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Abstract 
 

Permutations are ubiquitous in many real-world problems, such as voting, ranking, 
and data association. Representing uncertainty over permutations is challenging, 
since there are n! possibilities, and typical compact and factorized probability 
distribution representations, such as graphical models, cannot capture the mutual 
exclusivity Constraints associated with permutations. In this paper, we use the “low-
frequency” terms of a Fourier decomposition to represent distributions over 
permutations compactly. We present Kronecker conditioning, a new general and 
efficient approach for maintaining and updating these distributions directly in the 
Fourier domain. Low order Fourier-based approximations, however, may lead to 
functions that do not correspond to valid distributions. To address this problem, we 
present an efficient quadratic program defined directly in the Fourier domain for 
projection the approximation onto a relaxation of the polytope of legal marginal 
distributions. We demonstrate the effectiveness of our approach on a real camera-
based multi-person tracking scenario. 
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A or B?

A or B?

A

BFigure 1: When two persons pass near ea
h other, their identities 
an get 
on-fused.1 Introdu
tionProbability distributions over permutations arise in a diverse variety of realworld problems. While they were perhaps �rst studied in the 
ontext of gam-bling and 
ard games, they have now been found to be appli
able to manyimportant problems in multi-obje
t tra
king, information retrieval, webpageranking, preferen
e eli
itation, and voting.As an example, 
onsider the problem of tra
king n persons based on a set ofnoisy measurements of identity and position. A typi
al tra
king system mightattempt to manage a set of n tra
ks along with an identity 
orresponding toea
h tra
k, in spite of ambiguities from imperfe
t identity measurements. Whenthe persons are well separated, the problem is easily de
omposed and measure-ments about ea
h individual 
an be 
learly asso
iated with a parti
ular tra
k.When persons pass near ea
h other, however, 
onfusion 
an arise as their signalsignatures may mix; see Figure 1. After the individuals separate again, theirpositions may be 
learly distinguishable, but their identities 
an still be 
on-fused, resulting in identity un
ertainty whi
h must be propagated forward intime with ea
h person, until additional observations allow for disambiguation.This task of maintaining a belief state for the 
orre
t asso
iation between obje
ttra
ks and obje
t identities while a

ounting for lo
al mixing events and sensorobservations, was introdu
ed in (Shin et al., 2003) and is 
alled the identitymanagement problem.The identity management problem poses a 
hallenge for probabilisti
 infer-en
e be
ause it needs to address the fundamental 
ombinatorial 
hallenge thatthere is a fa
torial number of asso
iations to maintain between tra
ks and iden-tities. Distributions over the spa
e of all permutations require storing at least1



n! − 1 numbers, an infeasible task for all but very small n. Moreover, typi
al
ompa
t representations, su
h as graphi
al models, 
annot e�
iently 
apturethe mutual ex
lusivity 
onstraints asso
iated with permutations.While there have been many approa
hes for 
oping with the fa
torial 
om-plexity of maintaining a distribution over permutations, most atta
k the problemusing one of two ideas � storing and updating a small subset of likely permu-tations, or, as in our 
ase, restri
ting 
onsideration to a tra
table subspa
e ofpossible distributions. (Willsky, 1978) was the �rst to formulate the probabilis-ti
 �ltering/smoothing problem for group-valued random variables. He proposedan e�
ient FFT based approa
h of transforming between primal and Fourierdomains so as to avoid 
ostly 
onvolutions, and provided e�
ient algorithmsfor dihedral and meta
y
li
 groups. (Kueh et al., 1999) show that probabilitydistributions on the group of permutations are well approximated by a smallsubset of Fourier 
oe�
ients of the a
tual distribution, allowing for a prin
ipledtradeo� between a

ura
y and 
omplexity. The approa
h taken in (Shin et al.,2005; S
humits
h et al., 2005; S
humits
h et al., 2006) 
an be seen as an algo-rithm for maintaining a parti
ular �xed subset of Fourier 
oe�
ients of the logdensity. Most re
ently, (Kondor et al., 2007) allow for a general set of Fourier
oe�
ients, but assume a restri
tive form of the observation model in order toexploit an e�
ient FFT fa
torization.In this work1, we present several 
ontributions whi
h generalize and improveupon the past related work. We present a new and simple algorithm, 
alledKrone
ker Conditioning, whi
h performs all probabilisti
 inferen
e operations
ompletely in the Fourier domain, allowing for a prin
ipled tradeo� between
omputational 
omplexity and approximation a

ura
y. Our approa
h is fullygeneral, in the sense that it 
an address any transition model or likelihoodfun
tion that 
an be represented in the Fourier domain, su
h as those used inprevious work, and 
an represent the probability distribution using any desirednumber of Fourier 
oe�
ients. We analyze the errors whi
h 
an be introdu
edby bandlimiting a probability distribution and show how they propagate withrespe
t to inferen
e operations. Approximate 
onditioning based on bandlimiteddistributions 
an sometimes yield Fourier 
oe�
ients whi
h do not 
orrespondto any valid distribution, even returning negative �probabilities� on o

asion� we address this issue by presenting a method for proje
ting the result ba
kinto the polytope of 
oe�
ients whi
h 
orrespond to nonnegative and 
onsistentmarginal probabilities using an e�
ient quadrati
 program. Finally, we empir-i
ally evaluate the a

ura
y of approximate inferen
e on simulated data drawnfrom our model and further demonstrate the e�e
tiveness of our approa
h on areal 
amera-based multi-person tra
king s
enario.1A shorter version this work appeared in (Huang et al., 2007). We provide a more 
ompletedis
ussion of our Fourier based methods in this extended paper.
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(a) Before (b) AfterFigure 2: Identity Management example. Three people, Ali
e, Bob and Charlieenter a room and we re
eive a position measurement for ea
h person at ea
htime step. With no way to observe identities inside the room, however, we are
onfused whenever two tra
ks get too 
lose. In this example, tra
k 1 
rosses withtra
k 2, then with tra
k 3, then leaves the room, at whi
h point it is observedthat the identity at Tra
k 1 is in fa
t Bob.2 Filtering over permutationsAs a prelude to the general problem statement, we begin with a simple identitymanagement problem on three tra
ks (illustrated in Figure 2) whi
h we will useas a running example. In this problem, we observe a stream of lo
alization datafrom three people walking inside a room. Ex
ept for a 
amera positioned at theentran
e, however, there is no way to distinguish between identities on
e theyare inside. In this example, an internal tra
ker de
lares that two tra
ks have`mixed' whenever they get too 
lose to ea
h other and announ
es the identityof any tra
k that enters or exits the room.In our parti
ular example, three people, Ali
e, Bob and Cathy, enter a roomseparately, walk around, and we observe Bob as he exits. The events for ourparti
ular example in the �gure are re
orded in Table 1. Sin
e Tra
ks 2 and 3never mix, we know that Cathy 
annot be in Tra
k 2 in the end, and furthermore,sin
e we observe Bob to be in Tra
k 1 when he exits, we 
an dedu
e that Cathymust have been in Tra
k 3, and therefore Ali
e must have been in Tra
k 2.Our simple example illustrates the 
ombinatorial nature of the problem � inparti
ular, reasoning about the mixing events allows us to exa
tly de
ide whereAli
e and Cathy were even though we only made an observation about Bob atthe end. Event # Event Type1 Tra
ks 1 and 2 mixed2 Tra
ks 1 and 3 mixed3 Observed Identity Bob at Tra
k 1Table 1: Table of Mixing and Observation events logged by the tra
ker.3



In identity management, a permutation σ represents a joint assignment ofidentities to internal tra
ks, with σ(i) being the tra
k belonging to the ithidentity. When people walk too 
losely together, their identities 
an be 
onfused,leading to un
ertainty over σ. To model this un
ertainty, we use a HiddenMarkov Model (HMM) on permutations, whi
h is a joint distribution over latentpermutations σ(1), . . . , σ(T ), and observed variables z(1), . . . , z(T ) whi
h fa
torsas:
P (σ(1), . . . , σ(T ), z(1), . . . , z(T )) = P (σ(1))P (z(1)|σ(1))

T∏

t=2

P (zt|σ(t))·P (σ(t)|σ(t−1)).The 
onditional probability distribution P (σ(t)|σ(t−1)) is 
alled the transitionmodel, and might re�e
t, for example, that the identities belonging to twotra
ks were swapped with some probability by a mixing event. The distribution
P (z(t)|σ(t)) is 
alled the observation model, whi
h might, for example, 
apturea distribution over the 
olor of 
lothing for ea
h individual.We fo
us on �ltering, in whi
h one queries the HMM for the posteriorat some time step, 
onditioned on all past observations. Given the distribu-tion P (σ(t)|z(1), . . . , z(t)), we re
ursively 
ompute P (σ(t+1)|z(1), . . . , z(t+1)) intwo steps: a predi
tion/rollup step and a 
onditioning step. Taken together,these two steps form the well known Forward Algorithm (Rabiner, 1989). Thepredi
tion/rollup step multiplies the distribution by the transition model andmarginalizes out the previous time step:

P (σ(t+1)|z(1), . . . , z(t)) =
∑

σ(t)

P (σ(t+1)|σ(t))P (σ(t)|z(1), . . . , z(t)).The 
onditioning step 
onditions the distribution on an observation z(t+1) usingBayes rule:
P (σ(t+1)|z(1), . . . , z(t+1)) ∝ P (z(t+1)|σ(t+1))P (σ(t+1)|z(1), . . . , z(t)).Sin
e there are n! permutations, a single iteration of the algorithm requires

O((n!)2) �ops and is 
onsequently intra
table for all but very small n. Theapproa
h that we advo
ate is to maintain a 
ompa
t approximation to the truedistribution based on the Fourier transform. As we dis
uss later, the Fourierbased approximation is equivalent to maintaining a set of low-order marginals,rather than the full joint, whi
h we regard as being analogous to an AssumedDensity Filter (Boyen & Koller, 1998). Although we fo
us on HMMs and �lter-ing for 
on
reteness, the approa
h we des
ribe is useful for other probabilisti
inferen
e tasks over permutations, su
h as ranking obje
ts and modeling userpreferen
es.
4



3 Probability Distributions over the Symmetri
GroupA permutation on n elements is a one-to-one mapping of the set {1, . . . , n} intoitself and 
an be written as a tuple,
σ = [σ(1) σ(2) . . . σ(n)],where σ(i) denotes where the ith element is mapped under the permutation(
alled one line notation). For example, σ = [2 3 1 4 5] means that σ(1) = 2,

σ(2) = 3, σ(3) = 1, σ(4) = 4, and σ(5) = 5. The set of all permutations on nelements forms a group under the operation of fun
tion 
omposition � that is,if σ1 and σ2 are permutations, then
σ1σ2 = [σ1(σ2(1)) σ1(σ2(2)) . . . σ1(σ2(n))]is itself a permutation. The set of all n! permutations is 
alled the Symmetri
Group, or just Sn.We will a
tually notate the elements of Sn using the more standard 
y
lenotation, in whi
h a 
y
le (i, j, k, . . . , ℓ) refers to the permutation whi
h maps

i to j, j to k, . . . , and �nally ℓ to i. Though not every permutation 
an bewritten as a single 
y
le, any permutation 
an always be written as a produ
t ofdisjoint 
y
les. For example, the permutation σ = [2 3 1 4 5] written in 
y
lenotation is σ = (1, 2, 3)(4)(5). The number of elements in a 
y
le is 
alled the
y
le length and we typi
ally drop the length 1 
y
les in 
y
le notation when it
reates no ambiguity � in our example, σ = (1, 2, 3)(4)(5) = (1, 2, 3). We referto the identity permutation (whi
h maps every element to itself) as ǫ.A probability distribution over permutations 
an be thought of as a jointdistribution on the n random variables (σ(1), . . . , σ(n)) subje
t to the mutualex
lusivity 
onstraints that P (σ : σ(i) = σ(j)) = 0 whenever i 6= j. For ex-ample, in the identity management problem, Ali
e and Bob 
annot both bein Tra
k 1 simultaneously. Due to the fa
t that all of the σ(i) are 
oupled inthe joint distribution, graphi
al models, whi
h might have otherwise exploitedan underlying 
onditional independen
e stru
ture, are ine�e
tive. Instead, ourFourier based approximation a
hieves 
ompa
tness by exploiting the algebrai
stru
ture of the problem.3.1 Compa
t summary statisti
sWhile 
ontinuous distributions like Gaussians are typi
ally summarized usingmoments (like mean and varian
e), or more generally, expe
ted features, it isnot immediately obvious how one might, for example, 
ompute the `mean' of adistribution over permutations. There is a simple method that might spring tomind, however, whi
h is to think of the permutations as permutation matri
esand to average the matri
es instead. 5



Example 1. For example, 
onsider the two permutations ǫ, (1, 2) ∈ S3 (ǫ is theidentity and (1, 2) swaps 1 and 2). We 
an asso
iate the identity permutation ǫwith the 3 × 3 identity matrix, and similarly, we 
an asso
iate the permutation
(1, 2) with the matrix:

(1, 2) 7→




0 1 0
1 0 0
0 0 1


 .The `average' of ǫ and (1, 2) is therefore:

1

2




1 0 0
0 1 0
0 0 1


+

1

2




0 1 0
1 0 0
0 0 1


 =




1/2 1/2 0
1/2 1/2 0
0 0 1


 .As we will later show, 
omputing the `mean' (as des
ribed above) of a dis-tribution over permutations, P , 
ompa
tly summarizes P by storing a marginaldistribution over ea
h of σ(1), σ(2), . . . , σ(n), whi
h requires storing only O(n2)numbers rather than the full O(n!) for the exa
t distribution. As an example,one possible summary might look like:

P̂ =




Ali
e Bob CathyTra
k 1 2/3 1/6 1/6Tra
k 2 1/3 1/3 1/3Tra
k 3 0 1/2 1/2


 .Su
h doubly sto
hasti
 ��rst-order summaries� have been studied in varioussettings (Shin et al., 2003; Helmbold & Warmuth, 2007). In identity manage-ment (Shin et al., 2003)2, �rst-order summaries maintain, for example,

P (Ali
e is at Tra
k 1) = 2/3,

P (Bob is at Tra
k 3) = 1/2.What 
annot be 
aptured by �rst-order summaries however, are the higher orderstatements like:
P (Ali
e is in Tra
k 1 and Bob is in Tra
k 2) = 0.Over the next two se
tions, we will show that the �rst-order summary of adistribution P (σ) 
an equivalently be viewed as the lowest frequen
y 
oe�
ientsof the Fourier transform of P (σ), and that by 
onsidering higher frequen
ies,2Stri
tly speaking, a map from identities to tra
ks is not a permutation sin
e a permutationalways maps a set into itself. In fa
t, the set of all su
h identity-to-tra
k assignments does nota
tually form a group sin
e there is no way to 
ompose any two su
h assignments to obtaina legitimate group operation. We abuse the notation by referring to these assignments as agroup, but really the elements of the group here should be thought of as the `deviation' fromthe original identity-to-tra
k assignment (where only the tra
ks are permuted, for example,when they are 
onfused). In the group theoreti
 language, there is a faithful group a
tion of

Sn on the set of all identity-to-tra
k assignments.6



we 
an 
apture higher order marginal probabilities in a prin
ipled fashion. Fur-thermore, the Fourier theoreti
 perspe
tive, as we will show, provides a naturalframework for formulating inferen
e operations with respe
t to our 
ompa
tsummaries. In a nutshell, we will view the predi
tion/rollup step as a 
onvolu-tion and the 
onditioning step as a pointwise produ
t � then we will formulatethe two inferen
e operations in the Fourier domain as a pointwise produ
t and
onvolution, respe
tively.4 The Fourier transform on �nite groupsOver the last �fty years, the Fourier Transform has been ubiquitously applied toeverything digital, parti
ularly with the invention of the Fast Fourier Transform.On the real line, the Fourier Transform is a well-studied method for de
omposinga fun
tion into a sum of sine and 
osine terms over a spe
trum of frequen
ies.Perhaps less familiar though, is its group theoreti
 generalization, whi
h wereview in this se
tion with an eye towards approximating fun
tions on Sn. Forfurther information, see (Dia
onis, 1988) and (Terras, 1999).4.1 Group representation theoryThe generalized de�nition of the Fourier Transform relies on the theory of grouprepresentations, whi
h formalize the 
on
ept of asso
iating permutations withmatri
es and are used to 
onstru
t a 
omplete basis for the spa
e of fun
tionson a group G, thus also playing a role analogous to that of sinusoids on the realline.De�nition 2. A representation of a group G is a map ρ from G to a set ofinvertible dρ × dρ matrix operators whi
h preserves algebrai
 stru
ture in thesense that for all σ1, σ2 ∈ G, ρ(σ1σ2) = ρ(σ1) · ρ(σ2). The matri
es whi
h lie inthe image of ρ are 
alled the representation matri
es, and we will refer to dρ asthe degree of the representation.The requirement that ρ(σ1σ2) = ρ(σ1) · ρ(σ2) is analogous to the propertythat ei(θ1+θ2) = eiθ1 · eiθ2 for the 
onventional sinusoidal basis. Ea
h matrixentry, ρij(σ) de�nes some fun
tion over Sn:
ρ(σ) =




ρ11(σ) ρ12(σ) · · · ρ1dρ
(σ)

ρ21(σ) ρ22(σ) · · · ρ2dρ
(σ)... ... . . . ...

