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Abstract

We introduce a fixedpoint algorithm for verifying safety properties of hybrid systems with differ-
ential equations that have right-hand sides that are polynomials in the state variables. In order
to verify non-trivial systems without solving their differential equations and without numerical
errors, we use a continuous generalization of induction, for which our algorithm computes the re-
quired differential invariants. As a means for combining local differential invariants into global
system invariants in a sound way, our fixedpoint algorithm works with a compositional verification
logic for hybrid systems. To improve the verification power, we further introduce a saturation
procedure that refines the system dynamics successively with differential invariants until safety
becomes provable. By complementing our symbolic verification algorithm with a robust version
of numerical falsification, we obtain a fast and sound verification procedure. We verify roundabout
maneuvers in air traffic management and collision avoidance in train control.





1 Introduction
Reachability questions for systems with complex continuous dynamics are among the most chal-
lenging problems in verifying embedded systems. Hybrid systems [16, 13, 8, 1] are models
for these systems with interacting discrete and continuous transitions, with the latter being gov-
erned by differential equations. For simple systems whose differential equations have solutions
that are polynomials in the state variables, quantifier elimination [6] can be used for verifica-
tion [13, 24, 2, 26]. Unfortunately, this symbolic approach does not scale to systems with compli-
cated differential equations whose solutions do not support quantifier elimination (e.g., when they
are transcendental functions) or cannot be given in closed form.

Numerical or approximation approaches [3, 18, 28] can deal with more general dynamics.
However, numerical or approximation errors need to be handled carefully as they easily cause
unsoundness. More specifically, we have shown previously that even single image computations
of fairly restricted classes of hybrid systems are undecidable by numerical computation [28]. Thus,
numerical approaches can be used for falsification [18, 9] but not (ultimately) for verification.

In this paper, we present an approach that combines the soundness of symbolic approaches [13,
2, 26, 27] with support for nontrivial dynamics, which is otherwise dominant in numerical ap-
proaches [3, 18, 28, 9]. During continuous transitions, the system follows a solution of its differ-
ential equation. But for nontrivial dynamics, these solutions are much more complicated than the
original equations. Solutions quickly become transcendental even if the differential equations are
linear. To overcome this, we handle continuous transitions based on their local dynamics, which is
described by their differential equations. We use differential induction [25], a continuous general-
ization of induction that works with the differential equations themselves instead of their solutions.
For the induction step, we give a condition that can be checked easily. It uses differential invari-
ants, i.e., properties whose derivative holds true in the direction of the vector field of the differential
equation. The derivative is a directional derivative in the direction of the (vector field generated by
the) differential equation, and we generalize derivatives from functions to formulas appropriately.
For this to work in practice, the most crucial steps are to find sufficiently strong local differential
invariants for differential equations and compatible global invariants for the hybrid system.

To this end, we introduce a sound verification algorithm for hybrid systems that computes
the differential invariants and system invariants in a fixedpoint loop. We follow the invariants as
fixedpoints paradigm [5] using a verification logic that is generalized to hybrid systems accord-
ingly [26, 27]. For combining multiple local differential invariants into a global invariant in a
sound way, we exploit the closure properties of the underlying verification logic [26, 27] by form-
ing appropriate logical combinations of multiple safety statements. In addition, we introduce a
differential saturation process that refines the hybrid dynamics successively with auxiliary differ-
ential invariants until the safety statement becomes an invariant of the refined system. Finally,
each fixedpoint iteration of our algorithm can be combined with numerical falsification to accel-
erate the overall symbolic verification in a sound way. We validate our algorithm by verifying
aircraft roundabout maneuvers [34, 28] and train control applications [29].

In other approaches [33, 32] invariants only work for systems without inequalities [33, 32] or
can only be generated for linear systems [32]. The approach of Prajna et al. [30] requires global
optimization over the set of all proof attempts for the whole system at once, which is infeasi-
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on
x′ = 1
x ≤ 9

off
x′ = −1

x ≥ 5

x := x+ 1

x ≤ 2

q := on; /* initial location is on */(
(?q = on; x′ = 1 ∧ x ≤ 9)

∪ (?q = on ∧ x ≥ 5; x := x+ 1; q := off)
∪ (?q = off; x′ = −1)

∪ (?q = off ∧ x ≤ 2; q := on; ?x ≤ 9)
)∗

Figure 1: Natural hybrid program rendition of hybrid automaton (simple water tank)

ble. Unfortunately, even for low-degree invariants, this requires solving optimization problems in
several thousand dimensions for aircraft maneuvers [34, 28] and train control case studies [29].

2 Hybrid Programs and Differential Dynamic Logic
As operational models for hybrid systems, we use hybrid programs (HP), a program notation for
hybrid automata (HA) [16]. HP can be decomposed syntactically into fragments: subprograms
which correspond to partial executions of only a part of the full HP (programs, are easier to split
structurally into parts than graphs, because handling dangling edges between graph fragments is
complicated). This is important as our verification algorithm recursively decomposes an HP into
fragments α1, . . . , αn (e.g., to find local invariants for each αi) and recombines corresponding
correctness statements about these fragments αi later.

Hybrid Programs. In order to represent HA [16] textually as an HP, we represent each discrete
and continuous transition as a sequence of statements, with a nondeterministic choice (∪) between
these transitions. For instance, the second line in Fig. 1 represents a continuous transition. It
tests (denoted by ?q = on) if the current location q is on, and then follows a differential equation
restricted to invariant region x ≤ 9 (i.e., the conjunction x′ = 1 ∧ x ≤ 9). The third line tests the
guard x ≥ 5 when in state on, resets x by a discrete assignment, and then changes location q to off.
The ∗ at the end indicates that the transitions of a HA repeat indefinitely. Alternatively, the resulting
HP in Fig. 1 can be considered as the essential part of a program exported from Stateflow/Simulink
enriched with differential equations for the continuous dynamics. Every safety property that this
HP satisfies is fulfilled for all deterministic implementation refinements.

Formally, let V be a set of state variables of the system including auxiliary variables. As
terms we allow polynomials over variables in V with rational constants. To make a structural
decomposition of HP into fragments possible, each operation of a HP only has a single effect.
There are separate classes of program statements with purely discrete effect, purely continuous
effect, and statements purely for regulating their interaction. Hybrid programs (HP) are built
with the statements depicted in Tab. 1. The effect of x := θ is an instantaneous discrete jump
assigning θ to x. Instead, x := random randomly assigns any real value to x by a nondeterministic
choice. During a continuous evolution x′1 = θ1 ∧ · · · ∧ x′n = θn ∧H , all conjuncts need to hold.
Its effect is a continuous transition controlled by the differential equation x′1 = θ1, . . . , x

′
n = θn

that always satisfies the arithmetic constraint H (thus remains in the region described by H). This
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directly corresponds to a continuous evolution mode of a HA. The effect of a state check or assert
statement ?H is a skip (i.e., no change) if H is true in the current state and that of abort, otherwise.
The non-deterministic choice α ∪ β expresses alternatives in the behavior of the hybrid system.
The sequential composition α; β expresses a behavior in which β starts after α finishes (as usual, β
never starts if α continues indefinitely). In a non-deterministic repetition α∗, the HP α repeats an
arbitrary number of times, possibly zero. All other discrete control structures are definable from
the primitives in Tab. 1 [15].

Formulas of dL. Our verification algorithm repeatedly decomposes and recombines HP. As a
logical framework where these operations are sound, we use a logic in which simultaneous correct-
ness properties about multiple subsystems are expressible. The differential dynamic logic dL [26,
27] is an extension of first-order logic over the reals with modal formulas like [α]φ, which is true
iff all states reachable by following the transitions of HP α satisfy property φ (safety).

Definition 1 (dL formulas) The formulas of dL are defined by the following grammar (where θ1

and θ2 are terms, ∼ ∈ {=,≤, <,≥, >}, φ, ψ are formulas, x ∈ V , and α is an HP built from the
statements in Tab. 1):

Formulas ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ∀xφ | ∃xφ | [α]φ .

A Hoare-triple {ψ}α{φ} can be expressed as ψ → [α]φ, which is true iff all states reachable by
HP α satisfy φ when starting from an initial state that satisfies ψ. Unlike Hoare-logics, dynamic
logics are closed under logical connectives [31]. Hence, we can express simultaneous correctness
statements about multiple fragments αi using conjuncts [α1]φ1 ∧ [α2]φ2. With this, a proof for [α]φ
can be decomposed soundly into [α1]φ1 ∧ [α2]φ2, when [α]φ and [α1]φ1 ∧ [α2]φ2 are equivalent for
appropriate fragments αi of α and subproperties φi of φ. In turn, if ψ̃i is the result of recursively
applying the verification algorithm to [αi]φi, then these can be recombined soundly to the verifica-
tion result φ̃1 ∧ φ̃2 for [α]φ. By the semantics of dL, this process gives a sound way of combining
local invariants required in the respective subgoals [αi]φi to a global system invariant. Finally, dL
and its proof techniques are closed under quantification, which we use to quantify over parameter
choices of local invariants. For instance, ∃p ([α1]φ1 ∧ [α2]φ2) can be used to determine if there is

Table 1: Statements and (informal) effects of hybrid programs (HP)
notation statement effect

x := θ discrete assignment assigns term θ to variable x ∈ V
x := random nondet. assignment assigns any real value to x ∈ V
x′1 = θ1 ∧ . . ∧ x′n = θn ∧H continuous evolution diff. equations for xi ∈ V and terms θi,

with arithmetic constraint H (domain)
?H state check test formula H at current state
α; β seq. composition HP β starts after HP α finishes
α ∪ β nondet. choice choice between alternatives HP α or β
α∗ nondet. repetition repeating HP α n-times for any n ∈ N
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a common choice for parameter p that makes both subgoals [αi]φi true. Liveness properties are
expressible using 〈α〉φ ≡ ¬[α]¬φ, which is true iff there is a reachable state satisfying φ.

