
Designing Energy and User Efficient Interactions
with Mobile Systems

Lu Luo

CMU-ISR-08-102

April 2008

School of Computer Science
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Daniel P. Siewiorek, Chair

Bonnie E. John
Priya Narasimhan

Diana Marculescu, Department of Electrical and Computer Engineering

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2008 Lu Luo

This research was sponsored by the Defense Advanced Project Agency (DARPA) under Contract No. NBCHD030010,
the National Science Foundation (NSF) under Grant Nos. EEEC-540865 and 0205266, the Office of Naval Research
(ONR), N00014-03-1-0086, and HP Labs. The views and conclusions contained in this document are those of the
author and should not be interpreted as representing the official policies or endorsements, either express or implied,
of DARPA, the NSF, ONR, HP Labs, Carnegie Mellon University, the U.S. Government, or any other entity.

Keywords: Mobile computing, energy efficiency, user interaction, user interface design,
cognitive modeling, ubiquitous computing

Abstract

Mobile computing has thrived to provide unprecedented user experiences beyond the boundary of
desks and wires. The increasing demand for mobility faces two major challenges: reduced form
factor and limited energy supply. Although each challenge has been addressed by significant
research efforts, the correlation between them is underexplored.

Energy efficiency should be integrated as an important metric of user interaction design in
mobile systems. By carefully considering the specific requirements of the user and the context of
usage, energy efficiency can be achieved without sacrificing user performance and satisfaction,
and interaction design that facilitates user efficiency can also promote energy efficiency.

This dissertation starts with a detailed study of typical workload and screen usage that shows
that users seldom use the entire screen on most workloads. Hence, Dark Windows, an energy
efficient display design is presented and implemented to optimize display power consumption by
adjusting the color and illumination of different screen regions according to the user’s workload.

This dissertation next presents AstroRDS, a mobile computing system and network infras-
tructure that displays documents and information from user’s mobile devices on ambient ubiqui-
tous display resources, thus facilitates much better viewing experience of the user with compara-
tively ease of use. The energy consumption and network usage of AstroRDS is several orders of
magnitudes less than VNC remote desktop protocol on viewing and controlling tasks, and with
similar initial loading overhead.

A common challenge in these two efforts is the high cost of measuring user experience and
energy consumption. This dissertation further presents KLEM, a quantitative methodology based
on cognitive modeling techniques that can predict both user performance and system energy
consumption from story boards of an interactive task during early stages of design. KLEM can be
used as a convenient tool to compare and make early decisions among different design options,
as well to resolve potential design issues before investing in actual user testing and iterative
development. While KLEM is presented with a focus on handheld devices, the methodology can
be applied on any interactive mobile system.

iii

iv

Acknowledgements

More than once I was warned against writing a PhD dissertation whilst working full-time, I am
glad that I managed it in three months. This dual-task period has been very demanding indeed,
but I found it exciting to get continuously inspired by new ideas from work for my writing, as
well as to see how my dissertation research may be further extended and applied in the real world.

Because of this I wish to express my sincere appreciation to my advisor, Prof. Dan Siewiorek
for encouraging me to reach out beyond graduate school and collaborate with industrial labs
on various projects that I was interested in, meanwhile keeping me focused on the right track
of my dissertation work. Dan’s insights, methods and knowledge not only made invaluable
contributions to this dissertation, but also influenced my development as a research professional.
Most importantly, I have been fortunate to work with an advisor like Dan, who was always there
for my questions and concerns, who never failed to correct even the tiniest typos in my writings,
and who treated all his students with care and the warmth of family.

My thesis committee is quite special in that except for Dan, all other three members are
female. I may not have worked directly with all of them, but I regard them as my role models for
developing a research career as a woman. I am indebted to Prof. Bonnie John for teaching me
cognitive modeling for one semester and shaping the research on KLM for mobile user interfaces.
The KLEM method would not be applicable without the ever improving CogTool provided by
Bonnie’s group. Besides providing prompt and insightful feedback on my research progress,
Prof. Diana Marculescu helped validating on the energy characterization methods used in my
research, and Prof. Priya Narasimhan’s “How to Write a Good (no, Great) PhD Dissertation”
presentation served as a great guidance during my dissertation writing.

I was fortunate to have had help and friendship from so many talented people at Carnegie
Mellon University. I have built Chapter 4 upon the work in collaboration with Harvey Vrsalovic
and Matthew Hornyak. As office mates we pulled many all-nighters together building systems
and running experiments, and as good friends it was always fun to exchange crazy ideas and
to have technical and profesisonal discussions with them. During the years of my PhD study,
Rong Zhang, Joshua Anhalt, and Ravi Mosur helped me a lot building a speech decoder built
on CMU Sphinx, which familiarized me with the basics of speech recognition systems. On
building cognitive models, Peter Centgraf provided the EventLogger for Palm PDAs. Gus Preva,
Alex Eiser, Don Morrison, and Jason Cornwell have helped me setting up CogTool or adding
new modeling features for me. My graduate study would not have been possible without the
guidance from Profs. Bill Scherlis, David Garlan, and Mary Shaw, who established the software

v

engineering PhD program, and it was a truly great experience for me to grow with the program
as one of the first batch of PhD students. My special thanks to Ms. Laura Forsyth, an amazing
lady and former car racer, who is always there when I need help. I would also like to thank
Prof. Asim Smailagic, Connie Herold, Helen Higgins, Walter Schearer, Marian D’Amico, Alicia
Brown, and all SCS and ICES supporting staff that have made my school life so much easier.

My PhD research also involved collaboration with many industrial researchers. In summer
2002 I worked as an intern at the HP Labs (former Compaq Western Research Lab) with Drs. Bob
Mayo and Partha Ranganathan and Chapter 3 is built upon this work. The IBM PhD Fellowship
funded me for the school year 2002 to 2003, and in summers 2003 and 2004 I worked as an
intern at the IBM T. J. Watson Research Center with Drs. Chandra Narayanaswami, Michael
Olsen and Marcel Rosu. I learned a great deal from all my internship mentors and would like to
thank them for the valuable research experience at such world-class institutes.

Truly great friends are hard to find, difficult to leave, and impossible to forget. My life at
CMU would have been much less enjoyable without the great friendships from Madhavi, Stella,
Joy, and many other people. I would also like to thank all my colleagues and friends in Pittsburgh
and New York area, you mean a great deal to me.

Finally, I would like to thank my parents for loving me, trusting me, and supporting me all
the time, and my wonderful husband Edward for filling my life with with so much love, care,
and laughter, you make me a better and happier person everyday.

Lu “Annie” Luo
April, 2008

vi

Contents

1 Introduction 1
1.1 Energy efficiency as a design metric . 2
1.2 Energy evaluation during early design . 4
1.3 Roadmap . 5

2 Energy and Mobile User Interaction 7
2.1 Interfacing hardware . 8
2.2 Interfacing software . 10
2.3 Interfacing human . 11
2.4 Summary . 12

3 Energy Adaptive Display 13
3.1 User study on screen usage . 13

3.1.1 Method . 14
3.1.2 Results . 14
3.1.3 Summary of user study . 19

3.2 Energy-adaptive display sub-systems . 20
3.2.1 System design . 20
3.2.2 Implementation . 21
3.2.3 Evaluation method . 22

3.3 Experimental results . 25
3.3.1 Power benefits . 25

3.4 User acceptance evaluation . 27
3.4.1 Method . 27
3.4.2 Results . 28

3.5 Discussion . 28
3.6 Summary . 31

4 Ambient Display 33
4.1 System architecture . 34

4.1.1 Remote display system . 34
4.1.2 Discovery protocol . 35

vii

4.1.3 Software architecture . 36
4.1.4 Lightweight user interface . 37
4.1.5 Ambient display and display protocol 38
4.1.6 Limitation . 38

4.2 Experimental results . 39
4.2.1 Network usage analysis . 39
4.2.2 Power consumption analysis . 40

4.3 Summary . 43

5 Predicting Mobile User Performance 45
5.1 Modeling user performance . 46

5.1.1 Cognitive engineering models . 46
5.1.2 The GOMS model . 48
5.1.3 The Keystroke-Level Model . 49
5.1.4 Modeling parallel activities . 50

5.2 Verifying KLM on pen-based interfaces . 50
5.2.1 Task definition . 51
5.2.2 Model creation . 52
5.2.3 User study . 53
5.2.4 Result analysis . 54

5.3 Estimate system response time . 56
5.4 Summary . 58

6 Keystroke Level Energy Modeling 59
6.1 Extending KLM for energy prediction . 59

6.1.1 Overview of KLEM . 59
6.1.2 Modeling process . 60
6.1.3 Energy characterizing process . 62
6.1.4 Mapping process . 67

6.2 Verification . 69
6.3 Comparing design alternatives using KLEM . 73
6.4 Summary . 77

7 Related Work 79
7.1 Energy optimization . 79

7.1.1 Activity adjustment . 80
7.1.2 Mode switching . 81
7.1.3 Using alternatives . 82

7.2 Energy characterization . 82
7.2.1 Measurement based approach . 82
7.2.2 Analysis based approach . 83

7.3 Energy and mobile user interaction . 84

viii

7.3.1 Human factors in energy optimization 85
7.3.2 User interface energy optimization . 85
7.3.3 Performance of mobile user interaction 86
7.3.4 Applications of KLM . 87

8 Conclusion 89
8.1 The prospect of mobility . 89
8.2 Contributions . 89
8.3 Future work . 91

ix

x

List of Figures

1.1 The interface is the computer system to the user 3

2.1 The GUI process . 10

3.1 Key statistics from user study . 15
3.2 Variation in the screen usage for typical user 16
3.3 Cumulative distributions of the active screen usages 17
3.4 Understanding screen usage by application. 18
3.5 Dark Windows software architecture . 22
3.6 Four Dark Windows designs . 22
3.7 Screenshots of Dark Windows designs . 23
3.8 Summary of synthetic trace properties . 24
3.9 Power benefits of four Dark Windows designs 26
3.10 Power variation over time for non-adaptive and energy-adaptive displays 27
3.11 Sensitivity of benefits from energy-adaptive designs 28
3.12 Other energy-adaptive designs . 30

4.1 An example mobile environment with ambient display and computing resources . 35
4.2 Network impact analysis . 41
4.3 Power analysis of video task . 42
4.4 Power analysis of PDF task . 42

5.1 The Model Human Processor – memories and processors 47
5.2 Snapshots of the CWG for NYC application . 52
5.3 Example KLM code for Method 3 - Graffiti . 53
5.4 Participants device usage . 54
5.5 Task execution time: predicted versus measured 55
5.6 Basic notations of software execution graphs (From [149]) 57
5.7 An example execution graph of the Map Navigation task 58

6.1 The process of constructing KLEM . 60
6.2 An example ACT-R model trace created using CogTool 62
6.3 Interaction activity benchmarks . 63
6.4 Power measurement testbed . 64

xi

6.5 A power state machine of typical graphical interface 65
6.6 Energy profile of a button press followed by a display update 65
6.7 Power state machine of a speech interface . 66
6.8 Energy profile of a speech recognition task . 66
6.9 Example benchmarks to obtain typical system power states 67
6.10 Obtaining system activity semantics from model visualization 68
6.11 A good mapping of energy profile and model visualization 70
6.12 A “poor” mapping of energy profile and model visualization 70
6.13 Specifications of target platforms . 71
6.14 Screenshots of CWG . 72
6.15 Comparison of measured user time and model predicted time 73
6.16 Comparison of measured task energy and model predicted energy 73
6.17 Energy profiles of list browsing methods . 75
6.18 A comparison of energy and time using different interaction modalities 76
6.19 A comparison of energy and time using different input methods 76

xii

Chapter 1

Introduction

Mobile computing technologies have largely extended user’s access to the convenience and as-
sistance of a conventional computer beyond the boundary of desks and wires. Today, millions
of people have jobs that require them to be on the move – whether they are sales representatives
who work in temporary locations, executives who oversee geographically dispersed operations,
students who constantly move from class to class and meet with professors and other students,
or other workers whose jobs simply require them to be on the go. More so, the upward trend of
taking graphical, audio, video, physical, and social information on the road in people’s everyday
life has shifted the tethered information model people are used to, toward “the mobile lifestyle”,
in which users can access information any time, anywhere1.

User’s accesses to information on-the-go are enabled by interacting with the diverse services
provided by mobile devices. A mobile device is a battery-powered, pocket-sized computing
system, typically comprising a small visual display for user output and a miniature keyboard
or touch screen for user input. Typical mobile devices include mobile phones, Personal Digital
Assistants (PDAs, also known as handheld device, handheld computer, “palmtop”, or simply
handheld), handheld game consoles, portable media players, personal navigation systems, eBook
readers, wearable computers, and so on.

The increasing demands for mobility face two major challenges: the reduced form factor
and limited energy supply. Although neither challenge by itself is new as significant research
efforts have been devoted to facilitating user interaction and optimizing the energy consumption
of mobile systems, the correlation between them is underexplored. What is the impact of user
interaction on energy consumption? How would different user interaction designs affect energy
consumption? How to make user interaction design decisions for better energy efficiency? Will
energy optimization techniques trade off the user’s performance?

Thesis: This dissertation intends to answer the questions above by introducing energy effi-
ciency as an important usability metric for evaluating mobile user interaction design. By care-

1Ubiquitous computing (or pervasive computing) is a further form of mobile computing, in which information
processing has been thoroughly integrated into everyday objects and activities. Someone "using" ubiquitous com-
puting engages many computational devices and systems simultaneously, in the course of ordinary activities, and
may not necessarily even be aware that they are doing so.

1

2 CHAPTER 1. INTRODUCTION

fully considering the specific requirements of the user and the context of usage, energy efficiency
can be achieved without sacrificing the usability of the interface or the experience of the user;
and interaction design that facilitates user efficiency can also promote energy efficiency. This
dissertation first presents two research efforts that adapt to the workload and requirements of
the user under different circumstances, and achieve optimal results in both energy efficiency and
user experience. A common challenge in these two efforts is the high cost of measuring user
experience and energy consumption. This dissertation then further investigates a comprehensive
methodology that, based on cognitive modeling techniques, can produce quantitative, a priori
predictions on both user performance and energy consumption at early stages of interaction de-
sign. This methodology not only enables designers to make quick decisions among different
designs, but also provides a cost-effective means of evaluation before investing in actual user
testing and iterative development.

This chapter begins with an overview of the correlation of mobile user interaction and energy
consumption and why it is important to research energy efficiency from the perspective of user
interface. Then, Section 1.2 emphasizes the importance of evaluating energy performance during
early design. The chapter concludes by providing a roadmap to the dissertation in Section 1.3.

1.1 Energy efficiency as a design metric

Energy efficiency should be considered as a major usability metric in the design of mobile sys-
tems2. Usability is “the extent to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified context of use” (ISO
9241, Part 11), where effectiveness is the accuracy and completeness with which specified users
can achieve specified goals in particular environments; efficiency is the resources expended in
relation to the accuracy and completeness of the goals achieved, and satisfaction is the comfort
and acceptability of the system to its users and other people affected by its use.

To the users of battery-powered mobile systems, it is a paramount concern whether or not
they can satisfactorily accomplish their specific tasks with the limitation of battery life. This
dissertation explores the efficiency of energy usage in mobile systems at the level of user inter-
face – the degree to which the design of a particular user interface takes into account the energy
consumption on specific user tasks on a mobile system. The motivation for taking this approach
is that users’ view of a computer system is often limited to and based solely on their experience
with the user interface – to users the interface often is the system [36]. The user and the com-
puter engage in a communicative dialog whose purpose is to accomplish some task, and all the
mechanisms used in this dialog constitute the interface: the physical devices, as well as computer
programs for controlling the interaction [26].

The user interface plays an important role of bridging the activities of the user and the com-
puter. Figure 1.1 illustrates the user-computer system structure in the context of mobile com-
puting. On the user side, although the user is the ultimate generator of system activities and

2Unless otherwise notified, “device”, “system”, “computer” are used interchangeably in this dissertation.

1.1. ENERGY EFFICIENCY AS A DESIGN METRIC 3

Figure 1.1: The interface is the computer system to the user

consumer of system resources, it is very difficult for a human being to make frequent decisions
on energy. For instance, users would welcome a longer battery life, but are often very reluctant
to manually make simple adjustments, such as lowering their display backlight, to reduce en-
ergy consumption, not even to mention complex adjustments on the time scale of the computer
system that is often measured in milliseconds. Computers are successful in doing computational
tasks that are impossible for human beings, but not equally successful for helping to increase the
usability for simple interactive tasks [92].

On the system side, energy consumption is usually optimized at either the software level by
changing algorithms, reducing performance needs, and re-compiling to use lower power instruc-
tions; or at the hardware level by providing power saving mechanisms to the software level, and
implementing novel circuit structures or devices. However, the tasks users perform on mobile
systems involve a significantly large amount of interactive activities, which are difficult to be
taken into account at the software or hardware levels, thus make energy optimization approaches
at either level less effective. As suggested by the end-to-end arguments in system design [130],
higher levels of a system has more information about the overall workload. Since the user in-
terface can be viewed as the highest level of a mobile system and serves as a bridge between
the user and the system, it is beneficial to optimize energy at the user interface level in order to
achieve better efficiency.

For mobile user interaction designs, note two key aspects for energy efficiency. First, energy
efficient user interaction design should not only look at the user’s immediate tasks, but also suit
the context or situation within which the system is expected to operate, e.g., the domain, and
the environment. Next, energy efficiency and other usability aspects can be achieved together by
carefully tailored user interaction design. This dissertation presents two studies that exhibit good
energy efficiency by leveraging mobile user interaction design with the user’s workload as well
as the surrounding environment. The first study presents “Dark Windows”, an energy-adaptive
user interface design that preserves energy on unused portions of the screen, based on the user’s
workload. The second study presents a remote display system that facilitates utilizing ambient
display resources and allowing users to view the documents and information from their mobile
devices more easily on ambient displays.

4 CHAPTER 1. INTRODUCTION

1.2 Energy evaluation during early design

Energy efficiency, though being ultimately important in mobile systems, is contradictorily often
considered at very late stages of production, if not after product completion. It is often not until
the post-implementation user test or usability analysis stage is the energy consumption presented
as a concern. To resolve the concern, necessary optimization may need to reach too far into the
system, either software or hardware, to allow timely and economical changes, and the product
has to be released with a label “battery killer”. In a sense, energy consumption is similar to user
interface design, which is separated from the remainder of system design as a standard practice
in developing interactive systems, and usability requirements are often postponed to the end of
development cycle where they are overtaken by time and budget pressures [79].

Energy efficiency should be more effectively and less costly addressed in early stages of de-
sign. The lack of concerns for energy efficiency is due to the unavailability of the actual product
for measuring energy usage, especially at early stages of user interaction design, when designers
often use sketching and other “low-fidelity techniques” (e.g. creating mock-ups, scissors, glue,
and post-it notes) [127] to generate, quickly try out, and compare design ideas. Later they may
use user interface prototyping tools or builders to implement the interface, or hand off the design
to a programmer. Despite the importance of addressing energy efficiency at the user interface
level, doing so is very difficult when many details of architecture, implementation, platform, and
runtime task execution are unavailable.

Another challenge to early energy efficiency evaluation is that how a human user actually
perform an interactive task on a computer, i.e., the steps the user takes and the cognitive de-
lays between consecutive steps, often remain unknown without the expense of observing and
recording the target application on real hardware executed by real users. Moreover, interaction
modalities available for mobile devices are quite diverse, which makes it particularly difficult
to predict and estimate run-time performance at earlier design stages before the application is
actually implemented, deployed, and user-tested.

Several key factors need to be addressed to bridge these gaps: a model of power consumption
in the target platform, feedback on what effect various design decisions might have on energy
use, a vision of how the application consumes energy and the ability to express that to the system,
and the flexibility to convey energy information between different levels of system.

This dissertation presents a quantitative methodology that takes into account the above key
factors and evaluates both energy consumption and user performance from interface design
mock-ups. This method not only enables cost-effective characterization at an early design stage,
but also helps identify possible energy efficiency issues in lower system levels. It gives user in-
terface designers, software developers, and system designers alike an explicit link between their
realms of expertise, allowing them to participate more effectively in the early design decisions
of an interactive system. This method also eliminates the amount of time and efforts needed to
conduct user studies at a later stage.

1.3. ROADMAP 5

1.3 Roadmap
Since this dissertation involves many aspects of a mobile system, it is first necessary to set up the
context on how each level of the system act on energy efficiency from a user interface point of
view in Chapter 2.

Chapter 3 motivates and studies energy-adaptive display sub-systems that match display en-
ergy consumption to the functionality required by the workload and the user. Through a detailed
characterization of display usage patterns, it is shown that the screen usage of a typical user is
primarily associated with content that could be displayed in smaller and simpler displays with
significantly lower energy expense. Energy-adaptive designs that use light emitting displays and
software optimizations are proposed, and significant, though user-specific, energy benefits and
user acceptability are shown.

Chapter 4 presents a mobile computer system and network architecture that provides ac-
cess to ambient display resources through a user interface tailored for mobile use, on perfor-
mance constrained devices. This system allows energy-efficient transfers of data and control
via a lightweight network protocol, and is built upon an application framework that integrates
model, view and control while remaining flexible enough to support diverse data types. Experi-
mental results show improvements in user interface latency and energy-efficiency versus existing
methods.

Chapter 5 brings forth using cognitive engineering models to predict mobile user perfor-
mance, and overviews the most widely adapted cognitive modeling techniques. This chapter
then investigates the accuracy of Keystroke-Level Modeling (KLM) predictions for interactive
tasks on a mobile device. The models are compared to data obtained from a user study of 10 par-
ticipants and shown to be able to accurately predict task execution time on mobile user interfaces
with less than 8% prediction error.

Chapter 6 presents the Keystroke-Level Energy Model (KLEM), a quantitative analysis method-
ology that predicts both user performance and system energy consumption of an interactive task
at early stages of system design. KLEM extends KLM by integrating system energy consump-
tion into the user model of KLM. A set of benchmarks are designed to obtain the necessary user
interaction and energy profiles of the system under study. The KLEM methodology is verified
by a user study of 10 participants on two mobile platforms and shows prediction accuracy that is
consistent with KLM. KLEM serves as a convenient tool to compare and make early decisions
among different design options, and to resolve potential design issues before investing in actual
user testing and iterative development. While KLEM is presented with a focus on handheld
devices, the methodology can be applied on any mobile interactive system.

Chapter 7 discusses existing work related to this dissertation. Chapter ?? concludes the
dissertation by summarizing the key contributions of this research, as well as discussing future
research directions generated by this dissertation.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Energy and Mobile User Interaction

Mobile systems run on the limited energy available in a battery and thus the energy consumed by
the system determines the length of the battery life. The electric energy E, measured in joules (J),
consumed by a mobile device over T seconds is equal to

∫ T
p(t), where p(t) is the instantaneous

electrical power measured in watts (W), and 1 joule = 1 watt-second. At any time t, the power
consumption p(t) is equal to the voltage v(t) multiplied by the current i(t) in direct current
circuit (Ohm’s Law). Realistically, given a sequence of n instantaneous power measurements,
each taken δ seconds apart, the energy consumed may be estimated as E =

∑n
i=1 pi(t)× δ, and

the average power P for such a sequence is approximately P = 1
n

∑n
i=1 pi(t).

The power consumption of a mobile system is determined by its hardware. Major hardware
components of a mobile system include the processor, memory, storage, network interface, dis-
play and other interfacing devices. At any time t, the instantaneous system power consumption
p(t) is determined by all hardware activities occurring at this time. Power efficiency of individual
hardware components can be achieved through better material, mechanical, device, circuit, and
architecture designs [28, 170], which is beyond the scope of this research.

This dissertation focuses on energy efficiency in respect of mobile user interaction design.
The energy consumption of a mobile system is determined by the combined performance of
hardware, operating system (OS), application software, as well as the human user. The user
interface is the aggregation of means of input that allows the user to manipulate a system, and
output that allows the system to produce the effects or responses of the user’s manipulation.
It can be viewed as the artifact of user interaction that is related to all four determinants of
system energy consumption above. An energy efficient user interaction design should take into
account not only the interface that define and present interaction behaviors, but also the system
components that affect interaction energy.

The following three sections provide a brief overview of the hardware, software, and human
elements involved in mobile user interaction, and their impacts on system energy consumption.

7

8 CHAPTER 2. ENERGY AND MOBILE USER INTERACTION

2.1 Interfacing hardware

User interaction with mobile systems cannot happen without the support of interfacing hardware
components or sub-systems. The most common way for today’s mobile user to interact is the
users providing discrete input sequences which on the whole can be generalized as various key
strokes, and the system responding by presenting information predominantly in a visual form. A
visual interface can be non-graphical, i.e., offers only text menus, or requires typed commands.
The scope of visual interfaces is broader than graphical user interfaces (GUIs), which focuses on
presenting graphical icons, visual indicators or widgets that are often in conjunction with text,
labels or text navigation to fully represent the information and actions available to the user.

The major hardware components in Visual interfaces and their characteristics are briefly
reviewed below.

• Display presents visual information to the user. Most mobile systems are equipped with
a small screen based on various liquid-crystal display (LCD) technologies [85]. Because
LCDs require external illumination (back-light or front-light), LCD-based display subsys-
tem often consumes more than half of the system’s total power [31, 157]. The organic
light-emitting diode (OLED) technology [53] is fast growing and is expected to gradually
replace LCDs in mobile devices. A significant benefit of OLED displays over LCDs is that
OLEDs do not require a front/back-light to function, thus have the potential of lower en-
ergy consumption. An OLED display can also be much thinner than an LCD panel, which
also increases mobility. How to optimize the user interface designs so as to reduce display
energy consumption will be discussed in this dissertation.

• Touchscreen enables displays to have the ability of detecting the location of touches, thus
allows the display to be used as an input device. Touchscreens have become commonplace
for various types of mobile devices and made them more usable [58, 71, 140]. Resistive
touchscreens1 are the most commonly used, usually pairing with a stylus to manipulate the
interface of mobile devices. By comparison, capacitive touchscreens2 have higher clarity
and can handle more than one touch at a time, as is used in the pinch open and two-finger
panning gestures on Apple’s iPhone. This brings new user interaction experiences but costs
more because of their more complex signal processing electronics.

• Keyboard is used on mobile devices (often without a touchscreen) to carry out activities
including data entry, control and navigation. One technique is to use a miniature version of
the traditional desktop keyboard, called “mini-QWERTY” or “thumb” keyboards, which
users average an initial 31 words per minute (wpm) and 60 wpm after twenty practices
[33]. Devices like standard mobile phones use the ISO keypad layout with 10 number
keys and a few extra keys, which reduces the size of the device, but the multi-tap text

1Resistive touchscreens use two layers of glass or plastic that can compress and locate the finger or stylus position
on a thin metallic, resistive surface. The layers can be damaged by sharp objects.

2Capacitive touchscreens use capacitive sensors behind the glass to sense when the electrical field is disturbed.
They can detect the finger from as far as 2 mm away. This allows for a more intuitive feel as the finger can glide
across the surface.

2.1. INTERFACING HARDWARE 9

entry technique used on such keypads can be very laborious and slow. Compared with a
conventional keyboard, where people can achieve 60+ wpm, multi-tap keypad can only
provide an average rate of 21 wpm for experts [142]. The dictionary-based, predictive text
method, T9, has significantly enhanced the basic multi-tapping and allows 40 wpm [142].
The Fastap keypad manages to squeeze a full alphanumeric keyboard with 50 keys in a
third of the space of a business card, and uses a technique called “passive chording” to
handle ambiguous key pressings [94]. Fastap has the advantages over multi-tap and T9 in
that users do not need to work in different ways depending on whether they are entering
numbers or words (modeless data entry) and that no training is required [34]. The Twiddler
keyboard uses 12 keys and an “active chording” system where the user has to press groups
of keys [104].

