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Abstract

In this paper we propose two new constructions for protecting the integrity of files in cryptographic
file systems. Our constructions are designed to exploit two characteristics of many file-system
workloads, namely low entropy of file contents and high sequentiality of file block writes. At
the same time, our approaches maintain the best features of the most commonly used algorithm
today (Merkle trees), including defense against replay attacks of stale (previously overwritten)
blocks and a small, constant amount of trusted storage per file. Via implementations in the EncFS
cryptographic file system, we evaluate the performance and storage requirements of our new con-
structions compared to those of Merkle trees. We conclude with guidelines for choosing the best
integrity algorithm depending on typical application workload.





1 Introduction
The growth of outsourced storage (e.g., Storage Area Networks) underlines the importance of de-
veloping efficient security mechanisms to protect files stored remotely. Cryptographic file systems
(e.g., [11, 5, 23, 14, 17, 21, 19]) provide means to protect file secrecy (i.e., prevent leakage of
file contents) and integrity (i.e., detect the unauthorized modification of file contents) against the
compromise of the file store and attacks on the network while blocks are in transit to/from the file
store. Several engineering goals have emerged to guide the design of efficient cryptographic file
systems. First, cryptographic protections should be applied at the granularity of individual blocks
as opposed to entire files, since the latter requires the entire file to be retrieved to verify its integrity,
for example. Second, the application of cryptographic protections to a block should not increase
the block size, so as to be transparent to the underlying block store. (Cryptographic protections
might increase the number of blocks, however.) Third, the trusted storage required by clients (e.g.,
for encryption keys and integrity verification information) should be kept to a minimum.

In this paper we propose and evaluate two new algorithms for protecting file integrity in crypto-
graphic file systems. Our algorithms meet these design goals, and in particular implement integrity
using only a small constant amount of trusted storage per file. (Of course, as with any integrity-
protection scheme, this trusted information for many files could itself be written to a file in the
cryptographic file system, thereby reducing the trusted storage costs for many files to that of only
one. The need for trusted information cannot be entirely eliminated, however.) In addition, our
algorithms exploit two properties of many file-system workloads to achieve efficiencies over prior
proposals. First, typical file contents in many file-system workloads have low empirical entropy;
such is the case with text files, for example. Our first algorithm builds on a prior proposal that ex-
ploits this property [24] and uses tweakable ciphers [20, 15] for encrypting file block contents; this
prior proposal, however, did not achieve constant trusted storage per file. Our second algorithm
reduces the amount of additional storage needed for integrity by using the fact that a low-entropy
block content can be compressed enough to store its hash inside the block. The second property
that we exploit in our algorithms is that blocks of the same file are often written sequentially, a
characteristic that, to our knowledge, has not been previously utilized.

By designing integrity mechanisms that exploit these properties, we demonstrate more efficient
integrity protections in cryptographic file systems than have previously been possible for many
workloads. The measures of efficiency that we consider include the amount of untrusted storage
required by the integrity mechanism (over and above that required for file blocks); the integrity
bandwidth, i.e., the amount of this information that must be accessed (updated or read) when
accessing a single file block, averaged over all blocks in a file, all blocks in all files, or all accesses
in a trace (depending on context); and the average write and read latencies.

The standard against which we compare our algorithms is the Merkle tree [22], which to date
is the overwhelmingly most popular method of integrity protection for a file. Merkle trees can
be implemented in cryptographic file systems so as to meet the requirements outlined above, in
particular requiring trusted storage per file of only one output of a cryptographic hash function
(e.g., 20 bytes for SHA-1 [26]). They additionally offer an integrity bandwidth per file that is
logarithmic in the number of file blocks. However, Merkle trees are oblivious to file block contents
and access characteristics, and we show that by exploiting these, we can generate far more efficient
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integrity mechanisms for some workloads.
We have implemented our integrity constructions and Merkle trees in EncFS [10], an open-

source user-level file system that transparently provides file block encryption on top of FUSE [13].
We provide an evaluation of the three approaches with respect to our measures of interest, demon-
strating how file contents, as well as file access patterns, have a great influence on the performance
of the three schemes. Our experiments demonstrate that there is not a clear winner among the three
constructions for all workloads, in that different integrity constructions are best suited to particular
workloads. We thus conclude that a cryptographic file system should implement all three schemes
and give higher-level applications an option to choose the appropriate integrity mechanism.

2 Random Access Integrity Model
We consider the model of a cryptographic file system that provides random access to files (similar
to the NFS file system). Encrypted data is stored on untrusted storage servers and there is a mecha-
nism for distributing the cryptographic keys to authorized parties. A small (on the order of several
hundred bytes), fixed-size per file, trusted storage is available for authentication data.

We assume that the storage servers are actively controlled by an adversary. The adversary can
adaptively alter the data stored on the storage servers or perform any other attack on the stored
data, but it cannot modify or observe the trusted storage. A particularly interesting attack that
the adversary can mount is a replay attack, in which stale data is returned to read requests of
clients. Using the trusted storage to keep some constant-size information per file, and keeping
more information per file on untrusted storage, our goal is to design and evaluate different integrity
algorithms that allow the update and verification of individual blocks in files and that detect data
modification and replay attacks.

In our framework, a file F is divided into n fixed-size blocks B1B2 . . . Bn (the last block Bn

might be shorter than the first n−1 blocks), each encrypted individually and stored on the untrusted
storage servers (n differs per file). The constant-size, trusted storage for file F is denoted TSF ;
additional storage for file F , which can reside in untrusted storage, is denoted USF .

The storage interface provides two basic operations to the clients: F.WriteBlock(i, c) stores
content c at block index i in file F and c ← F.ReadBlock(i) reads (encrypted) content from block
index i in file F . An integrity algorithm for an encrypted file system consists of five operations.
In the initialization algorithm Init(1κ) for file F , the encryption key for the file is generated given
as input a security parameter. In an update operation Update(i, b) for file F , an authorized client
updates the i-th block in the file with the encryption of block content b and updates the integrity
information for the i-th block stored in TSF and USF . In a check operation Check(i) for file F ,
an authorized client checks that the (decrypted) block content read from the i-th block in file F
is authentic, using the additional storage TSF and USF for file F . The check operation return
true if the client believes that the block content is authentic and false otherwise. A client can
additionally perform an append operation Append(b) for file F , in which a new block that contains
the encryption of b is appended to the encrypted file, and a Delete operation that deletes the last
block in a file and updates the integrity information for the file.

In designing an integrity algorithm for an encrypted file system, we consider the following

2



metrics. First is the latency of the Update (or Append) and Check algorithms, which are executed
every time a block is written or read from a file. Second is the size of the untrusted storage USF ; we
will always enforce that the trusted storage TSF is of constant size, independent of the number of
blocks. Third is the integrity bandwidth for updating and checking individual file blocks, defined
as the number of bytes from USF accessed (updated or read) when accessing a block of file F ,
averaged over either: all blocks in F when we speak of a per-file integrity bandwidth; all blocks
in all files when we speak of the integrity bandwidth of the file system; or all blocks accessed in a
particular trace when we speak of one trace.

3 Preliminaries
In this section, we review some preliminary material needed for the integrity constructions de-
scribed in Section 5.

3.1 Merkle Trees
Merkle trees [22] are used to authenticate n data items with constant-size trusted storage. A Merkle
tree for data items M1, . . . , Mn, denoted MT(M1, . . . ,Mn), is a binary tree that has M1, . . . , Mn

as leaves. An interior node of the tree with children CL and CR is the hash of the concatenation of
its children (i.e., h(CL||CR), for h a collision-resistant hash function). The trusted storage needed
to authenticate the n data items is the root of the tree.

