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Abstract
When monitoring spatial phenomena, which can often be modeled as Gaussian processes (GPs),
choosing sensor locations is a fundamental task. There are several common strategies to address
this task, for example, geometry or disk models, placing sensors at the points of highest entropy
(variance) in the GP model, and A-, D-, or E-optimal design. In this paper, we tackle the combi-
natorial optimization problem of maximizing the mutual information between the chosen locations
and the locations which are not selected. We prove that the problem of finding the configuration that
maximizes mutual information is NP-complete. To address this issue, we describe a polynomial-
time approximation that is within (1 − 1/e) of the optimum by exploiting the submodularity of
mutual information. We also show how submodularity can be used to obtain online bounds, and
design branch and bound search procedures. We then extend our algorithm to exploit lazy evalu-
ations and local structure in the GP, yielding significant speedups. We also extend our approach
to find placements which are robust against node failures and uncertainties in the model. These
extensions are again associated with rigorous theoretical approximation guarantees, exploiting the
submodularity of the objective function. We demonstrate the advantages of our approach towards
optimizing mutual information in a very extensive empirical study on two real-world data sets.
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1 Introduction

When monitoring spatial phenomena, such as temperatures in an indoor environment as shown
in Figure 1(a), using a limited number of sensing devices, deciding where to place the sensors is
a fundamental task. One approach is to assume that sensors have a fixed sensing radius and to
solve the task as an instance of the art-gallery problem (c.f., Hochbaum and Maas, 1985; Gonzalez-
Banos and Latombe, 2001). In practice, however, this geometric assumption is too strong; sensors
make noisy measurements about the nearby environment, and this “sensing area” is not usually
characterized by a regular disk, as illustrated by the temperature correlations in Figure 1(b). In
addition, note that correlations can be both positive and negative, as shown in Figure 1(c), which
again is not well-characterized by a disk model. Fundamentally, the notion that a single sensor needs
to predict values in a nearby region is too strong. Often, correlations may be too weak to enable
prediction from a single sensor. In other settings, a location may be “too far” from existing sensors to
enable good prediction if we only consider one of them, but combining data from multiple sensors
we can obtain accurate predictions. This notion of combination of data from multiple sensors in
complex spaces is not easily characterized by existing geometric models.

An alternative approach from spatial statistics (Cressie, 1991; Caselton and Zidek, 1984), making
weaker assumptions than the geometric approach, is to use a pilot deployment or expert knowledge
to learn a Gaussian process (GP) model for the phenomena, a non-parametric generalization of
linear regression that allows for the representation of uncertainty about predictions made over the
sensed field. We can use data from a pilot study or expert knowledge to learn the (hyper-)parameters
of this GP. The learned GP model can then be used to predict the effect of placing sensors at partic-
ular locations, and thus optimize their positions.1

Given a GP model, many criteria have been proposed for characterizing the quality of placements,
including placing sensors at the points of highest entropy (variance) in the GP model, and A-, D-, or
E-optimal design, and mutual information (c.f., Shewry and Wynn 1987, Caselton and Zidek 1984,
Cressie 1991, Zhu and Stein 2006, Zimmerman 2006). A typical sensor placement technique is to
greedily add sensors where uncertainty about the phenomena is highest, i.e., the highest entropy
location of the GP (Cressie, 1991; Shewry and Wynn, 1987). Unfortunately, this criterion suffers
from a significant flaw: entropy is an indirect criterion, not considering the prediction quality of the
selected placements. The highest entropy set, i.e., the sensors that are most uncertain about each
other’s measurements, is usually characterized by sensor locations that are as far as possible from
each other. Thus, the entropy criterion tends to place sensors along the borders of the area of interest
(Ramakrishnan et al., 2005), e.g., Figure 4. Since a sensor usually provides information about the
area around it, a sensor on the boundary “wastes” sensed information.

An alternative criterion, proposed by Caselton and Zidek (1984), mutual information, seeks to find
sensor placements that are most informative about unsensed locations. This optimization criterion
directly measures the effect of sensor placements on the posterior uncertainty of the GP. In this paper,
we consider the combinatorial optimization problem of selecting placements which maximize this

1This initial GP is, of course, a rough model, and a sensor placement strategy can be viewed as an inner-loop step for
an active learning algorithm (MacKay, 2003). Alternatively, if we can characterize the uncertainty about the parameters
of the model, we can explicitly optimize the placements over possible models (Zidek et al., 2000; Zimmerman, 2006; Zhu
and Stein, 2006).
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criterion. We first prove that maximizing mutual information is an NP-complete problem. Then, by
exploiting the fact that mutual information is a submodular function (c.f., Nemhauser et al., 1978),
we design the first approximation algorithm that guarantees a constant-factor approximation of the
best set of sensor locations in polynomial time. To the best of our knowledge, no such guarantee
exists for any other GP-based sensor placement approach, and for any other criterion. This guarantee
holds both for placing a fixed number of sensors, and in the case where each sensor location can
have a different cost.

Though polynomial, the complexity of our basic algorithm is relatively high –O(kn4) to select k out
of n possible sensor locations. We address this problem in two ways: First, we develop a lazy eval-
uation technique that exploits submodularity to reduce significantly the number of sensor locations
that need to be checked, thus speeding up computation. Second, we show that if we exploit locality
in sensing areas by trimming low covariance entries, we reduce the complexity to O(kn).

We furthermore show, how the submodularity of mutual information can be used to derive tight on-
line bounds on the solutions obtained by any algorithm. Thus, if an algorithm performs better than
our simple proposed approach, our analysis can be used to bound how far the solution obtained by
this alternative approach is from the optimal solution. Submodularity and these online bounds also
allow us to formulate a mixed integer programming approach to compute the optimal solution using
Branch and Bound. Finally, we show how mutual information can be made robust against node fail-
ures and model uncertainty, and how submodularity can again be exploited in these settings.

We provide a very extensive experimental evaluation, showing that data-driven placements outper-
form placements based on geometric considerations only. We also show that the mutual informa-
tion criterion leads to improved prediction accuracies with a reduced number of sensors compared to
several more commonly considered experimental design criteria, such as an entropy-based criterion,
and A-optimal, D-optimal and E-optimal design criteria.

In summary, our main contributions are:

• We tackle the problem of maximizing the information-theoretic mutual information criterion
of Caselton and Zidek (1984) for optimizing sensor placements, empirically demonstrating
its advantages over more commonly used criteria.

• Even though we prove NP-hardness of the optimization problem, we present a polynomial
time approximation algorithm with constant factor approximation guarantee, by exploiting
submodularity. To the best of our knowledge, no such guarantee exists for any other GP-
based sensor placement approach, and for any other criterion.

• We also show that submodularity provides online bounds for the quality of our solution, which
can be used in the development of efficient branch-and-bound search techniques, or to bound
the quality of the solutions obtained by other algorithms.

• We provide two practical techniques that significantly speed up the algorithm, and prove that
they have no or minimal effect on the quality of the answer.

• We extend our analysis of mutual information to provide theoretical guarantees for place-
ments that are robust against failures of nodes and uncertainties in the model.
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(a) 54 node sensor network deployment
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Figure 1: (a) A deployment of a sensor network with 54 nodes at the Intel Berkeley Lab. Correla-
tions are often nonstationary as illustrated by (b) temperature data from the sensor network deploy-
ment in Figure 1(a), showing the correlation between a sensor placed on the blue square and other
possible locations; (c) precipitation data from measurements made across the Pacific Northwest,
Figure 11(b).

• Extensive empirical evaluation of our methods on several real-world sensor placement prob-
lems and comparisons with several classical design criteria.

The paper is organized as follows. In Section 2, we introduce Gaussian Processes. We review mutual
information criterion in Section 3, and describe our approximation algorithm to optimize mutual in-
formation in Section 4. Section 5 presents several approaches towards making the optimization more
computationally efficient. In Section 6, we discuss how we can extend mutual information to be ro-
bust against node failures and uncertainty in the model. Section 8 relates our approach to other pos-
sible optimization criteria, and Section 7 describes related work. Section 9 presents our experiments.
Appendix A discusses learning GP models, with a focus on estimating non-stationary models.

2 Gaussian Processes

In this section, we review Gaussian Processes, the probabilistic model for spatial phenomena that
forms the basis of our sensor placement algorithms.
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Figure 2: Posterior mean and variance of the temperature GP estimated using all sensors: (a) Pre-
dicted temperature; (b) predicted variance.

2.1 Modeling Sensor Data Using the Multivariate Normal Distribution

Consider, for example, the sensor network we deployed as shown in Figure 1(a) that measures
a temperature field at 54 discrete locations. In order to predict the temperature at one of these
locations from the other sensor readings, we need the joint distribution over temperatures at the 54
locations. A simple, yet often effective (c.f., Deshpande et al., 2004), approach is to assume that the
temperatures have a (multivariate) Gaussian joint distribution. Denoting the set of locations as V ,
in our sensor network example |V| = 54, we have a set of n = |V| corresponding random variables
XV with joint distribution:

P (XV = xV) =
1

(2π)n/2|ΣVV |
e−

1
2
(xV−µV )T Σ−1

VV (xV−µV ),

where µV is the mean vector and ΣVV is the covariance matrix. Interestingly, if we consider a subset,
A ⊆ V , of our random variables, denoted byXA, then their joint distribution is also Gaussian.

2.2 Modeling Sensor Data Using Gaussian Processes

In our sensor network example, we are not just interested in temperatures at sensed locations, but
also at locations where no sensors were placed. In such cases, we can use regression techniques
to perform prediction (Golub and Van Loan, 1989; Hastie et al., 2003). Although linear regression
often gives excellent predictions, there is usually no notion of uncertainty about these predictions,
e.g., for Figure 1(a), we are likely to have better temperature estimates at points near existing sen-
sors, than in the two central areas that were not instrumented. A Gaussian process (GP) is a natural
generalization of linear regression that allows us to consider uncertainty about predictions.

Intuitively, a GP generalizes multivariate Gaussians to an infinite number of random variables. In
analogy to the multivariate Gaussian above where the the index set V was finite, we now have a (pos-
sibly uncountably) infinite index set V . In our temperature example, V would be a subset of R2, and
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(b) Data from the empirical covariance matrix.

Figure 3: Example kernel function learned from the Berkeley Lab temperature data: (a) learned
covariance function K(x, ·), where x is the location of sensor 41; (b) “ground truth”, interpolated
empirical covariance values for the same sensors. Observe the close match between predicted and
measured covariances.

each index would correspond to a position in the lab. GPs have been widely studied (c.f., MacKay,
2003; Paciorek, 2003; Seeger, 2004; O’Hagan, 1978; Shewry and Wynn, 1987; Lindley and Smith,
1972), and generalize Kriging estimators commonly used in geostatistics (Cressie, 1991).

An important property of GPs is that for every finite subset A of the indices V , which we can think
about as locations in the plane, the joint distribution over the corresponding random variables XA
is Gaussian, e.g., the joint distribution over temperatures at a finite number of sensor locations is
Gaussian. In order to specify this distribution, a GP is associated with a mean functionM(·), and
a symmetric positive-definite kernel function K(·, ·), often called the covariance function. For each
random variable with index u ∈ V , its mean µu is given byM(u). Analogously, for each pair of
indices u, v ∈ V , their covariance σuv is given by K(u, v). For simplicity of notation, we denote
the mean vector of some set of variables XA by µA, where the entry for element u of µA isM(u).
Similarly, we denote their covariance matrix by ΣAA, where the entry for u, v is K(u, v).

The GP representation is extremely powerful. For example, if we observe a set of sensor mea-
surements XA = xA corresponding to the finite subset A ⊂ V , we can predict the value at any
point y ∈ V conditioned on these measurements, P (Xy | xA). The distribution of Xy given these
observations is a Gaussian whose conditional mean µy|A and variance σ2

y|A are given by:

µy|A = µy + ΣyAΣ−1
AA(xA − µA), (1)

σ2
y|A = K(y, y)− ΣyAΣ−1

AAΣAy, (2)

where ΣyA is a covariance vector with one entry for each u ∈ A with value K(y, u), and ΣAy =
ΣT

yA. Figure 2(a) and Figure 2(b) show the posterior mean and variance derived using these equa-
tions on 54 sensors at Intel Labs Berkeley. Note that two areas in the center of the lab were not in-
strumented. These areas have higher posterior variance, as expected. An important property of GPs
is that the posterior variance (2) does not depend on the actual observed values xA. Thus, for a given
kernel function, the variances in Figure 2(b) will not depend on the observed temperatures.
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2.3 Nonstationarity

In order to compute predictive distributions using (1) and (2), the mean and kernel functions have
to be known. The mean function can usually be estimated using regression techniques. Estimating
kernel functions is difficult, and usually, strongly limiting assumptions are made. For example, it
is commonly assumed that the kernel K(u, v) is stationary, which means that the kernel depends
only on the difference between the locations, considered as vectors v, u, i.e., K(u, v) = Kθ(u− v).
Hereby, θ is a set of parameters. Very often, the kernel is even assumed to be isotropic, which means
that the covariance only depends on the distance between locations, i.e., K(u, v) = Kθ(||u− v||2).
Common choices for isotropic kernels are the exponential kernel, Kθ(δ) = exp(− |δ|

θ ), and the
Gaussian kernel, Kθ(δ) = exp(− δ2

θ2 ). These assumptions are frequently strongly violated in prac-
tice, as illustrated in the real sensor data shown in Figures 1(b) and 1(c). In Section 8.1, we discuss
how placements optimized from models with isotropic kernels reduce to geometric covering and
packing problems.