The semantics of dL and HP is a Kripke semantics and given in appendix A.

3 Inductive Verification by Combining Local Fixedpoints
For verifying safety properties of hybrid systems without having to solve their differential equa-
tions, we use a continuous form of induction. In the induction step, we use a condition on direc-
tional derivatives in the direction of the vector field generated by the differential equation. The
resulting properties are invariants of the differential equation (whence called differential invari-
ants [25]). The crucial step for verifying discrete systems by induction is to find sufficiently strong
invariants (e.g., for loops α∗). Similarly, the crucial step for verifying dynamical systems (which
correspond to a single continuous mode of a hybrid system) by induction is to find sufficiently
strong invariant properties of the differential equation. Consequently, for verifying hybrid systems
inductively, local invariants need to be found for each differential equation and a global system
invariant needs to be found that is compatible with all local invariants.

To compute the required invariants and differential invariants, we combine the invariants as
fixedpoints approach from [5] with the lifting of verification logics to hybrid systems from [26, 27].
We introduce a verification algorithm that computes invariants of a system as fixedpoints of safety
constraints on subsystems. We exploit the fact that HP can be decomposed into subsystems and
that dL can combine safety statements about multiple subsystems simultaneously.

A safety statement corresponds to a dL formula ψ → [α]φ with an HP α, a safety property φ
about its reachable states, and an arithmetic formula ψ that symbolically characterizes the set of
initial states. Validity of formula ψ → [α]φ (i.e., truth in all states) corresponds to φ being true in
all states reachable by HP α from initial states that satisfy ψ. Our verification algorithm defines
the function prove(ψ → [α]φ) for verifying this safety statement recursively.

3.1 Verification by Symbolic Decomposition
The cases of prove where dL immediately enables us to verify a property of an HP by decomposing
it into a property of its parts are shown in Fig. 2. In the interest of a concise presentation, the case
in line 1 introduces an auxiliary variable x̂ to handle discrete assignments by substituting x̂ for x.
For instance, x ≥ 2 → [x := x− 1]x ≥ 0 is shown by proving x ≥ 2 ∧ x̂ = x− 1 → x̂ ≥ 0. The
actual implementation of our algorithm uses optimizations to avoid these auxiliary variables [27].
State checks ?H are shown by assuming the test succeeds, i.e., H holds true (line 3), nondetermin-
istic choices split into their alternatives (line 5), sequential compositions are proven using nested
modalities (line 7), and random assignments are handled by universal quantification (line 9).

The base case in line 11, where φ is a formula of first-order real arithmetic, can be proven
by real quantifier elimination [6] or semidefinite programming [23]. Despite the complexity of
real arithmetic, this is feasible, because the formulas resulting from our algorithm do not depend
on the solutions of differential equations but only their right-hand sides. Using a temporary form
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of Skolemization together with Deskolemization, quantifier elimination can be lifted to eliminate
quantifiers from dL formulas. We refer to previous work [27, 26] for details.

The algorithm in Fig. 2 recursively reduces safety of HP to properties of continuous evolutions
or of repetitions, which we verify in the next sections.

1 f u n c t i o n prove (ψ → [x := θ]φ ) :
2 re turn prove (ψ ∧ x̂ = θ → φx̂x ) where x̂ i s a new a u x i l i a r y v a r i a b l e
3 f u n c t i o n prove (ψ → [?H]φ ) :
4 re turn prove (ψ ∧H → φ )
5 f u n c t i o n prove (ψ → [α ∪ β]φ ) :
6 re turn prove (ψ → [α]φ ) and prove (ψ → [β]φ ) /∗ t h u s ψ → [α]φ ∧ [β]φ∗ /
7 f u n c t i o n prove (ψ → [α; β]φ ) :
8 re turn prove (ψ → [α][β]φ )
9 f u n c t i o n prove (ψ → [x := random]φ ) :

10 re turn prove (ψ → ∀xφ )
11 f u n c t i o n prove (ψ → φ ) where i s F i r s t O r d e r (φ ) :
12 re turn Q u a n t i f i e r E l i m i n a t i o n (ψ → φ )

Figure 2: dL-based verification by symbolic decomposition

3.2 Discrete and Differential Induction, Differential Invariants
In the sequel, we present algorithms for verifying loops by discrete induction and continuous evo-
lutions by differential induction, which is a continuous form of induction. In either case, we prove
that an invariant F holds initially (in the states characterized symbolically by ψ, thus ψ → F is
valid) and finally entails the postcondition φ (i.e., F → φ). The cases differ in their induction step.

Definition 2 (Discrete induction) Formula F is a (discrete) invariant of ψ → [α∗]φ iff the follow-
ing formulas are valid:

1. ψ → F (induction start), and

2. F → [α]F (induction step).

An invariant is sufficiently strong if F → φ is valid.

Definition 3 (Continuous invariants) Let D be a differential equation. Formula F is a continu-
ous invariant of ψ → [D ∧H]φ iff the following formulas are valid:

1. ψ ∧H → F (induction start), and

2. F → [D ∧H]F (induction step).
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Again, a continuous invariant is sufficiently strong if F → φ is valid.

To prove that F is a continuous invariant, it is sufficient to check a condition on the directional
derivatives of all terms of the formula, which expresses that no atomic subformula of F changes
its truth-value along the dynamics of the differential equation. This condition is much easier to
check than a reachability property (F → [D ∧H]F ) of a differential equation. Applications like
aircraft maneuvers need invariants with mixed equations and inequalities. Thus, we generalize
directional derivatives from functions to logical formulas.

Definition 4 (Differential induction) Let D be the differential equation system

x′1 = θ1 ∧ · · · ∧ x′n = θn .

Formula F is a differential invariant of ψ → [D ∧H]φ iff the following formulas are valid:

1. ψ ∧H → F and

2. H → ∇DF ,

where ∇DF is defined as the conjunction of all directional derivatives of atomic formulas in F in
the direction of the vector field of D (the partial derivative of b by xi is ∂b

∂xi
):

∇DF ≡
∧

(b∼c)∈F

((
n∑
i=1

∂b

∂xi
θi

)
∼

(
n∑
i=1

∂c

∂xi
θi

))
for ∼ ∈ {=,≥, >,≤, <}.

Proposition 1 (Principle of differential induction) All differential invariants are continuous in-
variants (the proof is in appendix B.1).

F
¬F

Figure 3: Differential invariant F

The region corresponding to a differential invariant F is illustrated in Fig. 3. Formula ∇DF is a
directional derivative of F in the direction of the dynamics of D. Intuitively, formula ∇DF is true
if the gradient arrows are pointing inside the (possibly unbounded) region consisting of the points
where F is true. In Sections 3.4–3.6, we present algorithms for finding differential invariants for
differential equations, and for finding global invariants for repetitions.
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Figure 4: Roundabout maneuvers for aircraft collision avoidance.

3.3 Example: Flight Dynamics in Air Traffic Collision Avoidance
Aircraft collision avoidance maneuvers resolve conflicting flight paths, e.g., by roundabout ma-
neuvers [34], see Fig. 4a–b. Their non-trivial dynamics makes safe separation of aircraft difficult
to verify [34, 21, 10, 7, 28, 14, 17]. The parameters of two aircraft at the respective planar posi-
tions x = (x1, x2) ∈ R2 and y = (y1, y2) with angular orientation ϑ and ς are illustrated in Fig. 4c
(with ϑ = 0). Their dynamics is determined by their linear speeds v ∈ R and u ∈ R and by their
angular speeds ω ∈ R and % ∈ R, see, e.g., [34] for details:

x′1 = v cosϑ x′2 = v sinϑ ϑ′ = ω

y′1 = u cos ς y′2 = u sin ς ς ′ = %
. (1)

In safe flight configurations, aircraft are separated by distance ≥p:

(x1 − y1)
2 + (x2 − y2)

2 ≥ p2 . (2)

To handle the transcendental functions in (1), we axiomatize sin and cos by differential equations
and reparametrize the system using a linear velocity vector d = (d1, d2) := (v cosϑ, v sinϑ) ∈ R2,
which describes both the linear velocity ‖d‖ :=

√
d2

1 + d2
2 = v and orientation of the aircraft in

space, see Fig. 4c:[
x′1 = d1 x′2 = d2 d′1 = −ωd2 d′2 = ωd1 t′ = 1
y′1 = e1 y′2 = e2 e′1 = −%e2 e′2 = %e1 s′ = 1

]
(F)

Equations (F) and (1) are equivalent up to reparameterization. Variables t and s are additional
clocks to coordinate collision avoidance maneuvers.