The much-reduced physical size and the human-centered mobile context provides motivation for
exploring novel interaction designs that increases usability. Besides the visual interface discussed
above, input and output forms (i.e. modalities) are extended to allow the user and device to
communicate more completely and in ways that better fit with mobile demands.
Gestural interfaces exploit human user’s expressive movements with fingers, hands or even

head. Handwriting recognition is the most widely used gestural interfaces in mobiles sys-
tems for text input and editing. The unistroke method [59] and Graffiti on Palm OS or
“Block Recognizer” in Windows Mobile platforms are example techniques that recognize
simple, distinct handwritten strokes by a pen stylus for inputting alphanumeric characters
as well as editing commands such as deleting text or capitalizing letters. Stylus or fin-
ger movements can also control an application, as with SmartPad [126] and TouchPlayer
[121]. Gestures can be used to lessen the competition for physical space in mobile sys-
tems, and accommodates the use-conditions likely with the devices. In tilt-based systems,
gestures can also be used for text, cursor and application control [68, 163, 164].

Auditory interfaces leverage human’s hearing capability. Auditory cues have long been used to
enhance the user experience with an interactive system. Auditory icons were introduced to
supplement visual cues [57], and earcons – synthetic non-speech sounds – were designed to
convey structural information about an interface [19]. In the context of mobile computing,
earcons were shown to help users enter data more effectively [21]. The most expressive
sounds for humans are languages, therefore speech recognition and synthesis techniques
for mobile UIs have attracted a lot of research interest [54, 73, 133, 162]. Speech recog-
nition based input has become quite common on mobile phones (e.g., voice dialing) and
PDAs (e.g. Microsoft Voice Command), but is used for domain-specific command and
control only, due to the relatively limited computing capacity of mobile systems. Recog-
nition accuracy is another difficult challenge for real-time continuous speech recognition.

Haptic interfaces involve human’s touch and movement sensing abilities. The “vibrate mode”
of mobile phones is a simple example of a haptic interface. The TouchEngine interface
could give users touch-based feedback by moving the PDA screen, and the users can be
given different information by varying the rhythm, intensity and gradient of the vibration
[122]. Others proposed to allow the user to manipulate the device by touching, grasping,

10 CHAPTER 2. ENERGY AND MOBILE USER INTERACTION

Figure 2.1: The GUI process

twisting, and bending [65, 135].

Multimodal interfaces combine several modalities and enables more natural interactions with
mobile devices as in human-to-human interactions. Multi-modality can help resolve am-
biguous input and make cumbersome dialog succinct. The QuickSet multimodal system
demonstrated potential improvements in speech recognition accuracy by using extra ges-
tural inputs [117].

Novel interaction technologies enrich mobile device’s ability of natural user interaction, on the
other hand, these techniques can also pose side-effect design problems such as ambiguity and un-
reliability. For instance, getting robust recognition-based input like speech and gesturing in the
real world remains an unsolved problem. From the perspective of enerusability, the extra hard-
ware components and processing overhead on recognizing audio or gesture interaction increase
system power consumption p(t), but it may also be expected that these techniques can efficiently
reduce task time T. Therefore it is necessary to investigate the trade-off between energy efficiency
and interaction modality in this dissertation.

2.2 Interfacing software
While interfacing hardware components mostly contribute to system power p(t), the software
portion of an interactive user task determines what hardware components are involved and their
various activities over time T, T =

∑
ti where ti is the time spent on each activity.

An interactive user task can be viewed as a continuous dialog between the user and the com-
puter. Each dialog is composed of several input-output cycles: first, the user generates some
input on a certain interfacing hardware component; next, hardware interrupts are created and
handled by the OS, which in turn produces UI events for the application software to handle; the
application then determines the output and calls OS services to present the output information
on appropriate hardware components. This end-to-end interfacing process happens though the
collaboration of different levels of software components involved, which is collectively regarded
as the interfacing software during an interactive task. To illustrate this dialog, the software com-
ponents involved in an input-output cycle in a GUI is depicted in Figure 2.1, since GUI is the
most common and familiar mechanism for user interaction.

2.3. INTERFACING HUMAN 11

Different operating systems on mobile devices – Windows Mobile, Palm OS, embedded and
mobile Linux, Symbian OS, etc. – provide their own user interface frameworks. Some oper-
ating systems integrate the GUI into the kernel, and others separate the GUI as modules. The
user interface framework, often called windowing system in GUI because window is one of its
primary metaphors, implements graphical primitives such as rendering fonts or drawing a line
on the screen, effectively providing an abstraction of the graphics hardware. Although different
vendors have created their own windowing systems based on independent code, GUI systems
share the same basic elements that define the “window, icon, menu, pointing device” (WIMP)
paradigm, and have the same organizational metaphors and interaction idioms. Mobile systems
typically use the WIMP elements with different unifying metaphors, due to constraints in space
and available input devices.

As is shown in Figure 2.1, interfacing hardware activities occur during user input and system
output activities; in between, hardware activities occur, computation and/or communication, to
process the input and generate the output. The time of each activity is determined by hardware
capabilities on the one hand and software performance on the other. The performance of inter-
facing software not only means how fast it handles the interaction, but also implies the amount
of information that can be conveyed via the output of the system to be processed by the user.
However, the computer system only forms one half of the interaction process while the other
half is the human user. The total time of an interactive user task also attributes to, after all, the
performance of the user.

2.3 Interfacing human
The design and evaluation of interactive computer systems should take into account the total
performance of the combined user-computer system [25]. A basic goal of user interface design
is to improve the interactions between users and computers by making computers more usable
and receptive to the user’s needs. A long term goal is to design systems that minimize the
barrier between the human’s cognitive model of what they want to accomplish and the computer’s
understanding of the user’s task.

For mobile systems, the barrier to designing more natural, efficient user interface is twofold.
On the one hand, the amount of device output real estate reduces the amount of information
conveyed and services provided to the user. For instance, the most common output technologies
for mobile systems are small, low-resolution screens. To deliver the same amount of information,
the mobile system needs multiple screen changes as compared with maybe only a portion of a
full-sized desktop display. From the discussions on interfacing hardware and software in previous
sections, conveying the same information takes longer software time, more hardware activities,
and thus higher energy consumption. It would be greatly beneficial to design user interfaces that
can effectively utilize the screen real estate and other output resources, and can convey more
information with fewer system activities without putting too much cognitive burden on the user.

On the other hand, the input mechanisms of mobile systems limit the user speed for data
entry, control and navigation. For systems equipped with a miniature keyboard or keypad, the

12 CHAPTER 2. ENERGY AND MOBILE USER INTERACTION

user can only use one or two fingers (usually thumbs) to press keys because he needs to hold
the device; even if the device is placed on tabletop, there is not enough room on the keyboard or
keypad to allow the user to use more fingers as in the much faster, desktop mode, touch typing.
For touchscreen based soft keyboard (on screen keyboard) inputs, only one finger or the stylus
tip is used. The user spends valuable time looking for keys and moving finger(s) or stylus for
each character. Despite the many research efforts on improving text entry speed using mobile
miniature keyboard or keypad, most approaches still remain in research communities rather than
widely being deployed.

Using handwriting gestures is another option for text entry on mobile devices equipped with
a touchscreen, and there are various forms of handwriting recognition mechanisms available on
different platforms. The performance of handwriting recognition depends on the writing speed
of the user, and the speed and accuracy of the recognition engine. Handwriting input has extra
demand on the processor and can lead to more energy consumption than keyboard input.

The final barrier for achieving optimized enerusability is the human user. While the speed
of processors become faster and interfaces become fancier, human users still have to read the
display, make a decision, and physically move during interaction at the same speed that previous
generations did – there is no Moore’s Law for humans [141]. Human evolution is a slow process
and society-wide human adaptation takes substantial time. Consequently, an increasingly faster
processor often spends a great amount of time (over 90% on some tasks according to the obser-
vations in [174]) and therefore energy waiting for a constantly slow human user for interactive
tasks. Furthermore, humans have a finite and non-increasing capacity that limits the number
of concurrent activities they can perform. In the context of a mobile usage paradigm, where
there are higher amount of distractions, users tend to try to multiplex more activities, which also
reduces their effectiveness [141].

2.4 Summary
This chapter began by describing the key factors that determine energy consumption in mobile
systems and pointed out the importance of user interaction design for energy efficiency. De-
signing energy efficient mobile user interaction requires an understanding of the energy usage
of the target system, the software that runs on the system, the energy impact of software design
decisions, as well as the energy impact of the human user.

This chapter first analyzed the characteristics of hardware components used in mobile inter-
action, and the corresponding interface modalities. More detailed, quantitative analysis of the
energy impact of different modalities will be discussed later in this dissertation. This chapter
then characterized the software processes that are involved in user interaction activities, and the
common elements of interfacing software. Finally, this chapter pointed out that the human user
is a key factor in mobile system energy consumption. Designing efficient user interaction can
not only optimize user performance, but also improve the energy efficiency of mobile systems.

Chapter 3

Energy Adaptive Display

One of the most important components of a user interface is the display subsystem. A display
subsystem consists of the electronics associated with the visual representation of the data the
system generates, particularly the display panel and the controller. Displays for mobile systems
and laptops have been based on different liquid-crystal display (LCD) technologies [85]. The
display subsystem often consumes more than half the laptop [157] or handheld [31] system’s
total energy.

Different users have different workloads and thus display needs. Having a “one-size-fits-
all” display targeted at the needs of the most aggressive workload often leads to large energy
inefficiencies in the display energy consumptions of other workloads and users. While current
approaches to reducing the display power focus on aggressively turning off the entire display
when it is not in use or using lower-quality or smaller-sized display panels, emissive display
technologies, such as Organic Light Emitting Diode (OLED) displays, allows lower power con-
sumption when a reduced area of the screen is in use [53].

This chapter1 presents an energy-adaptive display design that takes advantage of the increas-
ing availability of emissive displays. Based on the end user’s or application’s specific require-
ments, the display energy consumption can be reduced by controlling individual portions of the
display to consume different levels of power. Section 3.1 discusses the user study characterizing
display usage in detail. Section 3.2 presents example energy-adaptive display prototypes. Sec-
tion 3.3 analyzes the energy benefits and user acceptance of the display design and Section 3.5
further explores the design space with energy-adaptive displays.

3.1 User study on screen usage2

To understand the screen usage patterns and identify opportunities for power reduction, a detailed
study of typical workload and screen usage on laptop and desktop workstations is conducted on
a representative user population.

1This chapter is based on a joint work [76].
2The user study in this section is conducted by HP Labs collaborators prior to the joint work.

13

14 CHAPTER 3. ENERGY ADAPTIVE DISPLAY

3.1.1 Method

The user study is based on usage of the Microsoft Windows environment because of its widespread
acceptance and representativeness of the general mobile market. A total of 17 researchers within
the lab voluntarily participated in this study. All participants are highly technical users whose
typical usage and workloads diverse greatly and cover a cross section of mobile system usage
(administrative tasks, code development, personal productivity, entertainment, etc.). Both laptop
and desktop PC users are studied to obtain a broader understanding of display usage (many of
the laptop users use their machines as their main machine – both as a desktop and a laptop).
The systems used by the participants include a variety of screen sizes and display resolutions.
Column 2 in Figure 3.1 summarizes the properties of the systems used by the test population.

An application-level logger program is run on the users’ machines for times ranging from
1 to 14 days. The logger program is used to collect periodic information about (i) the current
window of focus – its size, its location, and its title and (ii) the size of total screen area used (all
non-minimized windows). The sampling rate was set to once a second. Screen savers are set to
turn on after a reasonable time (1-5 minutes) to isolate only the usage patterns when the user was
active. Column 3 in Figure 3.1 summarizes the length of the user traces. The traces range from 9
hours to 346 hours. The variation in the traces represent the differences in how individual users
use their machines during their participation in the study. Overall, the samples represent close to
100 days of continuous computer usage time. Column 4 in Figure 3.1 summarizes the length of
the “active” user traces, after factoring out the time spent in the screen saver as an indication of
the time the user was idle. Traces are still collected during the time it takes for the screen saver
to be activated, but given the length of the logs, the effect of this is minor. The sizes of the active
user logs range from about 6 hours to 61 hours of computer usage per user.

3.1.2 Results

Average screen usage

Figure 3.1 summarizes the information about the screen usage obtained from the user study.
Columns 5 and 6 present the mean and standard deviation, per user, for the screen usage of the
window of focus. For this study, the window of focus is defined as the window that accepts
keyboard or mouse input. The title bar, the scroll bars, menu bars, and other that are embedded
in the window are included in determining the size of the window of focus. Columns 7 and
8 present the mean and standard deviation for the additional screen area used by other non-
minimized windows in the system (i.e., the area not hidden under the window of focus).

Studying the average screen usage for the window of focus from Figure 3.1 shows that the
test population uses anywhere from 37.4% to 93.7% of the total screen area available to them.
An additional 2.3% to 34.1% of the screen is used by other background windows that are not
active, yet are not minimized. The last row of Figure 3.1 indicates the average usage across
the user population. This average is obtained by computing the arithmetic mean of the averages
of the individual users. This ensures that the average is not biased by users with larger log

3.1. USER STUDY ON SCREEN USAGE 15

Screen usage for active samples
User Display Log length Active samples Mean Std. dev Mean Std. dev

(column 2) (column 3) (column 4) Window of focus Background windows

Desktop user population
1 19” 1024x768 210 hours 33 hours 62.8% 38.5% 10.6% 21.2%
2 21” 1280x1024 346 hours 61 hours 57.2% 22.3% 11.6% 28.5%
3 19” 1280x1024 214 hours 31 hours 46.3% 19.7% 30.4% 19.7%
4 19” 1280x1024 64 hours 43 hours 36.7% 14.5% 34.1% 8.8%
5 19” 1280x1024 253 hours 27 hours 44.5% 22.7% 32.6% 21.1%
6 21” 1280x1024 229 hours 31 hours 55.5% 18.4% 24.7% 17.8%
7 21” 1280x1024 235 hours 30 hours 57.5% 19.2% 20.0% 18.8%
8 17” 1024x768 135 hours 13 hours 85.2% 26.2% 9.7% 24.4%

Laptop user population
9 13” 1280x1024 42 hours 23 hours 61.8% 21.6% 25.1% 22.3%

10 14” 1024x768 98 hours 54 hours 71.1% 25.4% 22.4% 23.9%
11 14” 1400x1050 57 hours 57 hours 37.4% 20.3% 7.2% 15.1%
12 14” 1024x768 20 hours 13 hours 93.7% 12.3% 2.3% 12.2%
13 15” 1024x768 169 hours 154 hours 43.3% 38.9% 17.5% 24.3%
14 13” 800x600 132 hours 6 hours 71.1% 37.6% 3.0% 15.0%
15 14” 1024x768 9 hours 6 hours 44.1% 21.4% 10.3% 15.3%
16 14” 1400x1050 69 hours 15 hours 54.6% 25.9% 18.5% 17.5%
17 14” 1024x768 10 hours 6 hours 77.3% 36.8% 5.0% 17.0%

Average screen usage – window of focus: 58.8%; background windows: 16.7%

Column 3 summarizes the length of the user traces while column 4 summarizes the length of the active
user traces after factoring out the time the user was idle. The window of focus columns summarize the
percentage of screen area used by the active window while the background windows columns summarize
the percentage of area used by other non-minimized windows not hidden under the active window.

Figure 3.1: Key statistics from user study

lengths. On average, across all the users, typically only about 59% of the entire screen area is
used by the window of focus, the primary area of interest to the user. An additional 17% of
the screen, on average, is used for background windows that are not minimized. In both these
cases, however, the standard deviations are fairly high indicating a wide range in the screen usage
values associated with each sample.

Screen usage distribution

To better understand the distribution of the screen usage characteristics, Figure 3.2 plots the
variation in the screen usage of the window of focus for one sample user, over the log collection
period. Each point represents the average screen area associated with one data sample in the

16 CHAPTER 3. ENERGY ADAPTIVE DISPLAY

Logged trace of the window of focus from User 1. Each point represents one data sample in the log.

Figure 3.2: Variation in the screen usage for typical user

log. As can be seen from the figure, the percentage of screen usage varies significantly over the
time when the data is collected, all the way from near-zero to near-100% usage of the screen.
Clustering of points at specific screen usage percentages can be correlated back to the continuous
usage of key applications used by the user and their normal (or default) sizes.

Figure 3.3 presents the same data for all the users in a summarized manner. Each line in the
graph represents one user from our test population and the thicker solid line represents values
averaged over all the users. The X axis represents the percentage of screen area used per sample
and is divided into bins of 5 each. The Y axis represents the cumulative number of samples
associated with each screen-area-percentage bin. For example, drawing a vertical line from the
50% screen area point to intersect all the lines will give us the cumulative number of samples
where each user uses less than 50% of the total available screen area. For User 5, this means that
close to 54% of the samples use less than 50% of the screen area.

To summarize the results in the graph, it can be observed that, on average, across all the users,
for almost 40% of the time, less than half the entire screen area is used. Some users spend more
time in windows less than half the screen area (for example, User 4 spends more than 90% of
their time in windows that are typically less than 25% of the total screen area).

3.1. USER STUDY ON SCREEN USAGE 17

Result derived from the test population. The X axis represents the percentage of screen area used per
sample divided into bins of 5 each, and the Y axis represents the cumulative number of samples associated
with each screen-area-percentage bin.

Figure 3.3: Cumulative distributions of the active screen usages

Screen usage corresponding to application behavior

In order to understand the relationship between the screen usage and the application behavior, the
samples from each of the user logs are categorized into four bins – (i) samples where the window
of focus usage was between 0 and 25% of the total screen area, (ii) samples where the window
of focus usage was between 25% and 50%, (iii) samples where the window of focus usage was
between 50% and 75%, and (iv) samples where the window of focus usage was between 75%
and 100%. For each bin, the key applications associated with the samples are analyzed. Figure
3.4 summarizes the results. As before, the arithmetic mean of the averages per individual users
is computed to avoid distortions due to trace lengths.

Overall, the workloads used by the user population span a range of applications representative
of typical system usage. Broadly, they can be categorized into (i) access related – web browsing
and e-mail (Internet Explorer, Outlook, mail reader, MSN Messenger), (ii) personal productivity

18 CHAPTER 3. ENERGY ADAPTIVE DISPLAY

Active area is 0-25% (23% of the time for typical user)
Key applications: 20% taskbar, 15% Program Manager, 5% X-term, 60% miscellaneous windows (message
composition, MSN Messenger, Real Player, menu and message windows – properties, connection status, file
downloads, alerts and reminders, volume control, printer status, find-and-replace, organizer preferences, file
explorer, spell-check, wizards, status messages, file-find, password query windows, confirmation windows)
Active area is 25-50% (22% of the time for typical user)
Key applications: 19% X-term, 18% message composition, 6% Internet Explorer, 57% miscellaneous
windows (mail related windows, File Explorer, Emacs and Notepad, MSN Messenger chat windows, other
status windows)
Active area is 50-75% (28% of the time for typical user)
Key applications: 33% Internet Explorer, 24% mail composition and reading, 43% miscellaneous windows
(Emacs and Notepad, Image Editor and Image Viewer, messenger chat windows, Frontpage, Framemaker
and Ghostview, File Explorer, Powerpoint, Dreamweaver, WinLogger)
Active area is 75-100% (27% of the time for typical user)
Key applications: 21% Outlook, 20% Internet Explorer, 7% Excel, 52% miscellaneous windows
(Powerpoint, Framemaker, Acrobat Reader, Word [various files], Visual Studio [various files]),
Dreamweaver, Imageviewer)

Windows are classified based on their sizes into four bins, and for each of the four bins, the key applica-
tions dominating the samples in the bin are summarized.

Figure 3.4: Understanding screen usage by application.

and code development (Word, Emacs, Powerpoint, Excel, Visual studio, Dreamweaver, X-term,
Real Player, Image Viewer, Acrobat Reader, Ghostview), and (iii) system related and applica-
tion control windows (File Explorer, navigation windows, taskbars, menus, status and properties
messages, confirmation and password query windows).

Focusing on the windows associated with the various applications, two interesting trends are
observed. First, system-related status messages and query windows typically use small win-
dow sizes; in fact, these windows constitute a significant fraction of the samples associated with
smaller size windows. Additionally, these windows usually display fairly low content that do not
need the aggressive characteristics of the display – for example, a comparably lower resolution
display with support for a small number of colors would be adequate to obtain an equivalent user
experience. Although careful design considerations of the display quality are needed to avoid
user performance deficits [41, 60, 64]. Second, personal-productivity applications and develop-
ment environments and web-browsing and e-mail applications typically use larger portions of
the display area. The actual fraction of the screen area used appears to be highly dependent on
individual user preferences for window size, fonts, etc. However, even with these large windows,
characteristics of the displays such as resolution, brightness, and color are not used to their full
capacity.

3.1. USER STUDY ON SCREEN USAGE 19

Screen usage corresponding to user behavior

Focusing on the individual user logs, it is observed that individual user preferences tend to signif-
icantly influence the overall screen usage characteristics. For example, User 1 who, on average
uses 63% of the display area, has Internet Explorer set to use 96% of the screen area, while User
5 who, on average uses 37% of the display area, has Internet Explorer set to use 67% of the
display area. Similarly, User 12, who has the largest screen usage in the study, has a default mail
composition window of 95% that dominates the traces. This user-specific sizing of windows
appears to be particularly characteristic of web browsing, email, and editor applications. In con-
trast, for development applications (Visual Studio, and Dreamweaver, Powerpoint), most of the
users prefer to have larger windows – possibly because of the multi-window content structure
of these applications. Similarly, system-related and application control messages typically use
smaller windows irrespective of the user – mainly since the content in these windows is relatively
low and in most cases the window sizes are pre-determined by the application. An illustrative
examples is the case of User 8 who maximized all windows as a matter of routine (“to be able to
read better”). This user still consumes only 85% of the total screen area because of the smaller
window sizes associated with system-related and application-control messages. Finally, while
the laptop users have a slightly larger screen usage (62% or 8.6”) than the desktop users (56%
or 10.9”) because of the smaller sizes of laptop displays, in general, similar conclusion can be
drawn from both laptop and desktop usages.

3.1.3 Summary of user study

Overall, there is a significant mismatch between the properties supported in the display and the
actual usage of these attributes by the users in the study. The size of the display used exhibits the
greatest mismatch – users use only about 60% of the screen area available. A large fraction of the
smaller windows are typically associated with system-related and application-control windows
that are independent of user preferences. User preference for smaller window sizes and font sizes
can also translate into a greater use of smaller sized windows.

Similarly, there are significant mismatches between the actual screen usage and other at-
tributes of the display such as resolution, brightness, color, refresh rate, etc. In particular, most
of the smaller windows include content that could have been equivalently displayed, with no loss
in visual quality, on much simpler lower-power displays (lower size, resolution, color, brightness,
refresh rates, etc.). Many of the larger windows also do not use all the aggressive characteristics
of the display.

These results indicate that energy-adaptive system designs that match display power con-
sumption to the functionality required by the workload/user have significant potential to reduce
the energy consumption of the display sub-system.

20 CHAPTER 3. ENERGY ADAPTIVE DISPLAY

3.2 Energy-adaptive display sub-systems
This section studies some example energy-adaptive systems to evaluate how the potential benefits
identified in the user study can be translated to energy reductions. Section 3.2.1 describes the
hardware and software components of these designs. Section 3.2.2 discusses the experimental
methodology used in prototyping and studying the user interfaces and the energy consumption
for the different designs.

3.2.1 System design
The design of energy-adaptive display sub-system uses emerging display technologies and mod-
ified window system software to exploit the mismatches between workload/user requirements
and display properties.

Hardware support: OLED displays

To enable energy-adaptive designs based on the user study results, a key requirement is to support
different levels of power consumption on individual regions of the display based on the content
of output which matches the user’s workload. The emerging Organic Light Emitting Diode
(OLED) display technology [53] is suitable to support such adaptive designs, because the power
consumption of an OLED pixel is determined by its brightness and color. OLED displays are
built from small organic molecules that efficiently emit light when stimulated by an electric field.
By 2007, More than 100 companies are developing aspects of OLED technology. Samsung, RiT
display, Pioneer, LGE, and Philips are among the top suppliers in terms of volume shipments.
Kodak, Sanyo, and Sony have shown prototypes from 5.5-inch displays to 13-inch displays at
trade shows [8].

In general, OLEDs have better image quality compared to conventional LCDs (better hori-
zontal and vertical viewing angles, higher brightness, and faster response times) and do not need
a separate backlight, resulting in lower power. As the technology matures, the biggest challenges
are in overcoming yield problems and consequently reducing costs. The latest information on
http://www.oled-info.com shows more than 150 product offerings using OLED displays in PDAs,
cell phones, MP3 and media players, digital cameras, and other applications [7].

For the energy adaptive design presented in this chapter, it is assumed that a laptop system
with a 15” Active Matrix Organic Light Emitting Diode (AMOLED) display is used. The only
hardware change needed is replace the conventional LCD panel, backlight, and controller with
their OLED equivalents.

Software support: Dark Windows

The software support for energy-adaptive displays can be implemented at one of several levels:
the application level, the windowing system level, or the operating system level. This research
focuses on modifying the windowing system. Specifically, the Dark Windows optimization uses

3.2. ENERGY-ADAPTIVE DISPLAY SUB-SYSTEMS 21

the current window of focus as an approximation of the active area that has the user’s attention,
and to reduce the energy spent on other screen portions. For example, when taking notes using
an editor, the user’s attention is typically on the screen region of the editor window, i.e. the
user’s current window of focus. Therefore, changing the brightness and color of other screen
portions should bring energy benefits, and should not impact the user experience negatively. To
verify this, the next two subsections will discuss the implementation of the Dark Windows energy
optimization, and the methodology used for evaluation. Section 3.3 will show the experimental
results on energy savings and user acceptance.

3.2.2 Implementation

Several different designs of the Dark Windows optimization are prototyped in order to com-
prehensively understand its impact on energy and user. Given the difficulties of modifying the
Microsoft windowing system that is integrated in the OS, Dark Windows is based on the open
source X-based Virtual Network Computing (Xvnc) server [128] for simplicity of implementa-
tion. VNC is a display system which allows viewing a computing desktop remotely, regardless
of the machine architectures. The part running on the host desktop is called the VNC Server,
and the part that views the desktop is called the VNC Viewer. Xvnc is the Unix VNC server,
which is based on a standard X server. Applications can display themselves on Xvnc as if it
were a normal X display, but they will actually appear on any connected VNC viewers rather
than on a physical screen. Xvnc provides a virtual representation of the display hardware – the
framebuffer, which brings two advantages to the proposed design: first, it is easy to manipulate
individual pixel values on a virtual framebuffer, and second, it is easy to access to the X window
server data structures and obtain necessary information such as the current window of focus.

