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Abstract

Dirichlet process mixture models provide a flexible Bayesian framework for density estimation;
however they are inadequate with respect to modeling sequential data due to the full exchange-
ability assumption they employ. In this paper we present the temporal Dirichlet process mixture
model (TDPM) as a framework for modeling complex longitudinal data. In a TDPM, the data
is divided into epochs; all data points inside the same epoch are fully exchangeable, whereas
the temporal order is maintained across epochs. Moreover, The number of mixture components
in each epoch is unbounded: the components can retain, die out or emerge over time, and the
actual parameterization of each component can also evolve over time in a Markovian fashion.
We give three equivalent construction of this process as well as a Gibbs sampling algorithm
to carry out posterior inference. We demonstrate our model by using it to build an infinite dy-
namic mixture of Gaussian factors, and a simple non-parametric dynamic topic model applied
to the NIPS12 collection.
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1 Introduction
Dirichlet process mixture models provide a flexible Bayesian framework for estimating a dis-
tribution as an infinite mixture of simpler distributions that could identify latent classes in the
data [1]. However the full exchangeability assumption they employ makes them an unap-
pealing choice for modeling longitudinal data such as text, audio and video streams that can
arrive or accumulate as epochs, where data points inside the same epoch can be assumed to be
fully exchangeable, whereas across the epochs both the structure (i.e., the number of mixture
components) and the parameterizations of the data distributions can evolve and therefore unex-
changeable. In this paper, we present the temporal Dirichlet process mixture model (TDPM)
as a framework for modeling these complex longitudinal data, in which the number of mixture
components at each time point is unbounded; the components themselves can retain, die out
or emerge over time; and the actual parameterization of each component can also evolve over
time in a Markovian fashion. In the context of text-stream model, each component can thus
be considered as a common themes or latent class that spans consecutive time points. For in-
stance, when modeling the temporal stream of news articles on a, say, weekly basis, moving
from week to week, some old themes could fade out (e.g., the mid-term election is now over
in US), while new topics could appear over time (e.g., the presidential debate is currently tak-
ing place). Moreover, the specific content of the lasting themes could also change over time
(e.g, the war in Iraq is developing with some slight shift of focus). The rest of this paper is
organized as follows. First in section 2 we review the Dirichlet process mixture model, and use
it to motivate the TDPM model which we introduce in section 3. Section 3 also gives three
different, and equivalent, constructions for the TDPM model: via the recurrent Chinese restau-
rant process (section 3.1), as the infinite limit of a finite dynamic mixture model (section 3.2),
and finally via a temporally dependent random measures (section 3.3). In section 4 we give a
Gibbs sampling algorithm for posterior inference. Section 5 extends the construction to higher
order dependencies. In Section 6 we use the TDPM to built 1 an infinite dynamic mixture of
Gaussian factors (i.e., an infinite mixture Kalman filters of different life-spans) and illustrate
it on simulated data. Then in section 7, we give a simple non-parametric topic model on top
of the TDPM and use it to analyze the NIPS12 collection. In section 8, we discuss relation to
related work and in Section 9 we conclude and discuss possible future problems.

2 The Dirichlet Process Mixture Model
In this section we introduce the basic and well-known DPM model via three constructions.
First, as a distribution over distributions, then via the intuitive Chinese restaurant process
(CRP), and finally as a the limit of a finite mixture model. All of these views are equiva-
lent, however, each one provides a different view of the same process, and some of them might
be easier to follow, especially the CRP metaphor.

Technically, the Dirichlet process (DP) is a distribution over distributions [2]. A DP, de-
noted by DP (G0, α), is parameterized by a base measure, G0, and a concentration parameter,
α. We write G ∼ DP (G0, α) for a draw of a distribution G from the Dirichlet process. G itself
is a distribution over a given parameter space, θ, therefore we can draw parameters θ1:N from
G. The parameters drawn from G follow a Polya-urn scheme [3], also known as the Chinese
restaurant process (CRP), in which previously drawn values of θ have strictly positive proba-
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bility of being redrawn again, thus making the underlying probability measure G discrete with
probability one [2]. By using the DP at the top of a hierarchical model, one obtains the Dirich-
let process mixture model, DPM for non-parametric clustering [4]. The generative process for
the DPM proceeds as follows:

G | α, G0 ∼ DP (α, G0), (1)
θn|G ∼ G,

θn ∼ F (.|θn),

where F is a given likelihood function parameterized by θ, for instance in the cause of
a Gaussian emission, F is the normal pdf, and θ is its mean and covariance. The clustering
property of the DP prefers that fewer than N distinct θ are used. This notion is made explicit
via the equivalent CRP metaphor. In the CRP metaphore, there exists a Chinese restaurant with
an infinite numbers of tables. Customer xi enters the restaurant and sits on table k that has nk

customers with probability nk

i−1+α
, and shares the dish (parameter), φk, served there, or picks a

new table with probability α
i−1+α

, and orders a new dish sampled from G0. Putting everything
together, we have:

