
OpenStack++ for Cloudlet Deployment

Kiryong Ha, Mahadev Satyanarayanan

August 2015

CMU-CS-15-123

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The notion of cloudlet is getting widely accepted from both academia and industry. However, the devel-
opment of the cloudlet faces a classic bootstrapping problem. It needs practical applications to incentivize
cloudlet deployment while developers cannot heavily rely on a cloudlet infrastructure until they are widely
deployed. To provide a systematic way to expedite cloudlet deployment, I implemented OpenStack++ that
extends OpenStack, an open source ecosystem for cloud computing. In this work, I present design decisions
to efficiently integrate cloudlets with OpenStack and show implementation details for VM provisioning and
handoff. Finally, I explain how I resolved practical challenges for the cloudlet porting.
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1 Introduction

A cloudlet is a small-scale cloud data center that is dispersed at the edge of the Internet [14]. It is aimed to

support resource-intensive and interactive mobile applications by providing powerful computing resources

to mobile devices with low latency. A cloudlet is a new architectural element that extends today’s cloud

computing infrastructure acting as the middle tier of a 3-tier hierarchy: mobile device — cloudlet — cloud.

There are a few but important differences between cloudlets and the cloud.

1. Rapid provisioning [11]: The speed of provisioning matters on cloudlets. Cloud data centers are

optimized for launching VM images that already exist in their storage tier. In contrast, cloudlets need

to be much more agile in their provisioning because their association with mobile devices is highly

dynamic with considerable churn due to user mobility.

2. VM migration across cloudlets (Hand-off): To support user mobility, cloudlet seamlessly migrates the

offloaded services on the first cloudlet to the second cloudlet as a user moves away from the currently

associated cloudlet. This is referred to as VM handoff.

3. Cloudlet discovery: Since cloudlets are small data centers distributed geographically, a mobile device

has to discover, select, and associate with the appropriate cloudlet among multiple candidates before

provisioning.

In this work, I focus on the pragmatic aspect of the cloudlet research; deployment of a cloudlet infras-

tructure. Since a cloudlet model requires reconfiguration or additional deployment of hardware/software, it

is important to provide a systematic way to incentivise the deployment. And here we are facing a classic

bootstrapping problem. We need practical applications to incentivize cloudlet deployment. However, de-

velopers cannot heavily rely on a cloudlet infrastructure until it is widely deployed. How can we break this

deadlock and bootstrap the cloudlet deployment?

The history of the Internet offers a hint. The Internet is an open ecosystem that uses a standard protocol

suite (e.g. TCP/IP). Through this open standard, multiple vendors from low-level hardware companies to

high-level services providers independently participate. However, no single vendor is bearing large risk for

improving this ecosystem. Instead, they are creating synergy by investing in their own business. In this

ecosystem, innovation in one layer can stimulate others, resulting in additional investment. For example, the

wide use of the Internet services such as email and web searching has encouraged Internet service providers

(ISPs) to invest in this infrastructure. Infrastructure advances have become a foundation for new Internet

services like voice over IP (VoIP) and social networks.

We will take a similar strategy with cloudlets. Many of today’s server-based mobile applications use

the cloud as a back-end server. We observe that the ecosystem in cloud computing is similar to that of the
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Internet; hardware to software vendors are actively and independently participating for profit. For example,

in hardware, network vendors such as Cisco and Juniper are deploying Software Defined Network (SDN)

routers/switches, and blade server vendors like IBM and HP are reshaping their products [12]. Similarly in

software, multiple hypervisors are rapidly developed to compete with each other, and various Linux vendors

like RedHat and Canonical propose their own solutions for cloud computing. OpenStack, which is a free

and open-source cloud computing software platform, provides openness in the emerging cloud software

ecosystem [13]. It offers a suite of standard APIs so vendors can independently contribute to different layers

without breaking compatibility. As of 2015, more than 150 companies have contributed to OpenStack.

We will leverage this open platform to expedite cloudlet deployment. That is, we will make our system

work as OpenStack extensions, so that any individual or any vendor who uses OpenStack for their cloud

computing can easily use cloudlets. We refer to this Cloudlet-enabled OpenStack as OpenStack++. This

project focuses on the design and implementation of cloudlet features of the OpenStack++ API. I will also

provide a client library and web interface for the OpenStack users. It is worth noting that OpenStack-based

approach is our initial efforts toward the cloudlet deployment and we ultimately want to have open APIs for

the cloudlet.

2 Background

2.1 Cloudlets

The convergence of cloud computing and mobile computing has begun. Apple’s Siri [6], which performs

compute-intensive speech recognition in the cloud, hints at the rich commercial opportunities in this emerg-

ing space. On the user end, mobile devices are becoming smaller and smaller as a form of wearable de-

vices [8]. At the other end in the back-end server, cloud computing provides nearly infinite computing

resources and scalability to mobile applications. Through context-aware real-time scene interpretation such

as recognition of objects, faces, activities, signage text, and sounds, we can imagine new mobile applications

that offer helpful guidance for everyday life much beyond what today’s Siri can offer [10]. These interactive

and resource-intensive applications will leverage the power of the cloud.

