
CMU-CS-79-124

Performance Measurement and Analysis
of Certain Search Algorithms

John Gaschnig

May 1979

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Submitted to Carnegie-Mellon University tn
partial fullfillment of the requirements 'for the
degree of Doctor of Philosophy.

Copyright -C- 1979 John G. Gaschnig

This research was sponsored by the Defense Advanced Research Projects Agency
(DOD), ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory Under
Cont ract F33615- 78-C- 1551.

The views and conclusions contained in this document are those of the author and
should not be interpreted as representin8 the official policies, either expressed or
implied, of the Defense Advanced Research Projects Ager_cy or the U.S. Government.

ABSTRACT

This thesis apolies the methodology of analysis of algorithms to study certain
combinatorial problems and search algorithms originating predominantly in the A!
literature, and extends that methodology to include experiments in a complementary
role.

Chapters 2 and 3 combine experimental and analytic techniques respectively to
measure and to predict the performance of the A* best-first search at¢orithm, which
solves path-finding problems defined in terms of finite strongly connected graphs, in
this domain, we make numerous experimental performance measurements varying the
heuristic function, the size of the problem, a weighting coefficient, and the
performance measure; we derive general formulas in a simpler worst case analysis
model that purport to predict the experimental observations when evaluated at
particular argument values that correspond to the experimental parameter settings;
and we test the analytic predictions against the experimental observations. The A:=
experiments use as case study a randomly generated set of instances of the "Eight"
puzzle of varying size (depth of goal). The analysis in Chapter 3 extends the worst
case tree search model of Pohl and others to arbitrary heuristic functions, resulting in
cost formulas whose arguments include functions.

Chapter zl reports experimental results for a second problem domain, that of a
class of satisficing assignment problems. Here we measure and compare under varying
conditions the performances of four functionally equivalent al_;orithms -- the so-called
backtrack algorithm, a version of the so-called "network consistency" or constraint
satisfaction algorithm of Waltz, and two new algorithms BACKMA,_K and BACKJUMP.
The experiments span four case studies: two sets of N-queens problems and two sets
of randomly generated problems whose characteristics are specified by' the values of
certain parameters. Note that we are not interested primarily in the 8-puzzle or in the
N-queens problems per se, but rather as relatively simple yet non-trivial case studies
in which to explore general issues with rigor, principally the issue of predicting
algorithm performance.

The results take a number of forms: they variously confirm, disagree with or
qualify hypotheses about algorithm performance found in the literature_ tens of
thousands of algorithm executions reveal new phenomena about algorithm performance_
new algorithms are devised based on insights obtained from performance evaluation.

ACKNOWLEDGEMENTS

I will remain Ion8 and deeply indebted to Herb Simon, H. T. Kung, AI Newell, Jay
Kadane, and Michael Shamos, who constituted my thesis committee, especially to Herb,
its chairman and my advisor of long standing. Their high standards, their time, their
patience, and their interest helped make this thesis more than it otherwise might have
been. My officemates Don Kosy and Roy Levin were ever-willing and much--
appreciated sounding boards.] am also grateful to many others who listened and
responded at various times. Many thanks are due to those who developed and
maintain the excellent hardware and software facilities of the department. The
friendliness, energy, and spirit of community that pervades the Computer Science
Department provided an environment both conducive to research and fun to be a part
of. My friends at Shady, Wilkins, Northumberland, Reynolds, and Northumberland
enriched my life and made Pittsburgh a wonderful home; no few words can convey my
appreciation of what we shared together. To all encouraging friends in Pittsburgh and
California, thanks -- it helped.

TABLE OF CONTENTS

1 Introduction and Overview

1.1 Predictive, Experimentally Testable Theories in Artificial Intelligence !

1.2 Objectives, Methodology, and Scope
1.2.1 Objectives 5
1.2.2 Methodology 7
1.2.3 Scope 7

1.3 Computational Models: Defining Problems, Algorithms, Heuristics
1.3.1 Problem Specification Parameters and Control Policy Parameters 8
1.3.2 Analytic Predictions vs. Experimental Observations 12
1.3.3 Abstractions: Monotonicity Theorems on a Lattice of Algorithms 13