Figure 3.5 shows the software architecture of Dark Windows. On top of the original Xvnc,
two modules are added – the Track module tracks the current window of focus and other ob-
jects that are being displayed, and the Modify module changes the values of the pixels in the
framebuffer based on the Dark Windows optimization algorithms. To change the brightness and
color of non-focus regions, an initial attempt was to simply calculate the new value of all pixels
on each display update. Unfortunately this approach greatly increased the computation over-
head and caused perceptible slowdown in the rendering speed of the modified interface. Since
Xvnc only updates those pixels that have been changed between framebuffer updates (based on
changes of the screen), same mechanism should be applied to Dark Windows, and a rectangular
update mechanism is used. Before each framebuffer update is sent to the VNC viewer, the Track
module obtains from the X-server and records the origin, width, and height information of the
current window of focus – the window that keyboard events are directed to. Then the pixels in
the regions of update are divided into two groups: Group 1 contains the pixels within the scope
of current window of focus, and Group 2 contains those that are outside it. Pixels in Group 1
are sent to the VNC viewer using the original VNC protocol without modification, and pixels in
Group 2 are modified according to the energy optimization settings of Dark Windows. Details of
the settings will be discussed in Section 3.3. Using this mechanism, the performance overhead

22 CHAPTER 3. ENERGY ADAPTIVE DISPLAY

Figure 3.5: Dark Windows software architecture

Design Modification
HalfDimmed Areas outside the window of focus are dimmed by 50%.
FullyDimmed Areas outside the window of focus are fully dimmed (turned off).
GrayScale Areas outside the window of focus are changed to gray, by setting red, green, and blue

values to the average of the three.
GreenScale Areas outside the window of focus are changed to green (lowest power color for OLEDs).

The green value is set to the average of the three colors, and the red and blue values are
zeroed. This also dims the screen by 67%.

These four designs change only the background brightness and color, the window of focus is not modified.

Figure 3.6: Four Dark Windows designs

is very small and can be neglected.
Figure 3.6 describes four energy adaptive designs on the brightness or color of the back-

ground (regions outside the window of focus). The HalfDimmed and FullyDimmed designs
change the brightness of the background3, and the GrayScale and GreenScale designs change
background color. Screenshots of these designs are shown in Figure 3.7. To allow the user to
disable the Dark Windows modifications at any time, a keyboard shortcut is added to the Track
module.

3.2.3 Evaluation method

The goals of the evaluation are two-fold. One is to understand the intrusiveness of the energy
adaptive user interface designs and the complexity and overhead associated with implementing

3This study only considers two representative data points – half-dimmed and fully-dimmed. However, the Dark
Windows implementation supports parameter based, customized dimming designs that fit individual need and pref-
erence.

3.2. ENERGY-ADAPTIVE DISPLAY SUB-SYSTEMS 23

Figure 3.7: Screenshots of Dark Windows designs

the Dark Windows optimizations. The other is to quantify the energy benefits in the context of
one particular technology, namely OLED displays, and understand the design tradeoffs between
the various optimizations.

Although the Xvnc server for Linux is used for implementation convenience and fast proto-
typing, the study of energy benefits aims at Microsoft Windows to converge with the user study
described in Section 3.1. A synthetic trace is constructed to model the average user behavior
observed in the user study, and to replay it in Dark Windows. The trace synthesizes a set of
applications that are similar in nature to those used in the user study and the total running time
is about 1000 seconds. The trace initializes and terminates the applications with various window
sizes and duration of active time to simulate user behaviors. Although the majority of the users
in the test population kept the default setting, some chose other backgrounds and window colors.
The energy impact and benefit are studied under both situations. Figure 3.8 summarizes the prop-
erties of applications used in the trace. Compared with the data in Figure 3.4, the synthesized
trace in Figure 3.8 simulates the user study results.

Given the unavailability of 15” OLED displays (aside from rare prototypes) at the time of this
study, a software power model is used to characterize the energy consumption of the modified
display sub-system. The power model computes the display sub-system power as the sum of

24 CHAPTER 3. ENERGY ADAPTIVE DISPLAY

Avg. window size 59%
Avg. background windows’ size 17%
0-25% screen usage 23%

(taskbar, xterms, miscellaneous)
25-50% screen usage 22%

(xterms, editors, mail readers, miscellaneous)
50-75% screen usage 28%

(web browsers, mail readers, editors, miscellaneous)
75-100% screen usage 27%

(web browsers, mail readers, miscellaneous)
Default screen background color Teal
Default window color White
Default foreground font color Black

The trace models the average behavior exhibited in the user study and was created to match the data from
Figure 3.4.

Figure 3.8: Summary of synthetic trace properties

the controller power Pcontroller, the driver power Pdriver, and the display panel power Ppanel.
The controller and driver power are modeled as constant values irrespective of what is displayed
on the screen. The panel power represents the pixel array power Ppixelarray and is the total of
the power consumed by each pixel in the panel array. The power consumed by each pixel is
proportional to the brightness of the red, green, and blue components. Let Vred, Vgreen, and Vblue

be the value of each red, green, and blue pixels, correspondingly, and the values of a pixel range
from 0 (off) to 1 (fully on). The brightness of each pixel can be adjusted between 0 and 1, and
the smaller the value is, the more dimmed the display. For all the pixels in the framebuffer:

Pdisplay = Pcontroller + Pdriver + Ppanel (3.1)

Ppanel = Ppixelarray =
∑

PredVred +
∑

PgreenVgreen +
∑

PblueVblue (3.2)

The power values of the model are obtained from the datasheets of existing OLED displays
and have been validated by display specialists. For the target 15” OLED display, the Pcontroller is
set to 0.5W and Pdriver to 1W. The maximum of Ppanel is 8.5W. On full brightness, a green pixel
consumes the lowest power (2.2µW), while a red or blue pixel needs higher power (4.3µW).

3.3. EXPERIMENTAL RESULTS 25

3.3 Experimental results

3.3.1 Power benefits

Each of the Dark Windows designs modifies the pixel values in a different manner, thus resulting
in differing energy usage. The power consumption of each design is measured on running the
synthetic trace. In comparison, the default interface using the original color scheme on a LCD
panel and an OLED panel are also measured. The OLED power model discussed earlier is used
to compute the power for the five OLED configurations. The LCD power model is based on the
characteristics noted by Choi et al. [31]. For the synthetic trace, the power consumption of the
LCD panel hardly varies (less than 1%), and therefore is considered constant.

Figure 3.9 summarizes the energy measurement results. When using the original configura-
tion, the power consumption of the OLED display is 25% lower than the constant 10W power
consumption of the LCD display, thanks to the teal background color in the original configura-
tion. With the OLED display, a teal colored pixel (RGB: [0,131,131]) consumes only 30% of the
maximum power a pixel consumes when it is in white color (RGB: [255,255,255]). Moreover,
the Dark Windows optimizations can provide additional power reductions, for instance, the Ful-
lyDimmed optimization provides an additional 20% reduction compared to OLED original, and
a total of 43% reduction over the LCD original. The FullyDimmed power reduction comes from
dimming the background windows (from white to black) that do not have the focus and the screen
background (from teal to black). The HalfDimmed configuration only provides half the power
reduction but it allows the non-focus screen portion to remain visible to the user. The GreenScale
optimization provides 40% energy reduction over the LCD original, and 15% reduction over the
OLED original. The color value of non-focus regions in the GreenScale scheme is computed by
taking the average of the R, G, B values of a pixel, clearing the R and B values, and assigning the
average to the G value. Recall that the green pixel consume the lowest energy in OLED displays.
The combination of using the most energy-efficient color and reducing the brightness by 67%
leads to the energy benefits for this configuration. The GrayScale configuration averages the R,
G, B values and assigns the average value as the new R, G, and B values, thus makes the pixel
gray. However, the measurement results indicate a 1% increase in energy compared to OLED
original, although still 28% lower than LCD original. This is because converting the default teal
background color (RGB: [0,131,131]) to gray (RGB: [87,87,87]) results in higher value of the R
pixels, which consume higher power. Alternatively, energy benefits can be achieved by using the
GrayScale configuration when the background color is blue or red.

Figure 3.10 shows the power variation over time of three configurations – LCD, OLED, and
FullyDimmed. The LCD line represents a non-energy-adaptive LCD display that has relatively
constant power consumption, invariant to the size and content of what is displayed on the screen.
The OLED line shows the benefits that can be obtained from using an energy-adaptive OLED
display technology, but without changing the color or brightness of the user interface. In this
case, the power benefits mainly come from using the default teal-colored background, which
consumes less power than lighter (e.g. white) colors. The window of focus variation line at
the bottom represents the size of the foreground window (in percentage of the full screen) that

26 CHAPTER 3. ENERGY ADAPTIVE DISPLAY

Figure 3.9: Power benefits of four Dark Windows designs

currently has the user’s focus in the synthetic trace defined in Section 3.2.3. The smaller the size
of the current window of focus (which is white colored as is shown in Figure 3.7), the larger
the background (which is teal and consumes less power) size, and the less total display power
consumption. The trace synthesizes a set of applications that are similar in nature to those used
in the user study and the total running time is about 1000 seconds. The trace initializes and
terminates the applications with various window sizes and duration of active time to simulate
user behaviors. On top of the power savings from smaller foreground window sizes, the Fully
Dimmed configuration shows the combined power benefit from using an OLED panel and the
Dark Windows optimization that changes the background color to black.

As is evident from the above discussions, the energy benefits from energy-adaptive display
designs are highly dependent on the choices of the background color and the window color. The
synthetic trace runs with the Windows default scheme to closely represent the majority of users
in the test population. To better understand the impact of other schemes, Figure 3.11 shows
the energy consumption of various configurations in the extreme cases of pure white and pure
black background and window colors. With black background and black windows, the OLED
display achieves the highest benefit from energy adaptation – an 80% reduction compared to
LCD. The power is mainly consumed by the display controller and driver, and by small-sized
non-black window elements such as the title bars. The Dark Windows software optimizations
only bring slight improvements over the original configuration. In the other extreme case – the
white background and white windows scheme, the OLED original barely provides any improve-
ment over the LCD, and the FullyDimmed configuration reduces the power by 35%. While the
all-black and all-white schemes define the upper and lower bounds of the power benefits, the
other two schemes show some intermediate points where both the hardware and software opti-
mizations obtain good benefits. These results indicate that energy-adaptive configurations must

3.4. USER ACCEPTANCE EVALUATION 27

Figure 3.10: Power variation over time for non-adaptive and energy-adaptive displays

be carefully selected for different usage scenarios to obtain optimal energy benefits. It is im-
portant for designers to understand typical user behaviors and usage scenarios before applying
energy-adaptive display configurations. In some cases, it might be adequate to use the OLED
display hardware alone and choose proper color schemes to save power. However, using the
Dark Windows software optimizations can provide further benefits in addition to the hardware
energy reductions.

3.4 User acceptance evaluation

3.4.1 Method
To determine the impact of the Dark Windows designs on usability, nine researchers are randomly
selected from the same group of 17 researchers in the previous user study of Section 3.1.1. The
users are asked to freely perform some tasks like opening a text editor, typing some text and
then switching to a browser window. The Dark Windows prototype running the synthetic trace is
also demonstrated to each user. The users are then informally surveyed on two questions. First,
without describing any battery life issues, the users are asked to choose the four Dark Windows
designs they like the best. Second, the users are shown the energy benefits from the various Dark
Windows designs and then asked to choose their favorite interface again, with the assumption that
they are in a situation that required longer battery life, such as during a meeting or an airplane

28 CHAPTER 3. ENERGY ADAPTIVE DISPLAY

Figure 3.11: Sensitivity of benefits from energy-adaptive designs

trip.

3.4.2 Results
Overall, users hardly notice any difference in the rendering speed between the original interface
and the Dark Windows prototype. Most of the users indicate a willingness to use Dark Windows
to trade off longer battery life for a different user interface. Four out of nine prefer the Green-
Scale scheme, three preferred HalfDimmed, and two preferred FullyDimmed. Most of the users
express a desire to be able to see the contents of the background, even at the expense of higher
energy consumption. Interestingly, even without an awareness of the energy benefits, four users
prefer the Dark Windows schemes (GrayScale and HalfDimmed) over the original.

The Dark Windows designs could be improved in several ways (to be discussed in Section
??). However, the goal of this study is not to perform an exhaustive exploration of the de-
sign space for user interface optimizations, but instead to establish that energy-adaptive display
sub-systems can provide energy benefits with interfaces that users are likely to find acceptable,
particularly in return for longer battery lifetimes.

3.5 Discussion
Overall, the experimental results indicate significant energy benefits from energy-adaptive dis-
play designs. The base OLED design achieves 30% reduction in energy compared to a base LCD
non-energy-adaptive design – with no change in the user interface. The other Dark Windows op-
timizations change the user interface in different ways by dimming or changing the color of the
background screen area and achieve user-specific, energy benefits. In particular, the choice of the

3.5. DISCUSSION 29

background and window color can have a key impact on the power reductions. For the default
windows background used by users of the user study, the best optimizations, FullyDimmed and
GreenScale achieve close to 40% energy benefits over the base non energy-adaptive design. An
informal user study indicates reasonable acceptance of these user interfaces, particularly in the
context of an awareness of the energy benefits from trading off the interface for longer battery
lives.

The configurations discussed in the previous section illustrate some example energy-adaptive
display designs. In this section, other possible energy-adaptive options for display design will be
discussed.

Other choices on energy adaptive display hardware

Besides OLEDs, there are other display technologies that enable energy-adaptation design, e.g.,
optoelectronic and light-emissive displays such as Field Emission Displays (FED), conventional
Cathode Ray Tube (CRT) displays, and hybrid displays with LCD panel and OLED backlights.
For display technologies like LCDs that do not support energy variability, designs can still inte-
grate a multimodal “hierarchy of displays” configuration. For example, a mobile device could
have two displays – one higher quality (high resolution, color, high refresh rate, larger size)
higher power, and the other lower quality lower power. Theoretically, the idea of Dark Windows
can still be applied to this hierarchical configuration with energy benefits.

Exploring other software energy-adaptive optimizations

Other indicators of user activities can be used in addition to the current window of focus. For
example, preserve the brightness of the region around the cursor and make the rest of the screen
dimmed. Another option is to support user-controlled dimming regions. For example, the user
interface can include a “sticky lamp” placed by the user to light up a specific portion of the
screen. Much as we do in the physical world, the user can use multiple “sticky lamps” to light
up the work area if the current workload requires switching between two or more windows. An
alternate implementation can include a “headlight” around the mouse pointer. The user can then
point the headlight over regions of interest as needed.

There are yet other application specific dimming interface choices. For example, in a pro-
gramming environment, there may be a concept of the current procedure and related variables.
Portions of the screen related to these can be made bright, for example, all references to a variable
and all calls to a procedure. In an email application, perhaps only the current message needs to
be illuminated. In a word processor, the line of text being edited needs to be illuminated, the sur-
rounding couple of lines lightly dimmed, and the rest of the document darkly dimmed. Similarly,
for applications like Microsoft PowerPoint that use frames within an application, the notion of a
frame-of-focus can be defined, similar to the window-of-focus. Moreover, another dimension to
these user interface optimizations is to make them time-based. For example, areas of the screen
that have recently changed could be bright, fading to a dimer value as time progresses. When
inactivity is detected, an email application could dim its screen area until new mail arrives.

30 CHAPTER 3. ENERGY ADAPTIVE DISPLAY

The left picture shows the default interface design where the email notification takes the entire display.
The design in the middle uses two display panels to save power on the larger display whenever it is
feasible to display a small amount of information like the email notification on the smaller display. The
right picture shows how display power for low-content messages can be reduced by using simpler visual
such as a blinking LED or non-visual cues such as sound.

Figure 3.12: Other energy-adaptive designs

Other user interfaces can be developed by combining the optimizations above. Additionally,
other sorts of display mismatches could be exploited. This study has focused on identifying
the mismatch between the total area of the display and the area of interest to the user. Other
properties of the display, such as resolution and refresh rate should be exploited as well.

Support for output modes beyond displays

The notion of having multiple displays can be taken one step further to match output content
to notification mechanisms beyond displays. For example, an email notification that says “You
have mail” on the display could be replaced by an LED that blinks on the arrival of email or
other similar notification mechanism such as speech output, vibrations, etc. (Figure 3.12). As
discussed in Section 3.2, a lot of the smaller windows are typically low content windows which
can employ other forms of non-visual communication. This combined with the large design
space for alternatives for energy adaptiveness indicate the potential for an interesting future area
of research – energy-aware user interfaces.

Accessing user acceptance on handheld devices

The work discussed in this chapter has focused on laptop-level mobile displays. However, as
previously discussed, the notion of energy-adaptive display designs can be applied to handheld
mobile systems with appropriate selection of optimization schemes, and can potentially provide
a positive or even enhanced user experience. While the energy benefits of such designs have
been demonstrated in this work, the impact on perceived ease of use, quality, and overall user
acceptance on handheld devices should be explored.

3.6. SUMMARY 31

Two subsequent user studies were conducted to assess the user acceptance of the energy
adaptive display designs. One formally studied 12 handheld users from the Houston area [66],
and the other formally studied 12 experienced PDA users from the Boston area [20]. In the
user studies, researchers walked participants through scenarios representative of typical day-to-
day handheld device use such as e-mail notification, mail checking and reply, note taking, book
reading, and checking battery life. Researchers showed participants the default and energy-
aware screens in random order and, at the end of the scenario, asked them to fill out a series of
quality and acceptance ratings on a nine-point scale. For each interface, participants engaged the
prototype to complete the task, offered verbal remarks, and provided ratings based on interface
appearance and usability, both before and after learning about the battery-life improvements. A
power reduction of 22%-88% over the standard interfaces was evaluated based on detailed power
modeling at Kodak that matches the specific chemistry of the OLED display.

In general, participants found the energy-aware user interface designs acceptable. In some
cases, they rated the energy-aware designs as highly acceptable and even preferable in specific
situations that benefited from improved contrasts and more readable text. Most participants also
preferred energy-aware designs that dimmed the background behind pop-up messages. Partici-
pants preferred these interfaces because they greatly reduced energy consumption while making
it easy to view all necessary text when completing their tasks. Participants rated a flashlight-
based interface lower and preferred alternate single-color backgrounds to save energy. It identi-
fies that energy-aware interfaces can actually provide a good combination of energy benefits and
greater ease of use by leveraging features that improve usability instead of simply providing a
trade-off.

3.6 Summary
This chapter presents the design and prototype of energy adaptive displays. This work gives
a detailed characterization of the display screen usage of a representative test user population
and indicates novel opportunities of energy reduction based on the functionality required by the
workload/user. Built upon the insights obtained from the user study, example energy-adaptive
display designs are prototyped. At the hardware level, this design leverages OLED displays
of which the energy consumption is related to the brightness and color. At the software level,
the Dark Windows power optimization methodologies are presented to enable the windowing
environment to change the brightness and color of screen regions that are not of interest to the
user. The experimental results show significant, though user-specific, energy reductions with
good user acceptance.

32 CHAPTER 3. ENERGY ADAPTIVE DISPLAY

Chapter 4

Ambient Display

Chapter 3 has discussed adapting interface design to the user’s need and workload to reduce
display energy consumption. While task-specific energy benefits can be achieved for laptop-
level mobile systems, the Dark Windows optimizations reduce the already small size of screen
real estate on mobile systems that are more portable, such as PDAs and mobile phones, which
cuts down the amount of information that can be conveyed on the display. Many users carry
their mobile devices with gigabytes of personally interesting information. However, the small
size of the devices are not optimized for comfortably reading long documents, viewing large
photographs, or watching high resolution movies. Users often need to transfer the files using
a memory card or synchronize their devices with a desktop computer using synchronization
software such as ActiveSync and HotSync, and then view the documents/photos/movies on the
desktop display. However, synchronizing information from a mobile device to a desktop PC is
slow, sometimes undesirable especially when the PC belongs to another user, and sometimes
impossible when the user is on the move or a necessary connecting equipment (memory card or
cable) is not available. For example, for users who merely want to preview a video or skim a
document sent through email, they must find a secure desktop system so as to not compromise
their email account information. They have to make sure that the desktop has the means to
exchange files with the device. They also have to face problems with varying versions and
capabilities of email readers.

This chapter1 presents the Astro Remote Display System (AstroRDS), a mobile computer
system and network architecture that facilitates utilizing of ambient ubiquitous computing re-
sources and allowing users to more easily view the documents and information on their mobile
devices. Many mobile devices are equipped with multiple wireless networking media including
cellular data, Bluetooth and Wi-Fi. Many environments contain embedded computers and data
projectors, including offices, meeting rooms, and classrooms [9]. Just as public Wi-Fi “hotspots”
and rooms on corporate and school campuses equipped with projectors are now commonplace,
various environments in the near future will have ambient computing resources available to roam-
ing mobile users. The user needs an easy-to-use system to manage the discovery and utilization

1This chapter is based on a joint work [161].

33

34 CHAPTER 4. AMBIENT DISPLAY

of ambient resources, as well as to manage the data to be transmitted and manipulated across
various devices.

The system architecture of AstroRDS is described in Section 4.1. The network performance
and power consumption characteristics of AstroRDS is analyzed in Section 4.2. The experi-
mental results show the performance of AstroRDS is favorable on a series of common mobile
document display tasks in terms of both network bandwidth usage and power consumption. In
Section 4.3, a discussion of future extensions to the system that can increase its flexibility and
utility is given.

4.1 System architecture

4.1.1 Remote display system

There have been various solutions to display mobile content on ambient resources. Chapter 3
has introduced the Visual Network Computing (VNC) protocol [128] and implemented energy
adaptive display designs based on it. VNC focuses on full interaction and control on one com-
puter from another computer or mobile device. Optimizations on image encoding in the VNC
protocol are presented in [96]. Optimizations on display command selection and queuing using
display-driver level access are described in [15]. Microsoft’s Remote Desktop Protocol (RDP)
allows a “thin client” user to connect to a computer running Microsoft Terminal Services through
a network connection [4]. A functional simulation of wrist-worn projector and a set of interaction
techniques are described in [18].

The Pebbles project [110] studies how computing functions and the related user interface can
be spread across all computing and input/output devices available to the user, and suggests the
notion of “multimachine user interfaces” (MMUIs). Their focus is how handhelds and PC work
together when both are available. For individual users, Pebbles studies the research issues of
using multiple computers simultaneously to control an application; sharing information among
the computers; and using handhelds as personal universal controllers. For group work, Pebbles
studies the research issues of private displays versus shared displays and interaction techniques
for multiple users.

There are existing systems that create a virtual device remotely, then emulate input and output
on this virtual replica based on input and output received from the actual, remote device. This
makes the assumption that the input and output modalities of the remote and local device are
approximately equal. In the case of mobile devices like wearable computers with significant
input/output limitations and an ambient display with far greater output capability, this assumption
is severely violated.

AstroRDS enables a controlling mobile device and an ambient display device to work to-
gether to manipulate data between them, with the specific constraints of the respective devices in
mind. Therefore the system design focuses on operating within the power and user interface con-
straints and architecture limitations of mobile computing devices. The AstroRDS is composed
of three components: a network protocol for discovering and interacting with ambient displays,

4.1. SYSTEM ARCHITECTURE 35

Figure 4.1: An example mobile environment with ambient display and computing resources

a lightweight user interface for mobile devices, and an ambient display system that is capable
of viewing files of various data types transmitted from mobile devices. The discovery protocol
allows the mobile devices to locate the appropriate ambient display resources within the environ-
ment where the user is located. After selecting a resource, the user can view the file displayed on
the ambient display using a paired software architecture consisting of mobile control and ambi-
ent display components. The mobile control program is developed using an efficient mobile user
interface toolkit. The ambient display component is developed using a novel ambient display
framework.

4.1.2 Discovery protocol

AstroRDS operates in an environment scattered with display and computing resources of various
capabilities, as is illustrated in Figure 4.1. While some may be connected to a backbone net-
work, others may only have a local radio capable of point-to-point connections with peer devices
such as a user’s phone or PDA. While roaming in this environment, the system must: (1) detect
the display and computing resources in the immediate environment and determine the relative
physical location with respect to the user; (2) query resources to determine their processing and
graphical output capabilities; and (3) form and break connections quickly between the user’s
mobile device and the resource. In addition to these three provisions, the discovery protocol
must be minimally disruptive to the network environment whenever possible. Also, as it will be
running continuously on the mobile device, even when the user is idle, it must be power-aware
in order to maximize the device’s limited battery capacity.

A lightweight discovery protocol for AstroRDS is designed that uses a simple mechanism to
satisfy the above requirements. The protocol works over IP, with the ambient resources (displays,
processors, etc.) broadcasting UDP packets at periodic intervals. Each packet can be variably
aimed in network scope: some packets can be sent on the local subnet only, while others can

36 CHAPTER 4. AMBIENT DISPLAY

be broadcast to the next subnet up and so on (as long as the intermediate bridges, gateways,
and routers are configured to allow such behavior). This offers high-level, coarse control on the
visibility of individual resources. This is desirable in cases where a particularly useful resource
should be advertised to as many users in the immediate and extended area (e.g. campus wide,
citywide) as possible.

To avoid network congestion, broadcast messages cannot convey all the information neces-
sary for users to determine if a particular resource has the capabilities to carry out a desired set of
operations. However, the messages are sufficient to narrow down the set of candidate resources to
those most likely to support the desired operations. Once the user selects a resource to examine,
the second level of the protocol allows the user to determine if it meets the precise requirements
by making a specific query to the resource. The information returned by the query reflects not
only the resource’s overall capability, but also its current service capacity. For example, though
a display is able to handle large format bitmaps, it may currently be in use and thus momentarily
incapable of servicing such requests. The query and response messages, though designed to be
efficient, are not critically constrained in size as they are infrequently transmitted relative to the
periodic and constant transmission of the broadcast resource announcements.

After a user selects a candidate screen and confirms its availability from the mobile device,
a connection is initiated. Though the connections are performed via TCP, giving the notion of a
reliable-delivery circuit, the nature of the system and the underlying wireless connection medium
require the system to accommodate frequent and unpredictable disconnects, both wanted (the
user decides to simply walk away) and unwanted (network error causes the connection to be
broken). AstroRDS places all connection management functions in responsibility of the mobile
device, as the user is the only one who can completely determine the nature of the disconnect.
The ambient resource remains robust and saves connection state in case of an “unexpected”
disconnect (one that comes without an explicit disconnect message), but only as long as a new
connection from a different user is not initiated. In the future, the ambient resource may save
state indefinitely, to be resumed in the future, or transfer state to another compatible ambient
resource, to resume the session there.

4.1.3 Software architecture

Since most of the interaction that users perform on their mobile devices focuses on the remote
display and manipulation of data, a data-centric software architecture is developed for AstroRDS.
This simplifies the integration of other mobile applications (such as mail clients) with the system,
as they need only pass the document and its data type to the system. The software architecture has
two components: the processing and output component that runs on the ambient resource, and
the user interface and data storage component that runs on the mobile device. Each application
has specific requirements for output and the types of user controls needed. The ambient display
is used as a dedicated display for the user’s document, and the mobile device is tasked with
displaying the user interface.

This architecture provides optimal separation of function based on the capabilities of each

4.1. SYSTEM ARCHITECTURE 37

device. Code necessary to create a responsive user interface is kept local to the mobile device,
and code for displaying and manipulating the file is assigned to the remote display as it has the
necessary CPU and power resources.

In order to minimize network traffic to preserve bandwidth and power resources, the protocol
is implemented in binary instead of XML or other more verbose protocols. Each function in the
user interface transmits a control message. Messages are typically under 20 bytes in length. The
UI can also send query requests to the display in order to provide the user with status updates
about the interface. For example, an ambient display showing a document can provide the mobile
device with thumbnails of each page.

Files are streamed over the wireless network without being altered. Because most modern file
types (documents, images, and video) are already compressed, altering the file by compressing
it is unnecessary. Furthermore, sending the file in its native format allows the ambient display to
manipulate the data by the mobile system transmitting only control commands over the network,
rather than retransmitting portions of the file (either as raw display data or otherwise).

4.1.4 Lightweight user interface

The user interface of the mobile device changes its functionality and control types based on the
data type being manipulated. For example, a text document viewer needs page up/down, text
search, and zoom controls. A picture editor requires finer-grained pan-and-scroll, as well as
region selection and cut-and-paste controls.

