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Abstract

Structured probabilistic inference has shown to be useful in modeling complex
latent structures of data. One successful way in which this technique has been ap-
plied is in the discovery of latent topical structures of text data, which is usually
referred to as topic modeling. With the recent popularity of mobile devices and so-
cial networking, we can now easily acquire text data attached to meta information,
such as geo-spatial coordinates and time stamps. This metadata can provide rich and
accurate information that is helpful in answering many research questions related
to spatial and temporal reasoning. However, such data must be treated differently
from text data. For example, spatial data is usually organized in terms of a two di-
mensional region while temporal information can exhibit periodicities. While some
work existing in the topic modeling community that utilizes some of the meta infor-
mation, these models largely focused on incorporating metadata into text analysis,
rather than providing models that make full use of the joint distribution of meta-
information and text.

In this thesis, I propose the event detection problem, which is a multi-
dimensional latent clustering problem on spatial, temporal and topical data. I start
with a simple parametric model to discover independent events using geo-tagged
Twitter data. The model is then improved toward two directions. First, I augmented
the model using Recurrent Chinese Restaurant Process (RCRP) to discover events
that are dynamic in nature. Second, I studied a model that can detect events using
data from multiple media sources. I studied the characteristics of different media in
terms of reported event times and linguistic patterns.

The approaches studied in this thesis are largely based on Bayesian non-
parametric methods to deal with steaming data and unpredictable number of clus-
ters. The research will not only serve the event detection problem itself but also
shed light into a more general structured clustering problem in spatial, temporal and
textual data.
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Chapter 1

Introduction

In this thesis I study a clustering problem called event discovery, which aims to discover
the latent representations of what is happening by learning from a large set of corpus with
spatio-temporal meta information. There are many reasons that the event discovery problem
is important. First, as a clustering algorithm to capture knowledge representations, the event
discovery problem can be useful to summarize the contents of a large chunk of text data with
meta information. The summary can represent the major events covered in the text and there
is no need to read them one by one as what would need to be done by a human otherwise.
Second, the event discovery problem can be useful to government and police department to
monitor breaking events that can be harmful to the society. Examples of such events include
natural disasters and terrorist attacks, which usually requires government leaders to take timely
and decisively actions. The latent clusters learned in this thesis provide real time and accurate
representations of the event’s spatial, temporal and topical distributions.

There are couple of assumptions that have to be made in order for the algorithms in this
thesis to work. I assume that there exist latent event distributions across those spatial, temporal
and topical domains. Texts with spatial, temporal meta data are observations drawn from those
latent event distributions. This assumption is vital for the algorithms to work and many data
sources such as Twitter and newspaper exhibit properties that align with such an assumption. I
study three statistical models to discover latent social events and provided scalable inference for
each of them. I verified the models by illustrating both qualitative results and numerical results.

To tackle this problem, I first studied a parametric model to detect events on Twitter data
to discover independent clusters in Chapter [3] In this model, event clusters are assumed to be
static over time no local structures exist for different types of media. The number of clusters
in this model is also fixed because of the nature of parametric graphical models. Experiments
were conducted on a data set collected over the country of Egypt during the famous Arab Spring
revolutions[l6]. I showed that events detected using my method successfully matched the records
in Wikipedia and official documents from the United Nations. I also illustrated how the learned
latent events distributions can be used in supervised settings such as predicting the missing
location and time information of the tweets.



To improve the original event detection model and to solve the problems of fixed number of
clusters, I studied two improve models, both of which are non-parametric and the complexity
of the models can be determined automatically based on the data set. Two non-parametric
techniques are used: the Dirichlet Process (DP)[36] and the Recurrent Chinese Restaurant
Process (RCRP) [l1]. I use Sequential Monte Carlo (SMC) to infer the latent variables for both of
the models and the inference algorithms are implemented in parallel. Since SMC scans one data
point each time, the algorithms developed for these two models are able to handle streaming
data adapt the number of clusters dynamically.

The first improved model is motivated by the fact certain social events exhibit the nature of
temporal dynamics and their contents might change over time. Take Superbowl as an example,
both spatial and topical concentrations of this event might change over time while they also
exhibit certain common properties. In this model, I applied the RCRP framework and used
Logistic-normal priors for both the spatial and temporal distributions. When the cluster exist in
the previous time step, Logistic-normal prior is centered on the value of cluster at the previous
time. Otherwise, the prior is zero centered and no particular dimension is favored. To solve the
non-conjugacy problem between the Logistic-normal prior and the Multinomial likelihood, 1
come up with a solution that outperforms the ones proposed in prior work in terms of prediction
results. I also illustrated that the model can generate meaningful results by detecting real world
social events that are interpretable. This study of the evolutionary events will be discussed in

Chapter

The second improved model extracts social events from multiple data sources and assumes
local structures for each of them. Here local structures include media specific temporal and lan-
guage distributions. Take Twitter and newspaper as an example, the former one usually contains
accurate spatial information while the latter one usually has high quality text written by profes-
sionals. By utilizing data sets from both end, we are able to generate event clusters that are of
higher quality than relying on a specific data source along. We can also study the differences of
different media such as the linguistic characteristics as well as the swiftness of when the event is
being reported for each media. The model is built on Dirichlet Process that allows the complexity
of the model to increase over time. I am able to detect real world social events on four different
countries and concluded that social media trend to act faster in events that involve public partici-
pations while newspaper reports are usually faster in the case of natural disasters. This work will
be discussed in Chapter 3]



Chapter 2

Background

2.1 Event Detections

As most information available on the web does not provide geospatial or temporal information,
text based methods represent an important aspect of event detection methodology. Three general
types of approaches are surveyed here.

Similarity-based methods are the most common means of detecting events in text. The gen-
eral idea is to define a similarity metric and compare the pairwise similarity score across doc-
uments. Documents that belong to the same event should have high similarity with each other.
Otherwise, a new event will be created to maintain high similarity within each event. Several
approaches have been proposed. For example, [49] use cosine similarity. Other methods include
Hellinger distance [22]], Kullback-Leibler divergence [21] and TF-IDF similarity [74]].

The second class of methods for detecting events in text are based on abnormality detection of
frequent words. For example, [56]] monitored the hourly frequency of disaster related keywords
such as “alert”. The idea was that after normalizing the keyword frequency against on the total
number of tweets in each bucketed time slot, one will be able to detect sudden change on those
keywords during the major event. Once a major event happened such as an earthquake, the hourly
frequency distribution will appear abnormal when compared to historical data, which indicates a
potential new event. The authors of [95] uses similar ideas on Twitter sport data set but focuses
on the birth of sub-events.

The third type of methods utilize a supervised structured learning algorithm on text data to
learn patterns toward the classifications of events. [10], for example, built a Bayesian model to
classify a Twitter data set containing labeled 110 music concert events.

Beyond the extraction of events purely from text, there have also been several efforts to
incorporate temporal and geospatial information. The authors of [72] analyzed the statistical
correlations between earthquake events in Japan and Twitter messages that were sent during the
disaster time frame. A linear dynamic system model is used to detect earth quakes. Both [68]]
and [65] extract events into a hierarchy of types, in part utilizing the temporal information in
both the text and the timestamp of the tweet itself. However, their work does not consider the
spatial information explicit in geo-spatially tagged tweets.

3



2.2 Topic Modeling

Topic modeling is a central problem in text mining. In topic modeling, documents are modeled
to be a bag-of-words, which ignores the sequences of words and thus retains only the frequency
of appearance of words in a document. The objective of topic modeling is to uncover latent
representations of document clusters (topics). Several approaches have been proposed, including
Latent Semantic Indexing (LSA) [35]] which is based on Singular Vector Decomposition (SVD)
and Latent Dirichlet Allocation (LDA) [17] which is based on probabilistic graphical models
[45]. Here I focus on LDA since it is most relevant to the probabilistic approach I use in this
thesis.

In LDA, topics as assumed to be Dirichlet distributed multivariate random variable over the
vocabulary set. Each document is assumed to contain words drawn from a mixture of topics.
LDA sees important applications in finding topics in documents such as scientific articles [41]].
However, just like many statistical learning approaches, its application-agnostic nature allowed it
to extend to other areas such as clustering region functions [92] and clustering check-in patterns
[46]]. The LDA model can be extended with additional meta-data, such as author-topic model
[71]], relational topic model [28], named entity topic model [62] Syntactic topic model [20], dy-
namic topic model [15]], sentiment topic model [52]] and Spatial LDA [82]. The computational
intensive nature of LDA leads to many work that improves its efficiency by introducing differ-
ent sampling techniques such as Gibbs Sampling [41], Sparse-LDA [91], Alias-LDA[S51] and
light-LDA [93]]. Finally, probabilistic models that contains an LDA component but serves other
purposes are also proposed. Examples include spatial topic pattern model [44], review aspect
modeling and recommendation system [32, 184} 85] and event detection [83]].

