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Abstract
The landscape of ML ecosystem including models, software, and hardware

evolves quickly due to phenomenal growth of Machine Learning (ML) and its
application. Nevertheless, it remains challenging and labor-intensive to swiftly
adapt existing ML systems to new models and hardware to maximize perfor-
mance. We find that it is attributed to existing ML systems falling short in
portability and automatability across several crucial layers of a system stack.
However, building a portable ML system requires non-trivial modeling of in-
tricate commonalities and differences of diverse ML models or platforms. In
addition, automating ML system layers introduces the challenge of designing
practical search space and search algorithms to customize optimizations to a
given model and hardware.

In this thesis, we aim to tackle the challenges above of building an automated
and portable ML system with a focus on crucial ML system layers. Specifically,
the thesis explores ways to build an efficient system that automates 1) integration
of ML backends and 2) ML parallelisms and makes them more portable. We
develop a user interface and system stack to be more portable across different
backends and underlying hardware. We also design practical search space and
algorithms to automate backend placement and parallelism.

First, we built Collage, a DL framework that offers seamless integration of
DL backends. Collage provides an expressive backend registration interface that
allows users to precisely specify the capability of various backends. By leveraging
the specifications of available backends, Collage automatically searches for an
optimized backend placement strategy for a given workload and execution
environment.

Second, we developed GraphPipe, a distributed system that enable perfor-
mant and scalable DNN training. GraphPipe automatically partitions a DNN
into a graph of stages, optimizes micro-batch schedules for these stages, and par-
allelizes DNN training. This generalizes existing sequential pipeline parallelism
and preserves the inherent topology of a DNN, resulting in reduced memory
requirement and improved GPU performance.

Lastly, we conducted a comparative analysis of parallelisms in distributed
LLM inference for long sequence application. Specifically, we focused on Cache
Parallelism (CP), a scheme to parallelize long KV cache in auto-regressive decod-
ing step in LLM inference. We investigated trade-offs from different parallelisms
for long context scenarios where we need to process tens of thousands tokens.
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Chapter 1

Introduction

The explosive popularity of Machine Learning (ML) drives the rapid advance in ML mod-
els, systems, and hardwares. As recent ML models impress the world with human-level
performance in a variety of tasks such as self-driving, SAT and bar exam, the diversity
of models and their applications grows quicker than ever. Naturally, ML hardware and
systems have been diversified and fast-evolving in response to fast-growing demand
for new models and applications. However, it is still labor-intensive and challenging
to quickly adapt ML systems to new models and HWs with a goal of maximizing per-
formance. Imagine new ML models or HW generations come out. Hardware vendors
would implement and release newly optimized operator kernels while ML system engi-
neers would manually adjust system implementation and optimizations to accommodate
them.

Still, we observe that existing ML systems often fall short in two essential aspects to keep
up with the rapid evolution of ML: portability and automatability. While portability is
loosely defined term in general, we define it as an ability of a ML system to adapt to a
new ML model or underlying execution environment (e.g., HW cluster). For example, a
portable ML system should be able to support new models and correpsonding updates
with minimal effort including code changes from system engineers and inputs from users.
On the other hand, we refer automatability to an ability of a ML system to automate
compilation of ML models specifically regarding optimization (e.g., operator fusion,
parallelism).

It is challenging to build a ML system with both qualities. First, building a portable ML
system requires effective modeling of commonalities and differences of different ML
models or platforms. For instance, assume a scenario of building a ML system efficiently
employing diverse ML backends 1 [CWV+14, WZS+14, KFT+19, Tena, One] for different
ML models and platforms (e.g., NVIDIA GPU, Intel CPU, etc). However, it is non-trivial
how to capture and represent various capabilities of backends that vary depending on the

1We define a backend as a kernel library [CWV+14, WZS+14] or a runtime framework [Tena, KFT+19]
that takes DL workloads as inputs and provides an optimized low-level target code.
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platform. The example capability includes complicate operator fusion rules with various
constraints [CMJ+18, NGW+21, MXY+20, ZZL+20, ELB+17], e.g., fusing convolution ops
with 3x3 kernel and data layout constraint.

In addition, automating optimizations in ML system introduces a challenge of designing
1) practical search space and 2) search algorithm. In ML systems, naive optimization
space is often extremely large, whose size often grows exponentially in the number of
operators in a ML model and the number of devices to use. Therefore, it is crucial to
leverage domain-specific knowledge to narrow down search space while still being com-
prehensive enough not to leave the performance on the table. Then, we face a challenge
of designing a reasonable cost model that efficiently evaluates possible optimization
strategies. Lastly, there is a challenge of how to design an efficient search method that
effectively prunes worthless candidates and leverages optimal substructure.

Specifically, we mainly focus on addressing such challenges in optimizing ML paral-
lelisms. Parallelisms are fundamental for optimizing the performance of large-scale ML
models. By distributing computations across multiple devices, we can perform training
or inference of models faster and handle models or datasets too big to fit on a single
machine. Data parallelism [Val90, Kri14, LAP+14, GDG+17, MHH+21], where we split
the dataset across devices, and model parallelism [DCM+12, SCP+18, SPP+19, LLX+20,
NSC+21, ZLZ+22], where we split the model itself and pipeline them [HCB+19, FRM+21,
NPS+21, NHP+19, TNP21], are the foundational approaches. However, optimizing these
strategies poses significant challenges due to the complex search space involved. Factors
like model architecture, communication overhead, and hardware constraints all interact
in intricate ways [ZLZ+22]. It is a certainly non-trivial task to find the ideal balance
between data distribution, model partitioning, and device synchronization that yields
the best performance gains and resource efficiency [QCS+21].

1.1 Thesis Statement
The thesis centers around tackling the aforementioned challenges of building an auto-
mated and portable ML system with a focus on key ML system layers. Specifically, the
thesis explores ways to build an efficient system that automates 1) integration of ML
backends and 2) ML parallelisms and makes them more portable. We develop an user
interface and system stack to be more portable across different backends and underlying
hardwares. We also design search space and algorithms to automate backend placement
and parallelism.

Automated and portable integration of ML backends. To keep up with the fast advance-
ment of Deep Learning (DL) backends, it is crucial for modern DL frameworks to efficiently
integrate a variety of optimized tensor algebra libraries [CWV+14, WZS+14, KFT+19]
and runtimes [Tena, KFT+19] as their backends and generate the fastest possible exe-
cutable using these backends. However, current DL frameworks [PGM+19a, ABC+16,
XLA, RFA+18, CBB+18, RKBA+13] require significant manual effort and expertise to
integrate every new backend while failing to unleash its full potential. Given the fast-
evolving nature of the DL ecosystem, this manual approach often slows down continuous
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innovations across different layers; it prevents hardware vendors from the fast deploy-
ment of their cutting-edge libraries, DL framework developers must repeatedly adjust
their hand-coded rules to accommodate new versions of libraries, and machine learning
practitioners need to wait for the integration of new technologies and often encounter
unsatisfactory performance. We propose Collage, a DL framework that offers seamless in-
tegration of DL backends. Collage provides an expressive backend registration interface
that allows users to precisely specify the capability of various backends. By leveraging
the specifications of available backends, Collage automatically searches for an optimized
backend placement strategy for a given workload and execution environment.

Automated and portable ML parallelisms. Pipeline parallelism [HCB+19, FRM+21,
NPS+21, NHP+19, TNP21] is commonly used in existing DL systems to support large-
scale Deep Neural Network (DNN) training by partitioning a DNN into multiple stages,
which concurrently perform DNN computation for different micro-batches of training
samples in a pipeline fashion. However, existing pipeline-parallel approaches only
consider sequential pipeline stages and thus ignore the topology of a DNN, resulting in
missed model-parallel opportunities. To overcome such limitation, we present graph
pipeline parallelism (GPP), a new pipeline-parallel scheme that partitions a DNN into
pipeline stages whose dependencies are identified by a directed acyclic graph. GPP
generalizes existing sequential pipeline parallelism and preserves the inherent topology
of a DNN to enable concurrent execution of computationally-independent operators,
resulting in reduced memory requirement and improved GPU performance. In addition,
we develop GraphPipe, an automated distributed system that exploits GPP strategies
to enable performant and scalable DNN training on device clusters with any network
topology.

Parallelism for Emerging LLM Application. Many emerging large language model
(LLM) tasks, like writing long documents or translating books, involve processing huge
amounts of text. However, the memory-intensive way LLMs work and the unpredictable
length of generated text create performance bottlenecks. Existing methods for paral-
lelizing LLM inference across devices have drawbacks, especially with long sequences.
We introduce cache parallelism (CP), a new approach that paritions the KV cache for
attention for better workload balance and less communication overhead. We imple-
ment custom CUDA kernels that boosts CP’s efficiency. CP demonstrates improved
performance over other methods when handling text generation, particularly for long
sequences.

1.2 Thesis Contributions
In this section, we summarize the contributions of the thesis. We present three pillar
works that contribute to building an automated and portable ML system across chapters
in the thesis.

In Chapter 2, we propose a ML system, Collage, that makes following research contribu-
tions:
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• We identify system and optimization challenges in integration of diversified DL
backends and build Collage to tackle these challenges.

• We provide a pattern-based interface for quick registration of various backends and
their updates with significantly less user efforts and expertise in performance land-
scape of varied backends and the placement heuristic in the framework codebase.

• We develop a two-level search method to automatically optimize placement of
diverse backends for a given hardware.

In Chapter 3, we introduce our ML system, GraphPipe. The key contributions are

• We introduce graph pipeline parallelism, a new pipeline-parallel scheme that
enables concurrent execution of stages, reduces memory requirement, and improves
GPU performance compared to existing SPP strategies.

• We design algorithms to partition a DNN into a graph of stages and schedule
micro-batches for these stages, which jointly discover efficient GPP strategies.

• We develop GraphPipe, a distributed runtime that enables fast and scalable DNN
training leveraging GPP; it outperforms existing pipeline-parallel systems by up to
1.6× on a variety of DNNs.

In Chapter 4, we analyze and compare different parallelism strategies for efficient dis-
tributed LLM inference in long sequence applications:

• We explore Cache Parallelism (CP) as a strategy to improve the efficiency of LLM
inference when dealing with extremely long input sequences.

• We compare how various forms of parallelism impact LLM inference performance
in long context scenarios, requiring the processing of tens of thousands of tokens.

• We provide insights for factors that impact performance of long context LLM
inference. We also analyze trade-offs between different parallelism approaches.
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Chapter 2

Collage: Seamless Integration of
Deep Learning Backends with
Automatic Placement

Chapter based on work published at PACT 22.

The strong demand for efficient and performant deployment of Deep Learning (DL)
applications prompts the rapid development of a rich DL ecosystem. To keep up with
this fast advancement, it is crucial for modern DL frameworks to efficiently integrate
a variety of optimized tensor algebra libraries and runtimes as their backends and
generate the fastest possible executable using these backends. However, current DL
frameworks require significant manual effort and expertise to integrate every new
backend while failing to unleash its full potential. Given the fast-evolving nature of
the DL ecosystem, this manual approach often slows down continuous innovations
across different layers; it prevents hardware vendors from the fast deployment of
their cutting-edge libraries, DL framework developers must repeatedly adjust their
hand-coded rules to accommodate new versions of libraries, and machine learning
practitioners need to wait for the integration of new technologies and often encounter
unsatisfactory performance.

In this paper, we propose Collage, a DL framework that offers seamless integration
of DL backends. Collage provides an expressive backend registration interface that
allows users to precisely specify the capability of various backends. By leveraging the
specifications of available backends, Collage automatically searches for an optimized
backend placement strategy for a given workload and execution environment. Our
evaluation shows that Collage outperforms the best existing framework for each
hardware by 1.26×, 1.43×, 1.40× on average on NVIDIA’s RTX 2070 GPU, V100
GPU, and Intel’s Xeon 8259CL CPU, respectively. Collage has been open-sourced a

and deployed in Apache TVM.
ahttps://github.com/cmu-catalyst/collage
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2.1 Introduction
Due to the explosive popularity of Deep Learning (DL) applications, there are tremendous
demands for performant and efficient software/hardware stacks for DL computations.
These strong demands have driven both industry and academia to invest a significant
amount of effort in developing various hardware devices [JYP+17, ANE, NVD], software
libraries [CWV+14, One, Tena, Opeb, KFT+19], compilers [AMA+19, BRR+19, ZJS+20,
KKC+17, PSS+21, MYS20, CGG+20, RSG19, BZR+22, CCC+19, LCC+21], and DL frame-
works [PGM+19a, ABC+16, XLA, RFA+18, CBB+18, RKBA+13]. Both the hardware and
software stacks for DL have been diversified, resulting in a rich and fast-evolving ecosys-
tem.

Within this ecosystem, today’s DL frameworks can leverage a variety of optimized soft-
ware libraries [CWV+14, WZS+14] and runtimes [Tena, KFT+19] as their backends 1 to
deliver fast execution. Existing backends can be grouped into two categories based on
their capabilities. First, operator kernel libraries [CWV+14, WZS+14, KFT+19] provide effi-
cient low-level kernel API for individual DL operators (e.g., convolution). These libraries
often support operator fusion, which combines multiple operators into a single kernel
based on certain fusion rules (e.g., cuDNN fusion engine) [CMJ+18, CWV+14, NGW+21,
MXY+20, ZZL+20, ELB+17]. Second, graph inference libraries [Tena, One] take an entire
DL model as input and produce efficient run-time code. In addition to the optimiza-
tions that operator kernel libraries provide, the graph inference libraries also consider
graph-level cross-kernel optimizations, such as memory optimizations [SRSA21].

There are strong demands for high-performance DL backends in both industry and
academia. However, seamless integration of diverse and rapidly advancing DL backends
requires addressing two key challenges: (1) incorporating a wide variety of available
backends with different programming models and performance characteristics, and (2)
optimizing placement of backends to effectively assign DL computations to various
backends by leveraging the performance advantages of each backend. We refer to this
overall problem as backend integration problem.

To solve the backend integration problem, existing DL frameworks [ABC+16, PGM+19a]
rely on rule-based heuristics manually designed by experts (Figure 2.1). These heuristics
often directly offload the entire workload to a single backend (e.g., TensorRT) whenever
applicable. Otherwise, DL frameworks lower individual operators to different backends
based on a fixed priority-based strategy; for example, in PyTorch, cuDNN has the highest
priority for convolution, while cuBLAS is the first choice for matrix multiplication.

However, even for the same type of operators, the optimal backend varies depending
on the hardware (e.g., different types of GPUs) and operator configuration (e.g., ten-
sor shape, padding) as depicted in Figure 2.2. As a result, the hand-coded heuristics
in current DL frameworks may leave substantial performance on the table. Besides,
existing frameworks require significant expertise in both framework and performance

1We define a backend as a kernel library or a runtime framework that takes DL workloads as inputs and
provides an optimized low-level target code.
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Existing DL 
Frameworks

Repeated manual efforts for 
updating heuristics

If op == “conv2d”:
If cudnn_enabled:
lower_to_cudnn_kernel

Else if …
Else if op == “batch_matmul”: 

If cublas_enabled:
lower_to_cublas_kernel

….

Rule-based Heuristics

Execution

Execution

DL Workloads Backend Specification

…

DL Workloads

Automatic Backend Placement

Easy registration without expertise in 
framework codebase and performance 
landscape of diverse backends

Eliminate manual updates on 
heuristics in codebase

Examine Determined

Choose the 
best backend

Deliver fast and stable 
performance

Susceptible to be outdated

cuDNN cuBLAS TensorRT

Collage

Figure 2.1: A comparison between existing DL frameworks and Collage. Existing frame-
works (top) use rule-based heuristics to integrate different backends. In contrast, Collage
provides an automatic search algorithm to find optimized placement of backends for a
given hardware platform. New backends can be easily integrated into Collage through
the backend registration interface.

landscape of diverse backends as developers need to directly modify the complex lower-
ing heuristics (e.g., more than ten thousand lines of code in PyTorch) in a framework to
introduce a new backend or reflect any backend updates. These handcrafted heuristics
are hard to maintain and keep up with the rapid developments in backends. This is a
major bottleneck for various machine learning personas, since the integration workflow
requires repetitive manual efforts to accommodate new backends. This integration over-
head hinders hardware vendors from deploying their cutting-edge libraries and delays
machine learning practitioners from employing newest system-level supports.

In this paper, we aim to design a system that can provide seamless backend integration
workflow with high performance. Building such a solution requires addressing two key
challenges. First, it is non-trivial to integrate diverse backends with different charac-
teristics into a system while maintaining their full capabilities. Often times, backend
capability is intricate to capture accurately since today’s DL backends generally support
sophisticated operator fusion with various constraints (e.g., fusing convolution ops with
3x3 kernel). Second, the search space of backend placement is extremely large, whose size
grows exponentially in the number of operators in a DNN and the number of available
backends. The search space is also highly irregular due to diverse backend capabilities
and operator fusion patterns.

