am_wIDTH slot of an
object. The am_x_oFFSET slot of the object is used to measure the border to the right
of the object.

Am_Width_Of_pParts - Useful for computing the width of a group: returns the distance
between the group’s left and the right of its rightmost part. You might put this into a
group’s Am_WIDTH slot.

Am Height_ Of_Parts - Analogous to am_Width_Of_Parts, but for the Am_HEIGHT of a
group.

Am_Right_TIs_Right_Of_oOwner - Useful for keeping a part at the right of its owner. Put
this formula in the am_LEFT slot of the part.

Am_Bottom Is_Bottom Of_ Owner - Useful for keéping a part at the bottom of its owner.
Put this formula in the am_ToP slot of the part.

Am_Center_X_TIs_Center_Of_Owner - Useful for centering a part horizontally within its
owner. Put this formula in the am_rLEFT slot of the part.

Am_Center_Y_Is_Center_Of Owner - Useful for centering a part vertically within its
owner. Put this formula in the am_ToP slot of the part.

Am_Center_X_Is_Center_Of - Useful for horizontally centering obj1 inside obj2. Put
this formula in the am_rEFT slot of obj1, and put obj2 in the Am CENTER_X_OBJ slot
of obj1.

Am_Center_Y_TIs_Center_Of - Useful for vertically centering obj1 inside obj2. Put this
formula in the am_TtoP slot of ob3j1, and put obj2 in the Am_CENTER_Y_OBJ slot of obj1.

Am_Horizontal_Layout - Constraint which lays out the parts of a group horizontally in
one or more rows. Put this into the am_r.AYOUT slot of a group.

Am_Vertical_Layout - Constraint which lays out the parts of a group vertically in one or
more columns. Put this into the am_rayourt slot of a group.

Am_Same_As (Am_Slot_Key key) - This slot gets its value from the specified slot (key)
in the same object. Equivalent to { return self.GV(key); }

Am_From_Owner (Am_Slot_Key key) - This slot gets its value from the specified slot
(key) in the object’s owner. Equivalent to { return self.GV_Owner().GV(key): }

Am_From Part (Am Slot_Key part, Am_Slot_Key key) - This slot gets its value from

the specified slot (key) in the specified part (part) of this object. Equivalent to
{ return self.GV_Part(part).GVikey); }



Summary of Exported Objects and Slots Page 275

10.4 Opal Graphical Objects

10.4.1 Am_Graphical_Object

Slot Default Value Type
Am_LEFT 0 int
Am_TOP 0 int
Am WIDTH 10 int
Am_HETGHT 10 int
Am VISIBLE true bool

10.4.2 Am_Line

A single straight line segment from (x1, y1) to (x2, y2).

Slot Default Value Type

Am_LINE_STYLE Am_Black Am_Style

Am_X1 0 int Am_X1,Am_Y1, Am_X2, Am_Y2,

Am_Y1 0 int Am_LEFT, Am_TOP,

Am_X2 0 int Am~WIDTI-{, anz?f Am_HEIGHT
' are constrained in such a way

Am_Y2 0 int that if any one of them changes,

Am_LEFT 0 int the rest will automatically be

Am_TOP 0 int updated to reflect that change.

Am_WIDTH 1 int

Am HEIGHT 1 int

Am _VISIBLE true bool

Am_HIT_THRESHOLD 0

int




Page 276 Summary of Exported Objects and Slots

10.4.3 Am_Rectangle

Slot Default Value Type

Am_VISIBLE true bool

Am_LEFT 0 int

Am_TOP 0 int

Am_WIDTH 10 int

Am_HEIGHT 10 int

Am_FILIL, STYLE Am Black Am_Style Inside of rectangle
Am_LINE_STYLE Am_Black Am_Style Edge of rectangle

10.4.4 Am_Arc

Am_Arc is used for circles, ellipses, and arc or pie shaped segments.

Slot Default Value Type

Am_VISTIBLE true bool

Am LEFT 0 int

Am_TOP 0 int

Am_WIDTH 10 int

Am_HEIGHT 10 int

Am_ANGLE1 0 0..360 Origin, degrees from 3 o’clock
Am_ANGLE2 360 0..360 Terminus, distance from origin
Am_FILL_STYLE Am Black Am_Style Inside of arc

Am_LINE_STYLE Am_Black Am_Style Edge of arc




Summary of Exported Objects and Slots Page 277

10.4.5 Am_Roundtangle

A rectangle with rounded corners.

Slot Default Value Type
Am_VISIBLE true bool
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH 10 int
Am_HEIGHT 10 int
Am_RADIUS Am_SMALL_RADIUS Am Radius_Flag {Am_SMALL_RADIUS,
or int Am_MEDIUM_RADIUS,
Am_LARGE_RADIUS }
Am_FILIL_STYLE Am_Black Am_Stvle Inside of roundtangle
Am_LINE_STYLE Am Black Am_Style Edge of roundtangle
10.4.6 Am_Polygon
A series of connected line segments, optionally filled.
Slot Defauit Value Type
Am_VISIBLE true bool
Am_LEPFT <formula> int
Am_TOP <formula> int
Am_WIDTH <formula> int
Am_HEIGHT <formula> int
Am_POINT_LIST empty Am_Point_List Am_Point_List
Am_LINE_STYLE Am_Black Am_Stvle
Am FILL_STYLE Am_Black Am_Stvyle
Am_HIT_ THRESHOLD 0 int
Am_WANT_PENDING_DELETE false bool
Am_SELECT_OUTLINE_ONLY 0 bool

Am_SELECT_FULL_INTERIOR O bool




Page 278 Summary of Exported Objects and Slots

10.4.7 Am_Text

A single line, single font text object.

Slot Default Value Type
Am_VISIBLE true bool
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH <formula> int
Am_HEIGHT <formula> int
Am_TEXT o Am String String to display
Am_FONT Am_Default_Font Am Font
Am_CURSOR_INDEX Am_ NO_CURSOR int Position of cursor in string
Am_LINE_STYLE Am_Line_2 Am_Style Color of text, cursor
Am_ FILL_STYLE Am_No_Style Am_Stvle Background behind text
Am X _OFFSET <formula> int
Am_TINVERT false bool Exchanges line and fill style
10.4.8 Am_Bitmap
An image, either color or monochrome.
Slot Default Value Type
Am_VISIBLE true bool
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH <formula> int
Am_HEIGHT <formula> int
Am_LINE_STYLE Am_Black Am_Style Color of on pixels
Am _FILL_STYLE Am_No_Style Am_Style Color of off pixels if
opaque stipple

Am_TIMAGE Am_No_TImage Am_Image_Array  Stipple pattern




Summary of Exported Objects and Slots Page 279

10.4.9 Am_Group

An invisible container object for grouping other graphical objects together.

Slot Default Value Type
Am VISIBLE true bool
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH 10 int
Am_HEIGHT 10 int
Am_GRAPHICAI_PARTS empty Am_Value_List Am Value_List Read only
Am_X_OFFSET 0 int
Am_Y_ OFFSET 0 int
Am_H_SPACING 0 int
Am_V_SPACING 0 int

Am H ALIGN

Am_V_ALIGN

Am_FIXED_WIDTH
Am_ FIXED_HEIGHT
Am_INDENT

Am MAX RANK
Am_MAX_ STIZE

Am_CENTER_ALIGN

Am_CENTER_ALIGN

Am_NOT_FIXED_SIZE
Am_NOT_FIXED SIZE
0

falise

false

{Am_LEFT_ALIGN,
Am_RIGHT ALIGN,
Am_CENTER_ALIGN}
{Am_TOP_ALIGN,
Am_BOTTOM_ALIGN,
Am_CENTER_ALIGN}

int
int
int
int, bool
int, bool

10.4.9.1 Am_Resize_Parts_Group

This group has the same slots as an Am_Group, but when resized, it resizes its parts proportionate-
ly, instead of simply clipping to the group’s bounding box.



Page 280 Summary of Exported Objects and Slots

10.4.10 Am_Map

A group that creates its parts as many instances of a prototype object.