We define the Merkle tree for a file F with n blocks B1, . . . , Bn to be MTF = MT(h(1||B1), . . . ,
h(n||Bn)). A Merkle tree with a given set of leaves can be constructed in multiple ways. In our
implementation, we choose to append a new block in the tree as a right-most child, so that the tree
has the property that all the left subtrees are complete. We give an example in Figure 1 of a Merkle
tree for a file that initially has six blocks: B1, . . . , B6. We also show how the Merkle tree for the
file is modified when block B7 is appended to the file.

h(1||B1) h(2||B2) h(3||B3) h(5||B5)

h(7||B7)

h(l3||l4)h(l1||l2)

l1 l2 l3 l4

v4 l7v1 v2

v3
v5

R

h(v1||v2)

h(v3||v5)

l5 l6

h(4||B4) h(6||B6)

h(l5||l6)

h(v4||l7)

h(1||B1) h(2||B2) h(3||B3) h(4||B4)

h(5||B5) h(6||B6)

h(l3||l4)h(l1||l2)

l1 l2 l3 l4

l5 l6v1 v2

v3
v4

R

h(v1||v2)

h(v3||v4)

h(l5||l6)

Figure 1: Merkle tree for a file with 6 blocks on the left; after block 7 is appended on the right.

Before describing the algorithms on the Merkle trees, we need to introduce some notation. For
a tree T , T.root is the root of the tree, T.no leaves is the number of leaves in T and T.leaf[i] is the
i-th leaf in the tree counting from left to right. For a node v in the tree, v.hash is the hash value
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stored at the node and for a non-leaf node v, v.left and v.right are pointers to the left and right
children of v, respectively. v.sib and v.parent denote the sibling and parent of node v, respectively.

The algorithms UpdatePathRoot, CheckPathRoot, UpdateTree, CheckTree, AppendTree and
DeleteTree on the Merkle tree T are described in Figure 2.

T.UpdatePathRoot(R, v): T.CheckPathRoot(R, v):
while v 6= T.root hval ← v.hash
s ← v.sib while v 6= T.root
if v.parent.left = v s ← v.sib
v.parent.hash ← h(v.hash||s.hash) if v.parent.left = v

else hval ← h(hval||s.hash)
v.parent.hash ← h(s.hash||v.hash) else

v ← v.parent hval ← h(s.hash||hval)
R ← T.root v ← v.parent

if R = hval
return true

else
return false

T.UpdateTree(R, i, hval): T.CheckTree(R, i, hval):
if T.CheckPathRoot(R, T.leaf[i]) = true if T.leaf[i].hash 6= hval
T.leaf[i].hash ← hval return false
T.UpdatePathRoot(R, T.leaf[i]) return T.CheckPathRoot(R, T.leaf[i])

T.AppendTree(R, hval): T.DeleteTree(R):
u.hash ← hval v ← T.root
u.left ← null; u.right ← null while v.right
depth ← dlog2(T.no leaves)e v ← v.right
d ← 0; v ← T.root if v = T.root
while v.right and d < depth T ← null
v ← v.right; d ← d + 1 else

if d = depth p ← v.parent
p ← T.root if T.CheckPathRoot(R, p) = true

else if p = T.root
p ← v.parent T.root ← p.left

if T.CheckPathRoot(R, p) = true else
p.left ← p p.parent.right ← p.left
p.right ← u T.UpdatePathRoot(R, p)
p.hash ← h(p.hash||u.hash)
T.UpdatePathRoot(R, p)

Figure 2: The UpdateTree, CheckTree, AppendTree and DeleteTree algorithms for a Merkle tree
T .

- In the UpdatePathRoot(R, v) algorithm for tree T , the hashes stored in the nodes on the path
from node v to the root of the tree are updated. For that, all the hashes stored in the siblings
of those nodes are read. Finally, the hash from the root of T is stored in R.

- In the CheckPathRoot(R, v) algorithm for tree T , the hashes stored in the nodes on the path
from node v to the root of the tree are computed, by reading all the hashes stored in the
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siblings of those nodes. Finally, the hash of the root of T is checked to match the parameter
R.

- In the UpdateTree(R, i, hval) algorithm for tree T , the hash stored at the i-th leaf of T is
updated to hval. This triggers an update of all the hashes stored on the path from the i-th
leaf to the root of the tree and an update of the value stored in R.

- The CheckTree(R, i, hval) algorithm for tree T checks that the hash stored at the i-th leaf
matches hval. All the hashes stored at the nodes on the path from the i-th leaf to the root are
computed and the root of T is checked finally to match the value stored in R.

- Algorithm AppendTree(R, hval) for tree T appends a new leaf u that stores the hash value
hval to the tree. The right-most node v in the tree is searched first. If the tree is already
a complete tree, then the new leaf is added as the right child of the root of the tree and the
existing tree becomes the left child of the new root. Otherwise, the new leaf is appended
as the right child of the parent p of v, and the subtree rooted at p becomes the left child
of p. This way, for any node in the Merkle tree, the left subtree is complete and the tree
determined by a set of leaves is unique.

- The DeleteTree(R) algorithm for tree T deletes the last leaf from the tree. First, the right-
most node v in the tree is searched. If this node is the root itself, then the tree becomes
null. Otherwise, node v is removed from the tree and the subtree rooted at the sibling of v is
moved in the position of v’s parent.

3.2 Encryption Schemes and Tweakable Ciphers
An encryption scheme consists of a key generation algorithm Gen that takes as input a security pa-
rameter and outputs an encryption key, an encryption algorithm Ek(m) that outputs the encryption
of a message m with secret key k and a decryption algorithm Dk(c) that outputs the decryption
of a ciphertext c with secret key k. A widely used secure encryption scheme is AES [2] in CBC
mode [8].

A tweakable cipher [20, 15] is, informally, a length-preserving encryption method that uses a
tweak in both the encryption and decryption algorithms for variability. A tweakable encryption
of a message m with tweak t and secret key k is denoted Et

k(m) and, similarly, the decryption of
ciphertext c with tweak t and secret key k is denoted Dt

k(m). The tweak is a public parameter, and
the security of the tweakable cipher is based only on the secrecy of the encryption key. Tweakable
ciphers can be used to encrypt fixed-size blocks written to disks in a file system. Suitable values
of the tweak for this case are, for example, block addresses or block indices in the file.

The security of tweakable ciphers implies an interesting property, called non-malleability [15],
that guarantees that if only a single bit is changed in a valid ciphertext, then its decryption is
indistinguishable from a random plaintext. Tweakable cipher constructions include CMC [15] and
EME [16].
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3.3 Efficient Block Integrity Using Randomness of Block Contents
Oprea et al. [24] provide an efficient integrity construction in a block-level storage system. This
integrity construction is based on the experimental observation that contents of blocks written to
disk usually are efficiently distinguishable from random blocks (i.e., we denote by random block
a block uniformly chosen at random from the set of all blocks of a fixed length). Assuming that
data blocks are encrypted with a tweakable cipher, the integrity of the blocks that are efficiently
distinguishable from random blocks can be checked by performing a randomness test on the block
contents. The non-malleability property of tweakable ciphers implies that if block contents after
decryption do not look random (i.e., have low entropy), then it is very likely that the contents are
authentic. This idea permits a reduction in the trusted storage needed for checking block integrity:
a hash is stored only for those (usually few) blocks that are indistinguishable from random blocks
(or, in short, random-looking blocks).

An example of a statistical test IsRand [24], which can be used to distinguish block contents
from random-looking blocks, evaluates the entropy of a block and considers random those blocks
that have an entropy higher than a threshold chosen experimentally. For a block B, IsRand(B) re-
turns 1 with high probability if B is a uniformly random block in the block space and 0, otherwise.

We use the ideas from Oprea et al. [24] as a starting point for our first algorithm for imple-
menting file integrity with constant trusted storage per file. Our second algorithm here, however,
exploits low-entropy of files in a different way. Both of our constructions could be further applied
to other authentication problems that have the restriction of using constant-size trusted storage,
such as memory integrity checking (e.g., [7]).

4 Write Counters for File Blocks
All the integrity constructions for encrypted storage described in the next section use write counters
for the blocks in a file. A write counter for a block denotes the total number of writes done to that
block index. Counters are used to reduce the additional storage space taken by encrypting with a
block cipher in CBC mode. Counters are also a means of distinguishing different writes performed
to the same block address and as such, can be used to prevent against replay attacks.

We define several operations for the write counters of the blocks in a file F :

- The update ctr(i) algorithm either initializes the value of the counter for the i-th block in
file F with 1, or it increments the counter for the i-th block if it has already been initialized.

- Function get ctr(i) returns the value of the counter for the i-th block in file F .

- Algorithm del ctr(i) deletes the counter for the i-th block in file F .