ρdρ1(σ) ρdρ2(σ) · · · ρdρdρ
(σ)


 , (4.1)and 
onsequently, ea
h representation ρ simultaneously de�nes a set of d2

ρ fun
-tions over Sn. We will eventually think of group representations as the set ofFourier basis fun
tions onto whi
h we 
an proje
t arbitrary fun
tions.Example 3. We begin by showing three examples of representations on thesymmetri
 group. 7



1. The simplest example of a representation is 
alled the trivial representa-tion ρ(n) : Sn → R1×1, whi
h maps ea
h element of the symmetri
 groupto 1, the multipli
ative identity on the real numbers. The trivial represen-tation is a
tually de�ned for every group, and while it may seem unworthyof mention, it plays the role of the 
onstant basis fun
tion in the Fouriertheory.2. The �rst-order permutation representation of Sn, whi
h we alluded to inExample 1, is the degree n representation, τ(n−1,1) (we explain the termi-nology in Se
tion 5) , whi
h maps a permutation σ to its 
orrespondingpermutation matrix given by [τ(n−1,1)(σ)]ij = 1 {σ(j) = i}. For example,the �rst-order permutation representation on S3 is given by:
τ(2,1)(ǫ) =




1 0 0
0 1 0
0 0 1


 τ(2,1)(1, 2) =




0 1 0
1 0 0
0 0 1




τ(2,1)(2, 3) =




1 0 0
0 0 1
0 1 0


 τ(2,1)(1, 3) =




0 0 1
0 1 0
1 0 0




τ(2,1)(1, 2, 3) =




0 0 1
1 0 0
0 1 0


 τ(2,1)(1, 3, 2) =




0 1 0
0 0 1
1 0 0


3. The alternating representation of Sn, maps a permutation σ to the deter-minant of τ(n−1,1)(σ), whi
h is +1 if σ 
an be equivalently written as the
omposition of an even number of pairwise swaps, and −1 otherwise. Wewrite the alternating representation as ρ(1,...,1) with n 1's in the subs
ript.For example, on S4, we have:

ρ(1,1,1,1)((1, 2, 3)) = ρ(1,1,1,1)((13)(12)) = +1.The alternating representation 
an be interpreted as the `highest frequen
y'basis fun
tion on the symmetri
 group, intuitively due to its high sensitivityto swaps. For example, if τ(1,...,1)(σ) = 1, then τ(1,...,1)((12)σ) = −1.In identity management, it may be reasonable to believe that the jointprobability over all n identity labels should only 
hange by a little if justtwo obje
ts are mislabeled due to swapping � in this 
ase, ignoring thebasis fun
tion 
orresponding to the alternating representation should stillprovide an a

urate approximation to the joint distribution.In general, a representation 
orresponds to an over
omplete set of fun
tionsand therefore does not 
onstitute a valid basis for any subspa
e of fun
tions.For example, the set of nine fun
tions on S3 
orresponding to τ(2,1) span onlyfour dimensions, be
ause there are six normalization 
onstraints (three on therow sums and three on the 
olumn sums), of whi
h �ve are independent � and8



so there are �ve redundant dimensions. To �nd a valid 
omplete basis for thespa
e of fun
tions on Sn, we will need to �nd a family of representations whosebasis fun
tions are independent, and span the entire n!-dimensional spa
e offun
tions.In the following two de�nitions, we will provide two methods for 
onstru
t-ing a new representation from old ones su
h that the set of fun
tions on Sn
orresponding to the new representation is linearly dependent on the old rep-resentations. Somewhat surprisingly, it 
an be shown that dependen
ies whi
harise amongst the representations 
an always be re
ognized in a 
ertain sense,to 
ome from the two possible following sour
es (Serre, 1977).De�nition 4.1. Equivalen
e. Given a representation ρ1 and an invertible matrix C, one
an de�ne a new representation ρ2 by �
hanging the basis� for ρ1:
ρ2(σ) , C−1 · ρ1(σ) · C. (4.2)We say, in this 
ase, that ρ1 and ρ2 are equivalent as representations(written ρ1 ≡ ρ2), and the matrix C is known as the intertwining operator.Note that dρ1 = dρ2 .It 
an be 
he
ked that the fun
tions 
orresponding to ρ2 
an be re
on-stru
ted from those 
orresponding to ρ1. For example, if C is a permuta-tion matrix, the matrix entries of ρ2 are exa
tly the same as the matrixentries of ρ1, only permuted.2. Dire
t Sum. Given two representations ρ1 and ρ2, we 
an always forma new representation, whi
h we will write as ρ1 ⊕ ρ2, by de�ning:

ρ1 ⊕ ρ2(σ) ,

[
ρ1(σ) 0

0 ρ2(σ)

]
.

ρ1 ⊕ ρ2 is 
alled the dire
t sum representation. For example, the dire
tsum of two 
opies of the trivial representation is:
ρ(n) ⊕ ρ(n)(σ) =

[
1 0
0 1

]
,with four 
orresponding fun
tions on Sn, ea
h of whi
h is 
learly depen-dent upon the trivial representation itself.Most representations 
an be seen as being equivalent to a dire
t sum ofstri
tly smaller representations. Whenever a representation ρ 
an be de
om-posed as ρ ≡ ρ1 ⊕ ρ2, we say that ρ is redu
ible. As an example, we now showthat the �rst-order permutation representation is a redu
ible representation.Example 5. Instead of using the standard basis ve
tors {e1, e2, e3}, the �rst-order permutation representation τ(2,1) 
an be equivalently written with respe
t9



to a new basis {v1, v2, v3}, where:
v1 =

e1 + e2 + e3
|e1 + e2 + e3|

,

v2 =
−e1 + e2
| − e1 + e2|

,

v3 =
−e1 − e2 + 2e3
| − e1 − e2 + 2e3|

.To `
hange the basis', we write the new basis ve
tors as 
olumns in a matrix C:
C =



| | |
v1 v2 v3
| | |


 =




1√
3
−

√
2

2 − 1√
6

1√
3

√
2

2 − 1√
6

1√
3

0 2√
6


 ,and 
onjugate the representation τ(2,1) by C (as in Equation 4.2) to obtain theequivalent representation C−1 · τ(2,1)(σ) · C:

C−1τ(2,1)(ǫ)C =

2

4

1 0 0
0 1 0
0 0 1

3

5 C−1τ(2,1)(1, 2)C =

2

4

1 0 0
0 −1 0
0 0 1

3

5

C−1τ(2,1)(2, 3)C =

2

6

4

1 0 0

0 1
2

√
3

2

0
√

3
2

−

1
2

3

7

5
C−1τ(2,1)(1, 3)C =

2

6

4

1 0 0

0 1
2

−

√
3

2

0 −

√
3

2
−

1
2

3

7

5

C−1τ(2,1)(1, 2, 3)C =

2

6

4

1 0 0

0 −

1
2

−

√
3

2

0
√

3
2

−

1
2

3

7

5
C−1τ(2,1)(1, 3, 2)C =

2

6

4

1 0 0

0 −

1
2

√
3

2

0 −

√
3

2
−

1
2

3

7

5The interesting property of this parti
ular basis is that the new representationmatri
es all appear to be the dire
t sum of two smaller representations, a trivialrepresentation, ρ(3) as the top left blo
k, and a degree 2 representation in thebottom right whi
h we will refer to as ρ(2,1).Geometri
ally, the representation ρ(2,1) 
an also be thought of as the groupof rigid symmetries of the equilateral triangle with verti
es:
P1 =

[ √
3/2

1/2

]
, P2 =

[
−
√

3/2
1/2

]
, P3 =

[
0
−1

]
.The matrix ρ(2,1)(1, 2) a
ts on the triangle by re�e
ting about the x-axis, and

ρ(2,1)(1, 2, 3) by a π/3 
ounter-
lo
kwise rotation.In general, there are in�nitely many redu
ible representations. For example,given any dimension d, there is a representation whi
h maps every element of agroup G to the d × d identity matrix (the dire
t sum of d 
opies of the trivialrepresentation). However, for any �nite group, there exists a �nite 
olle
tion of10



σ ρ(3) ρ(2,1) ρ(1,1,1)

ǫ 1

[
1 0
0 1

]
1

(1, 2) 1

[
−1 0
0 1

]
−1

(2, 3) 1

[
1/2

√
3/2√

3/2 −1/2

]
−1

(1, 3) 1

[
1/2 −

√
3/2

−
√

3/2 −1/2

]
−1

(1, 2, 3) 1

[
−1/2 −

√
3/2√

3/2 −1/2

]
1

(1, 3, 2) 1

[
−1/2

√
3/2

−
√

3/2 −1/2

]
1Table 2: The irredu
ible representation matri
es of S3.atomi
 representations whi
h 
an be used to build up any other representationusing the dire
t sum operation. These representations are referred to as theirredu
ibles of a group, and they are de�ned simply to be the 
olle
tion ofrepresentations (up to equivalen
e) whi
h are not redu
ible. It 
an be shownthat any representation of a �nite group G is equivalent to a dire
t sum ofirredu
ibles (Dia
onis, 1988), and hen
e, for any representation τ , there existsa matrix C for whi
h

C−1 · τ · C =
⊕

ρ

zρ⊕

j=1

ρ,where ρ ranges over all distin
t irredu
ible representations of the group G, andthe inner ⊕ refers to some �nite number (zρ) of 
opies of ea
h irredu
ible ρ.As it happens, there are only three irredu
ible representations of S3 (Dia-
onis, 1988), the trivial representation ρ(3), the degree 2 representation ρ(2,1),and the alternating representation ρ(1,1,1). The 
omplete set of irredu
ible rep-resentation matri
es of S3 are shown in the Table 2. Unfortunately, the analysisof the irredu
ible representations for n > 3 is far more 
ompli
ated and wepostpone this more general dis
ussion for Se
tion 5.4.2 The Fourier transformThe link between group representation theory and Fourier analysis is given bythe 
elebrated Peter-Weyl theorem ((Dia
onis, 1988; Terras, 1999; Sagan, 2001))whi
h says that the matrix entries of the irredu
ibles of G form a 
omplete set11



of orthogonal basis fun
tions on G.3 The spa
e of fun
tions on S3, for example,is orthogonally spanned by the 3! fun
tions ρ(3)(σ), [ρ(2,1)(σ)]1,1, [ρ(2,1)(σ)]1,2,
[ρ(2,1)(σ)]2,1, [ρ(2,1)(σ)]2,2 and ρ(1,1,1)(σ), where [ρ(σ)]ij denotes the (i, j) entryof the matrix ρ(σ).As a repla
ement for proje
ting a fun
tion f onto a 
omplete set of sinusoidalbasis fun
tions (as one would do on the real line), the Peter-Weyl theoremsuggests instead to proje
t onto the basis provided by the irredu
ibles of G. Ason the real line, this proje
tion 
an be done by 
omputing the inner produ
tof f with ea
h element of the basis, and we de�ne this operation to be thegeneralized form of the Fourier Transform.De�nition 6. Let f : G → R be any fun
tion on a group G and let ρ be anyrepresentation on G. The Fourier Transform of f at the representation ρ isde�ned to be the matrix of 
oe�
ients:

f̂ρ =
∑

σ

f(σ)ρ(σ). (4.3)The 
olle
tion of Fourier Transforms at all irredu
ible representations of G formthe Fourier Transform of f .There are two important points whi
h distinguish this Fourier Transformfrom its familiar formulation on the real line � �rst, the outputs of the transformare matrix-valued, and se
ond, the inputs to f̂ are representations of G ratherthan real numbers. As in the familiar formulation, the Fourier Transform isinvertible and the inversion formula is expli
itly given by the Fourier InversionTheorem.Theorem 7 (Fourier Inversion Theorem).
f(σ) =

1

|G|
∑

λ

dρλ
Tr [f̂T

ρλ
· ρλ(σ)

]
, (4.4)where λ indexes over the 
olle
tion of irredu
ibles of G.Note that the tra
e term in the inverse Fourier Transform is just the `ma-trix dot produ
t' between f̂ρλ

and ρλ(σ), sin
e Tr [AT · B
]

= 〈ve
(A), ve
(B)〉,where by ve
 we mean mapping a matrix to a ve
tor on the same elementsarranged in 
olumn-major order.We now provide several examples for intuition. For fun
tions on the real line,the Fourier Transform at zero frequen
y gives the DC 
omponent of a signal.The same holds true for fun
tions on a group; If f : G → R is any fun
tion,3Te
hni
ally the Peter-Weyl result, as stated here, is only true if all of the representationmatri
es are unitary. That is, ρ(σ)∗ρ(σ) = I for all σ ∈ Sn, where the matrix A∗ is the
onjugate transpose of A. For the 
ase of real-valued (as opposed to 
omplex-valued) matri
es,however, the de�nitions of unitary and orthogonal matri
es 
oin
ide.While most representations are not unitary, there is a standard result from representa-tion theory whi
h shows that for any representation of G, there exists an equivalent unitaryrepresentation. 12



then sin
e ρ(n) = 1, the Fourier Transform of f at the trivial representationis 
onstant, with f̂ρ(n)
=
∑

σ f(σ). Thus, for any probability distribution P ,we have P̂ρ(n)
= 1. If P were the uniform distribution, then P̂ρ = 0 at everyirredu
ible ρ ex
ept at the trivial representation.The Fourier Transform at τ(n−1,1) also has a simple interpretation:

[f̂τ(n−1,1)
]ij =

∑

σ∈Sn

f(σ)[τ(n−1,1)(σ)]ij =
∑

σ∈Sn

f(σ)1 {σ(j) = i} =
∑

σ:σ(j)=i

f(σ).The set ∆ij = {σ : σ(j) = i} is the set of the (n − 1)! possible permutationswhi
h map element j to i. In identity management, ∆ij 
an be thought of asthe set of assignments whi
h, for example, have Ali
e at Tra
k 1. If P is a distri-bution, then P̂τ(n−1,1)
is a matrix of �rst-order marginal probabilities, where the

(i, j)-th element is the marginal probability that a random permutation drawnfrom P maps element j to i.Example 8. Consider the following probability distribution on S3:
σ ǫ (1, 2) (2, 3) (1, 3) (1, 2, 3) (1, 3, 2)

P (σ) 1/3 1/6 1/3 0 1/6 0The set of all �rst order marginal probabilities is given by the Fourier trans-form at τ(2,1):
P̂τ(2,1)

=




A B C

1 2/3 1/6 1/6
2 1/3 1/3 1/3
3 0 1/2 1/2


 .In the above matrix, ea
h 
olumn j represents a marginal distribution over thepossible tra
ks that identity j 
an map to under a random draw from P . Wesee, for example, that Ali
e is at Tra
k 1 with probability 2/3, or at Tra
k 2with probability 1/3. Simultaneously, ea
h row i represents a marginal distri-bution over the possible identities that 
ould have been mapped to tra
k i undera random draw from P . In our example, Bob and Cathy are equally likely tobe in Tra
k 3, but Ali
e is de�nitely not in Tra
k 3. Sin
e ea
h row and ea
h
olumn is itself a distribution, the matrix P̂τ(2,1)

must be doubly sto
hasti
. Wewill elaborate on the 
onsequen
es of this observation later.The Fourier transform of the same distribution at all irredu
ibles is:
P̂ρ(3)

= 1, P̂ρ(2,1)
=

[
1/4

√
3/4√

3/4 1/4

]
, P̂ρ(1,1,1)

= 0.The �rst-order permutation representation, τ(n−1,1), 
aptures the statisti
sof how a random permutation a
ts on a single obje
t irrespe
tive of where allof the other n − 1 obje
ts are mapped, and in doing so, 
ompa
tly summa-rizes the distribution with only O(n2) numbers. Unfortunately, as mentioned in13



Se
tion 3, the Fourier transform at the �rst-order permutation representation
annot 
apture more 
ompli
ated statements like:
P (Ali
e and Bob o

upy Tra
ks 1 and 2) = 0.To avoid 
ollapsing away so mu
h information, we might de�ne ri
her summarystatisti
s that might 
apture `higher-order' e�e
ts. We de�ne the se
ond-orderunordered permutation representation by:
[τ(n−2,2)(σ)]{i,j},{k,ℓ} = 1 {σ({k, ℓ}) = {i, j}} ,where we index the matrix rows and 
olumns by unordered pairs {i, j}. The
ondition inside the indi
ator fun
tion states that the representation 
aptureswhether the pair of obje
ts {k, ℓ} maps to the pair {i, j}, but is indi�erent withrespe
t to the ordering; i.e., either k 7→ i and ℓ 7→ j, or, k 7→ j and ℓ 7→ i.Example 9. For n = 4, there are six possible unordered pairs: {1, 2},{1, 3},{1, 4},{2, 3},{2, 4},and {3, 4}. The matrix representation of the permutation (1, 2, 3) is:

τ(2,2)(1, 2, 3) =

2

6

6

6

6

6

6

6

4

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
{1, 2} 0 0 0 1 0 0
{1, 3} 1 0 0 0 0 0
{1, 4} 0 0 0 0 1 0
{2, 3} 0 1 0 0 0 0
{2, 4} 0 0 0 0 0 1
{3, 4} 0 0 1 0 0 0

3

7

7

7

7

7

7

7

5

.The se
ond order ordered permutation representation, τ(n−2,1,1), is de�nedsimilarly:
[τ(n−2,1,1)(σ)](i,j),(k,ℓ) = 1 {σ((k, ℓ)) = (i, j)} ,where (k, ℓ) denotes an ordered pair. Therefore, [τ(n−2,1,1)(σ)](i,j),(k,ℓ) is 1 ifand only if σ maps k to i and ℓ to j.As in the �rst-order 
ase, the Fourier transform of a probability distribu-tion at τ(n−2,2), returns a matrix of marginal probabilities of the form: P (σ :

σ({k, ℓ}) = {i, j}), whi
h 
aptures statements like, "Ali
e and Bob o

upyTra
ks 1 and 2 with probability 1/2". Similarly, the Fourier transform at
τ(n−2,1,1) returns a matrix of marginal probabilities of the form P (σ : σ((k, ℓ)) =
(i, j)), whi
h 
aptures statements like, "Ali
e is in Tra
k 1 and Bob is in Tra
k2 with probability 9/10".We 
an go further and de�ne third-order representations, fourth-order rep-resentations, and so on. In general however, the permutation representationsas they have been de�ned above are redu
ible, intuitively due to the fa
t thatit is possible to re
over lower order marginal probabilities from higher ordermarginal probabilities. For example, one 
an re
over the normalization 
on-stant (
orresponding to the trivial representation) from the �rst order matrixof marginals by summing a
ross either the rows or 
olumns, and the �rst ordermarginal probabilities from the se
ond order marginal probabilities by summinga
ross appropriate matrix entries. To truly leverage the ma
hinery of Fourieranalysis, it is important to understand the Fourier transform at the irredu
iblesof the symmetri
 group, and in the next se
tion, we show how to derive the ir-redu
ible representations of the Symmetri
 group by �rst de�ning permutationrepresentations, then �subtra
ting o� the lower-order e�e
ts�.14



5 Representation theory on the Symmetri
 groupIn this se
tion, we provide a brief introdu
tion to the representation theoryof the Symmetri
 group. Rather than giving a fully rigorous treatment of thesubje
t, our goal is to give some intuition about the kind of information whi
h
an be 
aptured by the irredu
ible representations of Sn. Roughly speaking,we will show that Fourier transforms on the Symmetri
 group, instead of beingindexed by frequen
ies, are indexed by partitions of n (tuples of numbers whi
hsum to n), and 
ertain partitions 
orrespond to more 
omplex basis fun
tionsthan others. For proofs, we point the reader to 
onsult: (Dia
onis, 1989; James& Kerber, 1981; Sagan, 2001; Vershik & Okounkov, 2006).Instead of the singleton or pairwise marginals whi
h were des
ribed in theprevious se
tion, we will now fo
us on using the Fourier 
oe�
ients of a distri-bution to query a mu
h wider 
lass of marginal probabilities. As an example, wewill be able to 
ompute the following (more 
ompli
ated) marginal probabilityon S6 using Fourier 
oe�
ients:
P

0

@σ : σ

0

@

8

<

:

1 2 3
4 5
6

9

=

;