2.3 Bayesian Non-parametrics

Parametric Bayesian models such as LDA require a fixed number of parameters (e.g. the number
of topics), which has to be determined a priori. As with all other Bayesian methods, if the priors
are not set correctly, the performance of the model will suffer. Moreover, in a streaming setting
where documents are arriving constantly, the dimension of model parameters must increase with
the new data. Non-parametric Bayesian approaches can automatically infer an adequate com-
plexity for the model and allow it to grow as new data comes in. There are several Bayesian
non-parametric models such as Dirichlet Process [[11} [36]], Gaussian Process [37, 67], Infinite
Hidden Markov model [8] and Polya Trees [57]]. 1 focus on techniques related to Dirichlet Pro-
cess since they are most related to this thesis.

In a Dirichlet Process (DP), data that fall into the £*" cluster have the same parameter (3;,. For
the ' data point, the conditional probability for its cluster parameter §; follows Equation
[12].

9i|{01:i71}7G07@ ~

_— 2.1
1— 14+« 2D

X [Z(ng)é(ﬁk) + aGy

Here ¢ is the Dirac delta function and n,(f) is the number of data points in cluster k before the
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i" data point. What Equation [2.1|says is that 6, has probability proportional to n,(j) to take one of
the existing cluster k£ with parameter (35 and probability proportional to the dispersion parameter
a to take a new cluster parameter generated from the base distribution GGo. The DP starts with
0 clusters and grows as the data exhibit new patterns. This interpretation of DP is known as the
Chinese Restaurant Metaphor [3]] in that it can be viewed as a brunch of customers (documents)
walking into a restaurant with several tables (clusters). The customers can choose to sit on an
existing table or create a new table according to the conditional probability in Equation [2.1]

Many non-parametric models related to LDA have been proposed. For example, the Hi-
erarchical Dirichlet Process [77] is a non-parametric extension of LDA. In order to model the
nested structures of topics, several non-parametric techniques have been proposed such as the
nested Chinese Restaurant Process [40], Nested Chinese Restaurant Franchise Process [4] and
Nested Hierarchical Dirichlet Process [63]. There are also several techniques to model with time
and topics together in a non-parametric setting. For example, the Recurrent Chinese Restaurant
Process [1] and the Dirichlet-Hawkes Process [34]].






Chapter 3

Modeling Independent Events

3.1 Introduction

The perpetual availability of online content and our increasing reliance on the Internet have made
social networking websites such as Twitter and Facebook an indispensable part of modern social
life for many people. As of November 2014, it is estimated that roughly a half billion tweets are
generated on a daily basis ﬂ The content generated from these social networking/social media
sites is not only voluminous; it also contains a selection of information that is new and interesting
to individual users, corporate and government actors and researchers alike. This information is
useful for many types of analysis, such as sentiment analysis [64] and abnormality detection
[79].

One particularly interesting line of work that draws on social media content is the problem of
detecting events. In event detection, we wish to uncover abnormal subsets of content that may be
referring to a particular occurrence of interest. A significant amount of this work focuses purely
on the analysis of the textual content of social media messages [[10, 49]. While the inference of
topical focus is an interesting problem in its own right, the idea that topical coherence is a signal
for an “event” is slightly misleading. Such algorithms are essentially detecting topics, which
are words that clustered together, rather than any coherent subset of content that has a unique
geo-temporal realization, one we would expect of a typical event. For example, topics uncovered
that are broadly related to online games and jokes have little or no link to the physical world and
thus are difficult to consider events.

Having realized this, recent work has begun to focus on the geo-temporal aspects of event
detection [72]]. However, much of this work fails to utilize the textual information that previous
authors have capitalized on, information that is vital in interpreting the topical focus of a partic-
ular event [68]. For example, events that occur in a residence and a nearby night club at the same
time will contain the same geospatial and temporal information but are, of course, different in
important ways. A good definition of an event should thus contain a geographical approximation
of where the event is happening, a temporal range over which the event lasts and also a specific
set of words and/or phrases that can be used to describe what the event is about.

In this chapter, we develop a probabilistic graphical model that learns the existence of events

Uhttp://www.internetlivestats.com/twitter-statistics



based on the location, time and text of a set of social media posts, specifically tweets. An event
is described by a central geographical location and time, a variance in space and time and a set
of words (a topic) that is representative of the terms that can be used to describe this event. By
incorporating both a central location and time and a variance around it, we account for the fact
some events are more concentrated within a specific region and time (e.g. a marathon) while
others might be distributed across a broader area in time and/or space (e.g. Occupy Wallstreet).
The use of a set of words that are frequently used in tweets from or about the event allows us
to incorporate topic modeling to extract information from the actual tweet text, from which an
understanding of the focus of the event can be derived.

Our contributions are twofold. First, we build an event detection model that successfully
discovers latent events being discussed at different points in time and at different locations in a
large, geo-tagged Twitter data set. We demonstrate the model’s abilities by applying our method
to a Twitter data set collected in an Arab country during a time period where demonstrations and
social movements were frequent. Second, we build a location and time prediction tool based on
our learned model that allows us to accurately predict the location or time of a tweet (when this
information is held out) with considerably more accuracy than several baseline approaches.

3.2 Related Work

The problem of event detection is well studied. Here, we provide a brief survey of relevant
methods, touching on a variety of approaches that have been taken in studying the problem.

3.2.1 Events Extraction from Text

As most information available on the web does not provide geospatial or temporal information,
text based methods represent an important aspect of event detection methodology. Three general
types of approaches are surveyed here.

Clustering is one of most important techniques in dealing with the event detection problem
using text. Clustering approaches attempt to find latent events by uncovering common patterns
of texts that appear in the document set. These efforts generally fall into two distinct types of
approaches: similarity based methods and statistical ones. Similarity-based methods usually
compare documents by applying metrics such as cosine similarity [49]. These models are usu-
ally efficient but ignore statistical dependencies between both observable and latent underlying
variables. A statistical method such as a graphical model [[10] can incorporate more complicated
variable dependencies and hierarchical structure to event inference.

Another type of event detection model utilizes the fact that the arrival of new events will
change the distribution of the existing data. Such approaches are thus concerned with develop-
ing criterion for detecting abnormal changes in the data. For example, Matuszka et al.| (2013)
assumes a life cycle for each possible keyword for an event, penalizing the term if it appears
consistently in the data. The result is an event defined by keywords that only appear in some spe-
cific subset of the observed data. Zubiaga et al. (2012)) use techniques such as outlier detection to
detect abnormalities in the data set which is considered a potential consequence of a new event.

8



The third type of work defines events indirectly by linking documents together. Models such
as the one proposed by Stajner and Grobelnik| (2009) define each document as a node in a graph
and then build connections between them once they are classified as being a part of the same
event. Finally, there is also a large amount of work focusing on using information retrieval
techniques such as TF-IDF as features to extract events[22].

3.2.2 Events Extractions from Space and Time

Beyond the extraction of events purely from text, there have also been several efforts to incorpo-
rate temporal and geospatial information. Sakaki et al.|(2010) analyzed the statistical correlations
between earthquake events in Japan and Twitter messages that were sent during the distaster time
frame. An abrupt change of volume of tweets in a specific geo region indicated a potential dis-
aster in that area. |Hong et al.| (2012) constructed a probabilistic graphical model that contains
both a geographical component and a topical component to discover latent regions from Twitter
data. Their efforts, however, are not strictly focused on event detection, as they do not consider
the temporal domain. In contrast, Ritter et al.| (2012)) and Panisson et al.| (2014)) extract events
into a hierarchy of types, in part utilizing the temporal information in both the text and the times-
tamp of the tweet itself. However, their work does not consider the spatial information explicit
in geospatially tagged tweets.

3.2.3 Graphical Models and Sampling Techniques

Graphical models are powerful tools that can be used to model and estimate complex statisti-
cal dependencies among variables. For a general overview, we refer the reader to [45], which
contains a much richer discussion than is possible here. By constructing statistical dependencies
among both observed and latent variables, graphical models can be used to infer latent represen-
tations that are not observed in the data. Latent Dirichlet allocation [17]], used to discover such
latent topics/events from text, is perhaps the most widely known example in this area.