1.4 Examples of General Questions Modeled in a Restricted Context
1.4.1 How Much Does "Parameter Tuning" Change Performance? 14
1.4.2 How Much "Knowledge" Buys How Much Performance? 15
1.4.3 How to Measure "Structure" in a Problem? 16

1.5 Tradeoffs: Why These Experiments, Why This Analysis? 16

1.6 A Note on Reading This Dissertation 18

2 Experimental Performance Measurementof A,: A Case Study with the
"Eight" Puzzle

2.0 Summary of Chapter 20

2.1 introduction 22

2.2 Cost and Solution Quality for S-Puzzle Heuristics 24

2.3 Parameter Tuning: Effects of Changing Term Weighting 85

2.4 Cost vs. Error in Heuristic Estimates of Distance to the Goal 39

.2.5 "Internal" Measures of Search Behavior 43

2.6 Predictions About Performance of a Complex Best-first Search System 45

2.7 Procedure for Generating Random Problem Instances 47

2.8 Statistical Issues 51

2.9 Conclusions and Future Experiments ,55

Figures for Chapter 2 58

3 Worst Case Cost of A, as a Functionof Error in Heuristic Distance
Estimates

3.0 Summary of Chapter 73

3.1 A Distance-Estimating, Bounded-Estimate Tree Search Model (DEBET)
3.1.1 Introduction 75
3.1.2 First Definitions 76
3.1.3 A General Case Theorem: Which Nodes are Expanded? 79
3.1.4 The <KMIN, KMAX> Model of Heuristic Functions: Definitions 81
3.1.5 Bounds on Heuristic Distance Estimates Imply Bounds on Lengths of "Garden

Paths": The YMAX(KMIN, KMAX, W, r) Function 85
3.1.6 A General Case Theorem: How Many Nodes are Expanded? 86

3.2 Simplifying Assumptions for Analysis
3.2.1 Definitions and Lemmas 88
3.2.2 A Theorem Simplifying the Computation of YMAX{KMIN, KMAX, W, r) 90
3.2.3 Monotonicity Theorems: Comparin 6 Two Heuristic Functions 91
3.2.4 Applications to the Class of "Linearly Bounded" Heuristic Functions

3.2.4.1 Simple Formulas and Their Geometric Interpretation 92
3.2.4.2 A Scalar Optimization Operation on Linearly-Bounded Heuristics 95

3.3 Cost as a Function of Relative Error in Heuristic Estimates
3.3.1 Definitions 96
3.3.2 A Theorem Relating "Garden Path" Lensth to Relative Error 97
3.3.3 A Simple Formula Bounding Cost as a Function of Relative Error 99
3.3.4 Theorems: Cost Grows Monotonically with Relative Error 102
3.3.5 Lattice Formulation 104

3.4 Parameter Tuning: When is Insurance Justified?
3.4.1 Introduction 105
3.4.2 Theorem: W = .5 is Optimal for "IM-Never-Overestimating" Heuristics i06
3.4.3 W-Optimality for "Linearly Bounded" Heuristic Functions 108

3.5 Analytic Predictions vs. Experimental Measurements for 8-Puzzle Heuristics
3.5.! Numerical Comparisons 109
3.5.2 Comments 112

3.6 Conclusions and Open Problems 114

3.7 DEBET Results as a Step Toward a Theory About the Relation of "Knowledge =
to Performance 117

Figures for Chapter 3 121

4 Experimental Case Studies of Backtrackvs. Waltz-type vs. New
Algorithms for Satisficing AssignmentProblems

4.0 Summary of Chapter 142

4.1 Backtrack vs. Waltz-type Algorithms: What to Measure and Why
4.1.1 Definitions, Examples, and Elementary Results 145
4.1.2 "Obvious" vs. Random Orderings of Candidate Values 158
4.1.3 Analysis of Waltz' Experimental Results 161

4.2 New General Algorithms Combining Backtrack and Constraint Satisfaction
4.2.1 BACKMARK: Backtrack With Fewer Redundant Pair-tests 163
4.2.2 BACKJUMP: Backtrack that Jumps Multiple Levels 168
4.2.3 DEELEV(i): Constraint Satisfaction After Backtracking to Level i 171

4.3 Comparative Performance Measurements for N-Queens SAPs 174

4.4 Experimental Results for Randomly Generated SAPs
4.4.1 SAP Equivalence Classes Parameterized by Size and by "Degree of

