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Abstract

This thesis is motivated by the need for scalable and reliable methods and technologies that
support the construction of network data based on information from text data. Ultimately, the
resulting data can be used for answering substantive and graph-theoretical questions about socio-

technical networks.

One main limitation with constructing network data from text data is that the validation of the
resulting network data can be hard to infeasible, e.g. in the cases of covert, historical and large-
scale networks. This thesis addresses this problem by identifying the impact of coding choices
that must be made when extracting network data from text data on the structure of networks and
network analysis results. My findings suggest that conducting reference resolution on text data
can alter the identity and weight of 76% of the nodes and 23% of the links, and can cause major
changes in the value of commonly used network metrics. Also, performing reference resolution
prior to relation extraction leads to the retrieval of completely different sets of key entities in
comparison to not applying this pre-processing technique. Based on the outcome of the presented
experiments, I recommend strategies for avoiding or mitigating the identified issues in practical

applications.

When extracting socio-technical networks from texts, the set of relevant node classes might go
beyond the classes that are typically supported by tools for named entity extraction. I address this
lack of technology by developing an entity extractor that combines an ontology for socio-
technical networks that originates from the social sciences, is theoretically grounded and has
been empirically validated in prior work, with a supervised machine learning technique that is
based on probabilistic graphical models. This thesis does not stop at showing that the resulting
prediction models achieve state of the art accuracy rates, but I also describe the process of
integrating these models into an existing and publically available end-user product. As a result,

users can apply these models to new text data in a convenient fashion.

While a plethora of methods for building network data from information explicitly or implicitly
contained in text data exists, there is a lack of research on how the resulting networks compare
with respect to their structure and properties. This also applies to networks that can be extracted
by using the aforementioned entity extractor as part of the relation extraction process. I address
this knowledge gap by comparing the networks extracted by using this process to network data
built with three alternative methods: text coding based on thesauri that associate text terms with
node classes, the construction of network data from meta-data on texts, such as key words and
index terms, and building network data in collaboration with subject matter experts. The

outcomes of these comparative analyses suggest that thesauri generated with the entity extractor
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developed for this thesis need adjustments with respect to particular categories and types of
errors. | am providing tools and strategies to assist with these refinements. My results also show
that once these changes have been made and in contrast to manually constructed thesauri, the
prediction models generalize with acceptable accuracy to other domains (news wire data,
scientific writing, emails) and writing styles (formal, casual). The comparisons of networks
constructed with different methods show that ground truth data built by subject matter experts
are hardly resembled by any automated method that analyzes text bodies, and even less so by
exploiting existing meta-data from text corpora. Thus, aiming to reconstruct social networks
from text data leads to largely incomplete networks. Synthesizing the findings from this work, I
outline which types of information on socio-technical networks are best captured by what
network data construction method, and how to best combine these methods in order to gain a

more comprehensive view on a network.

When both, text data and relational data, are available as a source of information on a network,
people have previously integrated these data by enhancing social networks with content nodes
that represent salient terms from the text data. I present a methodological advancement to this
technique and test its performance on the datasets used for the previously mentioned evaluation
studies. By using this approach, multiple types of behavioral data, namely interactions between
people as well as their language use, can be taken into account. I conclude that extracting content
nodes from groups of structurally equivalent agents can be an appropriate strategy for enabling
the comparison of the content that people produce, perceive or disseminate. These equivalence
classes can represent a variety of social roles and social positions that network members occupy.
At the same time, extracting content nodes from groups of structurally coherent agents can be
suitable for enabling the enhancement of social networks with content nodes. The results from
applying the latter approach to text data include a comparison of the outcome of topic modeling;
an efficient and unsupervised information extraction technique, to the outcomes of alternative
methods, including entity extraction based on supervised machine learning. My findings suggest
that key entities from meta-data knowledge networks might serve as proper labels for unlabeled
topics. Also, unsupervised and supervised learning leads to the retrieval of similar entities as
highly likely members of highly likely topics, and key nodes from text-based knowledge

networks, respectively.

In summary, the contributions made with this thesis help people to collect, manage and analyze
rich network data at any scale. This is a precondition for asking substantive and graph-theoretical
questions, testing hypotheses, and advancing theories about networks. This thesis uses an
interdisciplinary and computationally rigorous approach to work towards this goal; thereby

advancing the intersection of network analysis, natural language processing and computing.
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1 Introduction and Overview

1.1 Thesis Statement

This thesis is motivated by the need for scalable, robust and reliable methods and technologies
that support the construction of network data from natural language text data, and the usage of
the extracted data for answering substantive and graph-theoretical questions about socio-
technical networks. The findings and technology resulting from this thesis improve the
applicability of language technologies for generating network data based on text data; thereby
advancing the intersection of network analysis and text analysis. This thesis contributes to the
actionable meaning of network data by providing methods that leverage theories from the social
sciences to construct and analyze network data, and to combine text data and network data for

analysis.

1.2 Network Analysis

Socio-technical networks represent interactions between social agents, infrastructures and
information (Carley, 2002a). These networks are ubiquitous and impact society on many
dimensions (Newman, 2010). Realizing the relevance of networks as a form of organizations and
organizing, people from various backgrounds and domains, including academia, administration

and business, have been asking questions such as:

- How can we efficiently and effectively collect, manage and analyze data about socio-
technical networks in order to capture and understand the relevant properties and
behavior of networks?

- What are the underlying forces that drive the evolution and dynamics of networks?

- What are the implications of certain network characteristics for practical purposes, such
as building and managing teams and organizations, designing and adapting policies,
disseminating information, and fostering innovation?

- How reliable are network analysis results?

In the field of network analysis, people have developed methods, metrics and theories that help
to address these questions (Brandes & Erlebach, 2005; Freeman, 2004; Leinhardt, 1977). More
specifically, Social Network Analysis (SNA) provides “a framework for testing theories about
structured social relationships” (Wasserman & Faust, 1994, p. 17). Originally, SNA has been
advanced by social scientists who used this approach to gain a rich and thorough understanding
of small groups in a retrospective fashion (J. Mitchell, 1969; Newcomb, 1961; B. Ryan & Gross,

1943; Sampson, 1968). Therefore, the original network analytical measures were defined for
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connections between social agents, i.e. people and groups (Bonacich, 1987; Freeman, 1979;
Wasserman & Faust, 1994). The scope of network analysis as a research method and of social
networks as an object of study has been continuously broadened and adopted across disciplines.
Consequently, a large body of new models, theories, methodological advances and applications

has been developed (see for example Carrington, Scott, & Wasserman, 2005).

Network analysis is sometimes also referred to as Network Science, which is defined as “the
study of network representations of physical, biological, and social phenomena leading to
predictive models of these phenomena” (National Research Council, 2005, p. 28). In network
science, synthetic as well as empirical data are often used to study the quantitative properties,
structure and dynamics of relational data (see for example Barabasi & Albert, 1999; Erdds &
Rényi, 1959; Simon, 1955; Watts & Strogatz, 1998). Network scientists have developed a wide
range of efficient and scalable computational solutions for collecting, managing, and analyzing
relational data (see for example Newman, Barabasi, & Watts, 2006). I herein refer to both SNA
and Network Science, which are different labels for the same field, namely the study of relational

or network data, as network analysis.

Based on the concept of socio-technical systems (Emery & Trist, 1960), the web of interactions
within complex societal systems and their infrastructures is referred to as socio-technical
networks. Most socio-technical networks exhibit characteristics of complex systems: they are in
flux, vary in size, and feature a multitude of interactions and interdependencies between
variables. This complexity can lead to radical changes in the system’s behavior (Kauffman,

1995). The concept of socio-technical networks includes virtual and online networks.

In summary, network analysis has been adopted by researchers and practitioners as a general
utility method — much like statistics — in a variety of fields, including business and economics
(Burt & Janicik, 1996; Saaty, 2005), public policy (Krackhardt, 1990), social science and
anthropology (Carley, 2002a; Johnson, Boster, & Palinkas, 2003), and computing
(Balasubramanyan, Lin, & Cohen, 2010; Leskovec, Kleinberg, & Faloutsos, 2007). Furthermore,
networks, especially social networks, have become a popular object of study (Newman et al.,
2006).

1.2.1 Network Metrics

Core network metrics were developed with respect to social networks, i.e. people to people
connections. In general, network metrics are defined on the node level, graph level, or the level

of aggregates of nodes, including dyads, triads and clusters. The set of core metrics includes:



Node level: Centrality, which measures the prominence of a node with respect to the number of
its direct connections (degree centrality), its distance to other nodes in the network (closeness
centrality), how often it is positioned on the shortest path between any pair of nodes
(betweenness centrality), and how close it is to other prominent nodes (eigenvector centrality)
(Bonacich, 1987; Freeman, 1979).

Local level, aggregates of nodes:

- Dyads, i.e. two nodes and their connections: Structural and regular equivalence, i.e.
which nodes show the same “network fingerprint” or are linked to the exact same set of
other nodes, respectively (Everett & Borgatti, 1994; D. R. White & Reitz, 1983).

- Triads and higher order aggregates: The number of triangles, simmelian ties (directed
edges in triangles), and cliques (maximally connected subgraphs) that an agent is
involved in or that are present in a network (Krackhardt, 1998; Wasserman & Faust,
1994).

Graph level:

- The abovementioned centrality metrics are also defined on the graph level, where they
are based on the respective centrality score nodes in the network, among other properties
(Wasserman & Faust, 1994).

- Density, which measures the ratio of realized links to possible links (Wasserman & Faust,
1994).

A more complete definition of these metrics and all other metrics used in this thesis is provided
in Table 154 in the Appendix. That Table also specifies which metrics are appropriate for what
kind of network data. While the abovementioned metrics can be used for networks that involve
any node class, network metrics have also been developed and defined for specific node classes
(Carley, 2002b; Krackhardt & Carley, 1998). For example, the “ knowledge load” metric
measures the average number of nodes from the knowledge class that an agent is linked to
(Carley, 2002b).

1.3 Network Data

Data on socio-technical networks can be collected through a variety of methods; most of which
can be categorized as surveys (Krackhardt, 1987; B. Ryan & Gross, 1943), questionnaires
(Newcomb, 1961), (participating) observations (J. Mitchell, 1969; Sampson, 1968), experiments
(Milgram, 1967), and simulations (Carley, 1991). These methods can be conducted in a manual

or computer-assisted fashion (Bernard et al., 1990).



Traditionally, researchers have used methods that required first-hand experience or direct
interactions with network participants, such as (computer-assisted) personal and telephone
interviews (Newcomb, 1961) and pile sorting (Boster, Johnson, & Weller, 1987). Even though
these methods are expensive in term of costs for time and trained personnel, they have been
widely used across various disciplines, including sociology (Bernard et al., 1990), anthropology
(Bernard et al., 1990; Johnson et al., 2003; J. Mitchell, 1969), linguistics (J. Milroy & Milroy,
1985), political science (Hdmmerli, Gattiker, & Weyermann, 2006), public policy and
organization science (Krackhardt, 1990), and business (Galaskiewicz & Burt, 1991).

Over the last decade, network data collection methods have been adopted for online settings.
Lately, harvesting the (participatory) web has become a widely used strategy for gathering
network data (Parastatidis, Viegas, & Hey, 2009). Popular data sources include websites (Gloor
et al., 2009), social networking sites such as Facebook and Twitter (Lampe, Ellison, & Steinfield,
2007), and other platforms for social interaction, such as blogs (Adar & Adamic, 2005), chats
(Paolillo, 1999), and virtual worlds including online games (Bainbridge, 2007; Keegan, Ahmed,
Williams, Srivastava, & Contractor, 2010).

1.3.1 Text Data as a Source for Network Data

The functioning and evolution of socio-technical networks involves the frequent production,
processing and flow of information. This information often occurs in the form of natural
language text data, and can originate from within or outside the socio-technical network of
interest. It has been long recognized that such text data can serve as a single or complementary
source of information about networks (Burt & Lin, 1977; Carley & Palmquist, 1991; Glaser &
Strauss, 1967; Janas & Schwind, 1979). The availability of this type of data has stimulated a long
tradition in linking text analysis and network analysis; with most of the prior research falling into

one or more of the following categories:

- Analyzing semantic networks (for a review see Van Atteveldt, 2008).

- Defining network metrics for assessing relational data distilled from texts (Carley,
1997b).

- Developing methods, data structures and technologies for extracting relational data from
texts (for reviews see Diesner & Carley, 2010c; Mihalcea & Radev, 2011).

Examples for types of the text data that have been used for network analysis include news wire
data (Johnson & Krempel, 2004; Van Atteveldt, 2008), legal documents (Baker & Faulkner,
1993; Feldman & Seibel, 2006), transcripts of interviews and meetings (Carley, 1988; Dabbish,
Towne, Diesner, & Herbsleb, 2011; Sageman, 2004), interpersonal communication such as

traditional and electronic mail (Diesner, Frantz, & Carley, 2005; Fitzmaurice, 2000), and
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archival and historic data (Burt & Lin, 1977). More recently, text data that were generated as
byproducts of (computer-supported) collaboration processes have become a popular source for
collecting network data. Examples include descriptions of work processes (Corman, Kuhn,
McPhee, & Dooley, 2002; Danowski & Edison-Swift, 1985), job training scenarios (Weil et al.,
2008), e-learning environments (Haythornthwaite, 2001), team meetings (Dabbish et al., 2011),
software development initiatives (Cataldo & Herbsleb, 2008), wikis (Chang, Boyd-Graber, &
Blei, 2009), and virtual worlds such as online games (Landwehr, Diesner, & Carley, 2009).

In general, people mainly have been extracting three types of information from text data: First,
one-mode networks, where nodes represent salient information from a corpus and are typically of
the same node type. The resulting networks are often called concept networks (for a review see
Diesner & Carley, 2010a). Concepts are considered as abstract representations of the information
that people conceive in their minds (Sowa, 1984). Sometimes, concept networks are also called
semantic networks, even though semantic networks are defined more strictly (Allen & Frisch,
1982; Sowa, 1992; Woods, 1975). Concept networks have been used to answer questions like:
What are the key concepts in corpus? How do memes and ideas emerge, spread and vanish in
society and on the internet? How do such diffusion processes happen over time? (Corman et al.,
2002; Doerfel & Barnett, 1999; Gloor et al., 2009; Griffiths, Steyvers, & Tenenbaum, 2007;
Leskovec, Backstrom, & Kleinberg, 2009)

Second, networks in which nodes represent entities of socio-technical systems, such as agents,
locations and resources (Barthelemy, Chow, & Eliassi-Rad, 2005; Diesner & Carley, 2011b).
Such (multi-mode) networks are also referred to as meta-networks (Carley, 2002a), and have
been used to answer questions like: Who is talking to whom about what? Who are the key
players in an organization? How does an agents’ prominence differ depending on their access to
resources and knowledge? What benefits and risks result from an observed network structure for
the network and its wider context? (Carley, Diesner, Reminga, & Tsvetovat, 2007; Himmerli et
al., 2006; Van Atteveldt, 2008)

Third, texts or documents can also be considered as a node class themselves. These nodes can be
linked to the social agents who have authored or cited a text or who are referenced in the data
(Hummon & Doreian, 1989; C. Roth, 2006). Attributes of text data, e.g. meta-data such as index
terms, can serve as additional nodes or node attributes (Pfeffer & Carley, under review).
Networks in which text are considered as nodes have been used to ask questions like: Who has
what impact on the advance of an idea or a discipline? How does co-publishing within versus
across organizations relate to the acquisition of research funding? (Small, 1973; Wagner &
Leydesdorft, 2005)



Overall, network analysis has been used on unstructured, semi-structured and structured natural
language text data. Unstructured means that only plain text bodies are available. Semi-structured
means that chunks or tokens in the data are annotated with additional information, such as turns
between speakers. Structured means that the text bodies are annotated such that they allow for
filling templates that have a predefined structure, such as tables and databases, or that the

annotations adhere to a predefined taxonomy or ontology.

1.4 Opportunities and Challenges of Bringing Together Text Analysis and
Network Analysis

Historically, hand coding has been a dominant way for coding texts as networks (Bernard &
Ryan, 1998; Glaser & Strauss, 1967; Novak & Canas, 2008). Due to technical advances, the
storage and retrieval of text data with information about networks has become fast, cheap and
easy (Shapiro, 1971; Trigg & Weiser, 1986). Modern information and communication
technologies, such as the internet, cell phones, and social networking services, have further
expedited and facilitated the production, distribution and collection of a) network data and b) text
data pertaining to networks (Eagle & Pentland, 2006; Parastatidis et al., 2009). Since hand
coding does not scale up the amount of text data available for analysis, there is a broad need
among researchers and practitioners for theories, methods, metrics, and tools that support
efficient knowledge discovery and reasoning about network data extracted from text data
(Carley, 2002a; Schrodt, 2001; Shen, Ma, & Eliassi-Rad, 2006). At a minimum, end users are
interested in text mining solutions that help them to gain a first pass understanding of the
properties and dynamics of socio-technical networks (Bond, Bond, Oh, Jenkins, & Taylor, 2003;
McCallum, 2005; Parastatidis et al., 2009). Such data are often used as a starting point for further
analysis such as close readings. In addition to this purpose, people have been using network data
extracted from texts for the following purposes:

- Populating relational databases, which can be used for information search and retrieval
purposes (Brin, 1999; Cafarella, Banko, & Etzioni, 2006; Fellbaum, 1998; Gerner,
Schrodt, Francisco, & Weddle, 1994; King & Lowe, 2003).

- Input to further computations, such as simulations of socio-technical systems and
machine learning procedures (Carley et al., 2007; Pearl, 1988).

- Generating network visualizations, e.g. for engaging people in communication about
complex systems and conflicts (Himmerli et al., 2006; Hartley & Barnden, 1997;
Johnson & Krempel, 2004; Shen et al., 2006).

- Iterative testing and development of theories about socio-technical systems (Glaser &
Strauss, 1967; J. Milroy & Milroy, 1985).



- Monitoring and improving organizational and collaborative processes (Corman et al.,
2002; Dabbish et al., 2011; Weil et al., 2008).

- Assessment of conflict escalations and early warning systems for crises, as well as a data
source for analyzing crises (Bond et al., 2003; Himmerli et al., 2006; Zagorecki, Ko, &
Comfort).

Even though the combination of text analysis and network analysis has led to advances in
research and practical applications in either field, it also involves unique challenges. Some of

these challenges are addressed in this thesis:

- The efficient and reliable extraction of nodes and links from text data (Corman et al.,
2002; McCallum, 2005). This issue mainly applies to unstructured text data.

- The lack of sufficient amounts of (reliable) ground truth that can be used for validating
network data extracted from texts. This challenge applies to unstructured, semi-structured
and structured text data.

- The fusion of unstructured and structured information from text data.

Besides these challenges, there are many others, which are beyond the scope of this thesis.
Examples include biases in texts, emotions and sentiments expressed by members of social
networks (Shanahan, Qu, & Wiebe, 2006), and adapting existing methods and tools to new
domains and genres (Gupta & Sarawagi, 2009), such as social media data and email data
(McCallum, Wang, & Mohanty, 2007).

1.5 Organization of Thesis

The chapters in this thesis are organized by the different types of availability of text data for
network analysis, and the structuring of these text data; going from the availability of
unstructured text data only (chapters 2 - 4) to (semi-)structured text data plus other sources for
network data (chapters 5, 6). These different options are depicted in Figure 1 and described
below. Table 2 summarizes which type of structuring is addressed in which chapter, and which

types of structuring the respective findings apply to.



Figure 1: Organization of thesis*

General case: raw input data
for any network analysis project

Case 1: Case 2: Case 3:
Relational data only Relational data plus other data Non-relational data only
Not this dissertation ) =

g 27 - 3
Case 2.1: Relational data = Case 2.2: Relational data Case 3.1: Case 3.2:
plus non-text data plus text data Non-text data only Text data only
Not this dissertation Not this dissertation
Chapter 6: Chapter 2-5:
Task: Joint consideration of relational Task: Extraction of network data

data and content of text data from text data

Graph enhancement:
Existence and/or properties
of nodes and edges

Transformation into
relational data

Additional information
about texts and/or author

Providing network data for meaningful analysis and as input to further processes

* Gray fields: situations addressed in thesis. Red fields: situations not considered in thesis

Availability of text data only (Figure 1, case 3.2): The structure and behavior of networks can be

explicitly or implicitly encoded in text data. Sometimes, texts are the only source of information

about a network. Most of these cases fall into one or more of the following categories, which are

not exclusive:

- Networks that are inaccessible or unobservable for researchers:

o Covert networks, e.g. illegal business coalitions (Baker & Faulkner, 1993) and

adversarial groups of sub-state and non-state actors (Krebs, 2002; Sageman,

2004).

o Networks that do not exist anymore, e.g. former regimes (Seibel & Raab, 2003)

and bankrupt companies (Diesner et al., 2005).



- Virtual networks that are not based on an underlying real-world network, or that are
nothing more than the data traces produced in these networks, such as blogs (Adar &
Adamic, 2005). We refer to such networks as WYSIWII (What-Y ou-See-Is-What-It-Is)
(Diesner & Carley, 2009b).

- Very large networks, where conducting surveys within appropriate network boundaries
would be prohibitively expensive (Burt & Lin, 1977), e.g. geopolitical networks.

- Groups that do not produce large amounts of readily available interaction data, e.g. ethnic
groups (J. Mitchell, 1969), or interactions in offline, not computer-supported settings.

- Semantic networks and network representations of mental models, i.e. structured

representations of information that people conceive in their minds (Klimoski & Mohammed,
1994; Rouse & Morris, 1986).

In these cases, network data can be extracted from text data. From an NLP point of view, this is
an Information Extraction (IE) task referred to as Relation Extraction (REX) (McCallum, 2005).
REX is particularly valuable when text data are the only source of information about a network.
However, the network data resulting from REX are hard to verify when (reliable) ground truth
data are missing (Klerks, 2001). This is often the case for covert and large-scale networks, for
example. This limitation is even more severe if we consider the fact that the computational and
interdependent steps needed for highly accurate REX solutions impact the structure and
properties of the distilled network data. These impacts are insufficiently understood (Corman et
al., 2002). I start to bridge this knowledge gap in chapter 2, where I investigate the amount and
boundaries of variation in network structure that is due to engineering decisions made when

building relation extraction tools and end-users decisions made when applying these tools.

In the social sciences, people have developed theoretically grounded and empirically tested
models of socio-technical networks. These models can be used as ontologies for defining the
entity classes that are relevant for Information Extraction and REX (Barthelemy et al., 2005; Van
Atteveldt, 2008). One of these models is the meta-matrix model, which contains entity classes
including and beyond the set of classes typically considered for REX, i.e. people, organizations
and locations (Carley, 2002a; Krackhardt & Carley, 1998). However, there is a lack of:

1. Technologies that facilitate the efficient extraction of network data that adhere to the meta-
matrix model.

2. Evaluations of the performance of such extraction technologies in practical applications
settings beyond experimental studies that serve the formal model validation based on ground
truth data.



The first need is addressed in chapter 3, where I develop and evaluate prediction models for
entity extraction. These models distill instances of meta-matrix entity classes from unstructured
text data. The retrieved entities can be used as nodes for constructing socio-technical networks.
In chapter 4, I describe how the developed entity prediction models are integrated into an end-

user software product as well as the operational implications of this process.

The second need is addressed in chapter 5, where 1 evaluate the performance of the
aforementioned prediction models in different, practical application contexts. In that chapter, I
also compare the resulting networks with respect to their structure and properties to networks
generated with alternative methods from the same text data. The ultimate goal with this work is
to provide network data that can be used to answer substantive and graph-theoretical questions
about socio-technical networks. The comprehensive analyses needed to answer the first type of
questions require additional empirical studies, which are beyond the scope of the thesis. The
point with this chapter is rather is to illustrate the process of going from a research question to
the collection and analysis of network data. I describe the methodological steps and choices
involved in this process such that this information can serve others as a guideline for conducting

empirical studies.

Joint availability of text data and network data (Figure 1, case 2.2): Sometimes, in addition to
text data, further sources of information about a network are available, such as relational data or
meta-data from which relational data can be constructed. Prominent examples for this situation

include:

- Surveys that ask respondents not only for information about entities and relations
(relational data) (see for example Krackhardt, 1987), but also for answers to questions
that further describe the nature of the nodes and links (text data) (Palmquist, Carley, &
Dale, 1997).

- Communication networks (who is talking to whom, relational data) about what (text data)
(Monge & Contractor, 2003).

- Co-citation networks, where person A4 is linked to person B if 4 cited B (relational data)
in a paper (text data) or patent (Hummon & Doreian, 1989; C. Roth & Cointet, 2010).

- Web science studies that combine data on the connectivity between URIs (relational data)
with the content of the corresponding webpages (text data) (Adar & Adamic, 2005;
Kleinberg, 2003).

Two approaches are commonly used for representing and analyzing both types of data: First, the
text data and the relational data are analyzed separately from each other. Second, the text data are
reduced to the fact, frequency or likelihood of the flow of information between nodes. This is
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typically done by representing the exchange of information as a link. While the second approach
is efficient and acknowledges that information exchange has taken place, it does not consider the
substance of text data. However, we know that without considering the content of text data, or by
analyzing text data and other data about a network in a disjoint fashion, we are limited in our
ability to understand the effects of language use in networks. This includes the transformative
role that language can play in networks, and the interplay and co-evolution of information, and
the structure and behavior of networks (Corman et al., 2002; Danowski, 1993). Approaches to
considering the content of texts are built on the idea that “travelling through the network are
fleets of social objects” (Danowski, 1993, p. 198), where these objects can be language, norms,
practices, and other types of human behavior and social interactions (Bourdieu, 1991; Eckert,
2000). The lack of integration and joint analysis of text data and other types of data about
networks is addressed in two places in this thesis: First, in chapter 5, where I show to what extent
networks extracted from texts data agree in structure and key entities with networks built from
meta-data or in collaboration with subject matter experts Second, in chapter 6, where I propose
and demonstrate a methodology for jointly considering relational data and text data.

Finally, text data sources may also contain non-textual information that are not addressed herein,
such as images, audio and video data (Figure 1, Case 2.1). These additional types of data might
contain further information about networks. While I do not consider these alternative types of
non-relational data herein, the methods for and insights from comparing and integrating text
networks and networks from other sources might serve others as a starting point for bringing

together different types of information about networks.

1.5.1 Datasets Used in Thesis

For the experimental work in chapters 2 and 3, I use external, validated, ground truth corpora.
With this kind of data, I am able to measure the actual and precise impact of coding choices on
network data, and to validate the prediction models in a reliable and controlled fashion. These

datasets are introduced in chapter 2.

For the applied work in chapters 5 and 6, I use a corpus that we have previously collected
(Enron) (Diesner et al., 2005), and two corpora that I have collected and prepared for this thesis
(Sudan, Funding). The Enron data contain emails from employees in the Enron corporation
(Diesner et al., 2005). The Sudan corpus consists of news wire articles about the Sudan, plus
meta-data on these articles, such as publication dates and index terms. The Funding corpus
comprises proposals of funded research projects, plus information about the people involved in
these projects, and additional details about the projects, such as amount of funding awarded.

These datasets are introduced in detail in chapter 5. Table 1 compares the datasets used herein
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along various characteristics. Even though the datasets are from different domains - namely

industry, politics, and science - they share a few characteristic:

- All datasets contain natural language text data.
- All datasets contain some meta-data.

- All datasets contain time-stamped, long-term, over-time data.

Much of the recent work on combining text analysis and network analysis investigates the
properties and benefits of interaction between humans via social media and computer supported
collaborative work environments. In contrast to that, the datasets used herein represent networks
that involve conflicts (Enron, Sudan) and competition (Funding). Prior research suggests that for
such networks, the formation and cohesion of groups might also be driven by external pressures,
such as scarce resources and the struggle for power, more so than by group-inherent
characteristics, such as a shared identity and the desire to collaborate. These properties have
shown to foster the development of strategic alliances (Fitzmaurice, 2000). For situations in
which groups need to balance concealment and coordination, prior research has provided
empirical evidence for how these networks differ from overt networks (Baker & Faulkner, 1993).
However, this thesis is focused on methodological questions instead of substantive questions
about the considered datasets and domains. Nonetheless, the technologies and methods
developed and evaluated herein are tested on these datasets, such that the gained insights can be
expected to generalize within the stated boundaries to other datasets from similar domains. This
helps to complement knowledge about classic cooperation and collaboration networks, and

addresses shortcomings with methodological issues for analyzing covert networks (Klerks, 2001;
Skillicorn, 2008).

Table 1: Comparison of datasets

Dimension Sudan Corpus Funding Corpus Enron Corpus

Domain Geo-political : Science: Business:
Politics, conflict, covert Innovation, collaboration, Innovation, politics, covert
activities competition activities

Social network Implicit Explicit in project Explicit in emails headers
in text bodies descriptions

Semantic Implicit Implicit Implicit

information/ in texts in abstracts in email bodies

network

Size 79,388 articles 55,972 proposals 52,866 emails

Time span 12 years 25 years 6 years

Original access to | Public Beginning: internal Internal

data If funded: public
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Intended audience

The public
Analysts

Program managers

Scientific community

Addressees

Style

Formal: journalistic

Formal: scientific

Formal and informal

Table 2: Types of text data and networks used in thesis*

Chapter Experiments and Analyses Insights gained and
technology built applicable to
Network modality Type of structure of text | Network Type of
data modality structure of
text data
2: Investigation of One-mode networks Unstructured One-mode Mainly
impact of coding (reference resolution networks and | unstructured
choices on network project, windowing multi-mode data. Also
structure and network | project). networks. applicable to
analysis results. Multi-mode networks structured
(windowing project). data.
3. Entity Extraction One-mode networks and
for providing nodes for | multi-mode networks.
constructing socio-
technical networks.
5. Comparison of Unstructured:
networks generated Sudan: news articles
with various relation Funding: research
extraction techniques. proposal
6. Method for One-mode networks of Enron: email bodies Unstructured
combining content of | different modes (concept Structured: data for which
text data with social network, social network). | Sudan: meta-data meta-data are
network data. Funding: meta-data also available.
Enron: email headers

* Using the definition of structured and unstructured

data presented in this chapter, most data annotated for

information extraction purposes falls under the category of structured data. However, the actual texts in such

datasets are unstructured. Entries marked with a * in this table represented cases in which unstructured text data with

annotations that bring some form of structure to the text are used.

1.6 The Network Analysis Process

The questions addressed in this thesis relate to certain steps of the overall network analysis

process. Since network analysis has originated from various fields with cross-disciplinary

influences, the methodology for conducting network analysis is less standardized than research

methodologies that are more specific to a field. Synthesizing prior descriptions of the network

analysis process (Knoke & Yang, 2008; Wasserman & Faust, 1994) suggests that this process
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comprises the seven steps shown in Figure 2. In this figure, the steps towards which this thesis
makes a contribution are marked with gray backgrounds. Since these individual steps are highly
interdependent, any individual step can be assumed to have recuperations on the following steps

as well as on the overall outcome of a network analysis project.

Figure 2: Network analysis process and steps focused on in this thesis (gray)

s a

1. Specification of a goal, question, or task.

A

2. Specification of relevant entities (nodes), relations (edges), and network boundaries.
( \

3. Data collection (if no data given) or data enhancement (optional).

O

4. Representation of the relational data as a list, matrix, or graph.

O

(" N
5. Analysis and utilization of relational data. This may entail database operations such as search
and retrieval, network analysis, network visualization, network simulation, and generation of input
for machine learners, among other processes.

o Q J
6. Validation of results. Error analysis if applicable.
4 Q N\

7. Interpretation of results with respect to step 1. This can include suggesting intervening strategies

and policies or formulating, extending or revising theory.
. J

1.7 From Text Data to Network Data to Knowledge

The focus of this thesis is on the collection, analysis and validation of network data extracted
from texts. I distinguish between network data and relational data. What is the difference, and
why does it matter?

Relational data, also referred to as graphs, consist of vertices, also called nodes, and of edges,
also called arcs, links, or connections. The edges connect the nodes. Additionally, nodes and
edges can have weights, attributes, types, and probabilities, and links can furthermore have
directions. Nodes can represent instances of one (one-mode) or more (multi-mode) types of

entity classes, such as “agent” and “information”. Edges can represent instances of one (uni-
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plex) or more (multi-plex) types of relationships, such as “collaboration” or “trade” (Carley,
2002a; Wasserman & Faust, 1994, p. 79). Social networks, for example, involve only entities of
the type “agent”.

Network data consists of relational data plus additional data that help to contextualize and
interpret relational data (Alderson, 2008). Thus, relational data are an indispensable subset of
network data, but are insufficient for revealing comprehensive stories about socio-technical
networks (Corman et al., 2002).

It has been previously argued that in order to allow for meaningful analysis of socio-technical
networks and for answering substantive questions about such networks, linked data need to be
transformed into information, and information into knowledge (Parastatidis et al., 2009).
Translating this argument into network terms means to go from relational data to network data,
and from network data to knowledge. Transforming relational data into network data requires the
enhancement of relational data with additional data (Alderson, 2008). This is typically achieved
by bringing together various types or sources of information about a network. This theoretical
argument has been put into action by applying one or more of the following strategies:

- Including attributes that describe relevant characteristics of nodes and/or edges
(Sampson, 1968).

- Considering different views of a network (Krackhardt, 1987).

- Enhancing relational data with additional data that help to fix the context of the relational
data.

Additional data about networks are often referred to as meta-data. Widely adopted types of meta-
data are temporal and spatial information, such as timestamps of events or the geophysical
position of nodes (Eagle & Pentland, 2006; Snijders, 2001). Another type of additional data are
natural language text data (Carley & Palmquist, 1991; Danowski, 1993). This thesis focuses on
the latter option, i.e. using text data to construct and enrich relational data and network data.
While texts generated by humans can be considered as a type of behavioral data, meta-data can
be generated by humans or automatically, e.g. in the case of key words for documents. This
thesis is focused on methods for utilizing human-generated text data pertaining to socio-technical

networks, including meta-data.

Going from networks to knowledge means to perform analyses such that substantive questions
about networks can be answered. In general, this requires the usage of methods and the
computation of metrics that are appropriate for some given network data. Sometimes, using
generic matrix operations or calculating metrics that are defined independently of the type of

nodes or edges is most appropriate and sufficient. This often applies to research problems in
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network science. In other cases, methods and metrics are needed that take the types or other
characteristics of nodes and edges into account (Carley, 2002a; Krackhardt & Carley, 1998).
This can apply to the analysis of multi-mode or multi-plex networks, for instance (Cataldo,
Herbsleb, & Carley, 2008; Krackhardt & Carley, 1998). When the latter approach is more
appropriate, there are several models and metrics available that are based on theories about the
system that the network data represent. I herein follow this route by using a theoretically
grounded model of socio-technical networks to inform the selection of entity types to extract

network data from text data.

In summary, going from relational data to network data to knowledge helps to make the
substance or meaning of network data practically useful and actionable. Here, “practically
useful” and actionable “actionable” means extractable, explicitly representable, and useful for
answering substantive and graph-theoretical questions about socio-technical networks.
Sometimes, this process is used to develop strategies for taking further actions, such as designing
and implementing policies and interventions. The concept of actionable meaning as used in this
thesis is closely related to semantic computing, which refers to “computing with (machine
processable) descriptions of content and intentions” (Parastatidis et al., 2009). The difference
between semantic computing and making the substance or meaning of network data actionable is
that the approach followed herein does not necessarily imply the consideration of intensions, but
focuses on contributing to the potential practical usefulness of network data.

1.8 Summary of Contributions

The study of the impact of coding choices on network data and analysis results (chapter 2) and
the implications of these findings for practical work (chapter 4.1) can help people to become
better informed users of relation extraction methods and technologies, to gain greater control
over these multi-step analysis procedures, and to draw reasonable conclusions from network
analysis results. The findings from chapter 2 emphasize that it is crucial to know the amount and
nature of the impact and interaction effects of routines involved in relation extraction on network
data. This work together with the testing of the prediction quality of an entity extractor (chapter
3) in different applications settings (chapter 5) complements traditional methods for assessing the

accuracy of relation extraction methods.

In chapter 4, the transition from experimental results to a) the impact of coding choices on
network data and b) the accuracy of the entity extractor in real-world applications is described.
This work increases the practical usefulness and interpretability of network analysis results.

Also, the challenges identified for converting trained prediction models into ready to use
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software, and the developed solutions to these challenges can provide others with guidance for

this kind of design and engineering problem.

Based on the comparison of network data generated with different methods from the same
corpora (chapter 5), the differences and commonalities in network structure and analysis results
are identified. Moreover, I show which findings generalize across domains and writing styles,
and which ones are more domain-specific. This knowledge is relevant in the context of networks
for which insufficient or unreliable ground truth data are available, because in these situations, it
is crucial to know how the views on a network differ depending on the employed relation
extraction method. This work has also shown that generating thesauri by using the entity
extractor built in chapters 3 and 4 greatly reduces the time costs for constructing thesauri in a
manual or semi-automated fashion. However, based on the findings from the qualitative
assessment of the auto-generated thesauri, it does not seem recommendable to use these thesauri
without further verification and refinements. The strategies and tools for post-processing the
auto-generated thesauri that I describe and develop in chapters 4 and 5 might help others with
this process. Moreover, my results show that working through this refinement process increases
the similarity between networks generated by using the auto-generated thesauri and networks

generated with alternative methods.

In chapter 6, an advancement to the methodological approach of enhancing social network data
with content nodes extracted from text bodies is developed, operationalized and tested in
practical application scenarios. The proposed approach considers the substance of text data and
helps to integrate different aspects that drive the properties and dynamics of networks. I conclude
that extracting content nodes from groups of structurally equivalent agents is an appropriate
strategy for enabling the comparison of the information that these agents produce, perceive or
disseminate, while extracting content nodes from groups of structurally coherent agents is an
appropriate strategy for enabling the enhancement of social network data with content nodes.
The results from putting the latter approach to the test include a comparison of the outcome of
topic modeling to the results from alternative information extraction methods, including entity
extraction based on supervised learning. My findings show that performing key player analysis
on text-based networks retrieves only a small portion of entities that would not be found with
topic modeling, and that entities from meta-data knowledge networks might serve as suitable
labels for unlabeled topics. Also, these comparisons further complement the findings from
previous chapters about the differences and commonalities between various methods for

constructing network data from text corpora.

In summary, by bringing together text data and relational data, this thesis makes substantial

advances at the nexus of text analysis and network analysis. Using text data for network analysis
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is further a valuable strategy for contextualizing and interpreting graphs, and transforming linked

data into useable information and knowledge (Parastatidis, et al., 2009).
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2 Impact of Methodological Choices for Relation Extraction on Network
Data and Network Analysis Results?

When network data are needed and text data are available as a source of information, network
data can be extracted from text data. In computer science, this task is referred to as Relation
Extraction (REX). Relational data extracted from text data may represent the nodes and edges in
the network of interest accurately or not. This chapter makes a contribution by complementing
traditional REX evaluation metrics with novel experimental results that help to answer the

following questions:

- How do methodological choices for REX impact the extracted network data and
respective analysis results?

- How do errors made during text data preprocessing, node identification and link
identification propagate through REX tool chains?

- How much do improvements in REX accuracy rates help to diminish these effects?

Two particular coding choices are considered in this chapter: first, reference resolution, which
identifies the entity or entities that a referring expression such a pronoun or co-reference refers to
(sections 2.4, 2.7.1). Second, windowing, which is proximity-based method for linking extracted
nodes (sections 2.5, 2.7.2). The results from this chapter inform us on how much the coding
choices that one needs to make when extracting network data from text data as well as typical
error for these procedures impact common network metrics and the identification of key players.

2.1 Introduction to Relation Extraction from Text Data

Methods for going from texts to networks have been developed in different fields, mainly
Artificial Intelligence (AI) (Sowa, 1992), Natural Language Processing (NLP) and
Computational Linguistics (CL) (Mihalcea & Radev, 2011), social science (Carley, 1993; Glaser
& Strauss, 1967) and political science (Gerner et al., 1994). Even though these methods differ in
their terminology, underlying theories and assumptions, degree of automation, evaluation
strategies, and typical application areas, they overlap in that they exploit one or more of the
following types of information:

- Lexical and morphological information, i.e. words and their structure (e.g. Woods, 1975).

- Syntax, i.e. the relationship between words (e.g. Janas & Schwind, 1979).

" In this chapter, portions are reprinted, with permission, from: Diesner, J., & Carley, K. M. (2009). He says, she
says. Pat says, Ttricia says. How much reference resolution matters for entity extraction, relation extraction, and
social network analysis. Proceedings of IEEE Symposium on Computational Intelligence for Security and Defence
Applications (CISDA), Ottawa, Canada, © IEEE.
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- Semantics, i.e. the meaning of words and language (e.g. Fillmore, 1968; Ogden &
Richards, 1923).
- Pragmatics, i.e. the social use of language (e.g. Hovy, 1990).

- Logical (e.g. Shapiro, 1971) and statistical (e.g. Pearl, 1988) information.

These types of information are explicitly or implicitly contained in text data or can be inferred
from it. Section 3.2 provides a problem-oriented review of the families of methods for going
from texts to networks. For a more comprehensive review, see also Diesner and Carley (2010c).
Currently, the most accurate, efficient and scalable REX methods combine NLP and CL
techniques, and involve routines from statistics and machine learning (McCallum, 2005; Van
Atteveldt, 2008). At a minimum, REX involves three steps, which are typically performed in the

following order:

1. Data pre-processing: this includes subroutines such as chunking (partitioning texts into
semantic units, typically sentences), reference resolution and word sense disambiguation.

2. Node identification, and if needed node classification: the generalized version of this task
has been studied in NLP and Information Extraction (IE) under the label of Named Entity
Recognition (NER) (Bikel, Schwartz, & Weischedel, 1999), and also in political science,
where it is called event data coding (Schrodt, Yilmaz, Gerner, & Hermick, 2008). A more
detailed introduction to this and the next step is provided in section 3.2.

3. Edge identification, and if needed edge classification: in this step, the identified nodes are
linked into edges (Miller, Fox, Ramshaw, & Weischedel, 2000; Zelenko, Aone, &
Richardella, 2003).

Tremendous progress in the automation and performance of REX has been achieved over the last
decade (see for example Brin, 1999; Bunescu, 2007; Etzioni et al., 2004; McCallum, Wang, &
Mohanty, 2007; Zelenko et al., 2003). These advances are mainly due to two reasons: First, they
were facilitated by REX competitions that were initiated and funded by US-American
governmental agencies, such as the Message Understanding Conference (MUC) (Chinchor,
2001), the Automatic Content Extraction Program (ACE) (Walker, Strassel, Medero, & Maeda,
2006), and the Translingual Information Detection, Extraction and Summarization Program
(TIDES) (A. Mitchell et al., 2004). These competitions involve the provision of benchmark
datasets and the development of REX evaluation metrics. Second, advances in REX have been
attributed to progress with statistical and machine learning techniques, which have been
developed and adopted by NLP researchers (Mihalcea & Radev, 2011).
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2.2 Evaluation of Relation Extraction: Problem Statement

In Information Extraction, accuracy is typically measured as the percentage of correctly
identified and classified items, in this case nodes and edges. Two methods are available for

determining the accuracy of the retrieved data:

First, the “gold standard test”, which compares distilled network data against ground truth data
that has been previously annotated by trained human experts with entities and/or relations. The
manual or computer-supported generation of correct and reliable ground truth data is expensive.
For the domain of political event data coding, for example, it has been shown that humans
trained for this task can identify and mark up about five to ten relations or events per hour, or up
to 40 relations per day (Schrodt, 2001; Schrodt et al., 2008). Fortunately, various annotated
datasets for IE tasks, including NER and REX, have been generated for nationally funded
initiatives and made available through the Linguistic Data Consortium (LDC). An overview of
these datasets is provided in Table 5. However, the non-trivial task of annotating data for REX
has led to compromises: First, most standard REX datasets denote relations mainly on the
sentence level (Bond et al., 2003). One explanation for this effect could be that the reliable
identification, disambiguation and annotation of entities and relations within and across multiple
sentences, paragraphs, documents or even corpora might be cognitively too complex for humans
to perform (Corman et al., 2002). Second, the number of entity classes and even more so of node
classes to be considered for REX is often kept fairly small: typically, solutions are developed that
are constrained to locating and classifying entities that represent people, organizations and
locations that are referred to by a name. For edges, most solutions are developed for relationships
that are defined over the named node types, and sometimes also classify these relations
according to a (predefined) ontology. As a result, the workflow in many of these systems is such
that entities are identified first, and edges second. In an attempt to challenge this standard
procedure, Roth and Yih (2002) showed that knowing the class label of entities helps to label
relations, but not vice versa. These results confirm the traditional sequence of steps taken in
REX.

