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Abstract—The proliferation of social-networks, localization
systems, and high-end mobile devices has created a fertile ground
for the development of systems that are aware of interests and
adaptive to location. With the burgeoning of the domain of social-
based context-aware systems, numerous challenges are becoming
of increased importance. One such challenge, not addressed so
far by the research community, is end-to-end communication
between ubiquitous systems and their users. Communication in
existing systems is either infrastructure-based or infrastructure-
less. Infrastructure-based communication require users to stay
connected to a server and thus assumes the availability of internet
connectivity everywhere. In reality, internet connectivity may
be absent, charged, energy-consuming, heterogeneous, and over-
loaded. As an alternative, infrastructure-less communication en-
ables users to obtain information from neighbouring devices but
the availability of information and the extent of its dissemination
are dictated solely by user mobility and contacts.

We realize the need for a new hybrid mode that leverages
the centralized and distributed communication modes. Using the
hybrid mode, a ubiquitous system disseminates a message to
interested connected and unconnected users by first selecting a
subset of connected users sufficient to reach the unconnected
ones and secondly by forwarding the message from the re-
cipients to neighbouring users who are most likely to meet
the unconnected ones. We implemented a social-based context-
aware ubiquitous system, SCOUT, as a tool to test our hybrid
communication paradigm as well as our selection and forwarding
algorithms. We validate our implementation of SCOUT, compare
the performance of the hybrid paradigm against the existing
ones and evaluate our forwarding technique using real datasets
based on two metrics important in this domain namely success
percentage and overhead. We show that the hybrid paradigm
achieves a success nearly 80% and 25% more than the centralized
and distributed paradigms respectively. We also show that our
forwarding technique reduces overhead by as much as 50%.

I. INTRODUCTION

Social networking has recently gained unprecedented pop-
ularity among Internet users. The advent of smart phones
equipped with mobile technology such as WiFi, 3G, 4G, and
sensors, has exponentially increased the number of mobile
phone users thus enriching the content of online social net-
works such as Facebook. This has increased the importance
of social- and context-aware systems that leverage social
information with location awareness to provide personalized
services. Figure 1 illustrates how such systems renders Bobs
shopping activity in a mall an exciting endeavor. Bob receives
notifications based on his Facebook profile and location in
positions A, B, and C. He is able to tune the world around
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Fig. 1. Bob is shopping in a mall and receiving real-time context-aware
recommendations based on his on-line social-network profile.

him to his liking, discover surrounding people and places, and
seize various social/business opportunities.

To receive context-aware recommendations in real-time,
mobile devices must be connected to wireless networks. How-
ever, in reality, many devices are not connected all the time
due to the absence of coverage or high energy consumption
and cost (like 3G service). Moreover, wireless connectivity
is intermittent in heterogeneous environments in which users
move from one network to another and can suffer from
contention under high load.

Previous systems in this domain were either infrastructure-
based or infrastructure-less. Serendipity [10], Live So-
cial Semantics [2], SPETA [11], and SocialFusion [5] are
infrastructure-based systems that collect and store users so-
cial information in a server to provide context-aware recom-
mendations about other users within Bluetooth range. While
such a paradigm guarantees timeliness, it assumes persis-
tent connectivity of users at all times. As an alternative
paradigm to achieving the same functionality, WhozThat [4],
Ad-Hoc Smart Spaces [6] and MobiClique [15] proposed
a infrastructure-less Bluetooth-based architecture in which
devices obtain context-aware messages from other devices in
range. Successfully overcoming the connectivity requirement,
this paradigm compromises on the extent of information dis-
semination and timeliness because delivery is solely dictated
by user mobility and meetings.



LIMITATIONS 

Cost 

Contention  

Disruption  

Delay  

Unreachability  

Fig. 2. Challenges in the domain of social context-awareness and the
challenge we address, namely end-to-end communication. Communication
either assumes and requires a fixed infrastructure or is infrastructure-less.
Each has a set of drawbacks and therefore we propose a hybrid paradigm.

The shortcomings of existing paradigms call for a new
hybrid paradigm that enables the reachability to unconnected
users while still maintaining timeliness. Therefore, among the
various critical challenges in the domain of social-context-
awareness as depicted in Figure 2, we choose to address the
end-to-end communication challenge.

We adopt a pragmatic approach towards solving the com-
munication challenge. On one hand, we propose theoretical
algorithms to realize the new hybrid paradigm and on the other
hand, we implement a real ubiquitous system, SCOUT [1],
that helps test and evaluate one component of our proposed
solution and in the long term, will be deployed to collect
real social and mobility data for the benefit of the research
community.