Operations update ctr and del ctr also update the information for the counters stored in USF .
When counters are used for encryption, they can be safely stored in the untrusted storage space
for a file. However, in the case in which counters protect against replay attacks, they need to be
authenticated with a small amount of trusted storage. We define two algorithms for authenticating
block write counters, both of which are invoked by an authorized client:
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- Algorithm auth ctr modifies the trusted storage space TSF of file F to contain the trusted
authentication information for the write counters of F .

- Algorithm check ctr checks the authenticity of the counters stored in USF using the trusted
storage TSF for file F and returns true if the counters are authentic and false, otherwise.

4.1 Length-Preserving Stateful Encryption with Counters
Secure encryption schemes are usually not length-preserving. However, one of our design goals
stated in the introduction is to add security (and, in particular, encryption) to file systems in a
manner transparent to the storage servers. For this purpose, we introduce here the notion of length-
preserving stateful encryption scheme for a file F , an encryption scheme that constructs encrypted
blocks that preserve the length of original blocks, and stores any additional information in the
untrusted storage space for the file. We define a length-preserving stateful encryption scheme for
a file F to consist of a key generation algorithm Glen that generates an encryption key for the file
given a security parameter, an encryption algorithm Elen that encrypts block content b for block
number i with key k and outputs ciphertext c, and a decryption algorithm Dlen that decrypts the
encrypted content c of block i with key k and outputs the plaintext b. Both the Elen and Dlen

algorithms also modify the untrusted storage space for the file.
Write counters for file blocks can be used to construct a length-preserving stateful encryption

scheme. Let (Gen, E, D) be an encryption scheme constructed from a block cipher in CBC mode.
To encrypt a n-block message in the CBC encryption mode, a random initialization vector is cho-
sen. The ciphertext consists of n + 1 blocks, with the first being the initialization vector. We
denote by Ek(b, iv) the output of the encryption of b (excluding the first block) using key k and
initialization vector iv, and similarly by Dk(c, iv) the decryption of c using key k and initialization
vector iv.

We replace the random initialization vectors for encrypting a block in the file in CBC mode
with a pseudorandom function application of the block index concatenated with the write counter
for the block. This is intuitively secure because different initialization vectors are used for different
encryptions of the same block, and moreover, the properties of pseudorandom functions imply that
the initialization vectors are indistinguishable from random. It is thus enough to store the write
counters for the blocks of a file, and the initialization vectors for the file blocks can be easily
inferred.

The Glen, Elen and Dlen algorithms for a file F are described in Figure 3. Here κ is the security
parameter and G : K × C −→ K denotes a pseudorandom function family with key space K and
message space C, which is the set of all block indices concatenated with block counter values.

4.2 Storage and Authentication of Block Write Counters
A problem that needs to be addressed in the design of the various integrity algorithms described
below is the storage and authentication of the block write counters. If a counter per file block were
used, this would result in significant additional storage for counters. We investigate more efficient
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F.Glen(1κ): F.Elen
k (i, b): F.Dlen

k (i, c):
k1

R←K parse k as k1||k2 parse k as k1||k2

k2 ← Gen(1κ) F.update ctr(i) iv ← Gk1(i||F.get ctr(i))
return k = k1||k2 iv ← Gk1(i||F.get ctr(i)) b ← Dk2(c, iv)

c ← Ek2(b, iv) return b
return c

Figure 3: Implementing a length-preserving stateful encryption scheme with write counters.
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methods of storing the block write counters, based on analyzing the file access patterns in NFS
traces collected at Harvard University [9].

Counter intervals. We performed some experiments on the NFS Harvard traces [9] in order
to analyze the file access patterns. We considered three different traces (LAIR, DEASNA and
HOME02) for a period of one week. The LAIR trace consists from research workload traces
from Harvard’s computer science department. The DEASNA trace is a mix of research and email
workloads from the division of engineering and applied sciences at Harvard. HOME02 is mostly
the email workload from the campus general purpose servers.

We first plotted the cumulative distribution of the number of writes per block for each trace
in Figure 4 in a log-log scale (i.e., for x number of writes on the x-axis, the y axis represents the
number of blocks that have been written at least x times).

Ellard et al. [9] make the observation that a large number of file accesses are sequential. This
leads to the idea that the values of the write counters for adjacent blocks in a file might be corre-
lated. To test this hypothesis, we represent counters for blocks in a file using counter intervals.
A counter interval is defined as a sequence of consecutive blocks in a file that all share the same
value of the write counter. For a counter interval, we need to store only the beginning and end of
the interval, and the value of the write counter. We plot the cumulative distribution of the number
of counter intervals per files for the three Harvard traces in Figure 5 (i.e., for x number of intervals
on the x-axis, the y axis represents the number of files that have at least x counter intervals).

Figure 5 validates the hypothesis that for the large majority of files in the three traces consid-

8



ered, a small number of counter intervals needs to be stored and only for few files the number of
counter intervals is large (i.e., over 1000). The average storage per file using counter intervals is
several orders of magnitude smaller than that used by storing a counter per block, as shown in
Table 1. This justifies our design choice to use counter intervals for representing counter values in
the integrity algorithms presented in the next section.

LAIR DEASNA HOME02
Counter per block 1.79 MB 2.7 MB 8.97 MB
Counter intervals 5 bytes 9 bytes 163 bytes

Table 1: Average storage per file for two counter representation methods.

Counter representation. The counter intervals for file F are represented by two arrays: IntStartF
keeps the block indices where new counter intervals start and CtrValF keeps the values of the write
counter for each interval. The trusted storage TSF for file F includes either the arrays IntStartF
and CtrValF if they fit into TSF or their hashes, otherwise. In the limit, to reduce the bandwidth
for integrity, we could build a Merkle tree to authenticate each of these arrays and store the root of
these trees in TSF , but we have not seen in the Harvard traces files that would warrant this.

We omit here the implementation details for the update ctr, get ctr and del ctr operations
on counters (which are immediate), but describe the algorithms for authenticating counters with a
constant amount of trusted storage. Assume that the length of available trusted storage for counters
for file F is Lctr. For an array A, A.size is the number of bytes needed for all the elements in
the array and h(A) is the hash of concatenated elements in the array. We also store in trusted
storage a flag ctr-untr whose value is true if the counter arrays IntStartF and CtrValF are stored in
the untrusted storage space of F and false otherwise. The auth ctr and check ctr algorithms are
described in Figure 6.

F.auth ctr(): F.check ctr():
if IntStartF .size + CtrValF .size > Lctr if ctr-untr= true

store h1 = h(IntStartF ) and h2 = h(CtrValF ) in TSF get IntStartF and CtrValF from USF

store IntStartF and CtrValF in USF get h1 and h2 from TSF

ctr-untr = true if h1 = h(IntStartF ) and h2 = h(CtrValF )
else return true

store IntStartF and CtrValF in TSF else
ctr-untr = false return false

Figure 6: The auth ctr and check ctr algorithms for counter intervals.

If the counter intervals for a file get too dispersed, then the size of the arrays IntStartF and
CtrValF might increase significantly. To keep the untrusted storage for integrity low, we could
periodically change the encryption key for the file, re-encrypt all blocks in the file, and reset the
block write counters to 0.
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5 Integrity Constructions for Encrypted Storage
In this section, we first present a Merkle tree integrity construction for encrypted storage, used in
file systems such as Cepheus [11], FARSITE [1], and Plutus [17]. Second, we introduce a new
integrity construction based on tweakable ciphers that uses some ideas from Oprea et al. [24].
Third, we give a new construction based on compression levels of block contents. We evaluate the
performance of the integrity algorithms described here in Section 7.

5.1 The Merkle Tree Construction MT-EINT

In this construction, file blocks can be encrypted with any length-preserving stateful encryption
scheme and they are authenticated with a Merkle tree. More precisely, if F = B1 . . . Bn is a file
with n blocks, then the untrusted storage for integrity for file F is USF = MT(h(1||B1), . . . ,
h(n||Bn)) (for h a collision-resistant hash function), and the trusted storage TSF is the root of this
tree.

