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Abstract

Permutations are ubiquitous in many real-world problems, such as voting, ranking,
and data association. Representing uncertainty over permutations is challenging,
since there are n! possibilities, and typical compact and factorized probability
distribution representations, such as graphical models, cannot capture the mutual
exclusivity Constraints associated with permutations. In this paper, we use the “low-
frequency” terms of a Fourier decomposition to represent distributions over
permutations compactly. We present Kronecker conditioning, a new general and
efficient approach for maintaining and updating these distributions directly in the
Fourier domain. Low order Fourier-based approximations, however, may lead to
functions that do not correspond to valid distributions. To address this problem, we
present an efficient quadratic program defined directly in the Fourier domain for
projection the approximation onto a relaxation of the polytope of legal marginal
distributions. We demonstrate the effectiveness of our approach on a real camera-
based multi-person tracking scenario.
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Figure 1: When two persons pass near each other, their identities can get con-
fused.

1 Introduction

Probability distributions over permutations arise in a diverse variety of real
world problems. While they were perhaps first studied in the context of gam-
bling and card games, they have now been found to be applicable to many
important problems in multi-object tracking, information retrieval, webpage
ranking, preference elicitation, and voting.

As an example, consider the problem of tracking n persons based on a set of
noisy measurements of identity and position. A typical tracking system might
attempt to manage a set of n tracks along with an identity corresponding to
each track, in spite of ambiguities from imperfect identity measurements. When
the persons are well separated, the problem is easily decomposed and measure-
ments about each individual can be clearly associated with a particular track.
When persons pass near each other, however, confusion can arise as their signal
signatures may mix; see Figure 1. After the individuals separate again, their
positions may be clearly distinguishable, but their identities can still be con-
fused, resulting in identity uncertainty which must be propagated forward in
time with each person, until additional observations allow for disambiguation.
This task of maintaining a belief state for the correct association between object
tracks and object identities while accounting for local mixing events and sensor
observations, was introduced in (Shin et al., 2003) and is called the identity
management problem.

The identity management problem poses a challenge for probabilistic infer-
ence because it needs to address the fundamental combinatorial challenge that
there is a factorial number of associations to maintain between tracks and iden-
tities. Distributions over the space of all permutations require storing at least



n! — 1 numbers, an infeasible task for all but very small n. Moreover, typical
compact representations, such as graphical models, cannot efficiently capture
the mutual exclusivity constraints associated with permutations.

While there have been many approaches for coping with the factorial com-
plexity of maintaining a distribution over permutations, most attack the problem
using one of two ideas — storing and updating a small subset of likely permu-
tations, or, as in our case, restricting consideration to a tractable subspace of
possible distributions. (Willsky, 1978) was the first to formulate the probabilis-
tic filtering /smoothing problem for group-valued random variables. He proposed
an efficient FFT based approach of transforming between primal and Fourier
domains so as to avoid costly convolutions, and provided efficient algorithms
for dihedral and metacyclic groups. (Kueh et al., 1999) show that probability
distributions on the group of permutations are well approximated by a small
subset of Fourier coefficients of the actual distribution, allowing for a principled
tradeoff between accuracy and complexity. The approach taken in (Shin et al.,
2005; Schumitsch et al., 2005; Schumitsch et al., 2006) can be seen as an algo-
rithm for maintaining a particular fixed subset, of Fourier coefficients of the log
density. Most recently, (Kondor et al., 2007) allow for a general set of Fourier
coefficients, but assume a restrictive form of the observation model in order to
exploit an efficient FFT factorization.

In this work!, we present several contributions which generalize and improve
upon the past related work. We present a new and simple algorithm, called
Kronecker Conditioning, which performs all probabilistic inference operations
completely in the Fourier domain, allowing for a principled tradeoff between
computational complexity and approximation accuracy. Our approach is fully
general, in the sense that it can address any transition model or likelihood
function that can be represented in the Fourier domain, such as those used in
previous work, and can represent the probability distribution using any desired
number of Fourier coefficients. We analyze the errors which can be introduced
by bandlimiting a probability distribution and show how they propagate with
respect to inference operations. Approximate conditioning based on bandlimited
distributions can sometimes yield Fourier coefficients which do not correspond
to any valid distribution, even returning negative “probabilities” on occasion
— we address this issue by presenting a method for projecting the result back
into the polytope of coefficients which correspond to nonnegative and consistent
marginal probabilities using an efficient quadratic program. Finally, we empir-
ically evaluate the accuracy of approximate inference on simulated data drawn
from our model and further demonstrate the effectiveness of our approach on a
real camera-based multi-person tracking scenario.

L A shorter version this work appeared in (Huang et al., 2007). We provide a more complete
discussion of our Fourier based methods in this extended paper.
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Figure 2: Identity Management example. Three people, Alice, Bob and Charlie
enter a room and we receive a position measurement for each person at each
time step. With no way to observe identities inside the room, however, we are
confused whenever two tracks get too close. In this example, track 1 crosses with
track 2, then with track 3, then leaves the room, at which point it is observed
that the identity at Track 1 is in fact Bob.

2 Filtering over permutations

As a prelude to the general problem statement, we begin with a simple identity
management problem on three tracks (illustrated in Figure 2) which we will use
as a running example. In this problem, we observe a stream of localization data
from three people walking inside a room. Except for a camera positioned at the
entrance, however, there is no way to distinguish between identities once they
are inside. In this example, an internal tracker declares that two tracks have
‘mixed’ whenever they get too close to each other and announces the identity
of any track that enters or exits the room.

In our particular example, three people, Alice, Bob and Cathy, enter a room
separately, walk around, and we observe Bob as he exits. The events for our
particular example in the figure are recorded in Table 1. Since Tracks 2 and 3
never mix, we know that Cathy cannot be in Track 2 in the end, and furthermore,
since we observe Bob to be in Track 1 when he exits, we can deduce that Cathy
must have been in Track 3, and therefore Alice must have been in Track 2.
Our simple example illustrates the combinatorial nature of the problem — in
particular, reasoning about the mixing events allows us to exactly decide where
Alice and Cathy were even though we only made an observation about Bob at
the end.

Event # Event Type
1 Tracks 1 and 2 mized
2 Tracks 1 and 3 mized
3 Observed Identity Bob at Track 1

Table 1: Table of Mixing and Observation events logged by the tracker.



In identity management, a permutation o represents a joint assignment of
identities to internal tracks, with o(i) being the track belonging to the ith
identity. When people walk too closely together, their identities can be confused,
leading to uncertainty over ¢. To model this uncertainty, we use a Hidden
Markov Model (HMM) on permutations, which is a joint distribution over latent

permutations ¢V, ..., ¢(T) and observed variables z(*), ..., 2(T) which factors
as:
T
PleW, ... oD O D)= p(eMW)P(zV|eM) H P(zto®).P(c®|ot=1),
t=2

The conditional probability distribution P(c®|o(t=1)) is called the transition
model, and might reflect, for example, that the identities belonging to two
tracks were swapped with some probability by a mixing event. The distribution
P(2®|c®) is called the observation model, which might, for example, capture
a distribution over the color of clothing for each individual.

We focus on filtering, in which one queries the HMM for the posterior
at some time step, conditioned on all past observations. Given the distribu-
tion P(c®|z(V) ... 2®), we recursively compute P(ctD |21 . . 2(+1D) in
two steps: a prediction/rollup step and a conditioning step. Taken together,
these two steps form the well known Forward Algorithm (Rabiner, 1989). The
prediction/rollup step multiplies the distribution by the transition model and
marginalizes out the previous time step:

P20 2 0) =3 Pl Pe]zM), . 2 0),

o)

The conditioning step conditions the distribution on an observation z(**1) using
Bayes rule:

P(o®D 20 20D o p(20HD gD potD) (0 (0,

Since there are n! permutations, a single iteration of the algorithm requires
O((n!)?) flops and is consequently intractable for all but very small n. The
approach that we advocate is to maintain a compact approximation to the true
distribution based on the Fourier transform. As we discuss later, the Fourier
based approximation is equivalent to maintaining a set of low-order marginals,
rather than the full joint, which we regard as being analogous to an Assumed
Density Filter (Boyen & Koller, 1998). Although we focus on HMMs and filter-
ing for concreteness, the approach we describe is useful for other probabilistic
inference tasks over permutations, such as ranking objects and modeling user
preferences.



3 Probability Distributions over the Symmetric
Group

A permutation on n elements is a one-to-one mapping of the set {1,...,n} into
itself and can be written as a tuple,

o=lo(1) a(2) ... an)],

where (i) denotes where the ith element is mapped under the permutation
(called one line notation). For example, 0 = [2 3 1 4 5] means that o(1) = 2,
0(2) =3,0(3) =1, 0(4) =4, and o(5) = 5. The set of all permutations on n
elements forms a group under the operation of function composition — that is,
if o1 and o5 are permutations, then

0109 = [01(02(1)) 01(02(2)) ... o1(02(n))]

is itself a permutation. The set of all n! permutations is called the Symmetric
Group, or just S,,.

We will actually notate the elements of S,, using the more standard cycle
notation, in which a cycle (i,5,k,...,¢) refers to the permutation which maps
1to j, j tok, ..., and finally ¢ to i. Though not every permutation can be
written as a single cycle, any permutation can always be written as a product of
disjoint cycles. For example, the permutation o = [2 3 1 4 5] written in cycle
notation is o = (1,2,3)(4)(5). The number of elements in a cycle is called the
cycle length and we typically drop the length 1 cycles in cycle notation when it
creates no ambiguity — in our example, o = (1,2, 3)(4)(5) = (1, 2,3). We refer
to the identity permutation (which maps every element to itself) as e.

A probability distribution over permutations can be thought of as a joint
distribution on the n random variables (o(1),...,0(n)) subject to the mutual
exclusivity constraints that P(o : o(i) = o(j)) = 0 whenever i # j. For ex-
ample, in the identity management problem, Alice and Bob cannot both be
in Track 1 simultaneously. Due to the fact that all of the o(i) are coupled in
the joint distribution, graphical models, which might have otherwise exploited
an underlying conditional independence structure, are ineffective. Instead, our
Fourier based approximation achieves compactness by exploiting the algebraic
structure of the problem.

3.1 Compact summary statistics

While continuous distributions like Gaussians are typically summarized using
moments (like mean and variance), or more generally, expected features, it is
not immediately obvious how one might, for example, compute the ‘mean’ of a
distribution over permutations. There is a simple method that might spring to
mind, however, which is to think of the permutations as permutation matrices
and to average the matrices instead.



Example 1. For example, consider the two permutations €, (1,2) € Sy (e is the
identity and (1,2) swaps 1 and 2). We can associate the identity permutation e
with the 3 X 3 identity matriz, and similarly, we can associate the permutation
(1,2) with the matriz:

01 0
1,2)—~ |1 0 0
00 1

The ‘average’ of € and (1,2) is therefore:

1 o0 (o 1o 1/2 1/2 0
5|0 10|+ 00=]12 120
00 1 00 1 0 0 1

As we will later show, computing the ‘mean’ (as described above) of a dis-
tribution over permutations, P, compactly summarizes P by storing a marginal
distribution over each of (1), 0(2),...,c(n), which requires storing only O(n?)
numbers rather than the full O(n!) for the exact distribution. As an example,
one possible summary might look like:

| Alice Bob Cathy
Track 1| 2/3 1/6 1/6
Track 2 | 1/3 1/3  1/3
Track3| 0 1/2  1/2

ﬁ:

Such doubly stochastic “first-order summaries” have been studied in various
settings (Shin et al., 2003; Helmbold & Warmuth, 2007). In identity manage-
ment (Shin et al., 2003)2, first-order summaries maintain, for example,

P(Alice is at Track 1) = 2/3,
P(Bob is at Track 3) = 1/2.

What cannot be captured by first-order summaries however, are the higher order
statements like:

P(Alice is in Track 1 and Bob is in Track 2) = 0.

Over the next two sections, we will show that the first-order summary of a
distribution P (o) can equivalently be viewed as the lowest frequency coefficients
of the Fourier transform of P(c), and that by considering higher frequencies,

2Strictly speaking, a map from identities to tracks is not a permutation since a permutation
always maps a set into itself. In fact, the set of all such identity-to-track assignments does not
actually form a group since there is no way to compose any two such assignments to obtain
a legitimate group operation. We abuse the notation by referring to these assignments as a
group, but really the elements of the group here should be thought of as the ‘deviation’ from
the original identity-to-track assignment (where only the tracks are permuted, for example,
when they are confused). In the group theoretic language, there is a faithful group action of
Sn on the set of all identity-to-track assignments.



we can capture higher order marginal probabilities in a principled fashion. Fur-
thermore, the Fourier theoretic perspective, as we will show, provides a natural
framework for formulating inference operations with respect to our compact
summaries. In a nutshell, we will view the prediction/rollup step as a convolu-
tion and the conditioning step as a pointwise product — then we will formulate
the two inference operations in the Fourier domain as a pointwise product and
convolution, respectively.

4 The Fourier transform on finite groups

Over the last fifty years, the Fourier Transform has been ubiquitously applied to
everything digital, particularly with the invention of the Fast Fourier Transform.
On the real line, the Fourier Transform is a well-studied method for decomposing
a function into a sum of sine and cosine terms over a spectrum of frequencies.
Perhaps less familiar though, is its group theoretic generalization, which we
review in this section with an eye towards approximating functions on S,,. For
further information, see (Diaconis, 1988) and (Terras, 1999).

4.1 Group representation theory

The generalized definition of the Fourier Transform relies on the theory of group
representations, which formalize the concept of associating permutations with
matrices and are used to construct a complete basis for the space of functions
on a group G, thus also playing a role analogous to that of sinusoids on the real
line.

Definition 2. A representation of a group G is a map p from G to a set of
invertible d, x d, matrix operators which preserves algebraic structure in the
sense that for all 01,09 € G, p(o102) = p(01) - p(02). The matrices which lie in
the image of p are called the representation matrices, and we will refer to d, as
the degree of the representation.

The requirement that p(c102) = p(o1) - p(o2) is analogous to the property
that e?(%1102) = ¢i01 . i for the conventional sinusoidal basis. Each matrix
entry, p;;(o) defines some function over S,

pii(o)  pi2(o) -+ pia,(0)
»(0) 021'(0) P22-(0) Pzd,i (o) | (1)
pd,1(0)  pa,2(0) - pd,d,(0)

and consequently, each representation p simultaneously defines a set of d/% func-
tions over S,,. We will eventually think of group representations as the set of
Fourier basis functions onto which we can project arbitrary functions.

Example 3. We begin by showing three examples of representations on the
symmetric group.



1. The simplest example of a representation is called the trivial representa-
tion p(py @ Sp — R which maps each element of the symmetric group
to 1, the multiplicative identity on the real numbers. The trivial represen-
tation is actually defined for every group, and while it may seem unworthy
of mention, it plays the role of the constant basis function in the Fourier
theory.

