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Abstract

The Andrew File System is a location-transparent distributed file system that will

eventually span more than 5000 workstations at Carnegie Mellon University.
Large scale affects performance and complicates system operation. In this paper
we present observations of a prototype implementation, motivate changes in the
areas of cache validation, server process structure, name translation and low-level

storage representation, and quantitatively demonstrate Andrew's ability to scale
gracefully. We establish the importance of whole-file transfer and caching in
Andrew by comparing its performance with that of Sun Microsystem's NFS file
system. We also show how the aggregation of files into volumes improves the
operability of the system.
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1. Introduction

Andrew is a distributed cornputing environment d_at has been under development at Carnegie-Mellon
University since 19:53. A ct)mprehensive overx'icw of the system has been presented by Morris ct al [31. "File
characteristic of Andrew dlat is most pertinent to this paper is its expected thml size. l--achindividual at CMU
may eventually possess an Andrew workstation, thus implying a scale t)f 5000 to 10000nodes.

A fundamental ct)mponent of Andrew is the distributed file system that constitutes the underlying

information sharing mechanism. A detailed description of this file system has been presented in an earlier
paper [6]. Using a set of trusted servers, collectively called Vice, the Andrew File System presents a

homogeneous, location-transparent file name space to all the client workstations. Clients and servers run the
4.2 Berkeley Software Distribution(4.2BSD) of the Unix operating system. 1 "lt',e operating system on each
workstation intercepts file system calls and tbrwards them to a user-level process on that workstation. This
process, called Venus, caches files from Vice and stores modified copies of files back on the servers they came
•from. Venus contacts Vice only when a file is opened or closed: reading and writing of individfial bytes of a
file are performed directly on the cached copy, bypassing Venus.

"llais file system architecture was motivated primarily by considerations of scale. To maximise the number of
clients that can be supported by a server, as mucta of the work as possible is performed by Venus rather daan
by Vice. Only functions essential to the integrity, availability or security of the file system are retained in
Vice. The servers are organised as a loose confederacy, with minimal commumcation among themselves. It is
Venus on each workstation that does the locating of a file on a specific server and intuates a dialogue with. that
server.

Our intent in this paper is to examine the design of the Andrew File System at the next level of detail. In
particular, we concentrate on those features and design decisions that bear on Uaescalability of _e system.
Large scale affects a distributed system in two ways: it degrades performance, and it complicates
administration and day-to-day operation. This paper addresses born of these consequences of scale on
Andrew, and shows that the mechanisms we have incorporated cope wtth these concerns successfully.

Section 2 of the paper describes an initial prototype implementauon and our expenence with iL That section
also introduces a synthetic benchmark that is used as the basis of performance comparison in the rest of the

paper. Based on this experience we made many design changes. The rationale for r.b.esechanges is presented
in Section 3. Section 4 discusses the effect of these design changes on performance. To place our design m

perspective and to quantify its relative merits. Sect'ion 5 presents me results of running the same benchmark
on an alternative contemporary, dismbuted file system. Sun .Micresystems NFS [9]. Section 6 shows how the

operability of the system has been enhanced by our design changes. Finally, in Sccuon 7 we discuss issues
that are related peripherally to scale and examine _e ways m which the present desi_ can be enlaancect.

2. The Prototype

Our primary, goal in building a prototype was :o validate the basic file system architecture. In the
implementation we had to carefully balance two opposing constraints: the desire to o0tain feedback on our
design as rapidly as possible, and. the need to bmlct a system that was usable enough to make that feedback
meaningful. In retrospect, the prototype was successful in both these respects. The I_rototy._e was used. by
ourselves as well as by about 400 other users. At t.he peak of its usage, there were about 100 workstations and
six servers. The workstations were Sun2"s with 65MB local disks, and the servers were Sun2's or Vax-750's

1Unixts a trademarkofAT&T Toavoidanyposs_t)tieammgmty.'_,'eusethe name"42.BSD"t.hrou_outt.hlspaperforthe spec2fic
verslon or"Unix usect in otlr system.
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each with two or three 400MI) desks. As the rest of this paper illustrates, the experience we gained from the
prototype was invaluable in developing a co,lsiderably improved implementation of the Andrew File System.

2.1. Description
In the prototype, Venus on a client workstation would rendezvous with a process listening at a well-known
network address on a server. This process then created a dedicated prcx:ess to deal with all future requests
from the client. The dedicated process persisted until its client terminated the network connection. In steady

state a server typically operated with as many processes as there were clients who had ever contacted it. Since
4.2BSD does not allow sharing of address spaces between processes, all communication and manipulation of
data structures between server processes took place via files in the underlying file system. User-level file
locking was implemented by a dedicated lock server process which serialized requests from the separate server

......... processes and maintained a lock table in its address space.

Data and associated Vice status information were stored in separate files. Each server contained a directory
hierarchy mirroring the structure of the Vice files stored on it. Vice file status information, such as an access
list, was stored in shadow directories called .admin directories. The directory hierarchy contained Stub
directories to represent portions of the Vice name space that were located on other servers. The location

database that maps files to servers was thus embedded in the file tree. If a file were not on a server, the search
for its name would end in a stub directory which identified the server containing that file. Below the top
levels of the Vice name tree, files in the same subtree were likely to be located on the same server. Hence

clients cached pathname prefix informauon and used this as the basis of a heuristic to direct file requests to
appropriate servers.

The Vice-Venus interface named files by their full pathname. There was no notion of a low-level name, such
as the mode in 4.2BSD. A rudimentary form of read-only replication, restricted to the topmost levels of the
Vice name tree, was present. Each replicated directory had a single server site to which all updates were
directed. An asynchronous slow-propagation mechanism reflected changes made at this site to the read-only
replicas at all other sites.

All cached copies of files were considered suspect by Venus. Before using a cached file, Venus would verify
its timestamp with that on the server responsible for the file. Each open of a file thus resulted in at least one
interaction with a server, even if the file were already in the cache and up to date.

2.2. Qualitative Observations

Our preliminary experience with the protoype was quite positive. Almost every application program on
workstations was able to use Vice files without recompilation or relinking. This put to rest one of our key
concerns: namely, the successful emulation of 4.2BSD file system semantics using caching and whole-file
transfer. There were some areas of incompatibility with standard 4.2BSD semantics, but they were never
serious enough to discourage use of the prototype.

Command execution involving Vice files was noticeably slower than similar commands involving local files.

However. the performance was so much better than that of the heavily-loaded timesharing systems used by
the general user community at CMU that our users willingly suffered!

As we had anticipated, the performance degradation was not uniform across all operations. CPU-bound
operations like the compilation of a large program were almost as fast as on a stand-alone system. Other
operations, such as the recursive directory lisnng of a large subtree of files, took much longer when the
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subtree was in Vice.

We werepuzzledbyccrtainapplicationprogramsthatranmuch slowerthanwe hadexpected,evenwhen all
relevant files wcre in the local cache. It turned out that such programs used the stal primitive in 4.2BSD to

test for the presence of files or to obtain status information before opening them. In pathological cases, a file
would be stat-ed twice or thrice before being actually opened. Since each star call involved a cache validity
check, the total number of client-server interactions was significantly higher than the number of file opens.
This increased both the total running time of these programs and the load on the servers. We attempted to
alleviate this problem by placing an upper bound on the frequency with which we checked the validity of a
cache entry. Although performance did improve, it was still not satisfactory,

We found that performance was usually acceptable up to a limit of about 20 active users per server. However,
there were occasions when even a few users using the file system intensely caused performance to degrade
intolerably.

The prototype turned out to be difficult to operate and maintain. The use of a dedicated process per client on
each server caused critical resource limits to be exceeded on a number of occasions. It also resulted in

excessive context switching overhead and in high virtual memory paging demands. Howcver, it did have the
virtue of simplicity and rcsulted in a relatively robust system because the failure of an individual server

process affected only one client. The remote procedure call package was built on top of a reliable byte-stream
abstraction provided by the kernel. While this simplified our implementation, it frequently causcd network-
related resources in the kernel to be exceeded. Our dccision to embed the file locauon database in stub
directories in the Vice name tree made it difficult to move users" directories between servers. When disk

storage on a server was exhausted, it was easier to add anomer disk rather than move a few users to another
server). Our inability to enforce disk storage quotas on individual users exacerbated this problem.

2.3. The Benchmark
To quantify the performance penalty due to remote access, we ran a series of controlled experiments with a
synthetic benchmark. This bench.mark consists of a command script that operates on a collecuon of files

constituting an application program. The operauons are intended to be a representative sample of the kinds
of actions an average user might perform. AIthou_-dawe do not demonstrate any statistical similarity between

these file references and those observed in real systems, it provides a convenient yardstick for comparing a
variety of file system implementations,

Throughout this paper the term Load Unit refers to the load placed on a server by a single client workstation
running this bench.mark. Ser_'er load is vaned by inirJating the benchmark simultaneously on multiple client

workstations and waiting for all of them :o comcle,,e. We refrain from using the term "'client" in re_onang
benchmark results to avoid the possible mismte,"_re,,auon that we are referring to a human user.- Our
observations of network traffic indicate that a load unit corresponds to about tlve Andrew users.

The input to the benchmark is a read-only source subtree cons_sung of about 70 files. The files are the source
code of an application program and total about 200 Kbytes m size. There are five distinct phases in the
benchmark:

MakeDir construcm a target subtree mat LSidenucal in structure to the source subtree.