In Collage, we advocate for a new approach to tackling these challenges, as shown
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Figure 2.2: Performance of various convolutions (C#) with different configurations (e.g.,
input tensor shape, kernel size) in ResNext-50 on NVIDIA RTX 2070; Note that there is
no single backend that is the best for all convolutions.

in the bottom of Figure 2.1. Collage contains two key components. First, to integrate
diversified backends, Collage provides a descriptive backend registration interface to specify
a backend’s capability based on its supported operator type (e.g., conv), configurations
(e.g., kernel size), and its fusion rule. This interface only requires basic understanding
of our pattern language and backend capability in contrast to existing frameworks that
require considerable expertise in both the performance landscape of varied backends
and the coding skills for backend placement rules in existing frameworks. Collage
allows easy backend registration for a new backend (e.g., 100 LoC for all possible
operators) or a new operator pattern support (e.g., 1 LoC in most cases). Second, to
efficiently optimize backend placement, Collage employs a two-level optimization to deal
with unique chacteristics of two backend categories (i.e., operator kernel library and
graph inference library). Our system automatically explores possible matches between
an input computation graph and backend operator patterns to find optimized placements
by taking available backends and an underlying hardware into consideration.

To sum up, Collage significantly lowers the bar in the current backend integration work-
flow by eliminating the need to modify the placement heuristic. With simple registra-
tion from users, Collage can immediately launch the automatic placement optimizer
without any intricate manual consideration for the capability of new backend and its
performance relation with other backends across different workloads and hardware
architectures.

This paper makes the following contributions:

• We identify system and optimization challenges in integration of diversified DL
backends and build Collage to tackle these challenges.

• We provide a pattern-based interface for quick registration of various backends and
their updates with significantly less user efforts and expertise in performance land-
scape of varied backends and the placement heuristic in the framework codebase.

• We develop a two-level search method to automatically optimize placement of
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Figure 2.3: System overview of Collage. By using our backend specification interface,
users can efficiently register diverse backend patterns supported by diverse backends.
Then, with its two-level optimization process, Collage automatically optimizes backend
placement for an underlying execution environment.

diverse backends for a given hardware.

Our evaluation shows that Collage stably outperforms existing DL frameworks across a
variety of models and hardware architectures by effectively mix-using multiple backends
with their own unique strengths. On average, Collage brings 1.26×, 1.43×, and 1.40×
speedup on two different NVIDIA GPUs and an Intel CPU respectively, compared to the
best framework for each hardware.

2.2 Overview
Figure 2.3 illustrates the overarching design of Collage, which takes a DNN model and
the specifications of available backends as inputs, and optimizes backend placement for
the underlying hardware. Note that Collage considers different sets of backends based
on a given target environment (e.g., Intel CPU, NVIDIA GPU) and reflects performance
characteristics of backends via the measurer component (M). Collage consists of two key
components.

Backend pattern abstraction. Existing backends provide a variety of programming mod-
els for performing DL computations. To decouple backend capability from the placement
algorithm and eliminate the manual effort for backend integration, we introduce backend
pattern, a new abstraction for capturing the capability of varied backends. Specifically, a
backend pattern defines a set of operators and their possible fusion combinations (e.g.,
Conv+ReLU) that can be deployed on each backend. Based on this pattern abstraction,
Collage provides a straightforward interface to register a backend and specify supported
operator patterns.

Accurate specification is crucial to leverage the full capability of diverse backends. To
achieve this goal, Collage offers two levels of abstraction. For simple patterns, Collage
allows users to enumerate the supported operator patterns. However, this approach may
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not cover the full capability of backends with advanced operator fusion engines [CMJ+18,
NGW+21, CWV+14, Tena]. To enable more flexible specification, Collage also allows users
to bring their pattern rules that specify supported operator kinds and complex operator
fusion rules. When those rules are provided, the pattern generator automatically identifies
all legitimate operator fusion patterns on a given computation graph and adds them into
the backend pattern registry. §2.3 provides details.

Backend placement optimizer. Once all available patterns are registered in the pat-
tern registry, Collage uses a two-level optimization approach to discovering an optimized
backend placement strategy for a given execution environment. As existing operator
libraries offer operator-level point of view while graph inference libraries additionally
apply cross-kernel optimizations, Collage takes two different optimization strategies
to exploit their differences. First, the op-level placement optimizer explores promising
candidates for individual operators, without considering cross-kernel optimizations. By
adopting a Dynamic Programming (DP) algorithm, the op-level placement optimizer
can efficiently find an optimized backend placement strategy within a minute. Second,
the graph-level placement optimizer fine-tunes the optimized backend placement using
evolutionary search [FDRG+12]. This approach compensates for the missing opportu-
nities from the op-level placement optimizer by examining the impact of cross-kernel
optimizations. §2.4 discusses the two optimizers in detail.

2.3 Backend Pattern Abstraction
As an important component of DL ecosystem, there are diverse fast-evolving DL back-
ends with different programming models and performance characteristics. Depending
on their target hardware and design principles, each backend has its own unique strength
and coverage. In addition, many backends support various complex operator fusion
rules [CWV+14, CMJ+18, Tena, CMJ+18, NGW+21], which add significant complexity
in their integration with the full capability. Under the hood, existing operator fusion
engines often fuse operators based on heuristic fusion rules that examine the type of
each operator and the relationship between different types. For instance, a fusion engine
may combine multiple operators across different branches into a single kernel as long as
they satisfy its fusion rule.

For an adoption of various backends, our system provides two levels of abstraction:
pattern and pattern rule. Pattern is a direct way to specify all supported operator pat-
terns in Collage’s pattern language, which extends the Relay pattern language [RLW+18].
However, supported patterns can be too complicated to explicitly specify. To incorporate
sophisticated patterns, pattern rules offer an expressive way to specify a valid set of
operator fusion rules in the form of Python; users can use any Python features to describe
complex fusion algorithms. Each pattern rule is used to generate valid patterns for the in-
put workload with our automatic pattern generator. With two levels of abstraction, users
can easily incorporate an additional backend by specifying its patterns and pattern rules
with an intuitive programming interface. By default, Collage provides built-in patterns
and pattern rules for popular backends [CWV+14, cuB, Tena, WZS+14, CMJ+18].
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1 import collage
2

3 # [Method 1] Explicit pattern specification
4 # Pattern language to describe conv2d + add + relu.
5 conv = is_op('conv2d')(wildcard(), wildcard())
6 conv_constr = conv.has_attr({"data_layout": "NCHW"})
7 conv_add = is_op('add')(conv_constr, wildcard())
8 conv_add_relu = is_op('relu')(conv_add)
9

10 # Introduce new backend pattern to Collage.
11 collage.add_backend_pattern(backend='cuDNN',
12 pattern=conv_add_relu)
13

14 # [Method 2] Pattern rule specification
15 class MyPatternRule(collage.BasePatternRule):
16 # Define variables
17 kFusable = 0
18 kElemwise = 1
19 # ...
20 # Checker for the supported operators.
21 @staticmethod
22 def op_rule(op):
23 if op.name == "dense":
24 # Dense operator is always supported.
25 return True
26 elif op.name == "conv2d":
27 # constraints can be verified as well.
28 return op.attr["data_layout"] == "NCHW"
29 # ... rest of the op rule ...
30 return False
31

32 # Checker for fusion patterns.
33 # -- cur_type: type of current fusion group
34 # -- src: seed operator node
35 # -- sink: post-dominator of src
36 @staticmethod
37 def fusion_rule(cur_type, src, sink):
38 # If current fusion group contains
39 # at least one conv/matmul (kFusable)
40 if cur_type == MyPatternRule.kFusable:
41 # Helper functions can be defined.
42 def fchecker(node_pattern):
43 return (node_pattern == MyPatternRule.kElemwise)
44 # Check if every operator between src and sink.
45 # Helper function can be passed as a checker.
46 if collage.check_path(src, sink, fchecker)):
47 return True
48 # ... rest of the fusion rule ...
49 return False
50

51 # Introduce new pattern generation rule to Collage.
52 collage.add_backend_pattern_rule(backend='TVM',
53 pattern_rule=MyPatternRule())

Listing 1: Example of the backend registration interface. To register a new backend, users
can directly enumerate patterns or write a pattern rule that consists of valid operator
checker and fusion rule in Python classes.

Listing 1 presents an example of use-case scenarios. If a backend only supports a few
simple patterns, users may enumerate those patterns and add them directly to the
backend pattern registry (line 3-12). Users can easily check the operators (line 5), their
configurations such as data layouts and kernel sizes (line 6), and the the relationship
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Pattern Generator Walkthrough

Conv Add
Relu

Tanh
Relu Dense

Pattern Rules

class pattern_rule(…):
// MyPatternRule in Listing 1 

1. Choose a seed node and check it with the pattern rule.

2. Expand the scope to the next post-dominator and check nodes
between them by using the pattern rule. Repeat until it fails.

seed

seed sink seed sink

…

3. Repeat 1&2 until visiting every node in G.

Backend Pattern Registry

Generated patterns

If valid, generate a corresponding pattern
e.g., is_op(“conv”)(wildcard(), wildcard())

Figure 2.4: Example illustrating how the backend pattern generator would automatically
generate valid patterns with the pattern rule presented in Listing 1.

between operators (line 7-8). A wildcard operator is a special placeholder that matches
any operator.

To fully support advanced backends [CMJ+18, NGW+21, CWV+14, Tena], users can
bring their pattern rules to incorporate more complicated patterns with Collage’s pattern
generator (line 14-53). To use this feature, users need to provide operator checkers with
their potential constraints (line 20-30) and a fusion rule (line 32-49) in the form of Python
methods. Then, the automatic pattern generator in Collage will search for valid operator
patterns satisfying these rules and add them to the backend pattern registry before
optimizing backend placement.

Figure 2.4 exhibits how our pattern generator searches for legitimate patterns using
given pattern rules on an input computation graph. By visiting every operator in an
input computation graph, the pattern generator investigates how far a pattern can
grow without breaking the pattern rule. For each operator, the pattern generator first
validates whether the operator can be executed on a backend (line 20-30). If valid, it
enlarges the scope one step further and validates whether a set of operators satisfies the
fusion rule (line 32-49). For instance, line 40-47 specify that the assumed backend can
fuse element-wise operators following an operator of type kFusable, which includes
convolution and matrix multiplication. Whenever a group of operators satisfying the
rule is found, the pattern generator produces a corresponding pattern and adds it to
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the backend pattern registry. Then, it enlarges the scope of interests one step further
again to see if a bigger pattern can be found. This approach allows Collage to incorporate
advanced backends, such as TVM, cuDNN, DNNL and TensorRT, without missing any
pattern.

2.4 Backend Placement Optimization
2.4.1 Problem Definition
Collage attacks the backend placement problem to find the best use of available backends
and maximize performance. Consider a computation graph G and a set of backend
patterns B in Collage’s backend pattern registry. G is a Directed Acyclic Graph (DAG)
where each node represents a tensor operator (e.g., convolution, matrix multiplication).
b = (p, d) ∈ B is a pair of an operator pattern p and a backend identifier d, such as
cuDNN, cuBLAS, etc.

With M matched subgraphs gi and backend patterns bi for i ∈ {1, 2, · · ·M}, let P(G) =
{(gi, bi)|bi ∈ B,

⋃M
i=1 gi = G, gi ∩ gj = ∅ for all i, j ∈ {1, 2, · · · ,M}where i ̸= j} be a

backend placement strategy on a computation graph G and Cost(P(G)) be the execution
time of a placement P(G). In this work, we aim to find a backend placement strategy
Popt that minimizes Cost(P(G)). This problem can be formalized as follows:

Popt(G) = argminP(G)Cost(P(G)) (2.1)

2.4.2 Op-level Placement Optimizer
To efficiently evaluate numerous candidates with different placement and prune the
search space, Collage conducts an op-level placement optimization as the first step.
Its goal is to map all operators on the computation graph to the most efficient set of
low-level kernel implementations from available backends fast without considering
cross-kernel optimizations in graph inference libraries. As discussed earlier, the graph-
level placement optimizer (§2.4.3) would make up for the possible performance loss from
this simplification.

With this simplification, low-level kernel executions become independent to each other
in a single device execution. Let s1 and s2 be subgraphs of G where s1∪s2 = G, s1∩s2 = ∅.
Then, the following additive relationship [JPT+19] between the run-time cost of P(s1)
and P(s2) can be used to determine Cost(P(G)):

Cost(P(G)) = Cost(P(s1)) + Cost(P(s2)) + ϵ (2.2)

where ϵ is a context switching cost (e.g, driver overhead), which is nearly constant
empirically. Note that Collage avoids data transfers between different backends on the
same device by only exchanging data pointers to the tensors (e.g., s1 and s2) using the
zero-copy mechanism. With this cost model, it is possible to cheaply approximate the
cost of a graph by partitioning a graph into smaller subgraphs and summing up their
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Figure 2.5: Example of Dynamic Programming (DP) procedures. By visiting over each
frontier node, DP algorithm matches backend patterns and update the optimized place-
ment and its cost. For simplicity, optimized placement update is omitted.

cost. Despite the efficient cost model, excessively large number of possible placement
strategies and a variety of fusion patterns make search non-trivial.

To address this challenge, we propose a Dynamic Programming (DP) method for optimiz-
ing backend placement at the operator level. By using the additive relation (Equation 2.2),
we deduce the following recurrence relation of optimized backend placement Popt(s) and
its cost Copt(s) for any subgraph s ⊂ G. This breaks down a problem of finding Popt(G)
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into smaller problems of finding Popt(s).

Popt(s) = Popt(smin) ∪ P(gmin)

Copt(s) =

{
0 if s = ∅
Copt(smin) +M(P(gmin)) + ϵ otherwise

(2.3)

where smin and gmin are

argmins′∪g′=s,s′∩g′=∅{Copt(s
′) +M(P(g′)) + ϵ} (2.4)

s′ represents a subgraph that is already examined while g′ is a subgraph that is going
to be evaluated with a measurerM(·), which takes a backend placement strategy and
returns its actual run-time cost on the execution environment. We query the measurer
at the granularity of a backend pattern that matches with g′, which is either single or
multiple operators (operator fusion) that will be lowered to a single low-level kernel.
This approach ensures that we always measure a single kernel and add it up to com-
pute the cost of larger subgraphs. To avoid the repetitive and expensive measurement
overhead (i.e., compilation + multiple runs on the actual hardware), we cache the result
to the log for the future usage. With this approach, we can efficiently explore possible
backend placements and evaluate them.

Figure 2.5 illustrates an simplified walkthrough example of our DP method. By traversing
a computation graph G, it solves smaller problems of finding Popt(s) for a subgraph s ⊂ G
and eventually discovers Popt(G). First, it puts a root node in the priority queue as an
initial frontier node; we define a frontier node as a node that has the lowest depth among
unvisited nodes on a path from the root. Then it pops a frontier node with the lowest
depth from the queue and examines if any subgraph rooted at the current frontier node
can match any valid backend pattern. Once a matching is found, we add new frontier
nodes to the priority queue and measure the cost of the subgraph matched with the
backend pattern. If a better placement strategy is found, we update the optimized cost
and backend placement strategy based on Equation (2.3). We repeat these steps until the
priority queue is empty. Given that graph inference libraries, such as TensorRT, can also
provide competitive operator-level implementations (Figure 2.2), we also include them
in the op-level optimization. Algorithm 1 formalizes our DP method.