2. The first-order permutation representation of S,,, which we alluded to in
Ezxample 1, is the degree n representation, 7(,_1,1) (we explain the termi-
nology in Section 5) , which maps a permutation o to its corresponding
permutation matriz given by [17(,—1,1)(0)]i; = 1{o(j) = i}. For evample,
the first-order permutation representation on Sz is given by:

1 0 0 01 0

7(271) (6) = 0 1 0 7(211)(1, 2) = 1 0 0

0 01 | 0 0 1]

1 0 0 [0 0 17

T2.1)(2,3) = 8 (1) (1) T2n(1,3) = (1) (1) 8
0 0 1 01 0

T2 (1,2,3) = (1) (1) 8 T2,1)(1,3,2) = (1) 8 (1)

3. The alternating representation of S,,, maps a permutation o to the deter-
minant of T(,,—1,1y(0), which is +1 if o can be equivalently written as the
composition of an even number of pairwise swaps, and —1 otherwise. We
write the alternating representation as p(1,... 1) with n 1’s in the subscript.
For example, on Sy, we have:

Pa,1,1,1)((1,2,3)) = pa,,1,1)((13)(12) = +1.

.....

J

The alternating representation can be interpreted as the ‘highest frequency
basis function on the symmetric group, intuitively due to its high sensitivity
to swaps. For evample, if 171, 1)(0) = 1, then 71, 1)((12)0) = —1.
In identity management, it may be reasonable to believe that the joint
probability over all n identity labels should only change by a little if just
two objects are mislabeled due to swapping — in this case, ignoring the
basis function corresponding to the alternating representation should still
provide an accurate approzimation to the joint distribution.

In general, a representation corresponds to an overcomplete set of functions
and therefore does not constitute a valid basis for any subspace of functions.
For example, the set of nine functions on S3 corresponding to 7 1) span only
four dimensions, because there are six normalization constraints (three on the
row sums and three on the column sums), of which five are independent — and



so there are five redundant dimensions. To find a valid complete basis for the
space of functions on S, we will need to find a family of representations whose
basis functions are independent, and span the entire n!-dimensional space of
functions.

In the following two definitions, we will provide two methods for construct-
ing a new representation from old ones such that the set of functions on S,
corresponding to the new representation is linearly dependent on the old rep-
resentations. Somewhat surprisingly, it can be shown that dependencies which
arise amongst the representations can always be recognized in a certain sense,
to come from the two possible following sources (Serre, 1977).

Definition 4.

1. Equivalence. Given a representation p; and an invertible matrix C, one
can define a new representation ps by “changing the basis” for p;:

pa(0) 2 071 pi(0) - C. (4.2)

We say, in this case, that p; and ps are equivalent as representations
(written p; = p2), and the matrix C' is known as the intertwining operator.
Note that d,, = d,,.

It can be checked that the functions corresponding to ps can be recon-
structed from those corresponding to p;. For example, if C' is a permuta-
tion matrix, the matrix entries of po are exactly the same as the matrix
entries of p1, only permuted.

2. Direct Sum. Given two representations p; and ps, we can always form
a new representation, which we will write as p; @ p2, by defining;:

pL® p2(0) £ { pl(()o) I P2(()0) }

p1 @ p2 is called the direct sum representation. For example, the direct
sum of two copies of the trivial representation is:

1 0

with four corresponding functions on S,,, each of which is clearly depen-
dent upon the trivial representation itself.

Most representations can be seen as being equivalent to a direct sum of
strictly smaller representations. Whenever a representation p can be decom-
posed as p = p1 @ p2, we say that p is reducible. As an example, we now show
that the first-order permutation representation is a reducible representation.

Example 5. Instead of using the standard basis vectors {e1,ea,es}, the first-
order permutation representation T2 1y can be equivalently written with respect



to a new basis {v1,va,v3}, where:

61+62+63

Vi ="  »
ler + ez + es]

Vo — —e1 + eo

? |—€1+€2|’
7617624’263

U3

- |761762+263|.

To ‘change the basis’, we write the new basis vectors as columns in a matriz C':

A N2 1
R N I

C = U|1 U|2 U|3 = ? 5 276 5
s 0 %

and conjugate the representation 7(31y by C (as in Equation 4.2) to obtain the
equivalent representation C~1 - 7(51)(0) - C:

1 0 0 1 0 0
Clren(e)C=10 1 0 C'rey(1,2)C=| 0 -1 0
001 0o 0 1
1 0 0 1 0 0
CTlren(23)C=| 0 5 ¢ Clren(1,3)C=|0 1 -
2 2 B) B)
L0 0 1 0 0
CTlren(1,2,3)C=| 0 —3 *@ Cl'ren(1,3,2)C=| 0 —4 @
2 2 B} 3

The interesting property of this particular basis is that the new representation
matrices all appear to be the direct sum of two smaller representations, a trivial
representation, ps) as the top left block, and a degree 2 representation in the
bottom right which we will refer to as p(2,1)-

Geometrically, the representation p(3 1) can also be thought of as the group
of rigid symmetries of the equilateral triangle with vertices:

n-[ 38 [ e[ 4]

The matriz p2,1)(1,2) acts on the triangle by reflecting about the x-azis, and
pe2,1)(1,2,3) by a /3 counter-clockwise rotation.

In general, there are infinitely many reducible representations. For example,
given any dimension d, there is a representation which maps every element of a
group G to the d x d identity matrix (the direct sum of d copies of the trivial
representation). However, for any finite group, there exists a finite collection of

10



g P(3) P(2,1) P(1,1,1)
1 0

€ 1 { 0 1 ] 1
-1 0

(1,2) 1 { 0 1 ] -1

oo || L] | -
e U]

(1,3) 1
—1/2 —/3/2
(1,2,3) 1 [\/5/2 ey ] 1

-1/2  V/3/2

Table 2: The irreducible representation matrices of Ss.

atomic representations which can be used to build up any other representation
using the direct sum operation. These representations are referred to as the
irreducibles of a group, and they are defined simply to be the collection of
representations (up to equivalence) which are not reducible. It can be shown
that any representation of a finite group G is equivalent to a direct sum of
irreducibles (Diaconis, 1988), and hence, for any representation 7, there exists

a matrix C for which B
o
0_1-7-0:@@p,
p =1
where p ranges over all distinct irreducible representations of the group G, and
the inner & refers to some finite number (z,) of copies of each irreducible p.
As it happens, there are only three irreducible representations of S3 (Dia-
conis, 1988), the trivial representation p(s), the degree 2 representation p(s 1),
and the alternating representation p(; 1 1). The complete set of irreducible rep-
resentation matrices of S5 are shown in the Table 2. Unfortunately, the analysis
of the irreducible representations for n > 3 is far more complicated and we
postpone this more general discussion for Section 5.

4.2 The Fourier transform

The link between group representation theory and Fourier analysis is given by
the celebrated Peter- Weyl theorem ((Diaconis, 1988; Terras, 1999; Sagan, 2001))
which says that the matrix entries of the irreducibles of G form a complete set

11



of orthogonal basis functions on G.*> The space of functions on S3, for example,
is orthogonally spanned by the 3! functions p(s)(0), [p(2,1)(0)]1,1, [P(2,1)(0)]1,2,
[P2,1)(9)]2,1, [p2,1)(0)]2,2 and p(11,1)(0), where [p(0)];; denotes the (i, ) entry
of the matrix p(o).

As a replacement for projecting a function f onto a complete set of sinusoidal
basis functions (as one would do on the real line), the Peter-Weyl theorem
suggests instead to project onto the basis provided by the irreducibles of G. As
on the real line, this projection can be done by computing the inner product
of f with each element of the basis, and we define this operation to be the
generalized form of the Fourier Transform.

Definition 6. Let f : G — R be any function on a group G and let p be any
representation on G. The Fourier Transform of f at the representation p is
defined to be the matrix of coefficients:

fo=>_f(0)p(o). (4.3)

The collection of Fourier Transforms at all irreducible representations of G form
the Fourier Transform of f.

There are two important points which distinguish this Fourier Transform
from its familiar formulation on the real line — first, the outputs of the transform
are matrix-valued, and second, the inputs to f are representations of G rather
than real numbers. As in the familiar formulation, the Fourier Transform is
invertible and the inversion formula is explicitly given by the Fourier Inversion
Theorem.

Theorem 7 (Fourier Inversion Theorem).
1 iT
f(0) = i 2 T IrNGIE (4.4)
A

where X\ indezes over the collection of irreducibles of G.

Note that the trace term in the inverse Fourier Transform is just the ‘ma-
trix dot product’ between fpA and px (o), since Tr [AT - B] = (vec(A), vec(B)),
where by vec we mean mapping a matrix to a vector on the same elements
arranged in column-major order.

We now provide several examples for intuition. For functions on the real line,
the Fourier Transform at zero frequency gives the DC component of a signal.
The same holds true for functions on a group; If f : G — R is any function,

3Technically the Peter-Weyl result, as stated here, is only true if all of the representation
matrices are unitary. That is, p(o)*p(oc) = I for all ¢ € Sy, where the matrix A* is the
conjugate transpose of A. For the case of real-valued (as opposed to complex-valued) matrices,
however, the definitions of unitary and orthogonal matrices coincide.

While most representations are not unitary, there is a standard result from representa-
tion theory which shows that for any representation of G, there exists an equivalent unitary
representation.

12



then since p(,,) = 1, the Fourier Transform of f at the trivial representation
is constant, with fp(n) = >, f(0). Thus, for any probability distribution P,

we have Pp( , = 1. If P were the uniform distribution, then Pp = 0 at every
irreducible p except at the trivial representation.
The Fourier Transform at 7,,_1 1) also has a simple interpretation:

Fronlii = D F@Om-1n@)i; = > flo)l{o()=it= > flo

oc€ESy oc€Sn o:0(j)=i

The set A;; = {0 : o(j) = i} is the set of the (n — 1)! possible permutations
which map element j to ¢. In identity management, A;; can be thought of as
the set of assignments which, for example, have Alice at Track 1. If P is a distri-
bution, then 157(”7111) is a matrix of first-order marginal probabilities, where the
(i,7)-th element is the marginal probability that a random permutation drawn
from P maps element j to i.

Example 8. Consider the following probability distribution on Ss:

o e | (1,2)] (23 ] (1,3) ] (1,2,3) | (1,3,2)
Plo) |[1/3] 1/6 | 1/3 0 1/6 0

The set of all first order marginal probabilities is given by the Fourier trans-
form at 721):

|A B C
5 _ | 1[2371/6 1/6
Ten T | 201/3 1/3 1/3

300 1/2 1/2

In the above matriz, each column j represents a marginal distribution over the
possible tracks that identity j can map to under a random drow from P. We
see, for example, that Alice is at Track 1 with probability 2/3, or at Track 2
with probability 1/3. Simultaneously, each row i represents a marginal distri-
bution over the possible identities that could have been mapped to track i under
a random draw from P. In our example, Bob and Cathy are equally likely to
be in Track 3, but Alice is definitely not in Track 3. Since each row and each
column is itself a distribution, the matriz Py, must be doubly stochastic. We
will elaborate on the consequences of this observation later.
The Fourier transform of the same distribution at all irreducibles is:

B [ 1/4 3/4 ]7

Pen T /34 1/4 F

P(1,1,1)

)

Py, =1 =0.

)

The first-order permutation representation, 7(,_1 1), captures the statistics
of how a random permutation acts on a single object irrespective of where all
of the other n — 1 objects are mapped, and in doing so, compactly summa-
rizes the distribution with only O(n?) numbers. Unfortunately, as mentioned in

13



Section 3, the Fourier transform at the first-order permutation representation
cannot capture more complicated statements like:

P(Alice and Bob occupy Tracks 1 and 2) = 0.

To avoid collapsing away so much information, we might define richer summary
statistics that might capture ‘higher-order’ effects. We define the second-order
unordered permutation representation by:

[T(n72,2) (0)]{i,j},{k,e} =1 {o({k,é}) = {iaj}}a
where we index the matrix rows and columns by unordered pairs {i,;}. The
condition inside the indicator function states that the representation captures
whether the pair of objects {k, ¢} maps to the pair {4, 7}, but is indifferent with
respect to the ordering; i.e., either k— i and £ — j, or, k— j and ¢ — 1.
Example 9. Forn = 4, there are siz possible unordered pairs: {1,2},{1,3},{1,4},{2,3},{2,4},
and {3,4}. The matriz representation of the permutation (1,2,3) is:

| {12} {1.3} {1.4} {23} {24} {3.4}

{12} 0 0 0 1 0 0
{1,3} 1 0 0 0 0
To2(1,2,3) = | {1,4} 0 0 0 0 1 0
{2,3} 0 1 0 0 0 0
{2,4} 0 0 0 0 0 1
{3,4} 0 0 1 0 0 0

The second order ordered permutation representation, T(n—2,1,1)> 18 defined

similarly:

[Tn—2,1,1 ()] (i,),(k,0) = L{o((k,€)) = (i, 7)},
where (k,£) denotes an ordered pair. Therefore, [7(,,—21,1)(0)](i), (k) 18 1 if
and only if ¢ maps k to i and £ to j.

As in the first-order case, the Fourier transform of a probability distribu-
tion at 7(,_22), returns a matrix of marginal probabilities of the form: P(o :
o({k,t}) = {i,75}), which captures statements like, "Alice and Bob occupy
Tracks 1 and 2 with probability 1/2". Similarly, the Fourier transform at
T(n—2,1,1) teturns a matrix of marginal probabilities of the form P(o : o((k,£)) =
(,7)), which captures statements like, "Alice is in Track 1 and Bob is in Track
2 with probability 9/10".

We can go further and define third-order representations, fourth-order rep-
resentations, and so on. In general however, the permutation representations
as they have been defined above are reducible, intuitively due to the fact that
it is possible to recover lower order marginal probabilities from higher order
marginal probabilities. For example, one can recover the normalization con-
stant (corresponding to the trivial representation) from the first order matrix
of marginals by summing across either the rows or columns, and the first order
marginal probabilities from the second order marginal probabilities by summing
across appropriate matrix entries. To truly leverage the machinery of Fourier
analysis, it is important to understand the Fourier transform at the irreducibles
of the symmetric group, and in the next section, we show how to derive the ir-
reducible representations of the Symmetric group by first defining permutation
representations, then “subtracting off the lower-order effects”.

14



5 Representation theory on the Symmetric group

In this section, we provide a brief introduction to the representation theory
of the Symmetric group. Rather than giving a fully rigorous treatment of the
subject, our goal is to give some intuition about the kind of information which
can be captured by the irreducible representations of S,,. Roughly speaking,
we will show that Fourier transforms on the Symmetric group, instead of being
indexed by frequencies, are indexed by partitions of n (tuples of numbers which
sum to n), and certain partitions correspond to more complex basis functions
than others. For proofs, we point the reader to consult: (Diaconis, 1989; James
& Kerber, 1981; Sagan, 2001; Vershik & Okounkov, 2006).