2Weareindebtedto1errySa]tzerforaJemngusto thisd:m_er.
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Copy copies every lile fi'om the source subtree to the target subtree.

ScanDir recursively traverses file target subtree and examines the status of over] file in it. It does

not actually read file contents of any file.

ReadAll scans every byte of every file in the target subtree once.

blake compiles and links all the files in the target subtree.

On a Sun2 workstation with a local disk, this benchmark takes about 1000 seconds to complete when all files
are obtained locally. The corresponding times for other machines are shown in Table 1.

2.4. Performance Observations

A fundamental quantity of interest in a caching file system is the hit ratio observed during actual use. Venus
used two caches: one for files and the other for status information about files. A snapshot of the caches of 12
machines showed an average file-cache hit ratio of 81% with a standard deviation of 9.8%, and an average
status-cache hit ratio of 82% with a standard deviation of 12.9%.

Also of interest is the relative distribution of client/server interactions. Such a profile is valuable in

improving server performance, since attention can be focused on the most frequent calls. Table 2 shows the
observed distribution of those Vice calls that accounted for more than one percent of the total. This data was

gathered over a one-month period on five servers. The distribution is dramatically skewed, with two calls
accounting for nearly 90% of the total. The TestAuth call validated cache entries, while GetFileStat obtained
status information about files absent from the cache. The table also shows that only 6% of the calls to Vice
(Fetch and Store) actually involved file transfer, and that the ratio of ketch calls to Store calls was

approximately 2:L

We also performed a series of controlled experiments using the benchmark. Table 3 presents the total

running time for the benchmark as a function of server load. The table also shows the average response time
for the most frequent Vice operation, TestAuth, during each of the experiments. One important observation
from this table is that the benchmark took about 70% longer at a load of one than in the standalone case. A
second observation is that the time for TestAuth rose rapidly beyond a load of 5, indicating server saturation.
For this benchmark, therefore, a server load between 5 and 10 was the maximum feasible.

For measuring server usage, we installed software on servers to maintain statistics about CPU and disk

utilisation, and about data transfers to and from the disks. Table 4 presents this data for four servers over a
two-week period. The data is restricted to observations made during 9am to 5pro on weekdays, since this was
the period of greatest system use. As the CPU utilisarions in the table show, the servers loads were not evenly
balanced. This fact is confirmed by Table 2, which shows a spread of about 5:1 in the total number of Vice

calls presented to each server. Under these circumstances, moving users to less heavily loaded servers would
have improved the quality of service considerably.

Table 4 also reveals that the two most heavily used servers showed an average CPU utilisation of about 40%.

This is a very high figure, considering that it was an average over an 8-hour period. Closer examination of the

raw data showed much higher short-term CPU utilisation: figures in the neighborhood of 75% over a 5-
minute averaging period were common. Disk utilisations, however, were much lower. The 8-hour average
was less than 15%. and the short-term peaks were rarely above 20%. We concluded from these figures, and

from server utilisation data obtained during the benchmarks, that the performance bottleneck in our
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prototype was the server CPU. Based on profiling of the servers, we dcdttccd that the two factors chic fly
responsible fi_r this high CPU utilisation were the frequency of"context switches between the many server
processes, and the time spent by the servers in traversing full pathnaxnes presented by workstations.

To summarise, the measurements reported in this section indicated that significant performance improvement
was possible if"we reduced the frequency of cache validity checks, reduced the number of server processes`
required workstations rather than the servers to do pathname traversals, and balanced server usage by
reassigning users.

3. Changes for Performance
I_ascdon our experience with the prototype we set out to build a revised version of the Andrew File System.
Although we were under no constraint to reuse code or ideas, the resulting design uses the same fundamental
architectural principle as the prototype: workstations cache entire files from a collection of dedicated
autonomous servers. Our analysis convinced us that the shortcomings of the prototype were due to
inadequacies in its realisation rather than in its basic architecture. We were also convinced that this was the
most promising path to our goal of supporting at least 50 clients per server.

Some aspects of the prototype implementation have remained unchanged. Both Venus and server code run as
user-level processes. Communication between servers and clients is based on the RPC paradigm and uses an
independently-optimised protocol for the transfer of bulk data. The mechanism in the workstation kernels to
intercept and forward file requests to Venus is the same as m the prototype.

While retaining these aspects of the prototype, we have changed many details. The changes fall into two
categories: those made to enhance performance and those made to improve the operability of.the system. In
this section we describe the changes made for performance, and defer discussion of changes for operability
until Section 6. The changes for performance are in four distinct areas:

• Cache management
• Name resolution

• Communication and server process structure
• Low-level storage representation

These are orthogonal changes, although a small degree of interdependency is inevitable. We discuss the
individual changes m Sections 3.1 to 3.4 and then describe their synthesis in Section 3.5.

3.1. Cache Management
Caching. the key to Andrew's ability to scale well. is further exploited in our redesign. Venus now caches the
contents of directories and symbolic /inks in addiuon to Hies. There are sail _wo separate caches, one tbr
status and the other for data. Venus uses a simpie LRU a!gon_m to keep eacta of them bounded in size. The

status cache is kept in virtual memory to allow rapid sere'icing of s_at system calls. Each entry, contains
information such as the size of a file and its modification dmestamp. The data cache is resident on the local

disk, but the 4.2BSD I/O buffering mechanism does some caching of disk blocks in memory, transparent to
Venus.

Modifications to a cached file are done locally, and are reflected back to Vice when the file is closed As

mentioned earlier, Venus intercepts only the opemng and closing of files and does not participate in the

reading or writing of individual bytes on a cached copy. For reasons of integrity, modifications to a directory.
are made directly on the server responsible for that director2,'. However, Venus reflects the change in its



cached copy to avoid reti:tching the directory.

A significant point of departure from the prototype is the manner in which cache entries are kept consistent.
Rather than checking with a server on each opcn, Venus now assumes that cache entries are valid unless

otherwise notified. When a workstation caches a tile or directory, the server promiscs to notify it before
allowing a modification by any othcr workstation. "rhis promise, called a Callback, dramatically reduces the
number of cache validation requests received by servers. A small amount of cache validation traffic is still
prcscnt, usually to replace callbacks lost on account of machinc or network failures. When a workstation is

rcbootcd, Venus considers all cached files and dircctorics suspect and generates a cache validation request for
the first use of each such entry.

Callback complicates the system because each server and Venus now maintains callback state information.
Before modifying a file or directory a server has to notify every workstation that has a callback on that file. If

the amount of callback state maintained by a server is excessive its performance may degrade; Under such

circumstances it may be appropriate for servers to break callbacks and reclaim storage. Finally, there is
potential for inconsistency if the callback state maintained by a Venus gets out of sync with the corresponding
state maintained by the servers.

In spite of these complications, we are convinced of the importance of callback. By reducing cache validation
traffic, callback reduces the toad on servers considerably. It is also callback that makes it feasible to resolve

pathnames on workstations, as described in the next section. In the absence of callback, the lookup of every
component of a pathname would generate a cache validation request.

3.2. Name Resolution

In a conventional 4.2BSD system a file has a unique, fixed-length name, its inode, and one ormore variable-

length Pathnames that map to this inode. The routine that performs this mapping, namer, is usually one of the
most heavily used and time consuming parts of the kernel. In our prototype, Venus was aware only of
pathnames: there was no notion of an inode for a Vice file. However, because of the data representation on
our servers, each Vice pathname presented by a Venus involved an implicit namei operation on the server to
locate the file. This resulted in considerable CPU overhead on the servers and was an obstacle to scaling. It
also made full emulation of 4.2BSD semantics difficult.

To alleviate these problems we reintroduced the notion of two-level names. Each Vice file or directory is now
identified by a unique fixed-length Fid. Each entry, in a directory maps a component of a pathname to a rid.
Venus now performs the logical equivalent of a namei operation, mapping Vice pathnames to rids. Servers
are presented with rids and are, in fact. unaware of pathnames. As discussed in Section 3.4 we have

performed further optimisations to ensure that no implicit namei operations are performed on a server when
accessing data.

A rid is 96 bits long and has 3 components: a 32-bit Volume number, a 32-bit Vnode number and a 32-bit
Uniquifier. The volume number identifies a collection of files, called a Volume, located on one server.
Volumes are discussed in Section 6. The rhode number is used as an index into an array containing the file
storage information for the riles in a single volume. The actual accessing of file data. given a rid, is thus an

efficient operation. The uniquifier guarantees that no rid is ever used twice in the history, of the file system.

This allows reuse of vnode numbers, thereby keeping cerrmn critical server data structures compact.

It is important to note that a rid contains no explicit location information. Moving files from one server to
another does not. therefore, invalidate the contents of directories cached on workstations. Location
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information is contained in a Volume l.ocation Database replicated on each server. This is a slowly changing
datab;,se that allows every ser_'cr to identify the location of every volume in LIltsystem. It is the aggregation
of files into volumes that makes it possible to keep the location d;_tabase to a manageable size.

3.3. Communication and Server Process Structure

As the context switching and paging overheads in our prototype indicated, the use of a server process per

client did not scale well. A related problem was that server processes could not cache critical shared
information in their address spaces because 4.2BSD does not permit processes to share virtual memory. The
redesign solves these problems by using a single process to service all clients of a server.

