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A view is a partial specification of a program, consisting of a state space and a set of
operations. A full specification is obtained by composing several views, linking them
through their states (by asserting invariants across views) and through their opera-
tions (by defining external operations as combinations of operations from different
views).

By encouraging multiple representations of the program’s state, view structuring
lends clarity and terseness to the specification of operations. And by separating differ-
ent aspects of functionality, it brings modularity at the grossest level of organization,
so that specifications can accommodate change more gracefully.

View structuring in Z is demonstrated with a few small examples. Both the features
of Z that lend themselves to view structuring, and those that are a hindrance, are dis-
cussed.
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| Introduction

The structure of most published Z specifications follows, quite closely, the structure
of an implementation. At the lowest level, of course, the structures diverge, and predi-
cates over sets replace loops, pointers and so on. But the gross organization often re-
tains the flavour of a program, with global variables brought into a common area and
operations packaged into modules. Even procedure call has its analogue — in promo-
tion, a technique in which the local state of a schema is bound to a component of the
global state, like the binding of formals to actuals.

Conjunction is the lynchpin of implicit specification, and brings its most significant
benefit: separation of concerns. While the code of an operation must exhibit several
properties at once (obeying the Shanley principle of traditional engineering), its speci-
fication may separate them. A line justification algorithm must find hyphenation
points and distribute spaces to optimize layout, but its specification need only say that
lines have fixed length, and hyphens are inserted according to the dictionary, and riv-
ers of white space are absent. The advantages of this separation are clarity, terseness
and modularity. The main disadvantage — the dark side of conjunction - is the risk of
overconstraint: there may be no layout of the text that meets all the requirements. But
in the early stages of development, the risk is worth taking (and can be alleviated to
some degree by extra vigilance, in Z by calculating preconditions and in Larch and
VDM by checking implementability).

Implicit specification, then, is a powerful technique commonly exploited at the
level of operations but rarely at higher levels. This paper illustrates a structuring style
in which implicit specification plays a role at the grossest level. The program is speci-
fied as the composition of several views. Like a module, a view defines a state and
some operations. But views are composed more freely than modules: an operation
may appear in more than one view, and the operations of the program as a whole may
be formed by various combinations of view operations.

Views decouple the aspects of a program’s functionality, so that each can be con-
structed (and embellished) independently. A specification of a word processor, for in-
stance, might separate text-oriented functions, such as search/replace and checking
spelling, from typographic functions, such as justification. Each view has its own rep-
resentation of the state space, so the text-oriented functions might be defined over a
string of alphabetic characters, while the typographic functions might call for a more
elaborate state with soft-hyphens, ligatures, kerning, etc. Nasty questions about inter-
action between aspects (what happens if you replace a word that straddles a soft line
break? when do letter pairs become ligatures?) can be postponed until the views are
composed, and are more easily resolved than if the aspects were intertwined from the
start.

View structuring is evident, to a greater or lesser extent, in many published Z speci-
fications. Redundant state components are often declared purely to ease the definition
of certain operations. Multiple representations have been used on a larger scale too,
as in Sufrin’s editor specification [Suf82], which relates the appearance of a text



buffer on the screen (given as a sequence of lines) to its internal representation (a se-
quence of characters).

In other languages, the kind of redundancy and pervasive use of invariants com-
mon to Z specifications is not encouraged and view structuring is thus rarely seen. In
VDM [Jon90], invariants are associated with types rather than states, and as in Larch
[GHW8S5], invariants on states are treated as proof obligations and are not part of the
specification proper.

This paper contains no radical novelties. Its intent is to articulate, by means of
small illustrations in standard Z [Spi92], a style of specification based on views. It also
attempts to explain why Z is especially well suited to view structuring, pointing to
features that have not been stressed in recent comparisons [Hay92, HJN93, Hal93],
and also to note some deficiencies of Z that make view structuring less natural than it

might otherwise be.

2  Why Views?

Views respond to a simple dilemma. The first step in writing a conventional model-
based specification is to define the state space. How the states are represented largely
determines how easy it is to define the operations, so finding a good representation
can be hard. Sometimes no single representation does the trick; some operations call
for one, and some another.

Take cursor motion in an editor buffer, for example. A nice representation [Suf§2]
of a buffer is two sequences of characters, one for the text preceding the cursor and
the other for the text following it: :

__File
left, right: seq Char

Moving the cursor to the left transfers a character from left to right:

__csrLeft
A File

3c: Char « left = left’ ~{c) ~right' = {(c) ~ right

and inserting a character extends the sequence on the left:

__insertChar
A File
c: Char

left' = left ~{c) A right' = right

Now consider moving the cursor up one line. Thinking that this is equivalent to a
series of leftward motions, we might look for an appropriate suffix of left to amputate



and append as a prefix to right. But this suffix is not easy to define. If the text is
wrapped automatically, so that soft line breaks are inserted in the course of typing, the
size of this suffix cannot be determined without knowing the position of the last line
break in left, which in turn depends on the placement of word separators in left’s
entirety!

A better state representation for this operation is a sequence of lines, where each
line is itself a character sequence of some maximum length that ends in a carriage re-
turn or space and has no carriage returns anywhere else:

— Grid
lines: seq seq Char
x9N,

y € dom lines A x e dom lines(y)
V| € ran lines+ #1 =< max A last(l) € {spc, cr} A cre front(])

The cursor is now represented as a pair of positive integers that index the character
immediately following it. Moving the cursor up is now easy to define:

—_csrUp
A Grid

y'=y-1
x' = min {x, #lines(y ")}
lines' = lines

as are other line-based operations that are tricky to define on the first representation,
such as deleting a line:

__delLine
A Grid

lines' = (1.y—1) lines ~ (y+1 .. #lines) < lines
x'=1Ay'=y

This representation, however, is no good for the previous operations. The behaviour
of insertChar depends on what character is inserted (since carriage returns break
lines) and the length of the line (to preserve the bound). The specification of back-
wards deletion would likewise involve a clumsy splitting into cases (to handle the start
of the line).