The algorithm Init runs the key generation algorithm F.Glen(1κ) of the length-preserving state-
ful encryption scheme for file F . The algorithms Update, Check, Append and Delete of the
MT-EINT construction are given in Figure 7. We denote here by F.enc key the encryption key
for file F (generated in the Init algorithm) and F.blocks the number of blocks in file F . In the
Update(i, b) algorithm for file F , the i-th leaf in MTF is updated with the hash of the new block
content using the algorithm UpdateTree and the encryption of b is stored in the i-th block of F . In
the Check(i) algorithm for file F , the i-th block is read and decrypted, and its integrity is checked
using the CheckTree algorithm. To append a new block b to file F with algorithm Append(b), a
new leaf is appended to MTF with the algorithm AppendTree, and then an encryption of b is stored
in the (n + 1)-th block of F (for n the number of blocks of F ). To delete the last block from a file
F with algorithm Delete, the last leaf in MTF is deleted with the algorithm DeleteTree.

F.Update(i, b): F.Check(i):
k ← F.enc key k ← F.enc key
MTF .UpdateTree(TSF , i, h(i||b)) B̄i ← F.ReadBlock(i)
c ← F.Elen

k (i, b) Bi ← F.Dlen
k (i, B̄i)

F.WriteBlock(i, c) return MTF .CheckTree(TSF , i, h(i||Bi))
F.Append(b): F.Delete():
k ← F.enc key n ← F.blocks
n ← F.blocks MTF .DeleteTree(TSF )
MTF .AppendTree(TSF , h(n + 1||b)) delete Bn from file F
c ← F.Elen

k (n + 1, b)
F.WriteBlock(n + 1, c)

Figure 7: The Update, Check, Append and Delete algorithms for the MT-EINT construction.

The MT-EINT construction detects data modification attacks, as file block contents are au-
thenticated by the root of the Merkle tree for each file. Block swapping attacks are prevented by
including the block indices in the hashes stored in the leaves of the Merkle trees. The MT-EINT
construction is also secure against replay attacks, as the tree contains the hashes of the latest version
of the data blocks and the root of the Merkle tree is authenticated in trusted storage.
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5.2 The Randomness Test Construction RAND-EINT

Whereas in the Merkle tree construction any length-preserving stateful encryption algorithm can be
used to individually encrypt blocks in a file, the randomness test construction uses the observation
from [24] that the integrity of the blocks that are efficiently distinguishable from random blocks
can be checked with a randomness test if a tweakable cipher is used to encrypt them. As such,
integrity information is stored only for random-looking blocks.

In this construction, a Merkle tree per file that authenticates the contents of the random-looking
blocks is built. The untrusted storage for integrity USF for file F = B1 . . . Bn includes this tree
RTreeF = MT(h(i||Bi) : i ∈ {1, . . . , n} and IsRand(Bi) = 1), and, in addition, the set of block
numbers that are random-looking RArrF = {i ∈ {1, . . . , n} : IsRand(Bi) = 1}, ordered the same
as the leaves in the previous tree RTreeF . The root of the tree RTreeF is kept in the trusted storage
TSF for file F .

To prevent against replay attacks, clients need to distinguish different writes of the same block
in a file. A simple idea [24] is to use a counter per file block that denotes the number of writes of
that block, and make the counter part of the encryption tweak. The block write counters need to
be authenticated in the trusted storage space for the file F to prevent clients from accepting valid
older versions of a block that are considered not random by the randomness test. To ensure that
file blocks are encrypted with different tweaks, we define the tweak for a block to be the hash of
the block number concatenated with the block write counter. The properties of tweakable ciphers
imply that if a block is decrypted with a different counter, then it will look random with high
probability.

The algorithm Init selects a key at random from the key space of the tweakable encryption
scheme E. The Update, Check, Append and Delete algorithms of RAND-EINT are detailed in
Figure 8. For the array RArrF , RArrF .items denotes the number of items in the array, RArrF .last
denotes the last element in the array, and the function SearchOffset(i) for the array RArrF gives
the position in the array where index i is stored (if it exists in the array).

- In the Update(i, b) algorithm for file F , the write counter for block i is incremented and the
counter authentication information from TSF is updated with the algorithm auth ctr. Then,
the randomness test IsRand is applied to block content b. If b is not random looking, then
the leaf corresponding to block i (if it exists) has to be removed from RTreeF . This is done
with the algorithm DelOffsetTree, described in Figure 9. On the other hand, if b is random-
looking, then the leaf corresponding to block i has to be either updated with the new hash (if
it exists in the tree) or appended in RTreeF . Finally, the tweakable encryption of b is stored
in the i-th block of F .

- In the Check(i) algorithm for file F , the authentication information from TSF for the block
counters is checked first. Then the i-th block of F is read and decrypted, and checked for
integrity. If the content of the i-th block is not random-looking, then by the properties of
tweakable ciphers we can infer that the block is valid. Otherwise, the integrity of the i-th
block is checked using the tree RTreeF . If i is not a block number in the tree, then the
integrity of block i is unconfirmed and the block is rejected.
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F.Update(i, b) : F.Check(i):
k ← F.enc key k ← F.enc key
F.update ctr(i) if F.check ctr() = false
F.auth ctr() return false
if IsRand(b) = 0 B̄i ← F.ReadBlock(i)
if i ∈ RArrF Bi ← D

h(i||F.get ctr(i))
k (B̄i)

RTreeF .DelOffsetTree(TSF , RArrF , i) if IsRand(Bi) = 0
else return true
if i ∈ RArrF else
j ← RArrF .SearchOffset(i) if i ∈ RArrF
RTreeF .UpdateTree(TSF , j, h(i||b)) j ← RArrF .SearchOffset(i)

else return RTreeF .CheckTree(TSF , j, h(i||Bi))
RTreeF .AppendTree(TSF , h(i||b)) else
append i at end of RArrF return false

F.WriteBlock(i, Eh(i||F.get ctr(i))
k (b))

F.Append(b): F.Delete():
k ← F.enc key F.del ctr(n)
F.update ctr(n + 1) F.auth ctr()
F.auth ctr() n ← F.blocks
n ← F.blocks if IsRand(Bn) = 1
if IsRand(b) = 1 RTreeF .DelOffsetTree(TSF , RArrF , n)
RTreeF .AppendTree(TSF , h(n + 1||b)) delete Bn from file F
append n + 1 at end of RArrF

F.WriteBlock(n + 1, E
h(n+1||F.get ctr(n+1))
k (b))

Figure 8: The Update, Check, Append and Delete algorithms for the RAND-EINT construction.

T.DelOffsetTree(TSF ,RArrF , i):
j ← RArrF .SearchOffset(i)
l ← RArrF .last
if j = l
T.DeleteTree(TSF )

else
T.UpdateTree(TSF , j, h(l||Bl))
RArrF [j] ← l
RArrF .items ← RArrF .items− 1

Figure 9: The DelOffsetTree algorithm for a tree T deletes the hash of block i from T and moves
the last leaf in its position, if necessary, to not allow holes in the tree.

- When a new block b is appended to file F with algorithm Append(b), the write counter
for the new block is initialized and the authentication information for counters updated.
Furthermore, the hash of the block content is added to RTreeF only if the block is random-
looking. In addition, the index n+1 (where n is the current number of blocks in F ) is added
to RArrF in this case. Finally, the tweakable encryption of b is stored in the (n + 1)-th block
of F .

- To delete the last block in file F with algorithm Delete, the write counter for the last block is
deleted and the authentication information for the counters is updated. Then, the last block
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of F is read and decrypted. If the block is random-looking, then its hash has to be removed
from tree RTreeF , using the algorithm DelOffsetTree.

It is not necessary to authenticate in trusted storage the array RArrF of indices of the random-
looking blocks in a file. The reason is that the root of RTreeF is authenticated in trusted storage
and this implies that an adversary cannot modify the order of the leaves in RTreeF without being
detected in the AppendTree, UpdateTree or CheckTree algorithms.

The construction RAND-EINT protects against unauthorized modification of data written to
disk and block swapping attacks by authenticating the root of RTreeF in the trusted storage space
for each file. By using write counters in the encryption of block contents and authenticating the
values of the counters in trusted storage, this construction provides defense against replay attacks
and provides all the security properties of the MT-EINT construction.