Slot Default Value Type
Am_VISIBLE true bool
Am _LEFT 0 int
Am_TOP 0 int
Am WIDTH Am_Width_Of_ Parts int
Am_HEIGHT Am_Height_Of_Parts int

Am_GRAPHICAL_PARTS
Am_TITEMS
Am_TITEM_PROTOTYPE
Am_LAYOUT

Am X OFFSET

Am_Y_ OFFSET

Am_H_ SPACING
Am_V_SPACING

Am_H ALTIGN

Am V_ATLIGN

Am_FIXED_WIDTH
Am_FIXED_HEIGHT
Am_INDENT
Am_MAX RANK
Am_MAX STZE

<formula>

0
Am_No_Object
NULL

o O o O

Am_CENTER_ALIGN

Am_CENTER_ALIGN

Am_NOT_FIXED SIZE
Am_NOT_FIXED SIZE
0

false

false

Am Value_List

int, Am Value_ List
Am_Object
<formula>

int

int

int

int

{Am_LEFT ALIGN,

Am_RIGHT_ALIGN,
Am_CENTER_ALIGN}

{Am_TOP_ALIGN,
Am_BOTTOM_ALIGN,
Am_CENTER_ALIGN}

int
int
int
int, bool

int, bool




Summary of Exported Objects and Slots Page 281

10.4.11 Am_Window

Slot Default Value Type

Am VISIBLE true bool
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH 100 int
Am HETGHT 100 int
Am_GRAPHICAL_PARTS empty Am Value_List Am Value_List  read only
Am_FILL_STYLE Am_White Am_Style
Am_MAX_WIDTH 0 int
Am_ MAX HETIGHT 0 int
Am_MIN_WIDTH 1 int
Am_MIN_HEIGHT 1 int
Am_TITLE “Amulet” char*
Am_TICON_TITLE “Amulet” char*
Am_TCONIFIED false bool
Am_USE_MIN_ WIDTH false bool
Am_USE_MIN_ HEIGHT false bool
Am _USE_MAX WIDTH false bool
Am_USE_MIN_HEIGHT false bool
Am_QUERY_POSITION false bool
Am_QUERY_SIZE false bool
Am _IS_COLOR formula bool read only
Am_OMIT TITLE_BAR false bool
Am_CLIP_CHILDREN false bool
Am_DESTROY_WINDOW Am_Default_Window_ Am_Object__

METHOD Destroy_Method Method
Am_DOUBLE_BUFFER true bool
Am_SAVE_UNDER false false




Page 282 Summary of Exported Objects and Slots

10.5 Interactors

10.5.1 Am_Interactor

Do not make instances of Am_Interactor. Instead, use the specific interactors described on the fol-
lowing pages. Am_Interactor is used to create custom interactors.

Slot Default Value Type
Am_START WHEN Am_Default_ Am_TInput_Char
Start_Char
Am_START_WHERE_TEST Am_Inter_In_ Am_Where _
Object_Or_Part Method

Am ABORT WHEN Am_Input_Char Am_TInput_Char

(*CONTROL_g”)
Am_INTER_BEEP_ON_ABORT true bool
Am_RUNNING_WHERE_OBJECT true Am_Object,
bool
Am_RUNNING_WHERE_TEST Am_Inter_ In_ Am_Where__
Object_Or_Part Method

Am_STOP_WHEN Am_Default_ Am_Input_Char
Stop_Char
Am_ACTIVE true bool Section 5.3.3.3
Am_START OBJECT 0 Am_Object Section 5.4.1
Am_START CHAR 0 Am_Input_Char Section 5.4.1
Am_CURRENT_OBJECT 0 Am_Object Section 5.4.1
Am_RUN_ALSO false bool Section 5.4.2
Am_ PRIORITY 1.0 float Section 5.4.2
Am_MULTI_OWNERS NULL Am_Value_List Section 5.4.3
or NULL

Am MULTI_FEEDBACK_ NULL Am_Value_List Section 5.4.3

OWNERS or NULL
Am_ WINDOW NULL Am_Window Set with current

Am COMMAND

Am_Command

Am_Command

window
Section 5.6



Summary of Exported Objects and Slots Page 283

10.5.2 Am_Choice_Interactor

Slot Default Value Type
All of ths slots of Am_Interactor, with the following changes:
Am_RUNNING_WHERE__ <formula> Am_Object, computes owner
OBJECT bool
Am_RUNNING_WHERE_TEST <formula> Am_Where__ same as start
Method
Am_HOW_SET Am_CHOICE_TOGGLE Am Choice_
How_Set
Am_FIRST_ONE_ONLY false bool whether menu-
or button-like
Am_VALUE NULL Am_Object or
Am_Value_List
of objects

10.5.3 Am_One_Shot_Interactor

Slot Default Value Type
All of ths slots of Am_Interactor, with the following changes:
Am_ START WHERE_TEST Am Inter_In Am_Where_
Method
Am_ RUNNING_WHERE_OBJECT <formula> Am_Object, computes owner
bool
Am_RUNNING_WHERE_TEST <formula> Am_Where_ same as start
Method
Am_HOW_SET Am_CHOICE_TOGGLE Am Choice_
How_Set
Am_FIRST_ONE_ONLY false bool whether menu-
or button-like
Am_VALUE NULL Am_Object or

Am_Value_List
of objects

Am_CONTINUOUS false bool




Page 284 Summary of Exported Objects and Slots

10.5.4 Am_Text_Edit Interactor

Slot Default Value Type

All of ths slots of Am_Interactor, with the following changes:

Am_START WHERE_TEST Am_Inter_ In_Text_ Am_Where_Method
Object_Or_Part

Am_STOP_WHEN Am_Tnput_Char ( *“RETURN” ) Am_TInput_Char

Am_VALUE wn Am_Str i ng

Am_WANT_PENDING__ false bool

DELETE

Am_TEXT_EDIT _METHOD Am_Default_Text_ Am_Text_FEdit__
Edit_Method Method

Am_EDIT TRANSLATION__ Am_Edit_Translation_ Am Edit_

TABLE Table: :Default_Table() Translation Table

10.5.5 Am_Move_Grow_Interactor

Slot Default Value Type
All of ths slots of Am_Interactor, with the following changes.
Am_GROWING false bool
Am_ AS_LINE <formula> bool
Am_FEEDBACK_OBJECT NULL Am_Object interim feedback
Am GRID_X 0 int
Am GRID Y 0 int
Am_GRID_ORIGIN_X 0 int
Am_GRID_ORIGIN_Y 0 int
Am_GRID_METHOD NULL Am_Custom

Gridding_Method
Am WHERE_ATTACH Am_ATTACH__ Am_Move_Grow_ Am_ATTACH_.. {WHERE_HIT,
WHERE_HIT Where_Attach NW, N, NE, E, SE, S, SW, W,

Am_MINIMUM_WIDTH int END_I, END_2, CENTER]
Am_MINIMUM_HEIGHT int
Am_MINIMUM LENGTH int

Am_VALUE NULL

Am_Inter_Location




Summary of Exported Objects and Slots Page 285

10.5.6 Am_New_Points_Interactor

Slot Default Value Type
All of ths slots of Am_Interactor, with the following changes:
Am_AS_LINE 0 bool
Am_FEEDBACK_OBJECT NULL Am_Object
Am_HOW_MANY_POINTS 2 int
Am FLIP_IF_CHANGE_SIDES true bool
Am_ABORT_IF_TOO_SMALL false bool
Am_GRID X 0 int
Am_GRID Y 0 int
Am_GRID_ORIGIN_X 0 int
Am_GRID_ORIGIN_Y 0 int
Am_GRID_METHOD 0 Am Custom_

Gridding Method

Am_MINIMUM WIDTH 0 int
Am_MINIMUM_HEIGHT int
Am_MINIMUM_LENGTH int
Am_CREATE_NEW_OBJECT_ NULL Am_Create_New

METHOD
Am_START_ WHERE_TEST

Object_Method

Am_Tnter_In

Am_Where_Method

Am_POINT_LIST
Am_START WHERE_TEST
Am_VALUE

Am Point_List ()
Am_TInter In

ww

Am_VALUE NULL Am_Object newly created object
10.5.7 Am_Gesture_Interactor
Slot Default Value Type

All of ths slots of Am_Interactor, with the following changes:

Am_FEEDBACK_OBJECT NULL Am_Object

Am CLASSIFIER NULL Am_Gesture_
Classifier

Am_MIN_NONAMBIGUITY 0 float

PROB
Am_MAX DIST TO_MEAN 0 float
Am_ITEMS 0 Am_Value_List

Am_Point_List
Am_Where_Method
Am_String

name of gesture




Page 286 Summary of Exported Objects and Slots




Summary of Exported Objects and Slots Page 287

10.6 Widget objects

10.6.1 Am_Border_Rectangle

A Motif-like rectangle with border.