Our main contribution is the proposal and evaluation of a
new communication paradigm and social opportunistic for-
warding technique that out-performs existing paradigms and
well-known forwarding techniques respectively. Using a real-
trace-based evaluation, we show that the hybrid paradigm
achieves a success percentage nearly 80% and 25% more than
the centralized and distributed paradigms respectively. We also
show that our social forwarding algorithm achieves a success
percentage comparable to the other techniques but at a reduced
cost of nearly 50%. We also build a real social-based context-
aware ubiquitous system to implement our selection algorithm.

The rest of the paper is divided as follows. Section II
formally defines and illustrates the end-to-end communication
problem. In section III we discuss the related work of an
important component of hybrid communication which is the
field of infrastructure-less or opportunistic communication.
Next, we present two algorithms, selection and opportunistic
forwarding, that achieve the hybrid paradigm in section IV.
We introduce our ubiquitous system SCOUT [1] in section V
along with its architecture and validation. In section VI we

evaluate our opportunistic forwarding algorithm. Finally, we
present our conclusion and future work in section VII.

II. PROBLEM DEFINITION

End-to-end communication generally refers to the transfer
of data packets from a source to a destination. In the domain
of ubiquitous systems, the packets are context-aware messages
that originate from a server or devices and are destined
to devices whose users are interested in the message. The
challenge is to deliver the messages to the maximum number
of connected and unconnected users in the shortest possible
time and minimum cost.

More formally, Let N be the set of all users registered with a
central system S. N is partitioned into two sets NC , the set of
connected users, and ND, the set of unconnected users. Given
an interest Ik and a related message mIk generated by S at
time t, we need to deliver the message to NIk ⊆ NC ∪ ND,
the set of users interested in Ik, with minimum delay δt and
minimum number of message replicas.

Much research has been done for minimizing the delay in
end-to-end communication between a user and a server in an
infrastructure-based environment. Therefore, connected users
can directly receive messages with the minimal delay.

Unconnected users, however, can acquire messages op-
portunistically using an infrastructure-free paradigm. Oppor-
tunistic communication refers to the exchange of messages
between users when they come in communication range of
one another. The research community has proposed general
techniques for opportunistic communication which we discuss
in the following section. Note that in the following sections,
we refer to users as nodes.

III. RELATED WORK

Opportunistic communication techniques can be classified
into two categories: Non-social and Social.

A pioneer work in the non-social category is Epidemic
Routing [17] in which a message-carrying node transfers a
replica of the message to every node it encounters within
communication range. Essentially, this technique uncondition-
ally floods a message throughout the entire network. While, it
overflows node buffers with messages, it achieves the minimal
delay to reach destination nodes. Evolutions of Epidemic
Routing are MaxProp [7] which prioritizes messages to flood
and Spray and Wait [16] which sprays or transfers only some
L replicas of a message to nodes within communication range
and waits until one of the nodes meets the destination. In
order to reduce the cost or number of replicas, RAPID [3]
and PRoPHET [19] proposed probabilistic techniques in which
nodes transfer replicas only to other nodes that have a high
probability of encountering a destination. This information is
obtained from the history of encounters. Another technique
is Message Ferry [18] that deploys ferries (like robots or
vehicles) to carry and deliver messages between nodes.

The category of social techniques is a recent one which
exploits social-relationships among nodes to identify to trans-
fers replicas to most popular nodes. In SimBet [9] and Bub-
bleRap [12], each node is assigned a centrality value which is
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Fig. 3. Illustration of the selection and forwarding phases

equal to the number of its social friends and message replicas
are transferred to nodes with high centrality. PeopleRank [14]
is another social technique inspired by PageRank that gives
weights to nodes according to the number of important nodes,
nodes with high weights, they are socially linked to.

IV. OUR SOLUTION

To disseminate a context-aware message originating from
a server to a set of interested connected or unconnected
nodes, our solution consists of two phases: Selection and
Opportunistic Forwarding. Opportunistic forwarding refers to
the exchange of messages between nodes when they come
in communication range. While selection is performed by
the server, opportunistic forwarding is performed by all the
message-carrying nodes as shown Figure 3 (a).