We can show, e.g., that d2
1 + d2

2 ≥ a2 is a differential invariant of (F):

∇F(d2
1 + d2

2 ≥ a2) ≡ ∇(d′
1=−ωd2∧d′

2=ωd1)(d
2
1 + d2

2 ≥ a2)

≡ ∂(d2
1 + d2

2)

∂d1

(−ωd2) +
∂(d2

1 + d2
2)

∂d2

ωd1 ≥
∂a2

∂d1

(−ωd2) +
∂a2

∂d2

ωd1

≡ 2d1(−ωd2) + 2d2ωd1 ≥ 0 .

3.4 Local Fixedpoint Computation for Differential Invariants
Fig. 5 depicts the fixedpoint algorithm for constructing differential invariants for each continuous
evolution D∧H with a differential equation system D. The algorithm in Fig. 5 (called Differential
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1 f u n c t i o n prove (ψ → [D ∧H]φ ) :
2 i f prove (∀cl(H → φ) ) then
3 re turn true /∗ s a f e t y p r o p e r t y proven ∗ /
4 f o r each F ∈C a n d i d a t e s (ψ → [D ∧H]φ , H ) do
5 i f prove (ψ ∧H → F ) and prove (∀cl(H → ∇DF ) ) then
6 H := H ∧ F /∗ r e f i n e by d i f f e r e n t i a l i n v a r i a n t ∗ /
7 goto 2 ; /∗ r e p e a t f i x e d p o i n t l oop ∗ /
8 end f o r
9 re turn ” n o t p r o v a b l e u s i n g c a n d i d a t e s ”

Figure 5: Fixedpoint algorithm for differential invariants (differential saturation)

Saturation) successively refines the domain H by differential invariants until saturation, i.e., H ac-
cumulates enough information to become a strong invariant that implies postcondition φ (line 2).
If domain H already entails φ, then ψ → [D ∧H]φ is proven (line 2). Otherwise, the algorithm
considers candidates F for augmenting H (line 4). If F is a differential invariant (line 5), then H
can soundly be refined to H ∧F (line 6) without affecting the states reachable by D∧H (Proposi-
tion 2 below). Then, the fixedpoint loop repeats (line 7). At each iteration of this fixedpoint loop,
the previous invariant H can be used to prove the next level of refinement H ∧ F (line 5). The re-
finement of the dynamics at line 6 is correct by the following proposition, using that the conditions
in line 5 imply that F is a differential invariant and, thus, a continuous invariant by Proposition 1.
(A proof is in appendix B.2.)

Proposition 2 (Differential saturation) If F is a continuous invariant of ψ → [D ∧H]φ, then
ψ → [D ∧H]φ and ψ → [D ∧H ∧ F ]φ are equivalent.

This progressive differential saturation turns out to be crucial in practice. For instance, the aircraft
separation property (2) cannot be proven until (F) has been refined by invariants for d and e,
because these determine x′ and y′.

The function Candidates determines candidates for induction (line 4) depending on transitive
differential dependencies, as will be explained in Section 3.5. When these are insufficient for
proving ψ → [D ∧H]φ, the algorithm fails (line 9, with improvements in subsequent sections).
Finally, ∀clφ denotes the universal closure of φ. It is required in lines 2 and 5, because the respective
formulas need to hold in all states (that satisfy H), which we will improve on in Section 4.

3.5 Dependency-directed Induction Candidates
In this section, we construct likely candidates for differential induction (function Candidates).
Later, we use the same procedure for finding global loop invariants. We construct two kinds of can-
didates in an order induced by differential dependencies. Our algorithm successively enriches ψ
with more precise information about the symbolic prestate as obtained by the symbolic decompo-
sitions and proof steps in Fig. 2 and 5. We look for invariant symbolic state information in ψ and φ
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by selecting subformulas that are not yet contained in H . In practice, this gives particularly good
candidates for highly parametric hybrid systems.

We generate additional parametric invariants. Let V = {x1, . . . , xn} be a set of variables. We
choose fresh names a(l)

i1,...,in
for formal parameters of the invariant candidates and build polynomi-

als p1, . . . , pk of degree d with variables V using the formal parameters as symbolic coefficients:

pl :=
∑

i1+···+in≤d

a
(l)
i1,...,in

xi11 . . . x
in
n (for 1 ≤ l ≤ k) .

We define the set of parametric candidates (operator ∨ is accordingly):

ParaForm(k, d, V ) :=

{
i∧
l=1

pl ≥ 0 ∧
k∧

l=i+1

pl = 0 | 0 ≤ i ≤ k

}
.

For instance, the parametric candidate a0,0 + a1,0d1 + a0,1x2 = 0 yields a differential invariant
of (F) for the choice a0,0 = 0, a1,0 = 1, a0,1 = ω. By simple combinatorics, ParaForm con-
tains k + 1 candidates with k

(
n+d
d

)
formal parameters a(l)

i1,...,in
, which are existentially quanti-

fied. Existence of a common satisfying instantiation for these parameters can be expressed by
adding ∃a(l)

i1,...,in
to the resulting dL formulas. For this to be feasible, the number of parameters is

crucial, which we minimize by respecting (differential) dependencies.
To accelerate the differential saturation process in Section 3.4, it is crucial to explore candidates

in a promising order from simple to complex, because the algorithm in Fig. 5 uses successful differ-
ential invariants to refine the dynamics, thereby simplifying subsequent proofs. For instance, (2)
is only provable after the dynamics has been refined with invariants for d and e. We construct
candidates in a natural order based on variable occurrence that is consistent with the differential
dependencies of the differential equations. For a differential equation D, variable x depends on
variable y according to the differential equation system D if y occurs on the right-hand side for x′

(or transitively so). The resulting set of dependencies is the transitive closure of:

depend(D) := {(x, y) | (x′ = θ) ∈ D and y occurs in θ} .

For the differential equation system (F), we determine the differential dependencies indicated as
arrows (pointing to the dependent variables x) in Fig. 6.

From these dependencies we determine an order on candidates. The idea is that, as the value
of x1 depends on that of d1, it makes sense to look for invariant expressions of d1 first, because re-
finements with these help differential saturation in proving invariant expressions involving also x1.
We order variables by differential dependencies, which resembles the back substitution order in
Gaussian elimination (if, in triangular form, x1 depends on d1 then equations for d1 must be solved
first). Now we call a set V of variables a cluster of the differential equation D iff V is closed with
respect to depend(D), i.e., variables of V only depend on variables in V . The resulting variable
clusters for system (F) are marked as triangular shapes in Fig. 6. Finally, we choose candidates
from ψ and ParaForm(k, d, V ) starting with candidates F whose variables lie in small clusters V .
Thus, the differential invariant d2

1 + d2
2 ≥ a2 of Section 3.3 within cluster {d2, d1, ω} will be dis-

covered before invariants like d1 = −ωx2 that involve x2, because x2 depends on d2. Consequently,
line 6 of Fig. 5 makes d2

1 + d2
2 ≥ a2 available for subsequent checks of invariants involving x2.
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3.6 Global Fixedpoint Computation for Loop Invariants
With the uniform setup of dL, we can adapt the algorithm in Fig. 5 easily to obtain a fixedpoint
algorithm for loops (ψ → [α∗]φ) in place of continuous evolutions (ψ → [D ∧H]φ). In line 5 of
Fig. 5, the induction step from Def. 4 just needs to be replaced by the step for loops (Def. 2). As
an optimization, invariants H of previous iterations can be exploited as refinements of the hybrid
system dynamics:

Proposition 3 (Loop saturation) If H is a discrete invariant of ψ → [α∗]φ, then H ∧ F is a dis-
crete invariant iff ψ → F and H ∧ F → [α](H → F ) are valid.

The proof is in appendix B.3. The induction step from Proposition 3 can generally be proven
faster, because it is a weaker property than that of Def. 2. For sake of completeness, the resulting
algorithm is given in appendix D.

To adapt our approach from Section 3.5 to loops, we use discrete data-flow and control-flow
dependencies of α. Dependencies can be determined immediately from the syntax of HP. There is
a direct data-flow dependency with the value of x depending on y, if x := θ or x′ = θ occurs in α
with a term θ that contains y. Accordingly, there is a direct control-flow dependency, if, for any
term θ, x := θ or x′ = θ occurs in α after a ?H containing y.