Slot Default Value Type

Am_SELECTED false bool

Am_WIDGET_LOOK Am_MOTIF_LOOK Am_Widget_Look {Am_MOTIF LOOK,
Am_MACINTOSH_LOOK,
Am_WINDOWS_LOOK }

Am_WIDTH 50 int

Am_HEIGHT 50 int

Am_TOP 0 int

Am_LEFT 0 int

Am_VISIBLE true bool

Am _FILL_STYLE Am_Amulet_Purple Am Style




Page 288 Summary of Exported Objects and Slots

10.6.2 Am_Button

A single button

Slot Default Value Type
Am_VALUE NULL Am_Value
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH <formula> int
Am_HEIGHT <formula> int

Am_H_ALIGN

Am CENTER_ALIGN

{Am_LEFT_ALIGN,

Am_ RIGHT_ALIGN,
Am_CENTER_ALIGN}

Am NOT_FIXED_SIZE int
Am NOT_FIXED_SIZE int

Am_FIXED_WIDTH
Am FIXED HEIGHT

Am_TINDENT 0 int
Am MAX RANK false bool
Am_MAX SIZE false bool
Am_ TTEM_OFFSET 5 int
Am_ACTIVE <formula> bool
Am_ACTIVE_2 true bool

Am WIDGET_LOOK

Am_MOTIF_LOOK

Am_Widget_Look

Am_KEY_SELECTED false bool

Am_FONT Am_Default_Font Am_Font

Am_FINAL_ false bool
FEEDBACK_WANTED

Am_FILL_STYLE Am_Amulet_Purple Am_Style

Am_COMMAND

Am_Command

Am_Command

{Am_MOTIF_LOOK,
Am_MACINTOSH_LOOK,
Am_WINDOWS_LOOK]



Summary of Exported Objects and Slots Page 289

10.6.3 Am_Button_Panel

Many related buttons, automatically laid out in a group, with one interactor running all of them.

Slot Default Value Type
Am_VALUE NULL Am_Value
Am_WIDTH Am Width_Of_Parts int
Am_HEIGHT Am Width_Of_Parts int
Am LEFT 0 int
Am_TOP 0 int
Am_WIDTH <formula> int Read-only
Am_ HEIGHT <formula> int Read-only
Am_HOW_SET Am_CHOICE_SET Am_How_Set
Am_TITEM_OFFSET 3 int
Am_ACTIVE <formula> bool
Am_ACTIVE_2 true bool

Am_WIDGET_LOOK

Am_KEY_ SELECTED
Am_FONT
Am_FILL_STYLE

Am_FINAL_
FEEDBACK_WANTED

Am_TLAYOUT

Am H_ALIGN

Am_TITEMS

Am_ COMMAND

Am_MOTIF_LOOK

false
Am_Default_Font
Am_Amulet_Purple
false

Am_Vertical_
Layout

Am_LEFT_ALIGN

Am_Command

Am_Widget_Look {Am_MOTIF_LOOK,

Am_MACINTOSH_LOOK
, Am_WINDOWS_LOOK}
bool
Am_Font
Am_Stvle
bool

{Am_Vertical_Layout,
Am_Horizontal_Layout,
NULL, etc.}
{Am_LEFT_ALIGN,
Am_RIGHT_ALIGN,
Am_CENTER_ALIGN}
int, Am_Value_List
of commands or
strings, etc.

Am_Command




Page 290 Summary of Exported Objects and Slots

10.6.4 Am_Radio_Button_Panel: Am_Button_Panel

A group of mutually exclusive radio-button style selection buttons.

Slot Default Value Type
all the slots of the button panel, with the following changes
Am_BOX_WIDTH 15 int
Am_BOX_HEIGHT 15 int
Am BOX ON_LEFT true bool
Am_FIXED WIDTH false int, bool
Am_FINAL_FEEDBACK true bool
_WANTED
Am_H ALIGN <formula> {Am_LEFT ALIGN,

Am_RIGHT ALIGN,
Am_CENTER_ALIGN}

10.6.5 Am_Checkbox_Panel: Am_Button_Panel

A group of checkbox-style selection buttons.

Slot Default Value Type

all the slots of the button panel, with the following changes

Am_HOW_SET Am_CHOICE__ Am_How_Set
LIST_TOGGLE

Am_BOX_WIDTH 15 int

Am BOX_HEIGHT 15 int

Am_BOX_ ON_LEFT true bool

Am_FIXED WIDTH false int, bool

Am_FINAL_FEEDBACK_WANTED true bool

Am_H ALIGN <formula> {Am_LEFT_ALIGN,

Am_RIGHT ALIGN,
Am CENTER_ALIGN}




Summary of Exported Objects and Slots Page 291

10.6.6 Am_Menu: Am_Button_Panel

A single menu panel

Am_ITEMS
Am__COMMAND

NULL
Am_Command

Slot Default Value Type
all the slots of the button panel
Am_FINAL_FEEDBACK WANTED false bool
Am_WIDTH <formula> int
Am_HEIGHT <formula> int
Am X OFFSET 2 int
Am_Y_ OFFSET 2 int
Am_V_SPACING -2 int
10.6.7 Am_Menu_Bar: Am_ Menu
A menubar and its submenus.
Slot Default Value Type
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH <formula> int width of owner
Am_HEIGHT <formula> int height of text in menubar
Am_ACTIVE <formula> bool
Am_ACTIVE_2 true boocl
Am WIDGET LOOK Am_ MOTIF_LOOK Am_Widget_Look
Am_FONT Am_Default_Font Am_Font
Am_FILL_STYLE Am_Amulet_Purple Am_Style

Am Value_List
Am_Command




Page 292 Summary of Exported Objects and Slots

10.6.8 Am_Vertical_Scroll Bar

Slot Default Value Type

Am VALUE 50 Am_Value
Am_LEFT 0 int

Am_TOP 0 int

Am_WIDTH 20 int

Am_HEIGHT 200 int
Am_WIDGET_LOOK Am_ MOTIF_LOOK Am_Widget_Look
Am FILI, STYLE Am_Amulet_Purple Am_Style

Am_VALUE_ 1
Am_VALUE_2
Am_SMALL_TNCREMENT
Am DLARGE_TNCREMENT
Am_PERCENT VISIBLE
Am_COMMAND

0

100

1

10

0.2
Am_Command

int or float
int or float
int or float
int or float
float
Am_Command

10.6.9 Am_Horizontal Scroll_Bar

Slot Default Value Type
Am_VALUE 50 Am_Value
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH 200 int
Am_HEIGHT 20 int
Am_WIDGET_LOOK Am_MOTIF_LOOK Am_Widget_Look
Ar_FILL_STYLE Am_Amulet_Purple Am_Style

Am_VALUE_1
Am_VALUE_2
Am_SMALL_INCREMENT
Am LARGE_INCREMENT
Am_PERCENT_VISIBLE
Am_COMMAND

0

100

1

10

0.2
Am_Command

int or float
int or float
int or float
int or float
float
Am_Command

Value at top

Value at bottom
When click arrow
When click “page”
Size of indicator

Value at left

Value at right
When click arrow
When click “page”
Size of indicator



Summary of Exported Objects and Slots Page 293

10.6.10 Am_Scrolling_Group

A group with scroll bars.

Slot Default Value Type
Am LEFT 0 int
Am_TOP 0 int
Am_WIDTH 150 int
Am_HETGHT 150 int
Am_X_OFFSET 0 int Where scrolled to
Am_Y_ OFFSET 0 int Where scrolled to
Am_WIDGET LOOK Am_MOTIF_LOOK Am_Widget_Look
Am_FILL_STYLE Am_Amulet_Purple Am Style
Am_TINNER_FILI, STYLE 0 Am_Styvle or 0 If O uses FILL STYLE
Am_LINE_STYLE Am_Thin_ Line Am_Style Border of scrolling area
Am_H_SCROLL_BAR - true bool Whether show horiz bar
Am_V_SCROLI_BAR true bool Whether show vertical bar
Am _H_SCROLI,_BAR_ON_TOP false bool
Am_V_SCROLL_BAR_ON_LEFT false bool
Am_H_SMALL_INCREMENT 10 int
Am H LARGE_TINCREMENT <formula> int Computed from page size
Am_V_SMALL_TINCREMENT 10 int
Am_V_LARGE_INCREMENT <formula> int Computed from page size
Am_INNER_WIDTH 400 int Size of scrollable area
Am_INNER_HEIGHT 400 int Size of scrollable area




Page 294 Summary of Exported Objects and Slots

10.6.11 Am_Text_Input_ Widget

A labeled text input field, for getting a single line of text from a user.