Instead of the singleton or pairwise marginals which were described in the
previous section, we will now focus on using the Fourier coefficients of a distri-
bution to query a much wider class of marginal probabilities. As an example, we
will be able to compute the following (more complicated) marginal probability

on Sg using Fourier coefficients:
Plo:o = , (5.1)

which we interpret as the joint marginal probability that the rows of the diagram
on the left map to corresponding rows on the right as unordered sets. In other
words, Equation 5.1 is the joint probability that unordered set {1,2,3} maps to
{1,2,6}, the unordered pair {4,5} maps to {4,5}, and the singleton {6} maps
to {3}.

The diagrams in Equation 5.1 are known as Ferrer’s diagrams and are com-
monly used to visualize partitions of n, which are defined to be unordered tuples
of positive integers, A = (A1,...,A¢), which sum to n. For example, A = (3,2)
is a partition of n = 5 since 3 + 2 = 5. Usually we write partitions as weakly
decreasing sequences by convention, so the partitions of n =5 are:

[\
[\

[]&]=
o

[eo]m[=
o

(5), 4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1),

and their respective Ferrers diagrams are:

D:l:l:l:‘ ’ ) ’ — ) ’ )

A Young tabloid is an assignment of the numbers {1,...,n} to the boxes of
a Ferrers diagram for a partition A, where each row represents an unordered
set. There are 6 Young tabloids corresponding to the partition A = (2,2), for

() (e

The Young tabloid, , for example, represents the two underordered sets
{1,2} and {3,4}, and if we were interested in computing the joint probability

> |0
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that 0({1,2}) = {3,4} and o({3,4}) = {1, 2}, then we could write the problem
in terms of Young tabloids as:

_ 4

= )

oo ({1

In general, we will be able to use the Fourier coefficients at irreducible repre-
sentations to compute the marginal probabilities of Young tabloids. As we shall
see, with the help of the James Submodule theorem (James & Kerber, 1981),
the marginals corresponding to “simple” partitions will require very few Fourier
coefficients to compute, which is one of the main strengths of working in the
Fourier domain.

[y
N

=W

Example 10. Imagine three separate rooms containing two tracks each, in
which Alice and Bob are in room 1 occupying Tracks 1 and 2; Cathy and David
are in room 2 occupying Tracks 8 and 4; and Eric and Frank are in room 3
occupying Tracks 5 and 6, but we are not able to distinguish which person is at
which track in any of the rooms. Then

(- ({2

It is in fact, possible to recast the first-order marginals which were described
in the previous section in the language of Young tabloids by noticing that,
for example, if 1 maps to 1, then the unordered set {2,...,n} must map to
{2,...,n} since permutations are one-to-one mappings. The marginal proba-
bility that o(1) = 1, then, is equal to the marginal probability that (1) = 1
and 0({2,...,n}) ={2,...,n}. If n =6, then the marginal probability written
using Young tabloids is:

(oo () - )

The first-order marginal probabilities correspond, therefore, to the marginal
probabilities of Young tabloids of shape A = (n —1,1).

Likewise, the second-order unordered marginals correspond to Young tabloids
of shape A = (n—2,2). If n = 6 again, then the marginal probability that {1, 2}
maps to {2,4} corresponds to the following marginal probability for tabloids:

(o () - ()

The second-order ordered marginals are captured at the partition A = (n —
2,1,1). For example, the marginal probability that {1} maps to {2} and {2}
maps to {4} is given by:

(-
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And finally, we remark that the (1,...,1) partition of n recovers all original
probabilities since it asks for a joint distribution over o(1),...,0(n). The cor-
responding matrix of marginals has n! x n! entries.

To see how the marginal probabilities of Young tabloids of shape A can be
thought of as Fourier coefficients, we will define a representation (which we call
the permutation representation) associated with A and show that the Fourier
transform of a distribution at a permutation representation gives marginal prob-
abilities. We begin by fixing an ordering on the set of possible Young tabloids,

{t1}, {t2}, ..., and define the permutation representation (o) to be the matrix:
_ [ 1 ife({t;}) = {t:}
[TA(J)]U o { 0 otherwise ' (5.2)

It can be checked that the function 7, is indeed a valid representation of the
Symmetric group, and therefore we can compute Fourier coefficients at 7. If
P(o) is a probability distribution, then

ENIED I CING

€Sy,

= > Pl

{o:0({t;})={ti}}
= P(o : o({t;}) = {t:}),

and therefore, the matriz of marginals corresponding to Young tabloids of shape
A is given exactly by the Fourier transform at the representation 7.

As we showed earlier, the simplest marginals (the zeroth order normalization
constant), correspond to the Fourier transform at 7(,), while the first-order
marginals correspond to 7(,_11), and the second-order unordered marginals
correspond to 7(,_2 2)- The list goes on and on, with the marginals getting more
complicated; At the other end of the spectrum, we have the Fourier coefficients
at the representation 7(; 1 . 1) which exactly recover the original probabilities
P(o).

We use the word ‘spectrum’ suggestively here, because the different levels of
complexity for the marginals are highly reminiscent of the different frequencies
for real-valued signals, and a natural question to ask is how the partitions might
be ordered with respect to the ‘complexity’ of the corresponding basis functions.
In particular how might one characterize this vague notion of complexity for a
given partition?

The ‘correct’ characterization, as it turns out, is to use the dominance or-
dering of partitions, which, unlike the ordering on frequencies, is not a linear
order, but rather, a partial order.

Definition 11 (Dominance Ordering). Let A, 1 be partitions of n. Then A>
(we say A dominates ), if for each 4, >) _ A\ > > pk-

For example, (4,2)>(3,2,1) since4 > 3,4+2 > 342, and 44240 > 3+2+1.
However, (3,3) and (4,1, 1) cannot be compared with respect to the dominance
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(a) Dominance ordering for (b) Fourier coefficient matrices for Sg.
n = 6.

Figure 3: The dominance order for partitions of n = 6 are shown in the left dia-
gram (a). Fat Ferrer’s diagrams tend to be higher in the order and long, skinny
diagrams tend to be lower. The corresponding Fourier coefficient matrices for
each partition (at irreducible representations) are shown in the right diagram
(b). Note that since the Fourier basis functions form a complete basis for the
space of functions on the Symmetric group, there must be exactly n! coefficients
in total.

ordering since 3 < 4, but 3+ 3 > 4 4+ 1. The ordering over the partitions of
n = 6 is depicted in Figure 3(a).

Partitions with fat Ferrers diagrams tend to be greater (with respect to dom-
inance ordering) than those with skinny Ferrers diagrams. Intuitively, represen-
tations corresponding to partitions which are high in the dominance ordering
are ‘low frequency’, while representions corresponding to partitions which are
low in the dominance ordering are ‘high frequency’*.

Having defined a family of intuitive permutation representations over the
Symmetric group, we can now ask whether the permutation representations are
irreducible or not: the answer in general, is to the negative, due to the fact that

4The direction of the ordering is slightly counterintuitive given the frequency interpretation,
but is standard in the literature.
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it is often possible to reconstruct lower order marginals by summing over the
appropriate higher order marginal probabilities. However, it is possible to show
that, for each permutation representation 7y, there exists a corresponding irre-
ducible representation py, which, loosely, captures all of the information at the
‘frequency’ A\ which was not already captured at lower frequency irreducibles.
Moreover, it can be shown that there exists no irreducible representation besides
those indexed by the partitions of n. These remarkable results are formalized
in the James Submodule Theorem, which we state here without proof (see (Di-
aconis, 1988; James & Kerber, 1981; Sagan, 2001)).

Theorem 12 (James’ Submodule Theorem).

1. (Uniqueness) For each partition, A, of n, there exists an irreducible rep-
resentation, py, which is unique up to equivalence.
2. (Completeness) Every irreducible representation of S,, corresponds to some
partition of n.
3. There exists a matriz C) associated with each partition A, for which
K

CT . 1\(0)-C\ = @ @pu , forallo € S,. (5.3)

p>X L=1
4. Kxx =1 for all partitions .

In plain English, part (3) of the James Submodule theorem says that we
can always reconstruct marginal probabilities of A-tabloids using the Fourier
coefficients at irreducibles which lie at A and above in the dominance ordering, if
we have knowledge of the matrix C (which can be precomputed using methods
detailed in Appendix B), and the multiplicities K»,. In particular, combining
Equation 5.3 with the definition of the Fourier transform, we have that

KAM

n=C |EPEP .| C, (5.4)

pn>A =1

and so to obtain marginal probabilities of A-tabloids, we simply construct a
block diagonal matrix using the appropriate irreducible Fourier coefficients, and
conjugate by C. The multiplicities K, are known as the Kostka numbers and
can be computed using Young’s rule (Sagan, 2001). To illustrate using a few
examples, we have the following decompositions:

T(n) = P(n)
T(n—1,1) = P(n) D P(n—1,1),
T(n—2,2) = P(n) D P(n—-1,1) D P(n—2,2),
T(n—2,1,1) = P(n) @ P(n-1,1) P P(n—1,1) D P(n—2,2) P P(n—-2,1,1);
T(n—3,3) = P(n) D P(n—1,1) D P(n—2,2) D P(n—3,3)
T(n—3,2,1) = P(n) D P(n—1,1) D P(n-1,1) D P(n—2,2) D P(n—2,2)
D Pn—21,1) D P(n—3,3) D P(n—3,2,1)-
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Intuitively, the irreducibles at a partition A reflect the “pure” \*-order effects
of the underlying distribution. In other words, the irreducibles at A form a
basis for functions that have “interesting” \*"-order marginal probabilities, but
uniform marginals at all partitions u such that u > A.

Example 13. As an example, we demonstrate a “preference” function which is
“purely” second-order (unordered) in the sense that its Fourier coefficients are
equal to zero at all irreducible representations except pi,—s2) (and the trivial
representation). Consider the function f : S, — R defined by:

f(o){ 1 ifo(1) ~o(2)] = 1 (modn)

0 otherwise

Intuitively, imagine seating n people at a round table with n chairs, but with
the constraint that the first two people, Alice and Bob, are only happy if they
are allowed to sit next to each other. In this case, f can be thought of as the
indicator function for the subset of seating arrangements (permutations) which
make Alice and Bob happy.

Since [ depends only on the destination of the unordered pair {1,2}, its
Fourier transform is zero at all partitions p such that u < (n—2,2) (f# =0). On
the other hand, Alice and Bob have no individual preferences for seating, so the
first-order “marginals” of f are uniform, and hence, f(n71,1) = 0. The Fourier
coefficients at irreducibles can be obtained from the second-order (unordered)
“marginals” using Equation 5.3.

._ -

T .
C(n72,2) ’ P"’(n,fzg) ’ C("—272) =

fP(n,72,2)

The sizes of the irreducible representation matrices are typically much smaller
than their corresponding permutation representation matrices. In the case of
A= (1,...,1) for example, dim 7, = n! while dim p) = 1. There is a sim-
ple combinatorial algorithm, known as the Hook Formula (Sagan, 2001), for
computing the dimension of py. While we do not discuss it, we provide a few
dimensionality computations here (Table 3) to facilitate a dicussion of complex-
ity later. See Figure 3(b) for an example of what the matrices of a complete
Fourier transform on Sg would look like.

In practice, since the irreducible representation matrices are determined only
up to equivalence, it is necessary to choose a basis for the irreducible representa-
tions in order to explicitly construct the representation matrices. As in (Kondor
et al., 2007), we use the Gel’fand-Tsetlin basis which has several attractive prop-
erties, two advantages being that the matrices are real-valued and orthogonal.
See Appendix A for details on constructing irreducible matrix representations
with respect to the Gel’fand-Tsetlin basis.

20



A n) | n—=1,1) | (n=2,2) | (n—2,1,1) (n—3,3) (n—3,2,1)

dim P 1 n—1 n(n2—3) (n—1)2(n—2) n(n—lG)(n—S) n(n—2)(n—4)

3

Table 3: Dimensions of low-order irreducible representation matrices.

6 Inference in the Fourier domain

What we have shown thus far, is that there is a principled method for compactly
summarizing distributions over permutations based on the idea of bandlimiting
— saving only the low-frequency terms of the Fourier transform of a function,
which, as we discussed, is equivalent to maintaining a set of low-order marginal
probabilities. We now turn to the problem of performing probabilistic inference
using our compact summaries. One of the main advantages of viewing marginals
as Fourier coefficients is that it provides a natural principle for formulating
inference, which is to rewrite all inference related operations with respect to the
Fourier domain.

The idea of bandlimiting a distribution is ultimately moot, however, if it be-
comes necessary to transform back to the primal domain each time an inference
operation is called. Naively, the Fourier Transform on S,, scales as O((n!)?), and
even the fastest Fast Fourier Transforms for functions on S,, are no faster than
O(n? - n!) (see (Maslen, 1998) for example). To resolve this issue, we present a
formulation of inference which operates solely in the Fourier domain, allowing
us to avoid a costly transform. We begin by discussing exact inference in the
Fourier domain, which is no more tractable than the original problem because
there are n! Fourier coefficients, but it will allow us to introduce the bandlim-
iting approximation in the next section. There are two operations to consider:
prediction/rollup, and conditioning. The assumption for the rest of this sec-
tion is that the Fourier transforms of the transition and observation models are
known. We discuss methods for obtaining the models in Section 8.

6.1 Fourier prediction/rollup

We will consider one particular class of transition models — that of random
walks over a group, which assumes that o(**1) is generated from ¢(¥) by draw-
ing a random permutation 7(*) from some distribution Q® and setting c(*+1) =
7 5 In our identity management example, 7(*) represents a random iden-
tity permutation that might occur among tracks when they get close to each

5We place 7w on the left side of the multiplication because we want it to permute tracks
and not identities. Had we defined 7 to map from tracks to identities (instead of identities to
tracks), then 7 would be multiplied from the right. Besides left versus right multiplication,
there are no differences between the two conventions.
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other (what we call a mizing event). For example, Q(1,2) = 1/2 means that
Tracks 1 and 2 swapped identities with probability 1/2. The random walk
model also appears in many other applications such as modeling card shuffles
(Diaconis, 1988).

The motivation behind the random walk transition model is that it allows
us to write the prediction/rollup operation as a convolution of distributions on
the Symmetric group. The extension of the familiar notion of convolution to
groups simple replaces additions and subtractions by analogous group operations
(function composition and inverse, respectively):

Definition 14. Let Q and P be probability distributions on S,,. Define the
convolution® of Q and P to be the function [Q * P] (o1) = >, Q(o105 1) P(02).

Using Definition 14, we see that the prediction/rollup step can be written
as:

P(ctD)y = ZP(J(t+1)|o(t)) - P(o®),

o)
_ 3 QW (x®). po),

{(®,7(0): D = (.51}

(Right-multiplying both sides of o(**1) = 7(*)5(®)
by (0®)~1, we see that 7(Y) can be replaced by o+ (¢(®)~1),

= Z QW (D) . (6M)=1) . P(c®),

o)

= [Q(t) *p} (o).

As with Fourier transforms on the real line, the Fourier coefficients of the con-
volution of distributions P and @ on groups can be obtained from the Fourier
coefficients of P and @ individually, using the convolution theorem (see also
(Diaconis, 1988)):

Proposition 15 (Convolution Theorem). Let Q and P be probability distribu-
tions on S, . For any representation p,

~

{Q*P} =Q, P,
P
where the operation on the right side is matriz multiplication.