θi|θ1:i−1, G0, α ∼
∑

k

nk

i− 1 + α
δ(φk) +

α

i− 1 + α
G0. (2)

Equation 1 can also be obtained by integrating out G from the equations in (2), and this
shows the equivalence of the two schemes. Finally, the DPM can be arrived at if we consider a
fixed K-dimensional mixture model, like K-means, and then take the limit as K →∞. In other
words, a DPM can potentially model an infinite-dimensional mixture model and thus has the
desirable property of extending the number of clusters with the arrival of new data (which is
made explicit using the CRP metaphor — a new customer can start a new cluster by picking an
unoccupied table). This flexibility allows the DPM to achieve model selection automatically.
However, it is vitally important now to clear some myths with regards to the DPM. While
DPM is known as a non-parametric model, it still does have parameters, namely, α, albeit
being dubbed as hyperparmaters. The reason for calling α a hyperparmater is to distinguish
between it and between the effective parameters of the model which are: K, the number of
mixture components and their associated parameters, like mean and covariance in the of case a
mixture of Gaussian distributions. These effective parameters need not be specified for a DPM
model, but must be specified for any parametric model like K-means; Hence came the name
non-parametric. In essence, the role played by the hyper-parameter α is to specify the rate at
which the effective parameters of the model grow with the data. Hyperparmaters can be either
supplied by the user to encode their prior knowledge, or desirable outcome (finer vs. coarser
clustering), or can be learnt automatically using an EM-like algorithm called empirical Bayes
[20].
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Figure 1: Three constructions for the TDPM. a) The recurrent Chinese restaurant process
and b) The infinite limit of a finite dynamic mixture model. In b, diamonds represent hyper-
parameters, shaded circles are observed variables, and unshaded ones are hidden variables,
plates denote replications, where the number of replica is written inside the plate, for instance
n1. (C)Time dependent random measure construction of the TDPM.

3 The Temporal Dirichlet Process Mixture Model
In many domains, data items are not fully exchangeable, but rather partially exchangeable at
best. In the TDPM model1 to be presented, data are assumed to arrive in T consecutive epochs,
and inside the same epoch all objects are fully exchangeable.

Intuitively the TDPM seek to model cluster parameters evolution over time using any time
series model, and to capture cluster popularity evolution over time via the rich-gets-richer ef-
fect, i.e. the popularity of cluster k at time t is proportionable to how many data points were
associated with cluster k at time t − 1. In the following subsections, we will formalize these
notions by giving three equivalent constructions for the TDPM as summarized in Figure 1.
However, before giving these constructions that parallel those given for the DPM in section 3,
we first start by specifying some notations.

3.1 Notations and Conventions:
We let nt denotes the number of data points in the tth epoch, and xt,i denotes the ith point
in epoch t. The mixture components (clusters) that generate the data can emerge, die out, or

1A preliminary earlier version of the TDPM model first appeared in [19]
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evolve its parametrization evolve over time in a Markovian fashion, therefore, we generalize
the notion of a mixture into a chain that links the parameters of the mixture component over
time. We let φk denote chain k, φk,t denoted the state (parameter value) of chain k at time t,
and nk,t denotes the number of data points associated with chain k at time t. Moreover, we use
n

(i)
k,t to denote the same quantity just before the arrival of datum xt,i. Note that the chains need

not have the same life span; however, once retained over time they keep the same chain index.
Moreover, the set of chain indexes available at time t might not be contiguous (because some
chains may have died out). Therefore, we define It to denote the set of chain indexes available
at time t. We sometimes overload notation and use I

(i)
t to denote the same quantity just before

the arrival of datum xt,i. Each data item xt,i is generated from a mixture with parameter θt,i, if
we let ct,i denotes the chain index associated with this datum, then we have θt,i = φct,i,t — in
other words, the set of φ’s define the unique mixtures/clusters, or put it equivalently, two data
items might have equal θ values if they belong to the same cluster. Moreover, we might use the
following abbreviations for notational simplicity (z denotes a generic variable):

• {zt,.} to denote {zt,1, zt,2, · · · }
• zt,1:i to denote {zt,1, zt,2, · · · , zt,i}

3.2 The Recurrent Chinese Restaurant Process
The RCRP, showin in Figure 1-a, is a generalization of the CRP introduced in section 3. The
RCRP operates in epochs, say, days. Customers entered the restaurant in a given day are not
allowed to stay beyond the end of this day. At the end of each day, the consumptions of
dishes are analyzed by the owner of the restaurant who assumes that popular dishes will remain
popular in the next day, and uses this fact to plan the ingredients to be bought, and the seating
plan for the next day. To encourage customers in the next day to try out those pre-planed dishes,
he records on each table the dish which was served there, as well as the number of customers
who shared it. As another incentive, he allows the first customer to set on such a table to
order a (flavored) variation of the dish recorded there. In this metaphor, dishes correspond to
chains, and the variation correspond to the dynamic evolution of the chain. The generative
process proceeds as follows. At day t, customer i can pick an empty table, k, that was used to
serve dish φk,t−1, with probability equals to nk,t−1