The solution to this dilemma is to divide the specification into views. Each view can
have a different state representation, and an operation can be specified in one or more
views. Here the character sequence operations fill one view (File) and the line opera-
tions another (Grid). An invariant between the states of the two views ensures that
they match as expected. The views must agree on the textual content both of the en-
tire buffer, and of the portion preceding the cursor:



__Editor
File
Grid

left ~ right = ~/lines
left = (~/(1 ..y—=1) <lines) ~ (1 .. x—1) < lines(y)

The operations previously defined must now be extended to act on the combined
state of the two views:

Editor_insertChar = [AEditor | insertChar]

Editor csrLeft = [AEditor | csrLeft]

Editor_csrUp = [AEditor | csrUp]

Editor_delLine = [AEditor | delLine]

Superficially this resembles the standard composition of two modules. But there is a
crucial difference. There are no frame conditions that hold the state of one view in-
variant when an operation from the other is executed; on the contrary, almost any
change to one will affect the other.

Figure 1 brings the specification fragments together, prefixing the names of the
operations to show which view they belong to. The reader who doubts the benefit of
two representations might try to recast an operation from one view in the representa-
tion of the other. A more substantial benefit than ease of expression, however, is the
modularity views provide. If we consider some natural extensions to our specifica-
tion, we will find that most fit neatly in a single view.

When the cursor is moved up or down it may jump to the left if otherwise it would
land beyond the line. In some editors the cursor remembers its previous position, and
will move back to the right again when taken to a longer line. This is a desirable fea-
ture, since it results in more natural behaviour (moving up then immediately down,
for instance, has no effect). How might we add it to our specification? The feature is
about lines, so the first place to look is the Grid view. The state would be extended
with the cursor’s “memory”, and the ¢srUp and csrDown operations amended ac-
cordingly. Left and right movements of the cursor must reset the memory, in addition
to having their normal effect. But this does not imply a change to csrLeft and csrRight
in the File view. Instead local specifications of the two operations would be added to
the Grid view. The aspect of functionality to do with cursor memory is thus confined
within the appropriate view; its effect on the overall behaviour would be obtained by
defining the external csrLeft and csrRight operations as the conjunction of their par-
tial specifications in the two views.

Even drastic changes can sometimes be confined within a view. To change from a
fixed-width character display to a bit-mapped screen with proportional spacing
would need a new Grid view, but the File view would remain unscathed. Major en-
hancements willl usually require a2 new view, however. A Word view for specifying
spelling checks might represent the buffer as a sequence of words, abstracting away



Char ==spc|crlalb] ..
Line == seq Char
max: N,

File
Peft, right: seq Char

— File_csrLeft
A File

de: Chare left = left' ~{c} ~ right' = {(c) ~ right

__ File_insertChar
A File
c: Char

left’ = left ~{c) A right’ = right

— Grid
lines: seq Line
x9N,

y € dom lines A x € dom lines(y)
V| € ran lines» #1 < max A last (I) € {spc, cr} ~ cre front(l)

__ Grid_csrUp
A Grid

y'=y-1

x' = min {x, # lines(y ")}
lines’ = lines

|

— Grid_delLine
A Grid

lines' = (1 ..y—1) lines ~ (y+1 .. #lines) < lines
x'=1 Ay’ =y

__ Editor
File
Grid

left ~ right = ~/lines
left = (~/(1..y—1) <llines) ~ (1..x—1) <lines(y)

Editor_insertChar = [AEditor | File_insertChar]
Editor_csrLeft = [AEditor | File_csrLeft]
Editor_csrUp = [AEditor | Grid_csrUp]
Editor_delLine = [AEditor | Grid_delLine]

Figure 1: An outline of an editor specification in two views



distinctions between separators, and joining syllables separated by soft-hyphens. An
Outline view might structure the buffer as a sequence of sections, or perhaps as a tree.
Some extensions will require an elaboration of the invariant relating the views.
Strengthening the Editor schema with the addition of the formula
Vis: seq Line « left ~ right = ~/Is = #Is = # lines
for example, specifies an (unrealistically demanding) auto-wrapping policy: that the
division into lines be the shortest possible.

3 Reasoning about Views

Separation into views can help not only in the construction of a specification but also
in its analysis. So long as views are combined by conjunction, a safety property in-
ferred from a single view will hold for the entire specification. From the Grid_delLine
schema (Figure 1), for example, we can extract the precondition

y < #lines
so deleting the last line of the buffer is not allowed.

Sometimes we will want to reason about several operations in a single view, and it
will be inconvenient unless all the operations are defined there. For example, we may
want to show that any invocation of csrUp is equivalent to a sequence of csrLeft’s.
Rather than recasting one operation in the other view — which we avoided for good
reason when constructing the specification — we can include a redundant specification
that is only partial. Adding

__File csrUp
A File

Al: seq Char « left = left' ~1 A right' =1 ~right

to the File view, for example, allows us to infer the required relationship between
csrUp and csrleft, even though it gives only the barest outline of the operation’s
behaviour: that the text is unchanged and the cursor moves backwards. When the
views are composed, this schema will not appear in the definition of the system. In-
stead, we would record a proof obligation:

Editor csrUp & File csrUp.

So although the reasoning cannot be confined to a single view, we can at least factor it
into two steps, minimizing the involvement of the inter-view invariant.



4  Joining Views by their Operations

In the editor specification, the two views are joined by an invariant relating their
states, and each operation of the program is an operation on one view or the other,
but never both. Another way to join views is to synchronize their operations; in this
case, the states of the views need not be related explicitly at all.