Since multiple threads of control provide a convenient programming abstraction, we have built a user-level

mechanism to support multiple nonpreemptive Lightweight Processes (LWPs) within one process. Context
switching between LWPs is only of the order of a few procedure call times. The number of LWPs (typically
five) is determined when a server is initialised and remains fixed thereafter. An LWP is bound to a particular
client only for the duration of a single server operation. A client thus has long-term state on a server, but not
a corresponding thread of control associated with it. Since Venus also uses d_e LWP mechanism, it can act

concurrently on remote file access requests from multiple user processes on its workstation.

As in the prototype, clients and servers communicate via a remote procedure call mechanism. Unlike the
prototype, however, this implementauon is entirely outside the kernel and. is capable of supporting many
hundreds or thousands of clients per server. It is integrated with the LWP mechanism, thus allowing the
server to continue servicing client requests unless all its LWPs are blocked on network events. The RPC
mechanism runs on a variety of workstations, provides exactly-once semantics in me absence of Failures,

supports whole-file transfer using an optimised bulk transfer protocol, and provides secure, authenticated
communication between workstations and servers. --

3.4. Low-level Storage Regresentation
Our decision to retain 4.2BSD on the servers implied that files would hold Vice data. as ha the prototype. As
mentioned in Section 3.2, we were wary of the cost of the namei operations involved in accessing data via

pathnames. Therefore we decided to access files by their modes rather than by pathnames. Since the haternal
inode interface is not visible to user-Ievet processes, we had to add an appropriate set of system calls. The
vnode information for a Vice file identifies the mode of the file stonng its data. Data access on a server is thus

quite rapid; an index of a lid into a table to look up vnode information, followed by an iopen call to read or
write the data.

For efficiency Venus also uses this mechanism. A local directory on the workstation is used as the cache.
Within the directory are files whose names are placeholders for cache enmes. Venus accesses these files

directly by their inodes. We have thus eliminated r,eariy all patnname Iooku_s on _orkstatlons and ser_'ers.
except explicit ones performed on cached direc:ones by Venus. Such expiicit !ookups are, m fact. faster than
kernel lookups because of the improved internal orgamsauon of Vice directories.

3.5..Overall Design
The resuh of our redesi_ can be bcst unde,"stooclby e×ammmg a remote fi]e access in dental. Suppose a user

process opens a file with pathname P on a workstauon. The kernel, in resolving P, detects that it is a Vice file
and passes it to Venus on that workstation. One of the LWPs comprising Venus now uses the cache to
examine each directory component D of P in succession:
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• If D is in the cache and has a callback on it, it is used without any network cc)mmunication.
• if D is in the cache but has no callback on it. the appropriate server is contacted• a new copy of D

is fetched if it has been updated, and a callback is established on it.

• lfD is not in the cache it is fetched fi'om the appropriatese_'er, and a callback established on it.

When the target file Fis identified, a current cache copy is created in the same manner. Venus then returns to

the kernel, which opens the cached copy of F and returns its handle to the user process. Thus, at the end of
the pathname traversal, all the intermediate directories and the target file are in the cache, with callbacks on
them. Future references to this file will involve no network communication at all, unless a callback is broken

on a component of P. Venus regains control when the file is closed and, if it has been modified locally,
updates it on the appropriate server. An LRU replacement algorithm is periodically run to reclaim cache
space.

When processing a pathname component. Venus identifies the server to be contacted by examining the

volume field of the fid of that component. If an entry for this volume is not present in a mapping cache,
Venus contacts any server that it already has a connection to, requests the location information, and enters it
into the mapping cache. Unless Venus already has a connection to the server responsible for that volume, it
establishes a new connection. It then uses this connection to fetch the file or directory. Connection
establishment and future requests from the workstation are serviced by any of dae LWFs comprising the
server process.

The above description is a simplified view of the actual sequence of events [2]. In particular, authenticadon,
protection checking, and network failures complicate matters considerably. Also. since the other LWPs in
Venus may be eoncurrendy servicing file access requests from other processes, accesses to cache data
structures must be s3}nchronised. However, although the initial access of a file may be complex and rather
expensive, further accesses to it are much simpler and cheaper. It is the locality inherent in actual file access

patterns that makes this strategy viable.

Some of the complexity of our implementation arises from our desire to provide a useful yet efficient notion
of file consistency across multiple machines. We examined a variety of choices ranging from the strict
serializability of operations typically provided by database systems• to the laissez-faire attitude exemplified by
the SUN NFS Hie system• where a file created on a workstation may not be visible on another workstation for
30 seconds. Our design converged on the following consistency semantics:

• Writes tO an open file by a process on a workstation are visible to all other processes on the
workstation immediately, but are invisible elsewhere in the network.

• Once a file is closed, the changes made to it are visible to new opens anywhere on the network.
Already-open instances of the file do not reflect these changes.

• All other fde operations (such as protection changes) are visible everywhere on the network
immediately after the operation completes.

• Multiple workstations can perform the same operation on a file concurrendy, In conformance
with 4,2BSD semantics, no implicit locking is performed. Application programs have to cooperate
to perform the necessary synchronisation if they care about the serialization of these operations.

Actual usage has convinced us that this is a useful and easily understood model of consistency in a distributed

file system. It is also one that we have successfully implemented without serious performance penalty.

Finally, it is important to note that the changes we describe in this paper are only those relevant to scale.
Other changes, typically for better 4.2BSD emulation or security, are not discussed here. The current
interface between Venus and Vice is summarised in Table S.
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4. Effect of Changes for Performance

The revised implementation of the Andrew File System has been operational for over a year. The evaluation
of this system focuses on two questitms. First, how effective were our changes? In particulur, has the
anticipated improvement in .':,calabilitybeen realised'? Second.what are the characteristicsof file systemin
normal operation 9. The first question is addressed in Section 4.1, and infunnation pertinent to the second
question is presented in Section 4.2.

4.1. Scalability
To investigate the behaviour of the system we repeated the experiments that we had performed on the
prototype. The server was a Sun2, as in the experiments on the prototype, but the clients were IBM-I_.Ts.
Table 6 shows the absolute and relative times of the benchmark as a function of server load. The times for the

individual phases of the benchmark are also shown in this table. Figure 1 presents some of dxis data
graphically and compares it with prototype data from Table 3. °.

The performance penalty for remote access has been reduced considerably. Data from Tables 1 and 6 show •
that an Andrew workstation is 19% slower than a standalone workstation. The prototype was 70% slower.
The improvement in scalabitity is remarkable. In the prototype, the benchmark took more than four times as
long at a load of 10 as at a load of one. In the current system, it takes less than twice as long at a load of 20 as
at a load of one. At a load of 10it takes only 36% longer.

Table 6 shows that the Copy and blake phases are most susceptible to server load. Since files are written in
both these phases, interactions with the server for file stores are necessary. Further. it is during the Copy
phase that files are fetched and callbacks established. In contrast, the ScanDir and Read,All phases are barely
affected by load. Callback eliminates almost all interactions with the server during these phases.

Table 7 and Figure 2 present CPU and disk utilisation on the server during the benchmark. CPU utilisation
rises from about 8% at a load of one to over 70% at a load of 20. But disk uuiisatlon is below 25% even at a

load of 20. This indicates that the server CPU still limits performance in our system, though it is less of a
bottleneck than in the prototype. Better performance under load will require more efficient server software
or a faster server CPU. Figure 2 shows an anomaly at a load of ten. Since the corresponding data in Table 7

shows a high standard deviation, we suspect that server activity unrelated to our experaments occurred during
one of these trials.

In summary, the results of this section demonstrate that our design changes have improved scalability
considerably. At a load of 20, the system is still not saturated. Since a load unit correspon_ to about five

typical Andrew users, we believe our scale goal of 50 users per server has been met.

4.2. General Observations

Table 8 presents server CPU and disk utitisations m Andrew. The figures shown are averages over the 8 hour

period from 9am to 5pm on weekdays. Most of the servers show CPU uulisauons betwee.q 15% and 25%.
One of the servers, vice4, shows a uulisauon of 35.S%. but the disk uulisauon is not correspondingly high.

The high standard deviation for the CPU uuli_mon leads us to believe that this anomaly was caused by
system maintenance activiues that were unexpectedly performed dunng the day rather than at night. Ser','er
viceg, on the other hand. shows a CPU uulisauon of 37.6% with a small standard deviation. The disk

utilisation is 12.1%, the highest of anv se_er. The hi_ uulisation is explained by the fact _at this server

stores the bulletin boards, a collection of directories that are frequently accessed and modified by many
different users.
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The distribution of Vice calls over a three day period is shown in Table 9. The servers with file most calls are
viceT, which stores common system files used by all workstations, and vice9, the server that stores bulletin
boards, l'he most frequent call is GetTime, which is used by workstations to synchronise their clocks and as

an implicit kccpalive. The next most frequent call is l"etchStatus. We conjecture that many of these calls are
ge,_crated by users listing directories in parts of the file name space that they dr) not have c_ched. It is
interesting that in spite of caching, fetches dominate stores. The call RemoveCB is made by Venus when it

flushes a cache entry. Server vice9 shows one of the highest occurences of RemoveCB indicating that the files
it stores exhibit poor locality. This is precisely tile hehaviour one would expect of bulletin boards, since users

tend not to read bulletin board entries more than once. Only viceS, which is a special server used by the
operations staff, shows a higher occurence of RemoveCB. Based on these measurements, we have modified

Venus to remove callback on groups of files rather than one file at a time, when possible. This has reduced
the observed frequency of RemoveCB considerably.