As an alternative to the gold standard test, REX outputs can be assessed by subject matter
experts (SMEs). The SMEs examine how closely the extracted data resemble the actual network
of interest (King & Lowe, 2003). However, for real-world applications, the obtained network
data are often too voluminous and too complex to be vetted by humans for accuracy. To make
things worse, in some cases, neither any ground truth data nor SMEs might be available for

validating results, e.g. when performing REX on historical data (Bearman & Stovel, 2000).
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In NLP, accuracy is typically measured in terms of recall, precision, and a weighted average of
these two metrics. The formulas for these metrics are given below. Recall measures coverage,
i.e. what percentage of entities or links from the ground truth data have been retrieved. Precision
measures accuracy, i.e. what percentage of the retrieved items, which can include false positives,
are correct ones, i.e. occur in the ground truth data. Since recall and precision are typically

inversely related, the harmonic mean of both values is also computed, which is called the F-

measure.
Equation 1
number of correctly classified entities retrieved
Recall = ——
number of entities in ground truth
Equation 2
o number of correctly classified entities retrieved
Precision = p ;
number of entities retrieved
Equation 3

Recall * Precision
"~ 0.5( Recall + Precision)

There is a conceptual difference between ground truth and accuracy. In this thesis, I am working
with two types of ground truth data: First, annotated corpora from external providers such as the
Linguistic Data Consortium. For these data, intercoder-reliability, which is an approximation of
the accuracy or quality of the data, has already been measured. Second, coding material and
network data provided by SMEs. The assumption here is that the SMEs are able to provide an
accurate assessment or picture of a socio-technical system. In general, it can be difficult to
ascertain the truth of some text data, for example because this truth can only be elicited from the
authors or is implicitly represented in the data. I make no claim that the ways in which I capture
“ground truth” represent what the author intended or what others might extract with other
compendiums. Rather, I claim that if other’s use the same approaches to establishing ground
truth they can compare the accuracy of their algorithms against those described herein. Accuracy
1s defined as the extent to which the data extracted from the text, i.e. the coded data, matches the
ground truth data. That is, the extent to which the “concepts” extracted as nodes, the links, and
the ontological classification generated by the algorithm are identical to those in the ground
truth.

In summary, REX evaluation methods and metrics are tuned towards maximizing the accuracy of

REX methods while avoiding overfitting to the training data. Here, accuracy means resemblance
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of the ground truth as identified by human experts; either expert data annotators or subject matter
experts. As a consequence, research efforts in this area have been focused on improving existing
REX methods or developing new ones, and reporting increases in accuracy over a baseline,
established benchmark values, and alternative or competing systems. Typically, the research
question asked with this type of work is, in a simplified form: How can we build a method,
algorithm or technology that leads to the comparatively most accurate relation extraction results?
I argue that while answers to this question advance the field of NLP, this common research
question does not address two additional aspects of accuracy that are also crucial for
understanding and improving the performance of solutions to REX. I elaborate on these two

aspects in the following two subsections.

2.2.1 Impact of error propagation through interdependent subroutines on network
data

First, the steps involved in REX i.e. pre-processing and the identification (and classification) of
nodes and edges, are not independent of each other, meaning that decisions made for one step
can impact the results obtained from any subsequent step (Bernard & Ryan, 1998; Carley, 1993;
C. W. Roberts, 1997b; D. Roth & Yih, 2002; Sarawagi, 2008). This type of complexity is further
increased by the fact that modern REX techniques typically comprise multiple subroutines per
step, and these subroutines can also exhibit interaction effects. The problem here is that even
though the described interdependencies can lead to cascading errors and impact on intermediate
and subsequent results, we do not have a good understanding of these effects, their impact on
final results, and the robustness of REX methods towards these effects. One reason for this lack
of knowledge is that this question has not yet been raised. This is troublesome because any error
throughout the REX process can lead to inaccurate network data, erroneous analysis results,
misleading interpretations, and unjustified further actions. Addressing this question becomes
even more important when considering that the steps involved in REX are not flawless
themselves: standard pre-processing techniques, such as part of speech tagging and reference
resolution, have error rates of about 4% and 20% to 40%, respectively (Denis & Baldridge, 2007;
Diesner & Carley, 2008b). For entity extraction, accuracy rates range from 80% to more than
90% (CoNLL-2003, 2003; MUC?7, 2001). The edge identification stage will inherit both of these
errors. Moreover, top performing relation extraction solutions have error rates of 30% up to 50%
(Sarawagi, 2008). Yet another factor contributing to the limited understanding of
interdependencies and error propagation in REX is that state of the art REX systems do not
necessarily expose or provide detailed documentation on the employed subroutines. Therefore,
the propagation of variation in results is not always transparent or comprehensible for the end

user. Moreover, computational solutions for each of the three steps involved in REX are often
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developed independently from other steps. For example, link identification algorithms, methods
and tools often assume that node identification has already happened (Chang, Boyd-Graber, &
Blei, 2009). This separation of tasks inhibits the investigation of the end-to-end propagation of

CITors.

2.2.2 Impact of relation extraction subroutines on network analysis results

Second, the selection of specific methods and subroutines for REX impacts not only the accuracy
of extracting entities and relations, but also the structure and properties of the retrieved relational
data. However, the relationship between changes in the accuracy of REX and changes in network
properties are also insufficiently investigated and understood, even though this gap in research
has been previously pointed out by others (Carley, 1997a; Schrodt, 2001). Why would
knowledge about this relationship matter? Let’s assume somebody provides a new or improved
algorithm that leads to a statistically significant increase in REX accuracy. This would be a
substantial contribution from an NLP point of view. However, this solution does not tell us
anything about what changes we could expect in the shape and properties of the retrieved
network. If the changes in network characteristics were also significant, or maybe even larger
than the changes in REX accuracy, the need for more accurate REX solutions would be further
substantiated, and success in achieving this goal would advance both REX and network analysis.
If, however, the impact on the network was insignificant, further investing in improving REX

accuracy rates would not be worthwhile from just a network analysis perspective.

In this thesis, I address both of the shortcomings identified and described above in 2.2.1 and
2.2.2, and contribute to a more comprehensive understanding of REX accuracy by raising the

following research question:

Overall research question:
How much of the variation in a) the structure and properties of network data extracted
from texts and b) the results from analyzing these relational data are due to decisions

made during the REX process?

This question is further detailed in the methods section of this chapter. Ultimately, what is
needed to answer the raised question in a comprehensive fashion is a knowledge base of method-
induced biases and error propagation effects for REX that everybody can draw from when
applying or developing such methods and tools. With this thesis, I get work in this direction
started by investigating the impact of choices for selected and widely used text coding techniques

on network data and analysis results.
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Who cares about the outcome of this work? Even though most REX methods have been
developed for specific domains and corpora, many of these methods share a large portion of
routines for pre-processing and node and edge extraction. I argue that a better understanding of
the impact of error propagation and the robustness of REX methods towards these errors
contributes to a greater comparability and generalizability of the respective methods. Such
knowledge would also provide developers and end-users of REX tools with greater transparency
and control over complex, multi-stage analysis processes. Furthermore, a more precise
understanding of the relationship between choices made for REX and the robustness of network
data and analysis results towards these effects can help end-users to draw valid and reasonable
conclusions from their work and work by others. Furthermore, engineers can take this knowledge
into account when integrating REX solutions with network analysis technologies. Finally, an
answer to the raised research questions is particularly relevant when network data are hard to
validate. The knowledge gained with this study can help to weight or factor out effects induced

by methodological choices.

2.3 Design of Study and Methodology

How to determine the impact of methodological choices for REX on network data and analysis
results? Two strategies are possible: First, one could conduct a series of user studies to observe
the coding choices that people make, and then ask human subjects about the conclusions they
draw from interpreting the analysis results. The advantage with this approach is that it allows for
experimenting with currently relevant domains and genres. However, as outlined in section 2.2,
collecting a sufficiently large dataset that allows for drawing generalizable conclusions this way
is a costly, long-term process. Alternatively, we could use previously generated and validated
datasets. This strategy offers various advantages: it is more cost efficient, does not involve
additional reliability tests for human coding, and allows me to focus on the core of the given
research question, i.e. the isolation of the impact of user choices on network data. The
disadvantage with this strategy is that it limits us to existing datasets, including their constraints.
Based on this comparison of strategies, I decided to use the second approach. More specifically, I
herein determine the impact of selected methodological choices for REX and the robustness of

network data towards these choices by employing the following procedure:

Identify a set of relevant methodological choices (sections 2.4 and 2.5).
Identify datasets that allow for testing the impact of these choices (section 2.6).
3. Conduct a series of controlled experiments in order to determine the impact of these

choices while holding all other choices and factors constant (section 2.7).
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2.4 Reference Resolution: Background and Research Questions

Reference Resolution is a widely used pre-processing technique in information extraction and
relation extraction. This technique identifies the entity that a referring expression refers to
(Hobbs, 1979; Sidner, 1979). For practical applications this means that the various instances and
mentions of unique entities, including pronouns, spelling variations, abbreviations, acronyms and
repetitions, are identified and consistently associated with or converted into a unique key
identifier per entity.

Reference resolution comprises two tasks: anaphora resolution and coreference resolution. The
goal with anaphora resolution is to identify the antecedent A4 that an anaphoric expression, also
known as anaphor, B refers to (Sidner, 1979). Typically, 4 is a noun phrase and precedes B,
which usually is a pronoun, in the text. 4 is only considered to be an antecedent of B if 4 is
required for resolving B. Thus, the relationship between 4 and B is non-symmetric, non-
reflexive, and non-transitive (Deemter & Kibble, 2000). The goal with coreference resolution is
to identify all of the entities that are mentions of the same referent C (Hobbs, 1979). These
referring expressions are typically noun phrases. Entity C may or may not be explicitly
mentioned in the text data. Entities 4 and B are only considered to be co-referents if they both
unambiguously represent entity C, such that 4=C and B=C. Therefore, coreferences are
symmetric, reflexive, and transitive equivalence relationships (Deemter & Kibble, 2000).

How do anaphora resolution (AR) and coreference resolution (CR) relate to each other? If an
anaphor B and its antecedent 4 refer to the same entity, 4 and B are coreferential. However, there
is no deterministic or set-theoretic relationship between AR and CR, i.e. an anaphoric and a
coreferential relation may overlap, but not all cases of AR are also cases of CR and vice versa.
Another difference between AR and CR is that for resolving a given B, in AR, 4 has to be
interpreted within the context of the text in which both phrases occur, while in CR, interpreting 4
is not required for testing which entity C some entity B is identical to. For example, in the phrase
“Barack Obama, the President and Nobel Peace Prize winner...”, both mentions of a person refer
to the real-world entity C = “Barack Obama”, but an interpretation of entity A4 (“President”) is
not required for resolving entity B (“Nobel Peace Prize winner”). In contrast to that, in the phrase
“Obama ran for president in 2008. In 2010, he won the Nobel Peace Prize”, resolving the
referential expression B = “he” with the antecedent 4 = “Obama” requires an interpretation of

the text preceding entity B.

How is reference resolution (RR) relevant for REX? Both, AR and CR, are normalization and
deduplication techniques that are commonly used as pre-processing steps when performing entity

extraction and relation extraction. I use the terms entity and node interchangeably in this chapter
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since the set of entities contained in a corpus also represents the set of nodes which can be linked
into edges. In this context, AR is used to convert pronouns into the respective non-pronominal
entities that the pronouns refer to. CR is applied to map multiple instances of an entity to one
unique, non-pronominal identifier, and to associate co-referring entities with each other. Taking
these effects together, RR can impact the identity, literal mention, i.e. spelling, and weight of
nodes and edges. Since there is insufficient knowledge about the impact of RR techniques on
network data, I investigate these impacts in this chapter. Furthermore, I argue that the insights
gained from this study complement prior knowledge about the effects of deduplication and
consolidation of records in relational data, e.g. in relational databases (Bhattacharya & Getoor,
2007; Culotta & McCallum, 2005).

What impact can RR have on network data? Both, AR and CR, can increase the number of
mentions per unique entity. This cumulative sum is typically represented as the node weight in
network data. While AR does not alter the number of unique named entities, CR potentially
reduces this number. Also, while AR is the main strategy for reducing the number of pronouns,
CR can also lead to this effect if a set of otherwise unresolved pronouns are identified as being
co-referring to each other. Table 3 summarizes these possible effects. Cells labeled as “yes” in

Table 3 represent the desired outcome of performing RR.

Table 3: Applicability and impact of reference resolution methods

Case Type of entity Applicability of Potential impact on unique entities
Reference Resolution methods (names or nominals, not pronouns)

Name or Pronoun | Anaphora Coreference Number Weight of
Nominal Resolution Resolution entities impacted

1 N=1 0 not applicable not applicable n.a. n.a.

2 0 N=1 not applicable not possible n.a. n.a.

3 N>1 0 not applicable yes decrease increase

4 0 N>1 not possible Y none* none**

5 N=1 N>=1 | yes Y none increase

6 N>1 N>=1 | yes yes decrease increase

7A Only among pronouns if number of pronouns > 1

* Decrease of number of distinct pronouns possible

** Increase of weight of unique pronouns

For links, the resolution of anaphoric nodes does not change the link weight. If however two
nodes 4 and B in a link are coreferences of two nodes C and D in another link such that 4=C and
B=D or A=D and B=C, these two links can be merged into one link while increasing the link
weight by one. If further links are merged into this link, the link weight is increased accordingly.
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In summary, conducting AR and CR on the entity level is a precondition for impacts of RR on

the levels of relational data and network analysis results.

In summary, RR can have the following impact on network data: AR decreases the number of
pronominal entities. CR decreases the number of unassociated (not in the sense of unlinked)
entities and relations. As a result, both AR and CR can lead to an increase in the number of
mentions of unique, non-pronominal entities. If these entities appear as nodes in a network,
including isolated nodes, the weight of nodes and links can get increased, and the number of
links can get decreased. Combining AR and CR might be more effective in achieving these

effects than either technique alone.

Current RR techniques achieve accuracy rates of less than 100%, and no algorithm (or human)
might ever return perfectly correct reference resolution results. Actual accuracy rates for RR
strongly depend on the applied resolution method, dataset, and evaluation metric. Table 4 gives
an overview on performance results for publicly available, state of the art RR technologies;
showing that accuracy rates are about 80% and more for AR, and about 70% and higher for CR.
The top scoring techniques are based on supervised machine learning methods. In this study, I
also simulate the introduction of typical errors into ground truth data in order to understand how

much change in RR accuracy rates leads to what changes in network properties.

Table 4: Selection of accuracy rates for Reference Resolution

System RR Training Evaluation | Recall | Pre- F
data Metric cision

Reconcile (Stoyanov et al.) CR ACES B cubed 55 65 60

Illinois Coreference Package CR, ACE4 B cubed 75 88 81

(Bengtson & Roth, 2008), Stanford AR and
Deterministic Coreference Resolution | CR
System (Raghunathan et al., 2010)

SemEval2010 (English, information: CR SemEval B cubed 75-85 | 78-97 | 82-85
open, annotation: gold) various OntoNotes

participants (Recasens et al.)

BART (Versley et al., 2008) AR, CR | ACE2 n.a., B cubed? 55 78 64

This part of the study is driven by the following research question:

Overall research question:
What impact does reference resolution have on network data and network analysis

results?
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Both of these impacts are referred to as “effects” in the more precise formulation of research
questions below. As already explained, both AR and CR can lead to an increase in the number of
mentions per unique, non-pronominal entity and the weight of nodes and links, and a decrease in
the number of unique links. Since the goal with this project is to understand the impact of RR on
network data, I am asking the same research question on the level of entities, links, and network
analysis results. Starting from the outlined relationship between RR and network analysis and the
logic and functioning of RR techniques, I address the following research questions:

Research question 1:
How large are these effects on the entity level?
Which routine, AR or CR, is more effective in achieving these effects?

Is combining AR and CR more effective than either technique alone?

Answers to the first research question are relevant when conducting NER and content analysis,

and for preparing nodes for the construction of network data, for example.

Research question 2:
How large are these effects on the link level?
Which routine, AR or CR, is more effective in achieving these effects?

Is combining AR and CR more effective than either technique alone?

Research question 3:
How large are these effects on the network level?
Which routine, AR or CR, is more effective in achieving these effects?

Is combining AR and CR more effective than either technique alone?
Answering research questions one to three is relevant when performing relation extraction.

Research question 4:

How much change in network properties in due to increases in accuracy rates for AR and
CR?

Answers this research question is relevant when selecting a RR technique that is appropriate

given the type of network analysis that one plans to conduct.

2.5 Windowing: Background and Research Questions

Once nodes have been identified via entity extraction or some alternative technique, they can be
linked into edges in order to construct network data. For this purpose, a variety of approaches
have been developed, which exploit lexical (Gerner et al., 1994), semantic (Woods, 1975),
syntactic (D. Roth & Yih, 2007), logical (Berners-Lee, Hendler, & Lassila, 2001; Woods, 1975),
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ontological and taxonomic (Fellbaum, 1998), proximal (Danowski, 1993) and statistical
information from text data. A summary of the main families of methods that use these link
formation approaches is provided in Table 52. For a more detailed review see also Diesner &
Carley (2010c).

Especially in the domain of extracting word networks from texts, which is sometimes also
referred to as network text analysis, a commonly used link formation approach is windowing
(Carley, 1993; Danowski, 1993). Windowing is a proximity based approach that basically links
all entities within a user-defined portion of the text data into edges. Parameters of the window
are the chunk of the text input, e.g. sentences or paragraphs, and the number of adjacent words
(window size). With some windowing approaches, all identified entities within each window are
linked together; forming complete cliques or chains of words (Corman et al., 2002; Gerner et al.,
1994). With other approaches, only connections between certain types of nodes (links defined
over node types) or nodes that have a specific relationship with each other, such as certain

syntactic relationships, are permitted.

The advantages with windowing are that this technique is easy to implement, to adopt for new
domains, and to comprehend for end users. These reasons might explain the frequent use of this
approach for practical applications. The main critique® of windowing is that it is fairly arbitrary
and not grounded in theory or any assumption about the production and comprehension of texts
(Corman et al., 2002). Moreover, there are hardly any empirical studies of appropriate window
sizes given certain domains, datasets, etc., which could provide guidance when selecting a

suitable window. I address this gap in research by raising the following research questions:

Research question 5:
What window size do human experts use when identifying relations in text data?

Does this typical window size differ depending on the type of data or relations?
Research question 6:
What window size is needed to capture the vast majority of links in text data?

Does this window size differ depending on the type of data or relations?

Research question 7:

* One critique that we have often received on papers that we had submitted and where we used text coding in
AutoMap was that the choice of a certain window size was not well justified. One goal with this project is to harness
this point of critique.
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What error rate, i.e. amount of wrongfully identified links (false positives) and missed
links (false negatives), can be expected when applying a specific window size?

Does this error rate differ depending on the type of data or relations?

2.6 Data

For this project, I do not perform reference resolution or windowing manually or algorithmically,
but work with sizable datasets that trained human coders have annotated for these tasks. These
datasets are assumed to be gold-standard, ground truth data, for which the intercoder-reliability
and annotation quality have been previously validated (Jurafsky & Martin, 2009). Using these
datasets allows me to make non-probabilistic statements about the impact of the investigated
techniques; thus providing an empirically grounded benchmark for the impact of reference
resolution techniques and windowing on relational data. Table 5 provides an overview of these
datasets and compares them along a few dimensions. These dimensions are relevant for choosing
appropriate datasets for the studies presented herein, and show what types of data my findings
can reasonably be assumed to generalize to. Table 153 in the Appendix lists the full name and

provider ID for each of these datasets.

Table 5: Overview on eligible datasets for information extraction and relation extraction studies in chapters 3 and 4*

Short Full name Enti- Relati | Co- Ana- Genre Size Year Used in
name ties ons Ref. phora | ** ek thesis
MUC 6 (Chinchor & X X X nw 318 1986- no
Sundheim, (only (WSJ) articles 1994,
2003) if 2003
coref)
MUC 7 (Chinchor, X X X X nw 225 1996, no
2001) (only (NYT) articles | 2001
if
coref)
ACE 2 (A. Mitchell X X X X news, 518 1998, Ref. Res.
et al., 2004) nw, ben, | files 2003 (chapter 3)
ms
TIDES (A. Mitchell X X X X nw, ben, | 252 2000, no
2003 et al., 2004) sp, ms files 2003
ACE (A. Mitchell, | x X X X nw, ben, | 599 2000, no
2004 Strassel, ms files 2005
Huang, &
Zakhary,
2005)
ACE (Walker et X X X X nw, ben, | 599 2000- Ref. Res.
2005 al., 2006) bece, ng, files 2003, and
weblogs, 2006 Windowing
ms (chapter 3)
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reACE (Hachey, X X X X ACE 900 2000- no

Grover, & 2004, files 2006,
Tobin, 2006) ACE (estimat | 2011
2005, e)
Biolnfer
BBN (Weischedel | x X nw 2454 1989, Entity
& Brunstein, (WSJ) articles | 2005 Extraction
2005) (chapter 4)
Sem (Hendrickx, X X from the | 10718 n.a. Windowing
Eval Kim, (unty- web example (chapter 3)
2010-8 Kozareva, & | ped) S
Nakov, 2009)
Onto (Weischedel X X nw, ben, | 353 2006, no
Notes 4 | etal., 2011) bee, ng, | files 2011
web (estimat
data, ms | e)
Sem (Recasens et | x X see 353 2006, no
Eval al.) OntoNot | files 2010
2010-1 es 4
NYT (Sandhaus, X X nw 1.5 Mio. | 1987- | no
AC 2008) (NYT) Articles | 2007,
2008
CoNLL | (CoNLL- X nw, 1393 1996- | no
2003 2003, 2003) Reuters files 1997,
corpus 2000

* only English text data considered for this thesis

** nw = newswire, bcc = broadcast conversations, ben = broadcast news, sp = speech, ng = newgroups, ms = from

multiple sources (not genres, but different news paper for example)

***first number: source (English), second number: data source provider

For the reference resolution project, data are needed in which sufficiently large amounts of
anaphoric relations, coreferential relations, and other types of relations between entities are
annotated. Eligible datasets are MUC and ACE (incl. TIDES and reACE) (Table 5). In MUC,
however, relations are restricted to specific types of links between entities and organizations
only, and the total number of marked up relations (N = 800) is lower by factor of ten than in
ACE (Table 6). For these reasons, MUC was not selected for this project. Given that all ACE
datasets would be appropriate for this project based on their size and breadth of types of relations
considered, I choose to use the oldest (ACE2) and newest (ACES) one listed in Table 5. The
reason for this decision is that it allows for testing whether findings are robust over time (the
difference in publishing date of the articles in these corpora is five years). Furthermore, ACE 2
and ACE 5 are similar in the amount and type of annotated relations, thus enabling reasonable
comparisons (Table 6). They also overlap in genre - both cover printed and spoken news data —

which again facilitates comparisons across time. In addition to that, ACE covers three additional
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genres, namely blogs, online discussion groups, and telephone conversations, which allows for

testing differences between genres.

For the windowing project, data are needed in which large numbers of instances of different
types of relationships are marked up so that the robustness of findings across differences types of
relations can be assessed. Table 6 provides a comparison of the types of relations per corpus. In
order to provide consistency in this chapter, I choose to use ACES for this project again. From all
of the various ACE datasets, ACES offers the greatest variety of genres and types of relations to
analyze (syntactic relations, semantic relations, relations defined over node types). Since I am
aiming for generalizability of the findings from this study, it seemed important to consider
different points of comparison, which rules out ACE2 because the annotation guideless for
establishing relations are very similar for ACE2 and ACES (in fact, they were developed over
time from the same baseline). The only dataset that fulfills the outlined criteria for a suitable
dataset and provides some different types of data and relations as ACES5 does is SemEval, which

was therefore was chosen as the second dataset for the windowing project.

Table 6: Comparison of relations in datasets

Size of dataset and comments Types of relations considered

MUC 7 1. Employee of
N =800 2. Product of
relations between entities and 3. Location of
organizations only
ACE 2, TIDES 1. Role: employment (management, general staff), other (member,
N=2_8,127 owner, founder, client, affiliate-partner, citizen-of, other)
2. Part: subsidiary, part-of, other
all defined over entity types 3. At: located, based in, residence
further classifications: 4. Near: relative location
class: explicit, implicit 5. Social: personal (parent, sibling, spouse, grandparent, other

relative, other personal), professional (associate, other profess.)

ACE 2004 Physical: located, near, part whole

some defined over entity types 2. Personal/Social: business, family, other

3. Employment/Membership/Subsidiary: employ-exec(s), employ-
staff, employ-undetermined, member of group, subsidiary, partner,
other

—

4. Agent-Artifact: user/owner, inventor/ manufacturer, other
5. Person-Organization: ethnic, ideology, other
6. GPE Affiliation: citizen/resident, based in, other
7. Discourse
ACE 2005 1. Physical: located, near
N =38,738 2. Part whole: geographical, subsidiary, artifact
all defined over entity types 3. Personal/ social: business, family, lasting-personal
further classifications: 4. ORG Affiliations: employment, ownership, founder, student-alum,
syntactic relation, modality, sports-affiliation, investor-shareholder, membership
tense 5. Agent-Artifact: user-owner- inventor-manufacturer
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Gen-Affiliation: citizen-resident-religion-ethnicity, org-location-

SemEval 2010-8

N=10,717

not defined over entity types,
entity types not labeled

Cause-Effect
Component-Whole
Content-Container
Entity-Destination
Entity-Origin
Instrument-Agency
Member-Collection
Message-Topic

. Other

10. Product-Producer

A S AN U S B

2.6.1 Preparation Datasets for Experiments

The datasets selected for this project use different ways of marking up entities, relations, and
other text properties that are needed herein. Therefore, I built a parser for each datasets in order
to extract the required information. I briefly describe the details on this process to the minimum

extent needed for ensuring the reproducibility of my results.

In ACE, the text files are marked up in SGML format. These SGML files contain only the raw
texts and meta-data, such as the source and release date of an article. The information on entities
and relations is specified in XML files. In these XML files, entities and relations have a head
(key word or key phrase) and an extent (typically a nominal phrase). The mapping from the
XML files to the text files is realized through position numbers. This numbering pauses at
SGML tags within the file body. I herein consider elements of the types “entity” and “timex” as
entities. Entities of the type “timex” are included because they represent instances of the “time”
class in the meta-network model. The meta-network model is a theoretically grounded model of
relevant classes of entities and links in socio-technical networks (for a more detailed description
of this model see section 3.2.4). The mentions of entities in the data are categorized as names,

2 ¢

nominals or pronouns. Pronouns include terms like “one”, “some” and “there”.

In ACE, the “smallest or closest possible relation” is tagged, typically on the sentence level
(Linguistic Data Consortium, 2005). A few relations span across sentences. In general,
analyzing gold standard information about window sizes across sentences would contribute new
knowledge, but since this option violates the preferred norms in ACE, I did not further explore
this path.

Relations are coded as follows in ACE: if two entity mentions C and D, which are instances of a
pair of nodes that involves entity mentions 4 and B such that A=C and B=D or A=D and B=C are
identified to form the same type of relationship, the respective relationship is annotated to have
multiple mentions (in this case two). If the type of relationships is different, the relations are

34




marked up as different relations. In order to identify the impact of CR on relational data, I
deviate from this notion of link identity by using the following operationalization: any two links
that are marked up in a given text are identical if both entity mentions contained in one link map

to the same entities as the entity mentions in another link, regardless of directionality.

Finally, ACE2 contains 20 redundant relations (same type of relationship between identical
nodes at same text position), which I removed in order to deduplicated these links. ACE 2005
contains four relations where the head of both nodes were identical (same token at same position
in same file). I disregarded these four relations for the entity level analysis since they would
dilute the coreference resolution results (even though the impact is minimal), but kept them for

analyses on the relation and network level.

2.6.2 Selection of Relevant Aspects of Relational Data for Analysis

The ACE data have been previously used by others to develop and validate cutting-edge
reference resolution techniques (Doddington et al., 2004). Both selected ACE datasets allow for
studying the impact of reference resolution and windowing on multiple aspects of relational data.
These aspects include the type or genre of the data, different node classes, and the type of
relations, such as different semantic relations. Therefore, a selection of aspects that are relevant
for the context of this thesis is necessary. For the RR project, I have already explained why
analyses will be conducted on the level of nodes, links, and network data. For windowing, this
choice is inapplicable as windowing only impacts the network data level; thus analysis will be
conducted on that level only. Moreover, for the windowing study, multiple aspects of relations
that are relevant for network analysis are being considered, namely the genre of the data and the
type of nodes and links. Given that for the RR project, I decided to conduct analysis on the
entity, link and network data level, this comprehensive scope needed to be limited. For practical
text analysis projects, one unanswered question that we often face is the following (Carley et al.,
2007; Dabbish et al., 2011): What coding choices would be appropriate for some specific type of
data? For example, when analyzing well-formed news data, different choices and techniques
might be appropriate than when analyzing data from social networking platforms, which often
feature a more informal orthography and grammar. Therefore, I decided to test the impact of RR
techniques on different genres. Table 7 compares the genres available in ACE with respect to the
number of agents involved in producing a piece of text data, whether the text comes from written
or spoken language, and the level of formality. ACE2 covers the first two genres presented in
Table 7, and ACES covers all three of them.
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Table 7: Characteristics of data per genre (ACE)

Levels of compare- Newswire Broadcast Broadcast Telephone Usenet Weblogs
son between genres news conversat.
Number | Conversation X X X
of Dialogue X X
agents Monologue X X X
Mode Written X X X
Spoken X X X
Style Formal X
Informal X X X
2.7 Results

The presented results are based on the judgment of trained people who aimed to deliver the best
reference resolution and windowing results that humans can possibly provide. Therefore, my
findings report on the upper bound of the impact of highly accurate reference resolution on entity

extraction, relation extraction, and network analysis.

2.7.1 Reference Resolution

In general, two strategies are available for analyzing the impact of reference resolution on nodes,
edges and network data: first, one could use only the entities that are involved in relations.
Second, the full set of entities marked up in the corpus could be used. I chose the second strategy
for the following reasons: first, even if an entity is not involved in a link, it might still show up as
an isolated node in a graph. In fact, in network analysis, people consider isolates for certain
analyses, e.g. in the context of organizational networks and covert networks (Klerks, 2001). The
metric of “connectedness” was developed to measure the ratio of isolates to connected nodes in a
network (Wasserman & Faust, 1994). Second, whether a node is connected into a link or not
strongly depends on the mechanism for link creation; with some techniques being more inclusive
than others (see sections 2.5 and 3.2.3 for details on methods for link creation). Third, it is
possible that an isolated node gets mapped onto another, already connected node via reference
resolution techniques such that the weight of the linked node is increased. In order to provide a
comprehensive understanding of the upper bound of the impact of reference resolution on

relational data, I decided to analyze the entire set if entities.

The distribution of names, nominals and pronouns per genre (Figure 3, Figure 4°) shows that

written news data data are atypical in their frequent use of names and less frequent use of

? Note that Figure 3 represents the same information as Figure 4 and Figure 5 together, but since there are more
genres in ACES5 than in ACE2 (Figure 4, Figure 5), I had to split up the information into two graphics to avoid

overcrowding.
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pronouns. Therefore, in comparison across genres, AR seems potentially least effective for news
data, and can have a higher impact on all accounts of informal writing and spoken language,
especially telephone conversations. The information presented in Figure 3 and Figure 4 also
shows that when working with news data only (ACE2), a biased perception of the distribution of
entity types emerges, which could underestimate the role of pronouns and thus AR, and

overestimate the weight of names and nominals and thus the impact of CR.

The ratio of first mentions of unique entities to additional entity mentions is fairly similar across
genres (Figure 3, Figure 5). Repeated references to previously introduced entities are most
prevalent among pronouns: on average, about 2/3 of pronoun mentions are back-references. This
further stresses the importance of AR. Also, this finding suggest that while pronouns are
typically thought of as candidates for AR, it could be worthwhile to also apply CR to them,
especially if no name or nominal is available that could serve as an antecedent. The ratio of first
mentions to repetitions is inverse for nominals (over 2/3 are unique, first time mentions). For

names, well over half of all mentions are references to previously introduced entities.

Figure 3: Distribution of entity types (mentions) per genre (ACE2)
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Figure 4: Distribution of entity types (mentions) per genre (ACES)
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Figure 5: Ratio of unique entities and their additional mentions by entity type and genre (ACES)
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2.7.1.1 Impact of Reference Resolution on Entities

Depending on the genre, about 60% and more of all entity mentions are subject to reference
resolution (Figure 6, Figure 7). More specifically, pronouns account for roughly 40% of all
entities mentions (about 20% for newswire and newspaper data, more than 50% for telephone
data). These entities are subject to AR. Depending on the genre, additional mentions of unique
names and nominals constitute another 20% to 30% of the data (40% to 50% for newswire and

newspaper data). These entities are subject to CR. Given the distributions of entity types,
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theoretically, AR can have a bigger impact than CR on altering the identity and weight of nodes

for six of the nine genres considered.

Figure 6: Entity mentions that are subject to change or not (ACE2)
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In this project, anaphora are considered as irresolvable via AR if all mentions of a pronoun are
also pronouns. The results for AR show that for all genres, the majority of pronouns can be
resolved (between 67% and 86% of pronoun mentions), resolution rates are higher for written
texts than for spoken language, and the highest resolution rates are achieved where the ratio of
pronouns is lowest (newswire and newspaper data, 83% to 85%) (Table 8, Table 9). I speculate
that for transcripts of spoken language, AR is complicated by the fact that these data have

proportionally more pronouns to begin with, and therefore a smaller pool of names and nominals
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is available to associate the pronouns with. Most anaphora are resolved by both names and

nominals. This indicates that conducting CR after AR is another crucial step. Nominals are

slightly more effective in leading to this effect than names. This suggests that the availability of

entities that are not referred to by a name, such as role descriptors, facilitates the RR process,

which is important with respect to the selection of nodes classes for entity extraction in section

3.2.5. More than 65% of all irresolvable pronouns (46% for telephone data) are pronouns that

have only one mention. They will remain in the data the way they are; accounting for 2% to 14%

of all entities per genre. Unresolved pronouns that have multiple mentions can be grouped into

clusters per unique entity. Single mentions of names and nominals can serve as antecedents for

AR. On average, applying CR to unresolved anaphora helps to group more than 2/3 of all

pronouns that cannot be resolved via AR into clusters that refer to the same entity (Table 12,

Table 13).

Table 8: Results for anaphora resolution per genre (ACE2)

Newswire Newspaper Broadcast news

Unique entities
Resolved by name(s) only 15.2% 13.6% 17.9%
Resolved by nominal(s) only 28.5% 30.2% 23.9%
Res. by both only 26.6% 29.1% 15.9%
Sum resolved 70.3% 72.9% 57.7%
Unresolved 29.7% 27.1% 42.3%
Single mentions in unres. 78.3% 76.9% 65.6%

Entity mentions (including first mention)
Resolved by name(s) only 12.1% 10.8% 15.7%
Resolved by nominal(s) only 19.1% 17.5% 18.5%
Resolved by both only nominal(s) 51.8% 57.0% 32.7%
Sum resolved 82.9% 85.4% 66.9%
Unresolved 17.1% 14.6% 33.1%
Resolved anaphora in corpus 18.9% 18.8% 21.3%
Irresolvable anaphora in corpus 3.9% 3.2% 10.4%
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Table 9: Results for anaphora resolution per genre (ACES)

Newswire Broadcast Broadcast Telephone Usenet Weblogs
news conversat.

Unique entities
Resolved by name(s) only 9.3% 13.3% 14.2% 16.5% 23.0% 18.1%
Resolved by nominal(s) only 32.5% 28.5% 31.0% 26.4% 27.7% 34.5%
Res. by both only 34.8% 17.2% 17.7% 13.4% 10.3% 21.5%
Sum resolved 76.5% 59.1% 62.9% 56.3% 61.0% 74.1%
Unresolved 23.5% 40.9% 37.1% 43.7% 39.0% 25.9%
Single mentions in unres. 84.7% 62.7% 65.3% 46.3% 65.4% 70.3%

Entity mentions (including first mention)
Resolved by name(s) only 11.1% 12.1% 14.2% 34.8% 28.0% 25.4%
Resolved by nominal(s) only 23.9% 23.6% 25.1% 13.1% 25.7% 21.6%
Resolved by both only 50.7% 33.1% 34.0% 26.1% 22.6% 33.1%
Sum resolved 85.8% 68.8% 73.3% 74.0% 76.4% 80.1%
Unresolved 14.2% 31.2% 26.7% 26.0% 23.6% 19.9%
Resolved anaph. in corpus 14.2% 26.4% 27.9% 41.1% 31.1% 28.0%
Irres. anaphora in corpus 2.4% 12.0% 10.1% 14.4% 9.6% 6.9%

The results for CR show that about 30% to 40% (17% for telephone) of all names and nominals
together are single mentions such that CR does not apply (Table 10, Table 11). Overall, most co-

referencing happens via a mixture of names and nominals. This ratio of single mentions is about

twice as high for nominals than for names, which does not reflect the distribution of entities in

the data (there are typically more or as many names than nominals.

Table 10: Results for co-reference resolution by genre (ACE2)

Newswire Newspaper Broadcast

Unique entities
Single Names 27.4% 21.5% 27.5%
Single Nominals 38.6% 46.5% 41.2%
Name co-ref. by Name 11.5% 9.4% 14.1%
Nominal co-ref. by Nom. 8.3% 8.0% 7.4%
Mixed co-referencing 14.2% 14.6% 9.8%
Sum singles 66.0% 68.0% 68.6%
Sum co-referenced 34.0% 32.0% 31.4%

Entity mentions (including first mention)
Single Name 13.6% 9.6% 15.2%
Single Nominal 19.2% 20.7% 22.8%
Name co-ref. by Name 19.1% 15.8% 21.9%
Nominal co-ref. by Nom. 12.1% 10.6% 11.0%
Mixed co-referencing 36.0% 43.4% 29.0%
Sum singles 32.8% 30.2% 38.0%
Sum co-referenced 67.2% 69.8% 62.0%
Sum co-ref. in corpus 51.9% 54.4% 42.4%
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Table 11: Results for co-reference resolution by genre (ACES)

Newswire Broadcast Broadcast Telephone Usenet Weblogs
news conversat.

Unique entities
Single Names 18.9% 22.2% 18.8% 16.3% 21.3% 26.9%
Single Nominals 43.0% 47.4% 45.9% 44.1% 45.9% 43.5%
Name co-ref. by Name 8.4% 7.4% 11.9% 13.5% 12.8% 6.9%
Nominal co-ref. by Nom. 9.9% 10.3% 11.3% 14.8% 12.8% 10.1%
Mixed co-referencing 19.8% 12.6% 12.0% 11.3% 7.3% 12.5%
Sum singles 61.9% 69.6% 64.8% 60.4% 67.1% 70.4%
Sum co-referenced 38.1% 30.4% 35.2% 39.6% 32.9% 29.6%

Entity mentions (including first mention)
Single Name 8.4% 13.1% 9.0% 4.5% 9.9% 15.2%
Single Nominal 19.0% 27.9% 22.0% 12.3% 22.3% 24.6%
Name co-ref. by Name 16.9% 11.6% 20.6% 45.5% 22.3% 11.5%
Nominal co-ref. by Nom. 13.5% 16.4% 14.8% 11.5% 19.9% 15.8%
Mixed co-referencing 42.2% 31.0% 33.5% 26.1% 25.5% 32.9%
Sum singles 27.3% 41.0% 31.0% 16.9% 32.3% 39.8%
Sum co-referenced 72.7% 59.0% 69.0% 83.1% 67.7% 60.2%
Sum co-ref. in corpus 36.2% 36.4% 71.5% 37.0% 40.1% 39.2%

Putting the results for AR and CR on the entity level together shows that across genres, the
considered reference resolution techniques can alter the identity and weight of at least 70% of all
entity mentions (Table 12, Table 13). Entities that are not changed by reference resolution
techniques are either irresolvable pronouns (less than 4% of all remaining entities), or names and
nominals that are mentioned only once, which might still have been essential for AR (about 15%
to 26% of all entities). I had shown that given the raw frequencies of pronouns, names and
nominal, AR could have a stronger impact on entities than CR. However, the results indicate that
CR contributes more strongly to the desired entity normalization and consolidation effects for all
but the telephone data. One explanation for this counterintuitive finding might be the fact that
AR increases the set of entities applicable to CR in the first place. Another interesting finding is
that CR on pronouns that could not be resolved via AR has a minor yet meaningful impact on the
data (less than 1% up to 13% of all entities in the resulting data). Finally, the results show that

combining AR and CR is more effective than using either technique alone.
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Table 12: Summary of effectiveness of reference resolution techniques by genre (entity mentions, ACE2)

Reference Resolution Newswire News- Broadcast
technique paper news
Anaphora | Resolved with AR 18.9% 18.8% 21.1%
Resolved with CR 1.9% 1.5% 6.8%
Unresolved 2.0% 1.7% 3.6%
Names & | CR 51.9% 54.4% 42.4%
Nominals | No CR 25.3% 23.6% 26.1%
Summary | Change through AR 20.8% 20.3% 27.9%
Change through CR 51.9% 54.4% 42.4%
Change through RR 72.7% 74.7% 70.3%

Table 13: Summary of effectiveness of reference resolution techniques by genre (entity mentions, ACES)

Impact Reference Resolution News- Broadc. Broadc. Tele- Usenet  Weblogs

on technique wire news convers. phone

Anaphora | Resolved with AR 14.2% 26.4% 27.9% 41.1% 31.1% 28.0%
Resolved with CR 0.7% 8.2% 7.0% 12.8% 6.5% 4.0%
Unresolved 1.7% 3.7% 3.2% 1.7% 3.2% 2.9%

Names & | CR 60.6% 36.4% 42.8% 37.0% 40.1% 39.2%

Nominals | No CR 22.8% 25.2% 19.2% 7.5% 19.1% 25.9%

Summary | Change through AR 14.9% 34.7% 34.8% 53.8% 37.6% 32.0%
Change through CR 60.6% 36.4% 42.8% 37.0% 40.1% 39.2%
Change through RR 75.5% 71.0% 77.6% 90.8% 77.7% 71.2%

In the original set of all entities, the weight of each distinct entity mention equals one. This
deviates a bit from common procedure in practical entity extraction and REX applications, where
orthographically identical entities are sometimes considered as the same entity. When applying
thesauri in AutoMap, for example, all identically spelled concept — regardless of capitalization —
are translated into the same entity with no further word sense disambiguation routines applied.
This procedure greatly eases the efforts required for building thesauri, but implies the danger of
false positives, e.g. in the case of homographs and heteronyms, and of false negatives, e.g. in the
case of synonyms. Does the separation of identical terms from heteronyms matter with respect to
entity weights? Mapping entities onto each other not based on spelling, but proper word sense
disambiguation as approximated via reference resolution techniques shows that for the unique
entities affected by this procedure, the average node weight is increased from 1.0 to 5.1 with AR,
to 4.6 with CR, and to 6.0 when using both techniques (Table 14, Table 15). Consequently, a
significant portion of the total node weight in the dataset shifts to these entities: using both, AR
and CR, causes less than 20% of the unique entities carry more than 75% of the total node
weight, while the remaining more than 80% of unique entities carry less than 25% of the total
weight. This means that reliable reference resolution helps not only to disambiguate entities, but

also to increase and enrich the amount of information available on truly distinct entities. This is

43




particularly valuable when working with sparse networks, and sparseness is common feature of
large-scale, real-world networks (Barabasi & Albert, 1999).

Table 14: Comparison of impact of reference resolution techniques on entity reduction and node weights (ACE2,
averaged across genres)

Decrease in Entities impacted by routine Entities not impacted by
no. of unique routine (node weight = 1)
.entities Amount Total node Average Amount Total node

(corpus) weight carried node weight weight carried
AR 19.56% 8.1% 26.0% 4.01 91.9% 74.0%
CR on pronouns 2.35% 1.0% 3.3% 3.42 99.0% 96.7%
CR 37.72% 19.3% 49.8% 4.13 80.7% 50.2%
AR and CR 59.63% 38.0% 74.9% 4.89 62.0% 25.1%

Table 15: Comparison of impact of reference resolution techniques on entity reduction and node weights (ACES)

Decrease in Entities impacted by routine Entities not impacted by
no. of unique routine (node weight = 1)
Genre entities Amount Total node Average Amount Total node
(corpus) weight carried node weight weight carried
AR
Newswire 14.2% 6.3% 20.6% 3.2 93.7% 79.4%
Broadcast news 26.4% 8.6% 35.0% 4.1 91.4% 65.0%
Broadcast con. 27.9% 8.2% 36.1% 4.4 91.8% 63.9%
Telephone 41.1% 4.6% 45.7% 9.9 95.4% 54.3%
Usenet 31.1% 7.6% 38.7% 5.1 92.4% 61.3%
Weblogs 27.4% 9.5% 36.9% 3.9 90.5% 63.1%
Average 28.0% 7.5% 35.5% 5.1 92.5% 64.5%
CR on pronouns
Newswire 0.4% 0.3% 0.7% 2.4 99.7% 99.3%
Broadcast news 6.0% 2.2% 8.2% 3.7 97.8% 91.8%
Broadcast con. 5.3% 1.7% 7.0% 4.1 98.3% 93.0%
Telephone 10.9% 1.9% 12.8% 6.6 98.1% 87.2%
Usenet 4.8% 1.7% 6.5% 3.9 98.3% 93.5%
Weblogs 1.0% 1.5% 2.5% 1.7 98.5% 97.5%
Average 4.7% 1.6% 6.3% 3.7 98.5% 93.7%
CR (Names and Nominals)
Newswire 46.6% 14.0% 60.6% 4.3 86.0% 39.4%
Broadcast news 25.4% 11.0% 36.4% 3.3 89.0% 63.6%
Broadcast con. 32.3% 10.5% 42.8% 4.1 89.5% 57.2%
Telephone 32.1% 4.9% 37.0% 7.5 95.1% 63.0%
Usenet 31.1% 9.1% 40.1% 4.4 90.9% 59.9%
Weblogs 28.3% 10.9% 39.2% 3.6 89.1% 60.8%
Average 32.6% 10.1% 42.7% 4.5 89.9% 57.3%
AR & CR
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Newswire 61.2% 16.1% 77.4% 4.8 83.9% 22.6%
Broadcast news 57.8% 17.2% 75.0% 4.4 82.8% 25.0%
Broadcast con. 65.4% 15.2% 80.6% 53 84.8% 19.4%
Telephone 84.0% 8.3% 92.3% 111 91.7% 7.7%
Usenet 67.0% 13.5% 80.5% 59 86.5% 19.5%
Weblogs 58.3% 16.9% 75.1% 4.5 83.1% 24.9%
Average 65.6% 14.5% 80.2% 6.0 85.5% 19.9%

2.7.1.2 Impact of Reference Resolution on Links

Not all entities that are retrieved from some text data as potential nodes for networks will be
linked into edges. This can be for two reasons: first, some entities are truly not related to any
other entities (isolates), but can still be meaningful for network analysis. In the considered data,
about 28% (ACES5) to a third (ACE2) of all entity mentions and a little over half of all unique
entities (ACE2 and ACES) do occur in relations. Since over 70% of all entities mentions are
impacted by RR, it is seems highly likely that some of the entities occurring in edges are affected
by RR. Second, in most ground truth data for REX, relations are mainly annotated within
sentences, but not across sentences, paragraphs or documents. Besides the previously mentioned
sparseness that has been observed for many real-world networks, these two reasons also
contribute to the sparseness of relational data available for studying REX. Consequently, the
density of the relational data used herein, which is computed as the number of actual relations
over the number of possible relations, is very low across genres (Table 16, Table 17)
(Wasserman & Faust, 1994).