Nt−1+i+α−1
, he then chooses the current flavor of

the dish,φk,t, distributed according to φk,t ∼ P (.|φk,t−1). If this retained table k has already

n
(i)
k,tcustomers, then he joins them with probability

nk,t−1+n
(i)
k,t

Nt−1+i+α−1
and shares the current flavor of

the dish there. Alternatively, he can pick a new empty table that was not used in the previous
day,t − 1, i.e., not available in It−1, with probability α

Nt−1+i+α−1
,lets call it K+, and orders a

dish φK+,t ∼ G0 — this is the mechanism by which a new chain/cluster emerges. Finally, he

can share a new table k, with n
(i)
k,t customers, with probability

n
(i)
k,t

Nt−1+i+α−1
and shares the newly

ordered dish with them. Putting everything together, we have:

θt,i|{θt−1,.}, θt,1:i−1, G0, α ∼ 1

Nt−1 + i + α− 1
×

[ ∑

k∈It−1

(
nk,t−1 + n

(i)
k,t

)
δ(φk,t) +

∑

k∈I
(i)
t −It−1

n
(i)
k,tδ(φk,t) + αG0

]
, (3)
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where in the first summation φk,t ∼ P (.|φk,t−1) (i.e. retained from the previous day), and
in the second one φk,t ∼ G0 which is drawn by the jth customer at time t for some j < i (i.e.
new chains born at epoch t). If we conveniently define nk,t to be 0 for k ∈ It−1 − I

(i)
t (chains

which died out) and similarly nk,t−1 be 0 for k ∈ I
(i)
t − It−1 (i.e. newly born chains at time t),

then we can compactly write Equation 3 as:

θt,i|{θt−1,.}, θt,i:i−1, G0, α ∼ 1

Nt−1 + i + α− 1
×

[ ∑

k∈It−1∪I
(i)
t

(
nk,t−1 + n

(i)
k,t

)
δ(φk,t) + αG0

]
. (4)

3.3 The infinite Limit of a finite Dynamic Mixture Model
In this section we show that the same sampling scheme in Equation (4) can be obtained as the
infinite limit of the finite mixture model in Figure 1-b. We consider the following generative
process for a finite dynamic mixture model with K mixtures. For each t do:

1. ∀k: Draw φk,t ∼ P (.|φk,t−1)

2. Draw πt ∼ Dir(n1,t−1 + α/K, · · · , nK,t−1 + α/K)

3. ∀i ∈ Nt Draw ct,i ∼ Multi(πt) , xt,i ∼ F (.|φct,i,t)

By integrating over the mixing proportion πt, It is quite easy to write the prior for ct,i as
conditional probability of the following form:

P (ct,i = k|ct−1,1:Nt−1 , ct,1:i−1) =
nk,t−1 + n

(i)
k,t + α/K

Nt−1 + i + α− 1
. (5)

If we let K → ∞, we find that the conditional probabilities defining the ct,i reachs the
following limit:

P (ct,i = k|ct−1,1:Nt−1 , ct,1:i−1) =
nk,t−1 + n

(i)
k,t

Nt−1 + i + α− 1

P (ct,i = a new cluter) =
α

Nt−1 + i + α− 1
(6)

Putting Equations (5) and (6) together, we can arrive at Equation (4).

3.4 The Temporarily Dependent Random Measures view of the TDPM
Here we show that the same process in section 4 can be arrived at if we model each epoch
using a DPM and connect the random measures Gt as shown in Figure 5. This appendix is
rather technical and is provided only for completeness, however it can be skipped without any
loss of continuity.

The derivation here depends on the well known fact that the posterior of a DP is a also a DP
[4]. That is, G|φ1, · · · , φk, G0, α ∼ DP

(
α + n,

∑
k

nk

n+α
δ(φk) + α

n+α
G0

)
, where {φk} are the

collection of unique values of θ1:n sampled from G. Now, we consider the following generative
process. For each t, do:
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1. ∀k ∈ It−1 draw φk,t ∼ P (.|φk,t−1)

2. Draw Gt|{φk,t}∀k ∈ It−1, G0, α ∼ DP (α + Nt−1, G
t
0)

3. ∀i ∈ Nt, Draw θt,i|Gt ∼ Gt xt,n|θt,n ∼ F (.|θt,n)

where Gt
0 =

∑
k∈It−1

nk,t−1

Nt−1+α
δ(φk,t) + α

Nt−1+α
G0. Now by integrating Gt ∼ DP (Nt−1 +

α, Gt
0). We can easily show that:

θt,i|{θt−1,.}, θt,1:i−1, G0, α ∼ 1

i + (α + Nt−1)− 1

[ ∑

k∈I
(i)
t

n
(i)
k,tδ(φk,t) + (α + Nt−1)G

t
0

]
. (7)

Now substituting Gt
0 into the above equation plus some straightforward algebra, we arrive at:

θt,i|{θt−1,.}, θt,1:i−1, G0, α ∼ 1

Nt−1 + i + α− 1

[ ∑

k∈I
(i)
t

n
(i)
k,tδ(φk,t) +

∑

k∈It−1

nk,t−1δ(φk,t) + αG0

]
, (8)

which when rearranged is equivalent to Equation 4

4 Gibbs Sampling Algorithms
Given the previous constructions for the TDPM model, we are ready to derive a Gibbs sampling
scheme equivalent to algorithm 2 in [1]. The state of the sampler contains both the chain
indicator for every data item, {ct,i}, as well as the value of all the available chains at all time
epochs, {φk,t}. We iterate between two steps: given the current state of the chains, we sample
a class indicator for every data item, and then given the class indicators for all data item, we
update the current state of the chains. We begin by the second step, let φ

(x)
k denote the collection

of data points associated with chain k at all time steps, that is φ
(x)
k = {∀t(∀i ∈ Nt) xt,i|ct,i = k}.

Note also that conditioning on the class indicators, each chain is conditionally independent from
the other chains. Therefore, P (φk|{ct,i}) = P ({φk,t}|φ(x)

k ). This calculation depends on both
the chain dynamic evolution model P (.|) and the data likelihood F (.|.), therefore, this posterior
should be handled in a case by case fashion, for instance, when the dynamic evolution model is
a linear state-space model with Gaussian emission (likelihood), this posterior can be calculated
exactly via the RTS smoother [5,6]. Once this posterior is calculated, we can update the current
state of the chains by sampling each chain over time as a block from this posterior. Now, we
proceed to the first step, for a given data point, xt,i, conditioning on the state of the chains and
other indicator variables (i.e. how data points other than xt,i are assigned to chains), we sample
ct,i as follows:

P (ct,i|ct−1, ct,−i, ct+1, xt,i, {φk}t,t−1, G0, α) ∝
P (ct,i|ct−1, ct,−i, xt,i, {φk}t,t−1, G0, α)P (ct+1|ct), (9)

where we introduce the following abbreviations: ct−1, ct+1 denotes all indicators at time
t − 1 and t respectively. ct,−i denotes the chain indicators at time t without ct,i, and {φk}t,t−1
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denotes all chains alive at either time epoch t or t− 1, i.e., φk∀k ∈ It−1 ∪ It. We also let n
(−i)
k,t

denote nk,t without the contribution of data point xt,i. The first factor in Equation (9) can be
computed using Eq. (4) as follows:

P (ct,i = k ∈ It−1 ∪ It|...) ∝
nk,t−1 + n

(−i)
k,t

Nt−1 + Nt + α− 1
F (xt,i|φk,t)

P (ct,i = K+|...) ∝ α

Nt−1 + Nt + α− 1

∫
F (xt,i|θ)dG0(θ), (10)

where K+ denotes a globally new chain index (i.e., a new chain is born). It should be
noted here that in the first part of Equation (10), there is a subtlety that we glossed over. When
we consider a chain from time t − 1 that has not been inherited yet at time t (that is k ∈
It−1, n

(−i)
k,t = 0), we must treat it exactly as we treat sampling a new chain from G0 with G0

replaced by P (φk,t|φk,t−1).
The second factor in Equation (9) can be computed with reference to the construction in

section 4.3 as follows (note that ct here includes the current value of ct,i under consideration in
Equation 9). First, note that computing this part is equivalent to integrating over the mixture
weights πt+1 which depend on the counts of the chain indicators at time t. The subtlety here is
that in section 4.3 we let K → ∞; however, here we only need to let the two count vectors be
of equal size, which is Kt,t+1 = |It,t+1|, where as defined before It,t+1 = It ∪ It+1, by padding
the counts of the corresponding missing chains with zeros. It is straightforward to show that:

P (ct+1|ct) =
Γ
( ∑

k∈It,t+1
nk,t + α/Kt,t+1

)
∏

k∈It,t+1
Γ(nk,t + α/Kt,t+1)

×
∏

k∈It,t+1
Γ(nk,t + nk,t+1 + α/Kt,t+1)

Γ
( ∑

k∈It,t+1
nk,t + nk,t+1 + α/Kt,t+1

) (11)

It should be noted that the cost of running a full Gibs iteration is O(n) where n is the total
number of data points.