3.7 Interplay of Local and Global Fixedpoint Loops
The local and global fixedpoint algorithms jointly verify correctness properties of HP. Their in-
terplay needs to be coordinated with fairness. If the local fixedpoint algorithm in Fig. 5 does not
converge, stronger invariants may need to be found by the global fixedpoint algorithm which result
in stronger preconditions ψ for the local algorithm. Thus, the local fixedpoint algorithm should
stop when it cannot prove its postcondition, either because of a counterexample or because it runs
out of candidates for differential invariants. As in the work of Prajna [30], the degrees of paramet-
ric invariants, therefore, need to be bounded and increased iteratively. As in [30], there is no natural
measure for how these degrees should be increased. Instead, we exploit the fact that the candidates
of Candidates are independent and we explore them in parallel with fair time interleaving.
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Figure 6: Differential dependencies (arrows) and (triangular) variable clusters of (F)

10



3.8 Soundness
Theorem 1 (Soundness) The verification algorithm in Section 3 is sound, i.e., whenever the algo-
rithm prove(ψ → [α]φ) returns “true”, the dL formula ψ → [α]φ is true in all states, i.e., all
states reachable by α from states satisfying ψ satisfy φ.

A proof is in appendix B.4. Since reachability of hybrid systems is undecidable, our algorithm
must be incomplete. It can fail to converge when the required invariants are not expressible in
first-order logic. The existence of a fixedpoint in dL can be shown, but fixedpoints are not always
expressible in real arithmetic [27].

4 Optimizations

4.1 Sound Interleaving of Numerical Simulation of Hybrid Systems
During fixedpoint computations, wrong choices of candidates are time consuming. Thus, in prac-
tice, it is important to discover futile attempts quickly. For this, we use non-exhaustive numerical
simulation to look for a counterexample for each candidate. To prevent rejecting good candi-
dates due to numerical errors, we discard fragile counterexamples. We consider counterexamples
with distance <ε to safe states as fragile, because small numerical perturbations could make it safe
(right x marks in Fig. 7). The left mark in 7, instead, is robust. Robust counterexamples can be en-
sured by replacing, e.g., a ≥ b by a ≥ b+ ε in the formulas given to numerical reachability simula-
tion for some estimate ε ≥ 0 of the numerical error. Unlike in other approaches [3, 18, 24, 30, 28],
numerical errors are not critical for soundness, because safety is exclusively established by sound
symbolic verification.

safe

robust unsafe

fragile unsafe

x
xx

+e

Figure 7: Robustness

We can further exploit the symbolic decomposition performed by our algorithm in Section 3
and prefix recursive calls to prove(ψ → [α]φ) with a partial simulation of α. Using cylindric
algebraic decomposition [6], we find good samples of states satisfying ψ to start the simulation
of α.

4.2 Optimizations for the Verification Algorithm
Formulas with variables that do not change in a fragment of a HP are trivial invariants, as their
truth-value is unaffected. For instance, ω = % is a trivial invariant of system (F). Hence, it can be
used as an invariant without proof. A formula like ω2(d2

1 + d2
2) > r2 in ψ, instead, is not trivially

invariant, because di changes during (F). Still, it has invariant consequences like ω 6= 0. To
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make use of these direct and indirect trivial invariants from ψ , we (soundly) weaken all universal
closures of the form ∀clφ in lines 2 and 5 of Fig. 5 by ψ → ∀clφ.

5 Experimental Results: Aircraft Roundabout Maneuver
As an example with non-trivial dynamics, we analyze aircraft roundabout maneuvers [34]. Curved
flight as in roundabouts is challenging for verification, because of its transcendental solutions. The
maneuver in Fig. 4a from [34] and the maneuver in Fig. 4b from [28, 25] are not flyable, because
they still involve a few instant turns. A flyable roundabout maneuver without instant turns is
depicted in Fig. 8. We verify safety properties for most (but not yet all) phases of Fig. 8 and provide
verification results in Tab. 2. We present details in appendix C. Note that the required invariants
for the roundabout maneuver cannot even be found from characteristic sets of Differential Gröbner
Bases [20].

c

x
entry

ex
it

y

Figure 8: Flyable aircraft roundabout

Verification results for roundabout aircraft maneuvers [34, 7, 28, 25] and the European Train
Control System (ETCS) [29] are in Tab. 2. Results are from a 2.6GHz AMD Opteron with 4GB
memory. Memory consumption of quantifier elimination is shown in Tab. 2, excluding the graph-
ical front-end. The results are only slightly worse on a 2 year old laptop with 1.7GHz and 1GB.
We handle all variables symbolically. The dimension of the continuous state space is indicated.

6 Related Work
Other authors [33, 32, 30] have already argued that invariant techniques scale to more general
dynamics than explicit reach-set computations or techniques that require solutions for differential
equations [13, 24, 26]. However, they [33, 32] cannot handle hybrid systems with inequalities in
initial sets or switching surfaces, which occur in most real applications like aircraft maneuvers.
Barrier certificates [30] only work for inequalities, but invariants of roundabout maneuvers require
mixed equations and inequalities. Prajna et al. construct barrier certificates of a fixed degree
by global optimization over all certificates and modes [30]. This global approach, however, is
infeasible for larger examples. Even with degree bound 2, it already requires solving a 5848-
dimensional optimization problem for train control [29] and a 10005-dimensional problem for
roundabouts with 5 aircraft.
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Table 2: Experimental results
Case study Time(s) Memory(MB) Proof steps Dimension

tangential roundabout (2 aircraft) 14 8 117 13
tangential roundabout (3 aircraft) 387 42 182 18
tangential roundabout (4 aircraft) 730 39 234 23
tangential roundabout (5 aircraft) 1964 88 317 28
bounded speed entry 20 34 28 12
flyable roundabout entry (simplified) 6 10 98 8
ETCS-kernel safety 41 28 53 9
ETCS safety (simplified) 56 27 147 15
ETCS safety 183 87 169 15
ETCS train controllability 1 6 17 5
RBC controllability 1 7 45 16

Tomlin et al. [34] derive saddle solutions for competitive aircraft maneuvers game-theoretically
using Hamilton-Jacobi-Isaacs partial differential equations and propose roundabout maneuvers.
Their exponential state space discretizations for PDEs, however, do not scale to larger dimensions
(they consider dimension 3). Differential invariants, instead, work for 28-dimensional systems.

Straight-line aircraft maneuvers have been analyzed by geometrical meta-level reasoning [10,
14, 17]. They did not consider curved flight paths nor prove that their maneuvers are safe with re-
spect to actual hybrid flight dynamics. In contrast, our approach works directly for the hybrid flight
dynamics, and we verify curved roundabout maneuvers instead of straight-line maneuvers with
non-flyable instant turns. A few approaches [21, 7] have been undertaken to Model Check if there
are orthogonal collisions in discretizations of roundabout maneuvers. However, the counterexam-
ples found by our model checker in previous work [28] show that non-orthogonal collisions can
happen in these maneuvers.

7 Conclusions and Future Work
We have presented a sound algorithm for verifying hybrid systems with non-trivial dynamics.
It handles differential equations using differential invariants instead of requiring solutions of the
differential equations, because the latter quickly yield undecidable arithmetic. We compute differ-
ential invariants as fixedpoints using a verification logic for hybrid systems. In the logic we can
soundly decompose the system for computing local invariants and we obtain sound recombinations
into global invariants. Moreover, we introduce a differential saturation procedure that verifies more
complicated properties by refining the system dynamics in a sound way. We validate our algorithm
on roundabout collision avoidance maneuvers for aircraft and on collision avoidance protocols for
trains.

Our algorithm works particularly good for fully parametric hybrid systems, because their pa-
rameter constraints can be combined faster to find invariants than systems with a single initial
state, where simulation is more appropriate. We want to validate this in further experiments. Dif-
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ferential induction and the logic dL generalize to liveness properties and to systems with distur-
bances [27, 25]. In future work, we want to generalize the synthesis of corresponding differential
(in)variants. Other invariant constructions for differential equations, e.g., [32] can be added and
lifted to hybrid systems using our uniform algorithm.

Acknowledgments. We thank Silke Wagner and Alex Donzé for their helpful proofreading re-
marks.
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A Semantics of Hybrid Programs and Differential Dynamic
Logic

The semantics of dL is a Kripke semantics in which states of the Kripke model are states of
the hybrid system. A state is a map ν : V → R; the set of all states is denoted by State. We
write ν |= φ if formula φ is true at state ν (Def. 6). Likewise, [[θ]]ν denotes the real value of
term θ at state ν. The semantics of HP α is captured by the state transitions that are possible by
running α. For continuous evolutions, the transition relation holds for pairs of states that can be
interconnected by a continuous flow respecting the differential equation and invariant region. That
is, there is a continuous transition along x′ = θ ∧H from state ν to state ω, if there is a solution of
the differential equation x′ = θ that starts in state ν and ends in ω and that always remains within
the region H during its evolution. As in [16, 8], we assume non-zeno behavior, for simplicity.