Slot Default Value Type
Am_VALUE w Am_String
Am_LEFT 0 int
Am_TOP 0 int
Am_WIDTH 150 int
Am_HEIGHT <formula> int
Am_WIDGET_LOOK Am_MOTIF_LOOK Am_Widget_Look
Am_FONT Am_Default_Font Am_Font
Am_LABEL_FONT bold_font Am_Font
Am_FILL_STYLE Am_Amulet_Purple Am_Style
Am_ACTIVE_2 true bool
Am_COMMAND Am_Command ) Am_Command

10.6.11.1 Am_Tab_To_Next_Widget_Interactor

Add this interactor to a window to allow the user to go from one Am_Text_Input_Widget to the
next using the TAB key..

Slot Default Value Type
Am_START_WHEN Am_Input_Char Am_Input_Char how starts
(“ANY_TAB”")
Am_LIST_OF_TEXT <formula> Am_Value_List of  defaultis all parts of
WIDGETS Am_Text_Input_ owner of Interactor
Widgets that are text widgets
Am_PRIORITY 105 float or int should be larger than

running priority (100)



Summary of Exported Objects and Slots Page 295

10.6.12 Am_Selection_Widget

Selection handles used to move and grow standard graphical objects.

Slot Default Value Type

Am_Value_List
Am_Input_Char

Am_VALUE NULL

Am_START WHEN Am_TInput_Char
(“ANY_LEFT_DOWN”")

Am_FILL_STYLE Am_Black Am_Style

Am_ VALUE Am Value List () Am_Value_List
Am_ACTIVE true bool
Am_OPERATES_ON NULL Am_Object
Am_START WHERE_TEST Am_Inter In_Part Am_Where_Method
Am_COMMAND Am_Command Am_Command

Am_MOVE_GROW__COMMAND Am_Command Am Command

10.6.13 Am_Option_Button

A button that brings up a menu of options to choose from.

Slot Default Value Type
Am_VALUE <formula> Am_Value
Am_TITEMS NULL Am Value_List
Am_WIDTH <formula> int
Am_COMMAND Am_Command Am_Command

10.6.14 Am_Alert_Dialog

A dialog box that displays informational text and an “Okay” button.

Slot Default Value Type
Am_TITLE “Alert” Am_String
Am_ICON_TITLE “Alert” Am_String
Am_ITEMS NULL Am_Value_List
Am_FILL_STYLE. Am_Motif_ Gray Am_Style
Am_V_SPACING 5 int
Am_H_SPACING 10 int

Am H ALIGN

Am_WIDGET_LOOK

Am_CENTER_ALIGN

Am_MOTIF_LOOK

Am_LEFT_ALIGN,
Am_CENTER_ALIGN,
Am RIGHT_ALIGN

Am_Widget_Look

list of selected objects

color of handles

group to select from

object selected

object moved/ grown

Am_Strings to display



Page 296 Summary of Exported Objects and Slots

10.6.15 Am_Text_Input_Dialog

A dialog box that displays informational text,a text input widget, and “Okay” and “Cancel” but-

tons.

10.6.16 Am_Choice_Dialog

Slot Default Value Type
Am TITLE "Text Input Dialog” Am String
Am_ICON_TITLE “Text Input Dialog” Am_String
Am_TTEMS NULL Am_Value_List
Am_VALID_ INPUT true bool
Am_VALUE wu Am_String
Am FILI_STYLE Am Motif_ Gray Am_Style
Am V_SPACING 5 int
Am H SPACING 10 int

Am_H_ALIGN

Am_WIDGET_LOOK

Am_CENTER_ALIGN

Am_MOTIF_LOOK

Am_LEFT_ALIGN,
Am_CENTER_ALIGN,
Am_RIGHT_ALIGN

Am_Widget_Look

A dialog box that displays informational text and “Okay” and “Cancel” buttons.

Slot Default Value Type
Am_TITLE *Choice Dialog” Am_String
Am_ICON_TITLE “Choice Dialog” Am_String
Am_ TTEMS NULL Am_Value_List
Am FILL_STYLE Am_Motif_ Gray Am_Style
Am_V_SPACING 5 int
Am_VALUE wu Am_String
Am_H_SPACING 10 int
Am_H ALIGN Am_CENTER_ALIGN Am_LEFT_ALIGN,

Am_WIDGET_LOOK

Am_MOTIF_LOOK

Am_CENTER_ALIGN,
Am_RIGHT_ALIGN

Am_Widget_Loock

Am_Strings to display
Is text input valid?
String in text field

Am_Strings to display

“Okay” or “Cancel”



Summary of Exported Objects and Slots Page 297

10.7 Command Objects

10.7.1 Am_Command

Use this command object as a prototype for your custom commands.

Slot Default Value Type
Am_DO_METHOD NULL Am_Object_Method
Am_UNDO_METHOD NULL Am_Object_Method
Am_REDO_METHOD NULL Am_Object_Method
Am_SELECTIVE_UNDO_ <formula> Am_Selective_

ALLOWED Allowed_Method
Am_SELECTIVE_UNDO NULL Am_Object_Method
METHOD

Am_ SELECTIVE_REPEAT <formula> Am_Selective_
SAME_ALLOWED Allowed_Method

Am_ SELECTIVE_REPEAT_ NULL Am_Object_Method
SAME_METHOD

Am_SELECTIVE_REPEAT <formula> Am_Selective_New_
NEW_ALLOWED Allowed_Method

Am SELECTIVE_REPEAT_ NULL Am_Selected_Repeat_
ON_NEW_METHOD New_Method

Am_LAREL . A command” Am_String or Am_Object

Am_SHORT LABEL 0 Am_String or 0

Am_ACTIVE true bool

Am_VALUE 0 any

Am_TIMPLEMENTATION__ 0 Am_Command object
PARENT

10.7.2 Am_Menu_Line_Command

A menu line command is used to put a horizontal line in an Am Menu or submenu widget.

Slot Default Value Type
Am_LABEL "Menu_Line_Command” Am_String
Am_ACTIVE false bool

Am_VALUE NULL Am_Value




Page 298 Summary of Exported Objects and Slots

10.7.3 Am_Selection_Widget_Select_All_Command

Select all of the widgets am_SELECTION_WIDGET is allowed to select.

Slot Default Value Type
Am_SELECTION_WIDGET NULL Am_Object Must be set!
Am_ACCELERATOR Am_Input_Char Am_TInput_Char
(“"CONTROL_a”)

Am_LABEL “Select All” Am_String or Am Object
Am_IMPLEMENTATION_ <formula> Am_ Command object Parent of selection

PARENT widget’s command
Am_ ACTIVE true bool

10.7.4 Am_Graphics_Set_Property_Command

Set the property of object(s) currently selected by Am_SELECTION_WIDGET.

Slot Default Value Type
Am_GET WIDGET VALUE_  <method> Am_Get_Widget_Property_
METHOD Method
Am_GET_OBJECT VALUE_ <method> Am_Get_Object_Property
METHOD Value_Method
Am_SET_ OBJECT_VALUE_ <method> Am_Set_Object_Property_
METHOD Value_Method

Am_SLOT_FOR_VALUE

Am_FILL_STYLE

Am_Slot_Key

Am_SELECTION_WIDGET NULL Am_Selection_Widget Must be set!
Am_LABEL “Change Property” Am_String or Am_Object
Am_TIMPLEMENTATION__ 0 Am_Command object
PARENT
Am_ACTIVE true bool
10.7.5 Am_Graphics_Clear_Command
Delete the objects currently selected by Am_SELECTION_WIDGET.
Slot Default Value Type
Am_SELECTION_WIDGET NULL Am_Selection_Widget Must be set!
Am_ACCELERATOR Am_TInput_Char Am_TInput_Char
(“DELETE")
Am_LABEL “Clear” Am_String or Am_Object
Am_TIMPLEMENTATION_ 0 Am_Command object
PARENT
Am ACTIVE <formula> bool active if selection




Summary of Exported Objects and Slots Page 299

10.7.6 Am_Graphics_Clear_All_Command

Delete all of the objects am_SELECTION_wIDGET is allowed to select.

Slot Default Value Type
Am_SELECTION_WIDGET NULL Am_Selection_Widget Must be set!
Am_ACCELERATOR Am_ TInput_Char Am_TInput_Char

(“CONTROL_DELETE")
Am_LABEL “Clear All” Am_String or Am_Object
Am_TMPLEMENTATION_ 0 Am_Command object
PARENT
Am_ ACTIVE <formula> bool
10.7.7 Am_Graphics_Cut_Command
Cut object(s) currently selected by Am_SELECTION_WIDGET t0 Am_CLIPBOARD.