The ratio of relations that contain at least one node that is a pronoun is very similar across genres
in ACE 2, which are all news coverage (average 16%, Table 16), and varies widely in ACES
(12% to 70%, Table 17). The following analyses require some definitions: Let’s assume that AR
on the link level is only successful if all pronominal nodes in a link can be resolved by a name or
nominal. This conservative operationalization is referred to as “AR strict” in the following
tables, and allows for determining the minimum amount of change that AR can cause on the link
level. Using this approach, the AR rate is high and highly similar across genres; about 75%-78%
for spoken data and 79% to 85% for written data. Since the rate of links involving pronouns
varies per genre, the ratio of links that are altered due to AR ranges from 9% to 52% (Table 16,
Table 17). Relaxing the strict operationalization of successful AR on the link level to assuming
that AR is successful if at least one pronoun in a link is resolvable marginally increases the AR
rate by an average of 0.6% (Table 17: AR relaxed, analysis with this operationalization
conducted for ACES only). This additional gain is small for the following reason: in addition to
the links impacted by the strict operationalization, the relaxed version also affects links in which

both nodes are a pronoun. This applies to 6.3% of all links that entail a pronoun, and more than
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half of them were already completely resolved under the strict AR condition. In the next step, all

nodes on which AR was successful become additional candidates for CR.

Per genre, the number of links between only names and nominals (candidates for CR) is very
similar within ACE 2 (83% to 85%, Table 16), and again varies strongly in ACES5 (29% to 82%,
Table 17) . The ratio of links that gets reduced via CR when multiple links are mapped onto one
link ranges from 4% to 12%.

As previously explained, CR can also be applied to anaphora’. I have operationalized CR on
anaphora for the link level as follows: CR on anaphora is successful if both entity mentions in a
link are pronouns, and both pronouns map to the same entities as the entity mentions in another
link, which are also anaphora. This effect is much smaller than regular CR on the link level (on
average 0.3% in ACES, Table 17), and smaller than CR on pronouns on the entity level.

On the relational data level, the interaction between AR and CR is as follows: while the relation
reduction is entirely due to CR, AR provides a large amount of names and nominals available to
CR. Combining AR and CR has a stronger impact on consolidation edges than using either
technique alone (last row in Table 16, Table 17): on average, an additional 3% to 4% of all link
mentions are reduced. This rate is even higher for telephone and usenet data (not included in

average reported in previous sentence), where link reduction rates of 18% to 19% were observed.

Table 16: Results for impact of AR and CR on relational data (ACE2)

RR technique applied | Measure of impact of RR on data | Newswire Newspaper Broadcast
none Number of links 2,884 2,956 2,267
Number of entity mentions 13,356 13,914 12,694
Density 0.0032 0.0031 0.0028
AR strict Links with pronoun 14.8% 16.7% 16.5%
..., pronoun resolved 76.6% 87.0% 76.1%
..., resolved in corpus 11.3% 14.5% 12.5%
CR Links with names and nominals 85.2% 83.3% 83.5%
..., reduced via CR 4.2% 4.7% 7.5%
AR + CR Links reduced in corpus 6.5% 7.9% 10.6%

* For ACES, the ratio of links with pronouns and links with names and nominals does not add up to 100% due to the
inclusion of entities of type timex in links. These entities are not names, nominals or pronouns.

5 In ACE2, there were only three links for which CR was possible on pronouns. Since these effects are marginal I
disregard them from analysis on the relation data level.
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Table 17: Results for impact of AR and CR on relational data (ACES)

RR tech- Measure of impact of RR News- Broadc. Broadc. Tele- Usenet Web-
nique on data wire news conv. phone logs
applied
Number of links 2,683 2,016 1,660 746 864 769
none Number of entity mentions 11,025 11,461 9,342 9,933 6,516 6,547
Density 0.0044 0.0031 0.0038 0.0015 0.0041 0.0036
AR Links with pronoun corpus 11.9% 29.6% 25.7% 69.6% 49.4% 26.9%
strict ..., pronoun resolved 79.6% 78.4% 76.6% 75.0% 78.9% 84.1%
..., resolved in corpus 9.4% 23.2% 19.7% 52.1% 39.0% 22.6%
..., unresolved in corpus 2.4% 6.4% 6.0% 17.4% 10.4% 4.3%
relaxed ..., pronoun resolved 80.8% 80.2% 79.4% 76.9% 80.3% 85.0%
..., resolved in corpus 9.6% 23.7% 20.4% 53.5% 39.7% 22.9%
..., unresolved in corpus 2.3% 5.9% 5.3% 16.1% 9.7% 4.0%
CR Links /w name & nomin. 82.0% 65.2% 71.6% 29.1% 49.0% 70.1%
..., no CR possible 90.0% 93.6% 88.5% 92.6% 88.7% 93.5%
..., no CR possible in corpus 73.9% 61.0% 63.3% 26.9% 43.4% 65.5%
..., reduced via CR 10.0% 6.4% 11.5% 7.4% 11.3% 6.5%
..., reduced via CR in corpus 8.2% 4.2% 8.3% 2.1% 5.6% 4.6%
..., reduced via CR on 0.0% 0.4% 0.4% 0.5% 0.3% 0.0%
anaphora in corpus
..., sum reduced in corpus 8.2% 4.6% 8.6% 2.7% 5.9% 4.6%
AR + CR Links reduced in corpus 10.9% 9.7% 13.4% 19.0% 18.4% 8.6%

Overall, the link normalization and deduplication effects due to RR are less strong on the link

level than on the entity level (Table 18: values averaged over genres, Table 19). For example, on

the entity level, the average weight of unique entities impacted by both AR and CR increases

from 1.0 to 5.5, while on the link level, the average weight of impacted unique relations

increases to less than 2.3. Moreover, the results indicate that on the entity level, CR has a

stronger impact (average entity reduction rate = 45.0%) than AR (average entity change rate =

30.8%) does, while on the link level, AR (average link change rate = 22.7) is more effective than

CR (average link reduction rate = 5.7%)).

Table 18: Comparison of impact of reference resolution techniques on link level, averaged over genres (ACE2)

Case Impact on data
Link change Entities impacted by routine Entities not impacted by
rate (AR), link routine (node weight = 1)
reduction rate Amount Total node Average Amount Total node
(CR, AR & CR) weight carried node weight weight carried
AR 12.8% 12.8% 12.8% 1.00 87.2% 87.2%
CR 5.33% 4.9% 10.0% 2.15 95.1% 90.0%
AR and CR 8.17% 17.4% 24.2% 2.25 82.6% 75.8%
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Table 19: Comparison of impact of reference resolution techniques on link level (ACES)

Link change rate Entities impacted by routine Entities not impacted by
(AR) and link routine (node weight = 1)
reduction rate Amount Total node Average Amount Total node
(CR, AR & CR) weight carried node weight weight carried
Genre AR (relaxed definition)
Newswire 9.6% 9.6% 9.6% 1 90.4% 90.4%
Broadcast n. 23.7% 23.7% 23.7% 1 76.3% 76.3%
Broadcast con. 20.4% 20.4% 20.4% 1 79.6% 79.6%
Telephone 53.5% 53.5% 53.5% 1 46.5% 46.5%
Usenet 39.7% 39.7% 39.7% 1 60.3% 60.3%
Weblogs 22.9% 22.9% 22.9% 1 77.1% 77.1%
Average 28.3% 28.3% 28.3% 1 71.7% 71.7%
CR (Names and Nominals)
Newswire 8.2% 7.5% 17.4% 2.33 92.5% 82.6%
Broadcast n. 4.2% 5.8% 12.2% 2.11 94.2% 87.8%
Broadcast con. 8.3% 9.2% 20.7% 2.26 90.8% 79.3%
Telephone 2.1% 6.9% 14.3% 2.07 93.1% 85.7%
Usenet 5.6% 7.8% 19.1% 2.45 92.2% 80.9%
Weblogs 4.6% 4.6% 11.1% 2.40 95.4% 88.9%
Average 5.5% 7.0% 15.8% 2.27 93.0% 84.2%
AR + CR (incl. CR on anaphora)
Newswire 10.9% 8.0% 18.9% 2.36 92.0% 81.1%
Broadcast n. 9.7% 7.8% 17.5% 2.24 92.2% 82.5%
Broadcast con. 13.4% 10.3% 23.7% 2.30 89.7% 76.3%
Telephone 19.0% 14.3% 33.4% 2.33 85.7% 66.6%
Usenet 18.4% 10.3% 28.7% 2.79 89.7% 71.3%
Weblogs 8.6% 6.0% 14.6% 2.44 94.0% 85.4%
Average 13.3% 9.5% 22.8% 241 90.6% 77.2%

2.7.1.3 Impact of Reference Resolution on Network Data and Network Analysis Results

In the ground truth data for this project, the information about entities and relations is provided
as unambiguous, numerical identifiers. This situation is representative for working with social
network data where each truly distinct node has a unique key identifier, even if the identifier is
anonymized. Such data are typically obtained when collecting network data via surveys and
participating observations. However, for semantic network data, unique node identifiers are often
not available. In these situations, node names (token surface form) are often used as identifiers.
Consequently, nodes matching in spelling are considered as identical nodes. For practical
applications this means that when the network analysis tool encounters a node with the exact
same spelling as a previously registered node, the software does not add another node to its data

registry, but increases the weight of the previously found node accordingly. This is common
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procedure in many SNA tools and libraries. For example, when extracting network data with
AutoMap, nodes are aggregated based on their spelling; regardless of capitalization. We have
used this approach in a prior study on the impact of reference resolution on network data
(Diesner & Carley, 2009a). This approach returns correct results if all instances of an entity are
consistently referred to by the same name, and this name does not coincide with the name of a
different entity. Problems with this approach occur in the cases of homographs and heteronyms
(same spelling, different meaning), which cannot be disambiguated based on orthography. For
example, if the term “she” is found in multiple files and cannot be resolved or disambiguated, all
instances of this node are collected in one node labeled “she”. For this project, I deviate from this
common procedure in order to isolate the impact of RR on network data analysis while excluding
the impact of coincidentally matching spellings of actually distinct nodes. This strict definition of
node uniqueness is realized by using the entity mention IDs provided in ACE as node identifiers,
and the heads of these entities as node names. In order to identify how disambiguating different
entities with the same spelling matters for network analysis, I am also providing an empirical
comparison of both approaches to determining node uniqueness (node identity based on ID
versus node identity based on spelling).

In order to analyze the impact of AR and CR on network data and respective analysis results, I
created one network per genre and one for the entire corpus after applying the reference
resolution techniques individually and combined. These tests are conducted for ACES only. The
networks are directed, weighted graphs. I used the ORA software to compute a selected set of
frequently used network analysis measures on these graphs. These metrics are defined in Table
154. Since some of these metrics are only defined for symmetric, binary graphs, ORA internally
converts the input data accordingly.

Network analysis is particularly sensitive to the connectivity and weight of nodes and links.
These two characteristics impact a node’s prominence and importance in the graph as well as the
overall network structure. In the analysis on the link level, nodes were only embedded in dyads
(regular links), whereas on the network level, a node can be linked to multiple other unique
nodes, and the node degree (number of direct links per node) will increase accordingly. For the
analysis on the entity and link level, the impact of heavy “outliers” (hubs) can be diluted by
computing averaged degree values, while on the network level, nodes with a high degree have a
strong impact on the overall network (Barabasi & Albert, 1999).

Table 20 to Table 26 show the network analysis results in dependence of the RR techniques. The
last three columns in each of these tables show the change from the raw data to AR, to CR, and
to AR plus CR. For resolving anaphora on the network level, I used the full set of entities

processed with AR. Therefore, it is possible that pronouns get resolved by nodes that were not
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yet present in the network such that the number of unique nodes in the network can increase
from the raw data to data after AR. The following trends are observed for all genres (Table 20 to
Table 25) and the entire network (all genres, Table 26): the number of nodes, links and
components (strong and weak) decreases when applying each and both RR routines. Using the
RR techniques leads to an increase in density, degree centralization, connectedness, transitivity,
global efficiency, clustering coefficients, average distance and diffusion. All of these increases
and decreases are stronger after applying CR than after applying AR (the opposite is true only for
telephone data), and stronger for using AR plus CR than for using CR only. Efficiency and
fragmentation are only marginally impacted and only if AR and CR are both applied. The
outcomes for network levels, eigenvector centralization and average speed show changes per

genre, but no clear trends in terms of increase or decrease.

The betweenness centralization of all networks was zero, which I assume to be due to the
sparseness of the data. This assumption is supported by the fact that density values are
consistently low. Also, closeness centralization was zero except for one genre. The network
diameter equaled the number of nodes in all cases. Therefore, the three abovementioned network
centralization metrics as well as the diameter are not presented in the result tables. The
eigenvector centralization could not be computed on some of these networks in ORA, and is not

reported if not available.

Table 20: Impact of reference resolution techniques on network properties, newswire data

Measure Raw AR CR AR&CR Rawto Raw to Raw to

AR CR AR & CR
Link Count 2,669 2,667 2,451 2,390 0% -8% -10%
Node Count 4,596 4,447 2,994 2,770 -3% -35% -40%
Component Count Strong 4,596 4,447 2,986 2,760 -3% -35% -40%
Component Count Weak 1,937 1,795 638 512 -7% -67% -74%
Network Levels 4 5 6 6 25% 50% 50%
Density 0.0001 0.0001 0.0003 0.0003 0% 200% 200%
Network Centr. Degree 0.0001 0.0003 0.0009 0.0031 200% 800% 3000%
Network Centr. Eigenvector 1.00 1.00 0.89 0.80 0% -11% -20%
Density Clustering Coeff. 0.001 0.002 0.005 0.011 64% 391% 918%
Average Distance 1.13 1.14 1.62 1.66 1% 44% 47%
Average Speed 0.89 0.88 0.62 0.60 -1% -30% -32%
Transitivity 0.02 0.02 0.02 0.04 45% 24% 146%
Diffusion 0.0001 0.0002 0.0005 0.0006 100% 400% 500%
Fragmentation 1.000 1.000 0.995 0.994 0% 0% -1%
Connectedness 0.000 0.000 0.005 0.006 0% 1075% 1450%
Efficiency Global 0.0003 0.0003 0.0018 0.0023 0% 500% 667%
Efficiency 0.991 0.991 0.995 0.994 0% 0% 0%
Hierarchy 1.000 1.000 0.997 0.996 0% 0% 0%
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Upper Boundedness 0.69 0.67 0.18 0.20 -3% -74% -72%
Interdependence 0 0.0001 0.0002 0.0002 - - -
Table 21: Impact of reference resolution techniques on network properties, broadcast news data
Measure Raw AR CR AR&CR Rawto Raw to Raw to

AR CR AR & CR
Link Count 2,008 1,999 1,925 1,821 0% -4% -9%
Node Count 3,576 3,285 2,920 2,519 -8% -18% -30%
Component Count Strong 3,576 3,283 2,920 2,519 -8% -18% -30%
Component Count Weak 1,572 1,295 1,015 753 -18% -35% -52%
Network Levels 4 5 4 4 25% 0% 0%
Density 0.0002 0.0002 0.0002 0.0003 0% 0% 50%
Network Centr. Degree 0.0003 0.0006 0.0007 0.0021 100% 133% 600%
Network Centr. Eigenvector 0.97 0.96 0.98 0.74 -2% 1% -24%
Density Clustering Coeff. 0.000 0.001 0.002 0.010 - - -
Average Distance 1.10 1.16 1.24 1.26 5% 12% 15%
Average Speed 0.91 0.86 0.81 0.79 -5% -11% -13%
Transitivity 0.00 0.01 0.02 0.08 - - -
Diffusion 0.0002 0.0002 0.0003 0.0004 0% 50% 100%
Fragmentation 1.000 0.999 0.999 0.998 0% 0% 0%
Connectedness 0.000 0.001 0.001 0.002 50% 175% 300%
Efficiency Global 0.0004 0.0005 0.0007 0.001 25% 75% 150%
Efficiency 0.993 0.995 0.993 0.984 0% 0% -1%
Hierarchy 1.000 0.999 1.000 1.000 0% 0% 0%
Upper Boundedness 0.73 0.76 0.37 0.47 4% -50% -35%
Interdependence 0.0001 0.0001 0.0002 0.0002 0% 100% 100%

Table 22: Impact of reference resolution techniques on network properties, broadcast conversations data
Measure Raw AR CR AR&CR Rawto Raw to Raw to

AR CR AR & CR
Link Count 1,656 1,650 1,520 1,438 0% -8% -13%
Node Count 2,872 2,648 2,077 1,776 -8% -28% -38%
Component Count Strong 2,871 2,646 2,075 1,774 -8% -28% -38%
Component Count Weak 1,220 1,006 589 404 -18% -52% -67%
Network Levels 4 4 5 5 0% 25% 25%
Density 0.0002 0.0002 0.0004 0.0005 0% 100% 150%
Network Centr. Degree 0.0002 0.0006 0.001 0.0032 200% 400% 1500%
Network Centr. Eigenvector 0.97 0.96 0.76 0.92 -1% -21% -4%
Density Clustering Coeff. 0.000 0.001 0.003 0.011 100% 750% 2725%
Average Distance 1.11 1.15 1.34 1.36 4% 21% 23%
Average Speed 0.90 0.87 0.75 0.73 -4% -17% -19%
Transitivity 0.01 0.01 0.02 0.06 46% 266% 852%
Diffusion 0.0002 0.0003 0.0005 0.0006 50% 150% 200%
Fragmentation 1.000 0.999 0.997 0.994 0% 0% -1%
Connectedness 0.001 0.001 0.004 0.006 80% 600% 1060%

51



Efficiency Global 0.0005 0.0006 0.0016 0.0024 20% 220% 380%
Efficiency 0.995 0.996 0.995 0.992 0% 0% 0%
Hierarchy 1.000 0.999 0.999 0.999 0% 0% 0%
Upper Boundedness 0.76 0.69 0.20 0.22 -9% -74% -72%
Interdependence 0.0001 0.0001 0.0003 0.0003 0% 200% 200%
Table 23: Impact of reference resolution techniques on network properties, telephone conversations data
Measure Raw AR CR AR&CR Rawto Raw to Raw to

AR CR AR & CR
Link Count 746 739 730 604 -1% -2% -19%
Node Count 1,377 1,079 1,161 799 -22% -16% -42%
Component Count Strong 1,377 1,077 1,161 797 -22% -16% -42%
Component Count Weak 631 347 435 212 -45% -31% -66%
Network Levels 4 4 4 4 0% 0% 0%
Density 0.0004 0.0006 0.0005 0.0009 50% 25% 125%
Network Centr. Degree 0.0011 0.0048 0.002 0.0072 336% 82% 555%
Network Centr. Eigenvector | 0.9993 0.9813 0.7053 0.9562 -2% -29% -4%
Density Clustering Coeff. 0.000 0.003 0.000 0.009 - - -
Average Distance 1.08 1.24 1.13 1.27 15% 5% 17%
Average Speed 0.93 0.80 0.88 0.79 -13% -5% -15%
Transitivity 0.00 0.02 0.00 0.07 - - -
Diffusion 0.0004 0.0008 0.0006 0.0012 100% 50% 200%
Fragmentation 0.999 0.995 0.998 0.992 0% 0% -1%
Connectedness 0.001 0.005 0.002 0.008 456% 122% 778%
Efficiency Global 0.0009 0.0027 0.0015 0.0041 200% 67% 356%
Efficiency 1.000 0.997 0.994 0.991 0% -1% -1%
Hierarchy 1.000 0.997 1.000 0.996 0% 0% 0%
Upper Boundedness 0.76 0.76 0.30 0.54 0% -60% -29%
Interdependence 0.0001 0.0002 0.0005 0.0005 100% 400% 400%

Table 24: Impact of reference resolution techniques on network properties, usenet data
Measure Raw AR CR AR&CR Rawto Raw to Raw to

AR CR AR & CR
Link Count 858 846 811 705 -1% -5% -18%
Node Count 1,547 1,322 1,208 936 -15% -22% -39%
Component Count Strong 1,547 1,322 1,208 936 -15% -22% -39%
Component Count Weak 692 479 402 247 -31% -42% -64%
Network Levels 3 6 4 4 100% 33% 33%
Density 0.0004 0.0005 0.0006 0.0008 25% 50% 100%
Network Centr. Degree 0.0008 0.0016 0.0022 0.0067 100% 175% 738%
Network Centr. Eigenvector 1.00 0.98 0.99 0.98 -2% -1% -2%
Density Clustering Coeff. 0.002 0.002 0.003 0.011 0% 53% 453%
Average Distance 1.08 1.25 1.24 1.33 16% 16% 24%
Average Speed 0.93 0.80 0.80 0.75 -14% -14% -19%
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Transitivity 0.03 0.01 0.02 0.05 -62% -38% 38%
Diffusion 0.0004 0.0006 0.0007 0.0011 50% 75% 175%
Fragmentation 0.999 0.997 0.997 0.993 0% 0% -1%
Connectedness 0.001 0.003 0.003 0.007 211% 222% 667%
Efficiency Global 0.0008 0.0017 0.0018 0.0036 113% 125% 350%
Efficiency 0.985 0.998 0.996 0.993 1% 1% 1%
Hierarchy 1.000 1.000 1.000 1.000 0% 0% 0%
Upper Boundedness 0.68 0.85 0.29 0.47 25% -57% -31%
Interdependence 0.0001 0.0002 0.0005 0.0005 100% 400% 400%

Table 25: Impact of reference resolution techniques on network properties, blog data

Measure Raw AR CR AR&CR Rawto Raw to Raw to

AR CR AR & CR
Link Count 766 766 732 703 0% -4% -8%
Node Count 1,407 1,331 1,137 1,031 -5% -19% -27%
Component Count Strong 1,407 1,331 1,137 1,031 -5% -19% -27%
Component Count Weak 643 567 412 340 -12% -36% -47%
Network Levels 3 4 4 4 33% 33% 33%
Density 0.0004 0.0004 0.0006 0.0007 0% 50% 75%
Network Centr. Degree 0.0003 0.0009 0.0015 0.0052 200% 400% 1633%
Network Centr. Eigenvector 0.79 0.98 0.94 0.95 25% 20% 21%
Density Clustering Coeff. 0.001 0.001 0.004 0.009 0% 236% 755%
Average Distance 1.06 1.10 1.20 1.24 4% 13% 17%
Average Speed 0.94 0.91 0.83 0.80 -4% -12% -15%
Transitivity 0.02 0.02 0.03 0.06 -35% 19% 144%
Diffusion 0.0004 0.0005 0.0007 0.0008 25% 75% 100%
Fragmentation 0.999 0.999 0.997 0.997 0% 0% 0%
Connectedness 0.001 0.001 0.003 0.003 44% 200% 278%
Efficiency Global 0.0008 0.001 0.0017 0.0022 25% 113% 175%
Efficiency 0.987 0.994 0.993 0.989 1% 1% 0%
Hierarchy 1.000 1.000 1.000 1.000 0% 0% 0%
Upper Boundedness 0.71 0.78 0.37 0.50 10% -47% -30%
Interdependence 0.0001 0.0001 0.0005 0.0005 0% 400% 400%

The results for disambiguating and consolidating nodes based on node IDs versus node spelling
differ strongly (Table 26): with the spelling based approach, for 2/3 of the considered measures,
AR and CR exhibit opposite effects with respect to increasing or decreasing the value of a
network metric, AR causes a greater change rate than CR, and the joint impact of AR and CR is
moderate in most cases (for 13 of 20 measures, the combined change rate is 10% and less).
These effects are consistent with our previous findings (Diesner & Carley, 2009a), but differ
starkly from disambiguating nodes based on their actual ID: there, AR and CR both either

increase or decrease a metric (except for upper boundedness), CR has a stronger impact than AR,
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and the joint impact of AR and CR is much larger than with the alternative approach (13 out of

20 measures have a change rate of 10% and more, 5 metrics have a change rate of more than

100%). In summary, the results for node disambiguation approaches suggest that consolidating

nodes based on spelling leads to network data, analysis results and interpretations that strongly

deviate from what is suggested by using ground truth data and allows for a smaller overall effect

of RR.

Table 26: Impact of reference resolution techniques on network properties, node identity based on spelling versus node

ID, all genres

Measure Raw AR CR AR & CR Raw to Raw to Raw to
AR CR AR & CR
Entire network, node disambiguation and consolidation based on node ID
Link Count 8,703 8,667 8,169 7,661 0% -6% -12%
Count Node 15,375 14,112 11,497 9,831 -8% -25% -36%
Component Count Strong 15,374 14,106 11,487 9,817 -8% -25% -36%
Component Count Weak 6,695 5,489 3,491 2,468 -18% -48% -63%
Network Levels 4 6 6 6 50% 50% 50%
Density 0 0 0.0001 0.0001 - - -
Network Centr. Degree 0.0001 0.0001 0.0002 0.0009 0% 100% 800%
Network Centr., Between. 0 0 0 0 - - -
Density Clustering Coeff. 0.001 0.001 0.003 0.011 100% 357% 1400%
Average Distance 1.10 1.16 1.39 1.44 6% 26% 30%
Speed Average 0.91 0.86 0.72 0.70 -5% -21% -23%
Transitivity 0.01 0.02 0.02 0.05 41% 81% 370%
Diffusion 0 0.0001 0.0001 0.0001 - - -
Fragmentation 1.00 1.00 1.00 1.00 0% 0% 0%
Connectedness 0.0001 0.0002 0.0006 0.0009 100% 500% 800%
Efficiency Global 0.0001 0.0001 0.0003 0.0004 0% 200% 300%
Efficiency 0.992 0.995 0.995 0.992 0% 0% 0%
Hierarchy 1.000 0.999 0.998 0.998 0% 0% 0%
Upper Boundedness 0.72 0.75 0.22 0.27 4% -70% -63%
Interdependence 0 0 0.0001 0.0001 - - -
Entire network, node disambiguation and consolidation based on node spelling
Link Count 6,475 6,669 6,561 6,514 3% 1% 1%
Count Node 3,299 3,518 3,215 3,323 7% -3% 1%
Component Count Strong 2,780 2,988 2,638 2,763 7% -5% -1%
Component Count Weak 165 170 124 130 3% -25% -21%
Network Levels 21 21 20 23 0% -5% 10%
Density 0.0006 0.0005 0.0006 0.0006 -17% 0% 0%
Network Centr. Degree 0.0009 0.0008 0.0011 0.0008 -11% 22% -11%
Network Centr., Between. 0.029 0.038 0.033 0.037 33% 14% 30%
Density Clustering Coeff. 0.013 0.019 0.028 0.045 47% 110% 240%
Average Distance 5.69 6.31 5.80 6.47 11% 2% 14%
Speed Average 0.18 0.16 0.17 0.15 -10% -2% -12%
Transitivity 0.04 0.04 0.05 0.04 -9% 8% 3%
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Diffusion 0.1891 0.1719 0.2160 0.1905 -9% 14% 1%
Fragmentation 0.21 0.21 0.16 0.17 0% -22% -20%
Connectedness 0.7931 0.7926 0.8391 0.8342 0% 6% 5%
Efficiency Global 0.1873 0.1757 0.1993 0.1833 -6% 6% -2%
Efficiency 0.999 0.999 0.999 0.999 0% 0% 0%
Hierarchy 0.931 0.930 0.919 0.921 0% -1% -1%
Upper Boundedness 0.64 0.58 0.67 0.60 -10% 5% -6%
Interdependence 0.0001 0.0001 0.0001 0.0001 0% 0% 0%

For practical applications of network analysis, in addition to computing network level metrics,
people are often interested in identifying the set of nodes that score highest on a certain measure
or a set of measures. This procedure is also called “key player analysis”. I perform key player
analyses on the data by using ORA to compute several network analytical measures for every
node per network, and comparing the top five ranking nodes after each and both RR technique
were applied (Table 27, tying nodes listed in alphabetical order).

For RR based on actual node IDs, the results show that the set of key entities identified when not
applying any RR technique are completely different from the key entities found after applying
RR (Table 27). When performing both, AR and CR, the key entities for betweennees centrality
and in-degree centrality are similar to the key entities found after using CR only, and the key
players with respect to inverse closeness centrality and out-degree centrality resemble those
identified by using AR only. Since the values per measure and node are overall higher and more
often different from zero for betweennees centrality and in-degree centrality than for inverse
closeness centrality and out-degree centrality, the findings for similarities between CR and AR
plus CR are more robust than the similarities after using AR. For practical applications, this
means that performing at least CR will cause a major change in the network data, which

resembles the ground truth more closely than using no RR or AR only.

Several two top scoring nodes in the raw data are pronouns, e.g. “which”, “she”, “all”, and
“they”, which are unlikely to present the actual agents who drive the dynamics of a system.
Ironically, the top scoring node w.r.t. out-degree centrality is “we”. What looks like a mistake
represents the fact that especially in the accounts of spoken language as well as in the social
media data data, “we” is a frequently occurring entity that sometimes cannot be resolved via AR,
but consolidated via CR.

When consolidating nodes based on spelling, the set of key players identified with and without
using any RR techniques are highly similar to each other. Interpreting this finding together with
the outcome of the network level analyses suggests the when normalizing nodes based on

spelling only, RR makes a much smaller difference with respect to changes in network metrics

55




and identified key players than when normalizing nodes based on actual node IDs. Taking this
interpretation a step further implies that if only key players and a certain set of measures (listed
at end of this sentence) are to be computed, conducting any RR technique is not worthwhile if
nodes are normalized based on spelling (number of nodes, number of links, strong components,
network levels, density, transitivity, diffusion, connectedness, global efficiency, efficiency,
hierarchy, upper boundedness, interdependence). However, the results obtained this way do not
resemble findings based on ground truth data, i.e. nodes disambiguated based on node IDs.

Table 27: Key entities, node identity based on spelling versus node ID, all genres, ACES

Node disambiguation and consolidation based on node ID Node disambiguation and consolidation based on node
spelling
R Betwee- Inverse In-degree Out-degree Between- Inverse In-degree Out-degree
a nness closeness centrality centrality ness closeness centrality centrality
n centrality centrality centrality centrality
k | Raw
1| home soldiers Washington all Iraq director u.s his
2 | Byrds Creek she area ambassadors | | founder Iraqi forces
3 | base boy home Protesters they chairman Iraq troops
4 | streets forces which diplomats his Chiefs of Staff ~ Baghdad my
5 | mosque forces Tuesday Iraqis area Giuliani there |
AR
1| Judy parents company Judy Iraq Roger u.s forces
2 | Ringo Langly  Judy headquarters  GF troops guy Iraqi troops
3| GF Annie J.S. base dogbirdh@... | forces executive Iraq people
4 | kramer guy group Britt family director Baghdad officials
5| dad Britt us Annie J.S. people chairman city President
CR
1 | Indonesia forces country Stig Toefting his director u.s his
2 | Iraq Buildings Palestinian terrorist people Council Iraq forces
3| Iraqi source Iraqi bomber Iraq head Iraqi troops
4| city TV2 American Iraq | Protesters Baghdad my
5 | Stig Toefting  Copenhagen Indonesia troops Baghdad Task Force country |
AR & CR
1 | Indonesia parents country we Iraq Council u.s troops
2 | Iraqi Judy Palestinian private people head Iraq forces
3| Iraqi mother Indonesia Marwan B. President  Shag Iraqi people
4 | Stig Toefting  Mildred Iraqi Judy u.s Copenhagen Baghdad officials
5] city industry u.s GF troops TV2 country President

2.7.1.4 Simulation of impact of reference resolution error rates

The last research question for the RR project is about the impact of changes in the accuracy rates
of AR and CR on network data. I use the following procedure to study the effect of introducing
typical RR errors into ground truth data: my review of typical error rates of current, publically

available and top performing RR tools has shown that precision is about ten percent higher than
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recall, and that recall and precision range between 55% to 85%, and 65% to 95%, respectively
(Table 4). Based on this review of empirical results, I defined the following four levels of
accuracy rates as shown in Table 28 for experimentation. Next, I assume that the ground truth
data are the gold standard against which the performance of a reference resolution tool would be
compared in order to assess the tool’s accuracy. This procedure resembles the way accuracy
assessment is done in NLP. Based on this assumption, I introduce errors into the ground truth
data such that the resulting data have the error rates specified in Table 28 as follows: I generate
false negatives by removing randomly selected links from the ground truth until a given recall
rate has been reached. Once this is done, I add false positives into the data by connecting nodes
that are not linked in the ground truth data, but are defined as valid nodes in the ground truth.
The weight of added links is selected proportionally to the distribution of link weights in the
ground truth, which differs per RR technique and was also handled this way. Once the data with
the given error rates were constructed, I performed the same network analysis on them as
presented in the previous section in order to allow for comparability and generalizability of the

findings. These analyses were performed for the ACES data on the entire corpus level.

Table 28: Accuracy rates for reference resolution for experiments

Precision Recall F
Accuracy | 55 65 60
Accuracy Il 65 75 70
Accuracy Il 75 85 80
Accuracy VI 85 95 90

Table 29 to Table 31 show the previously used network metrics in dependence of the increase in
accuracy by 10% for the first four columns, and the difference between the values computed on
the ground truth data to each accuracy setting in the last four columns. The following trends can
be observed for AR, CR and AR plus CR: The most common effect is that increases in accuracy
lead to decreases in the underestimation of the following metrics (listed by decreasing amount of
underestimation): upper boundedness, transitivity, clustering coefficient, the number of strong
and weak components, the number of nodes and links, and average speed. For either and both
RR techniques, increases in accuracy also lead to decreases in the overestimates of the following
metrics (listed by decreasing amount of overestimating): connectedness, diffusion, global
efficiency, network levels, and degree centralization. Improving the accuracy for each and both

RR techniques has virtually no impact of network density, fragmentation and efficiency.

The results show that overall, even small error rates can cause huge changes in the value of
network metrics in comparison to ground truth data, which herein is assumed to represent 100%
correct RR. To illustrate this effect, I have underlined the conditions under which changes occur
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and where the difference between the true value and the value obtained using a certain error rate

is equal to or less than 10%. This applies only to metrics which did show no clear trend in how

they change depending on RR techniques as discussed in section 2.7.1.3, namely efficiency,

fragmentation, network levels, and speed, or requires the highest accuracy rate tested to achieve

this effect, which applies to diffusion and the number of links only.

Table 29: Change in network properties depending on error rates for AR

Measure Accu- Accu- Accu- Accu- Ground | Acclto Accll Acclil Acc IV
racy | racy Il racy Il racy IV Truth GT to GT to GT to GT
Connectedness 0.0034 0.0040 0.0005 0.0003 0.0002 [ 1600%  1900% 150% 50%
Efficiency Global 0.0006 0.0005 0.0002 0.0002 0.0001 500% 400% 100% 100%
Diffusion 0.0001 0.0001 0.0001 0.0001 0.0001 0% 0% 0% 0%
Network Levels 10 9 8 6 6 67% 50% 33% 0%
Nw. Centr. Degree 0.0003 0.0002 0.0002 0.0002 0.0001 200% 100% 100% 100%
Upper Boundedness 0.11 0.06 0.44 0.60 0.75 -86% -92% -41% -19%
Transitivity 0.001 0.002 0.003 0.010 0.016 -92% -89% -81% -39%
Average Distance 1.90 1.76 1.52 1.27 1.16 63% 51% 30% 9%
Density Clus. Coeff. 0.0004 0.0005 0.0006 0.0013 0.0014 -71% -64% -57% 7%
Comp. Count Weak 2,613 3,110 3,775 4,654 5,489 -52% -43% -31% -15%
Average Speed 0.53 0.57 0.66 0.78 0.86 -39% -34% -23% -9%
Node Count 9,973 10,642 11,422 12,387 14,112 -29% -25% -19% -12%
Comp. Count Strong 9,971 10,640 11,419 12,383 14,106 -29% -25% -19% -12%
Link Count 7,368 7,539 7,662 7,765 8,667 -15% -13% -12% -10%
Fragmentation 0.997 0.996 1.000 1.000 1.000 0% 0% 0% 0%
Efficiency 1.000 1.000 1.000 0.998 0.995 0% 0% 0% 0%
Hierarchy 1.00 1.00 1.00 1.00 1.00 0% 0% 0% 0%
Density 0.0001 0.0001 0.0001 0.0001 0 - - - -
Table 30: Change in network properties depending on error rates for CR
Measure Accu- Accu- Accu- Accu- Ground | Acclto Accll Acclil Acc IV
racy | racy Il racy Il racy IV Truth GT to GT to GT to GT
Connectedness 0.2014 0.1277 0.0416 0.0013 0.0006 | >33tsd% >21tsd% 6833% 117%
Efficiency Global 0.0122 0.0075 0.0024 0.0004 0.0003 | 3967% 2400% 700% 33%
Diffusion 0.0003 0.0002 0.0002 0.0001 0.0001 200% 100% 100% 0%
Network Levels 15 11 11 8 6 150% 83% 83% 33%
Nw. Centr. Degree 0.0003 0.0005 0.0004 0.0003 0.0002 50% 150% 100% 50%
Upper Boundedness 0.00 0.00 0.01 0.13 0.22 -98% -98% -96% -38%
Transitivity 0.001 0.004 0.007 0.012 0.021 -95% -81% -68% -40%
Average Distance 2.99 2.33 2.04 1.56 1.39 115% 68% 47% 12%
Density Clus. Coeff. 0.0004 0.0008 0.0018 0.0020 0.0032 -88% -75% -44% -38%
Comp. Count Weak 1,558 1,914 2,387 2,965 3,491 -55% -45% -32% -15%
Average Speed 0.33 0.43 0.49 0.64 0.72 -54% -40% -32% -11%
Node Count 8,421 8,924 9,556 10,195 11,497 -27% -22% -17% -11%
Comp. Count Strong 8,416 8,922 9,549 10,191 11,487 -27% -22% -17% -11%
Link Count 6,968 7,100 7,236 7,322 8,169 -15% -13% -11% -10%
Fragmentation 0.799 0.872 0.958 0.999 0.999 -20% -13% -4% 0%
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Efficiency 1.000  1.000  1.000  0.998  0.995 1% 1% 1% 0%
Hierarchy 1.00 1.00 1.00 1.00 1.00 0% 0% 0% 0%
Density 0.0001 0.0001 0.0001 0.0001 0.0001 0% 0% 0% 0%

Table 31: Change in network properties depending on error rates for AR and CR

Measure Accu- Accu- Accu- Accu- Ground | Acclto Acc ll Acclll Acc IV
racy | racy Il racy Il racy IV Truth GT to GT to GT to GT
Connectedness 0.3318 0.2704 0.1608 0.0046 0.0009 | >36tsd% 29tsd%  >17tsd% 411%
Efficiency Global 0.0225 0.0191 0.0095 0.0008 0.0004 | 5525% 4675%  2275% 100%
Diffusion 0.0004 0.0004 0.0002 0.0001 0.0001 300% 300% 100% 0%
Network Levels 18 15 16 9 6 200% 150% 167% 50%
Nw. Centr. Degree 0.0012 0.0009 0.001 0.001 0.0009 33% 0% 11% 11%
Upper Boundedness 0.00 0.01 0.00 0.07 0.27 -98% -98% -98% -74%
Transitivity 0.007 0.008 0.018 0.027 0.053 -87% -85% -65% -49%
Average Distance 3.14 3.13 2.37 1.69 1.44 118% 117% 65% 17%
Density Clus. Coeff. 0.0026  0.0027 0.0051 0.0060 0.0105 -75% -74% -51% -43%
Comp. Count Weak 1,088 1,285 1,642 2,114 2,468 -56% -48% -33% -14%
Average Speed 0.32 0.32 0.42 0.59 0.70 -54% -54% -39% -15%
Node Count 7,394 7,785 8,268 8,819 9,831 -25% -21% -16% -10%
Comp. Count Strong 7,394 7,780 8,265 8,812 9,817 -25% -21% -16% -10%
Link Count 6,509 6,723 6,800 6,866 7,661 -15% -12% -11% -10%
Fragmentation 0.668 0.730 0.839 0.995 0.999 -33% -27% -16% 0%
Efficiency 1.000 1.000 1.000 0.999 0.992 1% 1% 1% 1%
Hierarchy 1.00 1.00 1.00 1.00 1.00 0% 0% 0% 0%
Density 0.0001 0.0001 0.0001 0.0001 0.0001 0% 0% 0% 0%

In order to test the qualitative impacts of the given error rates, I performed the same type of key
player analysis as presented earlier in this chapter. The outcomes ((Table 32 to Table 34) differ
from what the quantitative analysis on the simulation of the impact of RR error rates had
suggested: for both RR techniques, individually and combined, there is a large amount of overlap
in key entities between the ground truth data and key entities found at lower RR accuracy rates,
especially with respect to node degree centrality. This is even true for fairy low accuracy rates.
This finding suggests that the set of key players is less sensitive towards changes in accuracy
rates than network analytical measures. One possible explanation for this finding is the very
nature of highly central nodes: their ratio among all nodes is very low such that dropping them in
a randomized or based on node degree fashion is very low. However, since their node degree is
exponentially higher than the degree of non-central nodes, removing a fraction of the links from
central nodes or nodes around them will have only a minor impact on these nodes, even though
computing network metrics on the modified graph is more sensitive to these modification as
shown in the previous section. Finally, the key players are similar for CR and AR plus CR, but
rather different set of key players is identified when performing AR only. This suggests that AR

has a smaller impact on the combined results than CR does.
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Table 32: Change in key players depending on error rates for AR

Betweenness centrality

Inverse closeness centrality

In-degree centrality

Out-degree centrality

Accuracy I

Judy organization Judy Annie Juhlyn Simon
dogbirdh...@yahoo.com Lynn company Judy

base Jabaliya streets dogbirdh...@yahoo.com
Annie Juhlyn Simon area U.S Barbara Sz.

GF Universal Orlando headquarters roommate

Accuracy I1

Ringo Langly industry group dogbirdh...@yahoo.com
roommate grandmother BIL Britt

base Giuliani fort hood GF

nephew Rudolph Giuliani Washington DC Mark

man companion headquarters Judy

Accuracy 111

teacher possessions base Judy

Judy body fort hood GF

Mildred guy company dogbirdh...@yahoo.com
dogbirdh...@yahoo.com closet uUs Annie Juhlyn Simon
students parents group Britt

Accuracy VI

Judy head headquarters Judy

teacher court company GF

AIG parents group dogbirdh...@yahoo.com
tracy Judy Washington DC Annie Juhlyn Simon
court Annie Juhlyn Simon fort hood Barbara Sz.