Time complexity. We derive the time complexity of Algorithm 1. Let N be the number
of nodes (operators) in computation graph G, P be the average number of backend
pattern matches per frontier, F be the maximum possible number of frontiers for a single
match, and S be the maximum number of subgraphs in S (line 19). In Algorithm 1,
the outermost while loop (line 3) takes O(N) times to traverse each frontier node in G.
For each frontier, there can be O(P ) matches (line 6-8). For each match, the algorithm
iterates over its F (line 10) and S (line 19) and takesO(F +S). Therefore, the overall time
complexity of our op-level placement optimizer is O(NP (F + S)). In all workloads that
we have investigated, N < 1000, P < 20, F < 10, S < 200. As a result, our DP method
optimizes placement within a minute by effectively pruning candidates.
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Algorithm 1 Op-level Placement Optimization: DP
Input: Computation graph G and set of backend patterns B
Output: Optimized placement Popt(G)

1: // v0: a root of G, Q: a priority queue sorted by node depth
2: Q = {v0}
3: while Q = ∅ do
4: // vs is a frontier node
5: vs = Q.dequeue()
6: for bi ∈ B do
7: // Find a subgraph g rooted at vs that matches bi
8: if g = get_match(vs, bi) then
9: // F is a set of new frontier nodes after matching

10: for vj ∈ F do
11: if vj has never been added to Q then
12: Q.enqueue(vj)
13:
14: // P(g) = {(g, bi)}
15: //M is a measurer
16: // S is a set of subgraphs, each of which includes all nodes
17: // before vs in post-order and does not include g
18: // ϵ is a constant for context switching cost
19: for sj ∈ S do
20: if Copt(sj ∪ g) > Copt(sj) +M(P(g)) + ϵ then
21: Copt(sj ∪ g) = Copt(sj) +M(P(g)) + ϵ
22: Popt(sj ∪ g) = Popt(sj) ∪ P(g)
23:
24: return Popt(G)

2.4.3 Graph-level Placement Optimizer
As the op-level placement optimization ignores the effect of cross-kernel optimizations
(e.g., scheduling and memory optimizations) in graph inference libraries, Collage in-
troduces the graph-level placement optimizer to fine-tune the potentially sub-optimal
backend placement strategies from the op-level. To do so, we need to identify addi-
tional operators that are not assigned to graph inference libraries but can benefit from
cross-kernel optimizations. Once identified, we offload them to graph inference libraries
to extract further improvement. However, a key challenge we must address in this
approach is deciding which operators to offload to graph inference libraries among a
myriad of candidates..

To address this challenge, we represent each backend placement strategy by using a se-
quence of digits. Each digit implies whether to offload to graph inference libraries. Since
our goal is to offload more operators that can benefit from the cross-kernel optimization,
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Figure 2.6: Example of Evolutionary Search (ES) procedure. After pruning search space,
it iterates over mutation, selection, and crossover until it reaches saturation or time limit.

we exclude operators already mapped with a graph inference library from this encoding.
This straightforward state representation eliminates the complexity from various graph
partitions and their topology.

We adopt an evolutionary search algorithm [FDRG+12] for graph-level placement opti-
mization. Figure 2.6 describes the procedure of our evolutionary search method. For state
representation, 0 indicates keeping the decision of the op-level optimizer and 1 means
overriding the decision and offloading it to a graph inference library (e.g., TensorRT). To
facilitate the search process, we include the op-level optimized placement strategy as
one of the seeds to provide a good starting point. The evolutionary algorithm iterates
over rounds of mutation, selection, and two-point crossover to fine-tune the backend
placement.

2.5 Evaluation
This section aims to answer the following questions:

• Can Collage effectively optimize real-world DL model execution over diverse back-
ends and target devices compared to the existing DL frameworks? (§2.5.2)

• Is optimization time affordable? How much time does each optimization take?
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(§2.5.3)
• Does adding more backends improve the performance of Collage? (§2.5.4)
• How does backend placement optimized by Collage look like? (§2.5.5)

2.5.1 Experimental Setup
Implementation. We built the core of Collage in the form of a portable Python library
and leveraged diverse backends in different hardware architectures: cuDNN [CWV+14],
cuBLAS [cuB], TVM [CMJ+18], TensorRT [Tena], MKL [WZS+14] and DNNL [One].
To orchestrate a runtime execution with multiple backends, Collage uses DLPack to
minimize data movement (e.g., tensor) across different backend runtimes by efficiently
exchanging pointers of data with zero-copy approach [DLP]. Still, even such optimized
communications incur certain run-time overhead (e.g., deserialization overhead of the
engine in graph inference libraries [Tenb]). Thus, Collage takes this run-time overhead
into account when measuring execution time of various placement candidates. If such
run-time overhead is too excessive, Collage will choose another candidate with better
performance. To leverage full capabilities of backends, their supported patterns and
pattern rules are provided based on their official documentation and codebases. Each
backend specification with full operator supports only takes about 100 LoC with Collage
API.

Baselines. We examine TensorFlow (TF) [ABC+16], TF-XLA [XLA], PyTorch [PGM+19a],
TVM [CMJ+18], and TensorRT [Tena] as DL framework baselines. For TVM, we use
AutoTVM to automatically generate the optimized operator schedules for each target.
Note that we also integrate TensorRT and TVM as high-performance graph inference
libraries in this experiment.

Workload. We evaluate five popular real-world DL inference workloads that cover a
wide range of application. BERT [DCLT18] is a transformer-based language model that
achieved the state-of-the-art performance on a spectrum of natural language processing
tasks. DCGAN [RMC15] is an extension of the GAN [GPAM+20] with an unsupervised
representation learning mainly for image generation. NasNet-A [ZVSL18] is one of
the most popular machine-generated DL workloads that show strong performance
on popular image recognition tasks. 3D-ResNet50 [HKS18] is an extension of widely
adopted ResNet50 [HZRS16] for 3D image tasks such as action recognition. ResNeXt50
[XGD+17] introduces a grouped convolution to ResNet50 architecture and improves its
model accuracy and computational complexity for image recognition.

Each workload has its own characteristics in terms of its operators and structure. Most
of recent models for language application such as BERT are basically a series of the
Transformer layers that consist of batch matrix multiplication, layer normalization,
softmax, etc. On the other hand, models for vision application such as ResNeXt50 and
NasNet-A has a series of layers that has operators including convolutions and non-linear
activation functions (e.g., ReLU). In these models, operator configuration (e.g., number
of channels and hidden nodes) varies across different layers as you see in Figure 2.2,
which leads to performance diversity of DL backends.
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(a) NVIDIA Tesla V100

(b) NVIDIA GeForce RTX 2070

(c) Intel Xeon Platinum 8259CL

Figure 2.7: End-to-end performance of state-of-the-arts DL frameworks and Collage in
five real-life workloads on NVIDIA GPUs and Intel CPU. Throughput of each framework
is normalized by the throughput of Collage. Following backends are employed for each
framework according to target hardware and its capabilities: NVIDIA GPU (cuDNN,
cuBLAS, TVM, TensorRT), Intel CPU (MKL, DNNL, TVM).

2.5.2 End-to-end Evaluation
To discuss the effectiveness of our approach, we evaluate the end-to-end performance of
Collage against the baseline frameworks; note that we omit error bars from our figures
because we observe marginal standard deviation (less than 3%) for all results. Note
that the performance of TF-XLA is missing for some pairs of workload and targets (e.g.,
3D-ResNet50 and NVIDIA GPU) because it has issues with some 3D convolutions for
GPU targets and certain image resizing operators.

Figure 2.7a and Figure 2.7b presents the end-to-end normalized throughput of Collage
and existing DL frameworks on two different NVIDIA GPU architectures, Tesla V100
and GeForce RTX2070. Normalized throughput is the throughput of each framework
normalized by the throughput of Collage. Overall, Collage consistently produces the most
efficient executable across different workloads and hardware architectures: In terms of
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Figure 2.8: End-to-end performance with different batch sizes in ResNeXt50 on NVIDIA
V100. Normalized throughput is the throughput normalized by the throughput of
Collage.

geometric mean, Collage outperforms the state-of-the-arts by 1.43× on V100 and 1.26×
on RTX 2070, respectively. This improvement comes from Collage’s backend placement
optimization that effectively leverages the unique strength of various backends.

Figure 2.7c exhibits the experimental results on the Intel CPU. Likewise, Collage show-
cases the most stable performance across different workloads on this Xeon architecture
while beating the state-of-the-arts by 1.40× in the geometric mean. However, on BERT
and 3D-ResNet50, TF-XLA and TF are faster possibly due to their optimizations cus-
tomized for Intel CPU such as data layout optimization with non-uniform memory
access, which is orthogonal to backend placement.

As the representative case, different batch sizes are also examined with ResNeXt50
on V100. Figure 2.8 indicates that Collage consistently outperforms the state-of-the-art
frameworks across different batch sizes as well.

Since backends and their performance vary depending on the underlying execution
environment, backend placement should be carefully customized by considering their
performance landscape. Our experimental results indicate that Collage can stably offer
a faster DL execution than existing frameworks with the rigid hand-written heuristics
across different hardware architectures.

2.5.3 Optimization Time
To evaluate the overhead from our automated optimizer, this subsection studies the
overall optimization cost of the two-level approach. For this section, we use NVIDIA
V100 as our target.

Figure 2.9a shows the breakdown of our operator-level optimization time. If the optimiza-
tion is launched from scratch, the entire optimization process takes up to two minutes.
This optimization time consists of two parts: measurement of the operator cost and
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(a) The breakdown of op-level placement opti-
mization time.

(b) Performance improvement of graph-level
placement optimization over time.

Figure 2.9: (Left) On average, profiling overhead for operator cost measurements takes
up 68% of the entire optimization time. Note that profiling is only necessary for unseen
operators. Once the cost of a new operator is measured, its information will be saved
in the logging database in Collage to avoid the repetitive profiling. If profiling log is
available, op-level optimizer only takes less than a minute. (Right) The y-axis presents
the speedup relative to the op-level placement optimization.

overhead from the DP algorithm. Due to the high evaluation cost, the optimization time
is dominated by the profiling overhead. However, as discussed in §2.4.2, the repetitive
profiling for operator cost can be avoided by saving the cost of each operator. When the
cost of every operator is profiled in advance, our op-level placement optimization takes
less than a minute on all of the five networks.

Figure 2.10 exhibits how our graph-level placement optimization gradually improves
from the op-level placement optimization over time. The evolutionary searcher could
boost the performance by leveraging more cross-kernel optimizations as it goes through
several generations of mutations and crossovers. In BERT and DCGAN, the effect of
cross-kernel optimization is quite notable and thus, our graph-level placement optimizer
accelerate its execution by 1.09− 1.20× from the op-level optimization. For the rest of
the workloads, graph-level placement optimization cannot improve any further since
the placement from the op-level optimization is already hard to beat. Overall, most of
workloads are observed to reach the saturation within thirty minutes.

Due to the lack of the efficient cost model that can factor in the cross-kernel optimiza-
tion effect, graph-level placement optimization has expensive evaluation overhead that
leads to the longer optimization time compared to the op-level. Given that our op-
level placement optimizer can identify high-performance backend placement for the
most workloads within just a minute, we recommend the graph-level placement op-
timization as the optional tool for the users interested in squeezing the last drop of
performance.
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Figure 2.10: Performance improvement of graph-level placement optimization over time.
The y-axis presents the speedup relative to the op-level placement optimization.

Figure 2.11: End-to-end performance of Collage with different number of backends
on NVIDIA Tesla V100. Each throughput is normalized by the throughput of Collage
(TVM,cuB,cuD,TRT). TVM, cuB, cuD, and TRT represents TVM, cuBLAS, cuDNN, and
TensorRT.

2.5.4 Backend Ablation Study
To assess the impact of integrating backends, we conduct an ablation study by adding
backends one-by-one to Collage.

Figure 2.11 shows the experimental result on V100. Overall, Collage monotonically
improves performance as we integrate more backends. This reinforces the importance
of smart mixed-use of multiple backends and also corroborates the robustness of our
backend placement optimization. It is worth noting that the performance improvement
from a new backend varies depending on a network. In the case of BERT and DCGAN,
we see relatively consistent enhancement from each backend. This is because Collage
identifies a way to utilize every backend for the different part of the workload depending
on its own unique strength. In case of NasNet-A and ResNeXt50, TVM offers the majority
of the performance improvement while cuDNN significantly benefits Collage for the 3D-
ResNet50.

These observations show that Collage can stably improve performance by having more
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Figure 2.12: Representative backend placements discovered by Collage on V100 (Fig-
ure 2.7a). Note that Collage leverages various backends given their unique strength to
enhance perigrmance.

backends. By leveraging the unique strength of available backends, our automated
optimizer delivers the performance with a set of backends that surpasses or guarantees
the performance with its subset.

2.5.5 Case Study of Backend Operator Placement
To understand the source of performance improvement from Collage, we examine two rep-
resentative workloads in detail. Figure 2.12 illustrates Collage’s final backend placement
for ResNeXt50 and BERT on V100.

Even within a single network, we observe that the same type of operator is mapped
to different backends due to the performance diversity depending on its configuration,
such as data shape and kernel size, and the operator fusion with its neighbor nodes. For
example, batch matrix multiplication operators in BERT are assigned to two different
backends (cuBLAS and TVM) while convolution operators in ResNeXt50 are assigned to
three different backends (cuDNN, TVM, and TensorRT). Interestingly, the graph inference
library (e.g., TensorRT) can be a competitive choice even for a single operator as observed
with some convolution operators in ResNeXt50.

This figure also demonstrates that Collage is capable of leveraging various fusion patterns
from each backend. For instance, we discover a variety of operator fusion patterns
selected by Collage such as Conv+ReLU, Conv+Add+ReLU, and Add+ReLU. Although
it is omitted from this figure for simplicity, we observe the fusion pattern involved with
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more than ten operators. Again, as in a single operator, Collage chooses the different
backends for the identical fusion pattern of Conv+Relu in ResNeXt50 because the best
backend choice varies depending on specific operator configurations.

This study confirms that Collage can accelerate DL workload execution by leveraging
diverse operator patterns from multiple backends given their performance characteris-
tics.

2.6 Related Work
Diversified Backend Ecosystem. To extract the best performance from the underlying
hardware, there have been substantial efforts to design high-performance DL backends.
Hardware vendors have released various specialized optimized libraries and infer-
ence engines. NVIDIA has actively developed cuDNN [CWV+14] to deliver optimized
implementations of DL operators, cuBLAS [cuB] to offer efficient BLAS kernels, and
TensorRT [Tena] to create fast execution plans for DL workloads. Particularly, TensorRT
considers various graph-wide cross-kernel optimizations for scheduling, memory foot-
print and etc. Meanwhile, Intel has released oneDNN [One] for optimized DL operator
kernels and OpenVINO [Opeb] as an inference engine for Intel CPUs. AMD also has
driven MIOpen [KFT+19], a GPU library for DL primitives.

Today’s DL frameworks exploit tensor compilers [RKBA+13, AMA+19, CMJ+18, BRR+19,
FCGM21, ZJS+20, LAB+21, KKC+17, PSS+21, MYS20, CGG+20, RSG19, BZR+22, JKC+21,
TBT+16, VZT+18, JDL21, CCC+19, LCC+21, AKV+14, ZLW+20] as their backends to
generate operator kernels for various target devices. While some tensor compilers rely
on manual scheduling [RKBA+13, BRR+19, ZLW+20], automatic approaches [CMJ+18,
CZY+18, JDL21, AMA+19, ZJS+20, PSS+21, RKBA+13, KKC+17, CGG+20, MYS20, JDL21,
RSG19, BZR+22, AKV+14, VZT+18] has been actively studied to optimize tensor oper-
ator kernels for a given DL workload and device. For instance, Tensor Comprehen-
sion [VZT+18] uses black-box auto-tuning to optimize CUDA kernels along with polyhe-
dral optimizations. To speed up the optimization time, cost model has been also widely
examined together with automated approaches [CZY+18, KPB19, ZJS+20, ZLW+20]. By
providing an expressive registration interface and automatic placement optimizer, Collage
enables seamless integration of a wide variety of DL backends without any expertise in
complex performance dynamics of varied backends.

DL Frameworks. To provide easy and powerful platform of running a variety of DL
workloads, different frameworks have been continuously released and improved. Google
maintains TensorFlow [ABC+16] and XLA [XLA] to optimize the execution on various
hardware devices including TPUs [JYP+17]. Facebook develops Pytorch [PGM+19a]
that supports dynamic eager execution for usability while preserving compelling DL
execution performance. For NVIDIA GPUs, TensorRT [Tena] is developed as a runtime
framework that optimizes DL model execution. As an open-source C++ library and
compiler suite for CPUs, Intel has launched nGraph [CBB+18]. Also, TVM [CMJ+18]
offers the efficient compilation pipeline that is designed to support diverse hardware
devices and DL workloads. On the other hand, Glow [RFA+18] is proposed to efficiently
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generate the optimized code for multiple targets of heterogeneous hardware. While such
existing DL frameworks employ handwritten rules to integrate new backend, Collage
reduces the manual effort with the backend pattern abstraction and extracts further
performance gain with the automated backend placement.