Definition 5 (Transition system of hybrid programs) The transition relation, ρ(α), of a hybrid
program α, specifies which state ω is reachable from a state ν by operations of α and is defined as
follows

1. (ν, ω) ∈ ρ(x := θ) iff the state ω is identical to ν except that ω(x) = [[θ]]ν .

2. (ν, ω) ∈ ρ(x := random) iff the state ω agrees with ν except for the value of x, which is an
arbitrary real value.

3. (ν, ω) ∈ ρ(x′1 = θ1 ∧ · · · ∧ x′n = θn ∧H) iff for some r ≥ 0, there is a (flow) function
ϕ:[0, r] → State with ϕ(0) = ν, ϕ(r) = ω, such that,

• The differential equation holds, i.e., for each xi and each time ζ ∈ [0, r],

d [[xi]]ϕ(t)

dt
(ζ) = [[θi]]ϕ(ζ) .

• For other variables y 6∈ {x1, . . . , xn} and ζ ∈ [0, r], the value remains constant, i.e.,
[[y]]ϕ(ζ) = [[y]]ϕ(0).

• The invariant is always respected, i.e., ϕ(ζ) |= H for each ζ ∈ [0, r].

4. ρ(α ∪ β) = ρ(α) ∪ ρ(β)

5. ρ(α; β) = {(ν, ω) : (ν, z) ∈ ρ(α), (z, ω) ∈ ρ(β) for a state z}

6. (ν, ω) ∈ ρ(α∗) iff there are an n ∈ N and ν = ν0, . . . , νn = ω such that (νi, νi+1) ∈ ρ(α)
for all 0 ≤ i < n.

Definition 6 (Interpretation of dL formulas) The interpretation |= of a dL formula with respect
to state ν uses the standard meaning of first-order logic:

1. ν |= θ1 ∼ θ2 iff [[θ1]]ν ∼ [[θ2]]ν for ∼ ∈ {=,≤, <,≥, >}
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2. ν |= φ ∧ ψ iff ν |= φ and ν |= ψ, accordingly for ¬,∨,→,↔

3. ν |= ∀xφ iff ω |= φ for all ω that agree with ν except for the value of x

4. ν |= ∃xφ iff ω |= φ for some ω that agrees with ν except for the value of x

It extends to correctness statements about a HP α as follows

5. ν |= [α]φ iff ω |= φ for all ω with (ν, ω) ∈ ρ(α)

B Proofs

B.1 Proof of Differential Induction
For the proof of Proposition 1, we prove a result showing that the directional derivative ∇DF of
formula F as defined in Def. 4 is a generalization of standard function derivatives. We show that
the directional derivatives of terms in ∇DF in the direction of the vector field of D agree with
the standard differentiation. That is, they agree with the differentiation in the Euclidean real space
of the value of these terms along a flow solving the corresponding differential equation D. As a
notation for the proof, we introduce an abbreviation for the terms occurring in Def. 4. Let D be the
differential equation system x′1 = θ1 ∧ · · · ∧ x′n = θn and c a term. We define

∇D(c) :=
n∑
i=1

∂c

∂xi
θi .

For a term c, ∇D(c) is a term. For a formula F , the directional derivatives in Def. 4 can be written
with this notation as

∇DF ≡
∧

(b∼c)∈F

(∇D(b) ∼ ∇D(c)) for ∼ ∈ {=,≥, >,≤, <} .

Lemma 1 Let D ∧ H be a continuous evolution and let ϕ : [0, r] → State be a corresponding
flow of duration r > 0 (Def. 5). Then we have for all terms c and all ζ ∈ [0, r] that

d [[c]]ϕ(t)

dt
(ζ) = [[∇D(c)]]ϕ(ζ) .

In particular, [[c]]ϕ(t) is continuously differentiable and its derivative exists on [0, r].

Proof: The proof is by induction on term c. Let D be x′1 = θ1 ∧ · · · ∧ x′n = θn.

• If c is variable xj for some j (for other variables, the proof is simple because c is constant):

d [[xj]]ϕ(t)

dt
(ζ) = [[θj]]ϕ(ζ) = [[

n∑
i=1

∂xj
∂xi

θi]]ϕ(ζ) .

The last equation holds as ∂xj

∂xj
= 1 and ∂xj

∂xi
= 0 for i 6= j. The derivatives exist because ϕ is

(continuously) differentiable.
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• If c is of the form a+ b, the desired result can be obtained by using the properties of deriva-
tives and interpretations:

d [[a+ b]]ϕ(t)

dt
(ζ)

=
d ([[a]]ϕ(t) + [[b]]ϕ(t))

dt
(ζ) [[·]]ν homomorphism for +

=
d [[a]]ϕ(t)

dt
(ζ) +

d [[b]]ϕ(t)

dt
(ζ)

d
dt

is a linear operator

= [[∇D(a)]]ϕ(ζ) + [[∇D(b)]]ϕ(ζ) by induction hypothesis

= [[∇D(a) +∇D(b)]]ϕ(ζ) [[·]]ν homomorphism for +

= [[∇D(a+ b)]]ϕ(ζ) ∇ is linear, because
∂

∂xi
is linear

• The case if c is of the form a · b is accordingly, using Leibniz’s product rule.

�
Proof (of Proposition 1): We have to show that ν |= F → [D ∧H]F for all states ν. Let ν

satisfy ν |= F as, otherwise, there is nothing to show. We can assume F to be in disjunctive normal
form and consider any disjunct G of F that is true at ν. In order to show that F remains true during
the continuous evolution, it is sufficient to show that each conjunct of G is. We can assume these
conjuncts to be of the form c ≥ 0 (or c > 0 where the proof is accordingly). Finally, using vectorial
notation, we write x′ = θ for the differential equation system. Now let ϕ : [0, r] → State be any
flow of x′ = θ ∧H beginning in ϕ(0) = ν according to Def. 5. If the duration of ϕ is r = 0, we
have ϕ(0) |= c ≥ 0, because ν |= c ≥ 0. For duration r > 0, we show that c ≥ 0 holds all along
the flow ϕ, i.e., ϕ(ζ) |= c ≥ 0 for all ζ ∈ [0, r].

Suppose there was a ζ ∈ [0, r] with ϕ(ζ) |= c < 0, which will lead to a contradiction. The
function h : [0, r] → R defined as h(t) = [[c]]ϕ(t) satisfies the relation h(0) ≥ 0 > h(ζ), because
h(0) = [[c]]ϕ(0) = [[c]]ν and ν |= c ≥ 0 by assumption (induction start of Def. 4). By Lemma 1, h is
continuous on [0, r] and differentiable at every ξ ∈ (0, r). The mean value theorem implies that
there is a ξ ∈ (0, ζ) such that dh(t)

dt (ξ) · (ζ − 0) = h(ζ)− h(0) < 0. In particular, since ζ ≥ 0,
we can conclude that dh(t)

dt (ξ) < 0. Now Lemma 1 implies that dh(t)
dt (ξ) = [[∇D(c)]]ϕ(ξ) < 0. This,

however, is a contradiction, because the induction step of Def. 4 implies that H → ∇D(c ≥ 0) is
true in all states (due to the universal closure ∀cl), including ϕ(ξ) |= H → ∇D(c ≥ 0). In partic-
ular, as ϕ is a flow for D ∧ H , we know that ϕ(ξ) |= H holds, and we have ϕ(ξ) |= ∇D(c ≥ 0),
which contradicts [[∇D(c)]]ϕ(ξ) < 0. �

B.2 Proof of Differential Saturation
Proof (of Proposition 2): Let F be a continuous invariant, which implies that ψ → [D ∧H]F
is valid. Let ν be a state satisfying ψ (otherwise there is nothing to show). Then, ν |= [D ∧H]F .
Since this means that F is true all along all flows ϕ of D ∧H that start in ν (Def. 5), the lat-
ter differential equation and D ∧H ∧ F have the same dynamics and the same reachable states
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from ν, i.e., (ν, ω) ∈ ρ(D ∧H) holds if and only if (ν, ω) ∈ ρ(D ∧H ∧ F ) (Def. 5). Thus, we
can conclude that ψ → [D ∧H]φ and ψ → [D ∧H ∧ F ]φ are equivalent, because their semantics
uses the same transition relation. �

B.3 Proof of Loop Saturation
Proof (of Proposition 3): Let H be a discrete invariant of ψ → [α∗]φ. Let, further, F be a
discrete invariant of ψ → [α∗]φ. Then ψ → F and F → [α]F are valid by Def. 2. Hence, triv-
ially, F → [α](H → F ) is valid, because all states that satisfy F also satisfy the weaker prop-
erty H → F . Especially, H ∧ F → [α](H → F ) is valid. Finally, the validity of ψ → H ∧ F
clearly entails ψ → F .