Table 10, derived from the same set of observations as Table 9, shows the type of data stored on each server
and the average number of users actively using that server. Most of the servers have between 50 and 70 active
users during the peak period of use, where an active user is one on whose behalfa request other than GetTime
has been received in the last 15 minutes. In interpreting this data it should be kept in mind that a user often
uses files from many different servers.

Although we do not present detailed data here, network utilisation is quite low, typically in the
neighbourhood of 5% for the 10 Mbit Ethernet, and 12% for the 4 Mbit token ring. The touters which
interconnect segments of the local area network have occasionally shown signs of overload. This problem
does not yet cause us concern, but may require attenuon in the future.

5. Comparison with a Remote-Open File System
The caching of entire files on local disks in the Andrew File System was motivated primarily by
considerations of scale:

• Locality of file references by typical users makes caching attractive: server load and network
traffic are reduced.

• A whole-file transfer approach contacts servers only on opens and closes. Read and write
operations, which are far more numerous, are transparent to servers and cause no network traffic.

• The study by Ousterhout et al [4] has shown that most files in a 4.2BSD environment are read in

their entirety. Whole-file transfer exploits this property by allowing the use of efficient bulk data
transfer protocols.

• Disk caches retain their crimes across reboots, a surprisingly frequent event in workstation
environments. Since few of the files accessed by a typical user are likely to be modified elsewhere
in the system, the amount of data fetched after a reboot is usually small.

• Finally. caching of entire files simplifies cache management. Venus only has to keep track of the
files in its cache, not of their individual pages.

Our approach does have its drawbacks. Although diskless operation is possible, workstations require local
disks for acceptable performance. Files which are larger than the local disk cache cannot be accessed at all.
Strict emulation of 4.2BSD concurrent read and write semantics across workstations is impossible, since reads

and writes are not intercepted. Building a distributed database using such a file system is difficult, if not

impossible.

In spite of these disadvantages we perststed in our approach because we believed it would provide superior
performance in a large scale system. The drawbacks listed in the previous paragraph have not proved to be
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significant in actual usage in our environment. And, as the discussions of Section 4 have established, the

Andrew File System does scale well. But could an alternative design halve produced equivalent or better
result.s? How critical to scaling are caching and whole-file transfer? The rest of this section examines tllese
questions in detail.

5.1. Remote Open
A number of distributed file systems such as Locus [12], IBIS [11] and the Newcastle Connection [1] have
been described in the research literature and sumeyed by Svobodova [10]. The design of such systems has
matured to the point where vendor-supported implementations like Sun Microsystem's NFS [9], AT&T's
RFS [5],and Locus are available.

Although the details of these systems vary considerably, all of them share one fundamental property: the data
in afile is not fetched en masse: instead, the remote site potentially participates bl each individual.read and write
operation. Buffering and read-ahead, are employed by some of the systems to improve performance, but the
remote site is still conceptually involved in every, 1/O operation. We call this property Remote Open, since it
is reminiscent of the situation where a file is actually opened on the remote site rather than the local site.
Only the Andrew File System and the Cedar File System [7] employ caching of enure files as their remote
access mechanism.

To explore how vital our approach is to scaling, we compared Andrew under controlled conditions to a
representative of the set of remote open file systems. We selected Sun Microsystem's NFS as the candidate
for comparison for the following reasons:

• NFS is a mat-are product from a successful vendor of dismbuted computing hardware and
software. It is not a research prototype.

• Sun has spent a considerable amount of time and effort to tune and refine NFS. Deficiencies in
its performance are therefore likely to be due to its basic architecture, rather than inadequacies in
implementation. A comparison of Andrew and NFS is thus most l_kely to yield significant
insights into the scaling characteristics of caching and remote-open file systems.

• NFS and Andrew can run on prec:sely the same hardware and operat|ng system. They cart, in
fact. coexist on the same machine and be used simultaneously. Using NFS allowed us to conduct
controlled experiments in which the only significant variable was the file system component. The

performance differences we observed were due to the design and Implementation of the
distributed file systems and were not am facts of hardware, network, or operaung system variation.

• There is a perception in the 4.2BSD user commum_y that NFS is a de facto sta.qdard. We were
curious to see how well Andrew measured up to it.

To be fair, it must be pointed out that NFS was not dcsiga'led for cperanon m a law_eenvironment. It was

designed as a distributed file system for use by a small collecuon of trusted workstations. It must also be
emphasised that our comparison is based on a singic _encnmari_. Other bencmmarks may yield different
results.

We also wish to emphasise that the focus of th_s comvanson is scalability. The quesuon of interest is "How

does-the performance perceived by a workstanon degrade as the load on its server increases:" This justifies
our comparison of NFS and Andrew on identical hardware configurations. A different question would be to
compare rke cost of NFS and Andrew configurations rot a g_ven level of performance at a g_ven load. Since

the price of hardware is subject to a variety of factors beyond the scope of this paper, we do not address this
issue here.
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5.2. The Sun Network File System
In this sectionwepresenta minimal overview of NFS. Only those details relevantto this paper a=cdiscussed
here. Further information can beobtained from the documentation [9].

NFS does not distinguish between client and server machines. Any workstation can export a subtree of its file

system and thus become a server. Servers must be identified and mounted individually; there is no
transparent file location facility as in Andrew. Both the client and server components of NFS are
implemented within the kernel and are thus more efficient than their counterparts in Andrew.

NFS caches inodes and individual pages of a file in memory. On a file open, the kernel checks with the
remote server to fetch or revalidate the cached inode. The cached file pages are used only if the cached inode
is up to date. The validity check on directory inodes is suppressed if a check was made within the last 30
seconds. Once a file is open, the remote site is treated like a local disk, with read-ahead and write-behind of
pages.

It is difficult to characterise the consistency semantics of NFS. New files created on a workstion may not be
visible elsewhere for 30 seconds. [t is indeterminate whether writes to a file at one site are visible to other sites

that have that file open for reading. New opens of that file will see the changes that have been flushed to the

server. Because of the caching of file pages, processes on different workstations that perform interleaved
writes on a file will produce a result that is different from the same sequence of writes by processes on one
workstation. Thus NFS neither provides smct emulation of 4.2BSD semantics nor the open/close action
consistency of Andrew.

5.3. Results of Comparison
The benchmark described in Section 2.3 was used as the basis of comparison between NF-S and Andrew.
Eighteen Sun3 workstations with local disks were available to us for our experiments. We added the Andrew
kernel intercepts to these workstations so that Venus could be run on them. These modifications were

onhogonal to NFS. A Sun3 was used as the server for both the Andrew and NFS trials. Clients and servers
communicated on a 10 Mbit Etherner,

A set of experiments operating on files in NFS and another set operating on files in Andrew were run. The
Andrew experiments consisted of two subsets: a CoId Cache set, where workstation caches were cleared

before each trial, and a Warm Cache set, where caches were left unaltered. Since the target subtree is entirely
re-created in each trial of a benchmark, the only benefit of a warm cache is that it avoids fetching of files from
the source subtree. In all cases, at least three trials were performed for each experiment.

We raninto serious functional problems with NFS at high loads, At loads of ten or greater we consistendy
observed that some of the workstations terminated the final phase of the benchmark prematurely because of
file system errors. Examination of the NFS source code revealed that the problem was probably being caused

by lost RPC reply packets from servers during periods of high network activity. The RPC protocol used in
NFS is based on unreliable datagrams, but depends on retries at the operation level rather than at the RPC
level. Non-idempotent file system calls that were retried by NFS sometimes failed and these were reflected as
file system errors in the running oft,he benchmark. Since the effective sere'or load was lower than the nominal

load in the last phase of these experiments, the results presented here are biased in favour of NFS at high
loads. We did not encounter any funcuonal problems of this nature with Andrew.

Table 11 and Figure 3 present the overall running time of the benchmark as a function of server load. NFS

performs slightly better than Andrew at low loads, but its pertbrmance degrades rapidly with increasing load
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The cross-over point is at a load of about 3 in the warm cache case and about 4 in the cold cuche case. Close

¢×aminntion of]'able Ii reveals that the Scanl)ir, Re,JdAII.md Make phases contribute most to the difference
in NFS and Andrew performance. Caching and callback in Andrew result in the time for dle,3cphases being
only slio-.tltlyaffected by load. In N|:S, the lack era disk cache and the need to check with tl_eserver on each

file open cause the time tbr these phases to be considerably more load-dependent. The use of a warm cache
in Andrew improves the time only for the Copy phase.

Figure 4 and Table I2 present data on server CPU utilisation during these experiments. At a load of one,
server CFU udlisation is about 22% in NFS; in Andrew it is approximately 3% in both the cold and warm
cache cases. At a load of 18, server CPU utilisation saturates at 100% in NFS; in Andrew it is about 38% in
the cold cache case and about 42% in the warm cache case.

Data on server disk utilisation is presented in Figure 5 and Table 12. NFS used both disks on the server, with
utilisations rising from about 9% and 3% at a load of one to nearly 95% and 19%at a load of 18. Andrew used
only one of the server disks, with utilisation rising from about 4% at a load of one to about 33% at a load of 18

in the cold cache case. Disk utilisation is slightly, but not substantially, lower in the warm cache case.