A. Selection

We assume that the server, S, stores the social profiles
consisting of basic information, friends and interests of all
registered nodes N . S also builds and maintains a social graph
of N nodes in which a direct link exists between two nodes
if they are listed as friends in their social profiles. Using this
graph, S computes the betweenness centrality as:

∀n ∈ N,C(n) =
N∑
i=1

i−1∑
j=1

pij(n)

pij
(1)

where pij is the number of shortest paths between i and
j and pij(n) is the number of such paths that pass through
n. Intuitively, the betweenness centrality measures the extent
to which a node can facilitate communication between other
nodes. At any time t, ∀n ∈ N,n ∈ NC ∨ n ∈ ND. When
a message mIk is generated by S, it computes the subset of
interested nodes NIk as follows:

∀n ∈ N,n ∈ NIk if Ik ∈ Interests(n) (2)

S sends the message to all the connected nodes in NIk∩NC .
However, unconnected nodes in NIk ∩ ND must obtain the
message opportunistically from other message-carrying nodes.
To increase the chances of message delivery, S transfers the
message to additional connected nodes as follows (depicted in
Figure 3 (b)). ∀n ∈ NC −NIk :
• Find all nodes in the circular area whose center is n and

radius is 4d.
• For each such node m,

1) if m received mIk then a copy of the message
exists in that area and hence n will not receive it.
For example, node P does not receive the message
because the interested and connected node Q had
received it.

2) if m did not receive mIk then n will receive a
copy if C(n) > C(m), otherwise m will receive it.
For example, node R receives the message because
C(R) > C(S).

B. Opportunistic Forwarding

Once the selected nodes receive the message, they begin
forwarding the message opportunistically so that it eventually
reaches the interested nodes. We assume that all nodes have
unlimited buffers and they are willing to be message carriers.
We use one or more of the opportunistic communication
techniques discussed in Section III. We qualitatively evaluate
and compare the techniques based on five metrics (as shown in
Figure 4) that are important to the domain of social-context-
aware ubiquitous systems . Each metric is assigned a color
according to its performance where yellow and red signify
the optimal and worst performance and are assigned 5 and 1
respectively. The overall performance of the technique is then
computed as the sum of the values assigned to each metric.

We note that the social techniques, particularly PeopleRank,
perform well in terms of end-to-end delay and success rate.
However, the cost in terms of number of replicas can be
improved. For this, we consider non-social techniques Spray-



 

Fig. 4. Qualitative comparison between opportunistic techniques

and-Wait and Message Ferry which have a very low cost.
Therefore, we adopt the highest score non-social technique,
Spray-and-Wait, and social technique, PeopleRank. We com-
bine these two forwarding techniques to create a protocol,
Social Spray and Wait (SSNW), expounded below.

Each node in the network computes its PeopleRank as
follows:

PeR(n) = (1− d) + d
∑

m∈SN(n)

PeR(m)

|SN(m)|
(3)

where SN(n) is the set of nodes that node n physically
encountered, referred to as social neighbours, and d is a
damping factor defined as the probability that the social
relation between nodes helps improve the rank of these nodes.

When message-carrying node n encounters another node m
i.e. they become within communication range, the following
steps occur as shown in Figure 3 (c):
• m sends its list of interests to n. If Ik ∈ Interests(m),
n sends a replica to m. Otherwise, m is not interested in
the message but can act as a carrier.

• m sends the list of messages in its buffer and its PeopleR-
ank. n sends a replica to m if mIk /∈ Messages(m)
and PeR(m) > PeR(n). A higher PeopleRank value
indicates that a node is more socially linked and is hence
more likely to meet the destinations.

All message-carrying nodes repeat this process of forward-
ing until they have each sprayed a total of L copies of the
message in the network.

V. IMPLEMENTATION OF A UBIQUITOUS SYSTEM: SCOUT

While attempting to theoretically solving the communi-
cation challenge by reviewing the literature and proposing
algorithms, we implement a prototype of a social-based
context-aware ubiquitous system, SCOUT [1], that adopts an
infrastructure-based communication paradigm. Our intention
is to use SCOUT to implement and evaluate our selection
algorithm as detailed in section IV-A, and integrate it with
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Fig. 5. High level architecture of SCOUT

the forwarding algorithm to fully realize a system based on a
hybrid paradigm. In the following sections, we present a brief
description of the components of SCOUT and its stress-testing
results. For more details on its architecture, implementation
and other testing results, please refer to the Appendix.

A. Components

SCOUT is based on a client-server architecture where the
client retrieves social information from Facebook including
basic information, friends and interests, and sends it to the
server. The server maintains the social, location and custom-
settings data in databases and performs matching to provide
real-time recommendations or messages to interested users. As
shown in Figure 5, SCOUT consists of a task manager, three
databases, and recommendation engine.