This system needs a lightweight user interface framework for creating interfaces that adapt
to the data type being displayed. It must meet the following requirements:

(1) Capacity to support a full range of user interaction through a collection of easy-to-use
“widgets,” such as buttons, list menus, sliders, knobs, and indicators that can be individually
used or grouped with other widgets.

(2) The user input mechanism is tailored to handle inputs from a wearable or handheld mobile
device.

(3) Adding and removing widgets from the interface should be possible at runtime and should
be fast. The entire composition of the user interface (which widgets are placed where) must be
able to be changed to a different layout instantaneously.

(4) The memory footprint of the entire user interface mechanism must be as small as possible,
with an upper limit of 10 megabytes.

Of the above requirements, (3) and (4) are considered to be of primary importance. The
user interface framework is composed of a variety of application component modules called
AppModules. Each AppModule is associated with an ambient display component and data type.
For instance, a text display is controlled with the TextView AppModule, an image display is
controlled with the ImageView AppModule, and so on. An AppModule consists of a description
of which control widgets are used and where they are located in relation to one another on the
mobile device display. It also contains rules of what actions are to be taken corresponding to
each control being selected or activated by the user.

38 CHAPTER 4. AMBIENT DISPLAY

AppModules are self-contained and hold the code necessary for redrawing component wid-
get controls and processing external events. Each AppModule is given a portion of the total
screen space to “own” when it is instantiated. When told to exit, it cleans up and repaints the
screen space automatically, and releases any memory heap resources. This provides a flexible
and convenient mechanism for managing different applications within the user interface frame-
work. Current mobile devices are always memory limited relative to PCs, and the number of
application components running on the mobile device can quickly consume all of the available
memory if being loaded simultaneously (the minimum memory footprint of an AppModule is
currently around 100KB). However, since the user will load and view one document at a time,
only one AppModule needs to be loaded and active, although AstroRDS can understand many
data types (each with its associated AppModule). AppModules can be quickly loaded and un-
loaded at runtime, so the memory footprint can be efficiently managed. There can be provisions
for multiple AppModules, up to the limit of memory and screen space.

4.1.5 Ambient display and display protocol
The ambient display, like the mobile user interface, operates in a modular, data-centric manner. It
consists of two layers: a network listener and some filetype-specific DispModules. The network
listener accepts requests to display files, loads the appropriate DispModule, then routes the file to
it. Each DispModule reads the file from the network layer and responds to commands sent by the
mobile user interface over the network. For example, the video player DispModule is capable of
decoding and displaying the video and responds to commands to rewind or pause the video. Each
DispModule can also process the file it has received. For example, the image display module can
rotate the image using the CPU power of the ambient display (which is faster than the CPU on the
mobile device). DispModules take advantage of existing file display libraries. This allows new
file types to rapidly be added to the ambient display system. DispModules can run statelessly;
that is, since only one file is displayed at a time, they are able to withstand disconnection and
reconnection without losing the ability to control the display.

4.1.6 Limitation
One of the biggest limitations of the prototype system is that for each new data type, a new
AppModule must be specifically written and compiled for the mobile device architecture (in our
case, WindowsCE targeted for the ARM platform). An ambient display component must also be
written (Windows, x86 platform). If a new data type is introduced after the binaries are deployed
on the devices, there is no provision to add the ability to handle it. One way to solve the problem
is to introduce a virtual machine (VM) mechanism to run interpreted code. Mobile devices would
carry the data as well as a VM-coded program that contains instructions on how to render the
data to the screen, and the hooks that the control component running on the mobile device can
use to manipulate the data. The mobile device could also run a version of the VM, allowing
control components to be changed or added at runtime. Different hardware, both in the domain
of the ambient resources as well as mobile devices, require VM runtimes to be written natively

4.2. EXPERIMENTAL RESULTS 39

for that hardware, while on the other side keeping compliant with the VM exported interfaces
used by the display and control component programs.

4.2 Experimental results

Experiments are performed to test the power consumption and network bandwidth performance
of AstroRDS in comparison with a system that uses the VNC remote desktop protocol. The ex-
periments consist of a series of typical file display operations using common file types: Windows
Media Player, JPEG, Microsoft Word, Excel, PowerPoint and PDF. The experiments measure the
time, bandwidth, and power required to display the files and perform typical viewing operations
using the applications (such as zooming or scrolling through pages).

For comparison, the VNC system used in the experiments is called PocketVNC. It allows a
desktop computer running Windows to access and control a PocketPC 2003 device. It works by
using a TCP connection initiated from a client on the desktop computer, connecting to a server
process on the PDA. The server process encodes the output that would ordinarily be sent to the
PDA screen and reroutes it over the TCP connection for the desktop client to display. Also, the
keyboard and mouse input on the desktop is encoded and sent to the PDA, where the input data
is used to emulate stylus and/or hardware button presses.

Both systems use identical hardware. The PDA is a Dell Axim X5, which has 32MB of
RAM. It is also equipped with a 512MB SD Card for storing the files and a Symbol Networker24
802.11b card. The ambient display was a PC with a 1.7GHz Pentium M processor and 1GB of
RAM.

4.2.1 Network usage analysis

One of the key differences in the way that AstroRDS works versus VNC-like systems is that
Astro sends a large amount of data to “preload” the file so that later control messages can be
short, much like a cache. Once the file has been transmitted, only control information is sent
over the network, rather than control and display information. This results in less data sent per
control transaction, such as when a document scroll or zoom command is performed and the
display needs to be updated. VNC systems do not need to “preload” the entire data file as our
system does. However, VNC must continuously encode and transmit any updates to the screen,
such as when a document is scrolled or zoomed, even though the original source data of the
document has not changed.

To analyze the potential tradeoffs between the two approaches with respect to network band-
width usage, a series of operations are performed on both AstroRDS and the PocketVNC system,
and the amount of data sent from the mobile device to the display device measured . The oper-
ations are chosen that represent common actions one might take when viewing various types of
documents: a video clip, a JPEG picture, a PDF document, and a PowerPoint presentation. All
results are plotted as amount of data sent over the network (in bytes), on a logarithmic scale.

40 CHAPTER 4. AMBIENT DISPLAY

For the video file test, a 231 second, 320x240 WMV9-encoded digital video clip is used.
In the VNC test case, a 64-color video display setting is chosen with “hextile” encoding. The
AstroRDS test uses the full-color display mode. Figure 4.2(a) shows the result of the test. The
columns on the left represent the video clip played back from start to finish. The network usage
is approximately comparable. However, the VNC system is sending the framebuffer over the
network in 64 colors (5-bit color), and sending 24-bit color (in which the source file is encoded)
framebuffers would cause significant overhead in VNC.

The right columns show a seek operation into the middle of the file (after it has completely
loaded) followed by 15 seconds of playback from the location. The AstroRDS case has signifi-
cantly less usage, since it sends only the control data and the video data is already on the display
device. VNC must resend that portion of video. There is already a net savings for AstroRDS
on the first seek operation, and this compounds with each operation. This is favorable behavior
since it is reasonable to assume that a user will perform many operations on the file once it is
loaded, giving AstroRDS the opportunity to offset the costs of the initial transfer.

Figure 4.2(b) shows the results of the Portable Document Format (PDF) file test case. This
consisted of loading the document and waiting for it to be fully rendered to the display, for VNC
and RDS. After the image was loaded, a “page down” operation was repeated until the end of
the file was reached. The screen was fully re-rendered before the next page down command was
issued. The RDS case again sends only the control information and leverages the fact that the
display device already contains all of the document data. VNC must resend actual graphics data
to re-render the display. This trend is continued with the zoom operation test.

The PowerPoint test, shown in Figure 4.2(c), consisted of loading a typical 19-slide presen-
tation, then scrolling through each slide. The next slide command was delayed until the current
slide was fully displayed. Figure 4.2(d) shows the Image test, in which a fairly large (720x960),
24 bit color image was first loaded, then zoomed to 2x size, and scrolled half a page up and then
half a page down.

VNC sends substantially less data while loading the file. However, VNC again sent much
more data while browsing the document. This somewhat understates the difference, as Pock-
etVNC transmits a 320x240 image, whereas AstroRDS displays a full 1024x768 image. These
results show that the initial “preload” is a good tradeoff for efficient performance while browsing
the document. This works much the same way as caching, in that savings on future operations
offset an initial “expensive” operation. For example, a user who browses through a longer doc-
ument and frequently scrolls through the document will benefit from this tradeoff every time he
changes pages. It is expected that most users will perform a greater number of control operations
than tested, and as such, AstroRDS should perform even better in practice.

4.2.2 Power consumption analysis

The power analysis is focused on the two most representative file types: Windows Media Video
and PDF. Figure 4.3(a) shows the moving average of Watts of power consumed by playing back
the sample video used in the network bandwidth analysis. VNC consumes significantly more

4.2. EXPERIMENTAL RESULTS 41

(a) Video test (b) PDF test

(c) PPT test (d) Image test

Figure 4.2: Network impact analysis

power than RDS, particularly after RDS finishes transmitting the file (which occurs at around
75s). VNC’s power consumption is high because the system is tasked with reading the file from
the memory card, decoding the video file, writing it to the framebuffer, encoding the framebuffer
for transmission, and sending the screen contents using the network adapter. The power con-
sumption of RDS is relatively low during transmission because the system is merely reading the
file from the memory card and sending it using the network adapter. The CPU remains relatively
idle, allowing the operating system and CPU’s to conserve energy. After file transmission com-
pletes, power consumption on the PDA using RDS returns to idle levels while the video plays on
the ambient display.

Figure 4.3(b) shows the moving average of Watts of power consumed by the PDA watching
fifteen seconds of video then moving to another part of the video and watching for an additional
fifteen seconds. The file has already been cached by the ambient display.

RDS remains idle for most of this task, whereas VNC is forced to keep the CPU and radio in
operation for the entire duration. Aside from power used to transmit the play and move messages,

42 CHAPTER 4. AMBIENT DISPLAY

(a) Video playback (b) Video navigation

Figure 4.3: Power analysis of video task

(a) PDF loading (b) PDF zooming

Figure 4.4: Power analysis of PDF task

RDS allows the PDA to remain idle. VNC must perform the same set of tasks it performed while
playing back the full video, preventing it from realizing any power savings. To illustrate the
power consumption performance for viewing a document, a PDF file is used. Figure 4.4(a)
shows the moving average of Watts of power consumed on the PDA in opening the PDF file on
the ambient display.

VNC consumes more power than RDS because it is using the CPU to decode and display
the PDF file as well as encode VNC packets for transmission. RDS has four power peaks, each
corresponding with the transmission of a batch of ten file payload packets. Figure 4.4(b) shows
the moving average of Watts of power consumed by the PDA while zooming in four times on the
document.

AstroRDS is able to utilize the faster CPU of the ambient display to perform the zoom oper-
ation, allowing it to complete and return to idle in half the time of VNC. The system consumes

4.3. SUMMARY 43

significantly less power, with peaks coming at the transmission of each command. VNC con-
sumes the same level of power throughout the operation as it uses the CPU to render the zoomed
document and encode the display packets for continuous network transmission.

4.3 Summary
This chapter has reported the AstroRDS system that allows remote display and control to largely
improve the user experience on viewing documents from the mobile device. A prototype system
is implemented and the energy and network impacts are studied. Experimental results show that
AstroRDS has orders of magnitudes benefit on energy and bandwidth for viewing and control-
ling tasks, with similar initial loading overhead when compared with the VNC remote desktop
system.

44 CHAPTER 4. AMBIENT DISPLAY

Chapter 5

Predicting Mobile User Performance

So far this dissertation has discussed two mobile user interface designs that optimize system
energy efficiency without negative impact on, even improve, user performance and interface
usability, when carefully tailored with user activities and usage contexts. Both approaches are
challenged by a common problem: to verify the benefits of the design, the time and efforts
expended on user study often exceed that on design and implementation, and the diversity of
mobile user interfaces exacerbate this issue.

The diversity of mobile user interfaces is now greater than ever. As discussed in Chapter 1,
mobile systems vary tremendously in purposes: there are consumer products and business prod-
ucts; in form factors: they range from sub-laptop tablets to wrist wore watches; in functionality:
there are phones, PDAs, media players, game consoles, wearable computers and other appli-
ances; in platforms: there are 30-40 different operating systems available [132] and the major
ones among them are Windows Mobile, Palm OS, Linux, Symbian, and Android; in interaction
modalities: there are keypads and keyboards, stylus and fingers, touchscreens and head-mounted
displays, writing and speech; and most of all, in applications, services, and contexts. It is utterly
important to get the mobile interface design right, it is even more so to evaluate and compare
different design options with as little cost as possible.

This dissertation presents a cognitive modeling approach that focuses on producing quanti-
tative a priori predictions for interacting mobile user systems that have not yet been built. Cog-
nitive modeling methodologies are grounded in the extensive theoretical and empirical work of
HCI researchers and can be used without further empirical validation to make predictions. This
chapter first shows how cognitive modeling can be used to effectively predict user performance
on mobile systems. The next chapter will describe in detail the methodology of using cognitive
modeling methodologies to predict the energy consumption of mobile systems.

Section 5.1 briefly introduces the psychology science base of modeling user performance and
the advantages and limitations of cognitive engineering models. Section 5.2 investigates the ap-
plicability and prediction accuracy of KLM on pen-based, touchscreen mobile interfaces. Lastly,
Section 5.3 discusses using software performance engineering (SPE) techniques to estimate the
system response times.

45

46 CHAPTER 5. PREDICTING MOBILE USER PERFORMANCE

5.1 Modeling user performance

5.1.1 Cognitive engineering models

The nature of interaction between the human user and the computer is communication. Com-
pared to the fast and diverse evolution of mobile systems, human users have evolved very little in
basic capabilities from their ancestors. Users who interact with computers build up a skill set of
efficient, smooth, learned behaviors for carrying out their routine communicative activities. The
interaction process is intensely cognitive, even the most routine activities, such as using a com-
puter text-editing program, require the interpretation of instructions, the formulation of sequence
of commands, and the communication of these commands to the computer [26].

The theoretical basis of cognitive modeling methods used in this research is the Model Human
Processor (MHP) described in the seminal book The Psychology of Human-Computer Interac-
tion (CMN) [26]. An analogy to the information-processing system (i.e. computers) in terms of
memories and processors, the MHP, which can be described by a set of memories and processors
with a set of principles of operation, is intended to be used for making approximate predictions
of human behavior. The MHP can be divided into three interacting systems: the perceptual sys-
tem, the motor system, and the cognitive system, each with its own memories and processors, see
Figure 5.1. For some tasks such as pressing a key in response to some text, the user behaves as a
serial processor; for other tasks such as reading, it is possible for parallel operations of the three
subsystems.

The MHP laid a foundation for HCI cognitive modeling research and practices to provide
engineering models of human performance. Such models endeavor to predict execution time,
learning time, and errors of human users and produce a priori quantitative predictions of per-
formance at an earlier stage in the development process than prototyping and user testing. The
predictions can be used to identify problems in a user interface as well as making comparisons
among different design decisions. Ideally, these models should produce accurate predictions that
are appropriate to different design situations, and they should allow designers without extensive
training in psychology to use with minimal effort.

The quantitative predictability of cognitive engineering models is based on the extensive
theoretical and empirical work by HCI researchers to estimate parameters that are robust and
reliable across tasks. These parameters do not have to be fixed constants for all situations, but
they must be determined a priori so as to be used without further validation to make predictions.
These parameters incorporate psychological principles into the models, thus allowing computer
engineers to use them without much psychological expertise.

Like all engineering models, cognitive models cannot cover the entire span of user computer
interaction tasks, and there are issues like predicting creativity that may never be addressable
with cognitive models. Fortunately, cognitive models can provide effective coverage of three ex-
tremely important issues [81]. First, the lower-level perceptual-motor issues, such as the effects
of layout on key stroking or mouse pointing, can be captured by existing models. Second, the
complexity and efficiency of the interface procedures is addressed very well by current models.
Third, it is essential that how activities are performed together be considered for design.

5.1. MODELING USER PERFORMANCE 47

Sensory information flows into Working Memory through the Perceptual Processor. Working Memory
consists of activated chunks of Long-Term Memory. The Motor Processor is set in motion through activa-
tion of chunks in Working Memory. (From [26])

Figure 5.1: The Model Human Processor – memories and processors

Like all engineering models, cognitive models include only the details necessary to analyze
the design, and are approximations to the processes involved in human behavior. The models
allow designers to recognize when the design problem involves issues and factors not addressed
by the models. The next sections will discuss new issues identified for mobile user interaction
tasks.

Predicting user performance with cognitive models does not replace real user testing, rather,
it should be used to reduce the amount of user testing required to improve usability. Cognitive
modeling may be used together with other nonuser testing techniques [112, 115] during early
design process to evaluate different designs and resolve potential design issues before investing
in actual user testing and iterative development.

One fundamental principle of MHP on task analysis is the Rationality Principle [26], accord-
ing to which, a user’s behavior can be predicted by analyzing the task to determine the user’s
goals and operators with the constraints of the task. The GOMS model was created for taking
into account the cognitive information-processing activities of the user.

48 CHAPTER 5. PREDICTING MOBILE USER PERFORMANCE

5.1.2 The GOMS model
The GOMS model is specified by four components that form the user’s cognitive structure: a set
of Goals, a set of Operators, a set of Methods for achieving the goals, and a set of Selection rules
for choosing among competing methods to achieve goals. Specifically:
Goals are what the user wants to accomplish by using the interface, the software, and the sys-

tem. Goals are often divided into sub-goals, all of which must be accomplished to achieve
the overall goal. Goals and sub-goals, if any, are often arranged hierarchically, but not
required. This allows different levels of parallelism in variants of GOMS.

Operators are the actions that the system allows the user to take. Operators can change the
user’s internal mental state or physically change the state of the external environment. For
command line user interfaces, an operator can be a command and its parameters typed on
a keyboard. For GUIs, an operator can be a menu selection or a button press. For novel
mobile user interfaces, an operator can be defined as a gesture stroke, a speech syllable, or
an eye movement.

Methods are well-learned sequences of sub-goals and operators that can accomplish a goal. If
a goal has a hierarchical form, there should be a corresponding hierarchy of methods. The
content of the methods depends on the set of possible operators and the nature of the tasks.

Selection rules present the user’s knowledge of which method should be applied if there is
more than one method to accomplish the same goal. Selection rules can come from a
user’s personal experience or from explicit training.

Note that goals and operators differ at the required level of details. The analyst provides a method
that uses operators to specify the details of how a specific goal is to be accomplished; in contrast,
operators are usually more “primitive” and are not composed of any lower level operators.

The GOMS model has been widely known and verified by extensive HCI research [26, 61,
87, 114]. The parameters created for the original GOMS model have been extended to cover a
wide range of tasks. Based on basic GOMS concept, there are four major versions of GOMS
[80, 81]:

1. CMN-GOMS: This is the original formulation proposed in [26]. CMN-GOMS was a
loosely defined demonstration of how to express a goal and sub-goals in a hierarchy of
methods and operators and how to formulate selection rules.

2. NGOMSL (Natural GOMS Language) [87, 88]: This is a more rigorously defined ver-
sion which presents a procedure for identifying all the GOMS components, expressed in a
form similar to an ordinary computer programming language. NGOMSL includes rules-
of-thumb about how many steps can be in a method, how goals are set and terminated, and
what information needs to be remembered by the user while doing the task.

3. CPM-GOMS (Cognitive-Perceptual-Motor GOMS) [78]: This is a parallel-activity version
that uses cognitive, perceptual, and motor operators in a critical-path method schedule
chart (PERT chart) to show how activities can be performed in parallel.

4. KLM (Keystroke-Level Model) [25]: This is a simplified version that uses keystroke-level

5.1. MODELING USER PERFORMANCE 49

operators (e.g. keystrokes and mouse movements) a user must perform to accomplish a
task. A few heuristics are used in KLM to place “mental operators.”

All four GOMS techniques produce quantitative and qualitative predictions of user performance,
although each has different emphasis. GOMS models can be at several levels of analysis: the
unit-task level, the functional level, the argument level, and the keystroke level. The research
presented in this dissertation extends the keystroke-level modeling capabilities to not only user
performance, but also energy consumption of mobile systems.

5.1.3 The Keystroke-Level Model
The KLM is based on a simple serial stage model of human information processing in which
one activity is done at a time until the task is complete. In this model, all human information
processing activities are assumed to be composed of primitive operators, including keystroke-
level motor actions and internal perceptual and cognitive actions. To estimate task execution
time, the analyst first specifies the method to accomplish a particular task, then lists the sequence
of operators (which represents the method) and calculates the sum of execution times for all
individual operators.

The original KLM [25] had four physical-motor operators: K (keystroking) represents press-
ing a key or a button, P (pointing) represents pointing with the mouse to a target on the display, H
(homing) represents moving hands to the home position on the keyboard or mouse, and D (draw-
ing) represents drawing lines using the mouse; one mental operator: M represents the mental
preparation for a task; and one system response operator: R represents the system response time.
For each physical-motor operator, the KLM gives an estimation of execution time, either a single
value, a parametrized estimate, or a simple approximating function. For M, the KLM includes a
set of heuristic rules for placing mental operators to account for mental preparation time during
a task that requires several physical operators. For R, since different system process requires
different response times, it must be estimated by the analyst as an input to the model, and is
counted only if it causes the user to wait. The task execution time is thus the sum of the times
spent executing the different operator types:

Texecute = TK + TP + TH + TD + TM + TP (5.1)

where, for instance, the total time TK spent in keystroking is the number of keystrokes
nK times the time per keystroke tK , or TK = nKtK .

The sequential architecture restricted the KLM to tasks that can be approximated by a series
of operators, with no parallel activities, no interruptions, and no interleaving of goals. Like
other GOMS models, the KLM predicts only error-free skilled behavior, and it does not predict
the method to be used given the task situation. In addition, the KLM predicts only the time to
execute a task, not the time to learn it. In summary, the KLM addresses the following prediction
problem [25]:

Given: a task, which may involve several sub-tasks; the motor skill parameters of the user;
the response time parameters of the system; and the method used for the task.

50 CHAPTER 5. PREDICTING MOBILE USER PERFORMANCE

Predict: the time a skilled user will take to execute the task using the system with the given
method without error.

5.1.4 Modeling parallel activities

While KLM is more suitable for tasks performed by a normally skilled user using sequential
operations, there are other situations where extremely experienced user can perform subtle, over-
lapping patterns of activities, and as rapidly as the MHP permits.

The CPM-GOMS [78] is a parallel-activity version of GOMS that uses cognitive, perceptual,
and motor operators in a critical-path method schedule chart (or PERT chart) to show how activ-
ities can be performed in parallel. A CPM-GOMS model of a user’s task consists of boxes with
durations and dependency lines between them. The critical path in a schedule chart provides
the prediction of total task time. Much of the power of CPM-GOMS to predict skilled behavior
comes from its ability to model overlapping actions by interleaving cognitive, perceptual, and
motor operators. CPM-GOMS models are too detailed for tasks that can be usefully approxi-
mated by serial operators. CPM-GOMS models also make an assumption of extreme expertise
in the user. That is, they typically model performance that has been optimized. When predict-
ing user performance for mobile systems, CPM-GOMS can be used to complement KLM where
parallelism needs to be addressed. Like KLM, the process of constructing CPM-GOMS can be
automated [83].

5.2 Verifying KLM on pen-based interfaces

Initially, KLM was targeted mainly at text editing tasks on office desktop computers [25, 26].
Although it sometimes seen as a drawback of such models to assume error-free, skilled user
interaction, the KLM has since then revealed remarkably precise prediction results in various
applications such as email message organization [13], manual map digitizing [67], and vehicle
navigation systems [105].

For mobile devices, most research on user performance has been limited to text entry for
short messages [43, 119] and phone menu navigation [108]. However, other rich and novel user
interaction techniques need to be taken into account. The serial stage model of the KLM ensures
it useful in the paradigm of mobile user interaction, where most of the tasks are performed
in an interactive, sequential manner. This section investigates the applicability and prediction
accuracy of the KLM on pen-based, touchscreen mobile interfaces. The study first generated the
KLM for four interactive tasks on a mobile device and predicted the task execution time. Then
a user study was conducted to verify the predicted time. The results from comparing measured
user time with predicted model time show that most original KLM operators can produce good
prediction accuracy for touchscreen interfaces.

5.2. VERIFYING KLM ON PEN-BASED INTERFACES 51

5.2.1 Task definition

Four interactive tasks were selected to verify the KLM on pen-based, touchscreen mobile inter-
faces. Two principles were kept in mind when choosing the tasks: first, the operations required
to accomplish the tasks should cover as many different interaction methods used in the target
platform as possible. Second, for comparison purposes, the tasks should be to accomplish the
same goal but using different methods. The target mobile device used in this study is the Palm
Vx PDA (Palm OS version 3.3 with 8MB RAM). The Palm Vx has a stylus pen, several hardware
buttons, and a touch screen divided into two areas (Figure 5.2). The larger area on top is used to
display information and allows the user to perform operations by tapping on icons, menus, lists,
buttons, and other interface elements drawn on the screen. The smaller area at the bottom has
four shortcut icons for quickly opening frequently used functions. The center of this area, known
as Graffiti™, allows users to input text to the device by drawing shorthand gestures.

The target mobile application selected is an off-the-shelf software called ChoiceWay Guides
(CWG) of New York City for Palm OS. This travel and city guide software allows the user
to understand city facts, plan trips, and search for information like open hours and telephone
numbers for a particular place. Figure 5.2(a) shows the start page of the CWG application. The
user can tap on one of the icons displayed on the screen to perform corresponding operations
indicated by the icon text.

All tasks in this study share the same goal of finding the opening hours of the Metropolitan
Museum of Art (MET). Based on the functionality of the application, four different methods can
be used to accomplish this goal:

Method 1: Map Navigation. From the start page shown in Figure 5.2(a), tapping on the
“Maps” icon at the top right corner will lead to Figure 5.2(b), which displays the map of Man-
hattan divided into three regions. This method requires the user to have some basic knowledge
of where the MET is in Manhattan. Tapping corresponding areas in the region map will lead to
the detailed region map in Figure 5.2(c) and the street map in Figure 5.2(d). Tapping on the spot
where the MET is located in the street map displays the name of the MET in a box at the bottom,
which leads to the query result shown in Figure 5.2(f).

Method 2: Soft Keyboard. From the start page, tapping on the “Museums” icon located at
the center right side gives Figure 5.2(e), an alphabetic list of museums. Using the soft keyboard
located at the bottom of the screen, the user can then input the letters “METRO. . . ” one by one.
When MET is shown in the list, tapping on the item leads to the query result in Figure 5.2(f).

Method 3: Graffiti. The only difference from Method 2 is that at Figure 5.2(e) Graffiti is
used to input the letters instead of the soft keyboard.

Method 4: Scroll Bar. From Figure 5.2(e) the user taps the scroll down arrow at the right
of the list of museums until the MET is shown. The user then taps on MET to get the desired
information.

52 CHAPTER 5. PREDICTING MOBILE USER PERFORMANCE

(a) Start page (b) City map (c) Region map

(d) Street map (e) Museum list (f) Query result

Figure 5.2: Snapshots of the CWG for NYC application

5.2.2 Model creation
The KLM for the four tasks described above were created using an early version (v0_6) of
CogTool [82], a suite of software tools built to facilitate modelers to quickly produce correct
KLMs. CogTool v0_6 allows the analyst to mock up an interface as an HTML storyboard and
demonstrate a task on the storyboard using the Netscape web browser. Chapter 6 will further
present modeling work using a more recent version of CogTool, which no longer uses HTML.
The demonstration events are captured by the Behavior Recorder [90] module of CogTool, which
automatically generates a KLM that includes all Ks, Ps, Hs, and Ms required to accomplish the
task. The KLM is implemented in ACT-Simple [131] which compiles into ACT-R [12] code. The
task execution time is then calculated by running the generated KLMs in the ACT-R environment.