Another quantity of interest is the relative amount of network traffic generated by NFS and Andrew during
the execuuon of the benchmark. Table 13 presents this informauon. ASthe table indicates, NFS generates

nearly 3 rimes as many packets as Andrew at a load of one.

Low latency is an obvious advantage of remote-open file systems. To quantify, this fact we ran a series of

experiments that opened a file, read the first bytc, and then closed it. Table 14 illustrates the effect of file size
on latency in NFS and Andrew. Latency is independent offile size in NFS. and is about _nce that era local
file: In Andrew, when the file is in the cache, latency is close to that of NFS. When the file is not in the
cache, latency increases with file size. In interpreting Andrew data it is important to note that the close system

call completes before Venus transfers the file to the server.

What can we conclude from these observations? First. it is clear that Andrew's scaling characteristics are

superior to those of NFS. Second, the unproved scaling of Andrew is not achieved at the pnce of

substantially poorer small-scale performance. Andrew is implemented almost entirely in user space, while
NFS is entirely in the kernel. We anticipate a significant reduction in overhead if we move Andrew code into
the kernel. There is thus untapped potential for. unproved performance in Andrew. while we see no similar

potential in NFS. Finally. Andrew provides a well-defined consistency semantics as well as support for
security and operability. We are pleased to observe that such additional functionality has been incorporated
without detriment to our primary, goal of scalability.

6, Changes for Operability
As the scale of a system grows its users become increasingly dependent on it and operability assumes maior

significance. Since the prototype paid scant attention to operability, it was Lmperauve that we address this
aspect of the system seriously in the redesign. Our goal was to build a system that would be easy for a small
operational staff to run and monitor, with mmLmal inconvenience tOusers.

At the heart of the operability problems in the 7rotot-'pe was an inr'lexlble mapping of Vice files to server disk

storage. This mapping, described m Sccuon 2.1. was deficient in a number of ways:

• Vice was constructed out of collccuons or r_Icsglued together by the 4.2BSD :_[ount mechanism.

Unfortunately, only entire disk paruuons could be mounted. Consequently, only sets of files on
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different disk partitions could be independently located in Vice. To minimise internal

fragmentation on the disks, st,ch partitions had to be quite large: typically consisting of the files of
ten or more users. The fact that repanitioning of a disk had to be done oftline further reduced
flexibility.

• The embedding of file location information in the file storage structure made movement of files
across servers difficult. It required structural modifications to storage on the sewers, and
modifications to the files while the move was in progress were sometimes lost.

• It was not possible to implement a quota system, which we believe to be important in a system
with a large number of users.

• "l"hemechanisms for file location and for file replication were cumbersome because of the lack of
well-defined consistency guarantees. The embedded location data base was often wrong, and
failures during the propagation of replicated files sometimes left it inconsistent.

• Standard utilities were used to create backup copies of the files in the system. Although these
udlides are adequate for a single-site system, they are not convenient for use in a distributed
environment, where filcs may have been moved since they were last backed up. The wii'ing-in of
location information made restoration of files particularly difficult.

• Backup was further complicated by the fact that a consistent snapshot of a users files could not be

made unless the enure disk partition containing those files was taken offline. We felt this an
unacceptable imposiuon onusers.

To address these problems our redesign uses a data structuring primitive called a Volume [8]. In the rest of
this section we describe volumes and show how they have improved the operability of the system.

6.1. Volumes

A Volume is a collection of files forming a partial subtree of the Vice name space. Volumes are glued together
at Mount Points to form the complete name space. A mount point is a leaf node of a volume that specifies the

name of another volume whose root directory is attached at that node. Mount points are not visible in
pathnames: Venus transparently recognises and crosses mount points during name resolution. The mount
mechanism in Vice is thus conceptually similar to the standard 4.2BSD mount mechanism.

A volume resides within a single disk partition on a server, and may grow or shnnk in size. Volume sizes are

usually small enough to allow many volumes per pamtion. We have found it convenient to associate a
separate volume with each user. As mentioned, in Section 3.2, volume to server mapping information is
maintained in a volume location database replicated at all servers.

6.2. Volume Movement
Balancing of the available disk space and utilisation on servers is accomplished by redistributing volumes

among the available partitions on one or more servers. When a volume is moved, the volume location
database is updated. The update does not have to be synchronous at all servers since temporary forwarding

information is left with the original server after a move. It is thus always possible for a workstation to identify
the server responsible for a volume. A volume may be used, even for update, while it is being moved.

The actual movement is accomplished by creating a frozen copy-on-write snapshot of the volume called a
Clone. constructing a machine-independent representauon of the clone, shipping it to the new site. and

regenerating the volume at the remote site. Dunng this process the volume may be updated at the original
site. If the volume does change, the procedure is repeated, with an incremental clone, shipping only those files
that have changed. Finally the volume is bnefly disabled, the last incremental changes shipped, the volume

made available at the new site, and requests directed there. The volume move operation is atomic: if either
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server crushes the operation is aborted.

6.3. Quotas

Quotas are implemented in this system on a per volume basis. Each user of the s_stem is assigned a volume
and each volume is assigned a quota. "llle responsibility for managing the allocated space within a volume is
left to the user. Access-lists permitting° a user may store files in a volume behmging to another user.
However. it is always the owner of a volume who is charged for its usage. System administrators can change
quotas easily on volumes after they are created.

6.4. Read-only Replication
Executable files corresponding to system programs, and files in the upper levels of the Vice name space, are

frequendy read but seldom updated. Read-only replication of these files at multiple sewers improves
availability and balances load. No callbacks are needed on such files, thereby making access more efficient.

Read-only replication is supported at the granularity of an entire volume, llae volume location database
specifies the server containing the read-write copy of a volume and a list of read-only replication sites.

As described in Section 6.2, a read-only clone of a volume can be created and propagated efficiently to the

replication sites. Since volume propagation is an atomic operation, mutual consistency of files within a
read-only volume is guaranteed at nit replication sites. However. there may be some period of time during

which certain replication sites have an old copy of the volume while others have the new copy.

Read-only volumes are valuable in system administrauon since they form the basis of an orderly release

process for system software. [t is easy to back out a new release in the event of an unanticipated problem with
it. Any one of a collection of servers with identical sets of read-only volumes (and no read-writ," volumes) can
be introduced or withdrawn from service with virtuatiy no impact on users. This provides an additional
measure of availability and serviceability.

6.5. Backup
Volumes form the basis of the backup and restoration mechanism in our redesign. To backup a volume, a

read-only clone is first made, thus creating a frozen snapshot of those files. Since c[oning is an efficient

operation, users rarely notice any loss of access to that volume. An asynchronous mechanism then transfers
this clone to a staging machine from where it is dumped to tape. The staging software is not aware of the
internal structure of volumes but merely dumps and restores them in their entirety. Volumes can be restored.

to any server, since there is no ser_'er-speciEc informauon embedded in a volume.

Experience has shown that a large fraction of file restore requests anse from accidental deletion by users. To
handle this common spemat case. the cIoned read-only backup volume of each user's files is made available as

a read-only subtree in that user's home director'. Rcstorauon of files within a 24-hour period can thus be

performed by users themselves using normal file operations. Since cloning uses copy-on-wnte to conserve
disk storage, this convenient backup strategy is achieved at modest expense.

6.6. Summary

Our experience with volumes as a data structunng mechanism has been entirely positive. Volumes provide a
level of Operational Transparency which :s not supported hv any other file system we are aware of. From an
operational standpoint, the system is a flat space of named volumes. The tile system hierarchy is constructed
out of voiumes, but is orthogonal to it.
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The ability to associate disk usage quotas with volumes and the ease with which volumes may be moved
between servers have proved to be of considerable value in actual operation of the system. The backup
mechanism is simple and elTmient, and seldom disrupts norm_d user activities. These observations lead us to

conclude that the volume abstraction, or something similar to it, is indispensible in a large distributed file
system.

7. Conclusion

ScaleimpactsAndrew in areasbesidesperformanceand operability."11_elargenumber of usersand
workstationsinthesystemhasresultedinsizableauthenticationandnetworkdatabases.As thesystemgrows,
theexistingmechanismstoupdateand querythesedatahascswillbecome inadequate.Fault-toleranceis
anotherareawherescalingstressesAndrew.The accessofa Vicefilecan,intheworstcase,involvemultiple
serversand networkelements.Everyoneofthesecomponentshastobe up forthefileaccesstosucceed.

Read-onlyreplicationofsystemfilesalleviatesthisproblemtoa certainextent,butdoesnotentirelysolveit.
Whilea uniform,location-transparentfilename spaceisa majorconceptualsimplification,thefailuremodes
thatarisecanbe quitedifficultfora naiveusertocomprehend.The issueofsoftwareversioncontroland
orderlyreleaseofcriticalsoftwaretoworkstationswillalsoincreaseinimportanceasthesystemgrowsinsize.

In choosing to focus on scale, we have omitted discussion of many other important aspects of the evolution of
the Andrew File System. Security and emulation of Unix semantics, for example, are two areas fundmnental
to the file system. Network topology, hardware and software are other such examples. We have had to pay
close attention to these and other similar areas in the course of our design and implementation.