A telephone can be described as a simple machine whose state is one of

Status ::= ringing | idle | waiting | connected | dialtone | busytone | ringtone
Our first view associates states with phones by mapping directory numbers (some ar-
bitrary set Id) to Status:

Phones
F)S: Id - Status

Initiating a phone call means lifting the handset when the phone is idle, and it leads to
a dialtone:

—_ Initiate
A Phones
i Id

psi) = idle A ps'(s) = dialtone

In contrast, lifting the handset when the phone is ringing is an instance of

Answer
FA Phones
i Id

ps(i) = ringing A ps'(i) = connected

The separation of the same action (lifting the handset) into two different classes of
operation is determined locally by the state of the phone when the action is per-
formed; later we shall see how this kind of classification plays a pivotal role in the
view composition.

Both operations concern a phone i, and determine the change in value of ps(z), that
phone’s state. Neither constrains the state of other phones at all. By defining the
schema

__ Frame
APhones

cPld
Vi : (dom phones \ {c}) - ps(i) = ps'(i)




[1d]

Status ::= ringing | idle | waiting | connected | dialtone | busytone | ringtone
Phones = [ps: Id -+ Status]

Phones_Initiate = [APhones; i: Id | ps(s) = idle A ps'() = dialtone]
Phones_Ring = [APhones; i: Id | ps(i) = idle A ps'(i) = ringing]
Phones_Answer =[APhones; i: Id | ps(i) = ringing A ps'(f) = connected]
Phones_Dial = [APhones; i, to: Id | ps(i) = dialtone A ps'(i) = waiting]
Phones_GetRing = [APhones; i: Id | ps(i) = waiting A ps'(i) = ringtone]
Phones_GetBusy = [APhones; i: Id | ps(i) = waiting A ps'(s) = busytone]
Phones_GetConn = [APhones; i: Id | ps(i) = ringtone A ps'(i) = connected]
Phones_LoseConn = [APhones; i: 1d | ps(i) = connected A ps'(i) = dialtone]
Phones_Hangup = [APhones; i: Id | ps(i) = connected A ps'(i) = idle]
Phones_Replace = [APhones; i: 1d |

ps() € {dialtone, busytone, ringtone, waiting} A ps'(f) = idle]

— Phones_Frame
APhones
c:PId

Vi : (dom phones \ {c}) « ps(i) = ps'(i)

Figure 2: The Phones view

saying that all phones except those in the set ¢ maintain their state, we can form more
restrictive operations. The conjunction

Initiate A (3c: P Id | ¢ = {i} » Frame)
for example, defines the action in which phone ¢ initiates a connection and all other
phones are unchanged.

The operations on a phone constitute one view of the system (Fig. 2). Note that
dialling (naively modelled as an atomic operation) takes an argument — the number of
the phone being called — but does not use it in the schema. The response to dialling is
cither GetBusy or GetRing, but which of the two occurs is not specified in this view.

‘The switch that handles connections between phones is specified in a second view
(Fig. 3). Its state is a set of requested connections (a partial function, since a phone can
only dial one number at a time) and a set of active connections (an injection, since a
phone can only receive a call from one phone at a time):

10



__ Switch
reqconns: Id -+ Id
conns: Id >+~ Id

conns C reqconns
dowm conns N ran conns = &

The schema’s predicates say that an active connection is considered requested until it
terminates [Mor93], and that no phone can be both a calling and a called party at
once.

In this view, the dialling of a number by a phone is an instance of the Request opera-
tion, which takes as arguments the number of the phone making the call (from) and
the number dialled (to). The switch executes a Connect when a request can be fulfilled
(the called phone is not busy), or a Reject otherwise. Terminate ends the call.

The system state is obtained, as before, by combining the states of the two views:

Net = Phones A Switch

This time, however, there is no inter-view invariant: the only connection between the
views will be through their operations. System operations are now obtained not only
by extending operations from the views over the system state, but by combining op-
erations from different views. For example,

Net_DialReq=ANet A (Ic:Id | ¢ = {from} « Frame)

~ Switch_Request A Phones_Dial[from /1]

says that the DialReq event of the system consists of a Request operation executed by
the switch and a Dial operation executed at a particular phone. Z’s syntax unfortu-
nately hides the arguments of the operations, so the renaming calls for explanation.
Switch_Request has two arguments, from and to, representing the number of the
phone making the request and the number it wants to connect to. Phones Dial has
two arguments likewise, ¢ for the number of the phone executing the operation, and
to for the number dialled. The renaming links the views by making the number of the
requesting phone in the switch the number. of the phone at which the dial operation
occurs. Finally, the frame condition says that only the phone with number from may
suffer a state change.

Some system operations involve state changes at more than one phone. When one
phone is answered, another becomes connected (and the switch registers the connec-
tion):

Net_Conn =

ANet A (3c: Id | ¢ = {from, to} « Frame)
ASwitch _Connect A Phones_Answer(to/i] A Phones_GetConn[from/i]
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__ Switch
reqgconns: Id -~ Id
conns:Id »~ Id

-conns C reqconns
dom conns N ran conns = &

— Switch_Request
ASwitch
from, to: Id

reqconns' = reqconns U {from — to}
conns' = conns

— Switch_Try
ASwitch
from, to: Id

from — to € reqconns A to ¢ (dom conns U ran conns)
conns' = conns A reqconns’ = reqconns

__Switch_Connect
ASwitch
from, to: Id

from v to € regconns A to ¢ (dom conns U ran conns)
conns' = conns U {from — to}
reqconns’ = reqconns

__ Switch_Reject
ASwitch
from, to: Id

from — to € reqconns A to € (dom conns U ran conns)
reqconns’' = reqconns \ {from — to}

__ Switch_Terminate
ASwitch
from, to: Id

from — to € conns
conns' = conns \ {from — to}
reqconns’ = reqconns \ {from — to}

Figure 3: The Switch view
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Net = Phones ~ Switch