One issue often raised in graphical models is the difficulty in estimation. As the complexity
of the model increases, exact inference become difficult or even impossible. Various sampling
strategies such as Gibbs sampling [26] has thus been developed to find approximate solutions.

3.3 Model

We use a probabilistic graphical model to characterize the relationship between events and tweets
(referred to here as documents). Using plate notation, Figure illustrates the structure of the
model. Note that there are D documents and £ events, where F is a value pre-determined by the
researcher. The model has three major components. First, an event model contains information
about a specific event, such as the parameters that characterize its spatial and temporal distribu-
tions. Second, a document model contains the location, time and event index of each document.
Third, there is a language model, which contains information about the topical content of the
documents. Table 3.1| gives a summary of all notation that will be used as we describe the model
in this section.
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Figure 3.1: Illustrations of the model in plate notations

3.3.1 Event Model

An important observation incorporated into our model is that events are in many ways natural
extensions of topics; events have a topical focus but also include a spatial and temporal region
in which they are likely to occur. We thus assume events are defined by three things. First, each
event has a geographical center (") as well as a geographical variance controled by a diagonal
covariance matrix with each value defined by o'"). The location of a document that belongs to
event e is assumed to be drawn from a two dimensional Gaussian distribution governed by these
parameters.

I~N(OWLD) 1o (3.1)

Second, each event is defined by a temporal domain. Similar to the spatial distribution of an
event, event time is also modeled as a Gaussian distribution, except with mean QéT) and a variance

(T).
of o¢ ’:

t~N(OD) 1.0 (3.2)

The mean and standard deviations of both Gaussian distributions are latent variables and will
need to be inferred by the model. Finally, events are determined by a topic (or distribution over
words) that characterizes the event. The details of this are implemented within the document
model and Language model, discussed later in this section.

3.3.2 Document Model

A document contains the information we obtain for a specific tweet. In our model, we only
consider tweets that have both a geo-location tag (latitude/longitude pair) [ and a time stamp ¢.

10



Tweets also consist of a word array w which contains the actual words that appear in the tweet.

Several latent variables are also present in the document model. First, an event identity e
defines which single event out of the £ possible events in the event model that this specific
document belongs to. We assume a multinomial prior v for each e in each document.

e ~ Mult(7y) (3.3)

Second, each word w; in the document has a corresponding category variable z; that determines
which of 4 categories of topics this word has been drawn from. Category 0" is a global category,
which represents global topics that frequently occur across all tweets. Category ”L” defines a set
of regionally specific topics that are specific to particular geospatial subareas within the data.
Category T” represents a set of temporally aligned topics that contain words occurring within
different temporal factions of the data. Category "E” defines topics that are representative of a
particular event e, distinct from both other events and more specific to the event than topics in
the other categories. By controlling for global, temporal and spatial topics, these event-specific
topics allow us to uncover the defining terms of this particular event beyond those specific to
a general spatial or temporal region. The variable 2 is controlled by a multinomial distribution
whose parameter is a per document category distribution 7:

zevMult () (3.4)
For each document a 7 is generated by a prior o from a Dirichlet distribution:
m~Dir(«) (3.5)

To index into the topics of the location and time categories, each location [ and time ¢ is con-
verted into a location index [ and a time index £, respectively. These conversions are conducted
by applying two functions f(l) and g(¢). These resulting indices are used for the language model
to retrieve the corresponding topics from these categories in a manner that will be introduced
later.

o~ |
—
—~
o~
N—

(3.6)
3.7

SN
Il
Q
—~
~~
N—

3.3.3 Language Model

The language model defines how words within a document are drawn from topics (within specific
categories) based on the full set of parameters associated with the document. Topic distributions
for each category are generated using a Dirichlet prior /3:

d~Dir(j3) (3.8)

*

Each topic contains the probability of each word in the vocabulary occurring within it. While
this is the traditional representation of LDA, note that our approach is a generalization of the
original model [17], since now topics are also hierarchically organized by the four different
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categories. For a model with one global topic, L location topics, I’ time topics and £ event
topics, the total number of topics across the four categories isthus K =1+ L+ T + E.

Each word w; is chosen from a corresponding topic based on its category variable z and
the corresponding geo, temporal and event indices [, ¢ and e, respectively, depending on which
category is being used. This is represented mathematically in Equation 3.9 below:

P(w;|l,t,e, zl-,q><0>,q><L> o@D <I><E>)
= P(w;| @) E=0). p(q; |0 ) (==L). (3.9)
p(wi’q)(T)7 E)I(ZZ—T).p(wiM)(E), e) I(zi=E)

3.3.4 Spatial and Temporal Boundaries

To generate the location index (i.e. [) and time index (i.e. ), we need to define two transformation
functions that map from a real vector space to an integer space. To do so, we first divide the
geographical and temporal space into a lattice within a pre-determined boundary. For geospace,
a preset boundary B = (Z1ow, This Yiow, Yni) 18 determined based on the data. The geoarea is
then divided evenly by the number of locations L to form a v/L x \/f square lattice. Each cell
in the lattice has a unit length of U* = (x,y), with U} = (BL — BL )/v/Land U} = (BL -

BL )/V/'L respectively. The transformation function for locatlon data f(l) is then defined in

Equation3.10}
f) = [(l,—BE VUL «vVL+|(,— B )/UE] (3.10)

Similar to the way that [ is mapped to /, a function that maps ¢ into an index space { is also defined
in equation m Here we treat ¢ as a real valued scalar bounded in range from BZ to ByT . A
unit length U* is also calculated to be the unit length of each time cell in the lattice, which is
(Bhi = Biow) /T

9(t) = [(1 = Bioy,) /U] (3.11)
In our model we treat the timestamp of a document as a real-valued variable by dividing the
UNIX time by the number of seconds in a month. By doing this we converted the information
so that tweets are represented by a real-valued variable that defines the month and year in which
they occur. This meets the requirement of the Gaussian distribution in which we used to model
the temporal span of a particular event.

3.3.5 Generative Model

The graphical model we defined above can be used as a generative model that produces new
tweets that have a geo coordinate, a time stamp and a set of words constituting the text of the
message. The generative process is as follows:

e Pick an event e ~ Mult ().

e Pick a location [ ~ N(GgL), aéL))

e Pick a time ¢ ~ N(QéT), af(gT))

e Pick a category distribution 7 ~ Dir(«)

e For each word w;, first pick z; ~ Mult(7) then pick w; ~ &)

12



Table 3.1: Notations

Symbol Size | Comments
D 1 number of documents
L 1 number of location plates
T 1 number of time plates
E 1 number of events
A 1 number of topic categories
K 1 number of topics
V 1 number of vocabularies
Wy 1 number of words in document
[ D x2 | location lat and lon
t D timestamps
e D event index
w Wy word in a document
[ D location index of a document
t D time index of a document
o) (L) E mean and sd of event locations
6, o) E mean and sd of event time
z Wy | topic category of word
s D x Z | category distribution
) K x V | word distribution for topics
« Z dirichlet prior for 7
B v dirichlet prior for ¢
vy E multinomial prior for e
O - Observed variables
Q - latent variables solved in E step
G} - latent variables solved in M step
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3.4 Model Inference

Given the number of hidden variables as well as the hierarchical structure of the model, exact
inference is intractable. Instead, we use a Gibbs-EM algorithm [7, 81] to infer the model param-
eters. Before we detail the inference procedure, we clarify three pieces of notation, O, 2 and O,
that define the sets of variables we are concerned with during the inference procedure. The set
O = {I,t,w} defines the set of observed variables. The set Q = {e, z, 7, ®@ &) o) HE)}
defines variables that will be solved during the E stage of the algorithm. Variables falling into
this set are mainly those related to the language model. The variable © = {0,,07,0,07} is a
set of parameters that will be estimated during the M step. Note that we do not perform inference
on the Bayesian hyper parameters {«, 3,7}, treating them as static constants to be defined by
the researcher. To avoid confusions, we have omitted all the Bayesian hyper parameters in our
equations and we will follow this convention in the rest of the chapter.