Slot Default Value Type
Am_SELECTION_WIDGET NULL Am_Selection_Widget Must be set!
Am_ ACCELERATOR Am_Input_Char Am_Tnput_Char

(“CONTROL_x")
Am_CLIPBOARD NULL Am_Clipboard NULL means
Am_Global_Clipboard
Am LABEL “Cut” Am_String or Am_Object
Am_TMPLEMENTATION_ 0 Am Command object
PARENT
Am_ACTIVE <formula> bool

10.7.8 Am_Graphics_Copy_Command

Copy object(s) currently selected by Am_SELECTION WIDGET tO Am_CLIPBOARD

Slot Default Value

Am_SELECTION_WIDGET NULL
Am_ACCELERATOR

(“CONTROIL_c”)
Am_CLIPBOARD NULL
Am ACTIVE <formula>
Am_LABEL “Copy”
Am_TMPLEMENTATION_ 0

PARENT

Am_TInput_Char

Type
Am_Selection_Widget Must be set!
Am_TInput_Char
Am_Clipboard NULL means

Am_Global_Clipboard
bool

Am String or Am_Object
Am_Command object




Page 300 Summary of Exported Objects and Slots

10.7.9 Am_Graphics_Paste_Command

Paste object(s) from Am_CLIPBOARD.

Slot Default Value Type
Am_SELECTION_WIDGET NULL Am_Selection_Widget Must be set!
Am_ACCELERATOR Am_Input_Char Am_TInput_Char

{(“*CONTROL_vy")
Am_CLIPBOARD NULL Am_Clipboard NULL meand
Am_Global_Clipboard
Am_LABEL “Paste” Am_String or Am_Object
2Am_VALUE 0 any
Am_TMPLEMENTATION_ 0 Am_Command object
PARENT

Am_ACTIVE <formula> bool

10.7.10 Am_Graphics_Duplicate_Command

Duplicate objects selected by Am_SELECTION WIDGET.

Slot Default Value Type
Am_ SELECTION_WIDGET NULL Am_Selection_Widget Must be set!
Am_ACCELERATOR Am_TInput_Char Am_TInput_Char

(“CONTROL_4")
Am_LABEL “Duplicate” Am_String or Am Object
Am_TMPLEMENTATION_ 0 Am_Command object
PARENT

Am_ACTIVE <formula> bool

10.7.11 Am_Graphics_Group_Command

Create an 2Am_Resize_Group containing the currently selected objects.

Slot Default Value Type
Am_SELECTION_WIDGET NULL Am_Selection_Widget Must be set!
Am ACCELERATOR Am_Input_Char Am_TInput_Char

{(“CONTROL_p") .
Am_LABEL “Group” Am_String or Am_Object
Am_TMPLEMENTATION__ 0 Am_Command object

PARENT
Am_ACTIVE <formula> bool




Summary of Exported Objects and Slots Page 301

10.7.12 Am_Graphics_Ungroup_Command

Ungroup a group created with the Group_cCommand.

Slot Default Value Type
Am_SELECTION_WIDGET NULL Am_Selection_Widget Must be set!
Am ACCELERATOR Am_TInput_Char Am_Input_Char

(“*CONTROL_h")
Am_LABEL “Ungroup” Am String or Am Object
Am_IMPLEMENTATION_ 0 Am_Command object
PARENT
Am_ACTIVE <formula> bool

10.7.13 Am_Undo_Command

Undo the last command on the undo stack.

Slot Default Value Type
Am_LABEL “Undo” Am_String or Am_ Object
Am_TMPLEMENTATION_ 0 Am_Command object

PARENT
Am SELECTION_WIDGET NULL Am_Selection_Widget Optional
Am_ACCELERATOR Am_TInput_Char Am_TInput_Char
(“CONTROL_z")

Am_ACTIVE <formula> bool

10.7.14 Am_Redo_Command

Redo the last undone command on the undo stack.

Slot Default Value Type
Am_LABEL “Redo” Am_String or Am_ Object
Am_TMPLEMENTATION_PARENT 0 Am_Command object
Am_SELECTION_WIDGET NULL Am_Selection_Widget Optional
Am_ ACCELERATOR Am_TInput_Char Am_Input_Char
(“CONTROL_Z")

Am_ACTIVE <formula> bool




Page 302 Summary of Exported Objects and Slots

10.7.15 Am_Graphics_To_Top_Command

Move the currently selected object(s) to the top of the Z-ordering.

Slot Default Value Type
Am_LABEL “To_Top” Am_String or Am_Object
Am_TIMPLEMENTATION_PARENT 0 Am_Command object
Am SELECTION_WIDGET NULL Am_Selection_Widget Must be set!
Am_ACCELERATOR Am_TInput_Char Am_TInput_Char
(“CONTROL_>")
Am_ACTIVE <formula> bool

10.7.16 Am_Graphics_To_Bottom_Command

Move the currently selected object(s) to the bottom of the Z-ordering.

Slot Default Value Type
Am_LABEL “*To_Bottom” Am_String or Am_Object
Am_TIMPLEMENTATION_PARENT 0 Am_Command object
Am_SELECTION_WIDGET NULL Am_Selection_Widget Must be set!
Am_ACCELERATOR Am_TInput_Char Am_TInput_Char
(“CONTROL_<")
Am_ACTIVE <formula> bool

10.7.17 Am_Show_Undo_Dialog_Box_Command

Show the selective undo dialog box. You need to #include UNDO_DIALOG_ H to use this (see
Section 1.6).

Slot Default Value Type
Am_LABEL “Undo/Redo/ Am_String or Am_Object
Repeat”
Am_TMPLEMENTATION_ Am_NOT_USUALLY__ Am_Command object
PARENT UNDONE
Am_UNDO_DIALOG_BOX NULL Am_Undo_Dialog Box Must be set!

Am_ACTIVE NULL bool




Summary of Exported Objects and Slots Page 303

10.7.18 Am_Quit_No_Ask Command

Quit the current application right now by calling Am_Exit_Main_Event_Loop().

Slot Default Value Type
Am_LABEL “Quit” Am_String or Am_ Object
Am_ACCELERATOR Am _Input_Char  Am_Input_Char
(“CONTROL_g*)
Am_IMPLEMENTATION_PARENT 0 Am_Command object
Am_ACTIVE true bool
10.8 Undo objects

10.8.1 Am_Undo_Handler

Instantiate this object to create custom undo handlers. Normally you should use an
Am_Single_Undo_Object

Slot Default Value Type
Am_ REGISTER_COMMAND NULL Am_Register_Command_
Method
Am_UNDO_ALLOWED NULL Am_Object or NULL
Am_PERFORM_UNDO NULL Am_Object_Method
Am_REDO_ALLOWED NULL Am_Object or NULL
Am_PERFORM_REDO NULL Am_Object_Method
AM_SELECTIVE_UNDO__ NULL Am_Selective_Allowed_
ALLOWED Method
Am_SELECTIVE_UNDO_METHOD NULL Am_Object_Method
AM_SELECTIVE_REPEAT _ NULL Am_Selective_Allowed_
SAME_ALLOWED Method
AM_SELECTIVE_REPEAT_ NULL Am_Object_Method
SAME_METHOD
AM_SELECTIVE_REPEAT NULL Am_Selective_New_
NEW_ALLOWED Allowed_Method
AM SELECTIVE_REPEAT _ NULL Am_Object_Method

ON_NEW_METHOD




Page 304 Summary of Exported Objects and Slots

10.8.2 Am_Single_Undo_Object

Undo or redo only a single command Add thiis as a part to a window.