Operator Fusion. Fusion is one of the most efficient techniques to optimize DL work-
loads by combining multiple high-level operators on the computation graph into a
single kernel. To maximize the benefit, advanced fusion techniques [MXY+20, FCGM21,
NGW+21, ZZL+20, XLA, ELB+17, BRH+18, ATB+15, CMJ+18, JDL21, LZPL22, DSC+16,
AXW+19, SCSZ19] introduce their own unique fusion rules to apply this optimization
beyond a few special cases. For instance, by iterating over every operator, TVM seeks for
an opportunity to merge each operator with its neighbors by using the union-find algo-
rithm [CMJ+18]. To efficiently explore the fusion opportunities, DNNFusion [NGW+21]
employs a detailed classification of operation type and makes the fusion decisions. To
identify the best fusion plan, FusionStitching [ZZL+20] conducts Just-In-Time tuning.
NVIDIA has actively improved the fusion engine in cuDNN to merge certain patterns
of operators at runtime [CWV+14]. Internally, TensorRT [Tena] also actively apply the
fusion to optimize the memory access and scheduling overhead. By offering the highly
flexible user interface for the pattern rules, Collage can support such complicated fusion
patterns from a variety of such backends. With fusion patterns and their rules, Collage
naturally considers diverse fusion possibilities in multiple backends.

Graph Rewriting. To accelerate a DL execution, DL frameworks can rewrite an input
computation graph by considering a number of graph substitution rules. Most DL
frameworks such as TensorFlow [ABC+16], TensorRT [Tena], and TVM [CMJ+18] rely on
the greedy approach by opportunistically applying a few important hand-coded rules.
In contrast, MetaFlow [JTW+19] suggests an automated graph rewriting approach that
optimizes an input graph using backtracking search. TASO [JPT+19] extends MetaFlow’s
backtracking search and further automates graph substitution generation for every new
input graph. To further improve graph substitution search efficiency, sampling-based
approach [FSWC20] has also been explored. To overcome the inefficiency in making
sequential rewriting decisions, [YPW+21] proposes e-graph and equality saturation
method. As these graph rewriting techniques are orthogonal to Collage, Collage can
improve the performance of a rewritten computation graph by optimizing the backend
placement.

Device Placement. There are two major categories of work that investigates how to
place DL operators across devices. One category is to learn a placement policy [MPL+17,
MGP+18, GCL18] that places each operator onto one of given set of devices and gener-
alize it to new workloads via transfer learning [ZRA+19, AVG+18, PGN+20]. Another
category is to algorithmically find good graph partitions of DL workloads and their sched-
ules [JZA19a, JLQA18, NHP+19, TPD+20, ZLZ+22]; for example, FlexFlow [JZA19a] uses
stochastic search method with delta simulation to partition a single operator into multi-
ple computation and place them on devices. Compared to device placement, backend
placement itself has its unique challenges of modeling complicated and fast-evolving
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operator fusion patterns and constraints from diverse backends in addition to different
backend characteristics (e.g., cross-kernel optimization of graph inference library). To
tackle this challenge, Collage provides an expressive backend pattern abstraction and a
two-level optimizer, each level of which considers different characteristics of backends.
Our work is complementary to existing device placement works.

2.7 Conclusion
This work investigates an efficient DL backend integration system, called Collage. For the
seamless integration of various backends, Collage offers an user interface that allows the
flexible specification of diverse backend capabilities. To find the best uses of available
backends, Collage introduces a two-level optimization method and automatically cus-
tomizes the best possible backend placement for the underlying execution environment.
The experimental results demonstrate that Collage outperforms the best manual approach
in the state-of-the-arts DL framework by up to 1.43× on average over real-life DL models
and various hardware architectures. More importantly, unlike existing approaches, it
offers stable performance across diverse hardware architectures and models by selecting
the most beneficial backends for each part of workload.
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Chapter 3

GraphPipe: Improving the
Performance and Scalability of
DNN Training with Graph
Pipeline Parallelism

Chapter based on the work in submission to USENIX ATC 24.

Deep neural networks (DNNs) continue to grow rapidly in size, making them
infeasible to train on a single device (e.g. GPU). Pipeline parallelism is commonly
used in existing DNN systems to support large-scale DNN training by partitioning
a DNN into multiple stages, which concurrently perform DNN computation for
different micro-batches of training samples in a pipeline fashion. However, existing
pipeline-parallel approaches only consider sequential pipeline stages and thus ignore
the topology of a DNN, resulting in missed model-parallel opportunities.

We present graph pipeline parallelism (GPP), a new pipeline-parallel scheme that parti-
tions a DNN into pipeline stages whose dependencies are identified by a directed
acyclic graph. GPP generalizes existing sequential pipeline parallelism and preserves
the inherent topology of a DNN to enable concurrent execution of computationally-
independent operators, resulting in reduced memory requirement and improved
GPU performance. In addition, we develop GRAPHPIPE, a distributed system that
exploits GPPstrategies to enable performant and scalable DNN training. GRAPH-
PIPE partitions a DNN into a graph of stages, optimizes micro-batch schedules for
these stages, and parallelizes DNN training using the discovered GPPstrategies.
Evaluation on a variety of DNNs shows that GRAPHPIPE outperforms existing
pipeline-parallel systems such as PipeDream and Piper by up to 1.6×. Despite
the fact that GPPinvolves a much larger search space of parallelization strategies,
GRAPHPIPE reduces the search time by 9-21× compared to PipeDream and Piper.
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3.1 Introduction
Deep neural networks (DNNs) continue to grow more rapidly in size against hardware
developments, making them computationally costly to train [opea, PGL+21]. A recent
language model GPT-4 [Ope23] supposedly uses a much larger number of parameters
[Hea] compared to the previous model GPT-3 with 175 billion parameters [BMR+20].
As a result, training modern DNNs requires distributing the model architecture across
multiple devices.
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Figure 3.1: Pipeline parallelism
for DNN training with basic terms
used in this paper.

To address this challenge, existing DNN systems ap-
ply model parallelism [DCM+12, SCP+18, SPP+19,
LLX+20, NSC+21, ZLZ+22] where a DNN is parti-
tioned into smaller pieces each of which fits into the
memory of a single device.1 Pipeline parallelism
[HCB+19, FRM+21, NPS+21, NHP+19, TNP21] is a
particular form of model parallelism that improves
DNN training throughput and device utilization.
As shown in Figure 3.1, a key idea of pipeline par-
allelism is to split both a DNN and a mini-batch of
samples into smaller pieces. First, the DNN is par-
titioned into multiple disjoint stages, each of which
is a sub-model and links to other stages to form a
pipeline. Second, a mini-batch of samples is further
divided into multiple micro-batches, which are exe-
cuted on different stages in a pipeline fashion. This
approach reduces device idle time in training iterations, during each of which a single
data mini-batch is processed, and therefore improves throughput.

Shortcomings of existing sequential pipeline parallelism. Existing schemes of ap-
plying pipeline parallelism form a sequential pipeline from partitioned stages, which we
refer to as sequential pipeline parallelism (SPP). SPP is simple to construct and operate but
has three key limitations.

First, opportunities to exploit the inherent topology of a DNN are left unseized. Many
DNN applications such as chatbot [Ope23], recommendation [NMS+19], and health-
care [KTW16, TTP+20, SUV20] interact with heterogeneous data types (e.g., text, images,
different tables in tabular data). DNNs employed therein can be designed to feature
multiple branches to jointly process the different types of data. These branches are
often computationally-independent and thus can be processed concurrently. However,
existing DNN systems with SPP first linearize the computation graph of a DNN in order

1More specifically, tensor parallelism refers to a form of model parallelism in which an operator (e.g.,
matrix multiplication) is split into smaller sub-operators and spread across devices. While this form of
intra-operator model parallelism can also reduce per-device memory footprints, we focus only on inter-
operator model parallelism in which more coarse-grained splits occur, i.e., a group of operators is assigned
to each device.
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to construct the stages of a sequential pipeline and process these stages sequentially. This
manner of applying pipeline parallelism, despite its simplicity, falls short in harnessing
the opportunity to leverage such branch-level parallelism in combination with pipeline
parallelism.

Second, pipeline depth (i.e., number of sequential stages in SPP) is unduly increased
and so is memory consumption as a consequence. In pipeline-parallel DNN training,
a micro-batch traverses the pipeline’s stages to perform the computations dictated by
the DNN (forward pass), and traverses in reverse for all stages to update their assigned
model weights (backward pass), as shown in Figure 3.1. Each stage needs to store
the intermediate activations of a forward pass until its corresponding backward pass
is completed, creating the need to reserve GPU memory for activations in addition to
weights. For a given stage, a micro-batch is in-flight until its backward pass finishes. As
micro-batches are continuously injected into the pipeline, there is a warm-up of in-flight
micro-batches for each stage. The earlier the stage in the pipeline, the longer the warm-
up. The elongated pipeline formed by SPP increases pipeline depth, particularly for
multi-branch DNNs. This in turn increases memory requirement especially for early
stages in the pipeline. The tight memory constraint in training large DNNs is a primary
reason to apply pipeline parallelism, thus it is critical to curb the increased memory
consumption.

Third, today’s devices for DNN training (e.g., GPUs) have high parallel-computing capa-
bilities, requiring a large micro-batch of training samples to achieve peak performance.
However, due to the increased memory consumption, applying SPP impedes doing so.
As a consequence, devices perform computations at lower operational intensity than the
desired capacity, resulting in suboptimal training performance.

Our approach. To address the above challenges, we introduce graph pipeline parallelism
(GPP), a new scheme of applying pipeline parallelism that enables performant and
scalable DNN training. Figure 3.2 highlights the key difference between GPPand SPP.
Instead of enforcing a strictly sequential execution order of pipeline stages, GPPallows
partitioning a DNN into stages whose dependencies are identified by a directed acyclic
graph. GPPincludes SPP as a special case and can preserve the inherent topology of
the DNN during stage partitioning. As a result, GPPenables concurrent execution of
computationally-independent components, resulting in reduced memory requirement
and improved GPU performance compared to SPP.

GPPinvolves a significantly larger and more complicated search space of parallelization
strategies compared to the SPP strategies considered by existing DNN systems. Dis-
covering GPPstrategies with superior performance over existing SPP baselines requires
weighing subtle trade-offs between pipeline depth, memory consumption, and micro-
batch schedule. To unleash the power of GPP, we develop GRAPHPIPE, a system that
automatically discovers efficient GPPstrategies to enable performant and scalable DNN
training. GRAPHPIPE includes three key components. First, a pipeline stage partitioner
automatically determines how to partition the operators of a DNN into a graph of stages,
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while balancing the computational load among these stages and minimizing inter-stage
communication. Second, a static micro-batch scheduler schedules the forward and back-
ward passes of different micro-batches within a mini-batch to minimize the peak GPU
memory requirement of a GPPstrategy. The stage partitioner and micro-batch scheduler
jointly partition a DNN into stages and determine the micro-batch schedules for each
stage. Finally, a distributed runtime uses the discovered GPPstrategy to enable performant
and scalable DNN training.

Through experiments on three multi-branch DNNs (e.g., Multi-Modal Transformer [VSP+17,
WCQ+23, RKH+21, Ope23, RPG+21, JYX+21], DLRM [NMS+19], and CANDLE-Uno
[201]), we show that GRAPHPIPE can achieve up to 1.61× training throughput improve-
ments over existing pipeline-parallel systems such as PipeDream and Piper. Despite the
fact that GPPinvolves a much larger search space of parallelization strategies, GRAPH-
PIPE reduces the search time by 9-21× compared to PipeDream and Piper.

To summarize, we make the following contributions:

• We introduce graph pipeline parallelism, a new pipeline-parallel scheme that
enables concurrent execution of stages, reduces memory requirement, and improves
GPU performance compared to existing SPP strategies.

• We design algorithms to partition a DNN into a graph of stages and schedule
micro-batches for these stages, which jointly discover efficient GPPstrategies.

• We develop GRAPHPIPE, a distributed runtime that enables fast and scalable DNN
training leveraging GPP.

• We show that GRAPHPIPE outperforms existing pipeline-parallel systems by up to
1.6× on a variety of DNNs.

3.2 Graph Pipeline Parallelism
Figure 3.2 compares sequential pipeline parallelism (SPP) employed by existing DNN
systems [TNP21, NPS+21] and graph pipeline parallelism (GPP). Given a DNN and a
set of devices, SPP and GPPproduce strategies with different partitioning of stages and
pipeline schedules. We next describe the key differences between SPP and GPP.

Concurrent execution of stages. SPP linearizes all operators of a DNN while preserving
data dependencies between these operators, and then partitions the linearzied DNN into
a sequence of pipeline stages. As a result, each stage has at most one predecessor and
one successor. The execution order of these stages is thus strictly sequential.

In contrast, GPPpreserves the topology of a DNN when partitioning it into pipeline
stages. To avoid circular dependencies between pipeline stages, the relationships between
these stages form a directed acyclic graph. The execution order of the stages can be thus
more general compared to SPP. This topology-aware partitioning and pipeline stage
execution provides GPPa clear advantage: (potentially) concurrent execution of stages
that are computationally-independent.

For the GPPstrategy in Figure 3.2, three stages S1, S2, and S3 are computationally-
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Figure 3.2: A high-level comparison between existing (SPP) and our (GPP) approaches.
SPP (top) produces sequential pipeline stages that miss the opportunity of parallelizing
the branches in the DNN. In contrast, GPP(bottom) generates graphical pipeline stages
that enable parallel execution of the branches. This leads to lower training iteration time
(i.e., higher training throughput) and smaller memory footprint in pipeline-parallel DNN
training.

independent. Accordingly, the forward and backward passes of the three stages can
be executed concurrently. However, in the SPP strategy, two stages S2 and S3 are
partitioned such that they have a sequential data dependency (due to the dependency
between operator o6 in S2 and operator o7 in S3) since the SPP partitioner does not
consider the topology of the DNN and fails to exploit it. Moreover, while two stages
S1 and S2 in the SPP strategy should be computationally-independent according to the
original DNN, the SPP scheduler executes the forward and backward passes of these
two stages sequentially. This is because new data dependencies are imposed between
them when linearizing the operators of a DNN to construct a sequential pipeline.

This distinction directly leads to a performance gap. Specifically, both SPP and GPPinvolve
a warm-up phase during which micro-batches are injected into the pipeline until all stages
can perform work concurrently. However, as shown in Figure 3.2, the warm-up phase of
GPP(i.e., 2) is shorter than that of SPP (i.e., 4). This performance improvement also ap-
plies to the cool-down phase during which in-flight micro-batches are resolved. As a result,
GPPachieves a shorter per-iteration training time (hence, a higher throughput) than SPP.
Note that the topology-aware stage partitioning and scheduling of GPPaddress the first
shortcoming of SPP (§3.1).

Reduced memory requirement. There is a close relationship between the memory
requirement of a pipeline-parallel strategy and its pipeline depth, which is defined as the
diameter of its stage graph. A micro-batch moves along the pipeline in the topological
order during the forward pass and in the reserve order during the backward pass. A
micro-batch is in-flight for a stage S if S has finished the forward pass of the micro-batch
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but hasn’t performed its backward computation. Due to the dependencies between
the forward and backward computation of a micro-batch, each stage must store the
intermediate activations of all in-flight micro-batches, which creates a non-trivial memory
requirement. As pipeline depth increases, activation memory pressure increases and
falls disproportionately upon early stages of the pipeline.

In Figure 3.2, GPPand SPP have a pipeline depth of 2 and 4, respectively. As a result, the
first stage with the highest activation memory pressure needs to store the forward pass
results for 2 micro-batches in GPPand those for 4 micro-batches in SPP. All else being
equal (i.e., an identical model partition by both), GPPhas a lower total memory footprint
than SPP. Note that memory saving grows as model size grows since a bigger model
requires deeper pipeline depth. The activation memory saving by GPPaddresses the
second shortcoming of SPP in §3.1.

Improved GPU utilization. Devices employed in DNN training (e.g., GPUs) are designed
to parallelize DNN computation of a micro-batch efficiently. Thus, larger micro-batches
(i.e., more training samples within a micro-batch) can improve the operational intensity,
thus GPU utilization of DNN operators. Note that larger micro-batches lead to reduced
numbers of micro-batches, which in turn increases the warm-up and cool-down time
of pipeline that GPPcan significantly reduce.2 For simplicity of presentation, Figure 3.2
assumes that the same micro-batch size is used by GPPand SPP. However, a lower
device memory requirement of GPPover SPP allows integrating more training samples
in a micro-batch, which increases the operational intensity and overall GPU utilization,
and therefore further reduces the per-iteration training time. We evaluate this aspect in
more detail in §3.7.

Fine-grained micro-batch size adjustments across stages. We design GPPsuch that it
offers the practitioner the option to use different micro-batch sizes across stages. Granted,
this design complicates scheduling of forward and backward passes since different stages
process varied micro-batch sizes and as a consequence the data dependencies within
and across stages become convoluted. However, this added complexity is beneficial
in several cases (we discuss these cases in §3.6 and provide an example in Figure 3.5).
The execution time of an operator depends on a variety of factors such as the GPU type,
kernel implementation, and micro-batch size. The practitioner can opportunistically uses
different micro-batch sizes across stages to balance their execution times in a fine-grained
manner at the cost of the added complexity.