5.3 The Compress-and-Hash Construction COMP-EINT

This construction is again based on the intuition that many workloads feature low-entropy files,
but attempts to exploit this in a different way. In this construction, the block is compressed before
encryption. If the compression level of the block content is high enough, then the hash of the block
can be stored in the block itself, reducing the amount of storage necessary for integrity. Like in
the previous construction, a Merkle tree RTreeF is built over the hashes of the blocks in file F
that cannot be compressed enough, and the root of the tree is kept in trusted storage. In order
to prevent replay attacks, it is necessary that block write counters are hashed together with block
contents. Similarly to scheme RAND-EINT, the write counters for a file F need to be authenticated
in the trusted storage space TSF (see Section 4.2 for a description of the algorithms auth ctr and
check ctr used to authenticate and check the counters, respectively).

In the description of the integrity scheme, we assume we are given a compression algorithm
compress and a decompression algorithm decompress such that decompress(compress(m)) = m,
for any message m. We can also pad messages up to a certain fixed length by using the pad
function with an output of l bytes, and unpad a padded message with the unpad function such that
unpad(pad(m)) = m, for all messages m of length less than l bytes. We can use standard padding
methods for implementing these algorithms [3].

The algorithm Init runs the key generation algorithm F.Glen(1κ) of the length-preserving state-
ful encryption scheme for file F . The Update, Append, Check and Delete algorithms of the
COMP-EINT construction are detailed in Figure 10. Here Lc is the byte length of the largest
plaintext size for which the ciphertext is of length at most the file block length less the size of
a hash function output. For example, if the block size is 4096 bytes, SHA-1 is used for hashing
(whose output is 20 bytes) and 16-byte AES is used for encryption, then Lc is the largest multiple
of the AES block size (i.e., 16 bytes) less than 4096 − 20 = 4076 bytes. The value of Lc in this
case is 4064 bytes.

- In the Update(i, b) algorithm for file F , the write counter for block i is incremented and the
counter authentication information from TSF is updated with the algorithm auth ctr. Then
block content b is compressed to bc. If the length of bc (denoted |bc|) is at most Lc, then there
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F.Update(i, b) : F.Check(i):
k ← F.enc key k ← F.enc key
F.update ctr(i) if F.check ctr() = false
F.auth ctr() return false
bc ← compress(b) B̄i ← F.ReadBlock(i)
if |bc| ≤ Lc if i ∈ RArrF
if i ∈ RArrF Bi ← F.Dlen

k (i, B̄i)
RTreeF .DelOffsetTree(TSF ,RArrF , i) j ← RArrF .SearchOffset(i)

c ← F.Elen
k (i, pad(bc)) return RTreeF .CheckTree(

F.WriteBlock(i, c||h(i||F.get ctr(i)||b)) TSF , j, h(i||F.get ctr(i)||Bi))
else else
if i ∈ RArrF parse B̄i as c||hval
j ← RArrF .SearchOffset(i) bc ← unpad(F.Dlen

k (i, c))
RTreeF .UpdateTree(TSF , j, h(i||F.get ctr(i)||b)) b ← decompress(bc)

else if hval = h(i||F.get ctr(i)||b)
RTreeF .AppendTree(TSF , h(i||F.get ctr(i)||b)) return true
append i at end of RArrF else

c ← F.Elen
k (i, b) return false

F.WriteBlock(i, c)
F.Append(b) : F.Delete():
k ← F.enc key F.del ctr(n)
F.update ctr(i) F.auth ctr()
F.auth ctr() n ← F.blocks
n ← F.blocks if n ∈ RArrF
bc ← compress(b) RTreeF .DelOffsetTree(TSF , RArrF , n)
if |bc| ≤ Lc delete Bn from file F
c ← F.Elen

k (n + 1, pad(bc))
F.WriteBlock(i, c||h(n + 1||F.get ctr(n + 1)||b))

else
RTreeF .AppendTree(TSF , h(n + 1||F.get ctr(n + 1)||b))
append n + 1 at end of RArrF
c ← F.Elen

k (n + 1, b)
F.WriteBlock(n + 1, c)

Figure 10: The Update, Check, Append and Delete algorithms for the COMP-EINT construction.

is room to store the hash of the block content inside the block. In this case, the hash of the
previous block content stored at the same address is deleted from the Merkle tree RTreeF ,
if necessary. The compressed block is padded and encrypted, and then stored with its hash
in the i-th block of F . Otherwise, if the block cannot be compressed enough, then its hash
has to be inserted into the Merkle tree RTreeF . The block content b is then encrypted with
a length-preserving stateful encryption scheme using the key for the file and is stored in the
i-th block of F .

- In the Check(i) algorithm for file F , the authentication information from TSF for the block
counters is checked first. There are two cases to consider. First, if the hash of the block
content stored at the i-th block of F is authenticated through the Merkle tree RTreeF , then
the block is decrypted and algorithm CheckTree is called. Otherwise, the hash of the block
content is stored at the end of the block and we can thus parse the i-th block of F as c||hval.
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c has to be decrypted, unpadded and decompressed, in order to obtain the original block
content b. The hash value hval stored in the block is checked to match the hash of the block
index i concatenated with the write counter for block i and block content b.

- To append a new block b to file F with n blocks using the Append(b) algorithm, the write
counter for the new block is initialized to 1 and the authentication information for counters
stored in TSF is updated. Block b is then compressed. If it has an adequate compression
level, then the compressed block is padded and encrypted, and a hash is concatenated at the
end of the new block. Otherwise, a new hash is appended to the Merkle tree RTreeF and an
encryption of b is stored in the (n + 1)-th block of F .

- To delete the last block from file F with n blocks, algorithm Delete is used. The write
counter for the block is deleted and the authentication information for counters is updated.
If the n-th block is authenticated through RTreeF , then its hash has to be removed from the
tree by calling the algorithm DelOffsetTree.

The construction COMP-EINT prevents against replay attacks by hashing write counters for
file blocks together with block contents and authenticating the write counters in trusted storage. It
meets all the security properties of RAND-EINT and MT-EINT.

6 Implementation
Our integrity algorithms are very general and they can be integrated into any cryptographic file
system in either the kernel or userspace. For the purpose of evaluating and comparing their perfor-
mance, we implemented them in EncFS [10], an open-source user-level file system that transpar-
ently encrypts file blocks. EncFS uses the FUSE [13] library to provide the file system interface.
FUSE provides a simple library API for implementing file systems and it has been integrated into
recent versions of the Linux kernel.

In EncFS, files are divided into fixed-size blocks and each block is encrypted individually.
Several ciphers such as AES and Blowfish in CBC mode are available for block encryption. We
implemented in EncFS the three constructions that provide integrity: MT-EINT, RAND-EINT and
COMP-EINT. While any length-preseving encryption scheme can be used in the MT-EINT and
COMP-EINT constructions, RAND-EINT is constrained to use a tweakable cipher for encrypting
file blocks. We choose to encrypt file blocks in MT-EINT and COMP-EINT with the length-
preserving stateful encryption derived from the AES cipher in CBC mode, and use the CMC
tweakable cipher [15] as the encryption method in RAND-EINT. For compressing and decom-
pressing blocks in COMP-EINT we used the zlib library [29].

Our prototype architecture is depicted in Figure 11. We only modified the client-side of EncFS
to include the CMC cipher for block encryption and the new integrity algorithms. The server could
use any underlying file system for the storage of the encrypted files. The Merkle trees for integrity
RTreeF and the index arrays of the random-looking blocks RArrF are stored with the encrypted
files in the untrusted storage space on the server. For faster integrity checking (in particular to
improve the running time of the SearchOffset algorithm used in the Update and Check algorithms
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of the RAND-EINT and COMP-EINT constructions), we also keep the array RArrF for each file,
ordered by indices, in untrusted storage. The roots of the trees RTreeF , and the arrays IntStartF
and CtrValF or their hashes (if they are too large) are stored in a trusted storage space, possibly
on a dedicated meta-data server. In our current implementation, we use two extended attributes
for each file F , one for the root of RTreeF and the second for the arrays IntStartF and CtrValF , or
their hashes (see the counter authentication algorithm from Section 4.2).

By default, EncFS caches the last block content written or read from the disk. In our imple-
mentation, we cached the last arrays RArrF , IntStartF and CtrValF used in a block update or check
operation. Since these arrays are typically small (a few hundred bytes), they easily fit into memory.
We also evaluate the effect of caching of Merkle trees in our system.