Net Reg =
ANet A (Fc:Id | c = {from} * Frame)
A Switch_Request A Phones Dial[from/i]
Net_Try =
ANet A (3c: Id | ¢ = {from, to} » Frame)
ASwitch_Try A Phones_Ring[to/i] A Phones_GetRing[from/i]

Net Conn =
ANet A (3c: Id | ¢ = {from, to} « Frame)
ASwitch_Connect A Phones Answer{to/i] A Phones_GetConn[from/i]

Net_Reject = ANet A (3c: Id | ¢ = {from} « Frame)
A Switch_Reject A Phones_GetBusy[from /1]

Net_End =
ANet A (Jc: Id| ¢ = {from, to} « Frame) A Switch_Terminate
A (Phones_Hangup[from/i] A Phones_LoseConn[to /1))

Net_Initiate = A Net A (3c: Id | ¢ = {i} » Frame) » Phones_Initiate
Net_Replace = A Net A (3c:Id | ¢ = {i} » Frame) A Phones Replace

Figure 4: Composition of Phones view and Switch view

A call ends when the caller hangs up, the called party loses the connection and the
switch terminates the call:

Net_End =

ANet A (3c: Id| ¢ = {from, to} » Frame)

A Switch_Terminate A (Phones_Hangup[from/i]

A Phones LoseConnlto /7))
This is how British phones work; in the US, either party can terminate the call:
Net End=

ANet A (3c: I1d | ¢ = {from, to} « Frame)

A Switch_Terminate

A~ ((Phones Hangup[from/i] A Phones LoseConn[to/i])

v (Phones_Hangup[to/i] n Phones_LoseConn|from/i]))

13



5 More Complex Specifications

The editor and phone specifications exemplify two kinds of view composition. For
the editor, the views were connected by an invariant relating their states; for the
phone, the views were connected by synchronizing their operations, the states being
related only indirectly.

Usually both forms of composition are needed. Suppose our phone switch offers
screening list features. “Selective call rejection”, for example, allows a subscriber to
enter a list of phone numbers from which calls should always be rejected. In the
Phones view , it is natural to represent screening lists as a function mapping valid sub-
scriber identifier to a set of identifiers to be rejected:

enemies: Id + P Id
and to have a local operation to add a number such as:

—_Phones_Add
APhones
i, e:Id

enemies'(i) = enemies(i) U {e}

psti) = dialtone A ps'(i) = ps(i)

In the Switch view, on the other hand, the screening list is more naturally represented
as a relation between subscribers

_hates :1Id <> Id
Now a call can be rejected even if the number being called is not busy, so we weaken
the precondition of Switch Reject to :

(from, to) € reqconns A (to € (dom conns U ran conns) v to hates from)
and strengthen that of Connect by conjoining
... A = (t0 hates from)
Finally, the two representations of the screening lists are reconciled with an invariant:
PhoneSystem

Phones
Switch

Vi:dom ps . ps(i).enemies = hates ({i})

Conversely, an editor specification is likely to connect operations as well as states.
Adding cursor memory (discussed in Section 2) required that the csrLeft and csrRight
operations be represented in both File and Grid views. The event classification illus-
trated in the telephone example might be useful too. Scrolling, for example, might be
activated by a mouse click, which is interpreted as either pageUp or pageDown, de-
pending on where the mouse is clicked on a scroll bar.
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This technique also eases the treatment of exceptions. An operation might be de-
fined in several views even though the normal and erroneous cases are only distin-
guishable in one. Following standard Z practice, the operation would be split into
two schemas, but these would not be combined within a view. Instead, the classifica-
tion is propagated from one view (V) to the others (W;) by conjunction, and only then
are the normal and erroneous cases combined:

op = (V_opNormal A W1_opNormal A...) v (V_opError AW1_opError  ...)

6 Some Hints For View Structuring

To claim any kind of methodical procedure would be premature, but there are some
symptoms of successful (and unsuccessful) view structuring that are worth pointing
out.

A good view-structured specification should have simple and coherent views. Not
only should each view’s state space be simple; the operations themselves should be
straightforward, without elaborate division into cases.

A strong (and maybe complicated) inter-view invariant is often a sign of an
approriate separation; if the invariant is trivial, view structuring is unlikely to bring
much benefit. Within a view, one should expect less complicated invariants than in a
typical specification, and, in particular, a lack of projection functions, whose presence
suggests an opportunity for more fine-grained view structuring.

A view should be partial, excluding unnecessary details of behaviour that will be
resolved in other views, but it should not omit details for the sake of minimizing re-
dundancy between views. View-structured specifications inevitably contain redun-
dancies. In the phone specification, for example, the state of a telephone in the
Phones view is enough to tell whether it is busy, but it would make no sense to rely on
this and eliminate the precondition of the Reject operation in the Switch view.

A view should not export schemas that do not correspond to operations. One
might be tempted, for example, to classify events in one view by conjoining to its
operations preconditions specified in another view. This risks turning a view into an
incoherent collection of predicates. The phone specification did export a framing
schema, but this is hard to avoid in Z (see Section 8.2).

Ultimately, the most reliable indication of success is a clear partitioning of function-
ality: that, for any aspect of the function, it is clear to which view (if any) it belongs.
How to achieve reliably a successful decomposition into views is the subject of future
research; some tentative steps based on Michael Jackson’s notion of “problem
frames” [Jac94] are reported in [JJ95].
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7 WhyZ?

The choice of Z for our examples was not incidental; it has features that make it espe-
cially well suited to view structuring. The fundamental feature, of course, is schema
composition. An operation can be formed from other operations by combining them
with the standard logical connectives, and, likewise, a state space can be built from a
collection of components and invariants. Schema composition is more than just al-
lowing the use of logical connectives, however: it relies on a number of more subtle
features in the language design.