3.3 Problem Formulation
In this section, we formulate the problem of devising a GPPstrategy for distributed DNN
training. As input, we are given (a) a computation graph GC = (VC , EC) that represents
the neural architecture of a DNN model, (b) a mini-batch size B, and (c) a device topology

2Note that the accuracy of a DNN is not affected by varied micro-batch sizes since we still collect
gradients from a fixed number of samples (identified by the user-provided mini-batch), and varying
micro-batch size only affects the number of micro-batches within a mini-batch.
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graph D = (VD, ED) where each node v ∈ VD represents a device with memory budget
Mv and each edge e ∈ ED represents a communication link with bandwidth Ce between
the two adjacent devices.3

As output, we generate a pipeline stage graph GS = (VS, ES) that optimizes for the per-
formance metric of interest. In this work, we limit the scope to strategies that combine
pipeline-parallel and data-parallel techniques, and aim to minimize the Time-Per-Sample
(TPS) of the bottleneck pipeline stage since the pipeline throughput performance hinges
upon the straggler stage.4 The stage graph GS = (VS, ES) is a directed acyclic graph
(DAG), where each node Si ∈ VS specifies a pipeline stage and each directed edge
(Si, Sj) ∈ ES indicates that stage Si must precede Sj for forward passes and that Sj must
precede Si for backward passes.

The goal is to solve the min-max optimization problem:

min max
Si∈VS

TPS(Si;GC , B,D) (3.1)

s.t. max
Si∈VS

DeviceMemoryUsage(Si;GC , B,D) ≤M. (3.2)

Formally, GPPdevises a strategy GS as follows. We define Si ∈ VS in further detail as a
four-element tuple: Si = ⟨Gi, bi,Di,Πi⟩:

1. Gi represents a subgraph of GC ,
2. bi is the micro-batch size of Si (i.e., there are B/bi micro-batches for each mini-batch),
3. Di is a set of devices allocated to process the forward and backward passes of Si

(we apply data parallelism within Si if |Di| > 1), and
4. Πi is a micro-batch schedule that specifies the order in which the B/bi forward and

B/bi backward passes are processed. We use fwi
j (or bwi

j) to denote the forward (or
backward) pass of the j-th micro-batch for Si.

GS is a valid GPPstrategy if and only if the memory constraint (Equation 3.2) and all
following conditions are met:

C1. Gi is a convex subgraph of GC5, and G1, . . . ,G|Vs| form a partition of GC .
C2. If there exists (u, v) ∈ EC such that u ∈ Gi and v ∈ Gj , then (Si, Sj) ∈ ES .
C3. D1, . . . ,D|Vs| form a partition of D.
C4. For each micro-batch schedule Πi, fwi

k precedes fwi
k+1, bwi

k precedes bwi
k+1, and fwi

k

precedes bwi
k.

C5. For each (Si, Sj) ∈ ES , the following must hold.
If βij := bj/bi ≥ 1, fwi

βij ·k+1, . . . , fw
i
βij ·k+βij

∈ Πi precede fwj
k+1 ∈ Πj , and bwj

k+1 ∈ Πj

3In this work, we consider the homogeneous case of equal device memory Mv = M for all v ∈ VD and
equal link bandwidth Ce = C for all e ∈ ED.

4While our optimization seeks to generate a strategy that minimizes the TPS metric, we can evaluate
end-to-end performance with respect to different metrics, such as training iteration time, using the strategy
generated (see §3.7).

5For a graph G, G′ is a convex subgraph of G if for any pair of nodes u and v in G′, any path from u to v
is also in G′.
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precedes bwi
βij ·k+1, . . . , bw

i
βij ·k+βij

∈ Πi. Otherwise (βji > 1), fwi
k+1 ∈ Πi precedes

fwj
βji·k+1, . . . , fw

j
βji·k+βji

∈ Πj , and bwj
βji·k+1, . . . , bw

j
βji·k+βji

∈ Πj precede bwi
k+1 ∈ Πi.

In words, C1 mandates that all operators be covered by stages that do not overlap with
each other, and C2 mandates that a strict sequential execution order between two stages
be established if according to the computation graph there exists a data dependency
between two operators each in either of the stages. C3 ensures that at least one device
is allocated to every stage. C4 dictates the orderings of forward and backward passes
within a stage and C5 dictates such orderings across different stages for correctness of
pipeline parallelism.

3.4 System Overview
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Scheduler (Sec 6)
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Figure 3.3: Overview of GRAPHPIPE

Figure 3.3 illustrates an overview of our distributed system GRAPHPIPE that accelerates
DNN training at scale using GPP. Taking as input (a) the computation graph of a
DNN, (b) mini-batch size, and (c) the topology of assigned GPUs, GRAPHPIPE produces
an optimized GPPstrategy for parallel DNN training. GRAPHPIPE includes three key
components: a pipeline stage partitioner, a static micro-batch scheduler, and a distributed
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runtime. The first two components jointly discover a high-performance GPPstrategy for
a given DNN model, mini-batch size, and assigned devices, which will be executed by
the distributed runtime.

Pipeline stage partitioner. The partitioner performs three tasks. First, it partitions
a DNN, aimed at achieving an effective distribution of workloads across stages. It
examines the amount of computation and communication needs associated with the
operators in each stage. Importantly, it leverages the inherent topology of the DNN at hand
in order to exploit concurrent execution opportunities. To this end, it performs a sequence
of series-parallel decompositions of the given DNN. Second, it adjusts the micro-batch
size for each stage. This fine-grained adjustment aims to exploit heterogeneous compute
efficiencies of different types of operators. Finally, it determines how many devices to
assign to each stage to achieve an effective allocation of resources. Note that all three
functions are jointly performed, as no one function is independent of the others. We
provide further details in §3.5.

Static micro-batch scheduler. The scheduler performs two tasks. First, it optimizes
micro-batch schedules for forward and backward passes while ensuring the integrity
of distributed DNN training. This involves examining both intra- and inter-stage data
dependencies between the passes (see C4–C5 in §3.3). Next, it checks if the memory
usage that results from the schedule is within the given device memory constraint (see
Equation 3.2). Memory usage is closely related to the numbers of in-flight micro-batches
of a stage, which can be computed based on the schedule of the forward and backward
passes of the stage. §3.6 provides further details.

Distributed runtime framework. We develop a distributed DNN runtime system that
executes GPPtraining strategies generated by the optimizer of GRAPHPIPE. Using
the distributed runtime as the testbed, we compare the performance of the generated
GPPstrategies against existing SPP strategies for various DNNs. We provide further
details in §3.7.

3.5 Pipeline Stage Partitioner
The pipeline stage partitioner of GRAPHPIPE aims to minimize Time-Per-Sample (TPS)
of the bottleneck pipeline stage as in §3.3. It takes as input a DNN computation graph
GC , a mini-batch size B, and a device topology graph GD, and generates an optimized
stage graph GS by searching over different model partitions, device assignments, and
micro-batch sizes simultaneously. A key challenge we must address is the large and
complex search space of potential GPPstrategies. To reduce the complexity of the search
task, we employ a binary search method combined with series-parallel decomposition
and dynamic programming. We next describes these three components.

Binary search. Given the large search space of potential solutions, GRAPHPIPE does not
attempt to directly find an optimal solution. Instead, GRAPHPIPE employs binary search
to iteratively narrow down the target performance range and examines whether there
exist valid solutions within the range. By iteratively reducing the range, GRAPHPIPE
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Algorithm 2 Pipeline stage partitioner.
Input: Computation graph GC , number of devices |VD|
Output: Optimized stage graph GS
1: // MAXTPS: safe upper-bound for TPS of bottleneck stage.
2: tl = 0, tr = MAXTPS, GS = ∅
3: while tr − tl > ϵ do
4: tm = (tl + tr)/2
5: GbestS = SEARCHSTAGEGRAPH(GC , |VD|, tm, B)
6: if GbestS == ∅ then
7: tl = tm
8: else
9: tr = tm

10: GS = GbestS

11: return GS
12:
13: function SEARCHSTAGEGRAPH(GC , |VD|, tm, B)
14: // C is a set of candidate schedule configurations (c)
15: for c ∈ C do
16: GnewS = DP(GC , c0, c, |VD|, tm) // c0: dummy schedule configuration
17: // PICKBETTER(·) picks one with less memory
18: GbestS = PICKBETTER(GbestS ,GnewS )
19: return GbestS

20:
21: function DP(G, cf , cb, d, tmax)
22: if this DP state has been visited then
23: return corresponding GbestS to this DP state
24: GbestS = ∅ // Consider a given DP state as a SINGLE stage
25: if ESTIMATETPS(G, cf , cb, d)≤ tmax then
26: // Optimize schedule via Algorithm 3
27: Πopt = SCHEDULESTAGE(G, cf , cb, d)
28: GbestS = STAGEGRAPH(G,Πopt, d)
29: // Decompose a given DP state into two stages
30: if G can be decomposed in series then
31: for (G1,G2) ∈ SERIESDECOMPOSE(G) do
32: for d2 ← 1 to d− 1 do
33: d1 = d− d2
34: for cm ∈ C do
35: GnewS2

= DP(G2, cm, cb, d2, tmax)
36: Update im based on GnewS2

37: GnewS1
=DP(G1, cf , cm, d1, tmax)

38: else if G can be decomposed in parallel then
39: for (G1,G2) ∈ PARALLELDECOMPOSE(G) do
40: for d1 ← 1 to d− 1 do
41: d2 = d− d1
42: GnewS1

= DP(G1, cf , cb, d1, tmax)
43: GnewS2

= DP(G2, cf , cb, d2, tmax)

44: GbestS = PICKBETTER(GbestS ,GnewS1
∪ GnewS2

)
45: return GbestS
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discovers solutions arbitrarily close to an optimal one, and thus there is little difference
in performance for practical purposes. Lines 2–11 of Algorithm 2 shows GRAPHPIPE’s
binary search process.

Series-parallel decomposition. Since most DNNs structurally reflect series-parallel
graphs [TNS82], GRAPHPIPE applies series-parallel decomposition to an input graph
GC in order to break it down into smaller, manageable subgraphs, and perform model
partitioning, device allocation, and task scheduling for each subgraph. In the unusual
cases where a DNN does not possess such a structural property, GRAPHPIPE bypasses
this issue by converting the DNN to an arithmetically identical one whose structure is a
series-parallel graph.

Dynamic programming (DP). GRAPHPIPE adopts a dynamic programming algorithm
where the value of each DP state indicates the existence of a strategy achieving a through-
put within a target range (Lines 13–19 of Algorithm 2). At each DP level, GRAPHPIPE
applies series-parallel decompositions to split an input graph (say G) into two new sub-
graphs (say G1,G2), each of which serves as the input computation graph of a new DP
subproblem at one DP level below. GRAPHPIPE recursively solves the DP subproblems
to construct a solution of the original problem where the input computation graph is GC
(Lines 21–45 of Algorithm 2).

DP subproblem. We ensure that each DP subproblem maintains a certain structure (i.e.,
having a unique pair of source and sink nodes and a subgraph G comprised of them). The
input to a DP subproblem includes a computation graph G ⊆ GC , the number of devices
d, and some schedule-related information for its predecessor and successor stages, which
we furnish by enumeration if not available.

The solution of a DP subproblem involves devising a training strategy such that (1)
the number of in-flight micro-batches for the source stage (i.e., the pipeline stage that
includes the source node) is minimized; and (2) the Time-Per-Sample (TPSes) for all
stages do not exceed the target TPS range. These results are returned back to the parent
DP subproblem at one DP level above where the results are gathered for the parent DP
subproblem to produce its own.

We consider three cases in a DP subproblem:

• Base case: We consider the entire subgraph G as a single stage and apply data
parallelism with data-parallel degree d (Line 25 in Algorithm 2). We check if the
target TPS range is achievable while meeting the memory constraint, and compute
the number of in-flight micro-batches according to Algorithm 3 (see §3.6).

• Series decomposition: We perform a series decomposition to create two subgraphs
G1 and G2, where the sink node of G1 coincides with the source node of G2 (Line 30
in Algorithm 2).6 We first solve the subproblem associated with G2. To do so,

6We define a sink node of a subgraph as the last node among all nodes of the subgraph in their execution
order. We define a source node of a subgraph as the sink node of the subgraph associated with the previous
stage.
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we enumerate all feasible schedules for the source node of G2. We then solve the
subproblem associated with G1.

• Parallel decomposition: We perform a parallel decomposition to create G1 and G2,
where G1 and G2 share the same source and sink nodes (Line 38 in Algorithm 2).
As there is no data dependency between these subgraphs, the pipelines can be
executed in parallel. The subproblems associated with G1 and G2 may produce
different optimal numbers of in-flight micro-batches for the shared source node.
When there exists a subgraph G ′ preceding both G1 and G2, the data dependency
between G ′ and G1, and that between G ′ and G2 should be respected. To ensure
those dependencies, we take the larger number of in-flight micro-batches as the
solution.

Overall process. Figure 3.4 visualizes the overall process. At the top, a DP subproblem
is provided with its initial conditions: computation graph G, the number of available
devices d, and the target TPS range [0, tmax]. Suppose the number of in-flight micro-
batches for the sink node is ib, the micro-batch sizes for the source and sink nodes are bf
and bb, the stage containing the source node (i.e., source stage) uses the kfFkfB schedule,
and the stage containing the sink node (i.e., sink stage) uses the kbFkbB schedule (we
introduces GRAPHPIPE’s micro-batch schedules in §3.6). These supposed conditions
comprise a schedule configuration denoted by c := (i, b, k) in Algorithm 3. They are either
available as the results of some other DP subproblems solved previously, or furnished
by enumeration. The solution of this DP subproblem computes the smallest possible
number of in-flight micro-batches for the source stage (i.e., if in Figure 3.4) that meets
the target TPS range [0, tmax].

Time complexity. We analyze the time complexity of the stage partitioner to gauge the
impacts of design parameters. Let N be the number of series-parallel subgraphs of GC , B
be the set of possible micro-batch sizes,D be the set of possible data-parallel degrees. The
maximal element of B is upper-bounded by B. We consider powers of 2 for micro-batch
sizes (i.e., |B| < log2B). Likewise, the maximal element of D is upper-bounded by |VD|
and |D| < log2 |VD| holds.

The number of candidates for G is O(N), that for cf = (bf , kf ) is O(|B|2), that for cb =
(ib, bb, kb) is O(B|B|2), and that for d is O(|D|) in each DP subproblem. To compute a DP
value, it takes O(|D||B|2) time for series decompositions and O(|D|) time for parallel
decompositions. Therefore, the time complexity for a single DP run is O(NB|B|6|D|2)
and the overall time complexity is

O((logMAXTPS)NB|B|6|D|2) = O((logMAXTPS)NB(log2B)6(log2 |VD|)2)

We see that the inherent topological complexity of a given DNN GC (denoted as N in
the above analysis), mini-batch size B, and device budget |VD| largely determine the
theoretical time complexity. For the practical time complexity, however, reducing the
number of candidates for micro-batch sizes (i.e., |B|) and data-parallel degrees (i.e., |D|)
has considerable impacts. In addition, by considering only a subset of candidates, as
opposed to sweeping over all of them, we can reduce the practical time complexity at the
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Figure 3.4: Pipeline stage partitioner performing series-parallel decompositions. Black
arrows indicate subproblem formulations. Red arrows indicate solutions of the subprob-
lems.

cost of potentially degraded performance. Moreover, instead of applying series-parallel
decompositions at a finest granularity of individual operators, we can apply them at
a relatively coarse granularity of small groups of operators to reduce the overall time
complexity (i.e., reducing N ). These are choices the practitioner can make in practice to
strike a balance between performance and time complexity. §3.7 shows that our stage
partitioner is 9-40× faster than the partitioning algorithms of existing pipeline-parallel
systems, while considering a significantly larger search space.

3.6 Static Micro-Batch Scheduler
The static micro-batch scheduler optimizes micro-batch schedules and ensures their va-
lidity by meeting the data dependency requirements between all forward and backward
passes within a stage (C4 in §3.2) and those across stages (C5 in §3.2). The scheduler takes
as input (1) a configuration of model partition G, (2) current and next stage schedule
configurations cf , cb, and (3) the number of devices d from the pipeline stage partitioner,
and produces an optimized micro-batch schedule configuration copt for a given stage
configuration. As shown in Figure 3.3, the input is fed by the stage partitioner, and the
output is returned back to the stage partitioner to form a stage graph with an optimized
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micro-batch schedule.