Slot Default Value Type
Am_REGISTER_COMMAND <method> Am_Register_
Command_Method
Am_REDO_ALLOWED <formula> Am_Object or 0
Am_UNDO_ALLOWED <formula> Am_Object or 0
Am_PERFORM_UNDO <method> Am_Object_Method
Am_PERFORM_REDO <method> Am Object_Method

10.8.3 Am_Multiple_Undo_Object

Undo multiple commands, and redo only the last undone command. Add this as a part to a win-
dow.:

Slot Default Value Type
Am_REGISTER_COMMAND <method> Am_Register_
Command_Method
Am_UNDO_ALLOWED <formula> Am_Object or 0
Am REDO_ALLOWED <formula> Am_Object or 0
Am_PERFORM_UNDO <method> Am_Object_Method
Am_PERFORM_REDO <method> Am_Object_Method
Am_LAST UNDONE_COMMAND 0 Am_Command
Am_SELECTIVE_UNDO_ METHOD <method> Am_Object_Method
Am SELECTIVE_REPEAT _ <method> Am_. Object_Method
SAME_METHOD
Am_SELECTIVE_REPEAT ON_NE <method> Am_Object_Method
W_METHOD
Am_SELECTIVE_UNDO_ALLOWED <method> Am_Selective_Allowed_
Method
Am_SELECTIVE_REPEAT <method> Am_Selective_Allowed_
SAME_ALLOWED Method
Am_SELECTIVE_REPEAT <method> Am_Selective_New_

NEW_ALLOWED Allowed_Method




Summary of Exported Objects and Slots Page 305

10.8.4 Am_Undo_Dialog Box

This is a complete dialog box used to handle selective undo of various commands. You need to

#include UNDO_DIALOG__H to use this (see Section 1.6).

Slot Default Value Type
Am WIDTH 425 int
Am_HEIGHT 400 int
Am_TITLE *Amulet Selective Am_String

Undo/Redo/Repeat”

Am_FONT Am_Default_Font Am_Font
Am_FILL_STYLE Am Amulet_Purple Am_Stvle
Am_WIDGET_LOOK Am_MOTIF_LOOK Am_Widget_Look
Am_UNDO_HANDLER_TO_ NULL Am_Undo_Handler handler to show values for

DISPLAY
Am_SELECTION_WIDGET
Am_SCROLLING_GROUP

NULL
NULL

Am_Selection_Widget
Am_Scrolling_Group




Page 306 Summary of Exported Objects and Slots




Index Page 307

11. Index

Symbols
A (modifier) 166

A

Aborting a widget 241

Aborting an Interactor 190

Add (for lists) method 101

Add_Part 146

Agate 184
Am_ABORT_DO_METHOD 192
Am_ABORT_IF_TOO_SMALL 179
Am_Abort_Interactor 190
Am_ABORT_WHEN 164
Am_Abort_Widget 242
Am_ABS_ANGLE 186
Am_ACTIVE 213

Am_ACTIVE (of Interactor) 169
Am_ACTIVE_2 213
Am_Alert_Dialog 235

Am_Arc 130

Am_AS_LINE 175, 178
Am_ATTACH_WHERE_HIT 176
Am_Beep 152

Am_BOOL 84
Am_Border_Rectangle 214
Am_Bottom_Is_Bottom_Of_Owner 156
Am_Break _On_Slot_Set 266
Am_Button 217

Am_Button_Panel 218
Am_Center_X_Is_Center_Of 156
Am_Center_X_Is_Center_Of Owner 156
Am_Center_Y_Is_Center_Of 156
Am_Center_Y_Is_Center Of Owner 156
Am_CHAR 84

Am_Checkbox_Panel 222
Am_Choice_Dialog 235
Am_Choice_How_Set 172
Am_Choice_Interactor 172
Am_CLASSIFIER 182

Am_Cleanup 126
Am_Clear_Inter_Trace 77, 204
Am_Clear_Slot_Notify 266

Am_CLIPBOARD 240
Am_CONSTRAINT 85
Am_Constraint_Context 95
Am_COPY 114
Am_CREATE_NEW_OBJECT METHOD
178
Am_CREATED_GROUP 238
Am_CURRENT_OBIJECT 187
Am_Default_Start_Char 164
Am_Default_Stop_Char 164
Am_Default_Text Edit_Method 181
Am_Default_Widget_Start_Char 209
Am_Default_Window_Destroy_Method 156
Am_Define_Cursor_Formula 96
Am_Define_Font_Formula 96
Am_Define Formula 95
Am_Define_Image_Formula 96
Am_Define Method 88
Am_Define_Method_Type 88
Am_Define_Method_Type_Impl 88
Am_Define No_Self Formula 96
Am_Define_Object_Formula 96
Am_Define_Point_List_Formula 96
Am_Define_String_Formula 96
Am_Define_Style_Formula 96
Am_Define_Value_Formula 96, 97
Am_Define_Value_List_Formula 96
Am_Demon_Set 118
Am_DESTROY_WINDOW_METHOD 156
Am_Diamond_Stipple 139
Am_Do_Events 126
Am_DO_METHOD 73, 192
Am_DOUBLE 84
Am_DOUBLE_BUFFER 156
Am_Double_Click_Time 166, 254
Am_DRAW_COPY 251
Am_Draw_Function 251
Am_DRAW_OR 251
Am_DRAW_XOR 251
Am_Drawonable 245
Am_DX?2 186
Am_EDIT_TRANSLATION TABLE 181
Am_END_X 186



Page 308 Index

Am_Error 104
Am_Exit_Main_Event_Ioop 126
Am_FEEDBACK_OBIJECT 175, 178
Am_Fill_Solid_Flag 143
Am_FILL_STYLE 127, 138
Am_Fill_To_Bottom 156
Am_Fill_To_Right 156
Am_Finish_Dialog_Method 237
Am_Finish_Pop_Up_Waiting 191
Am_FIRST_ONE_ONLY 173
Am_FIRST_X 187
Am_Flash 266
Am_FLIP_IF_CHANGE_SIDES 179
Am_FLOAT 84
Am_Font 136
Am_From_Owner 156
Am_From_ Part 156
Am_From_Sibling 156
Am_Gesture_Classifier 182
Am_Gesture_Interactor 182
Am_Get_Choice_From_Dialog 236
Am_Get_Input_From_Dialog 236
Am_Get_Object_Property_Value_Method 241
Am_GET_OBJECT_VALUE_METHOD 241
Am_Get_Slot_Name 84
Am_Get_Unique_ID_Tag 107
Am_Get_Widget_Property_Value_Method
241
Am_GET_WIDGET_VALUE_METHOD 241
Am_Global_Clipboard 240
Am_GRAPHICAL_PARTS 146
Am_Graphics_Clear_All_Command 238
Am_Graphics_Clear_Command 238
Am_Graphics_Copy_Command 238
Am_Graphics_Cut_Command 238
Am_Graphics_Duplicate_ Command 238
Am_Graphics_Group_Command 238
Am_Graphics_Paste_Command 238
Am_Graphics_Set_Property_Command 240
Am_Graphics_To_Bottom_Command 238
Am_Graphics_To_Top_Command 238
Am_Graphics_Ungroup_Command 239
Am_GRID_METHOD 176
Am_Group 58, 60, 145
Am_GROWING 175
Am_HEAD 101

Am_Height_Of_Parts 146, 156
Am_HIT_THRESHOLD 128
Am_Horizontal Layout 147, 156
Am_Horizontal Scroll Bar 226
Am_HOW_MANY_POINTS 178
Am_HOW_SET 172
Am_ID_Tag 107
Am_Image Array 137
Am_IMPLEMENTATION_PARENT 197
am_inc.h 33
Am_INHERIT (on slots) 114
Am_Inherit_ Rule 114
Am_INITIAL_SIN 186
Am_Initialize 126
Am_Input_Char 165
Am_Input_Event 254
Am_Input_Event_Handlers 252
Am_Inspect 260
Am_Instance_Iterator 103
Am_INT 84
Am_INTER_ABORT_METHOD 196
Am_INTER_BACK_INSIDE METHOD 196
Am_Inter_In 168
Am_Inter_In_Leaf 168
Am_]Inter_In_Object_Or_Part 168
Am_Inter_In_Part 168
Am_Inter In_Text 168
Am_Inter_In_Text Leaf 168
Am_Inter_In_Text_Object_Or_Part 168, 180
Am_Inter In_Text_Part 168
Am_Inter Location 169
Am_INTER_OUTSIDE_METHOD 195
Am_INTER_OUTSIDE_STOP_METHOD
196
Am_INTER_PRIORITY_DIFF 188
Am_INTER_RUNNING_METHOD 195
Am_INTER_START_METHOD 195
Am_INTER_STOP_METHOD 196
Am_Inter_Trace_Options 77, 204
Am_Interactor (object) 171
Am_INTERIM_DO_METHOD 192
Am_INTERIM_SELECTED 172
Am_INTERIM_VALUE 193
Am_ITEM_PROTOTYPE 149
Am_ITEMS 149
Am_Join_Style_Flag 142