The HTML mock-ups for the four tasks were generated from the Palm OS Emulator, which

5.2. VERIFYING KLM ON PEN-BASED INTERFACES 53

(klm-p (klm-goal klm
(think)
(look-at “Museums”)
(press-button “Museums”)
(think)
(look-at “-graffiti-”)
(press-button “-graffiti-”)
(think)
(press-button)
(think)
(look-at “MET”)
(press-button “MET”)

... ...

Figure 5.3: Example KLM code for Method 3 - Graffiti

emulates the hardware of various models of Palm handhelds. The emulator enables a “virtual”
handheld device to run on a desktop machine. The CWG application was installed on the emu-
lated Palm Vx, and the snapshots of each step taken in tasks were taken. The pictures in Figure
5.2 are examples of the snapshots. The snapshots were then used to create the HTML mock-
ups. More details about using CogTool can be found in [82, 90]. Figure 5.3 shows a fraction
of the KLM generated for the Graffiti task, expressed in ACT-Simple code. In this model, the
physical-motor operators such as (press-button Museums) were captured by the CogTool Be-
havior Recorder when the task was demonstrated. The (look-at) and (think) operators were
automatically added by CogTool. Task execution times were calculated by running the KLMs in
the ACT-R environment.

5.2.3 User study
To verify the task execution time predicted by the KLMs, a study was conducted with 10 skilled
PDA users. All the participants were college or graduate students who own one of the several
kinds of handheld devices: Palm OS or Pocket PC PDAs, or smart phones. Although not all
of these PDA users were skilled at Graffiti, they all were skilled at gesture-based text entry and
the training session (described later in this section) allowed them to get familiar with the three
Graffiti gestures required for Method 3. Figure 5.4 shows the information of each participant
including the gender, the model of PDA owned, and for how long it has been used.

User task execution times were obtained using EventLogger, a Palm OS system extension
that records system events to a log file. The log files are Palm database (PDB) files in text
format. Each line of a PDB log file is a tab-delimited listing of one system event, in the form
of “TickCount sysEventName OptionalInfo”. The TickCount is the time stamp of the event, the
sysEventName is the name of the event, and the OptionalInfo includes information such as the
character entered in a keystroke event, the name of the form in a form open event, etc. User
execution time for each task can be obtained by calculating the difference between the starting
and ending event timestamp, and dividing the difference by the number of system ticks per

54 CHAPTER 5. PREDICTING MOBILE USER PERFORMANCE

User # Gender Device owned (OS) Time

1 Male Palm Vx (Palm OS) 5 years
2 Male Palm IIIe (Palm OS) 4 years
3 Female Palm VA (Palm OS) 3 years
4 Male Handspring Visor (Palm OS) 3 years
5 Female Handspring visor Pro (Palm OS) 2 years
6 Male Kyocera 7135 (Palm OS) 4 years
7 Male Handspring Visor Prism (Palm OS) 3 years
8 Male Compaq iPAQ (Win CE) 3 years
9 Female Dell PDA (Win CE) 1 year

10 Male iPAQ 3630 (Win CE) 4 years

Figure 5.4: Participants device usage

second defined in the header part of the PDB file.
Each participant was first asked to practice the tasks in a training session, followed by the

actual session where the participants were asked to perform the four tasks 10 times each. In the
training session, participants were asked to carefully read the step-by-step instructions on how to
operate the EventLogger and how to perform the tasks. The participants were required to strictly
follow all steps and repeat each task 10 times. During this training session, the participants were
told to focus on becoming familiar with the tasks. The PDB files from this session were saved
as training data. In the second session, the participants were asked to run each task for 10 times
again without referring to the instruction, assuming they had all become familiar with the tasks
during the training. In total, we collected 400 user execution log files from the second session.
20 files were not usable because the user forgot to or did not start the EventLogger correctly,
these files were thrown away.

5.2.4 Result analysis

Figure 5.5(b) lists the result of the user study including the average, maximum, and minimum
task execution time and standard deviation. It also lists the model time and the prediction error
for each task, and the average prediction error is 7.9%, which is consistent with the 6% average
error rate reported in [82]. However, because all the four tasks under study are very short, small
discrepancy between model time and user time can result in significant prediction errors. The
models underpredict the Map Navigation method on one design, and overpredict the other three
methods on the other design. This discrepancy can be attributed to the difference in design and
system response time estimation. Figure 5.5(a) illustrates the comparison of model predicted
time and measured average user time.

The standard deviations of the Map Navigation and the Graffiti tasks are higher than the other
two tasks. This may contribute to the fact that using the software keyboard or scroll bar to find
and select an item from a list is a task that most users are very familiar with. By comparison,

5.2. VERIFYING KLM ON PEN-BASED INTERFACES 55

(a)

Task User time (sec) Std. dev. Model time (sec) Diff (sec) Error
Average Max Min

Map Navigation 7.59 10.44 6.00 1.36 6.88 0.71 9.3%
Software Keyboard 9.88 11.39 9.20 0.79 10.76 0.88 -8.9%

Graffiti 9.84 12.53 8.34 1.63 10.42 0.56 -5.8%
Scroll Bar 7.48 8.31 6.54 0.62 8.05 0.56 -7.7%

(b)

Figure 5.5: Task execution time: predicted versus measured

the variation in users’ familiarity with the location of MET when navigating a map, as well as in
their expertise of using Graffiti strokes is higher, which results in higher difference in user time.

The modeling process and resulting predictions have revealed two important issues that had
not been addressed before. First, the stylus-based interface on mobile devices introduces the
need to update the original KLM parameters and rules. During the early stage of this study, it is
found that Graffiti stroke should be added as a new operator to address the time for the user to
make handwriting gestures and for the system to recognize the gesture. A value of 580ms is used
for each Graffiti stroke, based on a previous study [48]. Secondly, to accurately predicting total
task time, the value of the system response operator R is very important due to the comparatively
lower processing speed of mobile systems. In this study, because both the software application
and the mobile platform already exist, it was easy to identify where during each task the user had
to wait for the system and to input the corresponding R(t) for modeling, where t is the response
time parameter of R [25] . For example, the estimated system response time to load the museum
list was 4200 ms, and the time to update the list was 2300 ms.

56 CHAPTER 5. PREDICTING MOBILE USER PERFORMANCE

5.3 Estimate system response time
The accuracy of KLM prediction can be greatly affected if the system response time operator R
is not carefully estimated. Because response times are determined by software implementation
and underlying systems, the KLM does not embody a theory of system response time, which
must be input to the model by giving specific values for the parameter t. System response times
can overlap with mental operators such as task acquisition. Only the non-overlapping portion
of the response time is counted in the total task time, therefore the actual user wait time is not
necessarily the same as the time required by the system.

In many cases, the system response time is negligible because of the great speed disparity
between human and computer; in other cases, however, such response delay can be substantial,
especially in the context of mobile devices with lower computing capacity and slower connectiv-
ity. Two good examples are database retrieval and web page loading. In such cases, the system
response time is determined by the typical user requests and the amount of processing they re-
quire. For instance, a database query will be slow if it causes many complex record qualifications
and I/O operations, but fast if it consists of a few accesses to already filled system buffers. If the
small, fast request is typical, the average responsiveness as seen by the users will be good. Re-
sponsiveness is also determined by the computer system resources available.

In the literature of using the KLM to estimate task execution time, it may not be necessary
to include the R operator, either because it takes near-zero time, or it has the same value in all of
the alternative designs, and so affects only the absolute, not the relative task times. However, to
achieve accurate system energy prediction, quantitative characterizations of the system activities
invoked by user interaction must be obtained. In this research, software performance engineering
(SPE) techniques are used to estimate the system response times. This section briefly describes
the current practices of SPE, in the next chapter, SPE methods will be implemented in the process
of assessing energy consumption.

Software Performance Engineering (SPE) is a method for constructing software systems to
meet performance objectives [148, 149, 150]. The SPE process begins early in the software
life cycle and uses quantitative methods to identify satisfactory designs and to eliminate those
that are likely to have unacceptable performance, before developers invest significant time in
implementation.

To ensure that early performance modeling overcomes the lack of knowledge about the soft-
ware design and implementation, SPE suggests using software execution models to get rapid
evaluation on software performance by providing a static analysis of the mean/expected, best-
and worst-case response times. The data required during early design to construct quantitative
software execution models include workload scenarios, software design concept, execution en-
vironment, and resource usage estimates. At later phases when more details about design and
implementation are known, the estimates will become more precise.

Software execution models are expressed in execution graphs, which provide a visual rep-
resentation of the software processing steps (similar to UML activity diagrams) for a specific
workload scenario. Figure 5.6 gives some basic notations of software execution graphs. The
graphs consists of nodes (represent processing steps) and arcs (represents the order of execu-

5.3. ESTIMATE SYSTEM RESPONSE TIME 57

Figure 5.6: Basic notations of software execution graphs (From [149])

tion). Figure 5.7 shows an example execution graph of the Map Navigation task.

The processing steps in an execution graph can be described in terms of software resources,
which capture computational needs that are meaningful from a software perspective. For exam-
ple, the number of database accesses or size of data transmission required in a processing step
may be specified. Software resources depend on the type of application and the operating envi-
ronment. The types of software resources that are important for the CWG application are screens
(the number of screens displayed to the user) and database accesses (the number of database
retrieval).

For each software resource request, the system resource requirements must also be specified.
These requirements connect software resource requirements to hardware usage in the target envi-
ronment, as well as specify characteristics of the operating environment such as the speed of the
processor. A frame of reference for estimating resource usage is necessary, i.e., if the resource
requirements for similar activities are known, it is easy to extrapolate to new software. The next
chapter will describe the practices in obtaining resource estimations for energy modeling.

58 CHAPTER 5. PREDICTING MOBILE USER PERFORMANCE

Figure 5.7: An example execution graph of the Map Navigation task

5.4 Summary
This chapter has described using cognitive modeling techniques to model human user perfor-
mance when interacting with mobile devices. The GOMS techniques is one of the most widely
known theoretical concepts for studying the efficiency of user interaction. Because KLM ad-
dresses keystroke-level, serial interactive operations of the user, it is suitable to be used in mod-
eling mobile user interaction tasks by nature. This chapter investigates the predictability of KLM
on a pen-based mobile user interface, and the experimental results show similar predicted error to
those reported for KLM in the literature. Furthermore, this chapter suggests using software per-
formance engineering techniques to estimate the system response time parameter for the KLM.

Chapter 6

Keystroke Level Energy Modeling

This chapter presents the Keystroke-Level Energy Model (KLEM), a quantitative analysis method-
ology that predicts both user performance and system energy consumption of an interactive task,
during early design phases. The KLEM extends the KLM, and integrates system energy con-
sumption with the user interaction model of the KLM, thus predicts both system energy con-
sumption and user interaction time.

6.1 Extending KLM for energy prediction
Chapter 5 has shown that the KLM provides a good granularity of details to describe tasks in
the context of mobile computing. However, as the KLM only predicts task execution time, more
information of the system should be added in the model to serve the need of energy prediction.

6.1.1 Overview of KLEM
The total energy consumption of a mobile system during an interactive task is mainly decided by
two factors: the level of system power consumption, and the time spent on each power level. Let
S be the set of system power states of a task, Ps be the power level of each state, Ts be the time
the system stays in state s, then the task energy consumption Et is:

Et =
∑
s∈S

PsTs (6.1)

Therefore, to obtain accurate predictions on task energy consumption, the model should be
able to describe a task as a series of activities. During each activity the system is in a certain
power state s for time Ts. The better the activities and their corresponding system power states
are defined in the model, the more accurate the prediction will be.

In the original KLM, a task is described by listing the sequence of operators that include
elementary perceptual, and motor or cognitive actions of the human user. Given a task, the
methods used to accomplish the task, the proposed interface design, and a target platform, KLEM

59

60 CHAPTER 6. KEYSTROKE LEVEL ENERGY MODELING

Figure 6.1: The process of constructing KLEM

extends the original KLM prediction of the error-free task time of a skilled user, and predicts the
system energy consumption during the task execution. As defined in KLM, a task is a series
of interactive operations a user performs on a computer system to achieve a certain goal, e.g.,
schedule a meeting, inquire about store hours, or changing the system settings.

Figure 6.1 depicts the components and processes of the KLEM technique. The resulting
model predicts task execution time (User Time Prediction) and task energy (Energy Prediction).
The task execution time is obtained by running the Modeling Process, which basically constructs
a KLM for each task. Specifically, the KLM is represented by the underlying computation cog-
nitive engine of CogTool as a ACT-R [2] Trace with a model Visualization that illustrates what
ACT-R is doing. The Energy Characterizing Process obtains the necessary Energy Profiles by
running a set of UI Benchmarks on the Target Platform. The ACT-R Trace and Visualization
obtained from the Modeling Process are then used in the Mapping Process, in which the KLM
of Task and the Energy Profiles are joined to produce Energy Prediction of the task. Therefore,
the Modeling Process focuses on constructing the set of Ts, the Energy Characterizing Process
focuses on constructing the set of power states S and obtaining the value of Ps, and the Mapping
Process produces ET in Equation 6.1.

6.1.2 Modeling process

The first step is to construct the KLM of a given task during the Modeling Process. This pro-
cess focuses on profiling Ts in Equation 6.1, which should not only include the model user’s
operations time, but also contain information on the system activities corresponding to these
user operations during the task. A newer version of CogTool [3] is used to generate the KLM
of skilled user performance on the tasks under study. ACT-R Traces and model Visualizations
are generated by demonstrating each task on its corresponding design storyboards. In addition
to touchscreen and Graffiti interfaces, this version of CogTool also supports modeling auditory

6.1. EXTENDING KLM FOR ENERGY PREDICTION 61

interfaces using the HEAR and SAY operators.

To create a storyboard of the proposed user interface design, a series of frames that represent
the display changes caused by user operations are needed. Although the screenshots of acutal
applications are used in this study, in reality each frame can be as simple as a sketch of the
proposed interface design. The basic visual building blocks of a GUI storyboard are widgets,
such as a button or a menu, which provide a point of interaction for the user to manipulate
the data associated with the widget. In CogTool, a Widget is represented as a “hot spot” in
a frame to indicate an interactive area on the actual physical device. Interactive widgets that
are currently supported by CogTool include Button, Check box, Radio button, Textbox, Pull-
down list, List box, Menu (including header, submenu, and menu item), and handwriting input
area (e.g. Graffiti™ in Palm OS and Soft Input Panel (SIP) in Windows Mobile). In CogTool,
widgets can also represent other interactive elements, such as hardware buttons or cursor devices
like joysticks. These elements can also be represented as hot spots on the storyboard. To support
auditory or speech-based interactions, CogTool has SAY transitions, and can model the cognitive
time of HEAR. For auditory interfaces without a display, storyboards and frames are still needed
for modeling the transitions of system states caused by auditory inputs, but the storyboard does
not necessarily contain GUI elements.

After creating the storyboard, the set of tasks that will be executed on the proposed interface
needs to be defined and demonstrated on the storyboard. The demonstration simulates the steps
a user would perform to accomplish a task and is recorded to a script for CogTool to generate
prediction on total task time and the corresponding ACT-R trace. Figure 6.2 shows an example
of a portion of ACT-R trace generated by CogTool. Each trace contains the user’s perceptual,
motor, and cognitive activities, as well as the necessary system responding activities that are
provided by the modeler.

For instance, in Figure 6.2, at 0.683 second the model fires a MOTOR operation, which is a
tap on the touchscreen at location (278.0 177.0). This user operation (the tap) is a trigger
to a GUI event that causes the model storyboard (the device interface) to start transitioning to
the next frame (change display content). The computer system needs to handle this event and
produce responses to this user operation, and therefore consumes time and energy. In the example
trace, at 0.683 second, the MOTOR operator causes the storyboard to transition to the next frame,
which represents a display update in the computer system. Similarly, at line 0.768 PROCEDURAL

PRODUCTION-SELECTED WAIT-FOR-SYSTEM-5, the model user starts waiting for the system until
the system restores display at 1.324 second. This duration of waiting is the system response time
operator in KLM and needs to be carefully estimated, as discussed in Section 5.3. The system
response time can be caused by any sort of computation or communication job that the system
must finish before the user can continue operation. The PROCEDUAL operators during the system
response time represent the cognitive processes of the model during the task and the VISION

operators represent various visual preparation processes.

62 CHAPTER 6. KEYSTROKE LEVEL ENERGY MODELING

...
0.400 MOTOR INITIATION-COMPLETE
0.400 PROCEDURAL CONFLICT-RESOLUTION
0.683 MOTOR MOVE-CURSOR-ABSOLUTE #(278.0 177.0)
0.683 Storyboard transitioning to frame "List1"
0.683 PROCEDURAL CONFLICT-RESOLUTION
0.733 MOTOR FINISH-MOVEMENT
0.733 PROCEDURAL CONFLICT-RESOLUTION
0.768 VISION Encoding-complete LOC1-0 NIL
0.768 PROCEDURAL PRODUCTION-SELECTED WAIT-FOR-SYSTEM-5
0.768 PROCEDURAL BUFFER-READ-ACTION GOAL
...
0.768 PROCEDURAL BUFFER-READ-ACTION GOAL
0.768 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
0.818 VISION CHANGE-STATE LAST NONE PREP FREE
1.324 COGTOOL Restoring display at end of system wait (0.556)

...

Figure 6.2: An example ACT-R model trace created using CogTool

6.1.3 Energy characterizing process

KLEM enables early estimation and comparison of the energy consumption of different designs
by taking a black-box approach in the Energy Characterizing Process. User interface designs are
often separated from the system design on power optimization and management, and lower level
energy characterization is often not available at the level of UI design. KLEM bridges this gap
between the design of the UI and lower levels of the system. Because of the highly interactive
nature of mobile tasks, it is more beneficial to identify and solve potential energy problems at a
higher level of the system, and at an early stage of the entire produce life cycle.

In the Energy Characterizing Process, a measurement-based approach is used to obtain the
energy profiles of KLEM operators by running a set of benchmarks on the target platform. This
approach is suitable when the target platform is already available at the time of application de-
sign, and is easy to reproduce on any mobile platform as little platform-specific software instru-
mentation is required to run the benchmarks. If the target platform is not available for bench-
marking, energy profiles can be obtained from manufacturer hardware datasheets or hardware
power consumption characterizations from literature.

Based on keystroke level operations, the Energy Characterizing Process profiles the power
and energy consumption of interactive tasks that are performed by a user on a mobile platform.
Therefore the assumptions behind this approach are that at any time, the user only performs
one task, and the current task is the only energy consuming application in the system without
concurrency. The approach also assumes that the system does not enter low-power sleep mode
or employ dynamic energy management mechnisms (e.g. voltage scaling) during the tasks. From
this perspective, KLM is a very suitable basis for energy characterization extensions.

6.1. EXTENDING KLM FOR ENERGY PREDICTION 63

Widget Operation System Activity
Selection

Button Tap Small, Medium, Large
Checkbox Tap Small
List box Tap Small
Dropdown list Tap + Tap Small
Radio button Tap Small
Menu Tap Small, Medium, Large
Hardware Button Tap Small, Medium, Large

Navigation
Tab Tap Medium, Large
Scrollbar Tap/Drag Small, Medium, Large
Slider Tap/Drag Small

Text Input
Soft keyboard Tap Small
Handwriting Stroke Medium, Large

Speech Interaction
Hear Hear Medium, Large
Say Say Medium, Large

Figure 6.3: Interaction activity benchmarks

Interaction benchmarks

As addressed in Equation 6.1, the energy characterizing process is twofold. To characterize Ts,
a set of interaction benchmarks is created for capturing the activities performed on common
interactive widgets. Figure 6.3 lists the benchmarks grouped by similar functions: Selection,
Navigation, Text Input, and Speech Interaction. The operation(s) the user can perform on each
widget and the corresponding amount of system activities, both in time and in energy, are also
listed.

Usually, buttons provide the quickest access to functions provided by the interface, but they
occupy a fair amount of screen space, and having too many buttons on a form is inefficient
because novice users must spend more time visually searching the screen for the button they
want. Widgets that require one tap to make a selection are faster than widgets that require two
taps to make a selection. A list is faster than Graffiti or on-screen keyboard input since the user
will spend less time entering data. Lists that contain a lot of elements are slower to use than short
lists because it is difficult to take a glance at too many list items and the user may have to scroll
the list to find the right item, requiring yet another tap. Menus require an extra tap to display the
menu in the first place, and should be reserved for functions that are less frequently used.

In the Selection group, the widgets Checkbox, List box, Dropdown list, and Radio button
are usually used to make a selection among several items that the user operates by tapping the

64 CHAPTER 6. KEYSTROKE LEVEL ENERGY MODELING

Figure 6.4: Power measurement testbed

widget. Note that the Dropdown list widget requires two taps to perform a selection, and one can
use tapping and dragging to operate the Scrollbar and Slider widgets. After the user selects an
item, the application records the selection, updates a small area of the display to look responsive
to user operation, and goes back to the waiting/idling state for the next user operation. This kind
of system activity is considered “Small”. As for “Medium” and “Large” system activities, for
instance, if a “next” button is pressed to open a new window, the consequent system activity is
defined “Medium”, while an “open” button that reads a 1MB file is considered a “Large” system
activity.

Power measurement setup

The testbed used to obtain the energy profiles as well as the energy measurements for model
verification is shown in Figure 6.4. The battery is removed from the device under measurement
to eliminate the current draw due to battery charging. The device was connected directly to the
external power supply and the input current I was obtained by measuring the voltage VR across a
1 Ohm resistor R connected in series with the device, and I = VR

R
. The voltage value is sampled

at 10 KHz using a high speed Data Acquisition Card (DAQ). Minor fluctuations are ignored in
the supply voltage Vs, which is assumed to be constant. The system power consumption is then
calculated as P = VsI = Vs

VR

R
.

The voltage samples that the high speed DAQ collected during each task are stored in a .dat
file and can be converted into a .txt file that is readable to MATLAB, using which the voltage
samples are processed, plotted, and analyzed to produce the power state machines and energy
profiles for different user operations.

Power state machines

Based on Equation 6.1, the energy consumption of a KLEM operator is defined as the sum of
the KLM operator energy and the system activity energy it invoked. The power states of most
of the tasks studied in this chapter can be expressed using a simple state machine showin in
Figure 6.5. During these tasks, the system activity alters between two states: Idle and Busy, with
corresponding power levels Pi and Pb.

6.1. EXTENDING KLM FOR ENERGY PREDICTION 65

Figure 6.5: A power state machine of typical graphical interface

Figure 6.6: Energy profile of a button press followed by a display update

The value of each power state is obtained from running the interaction activity benchmarks
on the target platform. Figure 6.6 depicts the energy profile of a “button press” (Tap) operation
followed by a full display update (e.g. open a new window, load a picture) measured on one of
the target platforms studied. As an example, the Figure shows the raw trace of power samples
obtained during one measurement of the button press benchmark. The power parameters that
will be used in the model are based on the average power value over 10 measurements of each
operation. The values along the y axis are the instantaneous power level at time t, and the system
energy consumption during any time interval (t1, t2) is the area under the power trace between
t1 and t2. In Figure 6.6, the oval on the left indicates the energy profile of the Tap operation and
the circle on the right indicates the energy profile of the display update activity. The lower power
level (e.g. 3.6 second to 3.7 second) corresponds to Pi in the Idle state, and the higher power
level (e.g. 3.9 second to 4.1 second) corresponds to Pb in the Busy state.

A more complex example of power state machine and energy profile – the one for a speech
recognition interface that does a simple job of searching for a certain name in the contact list –
is shown in Figure 6.7 and Figure 6.8, respectively. Upon running, the speech interface enters
the Busy state, which corresponds to approximately 2 second to 3 second in the energy profile.
It then plays a voice prompt “speak now” (at around 3 second), and enters the Speech Prepro-
cessing state (3.2 second to 3.8 second) where the interface awaits the user to speak something.

66 CHAPTER 6. KEYSTROKE LEVEL ENERGY MODELING

Figure 6.7: Power state machine of a speech interface

Figure 6.8: Energy profile of a speech recognition task

Between 3.5 second to 7 second, the user speaks the sentence “look up contact John Reed” and
the interface transits between the Speech Preprocessing state and the Speech Decoding state to
decode the audio input and recognize the spoken sentence. At around 7.5 second to 8.2 second,
the interface finishes the speech-to-text recognition, activates the searching functionality to query
the information of John Reed in the contact list, and displays the query result on screen. Then at
around 10 second, the interface goes back to Idle and waits for the next speech input.

To obtain the energy profiles of possible power states a target platform can be in, a compre-
hensive set of benchmarks should be defined. A typical set of such power benchmarks are listed
in Figure 6.9. As stated before, the energy characterizing process of KLEM takes a black-box ap-
proach and the modeling is made during design time, when there is no application implemented
for obtaining the power values. The solution is to run a set of off-the-shelf applications as the
benchmark and obtain the power levels of different system activities. After the implementation
stage, the actually measured power levels of some activities, for instance Speech Decoding, may
be different than the benchmarks, but as is stated in Section 5.3, it is more important to focus
on the relative energy value of different design options, and the absolute values can be easily
updated later in the implementation cycle.

In Figure 6.9, the left column lists the benchmarks for obtaining the necessary power profiles
of typical system activities involving different hardware components, and the right column gives

6.1. EXTENDING KLM FOR ENERGY PREDICTION 67

Benchmark Energy Calculation
Idle T × Pidle

Busy (computing) T × Pbusy

Idle no LCD T × PidlenoLCD

Busy no LCD (computing) T × PbusynoLCD

Backlight (level 0 to 10) T × (Plevel + Pstate)
Display only (panel + backlight) N/A
Media Player T × C × Paudiobase

Media Player no LCD T × C × Paudiobase

Voice Prompt N
W × C × Paudiobase

Speech Preprocessing N
W × C × Psp

Speech Decoding N
W × C × Psd

Voice Prompt no LCD N
W × C × PaudiobasenoLCD

Speech Preprocessing no LCD N
W × C × PspnoLCD

Speech Decoding no LCD N
W × C × PsdnoLCD

Text to Speech N
W × C × Pttsbase

Text to Speech WiFi Idle (beacon every 100 ms) T × Pwifiidle

WiFi Active Transmit D
S × Pwifitv

WiFi Active Receive D
S × Pwifirv

Pstate: current power state C: volume coefficient
N : number of words W : words per second
D: data to transfer (bit) S: throughput (bps)

Figure 6.9: Example benchmarks to obtain typical system power states

the corresponding energy model for calculating the energy consumption of each power state.
For instance, for system energy consumption in different backlight levels, the power benchmark
in the fifth row – Backlight (level 0 to 10) – should be used, and the energy is calculated using
T×(Plevel+Pstate), where T is the duration the system is in this power state, Plevel is the additional
power consumption of each backlight level, and Pstate is the current power state the system is in.
For the same system activity, the higher the backlight level, the more the power consumption.

For more complex system activities that involve speech recognition or network transmission,
the energy calculation formula not only depends on hardware power levels, but also requires de-
tailed information about the data being recognized/transmitted to determine the system response
time. Analysis methods on system response time have been discussed in Section 5.3.