Once the micro-batch schedules are determined, the memory requirement of each device,
which consists of model weights, optimizer states, and intermediate activations, can
be calculated. As a result, the micro-batch scheduler can examine whether the device
memory constraint (Equation 3.2) is satisfied. As presented in §3.5, the micro-batch
scheduler is a key subroutine of GRAPHPIPE’s pipeline stage partitioner. Algorithm 3
describes its algorithm.

Algorithm 3 Static micro-batch scheduler.
Input: Model partition G, initial current and next stage schedule configurations cf , cb,

number of devices d
Output: Optimized schedule Πopt

1: function SCHEDULESTAGE(G, cf , cb, d)
2: // Optimize schedule to minimize number of
3: // in-flight micro-batches using Table 3.2
4: // while respecting data dependencies
5: if = COMPUTEINFLIGHT(kf , bf , kb, bb, ib)
6: copt = (if , kf , bf )
7: if copt violates device memory constraint then
8: copt = ∅ // Invalidate schedule copt

9: Πopt ← SCHEDULETASK(copt)
10: return Πopt

Algorithm 2 first calls Algorithm 3 to discover an optimized micro-batch schedule for
the last stage. It then traces back all directed edges (Si, Sj) ∈ ES of the stage graph GS
in the reverse direction and determines a schedule for each stage Si until a schedule
for the first stage is determined. The reason for backward traversal is that computing
the activation memory usage, and thus the total usage, for a stage Si requires complete
schedule information of its subsequent stages Sj .

COMPUTEINFLIGHT(·) is a key function in Algorithm 3 to optimize a schedule. It aims
to effectively minimize the number of in-flight micro-batches for a given stage without
increasing per-iteration training time. While there are numerous possible micro-batch
schedules, we consider two widely-adopted classes: 1F1B and kFkB. Note that they both
ensure the data dependency requirements C4–C5 in §3.2.

1F1B schedules a single forward pass for a given micro-batch followed by a single
backward pass. In contrast, kFkB schedules k forward passes followed by k backward
passes.7 Recent work [WCS+23] explores performance implications in cases where
all stages use the same micro-batch size and employ either 1F1B or kFkB. In practice,
computations for forward and backward passes take different amounts of time, and

7A schedule Πi is said to be kFkB when there exist ℓ and k such that Πi starts with ℓ forward passes (for
warm-up), alternates between k backward and k forward passes, and ends with ℓ backward passes (for
cool-down).
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so do communications of their results. Thus, employing kFkB over 1F1B can enable
finer-grained adjustments of these varied execution times to overlap them, hiding the
smaller cost. It comes at the expense of increased memory usage, but can be justified
when the execution time saving benefit outweighs it.

In contrast, our setup generalizes conventional pipeline parallelism so that it allows
for different micro-batch sizes over stages. This extension opens up a new opportunity
of using different micro-batch schedules across distinct stages as opposed to applying
the same schedule (e.g., 1F1B) for all stages. We find it beneficial in terms of memory
footprint to use different schedules for different stages in our setup unlike conventional
pipeline parallelism. As shown in Figure 3.5, S2 has a different micro-batch size (=1)
from that of S1, S3 (=2). S2 can employ either 1F1B or 2F2B without degrading training
iteration time. If S2 employs 2F2B, it can save the activation memory footprint of S1 by
reducing the number of in-flight micro-batches from 4 to 3 in comparison to 1F1B.

We also develop an algorithm where we schedule forward and backward passes in an
arbitrary sequence. Intuitively, for a given stage, it is desirable to schedule a backward
pass as early as possible since it quickly resolves the corresponding in-flight forward
pass, reducing both memory consumption and training iteration time. This method
of greedily scheduling backward passes for a stage has a beneficial cascading effect
for its predecessor stages. According to C5 in §3.3, it is required that a stage can start
processing a backward pass only after all of its successors finish processing it. This
requirement means that when a stage aggressively schedules backward passes, it benefits
all of its predecessors in addition to itself. Since we allow for different micro-batch sizes
across stages, the data dependencies of forward and backward passes to meet become
convoluted. Yet the intuition is still valid. Our algorithm based on the intuition turns
out to be optimal in terms of iteration time and memory footprint. We provide a detailed
description and the proof in Section 3.10.1.

In practice, there is a trade-off between performance and time complexity in choosing
which scheduling algorithm to employ. kFkB has an advantage over 1F1B in terms of
memory consumption as shown in in Figure 3.5, and our method of greedily scheduling
backward passes guarantees optimal performance. Improved performance comes with
the cost of increased solution search time. This trade-off is non-trivial to quantify in
practice, thus we enable all options in GRAPHPIPE. However, we employ 1F1B by default
in our evaluations since except for some corner cases, we observe that performance
improvements are incremental to justify the significantly increased search times .

On a final note, the idea of using different micro-batch sizes across different stages is to
some extent similar to the idea of intentional uneven model partitioning in recent work
[FRM+21]. The shared goal is to improve throughput by distributing workloads across
stages unevenly and then exploiting heterogeneous compute efficiencies to carry out
fine-grained adjustments of stage execution times. The difference is the dimension along
which the workloads are split unevenly. It is along the batch (data samples) dimension
in our work, and the model (operations) dimension in [FRM+21].
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Figure 3.5: A comparison between 1F1B and kFkB schedules when stages have different
micro-batch sizes. F{i, j}, B{i, j} indicate forward and backward passes for a micro-batch
including samples i and j. It showcases how kFkB can be better than 1F1B in terms of
memory footprint.

3.7 Evaluation

We develop GRAPHPIPE on top of FlexFlow [JZA19b], a distributed multi-GPU run-
time for DNN training. Major modifications are to replace FlexFlow’s partitioner and
scheduler with ours described in §3.5 and §3.6 respectively. We evaluate GRAPHPIPE
on the Summit supercomputer [sum]. For each compute node of Summit, we use 2 IBM
POWER9 CPUs and 4 NVIDIA V100 GPUs with 512GB of main memory. GPUs within a
node are interconnected via NVLink while nodes are connected via Mellanox EDR 100Gb
InfiniBand. Note that we omit error bars for our plots in this section, as we observe
marginal standard deviations (less than 3%) for all results.

DNNs. We explore three multi-branch DNNs: Multi-Modal Transformer-based model
(MMT) [VSP+17, RKH+21], DLRM [NMS+19], and CANDLE-Uno [201]. Multi-Modal
Transformer (MMT) is a backbone of most state-of-the-art multi-modal models [WCQ+23,
RKH+21, Ope23, RPG+21, JYX+21]. DLRM is a popular deep learning recommendation
model for personalization and ads recommendation. CANDLE-Uno is a specialized
model in the medical domain (i.e., precision medicine). We describe the detailed model
configurations in Section 3.10.3. Despite different applications, all these models share a
structural similarity: they all feature parallel branches, each processing a different type
of data.
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(a) Multi-Modal Transformer (b) DLRM (c) CANDLE-Uno

Figure 3.6: End-to-end performance evaluation. GRAPHPIPE outperforms both
PipeDream [NPS+21] and Piper [TNP21] in three different models: Multi-modal
Transformer-based model [RKH+21], DLRM [NMS+19], and CANDLE-Uno [201] at
all but one GPU count configurations tested. Missing data points indicate that no train-
ing strategy can be found within reasonable timeframes.

3.7.1 End-to-End Evaluation
We compare the training throughput of GRAPHPIPE with existing pipeline-parallel
systems: PipeDream [NPS+21] and Piper [TNP21]. We choose these two baselines since
their combined search space encompasses all possible model partitions covered by
other approaches [FRM+21, ZLZ+22, NHP+19]. We implement their stage partitioning
algorithms in the FlexFlow runtime to conduct fair comparisons. We use the synchronous
1F1B schedule [NPS+21] since it avoids gradient staleness with the same pipeline latency
and lower activation memory footprint in comparison with other alternatives (e.g.,
GPipe [HCB+19]).

Figure 3.6 shows the results. We measure the training throughput (number of samples
processed per second) as we increase the number of GPUs and mini-batch sizes. Note
that Piper does not generate training strategies for DLRM and CANDLE-Uno since its
time and space complexity increases exponentially with respect to the number of parallel
branches. GRAPHPIPE outperforms PipeDream and Piper at all but one GPU configura-
tion. Moreover, the performance gap widens as the number of GPUs increases.8

Our analysis reveals that we can attribute the widening performance gap to the pipeline
depths greatly reduced by GRAPHPIPE compared to PipeDream and Piper for the multi-
branch models. As we use more devices, the number of sequential pipeline stages tends
to increase to achieve a higher throughput, particularly when the model size is too large
to apply data parallelism at the cost of weight memory footprint and all-reduce weight
synchronization. With a larger number of stages, sequential pipeline schemes by either
PipeDream or Piper suffer from extended warm-up and cool-down phases. Directly,
these extended pipeline bubbles negatively affect training throughput. Indirectly, these
bubbles increase activation memory footprints, which in turn impede effective model

8We were not able to conduct experiments beyond 32 GPUs due to the limitation of the runtime backend
we rely on. It inherently suffers from the bloated overhead of managing and analyzing large numbers of
data dependencies for forward and backward tasks as we increase the GPU count.
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partitioning. We visualize this analysis in detail via a case study (see §3.7.4).

3.7.2 Search Time
Table 3.1: Solution search times (in seconds) for Piper, PipeDream, and Ours (GRAPHPIPE)
on the Apple M1 Max; ✗ indicates search cannot be completed. Numbers in parentheses
indicate the search time ratio of the algorithm to that of GRAPHPIPE.

# GPUs MMT DLRM CANDLE-Uno

Piper PipeDream Ours Piper PipeDream Ours Piper PipeDream Ours

4 52.9 (440.5×) 2.57 (21.4×) 0.12 ✗ 6.39 (19.3×) 0.33 ✗ 3.84 (20.2×) 0.19
8 126 (165.7×) 11.9 (15.6×) 0.76 ✗ 31.3 (11.4×) 2.73 ✗ 17.0 (11.8×) 1.43

16 304 (101.3×) 44.3 (14.7×) 3.00 ✗ 131 (9.9×) 13.28 ✗ 66.10 (10.7×) 6.14
32 745 (73.7×) 151 (15.0×) 10.11 ✗ 505 (9.2×) 54.6 ✗ 234 (10.4×) 22.37

Table 3.1 presents the search times by the three optimizers (GRAPHPIPE, PipeDream, and
Piper) for the three models (Multi-Modal Transformer, DLRM, and CANDLE-Uno). The
Multi-Modal Transformer-based model has two branches and the DLRM and CANDLE-
Uno models have eight branches.

GRAPHPIPE is at least 9× faster than the baselines irrespective of the models or GPU
configurations. In addition, GRAPHPIPE’s efficient partitioner produces a strategy within
a minute for all configurations. The SPP baselines are much slower by comparison,
and this search time discrepancy can be attributed in large part to the fact that the
baselines rarely leverage DNN topology in expediting search. Note that Piper does not
produce strategies for the DLRM and CANDLE-Uno models for the aforementioned
reasons.

To see the large search space of each SPP baseline, it is helpful to approximate their time
complexities. Let us consider a simple multi-branch model with each branch having
k > n operators, where n is the number of branches. Recall that Piper considers model
partitions in which cross-branch stages exist. This level of granularity of model partitions
significantly increases the number of model partitions to examine. Piper’s optimizer runs
in O(|D|2) time (Appendix D in [TNP21]), where D is the set of downsets (Definition
4.1 in [TNP21]). According to the definition, model partitions in which one stage spans
multiple branches and all other stages are formed within a branch are valid candidates.
Since we can choose one operator out of k from each branch to form a cross-branch stage,
the number of such model partitions is at least |D| ≥

∏n
i=1 k = kn. Thus, Piper’s time

complexity is lower-bounded by O(k2n). This time complexity implies that unless we
employ a set of clever heuristics, Piper’s time complexity can be significantly high for
multi-branch DNNs.

On the other hand, PipeDream considers a converted DNN that linearizes all branches
and the operators within. Thus, it deals with a single chain of operators, where the
number of model partitions to consider is much smaller than Piper.

Still, GRAPHPIPE considers significantly fewer model partitions than PipeDream (and
hence Piper) particularly when a given DNN features multiple branches. Instead of
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Figure 3.7: Throughput vs. different numbers of branches using 4, 8, 16 GPUs respectively
(left). Throughput vs. different micro-batch sizes using 8 GPUs (right).

solving a single long chain of nk operators as in PipeDream, GRAPHPIPE solves n
short chains of k operators separately. As empirically shown in Figure 3.6, GRAPHPIPE
barely demonstrates throughput degradation, which could have resulted from examining
much fewer model partitions. Explicitly leveraging DNN topology in examining model
partitions in search for a training strategy turns out to be critical to reducing the search
space and time complexity.

3.7.3 Different Numbers of Branches and Micro-Batch Sizes
Figure 3.7 shows the results of two experiments in which we change the number of par-
allel branches for the CANDLE-Uno model (left) and change the number of micro-batch
sizes for the two-branch multi-modal Transformer-based model (right). The purpose of
the experiments is to investigate the effects of main parameters on the performances of
GRAPHPIPE and the SPP baselines (PipeDream and Piper).

The left sub-figure depicts the throughput performances normalized by that of PipeDream
with respect to the number of parallel branches for the CANDLE-Uno model.9 We see
that the performance gap achieved by GRAPHPIPE scales with the number of branches,
reaching up to 2× at 16 branches. Intuitively, the performance gain mostly stems from the
fact that GRAPHPIPE is able to reduce the pipeline depths at all configurations allowing
concurrent execution of parallel branches, reducing the inefficient pipeline warm-up
and cool-down phases significantly. The gain scales because the larger the number of
branches, the larger the differentials of the phases between GRAPHPIPE and SPP. This
experiment result demonstrates that (1) reducing pipeline depth is critical to through-
put performance; and (2) GRAPHPIPE is better at it than SPP especially when multiple
branches of non-negligible workload are present. The larger the number of branches in
a given DNN to train, the more promising opportunities for GRAPHPIPE to exploit by
reducing pipeline depths.

The right sub-figure depicts the throughput performances for the multi-modal Transformer-

9Piper was not able to produce a strategy for the CANDLE-UNO model.
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Figure 3.8: A synthetic Transformer-based two-branch DNN for case study. A sequence
of one multi-head attention and two linear layers is repeated four times to compose a
single branch. One concatenation layer at the end combines the branches.

based model with four branches. We use a mini-batch size of 128 and eight GPUs. We
intentionally fix a micro-batch size (instead of using the best ones chosen by the optimiz-
ers) in comparing the performances, for the purpose of examining the benefits (or harms)
of using large micro-batch sizes. If increasing micro-batch size turns out to be beneficial,
then it is worth reducing pipeline depth so as to reduce activation memory footprints,
and in turn create room for using a larger micro-batch size.

We can observe the key role of reduced pipeline depth by GRAPHPIPE in improving
throughput. For each micro-batch size, GRAPHPIPE always outperforms SPP. Since there
is no difference in operational intensity with the same micro-batch size used for both
GRAPHPIPE and SPP, the performance gap can be solely attributed to the difference in
pipeline depth. The reduced pipeline depth by GRAPHPIPE leads to a shorter execution
time for the warm-up and cool-down phases, hence a higher throughput.

Also, the better throughput scalability of GRAPHPIPE with respect to increasing micro-
batch size is also closely-related to reduced pipeline depth. With a fixed mini-batch size,
the number of micro-batches decreases inversely proportional to micro-batch size. This
means that the ratio of the duration of the full pipeline to the duration of the warm-up
and cool-down phases diminishes as micro-batch size increases. This in turn means that
as micro-batch size increases, the benefit of utilizing devices at improved operational
intensity by using a larger micro-batch size is gradually offset by a shorter full-pipeline
duration relative to the warm-up and cool-down phases. The reduced pipeline depth by
GRAPHPIPE tames such an offsetting effect, hence a better throughput scalability.

3.7.4 Case Study
It is instructive to take a close look at the strategies produced by GRAPHPIPE and SPP. We
run both GRAPHPIPE and SPP optimizers for a synthetic model, execute the strategies,
and observe a 20% throughput improvement by GRAPHPIPE over SPP. Our analysis
finds that the aggregate gain comes from two sources, and the contributions are nearly
equal.

Figure 3.8 depicts the two-branch Transformer-based model synthesized for the exper-
iment. Each branch consists of four repeated sequences of one multi-head attention
and two linear (dense) layers, also known as Multi-Level Perceptron (MLP) layers. The
branches are merged by a concatenation operator.