1

A =

8

<

:

1 2 6
4 5
3

9

=

;

1

A , (5.1)whi
h we interpret as the joint marginal probability that the rows of the diagramon the left map to 
orresponding rows on the right as unordered sets. In otherwords, Equation 5.1 is the joint probability that unordered set {1, 2, 3} maps to
{1, 2, 6}, the unordered pair {4, 5} maps to {4, 5}, and the singleton {6} mapsto {3}.The diagrams in Equation 5.1 are known as Ferrer's diagrams and are 
om-monly used to visualize partitions of n, whi
h are de�ned to be unordered tuplesof positive integers, λ = (λ1, . . . , λℓ), whi
h sum to n. For example, λ = (3, 2)is a partition of n = 5 sin
e 3 + 2 = 5. Usually we write partitions as weaklyde
reasing sequen
es by 
onvention, so the partitions of n = 5 are:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1),and their respe
tive Ferrers diagrams are:
, , , , , , .A Young tabloid is an assignment of the numbers {1, . . . , n} to the boxes ofa Ferrers diagram for a partition λ, where ea
h row represents an unorderedset. There are 6 Young tabloids 
orresponding to the partition λ = (2, 2), forexample:



1 2
3 4

ff

,



1 3
2 4

ff

,



1 4
2 3

ff

,



2 3
1 4

ff

,



2 4
1 3

ff

,



3 4
1 2

ff

.The Young tabloid, 1 2
3 4 , for example, represents the two underordered sets

{1, 2} and {3, 4}, and if we were interested in 
omputing the joint probability15



that σ({1, 2}) = {3, 4} and σ({3, 4}) = {1, 2}, then we 
ould write the problemin terms of Young tabloids as:
P

„

σ : σ

„

1 2
3 4

ff«

=



3 4
1 2

ff«

.In general, we will be able to use the Fourier 
oe�
ients at irredu
ible repre-sentations to 
ompute the marginal probabilities of Young tabloids. As we shallsee, with the help of the James Submodule theorem (James & Kerber, 1981),the marginals 
orresponding to �simple� partitions will require very few Fourier
oe�
ients to 
ompute, whi
h is one of the main strengths of working in theFourier domain.Example 10. Imagine three separate rooms 
ontaining two tra
ks ea
h, inwhi
h Ali
e and Bob are in room 1 o

upying Tra
ks 1 and 2; Cathy and Davidare in room 2 o

upying Tra
ks 3 and 4; and Eri
 and Frank are in room 3o

upying Tra
ks 5 and 6, but we are not able to distinguish whi
h person is atwhi
h tra
k in any of the rooms. Then
P

0

@σ :

0

@

8

<

:

A B
C D
E F

9

=

;

1

A→

8

<

:

1 2
3 4
5 6

9

=

;

1

A = 1.It is in fa
t, possible to re
ast the �rst-order marginals whi
h were des
ribedin the previous se
tion in the language of Young tabloids by noti
ing that,for example, if 1 maps to 1, then the unordered set {2, . . . , n} must map to
{2, . . . , n} sin
e permutations are one-to-one mappings. The marginal proba-bility that σ(1) = 1, then, is equal to the marginal probability that σ(1) = 1and σ({2, . . . , n}) = {2, . . . , n}. If n = 6, then the marginal probability writtenusing Young tabloids is:

P

„

σ : σ

„

2 3 4 5 6
1

ff«

=



2 3 4 5 6
1

ff«

.The �rst-order marginal probabilities 
orrespond, therefore, to the marginalprobabilities of Young tabloids of shape λ = (n− 1, 1).Likewise, the se
ond-order unordered marginals 
orrespond to Young tabloidsof shape λ = (n−2, 2). If n = 6 again, then the marginal probability that {1, 2}maps to {2, 4} 
orresponds to the following marginal probability for tabloids:
P

„

σ : σ

„

3 4 5 6
1 2

ff«

=



1 3 5 6
2 4

ff«

.The se
ond-order ordered marginals are 
aptured at the partition λ = (n−
2, 1, 1). For example, the marginal probability that {1} maps to {2} and {2}maps to {4} is given by:

P

0

@σ : σ

0

@

8

<

:

3 4 5 6
1
2

9

=

;

1

A =

8

<

:

1 3 5 6
2
4

9

=

;

1

A .16



And �nally, we remark that the (1, . . . , 1) partition of n re
overs all originalprobabilities sin
e it asks for a joint distribution over σ(1), . . . , σ(n). The 
or-responding matrix of marginals has n!× n! entries.To see how the marginal probabilities of Young tabloids of shape λ 
an bethought of as Fourier 
oe�
ients, we will de�ne a representation (whi
h we 
allthe permutation representation) asso
iated with λ and show that the Fouriertransform of a distribution at a permutation representation gives marginal prob-abilities. We begin by �xing an ordering on the set of possible Young tabloids,
{t1}, {t2}, . . . , and de�ne the permutation representation τλ(σ) to be the matrix:

[τλ(σ)]ij =

{
1 if σ({tj}) = {ti}
0 otherwise . (5.2)It 
an be 
he
ked that the fun
tion τλ is indeed a valid representation of theSymmetri
 group, and therefore we 
an 
ompute Fourier 
oe�
ients at τλ. If

P (σ) is a probability distribution, then
[
P̂τλ

]
ij

=
∑

σ∈Sn

P (σ) [τλ(σ)]ij ,

=
∑

{σ : σ({tj})={ti}}
P (σ),

= P (σ : σ({tj}) = {ti}),and therefore, the matrix of marginals 
orresponding to Young tabloids of shape
λ is given exa
tly by the Fourier transform at the representation τλ.As we showed earlier, the simplest marginals (the zeroth order normalization
onstant), 
orrespond to the Fourier transform at τ(n), while the �rst-ordermarginals 
orrespond to τ(n−1,1), and the se
ond-order unordered marginals
orrespond to τ(n−2,2). The list goes on and on, with the marginals getting more
ompli
ated; At the other end of the spe
trum, we have the Fourier 
oe�
ientsat the representation τ(1,1,...,1) whi
h exa
tly re
over the original probabilities
P (σ).We use the word `spe
trum' suggestively here, be
ause the di�erent levels of
omplexity for the marginals are highly reminis
ent of the di�erent frequen
iesfor real-valued signals, and a natural question to ask is how the partitions mightbe ordered with respe
t to the `
omplexity' of the 
orresponding basis fun
tions.In parti
ular how might one 
hara
terize this vague notion of 
omplexity for agiven partition?The `
orre
t' 
hara
terization, as it turns out, is to use the dominan
e or-dering of partitions, whi
h, unlike the ordering on frequen
ies, is not a linearorder, but rather, a partial order.De�nition 11 (Dominan
e Ordering). Let λ, µ be partitions of n. Then λD µ(we say λ dominates µ), if for ea
h i, ∑i

k=1 λk ≥
∑i

k=1 µk.For example, (4, 2)D(3, 2, 1) sin
e 4 ≥ 3, 4+2 ≥ 3+2, and 4+2+0 ≥ 3+2+1.However, (3, 3) and (4, 1, 1) 
annot be 
ompared with respe
t to the dominan
e17



(a) Dominan
e ordering for
n = 6. (b) Fourier 
oe�
ient matri
es for S6.Figure 3: The dominan
e order for partitions of n = 6 are shown in the left dia-gram (a). Fat Ferrer's diagrams tend to be higher in the order and long, skinnydiagrams tend to be lower. The 
orresponding Fourier 
oe�
ient matri
es forea
h partition (at irredu
ible representations) are shown in the right diagram(b). Note that sin
e the Fourier basis fun
tions form a 
omplete basis for thespa
e of fun
tions on the Symmetri
 group, there must be exa
tly n! 
oe�
ientsin total.ordering sin
e 3 ≤ 4, but 3 + 3 ≥ 4 + 1. The ordering over the partitions of

n = 6 is depi
ted in Figure 3(a).Partitions with fat Ferrers diagrams tend to be greater (with respe
t to dom-inan
e ordering) than those with skinny Ferrers diagrams. Intuitively, represen-tations 
orresponding to partitions whi
h are high in the dominan
e orderingare `low frequen
y', while representions 
orresponding to partitions whi
h arelow in the dominan
e ordering are `high frequen
y'4.Having de�ned a family of intuitive permutation representations over theSymmetri
 group, we 
an now ask whether the permutation representations areirredu
ible or not: the answer in general, is to the negative, due to the fa
t that4The dire
tion of the ordering is slightly 
ounterintuitive given the frequen
y interpretation,but is standard in the literature. 18



it is often possible to re
onstru
t lower order marginals by summing over theappropriate higher order marginal probabilities. However, it is possible to showthat, for ea
h permutation representation τλ, there exists a 
orresponding irre-du
ible representation ρλ, whi
h, loosely, 
aptures all of the information at the`frequen
y' λ whi
h was not already 
aptured at lower frequen
y irredu
ibles.Moreover, it 
an be shown that there exists no irredu
ible representation besidesthose indexed by the partitions of n. These remarkable results are formalizedin the James Submodule Theorem, whi
h we state here without proof (see (Di-a
onis, 1988; James & Kerber, 1981; Sagan, 2001)).Theorem 12 (James' Submodule Theorem).1. (Uniqueness) For ea
h partition, λ, of n, there exists an irredu
ible rep-resentation, ρλ, whi
h is unique up to equivalen
e.2. (Completeness) Every irredu
ible representation of Sn 
orresponds to somepartition of n.3. There exists a matrix Cλ asso
iated with ea
h partition λ, for whi
h
CT

λ · τλ(σ) · Cλ =
⊕

µDλ

Kλµ⊕

ℓ=1

ρµ(σ), for all σ ∈ Sn. (5.3)4. Kλλ = 1 for all partitions λ.In plain English, part (3) of the James Submodule theorem says that we
an always re
onstru
t marginal probabilities of λ-tabloids using the Fourier
oe�
ients at irredu
ibles whi
h lie at λ and above in the dominan
e ordering, ifwe have knowledge of the matrix Cλ (whi
h 
an be pre
omputed using methodsdetailed in Appendix B), and the multipli
ities Kλµ. In parti
ular, 
ombiningEquation 5.3 with the de�nition of the Fourier transform, we have that
f̂τλ

= Cλ ·


⊕

µDλ

Kλµ⊕

ℓ=1

f̂ρµ


 · CT

λ , (5.4)and so to obtain marginal probabilities of λ-tabloids, we simply 
onstru
t ablo
k diagonal matrix using the appropriate irredu
ible Fourier 
oe�
ients, and
onjugate by Cλ. The multipli
ities Kλµ are known as the Kostka numbers and
an be 
omputed using Young's rule (Sagan, 2001). To illustrate using a fewexamples, we have the following de
ompositions:
τ(n) ≡ ρ(n),

τ(n−1,1) ≡ ρ(n) ⊕ ρ(n−1,1),

τ(n−2,2) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2),

τ(n−2,1,1) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1),

τ(n−3,3) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−3,3),

τ(n−3,2,1) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,2)

⊕ ρ(n−2,1,1) ⊕ ρ(n−3,3) ⊕ ρ(n−3,2,1).19



Intuitively, the irredu
ibles at a partition λ re�e
t the �pure� λth-order e�e
tsof the underlying distribution. In other words, the irredu
ibles at λ form abasis for fun
tions that have �interesting� λth-order marginal probabilities, butuniform marginals at all partitions µ su
h that µ ⊲ λ.Example 13. As an example, we demonstrate a �preferen
e� fun
tion whi
h is�purely� se
ond-order (unordered) in the sense that its Fourier 
oe�
ients areequal to zero at all irredu
ible representations ex
ept ρ(n−2,2) (and the trivialrepresentation). Consider the fun
tion f : Sn → R de�ned by:
f(σ) =

{
1 if |σ(1)− σ(2)| ≡ 1 (mod n)
0 otherwise .Intuitively, imagine seating n people at a round table with n 
hairs, but withthe 
onstraint that the �rst two people, Ali
e and Bob, are only happy if theyare allowed to sit next to ea
h other. In this 
ase, f 
an be thought of as theindi
ator fun
tion for the subset of seating arrangements (permutations) whi
hmake Ali
e and Bob happy.Sin
e f depends only on the destination of the unordered pair {1, 2}, itsFourier transform is zero at all partitions µ su
h that µ ⊳ (n−2, 2) (f̂µ = 0). Onthe other hand, Ali
e and Bob have no individual preferen
es for seating, so the�rst-order �marginals� of f are uniform, and hen
e, f̂(n−1,1) = 0. The Fourier
oe�
ients at irredu
ibles 
an be obtained from the se
ond-order (unordered)�marginals� using Equation 5.3.

CT
(n−2,2) · P̂τ(n−2,2)

· C(n−2,2) =




Z

0

f̂ρ(n−2,2)




.The sizes of the irredu
ible representation matri
es are typi
ally mu
h smallerthan their 
orresponding permutation representation matri
es. In the 
ase of
λ = (1, . . . , 1) for example, dim τλ = n! while dim ρλ = 1. There is a sim-ple 
ombinatorial algorithm, known as the Hook Formula (Sagan, 2001), for
omputing the dimension of ρλ. While we do not dis
uss it, we provide a fewdimensionality 
omputations here (Table 3) to fa
ilitate a di
ussion of 
omplex-ity later. See Figure 3(b) for an example of what the matri
es of a 
ompleteFourier transform on S6 would look like.In pra
ti
e, sin
e the irredu
ible representation matri
es are determined onlyup to equivalen
e, it is ne
essary to 
hoose a basis for the irredu
ible representa-tions in order to expli
itly 
onstru
t the representation matri
es. As in (Kondoret al., 2007), we use the Gel'fand-Tsetlin basis whi
h has several attra
tive prop-erties, two advantages being that the matri
es are real-valued and orthogonal.See Appendix A for details on 
onstru
ting irredu
ible matrix representationswith respe
t to the Gel'fand-Tsetlin basis.20



λ (n) (n − 1, 1) (n − 2, 2) (n − 2, 1, 1) (n − 3, 3) (n − 3, 2, 1)dim ρλ 1 n − 1 n(n−3)
2

(n−1)(n−2)
2

n(n−1)(n−5)
6

n(n−2)(n−4)
3Table 3: Dimensions of low-order irredu
ible representation matri
es.6 Inferen
e in the Fourier domainWhat we have shown thus far, is that there is a prin
ipled method for 
ompa
tlysummarizing distributions over permutations based on the idea of bandlimiting� saving only the low-frequen
y terms of the Fourier transform of a fun
tion,whi
h, as we dis
ussed, is equivalent to maintaining a set of low-order marginalprobabilities. We now turn to the problem of performing probabilisti
 inferen
eusing our 
ompa
t summaries. One of the main advantages of viewing marginalsas Fourier 
oe�
ients is that it provides a natural prin
iple for formulatinginferen
e, whi
h is to rewrite all inferen
e related operations with respe
t to theFourier domain.The idea of bandlimiting a distribution is ultimately moot, however, if it be-
omes ne
essary to transform ba
k to the primal domain ea
h time an inferen
eoperation is 
alled. Naively, the Fourier Transform on Sn s
ales as O((n!)2), andeven the fastest Fast Fourier Transforms for fun
tions on Sn are no faster than

O(n2 · n!) (see (Maslen, 1998) for example). To resolve this issue, we present aformulation of inferen
e whi
h operates solely in the Fourier domain, allowingus to avoid a 
ostly transform. We begin by dis
ussing exa
t inferen
e in theFourier domain, whi
h is no more tra
table than the original problem be
ausethere are n! Fourier 
oe�
ients, but it will allow us to introdu
e the bandlim-iting approximation in the next se
tion. There are two operations to 
onsider:predi
tion/rollup, and 
onditioning. The assumption for the rest of this se
-tion is that the Fourier transforms of the transition and observation models areknown. We dis
uss methods for obtaining the models in Se
tion 8.6.1 Fourier predi
tion/rollupWe will 
onsider one parti
ular 
lass of transition models � that of randomwalks over a group, whi
h assumes that σ(t+1) is generated from σ(t) by draw-ing a random permutation π(t) from some distribution Q(t) and setting σ(t+1) =
π(t)σ(t) 5. In our identity management example, π(t) represents a random iden-tity permutation that might o

ur among tra
ks when they get 
lose to ea
h5We pla
e π on the left side of the multipli
ation be
ause we want it to permute tra
ksand not identities. Had we de�ned π to map from tra
ks to identities (instead of identities totra
ks), then π would be multiplied from the right. Besides left versus right multipli
ation,there are no di�eren
es between the two 
onventions.21



other (what we 
all a mixing event). For example, Q(1, 2) = 1/2 means thatTra
ks 1 and 2 swapped identities with probability 1/2. The random walkmodel also appears in many other appli
ations su
h as modeling 
ard shu�es(Dia
onis, 1988).The motivation behind the random walk transition model is that it allowsus to write the predi
tion/rollup operation as a 
onvolution of distributions onthe Symmetri
 group. The extension of the familiar notion of 
onvolution togroups simple repla
es additions and subtra
tions by analogous group operations(fun
tion 
omposition and inverse, respe
tively):De�nition 14. Let Q and P be probability distributions on Sn. De�ne the
onvolution6 of Q and P to be the fun
tion [Q ∗ P ] (σ1) =
∑

σ2
Q(σ1σ

−1
2 )P (σ2).Using De�nition 14, we see that the predi
tion/rollup step 
an be writtenas:

P (σ(t+1)) =
∑

σ(t)

P (σ(t+1)|σ(t)) · P (σ(t)),

=
∑

{(σ(t),π(t)) : σ(t+1)=π(t)·σ(t)}
Q(t)(π(t)) · P (σ(t)),(Right-multiplying both sides of σ(t+1) = π(t)σ(t)by (σ(t))−1, we see that π(t) 
an be repla
ed by σ(t+1)(σ(t))−1),

=
∑

σ(t)

Q(t)(σ(t+1) · (σ(t))−1) · P (σ(t)),

=
[
Q(t) ∗ P

]
(σ(t+1)).As with Fourier transforms on the real line, the Fourier 
oe�
ients of the 
on-volution of distributions P and Q on groups 
an be obtained from the Fourier
oe�
ients of P and Q individually, using the 
onvolution theorem (see also(Dia
onis, 1988)):Proposition 15 (Convolution Theorem). Let Q and P be probability distribu-tions on Sn. For any representation ρ,

[
Q̂ ∗ P

]
ρ

= Q̂ρ · P̂ρ,where the operation on the right side is matrix multipli
ation.Therefore, assuming that the Fourier transforms P̂ (t)
ρ and Q̂(t)

ρ are given, thepredi
tion/rollup update rule is simply:
P̂ (t+1)

ρ ← Q̂(t)
ρ · P̂ (t)

ρ .6Note that this de�nition of 
onvolution on groups is stri
tly a generalization of 
onvolutionof fun
tions on the real line, and is a non-
ommutative operation for non-abelian groups. Thusthe distribution P ∗ Q is not ne
essarily the same as Q ∗ P .22



σ P (0) Q(1) P (1) Q(2) P (2)

ǫ 1 3/4 3/4 3/4 9/16

(1, 2) 0 1/4 1/4 0 3/16

(2, 3) 0 0 0 0 0

(1, 3) 0 0 0 1/4 3/16

(1, 2, 3) 0 0 0 0 1/16

(1, 3, 2) 0 0 0 0 0Table 4: Primal domain predi
tion/rollup example.
bP (0) bQ(1) bP (1) bQ(2) bP (2)

ρ(3) 1 1 1 1 1

ρ(2,1)

»
1 0
0 1

– »
1
2 0
0 1

– »
1
2 0
0 1

– "
1
2 −

√
3

8

−
√

3
8

5
8

# "
7
16 −

√
3

8

−
√

3
16

5
8

#

ρ(1,1,1) 1 1
2

1
2

1
2

1
2Table 5: Fourier domain predi
tion/rollup example.Note that the update only requires knowledge of P̂ and does not require P .Furthermore, the update is pointwise in the Fourier domain in the sense thatthe 
oe�
ients at the representation ρ a�e
t P̂ (t+1)

ρ only at ρ. Consequently,predi
tion/rollup updates in the Fourier domain never in
rease the representa-tional 
omplexity. For example, if we maintain third-order marginals, then asingle step of predi
tion/rollup 
alled at time t returns the exa
t third-ordermarginals at time t+ 1, and nothing more.Example 16. We run the predi
tion/rollup routines on the �rst two timesteps of the example in Figure 2, �rst in the primal domain, then in the Fourierdomain. At ea
h mixing event, two tra
ks, i and j, swap identities with someprobability. Using a mixing model given by:
Q(π) =





3/4 if π = ǫ
1/4 if π = (i, j)
0 otherwise ,we obtain results shown in Tables 4 and 5.6.1.1 Limitations of random walk modelsWhile the random walk assumption 
aptures a rather general family of transitionmodels, there do exist 
ertain models whi
h 
annot be written as a random walkon a group. In parti
ular, one limitation is that the predi
tion/rollup update fora random walk model 
an only in
rease the entropy of the distribution. As with23



Kalman �lters, lo
alization is thus impossible without making observations. 7(Shin et al., 2005) show that the entropy must in
rease for a 
ertain kind ofrandom walk on Sn (where π 
ould be either the identity or the transposition
(i, j)), but in fa
t, the result is easily generalized for any random walk mixingmodel and for any group.Proposition 17.