6.1.4 Mapping process

The Mapping Process takes the predicted total task time Ttask, the storyboard and ACT-R trace
that contain contextual information of system activities, and the energy profiles obtained in the
Energy Characterizing Process, and produces the task energy prediction. Let O be the sequence

68 CHAPTER 6. KEYSTROKE LEVEL ENERGY MODELING

Figure 6.10: Obtaining system activity semantics from model visualization

of KLEM operators in the task, To be the time of operator o, the total system energy consumption
during idle state Eidle is:

Eidle = Pi(Ttask −
∑
o∈O

To) (6.2)

The total task energy can be predicted using:

Etask =
∑
o∈O

Eo + Eidle (6.3)

The actual Mapping Process needs more effort than described in Equations 6.2 and 6.3 above.
In CogTool, the underlying ACT-R computation cognitive engine that makes the predictions
is very complex, and so is reading the model trace directly. A visualization tool is built into
CogTool to help the designer to see what ACT-R is doing to produce the predictions. The up-
per part (indicated by the first six rows labeled Time(s), Frame, Vision, Productions,
Motor-Prep, and Motor-Exec, correspondingly) of Figure 6.10 is the visualization of a short
task of tapping the "down" arrow of a scroll bar to browse the contents in the scroll list. The
Time(s) row is a timeline showing the different activities ACT-R goes through to make the pre-
dictions. The Frame row shows the duration that each frame in the storyboard is visible. Change
from a frame to another in the storyboard often corresponds to a screen update in a GUI.

The lower rows of boxes are different types of operators that happen in the course of per-
forming the task. The Vision row represent the cognitive operations of eyes seeking objects in
the frame. The Productions row represent the thoughts the model has when performing this
task. The longer boxes are "Think" operators and the shorter boxes are other types of cogni-
tive operators that indicate motor movements and visual attention shifts. The Motor-Prep and

6.2. VERIFICATION 69

Motor-Exec rows represent different aspects of the motor system, and the Motor-Exec row
shows observable motor movements of a finger, stylus, or button press.

When mapping an ACT-R trace to produce an energy prediction, the activities that can cause
non-idle system activities are the MOTOR and WAIT-FOR-SYSTEM operators in Figure 6.2, and
system activities result changes in power states. During other activities such as the VISION and
PROCEDUAL the system is usually idle waiting for user operations. The energy consumption of
non-idle system activities not only depends on the hardware platform, operating system, and
application software, it also depends on the particular interaction method. For instance, a MOTOR
activity can be tapping, dragging, key pressing or releasing, or a handwriting stroke. In this
research, the system activities associated with each operator need to be manually identified from
the model. Future modeling tools should allow integrating the information of system activities
and power profiles into the model for automatic energy calculation.

The task being modeled in Figure 6.10 contains only "tapping" operations, therefore the
Motor-Exec row represent taps on the touch screen, which trigger UI event handling and system
activities discussed in previous sections. When the system finishes processing, the corresponding
response in turn triggers Vision operators in the model user, who takes further actions to tap
the screen.

If all motor operators are correctly captured for a task, as is depicted in Figure 6.11, where
the Motor operators are taps, the model visualization can be a good profiler of actual energy
consumption. As ACT-R cannot do "drag and drop" yet, CogTool has the inherited weakness of
modeling a dragging operation. Currently CogTool approximates drag-and-drop with hover-and-
click, since both operations have one down-press, one release, and one movement. Although the
time prediction might be very close to the actual measurement, the model visualization does not
necessarily reflect the actual energy profile because the constant display-update system activity
during the movement is not captured in the model. This discrepancy causes a “poor” mapping
shown in Figure 6.12. Here the “poor” mapping does not mean poor energy prediction, because
the model can still accurately predict the time of user operations that trigger system activities.
Modelers need to perform manual analysis of the relationship between these user operations and
corresponding system activities.

6.2 Verification
Two PDA platforms, an iPaq RX1955 and a Tungsten T5 are used to verify the prediction accu-
racy of KLEM on user time and system energy. The specifications of devices are summarized in
Figure 6.13.

Two principles are applied when choosing the tasks to validate the KLEM model. First, the
operations required to accomplish the tasks should cover as many different interaction methods
available in the target platforms as possible. Second, for comparison purposes, the same goal
should be accomplishable by using different interaction methods. The same off-the-shelf tour
guide application ChoiceWay Guides (CWG) for New York City is used because it has releases
for both Windows Mobile and Palm OS for comparison purposes.

70 CHAPTER 6. KEYSTROKE LEVEL ENERGY MODELING

Figure 6.11: A good mapping of energy profile and model visualization

Figure 6.12: A “poor” mapping of energy profile and model visualization

Figure 6.14 shows four screenshots of the CWG application interface on the two platforms
used. For simplicity, the storyboard is built for CogTool using the screenshots since the software
is ready. In reality where KLEM is used during design time, modelers can use sketches of the
proposed interface design to build the storyboard.

All tasks modeled have the same goal of finding the opening hours of the Metropolitan Mu-
seum of Art (MET). There are two different ways in CWG to find this information and each can

6.2. VERIFICATION 71

iPaq Tungsten
Vendor HP PalmOne
Model Rx1955 T5
CPU 300MHz Samsung SC32442 416MHz Intel XScale
Storage 32 MB built-in RAM, 64 MB Flash ROM 215MB storage capacity, 160MB internal flash drive
Display TFT color LCD, 64K colors, 240 x 320 (QVGA) TFT color display, 64K colors, 320 x 480
OS Windows Mobile 5.0 Palm OS v5.4

Figure 6.13: Specifications of target platforms

be considered as a different interface design. One way is to navigate the map of Manhattan area
as depicted in Figure 6.14(c). The user can enter a more detailed map by tapping one of the four
boxes representing different areas. When the street map of the MET neighborhood is displayed,
the user can view the open hour information by tapping the dot representing the location of MET
on the street map. The other way is to display a list of all New York museums, and choose MET
from this list to display the open hour information. There are various methods to select MET
from the list: searching or browsing. For the iPaq, the user can tap the letter “M” on the software
keyboard at the bottom of the museum list as shown in Figure 6.14(b); tap the trough of the list’s
scrollbar until MET can be viewed in the list; tap the down arrow; tap the down arrow and hold it
until the MET item appears in the current list window; drag the scrollbar; and press the hardware
navigation button at the bottom of the device to browse down the list.

For the Tungsten device, the user can input the letter “M” on the software keyboard; tap the
down arrow; gesture “M” in the Graffiti area at the lower part of the device display; and press the
hardware button to browse down the list.

The scrollbar in the Tungsten does not have the same design as the iPaq and cannot be ma-
nipulated using dragging or tapping the trough. Although one can invoke the soft input panel
(SIP) at the bottom of the iPaq screen, the handwriting area will obstruct the lower part of the
list, which makes it unnatural and error-prone to use. Therefore handwriting recognition in iPaq
that corresponds to the Palm Graffiti input is not used in these tasks.

To verify the KLEM prediction of user time and system energy, a user study is performed on
another 10 participants (six male, four female), all are engineering majored undergrad or graduate
students who are familiar and comfortable with using computers. Each participant is first asked
to practice all the tasks under the author’s instruction in a training session. The participants are
given adequate time to practice until s/he became very familiar with the tasks without making
errors or unnecessary pauses during task execution. The participants were then asked to perform
all 12 tasks on the two devices during the testing session. The device power supply traces with
corresponding time stamps of each task were measured during the testing session, as described
in the previous section.

The average measured user times versus the predicted model times is shown in Figure 6.15.
The time prediction errors against the average measured user time for the iPaq tasks are between
0.1% and 11.7% (average 5.6%). For the Tungsten, the error rates are 2.6% to 12.6% (average

72 CHAPTER 6. KEYSTROKE LEVEL ENERGY MODELING

(a) iPaq: Map Navigation in-
terface

(b) iPaq: Scroll list interface

(c) Tungsten: Map Naviga-
tion interface

(d) Tungsten: Scroll List in-
terface

Figure 6.14: Screenshots of CWG

8.8%) for KLEM time predictions. Note that the predictions for “List Hardware Button" tasks
for both platforms have comparably higher error due to the fact that the number of hardware
button presses used by different users to browse the list varies widely.

The average measured task energy versus the predicted model energy is shown in Figure
6.16. The energy prediction errors against the average measured task energy for the iPaq tasks
are between 0.3% and 8.1% (average 4.4%). For the Tungsten, the error rates are between 1.2%
and 12.5% (average 8.4%).

6.3. COMPARING DESIGN ALTERNATIVES USING KLEM 73

(a) iPaq (b) Tungsten

Figure 6.15: Comparison of measured user time and model predicted time

(a) iPaq (b) Tungsten

Figure 6.16: Comparison of measured task energy and model predicted energy

6.3 Comparing design alternatives using KLEM

The previous sections presents the Keystroke Level Energy Model to predict the energy con-
sumption of 12 tasks to obtain the same information on two mobile platforms. On each platform,
the tasks were performed on a GUI based mobile interface equipped with various input modali-
ties. Two different interface designs are studied, one the Map Navigation design, and the other
is the List Browse design. For the latter, there are four to six different interface manipulation
methods, or modes to find the same information on iPaq and Tungsten, respectively.

The terms modality and mode of user interfaces are often used interchangeably, but the im-
pact of these aspects on both the user and the system can be significant, especially for mobile
systems. A modality is a path of communication employed by the user interface to carry in-
put and output. Examples of modalities in mobile computing include: (Input) stylus allows the

74 CHAPTER 6. KEYSTROKE LEVEL ENERGY MODELING

user to make selections or create drawing; (Output) screen allows the system to display text and
graphics (vision modality) and speaker allows the system to produce sound (auditory modality).
A mode is a distinct method of operation with a computer program, in which the same input can
produce different perceived results.

To achieve the same goal, there are usually various user interface modalities and modes
for the designer to choose from. Different design decisions can make significant difference in
important system aspects such as energy consumption. Such design alternatives also include the
selection of software and hardware platform, as well as operating systems, which is beyond the
scope of this dissertation. The results in Section 6.2 observed up to a factor of three variation in
doing the same task with the same interface design on different platforms.

The accuracy of model prediction of total user time and task energy of the two design alter-
natives was compared in the previous section. From Figure 6.15 and Figure 6.16 it can be seen
that the time and energy for doing the same task using different modes on the same platform
(List Hardware Button vs. List Drag or List Key) vary by a factor of two to three.

Three set of examples are chosen including the tasks defined in Section 6.2 to demonstrate
the difference in design alternatives.

Example 1: Using different modes The energy profiles of the last five methods (modes) for
list browsing on iPaq in Figure 6.16 are shown in Figure 6.17. The List Trough mode only
contains two taps and two display updates. However, in the other four modes, all methods used to
manipulate the scrollbar to browse the list require trigger frequent UI events and display updates.
The overhead for processing UI events for the "List Hw Button" mode is extremely high, thus
leads to the highest task energy in all methods.

Despite the difference in the power profiles of these modes, the difference in task energy
consumption is not as significant. This is because the total task execution time for all modes is
less than 9 seconds, and most of the task energy is spent on loading the list and searching the
correct item, while the list manipulation only consumes a negligible amount of energy. In cases
where there are large amount of manipulation operations in the task, the choice of manipulation
modes can play a very important role in the total task energy consumption.

In addition, from an energy optimization point of view, there is much longer user idle time
between operations in the "List Trough" mode, which could be utilized by the application or OS
to apply energy reducing algorithms. While the other four modes may provide little opportunity
for energy optimization due to the frequent need to process interrupts from the UI.

Example 2: Using different modalities All tasks discussed in last section are based on a GUI
modality using regular input devices – stylus and touch screen. A design alternative that uses
non-GUI modalities can be a speech-based interface.

Because off-the-shelf applications are used in this study, there is currently no speech interfac-
ing capability in the CWG application. Another off-the-shelf software called MobileSpeech for
the iPaq platform is used. MobileSpeech can recognize natural language sentences such as “Look
up contact John Smith”, then searches John Smith’s information in the local database, and dis-

6.3. COMPARING DESIGN ALTERNATIVES USING KLEM 75

Figure 6.17: Energy profiles of list browsing methods

plays this information. This is enough to simulate the information query functionality of CWG.
MobileSpeech is used to recognize the sentence “Look up information MET”, and to display the
information of the museum. The power profile in Figure 6.8 is obtained from MobileSpeech.

Figure 6.18 compares the total task time and energy consumption when using speech (Speech
no LCD & Speech) modality and GUI (List Drag, Map Nav, List Tap and Hold, List Trough, List
Key, List Arrow, and List HW Button) modality. The tasks are listed and sorted by energy con-
sumption (low to high). The execution time of each task is also shown in Figure 6.18. Although
the Speech task ranks the second highest in energy consumption (about 20% higher than the List
Arrow task), it can achieve 60% energy savings over the List HW Button task. Because the de-
vice display can be turned off during speech-based interactions, the energy consumption of the
Speech no LCD task is the lowest of all – about 32% lower than the List Drag task and by a
factor of three to the List HW Button task.

Example 3: Using different implementation Another set of design alternatives comes from
the input methodologies of handheld devices. In general, the input methods for mobile devices
can be divided into three categories: Letter Recognition, Transcript Recognition, and Soft Key-
board. Letter Recognition allows the user to draw one letter at a time, recognizes it into text,
it then accepts for the next drawing from the user. Transcript Recognition, on the other hand,
allows the user to handwrite in a more natural way as he/she would write on paper. The user
pauses after writing a word or the entire sentence, and this is when the device recognizes the
handwriting into text. Soft Keyboard is very straightforward: the user taps the letters on the

76 CHAPTER 6. KEYSTROKE LEVEL ENERGY MODELING

Figure 6.18: A comparison of energy and time using different interaction modalities

Figure 6.19: A comparison of energy and time using different input methods

small on-screen keyboard, and the device displays the text.
The time and energy of the three text input methods are compared with a speech-to-text appli-

cation and the comparison is depicted in Figure 6.19. The power profile for speech preprocessing
and decoding of the synthetic speech-to-text application is also obtained from benchmark mea-
surements using MobileSpeech. The speaking speed of the user is set to 105 words per minute
because people tend to dictate to computers at this speed [6]. In this comparison both speech-base
input methods (with or without display) have the lowest time and task energy. This is because
the speed of speaking is much faster than writing, say nothing of pick up single letters using

6.4. SUMMARY 77

one stylus on the small soft keyboard. Despite the obvious advantage in speaking speed, speech
recognition is equivalent to Transcript and Letter Recognition interfaces for processing overhead
of text recognition.

6.4 Summary
This chapter presented the detailed process of the Keystroke Level Energy Modeling methodol-
ogy that extends the Keystroke Level Model. KLEM can be used to quantitatively predict both
the user performance and energy consumption of interactive tasks performed on mobile systems.
KLEM assumes skilled user performing error free, serial interactions with mobile interfaces, and
models single application without other concurrent processes in the system. A set of benchmarks
were designed to obtain the necessary interfacing and energy profiles of the system under study.
KLEM can predict user time and energy consumption from story boards of proposed user inter-
actions with good accuracy. It also serves the designers of mobile systems as a convenient tool
to compare and make early decisions among different design options, and to resolve potential
design issues before investing in actual user testing and iterative development. While KLEM
was presented with a focus on handheld devices, the methodology can be applied on any mobile
interactive system. KLEM can be used to address the limitations identified in these two initial
efforts, and can help user interface and interaction designers to profile and understand the user
performance and energy consumption at an early stage of system design.

78 CHAPTER 6. KEYSTROKE LEVEL ENERGY MODELING

Chapter 7

Related Work

This dissertation advocates on integrating energy efficiency as an important metric of user inter-
action design in mobile systems. Such a design should aim to minimize the energy consumption
of a task as well as to increase user performance/productivity and satisfaction. To the best of our
knowledge, this dissertation is one of the first efforts that consider energy as a first-class usability
metric in mobile systems.

While there is no single research effort that spans all the subjects discussed in this disserta-
tion, there is a large amount of work that intersects one or more areas. This chapter discusses
work related to each part of this dissertation. Section 7.1 summarizes related work on improving
the energy efficiency with focuses at the software level. Section 7.2 surveys existing approaches
on energy characterization, modeling and simulation. Finally, Section 7.3 discusses more ad-hoc
research efforts on improving the energy efficiency of mobile user interfaces. This section also
discusses related approaches on characterizing and improving mobile interaction performance.

7.1 Energy optimization
The optimization of energy consumption can be done at different levels of the computer system
architecture [75]. Hardware components are the immediate consumers of energy, and the major
hardware components in a mobile system include the processor, memory, secondary storage (e.g.
flash memory or hard disks), network interface, display, and other interfacing hardware. Hard-
ware energy consumption can be optimized at the circuit level using techniques such as clock
gating, supply voltage scaling, and supply voltage gating to reduce both dynamic and leakage
power [27, 28, 170]. At the architectural level, energy optimization techniques typically detect
idleness of components and appropriately transit them to a lower power consuming state [23].
However, hardware level power and energy optimization is beyond the scope of this dissertation,
hence will be discussed no more in this chapter.

This section surveys techniques that optimize energy consumption at the software level –
the operating system (OS), compiler, and the application. It is a consensus that the potential
for energy savings in software is greater than the potential for savings in hardware, but that the

79

80 CHAPTER 7. RELATED WORK

software savings are more difficult to achieve [86]. Therefore, there is a large body of existing
work at the lower levels of the software, i.e. at the operating systems and compilation levels. At
the application level, most efforts have been trying to gain an understanding of how application
software affects energy consumption.

In general, software energy optimization techniques take one or a combination of three major
approaches that will be discussed in the following three subsections.

7.1.1 Activity adjustment

Techniques in this category intuitively reduce energy consumption by reducing the activities of
software that consequently causes hardware activities. As discussed in Chapter 2, on the one
hand, if one application or algorithm takes shorter time to execute than another, then the system
will consume less energy. On the other hand, if one application or algorithm uses hardware
resources more smartly than another, those resources can be put into low power modes to save
energy. Example activity adjustment approaches include improving memory access locality and
reducing unnecessary network accesses.

Most compiler optimizations that aim at reducing application energy usage fall into this cat-
egory. Tiwari et al. [155, 156] modify the compiler to take into account the power consumption
as well as the timing cost of each instruction, and examine instruction-level energy optimizations
such as instruction reordering and energy-driven code generation. The major energy savings
come from reducing the time to complete a computation, not from using lower power instruc-
tions. Simunic et al. [145] examine energy optimizations for a MPEG application on a Stron-
gARM processor and note that compiler optimizations only produce a 1% energy benefit for the
application, while hand-crafted source code optimizations produce a 35% energy benefit. How-
ever, it is not clear how much of the energy reduction is due to the shorter execution time because
a 32% reduction in execution time is reported for the hand-coded implementation. Algorithmic
transformations in applications have been shown to give significant power savings [147].

At the application level, energy optimization can be achieved by balancing the quality of
service (QoS) of the software. An example of such quality is data fidelity. Flinn et al. introduce
energy-aware adaptation [50, 52, 113] that extend the Odyssey platform to adapt application
specific data fidelity (e.g. video quality for a video player, and vocabulary size of a speech
recognizer) for multiple applications based on predicted energy demand and targeted battery
lifetime. Shenoy et al. [137] propose to transform the requested network data stream to reduce
receiving and decoding energy. Mohapatra et al. [107] also investigate energy optimizations
from adapting the quality of streaming video. Fei et al. [46, 174] propose and implement a user-
level coordination framework to adapt multiple applications for energy savings. The framework
makes trade-off selections between energy conservation and application QoS.

In addition to reducing activities, energy optimization techniques in this category also balance
the activities among different hardware components to reduce the overall energy consumption.
Barr et al. [16] find that overall energy consumption can be reduced by compressing data before
transmitting them through the network interface. Anand et al. [11] propose to determine whether

7.1. ENERGY OPTIMIZATION 81

to retrieve files from the local hard drive or through the network interface based on the power-
saving modes they are in. On the other hand, computation offloading and remote execution
techniques [97, 116, 129] outsource compute-intensive tasks from a mobile system to a wall-
powered computer through a network interface.

7.1.2 Mode switching

Mode switching techniques put a hardware component into a different power mode when nec-
essary. Hardware components provide power-saving mechanisms that enable software energy
management through standard interfaces. Mode switching strategies require knowledge about
different power modes of a hardware component, as well as the information about its current and
future activities. Predicting the future functionality requirements have been the most challenging
topic for mode switching strategies.

Most OS level energy optimization techniques fall into this category. Because the OS has
a view of the overall state of the system, it is in a better position to judge whether a device
should be put into a low power mode than the device itself. The OS is also in a better position
to judge than an application because it can balance the needs of several applications, without the
need of modifying the applications. The Advanced Power Management (APM) specification [5]
allows the operating system to query the power state of devices such as the hard drive and place
these devices into low-power modes. The Advanced Configuration and Power Interface (ACPI)
specification [1] is intended as the successor to APM, and allows detailed power management
of individual hardware components. The Milly Watt project [44, 158] explore the development
of a power-based API that allows a partnership between applications and the operating system
in setting energy use policy. They present a power-aware page allocation policy coupled with
dynamic hardware policies that can dramatically improve memory energy-efficiency [93].

For reducing the transition latency, Lorch et al. [99] consider strategies for a number of
different subsystems, especially within the constraints of the design philosophy of MacOS. Li
et al. [95] perform a quantitative analysis of the potential costs and benefits of spinning down
the disk drive as a power reduction technique. Paleologo et al. [118] consider the overhead
requirements of making a transition from one power management state to another and introduce
a stochastic model for evaluating power management policies.

Besides the OS, the compiler can generate code and data transformations to increase idleness
of hardware components so that they can be transitioned to low power modes more efficiently
[39]. Lu et al. [103] use user-level power managers to collect utilization information from
hardware devices and control the power state of the devices. This work is later extended by
Simunic et al. [143] with a specific model of hardware device usage patterns based on time-
independent semi-Markov decision processes. They show that their approach can achieve better
results than alternative policies when managing processor, hard disk, and wireless network power
states.

82 CHAPTER 7. RELATED WORK

7.1.3 Using alternatives

Techniques in this category use secondary, lower power components to house-keep the basic
functionality of the primary component, which can then be turned off or put to idle mode when-
ever possible. For example, flash memory can be used as a low-power alternative to magnetic
disk or disk cache. For wireless interfaces, low-power listening device can be used to check
beacons during the interface’s sleep mode.

Douglis et al. [42] study the possibility of using flash memory as a replacement for hard
drives and report low energy consumption, good read performance, and acceptable write perfor-
mance. March et al. [106] examine using flash as a second-level buffer cache to reduce energy
by allowing the hard disk to be idle more often. Schlosser et al. [134] note that MEMS-based
storage may have significantly less power requirements than traditional storage devices. Shih
et al. [138] propose to greatly reduce the idle power of a wireless LAN enabled PDA phone
by turning the phone off and using a secondary, low-power wake-up mechanism. Part of the
research presented in Chapter 3 takes a similar using alternatives approach that suggests using
other low-power, secondary user interface devices, such as an Light Emitting Diode (LED) email
indicator, to allow the main display module to stay longer in the off mode.

7.2 Energy characterization

Another body of work related to this dissertation analyzes and characterizes how energy is con-
sumed in mobile computer systems. Some of these efforts characterize energy consumption of
one individual hardware component of the system, some break down system energy usage onto
different hardware components, and some specifically characterize the energy consumption of
operating system, application software, or user interface.

This Section discusses two major approaches taken by these efforts: the measurement based
approach and the analysis based approach. Measurement based approaches are based on actual
hardware and software implementations and can potentially produce more accurate results, but
the costs for benchmarking and measuring can be high, especially for very complex systems.
Analysis based approaches usually use a model of the energy cost and estimate the energy cost
using simulations, and hence do not require physical hardware implementations, but the detailed
nature of the model limits its scalability to large, dynamic systems. Although a larger portion of
existing work takes the simulation based direction, the distinction between these two approaches
are very small and many energy characterization efforts employ both.

7.2.1 Measurement based approach

Measurement based approaches first profile the energy consumption of specific system activi-
ties. The measurements are used later, during execution, to calculate the total energy usage by
accounting for the number of times each activity occurs.

7.2. ENERGY CHARACTERIZATION 83

Lorch et al. [98, 100] develop PowerMeasure and StateProfiler that provide energy mea-
surements for Apple Macintosh laptops. PowerMeasure benchmarks the various power states of
hardware components such as the processor and the hard disk. StateProfiler records the transi-
tions between power states and uses the benchmark data to estimate total energy consumption
during application execution. They also show how power-saving features affect the breakdown of
overall power consumption so that the success of new software techniques and hardware changes
at reducing power consumption can be estimated.

Flinn et al. [51] present PowerScope, a tool that profiles energy usage of applications by
mapping energy consumption to program structure. Their approach combines hardware instru-
mentation to measure current level with kernel software support to perform statistical sampling
of system activity and employs post-processing to map the sample data to program structure and
produces a profile of energy usage by process and procedure.

Farkas et al. [45, 49] measure the energy consumption of the Itsy pocket computer and
quantify the energy costs of Java design trade-offs. They use a number of micro-benchmarks
to measured the power and energy consumption of various hardware components. Their mea-
surements show a wider range of dynamic power demand of the Itsy than does the ThinkPad
computer.

On individual hardware components, Stemm et al. [151] were the first to present a power
characterization of several wireless network interfaces on handheld devices and point out that
power management of the idle time is much more important than reducing data transfer for en-
ergy efficiency. Raghunathan et al. [123] present an power analysis of a multi-radio mobile plat-
form. Their analysis focuses on contrasting the power efficiency of various wireless technologies
and highlights the trade-offs between the computation, storage, and communication subsystems,
but does not include a display subsystem. Zedlewski et al. [171] present Dempsey, a simula-
tion environment that characterizes disk power consumption use stimulus-based measurements
to extract power parameters without using detailed manufacturer specifications.

Most OS level energy characterization approaches have a focus on embedded operating sys-
tems because the overall energy consumption depends very much on which OS is used and how
the OS is used in such systems. For example, Acquaviva et al. [10] analyze the energy overhead
due to the presence of an embedded OS in a wearable device.

7.2.2 Analysis based approach

For modeling processor energy consumption, power analysis can be done at the instruction level
or architectural level. Both are targeted at exploring alternative hardware architectures and com-
piler optimizations.

Instruction-level power analysis is first introduced by Tiwari et al. [152, 156]. They con-
struct per-instruction energy models for several processors with energy costs on inter-instruction
switching. Their method is based on the hypothesis that by measuring the current drawn by the
processor as it repeatedly executes certain instructions or short instruction sequences, it is pos-
sible to obtain most of the information that is needed to evaluate the power cost of a program

84 CHAPTER 7. RELATED WORK

for that processor. Klass et al. [89] develop a model that closely approximates inter-instruction
energy effects, but requires much fewer measurements to construct.

Architecture-level power analysis uses architectural layouts to build detailed power models
for each of the internal modules of the processor and estimate the power and energy consumed
by program execution. Wattch [22] and SimplePower [160, 169] are two examples in this cate-
gory: both approaches extend the SimpleScalar framework to provide power estimates. A similar
approach is used by Simunic et al. [145] to develop a cycle-accurate simulator specialized for
the SmartBadge platform.

There are many efforts that model the power and energy consumption of real-time operating
systems (RTOS) [17, 40, 152, 153] and provide simulation frameworks to analyze the execu-
tion behavior and energy consumption of RTOS’s. Gurumurthi et al. [63] present SoftWatt, a
complete system power simulator that models the CPU, memory hierarchy and a low-power disk
subsystem and quantifies the power behavior of both the application and operating system.

Cignetti et al. [32] create an energy model for the PalmOSTM family of mobile devices.
Based on the device’s hardware subsystems, their model identifies a set of discrete device power
states and transitions between the states and is used to extend the Palm OS Emulator (POSE) into
an energy simulation environment. Zeng et al. [172] propose the Currentcy Model that unifies
energy accounting over diverse hardware components and enables fair allocation of available
energy among applications. They implement the ECOSystem that treats energy as a first-class
operating system resource and supports explicit control over the battery resource, in order to
extend battery lifetime by limiting the average discharge rate and to share this limited resource
among competing tasks according to user preferences.