In this paper, we do not assume that K(·, ·) is stationary or isotropic. Our approach is general, and
can use any kernel function. In our experiments, we use the approach of Nott and Dunsmuir (2002)
to estimate nonstationary kernels from data collected by an initial deployment. More specifically,
their assumption is that an estimate of the empirical covariance ΣAA at a set of observed locations
is available, and that the process can be locally described by a collection of isotropic processes,
associated with a set of reference points. Details of this method are reviewed in Appendix A.3. An
example of a kernel function estimated using this method is presented in Figure 3(a). In Section 9.2,
we show that placements based on such nonstationary GPs lead to far better prediction accuracies
than those obtained from isotropic kernels.

3 Optimizing Sensor Placements

Usually, we are limited to deploying a small number of sensors, and thus must carefully choose
where to place them. In spatial statistics this optimization is called sampling or experimental design:
finding the k best sensor locations out of a finite subset V of possible locations, e.g., out of a grid
discretization of R2.

3.1 The Entropy Criterion

We first have to define what a good design is. Intuitively, we want to place sensors which are most
informative with respect to the entire design space. A natural notion of uncertainty is the conditional
entropy of the unobserved locations V \ A after placing sensors at locations A,

H(XV\A | XA) = −
∫

p(xV\A,xA) log p(xV\A | xA)dxV\AdxA, (3)

where we use XA and XV\A to refer to sets of random variables at the locations A and V \ A.
Intuitively, minimizing this quantity aims at finding the placement which results in the lowest un-
certainty about all uninstrumented locations V \ A after observing the placed sensors A. A good
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placement would therefore minimize this conditional entropy, i.e., we want to find

A∗ = argminA⊂V:|A|=k H(XV\A | XA).

Using the identity H(XV\A | XA) = H(XV)−H(XA), we can see that

A∗ = argminA⊂V:|A|=k H(XV\A | XA) = argmaxA⊂V:|A|=k H(XA).

So we can see that we need to find a set of sensorsA which is most uncertain about each other. Un-
fortunately, this optimization problem, often also referred to as D-optimal design in the experiment
design literature (c.f., Currin et al., 1991), has been shown to be NP-hard (Ko et al., 1995):

Theorem 1 (Ko et al., 1995) Given rational M and rational covariance matrix ΣVV over Gaus-
sian random variables V , deciding whether there exists a subset A ⊆ V of cardinality k such that
H(XA) ≥M is NP-complete.

Therefore, the following greedy heuristic has found common use (McKay et al., 1979; Cressie,
1991): One starts from an empty set of locations,A0 = ∅, and greedily adds placements until |A| =
k. At each iteration, starting with setAi, the greedy rule used is to add the location y∗H ∈ V \A that
has highest conditional entropy,

y∗H = argmaxy H(Xy | XAi), (4)

i.e., the location we are most uncertain about given the sensors placed thus far. If the set of selected
locations at iteration i is Ai = {y1, . . . , yi}, using the chain-rule of entropies, we have that:

H(XAi) = H(Xyi | XAi−1) + ... + H(Xy2 | XA1) + H(Xy1 | XA0).

Note that the (differential) entropy of a Gaussian random variable Xy conditioned on some set of
variables XA is a monotonic function of its variance:

H(Xy|XA) =
1
2

log(2πeσ2
Xy |XA) =

1
2

log σ2
Xy |XA +

1
2
(log(2π) + 1), (5)

which can be computed in closed form using Equation (2). Since for a fixed kernel function, the
variance does not depend on the observed values, this optimization can be done before deploying
the sensors, i.e., a sequential, closed-loop design taking into account previous measurements bears
no advantages over an open-loop design, performed before any measurements are made.

3.2 An Improved Design Criterion: Mutual Information

The entropy criterion described above is intuitive for finding sensor placements, since the sensors
that are most uncertain about each other should cover the space well. Unfortunately, this entropy
criterion suffers from the problem shown in Figure 4, where sensors are placed far apart along the
boundary of the space. Since we expect predictions made from a sensor measurement to be most
precise in a region around it, such placements on the boundary are likely to “waste” information.

7
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Figure 4: An example of placements chosen using entropy and mutual information criteria on a
subset of the temperature data from the Intel deployment. Diamonds indicate the positions chosen
using entropy; squares the positions chosen using MI.

This phenomenon has been noticed previously by Ramakrishnan et al. (2005), who proposed a
weighting heuristic. Intuitively, this problem arises because the entropy criterion is indirect: the cri-
terion only considers the entropy of the selected sensor locations, rather than considering prediction
quality over the space of interest. This indirect quality of the entropy criterion is surprising, since
the criterion was derived from the “predictive” formulation H(V \A | A) in Equation (3), which is
equivalent to maximizing H(A).

Caselton and Zidek (1984) proposed a different optimization criterion, which searches for the subset
of sensor locations that most significantly reduces the uncertainty about the estimates in the rest of
the space. More formally, we consider our space as a discrete set of locations V = S ∪U composed
of two parts: a set S of possible positions where we can place sensors, and another set U of positions
of interest, where no sensor placements are possible. The goal is to place a set of k sensors that will
give us good predictions at all uninstrumented locations V \ A. Specifically, we want to find

A∗ = argmaxA⊆S:|A|=k H(XV\A)−H(XV\A | XA), (6)

that is, the set A∗ that maximally reduces the entropy over the rest of the space V \ A∗. Note that
this criterion H(XV\A)−H(XV\A | XA) is equivalent to finding the set that maximizes the mutual
information I(XA;XV\A) between the locations A and the rest of the space V \ A. In their follow-
up work, Caselton et al. (1992) and Zidek et al. (2000), argue against the use of mutual information
in a setting where the entropy H(XA) in the observed locations constitutes a significant part of the
total uncertainty H(XV). Caselton et al. (1992) also argue that, in order to compute MI(A), one
needs an accurate model of P (XV). Since then, the entropy criterion has been dominantly used
as a placement criterion. Nowadays however, the estimation of complex nonstationary models for
P (XV), as well as computational aspects, are very well understood and handled. Furthermore, we
show empirically, that even in the sensor selection case, mutual information outperforms entropy on
several practical placement problems.
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Figure 5: Comparison of the greedy algorithm with the optimal solutions on a small problem. We
select from 1 to 5 sensor locations out of 16, on the Intel Berkeley temperature data set as discussed
in Section 9. The greedy algorithm is always within 95 percent of the optimal solution.

On the same simple example in Figure 4, this mutual information criterion leads to intuitively ap-
propriate central sensor placements that do not have the “wasted information” property of the en-
tropy criterion. Our experimental results in Section 9 further demonstrate the advantages in perfor-
mance of the mutual information criterion. For simplicity of notation, we will often use MI(A) =
I(XA;XV\A) to denote the mutual information objective function. Notice that in this notation the
process X and the set of locations V is implicit. We will also write H(A) instead of H(XA).

The mutual information is also hard to optimize:

Theorem 2 Given rational M and a rational covariance matrix ΣVV over Gaussian random vari-
ables V = S ∪ U , deciding whether there exists a subset A ⊆ S of cardinality k such that
MI(A) ≥M is NP-complete.

Proofs of all results are given in Appendix B. Due to the problem complexity, we cannot expect to
find optimal solutions in polynomial time. However, if we implement the simple greedy algorithm
for the mutual information criterion (details given below), and optimize designs on real-world place-
ment problems, we see that the greedy algorithm gives almost optimal solutions, as presented in Fig-
ure 5. In this small example, where we could compute the optimal solution, the performance of the
greedy algorithm was at most five percent worse than the optimal solution. In the following sections,
we will give theoretical bounds and empirical evidence justifying this near-optimal behavior.

4 Approximation Algorithm

Optimizing the mutual information criterion is an NP-complete problem. We now describe a poly-
nomial time algorithm with a constant-factor approximation guarantee.

9



Input: Covariance matrix ΣVV , k, V = S ∪ U
Output: Sensor selection A ⊆ S
begin
A ← ∅;
for j = 1 to k do

for y ∈ S \ A do δy ←
σ2

y − ΣyAΣ−1
AAΣAy

σ2
y − ΣyĀΣ−1

ĀĀΣĀy

;
1

y∗ ← argmaxy∈S\A δy;2

A ← A∪ y∗;
end

Algorithm 1: Approximation algorithm for maximizing mutual information.

4.1 The Algorithm

Our algorithm is greedy, simply adding sensors in sequence, choosing the next sensor which pro-
vides the maximum increase in mutual information. More formally, using MI(A) = I(XA;XV\A),
our goal is to greedily select the next sensor y that maximizes:

MI(A ∪ y)−MI(A) = H(A ∪ y)−H(A ∪ y|Ā)−
[
H(A)−H(A|Ā ∪ y)

]
,

= H(A ∪ y)−H(V) + H(Ā)−
[
H(A)−H(V) + H(Ā ∪ y)

]
= H(y|A)−H(y|Ā), (7)

where, to simplify notation, we writeA∪y to denote the setA∪{y}, and use Ā to mean V\(A∪y).
Note that the greedy rule for entropy in Equation (4) only considers the H(y|A) part of Equation (7),
measuring the uncertainty of location y with respect to the placements A. In contrast, the greedy
mutual information trades off this uncertainty with −H(y|Ā), which forces us to pick a y that is
“central” with respect to the unselected locations Ā, since those “central” locations will result in
the least conditional entropy H(y | Ā). Using the definition of conditional entropy in Equation (5),
Algorithm 1 shows our greedy sensor placement algorithm.

4.2 An Approximation Bound

We now prove that, if the discretization V of locations of interest in the Gaussian process is fine
enough, our greedy algorithm gives a (1− 1/e) approximation, approximately 63% of the optimal
sensor placement: If the algorithm returns set Â, then

MI(Â) ≥ (1− 1/e) max
A⊂S,|A|=k

MI(A)− kε,

for some small ε > 0. To prove this result, we use submodularity (c.f., Nemhauser et al., 1978).
Formally, a set function F is called submodular, if for all A,B ⊆ V it holds that F (A ∪ B) +
F (A ∩ B) ≤ F (A) + F (B). Equivalently, using an induction argument as done by Nemhauser
et al. (1978), a set function is submodular if for all A ⊆ A′ ⊆ V and y ∈ V \ A′ it holds that
F (A ∪ y) − F (A) ≥ F (A′ ∪ y) − F (A′). This second characterization intuitively represents
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Figure 6: Mutual information of greedy sets of increasing size. It can be seen that clearly mutual in-
formation is not monotonic. MI is monotonic, however, in the initial part of the curve corresponding
to small placements. This allows us to prove approximate monotonicity.

“diminishing returns”: adding a sensor y when we only have a small set of sensorsA gives us more
advantage than adding y to a larger set of sensors A′. Using the “information never hurts” bound,
H(y | A) ≥ H(y | A∪B) (Cover and Thomas, 1991), note that our greedy update rule maximizing
H(y | A)−H(y | Ā) implies

MI(A′ ∪ y)−MI(A′) ≤ MI(A ∪ y)−MI(A),

wheneverA ⊆ A′, i.e., adding y toA helps more than adding y toA′. Hence we have shown:

Lemma 3 The set function A 7→ MI(A) is submodular.

A submodular set function F is called monotonic if F (A ∪ y) ≥ F (A) for y ∈ V . For such
functions, Nemhauser et al. (1978) prove the following fundamental result:

Theorem 4 (Nemhauser et al., 1978) Let F be a monotone submodular set function over a finite
ground set V with F (∅) = 0. Let AG be the set of the first k elements chosen by the greedy
algorithm, and let OPT = maxA⊂V,|A|=k F (A). Then

F (AG) ≥

(
1−

(
k − 1

k

)k
)

OPT ≥ (1− 1/e) OPT .

Hence the greedy algorithm guarantees a performance guarantee of (1− 1/e) OPT, where OPT is
the value of the optimal subset of size k. This greedy algorithm is defined by selecting in each step
the element y∗ = argmaxy F (A ∪ y) − F (A). This is exactly the algorithm we proposed in the
previous section for optimizing sensor placements (Algorithm 1).

Clearly, MI(∅) = I(∅;V) = 0, as required by Theorem 4. However, the monotonicity of mutual
information is not apparent. Since MI(V) = I(V, ∅) = 0, the objective function will increase and
then decrease, and, thus, is not monotonic, as shown in Figures 6(a) and 6(b). Fortunately, the proof
of Nemhauser et al. (1978) does not use monotonicity for all possible sets, it is sufficient to prove
that MI is monotonic for all sets of size up to 2k. Intuitively, mutual information is not monotonic

11



when the set of sensor locations approaches V . If the discretization level is significantly larger than
2k points, then mutual information should meet the conditions of the proof of Theorem 4.

Thus the heart of our analysis of Algorithm 1 will be to prove that if the discretization of the
Gaussian process is fine enough, then mutual information is approximately monotonic for sets of
size up to 2k. More precisely we prove the following result:

Lemma 5 Let X be a Gaussian process on a compact subset C of Rm with a positive-definite,
continuous covariance kernel K : C × C → R+

0 . Assume the sensors have a measurement error
with variance at least σ2. Then, for any ε > 0, and any finite maximum number k of sensors
to place there exists a discretization V = S ∪ U , S and U having mesh width δ such that ∀y ∈
V \ A,MI(A ∪ y) ≥ MI(A)− ε for all A ⊆ S, |A| ≤ 2k.

If the covariance function is Lipschitz-continuous, such as the Gaussian Radial Basis Function
(RBF) kernel, the following corollary gives a bound on the required discretization level with respect
to the Lipschitz constant:

Corollary 6 If K is Lipschitz-continuous with constant L, then the required discretization is

δ ≤ εσ6

4kLM (σ2 + 2k2M + 6k2σ2)
,

where M = maxx∈C K(x, x), for ε < min(M, 1).