H
[
P (t+1)(σ(t+1))

]
≥ max

{
H
[
Q(t)(τ (t))

]
, H
[
P (t)(σ(t))

]}
,where H [P (σ)] denotes the statisti
al entropy fun
tional, H [P (σ)] = −∑σ∈G P (σ) logP (σ).Proof. We have:

P (t+1)(σ(t+1)) =
[
Q(t) ∗ P (t)

]
(σ(t+1))

=
∑

σ(t)

Q(σ(t+1) · (σ(t))−1)P (t)(σ(t))Applying the Jensen Inequality to the entropy fun
tion (whi
h is 
on
ave) yields:
H
[
P (t+1)(σ(t+1))

]
≥
∑

σ(t)

P (t)(σ(t))H
[
Q(t)(σ · (σ(t))−1)

]
, (Jensen's inequality)

=
∑

σ(t)

P (t)(σ(t))H
[
Q(t)(σ)

]
, (translation invarian
e of entropy)

= H
[
Q(t)(σ)

]
, (sin
e ∑σ(t) P (t)(σ(t)) = 1).The proof that H [P (t+1)(σ(t+1))
]
≥ H

[
P (t)(σ(t))

] is similar with the ex
eptionthat we must rewrite the 
onvolution so that the sum ranges over τ (t).
P (t+1)(σ(t+1)) =

[
Q(t) ∗ P (t)

]
(σ(t+1)),

=
∑

τ (t)

Q(t)(τ (t))P (t)((τ (t))−1 · σ(t+1)).Example 18. This example is based on one from (Dia
onis, 1988). Considera de
k of 
ards numbered {1, . . . , n}. Choose a random permutation of 
ards by7In general, if we are not 
onstrained to using linear Gaussian models, it is possible tolo
alize with no observations. Consider a robot walking along the unit interval on the real line(whi
h is not a group). If the position of the robot is unknown, one easy lo
alization strategymight be to simply drive the robot to the right, with the knowledge that given ample time,the robot will slam into the `wall', at whi
h point it will have been lo
alized. With randomwalk based models on groups however, these strategies are impossible � imagine the samerobot walking around the unit 
ir
le � sin
e, in some sense, the group stru
ture prevents theexisten
e of `walls'. 24
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Figure 4: We start with a de
k of 
ards in sorted order, and perform �fteen
onse
utive shu�es a

ording to the rule given in Equation 6.1. The plot showsthe entropy of the distribution over permutations with respe
t to the numberof shu�es for n = 3, 4, . . . , 8. When H(P )/ log(n!) = 1, the distribution hasbe
ome uniform.�rst pi
king two 
ards independently, and swapping (a 
ard might be swappedwith itself), yielding the following probability distribution over Sn:
Q(π) =





1
n if π =id
2

n2 if π is a transposition
0 otherwise . (6.1)Repeating the above pro
ess for generating random permutations π gives atransition model for a hidden Markov model over the symmetri
 group. We 
analso see (Figure 4) that the entropy of the de
k in
reases monotoni
ally withea
h shu�e, and that repeated shu�es with Q(π) eventually bring the de
k tothe uniform distribution.6.2 Fourier 
onditioningIn 
ontrast with the predi
tion/rollup operation, 
onditioning 
an potentiallyin
rease the representational 
omplexity. As an example, suppose that we knowthe following �rst-order marginal probabilities:

P (Ali
e is at Tra
k 1 or Tra
k 2) = .9, and
P (Bob is at Tra
k 1 or Tra
k 2) = .9.If we then make the following �rst-order observation:
P (Cathy is at Tra
k 1 or Tra
k 2) = 1,25



then it 
an be inferred that Ali
e and Bob 
annot both o

upy Tra
ks 1 and 2at the same time, i.e.,
P ({Ali
e,Bob} o

upy Tra
ks {1,2}) = 0,demonstrating that after 
onditioning, we are left with knowledge of se
ond-order (unordered) marginals despite the fa
t that the prior and likelihood fun
-tions were only known up to �rst-order. Intuitively, the example shows that
onditioning �smears� information from low-order Fourier 
oe�
ients to high-order 
oe�
ients, and that one 
annot hope for a pointwise operation as wasa�orded by predi
tion/rollup. We now show pre
isely how irredu
ibles of dif-ferent 
omplexities �intera
t� with ea
h other in the Fourier domain during
onditioning.An appli
ation of Bayes rule to �nd a posterior distribution P (σ|z) afterobserving some eviden
e z requires two steps: a pointwise produ
t of likelihood

P (z|σ) and prior P (σ), followed by a normalization step:
P (σ|z) = η · P (z|σ) · P (σ).For notational 
onvenien
e, we will refer to the likelihood fun
tion as L(z|σ)hen
eforth. We showed earlier that the normalization 
onstant η−1 =

∑
σ L(z|σ)·

P (σ) is given by the Fourier transform of L̂(t)P (t) at the trivial representation� and therefore the normalization step of 
onditioning 
an be implemented bysimply dividing ea
h Fourier 
oe�
ient by the s
alar [L̂(t)P (t)
]

ρ(n)

.The pointwise produ
t of two fun
tions f and g, however, is tri
kier toformulate in the Fourier domain. For fun
tions on the real line, the pointwiseprodu
t of fun
tions 
an be implemented by 
onvolving the Fourier 
oe�
ientsof f̂ and ĝ, and so a natural question is: 
an we apply a similar operation forfun
tions over general groups? Our answer to this is that there is an analogous(but more 
ompli
ated) notion of 
onvolution in the Fourier domain of a general�nite group. We present a 
onvolution-based 
onditioning algorithm whi
h we
all Krone
ker Conditioning, whi
h, in 
ontrast to the pointwise nature of theFourier Domain predi
tion/rollup step, and mu
h like 
onvolution, smears theinformation at an irredu
ible ρν to other irredu
ibles.6.2.1 Fourier transform of the pointwise produ
tOur approa
h to 
omputing the Fourier transform of the pointwise produ
t interms of f̂ and ĝ is to manipulate the fun
tion f(σ)g(σ) so that it 
an be seenas the result of an inverse Fourier transform (Equation 4.4). Hen
e, the goalwill be to �nd matri
es Rν (as a fun
tion of f̂ , ĝ) su
h that for any σ ∈ G,
f(σ) · g(σ) =

1

|G|
∑

ν

dρν
Tr (RT

ν · ρν(σ)
)
, (6.2)after whi
h we will be able to read o� the Fourier transform of the pointwiseprodu
t as [f̂ g]

ρν

= Rν . 26



1. If A and B are square, Tr (A⊗B) = (TrA) · (TrB).2. (A⊗B) · (C ⊗D) = AC ⊗BD.3. Let A be an n×n matrix, and C an invertible n×n matrix. ThenTrA = Tr (C−1AC
).4. Let A be an n×n matrix and Bi be matri
es of size mi×mi where∑

i mi = n. Then Tr (A · (⊕i Bi)) =
∑

i Tr (Ai ·Bi), where Ai isthe blo
k of A 
orresponding to blo
k Bi in the matrix (
⊕

iBi).Table 6: Matrix Identities used in Proposition 19.For any σ ∈ G we 
an write the pointwise produ
t in terms f̂ and ĝ usingthe inverse Fourier transform:
f(σ) · g(σ) =

[
1

|G|
∑

λ

dρλ
Tr(f̂T

ρλ
· ρλ(σ)

)]
·
[

1

|G|
∑

µ

dρµ
Tr(ĝT

ρµ
· ρµ(σ)

)]

=

(
1

|G|

)2∑

λ,µ

dρλ
dρµ

[Tr(f̂T
ρλ
· ρλ(σ)

)
· Tr(ĝT

ρµ
· ρµ(σ)

)]
. (6.3)Now we want to manipulate this produ
t of tra
es in the last line to be just onetra
e (as in Equation 6.2), by appealing to some properties of the Krone
kerProdu
t. The Krone
ker produ
t of an n × n matrix U = (ui,j) by an m ×mmatrix V , is de�ned to be the nm× nm matrix

U ⊗ V =




u1,1V u1,2V . . . u1,nV
u2,1V u2,2V . . . u2,nV... ... . . . ...
un,1V un,2V . . . un,nV


 .We summarize some important matrix properties in Table 6. The 
onne
tionto our problem is given by matrix property 1. Applying this to Equation 6.3,we have:Tr(f̂T

ρλ
· ρλ(σ)

)
· Tr(ĝT

ρµ
· ρµ(σ)

)
= Tr((f̂T

ρλ
· ρλ(σ)

)
⊗
(
ĝT

ρµ
· ρµ(σ)

))

= Tr((f̂ρλ
⊗ ĝρµ

)T

· (ρλ(σ)⊗ ρµ(σ))

)
,where the last line follows by Property 2. The term on the left, f̂ρλ

⊗ ĝρµ
, is amatrix of 
oe�
ients. The term on the right, ρλ(σ) ⊗ ρµ(σ), itself happens tobe a representation, 
alled the Krone
ker (or Tensor) Produ
t Representation.In general, the Krone
ker produ
t representation is redu
ible, and so it 
ande
omposed into a dire
t sum of irredu
ibles. In parti
ular, if ρλ and ρµ are27



any two irredu
ibles of G, there exists a similarity transform Cλµ su
h that, forany σ ∈ G,
C−1

λµ · [ρλ ⊗ ρµ] (σ) · Cλµ =
⊕

ν

zλµν⊕

ℓ=1

ρν(σ). (6.4)The ⊕ symbols here refer to a matrix dire
t sum as in Equation 2, ν indexesover all irredu
ible representations of Sn, while ℓ indexes over a number of 
opiesof ρν whi
h appear in the de
omposition. We index blo
ks on the right side ofthis equation by pairs of indi
es (ν, ℓ). The number of 
opies of ea
h ρν (for thetensor produ
t pair ρλ ⊗ ρµ) is denoted by the integer zλµν , the 
olle
tion ofwhi
h, taken over all triples (λ, µ, ν), are 
ommonly referred to as the Clebs
h-Gordan series. Note that we allow the zλµν to be zero, in whi
h 
ase ρν doesnot 
ontribute to the dire
t sum. The matri
es Cλµ are known as the Clebs
h-Gordan 
oe�
ients. The Krone
ker Produ
t De
omposition problem is that of�nding the irredu
ible 
omponents of the Krone
ker produ
t representation, andthus to �nd the Clebs
h-Gordan series/
oe�
ients for ea
h pair of irredu
iblerepresentations (ρλ, ρµ).De
omposing the Krone
ker produ
t inside Equation 6.4 using the Clebs
h-Gordan series and 
oe�
ients yields the desired Fourier transform, whi
h wesummarize in the form of a proposition. In the 
ase that f and g are de�nedover an abelian group, then the following formulas redu
e to the familiar formof 
onvolution.Proposition 19. Let f̂ , ĝ be the Fourier transforms of fun
tions f and g re-spe
tively, and for ea
h ordered pair of irredu
ibles (ρλ, ρµ), de�ne: Aλµ ,

C−1
λµ ·

(
f̂ρλ
⊗ ĝρµ

)
·Cλµ. Then the Fourier tranform of the pointwise produ
t fgis: [

f̂ g
]

ρν

=
1

dρν
|G|

∑

λµ

dρλ
dρµ

zλµν∑

ℓ=1

A
(ν,ℓ)
λµ , (6.5)where A(ν,ℓ)

λµ is the blo
k of Aλµ 
orresponding to the (ν, ℓ) blo
k in⊕ν

⊕zλµν

ℓ=1 ρνfrom Equation 6.4.Proof. We use the fa
t that Cλµ is an orthogonal matrix for all pairs (ρλ, ρµ),i.e., CT
λµ · Cλµ = I.

f(σ) · g(σ) =

"

1

|G|
X

λ

dρλ
Tr“f̂T

ρλ
· ρλ(σ)

”

#

·

2

4

1

|G|
X

µ

dρµTr “ĝT
ρµ

· ρµ(σ)
”

3

5

=

„

1

|G|

«2
X

λ,µ

dρλ
dρµ

hTr“f̂T
ρλ

· ρµ(σ)
”

· Tr“ĝT
ρµ

· ρµ(σ)
”i(by Property 1) =

„

1

|G|

«2
X

λ,µ

dρλ
dρµ

hTr““f̂T
ρλ

· ρλ(σ)
”

⊗
“

ĝT
ρµ

· ρµ(σ)
””i(by Property 2) =

„

1

|G|

«2
X

λ,µ

dρλ
dρµTr„“f̂ρλ

⊗ ĝρµ

”T
· (ρλ(σ) ⊗ ρµ(σ))

«
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(by Property 3) =

„

1

|G|

«2
X

λ,µ

dρλ
dρµTr„CT

λµ ·
“

f̂ρλ
⊗ ĝρµ

”T
· Cλµ

·CT
λµ · (ρλ(σ) ⊗ ρµ(σ)) · Cλµ

”(by de�nition of Cλµ and Aλµ) =

„

1

|G|

«2
X

λ,µ

dρλ
dρµTr AT

λµ ·
 

M

ν

zλµν
M

ℓ=1

ρν(σ)

!!(by Property 4) =
1

|G|2
X

λµ

dρλ
dρµ

X

ν

dρν

zλµν
X

ℓ=1

Tr„“d−1
ρν

A
(ν,ℓ)
λµ

”T
ρν(σ)

«(rearranging terms) =
1

|G|
X

ν

dρνTr2640@X
λµ

zλµν
X

ℓ=1

dρλ
dρµ

dρν |G|
A

(ν,ℓ)
λµ

1

A

T

ρν(σ)

3

7

5
.Re
ognizing the last expression as an inverse Fourier transform 
ompletes theproof.The Clebs
h-Gordan series, zλµν , plays an important role in Equation 6.5,whi
h says that the (ρλ, ρµ) 
rossterm 
ontributes to the pointwise produ
t at

ρν only when zλµν > 0. In the simplest 
ase, we have that
z(n),µ,ν =

{
1 if µ = ν
0 otherwise ,whi
h is true sin
e ρ(n)(σ) = 1 for all σ ∈ Sn. As another example, it is knownthat:

ρ(n−1,1) ⊗ ρ(n−1,1) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1), (6.6)or equivalently,
z(n−1,1),(n−1,1),ν =

{
1 if ν is one of (n),(n− 1, 1),(n− 2, 2), or (n− 2, 1, 1)
0 otherwise .So if the Fourier transforms of the likelihood and prior are zero past the �rsttwo irredu
ibles ((n) and (n− 1, 1)), then a single 
onditioning step results in aFourier transform whi
h, in general, 
arries se
ond-order information at (n−2, 2)and (n−2, 1, 1), but is guaranteed to be zero past the �rst four irredu
ibles (n),

(n− 1, 1), (n− 2, 2) and (n− 2, 1, 1).As far as we know, there are no analyti
al formulas for �nding the entireClebs
h-Gordan series or 
oe�
ients, and in pra
ti
e, these 
omputations do infa
t take a long time. We emphasize however, that as fundamental 
onstantsrelated to the irredu
ibles of the Symmetri
 group, they need only be 
omputedon
e (like the digits of π, for example) and 
an be stored in a table for allfuture referen
e. For a detailed dis
ussion of te
hniques for 
omputing theClebs
h-Gordan series/
oe�
ients, see Appendix B. We plan to make a setof pre
omputed 
oe�
ients available on the web, but for now we will assumethroughout the rest of the paper that both the series and 
oe�
ients have beenmade available as a lookup table. We 
on
lude our se
tion on inferen
e with afully worked example of Krone
ker 
onditioning.29



Example 20. For this example, refer to Table 2 for the representations of S3.Given fun
tions f, g : S3 → R, we will 
ompute the Fourier transform of thepointwise produ
t f · g.Sin
e there are three irredu
ibles, there are nine tensor produ
ts ρλ ⊗ ρµto de
ompose, six of whi
h are trivial either be
ause they are one-dimensional,or involve tensoring against the trivial representation. The nontrivial tensorprodu
ts to 
onsider are ρ(2,1) ⊗ ρ(1,1,1), ρ(1,1,1) ⊗ ρ(2,1) and ρ(2,1) ⊗ ρ(2,1). TheClebs
h-Gordan series for the nontrivial tensor produ
ts are:
z(2,1),(1,1,1),ν z(1,1,1),(2,1),ν z(2,1),(2,1),ν