5 Modeling Higher-Order Dependencies
One problem with the above construction of the TDPM is that it forgets too quickly especially
when it comes to its ability to model cluster popularity at time t + 1 based on its usage pattern
at time t, while ignoring all previous information before time epoch t. Moreover, once a cluster
is dead, i.e. its usage pattern at time t is 0, it can no longer be revived again. Clearly, in some
applications one might want to give a slack for a cluster before declaring it dead. For example,
when the TDPM is used to model news stories on a daily basis, if a theme that was active in
time epoch t− 1 had no documents associated with it at time t, then the TDPM will consider it
dead, however, in practice, this might not be the case.

By analogy to the RCRP equivalent construction, the owner who plans the restaurant ingre-
dients based on a daily usage is less prudent than an owner who considers a larger time frame,
perhaps a week. However, one should not treat the usage pattern of cluster k at time t and at
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Figure 2: Simulating various clustering patterns from a TDPM(α,λ,W). Top: DPM, middle: a TDPM and
bottom: a set of independent DPM at each epoch. See section 6 for more details

time, say, t − h, as contributing equally to our prediction of this cluster’s popularity at time
t + 1. A possible solution here is to incorporate historic usage patterns by decaying their con-
tribution exponentially over time epochs. A similar idea has been proposed in [14], however
in [14], each epoch has exactly one data point, and the width of the history window used in
[14] is rather infinity — or more precisely at most n. This in fact makes the cost of running
a single Gibbs iteration, i.e. sampling all data items once, O(n2). In the solution we propose
here, we define two new hyperparmaters, kernel width, λ, and history size, W . We will de-
scribe our approach only using the RCRP for simplicity since as shown before, it is equivalent
to the other constructions. To model higher order dependencies, the only difference is that the
owner of the restaurant records on each table, not only its usage pattern on day t − 1, but its
weighted cumulative usage pattern over the last W days. Where the weight associated with the
count from day t− h is given by exp

−h
λ , and as such the contribution from epoch t− h decays

exponentially over time. A customer xt,n entering the restaurant at time t will behave exactly
in the same way as before using the new numbers recorded on the table.

There are two implications to this addition. First, the cost of running one Gibbs iteration
is O(n ×W ), which is still manageable as W must be smaller than T , the number of epochs,
which is in turn much smaller than the total number of data points, n, thus we still maintain
a linear time complexity. Second, an active cluster is considered dead if and only if, it is not
used for exactly W contiguous echoes, which creates the necessary slack we were looking for.
Changing the Gibbs sampling equations in section 5 to accommodate this new addition is very
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straightforward and removed for the light of space.
It is interesting to note that these two new hyper-parameters allow the TDPM to degenerate

to either a set of independent DPMs at each epoch when W=0, and to a global DPM, i.e
ignoring time, when W = T and λ = ∞. In between, the values of these two parameters affect
the expected life span of a given cluster/chain. The larger the value of W and λ, the longer the
expected life span of chains, and vice versa.

To illustrate this phenomenon, we sampled different cluster configurations from the TDPM
model by running the RCRP metaphor for T = 50 epochs and seating 300 customers at each
epoch. We simulated three hyper-parameter configurations (α, λ,W ) as follows. The config-
uration used at the top of Figure 2 is (5,∞,50=T) which reduces the TDPM to a DPM. The
configuration at the middle is a TDPM with hyperparmaters (5,.4,4), while the bottom TDPM
degenerates to a set of independent DPMs at each epoch by setting the hyper-parameters to
(5,.5,0) — in fact the value of λ here is irrelevant. For each row, the first panel depicts the
duration of each chain/cluster,the second panel shows the popularity index at each epoch, i.e.
each epoch is represented by a bar of length one, and each active chain is represented by a color
whose length is proportional to its popularity at this epoch. The third panel gives the number
of active chains at each epoch and the fourth panel shows the number of chains with a given
life-span (duration). This fourth panel is a frequency curve and in general all TDPMs exhibit a
power-law (Zipf’s) distribution as the one in the middle, but with different tail lengths, while a
DPM and independent DPMs show no such power-law curves. Another interesting observation
can be spotted in the second column: note how cluster intensities change smoothly over time in
the TDPM case, while it is abrupt in independent DPMs or rarely changing in a global DPM.
This shows that TDPM with three tunable variables can capture a wide range of clustering
behaviors.