Corollary 6 guarantees that for any ε > 0, a polynomial discretization level is sufficient to guarantee
that mutual information is ε−approximately monotonic. These bounds on the discretization are,
of course, worst case bounds. The worst-case setting occurs when the sensor placements A are
arbitrarily close to each other, since the entropy part H(y | A) in Equation (7) can become negative.
Since most GPs are used for modeling physical phenomena, both the optimal sensor placement and
the sensor placement produced by the greedy algorithm can be expected to be spread out, and not
condensed to a small region of the sensing area. Hence we expect the bounds to be very loose in the
situations that arise during normal operation of the greedy algorithm.

Combining our Lemmas 3 and 5 with Theorem 4, we obtain our constant-factor approximation
bound on the quality of the sensor placements obtained by our algorithm:

Theorem 7 Under the assumptions of Lemma 5, Algorithm 1 is guaranteed to select a set A of k
sensors for which

MI(A) ≥ (1− 1/e)(OPT−kε),

where OPT is the value of the mutual information for the optimal placement.

Note that our bound has two implications: First, it shows that our greedy algorithm has a guaran-
teed minimum performance level of 1 − 1/e when compared to the optimal solution. Second, our
approach also provides an upper-bound on the value of the optimal placement, which can be used
to bound the quality of the placements by other heuristic approaches, such as local search, that may
perform better than our greedy algorithm on specific problems.
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4.3 Sensor Placement with Non-constant Cost Functions

In many real-world settings, the cost of placing a sensor depends on the specific location. Such
cases can often be formalized by specifying a total budget L, and the task is to select placements
A whose total cost c(A) is within our budget. Recently, the submodular function maximization
approach of Nemhauser et al. (1978) has been extended to address this budgeted case (Sviridenko,
2004; Krause and Guestrin, 2005), in the case of modular cost functions, i.e., c(A) =

∑k
i=1 c(Xi),

where A = {X1, . . . ,Xk} and c(Xi) is the cost for selecting element Xi. The combination of the
analysis in this paper with these new results also yields a constant-factor (1 − 1/e) approximation
guarantee for the sensor placement problem with non-uniform costs.

The algorithm for this budgeted case first enumerates all subsets of cardinality at most three. For
each of these candidate subsets, we run a greedy algorithm, which adds elements until the budget is
exhausted. The greedy rule optimizes a benefit cost ratio, picking the element for which the increase
of mutual information divided by the cost of placing the sensor is maximized: More formally, at
each step, the greedy algorithm adds the element y∗ such that

y∗ = argmaxy∈S\A
H(y | A)−H(y | Ā)

c(y)
. (8)

Krause and Guestrin (2005) show that this algorithm achieves an approximation guarantee of

(1− 1/e) OPT− 2Lε

cmin
,

where L is the available budget, and cmin is the minimum cost of all locations. A requirement for
this result to hold is that mutual information is ε-monotonic up to sets of size 2L

cmin
. The necessary

discretization level can be established similarly as in Corollary 6, with k replaced by L
cmin

.

4.4 Online Bounds

Since mutual information is approximately monotonic and submodular, Theorem 7 proves an a
priori approximation guarantee of (1 − 1/e). For most practical problems however, this bound is
very loose. The following observation allows to compute online bounds on the optimal value:

Proposition 8 Assume that the discretization is fine enough to guarantee ε-monotonicity for mutual
information, and that the greedy algorithm returns an approximate solution Ak, |Ak| = k. For all
y ∈ S, let δy = MI(A ∪ y) −MI(A). Sort the δy in decreasing order, and consider the sequence
δ(1), . . . , δ(k) of the first k elements. Then OPT ≤ MI(Ak) +

∑k
i=1 δ(i) + kε.

The proof of this proposition follows directly from submodularity and ε-monotonicity. In many
applications, especially for large placements, this bound can be much tighter than the bound guar-
anteed by Theorem 7. Figures 7(a) and 7(b) compare the a priori and online bounds for the data sets
discussed in Section 9.1.
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Figure 7: Online bounds: mutual information achieved by the greedy algorithm, the (1− 1/e) and
1− (1− 1/k)k a priori bounds and the online bound described in Section 4.4.

4.5 Exact Optimization and Tighter Bounds Using Mixed Integer Programming

There is another way to get even tighter bounds, or even compute the optimal solution. This ap-
proach is based on branch & bound algorithm for solving a mixed integer program for monotonic
submodular functions (Nemhauser and Wolsey, 1981). We used this algorithm to bound the value
of the optimal solution in Figure 5.

The mixed integer program is given by:

max η;

η ≤ MI(B) +
∑

yi∈S\B

αi[MI(B ∪ yi)−MI(B)], ∀B ⊆ S; (9)

∑
i

αi ≤ k, ∀i; (10)

αi ∈ {0, 1}, ∀i;

where αi = 1 means that location yi should be selected. Note that this MIP can be easily extended
to handle the case in which each location can have a different cost, by replacing the constraint (10)
by
∑

i αici ≤ L, where L is the budget and ci = c(yi).

Unfortunately, this MIP has exponentially many constraints. Nemhauser and Wolsey (1981) pro-
posed the following constraint generation algorithm: Let αA denote an assignment to α1, . . . , αn

such that αi = 1 iff yi ∈ A. Starting with no constraints of type (9), the MIP is solved, and
one checks whether the current solution (η, αB) satisfies η ≤ MI(B)). If it does not, a violated
constraint has been found. Since solving individual instances (even with only polynomially many
constraints) is NP-hard, we need to resort to search heuristics such as Branch and Bound and Cut
during the constraint generation process.

The analysis of this MIP, as presented by Nemhauser and Wolsey (1981), assumes monotonicity.
In the case of mutual information, the objective is only approximately monotonic. In particular,
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consider a a placement defined by αA. Then, by submodularity, for all B, we have that:

MI(B) +
∑

yi∈S\B

αAi [MI(B ∪ yi)−MI(B)] = MI(B) +
∑

yi∈A\B

[MI(B ∪ yi)−MI(B)],

≥ MI(A ∪ B).

By approximate monotonicity:

MI(A ∪ B) ≥ MI(A)− kε.

Thus, (η̂, αA), for η̂ ≤ MI(A)− kε is a feasible solution for the mixed integer program. Since we
are maximizing η, for the optimal solution (η∗, αA

∗
) of the MIP it holds that

MI(A∗) ≥ OPT−kε.

There is another MIP formulation for maximizing general submodular functions without the ε-
monotonicity requirement. The details can be found in Nemhauser and Wolsey (1981). We however
found this formulation to produce much looser bounds, and to take much longer to converge.

5 Scaling Up

Greedy updates for both entropy and mutual information require the computation of conditional
entropies using Equation (5), which involves solving a system of |A| linear equations. For entropy
maximization, where we consider H(y|A) alone, the complexity of this operation is O(k3). To
maximize the mutual information, we also need H(y|Ā) requiring O(n3), for n = |V|. Since we
need to recompute the score of all possible locations at every iteration of Algorithm 1, the complex-
ity of our greedy approach for selecting k sensors is O(kn4), which is not computationally feasible
for very fine discretizations (large n). In Section 5.1 we propose a lazy strategy which often allows
to reduce the number of evaluations of the greedy rule, thereby often reducing the complexity to
O(kn3). In Section 5.2 we present a way of exploiting the problem structure by using local kernels,
which often reduces the complexity to O(kn). Both approaches can be combined for even more
efficient computation.

5.1 Lazy Evaluation Using Priority Queues

It is possible to improve the performance of Algorithm 1 directly under certain conditions by lazy
evaluation of the incremental improvements in Line 1. A similar algorithm has been proposed by
Robertazzi and Schwartz (1989) in the context of D-optimal design. At the start of the algorithm, all
δy will be initialized to +∞. The algorithm will maintain information about which δy are current,
i.e., have been computed for the current locations A. Now, the greedy rule in Line 2 will find
the node y largest δy. If this δy has not been updated for the current A, the value is updated and
reintroduced into the queue. This process is iterated until the location with maximum δy is has an
updated value. The algorithm is presented in Algorithm 2. The correctness of this lazy procedure
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Input: Covariance matrix ΣVV , k, V = S ∪ U
Output: Sensor selection A ⊆ S
begin
A ← ∅;
foreach y ∈ S do δy ← +∞;
for j = 1 to k do

foreach y ∈ S \ A do currenty ← false;1

while true do
y∗ ← argmaxy∈S\A δy;2

if currenty∗ then break;
δy∗ ← H(y | A)−H(y | Ā) ;3

currenty∗ ← true
A ← A∪ y∗;

end
Algorithm 2: Approximation algorithm for maximizing mutual information efficiently using lazy
evaluation.

directly follows from submodularity: For a fixed location y, the sequence δy must be monotonically
decreasing during course of the algorithm.

To understand the efficacy of this procedure, consider the following intuition: If a location y∗ is
selected, nearby locations will become significantly less desirable and their marginal increases δy

will decrease significantly. When this happens, these location will not be considered as possible
maxima for the greedy step for several iterations. This approach can save significant computation
time – we have noticed a decrease of mutual information computations by a factor of six in our
experiments described in Section 9.6.

This approach can be efficiently implemented by using a priority queue to maintain the advantages
δy. Line 2 calls deletemax with complexity O(log n) and Line 3 uses the insert operation with
complexity O(1). Also, as stated Line 1 has an O(n) complexity, and was introduced for sim-
plicity of exposition. In reality, we annotate the δy’s with the last iteration that they were updated,
completely eliminating this step.

5.2 Local Kernels

In this section, we exploit locality in the kernel function to speed up the algorithm significantly:
First, we note that, for many GPs, correlation decreases exponentially with the distance between
points. Often, variables which are far apart are actually independent. These weak dependencies
can be modeled using a covariance function K for which K(x, ·) has compact support, i.e., that has
non-zero value only for a small portion of the space. For example, consider the following isotropic
covariance function proposed by Storkey (1999):

K(x, y) =

{
(2π−∆)(1+(cos∆)/2)+ 3

2
sin ∆

3π , for ∆<2π,
0, otherwise,

(11)
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Figure 8: Comparison of local and Gaussian kernels.

Input: Covariance ΣVV , k, V = S ∪ U , ε > 0
Output: Sensor selection A ⊆ S
begin
A ← ∅;
foreach y ∈ S do

δy ← H(y)− H̃ε(y|V \ y);1

for j = 1 to k do
y∗ ← arg maxy δy;2

A ← A∪ y∗;
foreach y ∈ N(y∗; ε) do

δy ← H̃ε(y|A)− H̃ε(y|Ā);3
end

Algorithm 3: Approximation algorithm for maximizing mutual information using local kernels.

where ∆=β‖x−y‖2, for β>0. This covariance function resembles the Gaussian kernelK(x, y) =
exp(−β‖x− y‖22/(2π)) as shown in Figure 8, but is zero for distances larger than 2π/β.

Even if the covariance function does not have compact support, it can be appropriate to compute
H(y|B̃) ≈ H(y|B) where B̃ results from removing all elements x from B for which | K(x, y)| ≤ ε
for some small value of ε. This truncation is motivated by noting that:

σ2
y|B\x − σ2

y|B ≤
K(y, x)2

σ2
x

≤ ε2

σ2
x

.

This implies that the decrease in entropy H(y|B\x)−H(y|B) is at most ε2/(σ2σ2
x) (using a similar

argument as the one in the proof of Lemma 5), assuming that each sensor has independent Gaus-
sian measurement error of at least σ2. The total decrease of entropy H(y|B̃)−H(y|B) is bounded
by nε2/σ4. This truncation allows to compute H(y|Ā) much more efficiently, at the expense of
this small absolute error. In the special case of isotropic kernels, the number d of variables x with
K(x, y) > ε can be computed as a function of the discretization and the covariance kernel. This
reduces the complexity of computing H(y|Ā) from O(n3) to O(d3), which is a constant.

Our truncation approach leads to the more efficient optimization algorithm shown in Algorithm 3.
Here, H̃ε refers to the truncated computation of entropy as described above, and N(y∗; ε) ≤ d refers
to the set of elements x ∈ S for which | K(y∗, x)| > ε. Using this approximation, our algorithm
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is significantly faster: Initialization (Line 1) requires O(nd3) operations. For each one of the k
iterations, finding the next sensor (Line 2) requiresO(n) comparisons, and adding the new sensor y∗

can only change the score of its neighbors (N(y∗; ε) ≤ d), thus Line 3 requiresO(d ·d3) operations.
The total running time of Algorithm 3 isO(nd3 + kn+ kd4), which can be significantly lower than
the O(kn4) operations required by Algorithm 1. Theorem 9 summarizes our analysis:

Theorem 9 Under the assumptions of Lemma 5, guaranteeing ε1-approximate monotonicity and
truncation parameter ε2, Algorithm 3 selects A ⊆ S such that

MI(A) ≥ (1− 1/e)(OPT−kε1 − 2knε2/σ4),

in time O(nd3 + nk + kd4).

This approach can be efficiently implemented by using a priority queue to maintain the advantages
δy. Using for example a Relaxed Heaps data structure, the running time can be decreased toO(nd3+
kd log n + kd4): Line 1 uses the insert operation with complexity O(1), Line 2 calls deletemax
with complexity O(log n), and Line 3 uses delete and insert, again with complexity O(log n).
This complexity improves on Algorithm 3 if d log n � n. This assumption is frequently met in
practice, since d can be considered a constant as the size n of the sensing area grows. Of course,
this procedure can also be combined with the lazy evaluations described in the previous section for
further improvement in running time.