7.1 Implicit Specification

An explicit specification specifies a state transition with assignments that construct a
new value of the state in terms of its old value. An implicit specification merely states
a relationship that must hold between new and old states. As a result, implicit specifi-
cations can rarely be executed. The compensating benefits usually cited are that speci-
fications can be more concise and are less likely to embody premature implementa-
tion choices.

For our purposes, two different benefits are more vital. First, very partial specifica-
tions are possible, so we can specify a view that barely constrains a state component at
all. (Often the cost of writing anything approaching a full specification is prohibitive
anyway, and we want instead to model the intended behaviour of the system in only
just enough detail to allow useful analysis. In that case, a single, very partial view may
suffice.) Second, conjunction is available, so specifications can be composed: an op-
eration can be specified to satisfy some constraints in one view and some different
constraints in another. Implicit specification, then, is the fundamental basis of view
structuring.

Even amongst the languages that encourage implicit specification, Z’s pervasive
use of invariants is unusual. A typical Z specification introduces the abstract state
space with some strong invariants, and then gives far weaker specifications of opera-
tions than one might expect, leaving the invariants to work magic and fill in the de-
tails.

In Larch [GHW85], on the other hand, invariants play a secondary role, as a proof
obligation rather than a specification mechanism. VDM [Jon90] likewise treats state
invariants as proof obligations, although it allows type invariants to be specified
(which are unnecessary in Larch because types are defined algebraically).

Since these languages allow conjunction in the pre- and post-conditions of opera-
tions, the Z style can always be imitated by conjoining invariants throughout. Usually,
however, the operations are specified more constructively than in Z, with the speci-
fier doing more work (and arguably, therefore, the reader doing less). Without inher-
ited invariants and conjunction of operations, however, view structuring is not easily
emulated.
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7.2 Implicit Preconditions

The precondition of an operation is (roughly — more on this below) the set of states in
which it may be invoked. In Z, preconditions are not specified directly. An operation
is described by a single formula that characterizes a relation on states. The precondi-
tion characterizes the domain of this relation, and is a second formula that can be
derived syntactically (but often not easily) from the first.

For a simple operation that is not composed from other operations, it makes little
difference whether the precondition is implicit as in Z, or explicit as in Larch and
VDM. In a proof of refinement, contravariance — sanction to broaden the precondi-
tion but narrow the postcondition — makes it necessary anyway to make the precondi-
tion explicit. (If the operation is specified as pre = post, in Hoare’s style [Hoa85],
rather than pre A post, in Z style, the natural contravariance of implication allows the
precondition to remain implicit, and the refinement check reduces to impl = spec.)

In view structuring, it is essential that the precondition be implicit. When two op-
erations are conjoined, the new operation will have a precondition that is at least as
strong as the conjunction of their preconditions, but in some cases stronger. There
may be pre-states for which the two operations cannot agree on any appropriate post-
states; these must then be ruled out. Put formally, the precondition calculation does
not distribute over conjunction, so the implication in

pre (opy A opy) = pre (opy) A pre (op,)
does not apply in the other direction. This means that if pre- and postconditions were
specified separately, they could not be conjoined pairwise, but rather the precondi-
tion of the combined operation would be a complicated expression involving the pre-
and post-conditions of both operations [War93].

7.3 Explicit Frame Conditions

In most specification languages, any variable not mentioned in an operation is as-
sumed be unchanged by its execution. Consider the modification clause of Larch, for
instance. The specification of a procedure with the arguments x, y and z might say
“modifies at most x”, indicating that y and z, and certainly any global variables, are
invariant. A Z schema, in contrast, would include y' = y A 2’ = z. Any state variable
that is not explicitly constrained is free to change arbitrarily.

For view structuring, implicit frame conditions that say “and nothing else changes”
are catastrophic. When specifying a view we cannot know which other views will
later be written, or what their variables will be. Inter-view invariants ensure that
modification of the variables of one view almost always propagates to those of an-
other.

Views could benefit from a different kind of frame condition. Sometimes a view
has local variables that are not related to the variables of another view, and are thus
unconstrained by the inter-view invariant. A phone might have a volume control, for
example, that is unaffected by the operations of another phone or of the switch. To
say this, the volume control must awkwardly be brought into the scope of those op-
erations. A better solution employs a frame condition, declaring the volume to be a
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local component of the Phone view that cannot change except by execution of local
operations. This is a special case of a more general scheme developed by Borgida et al
[BMR93].

7.4 Uniform Data Representation

Z really has only two datatypes —sets and tuples — so with tuples expressed by
schema signatures, a powerset operator alone would suffice to generate all types. The
wide variety of types (total, partial, injective and surjective functions; relations, se-
quences, etc.) is a syntactic convenience, since each can be reduced to sets and tuples
with an appropriate constraint.

This makes it easy to express inter-view invariants, since no type coercions are re-
quired. Suppose, for example, a sequence in one view is to be constrained to have the
same elements as a set in another view. In a language that defines sequences and sets as
different types, each with its own algebraic theory, it would be necessary to define a
function that constructs a set from a sequence. In Z, however, a sequence of elements
of type T is a function from a prefix of the naturals to T, and the set of elements ap-
pearing in a sequence s is just ran s.

8 Why Not Z?

For the purpose of view structuring, Z has a number of deficiencies. One of these -
the interpretation of preconditions — is intolerable, but luckily, no linguistic (or argu-
ably even semantic) issues are at stake, and the problem can be overcome by a shift in
interpretation. The second — the lack of indexing — is inconvenient but can be worked
around. The third — the lack of true actions ~ makes it harder to express view structur-
ing naturally, and rules out more ambitious ways to relate views.

8.1 Preconditions as Disclaimers

In all the specification languages that grew out of work in abstract data types, the pre-
condition of an operation is a disclaimer. Should the operation be invoked in a state
not satisfying the precondition, the specification makes no promises about the subse-
quent behaviour.