At the time this paper was written, in early 1987, there were about 400 workstations and 16 servers. About a
fifth of the workstations were in public terminal rooms. There were over 3500 registered users of the system,
of whom over 1000 used Andrew regularly. The data stored on the servers was approximately 6000 Mbytes
and was distributed over about 4000 volumes. Although Andrew is not the sole computing facility at CMU, it

is used as the primary computational environment of many courses and research projects.

What do we see for the future? Usage experience gives us confidence that this system will scale with minimal

changes to about 500 to 700 workstations. From there to our eventual goal of 5000 workstations is, of course,
a large gap. Although the performance data presented in this paper confirms that our high level architecture
is appropriate for scaling, it is inevitable, that significant changes will have to be made with each quantum
increase in the size of the system.

The changes we have thought of address a variety of issues. Moving Venus and the server code into the
kernel would improve performance considerably. Changing the kernel intercept mechanism to an industry
standard would simplify the maintenance and portability of the system. The ability to allow users to define

their own protection _oups would simplify, administration. As users become more dependent on the system,

availability becomes increasingly important, Some fmTn of replication of writable files will be necessary
eventually. The distributed nature of the system and its inherent complexity make it a difficult system to
troubleshoot. Monitoring fault isolation and diagnostic tools that span all levels of the hardware and.software
will become increasingly important. Finally, as the system _ows. decentralised administration and physical

dispersal, of servers will be necessary.

In conclusion, we look upon the present state of the Andrew File System with satisfaction. We are pleased

with its current performance and with the fact that it compares favourably with the most prominent
alternative dismbuted file system. At the same time we are certain that further growth will stress our skill,

patience and ingenuity.
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,MachineType

Benchmark Phase Sun2 1115,1R'1"125 Sun3/50

Overall I054(5) 798(20) 482(8)

MakeDff 16(I) 13(I) I0(0)

Copy 40(I) 37(2) 31(2)

SeanDir 70(4) 51(9) 44(5)

ReadAll 106(2) 132(8) 51(0)

Make 822(2) 566(II) 34fi(i)

This table shows the elapsed time in seconds of the benchmark when it was run on [..helocal
file _sterns of different macmnes. Since no remote file accesses were made, the differences
in umes are due solely to the hardware and, operatthg _'_.ern unplementauon. The amount
of real memory used by each o[ the macmne types was as follows: Sun2 2 Mbytes. IBM RT
2.8 Mbytes. Sun3 4 Mbytes. All the macnme.s were configured as workstations rather than
servers, and. had. relauvety low performance _isks. -Eachof these e.,_penments was repe,atecl
3 thnes. Figures m parenmeses are sumdard de_auons.

Table I: Standalone Benchmark Performance

Server • Total Calls Call Distribution

TestAuth GetFileStat, Fetch Store Seu_leStat ListDir All Others

cluster0 1625954 64.2% _.7% 3.4% 1.4% 0.8% 0.6% 0.9%

clusterl 564981 64.5% 2!7% 11% 3.5% 2.S% 1.3% 11%

cmu-O 281482 50.7% 33.5% 6.6% 1.9% L5% 3.6% 2.2%

cmu-I 1527960 6L1% 29.6% 3.8% kl% L4% 1.8% L2%

cmu-2 318610 68.2% 19.7% 3.3% 17% 7_3% 1.6% ""_

Mean 61,7% 26,8% 40% !1% 1.8% 1.8% 1.7%

(6.7) (5.6) [ (1.5) (I.0) (0.8) (i.i) (0.6)
i

The data shown here was gathered over a one-mon_, Dcnect. The figures m parentheses are standard deviations.

Table 2: Dismbuuon of Vice Calls in Prototype
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Load Units O_erallRenchmarkTime Time per"l"eslAulhCall

i

Absolute(s) Relative Absolute(ms)] Relative

I 1789(3) 100% 87(0) L00%

2 1894(4) 106% 118(I) I]6%

5 2747(48) 154% 259(16) 298%

g 5129(177) 287% 670(23) 770%

10 7325 (69) 410% 1050(13) 1.207%

l:_chdam pointisthemean of3 teals.Clientsand servePJwere
Sun2s.Eachclienthada300-entryca_e. l_gurcsm paren[he_s
arestandarddeviauons.In ca_ row.thevaiueina column

marked"'Relative"isLhcmt|ooftheabsolutevalueat [hatloadm
its valueat loadone. Part of [he datapresentedhere is repro(tuced

in Figure L

Table 3: Prototype Benchmark Performance

Server Staples CPU Utilisation DiskL Disk!

!

total I user system uul KBytes xfers util KBytes xfers
7 *

i

dusterO 13 37.8% 9.6% _.2% IZ0% 380058 13._0.4 68% 186017 75212
(12.5) (4.4) (8.4) (3.3) (84330) (35796) (4.2) (104682) (42972)

clusterl 14 12.6% Z5% 10.1% 4.1% _9336 .,5127 44% 168137 49034

(4.0) (I.i) (3.4) (L3) (41503) (21"-52) (!I) (63927J (32168)

cnnu-O 1.5 7.0% 1.8% 5.1% L5% 106820 _177 [

(2.5) (0.7) (I.S) (0.9) I (4L048_ (lOng) ,
l

cmu-i 14 43.2% 7.2% 36.0% 13.9% } -',78059 iZ62.57 15.1 373526 140516

(10.0) (1.3) (3.17") (4.5) t (L51755) i (424.09) (5.4) (105S46) (40464)I t

The data shown here ,,,,"as_ttaered from servers over two weeks from 9am to 5pro on weekdays. Figures m

parentheses are standard devtataon_

Table 4: Protobpe Scr_'er Usage
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Fetci|returnsthestatusaJld(optionally)dataofthe_pecifiedfileordirectoryandplacesa_llbackonit.

Store >lores_hestatus and {opllonaily,_data of the specified file.
IIcmove delctcsthe speofied file.

Creale cratesanew fileandplacesacallbackonit.

Rename changesthenm'neofafileoradirectory.Cross-,,o[umcrenamesareillegal.

Symlink crcatcs a s_mbolic link to a file or directory.

Link creates a hard link to a file. Cross-dirccto_ links are illcgal.
Makedir crcatcs a new directory.

llemo_edir deletes the spcoficd directory. The directory must be empty
SelLock locks the spccificd file or directory in _arcd or exclusive mode. Locks expire after 30 minutes.

Relenseloek unlocks the specified file or directory.

GetRootVolume returns the name of the volume containing the root of Vice.
GetVolumelnfo returns the name, s} of servers that store the sOec_ficdvolume,

GetVolumeSlalus returns status information about the specified volume.

SetVolumeSlalus modifies status information on the sponfied volume.
ConneclFS initiates dialogue with a server.

DisconnectFS terminates dialogue w_tha server.

RemoveCailBack specifies a file that Venus has flushed from i_ me.he.
Getl"ime synchromz_ the workstauon clock.

Get.Statistics returns server CPU. memory, and I/O utilization.

CheckToken detcrm|nes whethcr the sp'ccifiedauthenucauon token for a user is valid

DisableGroup temvomnly disables mcmt)ersmp m a protecuon group.
EnableGroup enat)les membersh|p m a temporaniy dusa01edprotecuon group.

BreakCallbaekrevokesthecallbackonafileordirectory.Made byaservertoVenus.

Table 5: Vice Interface
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Overall Time 'l'ime for Each Phase

I,oad Unils Ahsolule Relalive Makel]ir Copy Scanl)ir ReadAII Make

1 949 (33) 100% 14 (1) 85 (28) 64 (3) 17'9([4) 608 (16)

2 948(35) 100% 14(I) 82(16) 65(9) 176(13) 611(14)

5 1050(19) 111% 17(I) 125(30) S6tO) IS6(17) 637(I)

8 1107(5) 117% 22(I) IS9(i) 78(2) 206(4) 641(6)

10 1293(70) 136% 34(9) 209(13) 76(5) 200(7) 775(81)

15 1.518(28) 160% 45(3) 304(if) 81(4) 192(7) _96(12)

20 1823(42) 192,% S8(1) 433 (45) '77(4) 192(6) 1063(64)

This table shows the elapsed tune m seconds of the benchmark as a funcraonof loacL I'he clients were IBM RT/25s
on a tolcen nng and the server was a Sun2 on an Ethernet. Most of the clients were one router hop away l'rom the
server, but a few were two •hops away. Each of the _cpenments was repeated 3 rimes. Figures m parentheses are
standard deviauons. In earn row. the value ,n a column rnariced "Relauve'" is the ratio of the aDsolute value at that

load to its value at load one.. Part of thLsinformauon s reproaueed in Figure L

Table 6: Andrew Benchmark Times
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Ulilisalion (Percenl)

Load Units CI'U .Disk

1 8.1 (0.7) 2.7 (0.1)

2 15.0 (L3) 4.7 (0.4)

5 29.4 (1.5) 9.2 (0.3)

8 41.8 (0.8) 12.8 (0.6)

10 54.6 (6.6) 17.8 (3.6)

13 64.7(1.2) 20.9(0.1)

20 70.9 (2.2) 23.6 (0.6)

This table shows the Sun2 server CPU and disk
utilisation as a funcuon of load. The uulisations
are averaged over the entire duraUon of the
benchmark. This dam was obtained from the

same experiment as Table 6. -Each of the
_xpenments was repeated 3 ames. Figures m

parentheses are standard dewauoas. A part of
this data is repr_ucea in Figure 2.