6 Robust Sensor Placements

In this section, we show how the mutual information criterion can be extended to optimize for
placements which are robust against failures of sensor nodes, and against uncertainty in the model
parameters. The submodularity of mutual information will allow us to derive approximation guar-
antees in both cases.

6.1 Robustness Against Failures of Nodes

As with any physical device, sensor nodes are susceptible to failures. For example, the battery of a
wireless sensor can run out, stopping it from making further measurements. Networking messages
containing sensor values can be lost due to wireless interference. In the following, we discuss how
the presented approach can handle such failures. We associate with each location yi ∈ S a discrete
random variable Zi such that Zi = 0 indicates that a sensor placed at location yi has failed and will
not produce any measurements, and Zi = 1 indicates that the sensor is working correctly. For a
placement A ⊂ S, denote by Az the subset of locations yi ∈ A such that zi = 1, i.e., the subset of
functional sensors. Then, the robust mutual information

MIR(A) = EZ[Az] =
∑
z

P (z) MI(Az),

is an expectation of the mutual information for placementA where all possible failure scenarios are
considered.
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Proposition 10 MIR(A) is submodular and, under the assumptions of Lemma 5, approximately
monotonic.

Proof This is a straightforward consequence of the fact that the class of submodular functions are
closed under taking expectations. The approximate monotonicity can be verified directly from the
approximate monotonicity of mutual information.

Unfortunately, the number of possible failure scenarios grows exponentially in |S|. However, if the
Zi are i.i.d., and the failure probability P (Zi = 0) = θ is low enough, MIR can be approximated
well, for example, by only taking into account scenarios were none or at most one sensor fails. This
simplification often works in practice (Lerner and Parr, 2001). These |S| + 1 scenarios can easily
be enumerated. For more complex distributions over Z, or higher failure probabilities θ, one might
have to resort to sampling in order to compute MIR.

The discussion above presents a means for explicitly optimizing placements for robustness. How-
ever, we can show that even if we do not specifically optimize for robustness, our sensor placements
will be inherently robust:

Proposition 11 (Krause et al., 2006) Consider a submodular function F (·) on a ground set S, a
set B ⊆ S, and a probability distribution over subsets A of B with the property that, for some
constant ρ, we have Pr [v ∈ A] ≥ ρ for all v ∈ B. Then E[F (A)] ≥ ρF (B).

When applying this proposition, the set B will correspond to the selected sensor placement. The
(randomly chosen) setA denotes the set of fully functioning nodes. If each node fails independently
with probability 1−ρ, that implies that Pr [c ∈ A] ≥ ρ, and hence the expected mutual information
of the functioning nodes, E[MI(A)], is at least ρ times the mutual information MI(B), i.e., when no
nodes fail. Proposition 11 even applies if the node failures are not independent, but for example are
spatially correlated, as can be expected in practical sensor placement scenarios.

6.2 Robustness Against Uncertainty in the Model Parameters

Often, the parameters θ of the GP prior, such as the amount of variance and spatial correlation
in different areas of the space, are not known. Consequently, several researcher (Caselton et al.,
1992; Zimmerman, 2006; Zhu and Stein, 2006) have proposed approaches to explicitly address the
uncertainty in the model parameters, which are discussed in Section 7.

We want to exploit submodularity in order to get performance guarantees on the placements. We
take a Bayesian approach, and equip θ with a prior. In this case, the objective function becomes

MIM (A) = Eθ[I(A;V \ A | θ)] =
∫

p(θ)I(A;V \ A | θ)dθ.

Since the class of submodular functions is closed under expectations, MIM is still a submodular
function. However, the approximate monotonicity requires further assumptions. For example, if the
discretization meshwidth is fine enough to guarantee approximate monotonicity for all values of θ
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for which p(θ) > 0, then approximate monotonicity still holds, since

MIM (A ∪ y)−MIM (A) =
∫

p(θ)[I(A ∪ y;V \ (A ∪ y) | θ)− I(A;V \ A | θ)]dθ, (12)

≥
∫

p(θ)[−ε]dθ = −ε. (13)

A weaker assumption also suffices: If there exists a (nonnegative) function η(θ) such that I(A ∪
y;V \ (A ∪ y) | θ) − I(A;V \ A | θ) ≥ −η(θ), and

∫
p(θ)[−η(θ)]dθ ≥ −ε, then MIM is still ε-

approximately monotonic. Such a function would allow the level ε of ε-approximately monotonicity
to vary for different values of θ.

Note that in this setting however, the predictive distributions (1) and (2) cannot be computed in
closed form anymore, and one has to resort to approximate inference techniques (c.f., Rasmussen
and Williams 2006).

The advantage of exploiting submodularity for handling uncertainty in the model parameters is that
the offline and online bounds discussed in Section 4.4 still apply. Hence, contrary to existing work,
our approach provides strong theoretical guarantees on the achieved solutions.

7 Related Work

There is a large body of work related to sensor placement, and to the selection of observations
for the purpose of coverage and prediction. Variations of this problem appear in spatial statistics,
active learning, and experimental design. Generally, the methods define an objective function (Sec-
tion 7.1), such as area coverage or predictive accuracy, and then apply a computational procedure
(Section 7.2) to optimize this objective function. We also review related work on extensions to this
basic scheme (Section 7.3), the related work in Machine Learning in particular (Section 7.4), and
our previous work in this area (Section 7.5).

7.1 Objective Functions

We distinguish geometric and model-based approaches, which differ according to their assumptions
made about the phenomenon to be monitored.

7.1.1 Geometric Approaches

Geometric approaches do not build a probabilistic model of the underlying process, but instead
use geometric properties of the space in which the process occurs. The goal is typically a sensor
placement that covers the space. The most common approaches for optimizing sensor placements
using geometric criteria assume that sensors have a fixed region (c.f., Hochbaum and Maas, 1985;
Gonzalez-Banos and Latombe, 2001; Bai et al., 2006). These regions are usually convex or even
circular. Furthermore, it is assumed that everything within this region can be perfectly observed,
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and everything outside cannot be measured by the sensors. In Section 8.1, we relate these geometric
approaches to our GP-based formulation.

In the case where the sensing area is a disk (the disk model), Kershner (1939) has shown that an
arrangement of the sensors in the centers of regular hexagons is asymptotically optimal, in the sense
that a given set is fully covered by uniform disks. In Section 9.3, we experimentally show that
when we apply the disk model to nonstationary placement problems, as considered in this paper, the
geometric disk model approach leads to worse placements in terms of prediction accuracy, when
compared to model-based approaches.

If many sensors are available then one can optimize the deployment density instead of the placement
of individual sensors (Toumpis and Gupta, 2005). The locations of placed sensors are then assumed
to be randomly sampled from this distribution. In the applications we consider, sensors are quite
expensive, and optimal placement of a small set of them is desired.

7.1.2 Model-based Approaches

This paper is an example of a model-based method, one which takes a model of the world (here, a
GP) and places sensors to optimize a function of that model (here, mutual information).

Many different objective functions have been proposed for model-based sensor placement. In the
statistics community, classical and Bayesian experimental design focused on the question of select-
ing observations to maximize the quality of parameter estimates in linear models (c.f., Atkinson
1988; Lindley 1956). In spatial statistics, information-theoretic measures, notably entropy, have
been frequently used (Caselton and Hussain, 1980; Caselton and Zidek, 1984; Caselton et al., 1992;
Shewry and Wynn, 1987; Federov and Mueller, 1989; Wu and Zidek, 1992; Guttorp et al., 1992).
These objectives minimize the uncertainty in the prediction, after the observations are made.

Classical Experimental Design Criteria. In the statistics literature, the problem of optimal ex-
perimental design has been extensively studied (c.f., Atkinson, 1988, 1996; Pukelsheim, 1987; Boyd
and Vandenberghe, 2004). The problem commonly addressed there is to estimate the parameters θ
of a function,

y = fθ(x) + w,

where w is normally distributed measurement noise with zero mean and variance σ2, y a scalar
output and x a vectorial input. The assumption is, that the input x can be selected from a menu
of design options, {x1, . . . ,xn}. Each input corresponds to a possible experiment which can be
performed. In our sensor placement case, one x would be associated with each location, y would
be the measurement at the location, and θ would correspond to the values of the phenomenon at the
unobserved locations. Usually, the assumption is that fθ is linear, i.e. y = θTx + w.

For the linear model y = θTx + w, if all n observations were available, then

Var(θ̂) = σ2(XT X)−1 (14)

Var(ŷi) = σ2xT
i (XT X)−1xi, (15)
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where X is the design matrix, which consists of the inputs x1, . . . ,xn as its rows. We can see
that the variance of both the parameter estimate θ̂ and the predictions ŷi depends on the matrix
M = (XT X)−1, which is called the inverse moment matrix. If this matrix is “small”, then the
parameter estimates and predictions will be accurate. A design consists of a selection A of the
inputs (with repetitions allowed). We write XA to denote the selected experiments, and MA for the
corresponding inverse moment matrix. Classical experimental design considers different notions
of “smallness” for this inverse moment matrix MA; D-optimality refers to the determinant, A-
optimality to the trace and E-optimality to the spectral radius (the maximum eigenvalue). There
are several more scalarizations of the inverse moment matrix, and they are commonly referred to as
“alphabetical” optimality criteria.

An example of the relationship between this formalism and sensor placements in GPs, as well as
experimental comparisons, are presented in Section 9.5.

Equation (15) shows that the distribution of the test data is not taken into account, when attempting
to minimizing the inverse moment matrix MA. Yu et al. (2006) extend classical experimental design
to the transductive setting, which takes the distribution of test data into account. The information-
theoretic approaches, which we use in this paper, also directly take into account the unobserved
locations, as they minimize the uncertainty in the posterior P (XV\A | XA).

Bayesian Design Criteria. Classical experimental design is a Frequentist approach, which at-
tempts to minimize the estimation error of the maximum likelihood parameter estimate. If one
places a prior on the model parameters, one can formalize a Bayesian notion of experimental de-
sign. In its general form, Bayesian experimental design was pioneered by Lindley (1956). The
users encode their preferences in a utility function U(P (Θ), θ?), where the first argument, P (Θ),
is a distribution over states of the world (i.e., the parameters) and the second argument, θ?, is the
true state of the world. Observations xA are collected, and the change in expected utility under the
prior P (Θ) and posterior P (Θ | XA = xA) can be used as a design criteria. By using different
utility functions, Bayesian versions of A-, D-, and E- optimality can be developed (Chaloner and
Verdinelli, 1995).

Usually, Bayesian experimental design considers the task of parameter estimation (Sebastiani and
Wynn, 2000; Paninski, 2005; Ylvisaker, 1975). Lindley (1956) suggested using negative Shannon
information, which is equivalent to maximizing the expected Kullback-Leibler divergence between
the posterior and prior over the parameters:∫

P (xA)
∫

P (θ | xA) log
P (θ | xA)

P (θ)
dθdxA. (16)

If we consider distributions P (XV\A) over the unobserved locations XV\A instead of distributions
over parameters P (Θ), (16) leads to the following criterion:∫

P (xA)
∫

P (xV\A | xA) log
P (xV\A | xA)

P (xV\A)
dxV\AdxA. (17)

Note that Equation (17) is exactly the mutual information between the observed and unobserved
sensors, I(A;V \ A). For a linear-Gaussian model, where the mean and covariance are known, we
get the mutual information criteria of Caselton and Zidek (1984), which we use in this paper.
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Information-Theoretic Criteria. The special case of Bayesian experimental design, where an
information-theoretic functional (such as entropy or mutual information) is used as a utility function,
and where the predictive uncertainty in the unobserved variables is concerned (as in Equation (17))
is of special importance for spatial monitoring.

Such information-theoretic criteria have been used as design criteria in a variety of fields and appli-
cations. Maximizing the posterior entropy H(A) of a set of observations, as discussed in Section 3,
has been used in the design of computer experiments (Sacks et al., 1989; Currin et al., 1991), func-
tion interpolation (O’Hagan, 1978) and spatial statistics (Shewry and Wynn, 1987). This criteria
is sometimes also referred to as D-optimality, since the scalarization of the posterior variance in
the spatial literature and the scalarization of the parameter variance in classical experimental design
both involve a determinant. In this paper, we do not use the term D-optimality in this context.

Maximizing mutual information between sets of random variables has a long history of use in statis-
tics (Lindley, 1956; Bernardo, 1979), machine learning (Luttrell, 1985; MacKay, 1992). The spe-
cific form addressed in this paper, I(A;V \ A), has been used in spatial statistics (Caselton and
Zidek, 1984; Caselton et al., 1992). Mutual information requires an accurate estimate of the joint
model P (XV), while entropy only requires an accurate estimate at the selected locations, P (XA).
Caselton et al. (1992) argue that latter is easier to estimate from a small amount of data, thus arguing
against mutual information. We however contend that nowadays effective techniques for learning
complex nonstationary spatial models are available, such as the ones used in our experiments, thus
mitigating these concerns and enabling the optimization of mutual information.

7.2 Optimization Techniques

All of the criteria discussed thus far yield challenging combinatorial optimization problems. Several
approaches are used to solve them in the literature, which can be roughly categorized into those that
respect the integrality constraint and those which use a continuous relaxation.