Therefore, assuming that the Fourier transforms 13,9” and @ff) are given, the
prediction /rollup update rule is simply:

D(t+1 A1) Dt
PHD QM. PO,

6Note that this definition of convolution on groups is strictly a generalization of convolution
of functions on the real line, and is a non-commutative operation for non-abelian groups. Thus
the distribution P * Q is not necessarily the same as @ * P.
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> PO [ QW [ PO [ @& | p®@
€ 1 3/4 | 3/4 | 3/4 | 9/16
(1,2) 0 1/4 | 1/4 0 3/16
(2,3) 0 0 0 0 0
(1,3) 0 0 0 1/4 | 3/16
(1,2,3) 0 0 0 0 1/16
(1,3,2) 0 0 0 0 0

Table 4: Primal domain prediction/rollup example.

PO om ) o® )
P3) 1 1 1 1 1
1 0 1 9 1 9 1 _ V3 s _ /3
.1 [ 0 1 ] [ o 1 ] [ o 1 } { B 5 V55
8 8 16 8
P11 1 3 3 3 3

Table 5: Fourier domain prediction/rollup example.

Note that the update only requires knowledge of P and does not require P.
Furthermore, the update is pointwise in the Fourier domain in the sense that
the coefficients at the representation p affect 13,§t+1) only at p. Consequently,
prediction/rollup updates in the Fourier domain never increase the representa-
tional complexity. For example, if we maintain third-order marginals, then a
single step of prediction/rollup called at time ¢ returns the ezact third-order
marginals at time ¢ + 1, and nothing more.

Example 16. We run the prediction/rollup routines on the first two time
steps of the example in Figure 2, first in the primal domain, then in the Fourier
domain. At each mizing event, two tracks, i and j, swap identities with some
probability. Using a mizing model given by:

3/4  ifm=c¢
Q(r) =< 1/4 ifmr=0(ij) ,
0 otherwise

we obtain results shown in Tables 4 and 5.

6.1.1 Limitations of random walk models

While the random walk assumption captures a rather general family of transition
models, there do exist certain models which cannot be written as a random walk
on a group. In particular, one limitation is that the prediction/rollup update for
a random walk model can only increase the entropy of the distribution. As with
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Kalman filters, localization is thus impossible without making observations. *

(Shin et al., 2005) show that the entropy must increase for a certain kind of
random walk on S,, (where 7 could be either the identity or the transposition
(i,7)), but in fact, the result is easily generalized for any random walk mixing
model and for any group.

Proposition 17.
H [P ()] > max {1 QU ()], H [PO ()]},

where H [P(0)] denotes the statistical entropy functional, H[P(0)] = — > . P(0)log P(0).
Proof. We have:

P (D)) = [Qa) « P(t)} (o))

= Z Qo) . ()= p1) (5(1)
)
Applying the Jensen Inequality to the entropy function (which is concave) yields:

H [P(t“)(o(t“))} > ZP(t) (c™H {Q(t) (o (o(t))_l)} : (Jensen’s inequality)

o(t)

= Z PO (e H {Q(t) (o)} , (translation invariance of entropy)

o)

—H [Q“) (g)} , (since 3,0 PO(0®) = 1),

The proof that H [PU+D (o+D)] > H [P®(0®)] is similar with the exception
that we must rewrite the convolution so that the sum ranges over (%),

P (D)) = [Q(t) N P(t):| (D),

= ZQ(t) (rO) PO (7)1 5+,
(1)

O

Example 18. This example is based on one from (Diaconis, 1988). Consider
a deck of cards numbered {1,...,n}. Choose a random permutation of cards by

"In general, if we are not constrained to using linear Gaussian models, it is possible to
localize with no observations. Consider a robot walking along the unit interval on the real line
(which is not a group). If the position of the robot is unknown, one easy localization strategy
might be to simply drive the robot to the right, with the knowledge that given ample time,
the robot will slam into the ‘wall’, at which point it will have been localized. With random
walk based models on groups however, these strategies are impossible — imagine the same
robot walking around the unit circle — since, in some sense, the group structure prevents the
existence of ‘walls’.
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Entropy with respect to number of shuffles
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Figure 4: We start with a deck of cards in sorted order, and perform fifteen
consecutive shuffles according to the rule given in Equation 6.1. The plot shows
the entropy of the distribution over permutations with respect to the number
of shuffles for n = 3,4,...,8. When H(P)/log(n!) = 1, the distribution has

become uniform.

first picking two cards independently, and swapping (a card might be swapped
with itself), yielding the following probability distribution over Sy :

L if m=id
Q(n) = % if T is a transposition . (6.1)
0 otherwise

Repeating the above process for generating random permutations 7 gives a
transition model for a hidden Markov model over the symmetric group. We can
also see (Figure 4) that the entropy of the deck increases monotonically with
each shuffle, and that repeated shuffles with Q(w) eventually bring the deck to
the uniform distribution.

6.2 Fourier conditioning

In contrast with the prediction/rollup operation, conditioning can potentially
increase the representational complexity. As an example, suppose that we know
the following first-order marginal probabilities:

P(Alice is at Track 1 or Track 2) = .9, and

P(Bob is at Track 1 or Track 2) = .9.

If we then make the following first-order observation:

P(Cathy is at Track 1 or Track 2) =1,
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then it can be inferred that Alice and Bob cannot both occupy Tracks 1 and 2
at the same time, i.e.,

P({Alice,Bob} occupy Tracks {1,2}) =0,

demonstrating that after conditioning, we are left with knowledge of second-
order (unordered) marginals despite the fact that the prior and likelihood func-
tions were only known up to first-order. Intuitively, the example shows that
conditioning “smears” information from low-order Fourier coefficients to high-
order coefficients, and that one cannot hope for a pointwise operation as was
afforded by prediction/rollup. We now show precisely how irreducibles of dif-
ferent complexities “interact” with each other in the Fourier domain during
conditioning.

An application of Bayes rule to find a posterior distribution P(c|z) after
observing some evidence z requires two steps: a pointwise product of likelihood
P(z|o) and prior P(c), followed by a normalization step:

P(o|z) =n- P(z|o) - P(0).

For notational convenience, we will refer to the likelihood function as L(z|o)
henceforth. We showed earlier that the normalization constant n=! = " L(z|o)-

P(0) is given by the Fourier transform of L(®) P() at the trivial representation
— and therefore the normalization step of conditioning can be implemented by
simply dividing each Fourier coefficient by the scalar [L(t)P(t)}

P(n)
The pointwise product of two functions f and g, however, is trickier to

formulate in the Fourier domain. For functions on the real line, the pointwise
product of functions can be implemented by convolving the Fourier coefficients
of f and g, and so a natural question is: can we apply a similar operation for
functions over general groups? Our answer to this is that there is an analogous
(but more complicated) notion of convolution in the Fourier domain of a general
finite group. We present a convolution-based conditioning algorithm which we
call Kronecker Conditioning, which, in contrast to the pointwise nature of the
Fourier Domain prediction/rollup step, and much like convolution, smears the
information at an irreducible p, to other irreducibles.

6.2.1 Fourier transform of the pointwise product

Our approach to computing the Fourier transform of the pointwise product in
terms of f and § is to manipulate the function f(o)g(c) so that it can be seen
as the result of an inverse Fourier transform (Equation 4.4). Hence, the goal
will be to find matrices R, (as a function of f, §) such that for any o € G,

f(0) - glo) = ﬁ S dy, T (BT - po(0)) (6.2)

after which we will be able to read off the Fourier transform of the pointwise

product as [f?]} . =R,.
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1. If A and B are square, Tr (A ® B) = (TrA) - (TrB).
2. (A®B)-(C®D)=AC® BD.

3. Let A be an n x n matrix, and C an invertible n X n matrix. Then
TrA =Tr (C’*lAC).

4. Let A be an n xn matrix and B; be matrices of size m; X m; where
>;mi =mn. Then Tr (A- (P, B;)) = >, Tr (A4; - B;), where A; is
the block of A corresponding to block B; in the matrix (&, B;).

Table 6: Matrix Identities used in Proposition 19.

For any o € G we can write the pointwise product in terms f and § using
the inverse Fourier transform:

cl de‘r (75 p@)| e deu (a2 » (0))]
- <|G|> dedm [ (APTA ~P/\(0>) - Tr (9,?“ 'p#(a))} . (6.3)

Now we want to manipulate this product of traces in the last line to be just one
trace (as in Equation 6.2), by appealing to some properties of the Kronecker
Product. The Kronecker product of an n x n matrix U = (u; ;) by an m x m
matrix V', is defined to be the nm x nm matrix

f(o)-g(o)

’LLLlV ’LLLQV e ulynV

’LL211V u212v N uzynV
UV = . . . )

Up1V  up2V ... upaV

We summarize some important matrix properties in Table 6. The connection
to our problem is given by matrix property 1. Applying this to Equation 6.3,
we have:

Te (f3 o)) - Tr (38 - pule)) = Tr((F5 - oa@)) @ (5 pul)))
. T
= T ((fa i) (a0 900D,
where the last line follows by Property 2. The term on the left, fpA ® Gp,» is a
matrix of coefficients. The term on the right, px(c) ® p, (o), itself happens to
be a representation, called the Kronecker (or Tensor) Product Representation.

In general, the Kronecker product representation is reducible, and so it can
decomposed into a direct sum of irreducibles. In particular, if py and p, are
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any two irreducibles of G, there exists a similarity transform C',, such that, for
any o € G,

Zapw

Cri (02 ® pu] (0) - Cre = P @ pu(o (6.4)

The @ symbols here refer to a matrix direct sum as in Equation 2, v indexes
over all irreducible representations of S,,, while ¢ indexes over a number of copies
of p, which appear in the decomposition. We index blocks on the right side of
this equation by pairs of indices (v, £). The number of copies of each p, (for the
tensor product pair py ® p,) is denoted by the integer zx,.,, the collection of
which, taken over all triples (A, u, ), are commonly referred to as the Clebsch-
Gordan series. Note that we allow the z),, to be zero, in which case p, does
not contribute to the direct sum. The matrices C, are known as the Clebsch-
Gordan coefficients. The Kronecker Product Decomposition problem is that of
finding the irreducible components of the Kronecker product representation, and
thus to find the Clebsch-Gordan series/coefficients for each pair of irreducible
representations (px, pu)-

Decomposing the Kronecker product inside Equation 6.4 using the Clebsch-
Gordan series and coefficients yields the desired Fourier transform, which we
summarize in the form of a proposition. In the case that f and g are defined
over an abelian group, then the following formulas reduce to the familiar form
of convolution.

Proposition 19. Let f,g be the Fourier transforms of functions f and g re-
spectively, and for each ordered pair of irreducibles (px,p.), define: Ay, =

C;: . (fm ® gpu) -Cxp. Then the Fourier tranform of the pointwise product fg

18:
Zxapv

o) =3 T |G| dedpu ZAﬂf’, (6.5)

v

where A(Z ) is the block of Ay, corresponding to the (v, ) block in @, D2 pu
from Equation 6.4.

Proof. We use the fact that C, is an orthogonal matrix for all pairs (px, p,.),
: T _
1.e., C/\# . C)\H =1.

f(o)-g(o>={|2;dm (47, - alo )] ['GZ% (g,?u-pu(o))}

= (&) St [1 (75 @) - (38, -u9)]
A
(by Property 1) = (ﬁ)Q dedw [TI‘ ((f,z; 'PA(0)> ® (9;7;“ '/’H(U)>>]
Ak
(by Property 2) = (ﬁ)2 dexdp“ ((fp)\ ®!}p#) (pA(@) ® pu( )))
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(by Property 3 (|G\) de dp, Tr <C>ﬂ : (fﬂx ® ?Jw)T “Chp
€8+ (pA(@) @ pu(@)) - Ca)

Zxpv
(by definition of Cy,, and Ay ,) = (|G\) dexdp# <A§M . <@ @ pl,(o)))
v £=1
Zxpv
v,l
(by Property 4) IGP dedp“ >dp, > Tr (( p,,lA( >> pu(a))
v £=1

T
2y
dp, d
(rearranging terms) de,, Z Z PA P A;f) pv (o)
IG‘ Ap =1 dﬂ IG‘

Recognizing the last expression as an inverse Fourier transform completes the
proof. O

The Clebsch-Gordan series, 2y, plays an important role in Equation 6.5,
which says that the (px, p,) crossterm contributes to the pointwise product at
pv only when zy,, > 0. In the simplest case, we have that

|1 ifpu=v
v =1 0 otherwise

which is true since p(,)(c) =1 for all o € S,,. As another example, it is known
that:
P(n—1,1) ® P(n-1,1) = P(n) D P(n-1,1) © P(n—2,2) B P(n—2,1,1); (6.6)

or equivalently,

_ [ 1 ifvisoneof (n),(n—1,1),(n—2,2), or (n —2,1,1)
Z(’nle),(nfl,l),l/ - 0 OtheI‘WiSe

So if the Fourier transforms of the likelihood and prior are zero past the first
two irreducibles ((n) and (n —1,1)), then a single conditioning step results in a
Fourier transform which, in general, carries second-order information at (n—2, 2)
and (n—2,1,1), but is guaranteed to be zero past the first four irreducibles (n),
(n—1,1), (n—2,2) and (n —2,1,1).

As far as we know, there are no analytical formulas for finding the entire
Clebsch-Gordan series or coefficients, and in practice, these computations do in
fact take a long time. We emphasize however, that as fundamental constants
related to the irreducibles of the Symmetric group, they need only be computed
once (like the digits of w, for example) and can be stored in a table for all
future reference. For a detailed discussion of techniques for computing the
Clebsch-Gordan series/coefficients, see Appendix B. We plan to make a set
of precomputed coefficients available on the web, but for now we will assume
throughout the rest of the paper that both the series and coefficients have been
made available as a lookup table. We conclude our section on inference with a
fully worked example of Kronecker conditioning.
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Example 20. For this example, refer to Table 2 for the representations of Ss.
Given functions f,g : Ss — R, we will compute the Fourier transform of the
pointwise product f - g.

Since there are three irreducibles, there are nine tensor products py ® pu
to decompose, six of which are trivial either because they are one-dimensional,
or involve tensoring against the trivial representation. The nontrivial tensor
products to consider are p2 1) @ p1,1,1), P(1,1,1) @ P2,1) and pe2.1) @ pe2,1)- The
Clebsch-Gordan series for the nontrivial tensor products are:

Z2,1),(1,1,),v | 2(1,1,1),2,1),v 2(2,1),(2,1),v
v=(3) 0 1
V= (27 1) 1 1 1
v = (17 1, 1) 0 1

The Clebsch-Gordan coefficients for the nontrivial tensor products are given
by the following orthogonal matrices:

0 1 0 -1
Cienea,i = [ 1 0 } v Caineen = { 1 0 } ;
1 0 -1 0
c _V2]0 -1 0 1
@EneEn =95 | g -1 0 -1
1 0 1 0

As in Proposition 19, define:

A2, 1)e1,1,1) C(T2,1)®(1,171) (f(2,1) ® §(1,1,1)) Cene,), (6.7)
Aaipeey = Clineen (f(1,1,1) ® Q(u)) Caineey), (6.8)
Aenee C'(T2,1)®(2,1) (f(2,1) & §(2,1)) Cinee1) (6.9)

Then Proposition 19 gives the following formulas:

—

f- 9o = % ' {fpm "Gy T fﬂ(l,l,l) “Opaany T4 [A(2,1)®(2,1)]1,1} , (6.10)
f/'\gp(z,n - % . {f”(?’l) "o T fP(S) “Gpeny T A LB

+Aee1n +2- [Aeneen] s ;) (6.11)

f/'\gpu,m) = % ’ [f/’(:’») “Gpaany T fP(LLl) "Gy T4 [A(211)®(211)]474} , (6.12)

where the notation [Alg.p,c.a denotes the block of entries in A between rows a
and b, and between columns ¢ and d (inclusive).