Table 7: Andrew Ser_,er Utilisation During Benchmark
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i

Server Snmpies CPLI Utilisation Disk [ Disk 2 Disk 3

,= m

total uscr system util KBytes util Kl3ytcs util KBytes

i

vice2. 4 16.7 3.5 13.2 2.9 149525 1.9 109058 , 0.5 20410

(4.5) (l.2) (3.6) (0.35 (15461) (1.0) (64453) (0.1) (2794)

vice3 5 19.2 5.1 14.1 3.0 126951 2.7 98441 2.3 96445

(ZS) (Z1) (Lb) (O.b) (24957) (0.7) (26975) (0.3) (13758)

vice4 4 35.8 14.1 2L7 4.8 195618 3.6 140147 5.2 217331

(24.55 (16.95 (8.9) (3.0) (132128) (1.15 (478365 (3.5) (151199)

vice5 5 19.9 3.5 16.4 3.2 152764 3.2 174229 0.9 37851

(2.9) (0.7) (2.45 (0.4) (192475 (0.5) (268495 (0.2) (9167)

vice6 5 14.3 14 llO 14 117050 2.3 131305 0.4 14923

(1.4) (0.3) (1.2) (0.3) (17244) (0.3) (15950) (0.15 (3985)

vice7 5 26.0 6.4 19.5 6.9 349075 0.2 4143 1.4 59567

(3.2) (LO) (13) (0.2) (9515) (0.i) (4217) (1.2) (60504)

vice8 5 .7.5 1.5 6.0 L4 62728 0.3 6079 0.6 28704

(L2) (0.4) (0.85 (0.3) (1222.6) (0.15 (9025) (0.4) "' (24248)

vice9 5 37.6 7.2 30.4 ill 558839 15 103109 12 103517

(lT) (0.4) (93) (I.4) (63592) (0.8) (38392) (0.5) (21171)

vicel0 5 23.3 6.1 17.2 5.8 262846 2.1 82502 L7 74043

(8.6) (5.0) (4.8) (LS) (82210) (0.7) (44606) (0.8) (35699)

vicell 5 18.0 5.6 12,5 3.0 124783 3.0 129667 0.8 24321

(6.0) (4.4) (9._0) (0.5) (23398) (0.9) (394553 (0.2) (7715)

I
vicel2 5 13.2 5.8 7.5 17 11S960 ! 1.5 -:9(322 0.2 71

vicel3 5 12,5 3.1 94 ! 1.6 }!_ 7(3632 0.9 26687 1 1.9 84874
(94) (I.2) (1.3) tO.Z) i (g476) [ _0.3) (10971)! (0.5) (26433)I

I i

vicel4 5 15.3 7.0 i3 L3 t !0a861 I hl 342,-$2 1.0 36587

(12.0) (8.6) _3.5) i (L1) ,! (57648) (0.3) (12202) (0.5) (_1905

. - This table shows the CPU and _isk uul_s.auon of "_.e.,r,am Andrew _ervers ciunra_ weekdays from 9am to 5pro. The

data was gathered over a _,eek from 9 Feo 1'._7 'o !5 Feb Iq.$7 Om|tted from th|s table ore servers usect for
e.,tpenmenta/ versaons of the system. T_ree of me servers m t.,_etat)le above (vice11. vicel3, v_ce14)had a fourth

0. o. All the se_'ers hsted above were Sun_. F3gures mdislc In all cases theuuhSaUOnor"that cask _as Le_-_-_-_Wan _'

parentheses are standard devtauons.

Table 8: AndrewServer Usage
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Server Tolai Calls Call Dislrihulion

FetchData FetchStatus StoreData Store,Status GctStat RemoveCB GetTime VolSta)__ Other

vice2 274432 10.9% 29.6% 0% 0% 17% 0% 35.2% 0% 22.6%

vice3 307200 7.2% 19.3% 4.0% 2.6% 1.5% 12.7% 19.1% 25.4% 8.2%

vice¢ 405504 10.3% 21.7% 7.2% 3.2% 12% 14.5% 18.2% 13.6% 10.1%

vices 348160 13.1% 36.3% 0.2% 0.3% L3% 1L6% 29.7% 0.0% 7.5%

vice6 212992 1L8% 33.2% 0.0% 0,,o 2.2% 0.3% 41.9% 0% 10.6%

vice7 708608 12.8% 26.2% 3.3% 3.9% 0.7% 7.9% 14.6% 1.8% 28.8%

vice8 40960 8.6% 29.2% 1.9% 0l5% 9[7% 26.7% 12.2% 09'0 11.27o

vice9 692224 19.3% 37.9% L6% 0.1% 0.6% 21.8% 10.5% L1% 7.1%

vicel0 208896 1L3% 2L7% 5.0% 3.6% 1.2% 13.7% 24.7% 11.7% 7.1%

vicell 368640 7.(;% 35.8% 3.6% L9% L3% 10.3% 18.8% 12.9% 7,9%

vicel2 122880 8.8% 18.2% 4,4% 3.1% 3.8% 12.9% 31.0% 9.7% 8.1%

vice13 180224 9.8% 19.0% 5.5% 4.0% 16% 12-1% 25.1% 13.6% 8.3

_cel4 114688 8.2% i19% 3.9% 12% 15% 9.6% 19.3% 34.4% 7.0%

, +

This data in this table was gathered from the main Andrew se_'ers over 78 hours, tn the period from 3 Feb' 1987 to 6 Feb
1987. Data for three servers running an e_penmental version of the system are not shown here. The user informauon in
Table 10 is derived from the same set of observauons. Note that the call FetchData fetches both data and status, while

FetehStatus fetches only status. StoreData and StoreSt'atusare mmilarly related.

Table 9: Distribution of Calls to Andrew Servers



Server Type of Volumes Average Active Users

Oierall Peak Period

vice.?. Read-only, System 23 64

vi_3 Read-write, User 23 56

vic.c'4 Read-write, User 27 68

vice.5 Read-only and Re_d-wnte 28 76

vice6 Read-only, System 18 52

vice7 Read-write, System 59 128

vice8 Spca_ 2 3

vice9 Re_d-wnt_BBoaxd 25 63

vicelO Read-write.User 29 77

vicell Read-write.User 23 58

vice12 Re_d,-wnte.User 8 24
.

vice13 Read,-wme, User 13 31

_icel4 Read-write. User II 29

l

Thistableisderivedfromthesame setofobservauonsasTable9.The second

column describes bhe kind of volumes s_ored on _ctl server. Server vice9 stores
thebulletinboards,whichare,,hemostfrequentlyupcL_tccLsetof directonesmare_

by many users. Server vices has the r_d-wnte volumes whose rea_-only clones
ate on vice! vice5 and vice6. Vice7 has the common s)'stcm volumes that c_nnot
beread-only,andarethereforeuse_byallof theworkstauonsm thesystem.[Data

for three servers running _ experimental vermon of the _stem axe not shown
here. An active user on a server ts one on whose behalf some wortstauon has
interacte_w_ththat server dunng the past 15mmutes. Peak period _sdelL_ea to be

9am to 5pro on weekdays.

Table ItO: Acti_e Users on Andrew Scr_'ers
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Time

Phase I,oad Units NFS .%lldrewCold A.drew Warns Si-qmlAlone

Overall 1 511.(1) 588 (2) 564 (23) -i82 (8)
2 535 (2) 582 (4) 567 (29)

5 647(5) 605(2) 564(7)
7 736(5) 636(4) 573(19)

10 888(13) 688(4) 621(30)

15 1226(12) 801(25 659(8)

18 1279(84) 874(25 697(14)

MakeDit 1 S(1) 5 (1) 5 (1) 10 (0)

z 8(o5 s(D 5(D
5 18(1) 7(D 7(05
7 33(25 9(1) 8(0)
10 59 (2) 12 (1) 12 (1)

15 82 (5) 18(1) 19 (1)
18 81 (7) 24 (1) 18(1)

Copy 1 44 (0) 71 (4) 56 (8) 31 (2)
2 51 (1) 72 (3) 57 (35

5 84(2) B5(1) 58(15
7 95(2) L04(2) 62(3)
i0 107(9) 137(55 88 (18)

15 164(2) 2OO(3) 116(5)
18 245(10) 241(4) 133(4)

ScanDir 1 67 (1) 100(2) 98 (14) 44 (5)

2 67(05 98 (0) 96 (10)

5 72 (1) 97 (0) 95 (5)
7 78 (2) 97 (1) ' 96 (13)

10 85(i) 94(05 99(4)

15 i07(i) 91(0) 82(0)

18 111(5) 90(1) 96(4)

ReadAll 1 68(1) 50(3) 48(1) 51(60)

2 76 (2) 50 (2) 57 (175

5 93(0) 47(0) 49(3)

7 117(3) 48(0) 48(0)

I0 152(8) 48(0) 49(I)

1.5 23.5(14) 48 (1) 48 (0)

18 211 (17) 48(0) 48 ((3)

,Make 1 327(1) 363(3) 357 (5) 346 (I)

2 334 (3) 356 (2) 352 (1)

5 380(4) 368(2) 355(I)

7 414 (3) 377 (2) 359 (3)

i0 485 (8) 395(2) 373(I0)

15 658(15) 4-$2(2) 394(6)

" 18 638(73) 469(3) 410(1.1)

i

This tableshows the elapsed time in seconcLsof the benchmark as a function of load. This data corresponds to the
same set of cxpenments as Table 12. wmcta describes the taarctwareconfi_urauon as well as problems encountered

with NFS at loads of 10. 15 and 28. The standaJone numOers are reproduced from Table 1. A part ofths data is
reproduced in Figure 3. Figures m parentheses are standard devtataons.