The task manager receives and delegated tasks from clients
to the task parser and recommendation engine as well as sends
real-time messages back to interested- connected- clients. The
task parser parses social profiles and updates the profiles
database. The databases store social profiles, location and
custom settings of all registered users. The recommendation
engine is responsible for periodically examining the context
of available messages and traversing the databases to generate
the set of users interested in in each.

B. Stress-Testing

To assess the stability of SCOUT, we subject the server
to a high load of concurrent client connections and measure
(i) average parsing delay avgPdelay: Average time incurred
by the task parser to parse a given user’s social information,
and (ii) Average matching delay avgMdelay: Average time
incurred by the recommendation engine to identify if a client is
interested in a message. For measuring avgMdelay, we assume
that there exists a message for which we require to examine
client entries in the social, location and settings databases to
identify interested ones.

Figure 6 (a) plots avgPdelay for 6 and 20 concurrent
clients with respect to different profile lengths which are
predominated by the average number of friends (y-axis in log
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Fig. 6. Results for stress testing SCOUT to measure its stability and robustness

scale). We observe that the avgPdelay exponentially increases
with the increase in profile size. However, the delay for very
large profiles remains reasonably small; less than 130 ms to
parse 20 profiles with an average number of friends 5000.

Figure 6 (b) plots avgPdelay and avgMdelay for 1 to 1000
concurrent clients connections. It is clear that avgPdelay is
almost constant. On the other hand, avgMdelay exponentially
rises with an increase in the number of clients. This is mainly
because the matching is more time-intensive task that involves
accessing and traversing databases as well as matching inter-
ests of clients to the context of messages. In the future, we
will investigate more efficient matching techniques.

Figure 6 (c) plots the cumulative delays and depicts that
the cumulative parsing delay is negligible compared to the
cumulative matching delay. Eighty percent of the parsing tasks
execute in less than 0.1 ms. Despite its linear increase with
the number of clients, the cumulative matching delay curves
down for the last 20% because of two reasons: the number
of new clients is not significantly increasing and the system
gives the matching tasks more priority over the parsing ones.
For other testing results, please refer to the Appendix.

VI. EVALUATION OF OPPORTUNISTIC FORWARDING

As presented in section IV, our solution consists of two
phases: (i) selection: Identifying the set of recipients, and
(ii) forwarding: disseminating the message based on social
information.

In the previous section, we presented our prototype SCOUT
that we build for implementing and testing phase (i). However,
due to time constraints we did not implement the selection
process. In this section, we present our evaluation of the
opportunistic forwarding phase including set-up, experimental
datasets and results.

A. Set-up

We use a simulator to emulate the mobility of users and
the contacts between them. We initially implemented our
algorithm as discussed in Section IV-B on a well-known

simulator in opportunistic forwarding, the ONE 1 . However,
because we could not control the users traffic as we needed,
we implemented our own simulator. The simulator reads a
contact file which contains entries of Bluetooth encounters
between pairs of nodes and performs forwarding based on
three techniques:
• Epidemic: Here each a message-carrying node forwards a

copy of the message to every node it encounters. Hence,
the message is unconditionally flooded in the network
and the forwarding continues even after all destinations
receive a copy.

• Spray and Wait (SNW): This achieves controlled flooding
of a message. A message-carrying node forwards a copy
to the first L nodes it encounters. The spray value L
depends on the network size and is chosen based on
heuristics.

• Social Spray and Wait (SSNW): This uses social infor-
mation for forwarding decisions and works as discussed
in section IV-B. In short, each node is aware of its
social friends, stores its PeR value, updates it when
encountering a social friend and forwards a copy to
encountered nodes of higher PeR.

B. Experimental Data Sets

The contact files we use for the simulation process are two
real data sets, Haggle and St Andrews, which are two state-of-
art human mobility traces publicly available at CRAWDAD 2

3

InfoCom06 Dataset: This trace was collected with 78 partic-
ipants during the IEEE Infocom 2006 conference. Participants
were asked to carry experimental iMote devices at all times.
The devices performed Bluetooth scans every 2 seconds and
logged contacts with other experimental devices (referred to
as internal contacts) and other external Bluetooth devices
including cell phones, PDAs etc. Besides the participants,

1http://www.netlab.tkk.fi/tutkimus/dtn/theone/
2crawdad.cs.dartmouth.edu/meta.php?name=cambridge/haggle
3crawdad.cs.dartmouth.edu/meta.php?name=st andrews/sassy



Data set Data Collected Participants Duration Location
Haggle Bluetooth Sightings 98 3 days Infocom06
St Andrews Bluetooth Sightings & FB Friends 27 79 days Univ. of St Andrews

TABLE I
SUMMARY OF THE TWO DATASETS USED FOR EVALUATION OF OPPORTUNISTIC FORWARDING

the experiment included 20 stationary nodes which have
more powerful battery and extended radio range (around 100
meters).