7 Performance Evaluation
In this section, we evaluate the performance of the new integrity constructions for encrypted stor-
age RAND-EINT and COMP-EINT compared to that of MT-EINT. We ran our experiments on
a 2.8 GHz Intel D processor machine with 1GB of RAM, running SuSE Linux 9.3 with kernel
version 2.6.11. The hard disk used was an 80GB SATA 7200 RPM Maxtor.

The main challenge we faced in evaluating the proposed constructions was to come up with
representative file system workloads. While the performance of the Merkle tree construction is
predictable independently of the workload, the performance of the new integrity algorithms is
highly dependent on the file contents accessed, in particular on the randomness of block contents.
To our knowledge, there are no public traces that contain file access patterns, as well as the contents
of the file blocks read and written. Due to the privacy implications of releasing actual users’ data,
we expect it to be nearly impossible to get such traces from a widely used system. However,
we have access to three public NFS Harvard traces [9] that contain NFS traffic from several of
Harvard’s campus servers. The traces were collected at the level of individual NFS operations and
for each read and write operation they contain information about the file identifier, the accessed
offset in the file and the size of the request.

To evaluate the integrity algorithms proposed in this paper, we perform two sets of experiments.
In the first one, we strive to demonstrate how the performance of the new constructions varies for
different file contents. For that, we use representative files from a Linux distribution installed on
one of our desktop machines, together with other files from the user’s home directory, divided into
several file types. We identify five file types of interest: text, object, executables, images, and com-
pressed files, and divide the collected files according to these five classes. All files of a particular
type are first encrypted and the integrity information for them is built; then they are decrypted and
checked for integrity. We report the performance results for the files with the majority of blocks
not random-looking (i.e., text, executable and object) and for those with mostly random-looking
blocks (i.e., image and compressed). In this experiment, all files are written and read sequentially,
and as such the access pattern is not a realistic one.

In the second set of experiments, we evaluate the effect of more realistic access patterns on
the performance of the integrity schemes, using the NFS Harvard traces. As the Harvard traces do
not contain information about actual file block contents written to the disks, we generate synthetic
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Figure 11: Prototype architecture.

block contents for each block write request. We define two types of block contents: low-entropy
and high-entropy, and perform experiments assuming that all block contents are either low or high
entropy. These extreme workloads represent the “best” and “worst”-case for the new algorithms,
respectively. We also consider a “middle”-case, in which a block is random-looking with a 50%
probability and plot the performance results of the new schemes relative to the Merkle tree integrity
algorithm for the best, middle and worst cases.

To evaluate exactly the performance of the new constructions, it would be beneficial to know
what is the percentage of random-looking blocks in practical workloads. There exists only one
previous study [24] of which we are aware to provide statistics on this, but only for one desktop
computer. In this study, only about two percent of the blocks written to disk were random-looking.
As our results show, for traces with less than half of the blocks random-looking, the new schemes
improve on the Merkle tree construction with respect to all the three metrics discussed in Section 2.

Finally, we also evaluate how the amount of trusted storage per file affects the storage of the
counter intervals for replay detection in the three NFS Harvard traces.

7.1 The Impact of File Block Contents on Integrity Performance
File traces. For this set of experiments, we build five file traces collected from one of our desk-
top machines: (1) text files are files with extensions .txt, .tex, .c, .h, .cpp, .java, .ps, .pdf; (2) object
files are system library files from the directory /usr/local/lib; (3) executable files are system exe-
cutable files from directory /usr/local/bin; (4) image files are JPEG files and (5) compressed files
are gzipped tar archives. Several characteristics of each trace, including the total trace size, the
number of files in each trace, the minimum, average and maximum file sizes are given in Table 2.
Table 3 shows the fraction of file blocks that are considered random-looking by the entropy test.

Cryptographic file systems. We consider five cryptographic file systems: (1)“AES - no in-
tegrity” encrypts file blocks with AES in CBC mode and no integrity is provided; (2)“CMC -

17



Total size No files Min file size Max file size Avg file size
Text 245 MB 808 27 bytes 34.94 MB 307.11 KB

Objects 217 MB 28 15 bytes 92.66 MB 7.71 MB
Executables 341 MB 3029 24 bytes 13.21 MB 112.84 KB

Image 189 MB 641 17 bytes 2.24 MB 198.4 KB
Compressed 249 MB 2 80.44 MB 167.65 MB 124.05 MB

Table 2: File trace characteristics.

Block size 128 bytes 256 bytes 512 bytes 1024 bytes 2048 bytes 4096 bytes

Text 0.1075 0.087 0.0652 0.0524 0.0409 0.0351
Object 0.0003 0.0002 0.0002 0.0002 0.0002 0.0001

Executables 0.003 0.0019 0.0015 0.0013 0.0011 0.0009
Image 0.9421 0.9277 0.8794 0.788 0.6176 0.502

Compressed 0.936 0.8936 0.8481 0.8292 0.7915 0.7812

Table 3: Fraction of random-looking blocks in the five file traces.

no integrity” encrypts file blocks with CMC and no integrity is provided; (3)“AES-Merkle” en-
crypts file blocks with AES in CBC mode and MT-EINT is used for integrity; (4) “CMC-Entropy”
encrypts file blocks with CMC and RAND-EINT test is used for integrity; (5)“AES-Compression”
encrypts file blocks with AES in CBC mode and COMP-EINT is used for integrity.

Experiments. For each cryptographic file system, we first write the files from each trace; this has
the effect of automatically encrypting the files, and running the Update or Append algorithm of the
integrity method for each file block. Second, we read all files from each trace; this has the effect
of automatically decrypting the files, and running the Check algorithm of the integrity method for
each file block.

We plot the total file write and read time in seconds for the five cryptographic file systems as a
function of different block sizes. We also plot the average integrity bandwidth per block. Finally,
we plot the cumulative size of the untrusted storage USF for all files from each trace. All the
graphs are done in a log-log scale, as all the three metrics considered decrease exponentially for
block sizes varying from 128 to 4096 bytes. We show the combined graphs for low-entropy files
(text, object and executable files) in Figure 12 and for high-entropy files (compressed and image
files) in Figure 13. We also present in Tables 4 and 5 the numerical values for all metrics of interest
for all five file traces in the experiment with 4096-byte blocks.

Write Write Write Write Write Read Read Read Read Read
Text Obj Exe Image Comp Text Obj Exe Image Comp

AES - no integrity 20.18 13.75 54.85 8.81 18.57 9.07 7.93 26.26 7.52 8.63
CMC - no integrity 26.94 20.13 65.6 14.97 23.31 17.92 15.79 34.1 13.84 18.14

AES-Merkle 53.67 43.08 99.43 35.86 50.46 40.55 45.76 66.96 27.88 55.82
CMC-Entropy 31.78 22.33 73.25 37.56 58.81 24.71 21.19 49.34 30.44 62.44

AES-Compression 51.32 43.54 105.83 59.88 78.82 18.49 15.44 41.73 27.31 51.93

Table 4: Time (in s) to write and read file traces for 4096-bytes blocks.
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Avg Bw Avg Bw Avg Bw Avg Bw Avg Bw Int Int Int Int Int
Text Obj Exe Image Comp Text Obj Exe Image Comp

AES-Merkle 132.86 204.38 111.22 106.42 227.09 8.1 2.34 26.26 6.1 2.49
CMC-Entropy 4.71 0.16 0.52 60.74 211.08 3.55 0.13 12.24 5.38 2.06

AES-Compression 9.93 3.01 3.66 113.26 229.44 6.55 0.22 24.38 6.04 2.22

Table 5: Average integrity bandwidth per block (in bytes) and total untrusted storage for integrity
(in MB) for file traces for 4096-bytes blocks.