Some approaches view the disclaimer as part of the operation’s behavioural speci-
fication: the operation’s semantics will then generally allow it, when invoked in a bad
state, only to return in an arbitrary state or never return at all. In other approaches,
the disclaimer is a proof obligation attached to the operation but imposed on callers.
This more accurately models the use of disclaimers in code, admitting disasters be-
yond the formal model, such as corruption of the state of another process.
(Maibaum’s deontic logic brings these approaches together, making explicit and for-
mal not only the effect of executing an operation but also the obligations of the sys-
tem as a whole to execute or not execute it [Mai93].)

Languages that grew out of Dijkstra’s guarded commands have a different notion
of precondition. In CSP, for example, the process
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a—>c—>P|lb—>d—>Q

allows only the event ¢ following the event 4. One cannot ask what happens if d is
invoked following a; it simply cannot happen. This kind of precondition is called a
guard or firing condition.

Z is an odd hybrid of the these two approaches. In the semantics, an operation
schema denotes a relation on states. One can then think of the entire specification as
a state machine in which these transition relations are overlaid, each being a set of
arcs between states labelled with the name of the operation. The precondition of an
operation is the set of states with outgoing arcs labelled with the operation’s name.
One might thus assume that Z follows the CSP approach, and that an operation can-
not occur in a state for which the precondition is false.

The standard interpretation of Z is determined, however, by its refinement rules.
These allow an implementation to widen the precondition, in line with the view of
precondition as disclaimer. (The CSP trace semantics, in contrast, effectively allows
the precondition to be narrowed.) Unfortunately, for the style of specification advo-
cated here, it is essential that preconditions be viewed as guards and not disclaimers.
There are two reasons.

First is our use of preconditions to classify events. In the telephone specification,
for example, whether lifting the phone constitutes an Answer event or an Initiate
event is determined by the state of the telephone (whether it is ringing or not). It
makes no sense to ask what happens if the user “invokes” an Answer event when the
phone is not ringing.

Second, we have specified events that are not invoked by a user but are performed
autonomously by the system. Weakening the precondition of the Reject operation of
our phone switch (Fig. 3), as sanctioned by Z refinement rules, would allow the
switch to reject a requested connection even when the number being called is not
busy!

Interpreting preconditions as guards is no great loss. An implementor of an opera-
tion will still be able to treat the precondition as a disclaimer, knowing that whatever
schedules the operation will prevent its execution in bad states. And by weakening the
specification to

guard A (disclaimer = post)

the specifier can still leave the state transition unconstrained even in cases in which
the operation can occur.

Although the refinement rules of Z do not apply, the semantics of the specification
is arguably unaltered. The notion that “anything can happen” when an operation is
invoked in a bad state does not appear in the semantics, and is more cultural than
technical, there being no way to express non-terminating behaviour or other disasters

in Z anyway.
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8.2 Lack of Indexing

In our telephone specification, it would have been more natural to model each phone
as a view it its own right. Unfortunately, this is not easily accomplished. Having de-
fined the state of a phone view as

__ Phone
s: Status

say, it is straightforward to include an indexed set of phone states in the global state

__Net
ps: Id - Phone
Switch

but combining operations proves far more tricky. The operations of the phone view
operate on a single phone, and to apply them to the new global state, they must first
be “promoted”. The definition of Net_DialReq, for example, would become
Net DialReq =
ANet A (3c:1d|c = {from} « Frame)
A Switch_Request A 3APhone » Bind A Phone_Dial[from/i]

where the promotion schema

__Bind
ANet
APhone
i:Id

psi) =sAps')) =s’

is essentially a wrapper that converts a state change on Phone to a change on Net.
This is cambersome and a bit obscure. It would be far more natural to define the
global state as a collection of Phone views and a Switch view

Net

Phoneli: Id)
Switch

and expose the arguments of the operations, writing something like

Net_DialReq(from, to) =
ANet A Switch_Request (from, to)
A Phone(from)_Dial (t0) A Vi #from « ZPhone(i)
where Phone(from) Dial(to) denotes the Dial operation of the Phone view with index
from, with its argument bound to the identifier zo. This is not legal Z, of course. In-
dexing is not allowed, and for good reason: it breaks the simple syntactic nature of Z.
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Our example illustrates, however, that its omission comes at a serious cost. The speci-
fier has to construct the indexing explicitly with functions, often resulting in a mass of
confusing hidings and renamings. The resulting temptation to expand a Z schema by
writing it out in full is a sure sign of a breakdown of modularity, in which schemas
have become little more than macros.

8.3 Lack of Actions

An operation in Z is equated with its transitions; the name of the schema has no se-
mantic significance. The definition

Net_DialReq = ... Switch_Request A Phones Dial[from/i] ...

thus says nothing more than that the transitions associated with the name
Net_DialReq are obtained by conjoining the formulae named by the symbols
Switch Request, Phones_Dial, and so on. Our intuitive reading has no basis in the
formalism: the definition does not say that a Net_DialReq event is the simultaneous
occurrence of the events Switch_Request and Phones_Dial.

This is more than a philosophical problem, because it means we must constantly be
on guard, checking that, in every assertion we write down, our intuition is supported
by the formal interpretation. Often it will not be. Suppose we want to demonstrate
that whenever the Net_DialReq event occurs, some phone performed a Phones Dial
event. We might be tempted to write something like

Net_DialReq = 3i: Id » Phones_Dial

but unfortunately, this says nothing of the sort: it claims only that every state transi-
tion matching the Net DialReq schema also matches the Phones Dial schema, and
might be true even if Net_DialReq were constructed from other events in the Phones

view.

8.4 Closed vs. Open Specification

A Z specification is “closed”: once schemas have been written, nothing more can be
said about them. The only way to extend a specification is to add new schemas that
incorporate the old ones.