Conversely, let, H be a discrete invariant. Let, further, H ∧ F → [α](H → F ) and ψ → F be
valid. For H ∧ F to be a discrete invariant, we have to show that F satisfies the induction step
of Def. 2 (the induction start ψ → H ∧ F is an immediate combination of the validity of ψ → H
and ψ → F ). Since H is a discrete invariant, H → [α]H is valid, which entails H ∧ F → [α]H
as a special case. Since H ∧ F → [α](H → F ) is valid and H ∧ F → [α]H is valid, we conclude
that H ∧ F → [α](H ∧ F ) is valid for the following reason. Let ν be a state satisyfing the initial
constraints H ∧ F . Then ν |= [α]H and ν |= [α](H → F ). Hence, all states ω reachable from ν
by α satisfy ω |= H and ω |= H → F . Thus, they satisfy ω |= H ∧ F , essentially by modus po-
nens. Consequently, we have shown that H ∧ F → [α](H ∧ F ) is valid. and, hence, H ∧ F is a
discrete invariant of ψ → [α∗]φ. �

B.4 Proof of Soundness of the Verification Algorithm
Proof (of Theorem 1): The proof is by induction on the structure of the algorithm.

• In the base case (line 11 of Fig. 2), prove returns the result of quantifier elimination, which
is a sound decision procedure [6].

• If α is of the form x := θ, the algorithm in line 1 of Fig. 2 is responsible. If it returns
“true”, then prove(ψ ∧ x̂ = θ → φx̂x) has returned “true”. Hence, by induction hypothesis,
ψ ∧ x̂ = θ → φx̂x is valid. Now, because x̂ was a fresh variable, the substitution lemma can
be used to show that ψ → φθx and ψ → [x := θ]φ are valid. Hence, the result of prove is
sound.

• If α is of the form x := random, the algorithm in line 9 of Fig. 2 is responsible. Soundness
can be proven directly using the fact that φ being true after all random assignments to x is
equivalent to φ being true for all real values of x. Hence, ψ → [x := random]φ is valid if and
only if ψ → ∀xφ is.

• The other cases of Fig. 2 are accordingly.

• If α is of the form D ∧H for a differential equation system D, the algorithm in Fig. 5 is re-
sponsible. If it returns “true” in line 3 in the first place, then the calls prove in line 2 must have
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resulted in “true”, hence, by induction hypothesis, H entails φ. Thus postcondition φ is true
in a subregion of the evolution domain H . Thus ψ → [D ∧H]φ is valid, trivially, because
all evolutions along D ∧H always satisfy H and, hence, φ. If, however, H was changed in
line 6 during the fixedpoint computation, then the calls to prove for the properties in line 5
must have returned “true”. Thus, by induction hypothesis, the dL formulas ψ ∧H → F and
∀cl(H → ∇D(F )) are valid, hence F is a differential invariant of ψ → [D ∧H]φ by Def. 4.
Consequently, by Proposition 1, F also is a continuous invariant (Def. 3). Thus, by Proposi-
tion 2, the dL formulas ψ → [D ∧H]φ and ψ → [D ∧H ∧ F ]φ are equivalent, and we can
(soundly) verify the former by proving the latter. Consequently, the modification of the evo-
lution domain H to H ∧ F in line 6 is sound, because the algorithm will continue proving a
refined but equivalent formula for a refined but equivalent system.

• If α is a loop of the form β∗, the proof is similar to the case for differential equations, except
that it uses Proposition 3 instead of Proposition 1.

�

C Case Studies
In this section, we present details on the case studies that we have verified with our verification
algorithm. The verification tool1 in which we have implemented our algorithm and the problem
specification files for the case studies2 are available online. As case studies, we verify collision
avoidance properties for flight control maneuvers [34, 19, 21, 7, 10, 28, 14, 17] and train control
protocols [29].

C.1 Flyable Tangential Roundabout Maneuver
As a case study, we show how safety properties of collision avoidance maneuvers in air traffic
management can be verified with our verification algorithm. Aircraft maneuvers are challenging
for verification [34, 19, 21, 7, 10, 28, 14, 17], because of the complicated spatial/geometrical
movement of aircraft. Technically, this complexity manifests in difficulties with analyzing hybrid
systems for flight equation (1) or the equivalently reparameterized differential equation system (F).

On straight lines, i.e., where the angular velocity is ω = 0, the value of sinϑ and cosϑ remain
constant during continuous evolutions such that the solutions of (1) are (possibly piecewise) linear
functions. For hybrid systems with linear evolution functions, there are well-known analysis tech-
niques [16]. Pure straight line maneuvers [34, 21, 10, 14, 17] are aircraft maneuvers with piecewise
linear evolutions, see, e.g., Fig. 9. They assume instant turns for heading changes of the aircraft be-
tween multiple straight line segments. Instant turns, however, are impossible in midflight, because
they are not flyable: Aircraft cannot suddenly change their flight direction from 0 to 45 degrees
discontinuously but need to follow a smooth curve instead, in which they slowly gear towards the
desired direction.

1Verification tool KeYmaera available at http://www.symbic.net/info/KeYmaera.html
2All case studies are available at http://www.symbic.net/pub/fpdi-examples.zip
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non-flyable instant turn

Figure 9: Non-Flyable straight line maneuver with instant turns

During curves, the angular velocity ω is non-zero, which causes the trigonometric expres-
sions in (1) to have a permanent non-constant effect on the dynamics of the system. Accordingly,
for ω 6= 0, the equivalent differential equation system (F) has transcendental solutions, such that
reachability problems along these solutions fall into undecidable classes of arithmetics. Conse-
quently, maneuvers with curves like in Fig. 8 are much more challenging for verification than
straight line maneuvers like Fig. 9, because the flight equations (1) and (F) become highly non-
trivial. To verify roundabout maneuvers with curves like in Fig. 4, our algorithm works with
differential invariants (Def. 4) instead of solutions of differential equations.

freestart

ω := random
% := random

tang

entry

circ

exit

c

r

r

h

x r

ω < 0

ex
it

ω > 0

y

Figure 10: Protocol cycle and construction of flyable roundabout maneuver

A fully flyable roundabout maneuver is depicted in Fig. 8. It does not contain instant turns, but
all of its curves are sufficiently smooth. The flyable roundabout maneuver consists of the phases
in Fig. 10 which correspond to the flight phases marked in Fig. 8.

During free flight, the aircraft move without restrictions by repeatedly choosing arbitrary new
angular velocities ω and % (in phase free). When they come closer, the aircraft agree on a round-
about maneuver by negotiating a common roundabout center c (in the coordination phase tang).
Next, the aircraft approach the roundabout circle by a right curve with ω < 0 (entry mode). During
the circ mode, the aircraft follow the circular roundabout maneuver around the agreed center cwith
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a left curve of common angular velocity ω. Finally, the aircraft leave the circular roundabout in
cruise mode (ω = 0) into their original direction (exit) and enter free flight again when they have
sufficient distance. The maneuver is symmetric when exchanging left and right curves.

C.1.1 Verification Overview.

We pursue the following overall verification plan by verifying, subsequently:

1. Tangential roundabout maneuver: Prove that the protected zones of aircraft are safely sepa-
rated at all times during the whole maneuver when using a simplified entry operation.

2. Bounded entry speed: Prove that linear speeds are bounded for the overall maneuver.

3. Flyable entry procedure: Prove that the simplified entry procedure can be replaced by a
flyable curve.

4. Entry separation: Prove that the protected zone is respected during flyable entry procedure.

We present details on these verification tasks in the sequel. Informally, the property in case 4 is
a consequence of the bounded speed and bounded duration of the flyable entry procedure when
initiating the negotiation phase tang with sufficient distance. For the time being, we did not yet
verify case 4 formally.

C.1.2 Tangential Roundabout Maneuver.

First, we prove that the tangential roundabout maneuver safely avoids collisions, i.e., the aircraft
always maintain a safe distance ≥p during the curved flight in the roundabout circle. In addition,
we verify that arbitrary repetitions of the protocol cycle are safe at all times for a simplified choice
of the entry maneuver.

The flight equations for aircraft x are denoted by F(ω), i.e., the upper equations of (F). We
abbreviate the differential equations for aircraft y by G(%) for the lower equations of (F).