Using the above formulas, we can continue on Example 16 and compute the
last update step in our identity management problem (Figure 2). At the final
time step, we observe that Bob is at track 1 with 100% certainty. Our likelihood
function is therefore monzero only for the permutations which map Bob (the
second identity) to the first track:

1 ifo=(1,2) or(1,3,2)
L{o) { 0 otherwise
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Algorithm 1: Pseudocode for the Fourier Prediction/Rollup Algorithm.
PREDICTIONROLLUP
input : fof and ]5,3(?, prEA
output: Isp(iJrl), px €A

1 foreach p) € A do Pp(iJrl) — A,(f) . Isp(i) ;

A

The Fourier transform of the likelihood function is:

Epm) _ { -3/2  V3/2 } i

LP(s) =2, 7\/5/2 1/2 p(11,1) 0. (6'13)

Plugging the Fourier transforms of the prior distribution (]3(2) from Table 5)
and likelihood (Equation 6.13) into Equations 6.7, 6.8, 6.9, we have:

A 1 0 0 A 1 1 V3
(2,1)®(1,1,1) = 0 0 s (1,1,1)®(2,1) — g -3 -3

1

N _ -2v3 —-10 -6v3 -—14
@nee1) = 55

20 22v3 -4 43
-11v/3  -23 -3 -—13

To invoke Bayes rule in the Fourier domain, we perform a pointwise prod-
uct using Equations 6.10, 6.11, 6.12, and normalize by dividing by the trivial
coefficient, which yields the Fourier transform of the posterior distribution as:

-7 -3 11 5v3 }

Pel)] =1 [Pelp)] = [ e ] C[PeR] =
P(3) P(2,1) 0 P(1,1,1)
(6.14)
Finally, we can see that the result is correct by recognizing that the Fourier
transform of the posterior (Equation 6.14) corresponds exactly to the distribution

which is 1 at 0 = (1,2) and 0 everywhere else. Bob is therefore at Track 1, Alice
at Track 2 and Cathy at Track 3.

o el (L,2)] @3] L3 (1,2,3) ] (1,3,2)
Po) o] 1 0 0 0 0

7 Approximate inference by bandlimiting

We now consider the consequences of performing inference using the Fourier
transform at a reduced set of coefficients. Important issues include understand-
ing how error can be introduced into the system, and when our algorithms are
expected to perform well as an approximation. Specifically, we fix a bandlimit
AMIN and maintain the Fourier transform of P only at irreducibles which are
at AMIN or above in the dominance ordering:

A={pr s A AMINY,
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Algorithm 2: Pseudocode for the Kronecker Conditioning Algorithm.

KRONECKERCONDITIONING A
input : Fourier coefficients of the likelihood function, L,,, px € A, and

Fourier coefficients of the prior distribution, Ppw pu € Ap
output: Fourier coefficients of the posterior distribution, LP,, , p, € Ap

foreach p, € Ap do f]BpV — 0 //Initialize Posterior
// Pointwise Product
foreach p) € Ar do

=

()

3 foreach p, € Ap do
4 z «— CGseries(px, pu) ;
Cp < CGeoef ficients(px, pu) 3 Axp < C’fu . (ﬁpk ® Ppu) -Chy s
6 for p, € Ap such that zx,, # 0 do
7 for { =1 to z,, do
. [LOPD)| o [LOPD] 4 e a0 /ALY is the

pv
(v,2) block of Ay,

Pu

N — [L@t)}
P(n)

foreach p, € A do [L(T)P\(t)] —n [Lm)] // Normalization

10 P

pu

For example, when AN = (n—2,1,1), A is the set {p(n), P(n—1,1), P(n—2,2) , and
p(n_271,1)}, which corresponds to maintaining second-order (ordered) marginal
probabilities of the form P(c((i,j)) = (k,£)). During inference, we follow the
procedure outlined in the previous section but discard the higher order terms
which can be introduced during the conditioning step. Pseudocode for ban-
dlimited prediction/rollup and Kronecker conditioning is given in Algorithms 1
and 2. We note that it is not necessary to maintain the same number of irre-
ducibles for both prior and likelihood during the conditioning step. The first
question to ask is: when should one expect a bandlimited approximation to be
close to P(o) as a function? Qualitatively, if a distribution is relatively smooth,
then most of its energy is stored in the low-order Fourier coefficients. However,
in a phenomenon quite reminiscent of the Heisenberg uncertainty principle from
quantum mechanics, it is exactly when the distribution is sharply concentrated
at a small subset of permutations, that the Fourier projection is unable to
faithfully approximate the distribution. We illustrate this uncertainty effect
in Figure 5 by plotting the accuracy of a bandlimited distribution against the
entropy of a distribution.

Even though the bandlimited distribution is sometimes a poor approximation
to the true distribution, the marginals mainatined by our algorithm are often
sufficiently accurate. And so instead of considering the approximation accuracy
of the bandlimited Fourier transform to the true joint distribution, we consider
the accuracy only at the marginals which are maintained by our method.

32



Bandlimiting Error

Energy Preserved by Fourier Projection

0 0.2 0.4 0.6 0.8 1
H[P]/log(n!)

Figure 5: In general, smoother distributions are well approximated by low-
order Fourier projections. In this graph, we show the approximation quality of
the Fourier projections on distributions with different entropies, starting from
sharply peaked delta distributions on the left side of the graph, which get itera-
tively smoothed until they becomes the maximum entropy uniform distribution
on the right side. On the y-axis, we measure how much energy is preserved in
the bandlimited approximation, which we define to be %, where P’ is the ban-
dlimited approximation to P. Fach line represents the approximation quality
using a fixed number of Fourier coefficients. At one extreme, we achieve perfect
signal reconstruction by using all Fourier coefficients, and at the other, we per-
form poorly on “spiky” distributions, but well on high-entropy distributions, by

storing a single Fourier coefficient.

7.1 Sources of error during inference

We now analyze the errors incurred during our inference procedures with respect
to the accuracy at maintained marginals. It is immediate that the Fourier
domain prediction/rollup operation is ezact due to its pointwise nature in the
Fourier domain. For example, if we have the second order marginals at time
t =0, then we can find the exact second order marginals at all ¢ > 0 if we only
perform prediction/rollup operations. Instead, the errors in inference are only
committed by Kronecker conditioning, where they are implicitly introduced at
coefficients outside of A (by effectively setting the coefficients of the prior and
likelihood at irreducibles outside of A to be zero), then propagated inside to the
irreducibles of A.

In practice, we observe that the errors introduced at the low-order irre-
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Figure 6: We show the dominance ordering for partitions of n = 5 and n =
6 again. By setting AMIN = (3,1,1) and (4,1,1) respectively, we keep the
irreducibles corresponding to the partitions in the dotted regions. If we call
Kronecker Conditioning with a first-order observation model, then according
to Theorem 21, we can expect to incur some error at the Fourier coefficients
corresponding to (3,1,1) and (3,2) for n =5, and (4,1,1) and (4,2) for n =6
(shown as shaded tableaux), but to be exact at first-order coefficients.

ducibles during inference are small if the prior and likelihood are sufficiently
diffuse, which makes sense since the high-frequency Fourier coefficients are small
in such cases. We can sometimes show that the update is ezxact at low order
irreducibles if we maintain enough coefficients.

Theorem 21. If \MIN = (n—p, \a,...), and the Kronecker conditioning algo-
rithm is called with a likelihood function whose Fourier coefficients are nonzero
only at p, when (> (n —q, po,...), then the approximate Fourier coefficients
of the posterior distribution are exact at the set of irreducibles:

Apxacr={pr : A\ (n—1|p—ql,...)}.
Proof. See Appendix B. O

For example, if we call Kronecker conditioning by passing in third-order
terms of the prior and first-order terms of the likelihood, then all first and
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second-order (unordered and ordered) marginal probabilities of the posterior
distribution can be reconstructed without error.

7.2 Projecting to the marginal polytope

Despite the encouraging result of Theorem 21, the fact remains that consec-
utive conditioning steps can propagate errors to all levels of the bandlimited
Fourier transform, and in many circumstances, results in a Fourier transform
whose “marginal probabilities” correspond to no consistent joint distribution
over permutations, and are sometimes negative. To combat this problem, we
present a method for projecting to the space of coefficients corresponding to
consistent joint distributions (which we will refer to as the marginal polytope)
during inference.

We begin by discussing the first-order version of the marginal polytope pro-
jection problem. Given an n x n matrix, M, of real numbers, how can we decide
whether there exists some probability distribution which has M as its matrix
of first-order marginal probabilities? A necessary and sufficient condition, as it
turns out, is for M to be doubly stochastic. That is, all entries of M must be
nonnegative and all rows and columns of M must sum to one (the probability
that Alice is at some track is 1, and the probability that some identity is at
Track 3 is 1). The double stochasticity condition comes from the Birkhoff-von
Neumann theorem (van Lint & Wilson, 2001) which states that a matrix is
doubly stochastic if and only if it can be written as a convex combination of
permutation matrices.

To “renormalize” first-order marginals to be doubly stochastic, some authors
(Shin et al., 2003; Shin et al., 2005; Balakrishnan et al., 2004; Helmbold & War-
muth, 2007) have used the Sinkhorn iteration, which alternates between nor-
malizing rows and columns independently until convergence is obtained. Con-
vergence is guaranteed under mild conditions and it can be shown that the limit
is a nonnegative doubly stochastic matrix which is closest to the original matrix
in the sense that the Kullback-Leibler divergence is minimized (Balakrishnan
et al., 2004).

There are several problems which cause the Sinkhorn iteration to be an un-
natural solution in our setting. First, since the Sinkhorn iteration only works
for nonnegative matrices, we would have to first cap entries to lie in the appro-
priate range, [0,1]. More seriously, even though the Sinkhorn iteration would
guarantee a doubly stochastic higher order matrix of marginals, there are several
natural constraints which are violated when running the Sinkhorn iteration on
higher-order marginals. For example, with second-order (ordered) marginals, it
seems that we should at least enforce the following symmetry constraint:

Plo:o(k, ) = (i,4)) = Plo: a(£, k) = (4,)),

which says, for example, that the marginal probability that Alice is in Track 1
and Bob is in Track 2 is the same as the marginal probability that Bob is in
Track 2 and Alice is in Track 1. Another natural constraint that can be broken
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is what we refer to as low-order marginal consistency. For example, it should
always be the case that:

P(j) =Y P(i,j)=>_P(j.k).
1 k

It should be noted that the doubly stochastic requirement is a special case of
lower-order marginal consistency — we require that higher-order marginals be
consistent on the 0 order marginal.

While compactly describing the constraints of the marginal polytope exactly
remains an open problem, we propose a method for projecting onto a relazed
form of the marginal polytope which addresses both symmetry and low-order
consistency problems by operating directly on irreducible Fourier coefficients
instead of on the matrix of marginal probabilities. After each conditioning step,
we apply a ‘correction’ to the approximate posterior P(Y) by finding the ban-
dlimited function in the relaxed marginal polytope which is closest to P®*) in an
L4 sense. To perform the projection, we employ the Plancherel Theorem (Dia-
conis, 1988) which relates the Ly distance between functions on S, to a distance
metric in the Fourier domain.

Proposition 22 (Plancherel Theorem).

S0 o) = gy ST ((Fn =) (Fn ) ) 70

o

To find the closest bandlimited function in the relaxed marginal polytope,
we formulate a quadratic program whose objective is to minimize the right
side of Equation 7.1, and whose sum is taken only over the set of maintained
irreducibles, A, subject to the set of constraints which require all marginal prob-
abilities to be nonnegative. We thus refer to our correction step as Plancherel
Projection. Our quadratic program can be written as:

oA NT
MINIMIZE fpro; gdATr [(f — fP J)m (f — fP J)pJ
subject to: [prmjL : =1,

AMIN

K

Con-| @ P 7| -Clun| =0,  forall (i),

uB>AMIN - p=1 »

ij

where Kymrv and Cyminv are the precomputed constants from Equation 5.4.
We remark that even though the projection will produce a Fourier transform
corresponding to nonnegative marginals which are consistent with each other,
there might not necessarily exist a joint probability distribution on S,, consistent
with those marginals except in the special case of first-order marginals.
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Example 23. In Example 20, we ran the Kronecker conditioning algorithm us-
ing all of the Fourier coefficients. If only the first-order coefficients are available,
however, then the expressions for zeroth and first order terms of the posterior
(Equations 6.10,6.11) become:

_ 1 . K
F 90 = 3 {fm) "Gy T4 [A(211)®(211)]1,1} ’ (7.2)

— 1

F 9 = T {fﬂu,l) “Opw) T Foe Gpen T2 [A(2,1)®(2,1)]2:3,2:3} , (7.3)

Plugging in the same numerical values from Example 20 and normalizing ap-
propriately yields the approximate Fourier coefficients of the posterior:

[mﬂﬂm - [@)} P(2,1) B [ 7_71/%)% _747//5100 } ’

which correspond to the following first-order marginal probabilities:

|A B C
p Track 1|0 11/9 —2/9
e Track 2| 1 0 0

Track 31 0 —-2/9 11/9

In particular, we see that the approximate matrix of ‘marginals’ contains nega-
tive numbers. Applying the Plancherel projection step, we obtain the following
marginals:

|4 B C
p Track 110 1 0

Ten | Track 2|1 0 0 |
Track 3| 0 0 1

which happen to be exactly the true posterior marginals. It should be noted
however, that rounding the ‘marginals’ to be in the appropriate range would
have worked in this particular example as well.

8 Probabilistic models of mixing and observa-
tions

While the algorithms presented in the previous sections are general in the sense
that they work on all mixing and observation models, it is not always obvious
how to compute the Fourier transform of a given model. In this section, we
present ways to obtain such transforms for a few useful models.

8.1 Mixing models

The simplest mixing model for identity management assumes that with proba-
bility p, nothing happens, and that with probability (1 — p), the identities for
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tracks ¢ and j are swapped. The probability distribution is therefore:

P ifr=¢e
Qij(m) =4 1—p if7m=(i7)
0 otherwise.