Ground truth

Judy parents company Judy

Ringo Langly Judy headquarters GF

GF Annie Juhlyn Simon base dogbirdh@ yahoo.com
kramer guy group Britt

dad Britt UsS Annie Juhlyn Simon

Table 33: Change in key players depending on error rates for CR

Betweenness centrality

Inverse closeness centrality

In-degree centrality

Out-degree centrality

Accuracy I

Agartala we Palestinian Stig Toefting
son who Indonesia soldiers
Indonesia forces people bomber
people new york Israeli members
members reserves UsS Vivendi Universal
Accuracy I1

American troops country Giuliani
Iraqi rats Palestinian terrorist

city Diller American you

Iraqi resistance Iraqi McCarthy
Patriot McCarthy Indonesia Iraq
Accuracy 111
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Stig Toefting neighborhood country Stig Toefting
Iraq North Korean uUs members
Israel Stig Toefting Palestinian terrorist
crossing parliament American Iraq
Denmark ambassador American North Korean
Accuracy VI

American its Iraqi Giuliani
Indonesia park American Iraq

baby Vivendi Universal country Indonesia
Iraqi officials people michael sears
williams troops Palestinian terrorist
Ground truth

Indonesia forces country Stig Toefting
Iraq Buildings Palestinian terrorist

Iraqi source Iraqi bomber

city TV2 American Iraq

Stig Toefting Copenhagen Indonesia troops

Table 34: Change in key players depending on error rates for AR and CR

Betweenness centrality

Inverse closeness centrality

In-degree centrality

Out-degree centrality

Accuracy I

Iraqi ambassador American private

abby your country girlfriend
house Karim American Britt
Baghdad minister people JBELLU...@COMCAST.
we woman Indonesia people
Accuracy I1

mother secretary people private
Security Council troops Iraqi your

troop soldiers American terrorist
private state Israel Britt

Saudi U.S group Judy
Accuracy 111

Hebron street country we
American clerics Palestinian Stig Toefting
prize demonstrators Israeli private
Northwestern minority Indonesia Britt
workers area Israel terrorist
Accuracy VI

Britt boy country we

Baghdad Mildred usS Mildred
Indonesia village Indonesia Judy
American industry Palestinian Stig Toefting
court source American mother
Ground truth

Indonesia parents country we

Iraqi Judy Palestinian private

Iraqi mother Indonesia Marwan B.
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Mildred
industry

Stig Toefting
city

Iraqi
U.S

GF

Judy

2.7.1.5 Answers to research questions

The presented results for reference resolution on the entity or node, link and network data level

suggest the answers to my research questions presented in Table 35. All numbers reported in this

summary arc¢ averages.

Table 35: Answers to research questions 1-3

Level of | How large is the impact of the RR Which routine, AR or Is combining AR
analysis | techniques? CR, is more effective in | and CR more
achieving these effects? | effective than either
technique alone?
1. Entity | Performing RR alters the identity and/or CR w.r.t. the amount of | Yes. Combining both
level weight of 76% of all entity mentions. The entities changed. AR techniques increases
entity weight is increased from 1.0 to 4.9 with | w.r.t. increasing the the amount of entities
AR, to 4.5 with CR, and to 5.8 with AR and weight of impacted impacted by RR by
CR. Less than 18% of the unique entities are entities. The rate of another 38%.
impacted by RR; they carry more than 79% of | entity reduction via CR
the total entity weight. is 45%. The rate of entity
change via AR is 31%.
2. Link | The link weight is increased from 1.0 to 2.4 AR. The link reduction Yes. When applying
level by using RR. The weight of unique relations rate due to CR is 6%. both techniques, 12%
impacted by both techniques increases to less | The link change rate due | of all links are
than 2.5. Less than 11% of the unique links to AR is 23%. reduced. The impact
are impacted by RR; they carry almost 23% of of RR is stronger on
the total link weight. the node level than on
the link level.
3. Using RR leads to increases in network CR. When identifying Yes.
Network | density, connectedness, transitivity, degree key entities, CR closely
level centralization, global efficiency, clustering resembles the nodes
coefficients, average distance and diffusion. identified by using AR
Disambiguating nodes based on node IDs and CR, while applying
versus node spelling makes a big difference; AR only returns a
using the latter approach leads to analysis completely different set
results and interpretations that strongly of key entities.
deviate from the ground truth.
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Question 4: How much change in network properties in due to increases in accuracy of AR
and CR?

Answer 4: Even small error rates, e.g. an F value for accuracy of 90%, can cause over-
and underestimations of the true network analytical values per metric of much
more than 10%; often ranging up to 100% and more. In contrast to that, the
identification of key entities is less sensitive towards changes in RR accuracy
rates than the network analytical measures are. Also, the set of key entities is

strongly impacted by CR, and less so by AR.

2.7.2 Windowing

The operationalization of “window size” for this project is the number of space separated tokens
that occur between the heads of the nodes in each annotated relation. The nodes themselves are
not within the window. For example, if two nodes in a link occur adjacent to each other, the
window size is zero. If no head is available for an entity, which applies to all instances of the

timex” class, the number of tokens between the extents of the nodes is counted.

In some ground truth data, genitive markers (‘s) are separated by a single space character from
the token they belong to. I use the following rule for handling this situation: These markers are
disregarded from counting the size of the window. The same rule is applied to hyphens and

single-character punctualization symbols, including commas.

The chosen operationalization of windowing slightly differs from another common way of
measuring the length of the window, where the linked nodes are within the window. For
example, if two adjacent unigrams would form a link, the window size would be two. The latter
approach is used in AutoMap (Carley, Columbus, Bigrigg, & Kunkel, 2011). I chose the
abovementioned operationalization in order to avoid any conflicts with entities that are multi-

word expressions. Consequently, the results reported herein eliminate this source of ambiguity.

In the context of this project, the SemEval data complement the ACE datasets in several ways:
first, in SemEval, different types of semantic relations are considered than in ACE. Table 36 lists
the types of relations considered in SemEval along with the amount of data per type. These
relations are based on prior work in semantic role labeling (Nastase & Szpakowicz, 2003).
Second, in SemEval, only relations between nominals, i.e. nouns and base noun phrases, are
annotated, but not between named entities or pronouns. Third, the examples in SemEval are
limited to statements about real world situations. This means that negations, modalities, and
opinions are exluded; all of which can be represented in ACE. Fourth, the SemEval data were

collected more recently than the ACE data, and are not confined to specific genres or domains.
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The drawback with this less constrained data collection approach is that one cannot know the

production or release date and genre or domain of the selected texts. Finally, in ACE, the types

of entities are not annotated. These differences will allow for testing the robustness of window

sizes across these different aspects.

Table 36: Types of relationships and size in corpus (SemEval)

Type of Semantic Relationship

Number of Links

Ratio in Corpus

Cause-Effect
Component-Whole
Content-Container
Entity-Destination
Entity-Origin
Instrument-Agency
Member-Collection
Message-Topic
Other
Product-Producer

1,331
1,253
732
1,137
974
660
923
895
1,864
948

12.4%
11.7%
6.8%
10.6%
9.1%
6.2%
8.6%
8.4%
17.4%
8.8%

2.7.2.1 Typical window sizes and link coverage rates

The results presented in Table 37 suggest that typical window sizes as well as the ratio of links

that are found when using a certain window size, which I herein refer to as coverage rate, are

highly similar across the considered types of semantic relationships: for all those types, more

than half of the links are found with a window size of four or less. On average, a window size of

seven is needed to identify at least than 90% of the links, and with a window size of eight, over

95% of the links are retrieved. The most frequent window size that human coders apply is small,

typically two or three (those values underlined in Table 37).

Table 37: Impact of type of semantic relationship on window size (SemEval)

Win | Per link type: Ratio of links with this size (left), Cumulative coverage of links at this size (right)

d?w Cause Effect Component Content Entity Entity Origin Instrument

Size Whole Container Destination Agency
0 14% 1.4% | 121% 12.1% | 12% 1.2% | 0.0% 0.0% | 158% 15.8% | 4.8% 4.8%
1]111.6% 129% | 45% 16.7% | 7.1% 83% | 3.8% 3.8% | 08% 16.6% | 7.1% 12.0%
2| 14.0% 27.0% | 40.8% 57.5% | 18.7% 27.0% | 26.3% 30.1% | 13.0% 29.7% | 19.2% 31.2%
3120.7% 47.7% | 14.1% 71.6% | 32.1% 59.2% | 20.4% 50.5% | 18.6% 48.3% | 14.2% 45.5%
41 153% 63.0% | 81% 79.7% | 17.1% 76.2% | 22.7% 73.2% | 20.4% 68.7% | 8.5% 53.9%
51101% 73.0% | 6.7% 86.4% | 11.2% 87.4% | 15.8% 89.0% | 13.9% 82.5% | 12.0% 65.9%
6| 89% 82.0% | 55% 91.9% | 6.0% 93.4% | 59% 94.9% | 8.4% 91.0% | 10.9% 76.8%
7|1 7.0% 89.0% | 3.3% 952% | 19% 954% | 18% 96.7% | 3.7% 94.7% | 7.3% 84.1%
8| 3.5% 924% | 15% 96.7% | 19% 973% | 12% 98.0% | 2.2% 96.8% | 4.7% 88.8%
9| 26% 95.0%| 09% 97.6% | 1.0% 98.2% | 0.6% 98.6% | 1.4% 983% | 3.2% 92.0%
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10| 1.6% 96.5% | 1.2% 98.8% | 0.1% 98.4% | 0.8% 99.4% | 0.4% 98.7% | 2.4% 94.4%

11| 09% 97.4% | 0.6% 99.4% | 0.7% 99.0% | 0.4% 99.7% | 0.5% 99.2% | 1.8% 96.2%

12| 11% 98.6% | 0.1% 99.5% | 0.1% 99.2% | 0.2% 99.9% | 0.1% 99.3% | 1.1% 97.3%
Member Message Product Other Average
Collection Topic Producer (unweighted)

0 22% 22% | 0.7% 0.7% | 12.6% 12.6% | 6.8% 68% | 58% 5.8%

11377% 399% | 59% 6.6% | 6.1% 18.7% | 9.2% 16.0% | 9.4% 15.1%

2| 42.7% 82.6% | 22.9% 29.5% | 14.9% 33.5% | 21.5% 37.4% | 23.4% 38.6%

3| 9.8% 92.3% | 19.2% 48.7% | 22.2% 55.7% | 20.1% 57.5% | 19.1% 57.7%

4 3.3% 95.6% | 16.1% 64.8% | 16.5% 72.2% | 15.0% 72.5% | 14.3% 72.0%

5| 2.6% 98.2% | 12.1% 76.9% | 8.2% 80.4% | 10.4% 82.8% | 10.3% 82.3%

6| 08% 98.9% | 7.7% 84.6% | 6.1% 86.5% | 6.5% 89.3% | 6.7% 88.9%

7] 05% 99.5% | 6.6% 91.2% | 4.4% 90.9% | 3.9% 93.2% | 4.0% 93.0%

8| 03% 99.8% | 3.1% 943% | 2.1% 93.0% | 2.1% 954% | 2.3% 95.3%

9| 01% 99.9% | 2.2% 96.5% | 1.9% 94.9% | 2.0% 97.4% | 1.6% 96.8%

10| 0.0% 99.9% | 13% 979% | 13% 96.2% | 0.8% 982% | 1.0% 97.8%

11 0.0% 99.9% | 1.0% 98.9% | 0.8% 97.0% | 0.7% 989% | 0.7% 98.6%

12| 0.0% 99.9% | 0.6% 99.4% | 0.9% 98.0% | 0.4% 99.3% | 0.5% 99.0%

There are a few noteworthy differences depending on the type of semantic relationships: for
“member - collection” links, which encode non-functional relationships between specific
elements and some set, the window is particularly short: over 80% of nodes in a link are
separated by one or two words in the text data. In contrast to that, two types of relations require a
slighty larger window than the reported averages (greater by one to two words): “instrument -
agency” relations, which denote than somebody or something uses some object, and “cause -
effect” relations, which represent the fact that an event or an object causes some effect. The latter

finding is relevant for event coding, because news coverage often falls into this category.

I argue that the “other” class can be considered as a control case, i.e. a label for relationships that
seemed relevant to human coders, but did not fit any (or maybe multiple) of the predefined
categories. The results for the “other” class do not differ in any meaningful way from the results
for the other classes (Table 37). This finding indicates that with respect to windowing, the
specific semantic relationships considered in SemEval are representative for other types of
relations and vice versa. Taking this interpretation a step further, I argue that we can generalize
the insights gained about window sizes for the considered types of semantic relationship to other

types of semantic relations.

Finally, I did not find any differences in window size (distribution) depending on the number of
examples per relationship. This indicates that the coding guidelines used for annotation, the

resulting relational data and identified effects, or both, are robust.
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In ACES, additional classes of link types are considered in comparison to SemEval; namely
syntactic classes, different relationship types (similar to the semantic roles in SemEval) and
subtypes, modality, and tense (Linguistic Data Consortium, 2005). The first two classes are
relevant for this study and are discussed in detail below. Another important particularity with
relations in ACE is that links can be formed between distinct entities that belong to the same
extent of one entity. Such constituents are still annotated as truly distinct, individual entities in
ACE. For instance, for the marked-up extent of the entity “southern Philippines airport”, there is
a relationship (of type “geographical’) annotated between the nominals “airport” (unique entity
of type “facility”) and “southern Philippines” (unique entity of type “location”). For practical
text coding and event coding applications, users often are often not interested in establishing
links among tokens in multi-word expressions. If those relations do matter, the window size is
rather deterministic, i.e. zero for adjacent terms. One goal with this project is to inform decisions
about appropriate window sizes between entities that are common in texts from or about socio-
technical systems. In such data, relevant mentions of entities typically do not overlap, e.g. in
written accounts of who did or said what to whom in what manner. Thus, for the following
analyses, it seems necessary to distinguish between relations between overlapping versus non-
overlapping entities. Moreover, it seems necessary to discount for deterministic window sizes
that result from overlapping entity extents as there is little new to learn about them. My analysis
shows that whether the extents of linked entity mentions overlap or not is mainly a function of
the syntactic class’ of the relationship (Table 38): in ACES, 67.5% of all links show overlaps in

entity extent. Of those links, 92% are members of three syntactic classes:

*  “Premod” relations, which denote links between proper adjectives or proper nouns that
modify an entity, e.g. “New York police”. These entities are often multi-word units that
an N-gram tagger might identify as such and for which the window size would be zero.

* “Possessive” relations, where one entity is possessing the other one, e.g. "New York's
citizens". These entities are often collocations, and the respective window size would also
be zero.

* “Preposition” relations, where two entities are linked through a preposition, e.g. "citizens
of New York". Here, the window size equals the number of tokens in the preposition,

which is often one or two.

% In ACE, one of the intension with syntactic classes is to provide the annotators with a justification or sanity check

for marking up a link.
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Since the window sizes for these three types of relations are driven by syntactic rules for
language production, they are not of further interest for analysis here because the respective
window sizes are deterministic and can be estimated given the type of relationship. This decision
does not imply that these relations are irrelevant for network analysis, in fact many of them

would be true positives with many relation extraction approaches.

Table 38: Types of syntactic relationship, size in corpus, and ratio of overlapping entity extents

Syntactic Relation Share of total Overlapping in
dataset extent
PreMod 28.2% 99.0%
Verbal 21.2% 4.9%
Preposition 19.4% 88.5%
Possessive 17.3% 98.1%
Other 8.5% 9.4%
Formulaic 3.1% 66.9%
Participial 2.0% 68.6%
Coordination 0.4% 51.6%

Table 39 provides the empiric results for the frequency and coverage rates of window sizes
depending on the types of syntactic relations. “Depending on” here means given a certain
window sizes; there could still be some underlying other factor that explains the observed results.
The shown numbers confirm that for possessive and premod relations, the most frequent window

size is zero, and over 95% of links in those classes require a window size of two or less.

In other syntactic relations, fewer entities overlap in extent: first, in “coordination” relations,
where two nouns phrases are connected via the conjunction “and”, e.g. “citizens and police”.
Most of these noun phrases are clearly distinct entities. However, the amount of words between
them is still deterministic (one for “and”, see Table 39 for a confirmation), and therefore are also
not of interest here. Next, “formulaic relations”, which mainly tie the author or reporter to a
publishing location of a news article, such as in “John Doe, the BBC, London”. Here, links also
mainly consists of collocated entities so that the most frequent window size is zero (Table 39).
Moreover, this genre-specific type of relationship cannot be assumed to generalize to other

domains, and is disregarded for further analysis.

In relations of the types “participial”, where a participial phrase modifies a head noun, e.g. “the
people who moved to New York”, and “verbal”, where nodes are linked through a verb, the
involved entities are typically distinct entities, and at least in the case of “verbal” also mainly
non-overlapping. Moreover, links of these two types are relevant for event coding as they imply
some activity (Gerner et al., 1994). With some REX approaches, verb phrases that represent
activities are actually considered as nodes (Carley et al., 2007; Goldstein, 1992; King & Lowe,
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2003), while in other approaches, they are not (Corman et al., 2002). Another syntactic
relationship where the majority of instances do not involve overlapping entity extents is the
“other” class. This is a collection of links that do not fit the definition of any of the other
syntactic  classes, but “beyond a reasonable doubt" are a relevant link
(Linguistic_ Data Consortium, 2005). As already explained for the SemEval data, the “other”
class is relevant for this study as it can serve as a control condition. Taken together, the
“participial”, “verbal” and “other” class account for 32.5% of all links in ACE, but only for 4.8%
of the links where the extents of entities are overlapping. Based on these results and the
aforementioned reasoning, I consider relations of the types “verbal”, “participial”, and “other”
for further analysis, with the exception of the error analysis at the end of this chapter, where
again all types are considered. For the considered syntactic classes (N of links =2,841), the most
common window size is two or three, but it takes more than 7 (participial), 11 (verbal), or 13
(other) intervening words to identify at least 90% of the links denoted in the ground truth (Table
39).

Table 39: Impact of type of syntactic relationship on window size

Window PreMod Formulaic Possessive Coordination
0 80.5% 80.5% 75.8% 75.8% 66.8% 66.8% 3.2% 3.2%
1 13.0% 93.5% 12.6% 88.5% 22.9% 89.6% 51.6% 54.8%
2 4.6% 98.2% 4.5% 92.9% 6.4% 96.0% 19.4% 74.2%
3 1.2% 99.4% 2.6% 95.5% 2.6% 98.6% 9.7% 83.9%
4 0.4% 99.8% 1.1% 96.7% 0.7% 99.3% 12.9% 96.8%
5 0.0% 99.9% 0.7% 97.4% 0.3% 99.6% 0.0% 96.8%
6 0.0% 99.9% 0.7% 98.1% 0.2% 99.8% 0.0% 96.8%
7 0.0% 99.9% 0.4% 98.5% 0.1% 99.9% 0.0% 96.8%
8 0.0% 99.9% 0.4% 98.9% 0.0% 99.9% 0.0% 96.8%
9 0.0% 100.0% 0.7% 99.6% 0.1% 99.9% 0.0% 96.8%
10 0.0% 100.0% 0.0% 99.6% 0.0% 99.9% 0.0% 96.8%
Preposition Participial Verbal Other
0 1.5% 1.5% 7.6% 7.6% 3.3% 3.3% 9.4% 9.4%
1 37.3% 38.8% 11.0% 18.6% 8.6% 11.9% 8.8% 18.2%
2 31.1% 70.0% 19.8% 38.4% 15.5% 27.4% 12.9% 31.1%
3 14.9% 84.9% 20.9% 59.3% 14.7% 42.1% 10.6% 41.7%
4 6.8% 91.7% 11.6% 70.9% 13.1% 55.2% 10.5% 52.1%
5 3.5% 95.2% 8.7% 79.7% 10.3% 65.5% 8.2% 60.3%
6 1.7% 96.9% 5.8% 85.5% 7.0% 72.5% 6.6% 66.9%
7 1.0% 97.9% 5.2% 90.7% 5.5% 78.1% 6.0% 72.9%
8 0.8% 98.6% 3.5% 94.2% 4.9% 82.9% 4.6% 77.5%
9 0.5% 99.2% 1.2% 95.3% 3.2% 86.2% 4.7% 82.2%
10 0.4% 99.6% 1.2% 96.5% 3.0% 89.2% 2.7% 84.9%
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The impact of genre on window size is also tested here. Table 40 lists the genres considered in
this project along with their respective size in the corpus. This table also shows the ratio of the
selected syntactic classes among these genres. The numbers show that syntactic relations where
window sizes are fairly deterministic are more common in newswire data, while they are slightly
less common in broadcast news and telephone conversations; both of which are instances of

spoken language data.

Table 40: Distribution of genres across corpus and selected syntactic relations (verbal, participial, other)

Genre All relations Selected syntactic relations
Broadcast conversation 19.0% 18.9%
Broadcast news 23.1% 25.0%
Newswire 30.7% 23.8%
Telephone 8.5% 12.3%
Usenet 9.9% 11.3%
Weblog 8.8% 8.7%

The most common window sizes (two to three) are consistently found across all genres (Table
41). Slight exceptions are telephone conversations (about one token shorter windows than the
cross-genre average), and newswire data (about one token longer). The link coverage rates
depending on the window size are also very similar across genres, but only up to window size
eight, where about 80% of all links are found. From there on, the window sizes needed to capture

more links start to vary depending on the genre (Table 41).

Table 41: Impact of genre on window size

Win- Broadcast Broadcast Newswire Telephone Usenet Weblog

dow | Conversations News
O 63% 63% | 55% 55% | 41% 4.1% | 44% 4.4% | 54% 54% | 58% 5.8%
1] 88% 151% | 9.8% 153% | 7.4% 11.6% | 9.7% 14.1% | 9.6% 15.1% | 7.4% 13.2%
2116.7% 31.8% | 13.3% 28.6% | 11.4% 22.9% | 25.2% 39.3% | 16.7% 31.7% | 10.3% 23.6%
3|148% 46.6% | 15.0% 43.6% | 13.4% 36.3% | 13.5% 52.8% | 10.3% 42.0% | 16.5% 40.1%
41123% 588% | 13.3% 56.9% | 11.4% 47.7% | 11.4% 64.2% | 14.7% 56.7% | 10.3% 50.4%
51 10.0% 68.8% | 7.4% 64.2% | 93% 57.0% | 9.7% 73.9% | 10.3% 67.0% | 15.3% 65.7%
6| 63% 75.1% | 6.8% 71.0% | 84% 653% | 53% 792% | 7.1% 74.0% | 58% 71.5%
7| 54% 805% | 63% 773% | 53% 70.7% | 6.7% 859% | 3.8% 77.9% | 58% 77.3%
8| 46% 851% | 51% 82.4% | 55% 76.1% | 3.2% 89.1% | 4.2% 82.1% | 4.5% 81.8%
9| 33% 883% | 3.6% 86.0% | 43% 80.4% | 29% 92.1% | 3.5% 85.6% | 2.5% 84.3%
10| 2.5% 90.8% | 3.8% 89.8% | 3.3% 83.7% | 15% 93.5% | 29% 88.5% | 1.2% 85.5%
11| 23% 93.1% | 1.6% 91.3% | 1.8% 85.6% | 15% 95.0% | 1.6% 90.1% | 2.5% 88.0%
12 0.8% 93.9% | 2.2% 93.5% | 2.6% 88.1% | 18% 96.8% | 3.2% 93.3% | 2.5% 90.5%
13| 1.5% 95.4% | 2.0% 955% | 1.7% 89.8% | 0.9% 97.7% | 13% 94.6% | 2.5% 93.0%
14| 0.6% 96.0% | 1.4% 97.0% | 1.1% 909% | 12% 98.8% | 1.3% 95.8% | 0.8% 93.8%
15| 1.0% 96.9% | 0.7% 97.7% | 23% 93.2% | 03% 99.1% | 03% 96.2% | 0.8% 94.6%
16 13% 983% | 03% 98.0% | 0.8% 93.9% | 03% 99.4% | 03% 96.5% | 1.2% 95.9%
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0.4% 98.7%
0.0% 98.7%

0.3% 98.3%
0.1% 98.4%

0.8% 94.7%
0.5% 95.1%

0.3% 99.7%
0.0% 99.7%

0.6% 97.1%
0.6% 97.8%

0.0% 95.9%

0.0% 95.9%

17
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In addition to testing the window size depending on genre, window sizes are also analyzed herein
depending on the following types of relationships, which are conceptually similar to the semantic

relations in SemEval:

- Social, personal: relations between people.

- Organizational affiliation: professional relations, such as employment.

- General affiliation: relations between people and organizations in the widest sense or
geopolitical entities, e.g. residency or religion.

- Agent-Artifact: social agent owning an artifact.

- Physical: the location of a person.

- Part whole: the location of objects, and hierarchical relations among and between social

agents and objects.

The share of each of these types of relationships in the dataset and among the selected syntactic
relations is shown in Table 42. Grammatically induced window sizes are prevalent in all but the
geo-physical and to a lesser degree also in the agent-artifact relations. The results about window
size per semantic relationship based on SemEval (Table 43) confirm the previous findings based
on ACE: typical window sizes (two or three) and coverage rates are very similar across the
different types of relationships. The “part-whole” relationship requires a slightly shorter distance,
and the same had been observed for the “component-whole” type in ACE. However, when
filtering the links in ACE depending on the type of semantic relationship as done in this study,
the average link coverage rates in ACE lag behind the rates found in SemEval. One explanation
for this difference might be that in ACE, I eliminated certain grammatical relationships because
their window size is deterministic (driven by rules for language production) and already know.
This was not possible for SemEval since no syntactic classification of links is provided in this
corpus. However, a closer inspection of the links with low window size in SemEval suggested
that these also represent grammatical dependencies. Therefore, the links in SemEval are a
mixture of short, mainly grammatically motivated relations and other types of relations that are
of stronger interest here. In ACE, I was able to separate these types of relationships more
precisely; showing that the type of grammatical relationship (or lack thereof, as in the “other”

type), has a major impact on window size.

70



Table 42: Types of semantic relationships, size in corpus, size among selected syntactic relations

Type All relations Selected syntactic relations
Agent-Artifact 10.0% 14.2%
General affiliation 11.0% 5.5%
Organizational affiliation 29.0% 13.8%
Part Whole 14.9% 4.3%
Personal and social 12.5% 7.9%
Physical 22.6% 54.3%

Table 43: Impact of type of semantic relationships on window size

Window Personal, social Organizational General affiliation Agent Artifact
affiliation
0 3.6% 3.6% 7.1% 7.1% 10.5% 10.5% 1.8% 1.8%
1 9.5% 13.2% 7.3% 14.4% 9.2% 19.7% 7.9% 9.7%
2 17.3% 30.5% 11.5% 26.0% 36.2% 55.9% 17.3% 27.0%
3 10.9% 41.4% 17.3% 43.3% 9.9% 65.8% 15.8% 42.7%
4 11.4% 52.7% 12.6% 55.9% 9.9% 75.7% 14.8% 57.5%
5 10.9% 63.6% 12.6% 68.5% 5.3% 80.9% 8.9% 66.4%
6 4.5% 68.2% 4.5% 73.0% 3.3% 84.2% 7.6% 74.0%
7 8.2% 76.4% 5.2% 78.2% 3.3% 87.5% 5.9% 79.9%
8 5.9% 82.3% 4.7% 82.9% 2.6% 90.1% 5.1% 85.0%
9 4.5% 86.8% 2.4% 85.3% 2.6% 92.8% 2.3% 87.3%
10 1.8% 88.6% 3.7% 89.0% 1.3% 94.1% 2.0% 89.3%
11 1.4% 90.0% 2.1% 91.1% 0.0% 89.0% 1.5% 90.8%
12 1.4% 91.4% 2.4% 93.4% 2.0% 96.1% 1.8% 92.6%
13 0.9% 92.3% 1.3% 94.8% 1.3% 97.4% 2.0% 94.7%
14 2.7% 95.0% 0.3% 95.0% 0.7% 98.0% 0.8% 95.4%
15 1.8% 96.8% 0.5% 95.5% 0.0% 98.0% 1.0% 96.4%
Part Whole Physical Average
0 7.6% 7.6% 5.1% 5.1% 6.0% 6.0%
1 5.9% 13.6% 9.5% 14.6% 8.2% 14.2%
2 11.0% 24.6% 13.2% 27.9% 17.8% 32.0%
3 12.7% 37.3% 13.6% 41.5% 13.4% 45.3%
4 12.7% 50.0% 12.0% 53.5% 12.2% 57.5%
5 9.3% 59.3% 9.3% 62.8% 9.4% 66.9%
6 7.6% 66.9% 7.8% 70.6% 5.9% 72.8%
7 5.9% 72.9% 5.5% 76.1% 5.7% 78.5%
8 4.2% 77.1% 4.7% 80.8% 4.5% 83.0%
9 6.8% 83.9% 3.8% 84.6% 3.7% 86.8%
10 5.1% 89.0% 2.9% 87.5% 2.8% 89.6%
11 0.0% 89.0% 2.3% 89.8% 1.2% 89.9%
12 3.4% 92.4% 2.1% 91.9% 2.2% 93.0%
13 0.0% 92.4% 1.9% 93.8% 1.3% 94.2%
14 2.5% 94.9% 1.1% 94.9% 1.3% 95.5%
15 1.7% 96.6% 1.1% 96.0% 1.0% 96.6%
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Most of the types of semantic relationships in SemEval and partially also in ACE are defined
over entity types, i.e. they can only be established between certain node classes. In this sense,
semantic relationships are a proxy for the impact of the node class or classes involved in a link
on window size. This impact can be determined even more precisely by analyzing the window
size for all combinations of node classes considered in SmeEval’. Table 44 shows how these
types of links are distributed across the corpus; indicating that the vast majority of links (over
85%) occur between a person and a) another person (7.5% of all links) or b) some other entity
class (77% of all links). Only four percent of all links do not involve a social agent (person or
organization). Therefore, the findings from this analysis are highly relevant for constructing
social network data that involve people and organizations, and socio-technical network data
(social agents linked to some other entity type). Looking at window size in dependence of node
classes involved in links, again, the common window sizes and coverage rates are highly similar
across node classes and to the previous findings (Table 45). The exceptions are “person-time”
relations, where the window size is about two tokens longer than for the other types, and
“location-location” relations, which are shorter than the average by about one token. Looking at
aggregated groups of node classes with respect to link coverage rates, the results suggest that the
rates grows fastest for spatial relations (window sizes here are comparatively shorter than for the
other groups, size 10 for 90% of the links); followed by relations between social agents and
resources (Table 45). For relations between social agents only, average window sizes are

comparatively longest (12 for 90% of the links). However, these differences are still small.

Table 44: Links per entity class

Entity Class Person Organization Location Resource Time

Person 7.5% 18.7% 34.9% 6.6% 16.8%
Organization 0.5% 2.5% 1.7% 3.6% 0.7%
Location 1.4% 0.7% 3.6% 0.0% 0.0%
Resource 0.3% 0.0% 0.0% 0.3% 0.0%
Time 0.0% 0.0% 0.0% 0.0% 0.0%

7 The entity classes in ACE are: person, organization, geopolitical entity (GPE), location, facility, vehicle, and
weapon. In order to keep the findings comparable to further analyses on the node class level (chapters 4 and 5), 1
mapped the ACE classes to the meta-network classes as follows: Agent: person. Organization: organization and
GPE except for population center and state. Location: location, GPE (except for country, GPE cluster, nation,
continent, special) , and facility. Resource: vehicle and weapon.
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Table 45: Impact of entity class on window size*

Win Person Person Person Person Person
dow Person Organization Location Resource Time
0 3.4% 3.4% 5.6% 5.6% 5.1% 5.1% 2.1% 2.1% 7.1% 7.1%
1 8.7% 12.0% 9.8% 15.4% 7.9% 12.9% 7.8% 9.9% 11.0% 18.1%
2 18.8% 30.8% 15.4% 30.8% 16.7% 29.7% 16.1% 26.0% 7.1% 25.2%
3 11.5% 42.3% 16.0% 46.8% 15.1% 44.8% 19.8% 45.8% 8.4% 33.5%
4 11.5% 53.8% 11.1% 57.9% 13.6% 58.5% 14.1% 59.9% 9.9% 43.4%
5 11.1% 64.9% 11.7% 69.5% 7.9% 66.3% 8.9% 68.8% 10.3% 53.8%
6 4.3% 69.2% 6.0% 75.6% 8.1% 74.4% 7.3% 76.0% 6.2% 60.0%
7 7.2% 76.4% 5.1% 80.6% 5.9% 80.3% 5.7% 81.8% 6.0% 66.0%
8 5.8% 82.2% 4.7% 85.3% 3.7% 84.0% 4.7% 86.5% 6.5% 72.5%
9 4.3% 86.5% 2.4% 87.8% 3.8% 87.7% 0.5% 87.0% 3.9% 76.3%
10 1.9% 88.5% 3.2% 91.0% 2.2% 89.9% 2.1% 89.1% 4.3% 80.6%
11 1.4% 89.9% 1.3% 92.3% 2.3% 92.2% 1.0% 90.1% 3.2% 83.9%
12 1.4% 91.3% 2.6% 94.9% 1.9% 94.1% 2.6% 92.7% 2.2% 86.0%
13 1.0% 92.3% 1.5% 96.4% 1.7% 95.8% 1.6% 94.3% 2.6% 88.6%
14 2.9% 95.2% 0.8% 97.2% 0.7% 96.5% 1.0% 95.3% 1.1% 89.7%
15 1.4% 96.6% 0.4% 97.6% 0.9% 97.4% 0.5% 95.8% 2.4% 92.0%
Organization Organization Organization Location Average
Organization Resource Location Location (unweighted)
0 2.9% 2.9% 1.0% 1.0% 9.1% 9.1% 5.9% 5.9% 4.7% 4.7%
1 4.3% 7.2% 6.0% 7.0% 10.6% 19.7% 7.9% 13.9% 8.2% 12.9%
2 20.3% 27.5% 24.0% 31.0% 15.2% 34.8% 12.9% 26.7% 16.3% 29.2%
3 13.0% 40.6% 10.0% 41.0% 13.6% 48.5% 16.8% 43.6% 13.8% 43.0%
4 10.1% 50.7% 11.0% 52.0% 15.2% 63.6% 11.9% 55.4% 12.0% 55.0%
5 10.1% 60.9% 9.0% 61.0% 10.6% 74.2% 11.9% 67.3% 10.2% 65.2%
6 4.3% 65.2% 9.0% 70.0% 4.5% 78.8% 7.9% 75.2% 6.4% 71.6%
7 5.8% 71.0% 6.0% 76.0% 0.0% 78.8% 5.9% 81.2% 5.3% 76.9%
8 4.3% 75.4% 4.0% 80.0% 4.5% 83.3% 5.0% 86.1% 4.8% 81.7%
9 5.8% 81.2% 7.0% 87.0% 6.1% 89.4% 3.0% 89.1% 4.1% 85.8%
10 5.8% 87.0% 3.0% 90.0% 1.5% 90.9% 3.0% 92.1% 3.0% 88.8%
11 0.0% 87.0% 1.0% 91.0% 0.0% 90.9% 0.0% 92.1% 1.1% 89.9%
12 1.4% 88.4% 1.0% 92.0% 3.0% 93.9% 3.0% 95.0% 2.1% 92.1%
13 0.0% 88.4% 4.0% 96.0% 0.0% 93.9% 0.0% 95.0% 1.4% 93.4%
14 5.8% 94.2% 0.0% 96.0% 0.0% 93.9% 1.0% 96.0% 1.5% 94.9%
15 1.4% 95.7% 1.0% 97.0% 0.0% 93.9% 1.0% 97.0% 1.0% 95.9%

* Only type of entity to entity connections with 20 or more links considered. Relations are directional in the data.

Here, both directions are taken together per type.

Table 46 provides a brief summary of the results from the window size analysis reported in this

chapter. This synopsis shows that after controlling for the type of syntactic relationship, i.e.

excluding relationships where the window sizes are short and deterministic due to syntactic rules

of language production, there are virtually no differences between typical window sizes and link
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coverage rates across genres, types of syntactic relationships, types of semantic relationships,
and types of node classes involved in links.

Table 46: Summary of results for windowing

SemEval ACE5
Semantic Syntactic Semantic* Node class* Genre*
relations relations relations
Most frequent window size 2 2 2 2 2and 3
Link 50% 3 4 4 4 4
coverage 75% 5 7 7 7 7
rate 80% 5 8 8 8 8
90% 7 10 12 12 11
95% 8 13 14 14 14

* controlled for type of syntactic relation (only including verbal, participial, other)

Finally, the data show an impact of entity ordering on window size: in more than half of all links,
the first entity in a relationship precedes the second one (55% of all links in SemEval®, 58% in
ACE). If this is the case, the average window size is about one word longer than when the second
entity precedes the first one (Figure 8). This ordering effect disappears at about window size six,
and is also similar across all types of relationships and nodes in links for both corpora. The
results in Figure 8 also show that for linked entities with non-overlapping extents (ACE), the
patterns of link coverage rates depending on window size are highly similar for both corpora.
This holds true even though these two corpora differ considerably in genres, time of data
collection, and types of entities and relations considered. Therefore, this finding suggests that the
presented results for typical window sizes and the amount of links identified depending on
window size are highly robust across genres, time, data sources, and types of relationships. This
implies that the window sizes found with this study are likely to generalize to other text data.

¥ The analysis of order effects excludes the “other” relationship because no entity order is marked up for these
relations.
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Figure 8: Impact of ordering effects on window size and link coverage
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2.7.2.2 Evaluation of windowing

Using windowing for connecting nodes into edges implies the danger of missing links (false
negatives) and retrieving incorrect links (false positives). This potential cause of errors has been
repeatedly pointed out in the past (Carley, 1997a; Corman et al., 2002), but has not yet been
empirically tested. I am quantifying the amount of these errors based on the SemEval and ACES5
data.

The results show that the rates of false negatives decline rapidly; falling below 5% at window
size 8 (SemEval) to 9 (ACE, text-level, all types of relations considered). At window size 12, the
rate of false negatives is less than 2.4% (ACES5) to 1% (SemEval) (Table 47, Table 48, Table
49). Table 47 and Table 48 express these errors in terms of false positives and false negatives,
and Table 49 represents the same errors in terms of recall, precision, and the harmonic mean of

these two metrics (F).

Table 47: Accuracy rates and false negatives due to windowing (SemEval)

Window Size | Correct False Negatives
0 5.9% 94.1%
1] 15.2% 84.8%
2| 38.8% 61.2%
3| 57.8% 42.2%
4 72.3% 27.7%
5 82.5% 17.5%
6| 89.1% 10.9%
71 93.2% 6.8%
8| 95.4% 4.6%
9| 97.0% 3.0%

10 | 97.9% 2.1%
11 | 98.6% 1.4%
12 | 99.1% 0.9%

The rate of false positives was measured by connecting the heads of any nodes that are annotated
as entities in the ground truth data if the number of tokens between these heads is equal to or
lower than a given window size. This was done for ACE, but could not be done for SemEval
because there, only two entities are marked up per sentence, and the sentences are not
consecutive. Links in ACE are mainly marked up within sentences. However, 4.2% of all links
span across sentences. For real world applications, considering cross-sentence links can be an

appropriate approach, e.g. when an event is described over multiple sentences’. In order to

? In order to accommodate for that in AutoMap, users there can chose the number of sentences after which the
window should be reset.
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clarify on the impact of distinguishing between within versus across sentence links, I show the
results for both scenarios in Table 48 and Table 49: for the lower halves of these tables, windows
were reset at the end of sentences. A side effect of this distinction is that with the sentence level
approach, the rate of false negatives (7.2% at window size 12) will be higher since some links
cannot be found within sentences. Sentences splitting was conducted by considering each dot as
a sentence mark unless the dot occurs right next to a list of 86 terms (e.g. Dr., D.C.) that I
identified by manually checking all actual cross-sentence links in ACE. This way of sentence
splitting is on the conservative side, i.e. there might be more sentences identified than there
really are. I chose this approach to make sure that the number of false positives is not
overestimated. Therefore, my results show the lower bound of false positives due to windowing

in addition to the more unconstrained, cross-sentence setting.

Overall, the rate of false positives is alarmingly high. When considering all additional links
retrieved, the rate of false positives is similar to the rate of correctly identified links. For
example, at window size 7, 88.9% (sentence level) to 92.5% (cross-sentence level) of false
positives are returned (Table 48, 4™ column). This means that when a window size of 7 is

applied, 9 out of 10 of the retrieved links were not annotated by human coders as being relevant.

Further analyzing the false positives revealed that in many cases, the many of the involved
entities were overlapping. As mentioned previously in this chapter, such entities often represent
regular multi-word expressions, e.g. “UN Security Council”, or consist of a named entity plus a
role or attribute of the entity, e.g. “Palestinian security sources”. However, for REX purposes,
users would typically not create links within meaningful N-grams, and roles and attributes are
often not considered as a node class of their own, but only as attributes of nodes. Therefore, I
conducted a second analysis of false positives were I excluded any links between overlapping
entity extents from counting false positives. This experimental condition is referred to as
restriction 1 in Table 48 and Table 49. After applying this restriction, the remaining false
positives contained a large number of entities from the node class “time” (timex), such as dates
and clock time. Since these entities never have a head but only an extent, which could span more
tokens that the heads of other entities, I also excluded the timex entities in restriction 1. Another
sizable portion of entities involved in false positives were references to media organizations,
which typically occur at the beginning or end of news articles. Since these entities are atypical in
genres other than news data, they were also disregarded in restriction 1. Overall, applying
restriction 1 lowers the number of false positives per window size by thousands of links.
However, at window size 7, there are still 84.6% to 90.0% of links that are false positives (Table
48).
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Further analyzing the remaining false positives showed that many entities involved were
pronouns. Therefore, I introduced restriction 2, which assumes that anaphora resolution had been
applied prior to relation extraction as follows: pronouns get translated into entities that are
referred to by a name or nominal, and a legitimate link from such an entity to another entity
already exists, such that the false positive would only increase the weight of an existing link. For
details on the impact of anaphora resolution on network data see the previous results section.
This is a very optimistic assumption, and it is meant to show the lower bound for false positives
due to windowing, even though this might be an underestimation. Applying restriction 2 in
addition to restriction 1 further cuts down the rate of false positives to less than the rate of correct
links, but the false positives still exceeds 68.9% to 84.6% at window size 7, and further increase
from there on (Table 48). Further inspecting the remaining false positives suggested that these
were not connections between named entities and roles or attributes associated with these
entities. Also, the remaining false positives did not seem to be instances of any other types of
meaningful relations that were emerging or discovered from the data, but rather random

connection between nearby entities that did not seem obviously reasonable.

The results in Table 49 show that when using windowing, recall is acceptably high - over 90%
from window size 6 (cross-sentence level) to 9 (sentence level) on. Note that recall is not
impacted by applying the restrictions explained in the previous paragraph. However, the
harmonic mean of recall and precision is fairly low due to the low precision rates; not exceeding

18% at window size 7.

Table 48: Error rates for windowing I (ACE)

Window Correct False Negatives False Positives
Size All Restriction 1 | Restriction 2
Text level (resembling ground truth)

0 38.6% 61.4% 55.3% 36.6% 19.2%

1 56.7% 43.3% 73.4% 60.7% 37.2%

2 70.2% 29.8% 81.1% 73.1% 52.0%

3 78.3% 21.7% 85.4% 79.6% 61.1%

4 83.9% 16.1% 88.1% 83.7% 58.2%

5 87.7% 12.3% 90.0% 86.5% 72.3%

6 90.3% 9.7% 91.4% 88.5% 76.0%

7 92.4% 7.6% 92.5% 90.0% 78.8%

8 94.0% 6.0% 93.3% 91.1% 81.0%

9 95.2% 4.8% 94.0% 92.1% 82.8%

10 96.3% 3.7% 94.5% 92.8% 84.3%

11 96.9% 3.1% 95.0% 93.4% 85.5%

12 97.6% 2.4% 95.3% 94.0% 86.6%
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35.3%
53.0%
66.1%
74.1%
79.6%
83.3%
85.8%
87.8%
89.4%
90.5%
91.5%
92.1%
92.8%

64.7%
47.0%
33.9%
25.9%
20.4%
16.7%
14.2%
12.2%
10.6%
9.5%
8.5%
7.9%
7.2%

48.0%
67.6%
76.2%
81.0%
84.0%
86.2%
87.7%
88.9%
89.8%
90.5%
91.1%
91.5%
91.9%

26.5%
52.8%
65.1%
72.6%
77.3%
80.5%
82.9%
84.6%
85.9%
87.0%
87.8%
88.5%
89.1%

11.9%
28.1%
40.5%
50.0%
56.6%
61.8%
65.8%
68.9%
71.2%
73.1%
74.6%
76.0%
77.1%

Table 49: Error rates for windowing I1 (ACE)

Window Recall All false positives Restriction 1 Restriction 2
Size Precision F Precision F Precision F
Text level (resembling ground truth)
0 38.6% 17.3% 23.8% 24.4% 29.9% 31.2% 34.5%
1 56.7% 15.1% 23.8% 22.3% 32.0% 35.6% 43.7%
2 70.2% 13.3% 22.3% 18.9% 29.8% 33.7% 45.6%
3 78.3% 11.4% 20.0% 16.0% 26.6% 30.5% 43.9%
4 83.9% 10.0% 17.8% 13.7% 23.5% 35.1% 49.5%
5 87.7% 8.7% 15.9% 11.9% 20.9% 24.3% 38.1%
6 90.3% 7.7% 14.2% 10.4% 18.6% 21.7% 34.9%
7 92.4% 6.9% 12.9% 9.2% 16.8% 19.6% 32.3%
8 94.0% 6.3% 11.8% 8.3% 15.3% 17.9% 30.1%
9 95.2% 5.7% 10.8% 7.6% 14.0% 16.4% 28.0%
10 96.3% 5.3% 10.0% 6.9% 12.9% 15.1% 26.2%
11 96.9% 4.9% 9.3% 6.4% 11.9% 14.0% 24.5%
12 97.6% 4.5% 8.7% 5.9% 11.1% 13.1% 23.0%
Sentence level
0 35.3% 18.3% 26.0% 31.1% 24.1% 29.9% 33.1%
1 53.0% 17.2% 25.0% 38.1% 25.9% 34.0% 44.3%
2 66.1% 15.7% 23.1% 39.3% 25.4% 34.2% 49.3%
3 74.1% 14.1% 20.3% 37.1% 23.7% 31.9% 49.4%
4 79.6% 12.7% 18.1% 34.5% 21.9% 29.5% 48.1%
5 83.3% 11.5% 16.2% 31.8% 20.3% 27.2% 46.1%
6 85.8% 10.5% 14.7% 29.3% 18.8% 25.1% 43.7%
7 87.8% 9.8% 13.5% 27.3% 17.6% 23.4% 41.7%
8 89.4% 9.1% 12.6% 25.7% 16.6% 22.0% 40.0%
9 90.5% 8.6% 11.8% 24.4% 15.7% 20.9% 38.4%
10 91.5% 8.2% 11.1% 23.2% 15.0% 19.9% 37.0%
11 92.1% 7.8% 10.6% 22.1% 14.4% 19.0% 35.7%
12 92.8% 7.5% 10.1% 21.3% 13.8% 18.3% 34.6%

79



2.7.2.3 Windowing: Answers to research questions

The empirical results from the windowing study suggest the following answers to the research

questions:

5. Question:

5. Answer:

6. Question:

6. Answer:

7. Question:

7. Answer:

What window size do human experts use when identifying relations in text data?
Does this typical window size differ depending on the type of data or relations?