ν = (3) 0 0 1
ν = (2, 1) 1 1 1

ν = (1, 1, 1) 0 0 1The Clebs
h-Gordan 
oe�
ients for the nontrivial tensor produ
ts are givenby the following orthogonal matri
es:
C(2,1)⊗(1,1,1) =

»

0 1
−1 0

–

, C(1,1,1)⊗(2,1) =

»

0 −1
1 0

–

,

C(2,1)⊗(2,1) =

√
2

2

2

6

6

4

1 0 −1 0
0 −1 0 1
0 −1 0 −1
1 0 1 0

3

7

7

5

.As in Proposition 19, de�ne:
A(2,1)⊗(1,1,1) = CT

(2,1)⊗(1,1,1)

(
f̂(2,1) ⊗ ĝ(1,1,1)

)
C(2,1)⊗(1,1,1), (6.7)

A(1,1,1)⊗(2,1) = CT
(1,1,1)⊗(2,1)

(
f̂(1,1,1) ⊗ ĝ(2,1)

)
C(1,1,1)⊗(2,1), (6.8)

A(2,1)⊗(2,1) = CT
(2,1)⊗(2,1)

(
f̂(2,1) ⊗ ĝ(2,1)

)
C(2,1)⊗(2,1), (6.9)Then Proposition 19 gives the following formulas:

f̂ · gρ(3)
=

1

3!
·
[
f̂ρ(3)

· ĝρ(3)
+ f̂ρ(1,1,1)

· ĝρ(1,1,1)
+ 4 ·

[
A(2,1)⊗(2,1)

]
1,1

]
, (6.10)

f̂ · gρ(2,1)
=

1

3!
·
[
f̂ρ(2,1)

· ĝρ(3)
+ f̂ρ(3)

· ĝρ(2,1)
+A(1,1,1)⊗(2,1)

+A(2,1)⊗(1,1,1) + 2 ·
[
A(2,1)⊗(2,1)

]
2:3,2:3

]
, (6.11)

f̂ · gρ(1,1,1)
=

1

3!
·
[
f̂ρ(3)

· ĝρ(1,1,1)
+ f̂ρ(1,1,1)

· ĝρ(3)
+ 4 ·

[
A(2,1)⊗(2,1)

]
4,4

]
, (6.12)where the notation [A]a:b,c:d denotes the blo
k of entries in A between rows aand b, and between 
olumns c and d (in
lusive).Using the above formulas, we 
an 
ontinue on Example 16 and 
ompute thelast update step in our identity management problem (Figure 2). At the �naltime step, we observe that Bob is at tra
k 1 with 100% 
ertainty. Our likelihoodfun
tion is therefore nonzero only for the permutations whi
h map Bob (these
ond identity) to the �rst tra
k:

L(σ) ∝
{

1 if σ = (1, 2) or (1, 3, 2)
0 otherwise .30



Algorithm 1: Pseudo
ode for the Fourier Predi
tion/Rollup Algorithm.Predi
tionRollupinput : Q̂(t)
ρλ

and P̂ (t)
ρλ
, ρλ ∈ Λoutput: P̂ (t+1)

ρλ
, ρλ ∈ Λforea
h ρλ ∈ Λ do P̂

(t+1)
ρλ

← Q̂
(t)
ρλ
· P̂ (t)

ρλ
;1The Fourier transform of the likelihood fun
tion is:

L̂ρ(3)
= 2, L̂ρ(2,1)

=

[
−3/2

√
3/2

−
√

3/2 1/2

]
, L̂ρ(1,1,1)

= 0. (6.13)Plugging the Fourier transforms of the prior distribution (P̂ (2) from Table 5)and likelihood (Equation 6.13) into Equations 6.7, 6.8, 6.9, we have:
A(2,1)⊗(1,1,1) =

»
0 0
0 0

–
, A(1,1,1)⊗(2,1) =

1

8

»
1

√
3

−
√

3 −3

–
,

A(2,1)⊗(2,1) =
1

32

2
664

−7 −
√

3 11 5
√

3

−2
√

3 −10 −6
√

3 −14

20 22
√

3 −4 4
√

3

−11
√

3 −23 −
√

3 −13

3
775To invoke Bayes rule in the Fourier domain, we perform a pointwise prod-u
t using Equations 6.10, 6.11, 6.12, and normalize by dividing by the trivial
oe�
ient, whi
h yields the Fourier transform of the posterior distribution as:

[
P̂ (σ|z)

]
ρ(3)

= 1,
[
P̂ (σ|z)

]
ρ(2,1)

=

[
−1 0
0 1

]
,
[
P̂ (σ|z)

]
ρ(1,1,1)

= −1.(6.14)Finally, we 
an see that the result is 
orre
t by re
ognizing that the Fouriertransform of the posterior (Equation 6.14) 
orresponds exa
tly to the distributionwhi
h is 1 at σ = (1, 2) and 0 everywhere else. Bob is therefore at Tra
k 1, Ali
eat Tra
k 2 and Cathy at Tra
k 3.
σ ǫ (1, 2) (2, 3) (1, 3) (1, 2, 3) (1, 3, 2)

P (σ) 0 1 0 0 0 07 Approximate inferen
e by bandlimitingWe now 
onsider the 
onsequen
es of performing inferen
e using the Fouriertransform at a redu
ed set of 
oe�
ients. Important issues in
lude understand-ing how error 
an be introdu
ed into the system, and when our algorithms areexpe
ted to perform well as an approximation. Spe
i�
ally, we �x a bandlimit
λMIN and maintain the Fourier transform of P only at irredu
ibles whi
h areat λMIN or above in the dominan
e ordering:

Λ = {ρλ : λD λMIN}.31



Algorithm 2: Pseudo
ode for the Krone
ker Conditioning Algorithm.Krone
kerConditioninginput : Fourier 
oe�
ients of the likelihood fun
tion, L̂ρλ
, ρλ ∈ ΛL, andFourier 
oe�
ients of the prior distribution, P̂ρµ
, ρµ ∈ ΛPoutput: Fourier 
oe�
ients of the posterior distribution, L̂P ρν

, ρν ∈ ΛPforea
h ρν ∈ ΛP do L̂P ρν
← 0 //Initialize Posterior1 //Pointwise Produ
tforea
h ρλ ∈ ΛL do2 forea
h ρµ ∈ ΛP do3

z ← CGseries(ρλ, ρµ) ;4
Cλµ ← CGcoefficients(ρλ, ρµ) ; Aλµ ← CT

λµ ·
(
L̂ρλ
⊗ P̂ρµ

)
· Cλµ ;5 for ρν ∈ ΛP su
h that zλµν 6= 0 do6 for ℓ = 1 to zλµν do7 [

L̂(t)P (t)
]

ρν

←
[
L̂(t)P (t)

]
ρν

+
dρλ

dρµ

dρν n! A
(ν,ℓ)
λµ ; //A(ν,ℓ)

λµ is the8
(ν, ℓ) blo
k of Aλµ

η ←
[
L̂(t)P (t)

]−1

ρ(n)

;9 forea
h ρν ∈ Λ do [
L̂(t)P (t)

]
ρν

← η
[
L̂(t)P (t)

]
ρν

//Normalization10For example, when λMIN = (n−2, 1, 1), Λ is the set {ρ(n), ρ(n−1,1), ρ(n−2,2) , and
ρ(n−2,1,1)

}, whi
h 
orresponds to maintaining se
ond-order (ordered) marginalprobabilities of the form P (σ((i, j)) = (k, ℓ)). During inferen
e, we follow thepro
edure outlined in the previous se
tion but dis
ard the higher order termswhi
h 
an be introdu
ed during the 
onditioning step. Pseudo
ode for ban-dlimited predi
tion/rollup and Krone
ker 
onditioning is given in Algorithms 1and 2. We note that it is not ne
essary to maintain the same number of irre-du
ibles for both prior and likelihood during the 
onditioning step. The �rstquestion to ask is: when should one expe
t a bandlimited approximation to be
lose to P (σ) as a fun
tion? Qualitatively, if a distribution is relatively smooth,then most of its energy is stored in the low-order Fourier 
oe�
ients. However,in a phenomenon quite reminis
ent of the Heisenberg un
ertainty prin
iple fromquantum me
hani
s, it is exa
tly when the distribution is sharply 
on
entratedat a small subset of permutations, that the Fourier proje
tion is unable tofaithfully approximate the distribution. We illustrate this un
ertainty e�e
tin Figure 5 by plotting the a

ura
y of a bandlimited distribution against theentropy of a distribution.Even though the bandlimited distribution is sometimes a poor approximationto the true distribution, the marginals mainatined by our algorithm are oftensu�
iently a

urate. And so instead of 
onsidering the approximation a

ura
yof the bandlimited Fourier transform to the true joint distribution, we 
onsiderthe a

ura
y only at the marginals whi
h are maintained by our method.32
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Figure 5: In general, smoother distributions are well approximated by low-order Fourier proje
tions. In this graph, we show the approximation quality ofthe Fourier proje
tions on distributions with di�erent entropies, starting fromsharply peaked delta distributions on the left side of the graph, whi
h get itera-tively smoothed until they be
omes the maximum entropy uniform distributionon the right side. On the y-axis, we measure how mu
h energy is preserved inthe bandlimited approximation, whi
h we de�ne to be |P ′|2
|P |2 , where P ′ is the ban-dlimited approximation to P . Ea
h line represents the approximation qualityusing a �xed number of Fourier 
oe�
ients. At one extreme, we a
hieve perfe
tsignal re
onstru
tion by using all Fourier 
oe�
ients, and at the other, we per-form poorly on �spiky� distributions, but well on high-entropy distributions, bystoring a single Fourier 
oe�
ient.7.1 Sour
es of error during inferen
eWe now analyze the errors in
urred during our inferen
e pro
edures with respe
tto the a

ura
y at maintained marginals. It is immediate that the Fourierdomain predi
tion/rollup operation is exa
t due to its pointwise nature in theFourier domain. For example, if we have the se
ond order marginals at time

t = 0, then we 
an �nd the exa
t se
ond order marginals at all t > 0 if we onlyperform predi
tion/rollup operations. Instead, the errors in inferen
e are only
ommitted by Krone
ker 
onditioning, where they are impli
itly introdu
ed at
oe�
ients outside of Λ (by e�e
tively setting the 
oe�
ients of the prior andlikelihood at irredu
ibles outside of Λ to be zero), then propagated inside to theirredu
ibles of Λ.In pra
ti
e, we observe that the errors introdu
ed at the low-order irre-33



(a) n = 5 (b) n = 6Figure 6: We show the dominan
e ordering for partitions of n = 5 and n =
6 again. By setting λMIN = (3, 1, 1) and (4, 1, 1) respe
tively, we keep theirredu
ibles 
orresponding to the partitions in the dotted regions. If we 
allKrone
ker Conditioning with a �rst-order observation model, then a

ordingto Theorem 21, we 
an expe
t to in
ur some error at the Fourier 
oe�
ients
orresponding to (3, 1, 1) and (3, 2) for n = 5, and (4, 1, 1) and (4, 2) for n = 6(shown as shaded tableaux), but to be exa
t at �rst-order 
oe�
ients.du
ibles during inferen
e are small if the prior and likelihood are su�
ientlydi�use, whi
h makes sense sin
e the high-frequen
y Fourier 
oe�
ients are smallin su
h 
ases. We 
an sometimes show that the update is exa
t at low orderirredu
ibles if we maintain enough 
oe�
ients.Theorem 21. If λMIN = (n−p, λ2, . . . ), and the Krone
ker 
onditioning algo-rithm is 
alled with a likelihood fun
tion whose Fourier 
oe�
ients are nonzeroonly at ρµ when µ D (n − q, µ2, . . . ), then the approximate Fourier 
oe�
ientsof the posterior distribution are exa
t at the set of irredu
ibles:

ΛEXACT = {ρλ : λD (n− |p− q|, . . . )}.Proof. See Appendix B.For example, if we 
all Krone
ker 
onditioning by passing in third-orderterms of the prior and �rst-order terms of the likelihood, then all �rst and34



se
ond-order (unordered and ordered) marginal probabilities of the posteriordistribution 
an be re
onstru
ted without error.7.2 Proje
ting to the marginal polytopeDespite the en
ouraging result of Theorem 21, the fa
t remains that 
onse
-utive 
onditioning steps 
an propagate errors to all levels of the bandlimitedFourier transform, and in many 
ir
umstan
es, results in a Fourier transformwhose �marginal probabilities� 
orrespond to no 
onsistent joint distributionover permutations, and are sometimes negative. To 
ombat this problem, wepresent a method for proje
ting to the spa
e of 
oe�
ients 
orresponding to
onsistent joint distributions (whi
h we will refer to as the marginal polytope)during inferen
e.We begin by dis
ussing the �rst-order version of the marginal polytope pro-je
tion problem. Given an n×n matrix,M , of real numbers, how 
an we de
idewhether there exists some probability distribution whi
h has M as its matrixof �rst-order marginal probabilities? A ne
essary and su�
ient 
ondition, as itturns out, is for M to be doubly sto
hasti
. That is, all entries of M must benonnegative and all rows and 
olumns of M must sum to one (the probabilitythat Ali
e is at some tra
k is 1, and the probability that some identity is atTra
k 3 is 1). The double sto
hasti
ity 
ondition 
omes from the Birkho�-vonNeumann theorem (van Lint & Wilson, 2001) whi
h states that a matrix isdoubly sto
hasti
 if and only if it 
an be written as a 
onvex 
ombination ofpermutation matri
es.To �renormalize� �rst-order marginals to be doubly sto
hasti
, some authors(Shin et al., 2003; Shin et al., 2005; Balakrishnan et al., 2004; Helmbold & War-muth, 2007) have used the Sinkhorn iteration, whi
h alternates between nor-malizing rows and 
olumns independently until 
onvergen
e is obtained. Con-vergen
e is guaranteed under mild 
onditions and it 
an be shown that the limitis a nonnegative doubly sto
hasti
 matrix whi
h is 
losest to the original matrixin the sense that the Kullba
k-Leibler divergen
e is minimized (Balakrishnanet al., 2004).There are several problems whi
h 
ause the Sinkhorn iteration to be an un-natural solution in our setting. First, sin
e the Sinkhorn iteration only worksfor nonnegative matri
es, we would have to �rst 
ap entries to lie in the appro-priate range, [0, 1]. More seriously, even though the Sinkhorn iteration wouldguarantee a doubly sto
hasti
 higher order matrix of marginals, there are severalnatural 
onstraints whi
h are violated when running the Sinkhorn iteration onhigher-order marginals. For example, with se
ond-order (ordered) marginals, itseems that we should at least enfor
e the following symmetry 
onstraint:
P (σ : σ(k, ℓ) = (i, j)) = P (σ : σ(ℓ, k) = (j, i)),whi
h says, for example, that the marginal probability that Ali
e is in Tra
k 1and Bob is in Tra
k 2 is the same as the marginal probability that Bob is inTra
k 2 and Ali
e is in Tra
k 1. Another natural 
onstraint that 
an be broken35



is what we refer to as low-order marginal 
onsisten
y. For example, it shouldalways be the 
ase that:
P (j) =

∑

i

P (i, j) =
∑

k

P (j, k).It should be noted that the doubly sto
hasti
 requirement is a spe
ial 
ase oflower-order marginal 
onsisten
y � we require that higher-order marginals be
onsistent on the 0th order marginal.While 
ompa
tly des
ribing the 
onstraints of the marginal polytope exa
tlyremains an open problem, we propose a method for proje
ting onto a relaxedform of the marginal polytope whi
h addresses both symmetry and low-order
onsisten
y problems by operating dire
tly on irredu
ible Fourier 
oe�
ientsinstead of on the matrix of marginal probabilities. After ea
h 
onditioning step,we apply a `
orre
tion' to the approximate posterior P (t) by �nding the ban-dlimited fun
tion in the relaxed marginal polytope whi
h is 
losest to P (t) in an
L2 sense. To perform the proje
tion, we employ the Plan
herel Theorem (Dia-
onis, 1988) whi
h relates the L2 distan
e between fun
tions on Sn to a distan
emetri
 in the Fourier domain.Proposition 22 (Plan
herel Theorem).