St Andrews Dataset: This trace consists of sensor mote
encounter records and corresponding Social Network data
(Facebook friends) of a group of 27 participants at University
of St Andrews. The participants, students and staff, carried
iMote devices during a period of 79 days. The devices
performed Bluetooth scans every 6.67 seconds and logged
contacts with other experimental devices. In addition, the trace
also provides the participants Facebook friends that can could
be used to generate a social graph.

C. Metrics and Parameters

We measure two important metrics in the domain of social-
and context-awareness namely (i) Success Percentage: Per-
centage of the destinations or interested nodes in NIk that
receive a copy of mIk , and (ii) Overhead: Number of non-
interested nodes in N − NIk that receive a copy of mIk in
transit.

For each metric, we vary the parameters (i) Spray value L:
The total number of copies each selected nodes must spray,
and (iv) Delay: The time after which the message is dropped
from the buffers of all nodes and is no longer forwarded. This
delay is usually small for ubiquitous systems due to their real-
timeliness.

D. Experiments

In this section we present the evaluation results of two
experiments expounded below. In all the experiments, the
delay parameter assumes a maximum value of one day because
of the real-timeliness requirement of ubiquitous systems.

1) Comparison of Communication Paradigms: The aim
of this experiment is to compare the performance of the
three communication paradigms namely infrastructure-based,
infrastructure-less and hybrid. We use the Haggle dataset to
measure their performance in terms of success percentage.
Among the 98 nodes, we randomly select the subset NC and
add the rest of the nodes to ND.

Using the infrastructure-based paradigm, all the nodes in
NC receive mIk . For the infrastructure-less paradigm, a node
is randomly selected from NC to receive the message and in
turn forwards it to other nodes. Finally, in the hybrid paradigm,
all nodes in NC receive the message (like the infrastructure-
based) and each node then forwards it (like the infrastructure-
less).

In Figure 7, we plot the success percentage for each
paradigm against a delay of upto 1 day. Figure 7(a) uses
the Epidemic forwarding technique. The hybrid paradigm
reaches 20% more than the distributed paradigm and 95%

more than the centralized paradigm. Figure 7(b) uses the SNW
forwarding technique. Similarly, the hybrid paradigm reaches
30% than the distributed paradigm and 70% more than the
centralized paradigm. Therefore, the hybrid paradigm out-
performs the existing paradigms for all delays and the two
forwarding protocols.

2) Comparison of Forwarding Protocols: Next we compare
our forwarding protocol SSNW detailed in Section IV-B to
Epidemic and SNW. For this we use the St Andrews dataset
that additionally provides social information needed for for-
warding decisions in SSNW. We measure the two metrics,
success percentage and overhead, and vary the two parameters,
L and delay.

While Figure 8 (a) and (b) use a spray value L = 4, Figure 8
(c) and (d) use L = 8. Figures (a) and (c) illustrate that
SSNW achieves a comparable success percentage to Epidemic
and SNW. In fact, with only a limited number of copies, our
success percentage is close to the optimal value attained by
Epidemic. However, (b) and (c) show that SSNW achieves
nearly 50% reduction in the overhead compared to Epidemic
and 20% compared to SNW. Therefore, SSNW attains a
comparable success percentage at a reduced cost.

VII. CONCLUSION & FUTURE WORK

In order to extend the reachability of ubiquitous systems,
we have proposed a new hybrid communication paradigm that
leverages the existing infrastructure-based and infrastructure-
less paradigms. We have also proposed a forwarding protocol
(SSNW) that uses social data for forwarding decisions.

We have compared the hybrid paradigm to the existing ones
using real datasets and we have shown how it significantly
increases the success percentage of ubiquitous systems. We
have then compared SSNW to well-known opportunistic pro-
tocols, Epidemic and Spray and Wait (SNW), and showed that
SSNW achieves comparable performance with a much lower
overhead.

In the future, we plan to re-run the same experiments using
scaled datasets with larger number of participants. We plan to
implement the selection algorithm as discussed in section IV-A
on SCOUT and integrate it with the opportunistic forwarding
algorithm as discussed in section IV-B to achieve a real
system based on the hybrid paradigm. We then plan to deploy
SCOUT in the Carnegie Mellon University in Qatar to gather
mobility and social data and make it available to the research
community for various purposes. In the long term, we hope
to address similar challenging problems in the domain.
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APPENDIX

A. SCOUT Architecture

In this section, we describe the architecture of SCOUT. We
first provide a high level system overview where we discuss the
fundamental functionalities that enable mobile users to bridge
the gap between their social world and daily life. Afterwards,
we describe the various components of our architecture that
achieve these functionalities.