Regardless of text genre and the type of semantic relationship, syntactic
relationship, and node classes, the most frequently used window size is two.

What window size is needed to capture the vast majority of links in text data?
Does this window size differ depending on the type of data or relations?

On average and regardless of text genre and the type of semantic relationship,
syntactic relationship, and the classes of nodes involved in a link, at least 50% of
all links are found when using a window size of four. After that, window sizes vary
depending on the type of syntactic relationship: for mainly syntactically motivated
relations, it is sufficient to choose a window size of four to retrieve over 90% of
the links. Excluding these syntactic relations, a window of at least twelve is needed
to achieve the same result. If a corpus contains an indistinguishable mixture of
both types of links; at least 90% of all links are covered with a window size of
seven. After controlling for the type of syntactic relationships, i.e. excluding
relationships where the window size is short and deterministic due to syntactic
rules of language production, these findings are robust across text genres, types of
semantic relationships, and node classes. In summary, meaningful differences
between link coverage rates are due to syntactic relations. Finally, window sizes
also differ depending on ordering effects of the occurrence of entities in the text
data. The latter effect is also robust across the test corpora.

What error rate, i.e. amount of wrongfully identified links (false positives) and
missed links (false negatives), can be expected when applying a specific window
size? Does this error rate differ depending on the type of data or relations?

Based on the ground truth datasets used herein, the rate of false negatives declines
rapidly; falling below 5% at window size eight to nine. At window size twelve, the
rate of false negatives is 2.4% (excluding certain abovementioned syntactic
relations) to less than 1% (incl. those syntactic relations). However, the rate of
false positives is alarmingly high: when coding links across sentences, the rate of
false positives ranges between 79% to 93% at window size seven, and 87% to 95%
at window size twelve. When coding links only within sentences, the rate of false
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positives varies between 69% to 89% at window size seven, and 77% to 92% at
window size 12. The variances in range are due to eliminations of certain types of
entities involved in false positives. Therefore, the presented results can be
interpreted as an empirically grounded upper bound and lower bound for the rates
of false positives due to windowing.

2.8 Conclusions

The results from the reference resolution project and the windowing project show that the coding
choices that need to be made when extracting entities and relational data from texts strongly
impact the network properties and structure. The conclusions from the experimental work are
presented in this section. The practical implications of the findings from this chapter for applied

work are synthesized in chapter 4.

The goal with RR is to map pronouns and additional entity mentions to the set of unique entities;
thereby reducing the amount of pronouns and unassociated entities while increasing the weight
per unique entities. The results from the RR study indicate that the deduplication, consolidation
and personalization of entities has a strong impact on the node, link and network level, especially
with respect to quantitative analysis results: applying both, AR and CR, alters the identity and
weight of about 76% of all entity mentions, and the average weight per unique entity or node is
increased from 1.0 to 5.8. As a result, less than 18% of the unique nodes carry more 79% of the
total node weight. The impacts are less strong on the link level: In about 23% of all links, at least
one node is changed due to AR, and 6% of all links are reduced via CR. Combining both
techniques leads to a link reduction of 12%. Of the remaining links, 11% are changed due to RR,
and they carry 23% of the total link weight. On the network level, the values of several metrics
change strongly when applying RR, for example degree centralization, clustering coefficients,
and connectedness (all increased), while a smaller number of metrics is not impacted, e.g.
fragmentation, efficiency and hierarchy. In comparison to the raw data, the set of key players
identified through network analysis completely changes when applying AR and CR; with CR
having a stronger impact on the outcome. For all observed effects, combining AR and CR is

more effective than applying either technique alone.

The ratios of resolvable anaphora as well as entities that can be co-referenced are similar across
all genres considered. However, the impact of either technique on a corpus from a given domain
varies depending on the distributions of pronouns, names, and nominal: in newswire and
newspaper data, names and nominals are dominating, and therefore, CR is more effective than

AR. In telephone conversations, where pronouns are dominating, AR makes a bigger difference
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than CR does. In social media data, the difference in the effectiveness per technique is more

balanced, and both techniques together are highly effective (74% of entities changed).

The findings from simulating the impact of typical error rates for RR on changes in the resulting
network data show that the amount of change in the value of network analytical metrics by far
exceeds the change rate in RR accuracy (for 13 of 20 measures tested). The set of the nodes that

score highest on these metrics is more robust towards changes in RR accuracy.

The results from the impact of windowing on link formation show that expert human coders
typically apply short window size, which are mainly two to three words long. A window size of
twelve is sufficient to identify more than 90% of all links in the ground truth data. These findings
are robust: after disregarding relationships where the window sizes are deterministic due to
syntactic rules of language production, there are virtually no differences between typical window
sizes and link coverage rates across different datasets, genres, types of syntactic relationships,

types of semantic relationships, and types of node classes involved in links.

The error analysis of links found by using windowing revealed that the amount of false negatives
(missing links) is low; falling below 5% at window sizes eight to nine. However, the rate of false
positives (additional links retrieved) is alarmingly high; reaching 90% at window size five. The
rate of false positives shrinks when corpus-specific peculiarity of annotating entities and
relations are disregarded, but still reaches 90% at window size seven. Assuming that AR would
have been applied to the data such that no pronouns are left in any link further reduces the rate of

false positives to 87% at window size twelve.

2.9 Limitations and Future Work

The insights gained with the reference resolution study and the windowing study strongly depend
on the data. Even though multiple datasets were reviewed for their eligibility for this study, and
multiple datasets have been analyzed, other data might have lead to different results, or provide

further support for the presented findings.

The findings on the joint impact of AR and CR are furthermore limited by the order of the
application of these routines. I used AR prior to CR, and this reflects common practice. With this
approach, the amount of non-pronominal entities is increases first, which can then be exploited
by CR. However, performing CR first might result in a less confusing mass of entities to choose
from for AR. Further work is needed to identify the optimal ordering of AR and CR.

One could argue that the shown differences in the values of network analytical measures
depending on RR techniques are influenced by the size of the network. In fact, prior research has

shown how robust certain network metrics towards missing data and thus network size (Borgatti,
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Carley, & Krackhardt, 2006; Frantz, Cataldo, & Carley, 2009). However, the RR techniques
impact the network size in the first place. Therefore any identified changes might still correlate
with changes in network size, but the driving underlying mechanism is still the applied RR

techniques.

The RR study has shown how RR techniques help to bring network data extracted from texts
closer to the true underlying network structure. A valuable extension to this work, which could
also help to improve reference resolution from an NLP point of view, would be to use network
analysis to identify the structural position and properties of nodes on which reference resolution
would be most effective. This might be useful, for example, for frequently mentioned pronouns
as well as nodes representing agents with common names that need to be split up into truly
distinct individuals. Here, AR and CR could be applied to separate highly central yet almost
generic nodes, such as “they” or “Smith”, into multiple and distinct pronouns and nominal,
respectively. The question here is: are the properties of these nodes distinct from other nodes and
can thus be identified with network analysis? The outcome of such an extension could be a
mechanism that suggests nodes for further treatment with RR to the user.

Finally, two preprocessing techniques and one link formation technique that are applicable when
coding texts as networks were investigated. These techniques were selected because they are
commonly used. Moreover, co-reference resolution and windowing are available in AutoMap,
but we did not have a clear understanding of their impact on the networks extracted with
AutoMap. In order to gain a more comprehensive understanding of the impact of coding choices
on network data and analysis results, more techniques need to be investigated, especially
alternative link formation approaches, such as techniques based on syntax and semantics of text
data.
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3 Computational Integration of Network-Centric Classification Model

and Supervised Machine Learning for Entity Extraction

One key step in Relation Extraction (REX) is the extraction of entities from text data, which are
then used as nodes for constructing network data (McCallum, 2005). Extracting entities from
texts also exists as a standalone task, which is referred to as Entity Extraction (Bikel, Miller,
Schwartz, & Weischedel, 1997). This chapter makes a contribution by developing an answer and

computational solution to the following question:

- How can we build an entity extractor as part of a relation extraction system that supports
end-users in analyzing networks and addressing substantive questions about socio-

technical networks?

This chapter is structured as follows: first, the set of requirements for an entity extractor is
identified (3.2.2). The various methods that are available for conducting entity extraction are
then reviewed (3.2.3), and the most suitable one with respect to the identified requirements is
selected. Next, I describe how I adapted and further advanced a technology that implements the
selected method (3.3) and report on the performance of the resulting technology (3.4).

3.1 Introduction and Problem Statement

Entities or nodes extracted from text data are referred to as concepts, which are abstract
representations of what people conceive in their minds (Sowa, 1984). Methods for entity
extraction differ depending on what type of network data need is needed: For generating one-
mode networks from texts, it is sufficient to correctly locate the relevant entities in the text data,
a task also referred to as boundary detection, and then linking them into edges (Carley, 1994;
Danowski, 1993). The resulting networks are often called concept networks, and sometimes also
semantic networks (Diesner & Carley, 2011a). To keep terminology coherent in this document, I
refer to relational representations of language and knowledge as “concept networks” (for a brief
synopsis see Diesner & Carley, 2010c; Diesner & Carley, 2011b). One-mode concept networks
have been typically used to answer questions like: What concepts, topics or memes emerge,
spread and vanish in socio-technical networks? How do such diffusion processes happen?
(Corman et al., 2002; Doerfel & Barnett, 1999; Gloor et al., 2009; Griffiths et al., 2007,
Leskovec et al., 2009) Sometimes, the nodes in such networks are further connected to nodes
representing the agents who have generated the information represented by the concept nodes or
to the documents in which this information occurs. Such networks are often constructed as
bipartite graphs, and have been used to address questions like: Who is talking to whom about
what? Who is setting what trends? Who is an expert on which topic? (Ehrlich, Lin, & Griffiths-
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Fisher, 2007; Giuffre, 2001; Gloor & Zhao, 2006; C. Roth & Cointet, 2010; Shahaf & Guestrin,
2010) For building multi-mode networks, the located entities need to be further assigned to entity
classes, which are also known as categories. This assignment typically happens according to
some ontology, which can be predefined or derived from the data (Van Atteveldt, 2008). State of
the entity extraction and relation extraction technologies typically facilitate the retrieval of
named and unnamed mentions of the following entity classes: people, organizations, locations
and miscellaneous or other entities (Borthwick, Sterling, Agichtein, & Grishman, 1998; Schrodt,
2001). The resulting network data have been used to address questions like: Who is talking to
whom? Who are the key players in a group? What opportunities and challenges result from the
observed structure and properties of a network for an organization or a social system? (Carley et
al., 2007; Hammerli et al., 2006; Van Atteveldt, 2008)

Accuracy rates for NER systems have steadily increased over the last decade; currently being in
the 80ies and lower 90ies for English (see for example Florian, Ittycheriah, Jing, & Zhang,
2003). Since such systems often focus on the extraction of entities that are referred to by a name,
this process is also called Named Entity Recognition (NER) (Bikel et al., 1997; Klein, Smarr,
Nguyen, & Manning, 2003; Ratinov & Roth, 2009). In NLP and political science, the default set
of types of named entities to extract has remained fairly unchanged over the last decade.
However, for studying the properties and functioning of socio-technical networks and addressing
substantive questions about networks and their context, the classic set of named entity classes
might not suffice: in addition to knowing which social agents and locations are relevant and
connected, one might also need relational data about the what (tasks and events), how (resources
and knowledge), why (beliefs and sentiments) and when (time) of interactions and activities
(Barthelemy et al., 2005; Carley, 2002a). Since mentions of instances of these additional entity
classes are often not referred to by a name, I refer to the more general task of extracting named
and unnamed entities as “‘entity extraction”. Entity Extraction allows for the construction of
richer multi-mode data than NER does. The data resulting from Entity Extraction allow for
moving beyond asking questions about social networks, other types of one-mode networks, and
bipartite graphs in which one type of nodes are social agents, to also address questions like:
Which tasks and events are some social agents involved in? What resources and knowledge are
at some social agents’ disposal? What impact does resource allocation have on task completion?
What is the interplay of social and technical structures, and how do these structures co-evolve?
(Carley, 2002a; Cataldo, Wagstrom, Herbsleb, & Carley, 2006; Krackhardt & Carley, 1998)
Finally, for sentiment analysis and social media analysis - two subareas of Information

Extraction that are currently highly popular and gaining further momentum - such additional
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categories are essential for analyzing individual and collective behavior (see for example
Qureshi, Memon, Wiil, & Karampelas; Whitelaw, Patrick, & Herke-Couchman, 2006).

Looking at NER tools from the perspective of end-users who want to analyze socio-technical
network data, there is another shortcoming: from an NLP perspective, efforts in advancing NER
have been focused on improving the accuracy and efficiency of extractors, while transitioning
from learned and evaluated models to readily usable end-user technologies has gotten less
attention in research reports. This is perfectly reasonable when considering that the goal with
such projects is often to develop highly accurate and efficient algorithms, e.g. for participating in
competitions where performance on a specific shared test dataset is the main assessment

criterion.

In summary, there is an unsatisfied need among researchers and practitioners for being able to
extract entities beyond the classic set of named entities from text data in an efficient and
predictably accurate fashion for the purpose of constructing multi-mode network data that
support users in answering substantive question about socio-technical networks (Barthelemy et
al., 2005; Parastatidis et al., 2009; C. Roth, 2006). This thesis addresses this need in two ways:
First, by devolving a computational solution to this problem (this chapter). Second, by
demonstrating the transition from learned models to an end-user technology and the application

of these models and technology to large-scale network data (next chapter).

3.2 Goal Definition, Requirement Specification and Strategies for Achieving
Objectives

The goal and deliverable for the project described in this chapter is an entity extractor that end-
users can apply as part of the process of constructing multi-mode, socio-technical network data
from texts. To provide end-users with this technology, I add an inference mechanism that uses
the prediction models designed, learned and evaluated as described in this chapter to AutoMap
software, where this new functionality is expected to improve the status quo of entity extraction.
The extracted entities can then be used to conduct classic content analysis or to construct
network data, which can be further analyzed with tools such as ORA. The ORA software is tuned
for the kind of network data and ontological text coding that AutoMap supports (Carley et al.,
2007; Carley, Reminga, Storrick, & Columbus, 2011).

From an NLP perspective, the research question that typically drives the development of entity
extractors is usually formulated like this: How can we build or improve an entity extraction
algorithm or system that leads to the comparatively most accurate results? Points of comparison
are often a baseline and/or the best-performing alternative solutions. In this thesis, I shift the
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focus from further gains in accuracy to gains in the practical usefulness of the extracted data for

conducting network analysis. Thus, my research question for this chapter is this:

Research question:

How can we build an entity extractor as part of a relation extraction system that supports
users in analyzing networks and addressing substantive questions about socio-technical
networks?

This question will be further specified in this chapter. From a network analysis perspective, this
question has to be answered before the aforementioned NLP-oriented question becomes
applicable. It is important to highlight that this research question does not contradict with the one
typically asked in NLP; both questions are critical. Rather, my question complements the one
from the NLP perspective because accuracy is one among multiple important criteria for entity
extraction; yet other criteria include the appropriateness of the coding schema and methods for
analyzing the resulting data (Schrodt, 2001). In the next section, I formalize my research
question: I describe how entity extraction and node linkage are currently handled in AutoMap
(3.2.1), then define the requirements for a new entity extractor (3.2.2), and develop a solution per
requirement (3.2.3 to 3.2.6).

3.2.1 Status Quo of Entity Extraction in AutoMap

AutoMap is a text mining tool that provides routines for information extraction and relation
extraction (for a detailed description of AutoMap see Carley et al., 2007; Diesner & Carley,
2004). In AutoMap, concept networks are called semantic networks, and multi-mode networks
are called meta-networks (Carley, Columbus, et al., 2011). The method used for coding text as
networks in AutoMap was originally called “map analysis” (Carley, 1993); a reflection of its
purpose to extract mental models of individuals and teams from texts (Carley, 1997a; Carley &
Palmquist, 1991). Later, the method was referred to more generally as “network text analysis”
(NTA), which basically works as follows (Carley, 1997b; Popping, 2003): the user creates a
dictionary or thesaurus, which associates terms as they occur in the text data with user-defined
concepts that represent variables of interest. The software assists the user in this process, e.g. by
suggesting a set of relevant terms according to (weighted) term frequencies. Concepts represent
pieces of information that are necessary for answering a research question; similar to codes in
qualitative text analysis (Bernard & Ryan, 1998). The software then applies the thesaurus to the
text data by translating any matching terms into the respective concepts. Finally, the concepts are
linked into edges by using windowing; a proximity-based approach (Danowski, 1993). The main
assumption with map analysis and NTA is that these methods support the extraction of meaning

from texts by finding or establishing links between concepts and conducting network analysis of

87



the resulting data (Carley, 1994, 1997b; Mohr, 1998; Monge & Contractor, 2003; Popping, 2003;
Van Atteveldt, 2008). Entity extraction and linkage in AutoMap are computer-assisted processes.
This means that the software applies a set of text pre-processing and link formation rules, which
together form the so called “coding scheme”. The coding scheme is defined by humans (G. W.
Ryan & Bernard, 2000). Section 5.2.2.1 provides more details on the steps needed for text coding
in AutoMap.

In summary, the key piece needed not for only entity extraction, but also for text coding in
general in AutoMap is a thesaurus. Section 5.2.2.1.1 reports in detail on preparing a thesaurus.
For generating concept networks, a thesaurus needs to contain two columns: text terms on one
side, and the associated concepts on the other side. For creating multi-mode network, an
additional column is needed that associates concepts with entity classes. In AutoMap, concepts
and entity classes can have attributes, but the (types of) attributes are neither predefined nor
required. Similar to the creation of code books for content analysis, creating thesauri is a very
time-consuming and cumbersome process, even if it is computer-supported, and requires people
specifically trained for this task (Corman et al., 2002; King & Lowe, 2003; Krippendorff, 2004;
Schrodt et al., 2008). Typically, thesauri are validated by assessing the degree to which one
person assigns the same code to the same text over time (intra-coder reliability) or to which
multiple people assign the same code to the same text (inter-coder reliability). We have been
adding a plethora of features to AutoMap to make the thesaurus construction process more
efficient, such as generating lists of salient terms and N-grams based on their (weighted)
frequencies, and stemming terms into their morphemes, which potentially allows for more hits
per term (Diesner & Carley, 2004, 2008a).

3.2.2 Requirements for Entity Extractor

We identified a set of seven criteria that are important for an entity extractor that serves the
purpose stated for this project in general and in AutoMap specifically. In order to find these
criteria, I began by specifying what type of network analysis the extracted entities data should
support in the end. Different approaches to network analysis are suited for different purposes,
and can be placed on a spectrum ranging from social network analysis to network science. Table
50 summarizes key characteristics of these poles as they are relevant for this section, and

provides examples of typical applications.
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Table 50: Characteristics of Network Analysis approaches

Network Science Social Network Analysis

Goal Identify, formally describe, Answers substantive questions and
model, and test hypothesis and advance theories about the
advance theories about properﬁes’ individual and collective behavior
dynamics and evolution of graphs, and cognition of social agents.
link data, and relational data. Develop and test hypothesis and

theories about implications and
causes of the properties, dynamics
and evolution of network data.

Research Focus on the computational Data collection is often part of the

process analysis of data w.r.t. to a research analysis process.

(Figure 2) question. Existing or benchmark
datasets are often used.

Scalability Focus on large-scale graphs and Traditionally, datasets, methods
change of graph properties as and tools were focus on network
network sizes change. data of small to moderate size. This

has shifted to ambitions to test and
develop theories about networks of
any size.

Exemplary Technical infrastructures such as In social sciences and organization

application telecommunication networks and science, mainly:

domains the internet (Barabasi & Albert, Innovation diffusion (Coleman,
1999; Eagle & Pentland, 2006). Katz, & Menzel, 1966; Kraut, Rice,
Other sizable socio-technical Cool, & Fish, 1998)
networks, e.g. geopolitical entities Group structure and processes
(Auerbach, 1913; Newman, (Milgram, 1967; Sampson, 1968)
Strogatz, & Watts, 2001; Simon, Communication networks (Monge
1955). & Contractor, 2003)

Online social networks and social Learning and information

media data (Adamic & Huberman, processing of social agents (Carley

1999; Leskovec et al., 2007). & Palmquist, 1991; Collins &
Loftus, 1975)

Ultimately, the goal with this project is to provide a technology that combines the advantages
from both sides of the spectrum shown in Table 50. This means that I aim for a solution that
extracts data which allows users to gain deep and rich knowledge about network of any size, to
formally describe this knowledge, and to answer substantive questions about networks (Corman
et al., 2002; Hirst, 2006). I broke this high-level goal down into separate, more specific goals that
are detailed in Table 51. These goals are relevant for this thesis, but are not a comprehensive list

of requirement for network data collection tools.
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Table 51: Goals for entity extractor

Goal What does that Why is it relevant? | How does it improve the status
mean? quo of AutoMap?

1. Automation | The ability to Contributes to Extracting networks in AutoMap
automatically scalability. requires the semi-automated

collect one-mode
and multi-mode
network data.

Reduces time and
labor costs.

(Corman et al.,
2002)

construction and/or adaption of
thesauri. This is very time-
consuming and laborious (see
section 5.2.2.1.1 for a description
of thesaurus preparation).

2. Abstraction | The ability to Enables analyses on | The data structures used for
of terms to associate terms different levels of | network representation in
concepts or with higher level | granularity and AutoMap and ORA supports the
higher level abstractions, e.g. | aggregation. association of terms with concepts
aggregates concepts. In Entity | (Monge & (and attributes of) certain entity
Extraction, the Contractor, 2003) classes. Being able to efficiently
entity classes are extract these associations in
higher level AutoMap creates a more capable
aggregates. and efficient tool chain.
3. The ability to Contributes to AutoMap is constrained to only
Generalization | identify new and | greater flexibility in | find entities that are specified in a
unseen instances | extracting network | thesaurus. In order to also find and
of entity classes data from new classify new terms, the thesaurus
and entity corpora. needs to be extended in a time-
attributes. Reduces time and consuming, semi-automated way
labor costs. (see section 5.2.2.1.1 for details).
4. Support Being able to go Contributes to ORA already supports the
end-users in from texts to practical usefulness | automated analysis of large-scale,
addressing network data to of network analysis. | multi-mode network data. Being
substantive knowledge. Allows for able to efficiently extract this data
and meaning- | Provide publicly answering with AutoMap creates a more
ful questions | available entity substantive capable and efficient tool chain.
about socio- extractor that is questions about
technical readﬂy useable. networks.
networks (Alderson, 2008;
Krackhardt &
Carley, 1998)
5. N-gram Correctly locate Default requirement | AutoMap provides a probabilistic
detection the boundaries of | for NER. solution for extracting unigrams
unigrams and (Ratinov & Roth, only (Diesner & Carley, 2008a).
multi-word 2009)
entities.
6. Allow The same term Contributes to the | AutoMap can assign one term to
terms to can belong to disambiguation of | one concept only, and one concept
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belong to multiple entity homonyms. to one meta-network category

multiple entity | classes given a Prevents the loss of | only. This goal addresses the first
classes instead | term’s meaning relevant step.
of just one and context. Such | information.

terms can be
homonyms or
identical terms.

7. Entity Extract entities Contributes to ORA supports the automated
Extraction (as | that are referred to | answering analysis of unnamed and unnamed
opposed to by a name or not, | substantive entities. Being able to efficiently
focus on which is questions about so- | extract these entities with
Named Entity | particularly cio-technical AutoMap creates a more capable
Extraction) relevant for entity | networks, e.g. about | and efficient tool chain.

classes where culture and

many are generic | ethnography.
identifies, such as (Diesner & Car]ey’
references to roles | 2008a)

and collectives.

3.2.3 Review and Selection of Method to Enable Automation, Abstraction, and
Generalization

Achieving automation, abstraction and generalization (goals 1-3) requires the selection of an
appropriate REX method while keeping the subsequent use of entities for network construction
in mind. The solution developed herein satisfies these three requirements by choosing a method
that best covers the stated goals: this method selection is based on my review of the main
families of methods that are available for generating concept networks from text data as
summarized in Table 52. Note that the focus with Table 52 is on methods for generating word
networks, not methods for analyzing them. A more detailed review of these methods is provided
in Diesner and Carley (Diesner & Carley, 2010c), and a review of current computational
methods in Mihalca and Radev (2011). Some of the listed methods are outdated and hardly used
anymore, but have laid the foundations for further advances. The semantic web, for instance, can
be considered an extension of definitional semantic networks. Furthermore, some of the seminal
methods overlap. Map analysis, for example, borrows elements from spreading activation theory
and knowledge representation in artificial intelligence. Also, most of the listed methods were not
developed with the goal of providing input to network analysis or to handle just the extraction of
entities and relations, but rather for transforming texts into relational presentations of
information and knowledge in order to solve problems in specific application domains. I include
those methods in this review not only to be comprehensive, but also to show that the construction

of concept networks has roots in many disciplines. This review suggests that machine learning
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methods that are based on probabilistic graphical models (PGM) (group 17) fulfill the

requirements of automation, abstraction and generalization. Therefore, I selected this

methodological approach for this project. The selection of a specific PGM-based method is

described in section 3.3. However, this choice implies one limitation: in order to reason about the

meaning of the extracted data, further network analysis is needed once the data have been

constructed. This task is addressed in the next section.

Table 52: Review of family of methods for generating word networks

Families of methods for Automation | Abstraction | Generali- Steps needed to
constructing word No: manual No: use terms | Zation reason about
networks and seminal Yes: verbatim No: meaning of
papers automated Yes: map deterministic | network data

CoSu: terms to Yes: find

computer higher level new

supported representation | instances
1. Discourse Representation | No Yes No Data construction
Theory process
(Kamp, 1981)
2. Mind maps No, CoSu Yes No Data construction
(Buzan, 1974) process

Data analysis
3. Concept maps No, CoSu Yes No Data construction
(Novak & Gowin, 1984) process
Data analysis

4. Hypertext CoSu Yes No Network analysis
(Trigg & Weiser, 1986) Inference
5. Qualitative text coding No, CoSu Yes No Data construction
according to Grounded process
Theory Data analysis
(Glaser & Strauss, 1967; T.
Richards, 2002)
6. Mental Models according | CoSu No No Data analysis
to Spreading Activation
(Collins & Loftus, 1975;
Collins & Quillian, 1969)
7. Knowledge representation | Yes No No Inference

in artificial intelligence,
assertional semantic
networks (Shapiro, 1971;
Woods, 1975)
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8. Definitional semantic Generation: Yes No Data analysis
networks incl. networks no Inference
built by using an ontology Usage: yes
(Berners-Lee et al., 2001;
Fellbaum, 1998)
9. Semantic Web Generation: Yes No Information
(Berners-Lee et al., 2001; no retrieval
Van Atteveldt, 2008) Usage: yes
10. Case Grammar and Generation: No No Data analysis
Frame Semantics no
(Fillmore, 1968, 1982) Usage: yes
11. Frames Generation: Yes No Data analysis
(Minsky, 1974) no

Usage: yes
12. Semantic Grammars CoSu Yes No Data analysis
(Franzosi, 1989; C. W. Statistical
Roberts, 1997a) analysis
13. Semantic network in CoSu, Yes Yes No Network analysis
communication science
(Danowski, 1993; Doerfel,
1998; van Cuilenburg,
Kleinnijenhuis, & de Ridder,
1986)
14. Centering Resonance Yes No No Network analysis
Analysis
(Corman et al., 2002)
15. Map Analysis, Network | CoSu Yes No Network snalysis
Text Analysis in Social
Science
(Carley & Kaufer, 1993;
Carley & Palmquist, 1991)
16. Event Coding in political | CoSu Yes No Statistical
science (King & Lowe, analysis
2003; Schrodt et al., 2008)
17. Machine learning based | Generation: Yes Yes Inference

on probabilistic graphical
models (Howard, 1989;
Pearl, 1988)

no (orig.) to
yes
Usage: yes

Network analysis
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3.2.4 Review and Selection of Approach to Support Addressing of Substantive and
Meaningful Questions about Socio-Technical Networks

The fourth requirement for the entity extractor is the generation of data that allows for addressing
substantive questions and reasoning about the meaning of networks. What does it mean for
network data to support meaningful analysis? In this section, I discuss this question and conclude
with the selection of an approach. The meaning of relational representations of language and
knowledge has been extensively discussed in the linguistics and artificial intelligence literature
(Hirst, 2006; Ogden & Richards, 1923; Woods, 1975). There, concept networks that represent
meaning are called semantic networks (for a brief synopsis see Diesner & Carley, 2011a; Sowa,
1992; Woods, 1975). A unifying assumption across various approaches to semantic networks is
that the meaning of concepts can be inferred from a concept’s context as explicitly or implicitly
provided in text data or the network data (Collins & Quillian, 1969; Griffiths et al., 2007;
Minsky, 1974; Shapiro, 1971; Weaver & Shannon, 1949). According to Hirst (2006), further
progress in extracting meaning from texts will require a combined consideration of subjective
authorial intent, subjective interpretations of the reader, and the extraction of objective
representations of meaning from large-scale corpora. In the network analysis literature, the
meaning of word networks has been hardly discussed. There, the assumption is that a node’s
meaning results from its context and network position; both of which can be described via
network analytical measures (Carley, 1997b; Carley & Kaufer, 1993; Carley & Palmquist, 1991;
Doerfel, 1998; Mohr, 1998). Context here means the structural environment of a node, typically
starting from the ego-network. Detecting a node’s meaning basically requires completing the
network analysis process as outlined in Figure 2. However, there is no guarantee that a concept
network or its analysis will be meaningful. Moreover, it is easy to read patterns and meaning into
networks, for example by making heuristic use of network visualizations (Bernard & Ryan,
1998).

A synthesis of prior work on enabling the reasoning about the meaning of word networks is
provided in the last column of Table 52; suggesting that there are five options for achieving this
goal: (1) some methods require humans to go through a cognitive, typically manual or computer-
supported, process of creating concept networks. This data construction process requires the
representation of the meaning of concepts and relations as perceived by the people creating the
data. With some of these methods, meaning can also be obtained by interpreting the resulting
data. For example, when applying grounded theory methodology to construct structural models
based on text data, the resulting data are assumed to be inherently meaningful, but require the
analysts’ interpretation with respect to their research question (Glaser & Strauss, 1967). In

general, three types of analysis can be employed to get to the meaning of the relational data: (2)
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statistical analysis, (3) network analysis, and other types of (4) data analysis such as qualitative
interpretations. Note that not all methods with which concept networks are generated assume the
usage of network analysis methods to reason about the resulting data. For example, semantic web
data are generated to support information retrieval, and relational data generated with event data
coding methods in political science are typically analyzed with non-relational, but statistical
methods. Finally, some methods involve the possibility of conducting (5) inference on the
generated data.

There are two more strategies for supporting the construction of meaningful data; both of which
are an integral part of many of the outlined methods and cut across the five strategies outlined
above: First, concept networks can be constructed by using structured variables that are
motivated by theory (Corman et al., 2002; Van Atteveldt, 2008). Second, meaningful concept
networks (in the definitional sense of “semantic networks™) can be generated by applying
predefined classification schemata, i.e. specifications of the set of possible elements (denoted in
ontologies) and relations between them (fixed in taxonomies) in a given domain (Berners-Lee et
al., 2001; Gerner et al., 1994).

In order to ensure that the entity extractor developed herein supports the construction of network
data that allows for meaningful analysis, I combine the following elements which are all selected

from the options discussed above:

1. Use an ontology that is grounded in theory from the social sciences and defines the entity
classes that are typically relevant for socio-technical network (section 3.2.5).

2. Use probabilistic graphical models as the method for generating a prediction model that
retrieves instances of these entity classes from text data (section 3.3).

3. Generate concept networks that are structured such that all entity classes, links between
entities, and attributes of nodes and entities can be analyzed via network analysis,
statistical analysis and visualizations with an existing toolkit (ORA: Carley, Reminga, et
al., 2011) This is demonstrated in chapter 5.

3.2.5 Selection of Ontology

The standard set of entity classes for Named Entity Recognition in NLP comprises agents,
organizations, locations and miscellaneous other entities. In political science, the categories
considered for event coding are agents and events, and for both of these categories, elaborated
sets of subtypes exist, which are continuously updated in a collaborative fashion (Schrodt et al.,
2008). In organization science, Krackhardt and Carley (1998) have developed a multi-mode and
multi-plex model called PCANS that defines the set of relevant entity classes; namely agents,

tasks and resources. PCANS also specifies primitives or general templates for the possible
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relation between these classes. These primitives result from the logical and temporal ordering of
activities, and can be represented as combinations of matrices of the considered entity types.
Carley (2002a) has extended the PCANS model into the meta-matrix model in two ways: first,
she extended the set of categories to represent the who (agent, organizations), what (task, event),
when (time), where (location), why (emotions, beliefs) and /how (resources, knowledge) of
events. Second, she developed a plethora of network analytical measures that are defined over
these nodes types and their combinations. These measures are implemented in ORA (Carley,
Reminga, et al., 2011). In general, most network analytical measures are defined independently
of node types (Wasserman & Faust, 1994). Thus, these measures are assumed to be appropriate
for analyzing networks of any type, including social networks and generic graphs. Tailoring
measures to certain entity classes and types of graphs as supported with the meta-matrix model
and by ORA allows for more detailed and richer network analysis. The meta-matrix model has
been previously tested, applied and validated in a variety of contexts such as situational
awareness in remote work teams (Weil et al., 2008), collaboration in groups (Cataldo et al.,
2006), public health (Merrill, Bakken, Rockoff, Gebbie, & Carley, 2007), and geopolitical
groups (Carley et al., 2007). The definition of entity classes, attributes, subtypes of classes, and
respective measures for the meta-matrix keeps being adjusted and updated. In summary, I chose
to use the meta-matrix model as an ontology for defining the entity classes that the entity
extractor needs to recognize. This choice enables the collection of rich network data for which
measures have already been defined and validated, and for which an analysis tool is readily

available.

3.2.6 Selection of Solutions to Entity Extraction, N-gram Detection, and Non-
Exclusive Term Classification

Entity Extraction: The meta-matrix model comprises various classes where entities are often not
referred to by a name, such as tasks and resources. In the next step, training data needs to be
selected that contain examples of a mix of named and unnamed entities for the entity classes of

interest. The selection of an appropriate learning dataset is presented in section 3.3.1.

N-gram Detection: Each instance of a relevant entity class needs to be detected from its
beginning to its end, whether it’s a unigram or a multi-word expression. This is a token labeling
task (Sarawagi, 2008), which I herein refer to as “boundary detection”. In fact, with entity
extraction via machine learning, a boundary class label is predicted for every token in the text
data, but while only those tokens that do not fall into the “outside” boundary class are output to
the user, the boundary label for every token counts for accuracy assessment. In prior work,

various classification schemas for boundary classes have been used: the simplest one is the BIO

96



(begin, inside, outside) schema, more advanced is BIEO (begin, inside, end, other), and even
more detailed is BIEOU (begin, inside, end, other, unigram) (Ratinov & Roth, 2009; Sarawagi,
2008). Choosing a boundary class model means making a tradeoff between expressiveness
versus keeping the number of parameters for learning small. A model for a given project can be
chosen by testing the performance of various models on data, or by building upon prior empirical
results. I chose the latter approach: Ratinov and Roth (2009) showed that BIEOU outperforms
BIO by 0.5% to 1.3% on two training datasets, respectively. These datasets are similar in their
genre and entity classes to the data used for learning herein. Currently, the entity extraction
feature in AutoMap that was built by using a machine learning approach based on probabilistic
graphical models is only capable of locating and classifying unigrams, regardless of whether they
are constituents of N-grams or not (Diesner & Carley, 2008a). Adding a routine that properly
handles the detection of multi-word expressions will help to improve the extraction of concept
networks as well as meta-networks. Since concept networks are one-mode networks, the only

applicable entity extraction task for these networks is boundary detection.

Allow terms to belong to multiple entity classes instead of just one: From a practical and realistic
perspective, entity extraction is a non-exhaustive, non-exclusive process. This means that not all
words are relevant entities, but those that are relevant might fall into multiple categories
depending on the terms’ identity and context. What does that imply for the selection of a
machine learning method? Since in fact most words in a text do not belong to one of the meta-
network categories, the prediction model needs to be able to handle very sparse data. Sparse here
means that most terms fall into the “O” (outside) category of the boundary coding schema. Thus,
the method must not strongly rely on transition probabilities between entity classes, but needs to
exploit other information from the text data. Frequently used alternative clues are characteristics
of the terms themselves, long-distance information from sequential data, and the relationship
between a term and its label (McCallum, 2005; Sarawagi, 2008). Currently, the way thesauri are
processed in AutoMap requires that each term is mapped to only one concept, and each concept
to only one meta-network category. Thus, thesauri in AutoMap are currently structured this way.
Outputting thesauri where the same terms can be mapped to multiple entity classes will enable
the disambiguation of homonyms and identical terms that belong to different categories in
different situations. In order to correctly map these entries to their respective occurrences in the
text data, further features per word need to be considered, such as parts of speech or local
context. Considering this modification to thesauri for actual text coding projects will require
changes to the AutoMap backend that are not subject of the work for this thesis, but the outcome

of this thesis is a precondition for this next step.
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3.3 Method

Summarizing the findings from the presented requirements analysis, the following criteria are

appropriate and necessary for an entity extraction method:

- A machine learning technique based on probabilistic graphical models (PGM).

- A technique that can handle the sparse distribution of relevant entities across text data.

- A technique that allows for assigning tokens with identical surface forms to different
categories. .

- A technique that is able to exploit long distance information in sequential data. Sequential
here means that when generating text data, terms and class labels are not drawn
independently from some distribution, and terms and labels may show sequential
correlations. Due to the sequential nature of unstructured text data, a PGM is needed that

is able to capture and exploit dependencies of tokens and labels (Sarawagi, 2008).

Given the availability of suitable training data for the task at hand as will be described in section
3.3.1, I chose to use a supervised learning approach. In general, sequential supervised learning
makes probabilistic predictions about the relationship between consecutive tokens x and a y label
for every token (Dietterich, 2002). For this project, each token is an x, and the respective class
label is the y. The learning goal for this project can be formulated as follows: Learn a prediction
model or classifier 4 that for each sequence of (x,y) suggests an entity sequence y=h(x) that
generalizes with predictable accuracy to new and unseen data. Several PGMs for sequential
learning satisfy the identified requirements. I briefly describe eligible models along the
dimensions of directionality and the type of distribution they estimate, because these two
characteristics are relevant for the given task. Figure 9 shows a schematic depiction of the PGMs

discussed in this section.

Figure 9: Graph structure of selected Probabilistic Graphical Models
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The directionality of arcs in the model represents assumed logical dependencies. In directed

PGMs, every node is conditioned on its parent(s). In undirected models, distributions are
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factored into local likelihood functions for each clique of variables. PGMs can be divided into

generative models and conditional models, aka discriminative models:

With generative models, a joint distribution of the form P(x,y) is estimated. An example for
generative models that are frequently used for entity extraction are Hidden Markov Models
(HMM). An early system that successfully used HMM for NER is IdentiFinder (Bikel et al.,
1999) , which exploits multiple features of words and achieves an NER prediction accuracy of
F=94.9%.

Conditional models estimate a conditional distribution of the form P(y|x). For the given task, the
output generated from conditional models, i.e. the most likely class label sequence y per token
sequence x, is what we are truly interested in, while explaining how the token sequence was
generated from the class labels through an assumed probabilistic (generative) process is
irrelevant. A highly accurately performing conditional PGM for NER are Conditional Random
Fields (CRF) (Lafferty, McCallum, & Pereira, 2001; Sha & Pereira, 2003). CRF have shown to
outperform alternative generative models. For instance, Lafferty et al. (2001) obtained an error
rate of 5.55% with CRF, 6.37% with Maximum Entropy Markov Models (MEMM), and 5.69%
with HMM. MEMM are another discriminative model (Borthwick, 1999).

In general, the accuracy rates obtained with HMM are comparable to those achieved with
conditional models. The main disadvantage of HMM are their strictly local properties: HMM
lack the ability to directly pass information between non-adjacent y values. Instead, such
information must pass through the intervening »’s (Dietterich, 2002). Also, each token is
assumed to be generated from the corresponding class label only. Thus, information about other
nearby labels cannot be considered. However, information about not directly co-located elements
is particularly valuable when working with sparse data and for multi-word units that are longer
than two tokens. Conditional models do not have this limitation; they allow for considering

arbitrary features of x, including global and long-distance features (Dietterich 2002).

Within the group of conditional models, MEMM have led to higher error rates than generative
models (Lafferty et al., 2001). This limitation been explained with the “label bias problem”:
MEMM are a log-linear model that maximizes the conditional probability of each label y given
the previous label y;; and the current token x;. Once this maximization is done, MEMM use
maximum entropy to compute the highest conditional likelihood of all x: [] P(yi| x;). The label
bias occurs in the first step of this process: each y;.; has to pass all of its probability mass to the
adjacent label y;;, even if a token x; hardly fits this choice (Lafferty, McCallum and Pereira
2001). Since CRF do not have the same local constraint, they can delay this decision until a good
fit has been found.
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CRF feature some additional advantages: First, they can find global optima in sequential data
with respect to the target function specified for this project. Second, CRF can take arbitrarily
large numbers of features into account. In fact, since the identity of every word can be used as a
feature, the number of feature can easily be in the tens of thousands. This largely exceeds the
handful of features typically used with more local models. Therefore, more of the information
available in text data can be exploited, including weak contributors, which are crucial for
working with sparse data. Third, CRF allow for considering long-distance information between

at least the tokens.

The main caveat with CRF is that they require high time costs for training. This is mainly due to
performing global search with a reasonably sized gradient in a large feature space. However,
once the model is learned, inference time is not subject to this constraint. Therefore, applying the

model in end-user applications is fast and scalable.

In summary, given the outlined characteristics, strengths, weaknesses and empirical accuracy
rates for the discussed PGMs, I chose CRF as the PGM based machine learning technique for
this project. This choice is supported by prior work: Sarawagi (2008) concludes that for data at
the level of heterogeneity that we aim to provide an entity extractor for, i.e. mainly unstructured
data from well-defined genres and domains, conditional model and learning based on enough
training data are the state of the art approach to this task. In our case, the domains to be covered

are news data and other reports of interactions and events in organizations.

In contrast to HMM and MEMM, CRF model the relationship among each label y; and its
predecessor y;; as a Markov Random Field (MRF). MRF are an undirected PGM that is
conditioned on x only. In CRF, the distribution P(y|x) is computed as a normalized product of
potential functions M;, which are computed as shown in Equation 4 (Lafferty et al., 2001; Sha &
Pereira, 2003):

Equation 4

M, (¥, y: | x) = (eXp(giafa (Vi Vir X) + 2 Us8p (yl-,X))

In Equation 4, the f, expression is an edge feature that represents the transitions between labels
and tokens. Furthermore, gz is a vertex feature that represents the emission of an entity from a
term sequence. Feature vectors f, and g are fixed, boolean vectors. Most of the time, a feature
will be switched off or be zero (sparse data), and is turned on only when applicable. For

example, the word identity feature, which this implementation includes, is only switched on

100



when x contains that particular term. When a feature is switched on, the specific learned weight

per feature, i.e. 4, and ug, becomes applicable.

In order to normalize the scores of the potential functions, the M; are typically multiplied with
1/Z(x). Here, Z is a normalizing constant parameterized on the sequence x. Finally, the
conditional probability of the entire label sequence P(y|x) is computed as shown in Equation 5.

Note that in Equation 5, both y and x are arbitrarily long vectors.

Equation 5

n+l

t=1Mi(yi—19yi | x)
n+l

]._[i=1 Mi (x)start,stop

Po(y]x) =

3.3.1 Learning Data

Supervised machine learning requires marked up or labeled data for training and testing. Since
the goal here is to predict a boundary and category for every entity, a dataset is needed where the
start, end and category of all relevant entities are marked up. Building a high quality learning
dataset is expensive because it requires humans for this task, a sufficiently high rate of intercoder
reliability, and a sufficiently large number of marked up examples. No such dataset that covers
instances of the meta-network categories has yet been created in our group. Therefore, I had to
defer to external sources. In order to find the most suitable training dataset for this task, I
reviewed the major datasets that are available to researchers for information extraction purposes.
Table 5 provides a reference and a short overview of the main characteristics of these datasets.
Some of these datasets cover the main set of entity classes that are typically considered in
information extraction, but no further subtypes. These datasets are shown in Table 53, which also
specifies how these main categories are referred to in the meta-network model.