6 Infinite Dynamic Mixture of Gaussian Factors
In this section we show how to use the TDPM model to implement an infinite dynamic mix-
ture of Gaussian factors. We let each chain represent the evolution of the mean parameter of
a Gaussian distribution with a fixed covariance Σ. The chain dynamics is taken to be a linear
state-space model, and for simplicity, we reduce it to a random walk. More precisely, for a
given chain φk: φk,t|φk,t−1 ∼ N(φk,t−1, ρI) and xt,i|ct,i = k ∼ N(φk,t, Σ). The base mea-
sure G0 = N(0, σI). Using the Gibbs sampling algorithm in section 5, computing the chain
posterior given its associated data points, φ

(x)
k , can be done exactly using the RTS smoother

algorithm [6]. We simulated 30 epochs, each of which has 100 points from the TDMP with
the above specification, and with hyperparmaters as follows: α = 2.5, W = 1, λ = .8, σ =
10, ρ = 0.1and Σ = 0.1I. We ran Gibbs sampling for 1000 iterations and then took 10 samples
every 100 iterations for evaluations. The results shown in Figure 3 are averaged over these
10 samples. To measure the success of the TDPM, we compared the clustering produced by
the TDPM to the ground truth, and to that produced from a fixed dynamic mixture of Kalman
Filters [6] with various number of chains, K =(5,10,15,20,25,30). For each K, we ran 10 trials
with different random initializations and averaged the results.

We compared the clustering produced by the two methods, TDPM, and the one with fixed
number of evolving chains over time, to the ground truth using the variation of information
measure in [21]. This measure uses the mutual information between the two clustering under
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(b) (d) (f)

Figure 3: Illustrating results on simulated data. Panels (a,b) contrast the accuracy of the re-
covered clustering, using global and local consistency measures, against that estimated using
fixed dimensional models (see text for details). Panels (c-f) illustrate the TDPM ability to
vary the number of clusters/chains over time, results from fixed-dimensional models, which
is fixed over time, are not shown to avoid cluttering the display. Panel (d) and (f) illustrate
that most omissions (errors) are due to insignificant chains. All results are averaged over 10
samples taken 100 iterations apart for the TDPM, and over 10 random initializations for the
fixed-dimensional models. Error bars are not shown in panels (c-f) for clarity, however,the
maximum standard error is 1.4

.

consideration, and their entropy to approximate the distance between them across the lattice
of all possible clustering (see [21] for more details). We explored two ways of applying this
measure to dynamic clustering, the global variation of information, GVI, and the local variation
of information, LVI. In GVI, we ignored time, and considered two data points to belong to
the same cluster if they were generated from the same chain at any time point. In LVI, we
applied the VI measure at each time epoch separately and averaged the results over epochs. GVI
captures global consistency of the produced clustering, while LVI captures local consistency
(adaptability to changes in the number of clusters). The results are shown in Figure 3-a, 3-b
(lower values are better)and show that the TDPM is superior to a model in which the number
of clusters are fixed over time, moreover, setting K to the maximum number of chains over
all time epochs does not help. In addition to these measures, we also examined the ability of
the TDPM to track the evolution of the number of chains (Figure 3-c)and their duration over
time (Figure 3-e). These two figures show that in general, the TDPM tracks the correct ground-
truth behavior, and in fact most of the errors are due to insignificant chains, i.e. chains/clusters
which contain a very small (1-3) data points as shown in Figure 3-d and Figure 3-f. It is worth
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mentioning that the fixed dimension models produce the same number of chains over time,
which we omit from Figure 3-(c-f) for clarity.

7 A Simple Non-Parametric Dynamic Topic Model
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Figure 4: Illustrating results on the NIPS12 dataset. Right-top: chains (topics) death-birth
over time. Right-bottom: the popularity of some topics over the years, where topics names are
hand labeled. Left: keywords over time in some topics.

Statistical admixture topic models have recently gained much popularity in managing large
document collections. In these models, each document is sampled from a mixture model ac-
cording to a document’s specific mixing vector over the mixture components (topics), which
are often represented as a multinomial distribution over a given vocabulary. An example of
such models is the well-known latent Dirichlet allocation (LDA)[7]. Recent approaches advo-
cate the importance of modeling the dynamics of different aspects of topic models: topic trends
[10], topic word distributions [8] and topic correlations [9]. In this section we show how to
implement a simple non-parametric dynamic topic model. The model presented here is simpler
than mainstream topic models in that each document is generated from a single topic rather
than from a mixture of topics as in LDA. However, this is not a restriction of our framework,
as we will mention in the future work section how this simple model can be extend to a full-
fledged one. The model we present here is only meant as another illustration of the generality
of our framework.

To implement this simple non-parametric dynamic topic model, SNDTM for short, let xt,i

represent a document composed of word frequency counts. Each chain represents the natural
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parameter of the multinomial distribution associated with a given topic, similar to the the dy-
namic LDA model in [8]. Each topic’s natural parameter chain, φk, evolves using a random
walk model [8]. To generate a document, first map the natural parameter of its topic φk,t to the
simplex via the logistic transformation in Equation (8-10), and then generate the document, i.e.
xt,i|ct,i = k ∼ Multinomial(xt,i|Logistic(φk,t)).