1) System Overview: SCOUT is a generic system encom-
passing the fundamental functionalities of a social context-
aware ubiquitous system that enables a multitude of mobile
applications. The system is based on a client-server architec-
ture where the server, shown in Figure 5, consists of a task
manager, a recommendation engine, and three databases that
store social profiles, location information, and client settings.

The server operates in two modes (i) reactive and (ii)
proactive. It is in the reactive mode when clients running
different mobile applications built on top of SCOUT seek
recommendations and explicitly request the server to provide
them. For example, Bob in Figure 1 can request a friend-
finding application to find his friends in the vicinity. On
the other hand, the server is in the proactive mode when
recommendations seek clients. The server pro-actively sends
recommendations to relevant clients depending on their avail-
ability. SCOUT, for instance, can pro-actively contact Bob
about Dan Brown’s books promotion based on his interests
and presence in the mall.

In general, clients connected to SCOUT’s server via ap-
plications, submit tasks and await recommendations sent pro-
actively, or in response to tasks explicitly submitted by the
user. Tasks are received by the task manager that assigns a
new id, Tid. The task manager handles concurrent tasks and
tracks the completion of each task by updating its status at
time t, Tid(t).

The type of incoming tasks pertain to contextual data or
recommendation requests. Depending on its type, the task
manager delegates a task either to the task parser or recom-
mendation engine. The task parser parses a task and updates
the appropriate databases. The recommendation engine, on
the other hand, runs a set of matching algorithms, generates
recommendation results, and dispatches the results back to the
client via the task manager. On successful completion, the task
manager sets Tid(t) to DONE and removes the task from its
list. In the case of processing errors, the task manager reports
back exceptions to the client.

We now discuss the details of the task manager, recom-
mendation engine, and the databases needed. Algorithm 1
depicts and summarizes the server operation in reactive and
proactive modes, the functionality of these components, and
the interactions between them.

2) Task Manager: The task manager is responsible for re-
ceiving and delegating tasks from the clients to the task parser
and recommendation engine, sending reactive and proactive
recommendation results back to clients, and handling failure
recovery.

The task manager uses the task parser to process tasks
pertaining to contextual information like social, location, and
settings data by manipulating and updating the corresponding
databases. The task manager delegates the other tasks, namely
recommendation requests, to the recommendation engine.
Both the task parser and recommendation engine communicate
results back to the task manager. The manager awaits results
in the form of acknowledgements, output results, or excep-
tions. Acknowledgements are then sent by the task parser on
successful database manipulation operations, output data by
the recommendation engine in order to forward to the client
application, and exceptions by both. The Tid(t) of a task that
successfully finishes is set to DONE and the task is removed
from the processing pool.

The task manager handles failures using the failure recovery
sub-component. There are two types of failures: task failure
and connection disruption failure. Various possible errors
lead to task failure in the task parser or recommendation
engine, one of which is erroneous input data. In this case,
the task parser and recommendation engine return exceptions
to report back to the client application. Communication failure
occurs when, for example, device owners switch off their
devices and are unreachable. Results generated in response
to a client’s request and other results generated pro-actively,
are assigned a time-to-live period, ttl, computed based on
application specific profiling and heuristics. The manager sets
Tid(t) to pending, establishes an opportunistic connection,
and periodically resends data either until it expires or the
connection is successfully re-established.

3) Databases: The databases store client profiles, location
and settings data which we refer to as DBSOC , DBLOC

and DBSET respectively. While the task manager has write
privileges to insert and update the databases, the recommen-
dation engine with read privileges only accesses the stored
information.
DBSOC: The client profiles database contains social data

derived from a social-networking website like Facebook or
Google+. This includes basic information, friends, family,
interests and activities.
DBSET : This database stores additional settings infor-

mation obtained from the subscribed clients and used by
the matching algorithms to tune recommendations. A client
subscribed to different applications has different settings per
application. Such settings include the zoom or area of inter-
est, ranking of personal interests, types and parameters for
proactive notifications, recommendation thresholds, privacy
and visibility settings, etc.
DBLOC: The location database contains outdoor or indoor

coordinates (xt, yt, zt) at time t for all clients. SCOUT is not
restricted to any localizing technology [13] [8] but is rather
integratable with any. This allows users to dynamically set
their interest zone and empowers applications built on top of
SCOUT to use a suitable localizing technology that fulfils the
prescribed location-granularity needed by an application. For
instance, while it is sufficient for a marketing application to
know about the ”existence” of a user in an indoor space, a



Algorithm 1 SCOUT Server Operation
Definition: C is a client registered with SCOUT and assigned

an identifier id. T is a task associated with C,
identified by id, categorized by type and tagged with one
of the following states (UPDATING, MATCHING,
SENDING, PENDING, DONE) at time t.