Index Page 309

Am_LAYOUT 146

Am_Line 129

Am_Line_Cap_Flag 142
Am_Line_Solid_Flag 142
Am_LINE _STYLE 127, 138
Am_LIST_OF_TEXT_WIDGETS 233
Am_LOCAL (on slots) 114
Am_LONG 84
Am_MACINTOSH_LOOK 213
Am_MAGSQ?2 186
Am_Main_Event_Loop 126
Am_Main_Loop_Go 255

Am_Map 149
Am_MAX_DIST_TO_MEAN 185
Am_Menu 222

Am_Menu_Bar 224
Am_Menu_Line_Command 216
Am_Merge_Pathname 153
Am_METHOD 84
Am_MIN_NONAMBIGUITY_PROB 185
Am_MINIMUM_WIDTH 176, 179
Am_MOTIF_LOOK 213
Am_Move_Grow_Interactor 71, 175
Am_Move_Object 151
Am_MULTI_FEEDBACK_OWNERS 189
Am_MULTI_OWNERS 189
Am_Multiple_Undo_Object 199
Am_New_Points_Interactor 178
Am_No_Font 87

Am_No_Object 87

Am_No_Style 87, 128
Am_No_Value 87

Am_NONE 84
Am_Notify_On_Slot_Set 266
Am_NULL_SLOT 113
Am_OBIJECT 84
Am_Object_Advanced 113, 114
Am_Object_Demon 116
Am_Object_Method 88
Am_OLD_INTERIM_VALUE 193
Am_One_Shot_Interactor 70, 174
Am_OPERATES_ON 233
Am_OWNER_DEPTH 188
Am_Part_Demon 116
Am_Part_Tterator 103
Am_PERFORM_REDO 203

Am_PERFORM_UNDO 203
Am_Point_In_All Owners 152
Am_Point_In_Leaf 151
Am_Point_In_Obj 151
Am_Point_In_Part 151
Am_Point_List 133
Am_Polygon 132
Am_Pop_Up_Window_And_Wait 191
Am_PRETEND_TO_BE_LEAF 128, 151
Am_PRIORITY 188
Am_Ptr 85
Am_Quit_No_Ask_Command 239
Am_Radio_Button_Panel 221
Am_RANK 188
Am_Rank 149
Am_Rectangle 129
Am_REDO_ALLOWED 203
Am_Redo_Command 239
Am_REDO_METHOD 199
Am_REGISTER_COMMAND 203
Am_Register_Slot_Key 83
Am_Register_Slot_Name 83
Am_Right_Is_Right_Of Owner 156
Am_Root_Object 91
Am_Roundtangle 130
Am_RUN_ALSO 188
Am_RUNNING_WHERE_OBIJECT 190
Am_RUNNING_WHERE_TEST 190
Am_Same_As 156
Am_SAVED_OLD_OWNER 193
Am_Screen 156
Am_SCROLLING_GROUP 202
Am_Scrolling_Group 228
Am_SELECTED 172
Am_SELECTION_WIDGET 238
Am_Selection_Widget 233
Am_Selection_Widget_Select_All_ Command
238
Am_Selective_Allowed_Return_False 202
Am_Selective_New_Allowed_Return_False
202
Am_Selective_New_Allowed_Return_True
202
Am_SELECTIVE_REPEAT NEW_ALLOW
ED 201
Am_SELECTIVE_REPEAT_ON_NEW_ME



Page 310 Index

THOD 202
Am_SELECTIVE_REPEAT_SAME_ALLO
WED 201
Am_SELECTIVE_REPEAT_SAME_METH
OD 201
Am_SELECTIVE_UNDO_ALLOWED 201
Am_SELECTIVE_UNDO_METHOD 201
Am_Set_Inspector_Keys 260
Am_Set_Inter_Trace 77, 204
Am_Set_Object_Property_Value_Method 241
Am_SET_OBIJECT_VALUE_METHOD 241
Am_SHARPNESS 186
Am_Show_Alert_Dialog 236
Am_Show_Dialog_And_Wait 236
Am_Show_Dialog_Method 237
Am_Single_Undo_Object 199
Am_Slot 114
Am_Slot_Advanced 113, 114
Am_SLOT_FOR_VALUE 241
Am_Slot_Iterator 103
Am_Slot_Name_Exists 84
Am_Standard_Opal_Handlers 253
Am_Standard_Selective_Return_True 202
Am_START_CHAR 187
Am_START_DO_METHOD 192
Am_Start_Interactor 190
Am_START_OBIJECT 187
Am_START_WHEN 164
Am_START WHERE_TEST 168
Am_Start Widget 242
Am_STATIC 114
Am_Stop_Interactor 190
Am_STOP_WHEN 164
Am_Stop_Widget 242
Am_STRING 84
Am_String 86
Am_Style 138
Am_Tab_To_Next_Widget_Interactor 232
Am_TAIL 101
Am_Text 135
Am_Text_Edit_Interactor 180
Am_TEXT_EDIT_METHOD 180, 181
Am_Text Input_Dialog 236
Am_Text_Input_Widget 231
Am_To_Bottom 151
Am_To_Top 151

Am_TOO_SMALL 194
Am_TOTAL_ANGLE 185
Am_TOTAL_LENGTH 185
Am_Translate_Coordinates 153
Am_Type_Base 85
Am_Type_Class 85
Am_UNDO_ALLOWED 203
Am_Undo_Command 239
Am_Undo_Dialog_Box 202
Am_UNDO_HANDLER 199
Am_UNDO_HANDLER_TO_DISPLAY 202
Am_UNDO_METHOD 199
Am_UNINITIALIZED 89, 99
Am_VALID_INPUT 237
Am_Value 89, 96
Am_VALUE (of Interactors) 193
Am_VALUE (slot of widget) 211
Am_Value List 100
Am_Value_Type 85
Am_Vertical_Layout 147, 156
Am_Vertical_Scroll_Bar 226
Am_VISIBLE 127
Am_VOIDPTR 84
Am_WANT PENDING_DELETE 180, 181,
284
Am_Web 95, 110
Am_Web_Create_Proc 110
Am_Web_Events 112
Am_Web_Initialize_Proc 110
Am_Web_Validate_Proc 110
Am_WHERE_ATTACH 176
Am_Where_Method 169
Am_WIDGET_ABORT_METHOD 237
Am_WIDGET_LOOK 213
Am_WIDGET_START_METHOD 237
Am_WIDGET_STOP_METHOD 237
Am_Width_Of Parts 146, 156
Am_WINDOW 187
Am_ Window 154
Am_Window_Destroy_And_Exit_Method
156
Am_Window_Hide Method 156
Am_WINDOWS_LOOK 213
Am_WRAPPER 84
Am_Wrapper 87, 106
Am_WRAPPER_DATA_DECL 106, 107



Index Page 311

Am_WRAPPER_DATA_IMPL 106, 107

Am_WRAPPER_DECL 109
Am_WRAPPER_IMPL 109
Amulet home page 16
amulet.mak 20
amulet.mdp 20
amulet.sea.hgx 18
amulet.tar.Z 18
amulet.zip 18, 22, 28
AMULET_DIR

PC 19

Unix 22
AMULET_VARS_FILE 23
amulet2.mak 20
amulet-user 16
Animation 126
Any_ (modifier) 166
ANY_KEYBOARD 165
Append (for lists) method 101
arc 130
Arrow keys (on Keyboard) 165
As_Short_String 167
As_String 166

Beep 152, 248
Behaviors 162
BitBlt 248
BMP 138
Bool (type) 86
bug reports 16

C

Call back procedures 196
Calling a formula procedure 99
Calling methods 88
cap style 142
Caps Lock 165
CcC
compatability 15
compiling Amulet 24
Makefile variable 26
cc (constraint context) 95
char* (in objects) 86

checkers demo 31
circle 130
cleanup 126
Clear_Area 248
Clear_Clip 250
Clip regions 249
Clipboard (for graphics) 240
color 139, 141
Command Objects 73, 196, 238
compatability