In Equations (8-10), C(φk,t) is a normalization constant (i.e., the log partition function).
We denote this logistic transformation with the function Logisitc(.). Furthermore, due to the
normalizability constrain of the multinomial parameters, ~βk,t only has M−1 degree of freedom,
where M is the vocabulary length. Thus we only need to represent and evolve the first M − 1
components of φk,t and leave φk,t = 0. For simplicity, we omit this technicality from further
consideration.

βk,t,m = exp{φk,t,m − C(φk,t)}, ∀m = 1, . . . , M

where C(φk,t) = log
( M∑

m=1

exp{φk,t,m}
)
. (12)

One problem with the above construction is the non-conjugacy between the multinomial
distribution and the logistic normal distribution. In essence, we can no longer use vanilla
RTS smoother to compute the posterior over each chain as required by the Gibbs sampling
algorithm in section 5. In [8], numerical techniques were proposed to solve this problem; here,
for simplicity, we use a deterministic Laplace approximation to overcome this non-conjugacy
problem. We first put the emission of chain φk at time t in the exponential family representation.
It is quite straightforward to show that:

∏

x∈φx
k,t

M∏
m=1

p(xt,i,m|φk,t) = exp{vk,tφk,t − |vk,t| × C(φk,t)} (13)

where vk,t is an M-dimensional (row) vector that represents the histogram of word occur-
rences from topic k at time step t . And |.| is the L1 norm of a given vector. Equation (13)
still does not represent a Gaussian emission due to the problematic C(φk,t). Therefore, we ap-
proximate it with a second-order quadratic Taylor approximation around φ̂k,t — to be specified
shortly . This results in a linear and quadratic term of φk,t. If we let H and g to be the hessian
and gradient of such expansion, we can re-arrange equation (13) into a gaussian emission with
mean χφ̂k,t

and covariance ϕη̂k,t
given by:

ϕφ̂k,t
= inv

(|vk,t|H(φ̂k,t)
)
, (14)

χφ̂k,t
= φ̂k,t + ϕη̂t

k

(
vk,t − |vk,t|g(φ̂k,t)

)
. (15)

Using this Gaussian approximation to the non-gaussian emission, we can compute the pos-
terior over φk,t|φ(x)

k,t using the RTS smoother with observations, and observation noises as given
by Equations (15) and (14) respectively. Due to the high-dimensionality of the associated vec-
tors in this linear state-space model, we approximate the Hessian in the above calculations with
its diagonal, which results in an M-independent linear state-space models, one for each word.
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Moreover, φ̂k,t is set to inverseLogisitic
(

vk,t

|vk,t|

)
, which is the inverse logistic transformation of

the MLE (maximum likelihood estimation) of the topic’s k multinomial distribution at time t.
We used this simple model to analyze the NIPS12 collection that contains the proceedings

of the Neural Information Processing Conference from 1987-19992. Stop words were removed
from this collection, we also removed infrequent words and kept only the top most frequent
2000 words. We divided the collection into 13 epochs based on the publication year of the
paper. We set the hyperparmaters of the TDPM as in Section 7 with α = .1, and we ran Gibbs
sampling for 1000 iterations. To speed up convergence, we initialized the sampler from the
result of a global non-parametric clustering using the method in [13] which resulted in around
7 clusters, each of which spans the whole 13 years. In figure 4, we display topic durations,
which shows that the model indeed captures the death and birth of various topics. In the same
figure, we also show the top keywords in some topics (chains) as they evolve over time. As
shown in this figure, regardless of the simplicity of the model, it captured meaningful topic
evolutions.

8 Relation to Other DPM Approaches:
We have purposefully delayed discussing the relationship between the TDPM and other de-
pendent DPM models until we lay down the foundation of our model in order to place the
discussion in context. In fact, several approaches have been recently proposed to solve the
same fundamental problem addressed in this paper: how to add the notion of time into the
DPM. With the exception of [14], most of these approaches use the stick-breaking construction
of the DPM [16][17]. In this construction, the DPM is modeled as an infinite mixture model,
where each mixture component has a weight associated with it. Coupling the weights and/or
(component parameters) of nearby DPMs results in a form of dependency between them. This
new process is called ordered-based (Dependent) DPMs. However, we believe that utilizing the
CRP directly is easier as we have explained in section 4.2, and more importantly, this approach
enables us to model the rich-gets-richer phenomenon, which we believe captures, in a wide
range of applications, how a cluster popularity evolves over time. As for the work in [14], we
have already explained one difference in section 6. Another difference is that in [14] cluster pa-
rameters are fixed and do not evolve over time. Recently, a simple clustering-topic model built
on top of [16] was proposed in [18]. This is similar to the experiments we carried in section 8,
however, in [18] the cluster (topic) parameters were fixed over time.