∑

σ

(f(σ)− g(σ))2 =
1

|G|
∑

ν

dρν
Tr((f̂ρν

− ĝρν

)T

·
(
f̂ρν
− ĝρν

))
.(7.1)To �nd the 
losest bandlimited fun
tion in the relaxed marginal polytope,we formulate a quadrati
 program whose obje
tive is to minimize the rightside of Equation 7.1, and whose sum is taken only over the set of maintainedirredu
ibles, Λ, subje
t to the set of 
onstraints whi
h require all marginal prob-abilities to be nonnegative. We thus refer to our 
orre
tion step as Plan
herelProje
tion. Our quadrati
 program 
an be written as:minimizef̂proj

∑

λ∈Λ

dλTr [(f̂ − f̂proj
)T

ρλ

(
f̂ − f̂proj

)
ρλ

]subje
t to: [
f̂proj

]
(n)

= 1,


CλMIN ·


 ⊕

µDλMIN

K
λMIN ,µ⊕

ℓ=1

f̂proj
ρµ


 · CT

λMIN




ij

≥ 0, for all (i, j),where KλMIN and CλMIN are the pre
omputed 
onstants from Equation 5.4.We remark that even though the proje
tion will produ
e a Fourier transform
orresponding to nonnegative marginals whi
h are 
onsistent with ea
h other,there might not ne
essarily exist a joint probability distribution on Sn 
onsistentwith those marginals ex
ept in the spe
ial 
ase of �rst-order marginals.36



Example 23. In Example 20, we ran the Krone
ker 
onditioning algorithm us-ing all of the Fourier 
oe�
ients. If only the �rst-order 
oe�
ients are available,however, then the expressions for zeroth and �rst order terms of the posterior(Equations 6.10,6.11) be
ome:
f̂ · gρ(3)

=
1

3!
·
[
f̂ρ(3)

· ĝρ(3)
+ 4 ·

[
A(2,1)⊗(2,1)

]
1,1

]
, (7.2)

f̂ · gρ(2,1)
=

1

3!
·
[
f̂ρ(2,1)

· ĝρ(3)
+ f̂ρ(3)

· ĝρ(2,1)
+ 2 ·

[
A(2,1)⊗(2,1)

]
2:3,2:3

]
, (7.3)Plugging in the same numeri
al values from Example 20 and normalizing ap-propriately yields the approximate Fourier 
oe�
ients of the posterior:

[
P̂ (σ|z)

]
ρ(3)

= 1
[
P̂ (σ|z)

]
ρ(2,1)

=

[
−10/9 −77/400
77/400 4/3

]
,whi
h 
orrespond to the following �rst-order marginal probabilities:

P̂τ(2,1)




A B CTra
k 1 0 11/9 −2/9Tra
k 2 1 0 0Tra
k 3 0 −2/9 11/9


 .In parti
ular, we see that the approximate matrix of `marginals' 
ontains nega-tive numbers. Applying the Plan
herel proje
tion step, we obtain the followingmarginals:

P̂τ(2,1)




A B CTra
k 1 0 1 0Tra
k 2 1 0 0Tra
k 3 0 0 1


 ,whi
h happen to be exa
tly the true posterior marginals. It should be notedhowever, that rounding the `marginals' to be in the appropriate range wouldhave worked in this parti
ular example as well.8 Probabilisti
 models of mixing and observa-tionsWhile the algorithms presented in the previous se
tions are general in the sensethat they work on all mixing and observation models, it is not always obvioushow to 
ompute the Fourier transform of a given model. In this se
tion, wepresent ways to obtain su
h transforms for a few useful models.8.1 Mixing modelsThe simplest mixing model for identity management assumes that with proba-bility p, nothing happens, and that with probability (1 − p), the identities for37



tra
ks i and j are swapped. The probability distribution is therefore:
Qij(π) =





p if π = ǫ
1− p if π = (i, j)

0 otherwise.Sin
e Qij is su
h a sparse distribution (in the sense that Q(π) = 0 for most π),it is possible to dire
tly 
ompute Q̂ using De�nition 6:
Q̂ρλ

= pI + (1− p)ρλ((i, j)),where I refers to the dλ × dλ identity matrix, and ρλ((i, j)) is the irredu
iblerepresentation matrix ρλ evaluated at the transposition (i, j) (whi
h 
an be
omputed using the algorithms from Appendix A).8.2 Observation modelsThe simplest model assumes that we 
an get observations of the form: `tra
k ℓis 
olor k' (whi
h is essentially the model 
onsidered by (Kondor et al., 2007)).The probability of seeing 
olor k at tra
k ℓ given data asso
iation σ is
L(σ) = P (zℓ = k|σ) = ασ(ℓ),k, (8.1)where ∑k ασ(ℓ)k = 1. For ea
h identity, the likelihood L(σ) = P (zℓ = k|σ)depends on a histogram over all possible 
olors. If the number of possible
olors is K, then the likelihood model 
an be spe
i�ed by an n×K matrix ofprobabilities. For example,

ασ(ℓ),k =




k = Red k = Orange k = Yellow k = Green
σ(ℓ) = Ali
e 1/2 1/4 1/4 0
σ(ℓ) = Bob 1/4 0 0 3/4
σ(ℓ) = Cathy 0 1/2 1/2 0


 .(8.2)Sin
e the observation model only depends on a single identity, the �rst-order terms of the Fourier transform su�
e to fully des
ribe the likelihood.To 
ompute the �rst-order Fourier 
oe�
ients, at irredu
ibles, we pro
eed by
omputing the �rst-order Fourier 
oe�
ients at the �rst-order permutation rep-resentation, then transforming to irredu
ible 
oe�
ients. The Fourier transformof the likelihood at the �rst-order permutation representation is given by:

[
L̂τ(n−1,1)

]
ij

=
∑

{σ:σ(j)=i}
P (zℓ = k|σ) =

∑

{σ:σ(j)=i}
ασ(ℓ)k.To 
ompute the ij-term, there are two 
ases to 
onsider.1. If j = ℓ (that is, if Tra
k j is the same as the tra
k that was observed),then the 
oe�
ient L̂ij is proportional to the probability that Identity iis 
olor k.

L̂ij =
∑

{σ:σ(ℓ)=i}
αi,k = (n− 1)! · αi,k. (8.3)38



2. If, on the other hand, j 6= ℓ (Tra
k j is not the observed tra
k)), then the
oe�
ient L̂ij is proportional to the sum over
L̂ij =

∑

{σ:σ(j)=i}
ασ(ℓ),k (8.4)

=
∑

m 6=i

∑

{σ:σ(j)=i and σ(l)=m}

ασ(ℓ),k (8.5)
=
∑

m 6=i

(n− 2)! · αm,k. (8.6)Example 24. We will 
ompute the �rst-order marginals of the likelihood fun
-tion on S3 whi
h arises from observing a "Red blob at Tra
k 1". Plugging thevalues from the �Red� 
olumn of the α matrix (Equation 8.2) into Equation 8.3and 8.6 yields the following matrix of �rst-order 
oe�
ients (at the τ(n−1,1)permutation representation):
[
L̂(n−1,1)

]
ij

=




Tra
k 1 Tra
k 2 Tra
k 3Ali
e 1/4 1/4 1Bob 1/2 1/2 1/2Cathy 3/4 3/4 0


The 
orresponding 
oe�
ients at the irredu
ible representations are:

L̂(3) = 1.5, L̂(2,1) =

[
0 −

√
3/4

0 −3/4

]
, L̂(1,1,1) = 0.9 Related workRankings and permutations have re
ently be
ome an a
tive area of resear
h inma
hine learning due to their importan
e in information retrieval and preferen
eeli
itation. Rather than 
onsidering full distributions over permutations, manyapproa
hes, like RankSVM (Joa
hims, 2002) and RankBoost (Freund et al.,2003), have instead fo
used on learning a single `optimal' ranking with respe
tto some obje
tive fun
tion.There are also several authors who have studied distributions over permu-tations/rankings (Mallows, 1957; Crit
hlow, 1985; Fligner & Verdu

i, 1986;Taylor et al., 2008; Lebanon & Mao, 2008). (Taylor et al., 2008) 
onsider dis-tributions over Sn whi
h are indu
ed by the rankings of n independent drawsfrom n individually 
entered Gaussian distributions with equal varian
e. They
ompa
tly summarize their distributions using an O(n2) matrix whi
h is 
on-
eptually similar to our �rst-order summaries and apply their te
hniques toranking web do
uments. Most other previous approa
hes at dire
tly modelingdistributions on Sn, however, have relied on distan
e based models. For ex-ample, the Mallows model (Mallows, 1957) de�nes a Gaussian-like distributionover permutations as:

P (σ; c, σ0) ∝ exp (−cd(σ, σ0)) , (9.1)39



where the fun
tion d(σ, σ0) is the Kendall's tau distan
e whi
h 
ounts the num-ber of adja
ent swaps that are required to bring σ−1 to σ−1
0 . Like Gaussians,distan
e based models tend to la
k �exibility, and so (Lebanon & Mao, 2008)propose a nonparametri
 model of ranked (and partially ranked) data based onpla
ing weighted Mallows kernels on top of training examples, whi
h, as theyshow, 
an realize a far ri
her 
lass of distributions, and 
an be learned e�
iently.However, they do not address the inferen
e problem, and it is not 
lear if one 
ane�
iently perform inferen
e operations like marginalization and 
onditioning insu
h models.As we have shown in this paper, Fourier based methods (Dia
onis, 1988;Kondor et al., 2007; Huang et al., 2007) o�er a prin
ipled alternative method for
ompa
tly representing distributions over permutations and performing e�
ientprobabilisti
 inferen
e operations. Our work draws from two strands of resear
h� one from the data asso
iation/identity management literature, and one froma more theoreti
al area on Fourier analysis in statisti
s. In the following, wereview several of the works whi
h have led up to our 
urrent Fourier basedapproa
h.9.1 Previous work in identity managementThe identity management problem has been addressed in a number of previousworks, and is 
losely related to, but not identi
al with, the 
lassi
al data asso
i-ation problem of maintaining 
orresponden
es between tra
ks and observations.Both problems need to address the fundamental 
ombinatorial 
hallenge thatthere is a fa
torial or exponential number of asso
iations to maintain betweentra
ks and identities, or between tra
ks and observations respe
tively. A vastliterature already exists on the the data asso
iation problem, beginning withthe multiple hypothesis testing approa
h (MHT) of (Reid, 1979). The MHT is a`deferred logi
' method in whi
h past observations are exploited in forming newhypotheses when a new set of observations arises. Sin
e the number of hypothe-ses 
an grow exponentially over time, various heuristi
s have been proposed tohelp 
ope with the 
omplexity blowup. For example, one 
an 
hoose to maintainonly the k best hypotheses for some parameter k (Cox & Hingorani, 1994), usingMurty's algorithm (Murty, 1968). But for su
h an approximation to be e�e
-tive, k may still need to s
ale exponentially in the number of obje
ts. A slightlymore re
ent �ltering approa
h is the joint probabilisti
 data asso
iation �lter(JPDA) (Bar-Shalom & Fortmann, 1988), whi
h is a suboptimal single-stageapproximation of the optimal Bayesian �lter. JPDA makes asso
iations sequen-tially and is unable to 
orre
t erroneous asso
iations made in the past (Poore,1995). Even though the JPDA is more e�
ient than the MHT, the 
al
ulationof the JPDA asso
iation probabilities is still a #P-
omplete problem (Collins& Uhlmann, 1992), sin
e it e�e
tively must 
ompute matrix permanents. Poly-nomial approximation algorithms to the JPDA asso
iation probabilities havere
ently been studied using Markov 
hain Monte Carlo (MCMC) methods (Ohet al., 2004; Oh & Sastry, 2005).The identity management problem was �rst expli
itly introdu
ed in (Shin40



et al., 2003). Identity management di�ers from the 
lassi
al data asso
iationproblem in that its observation model is not 
on
erned with the low-level tra
k-ing details but instead with high level information about obje
t identities. (Shinet al., 2003) introdu
ed the notion of the belief matrix approximation of the asso-
iation probabilities, whi
h 
ollapses a distribution over all possible asso
iationsto just its �rst-order marginals. In the 
ase of n tra
ks and n identities, thebelief matrix B is an n × n doubly-sto
hasti
 matrix of non-negative entries
bij , where bij is the probability that identity i is asso
iated with tra
k j. Aswe already saw in Se
tion 4, the belief matrix approximation is equivalent tomaintaining the zeroth- and �rst-order Fourier 
oe�
ients. Thus our 
urrentwork is a stri
t generalization and extension of those previous results.An alternative representation that has also been 
onsidered is an informationtheoreti
 approa
h (Shin et al., 2005; S
humits
h et al., 2005; S
humits
h et al.,2006) in whi
h the density is parameterized as:

P (σ; Ω) ∝ expTr (ΩT · τ(n−1,1)(σ)
)
.In our framework, the information form approa
h 
an be viewed as a method formaintaining the Fourier transform of the log probability distribution at only the�rst two irredu
ibles. The information matrix approa
h is espe
ially attra
tivein a distributed sensor network setting, sin
e, if the 
olumns of the informationmatrix are distributed to leader nodes tra
king the respe
tive targets, then theobservation events be
ome entirely lo
al operations, avoiding the more expen-sive Krone
ker 
onditioning algorithm in our setting. On the other hand, theinformation matrix 
oe�
ients do not have the same intuitive marginals inter-pretation a�orded in our setting, and moreover, predi
tion/rollup steps 
annotbe performed analyti
ally in the information matrix form. As in many 
las-si
al data stru
tures problems there are representation trade-o� issues: someoperations are less expensive in one representation and some operations in thethe other. The best 
hoi
e in any parti
ular s
enario will depend on the ratiobetween observation and mixing events.9.2 Previous work on Fourier-based approximationsThe 
on
ept of using Fourier transforms to study probability distributions ongroups is not new, with the earliest papers in this area having been publishedin the 1960s (Grenander, 1963). (Willsky, 1978) was the �rst to formulate theexa
t �ltering problem in the Fourier domain for �nite and lo
ally 
ompa
tLie groups and 
ontributed the �rst non
ommutative Fast Fourier Transformalgorithm (for Meta
y
li
 groups). However, he does not address approximateinferen
e, suggesting instead to always transform to the appropriate domainfor whi
h either the predi
tion/rollup or 
onditioning operations 
an be a

om-plished using a pointwise produ
t. While providing signi�
ant improvements in
omplexity for smaller groups, his approa
h is still infeasible for our problemgiven the fa
torial order of the Symmetri
 group.(Dia
onis, 1988) utilized the Fourier transform to analyze probability distri-butions on the Symmetri
 group in order to study 
ard shu�ing and ranking41



problems. His work laid the ground for mu
h of the progress made over the lasttwo de
ades on probabilisti
 group theory and non
ommutative FFT algorithms(Clausen & Baum, 1993; Ro
kmore, 2000).(Kondor et al., 2007) was the �rst to show that the data asso
iation prob-lem 
ould be e�
iently approximated using FFT fa
torizations. In 
ontrast toour framework where every model is assumed to be have been spe
i�ed in theFourier domain, they work with an observation model whi
h 
an be written inthe primal domain.Con
eptually, their 
onditioning algorithm applies the Inverse Fast FourierTransform (IFFT) to the prior distribution, 
onditions in the primal domainusing pointwise multipli
ation, then transforms ba
k up to the Fourier domainusing the FFT to obtain posterior Fourier 
oe�
ients. While their pro
edurewould ordinarily be intra
table be
ause of the fa
torial number of permutations,they show that for simple observation models, su
h as that given in Equation 8.1,it is not ne
essary to perform the full FFT re
ursion to do a pointwise prod-u
t. They exploit this observation to formulate a 
onditioning algorithm whoserunning time depends on the 
omplexity of the observation model (whi
h 
anroughly be measured by the number of irredu
ibles required to fully spe
ify it).In the worst 
ase, when the likelihood fun
tion is spe
i�ed for ea
h σ ∈ Sn, thenthe 
ost of 
onditioning is dominated by the 
ost of 
alling an FFT, whi
h is
O(n! logn!).In the 
ase that the observation model is spe
i�ed at su�
iently many irre-du
ibles, our 
onditioning algorithm (prior to the proje
tion step) returns thesame approximate probabilities as the FFT-based algorithm. For example, we
an show that the observation model given in Equation 8.1 is fully spe
i�ed bytwo Fourier 
omponents, and that both algorithms have identi
al output. Inthis setting, our asymptoti
 time 
omplexity is O(D3n2), where D is the degreeof the largest maintained irredu
ible representation. The FFT-based algorithmsaves a fa
tor of D due to the fa
t that 
ertain representation matri
es 
an beshown to be sparse. Though we do not prove it, we observe that the Clebs
h-Gordan 
oe�
ients Cij are typi
ally similarly sparse (see Figure 7(d)), whi
hyields an equivalent running time in pra
ti
e. In addition, Kondor et al. do notaddress the issue of proje
ting onto legal distributions, whi
h, as we show inour experimental results is fundamental in pra
ti
e.10 Experimental resultsIn this se
tion we present the results of several experiments to validate our algo-rithm. We evaluate performan
e �rst by measuring the quality of our approxi-mation for problems where the true distribution is known. Instead of measuringa distan
e between the true distribution and the inverse Fourier transform ofour approximation, it makes more sense in our setting to measure error onlyat the marginals whi
h are maintained by our approximation. In the resultsreported below, we measure the L1 error between the true matrix of marginalsand the approximation. If nonnegative marginal probabilities are guaranteed,it also makes sense to measure KL-divergen
e.42
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oe�-
ients matri
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ipro
al ofthe fra
tion of nonzero entries against n. Astraight line in the plot means that the num-ber of nonzero entries s
ales linearly in n, anda 
onvex 
urve s
ales better than linearly.Figure 7:10.1 Simulated dataWe �rst tested the a

ura
y of a single Krone
ker 
onditioning step by 
allingsome number of pairwise mixing events (whi
h 
an be thought roughly as ameasure of entropy), followed by a single �rst-order observation. In the y-axisof Figure 7(a), we plot the Kullba
k-Leibler divergen
e between the true �rst-order marginals and approximate �rst-order marginals returned by Krone
ker
onditioning. We 
ompared the results of maintaining �rst-order, and se
ond-order (unordered and ordered) marginals. As shown in Figure 7(a), Krone
ker
onditioning is more a

urate when the prior is smooth and unsurprisingly,when we allow for higher order Fourier terms. As guaranteed by Theorem 21,we also see that the �rst-order terms of the posterior are exa
t when we maintainse
ond-order (ordered) marginals. 43