Constraint" (L) 176
4.4.2 N-Queens SAPs vs. "Random-N-Queens" SAPs: Comparative Algorithm

Performance 178
4.4.3 Cost as a Function of L: A Sharp Peak at L ,,, 0.6 179 "

4.5 Other Results
4.5.1 Experimental Results for Map Coloring 181
4.5.2 Measures of Uniformity of Distribution of Solutions 182

4.5.3 Proof that Train(N) = N(N-1)/2 183
4.5.4 Improvements to Mackworth's Version of Waltz Algorithm 185

4.6 Conclusions and Future Experiments 188

Figures for Chapter 4 190

5 Description of Apparatus for Search Experiments

5.0 Summary of Chapter 212

5.1 Issues: Generality, Efficiency, Data Collection and Analysis, Modifiability,
General Human Engineering 213

5.2 ASTAR (A* and Variants) 214

5.3 BKDEE (A Family of Backtrack and Constraint Satisfaction Algorithms) 218

5.4 Issues for Future Apparatus 224

6 Conclusions and Future Work

6.1 Contributions
6.1.1 Previous Conjectures Tested Against Hard Data 226
6.1.2 Practical Applications: New Algorithms and Practical Predictions 229
6.[.3 A "Successive Set Partitioning" Approach to Problem "Structure" 232
6.1.4 Analysis of the DEBET "Arbitrary Heuristic" Model of Worst Case A= Tree

Search 233
6.1.5 Experimental Tests of Predictive Power of the DEBET Model of A= 234
6.1.6 Abstractions in Analysis of Algorithms 235
6.1.7 104 Experimental Observations For Future Theories to Predict and

Explicate 237
6.1.8 Cross-domain Comparisons 237

6.2 Immediate Extensions
6.2.1 Mathematical Analysis of Algorithms for Satisficing Assignment Problems 238
6.2.2 Analogous Experiments With Different Problems 239
6.2.3 "Successive Set Partitioning": More Parameters 241
6.2.4 Further Analysis of the DEBETModel of A* 242
6.2.5 Methodological and Practical Issues for Experiments 243
6.2.6 Other Issues Excluded from the Dissertation 245

6.3 Long Term Objectives
6.3.1 Error Aanalysis in Cross-model Comparisons 248
6.3.2 Algorithm Behavior: What is Observable? What is Controllable? 248
6.3.3 The 9-puzzle as a Highly Regular Graph 249
6.3.4 Toward Theories About "Problem Structure" and "Heuristic Knowledge" 250
6.3.5 Performance Analysis in A! Research: General Comments 251

References 253

Appendix A. Glossary of Terms and Symbols 261

Appendix B. Direct Extensions of Present Experiments and Analysi_ 266

Appendix C. Tabulation of Experimental Data Plotted in the Figures 274

Chapter 1

Introduction and Overview

One has the sense that the men who conceived
these high buildings [Gothic cathedrals] were
intoxicated by their new-found command of the
force in the stone. How else could they have
proposed to build vaults of 125 feet and 150
feet at a time when they could not calculate any
of the stresses?

Jacob Bronowski, The Ascent of Man

1.1 Predictive, Experimentally Testable Theories in Artificial Intelligence

This dissertation is based on the premise that in the future more of the subject

matter of artificial intelligence (AI) research will be understood mathematically than at

present. We present the results of limited steps toward that Ion8 term objective, here

focusinB on the performance of certain search algorithms. In brief, we apply the

methodolog;y of analysis of algorithms to study certain relatively simple combinatorial

problems and search algorithms originating predominantly in the A! literature, and we

extend that methodology to include experiments in a complementary role. Two

problem solving domains are considered" path-finding search in graphs and trees using

the A_ best-first search algorithm, and a class of satisficing assignment problems.

The usefulness of a scientifically sound experimental methodology in A! research

has been well established for some time;

"Our research strategy in studying complex systems is to
specify them in detail, program them for digital computers,
and study their behavior empirically by running them with a
number of variations and under a variety of conditions. This
appears at present the only adequate means to obtain a
thorough understanding of their behavior." [Newell, Shaw &
Simon 1963, p. 110]

Since the time of that quotation, many algorithms have been analyzed mathematically,

but applying analysis of algorithms techniques to complex A! systems remains difficult.