CC1s

gee 15

Visual C++ 15
compiling Amulet

PC 20, 29

Unix 24
Configure_Notify 253
console.cpp 21
Constraint context 95
Constraints

formula 94

multi-way 110

web 110
constraints 61, 65
Control (modifier) 166
copyright 17
Copyright (on Amulet) 16
Create

for Am_Drawonable 245
Create method 90
Create_Offscreen 246
Creating Objects 90

D

dashed lines 142

DEBUG (compiler switch) 26
debugger.h 259

Debugging 76

Debugging Interactors 77, 204
Declaring Formulas 96
default values 57

Defining Formulas 95
DELETE 181

Delete (on Lists) method 102
Demon bits 118, 120



Page 312 Index

Demon mask 118
Demon queue 115, 119
Demon Set 115, 118
Demons 115

object 116

on parts 116

slot 117
demos

checkers 31

goodbye_button 30

goodbye_inter 30

hello world 30

space 31

tutorial 30
destroy 57
Destroy (objects) 91
Destroy method 92
Destroy_Notify 253
Destroying 156
Destroying Windows 156
Destructive modification (of wrapper) 104
Dialog Boxes 235
diamondstipple 139
Disinherit_Slot method 114
Double Buifering 156
Double Click 166
Draw_2_Lines 252
Draw_3 Lines 252
Draw_Arc 251
Draw_Image 251
Draw_Line 251
Draw_Rectangle 252
Draw_Roundtangle 252
Draw_Text 252
drawable 245
Drawonable 245
dynamic typing 49

E

Eager Demon 117, 120
End (for lists) method 100
Errors 104

Events 164
Exposure_Notify 253

F

F1, F2, F3 (to invoke Inspector) 260
feedback 72
Fees (for using Amulet) 16
Filenames 153
fill style 138
filling styles 127
First (for lists) method 100
FLAGS (Makefile variable) 26
Flush_Output 248
font 136
For loop (through lists) 100
Formulas 62, 94
Calling explicitly 99
Declaring 96
Defining 95
In slots 98
Inheritance 99, 115
Frame_Resize_Notify 253
Function keys 165

G

Garnet 16
gcc
compatability 15
compiling Amulet 24
GCC (compiler switch) 25
gdb 76
Gem 245
gem.h 245
Gestures 182
Get 48, 82
Get (on iterators) method 102
Get (on Lists) method 101
Get_Char_Width 249
Get_Default_Inherit Rule method 114
Get_Font_Properties 249
Get_Image_Size 249
Get_Input_Dispatch_Functions 253
Get_Key method 94
Get_Name method 91
Get_Object method 83
Get_Owner method 94
Get_Owner_Slot method 113



Index Page 313

Get_Part method 93, 94
Get_Part_Slot method 113
Get_Polygon_Bounding_Box 251
Get_Prev_Value method 112
Get_Prototype 91
Get_Root_Drawonable 245
Get_Sibling method 94
Get_Slot method 113
Get_Slot_Locale method 113
Get_Slot_Type 82
Get_String_Extents 249
Get_String Width 249
Get_Window_Mask 254
GIF 138

goodbye_button demo 30
goodbye_inter demo 30
graphical parts 146

Gravity 176

Gridding 176

group 124

groups 58, 145

GV 95, 97

GV_Object 98

GV_Owner 98

GV_Part 98

GV_Sibling 98

GVM 98

H

Halftone_Stipple 140
halftones 140

header files 31

hello world 30, 125
Hide Inherited Slots 52
Hide Internal Slots 51
hit threshold 128
horizontal layout 147

HP (compiler switch) 25
I

Iconify_Notify 253

idefs.h 161

images 137

Implementation Parent Hierarchy 197

In_Clip 250
Include Files (for Interactors) 161
Inheritance 90
of formulas 115
of slots 114
inheritance 49
initialization 126
Input Events 164
Input_Event_Notify 253
Insert (for lists) method 101
Inspector 259
inspector 51, 76
Done 77
Done All 77
Flash Object 77
Hide Inherited Slots 76
Hide Internal Slots 76
Hide Parts 77
Inspect Object Named... 77
Interactors 77
Manual Refresh 77
Show Instances 77
installation
PC 18
Unix 22
instances 53
inter.h 161
interactors 68
inter-process-communication 126
Is_Instance_Of method 91
Is_Part_Of 94 .
Is_Slot_Inherited 91
Is_Slot_Inherited method 103
Is_Unique (for wrapper data) method 109
Is_Unique method 105
Is_Zero method 109
item prototype 149
items 149
Iterators 102

join style 142



Page 314 Index

K
KR 81

L

Last (for lists) method 100
Last (on iterators) method 103
layout 146

LD (Makefile variable) 26
leaf elements 128

Length (on lists) method 102
LIBS (Makefile variable) 26
License (for using Amulet) 16
line 129

line style 138

line styles 127

Lists 100

M

mailing list 16

main event loop 126

Main_Loop (in Gem) 255

Make_Empty (on lists) method 102

Make_Unique
method for wrapper definition 107
method for wrappers 105
parameter for wrappers 105

maps 149

Member (on Lists) method 102

Menu Bar 224

MET- (modifier) 166

Meta (modifier) 166

Method types 88

Methods (in slots of objects) 88

Minimum Sizes 176, 179

Modal Windows 191

Mouse buttons 165

Multiple Clicks 166

Multiple Windows 189

N

Named Parts 93

Narrow

for Am_Drawonable 247
NEED_BOOL (compiler switch) 25
NEED_MEMMOVE (compiler switch) 26
NEED_STRING (compiler switch) 26
Next

method for iterators 102

method for lists 100
Note_Changed method 105
Note_Input method 113
Note_Output method 113
Note_Reference method 106
NULL 87

O

Object names 91

Objects 82

objects 48

objects.h (include file) 82
objects_advanced.h (include file) 82
OP (Makefile variable) 26
opal 123

opal_advanced.h 253
Operation (of Interactors) 163
ORE 81

oval 130

owner 124

part 124
Parts 92

not inherited 93
pathnames 153
PC

compiling Amulet 20, 29
PC filenames 22
polygon 132
Pop_Clip 250
Pop-up windows 191
precompiled headers 33
Prev (for lists) method 100
Primary slot 111
Print_Name method 91, 106
Print_Name_And_Data method 114



Index Page 315

Priority Levels 188

Process Immediate_Event 255
Process_Event 255
Prototype-Instance 48, 82
prototypes 54

Public Domain 16

Push_Clip 250

R

rank 149

rectangle 129

Ref Count method 106

Release method 106

Remove_ From_Owner method 94
Remove_Part 94, 146
Remove_Slot method 91
reordering objects 151

Repeat (earlier command) 200
roundtangle 130

Rubine 184

Running Where (for Interactors) 190-

S

sample programs, see demos
scrollbars 226
Selecting Graphics 233
selection handles 233
Selective Undo 200
self 95
Set 48, 82
Set (on Lists) method 102
Set_Clip 250
Set_Cursor 248
Set_Default_Inherit Rule method 114
Set_Enter Leave 254
Set_Input_Dispatch_Functions 253
Set_Multi_Window 254
Set_Single_Constraint_Mode 115
Set_Want_Move 254
SHFT 165
Shift (modifier) 165
Single_Constraint_Mode 115
Slot

inheritance 114

Slot Keys 48

Slot keys 83

Slots 82

slots 48

Snapping 176

sockets 126

space demo 31

standard_slots.h (include file) 82
Start (for lists) method 100
Start (on iterators) method 102
Start where (for Interactors) 168
Starting a widget 241

Starting an Interactor 190

State Machine (for Interactors) 163
stipples 140, 143

Stopping a widget 241

Stopping an Interactor 190
Strings 86

strings 135

style 138

SV 95,112

T

Tab (to next Am_Text_Input_Widget) 232

text 135
Text editing keys 181
text functions 136
Text Input Widget 231
text_fns.h 180
Text_Inspect method 91
Thick_Line 139
thickness 141
Tracing Interactors 77, 204
Translate_Coordinates 249
Translate_From_Virtual Source 249
translating coordinates 153
Tutorial

tutorial demo 30
Type_ID method 87
Typename_ID method 109
Types

of slots 84
types 49
types.h (include file) 82



Page 316 Index

U

Undo 198
Undo (of Widgets) 212
Undo (Selective) 200
Undo Dialog Box 202
undo_dialog.h 202
Unix

compiling Amulet 24

\Y

Valid
for Am_Value 89
method for wrappers 87

Value 89

value 84

Value of widgets 211

Value types 84

value_list.h 82, 100

vertical layout 147

visible 127

Visual C++
.mak files 19, 28
.ndp files 19, 28
compatability 15
compiling Amulet 20, 29
configuration 19

W

Web constraints 110

Webs
create procedure 112
initialization procedure 112
installing into a slot 113
validation procedure 111

widgets 74

widgets.h 211

widgets_advanced.h 211

Window 156

Window (as Interactor feedback) 189

windows 154

Wrappers 87

Wrappers, destructive modification 104

Wrappers, writing of 106

XBM 138
XLIB Pathnames 27

X