At the software level, power and energy estimation and optimization techniques for embed-
ded software have been investigated extensively [109, 144, 154]. Sinha et al. [146] present
JouleTrack, an web based tool and methodology that estimates the energy cost of embedded
software running on two microprocessors. Xue et al. [168] propose an object-oriented energy
model for embedded software, which also provides interfaces to the energy models of underlying
hardware components.

Seo et al. [136] define a framework that employs a computational energy cost model for
software components of Java-based embedded systems, both prior to and during run time. Xian
et al. [165] present an approach to assign energy responsibility to individual processes based on
their impact on power management and to estimate potential energy reduction by adjusting the
processes. They then present a programming environment that allows energy-aware programs to
identify different ways to achieve the desired functionality and choose the most energy-efficient
option at run-time [166]. The energy estimation is based on run-time energy characterization that
records a set of run-time conditions correlated with the energy consumption of the options.

7.3 Energy and mobile user interaction
The significant growth of mobile computing has brought more and more research interest on
energy efficiency from the user interaction perspective. This section discusses related research

7.3. ENERGY AND MOBILE USER INTERACTION 85

efforts that also take this perspective.

7.3.1 Human factors in energy optimization

Although many energy management and performance scaling efforts [47, 62, 101] use inter-
active applications as benchmarks, these efforts ignore the interaction between the human user
and the system and treat it in the same fashion as compute-intensive tasks. Human-perceptual
thresholds are used [47, 101] to guide system performance scaling and respond before the user
can perceive the delay, but no information about the real workload and context of the user is
applied. Lorch and Smith [102] find that user interface events incur different computation loads
and propose to conduct performance scaling based on user interface event information during pe-
riods of busy system activity. By contrast, Zhong and Jha [174] use user interface information to
predict system idle time for energy management. Compared with these existing approaches, this
dissertation emphasizes the importance of efficient user interaction in optimizing system energy
consumption, and integrates energy efficiency into user interface designs.

Dalton et al. [38] propose to use sensors and cameras to detect user presence for power
management and point to a new direction for user- and context- aware energy management.
The drawback of this approach is the high energy overhead caused by the detection method.
By comparison, the approach presented in Chapter 3 detects the screen area where the user is
focusing on and reduces unecessary energy expense on other areas.

7.3.2 User interface energy optimization

Chapter 3 has presented energy optimizations for the display subsystem of mobile user interfaces
by adapting the output of the displays. Most display energy optimization efforts are for LCDs.
Flinn et al. [50] evaluate the energy benefit from reduced computation with lower fidelity of im-
ages and video. They also propose a zoned back-lighting method to allow independent control of
illumination level for different regions of the screen, although no existing display supports such
zoned back-lighting yet. Other studies also evaluate scaling the back-light with corresponding
changes to compensate for any fidelity losses [30, 56, 139]. Kamijoh et al. [84] study the energy
trade-offs for the IBM wristwatch computer and discuss the energy impact of controlling the
number of illuminated pixels and reducing the brightness of the screen (e.g., at night). Choi et
al. [31] perform a detailed power characterization of the display subsystem of a handheld device
and propose optimizations that utilize varying fresh rate, color depth, and back-light luminance.
Cheng et al. [29] exploit limitations in human visual perception to reduce the power consumption
of traditional LCDs and present an algorithm for minimizing power consumption of back-lights
in color sequential displays. Embracing the emerging OLED display technology, Xiong et al.
[167] design a micro-controller based driver for OLEDs.

In contrast to these efforts, Chapter 3 primarily focuses on the content and intent of the
display output. The detailed characterization of display usage patterns is used to identify and
understand the common mismatches between workload/user needs and current display proper-

86 CHAPTER 7. RELATED WORK

ties. Chapter 3 also explores several new user interface and hardware designs that allow energy-
adaptive control on the portions of the screen that are not of immediate relevance to the user,
while continuing to provide complete functionality on portions of the screen of relevance to the
users.

Zhong et al. [173] are the first to extensively study the energy efficiency of graphical user
interfaces and I/O mechanisms in handheld devices. Their work focuses on the power the dis-
play subsystem consumes in the creation and manipulation of the images in framebuffers and
identifies the relative energy trade-offs with various GUI event-handling and window-creation
functions and their sensitivity to size, color depth, color sequence, and platform. They then sug-
gest GUI designs that accelerate user interaction, minimize screen changes, minimize text input,
reduce redundancy, and allow intelligent overlap of computation to reduce energy [175]. They
also discuss the sensory perception-based limits for visual and auditory output, and I/O speed
for various interfaces and propose a low-power interface cache that can enable energy savings
during interactive tasks. Vallerio et al. [159] study the effect of user-interface design on energy
efficiency and propose several GUI optimization designs to reduce the average system energy
consumption of three benchmark tasks without sacrificing application performance. In compar-
ison with Chapter 5 and 6, their work does not answer the questions of the interactions between
the processes of human perception, cognition, and motor speeds, and GUI components.

Some of the latest research efforts bring forth the notion of “human-battery interaction” (HBI)
of mobile systems. Froehlich et al. [55] present a small-scale battery study on four participants
for two weeks as a case study of their in situ survey tool MyExperience and find that significant
battery capacity remains on the device upon recharge and less than 30% of the recharges are
driven by “low battery”. Banerjee et al. [14] also conduct a user study on battery use and
recharge behaviors on laptop computers and mobile phones and also find that users frequently
have excess energy remaining in their batteries at recharge. They present an experimental system
that adaptively adjusts the quality of service to meet the estimated battery requirements. Rahmati
et al. [124] report a complementary study of user-battery interaction on mobile phones with a
focus on how mobile users decide to recharge and on applying this knowledge to user-adaptive
system energy management.

7.3.3 Performance of mobile user interaction

There have been several efforts to improve the performance of mobile user interaction. Since
this dissertation mainly studies mobile user’s performance using cognitive models, this subsec-
tion discusses related work on user characterization. In the user studies conducted in Chapter
5 and 6 the users perform tasks while sitting. For mobile user interfaces, the evaluation tech-
niques would ideally take place in their natural settings. Consolvo et al. [35] use the experience
sampling method that researchers in psychology have found to be effective for learning about
situations and person-situation interactions. The technique compares most closely with recall-
based self-reporting techniques such as interviews, traditional surveys, and diaries. Intille et al.
[74] describe three tools for acquiring data about people, their behavior, and their use of technol-

7.3. ENERGY AND MOBILE USER INTERACTION 87

ogy in natural settings. These tools can provide researchers with a flexible toolkit for collecting
data on activity in homes and workplaces, particularly when used in combination.

To characterize data entry performance on mobile interfaces, Dunlop et al. [43] use a KLM
to evaluate their predictive text input method which works almost identically to T9 Text Input®
and Multi-tap. James et al. [77] conduct a study to obtain performance data for entering text
on a mobile phone in order to compare it to performance predictions based on two different
mathematical models. Speed data was obtained for two text input methods, T9 Text Input®
and Multi-tap. Pavlovych et al. [119] present a model for predicting text entry speed on a 12-
button mobile phone keypad. Cox et al. [37] show that the most efficient input method involved
combining key-press navigation with spoken text-entry. However their user study participants
show a stronger preference for uni-modal spoken input, despite a decrease in the efficiency of
interaction. They also find speech more error-prone than current predictive text entry technology.
Cao et al. [24] present a quantitative human performance model for making single-stroke pen
gestures within certain error constraints in terms of production time.

7.3.4 Applications of KLM

Initially, the KLM was targeted mainly at text editing tasks on office desktop computers [25, 26].
Although it sometimes seen as a drawback of such models to assume error-free, expert user
interaction, the KLM has since then revealed remarkably precise prediction results in various
applications such as manual map digitizing [67], vehicle navigation systems [105], and email
message organization [13]. In some cases where experimental studies indicated that estimates
in fact were considerably off the actual values, the estimated difference between two examined
designs still proved to be a strong basis for making a choice between them [43, 91, 111]. Pettitt
et al. [120] propose an extended KLM to predict measures based on the occlusion protocol of
in-vehicle information systems and conclude the considerable merit of the extended KLM as a
first-pass design tool.

The initial work in [43] is improved by How et al. [72], where the presented model is more
fine-grained. They define 13 operators that map onto the phone keyboard interface more closely
with different input methods and gather new times from video taped sessions. Pavlovych et al.
[119] further consider novice users using the cognitive load operator to model input verification.
Although their models give only rough approximations to real user behavior for text input, they
can still correctly predict which input methods are faster than others (e.g., predictive over multi-
tap). There is also work reporting on time measurements for key presses and the mental act
operator for text input in different languages (e.g. Myung for Korean [111]).

In addition to text input, Mori et al. [108] study how the time values of the original KLM
operators apply to mobile phone menu navigation and conclude that the operator values fit quite
well and suggest only minor modifications.

More and more modeling efforts have recently focused on mobile interaction. Holleis et al.
[70] extend KLM for advanced interactions with mobile phones targeted at pervasive services,
including near field communication as well as built-in cameras and sensors. In another work,

88 CHAPTER 7. RELATED WORK

Holleis et al. [69] integrate KLM in the design of tangible interfaces and present two ways of
using KLM: through a specifically designed application for prototyping in-car interfaces and
through a rapid prototyping environment for general tangible user interfaces.

Chapter 8

Conclusion

8.1 The prospect of mobility
Mobile computing has exploded to provide unprecedented new user experiences. Mobile devices
have been used primarily as personal organizers and social connectors because of their immedi-
ate availability, despite their inherent limitations that lower productivity. Currently, the mobile
web has just taken off as the promise of immediate access to information, entertainment, and
commerce services. Simple and speedy access are critical to achieving this promise.

Research in mobility should endeavor to understand how to provide the easiest and most
efficient user interaction experience to facilitate the access to service and enhance users’ everyday
lives. No user would be interested in taking complicated, lengthy steps to access information.
It is also very important to focus on helping users to accomplish their goals in a timely manner.
For instance, if the user is not sure which intersection to make a right turn in fast moving traffic,
s/he needs to know it now, not five minutes later. In addition, the environments in which mobile
systems are used are likely to have many distractions competing for users’ attention. Therefore
the contexts within which users use mobile devices must be thoroughly understood.

8.2 Contributions
This dissertation has taken a step to address the unique challenges and strengths of mobile com-
puting, with a focus on energy efficient mobile interaction design. Energy efficiency should be
considered as an important goal of user interaction design in mobile systems, because most tasks
on mobile devices are interactive by nature, and battery life is one of the biggest concerns of all
users.

This dissertation started with a detailed study of typical workload and screen usage on laptop
and desktop workstations. Gaining the insight that users only use 50% of the screen size for
their average workloads, Dark Windows, an energy efficient display design was presented and
implemented. This design optimizes display power consumption by adjusting the color and
illumination of different screen regions corresponding to the user’s current workload.

89

90 CHAPTER 8. CONCLUSION

As an early attempt on the energy efficiency of mobile user interface, there are limitations in
this work. First, the user study was conducted on PC and laptop workstations, because of the low
prevalence of mobile devices at that time. However, subsequent user studies by HP researchers
including those who collaborated in this work [20, 66, 125] have shown solid proof of good
user acceptance of the Dark Windows design, especially with its energy benefits on handheld
PDAs. Secondly, due to the unavailability of OLED panels then, the energy benefit of this study
was based on analysis of manufacturer data. It would be beneficial to obtain more data from
measurement on comparable OLED and LCD displays.

To explore another dimension of the usage space of mobile interfaces, this dissertation next
presented AstroRDS, a mobile computing system and network infrastructure that displays doc-
uments and information on user’s mobile devices on ambient ubiquitous display resources, and
facilitates much better viewing experience for the user with comparatively ease of use. The en-
ergy consumption and network usage of AstroRDS was tested in comparison with the a system
that uses the VNC remote desktop protocol, and AstroRDS saves several orders of magnitudes
on energy and bandwidth for viewing and controlling tasks, with similar initial loading overhead
as VNC. However, the lack of a user study makes it difficult to decide the user experience of
such ambient display system and the possible benefits or drawbacks. Some user studies on these
aspects would be useful for future improvements.

The limitations identified in these two initial efforts revealed a challenge for designing mobile
interface for energy efficiency. The lesson learned is that in order to understand the user experi-
ence and energy consumption, a good deal of effort needs to be spent on experimental setups, and
even more on user studies. This motivates the presented initial exploration on using cognitive
modeling techniques to produce quantitative a priori predictions of both the user performance
and energy consumption. Therefore, this dissertation discussed the applicability of cognitive
modeling, i.e., KLM, on mobile user interaction tasks, and addressed new modeling issues for
mobile interfaces. Then, the dissertation presented KLEM, a quantitative analysis methodol-
ogy that predicts both user performance and system energy consumption of an interactive task,
and during early design phases. The KLEM extends the KLM, and integrates system energy
consumption with the user interaction model of the KLM. A set of benchmarks were designed
to obtain the necessary interfacing and energy profiles of the system under study. KLEM can
predict user time and energy consumption from story boards of proposed user interactions with
good accuracy. It also serves the designers of mobile systems as a convenient tool to compare
and make early decisions among different design options, and to resolve potential design issues
before investing in actual user testing and iterative development. While KLEM was presented
with a focus on handheld devices, the methodology can be applied on any mobile interactive
system.

In summary, this dissertation makes the following major contributions:

• It has characterized the impact of hardware, software, and human user on the energy con-
sumption of mobile systems, and pointed out the significance of user interaction design for
energy efficiency.

• It has presented Dark Windows, a user interface design that optimizes energy consumption

8.3. FUTURE WORK 91

of light emitting displays by adjusting screen content according to the user’s workload and
focus.

• It has described the Astro remote display system that facilitates utilizing of ambient ubiqui-
tous display resources and optimizes user experience and energy efficiency when viewing
the information on their mobile devices.

• It has verified the Keystroke-Level Model on predicting user performance and introduced
new operators that are unique to mobile user interfaces.

• It has brought forth the Keystroke-Level Energy Model, a quantitative methodology that
extends KLM and predicts both user performance and system energy consumption of an
interactive task during early phases of design.

8.3 Future work
The work presented in this dissertation can be extended in several ways and also applied to other
areas of research on mobility and energy.

Future research on energy efficient user interface subsystems described in Chapter 3 needs to
identify and refine the interface design principles that support reduced display power consump-
tion and offer a positive or enhanced user experience. User study shows the desire to use contrast
to highlight areas of interest, personalize an interface, and view a large amount of context. For
example, interface personalization offers a fertile research area, including an assessment of pre-
existing display settings so that each settings provides a unique combination of energy consump-
tion and interface color and illumination. Also, interfaces that involve controlling a temporal
aspect offer much promise. For example, recently changed areas of the screen could be dis-
played brightly, then fade as time progresses. Finally, additional work must be done to determine
the amount and nature of power control the system should expose to the end user.

Chapter 4 showed the core functionality and features of remote display and control. The
ultimate goal however is to allow any displayable data type to be used within this system. Fur-
thermore, the system would allow much smaller and more interface-limited devices to utilize the
system’s functionality. The current system utilizes a standard size PDA as the mobile device. A
fully mobile user would be served better by even smaller devices, possibly worn on the body,
that do not require significant user attention to perform their function (e.g. diverting attention to
a screen, both-hands use). For data types such as text documents or graphics like maps that are
mostly viewed with simple controls, such as page-up, page-down, zoom and scroll, the mobile
device only needs to have button inputs to trigger these actions without a feedback interfacing
component, such as a display. Envision one such device as the size of a key chain fob, simi-
lar to today’s key chain USB memory keys. The device would have a few indicators for power
level, on-off state, and connection state. An SD card slot or other standardized, miniaturized
flash memory connector would be sufficient to provide storage for the user’s data. A low-power,
short range radio provides the interface to the ambient resources. The controls would consist of
a small 8-way rocker switch and a few buttons, that work together to provide page and screen

92 CHAPTER 8. CONCLUSION

navigation capability. When connected to an ambient display, a menu on-screen would show all
the available files in the mobile device’s storage and allow display and navigation of a file’s data.
Since the key chain device does not have extensive screen components, the issue of selecting a
particular ambient display in an environment where many are present is more complicated than
in the case of our prototype system. One idea is to employ an infrared beacon (or another type
of limited range light signaling) on the ambient display and a passive photo-detector on the key
chain device. When the key chain device is brought near the ambient display it detects and de-
codes the beacon pulses, which contain enough “bootstrap” information to allow the key chain
to make a connection via its radio link.

In addition to providing upload-and-view functionality, the ambient displays that also have
network connections to the outside world can act as email and other information proxies, collect-
ing this data on behalf of the user and transferring it to his key chain device when a connection
is made. The data could be viewed immediately during that session, or stored on the key chain
device’s storage card for viewing later, either on another ambient display, or a conventional com-
puter.

Another extension would be seamless session transfer when mobile devices utilize ambient
computing and display resources. Based on user preferences, session mobility should be able to
transfer an on-going task session from a mobile device to an ambient display resource, as well
as among devices. Examples of such a session include a web browsing session with page con-
tents, cookies, browsing history and bookmarks, a multimedia session with viewing preferences,
quality and resolution, and resuming point. The session handover should be fast and require very
little effort from the user. It should also take into account the difference in capabilities of devices.

As an initial attempt, KLEM currently addresses serial user interaction, hence tasks being
modeled need to be represented in a sequence of primitive operations. The tasks used for veri-
fying KLEM are comparably simple, sequential, computing only tasks. In reality, mobile tasks
could involve more complex user activities rather than serial operations, including situations
where multi-modal, multi-tasking, and distractions occur. Future extension of the model would
need to address these situations. It would also be useful if the KLM part can be refined to ad-
dress mobility, since most of the original and mobile KLM operators are based on studies where
the users are stationary. In reality, users send text messages on the bus, browse the web when
running on treadmills, and more and more interactions happen on the move. The modeling and
designing should take into account the context and mobility challenges.

KLEM currently provides only characterizations and predictions on user performance and
system energy, which can be used to compare design alternatives. In the future, it would ben-
eficial if energy and usability optimizations can be derived from the KLEM predictions. One
possible optimization would be using the mental preparation durations as predictors for system
mode switching and activity reduction. Such optimization would require system support and in-
tegration of KLEM into the application and OS. An extension that is already planned is to build
KLEM into CogTool in order to allow automatic energy modeling using energy profiles obtained
from benchmark sets defined in Section 6.1.2. Given that CogTool currently supports modeling
rich interaction designs and specifying model parameters (e.g. system response time), the effort

8.3. FUTURE WORK 93

to integrate KLEM into CogTool should be minimum – the analyst enters the type, estimated du-
ration, and energy profiles of system activities associated with each UI event triggering operator
(e.g. MOTOR and SAY) in CogTool, which can then automatically calculate the task time and
energy. The most demanding work would be to identify system activities and to obtain energy
profiles.

Finally, as discussed in Section 8.1, the mobile web opens great opportunities to facilitate
user access to information anyplace, anytime, and could rapidly become the dominant mobile
application. KLEM should thus be extended to not only take into account the interaction and
computation on the device side, but also the response delays and energy expenses spent on the
communication. It is very important for system designers to understand the end-to-end user
performance and energy consumption.

94 CHAPTER 8. CONCLUSION

Bibliography

[1] ACPI, Advanced Configuration & Power Interface. http://www.acpi.info.

[2] The ACT-R research group. http://act-r.psy.cmu.edu/.

[3] The CogTool project. http://www.cogtool.org.

[4] Remote Desktop Protocol (RDP) features and performance.
http://www.microsoft.com/technet/prodtechnol/win2kts/evaluate/featfunc/rdpfperf.mspx.

[5] Intel corporation and Microsoft corporation. Advanced Power Management (APM) BIOS
interface specification, 1996.

[6] User interface design update. http://www.keller.com/articles/readingspeed.html, 2000.

[7] Devices using OLED displays. http://www.oled-info.com/devices.html, 2007.

[8] Quarterly OLED shipment and forecast report. http://www.displaysearch.com, 2007.

[9] G. D. Abowd, C. G. Atkeson, J. Brotherton, T. Enqvist, P. Gulley, and J. LeMon. In-
vestigating the capture, integration and access problem of ubiquitous computing in an
educational setting. In SIGCHI Conference on Human Factors in Computing Systems,
1998.

[10] A. Acquaviva, L. Benini, and B. Ricco. Energy characterization of embedded real-time
operating systems. In Compilers and operating systems for low power, pages 53–73.
Kluwer Academic Publishers, Norwell, MA, USA, 2003.

[11] M. Anand, E. B. Nightingale, and J. Flinn. Ghosts in the machine: Interfaces for better
power management. In Proceedings of the USENIX/ACM International Conference on
Mobile Systems, Applications, & Services (MobiSys’04), pages 23–35, 2004.

[12] J. R. Anderson and C. Lebiere. The Atomic Component of Thought. Lawrence Erlbaum,
1998.

[13] O. Bälter. Keystroke level analysis of email message organization. In Proceedings of the
SIGCHI conference on Human factors in computing systems (CHI’00), pages 105–112,
2000.

[14] N. Banerjee, A. Rahmati, M. Corner, S. Rollins, and L. Zhong. Users and batteries:
interactions and adaptive energy management in mobile systems. In Proceedings of the
International Conference o Ubiquitous Computing (UbiComp), September 2007.

95

96 BIBLIOGRAPHY

[15] R. A. Baratto, J. Nieh, and L. Kim. THINC: A remote display architecture for thin-client
computing. Technical report, Department of Computer Science, Columbia University,
2004.

[16] K. Barr and K. Asanovic. Energy aware lossless data compression. In Proceedings of
the USENIX/ACM International Conference on Mobile Systems, Applications, & Services
(MobiSys’03), pages 231–244, 2003.

[17] K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout, C. Smit, T. Zhang, and B. Jacob.
The performance and energy consumption of three embedded real-time operating systems.
In Proceedings of the ACM International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, pages 203–210, 2003.

[18] G. Blasko, S. Feiner, and F. Coriand. Exploring interaction with a simulated wrist-worn
projection display. In The Ninth IEEE International Symposium on Wearable Computers
(ISWC ’05), 2005.

[19] M. Blattner, D. Sumikawa, and R. Greenberg. Earcons and icons: their structure and
common design principles. Human-Computer Interaction, 4(1):11–44, 1989.

[20] L. Bloom, R. Harter, E. Geelhoed, M. Manahan, and P. Ranganathan. Investigating the
relationship between battery life and user acceptance of dynamic, energy-aware interfaces
on handhelds. In The 6th International Symposium of Mobile Human-Computer Interac-
tion (MobileHCI), 2004.

[21] S. Brewster. Overcoming the lack of screen space on mobile computers. Personal and
Ubiquitous Computing, 6(3):188–205, 2002.

[22] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for architectural-level
power analysis and optimizations. In 27th Int. Symp. computer Architecture(ISCA), pages
83–94, 2000.

[23] T. D. Burd and R. W. Brodersen. Design issues for dynamic voltage scaling. In Proceed-
ings of the International Symposium on Low Power Electronics and Design (ISLPED ’00),
2000.

[24] X. Cao and S. Zhai. Modeling human performance of pen stroke gestures. In Proceedings
of the SIGCHI conference on human factors in computer systems, 2007.

[25] S. K. Card, T. P. Moran, and A. Newell. The keystroke-level model for user performance
time with interactive systems. Communications of the ACM archive, 23(7):396–410, 1980.

[26] S. K. Card, T. P. Moran, and A. Newell. The Psychology of Human-Computer Interaction.
Lawrence Erlbaum Associates, 1983.

[27] A. Chandrakasan, W. J. Bowhill, and F. Fox, editors. Design of High-Performance Micro-
processor Circuits. Wiley-IEEE Press, 2001.

[28] A. P. Chandrakasan and R. W. Brodersen, editors. Low-Power CMOS Design. Wiley-IEEE
Press, 1998.

[29] W.-C. Cheng and C.-F. Chao. Perception-guided power minimization for color sequential

BIBLIOGRAPHY 97

displays. In Proceedings of Great Lake Symposium on VLSI, 2006.

[30] W.-C. Cheng, Y. Hou, and M. Pedram. Power minimization in a backlit TFT-LCD dis-
play by concurrent brightness and contrast scaling. In Proceedings of the Conference on
Design, Automation and Test in Europe, 2004.

[31] I. Choi, H. Shim, and N. Chang. Low-power color TFT LCD display for handheld em-
bedded systems. In International Symposium on Low Power Electronics and Design
(ISLPED), 2002.

[32] T. L. Cignetti, K. Komarov, and C. S.Ellis. Energy estimation tools for the Palm. In ACM
International Workshop on Modeling, Analysis and Simulation of Wireless and Mobile
Systems (MSWiM), pages 96–103, August 2000.

[33] E. Clarkson, J. Clawson, K. Lyons, and T. Starner. An empirical study of typing rates on
mini-QWERTY keyboards. In Preceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’05), Extended Abstracts, pages 1288–1291, 2005.

[34] A. Cockburn and A. Siresena. Evaluating mobile text entry with the Fastap keypad. In
People and Computers XVII (Volume 2): Proceedings of the 17th Annual British Com-
puter Society Conference on Human-Computer Interaction (BCS HCI 2003), pages 77–80,
2003.

[35] S. Consolvo and M. Walker. Using the experience sampling method to evaluate ubicomp
applications. IEEE Pervasive Computing, 2(2):24–31, 2003.

[36] L. L. Constantine and L. A. D. Lockwood. Software for Use: A Practical Guide to the
Models and Methods of Usage-Centered Design (ACM Press). Addison-Wesley Profes-
sional, 1999.

[37] A. L. Cox and A. Walton. Evaluating the viability of speech recognition for mobile text
entry. In HCI 2004: Design For Life, 2004.

[38] A. Dalton and C. Ellis. Sensing user intention and context for energy management. In
Workshop on Hot Topics in Operating Systems (HOTOS), 2003.

[39] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. J. Irwin. DRAM
energy management using software and hardware directed power mode control. In Pro-
ceedings of the 7th International Conference on High Performance Computer Architec-
ture, 2001.

[40] R. P. Dick, G. Lakshminarayana, A. Raghunathan, and N. K. Jha. Power analysis of
embedded operating systems. In Proceedings of the ACM/IEEE Design Automation Con-
ference, pages 312–315, 2000.

[41] A. Dillon, C. McKnight, and J. Richardson. Reading from paper versus reading from
screens. The Computer Journal, 31(5):457–464, 1988.

[42] F. Douglis, R. Cáceres, F. Kaashoek, K. Li, B. Marsh, and J. Tauber. Storage alternatives
for mobile computers. In Proceedings of the 1st USENIX Symposium on Operating System
Design and Implementation (OSDI), 1994.

98 BIBLIOGRAPHY

[43] M. D. Dunlop and A. Crossan. Predictive text entry methods for mobile phones. Personal
and Ubiquitous Computing, 4(2-3):134–143, 2000.

[44] C. S. Ellis. The case for higher-level power management. In Proceedings of the 7th IEEE
Workshop on Hot Topics in Operating Systems (HotOS-VII), pages 162–167, 1999.

[45] K. I. Farkas, J. Flinn, G. Back, D. Grunwald, and J.-A. M. Anderson. Quantifying the
energy consumption of a pocket computer and a java virtual machine. In Measurement
and Modeling of Computer Systems, pages 252–263, 2000.

[46] Y. Fei, L. Zhong, and N. K. Jha. An energy-aware framework for coordinated dynamic
software management in mobile computers. In Proceedings of the The IEEE Computer
Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, pages 306–317, 2004.

[47] K. Flautner, S. Reinhardt, and T. Mudge. Automatic performance setting for dynamic
voltage scaling. In Proceedings of the ACM Annual International Conference on Mobile
Computing & Networking, pages 260–271, 2001.