In the case of certain search algorithms , we shall attempt to show that both analysis

and experiment ,4re useful.

2

This dissertation combines experimental and analytic techniques (Chapters 2 and

3 respectively) to measure and to predict the performance of the A, best-first search

algorithm, which solves path-finding problems defined in terms of finite strongly

connected graphs. In this domain, we make numerous experimental performance

measurements under systematically varying conditions, we derive general formulas in a

simpler analysis model that purport to predict the experimental observations when

evaluated at particular argument values that correspond to the experimental parameter

settings, and we test the analytic predictions against the experimental observations.

For reasons discussed subsequently, The A* experiments use as case study a randomly

generated set of instances of the "Eight" puzzle of varying size (depth of goal). 1

Chapter 4 reports experimental results for a second problem domain, that of a

class of satisficing assignment problems. Here we measure under varying conditions

the performances of four functionally equivalent algorithms -- the so-called backtrack

alforithm, a version of the so-called "network consistency" or constraint satisfaction

algorithm of Waltz, and two new algorithms BACKMARK and BACKJUK4P. The SAP

experiments span four case studies: two sets of N-queens problems and two sets of

randomly generated problems whose characteristics are specified by the values of

certain parameters. 2

The classes of problems of which the Eight puzzle and the N-Queens problems

are elementary e×amples are defined broadly, and include many disparate problems,

both simple and complex. Note that we are not interested primarily in the 8-puzzle or

in the N-queens problems per se, but rather as relatively simple yet non-trivial case

studies in which to explore general issues with riser, principally the issue of predicting

alsorithm performance.

Most of the questions addressed in the dissertation concern the number of steps

I The Eight puzzle consists of eit_ht tiles placed in a three by three board so that tiles
may slide successively into the empty spot, forming a new tile configuration each time
doing so. The objective is to find a sequence of tile moves transforming a given initial
tile configuration into a given goal configuration. The 8-puzzle is depicted in the
introductory section of Chapter 2.

2 The N-queens problem is to place N queens on an N by N chessboard so that no two
queens attack each other.

3

executed by an algorithm A when applied to a problem P, for various A and P and for

various solution criteria, heuristics, and weighting coefficients, i.e., for various values

of what we call problem specification parameters and control policy parameters.

The ability to predict, a priori and quantitatively, the performance of a given

algorithm, when applied to a particular novel problem instance in its domain, is the

central concern of this dissertation. Knuth addresses this concern succinctly=

"One of the chief difficulties associated with the so-called
backtracking technique for combinatorial problems has been
our inability to predict the efficiency of a given alEorithm, or
to compare the efficiencies of different approaches, without
actually writing and running the programs." [Knuth 1975,
p.1213

Knuth's contribution in that paper to improving the predictability of the

backtrack alBorilhm as it is used in practice illustrates many of the issues that arise in

the domain studied in Chapter 4, and the same issues arise in the A* domain, so let us

review Knuth's results.

Knuth proceeds to define a model of a class of satisficin8 assignment problems

(SAPs, as they are called in Chapter 4; our computational model is essentially the same

as Knuth's). Based on a mathematical analysis, Knuth proposes a mechanical means to

predict the number of nodes in the search tree produced by the backtrack algorithm

when findinE_ all solutions to an arbitrary SAP. The predictor, however, is not a closed-

form mathematical formula, nor a non-closed-form formula, but rather a particular type

of Monte Carlo experiment. The result of each experiment is .an estimate of the number

of nodes in the search tree, and Knuth proposes using the mean of the estimates over

a number of iterations.

Because the values his procedure attempts to predict are mathematically wel_

defined, it is at least conceivable that there exists a simple closed form formula of the

same scope as Knuth's Monte Carlo predictor and of comparable accuracy. However,

consider what arguments or parameters such a formula might take= in order to predict

the performance of the backtrack algorithm for an arbitrary individual problem

instance in the domain of the algorithm (the 8-queens problem, say), the values of the

formula's parameters must distinguish each such problem instance from all others (e.8.,

from the 9-Queens problem, Instant Insanity, the Soma cube puzzle, Waltz' line drawin 8