7.2.1 Combinatorial search

For both geometric and model-based approaches, one must search for the best design or set of sensor
locations among a very (usually exponentially) large number of candidate solutions. In a classical
design, e.g., the inverse moment matrix on a set of selected experiments XA can be written as

MA =

(
n∑

i=1

kixixT
i

)−1

,

where ki is the number of times experiment xi is performed in designA. Since ki must be an integer,
a combinatorial number of potential experimental designs has to be searched. Similarly, when
placing a setA of k sensors out of a set V of possible locations, as we do in this paper, all sets of size
k have to be searched. For both entropy (Ko et al. 1995) and mutual information (this paper), this
search has been shown to be NP-hard, hence efficient exact solutions are likely not possible.

Since exhaustive search is usually infeasible, local, heuristic searches without theoretical guaran-
tees have commonly been applied. Approaches to the difficult combinatorial optimization include
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simulated annealing (Meyer and Nachtsheim, 1988), pairwise exchange (Fedorov, 1972; Mitchell,
1974a,b; Cook and Nachtsheim, 1980; Nguyen and Miller, 1992), forward and backward greedy
heuristics (MacKay, 1992; Caselton and Zidek, 1984). All these approaches provide no guarantees
about the quality of the solution. Since optimal solutions are highly desirable, branch-and-bound
approaches to speed up the exhaustive search have been developed (Welch, 1982; Ko et al., 1995).
Although they enable exhaustive search for slightly larger problem instances, the computational
complexity of the problems puts strong limits on their effectiveness.

By exploiting submodularity of mutual information, in this paper, we provide the first approach to
information-theoretic sensor placement which has guarantees both on the runtime and on the quality
of the achieved solutions.

7.2.2 Continuous relaxation

In some formulations, the integrality constraint is relaxed. For example, in classical experimental
design, the number of experiments to be selected is often large compared to the number of design
choices. In these cases, one can find a fractional design (i.e., a non-integral solution defining the
proportions by which experiments should be performed), and round the fractional solutions. In the
fractional formulation, A-, D-, and E-optimality criteria can be solved exactly using a semi-definite
program (Boyd and Vandenberghe, 2004). There are however no known bounds on the integrality
gap, i.e., the loss incurred by this rounding process.

In other approaches (Seo et al., 2000; Snelson and Ghahramani, 2005), a set of locations is chosen
not from a discrete, but a continuous space. If the objective function is differentiable with respect to
these locations, gradient-based optimization can be used instead of requiring combinatorial search
techniques. Nevertheless, optimality of the solution is not guaranteed since there is no known bound
on the discrepancy between local and global optima.

Another method that yields a continuous optimization, in the case of geometric objective functions,
is the potential field approach (Heo and Varshney, 2005; Howard et al., 2002). An energy criterion
similar to a spring model is used. This optimization results in uniformly distributed (in terms of
inter-sensor distances), homogeneous placements. The advantage of these approaches is that they
can adapt to irregular spaces (such as hallways or corridors), where a simple grid-based deployment
is not possible. Since the approach uses coordinate ascent, it can be performed using a distributed
computation, making it useful for robotics applications where sensors can move.

7.3 Related Work on Extensions

In this section, we discuss prior work related to our extensions on sensor placement under model
uncertainty (Section 6) and on the use of non-constant cost functions (Section 4.3).
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7.3.1 Placement with Model Uncertainty

The discussion thus far has focused on the case where the joint model P (XV) is completely spec-
ified, i.e., the mean and covariance of the GP are known2. With model uncertainty, one has to
distinguish between observation selection for predictive accuracy in a fixed model and observation
selection for learning parameters. Model uncertainty also introduces computational issues. If the
mean and covariance are fixed in a Gaussian process then the posterior is Gaussian. This makes it
easy to compute quantities such as entropy and mutual information. If the mean and covariance are
unknown, and we have to learn hyperparameters (e.g., kernel bandwidth of an isotropic process),
then the predictive distributions and information-theoretic quantities often lack a closed form.

Caselton et al. (1992) extend their earlier work on maximum entropy sampling to the case where
the mean and covariance are unknown by using a conjugate Bayesian analysis. The limitations of
this approach are that the conjugate Bayesian analysis makes spatial independence assumptions in
the prior and that complete data with repeated observations are required at every potential sensing
site. This leads to a determinant maximization problem, much like D-optimality, that precludes the
use of submodularity.

Another approach is the development of hybrid criteria, which balance parameter estimation and
prediction. For example, Zimmerman (2006) proposes local EK-optimality, a linear combination of
the maximum predictive variance and a scalarization of the covariance of the maximum likelihood
parameter estimate. While this criterion selects observations which reduce parameter uncertainty
and predictive uncertainty given the current parameter, it does not take into account the effect of
parameter uncertainty on prediction error. To address this issue, Zhu and Stein (2006) derive an
iterative algorithm which alternates between optimizing the design for covariance estimation and
spatial prediction. This procedure does not provide guarantees on the quality of designs.

An alternative approach to addressing model uncertainty, in the context of classical experimental
design, is presented by Flaherty et al. (2006). There, instead of committing to a single value, the
parameters of a linear model are constrained to lie in a bounded interval. Their robust design objec-
tive, which is based on E-optimality, is then defined with respect to the worst-case parameter value.
Flaherty et al. (2006) demonstrate how a continuous relaxation of this problem can be formulated
as a SDP, which can be solved exactly. No guarantees are given however on the integrality gap on
this relaxation.

In our approach, as discussed in Section 6, we show how submodularity can be exploited even in
the presence of parameter uncertainty. We do not address the computational issues, which depend
on the particular parameterization of the GP used. However, in special cases (e.g., uncertainty about
the kernel bandwidth), one can apply sampling or numerical integration, and still get guarantees
about the achieved solution.

2Or one assumes the uncertainty on these parameters is small enough that their contribution to the predictive uncer-
tainty is negligible.
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7.3.2 Non-constant Cost Functions

In Section 4.3, we discuss the case where every sensor can have a different cost, and one has a budget
which one can spend. An alternate approach to sensor costs is presented by Zidek et al. (2000). They
propose a criteria that makes a trade off between achieved reduction in entropy using an entropy-to-
cost conversion factor, i.e., they optimize the sum of the entropy with a factor times the cost of the
placements. This criterion yields an unconstrained optimization problem. Our approach to sensor
costs (Section 4.3) yields a constrained optimization, maximizing our criteria given a fixed budget
that can be spent when placing sensors. Such a budget-based approach seems more natural in real
problems (where one often has a fixed number of sensors or amount of money to spend). Moreover,
our approach provides strong a priori theoretical guarantees and tighter online bounds, which are
not available for the approach of Zidek et al. (2000).

7.4 Related Work in Machine Learning

7.4.1 Feature Selection and Dimension Reduction

Given that the joint distribution ofXA andXV\A is Gaussian, their mutual information is also

MI(A) = −1
2

∑
i

log (1− ρ2
i ) (18)

where ρ2
1 ≥ · · · ≥ ρ2

|V| are the canonical correlation coefficients between XA and XV\A (Casel-
ton and Zidek, 1984). McCabe (1984) show that maximizing the canonical correlations between
observed and unobserved variables can be interpreted as a form of principal components analysis,
where one realizes that selecting subsets of variables is a special kind of linear projection. A similar
analysis is presented for entropy and other common design criteria. Using Equation (18), a similar
relationship can be made to canonical correlation analysis (CCA; Hotelling 1936), which finds lin-
ear projections for V \ A and A that maximize the correlations in the lower dimensional space. By
considering these lower-dimensional projections, one can determine how much variance is shared
(jointly explained) by V \ A and A.

While dimension reduction techniques such as Principal Component Analysis (PCA) or CCA can
be used to find a lower dimensional representation of a high dimensional problem, these techniques
usually find projections which are non-sparse, i.e., which are linear combinations of (almost) all
input variables. However, for interpretation purposes (and considering data acquisition cost), one
often desires sparse projections, which are linear combinations of only a small subset of input vari-
ables. Moghaddam et al. (2005) and Moghaddam et al. (2006) consider the problem of selecting
such sparse linear projections (subject to a constraint on the number of nonzero entries) of mini-
mum reconstruction error (for PCA) and class separation (for LDA). In order to find these sparse
projections, they propose two approaches: A mixed integer program, which can solve the prob-
lem optimally – albeit generally not in polynomial time, and a heuristic approach, using a greedy
forward search followed by a greedy backward elimination. While they do provide a theoretical
justification for their selection criteria, their approach does not provide an a priori lower bound on
the performance of the greedy algorithm.
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7.4.2 Active Learning

In the machine learning community, information-theoretic criteria have been used for active learn-
ing, techniques which allow the learning algorithm to influence the choice of training samples. For
example, information-theoretic criteria have been used in the analysis of query-by-committee to se-
lect samples (Sollich, 1996; Freund et al., 1997; Axelrod et al., 2001). Following Lindley (1956),
MacKay (1992) proposes selecting observations that maximize expected information gain, either
in terms of entropy or cross entropy, using Federov exchange. As opposed to this paper, which
addresses the optimization problem, MacKay (1992) focuses on comparing the different objective
criteria. Cohn (1994) proposes scoring each potential observation by measuring the average reduc-
tion in predicted variance at a set of reference points. There is some evidence which suggests that
this approach can improve prediction in Gaussian process regression (Seo et al., 2000). Common
to all these active learning approaches, as well as to this paper, is the problem of selecting a set of
most informative observation. Unlike this paper, we are not aware of any prior work in this area
which provides rigorous approximation guarantees for this problem.

7.4.3 Fast Gaussian Process Methods

Information-theoretic criteria are also used in sparse GP modeling, which attempts to reduce the cost
of inference by selecting a representative subset of the training data. Sample selection criteria have
included KL-divergence (Seeger et al., 2003) and entropy (Lawrence et al., 2003). In contrast to sen-
sor placement, where locations are chosen to minimize predictive uncertainty, in sparse GP methods,
the samples are chosen such that the approximate posterior matches the true posterior (which uses
the entire training set) as accurately as possible. Instead of choosing a subset of the training data,
Snelson and Ghahramani (2005) propose to optimize the location of a set of “hallucinated” inputs.
This approach results in a continuous optimization problem, which appears to be easier to solve
(albeit with no performance guarantees) than the discrete subset selection problem.

7.5 Relationship to Previous Work of the Authors

An earlier version of this paper appeared as (Guestrin et al., 2005). The present version is substan-
tially extended by new experiments on nonstationarity (Section 9.3, Section 9.2) and comparisons
to classical experimental design (Section 9.5). New are also the discussion of robust placements in
Section 6 and several extensions in Section 4 and Section 5.

Additionally, Krause et al. (2006) presented an approximation algorithm for optimizing node place-
ments for sensor networks using GPs that takes into account both the informativeness of placements
(analogously to the discussion in this paper) and the communication cost required to retrieve these
measurements. Their approach uses GPs both for modeling the monitored phenomenon as well as
the link qualities of the sensor network. Singh et al. (2007) consider the case of planning informa-
tive paths for multiple robots. Here, the goal is to select observations which are both informative,
but also lie on a collection of paths, one for each robot, of bounded length. They develop an approx-
imation algorithm with theoretical guarantees on the quality of the solution. In the setting of Krause
et al. (2006) and Singh et al. (2007) – unlike the case considered in this paper, where there are no
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constraints on the location of the sensors – the greedy algorithm performs arbitrarily badly, and the
papers describe more elaborate optimization algorithms. In these algorithms, the submodularity of
mutual information is again the crucial property which allows the authors to obtain approximation
guarantees for their approach.

8 Notes on Optimizing Other Objective Functions

In this section, we discuss some properties of alternative optimality criteria for sensor placement.

8.1 A Note on the Relationship with the Disk Model

The disk model for sensor placement (c.f., Hochbaum and Maas, 1985; Bai et al., 2006) assumes that
each sensor can perfectly observe everything within a radius of r and nothing else. Hence we can
associate with every location y ∈ V a sensing region Dy, which, for a discretization of the space,
corresponds to the locations contained within radius r of location y. For a set of locationsA, we can
define the coverage FD(A) =

⋃
y∈A Dy. It can be easily seen that this criterion is monotonic, sub-

modular and F (∅) = 0. Hence optimizing placements for the disk model criterion is a submodular
maximization problem, and the greedy algorithm can guarantee a constant factor (1 − 1/e) OPT
approximation guarantee for finding the placement of k sensors with maximum coverage.

There is a sense, in which the approach of sensor placements in GPs can be considered a generaliza-
tion of the disk model. If we assume an isotropic GP with local kernel function as the one presented
in Figure 8, then a sensor measurement is correlated exactly with the locations within a disk around
its location. If the process has constant variance, then the greedy algorithm will, for the first few
sensors placed, only try to achieve a disjoint placement of the disks, and as such behave just like the
greedy algorithm for disk covering.

However, once enough sensors have been placed so that these “disks” start to overlap, the behavior
of the two approaches begins to differ: in a disk model there is no advantage in placing sensors
that lead to overlapping disks. In a GP model, even an isotropic one, “overlapping disks” lead to
better predictions in the overlapping area, a very natural consequence of the representation of the
uncertainty in the process.

8.2 A Note on Maximizing the Entropy

As noted by Ko et al. (1995), entropy is also a submodular set function, suggesting a possible appli-
cation of the result of Nemhauser et al. (1978) to the entropy criterion. The corresponding greedy
algorithm adds the sensor y maximizing H(A∪y)−H(A) = H(y|A). Unfortunately, our analysis
of approximate monotonicity does not extend to the entropy case: Consider H(y|A) for A = {z},
for sufficiently small measurement noise σ2, we show that H(y|A) can become arbitrarily negative
as the mesh width of the discretization decreases. Thus, (even approximate) monotonicity does not
hold for entropy, suggesting that the direct application of the result of Nemhauser et al. (1978) is
not possible. More precisely, our negative result about the entropy criterion is:
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Remark 12 Under the same assumptions as in Lemma 5, for any ε > 0, there exists a mesh dis-
cretization width δ > 0 such that for any discretization level δ′, where 0 < δ′ ≤ δ, entropy violates
the monotonicity criteria by at least ε, if σ2 < 1

4πe .