3.4.1 E Step

During the Expectation (“E”) step, we assume that parameters in © are already known as the
result of a previous Maximization (“M”) step. We then use Gibbs sampling to generate samples
for the parameters in {2 over a number of Gibbs iterations and use the average of these samples to
approximate the expectation of the E step. Before we do this, however, we first integrate out ®*)
and 7, resulting in a more efficient collapsed Gibbs sampling problem. Equation [3.12] gives the
collapsed distribution we are interested in sampling from. Here I is the gamma function and néf
denotes the number of times that a document d has a word r that falls into topic k of category z.
If any of d, r, k or z are replaced by “*”, the value should be interpreted as one which takes the
sum over this particular variable. Note again that in contrast to the standard LDA model, here
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we need to pay attention to both topic k£ and the category z.
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(3.12)

Word Category

The word category variable 2 is sampled for each word in each document. The conditional proba-
bility of a specific category for word n in document d given all the other variables is proportional
to the conditional probability given in Equation [3.13] While space constraints do not allow us
to present the full derivation of the conditional probability, ideas utilized in the proofs of the
original LDA algorithm in [Griffiths and Steyvers| (2004) can be directly applied to our efforts to
derive the equation.

P(Z(d’n) = Z) ’Z,(d,n)y @, O)
XX P(Z(dm) = Z), ’LUf(dm), w|@, O)
4 B,
SVoonir @ g,

(3.13)

oc (7" 4 ay)

Category and Word Distribution

After the category variable z is sampled for each word in each document in the data, we update
all word distributions ®*) as well as the category distribution 7 for each document according to
Equation [3.14] and Equation [3.15] Again, while proofs are omitted, similar proofs can be found
in (Griffiths and Steyvers (2004). One thing worth noticing, however, is that 7, . is a bit different
from its counterpart ¢, in the classic LDA model because of the second dimension &, which is a
topic index in the classic LDA. In the present model, this value is changed to z, thus representing
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a draw from a category rather than a topic.

' nik 4 8,
o)) = ikﬂ (3.14)
7 Zv:l TL*77U + BU
ng.+ a,
Tas : (3.15)

= D 2%
Zd:l nd,* + az

Event Index

In addition to sampling the category variables and distributions over the categories, we also must
sample the event index e for each document d. The conditional probability for sampling the
event index for a specific document based on all other variables is given in Equation [3.16] It is
determined by three terms: a prior multinomial distribution on e, two Gaussian distributions, one
each on location and time, and a term defining the joint likelihood of each word in the tweet.
Observing that this expression can be further simplified and only those words w; with z,, = E
are actually affecting the probability of sampling e, we are left with Equation [3.16|

P(ed|Q\€d7@70)
x T] Pz, @) P(I6", 07).
PH6", 0")-Plesh)

1
- . — e)- | | © (w = w,)-
x D) v(E =e) ' (w = w;)

e e i3z, =e

(3.16)

_;[<L—92L’>T<L—e(f’> <T—9£T))T(T—eéT)>}
2 (D)2 (D)2

e

3.4.2 M step

In the M step, we treat all the variables in © as parameters and estimate them by maximizing
the likelihood function. Since we use Gibbs sampling in the E step, the likelihood function is an
average over all samples drawn from the E step.

For each Gibbs step s we use a superscript to annotate the variables that are drawn from this
specific step. The objective function of the M step ()(©) can be written in Equation The
goal of this M step is to find the latent variables in © that maximize this objective function. To
achieve better optimization results, we add an L2 penalty term to the location and time deviations
in our objective function in addition to the log likelihood. The penalty term has a factor (1 + ),
where 7. is the ratio of documents that belong to event e. If the ratio r. for a specific event is
high, it will receive a stronger penalty in the size of its spatial and temporal deviations, causing
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these variances to be restricted.

S
=3 Z (0,0 |e"))
1,

M3 + o)A + re))

P [ (log(0'()) + log(o () (3.17)
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Event Centers

Event centers for both location and time can be estimated in a straightforward manner by maxi-
mizing the objective function.

) _ s Ll

(3.18)
ZS Zd;eg):e
Similarly, we can also acquire a MLE estimation for S
S D D, L
6" o = (3.19)

e =
ZS Zd;eg’):e

Event Variance

In the estimation of the variance in space and time for each event, the penalty term we have
introduced means that we can no longer use the MLE to find an optimal value for them. While
this complicates inference, the penalty term is an important part of the model. It is introduced
because in model development, we observed that as the number of EM steps increased, larger
events tended to rapidly acquire more documents during training. This, in turn, increases the
variance of these events to a value larger than we would expect to see for a spatially constraint
event. This situation becomes worse over time and eventually these events come to dominate the
analysis. The introduced L2 penalty restricts this from occurring.

To solve for the variances, we use a gradient descent approach to find the optimal value. In
order to do so, we take the derivative of the EM objective function and acquire the gradient of the
event deviations in Equation [3.20|and Equation We then apply a standard gradient descent
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Initializations

Several variables need to be properly initialized in order for the EM algorithm to converge to
the correct distribution. The parameters z and e are initialized randomly within their domains.
The variables %) and §7) are initialized by learning a kernel density estimator from the data
first and then drawing e samples from it. This initialization gives areas in space and time where
tweets are concentrated a higher chance of becoming centers in location or time, respectively.
Finally, the variables (") and o(") are generated from a uniform distribution from 0 to 1.

3.4.3 Prediction

One of the most important applications of the model proposed here is to predict the location and
time of tweets based on the words contained within them. To achieve this goal, we use another
EM algorithm again to infer the hidden variables as well as the variable(s) we are interested in
predicting. In the prediction setting, event specific parameters # and o and topic categories ®*)
are already trained and our goal is to infer z,e and either [, ¢ or w given some or all of the other
variables.

Category Variable and Event Index

In our prediction EM algorithm, we estimate the category variable z and the event index e in
the E step. This is almost the same process as the one in the training, as all other variables are
again fixed. The only difference is that during the training stage, néf is initialized according
to a randomly generated z and e while in the prediction stage these variables are the result of a
trained model.

Predict Location and Time

To predict location and time, we use the samples generated from the E step to make a point
inference on one or both, depending on the task at hand. As opposed to the M step in the
training stage, in our prediction task all event variables have already been learned and our goal
is to estimate [ and ¢ instead. Equation is the objective function for both [ and ¢. Utilizing
the fact that the addition of several Gaussian distributions is proportional to another Gaussian
distribution, the summation term for the location and time distributions can each be absorbed into
a single Gaussian distribution. The part of the likelihood function that contains the summation
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of word probabilities can also be simplified to consider only those words with topics related to
either L or 7. This results in an objective function that has a location component and a time
component, each of which contains a Gaussian term and a grid density term.

S
Z logP(116'C),0'0)) + 1ogP(t6), o')

+ Z log P (w;|®) 1 T, )]
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Speeding Up the Optimization

From Equation we observe that the estimation of [ and ¢ can be done independently, as the
objective functions of each entity are absolved of terms from the other. However, to infer either [
or t based on the objective function is difficult using conventional optimization methods such as
gradient descent since it involves optimizing an objective function that is not continuous. This
occurs because the transformation from [ and ¢ to [ and # makes the objective function no longer
differentiable. Search based optimization techniques can still be applied but are exceedingly
slow.

We thus develop a method particular to our specific issue that can estimate [ and ¢ rapidly. To
see how we can speed up the optimization, observe that the grid density term in Equation [3.22]
is fixed when variables fall within a single grid cell. For example for all [ such that [ are the
same, these [ will fall into the same cell. For all variables falling into the same cell, it is up to
the Gaussian term to determine the optimal value. For each grid cell, if the Gaussian center falls
outside of it, the optimal point within the cell is the point along the cell boundary that is closest to
the Gaussian center. If the Gaussian center falls inside of the grid cell, the optimal point will be
the Gaussian center. Using the fact, we can effectively reduce the complexity of the optimization
to a linear time algorithm in the number of squares in the location lattice, L. when evaluating [ or
linear to the number of elements in the temporal lattice, 7" when evaluating ¢.
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Table 3.2: Basic Statistics of the Data Set

Geo Boundary | (21.89,24.84),(32.16,37.70)

Time Covered | from Oct,2009 to Nov,2013
Num.Tweets 1,436,186
Num.Words 183,478

3.5 Experimental Results

In order to show the value of our approach in analyzing real-world data, we ran our model on
a Twitter data set collected within the geographical boundary of Egypt from October 2009 to
November 2013. We are particularly interested in this data set because social movements were
frequent in Egypt at this time[6] and Twitter has been considered by many to have played at least
some role in both planning and promoting of these demonstrations and gatherings [30, 55]. We
examine two aspects of the model in our experiment. First, we provide a qualitative interpretation
of several events uncovered from a trained model to illustrate our ability to discover major events
that can match reports from newspaper and online sources. Second, we provide a quantitative
analysis of the prediction accuracies of location and time in a held out testing data set. In all
cases, experiments are run with 400 Gibbs sampling steps, by fixing L = 100 and 7" = 100
and varying the number of events F unless otherwise noted. We set hyperparameters to be the
following values: o« = 0.05, 5 = 0.05, v = 1.0.