4

interpretation problem, etc.). Since Knuth defined the domain of problems solvable by

the backtrack algorithm very broadly (as we do also in Definition 4.1), one can easily

suppose that simply defining an exhaustive set of distinguishing parameters and

identifying the parameter values correspondin 8 to a given problem instance may be

problematic in itself. This is an essential point in distinguishing the two domains

considered here from many others appearing in the analysis of algorithms literature. 3

The point here is to contrast the backtrack algorithm with a sorting algorithm,

say, for which a formula for the number of comparisons, say, can be given having a

single integer parameter N, denoting the number of elements to be sorted. Such a

formula does not predict the number of comparisons for individual permutations to be

sorted, but predicts only the mean (say, or the maximum) of the number of

comparisons over all permutations of a given number of elements N, i.e., over an

ensemble of N! problem instances. While prediction for ensembles of problem

instances may prove satisfactory in the case of sorting, in contrast the mean

performance of the backtrack algorithm in solving all satisficing assignment problems

having: N problem variables may not be an especially informative number. Hence the

need for more problem specification parameters (or non-parametric means such as

Knuth's) to distinguish one problem instance from all others in the class of problems

constituting the domain of the algorithm, and whence the challenge in the tasks of

formulating a computational model and analyzing the performance of an algorithm

within that model.

In the two problem domains considered in this dissertation, the need for

predictive abilities arises in practice typically when one must choose from among

several algorithms, or heuristics, or values of a weightin 8 parameter, or other control

policy parameters, the candidate that will give the most efficient performance for the

particular problem to be solved. Especially in domains in which for some problem

instances an algorithm "will run to completion in less than a second, while other

applications seem to go on forever" [Knuth 1975, p.]21"J, it would seem that

voluminous hard data, spannin 8 as many independent conditions as possible, are

desirable as a firm basis for assessing how a particular predictor might fare in a
particular novel application.

3 See Weide [1977] for a survey; Knuth [1969], [1973a], [1973b] and Aho, Hopcroft
and UIIman [1974] present examples in depth.

5

This introductory section has attempted to illustrate that the two problem

domains considered in this dissertation have characteristics of interest both to AI and

to analysis of alg,orithms research (althoush for not identical reasons), that these

characteristics recommend a methodology that combines experiment and analysis in

complementary and highly specialized and formalized roles, and that the richness of

the domains make it difficult to obtain simply-stated general results that apply to

individual problem instances as well as to ensembles of problem instances. The

mathematical richness of these domains concommitantly permits, as we shall see

subsequently, attempts to formulate certain elusive general concepts such as

"knowledge" and "problem structure" in a strictly mathematical, albeit restricted,

setting.

in a broad sense, the present results attempt to show that statements such as,

"The problem of searching a graph has essentially been solved and thus no longer

occupies A1 researchers" [Nilsson 1974, p. 787], are premature.

1.2 Objectives, Methodology, and Scope

1.2.1 Objectives

Experiments are usually performed in order to verify, or sharpen or qualify or

reject, a given hypothesis. We list now three such hypotheses about algorithm

performance found in the literature that we submit to the test of hard data in

subsequent chapters. Mackworth [1977] claims that Waltz-type constraint satisfaction

or "network consistency" algorithms are "clearly more effective" than the backtrack

algorithm for solving satisficing assignment problems. At the time of that claim,

however, there was not a single numerical experimental result comparing the

performance of the backtrack algorithm with that of a Waltz-type algorithm under

strictly identical conditions (including identical problem instances and identical

performance measures). Mackworth also claims that the number of steps executed by

the backtrack algorithm "tends to" grow exponentially with the number of variables.

The experimental data reported in Chapter 4 disagree with these conjectures in the

cases tested.

6

Similarly, Nilsson, Pohl, and Vanderbrug conjectured that increasing the value of

a weightinF_, parameter W in At search will decrease the number of nodes expanded for

a given heuristic function that estimates distance from the current node to the goal. In

Chapter 2 we provide average case experimental evidence, supporting the conjecture

under some conditions and disagreeing with it under other conditions; in Chapter 3p

theorems under worst case tree search assumptions prove the conjecture false under

some conditions and prove it true under other conditions.

In each of the above cases, a conjecture was stated in an overly p=eneral way_ as

if it was allep_,edto apply without exception to every problem instance in the domain of

the alp_orithm. Since the classes of problems considered here are broadly defined and

include widely disparate instances, intuition suggests that the conjectures are not

universally valid, but rather are valid only for a subset of the problem domain. The

results of the present experiments serve to delimit further the scope of the above

conjectures.