 100

 1000

 4096 2048 1024 512 256 128

W
rit

e 
tim

e 
(in

 s
)

Block Size (in bytes)

Write time for low entropy files

AES - no integrity
CMC - no integrity

AES - Merkle
CMC - Entropy

AES - Compression

 1

 10

 100

 1000

128 256 512 1024 2048 4096

A
ve

ra
ge

 in
te

gr
ity

 b
an

dw
id

th
 (

in
 b

yt
es

)

Block Size (in bytes)

Average integrity bandwith per block for low entropy files

AES - Merkle
CMC - Entropy

AES - Compression

 100

 1000

 4096 2048 1024 512 256 128

R
ea

d 
tim

e 
(in

 s
)

Block Size (in bytes)

Read time for low entropy files

AES - no integrity
CMC - no integrity

AES - Merkle
CMC - Entropy

AES - Compression

 1

 10

 100

128 256 512 1024 2048 4096

U
nt

ru
st

ed
 s

to
ra

ge
 (

in
 M

B
)

Block Size (in bytes)

Total untrusted storage for integrity for low entropy files

AES - Merkle
CMC - Entropy

AES - Compression

Figure 12: Evaluation for Low-Entropy Files (Text, Object and Executable Files)

Results for low-entropy files. For traces with a low percent of random-looking blocks (text,
object and executable files), CMC-Entropy outperforms AES-Merkle with respect to all the metrics
considered. For 4096-byte blocks, the performance of CMC-Entropy compared to that of AES-
Merkle is improved by 35.08% for writes and 37.86% for reads. The performance of the AES-
Compression file system is very different in the write and read experiments. For 4096-byte blocks,
the write time of AES-Compression is within 2% of the write time of AES-Merkle. However,
in the read experiment, AES-Compression outperforms AES-Merkle by 50.63%. The reason for
this discrepancy between the read and write performance is the low cost of the decompression
algorithm used for reading file blocks compared to the compression algorithm used for writing
file blocks in AES-Compression. We further break down the write and read performance costs
of AES-Merkle, CMC-Entropy and AES-Compression into components in the micro-benchmarks
paragraph later this section.
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The integrity bandwidth of CMC-Entropy and AES-Compression is 84.08 and 26.49 times,
respectively, lower than that of AES-Merkle. The untrusted storage for integrity for CMC-Entropy
and AES-Compression is reduced 2.3 and 1.17 times, respectively, compared to AES-Merkle.
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Figure 13: Evaluation for High-Entropy Files (Image and Compressed Files)

Results for high-entropy files. For traces with a high percent of random-looking blocks (im-
age and compressed files), CMC-Entropy adds a maximum performance overhead of 11.64% for
writes and 10.96% for reads compared to AES-Merkle. The performance of AES-Compression
is very different in the write and read experiments due to the cost difference of compression and
decompression. AES-Compression adds a write performance overhead of 60.68% compared to
AES-Merkle, and improves the read performance of AES-Merkle by 5.32%.

For 4096-byte blocks, the average integrity bandwidth needed by CMC-Entropy and AES-
Compression is lower by 16.45% and higher by 2.44%, respectively, than that used by AES-
Merkle. The untrusted storage for integrity used by CMC-Entropy and AES-Compression com-
pared to that of AES-Merkle is improved by 13.38% and 3.84%, respectively, for 4096-byte blocks.

Micro-benchmarks. To better understand our results, we present a micro-benchmark evaluation
for 4096-byte blocks for text and compressed files in Figure 14. We separate the total time incurred
by the write and read experiments into the following components: encryption/decryption time
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Figure 14: Micro-benchmarks for text and compressed files.

(either AES or CMC); SHA1 hashing time; randomness check time (either the entropy test for
CMC-Entropy or compression/decompression time for AES-Compression); Merkle tree operations
(e.g., given a leaf index, find its index in inorder traversal or given an inorder index of a node in
the tree, find the inorder index of its sibling and parent); the time to update and check the root of
the tree (the root of the Merkle tree is stored as an extended attribute for the file) and disk waiting
time.

The cost of CMC encryption and decryption is about 2.5 times higher than that of AES en-
cryption and decryption in CBC mode. Decompression is between 4 and 6 times faster than com-
pression and this accounts for the good read performance of AES-Compression compared to both
AES-Merkle and CMC-Entropy.

A substantial amount of the AES-Merkle overhead is due to disk waiting time (25%) and the
time to update and check the root of the Merkle tree (15%). In contrast, due to smaller sizes of the
Merkle trees in the CMC-Entropy and AES-Compression file systems, the disk waiting time and
the time to update and check the root of the tree for text files are only 7% and 0.9% of the total write
time for CMC-Entropy and 6% and 1%, respectively, for AES-Compression. For compressed files,
the disk waiting time and the time to update and check the root of the tree represent 17% and 11%
of the total write time for CMC-Entropy and 14% and 10%, respectively, for AES-Compression.

The results suggests that caching of Merkle trees in the file system might reduce the disk
waiting time and improve the performance of all three integrity constructions, and specifically that
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of the AES-Merkle algorithm. We present our results on caching next.

Caching of Merkle trees. We have implemented in our system a cache that stores the hashes
read from Merkle trees. The cache uses the least-recent used (i.e., LRU) replacement policy. We
have experimented with two algorithms that have different tradeoffs. The first one implements the
cache using a double-linked list, in which the most recently used block is moved in front of the
list. The algorithm optimizes the time to search for the least-recent used block, at the expense of
growing the search time linearly with the number of items in the cache. The second algorithm
implements the cache as a hash table indexed by the (file name, block index in file) tuple. To
determine the least recently used block, the algorithm stores a global counter that is incremented
every time an element is inserted in (or used from) the cache, as well as a counter for each block in
the cache that denotes the value of the global counter when that block has been most recently used.
In this algorithm, the search of a block involves one table lookup and a search in the short list of
items that hash to the same value (in our experiments, the largest bucket of items that hashed to the
same value contained three items). On the other hand, the time to replace an item in the cache is
linear in the number of items in the cache.

We performed experiments with both algorithms by varying the size of the cache between 0 and
4KB. We found out that for caches smaller than 4KB, the double-linked list algorithm outperforms
the hash-table algorithm, but as the size of the cache grows the hash-table algorithm becomes faster.
It turns out that the cache hit rate becomes very high for small caches (e.g., for a 512-byte cache,
the cache hit rate is 77% for text files and 86% for compressed files) and the optimum value for
the size of the cache is 512 or 1024 bytes. The high cache hit rate is explained by the sequentiality
of file accesses in the experiment that we performed.

We represent the write and read performance for both low and high entropy files for the faster
double-linked list algorithm in Figure 15. The performance of CMC-Entropy at read is improved
by only 2% for low-entropy files, while the performance of AES-Merkle is improved by 7%. On
the other hand, for high-entropy files, all three constructions are improved by at least 7% and at
most 11%. We do not obtain a higher benefit from caching in our system because in our initial
experiments there is an implicit caching mechanism of the file system (as the Merkle trees are
stored in the file system).

7.2 The Impact of File Access Patterns on Integrity Performance
File traces. We considered a subset of the three NFS Harvard traces [9] (LAIR, DEASNA and
HOME02), each collected during one day. We show several characteristics of each trace, including
the number of files and the total number of block write and read operations, in Table 6. The block
size in these traces is 4096 bytes.

Experiments. We replayed each of the three traces with three types of block contents: all low-
entropy, all high-entropy and 50% high-entropy. For each experiment, we measured the total
running time, the average integrity bandwidth and the total untrusted storage for integrity for
CMC-Entropy and AES-Compression relative to AES-Merkle and plot the results in Figure 16.

22



 50

 100

 150

 200

 250

0 256 512 1024 2048 4096

W
rit

e 
tim

e 
 (

in
 s

)

Size of Cache for Merkle Trees (in bytes)

Write time for low entropy files for 4096-byte blocks

AES - Merkle
CMC - Entropy

AES - Compression

 50

 100

 150

 200

0 256 512 1024 2048 4096

R
ea

d 
tim

e 
 (

in
 s

)

Size of Cache for Merkle Trees (in bytes)

Read time for low entropy files for 4096-byte blocks

AES - Merkle
CMC - Entropy

AES - Compression

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 256 512 1024 2048 4096

W
rit

e 
tim

e 
 (

in
 s

)

Size of Cache for Merkle Trees (in bytes)

Write time for high entropy files for 4096-byte blocks

AES - Merkle
CMC - Entropy

AES - Compression

 20

 40

 60

 80

 100

 120

0 256 512 1024 2048 4096

R
ea

d 
tim

e 
 (

in
 s

)

Size of Cache for Merkle Trees (in bytes)

Read time for high entropy files for 4096-byte blocks

AES - Merkle
CMC - Entropy

AES - Compression

Figure 15: Write and read time for low and high-entropy files as a function of the size of cache.

Number of files Number writes Number reads
LAIR 7017 66331 23281

DEASNA 890 64091 521
HOME02 183 89425 11815

Table 6: NFS Harvard trace characteristics.