8.3 A Note on Maximizing the Information Gain

Another objective function of interest is the information gain of a sensor placement with respect
to some distinguished variables of interest U , i.e., IG(A) = I(A;U) = H(U) − H(U | A).
Unfortunately, this objective function is not submodular, even in the case of multivariate normal
distributions: Let X = (X1,X2,X3) be distributed according to a multivariate Gaussian with zero
mean and covariance

Σ =

2 1 1
1 1 0
1 0 2

 .

Let U = {X3}. Here, X2 and X3 are marginally independent. Thus, alone, X2 provides no gain in
information. However, X2 does provide information about X1. Thus, if we first place a sensor at
position 1, placing a sensor at position 2 does help. More formally, IG({X2}) − IG(∅) = H(X3 |
X2) −H(X3) < H(X3 | X1,X2) −H(X3 | X1) = IG({X1,X2}) − IG({X1}). Hence adding X2

to the empty set achieves strictly less increase in information gain than adding X2 to the singleton
set containing X1, contradicting the submodularity assumption.

Remark 13 The information gain, IG(A) = I(A;U) is not submodular in A.

8.4 A Note on Using Experimental Design for Sensor Placement

As discussed in Section 7.1, the goal of classical experimental design is to find a set A of experi-
mental stimuli {x1, . . . ,xk} such that the parameter estimation error covariance MA = (XT

AXA)−1

is as small as possible, where XA is a matrix containing the xi as rows. The different optimality
criteria vary in the criteria used for measuring the smallness of MA. Consider the case where the
number p of parameters θ is greater than 1, as in the sensor placement setting, where θ are the
uninstrumented locations. If we select less than p observations, i.e., |A| ≤ p, then (XT

AXA) is not
full rank, and MA is infinite. Hence, for |A| < p, all alphabetical optimality criteria are infinite.
Consequently, the A-, D- and E-optimality criteria are infinite as well for all discrete designs A of
size less than p, and hence two such designs are incomparable under these criteria. This incompa-
rability implies that the greedy algorithm will have no notion of improvement, and cannot be used
for optimizing discrete classical experimental designs. Hence, discrete classical design cannot be
addressed using the concept of submodularity.

In the case of Bayesian experimental design, the parameters are equipped with a prior, and hence
the posterior error covariance will not be infinite. In this case however, none of Bayesian A-, D- and
E-optimality are submodular in general:

• Bayesian A-optimality. Consider Σ as in Section 8.3, describing the covariance of three zero
mean Gaussian random variables X1,X2,X3. We can select among V = {X1,X2}, and our
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goal is to maximally reduce the posterior variance of X3. A-optimality seeks to maximize the
set function F (A) = σ2

3 − σ2
3|A, where A ⊆ V . It can be seen that F (∅) = F ({X2}) = 0,

but F ({X1,X2})− F ({X1}) = 1
2 > 0, hence adding X2 to {X1} helps more than adding X2

to the empty set.

• Bayesian D-optimality. The same counterexample as for A-optimality shows that Bayesian
D-optimality (which is equivalent to the information gain criterion discussed in Section 8.3)
is not submodular.

• Bayesian E-optimality. Consider the case where θ = (θ1, θ2) equipped with a normal prior
with zero mean and covariance diag([1, 1]). Let yi = θTxi + w where w is Gaussian noise
with mean zero and variance ε. Let x1 = (1, 0)T and x2 = (0, 1)T . If we perform no ex-
periment (A = ∅), then the posterior error covariance, Σθ|XA = Σθ, and hence the maximum
eigenvalue is 1. If we observe either x1 or x2, the largest eigenvalue is still λmax(Σθ|XA) = 1.
But if we observe both x1 and x2, then λmax(Σθ|XA) = ε

1+ε . Hence adding x2 helps more if
we add it to x1 than if we add it to the empty set, contradicting submodularity.

Remark 14 Bayesian A-, D-, and E-optimality are not submodular in general.

However, Das and Kempe (2007) show that in certain cases, under a condition of conditional
suppressor-freeness, the variance reduction F (and hence Bayesian A-optimality) can indeed be
shown to be submodular.

9 Experiments

We performed experiments on two real-world data sets, which are described in Section 9.1. In Sec-
tion 9.2 we compare placements on stationary and nonstationary GP models. In Sections 9.3, 9.4
and 9.5 we compare mutual information with the disk model, with entropy and with other classical
experimental design criteria, in terms of prediction accuracy. In 9.6 we compare the performance
of the greedy algorithm with other heuristics, and in Section 9.7 we analyze the effect of exploiting
local kernels.

9.1 Data Sets

We first introduce the data sets we consider in our experiments. In our first data set, we analyze
temperature measurements from the network of 46 sensors shown in Figure 1(a). Our training data
consisted of samples collected at 30 sec. intervals on 3 consecutive days (starting Feb. 28th 2004),
the testing data consisted of the corresponding samples on the two following days.

Our second data set consists of precipitation data collected during the years 1949 - 1994 in the
states of Washington and Oregon (Widmann and Bretherton, 1999). Overall 167 regions of equal
area, approximately 50 km apart, reported the daily precipitation. To ensure the data could be
reasonably modeled using a Gaussian process we applied a log-transformation, removed the daily
mean, and only considered days during which rain was reported. After this preprocessing, we
selected the initial two thirds of the data as training instances, and the remaining samples for testing
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purposes. From the training data, we estimated the mean and empirical covariance, and regularized
it by adding independent measurement noise3 of σ2 = 0.1.

We computed error bars for the prediction accuracies in all of our experiments, but due to the vio-
lated independence of the collected samples (which are temporally correlated), these error bars are
overconfident and hence not reported here. The estimated standard errors under the independence
assumption are too small to be visible on the plots.

9.2 Comparison of Stationary and Non-stationary Models

To see how well both the stationary and nonstationary models capture the phenomenon, we per-
formed the following experiment: We learned both stationary and non-stationary GP models from
an increasing number of sensors. The model with stationary correlation function used an isotropic
Exponential kernel with bandwidth fitted using least-squares fit of the empirical variogram (Cressie,
1991). We also learned a nonstationary GP using the technique from Nott and Dunsmuir (2002), as
discussed in Section A.3 Both GP models were estimated from an initial deployment of an increas-
ing number of sensors. We used non-stationary the same variance process for both stationary and
nonstationary models (i.e., giving more information to the stationary model than commonly done).
Since with increasing amount of data, the empirical covariance matrix will exactly capture the un-
derlying process, we consider the empirical covariance as the ground truth both for placements and
prediction. Hence we also selected placements using the entire estimated covariance matrix.

We optimized the designs using mutual information on all the models. We evaluate the prediction
accuracy for an increasing number of near-optimally placed sensors, using the estimated model and
the measured values for the selected sensors. Figure 9(a) presents the results for the temperature
data set. We can see that the nonstationary model learned from 10 sensors performs comparably to
the stationary model with 40 sensors, even with non-stationary variance process. As we increase
the number of sensors in the initial deployment, the Root Mean Squared error (RMS) prediction
accuracies we get for placements of increasing size converge to those obtained for optimizing the
placements based on the empirical covariance matrix.

Figure 9(b) presents the results of the same experiment for the precipitation data. Here we can see
that the nonstationary model estimated using 20 sensors leads to better RMS accuracies than the
stationary model, even if latter is estimated using 160 sensors.

9.3 Comparison of Data-driven Placements with Geometric Design Criteria

We now compare placements based on our data-driven GP models with those based on the traditional
disk model. This model assumes that every sensor can perfectly measure the phenomenon within a
radius of r, and have no information outside this radius. Since choosing an appropriate radius for
the disk model is very difficult in practice, we decided to choose r = 5m since for this radius 20
sensors could just spatially cover the entire space. We also learned stationary and non-stationary
GP models as discussed in Section 9.2.

3The measurement noise σ2 was chosen by cross-validation.
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(a) Comparison of fits for temperature data.
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(b) Comparison of fits for precipitation data.

Figure 9: RMS curves for placements of increasing size, optimized using stationary and nonstation-
ary GPs. Prediction is done using estimated models. (a) Stationary GP estimated for the temperature
data from 40 sensors (S40), nonstationary GPs estimated from 10, 30 and 40 sensors (N10, N30,
N40). (b) Stationary GP estimated for the precipitation data from 160 sensors (S160), nonstationary
GPs estimated from 20, 40, 80 and 160 sensors (N20, N40, N80, N160).
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Figure 10: RMS curves for placements of increasing size, optimized using the disk model, station-
ary and nonstationary GPs. Prediction for all placements is done using the empirical covariance.
Stationary GPs and nonstationary GPs estimated from 30 sensors (N30, S30, for temperature data)
or 40 sensors (N40, S40, for precipitation data).

For the disk model, we used the greedy set covering algorithm. The design on both GP models
was done using our greedy algorithm to maximize mutual information. For an increasing number
of sensors, we compute the Root Mean Squares (RMS) prediction error on the test data. In order to
separate the placement from the prediction task, we used the empirical covariance matrix estimated
from the training data on all 46 locations for prediction, for all three placements.

Figure 10(a) presents the results of this experiment. We can see that the geometrical criterion
performs poorly compared to the model based approaches. We can see that the placements based
on the empirical covariance matrix perform best, quite closely followed by the accuracies obtained
by the designs based on the nonstationary process. Figure 10(b) shows the results for the same
experiment on the precipitation data set.
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(a) Placements of temperature sensors (b) Placements of rain sensors

Figure 11: Example sensor placements for temperature and precipitation data. Squares indicate
locations selected by mutual information, diamonds indicate those selected by entropy. Notice how
entropy places sensors closer to the border of the sensing field.

9.4 Comparison of the Mutual Information and Entropy Criteria

We also compared the mutual information criterion to other design criteria. We first compare it
against the entropy (variance) criterion. Using the empirical covariance matrix as our process, we
use the greedy algorithm to select placements of increasing size, both for mutual information and
for entropy. Figure 12(a) and Figure 12(b) show the results of this comparison on models estimated
for the morning (between 8 am and 9 am) and noon (between 12 pm and 1 pm) in the Intel lab data.
Figure 12(a) and Figure 12(b) plot the log-likelihood of the test set observations with increasing
number of sensors for both models. Figure 12(e) presents the RMS error for a model estimated
for the entire day. We can see that mutual information in almost all cases outperforms entropy,
achieving better prediction accuracies with a smaller number of sensors.

Figure 12(f) presents the same results for the precipitation data set. Mutual information signifi-
cantly outperforms entropy as a selection criteria – often several sensors would have to be addi-
tionally placed for entropy to reach the same level of prediction accuracy as mutual information.
Figure 11(b) shows where both objective values would place sensors to measure precipitation. It
can be seen that entropy is again much more likely to place sensors around the border of the sensing
area than mutual information.

To gain further insight into the qualitative behavior of the selection criteria we learned a GP model
using all sensors over one hour starting at noon. The model was fit with a isotropic Gaussian kernel
and quadratic trend for the mean, using the geoR Toolkit (Ribeiro Jr. and Diggle, 2001). Fig-
ures 13(a) and 13(b) show the posterior mean and variance for the model. Using our algorithms,
22 sensors were chosen using the entropy and mutual information criteria. For each set of selected
sensors, additional models were trained using only the measurements of the selected sensors. Pre-
dicted temperature surfaces for the entropy and mutual information configurations are presented in
Figures 13(c) and 13(d). Entropy tends to favor placing sensors near the boundary as observed in
Section 3, while mutual information tends to place the sensors on the top and bottom sides, which
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Figure 12: Prediction error and log-likelihood on test data for temperatures (a-e) and precipitation
(f) in sensor network deployment, for an increasing number of sensors.

exhibited the most complexity and should have a higher sensor density. The predicted variances for
each model are shown in figures 13(e) and 13(f). The mutual information version has significantly
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Figure 13: Comparison of predictive quality of subsets selected using MI and entropy.

lower variance than the entropy version almost everywhere, displaying, as expected, higher variance
in the unsensed areas in the center of the lab.
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9.5 Comparison of Mutual Information with Classical Experimental Design Crite-
ria

In order to compare the mutual information placements with the classical optimality criteria, we
performed the following experiment. We uniformly selected 12 target locations U in the lab as
locations of interest. We then set up the linear model

xS = ΣSUΣ−1
UU xU + w.

Hereby, xS denotes measurements at the locations S, among which we choose our placement, xU
are the values at the locations of interest (no sensors can be placed there), and w models independent
normal measurement noise with constant variance. After subtraction of the training set mean, this
model uses the Best Linear Unbiased (Kriging) estimator for predicting xS from xU .

The problem becomes to select the sensor locations A ⊂ S which allow most precise prediction of
the variables of interest, in the sense of minimizing the error covariance 1

σ2 (AT A)−1, where A =
ΣSUΣ−1

UU . The different classical design criteria vary in how the scalarization of the error covariance
is done. D-optimal design minimizes the log-determinant, A-optimal design minimizes the trace,
and E-optimal design minimizes the spectral radius (the magnitude of the largest eigenvalue) of the
error covariance. Note that this problem formulation favors the classical design criteria, which are
tailored to minimize the error of predicting the values at the target locations U , whereas mutual
information and entropy just try to decrease the uncertainty in the entire space.