The model and specification for this tangential roundabout are given in Fig. 11. There, safety
property ψ for collision avoidance maneuvers expresses that protected zones are respected dur-
ing the flight (specified by separation property φ). The flight controller (trm∗) performs collision
avoidance maneuvers by tangential roundabouts and repeats these maneuvers any number of times
as needed. During each trm phase, the aircraft first perform free flight (free) by (repeatedly) in-
dependently adjusting their angular velocities ω and % while they are safely separated, which is
expressed by conjunct φ of the differential equation. Due to invariant region φ of free, the tan-
gential roundabout maneuver must be initiated (by a tangential initiation controller tang) before
the flight paths become unsafe. Then, the tangential roundabout maneuver itself is carried out by
the differential equation F(ω) ∧ G(ω) according to some common angular velocity ω determined
by tang. Finally, the collision avoidance roundabouts can be left again by repeating the loop trm∗

and entering arbitrary free flight at any time. When further conflicts occur during free flight, the
controller in Fig. 11 again enters roundabout conflict resolution maneuvers.
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ψ ≡ φ→ [trm∗]φ

φ ≡ ‖x− y‖2 ≥ p2 ≡ (x1 − y1)
2 + (x2 − y2)

2 ≥ p2

trm ≡ free; tang; F(ω) ∧ G(ω)

free ≡ (ω := random; % := random; F(ω) ∧ G(%) ∧ φ)∗

tang ≡ ω := random; c := random;

d1 :=−ω(x2 − c2); d2 := ω(x1 − c1);

e1 :=−ω(y1 − c1); e2 := ω(y2 − c2)

Figure 11: Flight control with tangential roundabout collision avoidance maneuvers

In summary, property ψ of Fig. 11 expresses that the aircraft remain safe during the flight,
especially during evasive roundabout maneuvers. Our verification results for this property are
indicated in row 1 of Tab. 2. The next rows in Tab. 2 prove a corresponding property for up
to 5 aircraft, which jointly participate in the roundabout maneuver. There, the safety property
is mutual collision avoidance, i.e., each of the aircraft has a safe distance ≥p to all the other
aircraft. For instance, Fig. 12 contains the system and separation property specification for the
roundabout maneuver with 4 aircraft. There, property ψ expresses that the 4 aircraft at x, y, z
and u, respectively, keep mutual distance ≥p, which gives a quadratic number of constraints. This
quadratic increase in the property that actually needs to proven for a safe roundabout of n aircraft
causes the increased verification times for more aircraft in Tab. 2.

C.1.3 Bounded Speed.

The tangential roundabout maneuver in Fig. 11 maintains collision avoidance for all its chocies of
center c and angular velocity ω in tang. Next, we show that there always is a choice respecting
external requirements on linear speed (aircraft can neither fly too slow nor too fast). Hence, for all
external choices of the linear speed v, there is a choice for the options in tang such that the velocity
is v:

∀v (φ→ 〈tang〉(φ ∧ d2
1 + d2

2 = v2)) .

The verification results for this property are indicated in line 5 of Tab. 2.

C.1.4 Flyable Entry Procedure.

In order to generalize the verification results about the tangential roundabout maneuver with sim-
plified entry procedures to the fully flyable tangential roundabout maneuver, we analyze a flyable
entry procedure, which replaces our simple choice of entry in Fig. 11 and Fig. 12.

A flyable entry maneuver that follows the smooth entry curve from Fig. 8 is depicted in Fig. 13.
Its construction uses the anchor point h indicated in Fig. 10. Anchor h is positioned relative to
the roundabout center c and the x position at the start of the entry curve (i.e., with x at the right
angle indicated in Fig. 10). The property in Fig. 13 specifies that the tangential configuration of the
simple choice for tang in Fig. 11 can be reached by a flyable curve when waiting until x and center c
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ψ ≡ φ→ [trm∗]φ

φ ≡ (x1 − y1)
2 + (x2 − y2)

2 ≥ p2 ∧ (y1 − z1)
2 + (y2 − z2)

2 ≥ p2

∧ (x1 − z1)
2 + (x2 − z2)

2 ≥ p2 ∧ (x1 − u1)
2 + (x2 − u2)

2 ≥ p2

∧ (y1 − u1)
2 + (y2 − u2)

2 ≥ p2 ∧ (z1 − u1)
2 + (z2 − u2)

2 ≥ p2

trm ≡ free; tang;

x′1 = d1 ∧ x′2 = d2 ∧ d′1 = −ωxd2 ∧ d′2 = ωxd1

∧ y′1 = e1 ∧ y′2 = e2 ∧ e′1 = −ωye2 ∧ e′2 = ωye1

∧ z′1 = f1 ∧ z′2 = f2 ∧ f ′1 = −ωzf2 ∧ f ′2 = ωzf1

∧ u′1 = g1 ∧ u′2 = g2 ∧ g′1 = −ωug2 ∧ g′2 = ωug1

free ≡ (ωx := random; ωy := random; ωz := random; ωu := random;

x′1 = d1 ∧ x′2 = d2 ∧ d′1 = −ωxd2 ∧ d′2 = ωxd1

∧ y′1 = e1 ∧ y′2 = e2 ∧ e′1 = −ωye2 ∧ e′2 = ωye1

∧ z′1 = f1 ∧ z′2 = f2 ∧ f ′1 = −ωzf2 ∧ f ′2 = ωzf1

∧ u′1 = g1 ∧ u′2 = g2 ∧ g′1 = −ωug2 ∧ g′2 = ωug1 ∧ φ)∗

tang ≡ ω := random; c := random;

d1 :=−ω(x2 − c2); d2 := ω(x1 − c1);

e1 :=−ω(y1 − c1); e2 := ω(y2 − c2);

f1 :=−ω(z1 − c1); f2 := ω(z2 − c2);

g1 :=−ω(u1 − c1); g2 := ω(u2 − c2)

Figure 12: Tangential roundabout collision avoidance maneuver (4 aircraft)

have distance r. The existence of a choice for the anchor point h satisfying the requirements in
Fig. 13 can be shown by proving the following dL diamond formula:

〈h := random;

?(d1 = ω(x2 − h2) ∧ d2 = −ω(x1 − h1));

?((h1 − c1)
2 + (h2 − c2)

2 = (2r)2);

?(r2 = (x1 − h1)
2 + (x2 − h2)

2);

〉 true

This property can be verified together with that in Fig. 13 in a simplified version. To overcome
the complexity of real quantifier elimination [6], which is doubly exponential in the number of
quantifier alternations, we use symmetry reduction to simplify the property in Fig. 13.

Without loss of generality, we can recenter the coordinate system to have c at position 0. Fur-
ther, we can assume aircraft x to come from the left by changing the orientation of the coordinate
system. Finally, we can assume, without loss of generality, the linear speed to be 1 (by rescaling
units appropriately). Observe that we cannot fix a value for both the linear speed and the angular
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[h := random;

?(d1 = ω(x2 − h2) ∧ d2 = −ω(x1 − h1));

?((h1 − c1)
2 + (h2 − c2)

2 = (2r)2);

?(r2 = (x1 − h1)
2 + (x2 − h2)

2);

x′1 = d1 ∧ x′2 = d2 ∧ d′1 = ωd2 ∧ d′2 = −ωd1 ∧ ((x1 − c1)
2 + (x2 − c2)

2 ≥ r2)

](

(x1 − c1)
2 + (x2 − c2)

2 > r2

∨ (d1 = −ω(x2 − c2) ∧ d2 = ω(x1 − c1))

)

Figure 13: Flyable entry procedure

velocity, because their units are interdependent. In other words, if we fix the linear speed, we need
to consider all angular velocities to verify all possible curve radii r for the roundabout maneuver.
The x position resulting from these symmetry reductions can be determined as follows, see Fig. 10:

x = (0, 2r cos
π

6
) = (0,

√
(2r)2 − r2) = (0,

√
3r) .

To express the square root functoin, we can easily use a random assignment for x2 with a test
condition x2

1 = (
√

3r)2 = 3r2. Consequently, we simplify Fig. 13 by specializing to the following
situation:

d1 := 1; d2 := 0; c1 := 0; c2 := 0;

x2 := 0;

r := random; ?r > 0; ω := 1/r;

x1 := random; ?x2
1 = 3r2 ∧ x1 ≤ 0;

Verification results for the resulting entry procedure, including the proof of existence of a corre-
sponding anchor point h are shown in Tab. 2.

C.2 European Train Control System (ETCS)
The European Train Control System (ETCS) is a standard to assure safe operation of trains and high
throughput of high speed trains. ETCS level 3 follows the moving block principle, i.e., movement
authorities are not known beforehand but determined based on the current track situation by a
Radio Block Controller (RBC). Trains are only allowed to move within their current movement
authority block (denoted by m), which can be updated by the RBC using wireless communication.
Hence the train controller needs to regulate the movement of a train locally such that it always
remains within m, see Fig. 14.
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The properties in Tab. 2 prove safety and controllability properties of the parametric ETCS
protocol. The ETCS system model is given in Fig. 15. We refer to [29] for details on this case study.
The properties in Tab. 2 correspond to the respective propositions in previous work [29]. Note that
the algorithm that we introduced in this paper computes the invariants for ETCS automatically,
which had to be provided manually in [29].

far
neg

cor

recfsa

Figure 14: ETCS train coordination protocol

D Additional Algorithms
The algorithm in Fig. 16 verifies loops. It is a direct adaption of that in Fig. 5, except that it uses
Proposition 3 as an induction step for loops. The algorithm in Fig. 16 performs a fixedpoint compu-
tation for loops and recursively combines the local differential invariants obtained by differential
saturation to form a global invariant. It recursively uses prove for verifying its subtasks, which
handle the discrete switching behavior according to Fig. 2 and infer local differential invariants
according to differential saturation by the fixedpoint algorithm in Fig. 5.

E Proof Rules of the dL Sequent Calculus
In this section, we briefly summarize the sequent calculus for dL [26].