View structuring seems to call for a more “open” specification model. The compo-
sition of two views might then be thought of not as the creation of a new specification
object, but rather the addition of new properties relating existing views. To say that
dialling at a phone is associated with the registering of a request at the switch, we
could then add an assertion of the form

Phones_Dial < Switch_Reguest
without a need to invent a new (and spurious) action such as Nez_DialReg.
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Combining this idea with real actions and indexing might result in a formalism
more directly suited to view structuring. Suppose we associate with each transition
Zero or more action names, and write

[4]
for the elementary logical assertion “the transition is labelled with the action name 2”.
Then the assertion

[invest(d)] = bal’ = bal + i
says that when the invest action occurs with argument 4, the balance is increased by i,
while

bal' > bal = [credit]
says that any transition in which the balance increases is to be classified as a credit
event. From these we can deduce

[invest(s)] A (¢ > 0) = [credit]
namely that all invest actions of positive amounts are credit events too.

Returning to the dialling example, we can dispense with the composite action
Net_DialReq and write

[Phone(from)_Dial(¢0)] < [Switch_Request(from, to)]
which says exactly what we want: that each occurrence of a dial action at a phone

corresponds to a request action at the switch, and vice versa. To constrain no action to
occur at any other phone at the same instant, we would add

[Phone(from) Dial(to)] = Vi:Id| i # from « EPhone(i).

9 Related Work

9.1 Views in Conventional Z Specifications

View structuring can be seen, to a greater or lesser extent, in many published Z speci-
fications. When the structure of the state variables makes the description of an opera-
tion awkward, the Z specifier will frequently add redundant variables — tied by.an in-
variant to the existing variables — and constrain them instead. For example, a specifi-
cation of a program for allocating resources to users at various times includes in its
state not only the full relation between resources, users and times, but also various
projections, such as a relation between resources and times, appropriate for describ-
ing operations, like checking availability, that are not concerned with the users
[FS93]. The same specification employs the conjunction of operations on different
state spaces.

Sufrin’s specification of a text editor [Suf82] comes closest to full view-structuring,.
He sidesteps the problem of defining the effect of editing operations on the text’s
screen appearance by specifying all the operations over a simple representation,
which is then related to the layout on the screen by an invariant. But these represen-
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tations are not views. In a view-structured specification, neither representation is pri-
mary, and the two views stand alone as specifications in their own right. In Sufrin’s
specification, the display representation has no associated operations, so the editor
provides only left and right cursor movements, for example, but not up or down.
Furthermore, displaying is regarded as an operation called show whose specification
is the invariant that would have related the two views. Nevertheless, Sufrin has views
in mind; in discussing related work he mentions the possibility of multiple represen-
tations related implicitly by invariants, each with its own operations.

Promotion [MS84], a common Z structuring technique, may also be seen as a lim-
ited kind of view structuring. A library specification might define the state of a book
with operations such as lend and return. The entire library might then be modelled as
a mapping from identifiers to books. To specify the system operation corresponding
to a lend of a book with a particular identifier, the book operation is “promoted” to
the state of the entire system. The book operations do not constitute a view, however,
since they are regarded as part of the larger system.

Most Z specifications are not view-structured in any sense. Whole and part compo-
sition dominates. Frequently, not only the structure of the specification, but also the
structure of the development itself, is hierarchical. Woodcock talks about the “onion
skins of software development”, in which a specification is developed from the inside
out, with promotion at the interfaces between the layers [Woo89].

Not all systems are easily described in this fashion. While a file system may contain
files, a telephone switch does not “contain” telephones in any sense. So telephone
operations cannot be simply promoted. Without views, however, the behaviour of a
single telephone cannot be separated from the behaviour of the switch, and the two
become intertwined. Woodcock’s telephone specification [WL88] embeds the states
of the individual phones in the global state of the telephone system, so that every ac-
tion of a subscriber becomes an action of the whole system, and the observable
behaviour at a given phone is relegated to theorems.

9.2 Views in Other Specification Languages

Property-oriented specifications often support structuring mechanisms akin to views.
In the Larch Shared Language [GHM90], the basic unit of specification is a “trait”.
Several traits can assert different properties of the same operators, and then be com-
bined into a single trait. A queue, for example, may be specified in two traits: one that
asserts basic container properties, and another expressing the FIFO ordering. A speci-
fication of a set can share the container trait, combining it instead with a trait express-
ing the notion of single occurrence of each element. Trait composition is not used to
structure operations, however; one of the main contributions of Larch has been to
isolate the basic properties of types (defined algebraically) from execution concerns
like preconditions, termination and exceptions (defined in predicate calculus in a
separate tier). The problems of representing partiality and non-determinism algebra-
ically are thus side-stepped.
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9.3 Viewpoints: Consistency and Amalgamation

The separation of a specification into multiple views has been advocated many times
before, for various applications. Currently, three British groups — at Imperial
College,the University of Bath, and the University of Kent — are investigating the no-
tion of “viewpoints”.

Their approach differs from mine in primarily two respects. First, they focus more
on the activities of checking consistency between viewpoints and amalgamating them;
this paper has been concerned instead with the structuring of the specification. Sec-
ond, they assume a structural correspondence between viewpoints, so that the rela-
tionship between them need not be specified but rather may be inferred by the use of
common names. The view structuring proposed here, in contrast, exploits complex
relationships between views to simplify the views themselves.

The viewpoints of the Imperial College group [F&92] arise from the different do-
mains of developers working together on a team. The developers of a lift system, for
instance, will include user-interface designers, mechanical engineers and real-time
experts; some will be concerned with performance, some with functionality, some
with safety, and so on. Clearly these viewpoints are so disparate that to attempt a co-
herent model would be absurd: far better that each developer work within a view-
point, with its own notations, models and tools.