In order to solve the classical experimental design problems, we use the formulations as a semidef-
inite program (SDP) as discussed by Boyd and Vandenberghe (2004). We use SeDuMi (Sturm,
1999) for solving these SDPs. Since the integral optimization is hard, we solve the SDP relaxation
to achieve a fractional design. This fractional solution defines the best way to distribute an infinite
(or very large) budget of experiments to the different choices on the design menu (the variables in S).
In the sensor selection problem however, we have to solve the integral problem, since we face the bi-
nary decision of whether a sensor should be placed at a particular location or not. This is a hard com-
binatorial optimization problem. Since no near-optimal solution is known, we select the locations
corresponding to the top k coefficients of the design menu, as is common practice. We compare the
placements using the classical design criteria to those using the mutual information and entropy cri-
teria, and evaluate each of them on the RMS prediction accuracy on the hold-out locations U .

Figure 14(a) presents the results of this experiment on the temperature data. We can see that even
though mutual information optimizes for prediction accuracy in the entire space and not specifically
for the target locations U , it incurs the least RMS prediction error, apart from the placements con-
sisting only of a single sensor. E-optimal design performs comparably with the entropy criterion,
and D- and A-optimality perform worse.

When we performed the same experiment with the precipitation data, SeDuMi ran out of memory (1
GB) for the SDP required to solve the A-optimality criterion. The largest subsample we could solve
for all A-, D- and E-optimality on this data set was limited to 111 locations. Figure 14(b) presents the
results. For the entire data set of 167 locations, we could still solve the D- and E-optimality SDPs.
The results are presented in Figure 14(c). We can observe that for the 111 locations, D-optimality
slightly outperforms mutual information. We have to consider, however, that the classical criteria

36



0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

Number of sensors placed

R
M

S
 e

rr
or

 o
n 

ta
rg

et

Mutual
information Entropy

E−optimal 
design

A−optimal
design

D−optimal
design

(a) Comparison with A-, D- and E-optimality on temper-
ature data

0 5 10 15 20 25 30
0.8

0.9

1

1.1

1.2

1.3

Number of sensors placed

R
M

S
 e

rr
or

 o
n 

ta
rg

et

Mutual
information

Entropy
E−optimal 

design

A−optimal
design

D−optimal
design

(b) Comparison with A-, D- and E-optimality on precip-
itation data, 111 node subsample

0 5 10 15 20 25 30

0.8

0.9

1

1.1

1.2

Number of sensors placed

R
M

S
 e

rr
or

 o
n 

ta
rg

et

Mutual
information

Entropy

E−optimal
design

D−optimal
design

(c) Comparison with D- and E-optimality on precipita-
tion data

MI MI loc. H A D E
0

50

100

150

200

R
un

ni
ng

 ti
m

e 
(s

)

(d) Running time for 111 node precipitation subsample

Figure 14: Comparison with classical experimental design. We plot RMS prediction error on 25%
hold out target locations U .

are optimized to minimize the error covariance with respect to the locations U of interest, whereas
mutual information merely tries to achieve uniformly low uncertainty over the entire space. For the
full set of 167 locations, mutual information outperforms the other design criteria.

Figure 14(d) presents the running time for optimizing A-, D-, E-optimality, and mutual information,
mutual information with truncation parameter ε = 1 and entropy on the 111 node subsample of the
precipitation data on a Pentium M 1.7 GHz processor. We can see that optimizing entropy is fastest,
closely followed by the truncated mutual information criterion described in Section 5.2 that is fur-
ther evaluated in Section 9.7. Even without truncation, optimizing mutual information is three times
faster than (fractionally) optimizing D-optimality and 24 times faster than A-optimality.

9.6 Empirical Analysis of the Greedy Algorithm

To study the effectiveness of the greedy algorithm, we compared the mutual information of the sets
selected by our greedy algorithm to random selections, to a hill climbing method that uses a pairwise
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Figure 15: Comparison of the greedy algorithm with several heuristics.

exchange heuristic, and – for small subsamples – to the bounds proved by the MIP as discussed in
Section 4.5.

In this experiment, we used the empirical covariance matrix as the input to the algorithms. Fig-
ure 15(b) shows that the greedy algorithm provided significantly better results than the random
selections, and even the maximum of a hundred random placements did not reach the quality of the
greedy placements. Furthermore, we enhanced the random and greedy selections with the pairwise
exchange (PE) heuristic, which iteratively finds exchanges of elements y ∈ A and y′ ∈ S \ A
such that exchanging y and y′ improves the mutual information score. Figure 15(a) presents ob-
jective values of these enhanced selection methods for a subset size of 12, for which the maximum
over 100 random selections enhanced with PE actually exceeded the greedy score (unlike with most
other subset sizes, where random + PE did about as well as the greedy algorithm). Typically, the
objective values of random + PE, greedy + PE and greedy did not differ much. Note that as men-
tioned in Section 4, the performance guarantee for the greedy algorithm always provides an online
approximation guarantee for the other heuristics.

For a 16 node subsample of the temperature data set, we used the MIP from Section 4.5 to compute
bounds on the optimal mutual information. Figure 5 presents the results. It can be seen, that for this
small subsample, the greedy solution is never more than 5 percent away from the optimal solution,
which is a much tighter bound than the a priori approximation factor of (1− 1/e).

We also experimented with the lazy evaluation strategy discussed in Section 5.1. For example
when picking placements of size 50 for the precipitation data set, the number of mutual informa-
tion computations decreased from 7125 to 1172, and the computation time on a Pentium M 1.7
GHz processor decreased from 41.3 seconds to 8.7 seconds. The results for both temperature and
precipitation data sets are presented in Figures 16(a) and 16(b).

9.7 Results on Local Kernels

We also performed experiments to assess the running time versus quality trade-off incurred by using
approximate local kernels. To provide intuition about the covariance structure, note that the 25, 50
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Figure 16: Performance improvements by using lazy evaluations of mutual information.
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Figure 17: Analysis of the experiments with local kernels. (a) running times for increasing level of
truncation. (b) increase of average RMS error with increasing level of truncation. Note that for a
truncation between 0.5 and 1.2, a good tradeoff between running time and error is achieved.

and 75 percentiles of the absolute covariance entries were 0.122, 0.263 and 0.442, the maximum
was 3.51, the minimum was 8.78E−6. For the variance (the diagonal entries), the median was
1.70, and the minimum was 0.990. Figure 17(a) shows that the computation time can be drastically
decreased as we increase the truncation parameter ε from 0 to the maximum variance. Figure 17(b)
shows the RMS prediction accuracy for the 20 element subsets selected by Algorithm 3. According
to the graphs, the range ε ∈ [0.5, 1] seems to provide the appropriate trade-off between computation
time and prediction accuracy.

In order to study the effect of local kernels on the placements, we performed the following exper-
iment. We created a regular 7 by 7 grid with unit distance between neighboring grid points, and
generated covariance matrices using two different GPs, one using the Gaussian (squared exponen-
tial) kernel, and the other using the the local kernel (Equation (11)). We exponentially increased
the bandwidth in eight steps from 0.1 to 12.8. Figures 18 and 19 show the corresponding place-
ments using mutual information to select the locations. From this experiment, we can see that the
placements obtained using the non-local Gaussian kernel tend to be spread out slightly more, as one
might expect. Overall, however, the placements appear to be very similar. In light of the compu-
tational advantages provided by local kernels, these results provide further evidence in the spirit of
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Section 9.7, namely that local kernels can be a valuable tool for developing efficient model-based
sensor placement algorithms.
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Figure 18: Placements under Gaussian kernel, mutual information criterion, increasing bandwidth

2 4 6
1

2

3

4

5

6

7

 1

 2

 3

 4

 5

 6

 7

 8

 9

Parameter 0.10

2 4 6
1

2

3

4

5

6

7

 1

 2

 3

 4

 5

 6

 7

 8

 9

Parameter 0.20

2 4 6
1

2

3

4

5

6

7

 1

 2

 3

 4

 5

 6

 7

 8

 9

Parameter 0.40

2 4 6
1

2

3

4

5

6

7

 1

 2

 3

 4

 5

 6

 7

 8

 9

Parameter 0.80

2 4 6
1

2

3

4

5

6

7

 1

 2

 3

 4

 5 6

 7

 8

 9

Parameter 1.60

2 4 6
1

2

3

4

5

6

7

 1

 2

 3

 4

 5

 6

 7

 8  9

Parameter 3.20

2 4 6
1

2

3

4

5

6

7

 1

 2

 3 4

 5

 6 7

 8

 9

Parameter 6.40

2 4 6
1

2

3

4

5

6

7

 1

 2  3

 4 5

 6 7

 8

 9
Parameter 12.80

Figure 19: Placements under local kernel, mutual information criterion, increasing bandwidth

10 Future Work

There are several interesting possible extensions to the present work. Since the predictive variance in
(2) does not depend on the actual observations, any closed-loop strategy which sequentially decides
on the next location to measure, surprisingly, is equivalent to an open loop placement strategy which
selects locations to make observations independently of the measured values. If there is uncertainty
about the model parameters however, such as about the kernel bandwidths, then this is no longer
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true. In this case, we expect a sequential, closed-loop strategy to be more effective for predicting
spatial phenomena. Krause and Guestrin (2007) present bounds comparing the performance of the
optimal sequential strategy with the optimal fixed placement. This bound essentially depends on the
parameter entropy. We consider several exploration strategies for effectively reducing this parameter
entropy and present sample complexity bounds. However, more work is needed in this area.

Another interesting open question is whether an approximation algorithm can be found for optimiz-
ing sensor placements subject to submodular cost functions – usually, the more sensors we have to
buy, the cheaper they become per unit. To address this problem, Narasimhan and Bilmes (2006)
present a submodular-supermodular procedure for bicriteria-optimization of a submodular function
of which a submodular cost is subtracted. This procedure, while elegant, unfortunately can not
provide approximation guarantees for this problem.

Of further interest are also constrained sensor placement problems, in which, for example, the placed
sensors have to be connected in a routing tree, or have to lie on a collection of paths. Krause et al.
(2006) provide evidence that submodularity can be leveraged to derive approximation algorithms
for sensor placement even in these combinatorially even more challenging constrained optimization
problems. However, there are still many open issues subject to further research.

11 Conclusions

In this paper, we tackle the problem of maximizing mutual information in order to optimize sen-
sor placements. We prove that the exact optimization of mutual information is NP-complete, and
provide an approximation algorithm that is within (1 − 1/e) of the maximum mutual information
configuration by exploiting the submodularity in the criterion. We also illustrate that submodularity
can be used to obtain online bounds, which are useful for bounding the quality of the solutions ob-
tained by any optimization method, and for designing branch and bound algorithms for the mutual
information criterion. In order to scale up the application of our approach, show how to exploit
lazy evaluations and local structure in GPs to provide significant speed-ups. We also extend our
submodularity-based analysis of mutual information to incorporate robustness to sensor failures
and model uncertainty.

Our very extensive empirical results indicate that data-driven placements can significantly improve
the prediction accuracy over geometric models. We find, in contrast to previous work (Caselton
et al., 1992; Zidek et al., 2000), that the mutual information criterion is often better than entropy
and other classical experimental design criteria, both qualitatively and in prediction accuracy. In
addition, the results show that a simple greedy algorithm for optimizing mutual information provides
performance that is very close to the optimal solution in problems that are small enough to be solved
exactly, and comparable to more complex heuristics in large problems.

We believe this work can be used to increase the efficacy of monitoring systems, and is a step
towards well-founded active learning algorithms for spatial and structured data.
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A Review: Learning Gaussian Processes

In this section, we give a brief overview of learning parameters of a Gaussian Process prior.

A.1 Learning Stationary GPs

Often, for sake of simplicity and model complexity, the kernel function K(u, v) is chosen from a
parametric family, selected in terms of parameters θ. A requirement for a valid kernel function is
that it is always positive-definite. For example, the square-exponential kernel

K(u, v) = σ2 exp
(
||u− v||2

h2

)
has two parameters, θ = {σ, h}. Other popular choices of parametric kernel functions are the
exponential kernel, and the Matérn (Abrahamsen, 1997) class of covariance functions, which allow
to explicitly control the differentiability of the sample functions.

Learning a Gaussian process refers to the estimation of θ from training samples, each consisting of
the value of the field at an index set. Given independent training samples, learning a Gaussian pro-
cess in either a maximum likelihood or Bayesian framework is possible (Rasmussen and Williams,
2006, ch. 5). In the geostatistics literature, it is common to learn the parameters by least squares fit
of the empirical variogram 2γ(h) = E[(Xs+h − Xs)2]) (c.f., Cressie, 1991). Another possibility, if
multiple independent samples of the process are available, is to use cross-validation.

Multiple training samples are often noisy replicates of the field over time. The training data are
not independent, and the log-likelihood does not decompose over the data. Sometimes, only a
single sample of a process is available, which can be observed at different locations. However, if
the time between training samples is sufficiently large, and one assumes temporal stationarity (i.e.,
covariance between sensing locations does not vary with time), then treating the data as independent
may suffice.

A.2 Overview of Nonstationarity

A Gaussian process is (weakly) stationary if it has constant mean, finite variance, and kernel func-
tion K(u, v) that depends only on the difference vector u − v. If we further assume that the kernel
function only depends on the norm of the difference vector, then the process is isotropic.
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In practice, stationarity is frequently violated, even once a mean trend has been subtracted from the
data. Experiments in Section 9.2 illustrate the need for nonstationary models. Unlike the stationary
case, there is no consensus on how to represent and learn nonstationary models.