Since Q;; is such a sparse distribution (in the sense that Q(7) = 0 for most ),
it is possible to directly compute @ using Definition 6:

Qpy =PI+ (1= p)pa((i,5)),

where I refers to the d) x d) identity matrix, and px((¢,7)) is the irreducible
representation matrix p) evaluated at the transposition (¢,7) (which can be
computed using the algorithms from Appendix A).

8.2 Observation models

The simplest model assumes that we can get observations of the form: ‘track ¢
is color &k’ (which is essentially the model considered by (Kondor et al., 2007)).
The probability of seeing color k at track ¢ given data association o is

L(o) = P(z = klo) = ag) ks (8.1)

where 3, aq () = 1. For each identity, the likelihood L(o) = P(z = klo)
depends on a histogram over all possible colors. If the number of possible
colors is K, then the likelihood model can be specified by an n x K matrix of
probabilities. For example,

| k=Red k=Orange k= Yellow k= Green

| To(0) =Alice | 1/2 1/4 1/4 0
QolOk = | 5(¢) = Bob 1/4 0 0 3/4
o(¢) = Cathy 0 1/2 1/2 0

(8.2)

Since the observation model only depends on a single identity, the first-

order terms of the Fourier transform suffice to fully describe the likelihood.

To compute the first-order Fourier coefficients, at irreducibles, we proceed by

computing the first-order Fourier coefficients at the first-order permutation rep-

resentation, then transforming to irreducible coefficients. The Fourier transform
of the likelihood at the first-order permutation representation is given by:

|:L'r(n71,1):|ij = Z P (Zf = k|0’) = Z Ao (0)k-
{oo(j)=i} {o:0(j)=i}
To compute the ij-term, there are two cases to consider.

1. If j = ¢ (that is, if Track j is the same as the track that was observed),

then the coefficient L;; is proportional to the probability that Identity %
is color k.

Zij = Z ik =(n—1)! . (8.3)
{o:c(£)=i}

38



2. If, on the other hand, j # ¢ (Track j is not the observed track)), then the
coefficient L;; is proportional to the sum over

Zij = Z Ao (0),k (8-4)
{o:0(j)=i}
= Z Z Qo (0),k (8.5)
m#i {5:0(5)=i and o(l)=m}

= Z(n —2)! k- (8.6)

m#£i

Example 24. We will compute the first-order marginals of the likelihood func-
tion on S3 which arises from observing a "Red blob at Track 1". Plugging the
values from the “Red” column of the o matriz (Equation 8.2) into Equation 8.8
and 8.6 yields the following matriz of first-order coefficients (at the T(,,_1 1)
permutation representation,):

| Track 1  Track 2 Track 3

[ﬁ ] | Alice 1/4 1/4 1
(=t~ | Bob | 1/2 1/2 1/2
Cathy | 3/4 3/4 0

The corresponding coefficients at the irreducible representations are:

0 —\/5/4}
0 -3/4 |’

L(g) == 15, f/(211) = |: £(11171) = 0

9 Related work

Rankings and permutations have recently become an active area of research in
machine learning due to their importance in information retrieval and preference
elicitation. Rather than considering full distributions over permutations, many
approaches, like RankSVM (Joachims, 2002) and RankBoost (Freund et al.,
2003), have instead focused on learning a single ‘optimal’ ranking with respect
to some objective function.

There are also several authors who have studied distributions over permu-
tations/rankings (Mallows, 1957; Critchlow, 1985; Fligner & Verducci, 1986;
Taylor et al., 2008; Lebanon & Mao, 2008). (Taylor et al., 2008) consider dis-
tributions over S,, which are induced by the rankings of n independent draws
from n individually centered Gaussian distributions with equal variance. They
compactly summarize their distributions using an O(n?) matrix which is con-
ceptually similar to our first-order summaries and apply their techniques to
ranking web documents. Most other previous approaches at directly modeling
distributions on S,,, however, have relied on distance based models. For ex-
ample, the Mallows model (Mallows, 1957) defines a Gaussian-like distribution
over permutations as:

P(o;¢,00) x exp (—cd(o,00)), (9.1
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where the function d(o, 0¢) is the Kendall’s tau distance which counts the num-
ber of adjacent swaps that are required to bring o~ to oal. Like Gaussians,
distance based models tend to lack flexibility, and so (Lebanon & Mao, 2008)
propose a nonparametric model of ranked (and partially ranked) data based on
placing weighted Mallows kernels on top of training examples, which, as they
show, can realize a far richer class of distributions, and can be learned efficiently.
However, they do not address the inference problem, and it is not clear if one can
efficiently perform inference operations like marginalization and conditioning in
such models.

As we have shown in this paper, Fourier based methods (Diaconis, 1988;
Kondor et al., 2007; Huang et al., 2007) offer a principled alternative method for
compactly representing distributions over permutations and performing efficient
probabilistic inference operations. Our work draws from two strands of research
— one from the data association/identity management literature, and one from
a more theoretical area on Fourier analysis in statistics. In the following, we
review several of the works which have led up to our current Fourier based
approach.

9.1 Previous work in identity management

The identity management problem has been addressed in a number of previous
works, and is closely related to, but not identical with, the classical data associ-
ation problem of maintaining correspondences between tracks and observations.
Both problems need to address the fundamental combinatorial challenge that
there is a factorial or exponential number of associations to maintain between
tracks and identities, or between tracks and observations respectively. A vast
literature already exists on the the data association problem, beginning with
the multiple hypothesis testing approach (MHT) of (Reid, 1979). The MHT is a
‘deferred logic’ method in which past observations are exploited in forming new
hypotheses when a new set of observations arises. Since the number of hypothe-
ses can grow exponentially over time, various heuristics have been proposed to
help cope with the complexity blowup. For example, one can choose to maintain
only the k best hypotheses for some parameter k (Cox & Hingorani, 1994), using
Murty’s algorithm (Murty, 1968). But for such an approximation to be effec-
tive, k may still need to scale exponentially in the number of objects. A slightly
more recent filtering approach is the joint probabilistic data association filter
(JPDA) (Bar-Shalom & Fortmann, 1988), which is a suboptimal single-stage
approximation of the optimal Bayesian filter. JPDA makes associations sequen-
tially and is unable to correct erroneous associations made in the past (Poore,
1995). Even though the JPDA is more efficient than the MHT, the calculation
of the JPDA association probabilities is still a #P-complete problem (Collins
& Uhlmann, 1992), since it effectively must compute matrix permanents. Poly-
nomial approximation algorithms to the JPDA association probabilities have
recently been studied using Markov chain Monte Carlo (MCMC) methods (Oh
et al., 2004; Oh & Sastry, 2005).

The identity management problem was first explicitly introduced in (Shin
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et al., 2003). Identity management differs from the classical data association
problem in that its observation model is not concerned with the low-level track-
ing details but instead with high level information about object identities. (Shin
et al., 2003) introduced the notion of the belief matriz approximation of the asso-
ciation probabilities, which collapses a distribution over all possible associations
to just its first-order marginals. In the case of n tracks and n identities, the
belief matrix B is an n x n doubly-stochastic matrix of non-negative entries
bij, where b;; is the probability that identity 4 is associated with track j. As
we already saw in Section 4, the belief matrix approximation is equivalent to
maintaining the zeroth- and first-order Fourier coefficients. Thus our current
work is a strict generalization and extension of those previous results.

An alternative representation that has also been considered is an information
theoretic approach (Shin et al., 2005; Schumitsch et al., 2005; Schumitsch et al.,
2006) in which the density is parameterized as:

P(0;Q) x exp Tr (QT . T(n,Ll)(O’)) .

In our framework, the information form approach can be viewed as a method for
maintaining the Fourier transform of the log probability distribution at only the
first two irreducibles. The information matrix approach is especially attractive
in a distributed sensor network setting, since, if the columns of the information
matrix are distributed to leader nodes tracking the respective targets, then the
observation events become entirely local operations, avoiding the more expen-
sive Kronecker conditioning algorithm in our setting. On the other hand, the
information matrix coefficients do not have the same intuitive marginals inter-
pretation afforded in our setting, and moreover, prediction/rollup steps cannot
be performed analytically in the information matrix form. As in many clas-
sical data structures problems there are representation trade-off issues: some
operations are less expensive in one representation and some operations in the
the other. The best choice in any particular scenario will depend on the ratio
between observation and mixing events.

9.2 Previous work on Fourier-based approximations

The concept of using Fourier transforms to study probability distributions on
groups is not new, with the earliest papers in this area having been published
in the 1960s (Grenander, 1963). (Willsky, 1978) was the first to formulate the
exact filtering problem in the Fourier domain for finite and locally compact
Lie groups and contributed the first noncommutative Fast Fourier Transform
algorithm (for Metacyclic groups). However, he does not address approximate
inference, suggesting instead to always transform to the appropriate domain
for which either the prediction/rollup or conditioning operations can be accom-
plished using a pointwise product. While providing significant improvements in
complexity for smaller groups, his approach is still infeasible for our problem
given the factorial order of the Symmetric group.

(Diaconis, 1988) utilized the Fourier transform to analyze probability distri-
butions on the Symmetric group in order to study card shuffling and ranking
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problems. His work laid the ground for much of the progress made over the last
two decades on probabilistic group theory and noncommutative FFT algorithms
(Clausen & Baum, 1993; Rockmore, 2000).

(Kondor et al., 2007) was the first to show that the data association prob-
lem could be efficiently approximated using FFT factorizations. In contrast to
our framework where every model is assumed to be have been specified in the
Fourier domain, they work with an observation model which can be written in
the primal domain.

Conceptually, their conditioning algorithm applies the Inverse Fast Fourier
Transform (IFFT) to the prior distribution, conditions in the primal domain
using pointwise multiplication, then transforms back up to the Fourier domain
using the FFT to obtain posterior Fourier coefficients. While their procedure
would ordinarily be intractable because of the factorial number of permutations,
they show that for simple observation models, such as that given in Equation 8.1,
it is not necessary to perform the full FFT recursion to do a pointwise prod-
uct. They exploit this observation to formulate a conditioning algorithm whose
running time depends on the complexity of the observation model (which can
roughly be measured by the number of irreducibles required to fully specify it).
In the worst case, when the likelihood function is specified for each o € S,,, then
the cost of conditioning is dominated by the cost of calling an FFT, which is
O(n!lognl!).

In the case that the observation model is specified at sufficiently many irre-
ducibles, our conditioning algorithm (prior to the projection step) returns the
same approximate probabilities as the FFT-based algorithm. For example, we
can show that the observation model given in Equation 8.1 is fully specified by
two Fourier components, and that both algorithms have identical output. In
this setting, our asymptotic time complexity is O(D3n?), where D is the degree
of the largest maintained irreducible representation. The FFT-based algorithm
saves a factor of D due to the fact that certain representation matrices can be
shown to be sparse. Though we do not prove it, we observe that the Clebsch-
Gordan coefficients C;; are typically similarly sparse (see Figure 7(d)), which
yields an equivalent running time in practice. In addition, Kondor et al. do not
address the issue of projecting onto legal distributions, which, as we show in
our experimental results is fundamental in practice.

10 Experimental results

In this section we present the results of several experiments to validate our algo-
rithm. We evaluate performance first by measuring the quality of our approxi-
mation for problems where the true distribution is known. Instead of measuring
a distance between the true distribution and the inverse Fourier transform of
our approximation, it makes more sense in our setting to measure error only
at the marginals which are maintained by our approximation. In the results
reported below, we measure the L, error between the true matrix of marginals
and the approximation. If nonnegative marginal probabilities are guaranteed,
it also makes sense to measure KL-divergence.
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Figure 7:

10.1 Simulated data

We first tested the accuracy of a single Kronecker conditioning step by calling
some number of pairwise mixing events (which can be thought roughly as a
measure of entropy), followed by a single first-order observation. In the y-axis
of Figure 7(a), we plot the Kullback-Leibler divergence between the true first-
order marginals and approximate first-order marginals returned by Kronecker
conditioning. We compared the results of maintaining first-order, and second-
order (unordered and ordered) marginals. As shown in Figure 7(a), Kronecker
conditioning is more accurate when the prior is smooth and unsurprisingly,
when we allow for higher order Fourier terms. As guaranteed by Theorem 21,
we also see that the first-order terms of the posterior are exact when we maintain
second-order (ordered) marginals.
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To understand how our algorithms perform over many timesteps (where
errors can propagate to all Fourier terms), we compared to exact inference
on synthetic datasets in which tracks are drawn at random to be observed or
swapped. As a baseline, we show the accuracy of a uniform distribution. We
observe that the Fourier approximation is better when there are either more
mixing events (the fraction of conditioning events is smaller), or when more
Fourier coeflicients are maintained, as shown in Figure 7(b). We also see that
the Plancherel Projection step is fundamental, especially when mixing events
are rare.

Figures 8(a) and 8(b) show the per-timeslice accuracy of two typical runs of
the algorithm. The fraction of conditioning events is 50% in Figure 8(a), and
70% in Figure 8(b). What we typically observe is that while the projected and
nonprojected accuracies are often quite similar, the nonprojected marginals can
perform significantly worse during certain segments.

Finally, we compared running times against an exact inference algorithm
which performs prediction/rollup in the Fourier domain and conditioning in the
primal domain. Instead of the naive O((n!)?) complexity, its running time is
a more efficient O(n3n!) due to the Fast Fourier Transform (Clausen & Baum,
1993). It is clear that our algorithm scales gracefully compared to the exact
solution (Figure 7(c)), and in fact, we could not run exact inference for n > 8 due
to memory constraints. In Figure 7(d), we show empirically that the Clebsch-
Gordan coefficients are indeed sparse, supporting our conjectured runtime of
O(D?*n?) instead of O(D3n?).

10.2 Real camera network

We also evaluated our algorithm on data taken from a real network of eight
cameras (Fig. 9(a)). In the data, there are n = 11 people walking around a
room in fairly close proximity. To handle the fact that people can freely leave
and enter the room, we maintain a list of the tracks which are external to the
room. Each time a new track leaves the room, it is added to the list and a
mixing event is called to allow for m? pairwise swaps amongst the m external
tracks.

The number of mixing events is approximately the same as the number of
observations. For each observation, the network returns a color histogram of
the blob associated with one track track. The task after conditioning on each
observation is to predict identities for all tracks which are inside the room,
and the evaluation metric is the fraction of accurate predictions. We compared
against a baseline approach of predicting the identity of a track based on the
most recently observed histogram at that track. This approach is expected to
be accurate when there are many observations and discriminative appearance
models, neither of which our problem afforded. As Figure 9(b) shows, both
the baseline and first order model(without projection) fared poorly, while the
projection step dramatically boosted the prediction accuracy for this problem.
To illustrate the difficulty of predicting based on appearance alone, the rightmost
bar reflects the performance of an omniscient tracker who knows the result of
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Figure 8: Accuracy as a function of time on two typical runs.

each mixing event and is therefore left only with the task of distinguishing
between appearances. We conjecture that the performance of our algorithm
(with projection) is near optimal.

11 Future research

There remain several possible extensions to the current work stemming from
both practical and theoretical considerations. We list a few open questions and
extensions in the following.