[48] M. D. Fleetwood, M. D. Byrne, P. Centgraf, K. Q. Dudziak, B. Lin, and D. Mogilev. An
evaluation of text entry in Palm OS-Graffiti and the virtual keyboard. In Proceedings of
the Human Factors and Ergonomics Society 46th Annual Meeting, 2002.

[49] J. Flinn, K. I. Farkas, and J. Anderson. Power and energy characterization of the Itsy
pocket computer (Version 1.5). Technical Report TN-56, Western Research Lab, Compaq
Computer Corporation, February 2000.

[50] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications. In
Symposium on Operating Systems Principles (SOSP), 1999.

[51] J. Flinn and M. Satyanarayanan. PowerScope: a tool for profiling the energy usage of
mobile applications. In Second IEEE Workshop on Mobile Computing Systems and Appli-
cations, pages 2–10, 1999.

[52] J. Flinn and M. Satyanarayanan. Managing battery lifetime with energy-aware adaptation.
ACM Transactions on Computer Systems (TOCS), 22(2):137–179, 2004.

[53] S. R. Forrest. The road to high efficiency organic light emitting devices. Organic Elec-
tronics, 4(2-3):45–48, 2003.

[54] H. Franco, J. Zheng, J. Butzberger, F. Cesari, M. Frandsen, J. Arnold, V. R. R. Gadde,
A. Stolcke, and V. Abrash. Dynaspeak: SRI’s scalable speech recognizer for embedded
and mobile systems. In Proceedings of the second international conference on Human
Language Technology Research, pages 25–30, 2002.

[55] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, and J. A. Landay. MyExperience: a
system for in situ tracing and capturing of user feedback on mobile phones. In Proceed-
ings of the 5th International Conference on Mobile Systems, Applications and Services
(MobiSys ’07), pages 57–70, 2007.

[56] F. Gatti, A. Acquaviva, L. Benini, and B. Ricco. Low power control techniques for TFT

BIBLIOGRAPHY 99

LCD displays. In International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, 2002.

[57] W. Gaver. The SonicFinder: an interface that uses auditory icons. Human-Computer
Interaction, 4(1):67–94, 1989.

[58] D. Goldberg and A. Goodisman. Stylus user interfaces for manipulating text. In Pro-
ceedings of the 4th Annual ACM Symposium on User Interface Software and Technology
(UIST 1991), 1991.

[59] D. Goldberg and C. Richardson. Touch-typing with a stylus. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’93), 1993.

[60] J. D. Gould, L. Alfaro, R. Finn, B. Haupt, and A. Minuto. Reading from CRT displays
can be as fast as reading from paper. Technical Report RC 11709 (52588), IBM Research
Report, 1986.

[61] W. D. Gray, B. E. John, and M. E. Atwood. Project Ernestine: A validation of GOMS for
prediction and explanation of real-world task performance. Human-Computer Interaction,
8(3):209–237, 1993.

[62] D. Grunwald, P. Levis, K. I. Farkas, C. B. M. III, and M. Neufeld. Policies for dynamic
clock scheduling. In Proceedings of the Symposium on Operating Systems Design &
Implementation, pages 73–86, 2000.

[63] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M. T. Kandemir,
T. Li, and L. K. John. Using complete machine simulation for software power estimation:
The SoftWatt approach. In Int. Symp. High Performance Computer Architecture(HPCA),
pages 141–150, 2002.

[64] W. J. Hansen and C. Haas. Reading and writing with computers: a framework for explain-
ing differences in performance. Communications of the ACM, 31(9):1080–1089, 1988.

[65] B. L. Harrison, K. P. Fishkin, G. Anuj, C. Mochon, and R. Want. Squeeze me, hold me,
tilt me! an exploration of manipulative user interfaces. In Proceedings of the SIGCHI
Conference on Human Factors in Computer Systems (CHI ’98), pages 17–24, 1998.

[66] T. Harter, S. Vroegindeweij, E. Geelhoed, M. Manahan, and P. Ranganathan. Energy-
aware user interfaces: An evaluation of user acceptance. In SIGCHI Conference on Human
Factors in Computing Systems (CHI), 2004.

[67] P. Haunold and W. Kuhn. A keystroke level analysis of a graphics application: manual
map digitizing. In Proceedings of the SIGCHI conference on Human factors in computing
systems (CHI’94), pages 337–343, 1994.

[68] K. Hinckley, J. Pierce, M. Sinclair, and E. Horvitz. Sensing techniques for mobile inter-
action. In Proceedings of the 13th Annual ACM Symposium on User Interface Software
and Technology (UIST 2000), pages 91–100, 2000.

[69] P. Holleis, D. Kern, and A. Schmidt. Integrating user performance time models in the
design of tangible UIs. In CHI ’07 Extended Abstracts on Human Factors in Computing

100 BIBLIOGRAPHY

Systems, pages 2423–2428, 2007.

[70] P. Holleis, F. Otto, H. Hussmann, and A. Schmidt. Keystroke-level model for advanced
mobile phone interaction. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’07), pages 1505–1514, 2007.

[71] A. Holzinger. Lecture Notes in Computer Science, chapter Finger Instead of Mouse: Touch
Screens as a Means of Enhancing Universal Access, pages 387–397. Springer Berlin /
Heidelberg, 2003.

[72] Y. How and M.-Y. Kan. Optimizing predictive text entry for short message service on
mobile phones. In Proceedings of Human Computer Interfaces International (HCII ’05),
2005.

[73] D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar, and A. I. Rud-
nicky. Pocketsphinx: A free, real-time continuous speech recognition system for hand-
held devices. In Proceedings of IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2006), 2006.

[74] S. S. Intille, E. M. Tapia, J. Rondoni, J. Beaudin, C. Kukla, S. Agarwal, L. Bao, and
K. Larson. Tools for studying behavior and technology in natural settings. In Proceedings
of Ubiquitous Computing (UbiComp), volume LNCS 2864, 2003.

[75] M. Irwin, M. Kandemir, N. Vijaykrishnan, and A. Sivasubramaniam. A holistic approach
to system level energy optimization. In Proceedings of the International Workshop on
Power and Timing Modeling, Optimization, and Simulation, 2000.

[76] S. Iyer, L. Luo, R. Mayo, and P. Ranganathan. Energy-adaptive display system designs
for future mobile environments. In Proceedings of the First International Conference on
Mobile Systems, Applications, and Services (MobiSys ’03), 2003.

[77] C. L. James and K. M. Reischel. Text input for mobile devices: comparing model predic-
tion to actual performance. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI), 2001.

[78] B. E. John. Extensions of GOMS analyses to expert performance requiring perception of
dynamic visual and auditory information. In Preceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’90), 1990.

[79] B. E. John, L. J. Bass, M.-I. Sanchez-Segura, and R. J. Adams. Bringing usability concerns
to the design of software architecture. In Proceedings of The 9th IFIP Working Conference
on Engineering for Human-Computer Interaction and the 11th International Workshop on
Design, Specification and Verification of Interactive Systems, 2004.

[80] B. E. John and D. E. Kieras. The GOMS family of user interface analysis techniques:
Comparison and contrast. ACM Transactions on Computer-Human Interaction, 3(4):320–
351, 1996.

[81] B. E. John and D. E. Kieras. Using GOMS for user interface design and evaluation: which
technique? ACM Transactions on Computer-Human Interaction (TOCHI), 3(4):287–319,

BIBLIOGRAPHY 101

1996.

[82] B. E. John, K. Prevas, D. D. Salvucci, and K. Koedinger. Predictive human performance
modeling made easy. In Proceedings of the SIGCHI conference on Human factors in
computing systems (CHI’04), pages 455–462, 2004.

[83] B. E. John, A. Vera, M. Matessa, M. Freed, and R. Remington. Automating CPM-GOMS.
In Preceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’02), 2002.

[84] N. Kamijoh, T. Inoue, C. M. Olsen, M. T. Raghunath, and C. Narayanaswami. Energy
trade-offs in the IBM Wristwatch computers. In Proceedings of the Fifth International
Symposium on Wearable Computers (ISWC), 2001.

[85] H. Kawamoto. The history of liquid-crystal displays. Proceedings of the IEEE, 90(4):460–
500, 2002.

[86] S. Kiaei and S. Devadas. Which has greater potential power impact: High-level design
and algorithms or innovative low power technology? (panel). In Proceedings of the 1996
International Symposium on Low Power Electronics and Design, page 175, 1996.

[87] D. E. Kieras. Towards a practical GOMS model methodology for user interface design.
In The handbook of human-computer interaction, pages 135–158. Amsterdam: North-
Holland, 1988.

[88] D. E. Kieras. Guide to GOMS model usability evaluation using NGOMSL. In The Hand-
book of Human-Computer Interaction 2nd ed. North-Holland, Amsterdam., 1996.

[89] B. Klass, D. E. Thomas, H. Schmit, and D. F. Nagle. Modeling inter-instruction energy
effects in a digital signal processor. In Proceedings of the Power-Driven Microarchitecture
Workshop, 1998.

[90] K. R. Koedinger, V. Aleven, and N. Heffernan. Toward a rapid development environment
for cognitive tutors. In Proceedings of the 11th International Conference on Artificial
Intelligence in Education (AIED ’03), pages 455–457, 2003.

[91] H. H. Koester and S. P. Levine. Validation of a keystroke-level model for a text entry
system used by people with disabilities. In Proceedings of the first annual ACM conference
on Assistive technologies (Assets’94), pages 115–122, 1994.

[92] T. K. Landauer. The Trouble with Computers: Usefulness, Usability, and Productivity.
The MIT Press; New Ed edition, 1996.

[93] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware page allocation. In Pro-
ceedings of the 9th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IX), 2000.

[94] D. Levy. The Fastap keypad and pervasive computing. In Proceedings of the First Inter-
national Conference on Pervasive Computing, pages 58–68, 2002.

[95] K. Li, R. Kumpf, P. Horton, and T. E. Anderson. Quantitative analysis of disk drive
power management in portable computers. Technical Report CSD-93-779, University of

102 BIBLIOGRAPHY

California, Berkeley, 1994.

[96] Q. Li and F. Li. FCE: A fast content expression for server-based computing. In IEEE
International Conference on Communications, 2004.

[97] Z. Li, C. Wang, and R. Xu. Computation offloading to save energy on handheld devices:
a partition scheme. In Proceedings of the ACM International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, 238-246, 2001.

[98] J. Lorch. A complete picture of the energy consumption of a portable computer. Master’s
thesis, Computer Science Department, University of California at Berkeley, 1995.

[99] J. R. Lorch and A. J. Smith. Scheduling techniques for reducing processor energy use in
MacOS. Wireless Networks, 3(5):311–324, 1997.

[100] J. R. Lorch and A. J. Smith. Apple Macintosh’s energy consumption. IEEE Micro,
18(6):54–63, 1998.

[101] J. R. Lorch and A. J. Smith. Improving dynamic voltage scaling algorithms with PACE.
In Proceedings of the ACM International Conference on Measurement & Modeling of
Computer Systems, pages 50–61, 2001.

[102] J. R. Lorch and A. J. Smith. Using user interface event information in dynamic voltage
scaling algorithms. In Proceedings of the IEEE/ACM International Symposium on Model-
ing, Analysis & Simulation of Computer and Telecommunications Systems, pages 46–55,
2003.

[103] Y.-H. Lu, T. Simunic, and G. D. Micheli. Software controlled power management. In
Proceedings of the 7th International Workshop on Hardware/Software Codesign, pages
157–161, 1999.

[104] K. Lyons, D. Plaisted, and T. Starner. Expert chording text entry on the Twiddler one-
handed keyboard. In Proceedings of the Eighth International Symposium on Wearable
Computers (ISWC ’04), pages 94–101, 2004.

[105] D. Manes, P. Green, and D. Hunter. Prediction of destination entry and retrieval times
using keystroke-level models. Technical Report UMTRI-96-37, University of Michigan,
1996.

[106] B. Marsh, F. Douglis, and P. Krishnan. Flash memory file caching for mobile computers.
In Proceedings of the 27th Hawaii Conference on Systems Sciences, pages 451–460, 1994.

[107] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. Venkatasubramanian. Integrated
power management for video streaming to mobile handheld devices. In Proceedings of
the Eleventh ACM International Conference on Multimedia, pages 582–591, 2003.

[108] R. Mori, T. Matsunobe, and T. Yamaoka. A task operation prediction time computation
based on GOMS-KLM improved for the cellular phone and the verification of that validity.
In 6th Asian Design International Conference (ADC ’03), 2003.

[109] A. Muttreja, S. Ravi, A. Raghunathan, and N. K. Jha. Automated performance/energy
macromodeling of embedded software. In Proceedings of the ACM/IEEE Design Au-

BIBLIOGRAPHY 103

tomation Conference, pages 99–102, 2004.

[110] B. A. Myers. Using hand-held devices and PCs together. Communications of the ACM,
44(11):34–41, 2001.

[111] R. Myung. Keystroke-level analysis of Korean text entry methods on mobile phones.
International Journal of Human-Computer Studies, 60(5-6):545–563, 2004.

[112] J. Nielsen and R. L. Mack, editors. Usability Inspection Methods. John Wiley and Sons,
1994.

[113] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, and K. R. Walker.
Agile application-aware adaptations for mobility. In Proceedings of the ACM Symposium
on Operating Systems Principles, pages 276–287, 1997.

[114] J. R. Olsen and G. M. Olson. The growth of cognitive modeling in human-computer
interaction since GOMS. Human-Computer Interaction, 5(2&3):221–265, 1990.

[115] J. S. Olson and T. P. Moran. Mapping the method muddle: guidance in using methods
for user interface design. In Proceedings of a Workshop on Human-Computer Interface
Design: Success Stories, Emerging Methods, and Real-World Context, pages 269–300,
1996.

[116] M. Othman and S. Hailes. Power conservation strategy for mobile computers using load
sharing. Mobile Computing and Communications Review, 2(1):19–26, 1998.

[117] S. Oviatt. Mutual disambiguation of recognition errors in a multimodal architecture. In
Proceedings of the SIGCHI Conference on Human Factors in Computer Systems (CHI
’99), pages 576–583, 1999.

[118] G. Paleologo, L. Benini, A. Bogliolo, and G. D. Micheli. Policy optimization for dynamic
power management. In Proceedings of the 35th Design Automation Conference, pages
182–187, 1998.

[119] A. Pavlovych and W. Stuerzlinger. Model for non-expert text entry speed on 12-button
phone keypads. In Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI’04), pages 351–358, 2004.

[120] M. Pettitt, G. Burnett, and A. Stevens. An extended keystroke level model (KLM) for
predicting the visual demand of in-vehicle information systems. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI’07), pages 1515–
1524, 2007.

[121] A. Pirhonen, S. Brewster, and C. Holguin. Gestural and audio metaphors as a means of
control for mobile devices. In Proceedings of the SIGCHI Conference on Human Factors
in Computer Systems (CHI ’02), pages 291–298, 2002.

[122] I. Poupyrev, S. Maruyyama, and J. Rekimoto. Ambient touch: designing tactile inter-
faces for handheld devices. In Proceedings of the 15th Annual ACM Symposium on User
Interface Software and Technology (UIST 2002), pages 51–60, 2002.

[123] V. Raghunathan, T. Pering, R. Want, A. Nguyen, and P. Jensen. Experience with a low

104 BIBLIOGRAPHY

power wireless mobile computing platform. In Proceedings of the International Sympo-
sium on Low Power Electronics and Design (ISLPED’04), pages 363–368, 2004.

[124] A. Rahmati, A. Qian, and L. Zhong. Understanding human-battery interaction on mobile
phones. In Proceedigns of International Conference on Human Computer Interaction with
Mobile Devices & Services (MobileHCI), 2007.

[125] P. Ranganathan, E. Geelhoed, M. Manahan, and K. Nicholas. Energy-aware user interfaces
and energy-adaptive displays. Computer, 39(3):31–38, 2006.

[126] J. Rekimoto, O. Haruo, and T. Ishizawa. SmartPad: a finger-sensing keypad for mobile
interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computer
Systems (CHI ’03), Extended Abstracts, pages 850–851, 2003.

[127] M. Rettig. Prototyping for tiny fingers. Communications of the ACM, 37(4):21–27, 1994.

[128] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual network comput-
ing. IEEE Internet Computing, 2(1):33–38, 1998.

[129] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning. Saving portable computer
battery power through remote process execution. SIGMOBILE Mobile Computing and
Communication Review, 2(1):19–26, 1998.

[130] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design. ACM
Transactions on Coputer Systems, 2(4):277–288, 1984.

[131] D. D. Salvucci and F. J. Lee. Simple cognitive modeling in a complex cognitive architec-
ture. In Proceedings of the SIGCHI Conference on Human Factors in Computer Systems
(CHI ’03), pages 265–272, 2003.

[132] K. Sandler. How many mobile operating systems do we need?
http://www.technewsworld.com/story/how-many-mobile-operating-systems-do-we-
need-61659.html?welcome=1203499281.

[133] N. Sawhney and C. Schmandt. Nomadic radio: speech and audio interaction for con-
textual messaging in nomadic environments. ACM Transactions on Computer-Human
Interaction, 7(3):353–383, 2000.

[134] S. Schlosser, J. Griffin, D. Nagle, and G. Ganger. Designing computer systems with
MEMS-based storage. In Proceedings of the 9th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS-IX), pages
1–12, 2000.

[135] C. Schwesig, I. Poupyrev, and E. Mori. Gummi: user interface for deformable computers.
In Proceedings of the SIGCHI Conference on Human Factors in Computer Systems (CHI
’03), Extended Abstracts, pages 954–955, 2003.

[136] C. Seo, S. Malek, and N. Medvidovic. An energy consumption framework for distributed
java-based systems. In Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE ’07), 2007.

[137] P. Shenoy and P. Radkov. Proxy-assisted power-friendly streaming to mobile devices. In

BIBLIOGRAPHY 105

Proceedings of the SPIE/ACM Multimedia Computing and Networking Conference, 2003.

[138] E. Shih, P. Bahl, and M. J. Sinclair. Wake on wireless: an event driven energy saving
strategy for battery operated devices. In Proceedings of the 8th Annual International
Conferences on Mobile Computing and Networking (MobiCom’02), pages 160–171, 2002.

[139] H. Shim, N. Chang, and M. Pedram. A backlight power management framework for
battery-operated multimedia systems. IEEE Design and Test of Computers, 21(5):388–
396, 2004.

[140] B. Shneiderman. Touch screens now offer compelling uses. IEEE Software, 8(2):93–94,
107, 1991.

[141] D. P. Siewiorek. New frontiers of application design. Communications of the ACM,
45(12):79–82, 2002.

[142] M. Silfverberg, I. S. MacKenzie, and P. Korhonen. Predicting text entry speed on mo-
bile phones. In Preceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’00), pages 9–16, 2000.

[143] T. Simunic, L. Benini, P. Glynn, and G. D. Micheli. Dynamic power management for
portable systems. In Proceedings of Mobile Computing and Networking (MobiCom ’00),
2000.

[144] T. Simunic, L. Benini, P. Glynn, and G. D. Micheli. Event-driven power management.
IEEE Transaction on Computer-Aided Design of IC & Systems, 20(7):840–857, 2001.

[145] T. Simunic, L. Benini, and G. D. Micheli. Energy-efficient design of battery powered
embedded systems. In Proceedings of the 1999 International Symposium on Low Power
Electronics and Design, pages 212–217, 1999.

[146] A. Sinha and A. Chandrakasan. JouleTrack - a web based tool for software energy pro-
filing. In Proceedings of the ACM/IEEE Design Automation Conference, pages 220–225,
2001.

[147] A. Sinha, A. Wang, and A. Chandrakasan. Algorithmic transforms for efficient energy
scalable computation. In Proceedings of the IEEE International Symposium on Low-
Power Electronic Design (ISLPED’00), 2000.

[148] C. U. Smith. Performance Engineering of Software Systems. Addison-Wesley, 1990.

[149] C. U. Smith and L. G. Willams. Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison-Wesley Professional, 2002.

[150] C. U. Smith and L. G. Williams. Best practices for software performance engineering. In
Proceedings of CMG, 2003.

[151] M. Stemm and R. H. Katz. Measuring and reducing energy consumption of network in-
terfaces in hand-held devices. IEICE Transactions on Communications, E80-B(8):1125–
1131, 1997.

[152] T. K. Tan, A. Raghunathan, and N. K. Jha. EMSIM: an energy simulation framework

106 BIBLIOGRAPHY

for an embedded operating system. In Proceedings of the International Symposium on
Circuits & Systems, pages 464–467, 2002.

[153] T. K. Tan, A. Raghunathan, and N. K. Jha. Energy macromodeling of embedded operating
systems. ACM Transactions on Embedded Computing Systems (TECS), 4(1):231–254,
2005.

[154] T. K. Tan, A. Raghunathan, G. Lakshminarayana, and N. K. Jha. High-level software en-
ergy macro-modeling. In Proceedings of the ACM/IEEE Design Automation Conference,
pages 605–610, 2001.

[155] V. Tiwari, S. Malik, and A. Wolfe. Compilation techniques for low energy: an overview.
In Proceedings of the 1994 Symposium on Low Power Electronics, 1994.

[156] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: a first step
towards software power minimization. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2(4):437–445, December 1994.

[157] S. Udani and J. Smith. The Power Broker: intelligent power management for mobile com-
puters. Technical Report MS-CIS-96-12, Department of Computer Science, University of
Pennsylvania, 1996.

[158] A. Vahdat, A. R. Lebeck, and C. S. Ellis. Every joule is precious: a case for revisiting
operating system design for energy efficiency. In Proceedings of the 9th ACM SIGOPS
European Workshop, 2000.

[159] K. S. Vallerio, L. Zhong, and N. K. Jha. Energy-efficient graphical user interface design.
IEEE Transactions on Mobile Computing, 7(5):846–859, 2006.

[160] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye. Energy-driven inte-
grated hardware-software optimizations using SimplePower. In Proceedings of the 27th
Annual International Symposium on Computer Architecture (ISCA), pages 95–106, 2000.

[161] H. Vrsalovic, M. Hornyak, L. Luo, D. P. Siewiorek, and A. Smailagic. A computer system
for accessing ambient display and computing resources in wearable environments. In
Proceedings of the 10th IEEE International Symposium on Wearable Computers, 2006.

[162] A. Waibel, A. Badran, A. W. Black, R. Frederking, D. Gates, A. Lavie, L. Levin, K. Lenzo,
L. M. Tomokiyo, J. Reichert, T. Schultz, D. Wallace, M. Woszczyna, and J. Zhang.
Speechalator: two-way speech-to-speech translation in your hand. In Proceedings of the
European Conference on Speech Communication and Technology, 2003.

[163] L. Weberg, T. Brange, and A. W. Hasson. A piece of butter on the PDA display. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’01), Extended Abstract, 2001.

[164] D. Wigdor and R. Balakrishnan. TiltText: using tilt for text input to mobile phones. In Pro-
ceedings of the 16th Annual ACM Symposium on User Interface Software and Technology
(UIST 2003), pages 81–90, 2003.

[165] C. Xian and Y.-H. Lu. Energy reduction by workload adaptation in a multi-process envi-

BIBLIOGRAPHY 107

ronment. In Design Automation and Test in Europe, 2006.

[166] C. Xian, Y.-H. Lu, and Z. Li. A programming environment with runtime energy characteri-
zation for energy-aware applications. In Proceedings of the 2007 International Symposium
on Low Power Electronics and Design, pages 141–146, August 2007.

[167] S. Xiong, W. Xie, Y. Zhao, J. Wang, E. Liu, and C. Wu. A simple and flexible driver for
OLED. In Proceedings of the Asian Symposium on Information Display (ASID ’99), pages
147–150, 1999.

[168] Y. Xiong, X. Zhou, X. Li, and Y. Gong. OOEM: object-oriented energy model for embed-
ded software reuse. In IEEE International Conference on Information Reuse and Integra-
tion (IRI ’03), pages 551–558, 2003.

[169] W. Ye, N. Vijaykrishna, M. Kandemir, and M. Irwin. The design and use of Simple-
Power: a cycle-accurate energy estimation tool. In Proceedings of the ACM/IEEE Design
Automation Conference, pages 340–345, 2000.

[170] G. K. Yeap. Practical Low Power Digital VLSI Design. Springer, 1997.

[171] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, and R. Wang. Modeling
hard-disk power consumption. In Proceedings of the 2nd USENIX Conference on File
and Storage Technologies (FAST ’03), pages 217–230, 2003.

[172] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. ECOSystem: managing energy as a first
class operating system resource. In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-X),
2002.

[173] L. Zhong and N. K. Jha. Graphical user interface energy characterization for handheld
computers. In Proceedings of International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, 2003.

[174] L. Zhong and N. K. Jha. Dynamic power optimization of interactive systems. In Proceed-
ings of the International Conference on VLSI Design, 2004.

[175] L. Zhong and N. K. Jha. Energy efficiency of handheld computer interfaces: limits, char-
acterization, and practice. In Proc. USENIX/ACM Int. Conf. Mobile Systems, Applications,
and Services (MobiSys), 2005.

	1 Introduction
	1.1 Energy efficiency as a design metric
	1.2 Energy evaluation during early design
	1.3 Roadmap

	2 Energy and Mobile User Interaction
	2.1 Interfacing hardware
	2.2 Interfacing software
	2.3 Interfacing human
	2.4 Summary

	3 Energy Adaptive Display
	3.1 User study on screen usageThe user study in this section is conducted by HP Labs collaborators prior to the joint work.
	3.1.1 Method
	3.1.2 Results
	3.1.3 Summary of user study

	3.2 Energy-adaptive display sub-systems
	3.2.1 System design
	3.2.2 Implementation
	3.2.3 Evaluation method

	3.3 Experimental results
	3.3.1 Power benefits

	3.4 User acceptance evaluation
	3.4.1 Method
	3.4.2 Results

	3.5 Discussion
	3.6 Summary

	4 Ambient Display
	4.1 System architecture
	4.1.1 Remote display system
	4.1.2 Discovery protocol
	4.1.3 Software architecture
	4.1.4 Lightweight user interface
	4.1.5 Ambient display and display protocol
	4.1.6 Limitation

	4.2 Experimental results
	4.2.1 Network usage analysis
	4.2.2 Power consumption analysis

	4.3 Summary

	5 Predicting Mobile User Performance
	5.1 Modeling user performance
	5.1.1 Cognitive engineering models
	5.1.2 The GOMS model
	5.1.3 The Keystroke-Level Model
	5.1.4 Modeling parallel activities

	5.2 Verifying KLM on pen-based interfaces
	5.2.1 Task definition
	5.2.2 Model creation
	5.2.3 User study
	5.2.4 Result analysis

	5.3 Estimate system response time
	5.4 Summary

	6 Keystroke Level Energy Modeling
	6.1 Extending KLM for energy prediction
	6.1.1 Overview of KLEM
	6.1.2 Modeling process
	6.1.3 Energy characterizing process
	6.1.4 Mapping process

	6.2 Verification
	6.3 Comparing design alternatives using KLEM
	6.4 Summary

	7 Related Work
	7.1 Energy optimization
	7.1.1 Activity adjustment
	7.1.2 Mode switching
	7.1.3 Using alternatives

	7.2 Energy characterization
	7.2.1 Measurement based approach
	7.2.2 Analysis based approach

	7.3 Energy and mobile user interaction
	7.3.1 Human factors in energy optimization
	7.3.2 User interface energy optimization
	7.3.3 Performance of mobile user interaction
	7.3.4 Applications of KLM

	8 Conclusion
	8.1 The prospect of mobility
	8.2 Contributions
	8.3 Future work