Table 53: Entity class review I: Models and datasets without subtypes

Entity class Meta- ACE-2, NYT CoNLL-
network TIDES 2003

Person x (Agent) X X X

Organization X X X X

Location X X X X

Facility x (Location) X

GPE x (Location) X
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In some of these datasets, specific and generic instances of categories are not distinguished from

each other. This would be problematic for the types of analysis we aim to support: in our

practical work we often have seen that when identifying key agents in networks, generic nodes

such as “president” often rank very high because they subsume references to multiple

individuals, but are not as meaningful as the name of a specific president (Diesner & Carley,

2005b). This problem applies to references to roles of people and organizations in general.

Therefore, datasets that allow for distinguishing between generic and specific entities are needed.

The applicable datasets are compared in Table 54, which covers the same entity classes as Table

53. In addition to that, Table 54 lists the available subtypes per entity class and lines them up

across corpora where possible.

Table 54: Entity class review II: Models and datasets with subtypes

Entity MUC6, Subtypes (IE ACE  Subtypes BBN Subtypes
class 7 (NE task) 2004,
task) 2005
Person X name X individual ('05) (name, desc)
alias group ('05
title indefinite ('05)
types (7): other,
military, civilian
Org. X name X government government (name, desc)
alias commercial corporation (name, desc)
descriptor educational educational (name, desc)
type: non-profit ('04) political (name, desc)
government, non-governmental ('05)
company, other religious ('05) religious (name, desc)
media ('05) hotel (name, desc)
entertainment ('05) hospital (name, desc)
medical-science ('05) museum (name, desc)
sports ('05)
other ('04) other (name, desc)
Location | x city X address
province boundary border (name)
country celestial
region water body lake sea ocean (name)
unknown land region natural river (name)
water (7) region local ('04) region (name)
airport (7) region sub-nat. ('04)
region national ('04)
region general ('05)
region international continent (name)
other ('04) other (name)
Facility X airport ('05) airport (name, desc)
plant
building ('04) building (name, desc)
bldg. on grounds ('05)
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sub area building ('04)
sub area facility ('05)

bounded area ('04)
conduit ('04) bridge (name, desc)
path highway street (name, desc)
barrier ('04) attraction (name, desc)
other ('04) other (name, desc)

GPE X continent X
nation country (name, desc)

state or provine
county or district

city or town ('04)
population center ('05)
GPE cluster ('05)
special ('05), other

state province (name,
desc.)

city (name, desc)
other (name, desc)

The datasets considered in Table 54 go beyond the standard set of entity classes by providing
markups for additional classes and their subtypes as shown in Table 55. The point of reference in
Table 55 (leftmost column) is the set of categories defined for the meta-network model. This
comparison shows that no dataset covers all of the meta-network categories, but the BBN dataset
comes closest to that by covering all but the “beliefs” category. However, in BBN, one subtype
of agents and organizations is “religious”, which captures the notion of agents adhering to a

belief. This label approximates the purpose behind the belief class in the meta-network.

Table 55: Entity class review III: Additional entity types

Meta- MUC6, Subtypes (IE | ACE 2004, Subtypes BBN Subtypes
network MUC7 task) ACE 2005
entity class | (NE (*= value
task) of entry)
Resource Artifact 1D, Vehicle air, land, water, Product weapon (name, desc)
(IE description subarea vehicle, vehicle (name, desc)
task) type (7): air, other ('04), other (name, desc)
ground, water underspec. ('05) | Substance food, drug, nuclear,
Weapon blunt, exploding, chemical, other
sharp, chemical, | Plant
biological, Animal
Nuclear, Disease
other ('04),
underspec. ('05)
Money Money ('05)* Money
Time Time 7: descriptor, | Time ('05)* TIMEX2, incl.: Time
start, end present, past, Date date, duration,
type: before, future age, other
on, after, type: within,
between start, end, as of,
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Date before, after
Knowledge Law (name)
Language (name)
Work of book (name)
art play (name)
song (name)
painting (name)
other (name)
NORP nationality (name)
religion (name)
political (name)
other (name)
Contact email, phone#, Contact address, phone #,
('05)* URL info other
Belief
Attributes Percent Percent ('05)* Percent
Ordinal
Cardinal
Quantity 1D, 2D, 3D, energy,
speed, temperature,
. weight, other

Table 56 compares the additional attributes or classifications that the reviewed datasets contain

per entity class. In BBN, the generic versus specific distinction as well as further subtypes of

entity classes (if applicable) are directly encoded in the category label itself, while in MUC and

ACE, any additional information is marked up as separate attributes per entity. In general, BBN

integrates features from different datasets: similar to ACE, it annotates numerous subtypes of

entities, and like in MUC, BBN separates all entities into named entities, temporal expressions

and numerical expressions.

Table 56: Entity class Review IV: Additional attributes for entities

temporal ex-
pression
number ex-
pression

negatively quantified
non-ref./attribut./ascriptive
specific referential

generic referential
under-specified referential

temporal ex-
pression
number ex-
pression

Meta-network MUC6, MUC7 | ACE 2004, ACE 2005 BBN ACE-2,
(NE task) TIDES
For Per, Org, Loc: For each entity:
specific named entity name named entity name
generic nominal nominal
pronoun pronoun
for each entity
(2nd attribute): for each entity

(2nd attribute):

generic
specific
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The only entity class that is treated differently in the discussed learning datasets than in the meta-
network model is the activities category: in the meta-network model, instances of the “task™ and
“events” class comprise a single word or a short phrase, such as “participate in”. Nodes of these
types can be linked to nodes from the same or any other entity class. A similar approach to event
coding is typically taken in political science, where events are terms that can have a valence
value and take agents as their arguments (Gerner et al., 1994; Goldstein, 1992; King & Lowe,
2003; Schrodt et al., 2008). In that domain, the types of events and agents are predefined, while
specific instances of these entity classes are identified from the actual text data via shallow
parsing techniques. The goal with this type of event coding is to identify who does what to
whom. In contrast to that, in NLP-style information extraction, event coding is conceptualized as
a slot filling or relation extraction task: an event or scenario consists of various entities of
predefined types that play certain, predefined roles or have certain relationships with each other.
These events are typically very specific and cannot be expected to generalize well to other types
of activities. Table 57 compares the event coding approaches in the potential learning datasets.
This comparison shows that the ACE 2005 data encodes a variety of events that are relevant for
asking substantive questions about socio-technical networks. Moreover, ACE 2005 offers
predefined valence values (polarity) for these events. BBN lacks these features, but offers a
different advantage: event mark-ups in BBN are closest to the way that the meta-network model
represents activities. However, the types of events considered in BBN are confined to specific

mentions of wars, hurricanes and other events as well as games, such as sports games.

Table 57: Event coding review

Meta MUC6, MUC7 ACE 2005 Subtypes BBN Subtypes

Net- (NE task)

Event 6: management life be born, mary, Event war (name)
succession: divorce, injure, die hurricane
succession movement transport (name)
in and out transaction transfer ownership other (name)

Task transfer money Game
business start org, merge org, end org,
7: air vehicle launches: declare bankruptcy
launch event conflict attack, demonstrate
vehicle info contact meet, phone, write
payload info personnel start position, end position,
nominate, elect
justice arrest jail, release parole,
trial hearing, charge indict,
sue, convict, sentence, fine,
execute, acquit, appeal,
pardon
arguments: who, when, where,
instrument, price, target
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values: crime, sentence, job title
Per event:

polarity (occurred or not)

tense (past, presence, future)

genericity (generic, specific)

modality (asserted, other)

In summary, the review of potential learning datasets suggest that with respect to types and
subtypes of entity classes, the distinction between generic versus specific examples, and the
consideration of events, ACE 2005 and BBN would be appropriate datasets for this project. In
order to select one of them, I compared the number of instances per category as shown in Table
58. This is a relevant criterion because learning requires a substantial amount of examples per
category. Note that in ACE, pronouns are also marked up as entities, and comprise about 14% of
all annotated entities. This is very useful for reference resolution tasks, but for this project, I do
not aim to classify pronouns as entities. Disregarding pronouns, BBN contains more than twelve
times the number of entities that ACE offers. Therefore, I chose to use BBN as the learning
dataset for this project.

Table 58: Quantitative comparison of suitable learning datasets

Category ACE 2005 Number of | BBN Number of
Examples Examples

Agent name 1,123 | name 13,750

nominal 2,111 | descriptor 26,352

pronoun 1,143

Subtotal (no pronoun) 3,234 | Subtotal 40,102
Organization name 887 | name 19,450

nominal 729 | descriptor 30,244

pronoun 182

Subtotal (no pronoun) 1,616 | Subtotal 49,694
Location name 127 | name 1,088

nominal 182

pronoun 24

Subtotal (no pronoun) 309 | Subtotal 1,088
Facility name 56 | name 445

nominal 343 | nominal 2,570

pronoun 45

Subtotal (no pronoun) 399 [ Subtotal 3,015
GPE name 2,622 | name 13,571

nominal 527 | nominal 1,835

pronoun 382

Subtotal (no pronoun) 3,149 | Subtotal 15,406
Vehicle name 28 | name 382

nominal 183 | nominal 1,223
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pronoun 27
Subtotal (no pronoun) 211 [ Subtotal 1,605
Weapon name 15 | name 21
nominal 262 | nominal 132

pronoun 27
Subtotal (no pronoun) 277 | Subtotal 153
Time 1,235 1,069
Money 94 11,097
Percent 17 5,976
Contact Info 2 40
Events 7 subtypes 1,557 | 3 subtypes 371
Game 90
Subtotal 1,557 | Subtotal 461
Distinct Values (3 subtypes) 165 | Other named entities 9,448
classes Other numerical entities 12,047
Other temporal entities 20,676

Total With Pronouns 14,094
Without Pronouns 12,318 171,877

Next, the categories in BBN had to be mapped to the meta-network categories. Table 59 shows

the outcome of this process, which I performed in the following fashion: I picked one best match

per category from the meta-network model by reviewing the descriptions in the BBN

documentation, screening examples in BBN (last column in Table 59) and existing CASOS

thesauri, and making sure that no category has too few examples (second column from the right

in Table 59). The only category that I did not map onto a meta-network equivalent is “contact

info: address”, because a) this category has no good match in the meta-network and b) there are

only four examples; two of which are overlapping with the class of “location: street”.

Table 59: Category mapping from training data to category models

BBN Mapping of BBN to Meta-Network Example from BBN
Category name Category  Subtype  Subtypell = Examples
name | /group
per_desc agent generic  na 26,352 | activist
person agent specific  na 13,750 | Arafat
org_desc:corporation organization generic  corporate 15,186 | advertisers
org_desc:educational organization generic  educational 238 | high school
org_desc:government organization generic  governmental 2,502 | administration
org_desc:hospital organization generic  other clinic
org_desc:hotel organization generic  other hotel-casino
org_desc:museum organization generic  other institution
org_desc:other organization generic  other 1,322 | bar
org_desc:political organization generic  political 151 | campaign
org_desc:religious organization generic  religious 51 | church
organization:corporation | organization specific  corporate 23,439 | Occidental Petroleum Corp.
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organization:educational | organization specific  educational 366 | Carnegie Mellon University
organization:government | organization specific  governmental 4,629 | Bank of Japan
organization:hospital organization specific  other Harlem Hospital Center
organization:hotel organization specific  other Ritz
organization:museum organization specific  other Smithsonian Institute
organization:other organization specific  other 1,353 | American Bar Association
organization:political organization specific  political 413 | African National Congress
organization:religious organization specific  religious 44 | Church of Scientology
norp:religion org-att specific  religious 88 | Jewish

norp:nationality org-att specific  nationality 3,238 | African

norp:other org-att specific  other 91 | African-Americans
norp:political org-att specific  political 677 | Communist

fac:airport location specific  facility Heathrow

fac:attraction location specific  facility Angel Fire

fac:bridge location specific  facility Bay Bridge
fac:building location specific  facility Andre Emmerich Gallery
fac:highway _street location specific  facility 101

fac:other location specific  facility 445 | Auschwitz
fac_desc:airport location generic  facility airport
fac_desc:attraction location generic  facility aquarium
fac_desc:bridge location generic  facility bridges
fac_desc:building location generic  facility apartments
fac_desc:highway street | location generic  facility circle

fac_desc:other location generic  facility 2,570 | courtyard

gpe:city location specific  city 5,606 | New York City
gpe:country location specific  country 5,079 | Angola

gpe:other location specific  other Bronx
gpe:state_province location specific  state-province 2,694 | Alaska

gpe_desc:city location generic  city 377 | capital
gpe_desc:country location generic  country 992 | empire

gpe_desc:other location generic  other borough
gpe_desc:state_province | location generic  state-province 397 | Baden-Wuerttemberg
location:border location specific ~ other Four Corners
location:continent location specific  other Africa
location:lake _sea ocean | location specific  other Baltic Sea
location:other location specific  other Alps

location:region location specific  other Allegheny Mountains
location:river location specific  other 1,349 | Amazon

animal resource na animal 396 | black widow

disease resource na disease 317 | cardiac condition

plant resource na plant 194 | cotton

product:other resource specific ~ product Budweiser
product:vehicle resource specific ~ product 400 series
product:weapon resource specific  product 923 | AH-64 Apache
product_desc:other resource generic  product lifeboat
product_desc:vehicle resource generic  product ambulance
product_desc:weapon resource generic  product 1,381 | machine guns
substance:chemical resource na substance acid

substance:drug resource na substance cocaine
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substance:food resource na substance bourbon
substance:nuclear resource na substance plutonium
substance:other resource na substance 2,714 | antibody

money resource na money 11,097 | $17

language knowledge specific  language 84 | Arabic

law knowledge specific  law 382 | 425 U.S. 308

work of art:book knowledge  specific  art 1984

work of art:other knowledge specific  art 60 Minutes

work of art:painting knowledge specific ~ art Cemetery in the Snow
work _of art:play knowledge specific  art Death of a Salesman
work of art:song knowledge specific  art 721 | I Can See Clearly Now
event:hurricane event specific  na Hugo

event:other event specific  na Big One

event:war event specific  na 371 | French revolution
game task na game 90 | basketball

date:date time na na 31-Mar-94
date:duration time na na 10-month-long
date:other time na na annual

time time na na 21,125 [ 1 p.m. EST

cardinal attribute na numerical 1.97

ordinal attribute na numerical 200th

percent attribute na numerical 0.30%

quantity:1d attribute na numerical 1.2 miles
quantity:2d attribute na numerical 8.2 by 11.7 inches
quantity:3d attribute na numerical 1.6-liter
quantity:energy attribute na numerical 900 megawatts
quantity:other attribute na numerical 32-bit
quantity:speed attribute na numerical 200 mph
quantity:temperature attribute na numerical 321 degrees Fahrenheit
contact_info: other attribute na numerical ENG 23
Contact_info: phone attribute na numerical 900-TELELAW
quantity:weight attribute na numerical 18,059 | 2.5-ton

date:age attribute na age 620 | 33

The BBN dataset had a few XML consistency issues that I fixed: four categories were defined in
the BBN specification for which there were no examples in the annotated data. Eleven categories
were not defined for BBN, but occurred in the annotated data with a total of 19 examples. I went
through each of the examples and changed the category to what it should be according to the
BBN documentation and the actual examples. One entity started as one type and ended as a
different type; I adjusted that. Another issue with the data resulted from the fact that in XML
data in general, a forward slash within an entity closes an XML tag prematurely. To avoid this
issue, BBN places a forward slash right after a backward slash where applicable. This happens
mainly for cardinal numbers, such as “1V4 to 1V2”, and organization, such as “Capital

CitiesVABC Inc.” However, a backward slash followed by forward slash is highly unlikely to be
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observed in new data. Therefore, I converted this structure into just a forward slash after parsing
the XML files and prior to passing the input data to the learner.

3.3.2 Learning Technology and Selection of Feature Types

As a starting point for implementing the entity extractor, I used the CRF package as provided on
the CRF project package (Sarawagi). This package offers a basic implementation of CREF, is
highly adjustable, and allows for adding new features. The next challenge is to find a robust set
of clues, also known as features, which bring together information about different characteristics
of the data such that accuracy becomes high while predictions are robust. Robust here means that
we need to avoid overfitting of the learned models to the idiosyncrasies of the learning data in
order to ensure that the learner generalizes with high accuracy to new inference data. However,
even though the feature set that will be chosen at the end of the feature selection process needs to

support robustness, individuals features can be weak (Sarawagi, 2008).

Prior work has shown that in general, the following types of features are useful for entity
extraction tasks: the identity of a token, i.e. the actual word or phrase, word surface features,
orthographic features, syntax features, and external knowledge (Bikel et al., 1999; Borthwick et
al., 1998; Cohen & Sarawagi, 2004; Florian et al., 2003; Mayfield, McNamee, & Piatko, 2003;
McCallum & Li, 2003). In the following discussing of these features, I distinguish between

“feature types” versus “features”, which are individual different clues per feature type.

3.3.2.1 Input Decomposition and Class Definition

Entity Extraction can be approached as a sequence labeling or a token labeling task. Token
labeling means that for each individual word, two labels need to be predicted: 1) a boundary
class label and 2) an entity class label or category. For example, for the entity “United Nations”,

13

the predicted labels might be “begin, organization, specific”’ for “United”, and “end,
organization, specific” for “Nations”. This task can be solved via one joint model for boundary
and category, or two separate models for each label type. The advantage with the first approach
is that there can be no conflicts between both label types. The disadvantage is that in the
respective PGM, the number of classes, also known as states, and edges between states would be
higher than with the second approach. As a result, fewer examples per class are available from
the same training data. Furthermore, the higher complexity of the model leads to a higher time
complexity for training. The advantages with the second approach are the higher number of
examples per class, which also implies lower time requirements for learning. Furthermore, the
features for boundary prediction and class label prediction can be tuned separately. The caveat is
that both labels per token need to be combined in the end, which is highly likely to cause further

loss in accuracy due to disagreements between both models.
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With sequence labeling, one label gets predicted for each sequence, which can be a unigram or a
multi-word expression. The same advantage and disadvantages as described above for the joint
model of boundary and category prediction exist. Considering the outlined pros and cons, I chose
to use the token labeling approach that predicts the boundary and category per token separately
for the following reasons: the entity extractor built here is meant to support users in extracting
two types of networks: one-mode networks, where all nodes are of the same type, and multi-
mode networks, where nodes are instances of the meta-network categories. In order to extract
nodes for one-mode networks, it is sufficient to correctly locate entities within their boundaries,
but without assigning them to an entity class. Adding the detection of unigrams and bigrams as a
stand-alone functionality to AutoMap would eliminate the need to identify these entities with
alternative, computer supported techniques that require further manual vetting and selection (see
section 5.2.2.1 for a description of how this is currently handled in AutoMap). This can be
achieved with a prediction model that performs boundary detection only, which is the first reason
for why I decided to construct a separate boundary prediction model. Next, in order to provide
nodes for the construction of multi-modal networks, any located entities need further to be
classified. This requires a second model for category prediction. In this process, however, nodes
still need to be located as well. In order to keep the locating of nodes for one-mode networks and
multi-mode networks in sync for the entity extraction method in general and for AutoMap in
particular, I decided to use the same boundary prediction model for both situations, and to
combine the boundary model with a class prediction model for building multi-mode networks

(for details on combining both models see section 3.4.4).

Given the selected training data and the meta-network model, category labeling for this project
can be based on four different category label models. These models are shown in Table 60. All
of these models adhere to the meta-network ontology, but differ in the amount of granularity that
they encoded in the entities (for details on the specific entity classes in each model see Table 59).
Theoretically, entity class model 4, which is the most complex or detailed one as it specifies the
meta-network category, specificity and subtype of each entity, can be reduced to each of the
other entity class models. However, due to the model complexity and thus the lower number of
training instances per category, the model might not perform as well as the simpler ones. This
would mean a loss of accuracy or practical usefulness for the end-user. The same argument can
be made for reducing entity class models 2 (category and specificity) and 3 (category and
subtype) to entity class model 1 (category only). My assumption here is that higher complexity
leads to lower accuracy. I am reporting on the outcome of testing this hypothesis in the results
section. The choice for a specific model has another aspect to it: for practical purposes, different
datasets and research questions might require different levels of detail such that we cannot
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anticipate which model would be most useful. Thus, each of the models could be suitable for text
coding in AutoMap, and would expand the current scope of capabilities of this tool. Thus, we
decided to generate all four options, and to report on their accuracy and robustness so that users

can pick the model that best serves their needs; potentially trading off accuracy for granularity.

Table 60: Entity class model definition

Category name Subtypel Subtype I Example
(meta-network (generic vs.  (attributes
classes) specific) per class)
Entity class model 1 X agent
Entity class model 2 X X agent, specific
Entity class model 3 X X agent, political
Entity class model 4 X X X agent, specific, political

Table 61 reports on the complexity of the token labeling approaches (separate versus joint
models for boundary and category) and the class label models in terms of the number of classes
and edges and run time. These tests were performed by learning with 80% of the data (4 holdout
folds) and making predictions on the remaining 20% of the data (1 holdout fold) for two
different, but not all five holdout folds, and averaging the results. A more complete description
of the evaluation routine is provided in section 3.4.1. Each of the tested holdout folds has about
43,000 labeled tokens. The runtime was measured with the baseline feature set that is explained
in section 3.3.2.2. The time needed for a single iteration of the CRF varies greatly depending on
the model complexity'’: for boundary detection, it is only one minute, while for joint prediction
of boundary and category with entity class model 4, it is 175 minutes. As reported in section
3.4.4 in more detail, 300 iterations is a rate at which results start to stabilize. This rate would
require over a month of runtime for the most complex model for the joint prediction option.
However, during the feature testing and selection stage, it is crucial to test the contribution of
each feature type to accuracy separately, to then modify or drop features accordingly, and to
repeat this process as often as necessary. The token level approach, especially one that breaks
boundary and category prediction into separate tasks, supports this need better than the
alternative approach. This fact is the second reason for why I chose the token level approach that
involves a model for boundary and category prediction each. However, I present extraction
results for both token labeling approaches with a low iteration rate in order to clarify on the

difference in accuracy.

' All experiments described in this chapter were run on a total of three different machines with 64 bit operating
systems. One machine had 256 GB of RAM and 24 processors, the other two machines had 512 GB of RAM and 64
processors.
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Table 61: Token labeling approaches: complexity per model*

Token Size and Runtime costs Boundary | Entity Entity Entity Entity
labeling Model class class class class
approach model1 | model2 | model3 | model 4
Separate Number of States 5 11 16 32 45
models for Number of Edges 25 121 256 1,024 2,025
boundary Runtime: Min. per iteration | 1 3.5 6 15 24

and class Runtime for 300 iterations | 5 hours 17.5 1.25 days | 3.1 days | 5 days
Joint model | Number of States n.a. 41 60 121 155

for Number of Edges 1,681 3,600 14,641 24,025
boundary Runtime: Min. per iteration 17 31 126 175

and class Runtime for 300 iterations 3.5days | 6.5days | 26.3 days | 36.5 days

*holdout folds 1,3, number of states and edges for sequence level from holdout fold 3
3.3.2.2 Baseline Features

The CRF project package contains various feature types. The following eight features are the
ones that I considered as being potentially relevant for establishing a baseline for this project:

1. Word Features: 1dentity per token.

2. Word Score Features: The log of the number of tokens with a certain label over the
number of all tokens with that label.

Edge Features: Information about transitions between states.

Start Features: Active when current state is a start state.

End Features: Activate when current state is an end state.

Unknown Feature: Active for token not observed during training.

N » AW

Known In Other State Feature: Active when a token was not observed in a particular
state, but in other states with more than a minimum threshold frequency.

8. Regex Features: A collection of multiple orthographic characteristics and regular
expressions per token.

All of these features are implemented on a per state basis, except for the first feature, which is
implemented on a per token level. Overall, these features represent common features for
information extraction tasks that are solved via machine learning methods, especially those that
use PGM with Markov properties (Bikel et al., 1999; Diesner & Carley, 2008b; Ratinov & Roth,
2009). This particularly applies to the edge features, the start and end features, and the unknown

feature.

3.3.2.3 Syntax Features

In order to identify the part of speech (POS) for each token, I use the POS tagger that I had
previously built for AutoMap (Diesner & Carley, 2008b). This tagger implements a HMM via
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the Vitberi algorithm, operates on the sentence level, and tags every sequence of characters that
is composed of any combination of letters, numbers, dashes, ampersands, dollar symbols, and
single hyphens. The latter mainly serves as genitive markers. Any token that does not match this
pattern is disregarded for tagging, including hyphens composed of two single hyphens. The
tagger achieves an accuracy of over 93% on predicting two different tag sets: the Penn Treebank
(PTB) tag set with 36 tags, and a set where the PTB tags are aggregated into more general tags,
such as all verb forms to “verb” (for the mapping from PTB to the aggregated tag set see the
Appendix in Diesner & Carley, 2008b). I refer to these tag sets as “full” and “aggregated”,

respectively, in the following.

Using the tagger for this project revealed two issues: First, the tagger predicts two categories that
do occur in the training data that the tagger was built based upon, i.e. PTB 3 (P. M. Mitchell,
Santorini, & Marcinkiewicz, 1993), but that are not defined for the full PTB tagset. Specifically,
the tag “JJSS” should rather be “JJS”, and “PRP$R” should be “PRPS$P”. This problem was
noted by others before (Pereira, 2004), but was not spotted when building the AutoMap POS
tagger. In order to find out if this glitch matters, I mapped the two undefined categories onto the
ones they truly should be and tested the impact on the entity extraction accuracy. The results as
shown in Table 62 suggest that this ex post factum fix hurts prediction accuracy, mainly by
lowering recall. This is because in the POS training data, the undefined tags were assigned to one
different term each, such that the resulting tagger would put these words into separate classes of
their own. In order to keep the entity extractor in sync with AutoMap, which uses the POS tagger
that contains the additional two categories, I decided to not to keep this change for further work

on this project. Ultimately, this issue can be solved by retraining the tagger.

Table 62: Impact of Part of Speech tag fix on accuracy*

Boundary Prediction | Class Prediction
original fixed original fixed
Precision 88.1% 88.4% | 85.7% 85.7%
Recall 85.7% 85.1% | 81.2% 81.0%
F 86.9% 86.7% | 83.4% 83.3%

*Iteration Rate 200, Class model 1

Second, when I screened the results of POS tagging of the tokens in BBN, I realized that most
tagging errors applied to numbers, especially percentages, which were wrongfully assigned to
classes other than the numbers class. However, in the BBN data, most of the tokens that involve
digits truly are numbers. Thus, I made another ex post factum change to the POS tagger: any
token that contains a digit is tagged as a number, i.e. as “CD” for the PTB full set, and as

“NUM” for the aggregated set. I kept this change for learning.
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Part of speech can be used as a feature for CRF as a) a per state feature, or b) a per state and per
word feature. Which of these two options and which of the two available POS tag sets achieve

higher accuracy rates is shown in the results section.

3.3.2.4 Lexical Features

Prior research has shown that the accuracy of entity extraction can be increased by adding
features that use external knowledge sources such as a lookup dictionary (Brown, Desouza,
Mercer, Pietra, & Lai, 1992; Bunescu et al., 2005; Cohen & Sarawagi, 2004; Ratinov & Roth,
2009). In fact, several of the potential trainings sets discussed in this chapter include gazetteer
data as additional files. Using dictionaries has also been shown to help with domain adaption, i.e.
adapting an extractor from the training data domain to other domains for conducting inference
(Ciaramita & Altun, 2005).

For this project, I use the thesaurus that I prepared as described in detail in section 5.2.2.1.1 as a
dictionary. This thesaurus contains 169,791 entries and is herein referred to as the “master
thesaurus”. The left hand side of the thesaurus contains potential text level entries, and the right
hand side has the related meta-network category. Of those entries, 59.6% are locations. However,
this category includes plenty of noisy entries, which mainly result from scraping the web without
careful cleaning the retrieved hits, and adding stemmed versions and foreign translations of
location to the thesaurus; some of which might be valid English words that would rather belong
into different meta-network categories. Both of these routines were performed by others before I
took over work on the master thesaurus. I fixed many of those issues as described in section
5.2.2.1.1. However, I neither removed the translations nor locations that were unknown to me,
but sounded like valid entries. Since runtime costs increase with the size of the thesaurus, but
many of these location entries are unlikely to occur in new text data, I built a reduced version of
the master thesaurus as follows: I took out all locations (169,791 entries) and replaced them with
just the names of all countries and capitals in the world (439 entries) as provided in
(Bureau of Intelligence and Research, 2011). The resulting thesaurus contains a total of 69,067
entries and is 59.3 % smaller than the original master thesaurus. I refer to this thesaurus as the

“reduced master thesaurus”.

Building upon prior work and extending it with new lexical features, I added the following

lexical features to the CRF implementation:

1. Is in Dictionary Feature: Activated if token matches complete content of left hand side
entry in thesaurus. Executed on the unigram level. Implemented per state. This feature is
motivated by (Ciaramita & Altun, 2005).
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2. Is in Dictionary per Word Feature: Same as above, but implemented per state and per
word.

3. Occurs in Dictionary Feature: More relaxed version of the “Is in Dictionary Feature”.
Activated if token matches any part of the content of left hand side entry in thesaurus.
Matches on token level among unigrams and within N-grams are valid. Implemented per
state. This feature is motivated by Cohen and Sarawagi (2004).

4. Position in Dictionary Feature: If token occurs in dictionary, this feature records the
position of a token in the left hand side entry of the thesaurus. Matches among unigrams
and within n-grams are valid. Positions available are begin, inside, end, and unique.
Example: if the token is “House” and the thesaurus contains “White House”, then “House
= end” gets recorded. Implemented per state. This feature is motivated by Cohen and
Sarawagi (2004).

5. Position in Dictionary per Word Feature: Same as above, but implemented per state and
per word.

6. Category Feature: If token occurs in left hand side entry of thesaurus, this feature records
the meta-network category of that token. Matches among unigrams and within n-grams
are valid. Implemented per state.

7. Category per Word Feature: Same as above, but implemented per state and word.

Cohen and Sarawagi (2004) have shown that using soft matches instead of exact matches of
tokens to dictionary entries further increases accuracy. However, the thesauri I use already
contain grammatical and lexical variations of words, including inflexions, conjugations,
morphemes, abbreviations, and synonyms. Further computing string similarities between text
tokens and the dictionary entries might enable the consideration of more token variants than
those already provided in the thesauri, but might also pick up on false positives. Moreover,
computing string distance metrics adds significant time costs to the learning process, especially
for dictionaries as large as the ones used here. For the given reasons, I only consider hard
matches between text tokens and dictionary entries, but compute a variety of dictionary features

that aim to capture different characteristics of the thesaurus entries.

3.3.3 Experimental Design

Table 63 gives an overview on the feature types or variables that need to be tested for their
individual and combined contribution to extraction quality. This table also specifies the
variables’ value ranges that I consider potentially useful for this project. Testing all combinations
of the values of the selected feature types would result in an 8*9*2*5*2*2*2*7 = 40,320 design.

Doing these experiments would be an overkill for this project because not all combinations are
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meaningful, and many of them can be ruled out once the best value for a specific variable has

been identified. Thus, I mainly conduct experiments to identify the best value per parameter, and

then incrementally combine them across parameters.

Table 63: Experimental design: variables and values

Variable Values

Baseline Word Word Edge Start End Un- Known Regex
Features | Score Features | Features | Features | known in other Features

Feature Feature state Fea.

Iteration 100 200 300 400 500 600 700 800 900

Rate

Token Separate models for boundary and class Joint model for boundary and class

Labeling

Class label | Boundary Model | Entity class Entity class Entity class Entity class

model model 1 model 2 model 3 model 4

Syntax PTB full PTB aggregated

Features POS per state POS per word

Lexical Full master thesaurus Reduced master thesaurus

Features Isin Isin Occurs in Position in | Position in | Category Category
Dictionary | Dictionary | Dictionary | Dictionary | Dictionary | Feature per Word
Feature per Word Feature Feature per Word Feature

Feature Feature
3.4 Results

3.4.1 Evaluation Method and Metrics

The accuracy rates presented in this section were obtained by performing k-fold cross
validations: I split up the BBN data into five chunks, also known as folds, of about equal size.
The folds are static, i.e. the same files stay in the same bucket for all experiments. For each run,
all folds expect for the holdout folds are used for training a prediction model. During evaluation,
the learned model is applied to the holdout fold, and each deviation from the original tag per
token in the holdout fold (ground truth) is recorded as an error. At the end of all runs per
experiments, where the number of runs equals k, the obtained accuracy rates are averaged. No
fold is ever used for training and evaluation in the same run. Ideally, one would iterate through
each of the five folds as being the holdout fold once per experimental condition (5-k cross
validation). This strategy is used for assessing the accuracy of the final models. Practically, the
experiments were constrained by the computing resources that were available to me and the time
costs for experiments. Therefore, I use a reduced approach for assessing the accuracy rates for
the values per variable: I perform two runs per experimental condition with two randomly

selected holdout sets, which were folds 1 and 3.
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3.4.2 Points of Comparison for Accuracy Rates

To the best of our knowledge, no other group has used BBN to predict the meta-matrix
categories specifically. Therefore, I have no precise external point of comparison for the
accuracy rates that will be obtained. However, results from the main Named Entity Extraction
initiatives are applicable points of comparison: in ConLL 2003, the Named Entity task involved
extracting the boundary and category labels for the classes of person, organization and location.
The top five systems achieved F-measures of 85% and more; with the best system having an F
value of 88.7% (CoNLL-2003, 2003; Florian et al., 2003). In MUC?7, the categories to predict
were more similar to BBN that those used in CoNLL 2003, and in fact, BBN data was part of
this task (for details see Table 54 and Table 55). The top two systems in MUC7 achieved F-
values of 91.6% and 94.4%, and four more systems had F-values of more than 85% (MUC?7,
2001). The goal with this project is not to beat these benchmark values, but to stay in the range
of state of the art performance values by using cutting edge methods and technologies, and also
leveraging on routines (e.g. POS tagging) and material (e.g. lookup dictionary) that I have
developed for AutoMap and CASOS. These routines and materials are an integral part of current

tools and research projects that we have developed and conducted, respectively.

Previously, we have applied CRF to BBN to train a model that predicts a class label per token
with an accuracy rate of 82.7% (Diesner & Carley, 2008a). This model differs from the ones
build in this project in the following ways: First, it only operates on the unigram level, i.e. multi-
word expressions are not retrieved as such. In other words, no boundary detection is performed.
Second, it uses entity class model 1, i.e. meta-network categories only without further attributes.
Third, it considers a smaller number of the categories available in BBN (details on the mapping
of BBN categories to meta-network categories are provided in Table 1 in (Diesner & Carley,
2008a). The goal with this project is to improve on this baseline in multiple ways: first, to extract
unigrams as well as N-grams, second, to extract entities that adhere to more complex entity class

models; third, to capture attributes per entities; and forth, to improve accuracy.

3.4.3 Baseline

As the results in Table 64 show, six of the eight baseline feature types contribute to accuracy.
The “known in other state” feature has no impact. The “word score” feature reduces accuracy by
a few percentage points. The ranking of how much the feature types impact accuracy is the same
for the three most useful feature types for both, boundary and category prediction. The “word
identity” feature is by far the strongest clue. Information about transitions is also greatly helpful.
From this point on, the features that are not contributing to accuracy are excluded from the

feature set such that the baseline consists of six feature types.
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Table 64: Accuracy loss due to elimination of each single baseline feature*

Boundary All Baseline | Word Edge Regex Start End Un- Other Word
Features known State Score
Precision 84.5% -28.3% -19.9% -2.9% -0.3% 0.0% -0.1% 0.0% 3.9%
Recall 83.7% -38.5% -24.5% -6.0% -1.6% -2.0% -2.7% 0.0% 3.2%
F 84.1% -34.0% -22.3% -4.5% -1.0% -1.0% -1.4% 0.0% 3.5%
Rank (based 1 2 3 5 6 4 | nocon- | nocon-
on F, 1=best) tributor | tributor
Class All Baseline | Word Edge Regex Start End Un- Other Word
Features known State Score
Precision 84.8% -31.1% -10.5% -3.6% -0.1% -1.7% -1.0% 0.0% 2.6%
Recall 82.3% -46.9% -11.9% -2.3% -0.7% -2.2% 0.1% 0.0% 1.9%
F 83.5% -41.3% -11.3% -2.9% -0.4% -2.0% -0.4% 0.0% 2.2%
Rank (based 1 2 3 5 4 6 | nocon- | nocon-
on F, 1=best) tributor | tributor

*Iteration rate = 300, class model 2, holdout folds: 1,3, Class

3.4.4 Iteration Rate and Input Decomposition

Increasing the number of iterations leads to substantial gains in accuracy up to an iteration rate of
about 500, where gains start to become minimal, as shown in Table 64. In Table 64, the last
horizontal row in each section shoes the change rate in F as the iteration rate is increased by 100.
Accuracy starts to drop from about 700 iterations on. Precision is higher than recall and benefits
less form increasing the iteration rate than recall does, though this effect decrease as the iteration

rate is increased.

Figure 10 illustrates this effect for a particular holdout set: the number of tokens retrieved and
tokens correctly classified increases approximately by the same amount per iteration rate. For
practical purposes, however, recall is more important than precision as retrieved yet misclassified
entities (false positives) might be suitable fits for alternative categories. Overall, the results
support the strategy of using an iteration rate of 300 for further testing of the impact of features

since the results are fairly robust at this point.
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Table 65: Impact of iteration rate on accuracy*

Iteration Rate
Boundary 100 200 300 400 500 600 700 800 900
Precision 82.8% 87.3% 88.4% 89.0% 89.1% 89.3% 89.4% 89.6% 89.5%
Recall 77.6% 853% 86.9% 88.1% 889% 89.3% 89.6% 89.6% 89.9%
F 80.1% 86.3% 87.6% 885% 89.0% 89.3% 89.5% 89.6% 89.7%
Change Rate in F 6.2% 1.3% 0.9% 0.5% 0.3% 0.3% 0.0% 0.1%
Class (Model 2)
Precision 82.4% 86.0% 87.9% 88.4% 88.4% 88.6% 88.5% 88.4% 88.2%
Recall 70.0% 80.6% 82.9% 84.3% 85.1% 85.6% 86.1% 86.3% 86.6%
F 757% 83.2% 853% 86.3% 86.7% 87.1% 87.2% 87.3% 87.4%
Change Rate in F 7.5% 2.2% 0.9% 0.4% 0.4% 0.1% 0.1% 0.1%
Boundary & Class | Rule-based combination of separately learned models, boundary dominates class
Precision 76.4% 82.7% 84.4% 85.1% 853% 85.6% 85.5% 85.5% 85.3%
Recall 63.6% 75.8% 78.5% 80.2% 81.3% 81.9% 82.4% 82.3% 82.8%
F 69.4% 79.1% 81.3% 82.6% 83.2% 83.7% 83.9% 83.9% 84.0%
Change Rate in F 9.7% 2.3% 1.3% 0.6% 0.5% 0.2% 0.0% 0.2%
Boundary & Class | Rule-based combination of separately learned models, class dominates boundary
Precision 753% 79.3% 82.0% 82.7% 82.7% 83.0% 83.0% 83.0% 82.7%
Recall 64.0% 743% 77.4% 789% 79.6% 80.2% 80.7% 81.0% 81.2%
F 69.2% 76.7% 79.6% 80.8% 81.2% 81.6% 81.8% 82.0% 81.9%
Change Rate in F 7.5% 2.9% 1.1% 0.4% 0.5% 0.2% 0.1% 0.0%
Boundary & Class | Learned joint model
Precision 783% 84.5% 86.7% 87.8% 88.1% 882% 88.0% 88.1% 88.2%
Recall 67.1% 79.2% 82.6% 83.4% 84.9% 84.9% 85.5% 85.7% 85.9%
F 723% 81.8% 84.6% 85.6% 86.5% 86.5% 86.7% 86.9% 87.0%
Change Rate in F 9.5% 2.8% 1.0% 0.9% 0.0% 0.2% 0.2%  -0.6%

* Holdout folds 1,3

With respect to the results for input decomposition, the results in Table 65 suggest that when
separate models are learned for boundary and category prediction, boundary prediction is over
2% more accurate than category prediction. This seems intuitive since the boundary model
contains less than half the number of labels of the entity class model (in this case Nr. 2) does.
Learning a joint model for boundary and category prediction (last horizontal section in Table 65)
is slightly less accurate than learning separate models for both types of prediction prior to
consolidating them. This difference becomes smaller as the iteration rate increases; at 500
iterations it is 2.5% and 0.2% in comparison to boundary prediction and class prediction,
respectively. However, when separate models are learned for boundary and category prediction,
these models need to be merged in the end, and accuracy assessment needs to be performed
again on the joint models. My results show that either approach of merging as explained right
below leads to accuracy rates that are about 3% and more less accurate than those obtained with

the joint model. However, I argue that learning boundaries and category labels with separate

120




models leads to more robust final models because there is much more training data available for
each class. Also, learning the joint model took four times as long (10.8 days at 500 iterations)
than the separate models did (2.1 days). Since we aim for high generalizability of the models, I

chose to stick with this more robust solution.

Figure 10: Diminishing returns: Impact of iteration rate on accuracy*
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* Class model 2, holdout fold 1

The decision to work with separately learned models for boundary and category prediction
implies that once both types of models have been generated, they need to be combined before
inference can happen. This combination needs to be done such that we obtain a) both, a boundary
label and a class label, for each token and b) consistent labels, especially for multi-word units.

Table 66 provides an overview on the discrepancies that that can occur.

I developed and implemented a rule based approach for combining these models and resolving
any discrepancies between them by considering all logically possible mismatches and suggesting
a solution for each of them, and using a data driven approach for checking the learned baseline
models for the characteristics of these discrepancies and testing the impact of any suggested

solution. The outcome of this process, i.e. the resulting rule set, is shown in Table 66. The
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developed rule set is based on two different policies for handling mismatches between boundary
and class labels: 1) boundary prediction dominates class prediction, and 2) class prediction
dominates boundary prediction:

Boundary prediction dominates category prediction: 1If there is a class label but no boundary
label with the value of begin, inside or end, the token is not considered as an entity. If the class
labels in a multi-word unit according to boundary prediction are not coherent, I assign the most
frequent label (other than none) to all tokens in that expression. In the case of a tie, the first
category is picked. For cases in which boundary prediction finds a unigram but no class label is
suggested, I tested two strategies: not considering the token as a relevant entity al together, or
assigning the token to the most frequent class label. My error analysis of the outcome suggested
that the errors fall with almost equal frequency into three categories: 1) being a token of the type
of the most frequent type of entity class, 2) being a token of some other type of entity class, or 3)
being a false positive according to boundary prediction. Case 2 occurred slightly more frequently
than case one. Therefore, I chose to assign no class label to unigrams that lack a class label and

converting these entities to the “outside” boundary condition.

Category prediction dominates boundary prediction: If a token has a class label other than none,
but the token right before and after do not, and the boundary label for this token is outside or part
of a multi-word unit, the boundary label is set to “unigram”. If the sequencing of boundary labels
does not coincide with a multi-word unit according to class label prediction, the boundary labels
are adjusted accordingly. Note that with this policy, mismatching unigrams are preserved, while
with the first policy, they are lost, which gives the second policy a potential advantage over the

first one.

Testing both policies empirically suggests that letting the using the policy where the boundary
label dominates the category label returns slightly more accurate results (1% and less). This
finding seems intuitive because boundary prediction is overall more accurate than class label
prediction. Cases in which the category dominating policy preserved unigrams led to significant
ratios of truly false hits, which diminished the potential gains from this strategy.

The rule-based procedure described in this section was only used for accuracy assessment
throughout the results section of this chapter. For integrating the entity extractor into an end-user
software product, a more permissive approach was chosen in order to allow for higher recall.