A sequent is of the form Γ ` ∆, where the antecedent Γ and succedent ∆ are finite sets of
formulas. Its semantics is that of the formula

∧
φ∈Γ φ →

∨
ψ∈∆ ψ. Sequents will be treated as an

abbreviation.
The dL calculus uses substitutions. The result of applying to φ the substitution that replaces xi

by θ is defined as usual; it is denoted by φθx. In the dL calculus, only admissible substitutions are
applicable, which is crucial for soundness. We assume α-conversion for renaming as needed.

Definition 7 (Admissible substitution) An application of a substitution σ is admissible if no re-
placed term t occurs in the scope of a quantifier or modality binding a variable of σt or t. A
modality binds x if it contains an assignment x := θ or a differential equation containing x′.

As usual in sequent calculus—although the direction of entailment is from premisses (above rule
bar) to conclusion (below)—the order of reasoning and reading is goal-directed in practice: Rules
are applied in tableau-style, that is, starting from the desired conclusion at the bottom (goal) to

27



spec : τ.v2 −m.d2 ≤ 2b(m.e− τ.p) ∧ τ.v ≥ 0 ∧m.d ≥ 0 ∧ b > 0
→ [ETCS](τ.p ≥ m.e→ τ.v ≤ m.d)

ETCS : (train ∪ rbc)∗

train : spd; atp; move
spd : (?τ.v ≤ m.r; τ.a := ∗; ?− b ≤ τ.a ≤ A)

∪(?τ.v ≥ m.r; τ.a := ∗; ?0 > τ.a ≥ −b)
atp : SB := τ.v2−m.d2

2b
+
(
A
b

+ 1
)(

A
2
ε2 + ε τ.v

)
;

(?(m.e− τ.p ≤ SB ∨ rbc.message = emergency); τ.a := −b)
∪(?m.e− τ.p ≥ SB ∧ rbc.message 6= emergency)

move : t := 0; (τ.p′ = τ.v, τ.v′ = τ.a, t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbc : (rbc.message := emergency)

∪
(
m0 := m; m := ∗;

?m.r ≥ 0 ∧m.d ≥ 0 ∧m0.d
2 −m.d2 ≤ 2b(m.e−m0.e)

)
Figure 15: Formal model of parametric ETCS cooperation protocol

1 f u n c t i o n prove (ψ → [α∗]φ ) :
2 H := true /∗ c u r r e n t l y known i n v a r i a n t o f ψ → [α∗]φ ∗ /
3 i f prove (∀cl(H → φ) ) then
4 re turn true /∗ c o r r e c t n e s s p r o p e r t y proven ∗ /
5 f o r each F ∈ I n d C a n d i d a t e s (ψ → [α∗]φ , H ) do
6 i f prove (ψ ∧H → F ) and prove (∀cl(H ∧ F → [α](H → F )) ) then
7 H := H ∧ F /∗ r e f i n e by d i s c r e t e i n v a r i a n t ∗ /
8 goto 3 ; /∗ r e p e a t f i x e d p o i n t l oop ∗ /
9 end f o r

10 re turn ” n o t p r o v a b l e u s i n g c a n d i d a t e s ”

Figure 16: Fixedpoint algorithm for discrete loop invariants (loop saturation)
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the resulting premisses (sub-goals). The proof rules of the dL calculus are depicted in Fig. 17.
The calculus consists of propositional rules (P-rules), first-order quantifier rules (F-rules), rules for
dynamic modalities (D-rules), and global rules (G-rules).

For propositional logic, standard P-rules are listed in Fig. 17. Unlike in uninterpreted first-
order logic [11, 12], quantifiers are dealt with using quantifier elimination (QE) over the reals [6].
Compatibility with dynamic modalities is established using side deductions for the F-rules.

The D-rules handle HP by successively transforming them into logical formulas. State checks
like ?H are shown by assuming the test suceeds, i.e., H holds true (D4), nondeterministic choices
split into their alternatives (D1), α; β is proven using nested modalities (D2), and random assign-
ments are handled by universal quantification (D5). D3 uses substitutions for handling discrete
change. Rules D6–D7 are weakening and strengthening rules for DAF, respectively.

The G-rules are global rules. They depend on the truth of their premisses in all states, which
is ensured by the universal closure with respect to all free variables. If x1, . . . , xn are the free
variables of Φ, then ∀x1 . . . ∀xn Φ is its universal closure. The G-rules are given in a form that
best displays their underlying logical principles. The general pattern for applying G-rules to prove
that the succedent of their conclusion holds is to prove that both the antecedent of their conclusion
and their premiss holds. Formally such derived rules can be obtained using a cut (R10). Cuts are
not needed in practice.

G1 is a generalisation rule. G2 is a discrete induction schema for repetitions with inductive
invariant F . G2 says that F holds after any number of repetitions of α, if it holds initially and is
sustained after each execution of α.

G3 is a rule for differential induction, which is a continuous form of induction along differential
constraints. The induction rules G2 and G3 differ in the way the invariant remains true once it is
true initially. G2 uses the inductive nature of repetition. G3, instead, uses continuity of evolution
and the differential equation for a continuous induction step with the differential invariant F :
If F holds initially (antecedent of conclusion) and its gradient ∇F · D (see Def. 4 on page 6)
satisfies the same relations when taking into account the differential constraints (premiss), then F
itself is sustained differentially (succedent of conclusion). Finally, G-rules can be combined with
generalisation (G1) to strengthen postconditions as needed.

Definition 8 (Provability) A formula ψ is provable from a set Φ of formulas, denoted by Φ `dL ψ
iff there is a finite set Φ0 ⊆ Φ for which the sequent Φ0 ` ψ is derivable. In turn, a sequent Φ ` Ψ
is derivable iff there is an inference rule of the dL calculus (Fig. 17) with conclusion Φ ` Ψ such
that all premisses of the rule are derivable.
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(P1)
Γ, φ `
Γ ` ¬φ

(P2)
Γ ` φ

Γ,¬φ `

(P3)
Γ ` φ Γ ` ψ

Γ ` φ ∧ ψ

(P4)
Γ, φ, ψ `

Γ, φ ∧ ψ `

(P5)
Γ ` φ, ψ

Γ ` φ ∨ ψ

(P6)
Γ, φ ` Γ, ψ `

Γ, φ ∨ ψ `

(P7)
Γ, φ ` ψ

Γ ` φ→ ψ

(P8)
Γ ` φ Γ, ψ `
Γ, φ→ ψ `

(R9)
Γ, φ ` φ

(R10)
Γ ` φ Γ, φ `

Γ `

(F1)
QE(∀x

∧
i(Γi ` ∆i))

Γ ` ∆,∀xφ

(F2)
QE(∃x

∧
i(Γi ` ∆i))

Γ,∀xφ ` ∆

(F3)
QE(∃x

∧
i(Γi ` ∆i))

Γ ` ∆,∃xφ

(F4)
QE(∀x

∧
i(Γi ` ∆i))

Γ,∃xφ ` ∆

(D1)
Γ ` [α]φ ∧ [β]φ

Γ ` [α ∪ β]φ
(D2)

Γ ` [α][β]φ

Γ ` [α; β]φ
(D3)

Γ ` φθx
Γ ` [x := θ]φ

(D4)
Γ, H ` θ

Γ ` [?H]φ

(D5)
Γ ` ∀x θ

Γ ` [x := random]φ

(D6)
Γ ` [?χ]φ

Γ ` [D ∧ χ]φ
(D7)

Γ ` [D]χ Γ ` [D ∧ χ]φ

Γ ` [D]φ

(G1)
Γ ` ∀cl(φ→ ψ)

Γ, [α]φ ` [α]ψ
(G2)

Γ ` ∀cl(F → [α]F )

Γ, F ` [α∗]F

(G3)
Γ ` ∀cl(χ→ ∇F · (x′1 = θ1 ∧ · · · ∧ x′n = θn))

Γ, (χ→ F ) ` [x′1 = θ1 ∧ · · · ∧ x′n = θn ∧ χ]F

In all rule schemata, all substitutions need to be admissible. In D6–D7, D is a differential equation
and χ an arithmetic formula. In G3, F is first-order without negative equalities. For F-rules,
the Γi ` ∆i are obtained from the resulting sub-goals of a side deduction, see (?) in Fig. 18.
The side deduction is started from the goal Γ ` ∆, φ at the bottom (or Γ, φ ` ∆ for F2 and F4),
where x is assumed not to occur in Γ,∆ using renaming. In the resulting sub-goals Γi ` ∆i,
variable x is assumed to occur in first-order formulas only, as quantifier elimination (QE) is then
applicable.

Figure 17: Rule schemata of the dL calculus.

QE(∃x
∧

i
(Γi ⊢ ∆i))

Γ ⊢ ∆, ∃xφ







Γ1 ⊢ ∆1

. . . ⊢ . . . . . .

Γn ⊢ ∆n

. . . ⊢ . . .

Γ ⊢ ∆, φ







(⋆)

start side

QE

Figure 18: Side deduction for quantifier elimination rules.
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