Both GRAPHPIPE and SPP produce the identical model partition on a budget of eight
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Figure 3.9: Pipeline schemes devised by SPP (top) and GRAPHPIPE (bottom). They
produce an identical model partition. The selected micro-batch sizes are different: 2
(SPP) v.s. 4 (GRAPHPIPE), which results in a better compute efficiency for GRAPHPIPE.
Both methods deem it unnecessary to employ data parallelism primarily because doing
so would have split a smaller micro-batch size even further, which would have harmed
compute efficiencies. The pipeline depths are also different: 8 (SPP) v.s. 4 (GRAPHPIPE),
which results in a smaller pipeline depth for GRAPHPIPE. This improvement comes
purely from the fact that GRAPHPIPE can produce a pipeline scheme that allows for
concurrent execution of parallel branches.

devices. Each stage contains one multi-head attention and two linear layers. There
are eight such stages, four per branch, except that one stage necessarily contains the
concatenation operator. A key difference between the two strategies, however, is the
way the stages are pipelined. Figure 3.9 depicts the pipeline schedules. Note that
the pipeline depth for SPP is eight since all eight stages form a sequential pipeline.
In stark contrast, the pipeline depth for GRAPHPIPE is four. The two branches are
computationally-independent, hence stage 1 + i and 5 + i for 0 ≤ i ≤ 3 can be executed
in parallel, and this is precisely what the training strategy produced by GRAPHPIPE
suggests. This concurrent execution reduces the warm-up phase by half in terms of
number of micro-batches from eight to four. This warm-up phase reduction leads to 10%
performance improvement.

There is another subtle, yet key difference. Since GRAPHPIPE reduces the pipeline depth
by half, the activation memory footprints for early stages are smaller for the GRAPHPIPE
strategy. As a result, GRAPHPIPE can choose a micro-batch size from a wider range of
candidates, and indeed selects a size of 4. The compute efficiency improvement from
choosing a larger micro-batch size over SPP (which chooses a size of 2 due to larger
activation memory footprints) leads to a larger number of samples processed per unit
time. This means that when the pipeline operates at full capacity, it processes training
samples at a faster rate for GRAPHPIPE than for SPP. Our measurements show that the
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gain from this compute efficiency improvement is 10%. The two gain sources combined,
GRAPHPIPE achieves 20% higher throughput over SPP.

3.8 Related Work
We provide an overview of related works for techniques to train large DNNs in the
literature.

Pipeline parallelism. Existing DNN frameworks [ABC+16, PGM+19a, JZA19b, RRRH20,
SCP+18] employ sequential pipeline parallelism (SPP) where pipeline stages are strictly
sequential. As we discuss in Section 3.2, SPP hinders parallel execution of computationally-
independent components of a DNN and memory savings from reduced pipeline depth.
While this limitation still exists as long as SPP is adopted, there are a variety of pipeline
parallelism approaches to improve pipeline performance in other ways. These ap-
proaches fall into one of two paradigms: synchronous and asynchronous pipeline paral-
lelism.

Synchronous pipeline parallelism [HCB+19, NPS+21, FRM+21, ZLZ+22, UJW+22] refers to
a set of techniques in which the model parameters spread across devices are updated
synchronously after each mini-batch is processed in one training iteration. The DNN
training semantics is preserved, thus statistical convergence issues do not arise. But
the synchronous updates fill and drain the pipeline periodically over iterations, hurting
throughput. Our graph pipeline parallelism mitigates this issue by reducing pipeline
bubbles better than sequential pipeline parallelism.

Asynchronous pipeline parallelism [NHP+19, NPS+21, TNP21, YZZ+22] refers to a set of
techniques in which the model parameters spread across devices are updated asyn-
chronously. Although this mode may suffer from statistical convergence issues as devices
execute their stages using out-of-sync model parameters, it keeps the pipeline full at
nearly all times. Graph pipeline parallelism helps us reduce total device memory usage,
thus use a larger micro-batch size to execute operators at a higher operational intensity
compared to sequential pipeline parallelism. This enables us to process training data
faster while the pipeline is full, thus improves training throughput.

Multiple pipeline stages per device. In the above pipeline-parallel techniques, each
device contains only one pipeline stage. It has been shown that assigning multiple
non-contiguous stages to a device can reduce pipeline bubbles [NSC+21, LP22] and
reduces memory consumption imbalances across stages [LH21, LCZY23]. Earlier work
GEMS [JAA+20] has a similar idea but does not utilize the pipeline well — devices are
idle for most of the time and waiting for results from other stages. These techniques
are orthogonal to graph pipeline parallelism, and thus can be applicable upon some
modifications.

Data parallelism. Data parallelism [Val90, Kri14, LAP+14, GDG+17, MHH+21] is one of
parallel DNN training techniques in which every device has a local copy of a DNN to
train in its entirety and a batch of training data is split across devices. Each device updates
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its model parameters based on its share of training data and synchronizes the parameters
periodically with other devices. In our work, we apply data parallelism within a pipeline
stage to which we assign multiple devices, in order to balance stage execution times in a
more fine-grained manner compared to applying pipeline parallelism only.

Automatic DNN parallelism. There are a number of automated approaches [ZLZ+22,
UJW+22, JZA19b, TNP21, NHP+19, MPL+17, WHL19] to combine data, pipeline, and
tensor parallelisms [SPP+19]. Existing works first partition a DNN into sequential
pipeline stages (SPP) and then apply other parallelisms to each stage. Our automated
framework generalizes existing pipeline parallelism to form graph pipeline parallelism
and combines it with data parallelism while it is also possible to combine tensor paral-
lelism with GRAPHPIPE in the same way as existing works [ZLZ+22, TNP21].

Memory optimizations. Managing memory usage patterns is critical in training large
DNNs. Thus, on top of pipeline-parallel techniques, memory optimization techniques
[CXZG16, RGC+16, WYZ+18, ZYS+19, CSO+20, PSD+20, HJL20, JJN+20, RRA+21] can
also be modified and applied in order to further improve the performance and scalability
of graph pipeline parallelism.

3.9 Conclusion
We have developed graph pipeline parallelism where pipeline stages form a directed acyclic
graph whose edges indicate execution orders of forward and backward passes in pipeline-
parallel DNN training. This design encourages concurrent execution of parallel branches
for superior performance. We have also developed a distributed system GRAPHPIPE,
and through experiments using three multi-branch models, showed that GRAPHPIPE
achieves up to 1.61× higher training throughputs and > 9× faster solution search times
over existing baselines that operate in a strictly sequential manner.
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3.10 Appendix
3.10.1 Greedy Schedule Implementation
The greedy scheduler described in Algorithm 4 produces a schedule Πi that minimizes
the running time for stage i per training iteration and also the peak memory usage for
stage i. It iteratively augments Πi by adding either a forward pass or a backward pass.
The final Πi is a sequence of forward and backward passes that constitutes a time- and
memory-usage-optimal schedule. Function IsTimeOptimal checks if the micro-batch
schedule leads to the minimum running time for stage i. In the following proof, we use
time-optimal to describe a micro-batch schedule that minimizes the running time for a
stage and use optimal to describe one that minimizes peak memory usage (= number of
in-flight data samples) among time-optimal schedules.

Algorithm 4 Greedy Scheduler
Input: bi, {Πj , bj} for each successor stage j of stage i
Output: Micro-batch schedule Πi

1: Πi ← fwi
1

2: for l← 1 . . . 2B/bi − 1 do
3: cf ← number of fwi’s in Πi

4: cb ← number of bwi’s in Πi

5: if ISTIMEOPTIMAL(Πibwcb+1fwcf+1bwcb+2

. . . fwB/bibwB/bi+cb−cf+1 . . . bwB/bi , {Πj , bj})
then

6: Πi ← Πibwcb+1

7: else
8: Πi ← Πifwcf+1

Definition 1.: A micro-batch schedule Πi for stage i is monotonous if and only if it starts
with inflight(Πi)/bi contiguous forward micro-batches, where we define inflight(Πi) as
the peak number of in-flight data samples for stage i according to schedule Πi.

Lemma 3.1.:
There exists an optimal micro-batch schedule {Πi} such that Πi is monotonous for each
stage i.

Proof. Let {Πi} be an optimal micro-batch schedule. If Πi is monotonous for each stage
i, the proof is complete. If not, let i0 be the first stage for which Πi is not monotonous.
Construct {Π′

i} to be a micro-batch schedule where Π′
i = Πi for i ̸= i0. Also, define lg be

the number of contiguous forward micro-batches that Πg starts with, and construct Π′
i0

by scheduling fwi0
li0+1 in Πi0 right after fwi0

li0
. For each predecessor stage p of i0, as Πp is

monotonous, bplp = inflight(Πp) > inflight(Πi0) = inflight(Π′
i0
) ≥ bi0(li0 + 1) holds, and so

{Π′
i} does not increase the running time for stage i. We repeat the above procedure until

schedules of all stages are monotonous. Π′
i0

increases the number of contiguous forward
micro-batches compared to Πi0 , and as the total number of forward passes is bounded,
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the above schedule construction process is guaranteed to end in a finite time. As the final
result we obtain an optimal micro-batch schedule such that Πi starts with inflight(Πi)/bi
forward micro-batches (i.e., monotonous) for each stage i. This completes the proof by
construction. ■

Theorem 3.1.:
The greedy scheduler gives an optimal micro-batch schedule.

Proof. Let indΠi
(fwi

k) be the index of fwi
k in Πi. Let s be any time-optimal schedule

for stage i that starts with inflight(s)/bi contiguous forward micro-batches. Let s =
rbwcb+1t be a decomposition representation, where r and t are subsequences of s and
there are cf forward micro-batches and cb backward micro-batches in r. Then, s′ =
rbwcb+1fwcf+1bwcb+2fwcf+2 . . . fwB/mi

. . . bwB/mi
must be a time-optimal schedule, because

s′ employs 1F1B schedule: inds′(fwk) ≤ inds(fwk) and inds′(bwk) ≥ inds(bwk) for any k.
Together with Lemma 3.1, we know that the greedy scheduler produces a schedule that
minimizes the number of in-flight micro-batches for stage i.

Let us define that a schedule Π dominates a schedule Π′ if indΠ(bwk) ≤ indΠ′(bwk) for any
k. Note that if Πi and Π′

i are both time-optimal schedules for stage i that minimize the
numbers of in-flight micro-batches, and Π dominates Π′, then we can always replace Π′

i

with Πi while keeping the schedule for other stages valid. The remainder of the proof is
to show that for any time-optimal schedule Π′

i that minimizes the number of in-flight
micro-batches for stage i and starts with inflight(Π′

i) contiguous forward micro-batches,
the schedule Πi given by the greedy scheduler dominates Π′

i.

We prove by contradiction. we assume that bwk is the first backward micro-batch such
that indΠ′

i
(bwk) < indΠi

(bwk). Let l = indΠ′
i
(bwk). There should be the same number of

backward micro-batches in the first l − 1 micro-batches in Πi and Π′
i, so we can obtain a

time-optimal schedule Π′′
i by replacing the first l − 1 micro-batches in Π′

i with those in
Πi. Since Π′′

i shares the first l − 1 micro-batches with Πi, and the l-th micro-batch in Π′′
i is

a backward micro-batch. According to the execution of the greedy scheduler, the l-th
micro-batch in Πi should be a backward micro-batch, which is a contradiction. ■

3.10.2 kFkB Schedule
The kFkB schedule of stage Sx is determined by

argminkx max
(Sx,Sy)∈VS

ComputeInFlight(kx, bx, ky, by, iy),

where iy is the number of in-flight samples for stage Sy. ComputeInFlight(kx, bx, ky, by, iy)
is computed according to Table 3.2:

3.10.3 DNN Model Configurations
The Multi-Modal Transformer-based model (MMT) for which we evaluate GRAPHPIPE
consists of four parallel branches concatenated at the end and each branch consists of
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Table 3.2: Computation of the number of in-flight samples.

Condition Result

max{bx, by} < kxbx < kyby iy + 2max{bx, by}
max{bx, by} = kxbx < kyby iy +max{bx, by}
bx ≤ by < kyby < kxbx iy + kxbx − kyby + 2by
bx ≤ by = kyby < kxbx iy + kxbx
by ≤ bx < kyby < kxbx iy + kxbx − kyby + 2bx
by ≤ bx = kyby < kxbx iy + kxbx

max{bx, by} = kyby = kxbx iy + kyby
max{bx, by} < kyby = kxbx iy + 2max{bx, by}
bx ≤ kxbx < by ≤ kyby iy + by
by ≤ kyby < bx ≤ kxbx iy + kxbx − kyby + bx

eight Transformer layers (32 layers in total). Here, the input sequence length is 256.
Each transformer layer has a hidden size of 1024, an embedding size of 1024, and 16
attention heads. The hidden size for a feed-forward layer following the attention layer
has a hidden size of 4096.

The DLRM model for which we evaluate GRAPHPIPE consists of seven branches for
dense features and seven branches for sparse features (embedding layers); these branches
are concatenated at the end. Each branch for dense features includes four feed-forward
layers. The hidden size of dense features and the following feed-forward layers is 4096.
For sparse features, its hidden size is 64 and the embedding bag size is 100; embeddings
in a single bag is concatenated. The number of entries in an embedding table is 1
million. Feed-forward layers post-processing the interaction also have the hidden size of
4096.

The CANDLE-Uno model for which we evaluate GRAPHPIPE consists of seven branches,
each of which includes four feed-forward layers. All feed-forward layers have a hidden
size of 4096.

For our end-to-end evaluations, we use the following ranges of mini-batch sizes for each
device count to fit available unified GPU memory:

# Devices MMT DLRM CANDLE-Uno

4 64 256 4096
8 128 512 8192

16 256 1024 16384
32 512 2048 32768

Note that we sweep over all possible micro-batch sizes given mini-batch sizes for each
model to maximize training throughput.
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Chapter 4

Cache Parallelism: Comparative
Analysis of Parallelisms in
Distributed LLM Inference for
Long Sequence Application

A significant portion of large language model (LLM) applications (such as book
writing, document summarization, and translation) requires a LLM serving system
to process a long sequence of tokens (i.e., 100K words). However, the memory
demands of the attention mechanism and the unpredictable nature of text generation
pose performance challenges. Existing parallelism strategies, such as data and tensor
parallelism, exhibit trade-offs in workload balance and communication overhead,
especially for long sequences. We introduce cache parallelism (CP), a new scheme
that partitions the attention module’s KV cache along the sequence length. CP aims
to achieve the best of existing parallelisms by balancing workload while minimizing
communication costs. We provide efficient CUDA kernels for CP and compare it with
other parallelism strategies for distributed LLM inference during text generation.

4.1 Introduction
The ability of large language models (LLMs) to handle long sequences unlocks a range
of valuable real-world applications. Examples include a customer service chatbot that
can reference an entire conversation history to provide personalized solutions, or an AI
translator that translates entire books while preserving the flow and style of the original
text. Long-sequence capabilities push LLMs beyond simple tasks, enabling them to tackle
complex, nuanced problems that were previously difficult for machines to solve.

Transformer model has been a key to a pleathora of LLM applications. However, Trans-
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formers become more and more memory-hungry as input and output sequence of models
are required to be longer for various applications such as document summarization,
code completion, long multi-turn conversation, etc. Specifically, for such long-context
inference, attention (self-attention) module can be a memory bottleneck since it requires
maintaining a large KV cache over each step of auto-regressive inference. Besides, the
large KV cache creates a performance bottleneck for auto-regressive text generation
(decode step).

However, the way text generation works in LLMs makes it hard to optimize performance.
Most of the parts works on a single token at a time, except for the attention module,
which gets more demanding as the output lengthens. It’s impossible to know in advance
how much tokens the model will generate for a given input. These unpredictable
characteristics make it difficult to choose the right parallelism methods to efficiently
distribute the workload during text generation.

Each parallelism strategy has strengths and weaknesses when it comes to the LLM decode
stage for long sequence scenarios. Data parallelism doesn’t require communication
between devices, but it suffers from workload imbalance issue caused by variance in
very long output sequence. Tensor parallelism saves memory and balances the workload
well, but it has costly communication overhead and can sometimes lead to low compute
utilization. These trade-offs become especially crucial when dealing with longer input
sequences.

We introduce a new parallelism scheme called cache parallelism (CP), designed to
leverage the advantages of existing parallelisms. It partition KV cache of the attention
module along the sequence length dimension. We show this mitigates workload balance
issue of DP while achieving smaller communication cost than TP. We also implement
efficient CUDA kernels that locally compute attention for partial KV cache on each device
and reduces them across devices. Lastly, we compare various parallelism strategies for
distributed LLM inference during the decoding stage.

To sum up, our work make the following key contribution:

• We explore a new parallelism scheme, cache parallelism (CP). This scheme divides
large KV cache along the sequence length dimension to effectively scale attention.

• We offer custom CUDA kernels that support efficient distributed attention compu-
tation with partial KV cache.