3.5.1 Data Set

We pre-processed the data so that only tweets written in Arabic remained, having observed that
nearly all tweets utilizing the English character set were use a non-standard language that is
phonetically similar to Arabic but was largely uninterpretable. For example, while with the help
of a native speaker we were able to discern that “tab3an” means “of course”, large portions
of these tweets were not interpretable. We filter out all tweets that are composed of less than
95% of Arabic charactersﬂ After these preprocessing steps, we are left with roughly 1.4 million
tweeets over with a vocabulary size of approximately 180K words. The geo-boundary we use
is defined by the latitude/longitude point (21.89, 24.84) in the lower right corner and the point
(32.16, 37.70) in the upper right corner. This covers the entirety of the area of Egypt. Table
is a summary of basic statistics in our data set.

3.5.2 Qualitative Analysis of Events

We believed that looking for real life interpretations of the events we have detected was an
intuitive first step for model validation. To do so, we selected five events from the output of
our trained model that spanned different geographical regions and time periods. The events
discovered by the algorithm are summarized in Table Please note that all event geo-centers

2This percentage excludes English punctuations and Twitter mentions which usually fall into the English char-
acter sets. For more details on the data as part of a larger set, we refer the reader to [25]]
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Table 3.3: Spatial and temporal parameters of each event

E | Geo Center | GSD | Start Time | End Time
El | 30.86,29.87 | 0.43 | 2011-01-30 | 2011-03-21
E2 | 31.23,30.93 | 0.24 | 2013-09-10 | 2013-09-26
E3 | 31.77,30.84 | 0.32 | 2012-01-29 | 2012-03-22
E4 | 29.98,31.05 | 0.37 | 2012-10-15 | 2012-11-22
E5 | 31.20,29.57 | 0.37 | 2013-09-09 | 2013-10-13

32

Event

Latitude
a A W N

31
Longitude

Figure 3.2: Geographical visualizations of the events and tweets belong to these events

are in the format of (Lat,lon) pair and the start date and end date are determined by ot —
ol and 0 + o). The spatial distribution of the five events is illustrated in Figure
where each point represents a tweet and a particular event being ascribed to by the color and
shape. The figure displays up to 20,000 randomly sampled tweets that the model associated
with these five events. Figure [3.2] also overlays a contour graph for all points in the graph. The
contour plot is constructed using a mixture Gaussian distribution. To construct such a mixture
Gaussian distribution, we use 7y to serve as the mixture weight and use the event geographical
centers and deviations for each Gaussian component. The result is a single distribution on a
two-dimensional space that represents latitude and longitude. Curved circles in the contour plot
represent the probability density of the distribution. Regions with multiple such curves are the
ones that have steep change in their mixture Gaussian distributions. The contour plot shows three
clear geographical clusters that correspond to three large cities in Egypt: Alexandria (left), Cairo
(bottom right) and El-Mahalla El-Kubra (top right). As is also clear, certain events are located
within the same cities. Without the temporal and lexical dimensions of the model, it would thus
be difficult to discern differences between these events. However, exploring these distributions
makes it relatively easy to observe the very different focus of each of these sets of tweets.
Figure [3.3] displays the temporal distributions of the five events of interest. Though we have
analyzed each event independently in validating the model, we focus here on the most relevant
event, labeled Event 1(E1). This event’s tweets were heavily centered in Cairo and took place
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Figure 3.3: Temporal visualizations of the events

during the earlier portion of 2011. Without considering the topical focus of the event, these clues
suggest that it corresponds to the initial protests that spurred the rapid spread of the social move-
ment generally referred to as the Arab Spring [6]. The protests were held largely in Tahrir Square,
located within Cairo. Additionally, the central date associated with the protests was January 25
and start from January 28 the government started to force the protestors to leave. Nevertheless,
the main protest lasted for approximately three weeks with continuous demonstrations continued
after that. The model’s inferred start date for Event 1 was January 30th, extending to an end date
of March 21st.

The topic for Event 1 in the event category in Table[3.4]supports the idea that Event 1 uncovers
the protests in Tahrir Square. Here we see words such “burn”, “arrested”, “honor”, “injustice”,
“tortured”, all of which match what we would expect to have seen and have expected to be
protested during the demonstrations. Indeed, the focal date of the protests occurred on January
25 and we correspondingly observe that the popular term ”jan25” appear frequently in our data
set. The most representative words in Event 1’s topic also include the name “ghonim”, referring
to the activist Wael Ghonim who played a central role in the protests.

While we focus here on Event 1, we note that the other events in our dataset do appear to
have a qualitative realization in the real world. For example, Event 3 describes a (comparatively)
minor event related to an outbreak of hand and foot disease in Egypt around February of 2012 ﬂ

3.5.3 Quantitative Analysis

While our qualitative analysis shows the real-world relevance of model output, it does not provide
an illustration of how well the model fits the data, nor how it performs in a predictive setting. In
this section, we compare three variants of the model and use each for three different prediction
tasks given varying amounts of information about the test data. We train each model on a training
data set composed of a randomly selected set of 90% of the data, leaving 10% of the data for

3http://www.fao.org/news/story/en/item/129919/icode/
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Table 3.4: Top words for each event

jan25 | arrested Egypt Ghonim
El — -

burn injustice Libya tortured
B2 guilt | minimum | death hurts

Arif home pulse lord of
B3 | scar pharmacist | disease | immediately

eye urticaria evil | transplantation

live promise | tireless condensed
E4 :

need | granulate | thanks traipse
B5 end voice winter lord, thou

god I want lord to god

testing. We explain the models used, the prediction tasks and the level of information we use
from the test data in turn below.

Model variants

The first model variant we consider is the full model proposed in Figure marked as M=L+T.
Second, we use a model with only the location component, ignoring information on time and
thus ignoring £, and ®™). We denote this as M=L. Finally, we use a model that does not utilize
location information, eliminating the location variables 1, [ and Phi("). This is denoted as M=T.

Prediction tasks

In the first task, we use each model and the information given to us in the test data to predict the
words in each tweet. We evaluate this by using perplexity. Second, we use each model to predict
the time of each tweet in the test data. Finally, we use each model to predict the location of each
tweet in the test data.

Utilization of test data

For all of the three prediction tasks, we vary the level of information we use from the test data in
order to make the specified prediction. When analyzing perplexity, we vary whether or not we
provide the model with time information, location information, neither or both. Giving the full
model temporal or location information should naturally improve its ability to predict the words
used in the tweet. Note that when we give the model neither time nor location, the full model
reduces to an LDA-like one. For predicting location, we vary whether or not the full model is
given time, while for predicting time we vary whether or not the full model is given location. In
both cases, all models are given the words in each document in the test data.
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Figure 3.4: Perplexity over the number of events

3.5.4 Perplexity analysis

We define the log perplexity of a document D, in Equation [3.23] The value is equal to the

negative sum of the log probability of all words appearing in our test data set. The higher the
probability of each word in the model, the lower the perplexity.

log(PPX(Dtest))z—NLWZ > log(p(Waw)) (3.23)

deD weWy,.

Experimental results for perplexity are illustrated in Figure [3.4 where each colored line
represents a different model/test data combination. For example, the line marked with
"M=L+T,D=L+W” represents the results with Model M=L+T trained on a data set where both
location and text information are given for training while "M=L+T,D=W” represents the same
model where only text is given during training. On the x-axis we vary the number of events the
model is trained with. Two important observations can be made about the plot. First, the fig-
ure shows that up to a point, model performance improves with an increasing number of events
regardless of the model and test data used. When the number of events becomes large enough
(e.g. 50) the decrease in perplexity is not as substantial as before, suggesting that the number of
events is large enough to capture the major event information in our data set. Second, and more
importantly, Figure|3.4|shows that the full model performs significantly better than all other mod-

els when given temporal and text information about the test data and when trained with a large
enough number of events.

3.5.5 Prediction of location and time

The prediction of location and time shows similar pattern to perplexity, indicating that with
certain number of events approaches, the full model performs better than the alternative models.
And the more data we provide in training, the better prediction results we will achieve. This is
illustrated in Figure|3.5|and Figure Results thus indicate that the model is able to make good

use of the provided information and improves on models that do not take into account location
or time.
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Figure 3.6: Mean square error (MSE) of predicting time over the number of events

3.6 Discussion

In this chapter we proposed a probabilistic graphical model to discover latent events that are
clustered in the spatial, temporal and lexical dimensions. Both the qualitative analysis and quan-
titative analysis we present justified our model on a large Twitter data set. Results show that
our model improved over baseline approaches on a variety of prediction tasks. These qualitative
efforts show that our work can be used in a variety of application areas where event extraction
and location/time prediction of social media data is of interest, like in the detection of protests
and demonstrations as shown here but also in detecting, for example, important local sporting
events that may be relevant to different users.