1: ∀ Cid where Cid ∈ {1, ..., |DBSOC |}
2: while Is Connected(Cid) do
3: if receive task(Cid, Tid,msg) then
4: // This is the Reactive mode
5: if Type(Tid) == context data then
6: Tid(t)← UPDATING
7: Update(DBSOC|LOC|SET ,msg)
8: else
9: Tid(t)←MATCHING

10: Csettings ← Fetch(Cid, DBSET )
11: matched clients list←Match(Cid, Csettings)
12: end if
13: // This is the Proactive mode
14: else
15: Tid ← Create task(Cid)
16: Csettings ← Fetch(Cid, DBSET )
17: matched clients list←Match(Cid, Csettings)
18: end if
19: Tid(t)← PENDING
20: ttl← precomputed period based on heuristics
21: repeat
22: if Is reachable(Cid) then
23: Tid(t)← SENDING
24: Send(Cid,matched clients list)
25: Tid(t)← DONE
26: end if
27: until (t > ttl) ∨ (Tid(t) == DONE)
28: end while

friend-matcher application requires high-granularity location
to facilitate situated interactions.

4) Recommendation Engine: The recommendation engine
receives recommendation requests from the task manager and
examines their type; different client applications may request
different recommendation information. For example, requests
for friends within proximity and surrounding users with spe-
cific interests are two types of recommendation requests.
Depending on the type, the engine retrieves data from the
databases and elects different matching algorithms that satisfy
the request. Finally, the engine dispatches the computed list of
matches back to the client via the task manager. The summary
of the operation of all the components within the server are
shown in Algorithm 1.

B. SCOUT-Based Prototype
In this section, we begin with a discussion of the challenges

faced in the realization of SCOUT. Afterwards, we discuss the
implement a proof-of-concept prototype of SCOUT’s server,
as well as a mobile client application to test our client-server
design and prototype.

1) Challenges: There were numerous challenges that
needed to be addressed when implementing the design of
SCOUT. The most important challenges include the following:

Disk vs. memory storage: The repository of profile data,
location information and user settings are frequently accesses

by the recommendation engine. This demands that the fetching
delay is minimal. Databases are traditionally known for data
storage. However, they require occasional disk access which
may not exploit locality as much as memory-based solutions.
The choice between disk-based and memory-based certainly
impacts the responsiveness of SCOUT.

Load distribution: Appropriately distributing the load be-
tween the client and server is critical for a real-time system.
The question is whether to assign the burden of fetching
updated social information to the client application or the
server. The former requires that the client periodically retrieve
and dispatche social data to the server. The latter requires
that the server stores sensitive client credentials and bounds
the server to changeable communication APIs. For example,
Facebook’s recent upgrade from the REST API to the Graph
API would change the implementation of the server4. Again, a
trade off exists between communication and storage overhead.

Client application type: The client application can either
be a web-based or native application. Frameworks such as
PhoneGap5 make it easier to build native applications on
different phone platforms using web-technologies. A com-
parison between the web-based, native, and PhoneGap-based,
highlights the strengths and weaknesses of each [?]. While
web-based applications are portable, native applications enable
access to the phone’s hardware and facilitate the design
of convenient, complex and high-performance graphical user
interfaces. PhoneGap-based applications serve as a middle-
ground solution.

Privacy and Security: SCOUT houses social information of
all users who entrust it for a high level of security. Hence,
security of communication and storage is a key challenge in
this domain. We do not address it in the current prototype.

2) Implementation: We implement a multi-threaded server
with the following components of our design: (a) task man-
ager, (b) task parser, (c) databases, and (d) recommendation
engine in reactive mode. We currently do not implement the
recommendation engine in proactive. We also implement a
mobile application that provides three functionalities namely
finding existing friends, recommending new friends, and seek-
ing targeted advertisements. For the purpose of the prototype,
we generate mobility traces for clients in the building using
the Random Way-point mobility model.