This approach is explained in section 4.
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Table 66: Rules for model combination depending on combination policy

Policy Case | Learned Labels Combination Result
Boundary Boundary Class Boundary Class
dominates | 1 none positive token (i.e. none none
Category category not none)
2 unigram none none none
3 N-gram all tokens none none none
N-gram different category N-gram as majority class label
labels, at least one learned other than none, ties
positive token broken
alphabetically
Category 4 unigram none none none
dominates | 5 none, begin, inside, | positive token unigram positive token as
Boundary end learned
6 inconsistent with positive N-gram proper N- positive N-gram as
class label sequence, gram learned
incl. one to all
boundary labels
equal none

These and many other results for the impact of individual feature type values on accuracy were
obtained by averaging the outcomes of cross-validations with holdout sets 1 and 3. In order to
verify that these two folds are not outliers, which would impact the drawn conclusions and
subsequent modeling decisions, I present a snapshot of sample sizes, number of features, and
accuracy rates for all holdout sets for a constant iteration rate in Table 68. These numbers show
that basically all five folds are similar in size, and lead to similar accuracy rates; with a variation
in F of about 0.4% for boundary prediction and 1.6% for class prediction. Also note that the
number of features is between 50,000 and 51,250 for class prediction, and between 53,500 and
54,500 for boundary prediction. This means that with only six baseline feature types, a large
number of features is generated; with most of them being word features. This also means that for
boundary prediction, which involves 5 states and 25 edges, more features are generated than for
class prediction, which has 16 states and 256 edges for this entity class model. The reason for
this counterintuitive effect is that with fewer classes, the learning data is less sparse such that

more useful features might be found.
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Table 67: Size and accuracy per holdout set at constant iteration rate

Measures Holdout Set: 1 2 3 4 5
Boundary
Number of Entity Tokens 43380 43467 42937 43078 43652
Number of Features 54122 54204 53607 53737 54455
Precision 86.9% 87.3% 87.7% 87.8% 87.4%
Recall 85.4% 85.6% 85.2% 85.4% 85.3%
F 86.2% 86.4% 86.4% 86.6% 86.3%
Class (Model 2)
Number of Entity Tokens 43380 43467 42937 43078 43652
Number of Features 50824 50944 50355 50476 51252
Precision 84.4% 86.7% 87.6% 87.6% 86.8%
Recall 80.5% 79.9% 80.7% 80.2% 80.2%
F 82.4% 83.1% 84.0% 83.7% 83.4%

*Iteration rate = 200, holdout folds: 1,3

3.4.5 Syntax Features and Entity Class Models

In general, most features can be implemented on a a) per state or b) per word and state basis.
Table 68 shows a comparison of these two options for the part of speech tags feature type. The
per state approach leads to a slightly higher accuracy (less than 1%) with less than half the
number of features generated, i.e. the per state option is more efficient and more robust.

Therefore, this option is used for further work.

Table 68: Impact of Part of Speech tag feature implementation approach on accuracy*

POS Feature Boundary Class
Implementation Iteration Rate 200 400 200 400
Per State Precision 88.1% 89.3% | 85.7% 88.4%
Recall 85.7% 88.4% | 82.1% 84.8%
F 86.9% 88.9% | 83.8% 86.6%
Per Word and State | Precision 87.7% 88.8% | 86.5% 88.4%
Recall 85.1% 88.1% | 80.0% 84.5%
F 86.4% 88.5% | 83.1% 86.4%

* holdout folds: 1,3, Class model 2

The results for the impact of using part of speech as a feature type (Table 69) suggest that both,
the aggregated as well as the full tag set, have a small positive impact on accuracy rates. The full
tag set leads to higher gains in accuracy over the baseline than the aggregated set does for
boundary detection and all entity class models except for model 4, where the results for both tag

set tie.
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Table 69: Impact of Part of Speech tag features and entity class models (models sorted by accuracy) on accuracy*

Assessment Metrics BL POS Agg POS Full
Boundary

Precision 88.4% 89.1% 89.1%

Recall 86.9% 86.5% 87.5%

F 87.6% 87.8% 88.3%

Change in F from Baseline (BL) to POS 0.2% 0.7%

Entity class model 2 (meta network category + gen/spec)

Precision 87.9% 86.9% 87.0%
Recall 82.9% 83.7% 84.3%
F 85.3% 85.3% 85.6%
Change in F from BL to POS -0.1% 0.2%
Diff. in F over next less accurate class model 1.3% 0.6%

Entity class model 1 (meta network category)

Precision 85.5% 86.5% 86.5%
Recall 82.6% 82.8% 83.5%
F 84.0% 84.6% 85.0%
Change in F from BL to POS 0.6% 1.0%
Diff. in F over next less accurate class model 1.0% 1.4%

Entity class model 4 (meta nw. cat. + gen/spec + subtype)

Precision 85.3% 85.5% 85.1%
Recall 80.9% 81.9% 82.1%
F 83.0% 83.6% 83.6%
Change in F from BL to POS 0.6% 0.6%
Diff. in F over next less accurate class model 0.9% 0.5%

Entity class model 3 (meta network category)

Precision 83.5% 84.4% 84.6%
Recall 80.9% 81.2% 81.5%
F 82.2% 82.8% 83.1%
Change in F from BL to POS 0.6% 0.9%

* Tteration rate = 300, holdout folds: 1,3

With respect to entity labeling according to the four different entity class models as defined in
Table 60, the results in Table 69 indicate that accuracy rates do not necessarily drop as the
complexity of the models, i.e. the number of states and edges, increases. In fact, the second
smallest model (entity class model 2, category and specificity), performs best. Also, the most
complex model (model 4, category, specificity, subtype) outperforms model 3 (category,
subtype). Moreover, the accuracy differences between the entity class models are fairly small
(2.5% for the widest gap after POS tagging), even though the model complexities are very
different (the number of classes differ by a factor of about 4 between the largest and the smallest
entity class model). Based on these results I reject my hypothesis that greater model complexity

leads to lower accuracy rates.
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3.4.6 Lexical Features

Adding lexical or dictionary features boost accuracy by up to 4% (Table 70). However, only four
of the seven dictionary features defined and tested for this project have a robust, positive impact
on accuracy across dictionaries (full versus reduced master thesaurus) and prediction models
(boundary versus category). These are the "Is in Dictionary per Word Feature (by far the
strongest feature), Category Feature, Category per Word Feature, and Position in Dictionary per
Word Feature. The Position in Dictionary Feature returns the exact same results as the Is in
Dictionary Feature. The same is true for the Position in Dictionary Feature per Word and the
Category Feature. Therefore, both Position in Dictionary features are excluded from here on.

For most of the tested conditions, using the full master thesaurus as a dictionary leads to slightly
better results than the using the reduced master thesaurus (0.4% on average for the selected
dictionary features). However, the full master contains more than twice as many entries as the
reduced one does, but hardly leads to more than twice as much accuracy gain. Therefore, I chose
to use the reduced master thesaurus as well as the Is in Dictionary per Word Feature, Category

Feature, and the Category per Word Feature for further work.

Table 70: Impact of dictionaries and dictionary features on accuracy

Features Baseline Isin Is in Dict. Category Category Occurs in
Dictionary per Word Feature per Word Dictionary
Boundary, Reduced Master Thesaurus
Precision 88.4% 88.6% 92.1% 88.5% 88.5% 88.5%
Recall 86.9% 87.2% 90.6% 87.5% 87.3% 86.6%
F 87.6% 87.9% 91.3% 88.0% 87.9% 87.5%
Difference to BL** 0.31% 3.71% 0.42% 0.32% -0.10%
Boundary, Full Master Thesaurus
Precision 88.4% 89.0% 92.1% 88.9% 88.6% 88.5%
Recall 86.9% 86.7% 91.1% 87.9% 87.7% 87.0%
F 87.6% 87.8% 91.6% 88.4% 88.2% 87.7%
Difference to BL** 0.22% 3.98% 0.80% 0.56% 0.12%
Class (Model 2), Reduced Master Thesaurus
Precision 87.9% 87.3% 91.1% 88.0% 87.8% 88.0%
Recall 82.9% 82.6% 86.3% 84.0% 83.4% 82.5%
F 85.3% 84.9% 88.6% 85.9% 85.5% 85.1%
Difference to BL** -0.48% 3.27% 0.56% 0.18% -0.21%
Class (Model 2), Full Master Thesaurus
Precision 87.9% 87.6% 91.4% 87.7% 87.8% 87.8%
Recall 82.9% 82.7% 87.3% 84.0% 84.1% 82.5%
F 85.3% 85.1% 89.3% 85.8% 85.9% 85.1%
Difference to BL** -0.27% 3.92% 0.49% 0.54% -0.28%

* Tteration rate = 300, holdout folds: 1,3
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** Bold if gain over BL for both holdout folds

3.4.7 Final Feature Set

Based on the presented results from the tests of the impact of iteration rate, input decomposition,

syntax features and lexical features, the feature set shown in Table 71 was used for constructing

the model to be integrated into AutoMap.

Table 71: Final feature set for prediction models (active feature types in black, feature types not chosen in gray)

Variable Values
Baseline Word Edge Start End Un- Regex
Features Features | Features | Features | known Features
Feature

Iteration 500

Rate

Decom- Token Level

position

Class label | Boundary Model | Entity class Entity class Entity class Entity class

model model 1 model 2 model 3 model 4

Syntax PTB full

Features POS per state

Lexical Reduced master thesaurus

Features Is in Category Category
Dictionary Feature per Word
per Word Feature
Feature

For these experiments, a 5-fold cross-validation was conducted. The results in Table 72 show the
accuracy rates for the entity class models with the final feature type configuration. Overall, the
performance of the combined boundary and class label models is very similar across the different
class label models; with 1.4% difference at most. This indicates that large differences in model
complexity have little impact on accuracy. The results also confirm the previously identified
ranking of models based on accuracy, with the least complex model being outperformed by the
next complex model, and the most complex model being more accurate than the next less
complex one. Moreover, the obtained results (accuracy between 87.5% and 88.8% for the
combined models) are comparable to alternative top performing systems, where accuracy rates
typically range in the 80ies and lower 90ies (see for example Florian et al., 2003; MUC7, 2001).
Furthermore, the achieved rates are 6% to 7% higher than the ones achieved with the previous
entity extractor in AutoMap, which used a less complex category model (Diesner & Carley,
2008a).
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Table 72: Final accuracy results per model

Boundary Entity class Entity class Entity class Entity class
Model model 1 model 2 model 3 model 4
(meta-network | (meta-nw cat. (meta-nw cat. (meta-nw cat.
category) + specificity) + subtype) + specificity
+ subtype)
Precision 93.2% 91.4% 91.9% 90.4% 90.8%
Recall 92.5% 89.7% 90.0% 88.6% 88.9%
F 92.9% 90.6% 90.9% 89.5% 89.8%
Bound. & Class | Entity class Entity class Entity class Entity class
combined, model 1 model 2 model 3 model 4
rule-based
Precision | n.a. 89.7% 90.0% 88.6% 88.9%
Recall 87.7% 87.7% 86.4% 86.5%
F 88.7% 88.8% 87.5% 87.7%

3.4.8 Error Analysis

The remainder of this results section provides error analyses for the boundary model and each
entity class model''. I decided to conduct these error analyses on the level of individual models,
not the level of merged boundary and category models, in order to enable the scrutinizing of each
component individually before they are fused. Also, since the combination rules used for
accuracy assessment (rigorous) are not same as the ones for integrating the models into end-user
software (more forgiving about false positives, details in 4), this component-wise error analysis
is more insightful. For error analysis of the boundary model, 1 kept the outside tag in the
analysis, which is a rigorous and comprehensive approach, while for the category models, I
exclude the “none” category tag. The reason for this decision is that the “none” category
accounts for 76.6% of all tokens in each model, which diminishes the ratio of the relevant entity
classes in the ground truth, but this ratio is an important piece of information in the error
analysis. However, for the previously presented assessments, the outside and none labels were
treated the same as any other label since they can (and here actually do) subsume false negatives
from other categories, and can produce false positives'> and false negatives'’ themselves, which

impacts the overall accuracy rate.

" For the boundary model and entity class models 1 and 2 I show the confusion matrices of errors in this section, for
entity class models 3 and 4 those matrices are placed in the Appendix as they are very space consuming. The tables
with the statistical results for the error analysis per model all share the same structure and are shown in this section.
The tables and figures contain a “na” for logically not applicable attributes.

2 False positives are entities that were detected as members of a particular class, but truly are members of a different

class. Those entities are false alarms (negative interpretation) or additional, weaker suggestions that sometimes save
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Several trends can be observed across all models: Differences between accuracy per class within
models are much greater than differences in overall accuracy rates across models (Table 72).
Within models, high accuracy is not a matter of class size (measured as the ratio of tokens in a
class over the number of tokens in the corpus). This means that small as well as large classes can
achieve high accuracies. Here, high means around and above the overall accuracy for a model as
shown in Table 72, and low means rates below of that.). However, the inverse of this effect is not
true: low accuracy rates are only obtained for small classes (excluding the “none” label for
categories). In fact, for all accuracy rates below 84.5%, the size of the impacted classes is less
than 2% each, and the total size of the impacted classes is less than 10% of the corpus (again,

excluding the “none” label).

Table 73: Error analysis, boundary model (absolute values)

Prediction

Ground Truth unigram unigram unigram unigram unigram | Sum

unigram 99,384 852 203 1,091 8,802 110,332
begin 1,049 56,964 1,461 56 2,011 61,541
inside 234 1,816 36,412 1,111 2,325 41,898
end 1,218 25 1,127 58,003 1,168 61,541
outside 5,782 1,684 1,840 1,080 890,182 900,568
Sum 107,667 61,341 41,043 61,341 904,488 | 1,175,880

Table 74: Error analysis, boundary model (ordered by natural sequence of an expression)

Boundary | Accuracy False False Ratio of Tokens in Correct False False
Label negatives positives size ground tokens negatives positives
truth

unigram 90.1% 9.9% 7.7% 40.1% 110,332 99,384 10,948 8,283
begin 92.6% 7.4% 7.1% 22.4% 61,541 56,964 4,577 4,377
inside 86.9% 13.1% 11.3% 15.2% 41,898 36,412 5,486 4,631
end 94.3% 5.7% 5.4% 22.4% 61,541 58,003 3,538 3,338
outside 98.8% 1.2% 1.6% 76.6% 900,568 890,182 10,386 14,306

The more detailed the entity class models are, the larger is the number of low-performing
classes. These results support my strategy of consolidating small classes prior to learning. A
similar trend can be observed for the ratio of false positives and false negatives: for most of the
highly accurate classes, the ratio of false positives is higher than the ratio of false negatives,
while this trend flips over for low performing classes. For practical purposes, both error types are

entities from being lost to the “none” class in case they are assigned to some alternative class (positive
interpretation).
1 False negatives are entities that were not detected as members of a particular class, but actually are members of

that class. Those entities are missed entries for a class.
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most detrimental when false negatives are assigned to the “outside” or “none” class. This is

because for the integrating the models into a software available to end users as described in

section 4, all other types of error are preserved and explicitly marked. The results do not suggest

any apparent relationship between class accuracy rates and the amount of false negatives that the

“outside” or “none” label account for per class, and the ratio of these two labels among the false

negatives can be anywhere between very small and very large.

Table 75: Error analysis, entity class model 1 (absolute values)

Prediction
g, S
2 2 5 g . 8
5 £ § ¥ 8% ¢ § § 8% ¢ £
Ground Truth ¥ ® = £ S 2 5 o g B - a
agent 45,346 10 21 103 367 2,541 988 48 80 24 49,528
attribute 7 29,847 12 7 1,581 27 208 396 32,085
event 26 533 45 13 69 21 1 4 39 751
knowledge 309 25 51,721 111 629 274 20 46 54 3,194
location 665 37 2 89 20,269 1,600 923 10 58 23 23,676
none 990 1,557 24 483 717 889,025 3,217 34 1,379 22 3,120 900,568
organization | 2,417 76 3 29 1,205 5,298 71,623 50 150 54 81,172
org-att 116 2 14 43 79 82 4,058 12 4 4,410
resource 286 301 6 128 87 2,678 310 10 34,268 72 38,146
task 10 66 5 17 98
time 23 614 5 28 5 2178 17 9 18 1 39,334 42,252
Sum 50,195 32,469 599 2,919 22,824 905,744 77,487 4,240 36,223 40 43,140| 1,175,880
Table 76: Error analysis, entity class model 1 (sorted by decreasing accuracy)
Entity Class Accu- False False Sizeof  Tokens Accu- False False
racy Nega- Posi- cat.in in cat. rate Nega- Posi-
tives tives ground pre- tives tives
truth dictions
time 93.1% 6.9% 8.8% 153% 42,252 39,354 2,898 3,786
attribute 93.0% 7.0% 8.1% 11.7% 32,085 29,847 2,238 2,622
org-att 92.0% 8.0% 4.3% 1.6% 4,410 4,058 352 182
agent 91.6% 8.4% 9.7% 18.0% 49,528 45,346 4,182 4,849
resource 89.8% 10.2% 5.4% 13.9% 38,146 34,268 3,878 1,955
organization 88.2% 11.8% 7.6% 29.5% 81,172 71,623 9,549 5,864
location 85.6% 14.4% 11.2% 8.6% 23,676 20,269 3,407 2,555
event 71.0% 29.0% 11.0% 0.3% 751 533 218 66
knowledge 53.9% 46.1% 41.0% 1.2% 3,194 1,721 1,473 1,198
task 17.3% 82.7% 57.5% 0.0% 98 17 81 23
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Across the various entity class models, we generally obtain very high accuracy rates (in the

90ies) for the categories agent, attribute and time, high rates (upper 80ies) for organizations,

locations and resources, medium rates (70ies) for events, and low rates (50ies and less) for

knowledge and tasks. Regardless of the model, all variations of task and knowledge are

consistently ranking lowest. For locations, specific instances are predicted with higher accuracy

than generic ones, and vice versa for resources.

Table 77: Error analysis, entity class model 2 (absolute values)

Predictions
r
a ; . g
. X @ c @ ; S 2
5 8 £33 3 5 ¢ 5 8 £ ¢ EE. o
E £ 2% % %R % g ® 2 8 3 3 3L 9
b= bo (1] oo 7]
Ground Truth S ® £ 3 £ 8 =8 2 5 5 &5 o ¢ ¢ 8 £ |sum
agentgen. 25,221 56 6 5 28 17 33 2,151 349 9% 14 5 20 4 8 28,013
agent spec. 19 19,646 5 12 137 1 482 441 6 610 15 18 101 22 21,515
attribute na 1 32980 1 13 3 7 1,626 21 101 17 401 32,085
event spec. 19 1540 45 19 67 1 23 3 1 1 31 751
knowledge spec. 23 183 37 81,750 138 648 2 295 16 21 28 45 3,194
location gen. 22 2 2 3,256 15 981 117 15 14 5 4,429
location spec. 12 388 0 2 93 18 17,456 579 4 583 15 16 22 19 19,247
none 636 207 1,486 27 571 426 343 889,749 1,021 1,668 34 204 1,041 50 30 3,075 900,568
org. gen. 462 3 14 13 93 6 1,259 17,677 70 2 10 4 3 19,616
org. spec. 104 1,214 63 7 392 1 1,111 4,014 75 54,313 59 1 40 117 45 61,556
org-att spec. 49 18 8 21 55 105 1 74 4,063 5 7 4 4,410
resource gen. 1 1 1 3 2 2 345 27 5 1,002 2 2 4 1,397
resource na 20 27 215 21 27 21 2,021 10 38 16 32,996 32 39 35,483
resource spec. 14 104 97 4 139 85 170 3 226 4 1 29 356 34 1,266
task na 1 1 2 1 61 3 29 98
time na 5 11 564 14 27 1 6 2,101 1 14 9 12 8 39,479 42,252
Sum 26,590 21,883 32,427 620 3,257 3,845 19,780 906,318 19,295 58,054 4,250 1,223 34,320 745 59 43,214 1,175,880
Table 78: Error analysis, entity class model 2 (sorted by decreasing accuracy)
Entity Class Accu- False False Size of Tokens Accu- False False
racy Nega- Posi- cat. in in cat. rate Nega- Posi-
tives tives ground pre- tives tives
truth dictions
time na 93.4% 6.6% 8.6% 15.3% 42,252 39,479 2,773 3,735
attribute na 93.2% 6.8% 7.8% 11.7% 32,085 29,890 2,195 2,537
resource na 93.0% 7.0% 3.9% 12.9% 35,483 32,996 2,487 1,324
org-att specific 92.1% 7.9% 4.4% 1.6% 4,410 4,063 347 187
agent specific 91.3% 8.7% 10.2% 7.8% 21,515 19,646 1,869 2,237
location specific 90.7% 9.3% 11.7% 7.0% 19,247 17,456 1,791 2,324
org. generic 90.1% 9.9% 8.4% 7.1% 19,616 17,677 1,939 1,618
agent generic 90.0% 10.0% 5.1% 10.2% 28,013 25,221 2,792 1,369
organization 88.2% 11.8% 6.4% 22.4% 61,556 54,313 7,243 3,741
location generic 73.5% 26.5% 15.3% 1.6% 4,429 3,256 1,173 589
event specific 71.9% 28.1% 12.9% 0.3% 751 540 211 80
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resource generic 71.7% 28.3% 18.1% 0.5% 1,397 1,002 395 221
knowledge 54.8% 45.2% 46.3% 1.2% 3,194 1,750 1,444 1,507
task na 29.6% 70.4% 50.8% 0.0% 98 29 69 30
resource specific 28.1% 71.9% 52.2% 0.5% 1,266 356 910 389

Table 79: Error analysis, entity class model 3 (sorted by decreasing accuracy)

Entity Class Accu- False False Size of Tokens Accu- False False

racy Nega- Posi- cat. in in cat. rate Nega- Posi-

tives tives ground pre- tives tives

truth dictions

resource money 97.5% 2.5% 2.1% 11.5% 31,686 30,905 781 647
location country 94.4% 5.6% 4.9% 2.4% 6,701 6,329 372 326
attribute numerical 93.6% 6.4% 8.2% 11.3% 30,991 28,995 1,996 2,598
time na 93.3% 6.7% 8.7% 153% 42,252 39,439 2,813 3,760
org-att nationality 93.3% 6.7% 4.4% 1.3% 3,538 3,300 238 151
agent na 91.7% 8.3% 9.9% 18.0% 49,528 45,418 4,110 4,987
event war 90.2% 9.8% 2.7% 0.0% 122 110 12 3
organization gov. 88.7% 11.3% 8.5% 4.0% 10,925 9,691 1,234 906
org-att political 88.1% 11.9% 9.5% 0.2% 682 601 81 63
org. corporate 86.3% 13.7% 9.5% 23.0% 63,382 54,724 8,658 5,742
location city 84.5% 15.5% 17.9% 2.9% 7,889 6,667 1,222 1,450
location state-prov 80.4% 19.6% 9.7% 1.3% 3,530 2,838 692 304
organization edu 77.9% 22.1% 13.6% 0.5% 1,246 971 275 153
knowledge law 76.6% 23.4% 11.4% 0.3% 907 695 212 89
location other 70.8% 29.2% 26.2% 0.8% 2,083 1,475 608 523
attribute age 69.8% 30.2% 21.6% 0.4% 1,094 764 330 210
event na 67.7% 32.3% 16.5% 0.2% 629 426 203 84
organization other 65.9% 34.1% 21.0% 1.7% 4,669 3,077 1,592 819
organization political 63.2% 36.8% 9.7% 0.3% 798 504 294 54
location facility 62.8% 37.2% 21.8% 1.3% 3,473 2,182 1,291 610
resource substance 60.4% 39.6% 14.2% 1.0% 2,808 1,697 1,111 281
org-att religious 59.6% 40.4% 21.1% 0.0% 94 56 38 15
resource disease 51.3% 48.7% 17.4% 0.1% 378 194 184 41
organization religious 50.7% 49.3% 34.2% 0.1% 152 77 75 40
resource product 50.1% 49.9% 23.6% 1.0% 2,663 1,334 1,329 412
knowledge language 50.0% 50.0% 8.5% 0.0% 86 43 43 4
resource plant 48.5% 51.5% 12.7% 0.1% 198 96 102 14
knowledge art 47.3% 52.7% 58.6% 0.8% 2,201 1,040 1,161 1,473
resource animal 40.7% 59.3% 24.7% 0.2% 413 168 245 55
org-att other 34.4% 65.6% 35.3% 0.0% 96 33 63 18
task game 24.5% 75.5% 52.0% 0.0% 98 24 74 26
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Table 80: Error analysis, entity class model 4 (sorted by decreasing accuracy)

Entity Class Accu- False False Size of  Tokens Accu- False False

racy Nega- Posi- cat. in in cat. rate Nega- Posi-

tives tives ground pre- tives tives

truth dictions

resource, na, money 97.7% 2.3% 2.1% 11.5% 31686 30958 728 662
loc., spec., country 97.0% 3.0% 4.1% 2.1% 5708 5538 170 234
org-att, spec., nat. 93.8% 6.2% 2.9% 1.3% 3538 3319 219 100
attrib., na, numerical 93.4% 6.6% 8.2% 11.3% 30991 28960 2031 2580
time, na, na 93.4% 6.6% 8.7% 15.3% 42252 39464 2788 3772
event, spec., war 92.6% 7.4% 2.6% 0.0% 122 113 9 3
agent, spec., na 92.3% 7.7% 11.8% 7.8% 21515 19849 1666 2649
org., spec., gov. 90.8% 9.2% 7.3% 3.1% 8404 7629 775 597
org-att, spec., pol. 90.5% 9.5% 6.5% 0.2% 682 617 65 43
agent, gen., na 90.2% 9.8% 5.8% 10.2% 28013 25263 2750 1562
org., gen., corporate 88.7% 11.3% 11.1% 5.6% 15305 13581 1724 1691
loc., spec., city 88.1% 11.9% 18.0% 2.7% 7512 6615 897 1452
org., spec., corporate 87.2% 12.8% 8.0% 17.5% 48077 41938 6139 3651
loc., gen., country 87.1% 12.9% 3.5% 0.4% 993 865 128 31
loc., spec., state-prov. 85.4% 14.6% 8.1% 1.1% 3133 2675 458 237
org., gen., gov. 81.4% 18.6% 10.4% 0.9% 2521 2051 470 237
org., spec., edu. 77.8% 22.2% 19.2% 0.4% 1001 779 222 185
loc., gen., city 77.7% 22.3% 14.3% 0.1% 377 293 84 49
knowledge, spec., law 77.5% 22.5% 13.8% 0.3% 907 703 204 113
org., gen., edu. 72.7% 27.3% 8.7% 0.1% 245 178 67 17
loc., spec., other 71.8% 28.2% 23.7% 0.7% 2014 1447 567 450
res., gen., product 71.7% 28.3% 17.5% 0.5% 1397 1001 396 213
event, spec., na 69.0% 31.0% 14.4% 0.2% 629 434 195 73
loc., gen., facility 67.9% 32.1% 18.3% 0.9% 2593 1760 833 395
org., spec., other 67.1% 32.9% 21.2% 1.2% 3326 2233 1093 600
attribute, na, age 66.9% 33.1% 23.8% 0.4% 1094 732 362 228
org., spec., political 63.8% 36.2% 11.4% 0.2% 647 413 234 53
res., na, substance 62.0% 38.0% 14.9% 1.0% 2808 1742 1066 306
org., gen., other 61.6% 38.4% 28.8% 0.5% 1343 827 516 334
org-att, spec., religious 59.6% 40.4% 18.8% 0.0% 94 56 38 13
loc., gen., state-prov. 52.9% 47.1% 26.6% 0.1% 397 210 187 76
resource, na, disease 50.8% 49.2% 23.5% 0.1% 378 192 186 59
know., spec., language 50.0% 50.0% 15.7% 0.0% 86 43 43 8
loc., spec., facility 49.8% 50.2% 40.7% 0.3% 880 438 442 301
knowledge, spec., art 48.5% 51.5% 57.1% 0.8% 2201 1068 1133 1422
org., spec., religious 48.5% 51.5% 48.4% 0.0% 101 49 52 46
resource, na, plant 48.5% 51.5% 13.5% 0.1% 198 96 102 15
org., gen., political 48.3% 51.7% 17.0% 0.1% 151 73 78 15
org., gen., religious 47.1% 52.9% 27.3% 0.0% 51 24 27 9
resource, na, animal 40.4% 59.6% 27.7% 0.2% 413 167 246 64
org-att, spec., other 34.4% 65.6% 44.1% 0.0% 96 33 63 26
task, na, game 29.6% 70.4% 50.8% 0.0% 98 29 69 30
res., spec., product 28.0% 72.0% 47.0% 0.5% 1266 354 912 314
loc., generic, other 18.8% 81.2% 43.5% 0.0% 69 13 56 10
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Figure 11: Error analysis, class model 4
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3.4.9 Integration of prediction models into end-user software

Once the accuracy of the final models had been evaluated, the remaining task for this project is
to make the models publically available in a software product. The goal with this step is to
provide this prediction technology such that people from different backgrounds with potentially
very little expertise in natural language processing can use it for their text analysis projects. The

integration process is described in detail in chpater 4.1 in the operational chapter.

3.5 Limitations

The prediction capabilities of the built model strongly depend on the training data. Even though I
chose a training dataset with a large number of examples and a suitable set of categories and
category attributes, there are several limitations with the BBN dataset: First, the data are from a
single source, namely the Wall Street Journal. Second, the data represent a single genre and well
defined domain, i.e. newspaper articles. Thus, the models can be expected to generalize with less
accuracy to different genres and writing styles than to the training domain. Third, the articles are
from 1989, which implies that terms and phrases might be outdated, and many agents and other
entities that are relevant today might not occur in the data. This issue might already have been
mitigated to some degree by using a lookup dictionary that is based on current news data. Fourth,
since the learning data is in English only, the resulting models cannot be expected to generalize
to other languages. Fifth, BBN contains only a few types of activities, which limits our ability to
predict task and events of the type that the meta-network model expects. Sixth, the data
contained various inconsistency issues as outlined in section 3.3.1 that we corrected for as we
found them prior to learning. However, when evaluating the results, we saw that a handful of
entities in the marked up files crossed line breaks or paragraph breaks in a way that a multi-word
expressions are interspersed with a few additional spaces, e.g. “Cie.  Fianciere de Paribas”. The
learner has picked up on these few problematic cases and developed some reasoning about them.
While these cases are noisy and could impact the accuracy of the overall model, they might
reflect scenarios that can be found in new data as well. Overall, the outlined limitations can be
addressed by enhancing the learned models or building new models by learning with more recent
data that originates from more sources, covers more domains, and contains more examples of

activities.

Including other feature types, using a different combination of feature types, or applying a
different iteration rate might all have led to better and potentially more accurate or more robust
prediction models. The part of speech tagger that was used as a feature type for this project is not
error free to begin with, but achieves about 93% accuracy. This issue represents a general

limitation with features that require pre-processing of the text data: the pre-processing routines

135



are imperfect in terms of their accuracy. As a result, errors with these routines get propagated
throughout the learning process. Furthermore, generating these features further increases the
runtime costs (Sarawagi, 2008).

The built models retrieve entities based on an ontology that originates from social science
research, namely the meta-network model. This model is designed to capture the who, what,
why, where and how of events. However, for constructing network data that adhere to alternative
classification schemas, different ontologies and respective models might be necessary.

Finally, training models with CRF has high run time costs. For example, building the final class
label prediction models that outputs a meta-network category along with a specificity attribute
and a category subtype per entity took nine days. This time constraint requires careful planning
of experiments for testing the impact of features on prediction accuracy. Such experimentation is
further complicated by the fact that small iterations rates (in the case of this study less than 300)
do not necessarily allow for extrapolating to results with higher, more appropriate iterations
rates. However, once the models have been built, applying them for inference to new data is
speedy, as demonstrated in the next chapter.

3.6 Conclusions and Future Work

Two main contributions have been made with this project: first, I have developed a highly
accurate computational solution to the extraction of entities from text data. The approach I used
for building these prediction models is interdisciplinary in that it combines a theoretically
grounded model from organization science for informing the definition of relevant entity classes
with cutting edge methods from natural language processing and machine learning. The obtained
accuracy rates are on a par with rates from alternative, top-performing entity extractors.
However, beating benchmarks was not the goal here. Rather, the objective was to build an entity
extractor that end-users can apply in the process of constructing one-mode and multi-mode
network data that support them in answering substantive question about socio-technical
networks. Delivering such a product as part of a publically available tool (AutoMap) is the
second contribution with this project. Going from learned models to usable technology involved
its own challenges. An example is the designing of rules for handling false positives such that
end-users are best supported in their needs, which required different rules than the ones I applied
for the rigorous assessment of the accuracy of the learned models.

At the beginning of this chapter I had defined several sub-goals for this project. Table 81

summarizes how they have been met, and points out the practical relevance of these objectives.
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Table 81: How project goals have been met and practical relevance of solutions

Goal

Delivered outcome

Practical relevance

1. Automation

- Scalable and publically available
solution to entity extraction.

- Supports analysis of large text datasets.
- Reduces time and labor costs for
thesaurus construction.

2. Abstraction of
terms to concepts
or higher level
aggregates

- Text level terms are associated
with meta-network categories that
encode different levels of detail,
namely a specificity value and/ or a
subtype per entity. Since prediction
results might differ between
reducing a complex model to a
simpler model and training a
simpler model separately, models
at five different levels of
granularity were built and
evaluated.

- Allows user to choose the level of
granularity the best fits their needs.

- Allows user to balance accuracy and
granularity based on their needs.

3. Generalization

- Ability to identify new and unseen
instances of entity classes and
entity attributes.

- Faster analysis of and adaption to new
corpora.

- Reduced time and labor costs for
thesaurus construction.

4. Support users in
addressing
substantive and
meaningful
questions about
socio-technical

- Ability to extract meta-network
data from texts. These data can be
further analyzed in ORA, which
provides metrics defined over non-
generic entity classes.

- Move beyond the extraction and
analysis of social networks (agent by
agent connection) or generic one-mode
networks to the analysis of multi-mode,
socio-technical networks.

networks
5. N-gram - Correctly identify boundary and - Thg bpundary clasg models thgt
detection class of multi-word entities. facilities the detection of entities

(unigrams and multi-word expressions)
is particular useful for constructing
one-mode networks and content
analysis. Once these entities are
identified, they can also be classified,
which supports the construction of
multi-mode networks.

6. Allow terms to
belong to multiple
entity classes
instead of just

- Ability to assign identically spelled
terms to multiple meta-network
categories.

- Differentiate terms based on

- Contributes to the disambiguation of
homonyms. .

- Reduced loss of relevant information
over current thesaurus creation
technique in AutoMap.

one. predicted label and for the NORP
class also on part of speech.
7. Entity - Ability to extract entities that are a) | - Allows for distinguishing between

Extraction (as
opposed to focus
on Named Entity
Extraction)

referred to by a name or not and b)
instances of classes where many
entities are not named.

generic and specific entities, which is
particularly useful when term
presenting roles of social agents
subsume a large number of references.
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From a NLP perspective, the findings from this study imply several conclusions about the impact
of engineering decisions and particular features types on the accuracy and required training as
summarized in Table 82. The most unexpected finding was that large differences in model
complexity (number of prediction classes, which impacts the number of states and edges in the
probabilistic graphical model) lead to only small differences in accuracy rates. In contrast to my
hypothesis, less complex models are not necessarily more accurate than more complex ones.
With respect to the per class accuracy within prediction models, the results indicate that high
accuracy is not a matter of class size, but low accuracy was only observed for small classes.
Considering both findings together leads to the following recommendation for designing entity
extractors: it is critical to find a good balance between consolidating small class into larger
aggregates and avoiding the fusion of classes with very different (weights per) features, which

potentially dilutes the expressiveness of features.

Table 82: Impact of variable on outcomes

Variable Accuracy Training Time
Baseline large small
Syntax Features (POS) small small
Lexical Features (Dictionary, hard match) large small
Iteration Rate large large
Complexity of Category Schema/ Model small large

With respect to feature types, in my results the part of speech tags were the weakest contributor
to accuracy. This could be due to the fact that part of speech tags are not orthogonal to other
clues, or that other syntax features might be more appropriate. In future work, it seems
worthwhile to test more advanced syntactic features, such as the constituent of a parsing tree that
per token. Also, the results show that it is important to test the isolated impact of each baseline

feature as gains from eliminating non-contributing features can be substantial.

When the goal is to provide the entity extractor to end-users, it is furthermore crucial to test if the
models that the learning system outputs are readily usable for inference in another environment.
In the case of this study, adjustments were needed that had to be represented in the learning
output directly and thus required retraining of the models after these discrepancies were detected.
To harness those situations, I recommend plugging in a first output model, e.g. one from learning
with the feature baseline only, into the external inference environment in order to identify any
necessary adjustments. This eliminates time for retraining when it comes to building the final

models with the best and most robust feature set found.

The presented solution involves several considerations that are particular to the goal of aiming

for practical usefulness of the models, and are fairly independent from the NLP and machine
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learning methods part: the models were built such that they are particularly suitable for
extracting relevant entities from documents about socio-technical systems. One strategy for
achieving this goal was to use a theoretically grounded model from organizations science to
inform the selection of relevant entity classes. Furthermore, the generated models support the
consideration of entity classes where many instances are common nouns and noun phrases, e.g.
in the resource class. Specific and generic entities, which often means entities that are referred to
be a name or not, are distinguished from each other. This is important for keeping roles versus
specific references to agents separate from each other. Finally, I have designed and implemented
the way that outputs are generated from these models such that the output data include entities
for which a non-outside boundary label has been found but no class label and vice versa, or for
which other discrepancies between both labels exist. For assessing the accuracy of prediction
models, these cases were handled differently, i.e. more rigorously as defined by standard
information extraction assessment procedures. There, such conflicting cases are considered as
inaccurate and are disregarded from final outputs. However, for practical applications of parsing
entities from news wire data and other accounts of event coverage, optimizing on error reduction
might be less important than retrieving the largest possible set of potentially relevant entities.
The presented solution implies the assumption that end-users might be willing to comprise some
accuracy in label assignment (precision) for a greater coverage of retrieved entities (recall) for
two reasons: First, entirely rejected entities might be hard to retrieve otherwise. Second, finding
a class for yet unlabeled but retrieved entities or correcting the class of entities for which
discrepancies are explicitly marked as such might be more acceptable than knowing that those

cases are returned altogether.

The lowest performing classes in the models I built are activities in general (tasks and events), as
well as knowledge and specific resources. In future work, these limitations can be addressed by
using additional learning data that contains more examples for these classes, and by only
merging classes that are similar in content as well as (weights of) features. For this project,
category merging was driven by resembling the categories in the meta-matrix model and
avoiding overly small classes. Furthermore, the learning data for this project was from a single,
somewhat dated source and genre. In order to provide more flexible models with a potentially
higher capacity to provide correct predictions for corpora that feature more current style and

content, we should also consider more recent training data from multiple domains and genres.
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4 From Experimental Results to Practical Applications

This thesis does not stop at providing experimental results for the rigorous evaluation of the
impact of relation extraction sub-routines on network data and analysis results (chapter 2) and
the construction of an entity extractor (chapter 3), but also reports on the transition from
providing these results to understanding their practical implications (this chapter). This chapter
makes a contribution to the practical usefulness of methods for relation extraction from text data

by developing answers to the following question:

- What steps are necessary for making the outcome of the experiments and evaluation
studies that are based on ground-truth data operational?
- What challenges and limitations apply when brining the understanding about these

experimental results into application contexts?

This chapter is structured as follows: in section 4.1, practical implication and respective
recommendation for relation extraction are developed based on the outcome of the study of the
impact of coding choices and network data and analysis results. In section 4.2, I describe the
steps, respective issues and developed solutions for making the entity prediction models

available as a new functionality in an existing end-user product.

4.1 Impact of Coding Choices for Reference Resolution and Windowing on
Network Data and Analysis Results: Implications and Recommendations
for Applied Work

The results for the impact of reference resolution on network data greatly differ depending on the
chosen approach for normalizing nodes: if node IDs are available that reflect the true identify of
nodes, I recommend working with these IDs instead of using node names as proxies for node
IDs, which implies the risk of merging different nodes with identical surface forms. The ORA
software supports this strategy by allowing for node ID’s that are different than the node names.
For example, homonyms can be disambiguated by different node IDs. If no such node IDs are
available, which is often the case for networks extracted from texts, and nodes are disambiguated
and consolidated based on their spelling, conducting any reference resolution technique is not
necessarily worthwhile with respect to key player analyses and the majority of graph-level
network measures because the results will still be strongly distorted. If this approach is chosen,
the obtained results will not resemble findings that would be obtained by using ground truth data.
To prevent his outcome under the condition that no node IDs are available, I recommend not to
conflate nodes based on their spelling, but trying to perform node disambiguation and
consolidation as well as possible. The following strategies can be used to this effect:
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- After important raw text data into a text analysis tool and prior to performing reference
resolution, the following techniques can be used; all of which are available in AutoMap:
o Disambiguate entities based on their part of speech (Diesner & Carley, 2008b).
o Identify meaningful multi-word expressions such that some individual tokens
become part of distinct units.
o Identify the node class of entities, and disambiguate nodes and multi-word
expressions based on the node class.

The entity extraction models that were developed in the previous chapter can help with all three
of these steps. Therefore, the entity extractor built for this thesis not only serves the purpose of
identifying nodes for the construction of network data, but also facilitates pre-processing steps

that are crucial for relation extraction.

If the resources for performing reference resolution are limited, I further recommend focusing on
co-reference resolution rather than anaphora resolution because it has a bigger impact on the
network data level. This decision further requires sticking with key player analysis instead of

calculating network metrics when analyzing the network data.

When it comes to selecting a reference resolution tool or technique, differences in accuracy do
matter, especially if the harmonic mean of recall and precision is below 90%. Therefore, I

recommend looking for a tool that achieves the best accuracy for a given domain or genre.

When connecting nodes into edges, caution is needed if windowing is chosen as the link
formation mechanism. This is because the rate of false positives can be very high: according to
the findings from this thesis, nine out of ten links can be false positives at a decent window size
across time, various domains, and writing styles. To lower this risk, the following strategies can

be applied, e.g. in AutoMap:

- Code roles and node attributes not as actual node class, but as node attributes. A solution
to this strategy is developed in the next chapter.

- Disregard overly common nodes for entity extraction. These nodes can be identified, for
example, by (weighted) term frequency metrics computed on the entities (Diesner &
Carley, 2004; Yang & Pedersen, 1997).

Based on the empirical results for the impact of proximity-based link formation on network data

and analysis results, the following recommendations can be made:

- If a corpus contains an indistinguishable mixture of syntactic and semantic link, at least
90% of all links are covered with a window size of seven. Syntactic links are natural by-

production of language production rules, such as links between adjectives and the proper
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nouns they modify. Semantic relationships are more independent from language
production rules and can be orthogonal to these rules, such as the description of the type
of social relationship between two agents in text data.

- If syntactically motivated links are disregarded, more than 90% of true links are typically
found when using a window size of twelve. This result is robust cross genres, types of
semantic relationship, and node classes.

- When using windowing as a link formation method, one needs to keep in mind that the
amount of false positive links can be enormous. Again, this risk can be mitigated by
coding attributes of nodes, such as roles and titles, as properties of the respective nodes

instead of as separate node classes.

4.2 From Learned Models to Usable Technology: Integration of Prediction
Models into End-User Software

Once the accuracy of the prediction models for entity extracted has been evaluated (as done in
chapter 3), the remaining task for that project was to make the models publically available in a
ready-to-use software product. The goal with this step is to provide these prediction models such
that people from different backgrounds with potentially very little expertise in natural language
processing can use such a technology for their text analysis projects.

The five different prediction models that have been constructed as reported on in the previous
chapter were integrated into AutoMap as described in the remainder of this section. For each
model, the expected accuracy rate, level of detail encoded in the models or what exactly gets
predicted and an example are provided Table 83.

Table 83: Prediction models provided in AutoMap

Model Name Expec Boun- Meta- Speci- Subtype Example
ted dary network ficity
Accur class

acy
Boundary model 92.9% X Madeleine Albright
Entity class model 1 | 887.% X X agent
Entity class model 2 | 88.8% X X X agent, specific
Entity class model 3 | 87.5% X X X agent, political
Entity class model 4 | 87.7% X X X X agent, specific, political

The intended workflow of using these models is depicted in Figure 12. The models are executed
by going to the main AutoMap GUI, MenuBar, and selecting “Generate”, “Thesaurus

suggestion”. Each of these models is expected to be applied to raw text data. This means that no
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normalization and pre-processing routines, such as reference resolution, stemming or the
removal of stop words, should be applied prior to model application. Each model can be called
individually. Users can run as many models as they wish in any arbitrary order; there is no
interaction between the models. The output from running any one of these models is a thesaurus
that gets stored at directory of the user’s choice. This eliminates or reduces the need to construct
thesauri by employing alternative NLP routines as described in section 5.2.2.1, which is
considerably more time consuming and requires computer-supported work by humans. The
output from each of the five models contains the extracted entities (one per row) and the

following information per entity in tabular (comma separated values, one value per column):

- A concatenation of multi-word expressions into a single token via underscores, e.g.
United Nations into United Nations. This helps to keep entities together when they
appear as nodes in a network, and complies with the standard node formatting
conventions for AutoMap.

- The meta-network category per entity (for the boundary prediction model, the default
class “knowledge” is used).

- Depending on the chosen prediction model, zero, one or two attributes per entity that
represent the specificity and/ or subtype value if applicable. Specificity can take the
values “specific”, “generic”’, or “not applicable”. In the latter case, no attribute gets
output. For a list of the possible subtype values see Table 59.

- The part of speech of each token in an entity, i.e. multiple part of speech in the case of
multi-word expressions.

- The cumulative frequency per entity as inferred from the text data.

An entity’s frequency is increased when two entities agree in spelling including capitalization, as
well as in meta-network category, any attribute per category, and part of speech. This rule helps
to disambiguate entities based on their part of speech, which is another new functionality in
AutoMap that got added as part of this project. Also, this rule also supports the consolidation of
entities that differ in capitalization only during thesaurus application. This could for instance
apply to entities that typically occur in lower case, e.g. “apple” (the common noun), but are
capitalized at the beginning of a sentence, and are still different from words that are
orthographically the same, but have a different meaning (such as “Apple” as the company). I
defined these rules for disambiguation and consolidation in order to prevent the loss of

information that we had previously experienced but not handled in AutoMap.