Our experimental work was guided by certain other general objectives as well:

1) To determine the effect on the character of experimental results of
(approximately) an order of ma8nitude increase in computer speed and main
memory size, as compared with the machines available more than a decade
ago when A* search of the 8-puzzle was first investiEated experimentally.
In particular, extendinl_ the body of experimental data by a large factor can
reveal new phenomena, i.e., instances in which the plotted performance
measurement data show a visually apparent pattern whose existence was
previously unsuspected.

2) To determine what practical applications can result from these experiments
and analysis.

:3) To amass a large body of experimental algorithm performance data as an end
in itself, for the purpose of potentially stimulating further development of
theoretical analysis in these domains, and so that the predictions resulting
from such analysis may be tested conveniently against the observations
compiled here.

Our mathematical analysis of A* in Chapter 3 differs from others in that it is

general enou_.h to claim that the heuristic function is one of the independent variables,

and in that the predictive applicability of this model is actually testable by direct

experiment with problems and heuristic functions occurring in practice.

7

1.2.2 Methodology

Chapter 3 attempts to adhere to the standards of mathematical proof

commonplace in tile analysis of algorithms literature, so here we address only issues

concerning the experiments in Chapters 2 and 4.

Experimental results about algorithm performance for particular cases are a

poor substitute for analytically derived formulas of a more general scope, but can

serve to guide the development of theory or suggest specific conjectures to prove,

especially when general analysis is difficult. To insure that the experimental results

are mathematically meaningful and can be compared with analytic predictions, we

attempt to adhere to certain methodological standards: First, we define a precise

computational model of experiments such that each datum observed by experiment is

an estimate of the value of a particular mathematical function, evaluated at a particular

set of argument values. Second, so that algorithm comparisons are meaningful, in all

cases we execute the algorithms to be compared under identical conditions, including

identical samples of problem instances and identical performance measures. We also

report the precise conditions of the experiments (for the sake of reproducibility), and

in many cases we count the number of d;stinct algorithm executions represented in a

figure of plotted data (to indicate explicitly the extent of the data).

1.2.3 Scope

Chapter 2 defines a computational model for the A* best-first search algorithm

for arbitrary problem graphs. The model defines several performance measures as

functions of a state-space graph G, a heuristic function K, distance to the goal N (a

measure of the size of the problem), and a scalar weighting coefficient W. We measure

the values of these functions by Monte Carlo experiments over a randomly selected

sample of 895 instances of the g-puzzle of varying N, for each of three particular

heuristic function_ taken from the literature, and for each of eleven equidistant values

of W. The results represent more than 26,000 distinct algorithm executions.

Chapter :3 analyzes a worst case mathematical model of A* assuming uniform

trees in which there is a single goal node at level N. We give formulas for the number

of nodes expanded as a function of N, of the branching factor M, of the estimate-

8

bounding functions KMIN(i) and KMAX(i) representing the heuristic function used as a

control policy parameter to guide the search, and of a weighting coefficient W that

serves as an additional control policy parameter.

In Chapter 4 we report the results of a set of performance measurement

experiments comparing, the so-called backtrack algorithm with an instantiation of a so-

cslled Waltz-type "network consistency" algorithm and with two new algorithrns_

BACKMARK and BACK JUMP. Each of the algorithms is valid for a broadly and precisely

defined class of satisficing assignment problems (SAPs) that includes numerous

disparate familiar problems. The results span four funct',onally equivalent algorithrns_

three performance measures, two solution criteria, and four sample sets of SAPs, and

the results represent more than 17,000 distinct algorithm executions. The four sample

sets of SAPs include two sets of "N-Queens" problems (for N up to 50 in some cases)

and two quite different types of randomly generated problems. One of the latter is a

set of "random-N-Queens" problems whose members are constrained to be

parametrically similar to N-Queens problems (i.e., to have the same size and "degree of

constraint"). Results for this sample set (Section 4.4.2) simultaneously generalize the

results for N-Queens SAPs to a set of "typical" problems, and determine how "typical"

the N-Queens SAPs actually are. (See Section 1.4.3 for more detail.) The other sample

set of randomly generated SAPs are identical in size but vary systematically in degree

of constraint. The results in this case (Section 4.4.3) indicate how performance

depends on degree of constraint, all other things being equal.