Server: The server delegates the task of fetching social
information to the client. The storage mode of profile, location,
and settings data affects the responsiveness of the recommen-
dation engine and consequently the server. We propose two
storage designs, disk-based (DB) and memory-based (MB).
For the DB design, we create an Entity Relationship Diagram
(ERD) that formally models the mesh of databases along with
the interactions between them, and implement data structures
that emulate the proposed ERD; the design is not shown due to
space limitation. The MB design consolidates all information
pertaining to a given client in one memory location. While

4http://developers.facebook.com/docs/reference/api/
5http://www.phonegap.com/
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the MB design may incur redundancy, it helps aggregate the
social information for ease of access by the recommendation
engine.

Client: To test SCOUT, we implement a native Android
mobile application that communicates with Facebook and
supports the functionalities of finding existing friends, recom-
mending potential ones, and seeking targeted advertisements.
Using the client application, a user connects to Facebook to
retrieve profile information including personal data, education,
employment history, friends...etc, each as a JSON object.
The client then juxtaposes all the JSON objects to create
a composite one. Finally, it establishes a connection to the
SCOUT server, sends the JSON object, awaits results on the
various functionalities mentioned above. On receiving recom-
mendation results and relevant information, the application
processes these results and displays them in a convenient
graphical user interface.

C. Prototype Evaluation

In this section, we briefly describe our experimental set-up,
define the evaluation metrics, and in the end, we discuss our
evaluation results.

1) Experimental Setup: The description of both the SCOUT
server prototype and client application built on android are in
the previous section. We run our prototype server on a quad-
core Intel Xeon 2.83 GHz machine. We start the server and
use a script that generates Nt client tasks at a parametrized
rate λt for a given time t. In our experiments, we investigate
the impact of high λt on the server’s response delay; we
run experiments with λt upto 1000 clients/sec that subjects
the server to a high load. This assumption, while appears
to be surrealistic, is used to evaluate SCOUT under high
load. We synthesized Facebook social profiles as JSON objects
generated using our profile generator ProfGen. ProfGen takes
many parameters such as N the number of social profiles, nf
the average number of friends, and ni the maximum number

of interests. Unless stated otherwise, we choose nf = 130
which is the average number of friends in Facebook6.

2) Performance Metrics: We evaluate SCOUT for respon-
siveness, which also reflects the system’s stability and robust-
ness. We measure the responsiveness of the prototype based on
two metrics, parsing delay and matching delay. Parsing delay
is the time incurred by the task parser to parse a given client
messages (e.g., JSON objects of the client’s social profiles).
We measure the parsing delay Pdelay as the time difference
between tbeg , the time at which the parser receives a task Tid
from the task manager, and tend, the time it finishes parsing.

Pdelay(Tid) = tend(Tid)− tbeg(Tid) (4)

Therefore, we compute the average parsing delay avgPdelay

described in equation 5.

avgPdelay =
1

Nt
×

Nt∑
1

Pdelay(Tid) (5)

Similar to the parsing delay, we compute the matching
delay Mdelay and the average matching delay avgMdelay as
the period of time incurred by the recommendation engine
to run one or more matching algorithms and sends back the
corresponding results to the task manager. The overall server’s
delay, Sdelay, is the summation of the parsing and matching
delays.

Sdelay(Tid) = Pdelay(Tid) +Mdelay(Tid) (6)

3) Results: First we analyze the matching delay incurred
by the recommendation engine. We run Nt tasks where Nt

varies from 1 to 350 concurrent tasks. We compare the average
matching delays avgMdelay of (i) the DB and MB designs
on the quad-core machine, and (ii) each design on dual- and
quad-core machines. The results shown in Figure 9 (a) that

6http://www.facebook.com/press/info.php?statistics



the average matching delay for 350 clients decreases from
approximately a minute in the case of the DB design to less
than a second with the MB design. The performance gain
with the MB design is nearly 100%. As for the impact of the
number of cores on each design, the difference between the
average matching delays on the dual- and quad-core machines
is 33% for the DB design as compared to 8% with the MB
design. This is mainly because the MB design consolidates
information in same memory location and exploits locality.
For the rest of paper, our analysis is based solely on the MB
design.

Since the overall delay is predominated by the matching
delay, we focus in our final experiment on computing the
average matching delay per request, avgMdelay, to process
50, 100 and 150 concurrent recommendation requests. Each
of these requests are matched against a varying client pool
size of 500, 1000, 1500 and 2000. This helps us study the
matching delay when SCOUT is in a stable state having its
databases populated with a certain number of clients, a fraction
of which request recommendations. Figure 9 (b) shows the
responsiveness of SCOUT exponentially grows as the pool
size grows. However, we observe very acceptable performance
values where in extreme cases of responding to 150 requests,
matching each one against 2000 profiles, each request is served
within an average time of one second.
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