143



Figure 12: Workflow of using prediction models in AutoMap
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Users might ask themselves which model to use. To address this question, I designed a decision
tree and added a visual representation of it to the prediction model routine in AutoMap (Figure
13). We also decided to make class model 2 the recommended default model in AutoMap
because a) this model achieved the highest accuracy during formal evaluation and b) was at the
level of detail that we needed for many of the application scenarios in the CASOS lab over the
last years. The boundary prediction model is the only model that theoretically extracts
uncategorized entities, which can be unigrams or multi-word expressions. These entities can be
used for conducting content analysis, or as nodes for constructing one-mode networks. In the
thesauri generated by applying the boundary model, the extracted entities are actually assigned to
the “knowledge class” because this class is considered as the default class for text coding
according to the meta-matrix model. The outputs from all of the prediction models can be used to
manually consolidate synonymous entities that have different surface forms. This a form of co-
reference resolution and helps to alleviate the issues with disambiguating and consolidating

nodes based on spelling as identified in the previous chapter.
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Figure 13: Decision Tree for prediction model selection in AutoMap
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Next, I describe the types of challenges (marked in italics at the beginning of paragraphs) that
can occur throughout this process and say how I addressed these issue for the case of AutoMap. I
argue that many of these challenges generalize to a) providing an entity prediction technology as
a stand-alone, end-user product or b) integrating an entity extractor into an existing systems with

given constraints.

1. Training of models: For end-user applications, each model needed to be trained with all
training folds and no holdout folds. I used the same feature configuration as I did for the final
round of accuracy assessment (Table 71). The upper bound on training time is constrained by the

most complex model (class model 4), which took about ten days to complete.

2. Separate inference engine: Integrating the models into an existing software product required
the construction of an inference engine that uses outputs from the learning process (details
below) to make predictions on new and unseen text data, and added this inference engine to
AutoMap. This engine reuses parts of the learning code, but also required new code. The outputs
from learning that needed to be migrated into AutoMap are a model file (number of features and
weight per feature), a features file (each feature and its ID), and a coding files that associates
numeric values of prediction classes with logical values of those classes (details on that in the
next paragraph).
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3. Different inference systems: AutoMap features a GUI version and a script version. While these
two versions share some code, integration had to be done for each version individually.
Therefore, every step described in this section was performed and validated for the GUI version
and the script version separately while making sure that both versions produce identical results

for this routine.

4. Incomplete learning output representation: When I integrated the first set of models into
AutoMap, both, the retrieved entities and their classifications, seemed highly inaccurate.
Investigating this issue revealed a critical difference between the models as they are held in
memory after training and prior to evaluation, and the models that get stored out to disk. This
difference is specific to the CRF technology I adopted for this project, but might generalize to
other CRF implementations: when the models are temporarily stored in memory, they also keep
the information about which numerical value for each class label (boundary and category) maps
to which logical value for each of these labels. The CRF implementation picks these numerical
values internally, implicitly and to the best of my knowledge in random order. This procedure
applies not only to the boundary and category labels, but also to the features. Since I added new
features to the CRF baseline, there were also numerical values for each part of speech tag and
each entry in the lookup dictionary. The problem here is that once the models are stored out, this
mapping is not output by default or represented in any output file. Thus, I had to re-engineer this
mapping if I wanted to make my models work. However, I could not find any apparent logic,
regularities, or systematic way according to which this mapping or assignment of numerical
values to labels happens. Therefore, I had to retrain all models with the exact same features such
that the outputs include this mapping. This retraining had no impact on model accuracy; the only
difference was that the output files contained the needed mapping information.

5. Routine incompatibility: After the previous change had been made, the resulting models
showed greatly improved prediction results. Nevertheless, the results still seemed less accurate
than what the final results from the k-5 cross validation led me to reasonably expect. This could
be due to poor generalization capabilities of the models or technical issues with integrating the
models into AutoMap. Exploring this issue further first revealed a problem that might generally
apply to situation in which new routines are plugged into existing, larger systems, and where the
new routine reuses available functionalities. In this particular case, this existing routine was the
part of speech tagger. The change regarding the tags for tokens involving digits did conflict with
the POS implementation and tag set already available in AutoMap. I solved this issue by adding
the part of speech tagger that I had added to the CRF environment into AutoMap. The difference

between both taggers is small, but makes a big difference for the accuracy of prediction models.
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6. Input representation issues: At this point, the prediction quality of the models still seemed
lower than what I expected, and I was still hoping that this drop in performance was not due to
the quality or generalizability of the models themselves, but the way they were integrated into
AutoMap. The next issues that I identified were differences between how input data are
represented in AutoMap versus how the learning data were formatted. In order to solve this
problem, I went back to the BBN data and identified these formatting particularities by carefully
going through the data and paying special attention to non-letter, non-digit characters. Next, I
adjusted the formatting of the texts that the prediction models in AutoMap take as an input such
that they resemble the following idiosyncrasies: in BBN, sentence marks are space-separated
from the last word in a sentence, while other dots, such as in Mr. or U.S., are not space-separated
from the tokens they belong to. I reused the sentence splitter that I had previously integrated into
AutoMap for the purpose of determining sentence boundaries and distinguishing them from other
dots (Diesner & Carley, 2004). Also, in BBN, commas have a space character right and left from
them, and the same is true for various other non-digit, non-letter symbols, e.g. hyphens and
percentage signs. However, there are exceptions to this rule, e.g. dashes within multi-word units,
such as in “money-market”. Finally, genitive markers of nouns, e.g. “parent ’s”, and negations of
verbs that are part of the word, such as “did n’t” or “is n’t”, are space-separated from the main
verb as shown in the examples above. Once those changes were made, the prediction accuracy of
the models in AutoMap was improved and seemed satisfying. There are two ways to realize
these changes: they could be represented only internally, or the adjusted formatting could be
displayed to the user as well. Since one of the main purposes with these models is to generate
thesauri that users can apply to the text data when generating networks data, it is crucial that the
entities in the prediction outputs match the text data. Thus, I decided to store the modified text

data so that users can load them for further work and thesaurus application if they wish.

7. Trading off conciseness and certainty for recall: Next, additional changes were necessary to
ensure that the new prediction routines support end-users in addressing substantive questions
about socio-technical networks. First, I adjusted the rule set for combining the boundary and
category model (to the boundary dominating policy) such that fewer entities are missed than with
the rigorous rule set used for model assessment up to here. During error analysis, I observed that
oftentimes, the boundary label is correctly indicating an entity and a class label is suggested as
well, but the category prediction is not perfectly accurate and rather returns a reasonable
alternative. For example, “consultants” were predicted as a generic organization, but the ground
truth labels them as a generic agent. For the end user, such false positives might still be relevant:
for practical applications of entity extraction, recall is often considered more important than
precision (Sarawagi, 2008). This is because incorrect class labels can be corrected for by hand,
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but entities that are not returned as a potentially relevant hit at all would be hard to retrieve
otherwise. Therefore, the modified combination rules for the end-user tool penalize the following
discrepancies less for inference than for training: tokens with a non-outside boundary label but
no class label as well as the inverse case are both output and are explicitly marked as potentially
useful additional hits. These tokens might be false positives or true negatives. Except for these

changes, the same combination rules as described above are applied.

8. Category adjustment: Finally, BBN contains four categories of the NORP type (nationality,
other, religion, political, for details see Table 59). Instances of NORP are either specific agents
or organizations or attributes. Since end-users might want to be able to distinguish between these
cases, | separate them for application in AutoMap based on their part of speech after checking
the hits that these classes returns: all instances that are labeled as nouns (NN, NNP, NNS, NNPS)
or personal pronouns are categorized as specific organizations of the respective subtype (if

applicable in the entity class model). All other instances are assigned to the attribute category.

9. Output representation issues: A naturally suitable output format for the entity lists or thesauri
generated by the prediction models would be a tab delimited format. However, in AutoMap,
these types of output have to be in csv format. The problem here is that retrieved entities may
contain commas, which would mess the csv outputs. Note that these outputs are used for further
computations and thus have to adhere to certain constraints as given by the AutoMap and ORA
toolkits. In order to accommodate the change from tab delimited (initial output) to csv, I added a
functionality that removes commas from the text data after prediction and string the modified
text data along with the prediction outputs at a separate, user-defined location. 10. Usability:
Since the proper application of these models in AutoMap (or anywhere else) is not necessarily
intuitive to end-users, different types of documentation are needed. In order to assist users in
selecting the model that best fits their needs, I added a decision tree that differentiates the models
based on the level of detail they encode and their accuracies (Figure 13). Also, I wrote a user’s

guide for this sub-routine that is part of the AutoMap help system.

11. Reusability: Finally, I built the learning technology for this project such that it can be re-used
by CASOS members to train models that are based on modified or different ontologies, or use

different features.

In summary, integrating the learned models into an existing software product implies additional
tasks and challenges that are not necessarily foreseeable during the model construction stage and
might even require the re-training of the models. Overall, the time costs for making the learned

models publically available in a ready-to-use fashion are significant: the described integration
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process took about as long as selecting features and training and testing the models took all

together.
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5 Comparison of Relation Extraction from Texts including Entity
Extraction to Alternative Methods for Network Data Construction in
Application Contexts

In this chapter, I demonstrate the end-to-end process of going from raw text corpora to network
data to analysis results. This chapter puts the knowledge about of the impact of coding choices
on network analysis (chapter 2) and the entity extractor (developed in chapter 3, integrated into

end-user product in section 4.2) into real-world application contexts; addressing two questions:

- How do prediction models for entity extraction perform beyond lab studies, i.e. k-fold

cross validation, when used for real-world applications?

In chapter 3, the performance and accuracy of the prediction models was evaluated via k-fold
cross validation on held-out portions of the corpus used for training the models. In this chapter, I
further evaluate these models by applying them to new and unseen (with respect to the models)
text data that differ in genre, domain and publication data from the training data and among each
other. This validation enables us to better understand how the constructed prediction models

generalize.

However, relation extraction by using the prediction models for entity detection is only one way
for coding texts as networks. In order to put this approach into the wider context of relation

extraction methods, this chapter addresses a complementary second question:

- How do the network data and respective analysis results obtained by using the prediction
models as part of the relation extraction process compare to alternative methods for

constructing network data from the same corpora?

Answers to this question help us to understand how the relation extraction method supported by
the entity extractor developed and validated herein generalizes, i.e. compares to alternative

methods.

5.1 Motivation and Research Questions

The formal evaluation of the prediction models (chapter 3) shows that the solution presented in
this thesis achieves state of the art accuracy rates. However, the ultimate goal with these models
is to employ them for practical text coding projects, where the text data might be from different
domains or differ in writing styles from the training data. This leads to the first research question
to be answered in this chapter:
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Research question 1:
How do certain prediction models evaluated with k-fold cross validation perform in real-

world application scenarios?

For this project, performance is operationalized as the suitability or fitness of the thesauri
generated with the prediction technology for extracting socio-technical networks from different
corpora such that the resulting data can be used as input to further network analysis routines. In
general, in application contexts, the text data might differ from the training data on many
dimensions. In this study, I am testing three of the most common dimensions, namely the time at
which some text data were produced, genre, and writing style. Table 84 compares the corpora
used in this study, which are introduced in more detail throughout this chapter, to the data used
for training the models on the selected dimension. This comparison shows that among the
considered corpora, the Sudan data are most similar to the training data, while the Enron email
data are most different. Therefore, I hypothesize that the prediction models perform best on the

Sudan data, second best on the Funding data, and least well on the Enron data.

Table 84: Comparison of corpora used in application scenarios to used for model training

Dimension Training Data Sudan Funding Enron

Time 1989 2003-2010* 1984-2006* 2001*

Genre Newswire Newswire Scientific Emails*
writing™®

Writing Style Formal Formal Formal Informal*

* = different from training data

Relation extraction is one among many methods for constructing network data based on text data
(for a review of these methods see chapter 3.2.3). However, there is a lack of research on how
these different methods compare with respect to their outcome, i.e. the properties of the
generated network data. This gap of knowledge motivates my second research question for this

chapter:

Research question 2:
How do the network data and respective analysis results obtained by conducting relation
extraction including using the entity extractor developed in this thesis compare to

alternative methods for constructing network data from the same corpora?

The comparison of network data and analysis result in this chapter is operationalized as follows:
based on the experimental results from chapter 2, I had developed recommendations for practical

applications of these methods in section 4.1. Based on these recommendations, it seems
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appropriate to compare networks with respect to their size and the key entities that are identified
according to selected network metrics. The latter strategy had also been identified as suitable and
was therefore used for comparing networks generated with different coding choices in section
2.7.1. In addition to these strategies for network comparison, the similarity of any pair of
network data constructed with different methods is assessed by creating the intersection of these
networks in terms of nodes and edges. Since these network data were generated with different
methods, which involve different pre-processing steps and pre-processing material such as
different thesauri, I hypothesize that the compared network data will not resemble each other.
Instead of designing or hoping for convergence of these methods with respect to their outcome,
the contribution here rather is to identify the differences and commonalties between the resulting
data. This knowledge can help to understand what different views on a network are provided
with the tested methods.

In summary, the focus of this chapter is on the impact of methodological choices on network
data. This approach is similar to the work presented in chapter 2, where the impact of choices
about pre-processing and link formation - all of which also apply to the methods presented in this
chapter - was tested. The difference is that while in chapter 2, I used ground truth data to be able
to precisely identify these impacts, in this chapter; I use various real world datasets for which no
ground truth data is necessarily available. This is possible because in chapter 3, I had used
ground truth data to build the prediction models whose performance is contrasted against

alternative methods for node identification in this chapter..

5.2 Application Context I: Sudan Corpus

Previous network analytic studies of the Sudan are confined to a few qualitative studies
(Elageed, 2008; Lobban, 1975). Conducting participating observations, interviews, or surveys to
collect network data about the Sudan and South Sudan is expensive or even infeasible for the
following reasons, which might also apply to other geo-political units: the Sudanese population
is large (over 45 million people, estimated), the Sudanese people speak over 130 languages,
mainly Arabic and/or English (Lewis, 2009), and the literacy rate there is low (61%)
(Central Intelligence Agency, 2009). As an alternative source of information about this country,

one can draw from the large amount of open source text data that are provided about the Sudan.

The presented study of is part of a larger multi-university research initiative (MURI) in
cooperation with East Carolina University (ECU) and Rhode Island College (RIC). The goals
with this MURI are to (Carley, n.a.):

- Develop theories and computational techniques for modeling the adaptive behavior of

groups in asymmetric threat environments.
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- Identify and investigate various dimensions of socio-technical networks in the Sudan
with a focus on culture.

- Delivering software products that facilitate the fast collection and assessment of these
networks.

For the purpose of analyzing socio-technical networks of geopolitical systems, including
networks of sub-state and non-state actors, network analysis has been previously employed as a
stand-alone method (Erickson, 1981; Himmerli et al., 2006) as well as a method complementing
other techniques, such as regression analysis (Humphreys, 2005). However, direct or remote
access to such real-world networks can be hard to impossible for analysts in the cases of covert
and past networks, such as illicit groups and bankrupt enterprises (Baker & Faulkner, 1993;
Malm, Kinney, & Pollard, 2008). Nevertheless, the networks perspective has been employed to
analyze covert organizations and ways of organizing, such as co-offending, trafficking, and
white-collar crime (Baker & Faulkner, 1993; Carley, Lee, & Krackhardt, 2001; Howlett, 1980;
Reiss, 1988; Sarnecki, 2001; Seibel & Raab, 2003). In these cases, archival data including
confidential as well as open source material can help to collect network data (Burt & Lin, 1977).
In prior work, people have used text data to answer the following kinds of research questions
from a networks perspective:

- Who are the key individuals and groups in a region? (Hammerli et al., 2006; Schrodt,
Gerner, & Yilmaz, 2004; Schrodt, Simpson, & Gerner, 2001)

- How does their importance develop over time? (Carley et al., 2007)

- What dynamics drive the formation of strategic alliances between actors with potentially
conflicting interests? (Fitzmaurice, 2000)

- What resources are involved when social agents are in conflict with each other?
(Humphreys, 2005)

In order to illustrate the potential utility of coding texts as networks, I provide exemplary,
substantive research question such as those outlined above that can be addressed by going
through this process and further analyzing the resulting network data. The comprehensive
analyses needed to answer these research questions would require separate studies, which are
beyond the scope of the thesis. The point with this chapter is to show how the methods and tools

studied up to here can be practically employed in a practically useful and efficient fashion.

5.2.1 Data

I put together the Sudan Corpus by using a two-step process that involved downloading
documents from the LexisNexis Academic database and deduplicating and cleaning the
downloaded files by using software I wrote for this purpose. The same or similar strategies might

be useful for others for collecting corpora about countries and geographic regions from open
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source document collections. These strategies are based on my explorative hands-on work with
the data and testing of different choices, such as various search terms and cut-off values. Several
heuristics were developed and used as documented herein. These rules might need adjustments

when used for building other corpora.

For searching LexisNexis, I used the “power search” as the type of search, “Sudan” as the search
term, “major world publications” as the data source, and constrained the search to the “country”
category on “Sudan”. A total of 119,859 documents matched these search criteria. As of March
2011, LexisNexis Academic allowed for retrieving 3,000 documents at a time, and downloading
500 at a time; resulting in 246 batches of documents to be manually downloaded. I downloaded
the text bodies along with the meta-data that LexisNexis Academic provides. Meta-data are
marked by explicit index terms, such as “country”, e.g. Sudan, and “city”, e.g. Khartoum. The
meta-data categories and values per category are defined and assigned by LexisNexis Academic

without further documentation of this process.

I built a parser to split the batches into individual files and output one text file per article. For
each article, the parser identifies the source, publication date, title and actual text body if
provided. Since these items are not marked by index terms, I defined data-driven rules for
identifying them with high reliability. For cases in which the publication date could not be parsed
out, I use the load date, which is a meta-data field, as a proxy. Manually comparing load dates to
the publication dates suggested that the load dates are the same or a few days past the publication
date.

I set up a database to manage the Sudan corpus. It is common that an article released by one
news agency is published by multiple newspapers; leading to redundancy in the reporting of
events. I addressed this issue by using the following deduplication strategy: articles with the
exact same publication date and title are considered as redundant and were removed. This first
round of deduplication reduced the dataset by 4.3% or 5,109 files. The corpus was further
reduced to articles relevant with respect to Sudan by keeping only the files that meet both of the
following two criteria: (1) The title contains the terms “Sudan*”, “Darfur®*”, or “Khartoum*”’.
The stars represent wildcards. (2) The values for index terms “geography” and/or “country”
exceed 90%. These values are determined by LexisNexis and indicate relevance. These two
routines together removed another 32,184 or 28.1% articles from the corpus. Further inspecting
the data showed that many articles are reports of scores from sports games. I removed articles
where the “subject” category contained “soccer”, “basketball”, “tournaments” and “athletes”,
which were 1,513 files or 1.8% of the remaining data. Since some articles about sports can be
relevant for studying social systems and culture, I kept articles where the “subject” contained

EE 1Y

“sports”, “Olympics”, “stadiums”, and “arenas”, unless these articles had been removed by the
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previous steps. At this point, the corpus still had articles that were very highly similar to each
other. In order to remove near-duplicates, I disregarded corrections of previously published
articles (437 files). Next, I sorted the articles by publication date, title, and source in increasing
order. I eliminated those that matched in the first four words of title and were published within a

maximum time distance of three days (minus another 1,217 files).

The remaining bodies of the articles still contained index terms and additional information that
are not part of the main content and headline, and would be considered noise when performing
text analysis. To correct for this issue, I created an instance of the corpus from which I removed
the bylines, highlight lines, and copyright notice from each article. Also, I disregarded anything
that was not a header or text body, e.g. the phrases “passage omitted” and “Text of report in”.
The last step was based on a set of self-defined key words and phrases that indicate the
beginning and end of headers and bodies or that serve as indicators for irrelevant lines and

phrases that are intermitted within the body.

Next, | added a sentence mark at end of each headline. For the vast majority of articles, this helps
to make the headline look like a real sentence to any subsequently used text mining routine.
However, if the headline already has a sentence marker, e.g. a question mark, this operation

resulted in two delimiters for an end of a sentence.

Finally, I checked if the cleaning techniques had reduced any articles to something not useful for
text analysis anymore, such as nothing but section markers or image captions. Going from the
smallest to the largest texts, this step eliminated 12 more articles. In total, the cleaning
techniques reduced the corpus by 33.8% or 40,471 articles to 79,388 files. Table 85 shows the

number of articles per calendar year in the final Sudan corpus.

Table 85: Articles per year in Sudan corpus

Calendar year | 2003 2004 2005 2006 2007 2008 2009 2010

Number of 4,507 | 10,059 7,837 | 11,076 | 12,243 | 10,713 | 10,410 | 12,543
articles in
corpus

5.2.2 Network Data Construction Methods

The same network data construction methods were used for the three different application
scenarios/ corpora in this chapter is possible. For the Sudan corpus, the following four methods

were used:
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1. Perform text coding with the data to model process (D2M) in AutoMap (explained in
section 5.2.2.1). This process involves the construction of a thesaurus.

2. Same as above, but with the difference of using a thesaurus generated by the entity
extractor built in chapter 3 (5.2.2.2).

3. Construct network data from meta-data contained in the Sudan corpus (section 5.2.2.3).
Work with subject matter experts to constructed network data that can be considered as
ground truth data (section 5.2.2.4).

5.2.2.1 Network Data Extraction from Texts Using the Data to Model Process

The data to model (D2M) process was defined by Carley et al. (2011), and is designed for going
from texts to multi-mode, socio-technical networks to analysis results. The process is still
evolving and has been used for multiple text coding projects in CASOS. Also, the process has
been tied to the CASOS tools, namely AutoMap (Carley, Columbus, et al., 2011) and ORA
(Carley, Reminga, et al., 2011). These tools are publicly available and are also described herein
as needed. Next, I explain the D2M process at its current state and how it is used in this chapter.
The D2M process starts with text data collection:

1. Collect a text corpus (described in section 5.2.1).

2. Clean the text corpus (described in section 5.2.1).

The next set of steps of the D2M process is designed for extracting relational data from texts.
These steps involve various pre-processing routines, which are further explained in the next

section, and are provided in AutoMap:

3. Create thesauri and/ or adapt existing standard and domain thesauri such that they are
appropriate for the given research question, domain and dataset.

Review and revise the thesauri.

Extract meta-networks from the corpus.

Review the network data and based on that, revise the thesauri.

Recreate meta-networks from the corpus.

e S

Iterate through steps 4 to 7 until the network data seem appropriate.

Once these steps are completed, the extracted data are post-processed in ORA to add geo-spatial
information to the extracted networks (step 9). Next, network analysis is performed on the data
(10). Then, analysts can use the results to suggest potential interventions (11). Finally,
simulations are run on the data to explore what-of scenarios and potential interventions (12). For
the application scenarios presented in this chapter, I perform steps 1-8 and 10 as they are relevant

for the purpose of this chapter.
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5.2.2.1.1 Thesauri: Background, Usage and Construction

The key resource needed for extracting meta-networks with the D2M process are thesauri. A
thesaurus, in its simplest form, is a table with two columns that associates text-level terms (first
column) with concepts (second column). When applying a thesaurus, the text data are searched
for the terms listed in the thesaurus, and any matches are replaced with the respective concepts.
In order to build thesauri, a combination of data-driven NLP techniques, external resources such
as gazetteers, and previously generated thesauri is typically employed. In AutoMap, the NLP
techniques available for this purpose include the identification of terms (unigrams and bigrams)
with high absolute and weighted frequencies (Diesner & Carley, 2004) and the automated
detection and classification of nodes (Diesner & Carley, 2008a). Some of these techniques are
computer supported in AutoMap, i.e. they require manual steps, while others are fully automated.
To give an for computer supported routines, before the prediction models presented in chapter 3
were added to AutoMap, the process for detecting multi-word units involved generating a bigram
list, which contains all adjacent pairs of words and their cumulative frequencies. The
disadvantages with this approach were that the output had to be screened by a person for
meaningful two-word units and the detection of longer units was not supported. Note that in
general, alternative fully automated methods and tools for N-gram detection are available.

A thesaurus can be used to normalize data as shown in the examples in the next paragraph, or as
a positive list or filter, which means that all text terms not occurring in the thesaurus are dropped
from the text data. More specifically, in text coding, a thesaurus serves four main purposes,

which may overlap:

First, it converts explicit literal mentions of concepts into those concepts, e.g. “cocoa beans” into
“agricultural crops”. Used in this way, a thesaurus represents a taxonomy, which classifies terms
into concepts. Second, a thesaurus supports coreference resolution by mapping different
spellings, variations, and synonyms of a concept to one consistent key identifier for this concept.
For example, “Al-Bashir”, “Omar el Bashir”, and “Omer Hassan Ahmed al-Bashir” can all be
mapped to “Omar_al Bashir”. Third, a thesaurus helps to disambiguate terms. This works for
terms where capitalization signals a difference in meaning (capitonyms), e.g. “rice” (crop versus
person with that last name). Disambiguation via a thesaurus can also be achieved for terms that
have the same spelling but a different meaning, i.e. homographs, which include homonyms,
heteronyms, and polysemes. However, disambiguating homographs via thesauri is only feasible
if and only if the embedding of the term into the context of a short phrase is sufficient for
differentiating their meaning, e.g. “upper arm” versus “arm dealer”. Forth, a thesaurus can be
used to convert n-grams into unigrams. This is typically done by replacing the spaces between

the constituents of an n-gram with an underscore as shown in the examples in this paragraph.
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Thesauri that are more advanced than the basic two-column data structure contain additional
columns that specify the type and further subtypes and attributes of entities. I herein refer to
these additional pieces of information about an entity as ‘“categories”. For instance,
“Omar_al Bashir” might be categorized as an entity of the type “agent” with the specificity
value “specific” and the subtype “political”. Thesauri that associate terms with categories allow
for text coding and subsequent analysis on multiple levels of aggregation, and also for fine-
grained analysis and filtering.

Traditionally, thesauri have been created by reading through some (Glaser & Strauss, 1967) or
all (Gerner et al., 1994) of the text data to be analyzed in order to identify the terms relevant for a
given project, and then associating these terms with concepts and categories. Sometimes, the
relevant concepts are predefined, e.g. if they are derived from theory or when ontologies or
taxonomies are used. Various computational solutions exist for assisting the user in this task;
many of which have been developed for qualitative text coding according to the grounded theory
methodology (Lewins & Silver, 2007) and for event coding in the political sciences (Gerner et
al., 1994).

Thesauri are typically created through an iterative process of testing and modification.
Sometimes, external resources can be used to build or extend thesauri. For instance, Appendix A
of the CIA World Factbook lists acronyms that are commonly used for various organizations,
such as “WHO” for “World Health Organization” (Central Intelligence Agency, 2009).

There are two main advantages with thesauri: first, they allow for working with a controlled
vocabulary. Second, they support the consideration of subject matter expertise for text coding.
This means that while experts are able to define terms that represent relevant concepts in a
domain and also to categorize terms, these concepts and categorizations might not be identifiable

with statistical NLP techniques.

Thesauri involve several limitations: first, they can be outdated, incomplete, insufficiently
discriminating between the different meanings of terms, and miss the typos occurring in real
data. The deterministic nature of a thesaurus can be improved by not only searching for hard
matches, but also soft matches in spelling via string similarity algorithms (Cohen, Ravikumar, &
Fienberg, 2003). Second, since thesauri are typically built for specific domains, genres or
datasets, they can be expected to perform less accurately on new corpora. Finally, building
thesauri built by hand or in a computer assisted fashion is very costly in terms of effort and time.
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5.2.2.1.2 Construction of the Sudan Master Thesaurus

For this study, I am using a thesaurus herein referred to as the Sudan “master thesaurus”. This
thesaurus was built by various members of CASOS over multiple years by integrating multiple
thesauri previously built at CASOS and elsewhere, enhancing the resulting file with the D2M
process, and repeatedly cleaning and enhancing the file. These steps were mainly conducted by
individuals other than me inside and outside of CASOS, and no complete documentation exists
for this process. Therefore, I consider the master thesaurus as a given input. This situation might
also apply to other real-world text analysis projects where dictionaries from external sources are

used.

This section describes how I refined and enhanced the Sudan master thesaurus. Out of the
different thesauri that I built for this chapter, the Sudan master thesaurus required the most
amount of effort in terms of time and labor for cleaning and manual validation. The resulting file
can serve as a starting point for building thesauri that can be used for analyzing data on other
geo-political entities and other news wire corpora, which is a main application domain for
thesauri in CASOS. For these two reasons, I use the master thesaurus not only for this
application scenario, but also as a look-up dictionary for constructing the prediction models in
section 3.3.2.4.

I want to mention two particularly important thesauri that had been previously integrated into the
master thesaurus: first, the counter-terrorism agent thesaurus (CT agent thesaurus), which is a
collection of entities of the type “agent” that are relevant in the context of counter terrorism. This
file has been constructed and verified by subject matter experts (Gerdes, 2008) and accounts for
20.6% of all agent entries in the master thesaurus. Second, the rapid ethnographic retrieval
(RER) thesaurus, which was was built by our project partners at East Carolina University. This
file associates terms with concepts that subject matter experts have identified as being crucial for
answering questions about the culture of groups and societies. These term associations result
from both, theory and empirical work in anthropology and sociology (Carley, Lanham, et al.,
2011). Many of the RER terms are based on the “Human Relations Area Files” (HRAF), which
are a classification schema for information about human behavior and culture. The HRAF are
widely used for anthropological research. The RER thesaurus ranges across multiple entity

classes, and provides 2.7% of the entries in the master thesaurus.

All terms and concepts in the master thesaurus, except for a list of about 13,000 universities, are
in lower caps. This eliminates the need to enter terms twice if they can occur either way, but at

the same time disables the possibility of word sense disambiguation of capitonyms.
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The raw version of the master thesaurus that I use is from May 25th, 2011. Towards the end of
the cleaning and refinement process described in the following I was given an updated RER
thesaurus with entries for the task, resource and knowledge class as well as a list of about 13,000
universities that are classified as organizations with the subtype “educational”. Integrating these
files with the master thesaurus required repeating all cleaning steps described in this chapter for
these two files, and deduplication all impacted entities classes again. The numbers presented in
this chapter are adjusted for these additional steps. This limitation to efficient scientific work
reflects the nature of practical text coding applications: thesauri are ever evolving instruments

that need to be adjusted for time, domains, and writing styles, among other criteria.

The master thesaurus has seven columns: the “terms” (229,998 lines), one “concept” per term,
the “meta-network category” that the concept maps to (for 99.4% of the concepts), a “subtype”
per concept (for 14.7% of the concept), and the “city”, “state” and “country” for the entries from
the university file if available. Table 87 shows the distribution of terms across categories. I

cleaned and enhanced this file as follows:

First, I used a CASOS tool that helps to remove lines that contain illegible characters in the term
and concept column. This tool converts characters from the UTF encoding set to the respective
ASCII characters while leaving all other ASCII characters untouched. Terms removed included
“x xox"xoxex§” and “DENENfD2DuN”. Those entries resulted from scraping webpages and
moving files between different encoding sets without adjusting for the character set. This step
reduced the number of lines by 19.5%. Of those lines removed, 97.6% were from the “location”

class, and another 1.6% from the “agent” class.

Next, I manually fixed all typos in the meta-network categories (N=107, where N is number of
lines). This is important because otherwise these classes would be considered as additional
categories. Also, I removed all entries marked as “ignore” (N=18), which were leftovers from a

prior (to this thesis) round of editing.

Then, I checked all entries that had an underscore between words in the term column (N=2,751),
which are the result of previous issues with merging and deduplicating thesauri. Underscores are
only supposed to occur in the concept column and are there to covert n-grams into unigrams. Of
those entries, I removed all but those from the RER thesaurus and fixed the RER entries (171

entries with underscores kept).

At this point, the thesaurus still had several entries that were noise and featured certain symbols.
Again, those entries might result from collecting data online and from moving information
between different character encoding sets, among other reasons. I manually worked through

these entries:
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Question marks (N=569): I vetted 14 of the entries as relevant and unproblematic; most of which
were speech acts and abbreviations used in web talk, such as “wuf?”’ (an abbreviation for “where
are you from?”). I fixed another 38 entries by removing the question marks and removed the

remainder as it was noise.

Quotation marks (N=480): I kept 48 of those entries; some of which needed some manual fixing.
The rest was dropped because they were noise. The maintained entries are from the “agent”
class, such as “haji neamatullah "shirdai" khan”, and terms representing universities, such as

University "”Dzemal Bijedic" of Mostar”.

Digits: When the D2M process is used to retrieve potentially relevant entities from text data,
entries with digits are removed as those entities are often considered as noise. Since we had no
data on how appropriate this strategy was, I went through all entries in the thesaurus that contain
a digit within the term (N=3,012). Of those, 49.5% are industry codes, e.g. “naics111140 wheat
farming”, and news ticker IDs, e.g. “9501 (tse)”; both of which I did not attend to. Out of the
1,527 remaining entries, I vetted 39.7% as noise and dropped them, 32.6% as relevant and
correctly formatted, and 27.7% as relevant yet problematic. I fixed the problematic cases, e.g. by
removing the digit from the term or correcting the meta-network category. All entries that I did
attend to were added back into the master thesaurus. Table 87 shows that digits are a meaningful
constituent of more than 50% of the entries that comprise digits (excluding industry codes and
ticker IDs) such that dropping them entirely would cause a loss of information.

In total, the handling of the entries that contain certain symbols shows that 90% or more of the
terms comprising question marks and quotation are noise, while digits are a relevant component

of about every other impacted entity.

Table 86: Overview on entries with digit(s) in term values (excluding industry codes, ticker IDs)

Meta Number of Number of After cleaning, After cleaning,
network entries with entries with entries with entries with
category  digit(s) in term  digit(s) after digit(s) being digit(s) being

digit cleaning relevant irrele vant
Agent 263 151 22% 78%
Atribute 7 0 0% 0%
Event 89 58 84% 16%
Knowledge 151 86 59% 41%
Location 290 188 62% 38%
Organization 534 307 60% 40%
Resource 148 89 61% 39%
Task 35 42 29% 71%
Blank 10 0 0% 0%
Total 1,527 921 54% 46%
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After the symbol handling was finalized, I manually defined concepts and meta-network
categories for all uncategorized terms (N=1,024). There is no explicit code book that would
guide this process, but several guidelines (Carley, Columbus, et al., 2011) and plenty of norms
have been established in the CASOS center for this process. I adhered to these norms, built upon
my experience with plenty of previous text coding project in CASOS, and double checked on the
cases that [ was uncertain about with the director of CASOS, Dr. Kathleen M. Carley.

Next, I worked through the entries in each entity classes individually. Doing that for the agent
class took the most effort, and the steps required there do not necessarily generalize to the
handling of the other entity classes. Therefore, I describe this process separately, followed by a

general description of problems and solutions for the other nine entity classes.

52.2.1.2.1 Agents

Most of the problems with the agent entries were cases in which instances of “roles” were
lumped together with reference to specific agents, such as “president omar al-beshir”. Also, for
all agents, we want to be able to distinguish between specific (omar al-beshir) versus generic
(president) instances. However, of the 29,690 agent entries, only 1,789 (6%) were marked as

!4 Moreover, instances of “roles” and “generic agents” mainly

“specific”, and 30 as “generic
overlapped. Another minor issue with the agent class was that several concepts contained spaces,

which I replaced with underscores.

In order to split up entries composed of generic and specific references to agents and to classify
all entries into either one specificity type, I started by manually reviewing the existing CASOS
roles file. This file has 741 entries. I decided to remove 18 of them, mainly because they often
occured as part of proper noun phrases, i.e. specific agents, e.g. “khalif”. T built a tool that
applies the roles file to the terms and concepts columns of a thesaurus and separates roles from
specific agent representations per line and column. Next, I went through all agent entries and
took everything that did not represent a specific agent out into a separate file (delete list). This

delete list contained 2,820 entries, some of which were additional roles, while others were noise.

Several types of conflicting cases were less straightforward to handle: some instances of roles are
often part of proper names, e.g. “pope” (“pope john paul”), “father” and “prophet” in a religious
context, or “khalif” and “khalifa”, e.g. Ayad Futayyih Khalifa al Rawi. Removing the role from
the name would not allow for mapping this name anymore to the text data, but might still be
helpful for cleaning up other names. Also, some roles overlapped with common proper names,

such as “king” in “martin luther king”, where removing “king” would also alter the proper name

'* Two more agent entries had the subtypes “corporate” and one as “non-corporate”.
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in an undesired way. Furthermore, some roles coincide with common nouns and noun phrases,
such as “west” in “allen west”, where mapping every instance of “west” in text data to this
particular agent might more often be wrong than right. For these scenarios, I made case by case
the domain of decisions based on which usage of a term (role or any other) seemed more
common for news wire data. Applying the resulting extended delete list to the agent entries did
impact 34.9% of the terms, 12.8% of the concepts, and 35.4% of all agent entries. Out of all
term-concept pairs that were subject to this process, 6.5% were reduced to empty pairs. It is
noteworthy that only 8.6% of the entries from the CT agent thesaurus were impacted by the role
removal process, which indicates that these entries had already been subject to cleaning
procedures and consistency checks.

In AutoMap, once a thesaurus has been constructed or changed, co-reference resolution has to be
performed on the thesauri in a manual fashion. This involves mapping synonyms to unique node
names. Also, since AutoMap does not yet disambiguate terms based on capitalization or part of
speech, a person has to decide which meaning of a capitonyms and homographs to assign to all
instances of these words, e.g. whether to code “rice” as a person in the sense of the politician or a
resource in the sense of food (AutoMap does not distinguish thesaurus terms based on
capitalization). The master thesaurus supports co-reference resolution by associating different
variations of a name with a unique spelling of that name. Several pseudonyms, aliases and noms
de guerre are also handled by the thesaurus. Since the cleaning routine described above had
impacted the terms and concepts, I had to redo the co-reference resolution. In fact, both, the CT
agent file as well as the other agent entries contained cases where one term was mapped to
multiple concepts in the original master thesaurus. I iteratively developed and implemented a
rule-based approach to solve this problem:

- All comparisons are performed on the level of exactly matching letters and numbers, but
not symbols.

- For all cases in which multiple occurrences of one term map to more than one concept,
the concept from the CT agent file is used if the term occurs in the CT agent file,
otherwise the most frequent concept is used.

- In the case of a tie, the term that first occurs in the alphabet is used.

- For unigrams, additional rules are applied: conflicts for unigrams occur if one part of a
name, e.g. Smith, is mapped to multiple combinations of a first name and a last name,
e.g. Amy Smith, Betty Smith, Cary Smith, etc.. For first names, it is hard to tell which
full name it is to be associated with. Therefore, unigrams are associated with the concept
from the CT agent file if the unigram occurs only once. Otherwise, the unigram is
translated into itself.
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Next, I deduplicated all agent entries by removing those entries that were identical in terms and
concepts. The deletion and co-reference resolution process had caused several terms to shorten in
the number of tokens, which implies the risk of mapping a meaningless or overly common term
to an agent, such as “john” (unclear which “john” is meant). I reviewed all terms and concepts
that had a length of four characters or less (N=686), and removed 27 of them as they were noise.
During this process, I found ten more terms that had been reduced to roles. I removed those lines,
but did not add the roles to the role file since those term represented some of the difficult cases

described earlier.

Next, I manually classified all entries in the roles file as the respective meta-network category

unless they were noise. Most of them were assigned to agent of subtype generic or to attributes.

Finally, I checked the agents file against a list of tribes in Sudan and removed one matching

entry from the agent file (“subayh’). This would have been a false positive in the agent class.

5.2.2.1.3 Using the Master Thesaurus for Extracting Meta-Networks

Once the Sudan master thesaurus was built, I used it as part of the D2M text coding process in
AutoMap. Since the corpus and thesaurus are sizable, I used the script version of AutoMap for
processing. With this version, the user fills out a script that specifies the coding choices and input
and output directories. In order to choose appropriate coding choices for this project, I drew from
the knowledge gained in chapter 2 and from consultations with other members in our group who
were also processing the Sudan corpus and other text datasets about large-scale, geo-political
entities. I specified the following coding choices:

- Cleaning of all texts: this routine deduplicates texts, removes meta-data, corrects typos by
applying a thesaurus of common typos, and expands contractions and abbreviations by
using thesauri.

— Thesaurus application: the master thesaurus described in the previous section was
applied such that only entries matching the thesaurus are kept in the data (thesaurus
content only option) while maintaining the original distances between concepts
(rhetorical adjacency option). Comparisons between text terms and thesaurus entries are
performed on a lower case basis. All concepts in the output data are also in lower case.

— Meta-network extraction: AutoMap uses the windowing technique for link formation.
The parameters taken into account for window-size specification include the text unit,
such as sentence or paragraph, and the number of words. Based on the experimental
results and respective practical implications for appropriate window sizes from chapters 2

and 4, I used a window size of seven. Also, I allowed for the windows to span across a
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sentence. In order to address the potential risk of finding false positives, I coded roles and

attributes not as instances of node classes, but as attributes of nodes.

The output from this process are directed, weighted graphs that are output in the DyNetML
format (Carley, Reminga, et al., 2011); a XML format developed for describing graphs. One
DyNetML file is output per input text file. I consolidated these outputs as follows: all files that
were published in the same calendar year were aggregated into one DyNetML file per year. This
requires each filename to contain the time stamp from the article in a specific format
(yyyymmdd). I used the publication data of articles as the timestamp. A limitation with this
approach is that the actual event may have happened prior to the publication data. Each resulting
DyNetML file represents all the nodes and edges that were found in all of the text files per year.
If a node or edge were found more than once, their initial weight of one was increased

accordingly. Once this process was completed, the DyNetML files were loaded into ORA.

Inspecting the network data files in ORA showed that many nodes still appeared as multiple
mentions, i.e. they represented the same entity, but had different node IDs and thus occured as
multiple nodes. For instance, there were still 18 different nodes that all represented Omar al-
Bashir. I used the following strategy for conducting another round of co-reference resolution,
now on the node level: first, I loaded and applied attribute files that assign a specificity value to
nodes where available. I had built these attribute thesauri as part of the master thesaurus and also
for my previous work on coding the Sudan data. Except for the agent class, these thesauri did not
cover all nodes in the networks. Therefore, I labeled all nodes from the organization class that
had a frequency of 1,000 and more in the union of all annual networks with the best fitting
specificity value. The number of 1,000 was chosen as an artificial cut-off point. Ideally, one
would want to assign a specificity value to all entities, but since this process has to be done
manually, such procedure would not be feasible for a single person in a reasonable amount of
time. Next, I selected all agents and organizations with the specificity value “specific”, and for
each of these nodes with a total occurrence of 1,000 times and more, I checked if they can be
merged with any other node from the same class and of any frequency, including frequencies of
less than 1,000. The resulting node merging lists can be stored, but need to be applied to every
network and node class individually in ORA. In total, just the process of assigning specificity

values and conducting co-reference resolution on the node level took about four days.

In summary, in comparison to the original agent portion of the master thesaurus, the reworked
portion contained 19.5% less unique agents and term-concept pairs (N=23,832), and 5.0% less
unique concepts (N=19,387). All remaining unique agents are specific ones - an increase by

22,043. Preparing the agent entries of the master thesaurus involved several limitations:
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First, terms that represent generic as well as specific agents were not removed from the file in
order to not to lose this information altogether. An example would be “christian”, which can be a
first name or a person that adheres to the Christian religion.

Second, translating unigrams into themselves causes a loss of precision in some cases, while in
others, it avoids the mapping common first names (paul, bill, mark) or common other words

(ban, rice) to one specific agent.

Third, terms that only differ in symbols are not considered as being identical, such as “hassan
yemen al-rabiai” versus “hassan yemen al rabiai”. I chose this rule because differences in
symbols often signal different agents, or this strategy would merge a term with a non-agent term,

such as “sa-id” and ““sa’id”’; both of which are common first names in the given domain.

Forth, the co-reference resolution approach is not optimal and also incomplete. On average, each
agent concept in the final master thesaurus maps to 1.2 terms. For example, “omar hassan al-
bashir” is mapped to “omar al bashir”, while “omar hassan ahmad al-bashir” is mapped to
“omar_hassan ahmad al bashir”, even though many variations of this name are collected
together under the latter and more common spelling. The rule based consolidation approached
used herein can only partially alleviate those issues. Moreover, in many cases, it is not obvious if
two similar names really represent the same person. Further resolving this limitation would

require subject matter expertise and further manual work.

While the first three limitations are classic caveats of rule based systems, the forth one is a
known shortcoming of thesauri. Furthermore, the first two limitations are specific to the agent
entries, while the last two ones also apply to cleaning other entity classes, which is described

next.

5.2.2.1.4 Limitations of Working with Thesauri

In general, the manual and semi-automated verification and correction of a thesaurus as
demonstrated in this section serves the validation of a thesaurus and the improvement of the
quality of the thesaurus. However, working with thesauri involves several limitations, which are
described in the remainder of this section. These issues are mainly due to the fact the master
thesaurus was built, maintained and extended over years based on multiple sources and rules and
by multiple people and teams from multiple organizations, which is a realistic and common
scenario. Working through the remaining nine entity classes (organization, location, resource,
knowledge, task, event, time, belief, attribute) revealed several common issues. These issues are

mainly due to