Inconsistency between viewpoints during a software development is regarded, in
this approach, much like inconsistency of database records during a transaction. Al-
though it must ultimately be resolved, they will inevitably be periods during which it
should be tolerated. Instead of enforcing consistency, therefore, the relationship be-
tween viewpoints is monitored, and detected inconsistencies are reported to users.
There is no universal model into which viewpoints are translated; instead, global syn-
tactic checks between viewpoints are triggered by local changes [EN95]. Viewpoint
construction is thus a kind of cooperative work (with problems similar to the joint
editing of any document) whose distributed nature is essential.

The viewpoints of the Kent group [DBS95] also arise from the involvement of par-
ticipants with differing perspectives. The viewpoints of the Bath group [A&94], in
contrast, are proposed as a means of structuring large specifications. Despite their
different motivations (the latter being closer to mine), both groups have investigated
the use of Z for specifying viewpoints and see “amalgamation” (or “unification”) as
the primary issue. They argue that the division into viewpoints must eventually be
abandoned, to suit programmers, for example, who want a single specification of an
operation.

Each view is treated as a partial specification. The problem of amalgamation is to
construct a complete specification that is a refinement of the individual views. Any
implementation of the complete specification will then satisfy each view specification
independently. Unfortunately, because of the contravariance inherent in operation
specifications, conjunction does not preserve refinement in Z; a refinement of

Op1 A Opy
is not generally a refinement of both op; and op,. The complete specification cannot
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be obtained just by conjoining the operations of the views. The Bath group loosen the
notion of refinement, and suggest that different combination mechanisms may be
suitable in different cases. The Kent group stick to the conventional notion of refine-
ment in Z, and show to combine operations to give the weakest complete specifica-
tion that is a refinement of the individual views.

A fundamental assumption of both groups is that there is a simple structural corre-
spondence between the views. Operations (and similarly state components) in differ-
ent views that share the same name are matched. My view structuring makes no such
assumptions, and relies on the specifier to make explicit the relationship between
views. It seems that the greatest benefit of view structuring comes when this relation-
ship is complicated. The inter-view invariant of the editor (Fig. 1) allowed radically
different representations for the two views; the complex composition of operations
in the phone switch (Fig. 4) allowed us to associate the ringing of one phone, for ex-
ample, with a ringtone in another.

Relationships between views can sometimes be eliminated by adding extra views
that incorporate them. Complex composition of operations cannot be handled in this
way, however, without using the operations of one view inside another, which vio-
lates the separation of views.

9.4 Descriptions

Zave and Jackson propose a structuring mechanism for specifications whose units
they call “descriptions” [Z]J93]. They show how a number of specification notations
can be translated into a minimal language based on first-order logic, in an assertional
style similar to that proposed in Section 7.3. Descriptions are then combined simply
by conjunction.

The value of multiple paradigms is indisputable; the phone view of Figure 2, for
example, would have been far more naturally expressed in a finite transition diagram.
But there is price to pay for using more than one notation. Reasoning about the com-
position, which is already difficult in view structuring, becomes even harder. More-
over, the various notations must sometimes be given unconventional interpretations
to allow them to be integrated smoothly. On the other hand, by allowing many nota-
tions it becomes possible to reduce each to its bare essentials, with a simpler and more
transparent semantics than would suffice for a single paradigm approach.

Interpreting an action (such as lifting the handset) as one of several events (answer-
ing or initiating a call) depending on context (whether the phone is ringing) is funda-
mental to view structuring, especially when the context of one view disambiguates the
events of another. This idea originates in Zave’s work on telephone specifications
[Zav85] and has been developed into the notion of “event classification” in her
colaboration with Jackson [Z]94]. Full event classification requires true actions (see
Section 8.3), and can only be weakly imitated in Z by forming composite operations
(as in Figure 4).
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9.5 Views in Programming and Environments

Nord treats a similar problem at the programming level [Nor92]. He argues (using
the ubiquitous editor example) that implementing a type can be much easier if mul-
tiple representations are allowed. His scheme has the programmer code each opera-
tion in the most convenient representation, and assert invariants between the diverse
representations. A single representation is obtained from these multiple representa-
tions by first forming their cross-product, and then applying semi-automatic program
transformation techniques to derive code to maintain the relationship between com-
ponents incrementally.

Nord’s focus on programs rather than specifications means that his composition
mechanism is more limited, so he cannot allow, for instance, an operation that ap-
pears in two views. Nevertheless, these ideas raise an interesting prospect of imple-
menting view-structured specifications without amalgamating them first.

Multiple views have been also proposed for the state shared by the tools of a pro-
gramming environment. In Garlan’s scheme [Gar87] for example, the relationships
between representations are inferred from their type structure, and update algorithms
are synthesized automatically. A set in one view and a sequence in another, for ex-
ample, would be assumed to contain the same elements if they had the same name. (In
this work’s extension in the Janus project [H888], new mappings could be specified
by the environment’s developer, but were still selected on the basis of type.)

10 Summary

Structuring a specification in views has many benefits. Separating different aspects of
the function of a system into different views allows each to be expressed in its most
natural representation. Since a view is a partial specification of the entire system, it
can be evaluated directly against the perceived requirements, and can be constructed
and analyzed independently of other views. The complexities of interaction between
different functions may be deferred until a later stage, when the views are connected.
A view-structured specification is easier to maintain because a change to only one as-
pect of functionality can often be confined within a view.

Z is especially well-suited to view structuring. The vital features are: implicit speci-
fication, implicit preconditions, explicit frame conditions and uniform data represen-
tation. Other features of Z — the lack of true actions and indexing, and the interpre-
tation of preconditions as disclaimers — frustrate view structuring but can often be
overcome, albeit inelegantly.

Despite its benefits, view-structuring has yet to be fully exploited. Although evident
in many Z specifications, it has not been systematically applied. The examples in this
paper have attempted to demonstrate that views offer a separation of concerns that is
widely applicable, and that view structuring could profitably be added to the
specifier’s repertoire.
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