To understand how our algorithms perform over many timesteps (whereerrors 
an propagate to all Fourier terms), we 
ompared to exa
t inferen
eon syntheti
 datasets in whi
h tra
ks are drawn at random to be observed orswapped. As a baseline, we show the a

ura
y of a uniform distribution. Weobserve that the Fourier approximation is better when there are either moremixing events (the fra
tion of 
onditioning events is smaller), or when moreFourier 
oe�
ients are maintained, as shown in Figure 7(b). We also see thatthe Plan
herel Proje
tion step is fundamental, espe
ially when mixing eventsare rare.Figures 8(a) and 8(b) show the per-timesli
e a

ura
y of two typi
al runs ofthe algorithm. The fra
tion of 
onditioning events is 50% in Figure 8(a), and
70% in Figure 8(b). What we typi
ally observe is that while the proje
ted andnonproje
ted a

ura
ies are often quite similar, the nonproje
ted marginals 
anperform signi�
antly worse during 
ertain segments.Finally, we 
ompared running times against an exa
t inferen
e algorithmwhi
h performs predi
tion/rollup in the Fourier domain and 
onditioning in theprimal domain. Instead of the naive O((n!)2) 
omplexity, its running time isa more e�
ient O(n3n!) due to the Fast Fourier Transform (Clausen & Baum,1993). It is 
lear that our algorithm s
ales gra
efully 
ompared to the exa
tsolution (Figure 7(
)), and in fa
t, we 
ould not run exa
t inferen
e for n > 8 dueto memory 
onstraints. In Figure 7(d), we show empiri
ally that the Clebs
h-Gordan 
oe�
ients are indeed sparse, supporting our 
onje
tured runtime of
O(D2n2) instead of O(D3n2).10.2 Real 
amera networkWe also evaluated our algorithm on data taken from a real network of eight
ameras (Fig. 9(a)). In the data, there are n = 11 people walking around aroom in fairly 
lose proximity. To handle the fa
t that people 
an freely leaveand enter the room, we maintain a list of the tra
ks whi
h are external to theroom. Ea
h time a new tra
k leaves the room, it is added to the list and amixing event is 
alled to allow for m2 pairwise swaps amongst the m externaltra
ks.The number of mixing events is approximately the same as the number ofobservations. For ea
h observation, the network returns a 
olor histogram ofthe blob asso
iated with one tra
k tra
k. The task after 
onditioning on ea
hobservation is to predi
t identities for all tra
ks whi
h are inside the room,and the evaluation metri
 is the fra
tion of a

urate predi
tions. We 
omparedagainst a baseline approa
h of predi
ting the identity of a tra
k based on themost re
ently observed histogram at that tra
k. This approa
h is expe
ted tobe a

urate when there are many observations and dis
riminative appearan
emodels, neither of whi
h our problem a�orded. As Figure 9(b) shows, boththe baseline and �rst order model(without proje
tion) fared poorly, while theproje
tion step dramati
ally boosted the predi
tion a

ura
y for this problem.To illustrate the di�
ulty of predi
ting based on appearan
e alone, the rightmostbar re�e
ts the performan
e of an omnis
ient tra
ker who knows the result of44
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(b) n = 6 with 30% mixing events and 70% observationsFigure 8: A

ura
y as a fun
tion of time on two typi
al runs.ea
h mixing event and is therefore left only with the task of distinguishingbetween appearan
es. We 
onje
ture that the performan
e of our algorithm(with proje
tion) is near optimal.11 Future resear
hThere remain several possible extensions to the 
urrent work stemming fromboth pra
ti
al and theoreti
al 
onsiderations. We list a few open questions andextensions in the following.Adaptive �ltering. While our 
urrent algorithms easily beat exa
t inferen
ein terms of running time, they are still limited by a relatively high (thoughpolynomial) time 
omplexity. In pra
ti
e however, it seems reasonable to believethat the �di�
ult� identity management problems typi
ally involve only a smallsubset of people at a time. A useful extension of our work would be to devisean adaptive version of the algorithm whi
h allo
ates more Fourier 
oe�
ientstowards the identities whi
h require higher order reasoning. We believe thatthis kind of extension would be the appropriate way to s
ale our algorithm tohandling massive numbers of obje
ts at a time.45
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ura
y for Camera DataFigure 9: Evaluation on dataset from a real 
amera network.Chara
terizing the marginal polytope. In our paper, we presented a pro-je
tion of the bandlimited distribution to a 
ertain polytope, whi
h is exa
tlythe marginal polytope for �rst-order bandlimited distributions, but stri
tly anouter bound for higher orders. An interesting proje
t would be to generalize theBirkho�-von Neumann theorem by exa
tly 
hara
terizing the marginal polytopeat higher order marginals. We 
onje
ture that the marginal polytope for loworder marginals 
an be des
ribed with polynomially many 
onstraints.Learning in the Fourier domain. Another interesting problem is whetherwe 
an learn bandlimited mixing and observation models dire
tly in the Fourierdomain. Given fully observed permutations σ1, . . . , σm, drawn from a distribu-tion P (σ), a naive method for estimating P̂ρ at low-order ρ is to simply observethat:
P̂ρ = Eσ∼P [ρ(σ)],and so one 
an estimate the Fourier transform by simply averaging ρ(σi) overall σi. However, sin
e we typi
ally do not observe full permutations in realappli
ations like ranking or identity management, it would be interesting to es-timate Fourier transforms using partially observed data. In the 
ase of Bayesianlearning, it may be possible to apply some of the te
hniques dis
ussed in thispaper.Probabilisti
 inferen
e on other groups. The Fourier theoreti
 frameworkpresented in this paper is not spe
i�
 to the Symmetri
 group - in fa
t, the pre-di
tion/rollup and 
onditioning formulations, as well as most of the results fromAppendix B hold over any �nite or 
ompa
t Lie group. As an example, the non-
ommutative group of rotation operators in three dimensions, SO(3), appearsin settings whi
h model the pose of a three dimensional obje
t. Elements in

SO(3) might be used to represent the pose of a robot arm in roboti
s, or theorientation of a mesh in 
omputer graphi
s; In many settings, it would be use-ful to have a 
ompa
t representation of un
ertainty over poses. We believe that46



there are many other appli
ation domains with algebrai
 stru
ture where similarprobabilisti
 inferen
e algorithms might apply, and in parti
ular, that non
om-mutative settings o�er a parti
ularly 
hallenging but ex
iting opportunity forma
hine learning resear
h.12 Con
lusionsWe have presented an intuitive method for 
ompa
tly summarizing distributionson permutations with Fourier analyti
 interpretations and tuneable approxi-mation quality. We showed that the Fourier theoreti
 point of view makes itpossible to formulate general inferen
e operations 
ompletely in the Fourier do-main. In parti
ular, we developed the Krone
ker Conditioning algorithm whi
hperforms a 
onvolution-like operation on Fourier 
oe�
ients to �nd the Fouriertransform of the posterior distribution. We analyzed the sour
es of error in ourapproximations and argued that bandlimited 
onditioning 
an result in Fourier
oe�
ients whi
h 
orrespond to no valid distribution, but that the problem 
anbe remedied by proje
ting to a relaxation of the marginal polytope.Our evaluation on data from a 
amera network shows that our methodsperform well when 
ompared to the optimal solution in small problems, or toan omnis
ient tra
ker in large problems. Furthermore, we demonstrated thatour proje
tion step is fundamental to obtaining these high-quality results.Finally we 
on
lude by remarking again that the mathemati
al frameworkdeveloped in our paper is quite general. In fa
t, both the predi
tion/rollupand 
onditioning formulations hold over any �nite group, providing a prin
ipledmethod for approximate inferen
e for problems with underlying group stru
ture.A
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esIn this se
tion, we present (without proof) some standard algorithms for 
on-stru
ting the irredu
ible representation matri
es with respe
t to the Gel'fand-Tsetlin (GZ) basis (for a more elaborate dis
ussion, see, for example, (Kondor,2006; Chen, 1989; Vershik & Okounkov, 2006)). There are several propertieswhi
h make the irredu
ible representation matri
es, written with respe
t to theGZ basis, fairly useful in pra
ti
e. They are guaranteed to be, for example,real-valued and orthogonal. And as we will show, the matri
es have 
ertainuseful sparsity properties that 
an be exploited in implementation.We begin by introdu
ing a few 
on
epts relating to Young tableaux whi
h arelike Young tabloids with the distin
tion that the rows are 
onsidered as orderedtuples rather than unordered sets. For example, the following two diagrams aredistin
t as Young tableaux, but not as Young tabloids :50



1 2 3
4 5

6= 1 3 2
5 4

(as Young tableaux).A Young Tableau t is said to be standard if its entries are in
reasing to theright along rows and down 
olumns. For example, the set of all standard YoungTableaux of shape λ = (3, 2) is:


1 3 5
2 4

,
1 2 5
3 4

,
1 3 4
2 5

,
1 2 4
3 5

,
1 2 3
4 5

ff

. (A.1)Given a permutation σ ∈ Sn, one 
an always apply σ to a Young tableau t toget a new Young tableau, whi
h we denote by σ ◦ t, by permuting the labelswithin the tableau. For example,
(1, 2) ◦ 1 2 3

4 5
= 2 1 3

4 5
.Note, however, that even if t is a standard tableau, σ ◦ t is not guaranteed tobe standard.The signi�
an
e of the standard tableaux is that the set of all standardtableaux of shape λ 
an be used to index the set of GZ basis ve
tors for the irre-du
ible representation ρλ. Sin
e there are �ve total standard tableaux of shape

(3, 2), we see, for example, that the irredu
ible 
orresponding to the partition
(3, 2) is 5-dimensional. There is a simple re
ursive pro
edure for enumeratingthe set of all standard tableaux of shape λ, whi
h we illustrate for λ = (3, 2).Example 25. If λ = (3, 2), there are only two possible boxes that the label 5
an o

upy so that both rows and 
olumns are in
reasing. They are:

5
, and

5
.To enumerate the set of all standard tableaux of shape (3, 2), we need to �ll theempty boxes in the above partially �lled tableaux with the labels {1, 2, 3, 4} sothat both rows and 
olumns are in
reasing. Enumerating the standard tableauxof shape (3, 2) thus redu
es to enumerating the set of standard tableaux of shapes

(2, 2) and (3, 1), respe
tively. For (2, 2), the set of standard tableaux (whi
h, inimplementation would be 
omputed re
ursively) is:


1 3
2 4

,
1 2
3 4

ff

,and for (3, 1), the set of standard tableaux is:


1 3 4
2

,
1 2 4
3

,
1 2 3
4

ff

.The entire set of standard tableaux of shape (3, 2) is therefore:


1 3 5

2 4
,

1 2 5

3 4

ff

[



1 3 4
2 5

,
1 2 4
3 5

,
1 2 3
4 5

ff

.Before expli
itly 
onstru
ting the representation matri
es, we must de�ne asigned distan
e on Young Tableaux 
alled the axial distan
e.51



De�nition 26. The axial distan
e, dt(i, j), between entries i and j in tableau
t, is de�ned to be:

dt(i, j) ≡ (col(t, j)− col(t, i))− (row(t, j) − row(t, i)),where row(t, i) denotes the row of label i in tableau t, and col(t, i) denotes the
olumn of label i in tableau t.Intuitively, the axial distan
e between i− 1 and i in a standard tableau t isequal to the (signed) number of steps that are required to travel from i− 1 to
i, if at ea
h step, one is allowed to traverse a single box in the tableau in one ofthe four 
ardinal dire
tions. For example, the axial distan
e from 3 to 4 withrespe
t to tableau: t = 1 2 3

4 5
is:

dt(3, 4) =
(
col
(

1 2 3
4 5

, 4
)
− col

(
1 2 3
4 5

, 3
))
−
(
row

(
1 2 3
4 5

, 4
)
− row

(
1 2 3
4 5

, 3
))

= (1 − 3)− (2− 1) = −3A.1 Constru
ting representation matri
es for adja
ent trans-positionsIn the following dis
ussion, we will 
onsider a �xed ordering, t1, . . . , tdλ
, on theset of standard tableaux of shape λ and refer to both standard tableaux and
olumns of ρλ(σ) inter
hangeably. Thus t1 refers to �rst 
olumn, t2 refers tothe se
ond 
olumn and so on. And we will index elements in ρλ(σ) using pairsof standard tableau, (tj , tk).To expli
itly de�ne the representation matri
es with respe
t to the GZ basis,we will �rst 
onstru
t the matri
es for adja
ent transpositions (i.e., permuta-tions of the form (i− 1, i)), and then we will 
onstru
t arbitrary representationmatri
es by 
ombining the matri
es for the adja
ent transpositions. The rulefor 
onstru
ting the matrix 
oe�
ient [ρλ(i− 1, i)]tj ,tk

is as follows.1. De�ne the (tj , tk) 
oe�
ient of ρλ(i−1, i) to be zero if it is (1), o�-diagonal(j 6= k) and (2), not of the form (tj , (i− 1, i) ◦ tk).2. If (tj , tk) is a diagonal element, (i.e., of the form (tj , tj)), de�ne:
[ρλ(i− 1, i)]tj ,tj

= 1/dtj
(i− 1, i),where dtj

(i − 1, i) is the axial distan
e whi
h we de�ned earlier in these
tion.3. If (tj , tk) 
an be written as (tj , (i− 1, i) ◦ tj) de�ne:
[ρλ(i− 1, i)]tj ,σ◦tj

=
√

1− 1/d2
tj

(i− 1, i).Note that the only time that o�-diagonal elements 
an be nonzero under theabove rules is when (i − i, i) ◦ tj happens to also be a standard tableau. If weapply an adja
ent transposition, σ = (i−1, i) to a standard tableau t, then σ ◦ tis guaranteed to be standard if and only if i− 1 and i were neither in the samerow nor 
olumn of t. This 
an be seen by examining ea
h 
ase separately.52



Algorithm 3: Pseudo
ode for 
omputing irredu
ible representations ma-tri
es with respe
t to the Gel'fand-Tsetlin basis at adja
ent transpositions.adja
entrhoinput : i ∈ {2, . . . , n}, λoutput: ρλ(i− 1, i)
ρ← 0dλ×dλ

;1 forea
h standard tableaux t of shape λ do2
d← (col(t, i)− col(t, i− 1))− (row(t, i) − row(t, i − 1));3
ρ(t, t)← 1/d;4 if i− 1 and i are in di�erent rows and 
olumns of t then5

ρ((i− 1, i)(t), t)←
√

1− 1/d2;6 return ρ ;7 1. i− 1 and i are in the same row or same 
olumn of t. If i and i− 1are in the same row of t, then i − 1 lies to the left of i. Applying σ ◦ tswaps their positions so that i lies to the left of i− 1, and so we see that
σ ◦ t 
annot be standard. For example,

(3, 4) ◦ 1 2 5
3 4

= 1 2 5
4 3

.Similarly, we see that if i and i − 1 are in the same 
olumn of t, σ ◦ t
annot be standard. For example,
(3, 4) ◦ 1 3 5

2 4
= 1 4 5

2 3
.2. i − 1 and i are neither in the same row nor 
olumn of t. In these
ond 
ase, σ ◦ t 
an be seen to be a standard tableau due to the fa
tthat i− 1 and i are adja
ent indi
es. For example,

(3, 4) ◦ 1 2 3

4 5
= 1 2 4

3 5
.Therefore, to see if (i− 1, i) ◦ t is standard, we need only 
he
k to see that

i− 1 and i are in di�erent rows and 
olumns of the tableau t. The pseudo
odefor 
onstru
ting the irredu
ible representation matri
es for adja
ent swaps issummarized in Algorithm 3. Note that the matri
es 
onstru
ted in the algorithmare sparse, with no more than two nonzero elements in any given 
olumn.Example 27. We 
ompute the representation matrix of ρ(3,2) evaluated at theadja
ent transposition σ = (i− 1, i) = (3, 4). For this example, we will use theenumeration of the standard tableaux of shape (3, 2) given in Equation A.1.For ea
h (3, 2)-tableau tj , we identify whether σ ◦ tj is standard and 
omputethe axial distan
e from 3 to 4 on the tableau tj .
53



j 1 2 3 4 5
tj

1 3 5
2 4

1 2 5
3 4

1 3 4

2 5
1 2 4

3 5
1 2 3

4 5

(3, 4) ◦ tj
1 4 5
2 3

1 2 5
4 3

1 4 3

2 5
1 2 3

4 5
1 2 4

3 5

(3, 4) ◦ tj Standard? No No No Yes Yesaxial distan
e (dtj
(3, 4)) -1 1 1 3 -3Putting the results together in a matrix yields:,

ρ(3,2)(3, 4) =




t1 t2 t3 t4 t5
t1 −1
t2 1
t3 1

t4
1
3

√
8
9

t5

√
8
9 − 1

3




,where all of the empty entries are zero.A.2 Constru
ting representation matri
es for general per-mutationsTo 
onstru
t representation matri
es for general permutations, it is enough toobserve that all permutations 
an be fa
tored into a sequen
e of adja
ent swaps.For example, the permutation (1, 2, 5) 
an be fa
tored into:
(1, 2, 5) = (4, 5)(3, 4)(1, 2)(2, 3)(3, 4)(4, 5),and hen
e, for any partition λ,

ρλ(1, 2, 5) = ρλ(4, 5) · ρλ(3, 4) · ρλ(1, 2) · ρλ(2, 3) · ρλ(3, 4) · ρλ(4, 5),sin
e ρλ is a group representation. Algorithmi
ally, fa
toring a permutation intoadja
ent swaps looks very similar to the Bubblesort algorithm, and we show thepseudo
ode in Algorithm 4.B De
omposing the tensor produ
t representa-tionWe now turn to the Tensor Produ
t De
omposition problem, whi
h is that of�nding the irredu
ible 
omponents of the typi
ally redu
ible tensor produ
trepresentation. If ρλ and ρµ are irredu
ible representations of Sn, then thereexists an intertwining operator Cλµ su
h that:
Cλµ

−1 · (ρλ ⊗ ρµ(σ)) · Cλµ =
⊕

ν

zλµν⊕

ℓ=1

ρν(σ). (B.1)54



Algorithm 4: Pseudo
ode for 
omputing irredu
ible representation ma-tri
es for arbitrary permutations.getrhoinput : σ ∈ Sn, λoutput: ρλ(σ) (a dλ × dλ matrix)//Use Bubblesort to fa
tor σ into a produ
t of transpositions1
k ← 0 ;2
factors← ∅;3 for i = 1, 2, . . . , n do4 for j = n, n− 1, . . . , i+ 1 do5 if σ(j) < σ(j − 1) then6 Swap(σ(j − 1), σ(j)) ;7

k ← k + 1 ;8
factors(k)← j ;9 //Constru
t representation matrix using adja
ent transpositions10

ρλ(σ)← Idλ×dλ
;11

m← length(factors);12 for j = 1, . . . ,m do13
ρλ(σ)← getadja
entrho (factors(j), λ) · ρλ(σ) ;14In this se
tion, we will present a set of numeri
al methods for 
omputing theClebs
h-Gordan series (zλµν) and Clebs
h-Gordan 
oe�
ients (Cλµ) for a pairof irredu
ible representations ρλ ⊗ ρµ. We begin by dis
ussing two methodsfor 
omputing the Clebs
h-Gordan series. In the se
ond se
tion, we provide ageneral algorithm for 
omputing the intertwining operators whi
h relate twoequivalent representations and dis
uss how it 
an be applied to 
omputingthe Clebs
h-Gordan 
oe�
ients (Equation B.1) and the matri
es whi
h relatemarginal probabilities to irredu
ible Fourier 
oe�
ients (Equation 5.4).B.1 Computing the Clebs
h-Gordan seriesWe begin with a simple, well-known algorithm based on group 
hara
ters for
omputing the Clebs
h-Gordan series that turns out to be 
omputationally in-tra
table, but yields several illuminating theoreti
al results. See (Serre, 1977)for proofs of the theoreti
al results 
ited in this se
tion.One of the main results of representation theory was the dis
overy that thereexists a relatively 
ompa
t way of en
oding any representation up to equivalen
ewith a ve
tor whi
h we 
all the 
hara
ter of the representation. If ρ is a rep-resentation of a group G, then the 
hara
ter of the representation ρ, is de�nedsimply to be the tra
e of the representation at ea
h element σ ∈ G:

χρ(σ) = Tr (ρ(σ)) .The reason 
hara
ters have been so extensively studied is that they uniquely
hara
terize a representation up to equivalen
e in the sense that two 
hara
ters55



χρ1 and χρ2 are equal if and only if ρ1 and ρ2 are equivalent as representations.Even more surprising is that the spa
e of possible group 
hara
ters is orthog-onally spanned by the 
hara
ters of the irredu
ible representations. To makethis pre
ise, we �rst de�ne an inner produ
t on fun
tions from G.De�nition 28. Let φ, ψ be two real-valued fun
tions on G. The inner produ
tof φ and ψ is de�ned to be:
〈φ, ψ〉 ≡ 1

|G|
∑

σ∈G

φ(σ)ψ(σ)With respe
t to the above inner produ
t, we have the following importantresult whi
h allows us to test a given representation for irredu
ibility, and totest two irredu
ibles for equivalen
e.Proposition 29. Let χρ1 and χρ2 be 
hara
ters 
orresponding to irredu
iblerepresentations. Then
〈χρ1 , χρ2〉 =