We represent the performance of AES-Merkle as the horizontal axis in these graphs and the per-
formance of CMC-Entropy and AES-Compression as a percentage relative to AES-Merkle. The
points above the horizontal axis are percentage overheads compared to AES-Merkle, and the points
below the horizontal axis represent percentage improvements relative to AES-Merkle. The labels
on the graphs denote the percent of random-looking blocks synthetically generated.

Results for low-entropy blocks. For low-entropy block contents, the performance improve-
ments of CMC-Entropy compared to AES-Merkle are 29.11% for LAIR, 46.33% for DEASNA
and 53.36% for HOME02. The performance of AES-Compression improves when the ratio of
read to write operations increases. AES-Compression performs best for the LAIR trace, in which
it improves upon CMC-Entropy by 13.14%. For the DEASNA trace, AES-Compression adds an
overhead of 9.98% compared to CMC-Entropy, and for the HOME02 trace the performance of
CMC-Entropy and AES-Compression are very close.
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Figure 16: Running time, average integrity bandwidth and storage for integrity of CMC-Entropy
and AES-Compression relative to AES-Merkle. Labels on the graphs represent percentage of
random-looking blocks.

The average integrity bandwidth for CMC-Entropy is lower than the bandwidth used by AES-
Merkle by a factor of 28.04 for LAIR, 238.82 for DEASNA and 2.58 for HOME02. The average
integrity bandwidth for AES-Compression is lower than the bandwidth used by AES-Merkle by
a factor of 14.29 for LAIR, 22.2 for DEASNA and 2.45 for HOME02. Similarly, the untrusted
storage for integrity for CMC-Entropy and AES-Compression improves that used by AES-Merkle
by a factor of 44.31 for LAIR, 365.71 for DEASNA and 37.42 for HOME02.

Results for high-entropy blocks. For high-entropy blocks, CMC-Entropy adds a performance
overhead compared to AES-Merkle of at most 41.25% for LAIR, 34.49% for DEASNA and
30.15% for HOME02. On the other hand, the performance overhead added by AES-Compression
compared to AES-Merkle is at most 37.8% for LAIR, 70.18% for DEASNA and 49.76% for
HOME02.

The bandwidth overhead of CMC-Entropy and AES-Compression is at most 35.99% for LAIR,
61.99% for DEASNA and 68.32% for HOME02. The storage overhead of CMC-Entropy and AES-
Compression compared to AES-Merkle is between 16% and 19% for all the three traces.
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Results for 50% low-entropy blocks. The performance of CMC-Entropy and AES-Compression
are within 9% and 13%, respectively, of that of AES-Merkle for traces with 50% high-entropy
blocks. The average integrity bandwidth of both CMC-Entropy and AES-Compression is within
25% of that of AES-Merkle and the storage for integrity of both CMC-Entropy and AES-Compression
is 40% lower than that of AES-Merkle.

7.3 Amount of Trusted Storage
Finally, we perform some experiments to evaluate how the storage of the counter intervals, in
particular the arrays IntStartF and CtrValF , is affected by the amount of trusted storage per file.
For that, we plot the number of files for which we need to keep the arrays IntStartF and CtrValF in
the untrusted storage space, as a function of the amount of trusted storage per file. The results for
the three traces are in Figure 17. We conclude that a value of 200 bytes of constant storage per file
(which we have used in our experiments) is enough to keep the counter intervals for all the files in
the LAIR and DEASNA traces, and about 88% percent of the files in the HOME02 trace.
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8 Discussion
From the evaluation of the three constructions, it follows that none of the schemes is a clear win-
ner over the others. While the performance of AES-Merkle is not dependent on workloads, the
performance of both CMC-Entropy and AES-Compression is greatly affected by file block con-
tents written to disks and file access patterns. The scheme AES-Compression is the most variable
with respect to performance among the three constructions and CMC-Entropy performs best in
most cases with respect to the average integrity bandwidth and the untrusted storage for integrity
metrics.

Majority writes Majority reads
Majority low-entropy contents CMC-Entropy AES-Compression
Majority high-entropy contents AES-Merkle AES-Merkle

Table 7: Choosing a construction based on block contents and access patterns.

We recommend that all three constructions be implemented in a cryptographic file system. An
application can choose the best scheme based on its typical workload. We offer several guidelines
for choosing the best suited integrity scheme for encrypted storage in Table 7.

The new algorithms that we propose can be applied in other settings in which authentication
of data stored on untrusted storage is desired. One example is checking the integrity of arbitrarily-
large memory in a secure processor using only a constant amount of trusted storage [4, 7]. In this
setting, a trusted checker maintains a constant amount of trusted storage and, possibly, a cache of
data blocks most recently read from the main memory. The goal is for the checker to verify the
integrity of the untrusted memory using a small bandwidth overhead.

The algorithms described in this chapter can be only used in applications where the data that
needs to be authenticated is encrypted. However, the COMP-EINT integrity algorithm can be easily
modified to fit into a setting in which data is only authenticated and not encrypted, and can thus
replace Merkle trees in such applications. On the other hand, the RAND-EINT integrity algorithm
is only suitable in a setting in which data is encrypted with a tweakable cipher, as the integrity
guarantees of this algorithm are based on the security properties of such ciphers.

In checking the integrity of untrused memory, the memory is divided into smaller blocks (e.g.,
64 or 128 bytes) than in a cryptographic file system, where the typical granularity of securing
file blocks is 1KB or 4KB. In fact, we chose the block values between 128 bytes and 4KB in
our experiments to show the applicability of our integrity algorithms to other applications besides
cryptographic file systems.

9 Related Work
As discussed in Section 1, it is possible to reduce the trusted storage costs for many files to that of
only one by writing the trusted storage for multiple files to a cryptographically protected file (stored
in untrusted storage). An alternative that is employed in numerous systems (e.g., SFSRO [12],
Cepheus [11], FARSITE [1], Plutus [17], and SUNDR [19]) is to digitally sign the trusted storage
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for a file—in those systems, the root of a Merkle tree for the file—and write this digitally signed
value to untrusted storage. This technique similarly reduces the trusted storage for many files to
a constant-size trusted value, in this case the trusted public key for verifying the signatures. The
techniques we propose here can replace Merkle trees equally well in this context.

Still other integrity mechanisms exist for cryptographic file systems. For example, a common
integrity method, used in systems such as TCFS [5], PFS [28] and SNAD [23], is to store a hash
or message authentication code (MAC) for each file block. However, this results in trusted (in the
case of hashes) or untrusted (in the case of MACs) integrity storage for every block, which we
avoid in our constructions (except for workloads consisting of all random files). Tripwire [18] is
a user-level tool that computes a hash per file and stores it in trusted storage. While this approach
achieves constant trusted storage for integrity per file, the entire file must be read to verify the
integrity of any block, violating one of our design goals (see Section 1). The same is true for
SiRiUS [14], which applies a digital signature to each full file.

Riedel et al. [25] provide a framework for extensively evaluating the security of existing storage
systems. A recent survey of the integrity methods used in different storage system is by Sivathanu
et al. [27]. We refer the readers to these surveys for more discussion of secure storage systems.

Another area related to our work is that of checking the integrity of arbitrarily large untrusted
memory using only a small, constant-size trusted memory. A first solution to this problem by Blum
et al. [4] is to check the integrity of each memory operation using a Merkle tree. This results in
a logarithmic bandwidth overhead in the total number of memory blocks. Recent solutions try to
reduce the logarithmic bandwidth to almost a constant value. The main idea by Clarke et al. [7] is
to verify the integrity of the memory only when a critical operation is encountered. The integrity
of sequences of operations between critical operations is checked by aggregating these operations
in a log using incremental hash functions [6]. In contrast, in our model we need to be able to check
the integrity of each file block read from the storage servers.

10 Conclusion
We have proposed two new integrity constructions, RAND-EINT and COMP-EINT, for encrypted
file systems. Our constructions exploit the typical low entropy of block contents and sequentiality
of file block writes. We have evaluated the performance of the new constructions relative to the
widely used Merkle tree integrity algorithm, using file traces from a standard Linux distribution
and NFS traces collected at the Harvard university. Our experimental evaluation demonstrates that
each construction is best suited for particular workloads.
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