• We provide comparative analysis of diverse parallelism strategies for distributed
LLM inference at the decode step.

4.2 LLM Inference and Parallelisms
In this section, we describe an overview of how LLM inference pipeline works and a
design space of parallelisms for the distributed LLM inference.
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4.2.1 LLM Architecture
The state-of-the-art LLMs are all variants of Transformer model. They all consist of
multiple layers of the Transformer block. Each transformer block contains three key
parts:

• Projection: Projection adds modeling power by translating state vectors into dif-
ferent subspace and there are two types: input and output projections. The input
projection takes the input vector and projects it to three different vectors - query,
key, and value. The output projection takes the output vector from the attention
operator and projects it to a new output vector.

• Multi-head Attention: It is the key part that models relations between different
tokens in sequence and their importance. This is effectively a matrix multiplica-
tion between query, key, value and a softmax operation to model the importance
of relation between tokens. It has multiple heads, each of which encodes such
information with different representation in parallel.

• Feed-Forward Network (FFN): This processes hidden state vectors further and
follows the attention operation in the Transformer block. It is usually two linear
projections with an activation function in the middel (e.g., ReLU, SiLU, etc.).

4.2.2 LLM Inference
LLM inference pipeline consists of two key steps: 1) prefill and 2) decode.

• In the prefill step, LLM takes a prompt sequence as an input and generates the
key-value cache (KV cache) for each Transformer layer on top of first output token.

• In the decode step, LLM generates a next token based on the prompt and the
current output token. Note that this takes multiple auto-regressive iterations and a
KV cache of new token will be added to the existing KV cache after every iteration.

4.2.3 Parallelisms for LLM Inference
Given the recent trend of larger models with longer sequence, LLM inference pipeline
gets even hungrier for memory footprint and compute power. To handle this, distributed
LLM inference is necessary and multiple parallelisms have been actively deployed.

Data parallelism. Data parallelism intend to manage lots of requests for large language
models (LLMs) by replicating its models across devices. This means making copies of
the LLM – each copy, called an instance, has the entire model. These instances then work
independently on separate batches of requests in a concurrent fashion. Data parallelism
does not require synchronization cost, but it entails heavy memory footprint from
parameter replication. Besides, it also suffers from the workload imbalance of requests
because each request have uncertainty in how much work it requires for decoding.

Continuous batching. In LLM inference, we do not have the information how long
each request will take to finish. Besides, decode step has much lower compute efficiency
than prefill step for the same batch size, so it is often beneficial to add more requests
to a batch for decode steps to improve throughput. Thus, it is a common practice to
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continuously batch more requests after every decode iteration in LLM inference. It is
known as continuous batching [YJK+22].

Tensor parallelism. Tensor parallelism [SPP+19] is a technique where we take parame-
ters for each layer of LLMs and split them across multiple GPUs. It allows the memory
footprints of parameters to be distributed, saving memory footprint and making it pos-
sible to work with larger models and longer sequence. Under the assumption that the
number of attention heads is multiple of the number of devices, it guarantees great work-
load balance regardless of how long each request takes. Still, it comes with significant
synchronization cost (i.e., two all-reduce operations per layer).

4.3 Trade-offs of Existing Parallelisms for LLM Decode

We see that the unique characteristics and uncertainty of decode leaves significant
performance on the table. First, the decode step only processes a single token per request
per iteration no matter how long the prompt and output sequence are except for the
attention module. The computation and memory footprint of attention module linearly
grows with the increasing output sequence length though. Furthermore, we do not know
how many decode iterations we would need for a given request. This makes it harder to
choose parallelism methods for decode steps to achieve good workload balance.

Each of existing parallelism schemes has its own pros and cons for decode steps in LLM
inference. The advantage of data parallelism is that it does not incur communication
between different data-parallel instances. On the flip side, it replicates parameters on
each instance. We find it critical especially in the long sequence regime since it causes
more KV cache eviction to CPU due to memory shortage. Besides, it is vulnerable to
workload balancing. For example, requests in each instance are very likely to end up
having different number of output tokens (thus different workloads) even if the workload
was previously balanced based on input sequence length.

On the other hand, tensor parallelism also has its own advantages and disadvantages. Its
strength is memory footprint and workload balance. It shards parameters over devices,
thus there is no duplicate memory footprint for parameters. It also achieves good
workload balance since all devices jointly processes all requests and have same amount
of workloads, under the condition that the attention head dimension is the multiple of
the tensor-parallel degree (i.e., the number of devices). Its weakness is that it incurs two
expensive all-reduce communication for every Transformer layer. It also leads to bigger
block table management costs per device for PagedAttention since it has same batch
size and sequence length for all devices. It could also lead to low compute utilization of
attention kernel for models when head dimension divided by tensor-parallel degree is
smaller.
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4.4 Cache Parallelism
Given such limitations of existing parallelisms, we explore a new parallelism called
cache parallelism (CP) 1. The key observation behind it is that only the attention module
computation in the decode step linearly scales with the KV cache size that increase over
decode iterations. The other parts including projections and FFN always process a single
token per requests regardless of KV cache size (or output sequence length). Naturally,
we propose a parallelism method that partitions KV cache across devices and achieves
good workload balance for the attention module compute.

The (KV) cache parallelism only applies to the attention module since it is about parti-
tioning KV cache. Therefore, we need to combine it with other parallelisms for other
components of LLMs (i.e., projection and FFN). We choose to combine it with data
parallelisms for other parts. This is because data parallelisms for other parts saves com-
munication cost while still achieving workload balance. The reason why we can achieve
workload balance while still applying data parallelisms for other parts is because we
exploit the fact that only attention module hinders from data parallelisms to achieve
workload balance in LLM decode. Thus, the idea is to replace data parallelism for at-
tention module with cache parallelism. To be concise, let us assume CP as CP for the
attention and DP for the other parts.

With CP, the attention module requires two steps: 1) local attention compute (for local
sharded KV cache) and 2) reduce attention results from all KV cache across devices.
This mechanism is equal to the FlashDecode [Dao23], but across multiple devices in-
stead of multiple GPU warps. Note that this is possible because attention operation is
communicative and associative.

Let N be the number of devices, B be the number of requests in a batch, E be the hidden
(or embedding) dimension, H be the number of attention heads, L be the KV cache
length. Recall that the attention module is softmax(QKT )V where Q,K, V are vectors
for query, key, and value. Thus, local output tensor shape is BHL(E

H
). Let the index of

L dimension be i and the index of E
H

dimension be j. For each request and attention
head, we need to store three result tensors from local attention to perform reduce across
devices:

mj = max
i

Q[i, :]KT [:, :]

sj =
n∑

i=1

eQ[i,:]KT [:,:]−mj

oij = softmax(QKT )V

The first term is for maximum value of QKT to prevent exponential function of it
from overflowing in softmax. The second term is the denominator term for softmax
using the first term. The last term is the local attention result. After local attention,

1Note that there is a concurrent work of ours [LPZ+24].
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Figure 4.1: Total amount of data transfer per GPU for TP and CP

we collect these local attention results for requests assigned to each device with the
all-to-all communication. Lastly, we reduce attention results to get the final result as in
FlashDecode [Dao23].

Communication. CP incurs one all-gather and one all-to-all operation per Transformer
layer. We need one all-gather right before the attention module to gather query, key,
value from all devices. Then we need another one all-to-all after local attention compute
to gather and reduce attention results for each data-parallel instance for the following
operations. Then CP takes the following communication volume per GPU assuming 1
byte per data for simplicity:

(all-gather) + (all-to-all) =
(N − 1)3BE

N
+

(N − 1)B(E + 2H)

2

CP saves communication cost compared to TP since TP has two all-reduce operations
that incurs the following communication volume per GPU:

(2 all-reduce) = 4(N − 1)BE

We also show that how large the gap of communication volume between CP and TP
across different number of GPUs and batch sizes in Figure 4.1. As the analytical cost
implies, CP has much lower communication volume and the benefit increases as we
increase the batch sizes and the number of devices. Note that we use E = 4096 from the
Llama-7B model. Thus, this gap would be even larger with larger models.

4.5 Evaluation
This section aims to answer the following two questions:

• How does the throughput of various parallelism strategies scale with sequence
length in long sequence regimes?

• What are the trade-offs among various forms of parallelism in terms of throughput
and latency for varying sequence length?

• What are different factors that influence performance of different parallelisms and
their varying trade-offs?
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Figure 4.2: Throughput (tokens per second per layer) of varying parallelisms across
different prefix sequence length.

4.5.1 Evaluation Setup
For compartive analysis, we evaluate three different parallelisms for Transformer layer:
Cache Parallelism (CP), Data Parallelism (DP), and Tensor Parallelism (TP). Given that
cache parallelism is specifically relevant to the attention operator with KV cache at
decode step, we opt for data parallelism for the FFN layer and other linear projections
for CP evaluation. However, it’s worth noting that tensor parallelism is also a viable
alternative, offering different trade-offs.

We implement all parallleisms on top of vLLM [KLZ+23]. In particular, we imple-
ment LLM implementation with parallelisms in 1000 lines of Python with Pytorch
library [PGM+19b] and a CUDA kernel for cache parallelism in 1000 lines of CUDA
codes. This kernel implementation includes local attention computation with global
reduce operation while extending FlashDecoding and vLLM kernel optimization. We
evaluate them on one compute node (in our group’s proprietary cluster) that has 4
NVIDIA RTX A5000 GPUs interconnected via NVLink. Since our focus is on a decode
step of LLM inference, we evaluate a single decode step (i.e., generation of a single token
per sequence). We use a popular Llama-7B model [TMS+23, TLI+23] confiuguration with
32 attention heads and hidden size of 4096. Specifically, we evaluate a single Transformer
layer of it to maximize sequence length for our evaluation. Note that error bars have
been excluded from the plots in this section due to the observation of minimal standard
deviations (below 3%) across all results.

4.5.2 Scaling with Sequence Length
To compare how different parallelism strategies scale with increasing sequence length, we
evaluate their throughput of decode steps across long sequence lengths for three different
maximum batch sizes (32, 128, 512) in continuous batching scenarios. Small maximum
batch size (e.g., 32) ensures low latency, but lower throughput while large batch size (e.g.,
512) leads to high latency, but higher throughput. We have evaluation results for long
prefix sequence in Figure 4.2 and long decode sequence in Figure 4.3.

Regardless of maximum batch sizes, the general trend is that the throughput of cache
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Figure 4.3: Throughput (tokens per second per layer) of varying parallelisms across
different decode sequence length.
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Figure 4.4: Throughput and latency trade-offs of varying parallleisms across different
sequence length.

parallelism is better than other parallelisms for both long prefix and decode regimes.
DP is the slowest one among all parallelisms for long context scenarios because of the
workload imbalance issue. Since we do not know how long final sequence will be, DP
often suffers from the straggler issue and more CPU offloading during the decode step.
Compared to TP, CP leads to better throughput because it has 1) lower communication
volume and 2) less block table management overhead from PagedAttention [KLZ+23].
Note that block table size is linearly correlated with batch size and sequence length. In
TP, we need redundant block table management and copy for every device because TP
shard activation in head dimension, which does not reduce the size of block table per
device.

4.5.3 Trade-off between Latency and Throughput
We assess the latency and throughput trade-off of varying parallelisms across different
long prefix sequence length scenarios in Figure 4.4. Each dot for each parallelism
represents the maximum batch size increasing from left to right (32, 64, 128, 256, 512).
Regardless of sequence length, DP is strictly worse than other two parallelisms for
the reasons mentioned above. CP is mostly strictly better than TP except for shorter
sequence regime (10K) thanks to lower communication volume and smaller block table
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Figure 4.5: Breakdown of execution time into three different categories: GPU Compute,
CPU Overhead, and GPU (to GPU) Communication.

management overhead. Still, TP can be better than CP for shorter sequence. It’s because
CP suffers from lower compute utilization of attention kernel with shorter sequence
since it shards attention computation in sequence length dimension. Note that for longer
sequence scenario, performance actually degrades after certain batch sizes. This happens
because it experiences a lot more sequence eviction to CPU from memory pressure with
long sequence.

4.5.4 Execution Time Breakdown
We exhibit the execution time breakdown for parallelisms across different prefix sequence
length. To make it easier to compare across different parallelisms, we categorize execu-
tion time into three: 1) GPU compute, 2) GPU communication, 3) CPU overhead. GPU
compute only includes the execution time for GPU kernel execution. GPU communi-
cation involves collective communication across GPUs for TP and CP. CPU overhead
covers data copy from CPU memory to GPU memory, block table management, or any
other CPU execution.

For GPU compute, there are only a marginal difference across parallelisms while TP tends
to be the slowest due to slightly worse compute utilization from small head dimension
from partitioning. In terms of GPU communication, TP has larger communication
volume than CP, thus it takes longer. DP takes the longest time for CPU overhead among
all parallelisms due to the straggler issue and more sequence eviction to CPU during
decode steps. Sequence eviction problem is worse from the straggler where we need to
store a lot more tokens in the memory than others. Note that TP also takes more CPU
overhead than CP because of larger block table to copy and manage per GPU.

4.6 Related Work
Distributed Transformer Inference. The explosive popularity of Transformer mod-
els has led to a variety of distributed systems specialized for Transformer inference:
PaLM inference [PDC+23], DeepSpeed Inference [ARZ+22], FasterTransformer [Fas],
EffectiveTransformer [Eff], Hugging Face Accelerate [HFA], Orca [YJK+22], and Light-
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Seq [WXW+21]. Many of such systems focus on scaling to gigantic Transformer mod-
els [CND+22, Ope23, BMR+20]. Given huge memory footprint of such models, it is
crucial to design an efficient model parallelism strategy. Researchers have proposed sev-
eral parallelism approaches tailored to Transformer inference. Megatron-LM [SPP+19]
suggests a simple, yet effective model parallelism method for a Transformer layer to min-
imize communication. Further research [PDC+23] have investigated multi-dimensional
sharding strategies for Transformer inference and their tradeoffs between latency and
model FLOPS utilization on TPU-v4 [JKL+23].

Efficient Transformer Inference. Researchers have witnessed that high FLOP count and
communication volume fundamentally limits Transformer inference performance [PDC+23,
IDBN+21]. To combat this issue, numerous efforts [GA22, GKD+21] have been made
in investigating techniques such as model design[SMM+17, LLX+20, KHB+21, FDZ22,
Sha19], sparsity [JCM+21, FA23, HABN+21], quantization [ZYYH18, ZBIW19, AWA+21,
DLBZ22], offloading [SZY+23, WYZ+18, HJL20, RRA+21, RRR+21], etc. Several studies
have explored efficient attention [DFE+22, CGRS19, SGBJ19, KKL20, CLD+20, RSVG21]
and new architectures such as mixture of expert [SMM+17] and multi-query atten-
tion [Sha19] to reduce FLOP count per token. Quantization is also popular method to
minimize memory footprint and communication volume. We also leverage some of
quantization methods to further boost inference performance. Our method is orthogonal
to these works and can be combined with them to maximize performance.

4.7 Conclusion
Our work introduces cache parallelism (CP) as a novel strategy to optimize LLM infer-
ence for long sequences. CP addresses the trade-offs of existing parallelism methods
by partitioning the attention module’s KV cache, improving workload balance and re-
ducing communication overhead. Our efficient CUDA kernels further enhance CP’s
performance. Experimental results demonstrate that CP offers advantages for distributed
LLM inference during the decoding stage, especially in long-sequence scenarios. This
research opens avenues for further exploration into specialized parallelism schemes that
can push the boundaries of LLM capabilities for complex real-world applications.
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Chapter 5

Conclusions

This thesis tackles the challenge of building portable, automated ML systems. We
focus on improving the integration of different DL backends and automating how
DL computations are parallelized across device cluster. Our work includes designing
a portable user interface, a flexible system design, and algorithms to automatically
optimize performance. We highlight our contribution with each pillar work here:

• We introduce Collage, a novel DL framework to streamline the integration of
different DL backends. Collage facilitates flexible backend placement optimization
based on backend capabilities, workload characteristics, and the available execution
environment.

• We present GraphPipe: This distributed system enables efficient and scalable DNN
training by intelligently partitioning DNNs and optimizing micro-batch sched-
ules. GraphPipe’s novel approach preserves DNN topology, leading to significant
improvements in memory efficiency and GPU utilization.

• We offer comparative analysis of various parallelism strategies for distributed LLM
inference in long sequence applications. This work focused on Cache Parallelism
(CP) and established valuable insights into trade-offs involved in long context
scenarios.

These contributions collectively demonstrate a meaningful advancement in the design of
automated and portable ML systems. The research findings provide a foundation for
building more portable and efficient machine learning system.
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