Adaptive filtering. While our current algorithms easily beat exact inference
in terms of running time, they are still limited by a relatively high (though
polynomial) time complexity. In practice however, it seems reasonable to believe
that the “difficult” identity management problems typically involve only a small
subset of people at a time. A useful extension of our work would be to devise
an adaptive version of the algorithm which allocates more Fourier coefficients
towards the identities which require higher order reasoning. We believe that
this kind of extension would be the appropriate way to scale our algorithm to
handling massive numbers of objects at a time.
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Characterizing the marginal polytope. In our paper, we presented a pro-
jection of the bandlimited distribution to a certain polytope, which is exactly
the marginal polytope for first-order bandlimited distributions, but strictly an
outer bound for higher orders. An interesting project would be to generalize the
Birkhoff-von Neumann theorem by exactly characterizing the marginal polytope
at higher order marginals. We conjecture that the marginal polytope for low
order marginals can be described with polynomially many constraints.

Learning in the Fourier domain. Another interesting problem is whether
we can learn bandlimited mixing and observation models directly in the Fourier
domain. Given fully observed permutations o1, ..., o,,, drawn from a distribu-
tion P(c), a naive method for estimating Pp at low-order p is to simply observe
that:

By =Eqnplp(o)],

and so one can estimate the Fourier transform by simply averaging p(o;) over
all o;. However, since we typically do not observe full permutations in real
applications like ranking or identity management, it would be interesting to es-
timate Fourier transforms using partially observed data. In the case of Bayesian
learning, it may be possible to apply some of the techniques discussed in this
paper.

Probabilistic inference on other groups. The Fourier theoretic framework
presented in this paper is not specific to the Symmetric group - in fact, the pre-
diction/rollup and conditioning formulations, as well as most of the results from
Appendix B hold over any finite or compact Lie group. As an example, the non-
commutative group of rotation operators in three dimensions, SO(3), appears
in settings which model the pose of a three dimensional object. Elements in
SO(3) might be used to represent the pose of a robot arm in robotics, or the
orientation of a mesh in computer graphics; In many settings, it would be use-
ful to have a compact representation of uncertainty over poses. We believe that
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there are many other application domains with algebraic structure where similar
probabilistic inference algorithms might apply, and in particular, that noncom-
mutative settings offer a particularly challenging but exciting opportunity for
machine learning research.

12 Conclusions

We have presented an intuitive method for compactly summarizing distributions
on permutations with Fourier analytic interpretations and tuneable approxi-
mation quality. We showed that the Fourier theoretic point of view makes it
possible to formulate general inference operations completely in the Fourier do-
main. In particular, we developed the Kronecker Conditioning algorithm which
performs a convolution-like operation on Fourier coefficients to find the Fourier
transform of the posterior distribution. We analyzed the sources of error in our
approximations and argued that bandlimited conditioning can result in Fourier
coefficients which correspond to no valid distribution, but that the problem can
be remedied by projecting to a relaxation of the marginal polytope.

Our evaluation on data from a camera network shows that our methods
perform well when compared to the optimal solution in small problems, or to
an omniscient tracker in large problems. Furthermore, we demonstrated that
our projection step is fundamental to obtaining these high-quality results.

Finally we conclude by remarking again that the mathematical framework
developed in our paper is quite general. In fact, both the prediction/rollup
and conditioning formulations hold over any finite group, providing a principled
method for approximate inference for problems with underlying group structure.
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A Constructing irreducible representation matri-
ces

In this section, we present (without proof) some standard algorithms for con-
structing the irreducible representation matrices with respect to the Gel’fand-
Tsetlin (GZ) basis (for a more elaborate discussion, see, for example, (Kondor,
2006; Chen, 1989; Vershik & Okounkov, 2006)). There are several properties
which make the irreducible representation matrices, written with respect to the
GZ basis, fairly useful in practice. They are guaranteed to be, for example,
real-valued and orthogonal. And as we will show, the matrices have certain
useful sparsity properties that can be exploited in implementation.

We begin by introducing a few concepts relating to Young tableauxr which are
like Young tabloids with the distinction that the rows are considered as ordered
tuples rather than unordered sets. For example, the following two diagrams are
distinct as Young tableauz, but not as Young tabloids:
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3] 1]3]2]
a5 7

54

(as Young tableaux).

A Young Tableau ¢ is said to be standard if its entries are increasing to the
right along rows and down columns. For example, the set of all standard Young
Tableaux of shape A = (3,2) is

{135| 112]5] [1]3]4] [1]2]4] 123\}_ (A1)

214 T 13]4 T 1215 T 1315 T 4]5
Given a permutation ¢ € S, one can always apply o to a Young tableau t to
get a new Young tableau, which we denote by o o ¢, by permuting the labels
within the tableau. For example,

(1,2) 1[2[3] 2[1[3]

°lals] " [4]5
Note, however, that even if ¢ is a standard tableau, o o ¢ is not guaranteed to
be standard.

The significance of the standard tableaux is that the set of all standard
tableaux of shape A can be used to index the set of GZ basis vectors for the irre-
ducible representation py. Since there are five total standard tableaux of shape
(3,2), we see, for example, that the irreducible corresponding to the partition
(3,2) is 5-dimensional. There is a simple recursive procedure for enumerating
the set of all standard tableaux of shape A, which we illustrate for A = (3,2).

Example 25. If A = (3,2), there are only two possible bozes that the label 5
can occupy so that both rows and columns are increasing. They are:

5]

d .
, an 5

To enumerate the set of all standard tableauz of shape (3,2), we need to fill the
empty bozes in the above partially filled tableauz with the labels 31 2,3,4} so
that both rows and columns are increasing. Enumerating the standard 'tableaus
of shape (3,2) thus reduces to enumerating the set of standard tableauz of shapes

(2,2) and (3,1), respectively. For (2,2), the set of standard tableaux (which, in
implementation would be computed recursively) is:

{1 3 1]2
204]7 [314])°
and for (3,1), the set of standard tableauz is:

1]3]4] [1]2]4] [1]2]3]
2 E! 4] ’

The entire set of standard tableaux of shape (3,2) is therefore:

1]3]5] 125|U 113]4] [1]2]4] [1]2]3]
204 7 |3]4 2|5] 7 [3|5] ' |4]5] [°

Before explicitly constructing the representation matrices, we must define a
signed distance on Young Tableaux called the axial distance.
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Definition 26. The axial distance, d;(i,j), between entries ¢ and j in tableau
t, is defined to be:

di(i,7) = (col(t,j) — col(t,)) — (row(t, j) — row(t, 1)),

where row(t, i) denotes the row of label i in tableau ¢, and col(t,7) denotes the
column of label 4 in tableau .

Intuitively, the axial distance between ¢ — 1 and ¢ in a standard tableau ¢t is
equal to the (signed) number of steps that are required to travel from ¢ — 1 to
i, if at each step, one is allowed to traverse a single box in the tableau in one of
the four cardinal directions. For example, the axial distance from 3 to 4 with

respect to tableau: t = is:

d:(3,4) = (col (, 4) — col (, 3)) - (row (,4) — row (, 3))

=(1-3)-(2-1)=-3

A.1 Constructing representation matrices for adjacent trans-
positions

In the following discussion, we will consider a fixed ordering, t1,...,tq,, on the
set of standard tableaux of shape A and refer to both standard tableaux and
columns of py(o) interchangeably. Thus ¢; refers to first column, ¢y refers to
the second column and so on. And we will index elements in p)(c) using pairs
of standard tableau, (¢;,x).

To explicitly define the representation matrices with respect to the GZ basis,
we will first construct the matrices for adjacent transpositions (i.e., permuta-
tions of the form (i — 1,4)), and then we will construct arbitrary representation
matrices by combining the matrices for the adjacent transpositions. The rule
for constructing the matrix coefficient [py(i — 1, i)]tj7tk is as follows.

1. Define the (¢;,t) coefficient of px(i—1, 7) to be zero if it is (1), off-diagonal
(j # k) and (2), not of the form (¢;, (i — 1,7) o tg).
2. If (t;,tx) is a diagonal element, (i.e., of the form (¢;,¢;)), define:

[p,\(i - 1ﬂi)]tj,tj = 1/dt]‘ (Z - LZ.);

where dy; (i — 1,4) is the axial distance which we defined earlier in the
section.
3. If (¢;,tx) can be written as (¢;, (¢ — 1,%) o t;) define:

A= 1,0, or, = /1= 1/ (i = 1.,

Note that the only time that off-diagonal elements can be nonzero under the
above rules is when (¢ —4,%) o t; happens to also be a standard tableau. If we
apply an adjacent transposition, o = (i —1,4) to a standard tableau ¢, then oot
is guaranteed to be standard if and only if 4 — 1 and ¢ were neither in the same
row nor column of ¢t. This can be seen by examining each case separately.
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Algorithm 3: Pseudocode for computing irreducible representations ma-
trices with respect to the Gel’fand-Tsetlin basis at adjacent transpositions.

ADJACENTRHO
input :i€{2,...,n} A
output: py(i —1,1)
1 p < 04, xd,;
2 foreach standard tableauz t of shape \ do

3 d «— (col(t,i) — col(t,i — 1)) — (row(t,i) — row(t,i — 1));
4 p(t,t) «— 1/d;

5 if i — 1 and i are in different rows and columns of t then
6 p((l—l,l)(f),t)H Vl_l/d2;

7 return p ;

1. i—1 and 7 are in the same row or same column of t. If i and 7 — 1
are in the same row of ¢, then 7 — 1 lies to the left of ¢. Applying oot
swaps their positions so that i lies to the left of 4 — 1, and so we see that

o ot cannot be standard. For example,

1]2]5] _ [1]2]5]
G4)ergial = [af3]

Similarly, we see that if ¢« and ¢ — 1 are in the same column of ¢, g ot

cannot be standard. For example,

1[3[5] _ [1]4]5]

3
Gy =23

2. i — 1 and i are neither in the same row nor column of ¢. In the
second case, o ot can be seen to be a standard tableau due to the fact

that ¢ — 1 and 7 are adjacent indices. For example,

1]2]3] 1]2]4]

G Dersr =305

Therefore, to see if (i — 1,4) o t is standard, we need only check to see that
1 — 1 and ¢ are in different rows and columns of the tableau t. The pseudocode
for constructing the irreducible representation matrices for adjacent swaps is
summarized in Algorithm 3. Note that the matrices constructed in the algorithm

are sparse, with no more than two nonzero elements in any given column.

Example 27. We compute the representation matriz of ps ) evaluated at the
adjacent transposition o = (i — 1,1) = (3,4). For this ezample, we will use the

enumeration of the standard tableaux of shape (3,2) given in Equation A.1.

For each (3,2)-tableau t;, we identify whether oot; is standard and compute

the axial distance from 3 to 4 on the tableau t;.
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J 1 2 3 4 5
1]3]5] 1]2]5] 1]3[4] 1]2]4] 1]2]3]
t; 2[4 34 2[5 3|5 45
1]4]5] 1]2]5] 1]4]3] 1]2]3] 1]2]4]
(3,4) ot; 2|3 4|3 2[5 4]5 3[5
(3,4) ot; Standard? No No No Yes Yes
azial distance (d;,(3,4)) -1 1 1 3 -3

Putting the results together in a matriz yields:,

[ t1 to t3 ta ts 1
t1 | —1
to 1
£(3,2) (374) = l3 1 )
t Los

where all of the empty entries are zero.

A.2 Constructing representation matrices for general per-
mutations

To construct representation matrices for general permutations, it is enough to
observe that all permutations can be factored into a sequence of adjacent swaps.
For example, the permutation (1,2,5) can be factored into:

(1,2,5) = (4,5)(3,4)(1,2)(2,3)(3,4)(4, 5),

and hence, for any partition X,

pA(1,2,5) = px(4,5) - px(3,4) - pa(1,2) - pa(2,3) - pA(3,4) - pa(4,5),

since py is a group representation. Algorithmically, factoring a permutation into
adjacent swaps looks very similar to the Bubblesort algorithm, and we show the
pseudocode in Algorithm 4.

B Decomposing the tensor product representa-
tion

We now turn to the Tensor Product Decomposition problem, which is that of

finding the irreducible components of the typically reducible tensor product

representation. If py and p, are irreducible representations of S,, then there
exists an intertwining operator C, such that:

Zapw

CML% (px @ pu(0)) - Cop = @ @ pv(0). (B.1)

v f=1
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Algorithm 4: Pseudocode for computing irreducible representation ma-
trices for arbitrary permutations.
GETRHO
input : 0 € 5,
output: py(o) (a dy x dy matrix)
// Use Bubblesort to factor o into a product of transpositions
k—20;
factors « {;
fori=1,2,...,ndo
for j=n,n—1,...,i+1do
if 0(j) <o(j — 1) then
Swap(o(j —1),0(j)) ;
k—k+1;
factors(k) < j ;

© 0N O R WY =

10 //Construct representation matriz using adjacent transpositions
11 pa(0) — La,xd 3

12 m « length(factors);

13 for j=1,...,mdo

14 pr(0) < GETADJACENTRHO (factors(j),\) - px(o) ;

In this section, we will present a set of numerical methods for computing the
Clebsch-Gordan series (23,,) and Clebsch-Gordan coefficients (C,,) for a pair
of irreducible representations py ® p,. We begin by discussing two methods
for computing the Clebsch-Gordan series. In the second section, we provide a
general algorithm for computing the intertwining operators which relate two
equivalent representations and discuss how it can be applied to computing
the Clebsch-Gordan coefficients (Equation B.1) and the matrices which relate
marginal probabilities to irreducible Fourier coefficients (Equation 5.4).

B.1 Computing the Clebsch-Gordan series

We begin with a simple, well-known algorithm based on group characters for
computing the Clebsch-Gordan series that turns out to be computationally in-
tractable, but yields several illuminating theoretical results. See (Serre, 1977)
for proofs of the theoretical results cited in this section.

One of the main results of representation theory was the discovery that there
exists a relatively compact way of encoding any representation up to equivalence
with a vector which we call the character of the representation. If p is a rep-
resentation of a group G, then the character of the representation p, is defined
simply to be the trace of the representation at each element o € G:

Xp(0) = Tr(p(0)) .

The reason characters have been so extensively studied is that they uniquely
characterize a representation up to equivalence in the sense that two characters
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Xp, and x,, are equal if and only if p; and po are equivalent as representations.
Even more surprising is that the space of possible group characters is orthog-
onally spanned by the characters of the irreducible representations. To make
this precise, we first define an inner product on functions from G.

Definition 28. Let ¢, be two real-valued functions on G. The inner product
of ¢ and 1 is defined to be:

1
(@) = 5 > d(o)i(o)

ceG

With respect to the above inner product, we have the following important
result which allows us to test a given representation for irreducibility, and to
test two irreducibles for equivalence.

Proposition 29. Let x,, and x,, be characters corresponding to irreducible
representations. Then

1 ifpr=po
(Xp1s Xp2) = { 0 otherwise

Proposition 29 shows that the irreducible characters form an orthonormal
set of functions. The next proposition says that the irreducible characters span
the space of all possible characters.