{
1 if ρ1 ≡ ρ2

0 otherwise .Proposition 29 shows that the irredu
ible 
hara
ters form an orthonormalset of fun
tions. The next proposition says that the irredu
ible 
hara
ters spanthe spa
e of all possible 
hara
ters.Proposition 30. Suppose ρ is any representation of G and whi
h de
omposesinto irredu
ibles as:
ρ ≡

⊕

λ

zλ⊕

ℓ=1

ρλ,where λ indexes over all irredu
ibles of G. Then:1. The 
hara
ter of ρ is a linear 
ombination of irredu
ible 
hara
ters (χρ =∑
λ zλχρλ

),2. and the multipli
ity of ea
h irredu
ible, zλ, 
an be re
overed using 〈χρ, χρλ
〉 =

zλ.A simple way to de
ompose any group representation ρ, is given by Propo-sition 30, whi
h says that we 
an take inner produ
ts of χρ against the basis ofirredu
ible 
hara
ters to obtain the irredu
ible multipli
ities zλ. To treat thespe
ial 
ase of �nding the Clebs
h-Gordan series, one observes that the 
hara
-ter of the tensor produ
t is simply the pointwise produ
t of the 
hara
ters ofea
h tensor produ
t fa
tor.Theorem 31. Let ρλ and ρµ be irredu
ible representations with 
hara
ters
χλ, χµ respe
tively. Let zλµν be the number of 
opies of ρν in ρλ ⊗ ρµ (hen
e,one term of the Clebs
h-Gordan series). Then:56



1. The 
hara
ter of the tensor produ
t representation is given by:
χρλ⊗ρµ

= χλ · χµ =
∑

ν

zλµνχν . (B.2)2. The terms of the Clebs
h-Gordan series 
an be 
omputed using:
zλµν =

1

|G|
∑

g∈G

χλ(g) · χµ(g) · χν(g), (B.3)and satisfy the following symmetry:
zλµν = zλνµ = zµλν = zµνλ = zνλµ = zνµλ. (B.4)Dot produ
ts for 
hara
ters on the symmetri
 group 
an be done in O(#(n))time where #(n) is the number of partitions of the number n, instead of thenaive O(n!) time. In pra
ti
e however, #(n) also grows too qui
kly for the
hara
ter method to be tra
table.B.1.1 Murnaghan's formulasA theorem by Murnaghan (Murnaghan, 1938) gives us a `bound' on whi
h rep-resentations 
an appear in the tensor produ
t de
omposition on Sn.Theorem 32. Let ρ1, ρ2 be the irredu
ibles 
orresponding to the partition (n−

p, λ2, . . . ) and (n − q, µ2, . . . ) respe
tively. Then the produ
t ρ1 ⊗ ρ2 does not
ontain any irredu
ibles 
orresponding to a partition whose �rst term is lessthan n− p− q.In view of the 
onne
tion between the Clebs
h-Gordan series and 
onvolutionof Fourier 
oe�
ients, Theorem 32 is analogous to the fa
t that for fun
tionsover the reals, the 
onvolution of two 
ompa
tly supported fun
tions is also
ompa
tly supported.We 
an use Theorem 32 to show that Krone
ker 
onditioning is exa
t at
ertain irredu
ibles.of Theorem 21. Let Λ denote the set of irredu
ibles at whi
h our algorithmmaintains Fourier 
oe�
ients. Sin
e the errors in the prior 
ome from setting
oe�
ients outside of Λ to be zero, we see that Krone
ker 
onditioning returnsan approximate posterior whi
h is exa
t at the irredu
ibles in
ΛEXACT = {ρν : zλµν = 0, where λ /∈ Λ and µD (n− q, µ2, . . . )}.Combining Theorem 32 with Equation B.4: if zλµν > 0, with λ = (n −

p, λ2, λ3, . . . ), µ = (n − q, µ2, µ3, . . . ) and ν = (n − r, ν2, ν3, . . . ), then we havethat: r ≤ p+ q, p ≤ q+ r, and q ≤ p+ r. In parti
ular, it implies that r ≥ p− qand r ≥ q−p, or more su

in
tly, r ≥ |p− q|. Hen
e, if ν = (n− r, ν2, . . . ), then
ρν ∈ ΛEXACT whenever r ≤ |p− q|, whi
h proves the desired result.57



The same paper (Murnaghan, 1938) derives several general Clebs
h-Gordanseries formulas for pairs of low-order irredu
ibles in terms of n, and in parti
ular,derives the Clebs
h-Gordan series for many of the Krone
ker produ
t pairs thatone would likely en
ounter in pra
ti
e. For example,
• ρ(n−1,1) ⊗ ρ(n−1,1) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1)

• ρ(n−1,1) ⊗ ρ(n−2,2) ≡ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1) ⊕ ρ(n−3,3) ⊕ ρ(n−3,2,1)

• ρ(n−1,1)⊗ρ(n−2,1,1) ≡ ρ(n−1,1)⊕ρ(n−2,2)⊕ρ(n−2,1,1)⊕ρ(n−3,2,1)⊕ρ(n−3,1,1,1)

• ρ(n−1,1) ⊗ ρ(n−3,3) ≡ ρ(n−2,2) ⊕ ρ(n−3,3) ⊕ ρ(n−3,2,1) ⊕ ρ(n−4,4) ⊕ ρ(n−4,3,1)B.2 Computing the Clebs
h-Gordan 
oe�
ientsIn this se
tion, we 
onsider the general problem of �nding an orthogonal operatorwhi
h de
omposes an arbitrary representation,X(σ), of a �nite groupG. Unlikethe Clebs
h-Gordan series whi
h are basis-independent, intertwining operatorsmust be re
omputed if we 
hange the underlying basis by whi
h the irredu
iblerepresentation matri
es are 
onstru
ted. However, for a �xed basis, we remindthe reader that these intertwining operators need only be 
omputed on
e andfor all and 
an be stored in a table for future referen
e. Let X be any degree dgroup representation of G, and let Y be an equivalent dire
t sum of irredu
ibles,e.g.,
Y (σ) =

⊕

ν

zν⊕

ℓ=1

ρν(σ), (B.5)where ea
h irredu
ible ρν has degree dν . We would like to 
ompute an in-vertible (and orthogonal) operator C, su
h that C · X(σ) = Y (σ) · C, for all
σ ∈ G. Throughout this se
tion, we will assume that the multipli
ities zν areknown. To 
ompute Clebs
h-Gordan 
oe�
ients, for example, we would set
X = ρλ ⊗ ρµ, and the multipli
ities would be given by the Clebs
h-Gordanseries (Equation B.1). To �nd the matrix whi
h relates marginal probabilitiesto irredu
ible 
oe�
ients, we would set X = τλ, and the multipli
ities would begiven by the Kostka numbers (Equation 5.4).We will begin by des
ribing an algorithm for 
omputing a basis for the spa
eof all possible intertwining operators whi
h we denote by:Int[X;Y ] = {C ∈ R

d×d : C ·X(σ) = Y (σ) · C, ∀σ ∈ G}.We will then dis
uss some of the theoreti
al properties of Int[X;Y ] and show howto e�
iently sele
t an orthogonal element of Int[X;Y ].Our approa
h is to naively8 view the task of �nding elements of Int[X;Y ]as a similarity matrix re
overy problem, with the twist that the similarity ma-trix must be 
onsistent over all group elements. We �rst 
ast the problem ofre
overing a similarity matrix as a nullspa
e 
omputation.8In implementation, we use a more e�
ient algorithm for 
omputing intertwining operatorsknown as the Eigenfun
tion Method (EFM) (Chen, 1989). Unfortunately, the EFM is too
ompli
ated for us to des
ribe in this paper. The method whi
h we des
ribe in this appendixis 
on
eptually simpler than the EFM and generalizes easily to groups besides Sn.58



Proposition 33. Let A,B,C be matri
es and let KAB = I⊗A−BT ⊗I. Then
AC = CB if and only if ve
(C) ∈ Nullspa
e(KAB).Proof. A well known matrix identity (van Loan, 2000) states that if A,B,Care matri
es, then ve
(ABC) =

(
CT ⊗A

) ve
(B). Applying the identity to
AC = CB, we have: ve
(ACI) = ve
(ICB),and after some manipulation:

(
I ⊗A−BT ⊗ I

) ve
(C) = 0,showing that ve
(C) ∈ Nullspa
e(KAB).For ea
h σ ∈ G, the nullspa
e of the matrix K(σ) 
onstru
ted using theabove proposition as:
K(σ) = I ⊗ Y (σ) −X(σ)⊗ I, (B.6)where I is a d×d identity matrix, 
orresponds to the spa
e of matri
es Cσ su
hthat

Cσ ·X(σ) = Y (σ) · C, for all σ ∈ G.To �nd the spa
e of intertwining operators whi
h are 
onsistent a
ross all groupelements, we need to �nd the interse
tion:
⋂

σ∈G

Nullspace(K(σ)). (B.7)At �rst glan
e, it may seem that 
omputing the interse
tion might require exam-ining n! nullspa
es if G = Sn, but as lu
k would have it, most of the nullspa
esin the interse
tion are extraneous, as we now show.De�nition 34. We say that a �nite group G is generated by a set of generators
S = {g1, . . . , gm} if every element of G 
an be written as a �nite produ
t ofelements in S.For example, the following three sets are all generators for Sn:
• {(1,2),(1,3),. . . ,(1,n)},
• {(1,2),(2,3),(3,4),. . . ,(n− 1,n)}, and
• {(1,2),(1,2,3,. . . ,n)}.To ensure a 
onsistent similarity matrix for all group elements, we use thefollowing proposition whi
h says that it su�
es to be 
onsistent on any set ofgenerators of the group.Proposition 35. Let X and Y be representations of �nite group G and supposethat G is generated by the elements σ1, . . . , σm. If there exists an invertible linearoperator C su
h that C ·X(σi) = Y (σi) ·C for ea
h i ∈ {1, . . . ,m}, then X and

Y are equivalent as representations with C as the intertwining operator.59



Proof. We just need to show that C is a similarity transform for any otherelement of G as well. Let π be any element of G and suppose π 
an be writtenas the following produ
t of generators: π =
∏n

i=1 σi. It follows that:
C−1 · Y (π) · C = C−1 · Y

(∏

i

σi

)
· C = C−1 ·

(∏

i

Y (σi)

)
· C

= (C−1 · Y (σ1) · C)(C−1 · Y (σ2) · C) · · · (C−1 · Y (σm) · C)

=
∏

i

(
C−1 · Y (σi) · C

)
=
∏

i

X(σi) = X

(∏

i

σi

)
= X(π)Sin
e this holds for every π ∈ G, we have shown C to be an intertwining operatorbetween the representations X and Y .The good news is that despite having n! elements, Sn 
an be generated byjust two elements, namely, (1, 2) and (1, 2, . . . , n), and so the problem redu
es tosolving for the interse
tion of two nullspa
es, (K(1, 2) ∩K(1, 2, . . . , n)), whi
h
an be done using standard numeri
al methods. Typi
ally, the nullspa
e ismultidimensional, showing that, for example, the Clebs
h-Gordan 
oe�
ientsfor ρλ ⊗ ρµ are not unique even up to s
ale.Be
ause Int[X;Y ] 
ontains singular operators (the zero matrix is a memberof Int[X;Y ], for example), not every element of Int[X;Y ] is a
tually a legitimateintertwining operator as we require invertibility. In pra
ti
e, however, sin
e thesingular elements 
orrespond to a measure zero subset of Int[X;Y ], one methodfor reliably sele
ting an operator from Int[X;Y ] that �works� is to simply sele
ta random element from the nullspa
e to be C. It may, however, be desirableto have an orthogonal matrix C whi
h works as an intertwining operator. Inthe following, we dis
uss an obje
t 
alled the Commutant Algebra whi
h willlead to several insights about the spa
e Int[X;Y ], and in parti
ular, will lead toan algorithm for `modifying' any invertible intertwining operator C to be anorthogonal matrix.De�nition 36. The Commutant Algebra of a representation Y is de�ned to bethe spa
e of operators whi
h 
ommute with Y 9:ComY = {S ∈ R

d×d : S · Y (σ) = Y (σ) · S, ∀σ ∈ G}.The elements of the Commutant Algebra of Y 
an be shown to always takeon a parti
ular 
onstrained form (shown using S
hur's Lemma in (Sagan, 2001)).In parti
ular, every element of ComY takes the form
S =

⊕

ν

(Mzν
⊗ Idν

) , (B.8)where Mzν
is some zν × zν matrix of 
oe�
ients and Idν

is the dν × dν identity(re
all that the zν are the multipli
ities from Equation B.5). Moreover, it 
an9Noti
e that the de�nition of the Commutant Algebra does not involve the representation
X. 60



be shown that every matrix of this form must ne
essarily be an element of theCommutant Algebra.The link between ComY and our problem is that the spa
e of intertwiningoperators 
an be thought of as a `translate' of the Commutant Algebra.Lemma 37. There exists a ve
tor spa
e isomorphism between Int[X;Y ] andComY .Proof. Let R be any invertible element of Int[X;Y ] and de�ne the linear map
f : ComY → Rd×d by: f : S 7→ (S ·R). We will show that the image of f isexa
tly the spa
e of intertwining operators. Consider any element σ ∈ G:

(S ·R) ·X(σ) · (S ·R)−1 = S · R ·X(σ) · R−1 · S−1,

= S · Y (σ) · S−1 (sin
e R ∈ Int[X;Y ]),
= Y (σ) (sin
e S ∈ ComY ).We have shown that S · R ∈ Int[X;Y ], and sin
e f is linear and invertible, wehave that Int[X;Y ] and ComY are isomorphi
 as ve
tor spa
es.Using the lemma, we 
an see that the dimension of Int[X;Y ] must be thesame as the dimension of ComY , and therefore we have the following expressionfor the dimension of Int[X;Y ].Proposition 38.

dim Int[X;Y ] =
∑

ν

z2
ν .Proof. To 
ompute the dimension of Int[X;Y ], we need to 
ompute the dimensionof ComY , whi
h 
an be a

omplished simply by 
omputing the number of freeparameters in Equation B.8. Ea
h matrix Mzν

is free and yields z2
ν parameters,and summing a
ross all irredu
ibles ν yields the desired dimension.To sele
t an orthogonal intertwining operator, we will assume that we aregiven some invertible R ∈ Int[X;Y ] whi
h is not ne
essarily orthogonal (su
h asa random element of the nullspa
e of K (Equation B.6)). To �nd an orthogonalelement, we will `modify' R to be an orthogonal matrix by applying an appro-priate rotation, su
h that R ·RT = I. We begin with a simple observation about

R ·RT .Lemma 39. If both X and Y are orthogonal representations and R is an in-vertible member of Int[X;Y ], then the matrix R · RT is an element of ComY .Proof. Consider a �xed σ ∈ G. Sin
e R ∈ Int[X;Y ], we have that:
X(σ) = R−1 · Y (σ) ·R.It is also true that:

X(σ−1) = R−1 · Y (σ−1) ·R. (B.9)61



Algorithm 5: Pseudo
ode for 
omputing an orthogonal intertwining op-eratorsIntXYinput : A degree d orthogonal matrix representation X evaluated atpermutations (1, 2) and (1, . . . , n), and the multipli
ity zν , ofthe irredu
ible ρν in Xoutput: A matrix Cν with orthogonal rows su
h that CT
ν ·⊕zνρν ·Cν = X

K1 ← Id×d ⊗ (⊕zνρν(1, 2))−X(1, 2)⊗ Id×d;1
K2 ← Id×d ⊗ (⊕zνρν(1, . . . , n))−X(1, . . . , n)⊗ Id×d;2
K ← [K1;K2]; //Sta
k K1 and K23
v ← SparseNullspa
e(K, z2

ν

); //Find the d2
ν-dimensional nullspa
e4

R← Reshape(v; zνdν , d); //Reshape v into a (zνdν)× d matrix5
M ← Krone
kerFa
tors(R ·RT); //Find M su
h that R ·RT = M ⊗ Idν

6
Sν ← Eigenve
tors(M) ;7
Cν ← ST

ν · R ;8 NormalizeRows(Cν);9Sin
e X(σ) and Y (σ) are orthogonal matri
es by assumption, Equation B.9be
omes:
XT (σ) = R−1 · Y T (σ) ·R.Taking transposes,
X(σ) = RT · Y (σ) · (R−1)T .We now multiply both sides on the left by R, and on the right by RT ,

R ·X(σ) ·RT = R ·RT · Y (σ) · (R−1)T · RT

= R ·RT · Y (σ).Sin
e R ∈ Int[X;Y ],
Y (σ) ·R ·RT = R ·RT · Y (σ),whi
h shows that R ·RT ∈ ComY .We 
an now state and prove our orthogonalization pro
edure, whi
h worksby diagonalizing the matrix R · RT . Due to its highly 
onstrained form, thepro
edure is quite e�
ient.Theorem 40. Let X be any orthogonal group representation of G and Y anequivalent orthogonal irredu
ible de
omposition (As in Equation B.5). Thenfor any invertible element R ∈ Int[X;Y ], there exists an (e�
iently 
omputable)orthogonal matrix T su
h that the matrix T ·R is an element of Int[X;Y ] and isorthogonal. 62



Proof. Lemma 39 and Equation B.8 together imply that the matrix R ·RT 
analways be written in the form
R ·RT = ⊕ν (Mzν

⊗ Idν
)Sin
e R ·RT is symmetri
, ea
h of the matri
esMzν
is also symmetri
 and musttherefore possess an orthogonal basis of eigenve
tors. De�ne the matrix Szν

tobe the matrix whose 
olumns are the eigenve
tors of Mzν
.The matrix S = ⊕ν(Szν

⊗ Idν
) has the following two properties:1. (ST · R)(ST · R)T is a diagonal matrix:Ea
h 
olumn of S is an eigenve
tor of R · RT by standard properties ofthe dire
t sum and Krone
ker produ
t. Sin
e ea
h of the matri
es, Szν

, isorthogonal, the matrix S is also orthogonal. We have:
(ST · R)(ST ·R)T = ST ·R · RT · S,

= S−1 · R · RT · S,
= D,where D is a diagonal matrix of eigenvalues of R · RT .2. ST ·R ∈ Int[X;Y ]:By Equation B.8, a matrix is an element of ComY if and only if it takesthe form ⊕ν(Szν

⊗ Idν
). Sin
e S 
an be written in the required form, so
an ST . We see that ST ∈ ComY , and by the proof of Lemma 37, we seethat ST ·R ∈ Int[X;Y ].Finally, setting T = D1/2 · ST makes the matrix T ·R orthogonal (and doesnot 
hange the fa
t that T ·R ∈ Int[X;Y ]).We see that the 
omplexity of 
omputing T of is dominated by the eigenspa
ede
omposition of Mzν

, whi
h is O (z3
ν

). Pseudo
ode for 
omputing orthogonalintertwining operators is given Algorithm 5.
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