Table I1: Benchmark Times of NFS and Andrew
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Load File System CPU Ulilisation Disk I Disk Z
Uuils J •

total user _stem util KByte,s util KBytes

1 NFS 113 (0.1) 0.0 (0.0) !13 (0.1) 17 (0.1) 482l (103) 8.7 (0.2) 11474 (277)

AndrewCold 3.4(0.I) 0.6(0.i) 19(0.I) 3.5(0.2) 5149(449) 0.2(0.I) 0 (0)

AndrewWarm 2.7(0.1) 0.5(0.1) 2.1(0.I) 2.9(0.2) 3904(355) 0.3(0.0) 0 (0)

2 NFS 38.2(0.2) 0.0(0.0) 38.2(0.2) 4.3(0.I) 8487(15) 18.0(0.8) 23604(429)

Andrew Cold 6.7 (0.1) 1.3 (0.1) 5.7 (0.1) 5.3 (0.2) 8350 (754) 0.3 (0.1) 2 (0)

Andrew Wama 5.0 (0.1) 1.0 (0.0) 4.1 (0.1) 4.4 (0.2) 6706 (783) 0.2 (0.1) " 2 (0)

5 NF"S 68.0 (0.7) 0.0 (00) 68.0 (0.7) 10.1 (0.3) 19169 (890) 46.2 (0.4) 58279 (2698)

Andrew Cold 16.2 (0.3) 3.0 (0.2} 13.2 (0,l) 10.3 (0.2) 16911 (743) 0.2 (0.0) 2 (0)
Andrew Warm 1L5 (0.1) 14 (0.13 9.2 (0.1) 9.2 (0.4) 140,70(512) 0.2 (0.1) 2 (0)

7 NF'S 80.8 (0.4) 0.0 (0.1) 80.8 (0.3) 12.8 (0.2) 26313 (420) 55.9 (0.3) 86397 (2755)
Andrew Cold 22.2 (0.3) 4.1 (0.1) 18.1 (0.3) 13.7 (0.9) 23073 (1932) 0.3 (0.0) 4(I)

Andrew Warm 1.6.9(0.5) 3.4 (0.2) 13.5 (0.4) 10.8 (0.4) 17665 (746) .0.2 (0.1) 2 (0)

10 NF'S 92.3 (0.8) 0.0 (0.0) 913 (0.8) 16.8 (0.5) 35989 (753) 71.1 (0.7) 124982 (2092)

Andrew Cold 29.6 (0.9) 5.8{0.1) 24.0 (0.8) 18.7 (0.4) 34568 (1108) 0.3 (0.1) 3 (1)

Andrew Warm 25.3 (Z0) 5.1 (0.4) 20.1 (1.6) 16.5 (0.9) 27886 (2655) 0.2 (0.1) 4 (2)

15 NFS 96.2(0.7) 0.0(0.0) 96.2(0.7); 19.4(0.5) 52198(3446) 86.3(0.8) 213181(6942)
AndrewCold 38.1(0.5) 7.1i0.2) 31.0(0.5_I 248(L3) 51830(1771) 0.3(0.0) 5(i)

AndrewWarm 33.5(0.6) 6.9(0.i) _,6(0.5) 22.$(1.3) 38953(2819) 0.2(0.I) 6(0)

18 NF'_ 100(I.i) 0.0(0.0) I00(I.i) 19.3(0.7) 53858(4148) 95.0(1.4) 243547(15683)

AndrewCold 41.5(1.9) 8.0(0.2) 33.4(i.8) 27.6(1.5) 58901(10410) 0.3(0.0) 6(0)

Andrew Warm 37.7(0.9) 7.6(0.i) _,0.1(0.7) 24.6(0.6) 46628(1536) 0.3(0.I) 5(I)

i

This table shows the uulisataon of the 5er_'eras a _ncr_on of load. The clients were Sun3/50s _th 4 Mbytes of real
memory, and a 70 Mbyte }ocaldisk. The server was a Sun3/160 ',,,am8.Mbytes of real memory, and two 450 Mbyte disks.
In the Andrew experiments, system libraries and uzer files v,ere _otn located on the same sen'er _sk (Diskl}. In the

NFS experiments, sy.s_em libraries were _oeatee,on one server e,:sk (Diskl) and user files on the other (Disk/). In all the

experiments, the _stem binaries were !beaten cn me local a_sks of each client. The clientS ann the sen'er were on the
same ptaysical Ethernet caOle. _m no ,nterven:ng touters. Lac.'aof _ese exnenments was repeated at least 3 tames.

Figures in parentheses are standard dev_auons. In me ..x=_rew cold _che ex;_enments, the ideal disk cache was
completely cleared before each trial The warm _c_e ex_enmenu were run w_t/a cache state unct_anged from t.he

prewous mat. A subset of thLS_ta _sgrapmc._ly _ta_e¢ '.n _gures 3 anti 4 Table iicorresponns to the same set of
exper'.men_._-

In the NF'S experiments, at 10 or more clients _er server. _me of the c_:ents failed to complete the final phase of the

" ben_marl¢. The num0er of such )_remature ter'mmauons mcre_ecl as the number of clients mcrea.sed. At 18clients per
server, at lea.st 3clients failed m ea_ of the o t.n:tls. See Sect)on 5.3 for a oomplete discussion of ths problem. In both
Andrew and NFS experiments, the ScanDir phase of the benc_,marl_ was run v.a_ an ,ncorrect binary, which caused
addiuonal local file references and computauon t_ut no remote references, l'his added a fixed, load-independent

o_ernead to that phase and lengthened the overall running tune of the benchmark. The _ta presentect above and tn
Table [ihave been corrected to exclude th|s overhead.



, 28
i,

"l':d}lc12:Scrvcr Utilisation by NFS and Andrew

Andrew N|-'S

Total packe_ 3824 (463) 10225{I06)

Packets from Server to Clicnt 2003 (279) 6490 (86)

Packets from Client to Scrver 1818 (189) 3735 (23)

This table presents the observed network traffic generated by the
benchmark when a single client was using a server. In the Andrew
case the ,server was a Sun2 on an Ethemet connected via a muter

to an IBM RT client on a token ring. In the NFS case the server
was a Sun2 on the same £themet cable as its Sun3 client. Each of

the e.xpenmenus was repeated 3 times, bigu,es in parentheses are
standard deviauon&

Table 13: Network Traffic for Andrew and NFS

"lime

File Size (Bytes) AndrewCold AndrewWarm NFS I StandAlone

3 160.0(M.6) 16.1(0.5) 15.7(0.i) 51 (0.1)

1113 148.0(17.9)

4334 202.9 (29.3)

10278 310.0 (53.5)
24576 515.0 (142.0) 15.9(0.9)

This table showsthe latency, in milliseconds as a function of file sue. Latency is defined here as the total ume to

open a file, read one byte and then close the file. A Sun3 server and a angle Sun3 diem were used m all cases. In
the Andrew warm cache case the file being accessed was already in the cache. The cold cache num0ers correspond
to cases where the file had to be fetched from _e server. The figures m parentheses are standard de,aauons.

Table 14: Latency of NFS and Andrew
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This fi=ure compares the dcgradauon in pe_om'tanee of the prototype and the currentAndrew file swstemas a _nct]on
of load. The clients were Sun23 in Weprotowpe _d IBM RTs in the current file s3stem. The server was a Sun2 in both
cases.Tables3 and 6 presentthts inforrnauonm greaterctem[.

Figure1: RelauveRunning Time of Benchmark

: 100
.o
m 90
N

"" 80

ol 60

50 U Utilization

40 /._ .... Andrew Disk Utilizatnon

30

20 ..... --

0"
i i , m i j _, _ i i I

0 2 4 6 8 1(] 12 14 16 18 20
Load Units

Server CPU and disk uulisauon are _resente_ :n -_,:s _,_urc = a fiancnon of load. All chent.s are IBM RTs and use a

_ngie Sun2 server. Table 7 pr_ents tins mformauon m _rcater detail.

Figure2: :xn_cw Set, or Uulisauon Dunng Benchmark
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Thisfigurecomparesthebencl_marktimesofNFS andtheAndrewfilesystemasa functionofload Table11presents
thisdam ingreaterdetail.Table12describesthecondiuonsunderwhichthedatawasobtained.

Figure 3: NFS and Andrew Overall Benchmark Times
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ThisfigurecomparestheserverCPUutilisauonsof NFSand Andrewasa functionof load. Table12presentsthisdata
mgreaterdetailanddescribestheconditionsunderwhichit wasobtained.

• • Figure 4: NFS and Andrew Server CPU Utilisation
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This figure compares the server dislcutilisations of NFS and Andrew as a function of load. Table 12presents this data m
greater de_l and descnbes the condiuons under which it was obuuned.

Figure5: NFS and Andrew Server Disk Utilisation
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