9 Conclusions and Future Work
In this paper we presented the temporal Dirichlet process mixture model as a framework for
modeling complex longitudinal data. In the TDPM, data is divided into epochs, where the
data items within each epoch are partially exchangeable. Moreover, The number of mixture
components used to explain the dependency structure in the data is unbounded. Components
can retain, die out or emerge over time, and the actual parameterization of each component can
also evolve over time in a Markovian fashion. We gave various constructions of the TDPM as
well as a Gibbs sampling algorithm for posterior inference. We also showed how to use the

2Available from http://www.cs.toronto.edu/ roweis/data.html
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TDPM to implement an infinite mixture of Kalman filters as well as a simple non-parametric
dynamic topic model.

In the future we plan to explore other techniques for posterior inference like variational
inference as in [11,12] and search based techniques [13] that showed promising results in the
DPM case and achieved up to 200-300 speedup over using Gibbs sampling. At the application
level, we plan to extend the simple non-parametric dynamic topic model into a full-fledged
topic model by replacing the Logistic Normal likelihood with another DPM for each document
as in [15].

References
[1] Neal, Radford M. 1998. Markov chain sampling methods for Dirichlet process mixture

models. Technical Report 9815, University of Toronto, Department of Statistics and De-
partment of Computer Science, September.

[2] Ferguson, Thomas S. 1973. A Bayesian analysis of some nonparametric problems. The
Annals of Statistics, 1(2):209-230, March.

[3] Blackwell, David and James B. MacQueen. 1973. Ferguson distributions via Polya urn
schemes. The Annals of Statistics, 1(2):353-355, March.

[4] Antoniak, Charles E. 1974. Mixtures of Dirichlet processes with applications to Bayesian
nonparametric problems. The Annals of Statistics, 2(6):1152-1174, November.

[5] Z. Ghahramani and G. E. Hinton. Parameter estimation for linear dynamical systems.
University of Toronto Technical Report CRG-TR-96-2, 1996.

[6] R. Kalman. (1960). A new approach to linear filtering and prediction problems. Transac-
tion of the AMSE: Journal of Basic Engineering, 82:3545.

[7] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Journal of Machine Learning
Research, 3:9931022, January 2003.

[8] D. Blei and J. Lafferty. Dynamic topic models. In Proceedings of the 23rd International
Conference on Machine Learning , 2006.

[9] X. Wang, W. Li, and A. McCallum. A Continuous-Time Model of Topic Co-occurrence
Trends. AAAI Workshop on Event Detection, 2006.

[10] X. Wang and A. McCallum. Topics over Time: A Non-Markov Continuous-Time Model
of Topical Trends. Conference on Knowledge Discovery and Data Mining (KDD),2006.

[11] Kurihara, Kenichi, Max Welling, and Yee Whye Teh. 2007. Collapsed variational dirichlet
process mixture models. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI).

[12] Blei, David and Michael I. Jordan. 2005. Variational inference for Dirichlet process mix-
tures. Bayesian Analysis, 1(1):121-144, August.

14



[13] Hal Daume, Fast search for Dirichlet process mixture models, Conference on AI and
Statistics (2007)

[14] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Time-sensitive Dirichlet process
mixture models. Technical Report CMU-CALD-05-104, Carnegie Mellon University,
2005.

[15] Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical Dirichlet processes. Journal of the
American Statistical Association, 2006. 101(476):1566-1581

[16] J.E. Griffn and M.F.J. Steel. Order-based dependent Dirichlet processes. Journal of the
American Statistical Association,101(473).

[17] S. MacEachern. Dependent Dirichlet processes. Technical report, Dept. of Statistics, Ohio
State university, 2000.

[18] N. Srebro and S. Roweis. Time-varying topic models using dependent Dirichlet processes.
Technical report, Department of Computer Science, University of Toronto, 2005.

[19] E.P. Xing, Dynamic Nonparametric Bayesian Models and the Birth-Death Process. CMU-
CALD Technical Report 05-114.

[20] J. McAuliffe, D. Blei, and M. Jordan. Nonparametric empirical Bayes for the Dirichlet
process mixture model. Statistics and Computing, 16(1):514, 2006.

[21] Marina Meila. Comparing Clusterings: An Axiomatic View. In Proceedings of the 22nd
International Conference on Machine Learning , 2005.

15



  



Carnegie Mellon University does not discriminate and Carnegie Mellon University is
required not to discriminate in admission, employment, or administration of its programs or
activities on the basis of race, color, national origin, sex or handicap in violation of Title VI
of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section
504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the
Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay,
lesbian and bisexual students from receiving ROTC scholarships or serving in the military.
Nevertheless, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213, telephone (412) 268-6684 or the
Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA
15213, telephone (412) 268-2056

Obtain general information about Carnegie Mellon University by calling (412) 268-2000

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213