One important component of the model is the Gaussian assumptions on the distributions of
both the geo-spatial coordinates and the time stamps of the events. These assumptions ensure
the existence of event location and time centers which are represented by the density mass in
the Gaussian distribution. They also enable the model to discover events ranging from geo-
spatially/temporally constrained to those that are more universal. The assumptions of using
Gaussian to model location and time are also validated in prior work such as|Hong et al.| (2012)
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and Sakaki et al.| (2010). Still, it may be interesting to explore other options for the structure of
the geospatial and temporal distribution of events in the future.

There are several ways in which the present work can be further extended. First, both location
and time are converted into an index through an evenly distributed selection function. There may
be better approaches in cases where geo-temporal distributions are uneven, as is frequently the
case in real-world data. Second, a control on granularity of the event should be added so that
when tweaking the granularity of the variables, one can generate (or discover) events that are
more localized or globalized. Finally, the assumption that a spatial and temporal related topic is
allocated on an evenly spaced grid requires further investigation. One immediate solution is to
use techniques such as k-d tree to generate topics on regions of different sizes.
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Chapter 4

Modeling Temporal Evolutionary Events

4.1 Introduction

Clustering techniques have become increasingly important to the community of machine learning
with the increasing amount of unlabeled data sets that can be easily acquired. Thanks to the
growing amount of social media and social networking applications, publicly available text data
has grown at a massive, exponential rate. As the amount of data produced has rapidly surpassed
human capacity for interpretation, one of the most important questions we face today is how we
can effectively organize this data together to form clusters in the data that are meaningful for
human.

Techniques such as Latent Dirichlet Allocation (LDA) [18], or otherwise known as topic
models, have been one of the most popular clustering methods to deal with this task for text data.
In topic models, latent representations of clusters referred to as “topics” are learned by scan-
ning a large text corpus. When meta information such as spatial coordinates or timestamps are
present, extensions of topic models can be developed. Examples include the geographical topic
model[44], the dynamic topic model [[15] and the event detection model [83]]. In those models,
clusters usually contain distributions that describes meta data in addition to topic distributions
found in traditional topic models.

In many situations, clusters may change or evolve over time. For example, the topic about
presidential elections on 2012 and 2016 might focus on different aspects but share certain sim-
ilarities. A temporal evolutionary model such as the dynamic topic model [[15] can identify the
subtle changes of such evolutions and adapt the topic clusters dynamically other than identifying
them as a completely new cluster. To allow the number clusters to be automatically determined
by the data set rather than setting a fixed value, the non-parametric version of the evolutionary
dynamic models is proposed by utilizing Recurrent Chinese Restaurant Process (RCRP)[1]. Us-
ing RCRP, we are able to construct evolutionary models with infinite number of clusters. With
the help of inference techniques such as Sequential Monte Carlo, massively paralleled online
algorithms can be developed to deal with streaming data sets.

One of the issues for evolutionary dynamic models is the problem of non-conjugacy be-
tween the data likelihood and the evolutionary prior. In such models, cluster evolutionary priors
are usually chosen to be logistic-normal distributions [1, [15], which is not conjugate with the
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Multinomial likelihood used in topic modeling. Non-conjugacy put significant computational
limitations to the evaluation of marginal likelihood, which is usually required for the inference
of such statistical models. The usual solution to this issue is to utilize Laplace Approximations to
approximate the marginal likelihoods. In this approximation, Taylor expansion up to the second
order is used to approximate the integral around a point that maximizes that original function.
The particular form of the evolutionary dynamic model makes it difficult to solve this maximum
point. Based on Bayesian theory, prior work choose the point to maximize the data likelihood
along instead of the posterior in order to get a solution that is much easier to solve [1]. This so-
lution, however, ignored information on the prior, which contains historical clusters on previous
time steps.

Another issue with the evolutionary dynamic models for clustering is the difficulties involved
in inference in general. Prior work[[1] uses RTS smoothing[39, 47| to solve the model, which is
only feasible when the emission functions are in the form of strictly Gaussian. In situations
where emission functions can not be expressed as a single Gaussian, new inference technique
has to be developed.

In this paper, we study inference techniques to solve the evolutionary dynamic clustering
problem. To illustrate how our technique work, we apply it onto the Evolutionary Social Event
Discovery (ESED) problem Based on prior work on event detection[83]. The ESED task is
to discover evolutionary latent clusters of documents that characterize distinct social events by
monitoring an evolving set of documents with spatiotemporal meta-data that contain text about
social events. Our experimental results suggest that we are able to detect major evolutionary
social events on a set of Twitter data. Although the methods are illustrated through a model
to solve a specific problem, we note that our inference technique can be used to solve latent
evolutionary clustering models in general that are not restricted to the ESED problem.

4.2 Background

4.2.1 Topic Modeling

Topic modeling has become a popular approach to discover latent topics in large collections of
text data[/18} 41]. Over the past decade, many work have been done to extend topic modeling by
incorporating meta information[S8, 83 by improving its sampling efficiencies[3, 51, 91], and by
improving the generalizability of the model[14, [15]. Within the topic modeling literature, per-
haps the most relevant work for our purposes are those models dealing with temporal dynamics.
For example, the dynamic topic model [15] uses a parametric model to characterize changes of
topics over time by assuming logistic-normally distributed topics. The RCRP model [1] takes
care of temporal dynamics in a non-parametric fashion but doesn’t include spatial as a dimension
in its model as we do here.

4.2.2 Non-parametric Bayesian

There exist a wide range of Bayesian non-parametric techniques that are relevant to topic mod-
eling, most of which are based on the idea of Dirichlet Process (DP) [36]. Since topic modeling

28



a,v, A
9| |

St—1 @
&/"
r —

ktfl t+1

Figure 4.1: Graphical Model

usually assumes a hierarchical structure on its Dirichlet distributions, the DP cannot be directly
applied unless simplifications to the models are made (e.g. making documents to have only
one topic). Instead, hierarchical models, such as the Hierarchical Dirichlet Process (HDP)[78]],
nested Chinese Restaurant Process (nCRP) [19]] and nested Chinese Restaurant Franchise Pro-
cess(nCRFP) [4] have been proposed to develop non-parametric version of topic models.

Another strand of research addresses the temporal dynamics of non-parametric clustering or
topic modeling specifically. For example, the recurrent Chinese Restaurant Process (RCRP) [1]]
divides data into epochs and the process of choosing a specific cluster membership for the d*
document at time (epoch) ¢, s; 4, is given by Equation @ Here sy.(;,4y—1 denotes the set of all
documents before (and excluding) the d** document at time ¢. Documents can either create a new
cluster with probability proportional to the dispersion parameter ~y or reuse the existing cluster

k with probability proportional to ZaA:o e_gmt__dé - Here mt__‘% i 18 the number of documents

belong to cluster k at time ¢ — ¢ that includes all the documents before (and excluding) d. e
here is a decay factor that put more weights on recent time steps rather than historical ones. By
using Gaussian transiting distributions, we are able to develop evolutionary document clustering
algorithms such as the one in [1].
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4.2.3 Non-conjugacy on Logistic-Normal Prior with Multinomial Likeli-
hood

Temporal dynamic models with a topic modeling component [1, [15] rely on the logistic normal
distribution to provide the ability to model topic evolutions. A logistic normally distributed
variable L(X) can be acquired by applying a logistic function L(-) onto the normally distributed
variable X. Unfortunately, the non-conjugacy between logistic normal prior and multinomial
likelihood makes it difficult to integrate the topic variable out, which is essential for efficient and
effective inference in practice. Many solutions have been proposed to address this issue, such
auxiliary sampling using the Polya Gamma distribution [29] and Laplace approximation [1]]. In
this paper, we favor the later approach since the auxiliary sampling method still needs to sample
each dimension of the latent variable. In the Bayesian setting of Laplace approximation, our
goal 1s to come up with an approximation to the marginal likelihood, denoted as M. The basic
idea of Laplace approximation is to use a single point  to approximate the whole integral mass.
Here we let 1(0) = —+(log P(X|0) + log w(6)) with N being the number samples, d being the

dimension of the data, and ¥ = (D2h(6))~".