Proposition 30. Suppose p is any representation of G and which decomposes

into irreducibles as: ;
A
=D

A 4=1

where X\ indexes over all irreducibles of G. Then:

1. The character of p is a linear combination of irreducible characters (x, =
Z)\ ZAXPA)}

2. and the multiplicity of each irreducible, z, can be recovered using (X, Xp,) =
Z\-

A simple way to decompose any group representation p, is given by Propo-
sition 30, which says that we can take inner products of x, against the basis of
irreducible characters to obtain the irreducible multiplicities z). To treat the
special case of finding the Clebsch-Gordan series, one observes that the charac-
ter of the tensor product is simply the pointwise product of the characters of
each tensor product factor.

Theorem 31. Let p) and p, be irreducible representations with characters
X, Xu respectively. Let zy,, be the number of copies of p, in px ® p, (hence,
one term of the Clebsch-Gordan series). Then:
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1. The character of the tensor product representation is given by:

XPA@PM =X\ Xp = Z ZApv Xv- (B2)
v

2. The terms of the Clebsch-Gordan series can be computed using:

o = ﬁ S (9) - Xul9) - X0 (9): (B.3)
geG

and satisfy the following symmetry:
Z)‘F“/ = Z}\VH = Zﬁbkl/ = ZHV)\ = ZUAM = ZUHA' (B4)

Dot products for characters on the symmetric group can be done in O(#(n))
time where #(n) is the number of partitions of the number n, instead of the
naive O(n!) time. In practice however, #(n) also grows too quickly for the
character method to be tractable.

B.1.1 Murnaghan’s formulas

A theorem by Murnaghan (Murnaghan, 1938) gives us a ‘bound’ on which rep-
resentations can appear in the tensor product decomposition on .S,,.

Theorem 32. Let p1, pa be the irreducibles corresponding to the partition (n —
D, Aa,...) and (n — q, 2, ...) respectively. Then the product py ® pa does not
contain any irreducibles corresponding to a partition whose first term is less
than n —p — q.

In view of the connection between the Clebsch-Gordan series and convolution
of Fourier coefficients, Theorem 32 is analogous to the fact that for functions
over the reals, the convolution of two compactly supported functions is also
compactly supported.

We can use Theorem 32 to show that Kronecker conditioning is exact at
certain irreducibles.

of Theorem 21. Let A denote the set of irreducibles at which our algorithm
maintains Fourier coefficients. Since the errors in the prior come from setting
coefficients outside of A to be zero, we see that Kronecker conditioning returns
an approximate posterior which is exact at the irreducibles in

Apxacr ={pv : 2y =0, where A ¢ A and p> (n —q,p2,...)}.

Combining Theorem 32 with Equation B.4: if z,, > 0, with A\ = (n —
Dy A2 Azy .. )y b = (N — q, po, i3, ... ) and v = (n — 7, va,vs,...), then we have
that: r <p-+q,p < g+r, and g < p+r. In particular, it implies that »r > p—gq
and r > g — p, or more succinctly, r > |p—q|. Hence, if v = (n—17,v9,...), then
pv € Apxacr whenever r < |p — ¢|, which proves the desired result. O
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The same paper (Murnaghan, 1938) derives several general Clebsch-Gordan
series formulas for pairs of low-order irreducibles in terms of n, and in particular,
derives the Clebsch-Gordan series for many of the Kronecker product pairs that
one would likely encounter in practice. For example,

Pin—1,1) @ P(n-1,1) = P(n) D P(n—1,1) D P(n-2,2) D P(n—2,1,1)

Pin—1,1) @ P(n-2,2) = P(n—1,1) D P(n—2,2) D P(n—2,1,1) D P(n—3,3) D P(n—3,2,1)
Pn—1,1)PP(n-2,1,1) = P(n—-1,1)DPP(n-2,2)PP(n-2,1,1)PP(n-3,2,1) PP(n—3,1,1,1)
Pn—1,1) D P(n—33) = P(n—2,2) P P(n—3,3) D Pn—3,2,1) D P(n—1,4) D P(n—1,31)

B.2 Computing the Clebsch-Gordan coefficients

In this section, we consider the general problem of finding an orthogonal operator
which decomposes an arbitrary representation, X (o), of a finite group G. Unlike
the Clebsch-Gordan series which are basis-independent, intertwining operators
must be recomputed if we change the underlying basis by which the irreducible
representation matrices are constructed. However, for a fixed basis, we remind
the reader that these intertwining operators need only be computed once and
for all and can be stored in a table for future reference. Let X be any degree d
group representation of G, and let Y be an equivalent direct sum of irreducibles,

e.g.,
Y(0) = PP (o). (B.5)
v (=1
where each irreducible p, has degree d,. We would like to compute an in-
vertible (and orthogonal) operator C, such that C - X(0) = Y (o) - C, for all
o € G. Throughout this section, we will assume that the multiplicities z, are
known. To compute Clebsch-Gordan coefficients, for example, we would set
X = px ® pu, and the multiplicities would be given by the Clebsch-Gordan
series (Equation B.1). To find the matrix which relates marginal probabilities
to irreducible coefficients, we would set X = 7, and the multiplicities would be
given by the Kostka numbers (Equation 5.4).
We will begin by describing an algorithm for computing a basis for the space
of all possible intertwining operators which we denote by:

Int(x,y) = {C €R¥™? . C-X(0)=Y(0)-C, VoeG}.

We will then discuss some of the theoretical properties of Int[x,y] and show how
to efficiently select an orthogonal element of Int|x.y.

Our approach is to naively® view the task of finding elements of Int[x,y
as a similarity matrix recovery problem, with the twist that the similarity ma-
trix must be consistent over all group elements. We first cast the problem of
recovering a similarity matrix as a nullspace computation.

8In implementation, we use a more efficient algorithm for computing intertwining operators
known as the Eigenfunction Method (EFM) (Chen, 1989). Unfortunately, the EFM is too
complicated for us to describe in this paper. The method which we describe in this appendix
is conceptually simpler than the EFM and generalizes easily to groups besides Sp,.
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Proposition 33. Let A, B,C be matrices and let Kyp = I A— BT ®1. Then
AC = CB if and only if vec(C) € Nullspace(Kap).
Proof. A well known matrix identity (van Loan, 2000) states that if A, B,C
are matrices, then vec(ABC) = (CT ® A) vec(B). Applying the identity to
AC = CB, we have:

vec(ACT) = vec(ICB),

and after some manipulation:
(I® A—B"®1)vec(C) =0,
showing that vec(C) € Nullspace(K ap). O

For each o € G, the nullspace of the matrix K (o) constructed using the
above proposition as:

Klo)=1I®Y(c)—X(o)®1, (B.6)

where [ is a d x d identity matrix, corresponds to the space of matrices C, such
that
Co-X(0)=Y(0)-C, for all o € G.

To find the space of intertwining operators which are consistent across all group
elements, we need to find the intersection:

ﬂ Nullspace(K (0)). (B.7)
oeG

At first glance, it may seem that computing the intersection might require exam-
ining n! nullspaces if G = S,,, but as luck would have it, most of the nullspaces
in the intersection are extraneous, as we now show.

Definition 34. We say that a finite group G is generated by a set of generators
S ={g1,...,9m} if every element of G can be written as a finite product of
elements in S.

For example, the following three sets are all generators for Sy,:

o {(1,2),(1,3),...,(1,n)},
o {(1,2),(2,3),(3.4),...,(n — 1,n)}, and

e {(1,2),(1,2,3,... )}

To ensure a consistent similarity matrix for all group elements, we use the
following proposition which says that it suffices to be consistent on any set of
generators of the group.

Proposition 35. Let X andY be representations of finite group G and suppose
that G is generated by the elements o1, ..., 0. If there exists an invertible linear
operator C' such that C - X(0;) =Y (0;)-C for eachi € {1,...,m}, then X and
Y are equivalent as representations with C' as the intertwining operator.
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Proof. We just need to show that C is a similarity transform for any other
element of G as well. Let 7 be any element of G and suppose 7 can be written
as the following product of generators: = =[], o;. It follows that:

cty (Ho> .c=c'. <HY(UZ-)> .C
(€Y (01) - OO Y (02) - C) -+ (C™1 - Y (o) - C)

H (C’*l.Y(oi).C) = HX(oi) =X <H0i> = X(n)

%

ct.y()-C

Since this holds for every m € G, we have shown C' to be an intertwining operator
between the representations X and Y. O

The good news is that despite having n! elements, .S,, can be generated by
just two elements, namely, (1,2) and (1,2,...,n), and so the problem reduces to
solving for the intersection of two nullspaces, (K (1,2) N K(1,2,...,n)), which
can be done using standard numerical methods. Typically, the nullspace is
multidimensional, showing that, for example, the Clebsch-Gordan coefficients
for px ® p, are not unique even up to scale.

Because Int[x,y] contains singular operators (the zero matrix is a member
of Int[x,y], for example), not every element of Int|x.y) is actually a legitimate
intertwining operator as we require invertibility. In practice, however, since the
singular elements correspond to a measure zero subset of Int[x.y}, one method
for reliably selecting an operator from Int[x,y) that “works” is to simply select
a random element from the nullspace to be C. It may, however, be desirable
to have an orthogonal matrix C' which works as an intertwining operator. In
the following, we discuss an object called the Commutant Algebra which will
lead to several insights about the space Int|x,y, and in particular, will lead to
an algorithm for ‘modifying’ any invertible intertwining operator C' to be an
orthogonal matrix.

Definition 36. The Commutant Algebra of a representation Y is defined to be
the space of operators which commute with Y?:

Comy = {SeR¥ : §.Y(6)=Y(0)-S, YoecG}.

The elements of the Commutant Algebra of Y can be shown to always take
on a particular constrained form (shown using Schur’s Lemma in (Sagan, 2001)).
In particular, every element of Comy takes the form

S=P M., ®14,), (B.8)

where M, is some z, X z, matrix of coefficients and I, is the d, x d, identity
(recall that the 2, are the multiplicities from Equation B.5). Moreover, it can

9Notice that the definition of the Commutant Algebra does not involve the representation
X.
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be shown that every matrix of this form must necessarily be an element of the
Commutant Algebra.

The link between Comy and our problem is that the space of intertwining
operators can be thought of as a ‘translate’ of the Commutant Algebra.

Lemma 37. There exists a vector space isomorphism between Intx.y) and
Comy .

Proof. Let R be any invertible element of Int[x,y) and define the linear map
f: Comy — R4 by: f: S s (S-R). We will show that the image of f is
exactly the space of intertwining operators. Consider any element o € G:

(S-R)-X(0)-(S-R)"'=8-R-X(0)-R*-571,
=S5-Y(0)-S' (since Re Int|x.y7),
=Y (o) (since S € Comy).

We have shown that S - R € Int|y,y], and since f is linear and invertible, we
have that Int[x,y) and Comy are isomorphic as vector spaces. O

Using the lemma, we can see that the dimension of Int|y,y) must be the
same as the dimension of Comy, and therefore we have the following expression
for the dimension of Int|x.y].

Proposition 38.

Proof. To compute the dimension of Int|x,y7, we need to compute the dimension
of Comy, which can be accomplished simply by computing the number of free
parameters in Equation B.8. Each matrix M, is free and yields z2 parameters,
and summing across all irreducibles v yields the desired dimension. O

To select an orthogonal intertwining operator, we will assume that we are
given some invertible R € Int[x,y] which is not necessarily orthogonal (such as
a random element of the nullspace of K (Equation B.6)). To find an orthogonal
element, we will ‘modify’ R to be an orthogonal matrix by applying an appro-
priate rotation, such that R- RT = I. We begin with a simple observation about
R-RT.

Lemma 39. If both X and Y are orthogonal representations and R is an in-
vertible member of Int/x .y, then the matriz R - RT is an element of Comy .

Proof. Consider a fixed o € G. Since R € Int[x,y), we have that:
X(@)=R'-Y(0) R.

It is also true that:
X ™H=R1 Y ")-R (B.9)
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Algorithm 5: Pseudocode for computing an orthogonal intertwining op-
erators

INTXY

input : A degree d orthogonal matrix representation X evaluated at
permutations (1,2) and (1,...,n), and the multiplicity z,, of
the irreducible p, in X

output: A matrix C, with orthogonal rows such that C1 - &% p,-C, = X

1 Ky Lixa @ (% pu(1,2) — X(1,2) ® Laxas

2 Ky Iixa® (®*p,(1,...,n)) — X(1,...,n) ® Lixd;

3 K« [Ki;Ks]; //Stack K1 and K,

4 v SparseNullspace(K, zg), //Find the d?-dimensional nullspace

5 R < Reshape(v;z,d,,d); //Reshape v into a (2,d,) X d matriz

6 M « KroneckerFactors(R-RT); //Find M such that R-RT = M ®1,,
7 S, < Eigenvectors(M) ;

8 C,—ST.R;

9 NormalizeRows(C,);

Since X (o) and Y (o) are orthogonal matrices by assumption, Equation B.9

becomes:
XT(e)=R'-YT(0) R.
Taking transposes,
X(o)=R"-Y(o)- (R™HT.
We now multiply both sides on the left by R, and on the right by RT,

R-X(0)-RT=R-R" . Y(o)- (R°HT-RT
=R-R" -Y(0).

Since R € Intx,y],
Y(o)-R-RT =R-RT -Y(0),

which shows that R - RT € Comy-.

We can now state and prove our orthogonalization procedure, which works
by diagonalizing the matrix R - RT. Due to its highly constrained form, the

procedure is quite efficient.

Theorem 40. Let X be any orthogonal group representation of G and Y an
equivalent orthogonal irreducible decomposition (As in Equation B.5). Then
for any invertible element R € Intx.y), there exists an (efficiently computable)
orthogonal matriz T such that the matriz T - R is an element of Int|x.y) and is

orthogonal.
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Proof. Lemma 39 and Equation B.8 together imply that the matrix R - R can
always be written in the form

R-R' =, (M, ®1I,)

Since R- R” is symmetric, each of the matrices M, is also symmetric and must
therefore possess an orthogonal basis of eigenvectors. Define the matrix S, to
be the matrix whose columns are the eigenvectors of M, .

The matrix S = @,(S,, ® I4,) has the following two properties:

1. (ST-R)(ST-R)T is a diagonal matrix:

Each column of S is an eigenvector of R - RT by standard properties of
the direct sum and Kronecker product. Since each of the matrices, S, , is
orthogonal, the matrix S is also orthogonal. We have:

(ST-R)(ST-R)T=S8T.R-RT .S,

=St R-RT.S,
=D,

where D is a diagonal matrix of eigenvalues of R - R”.

2. ST -R S Int[ng]I

By Equation B.8, a matrix is an element of Comy if and only if it takes
the form @,(S,, ® I4,). Since S can be written in the required form, so
can ST. We see that ST € Comy, and by the proof of Lemma 37, we see
that ST -R e Int[ng].

Finally, setting 7= D'/2 . ST makes the matrix T - R orthogonal (and does
not change the fact that 7'- R € Inty.y1). O

We see that the complexity of computing T of is dominated by the eigenspace
decomposition of M, , which is O (zf) Pseudocode for computing orthogonal
intertwining operators is given Algorithm 5.
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