The results obtained are summarized in Sections 2.0, 3.0, and 4.0.

1.3 Mathematical Models: Defining Problems, Algorithms, Heuristics

In this dissertation the terms problem, algorithm, heuristic, degree of constraint,

quality of solution, and others have particular mathematical definitions.

1.3.1 Problem Specification Parameters and Control Policy Parameters

The example of Knuth in Section 1.1 suggests that to predict algorithm

performance for individual problem instances and individual variations or instances of

9

the algorithm in a context in which there are many such instances having disparate

properhes, a formula giving such predictions must have parameters distinguishing each

problem instance and algorithm instance. In contrast with a simple sorting algorithm,

for example, A* is not a fixed algorithm but rather is an algorithm schema

parameterized by a "heuristic distance-estimating function" that defines what is best

during a particular invocation of A,. To illustrate (without going into detail), we

compare the following functions:4

Model AIRorithm performance function

Quicksor t C(N) (1-1)

"Median-of-k Quicksort" C(k, N) (1-2)

"(-approximation schema" C((, N) (1-3)

A* for graphs (Chapter 2) X(G, K, W, Sr, Sg) (1-4)

A* for graphs (Chapter 2) XMEAN(G, K, W, N) (1-5)

A* for graphs (Chapter 2) XMAX(G, K, W, N) (1-6)

A* for trees ("DEBET" - Chapter 3) XWORST(M, KMIN, KMAX, W, N) (1-7)

SAP-S (Chapter 4) T(S) (1-8)

SAP-N-ki-L (Chapter 4) T(N, kl, ..., kN, L) (1-9)

4 For those interested, Sedgewick's "median of k" version of the Quicksort algorithm
[Sedgewick 1975, Chapter 8] is a generalized algorithm, instantiated for any particular
invocation by specifying a value for k as an actual parameter to the procedure that
codes the algorithm (see 1-2 above). So-called (-approximation algorithm schemas
have appeared in the literature of NP-complete problems [Garey & Johnson 1976.]. An
example is a travelling salesperson algorithm that finds a non-optimal tour, the length
of which is bounded by the given value of ([Karp 1976]. This schema is coded by a
procedure who_e formal parameter list includes a real-valued parameter representing
((see 1-3 above). As in the case of Sedgewick's algorithm, the value of this
parameter is freely chosen by the user from the set representing the domain of the
parameter. Just as each value of k or (, in the cases of Sedgewick and Karp
respectively, delermines one particular algorithm instance among those in the schema,
so also each combination of values of KMIN, KMAX, and W determines one particular
algorithm instance in the A* schema.

t0

As a notational device, we distinguish "problem specification parameter" and

"control policy parameter", or p.s. parameter and c.p. parameter for short. We define

the domain of a control policy parameter to be a set whose elements denote individual

variations of a generalized algorithm. We shall thereby distint_uish the analysis of A*

in Chapter 3 from analyses of other algorithms by the number and dimensionality of

the c.p. parameters. We define the domain of a problem specification parameter to be

a set whose elements denote individual variations of a 8eneralized problem, or

individual problem instances. Hence in the examples listed above we distinguish the

following:

Algorithm performance Problem specification Control policE_
function parameters parameters

C(N) N

C(k, N) N k

C((, N) N (

X(G, K, W, Sr, s8) G, sr, s8 K, W

XMEAN(G, K, W, N) G, N K, W

XMAX(G, K, W, N) G, N K, W

XWORST(M, KMIN, KMAX, W, N) M, N KM]N, KMAX, W

T(S) S

T(N, kl, ..., kN, L) N, kl, ..., kN, L

Artificial intelli_,ence researchers commonly refer to A, as a "heuristic"

algorithm, because an instantiation of A, to solve a particular problem G may

sometimes be caused to execute more quickly if supplied with a function of a certain

sort used by A, to order the steps of the search, and because such a function is

usually devised in practice by attempting to determine what special properties may

hold for G. Here however, we treat a "heuristic" function of the sort used by A. as

just another c.p. parameter (i.e., K in (1-4) and (1-5), KMIN and KMAX in (.[-7); W is

another c.p. parameter).