M = / P(X|0)7(0) ~ P(X|0)m(B)(2m) 2|5 /2N~ “.2)

A Laplace approximation solution that is similar to the problem we are studying in this paper
has been proposed in [[1]. However, their solution ignored the historical data and, for reasons
described below, makes too many simplifying assumptions. We will remedy this issue here by
providing a better solution to the approximation that is efficient at the same time.

4.2.4 Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods, otherwise known as particle filtering [33]] methods,
are widely used in the inference of Bayesian models [2, 23| 134]. SMC algorithm keeps track
of several sets of instances, known as “particles” and update them sequentially. For each in-
stance, an SMC algorithm maintains the posterior distribution of latent variables given the
data. In our case, since documents are organized into epochs, SMC maintains the posterior
P(21,t.0), S1:(t,d) | T1:1,0))- Here 2y (1 4y is the set of latent variables up to the d™" document at
time ¢. Similar notations apply to sy.(;q4) and xy.(;,4), which are cluster indicators and the data,
respectively.

An SMC algorithm updates this posterior to P(21(td+1), St:(t.d+1)|T1:(t,d+1)) after scan-
ning another piece of data x(;441) by sampling a proposal distribution in the form of
Q(2(t,d+1)» S(t,d+1) | T1:(t,d4+1)5 21,(t,d)» S1:(t,d) ) Here, like in all SMC algorithms, we maintain sev-
eral sets of those particles and calculate “particle weights” to evaluate how good of a repre-
sentation of the true posterior distribution they are. Once the weights in the particles become
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Table 4.1: The notation used in the construction of our statistical model

Symbol | Description
(t,d) | index of document d"* document at time ¢
1: (t,d) | acollection of documents up to the d"* document at time ¢

K; num. of events at time ¢

D, num. of documents at time ¢
Niq num. of words belongs to document (¢, d)

M num. of Gaussian distributed location centers

F num. of particles in Sequential Monte Carlo

Std event index of document (¢, d)
Ttk mixture weight (before logistic transform) of location centers of event k at time ¢
Otk topic distribution (before logistic transform) of event k at time ¢
Lo mean parameter for location m

Yim co-variance matrix of component m

lia location of document (¢, d)

wyq | text that belongs to document (¢, d)

)

o decay factor for RCRP

y dispersion parameter for RCRP

A temporal width for RCRP

70 parameter for topic transition Gaussian co-variance matrix

Po parameter for location weight Gaussian co-variance matrix
L(-) | logistic function

Tk the first time step when cluster & presents.

unbalanced, we eliminate low particles and duplicate high weight ones. This process is referred
to as resampling in the SMC literature.

There are several benefits of using SMC in the inference of Bayesian models. First, SMC
framework makes it easy to develop online algorithms that deal with streaming data, which is
a very important property for document clustering. Second, SMC algorithms can be naturally
parallelized and the computational load of the algorithms can therefore be evenly distributed on
each particle.

4.3 Statistical Model

Rooted in prior work on event discovery [83l], our model characterizes a social event as a
collection of distributions on text and location that change with time. Figure [4.1] displays a
probabilistic graphical model representation of our model and Table {4.1] provides an overview
of notation used. Our model can roughly be characterized as follows: we assume that a cluster
at a particular time step is characterized by a spatial distribution and a topical distribution over
words. Importantly, these distributions are allowed to evolve over time. Within a given time
step, each document is characterized by the cluster it belongs to. The cluster to which it belongs
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informs the set of words the document is likely to have, as well as the location the document
is likely to be sent from. On the latter point, each document is characterized by a location
represented by a latitude, longitude pair. In our model, this latitude and longitude is generated
by selecting a specific pre-defined region, described below.

A key component of the model we develop is that we discretize the time stamps of tweets
(referred to generically here as documents) and organize them into epochs. For example, if we
chose to discretize our data into month-long time periods, all documents with a timestamp in
January, 2016 would fall into the same epoch, while February 2016 will be another epoch, etc.
The d* document at time step (or synonymously, epoch) ¢ is labeled with the subscript (¢, d).
More specifically, each document has a unique event index s, 4 generated from a RCRP with
dispersion parameter -y, temporal width A and decay factor « [1]]. Here my, = > Z.D:tl I(s;; = k)
represents the number of documents that belong to cluster & at time ¢ and m, g represents this
same quantity up to document d. Compared to Dirichlet Process [36], the RCRP considers the
temporal dynamics of clusters in the history. Specifically, the hyper-parameter A controls the
amount of history information to be taken into account. From Equation we can see that
recent data will receive much higher weight and that weight decays exponentially over time. The
parameter « controls the speed of such decay. As a result of RCRP, new events can be “born”
and old events can “die out” once the weight becomes zero, as the event will therefore not be
able to attract subsequent documents.

Within each cluster & in our model, there exists a topical component ¢, ; and a spatial com-
ponent ;; for each time ¢ that are initially generated by a Gaussian centered on 0 with diagonal
covariance 7o/ and pyI respectively.

¢t,k ~ N(O, To]) (43)

ek ~ N(0, pol) (4.4)

For a given document, the probability of generating the words in the document, w; 4y ; and
the region index of the document z; ; are determined using a multinomial distribution. By ap-
plying a logistic function L(x), the parameters ¢,; and 7, serve as the natural parameter of
these distributions. Hence, w and z follows a logistic normal distribution. Such structure is not
new to the community of topic modeling and has been explored by many prior work such as the
Correlated Topic Model [13]].

Wta); ~ Multi(L(¢ys, ,)) 4.5)

Zta ~ Multi(L(my, ;) (4.6)

Once the region index z; 4 of a document is determined, the actual document location [; g,
which contains a two-dimensional vector representing latitude and longitude, can be generated
by using the Gaussian prior i and Y. generated from each region.

l(t,d) ~ N(Nzw Ez) (47)
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One unique characteristic of our model is to allow both the topical parameter ¢, and the
spatial parameter 7, to evolve with time. This can be achieved by using another Gaussian
evolutionary prior on existing events for the current time step that is centered on but that can
deviate from the value of the last time step. This idea has been explored in [[1]. However, as
we mentioned, the authors tried to approximate the emission function using a single Gaussian,
which is a reasonable assumption in that model but no longer holds in our scenario since we are
modeling spatial component as well.

¢t,k ~ N(@fl,k, TOI) (4.8)

Ttk ™ N(T"tfl,ka ,00[) (4.9)

The model can be summarized with a description of its generative process, which is as fol-
lows:

1. For each time period ¢:
(a) For each existing event k
i. Draw 7y ~ N (m—1.k, pol)
ii. Draw ¢ j ~ N (-1, Tol)
(b) For each document d
i. Draw event index s; 4 from RCRP (v, o, A)
ii. If s; 4 = k is a new event
A. Draw 75, ~ N(0, poI)
B. Draw ¢y, ~ N(0,701)
iii. Draw w4y , #t,d and [, 4 according to Eq Eq and Eq

4.4 Scalable Inference

4.4.1 Integrating Variables

We start with the joint probability of the model and seek a collapsed version of it,
P(s,z,w,l|p, 0,7, A, a, po, 7o) by integrating out the natural parameters ¢, and m . In the
following derivations, we will omit hyper-parameters and use “-” to annotate them for cleaner
notation. We also define g(-) to be the likelihood function. The location likelihood g(7; ;) and
the text likelihood g(¢; ;) are defined in Equation and Equation respectively. Here
niy, and nf i are the number of occurrence in cluster £ at time ¢ for location component g and
vocabulary 7, respectively.

Dy eTt.k.g

g('/Tt,k) = HP(Zt,d"/Tt,ka St d = k) = H(—mk])n?kg (4.10)
d=1 g 236 o
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Dy e¢t k,i ¢>

9(0uk) = [ P(wralden, sea = H > o) 4.11)
d=1

By utilizing the notations defined above, the integration can be expressed in Equation [4.12]
Here we use 7 to denote the fist time step when cluster k£ occurs. We also define ¢, = 0 when

t = 7, and @bg p = Tt—1 1f t > 7. Similar definition can be applied to wf’ e

P(s,z,w,l|)

_HH/ g(ex) 7rtk|¢tk)/¢ g(¢tk)P(¢tk|¢g)k)

klt’l‘k
T T Dy

[T IIPGsealsica-0) P

t=1 t=7y d=1

(4.12)

Xk, Ztd = /f)

The key to this integrations is to correctly deal with terms involving the likelihood function
g(+) and its priors, which is HtT:Tk fm C9(me) P(men|tfy). As we will see shortly, we can
conduct integrations in a chain fashion from the very beginning when ¢ = 7, all the way to the
end when ¢ = T". We will get a constant term and a future term each time when an integration is
done at a specific time step. The future term, which we annotate as f; (741 |0:x) contains the
information for a future integration and will participate the integration in the next time step. The
constant term, which we annotate as [, ;, will be emitted as part of our final integration result.
Here we will focus on the terms that involves 7 and we will omit the procedures for ¢ since it
can be derived similarly.