Capturing complex nonstationary behavior as exhibited by the phenomena we are interested in
(c.f., Figure 1(b) and Figure 1(c)) is a difficult problem. The simplest nonstationary model for
finite GPs (i.e., multivariate normal distributions) is the empirical covariance

S =
1
n

n∑
i=1

(xi − x̄)(xi − x̄)T ∈ Rp×p

which requires that n > p for S to be non-singular. Furthermore the efficiency of this estimator
is poor in high dimensions. Shrinking the eigenvalues of S (Stein, 1975; Ledoit and Wolf, 2004)
or shrinking the estimator towards a simpler full-rank matrix (Daniels and Kass, 2001) addresses
these problems. In low dimensions, this problem can be treated as an instance of finding a positive
semidefinite Toeplitz matrix that is closest to the empirical covariance in Frobenius norm (Higham,
2002). In the sensor placement problem however, the covariance of at most a small set of initial
locations is known, from observing a pilot deployment. It is crucial to be able to predict covariances
for pairs of locations, at which no sensor has been placed. In this setting, several approaches have
been proposed, mostly based on deformation, convolution or partitioning.

An intuitively appealing approach for modeling nonstationarity is spatial deformation, which is
similar in spirit to the nonlinear feature maps used, e.g., in Support Vector Machines (Vapnik, 1995).
Spatial deformation maps nonstationary data, through a nonlinear function onto another space which
is stationary. The main difficulty is determining an appropriate mapping. The pioneering approach
by Sampson and Guttorp (1992) involves mapping the data onto a two dimensional space using
nonmetric multidimensional scaling, and then warping the rest of the space using thin-plate splines.
In a Bayesian approach, Snelson et al. (2003) suggest to model the mapping itself as a Gaussian
process and learn it simultaneously with the process on the data. In our experiments with the data
sets discussed in Section 9.1, we were not able to find appropriate good transformations of the
process.

Nonstationary GPs can be defined as the convolution of a positive-definite function f(s) at each
point in the space with a white noise process. If the bandwidth of a Gaussian basis f is allowed to
vary with its position, this yields the model of Gibbs (1997), and with fewer restrictions, (Higdon
et al., 1998). These results were generalized to arbitrary isotropic f by Paciorek (2003) and subse-
quently by Stein (2005). While this approach is theoretically very elegant, as it for example allows
to vary the differentiability of the process with space, the difficulties are to determine the spatially
varying functions f(s). Paciorek (2003) suggests to equip these functions with a GP prior.

In the partitioning approach, the space is partitioned into a disjoint collection of cells, each of
which is modeled by a stationary Gaussian process (Gramacy, 2005; Kim et al., 2005). The method
by Gramacy (2005) recursively partitions the space, and ties the parameters of the local stationary
processes in a hierarchical model. The method of Kim et al. (2005) simultaneously infers a Voronoi
partition and the models in each region. More generally, nonstationary behavior can be modeled
using mixtures of Gaussian processes, in which each component has a different kernel function
(Tresp, 2001). A related approach by Rasmussen and Ghahramani (2002) does not require a fixed
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number of mixture components. These models however are not GPs anymore, and the predictive
distributions (1) and (2) can no longer be computed in closed form.

A.3 Learning Nonstationary Kernels by Extrapolating Estimated Covariances

In this section we review the method we used for learning nonstationary GPs (Nott and Dunsmuir,
2002). For clarity, we limit the presentation to zero mean processes. The approach of Nott and
Dunsmuir (2002) assumes that data from an initial deployment is available. More specifically,
the assumption is that an estimate of the empirical covariance ΣAA at a set of observed locations
is available, and that the process can be locally described by a collection of isotropic processes,
associated with a set of reference points.

More formally, define a set of reference points A = {z1, z2, . . . , zm}, m = |A|, and associate
a zero mean Gaussian Process Wi with each of these reference points, with isotropic covariance
Ri(s, t) = Ki(|s− t|2). Let Ci = E[Wi(zj)Wi(zk)]j,k be the covariance at the initial deployment
A, and let ci(s) = (Ri(s, z1), . . . , Ri(s, zm)) the cross-covariances of the (arbitrary) location s and
the initial deployment. Then the posterior GPWi | [Wi(A) = a] has the form

Wi(s) | [Wi(A) = a] = ci(s)C−1
i w + δi(s),

where δi, the residual variation, is a nonstationary, zero mean GP with covariance

Rδi
(s, t) = Ki(|s− t|2)− ci(s)C−1

i ci(t).

If the kernel functions Ri have been estimated from the sensors of the initial deployment which
are close to zi, the hope is that the conditional process Wi | [Wi(A) = a] correctly describes the
behavior of the global GP, locally around the location zi. The idea now is to define the global
GP as a weighted sum of the local conditional GPs, “synchronized” by their measurements at A.
More formally, define a zero-mean, multivariate normal distribution W ∗ with covariance ΣAA, and
let

Zi(s) = ci(s)C−1
i W ∗.

By construction, W ∗ is uncorrelated with each δi. We define the global GP as a weighted combina-
tion of the Zi and the δi, namely

Z(s) =
∑

i

πi(s)Zi(s) + πi(s)
1
2 δi(s).

Hereby, πi(s) is a mixture weight of process Wi at location s, and for all s,
∑

i πi(s) = 1. Nott and
Dunsmuir (2002) show that the covariance of Z takes the following form:

RZ(s, t) =
∑
i,j

πi(s)πj(t)ci(s)C−1
i ΣAAC−1

j cj(t) +
∑

i

πi(s)
1
2 πi(t)

1
2 Rδi

(s, t).

As explained by Nott and Dunsmuir (2002), the reason for the particular choice of Z is the following
property: Conditional on observing A = a, for the predictive distributions of the process it holds
that

µs|A=a =
∑

i

πi(s)cT
i C−1

i a,
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and
σ2
s|A=a =

∑
i

πi(s)Rδi
(s, s) =

∑
i

πi(s)[Ki(0)− ci(s)T C−1
i ci(s)],

hence both the predictive mean and variance of the process Z are spatial averages over the means
and variances of the predictive distributions of the local processes Zi. The process Z observes
the covariance ΣAA at the initial deployment, and locally behaves similarly to the local processes
Zi.

The weights πi are chosen similar fashion to interpolation weights in kernel regression, and the
local processes Zi are estimated using least squares fit of the empirical variogram, or by maxi-
mizing the marginal likelihood of the data, only taking into account the sensors from the initial
deployment which are closest by. For more details on estimation please refer to Nott and Dunsmuir
(2002).

B Proofs

Proof [Theorem 2] Our reduction builds on the proof by Ko et al. (1995), who show that for any
graph G, there exists a polynomially related, symmetric positive-definite matrix Σ such that Σ has
a subdeterminant (of a submatrix resulting from the selection of k rows and columns i1, . . . , ik)
greater than some M if G has a clique of size at least k, and Σ does not have a subdeterminant
greater than M − ε for some (polynomially-large) ε > 0 if G does not have such a clique. Let
G be a graph, and let Σ be the matrix constructed in Ko et al. (1995). We will consider Σ as
the covariance matrix of a multivariate Gaussian distribution with variables XU = {X1, . . . ,Xn}.
Introduce additional variables XS = {y1, . . . , yn} such that yi|Xi = x ∼ N (x, σ2). Note that a
subsetA ⊆ S, |A| = k, has maximum entropy of all such subsets if and only if the parents ΓA ⊂ U
of A have maximum entropy among all such subsets of U . Now note that I(A; (U ∪ S) \ A) =
H(A)−H(A|(U ∪ S) \ A) = H(A)−H(A|U), because yi and yj are conditionally independent
given U . Furthermore, again because of independence, H(A|U) is a constant only depending on
the cardinality of A. Assume we could decide efficiently whether there is a subset A ⊂ S such that
I(A;V \ A) ≥ M ′. If we choose σ2 small enough, then this would allow us to decide whether G
has a clique of size k, utilizing the gap ε.

Proof [Lemma 5] Define K̂(x, y) = K(x, y) for x 6= y and K̂(x, x) = K(x, x) + σ2 to include the
sensor noise σ2. Since C is compact and K continuous, K is uniformly continuous over C. Hence,
for any ε1, there exists a δ1 such that for all x, x′, y, y′, ‖x − x′‖2 ≤ δ1, ‖y − y′‖2 ≤ δ1 it holds
that | K(x, y) − K(x′, y′)| ≤ ε1. Assume C1 ⊂ C is a finite mesh grid with mesh width 2δ1. We
allow sensor placement only on grid C1. Let C2 ⊂ C be a mesh grid of mesh width 2δ1, which is
derived by translating C1 by δ1 in Euclidean norm, and let G1, G2 denote the restriction of the GP
G to C1, C2. We assume C1, C2 cover C in the sense of compactness. We use the notation ·̃ to refer
to the translated version in G2 of the random variable · in G1. K̂ is a symmetric strictly positive
definite covariance function and |K̂(X, y) − K̂(X̃, ỹ)| ≤ ε1 for all X, y ∈ G1. Moreover, since K
is positive semidefinite, the smallest eigenvalue of any covariance matrix derived from K̂ is at least
σ2.
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Let A be a subset of C1 and X ∈ C1 \ A. Using (5), we first consider the conditional variance
σ2

X|A. By definition, ‖y − ỹ‖2 ≤ δ1, and hence |K̂(X, y) − K̂(X, ỹ)| ≤ ε1 for all y ∈ A.
Hence we know that ‖ΣAA − ΣÃÃ‖2 ≤ ‖ΣAA − ΣÃÃ‖F ≤ k2ε1. We furthermore note that
‖Σ−1

AA‖2 = λmax(Σ−1
AA) = λmin(ΣAA)−1 ≤ σ−2, and hence

‖Σ−1
AA − Σ−1

ÃÃ‖2 = ‖Σ−1
AA(ΣÃÃ − ΣAA)Σ−1

ÃÃ‖2
≤ ‖Σ−1

AA‖2‖ΣÃÃ − ΣAA‖2‖Σ−1
ÃÃ‖2 ≤ σ−4k2ε1.

We derive ‖ΣXÃ − ΣXA‖2 ≤ ‖ε11T ‖2 = ε1

√
k, hence

|σ2
X|A − σ2

X|Ã| = |ΣXAΣ−1
AAΣAX − ΣXÃΣ−1

ÃÃΣÃX |,

≤ 2‖ΣXA − ΣXÃ‖2‖Σ
−1
AA‖2‖ΣXA‖2 + ‖Σ−1

AA − Σ−1
ÃÃ‖2‖ΣXA‖22 +O(ε2

1),

≤ 2ε1

√
kσ−2M

√
k + σ−4k2ε1M

2k +O(ε2
1),

≤ ε1kσ−2M
(
2 + σ−2k2M

)
+O(ε2

1),

where M = maxx∈C K(x, x). We choose δ such that the above difference is bounded by σ2ε. We
note that (assuming w.l.o.g. H(X|A) ≥ H(X|Ã))

H(X|A)−H(X|Ã)=
1
2

log
σ2

X|A

σ2
X|Ã
≤ log(1+ε)

2
≤ ε

2
.

which concludes the argument.

Proof [Corollary 6] The higher order terms O(ε2
1) can be worked out as kσ−2ε2(1 + Mk2σ−2 +

εk2σ−2). Assuming that ε < min(M, 1), this is bounded by 3k3Mσ−4ε. Using the Lipschitz
assumption, we can directly compute δ1 from ε1 in the above proof, by letting δ = ε1/L. Let
R = kσ−2M

(
2 + σ−2k2M

)
+ 3k3Mσ−4. We want to choose δ such that ε1R ≤ σ2ε. Hence if

we choose δ ≤ σ2ε
LR , then |H(X|A) − H(X|Ã)| ≤ ε uniformly as required. Note that in order to

apply the result from Nemhauser et al. (1978), the approximate monotonicity has to be guaranteed
for subsets of size 2k, which results in the stated bound.

Proof [Theorem 7] The following proof is an extension of the proof by Nemhauser et al. (1978),
using some simplifications by Jon Kleinberg.

Let s1, . . . , sk be the locations selected by the greedy algorithm. Let Ai = {s1, . . . , si}, A∗ be the
optimal solution, and δi = MI(Ai)−MI(Ai−1). By Lemma 5, we have, for all 1 ≤ i ≤ k,

MI(Ai ∪ A∗) ≥ MI(A∗)− kε.

We also have, for 0 ≤ i < k,

MI(Ai ∪ A∗) ≤ MI(Ai) + kδi+1 =
i∑

j=1

δj + kδi+1.
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Hence we have the following sequence of inequalities:

MI(A∗)− kε ≤ kδ1

MI(A∗)− kε ≤ δ1 + kδ2

...

MI(A∗)− kε ≤
k−1∑
j=1

δj + kδk

Now we multiply both sides of the i-th inequality by
(
1− 1

k

)k−1, and add all inequalities up. After
cancelation, we get(

k−1∑
i=0

(1− 1/k)i

)
(MI(A∗)− kε) ≤ k

k∑
i=1

δi = k MI(Ak).

Hence, as claimed, with AG = Ak (i.e., AG is the k-element greedy solution)

MI(AG) ≥
(
1− (1− 1/k)k

)
(MI(A∗)− kε) ≥ (1− 1/e)(MI(A∗)− kε).

Proof [Remark 12] We have that H(y|Z) < 0⇔ K(y, y)+σ2− K(Z,y)2

K(Z,Z)+σ2 < 1
2πe . Using a similar

argument as the proof of Lemma 5, for very fine discretizations, there exists a y arbitrarily close to
Z, such that for any α > 0, | K(Z,Z) − K(y, y)| ≤ α and | K(Z,Z) − K(Z, y)| ≤ α. Plugging
these bounds into the definition of H(y|Z) and some algebraic manipulation proves the claim.
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