As we mentioned above, the future term f; ;. (741 |6 1) is generated as part of the integration
result at time ¢. It contains variable 7, 5, that will participate the integration of the next time
step t + 1 with parameter 0, that is determined by information on the previous time steps.
To illustrate how the future term f; 5 (m14|0:x) interplay with the integration, we define the
following relationship in Equation We also assume that f;,_; j(7m; 5|61 ) is in the form
of Gaussian distribution with mean 6;_; ;, and covariance matrix po/. We will prove this using
mathematical induction.

1K) (4.13)

/ 9(me k) P(mes1 k| me ke, pol) fro1.x(
Ttk

Apparently, for the base cases, where ¢t = 7, — 1 we define f,, 1 x(m=r, |0, 1) to be
a zero mean Gaussian with covariance matrix po/. One can validate this definition by taking
fro—16(Te=r, |07, 1) into Equation [4.13]to get the expression for the first integration.

Jro1k(Tiery k|0r—1%) = N (7£|0, pol) (4.14)

For general case where 7, < ¢t < T, we define the recursive formula of f;;(-) in Equa-
tion to be the integration of 7, ;. divided by a constant D, ;., which is defined in Equation4.T3]
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and is designed to absorb all constants that is not related to the Gaussian distribution to participate
the next round of integration.

Dy = N (Torlf—res pol) 2m) 2|2 1|2 NP g (705) (4.15)

Here we utilize the induction assumption that f;_;; is a Gaussian distribution with mean
6,1 1 and covariance matrix po/. We also use Laplace Approximation to approximate the integral
around a point 7, 5, which will be discussed in more detail in the next sub-section. After letting
D, j, to absorb all the constants, we again get a Gaussian form of f; () with mean value equal to
T and covariance matrix pol.

ft,k(ﬂt,k‘etfl,k>
Sy Pkl T pol) - frori(meelO1.0) g (i)

Dy g,
f,rt’k N(ﬁ,k’%’kwa pOI/z)N(Wt—i—l,kwt_Lk,2/10])g(ﬂ—t,k)
B Dy,
~  Tt41,k + 0 —1,k
= N(”aﬂ%v pol/2)N(7Tt+17k|0t—1,k72/00[) (4.16)

9(T) (2m) /2 S/ N 412
Dy
= N(Wtﬂ,k\@, POI)N( Tk
(2m) 2| S0al 2N, g ()
Dy,
= N(Wt+1,k|77/t7m PO-])

pol)

Please note that we do not define f; x(-) when ¢t = T since there will be no term to contribute
to future integrations. To summarize, the integration of m; , over time equals to the HtT:Tk Dy .

We can use the same technique to get the integration of ¢, to be Hz; Ctr with Cy, defined
below:

Cip = N (Sexl0uk, pol) (2m) Y2 S[VEN 2 g(, 1) (4.17)

We then use the same notation to get the joint distribution after 7 and ¢ are integrated out by
taking the results in the previous steps into Equation [4.12}

T K

P(s,z,w,l|) HHCtthk

t=1 k=1 (4.18)

HHP ) P(ealp, 3, 20.4)
d=1

t=1

The the collapsed joint distribution leave only two variables to be inferred: z; 4 and s; 4 for
each document (¢, d). In experiments we found that the MCMC converges very quickly and only
several Gibbs iteration steps are necessary for the algorithm to reach convergence.
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4.4.2 Laplace Approximation to Marginal Likelihood

Although we have discussed the general form of the joint distribution after the integration, we
haven’t covered the details on how we conducted the Laplace Approximation when taking the
integral. As seen in Equation 4.2} Laplace’s method approximates the integral around a specific
point where the majority of the probability mass lies on. In our case, h(-) takes the form of a
negative log of a Multinomial likelihood function with a Gaussian prior. And ideally we should
choose 7, to minimize h(m; ;). When we use sequential techniques to solve the model, we do
not have the knowledge of cluster parameters in the next time step, 7 ,, which is required to
evaluate h(7; ;). Instead, we use the expectation of its prior information 7;_; j to approximate
h(m¢ ). h(m ) then becomes:

— log (M (mu| =57 B )g(mi))

Ny
. (4.19)
—log (N(Wt,k 101k, %Of)g(ﬂt,k))

Ntk

)

h(ﬂ't,k) =

When the sample size N, is large enough, the impact of the prior will be very small and a
natural selection of 7, will be the one that maximize its likelihood. This solution is illustrated
in Equation as Solution 1 and is used by [[1]. Here, we illustrate the solution by its logistic
form rather than its original form, which is more useful since g(7; ) utilizes the logistic form of
Tt ,. This solution simply normalizes the number of documents having the locations in spatial
component ¢ for each cluster £ at time ¢, N/, ; with the total number of documents that belong to
cluster k at time ¢, t” - However, this solution ignores all the historical data before time ¢ since
it ignored the prior information.

—

eTtk,i Ng,rk,i
> o N, (%20

Another solution that can be used as an natural comparison to solution 1 is to use the doc-
ument count of all historical data that cluster k£ has on this location component ¢ instead of the
count just on this particular time step. Equation 4.21] illustrates the exact form of Solution 2.
Here the solution is taken to be the normalized count of all the documents belong to cluster
k that are located in location component i, N;,. This solution, however, ignores the temporal
importance and information across all time steps are treated equally.

Solutionl :

Solution : —&" ki 421
olution? : je”f’f\d—N,f 4.21)

However, we note that neither of the solutions above take into account of the prior infor-
mation. A better approach is to solve 7 to minimize the whole h(m; ) rather than only the
likelihood part. In order to do this, we take the derivative of Equation .19 and set it to zero.
After we assume that ), e™*s = 1, we got the relations in Equation @

201 5 + N kipd 2 .
ki kilPo Ty = €Tk (4.22)
Nk Polk
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The above equation fall into the set of problems that can be solve using the notation of Lam-
bert’s W [31]]. This solution can be expressed analytically and we illustrate it in Equation4.23|in

the logistic form. In this equation, we define n; i such that ki = % to represent the pseudo
counting that is introduced by the prior, which is an important trick that will be utilized later.

eﬂ't,k,i 2 W<691p(2)nt,k’ p(Q)nt,k,i
— = e 2
o€ Pk 2
o , 4.23)
2 Po" ki POtk
—= B W ) [& 2 )
POk 2

We observed that terms inside Lambert W’s function can be bounded by two quantities.

2, 2 !
pgnt ki POtk Polly i PO™k.i
2TV 2 vy e 2

min{ ————=e¢ —
{ 2 Y 2 }
ek
< ~—
=S ey (4.24)
j
2 2 2.7 2 7
Ny i PO"tkg PoTlp 1, PO™t,k,i
max{ o t,k,1672 7 0 t,k,zeig }
2 2
By utilizing the fact that W (xze®) = x, we know that the actual solution of eﬂt—:ﬁ“ must lie
e LR,

in the linear combination of its lower and upper bounds. A good choice of the linear weight is
the use the information on the variance, py. Since p, controls the amount of information that we
can allow to change from one time step to the other, a natural choice of the combination weight
would be 1/(1 + po) and po/(1 + po). We put weight 1/(1 + po) on the bound that contains the
information about the prior while using po /(14 po) on the bound that contains the information on
the current time step. Our solution, which here will be referred to as Solution 3, takes the linear
combination of the document count n, ; at time ¢ of cluster £ on component ¢ and the pseudo
document count on the prior n; r; hormalized by the total number of documents that belong to
cluster £ on this time step ¢, n, ;. And since n; i 1s normalized by n, , our solution takes value
range from O to 1.

ek
Solution3 : ————
Z] eTt,k,j
2 . n ; 2 2 ! . TL’ : )2
_ 22 1 W( pont7k7l e t,kézpo ) i £o W(pont’k’l o t,k2,z’0
Ptk 1=+ po 2 1+ po 2
) 5 (4.25)
_ 2 I pgne Po Po”t,k,i)
pineke L +po 2 1+py 2

; ! _Po__ .
 Thpo Mok T Ty py Mok

Ntk
We can derive similar solution for the optimal points to be used in Laplace approximation
for ¢, ;. For the length of this paper we w