One of the critical challenges in cloud-backed mobile computing is the end-to-end network responsive-

ness between the mobile device and associated cloud. When the use of cloud resources is in the critical

path of user interaction, operation latencies can be no more than a few tens of milliseconds. Violating this

bound results in distraction and annoyance to a mobile user who is already attention-challenged [5, 7]. To

support low-latency requirements for these applications, a new architectural element called cloudlets, was

proposed [14]. Cloudlets represent the middle tier of a 3-tier hierarchy, mobile device — cloudlet — cloud,

to achieve crisp response time.

There is a significant overlap between the requirements for the cloud and cloudlets. Both levels need
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(a) strong isolation between untrusted user-level computations; (b) mechanisms for authentication, access

control, and metering; (c) dynamic resource allocation for user-level computations; and, (d) the ability

to support a wide range of user-level computations with minimal restrictions on their process structure,

programming languages or operating systems. Today’s cloud data center meets these requirements with

the virtual machine (VM) abstraction. We believe, for the same reasons they are used in cloud computing

today, that VMs are the right level of abstraction for cloudlets. Meanwhile, there are a few but important

differentiators between cloud and cloudlet.

1. Rapid provisioning: The speed of provisioning matters at cloudlets. Today, cloud data centers are

optimized for launching VM images that already exist in their storage tier. They do not provide

fast options for instantiating a new custom image. One must either launch an existing image and

laboriously modify it, or suffer the long, tedious upload of the custom image over a WAN. In contrast,

cloudlets need agile provisioning. Their association with mobile devices is highly dynamic, with

considerable churn due to user mobility. A user from far away may unexpectedly show up at a cloudlet

(e.g., if he just got off an international flight) and try to use it for an application such as a personalized

language translator. For that user, the provisioning delay before he is able to use the application

impacts usability.

2. VM migration across cloudlets (Hand-off): Once a user successfully uses a provisioned cloudlet,

the next question is “What happens if a mobile device user moves away from the cloudlet he is

currently using?” As long as network connectivity is maintained, the applications should continue to

work transparently. However, interactive response time will degrade as the logical network distance

increases. To support this effect of user mobility, cloudlets seamlessly migrate the offloaded services

on the first cloudlet to the second cloudlet, a capability termed VM handoff.

3. Cloudlet discovery: Dynamic discovery of a cloudlet by a mobile client is a unique problem to

cloudlet. Because cloudlets are small data centers distributed geographically, a mobile device first

has to discover, select, and associate with the appropriate cloudlet among multiple candidates before

it starts provisioning. These steps are unnecessary with a cloud because it is centralized. But in

cloudlets, discovery and selection have to be carefully managed because the choice of a cloudlet can

directly affect the user’s waiting time before starting offloading operation as well as future perfor-

mance of the associated mobile application.

2.1.1 VM Synthesis

Cloudlets use the notion of VM synthesis for rapid provisioning and VM handoff. The key idea behind VM

synthesis is that a large part of a VM image is devoted to the guest OS, software libraries, and supporting
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Figure 1: Creating VM overlay from Base VM

Figure 2: VM Synthesis from Mobile Device

software packages. The customizations of a base system needed for a particular application are usually

small. Therefore, if the base VM already exists on the cloudlet, only its difference relative to the desired

custom VM, called a VM overlay, need to be transferred. This approach of using VM overlays to provision

cloudlets is called VM synthesis. Rapid VM provisioning implementations in cloudlets show provisioning

times of less than 10 seconds with a series of optimizations based on my VM synthesis approach [11].

Figure 1 shows the relationship between a base VM and a VM overlay. Base VM images are constructed

from popular operating systems such as standard builds of Linux (Ubuntu 12.04 Server) and Windows 7.

An instance of each image is booted and then paused; the resulting VM disk image and memory snapshot

serve as the base disk and the base memory. To construct a launch VM, which is a VM image ready to

serve mobile requests, a user resumes an instance of the appropriate base image, installs and configures

the application’s back-end server binaries, and launches the back-end server. At that point, a user pauses

the VM. The resulting disk image and memory snapshot constitute the launch VM image. As soon as an

instance is resumed from this image, the application will be in a state ready to respond to offload requests

from the mobile device — there will be no reboot delay. The overlay for each application is the compressed

binary difference between the launch VM image and its base VM image, produced using xdelta3 and
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Figure 3: OpenStack Software Overview Diagram

Code name Category Description
Nova Compute Provision and manage large pools of on-demand computing resources
Swift Object Storage A scalable redundant storage system to save objects and files
Cinder Block Storage Persistent block-level storage devices for use with OpenStack compute

instances
Neutron Networking A system for managing networks and IP addresses
Horizon Dashboard Self-service, role-based web interface for users and administrators
Keystone Identity Multi-tenant authentication system that ties to existing stores (e.g.

LDAP) and Image Service
Glance Image Service Discovery, registration, and delivery services for disk and server images

Figure 4: OpenStack core modules

LZMA [16] compression.

Figure 2 shows the relevant steps of VM synthesis. A mobile device delivers the VM overlay to a

cloudlet that already possesses the base VM from which this overlay was derived (the delivery can be either

from the cloud or from the storage on the mobile device). The cloudlet decompresses the overlay, applies it

to the base to derive the launch VM, and then creates a VM instance from it. The mobile device now can

begin performing offload operations on this instance.

2.2 OpenStack

OpenStack is an open-source cloud computing software platform primarily focusing on IaaS (Infrastructure

as a Service). It began in 2010 as a joint project of Rackspace Hosting and NASA. Currently it is managed

by OpenStack Foundation, a non-profit corporate entity established in 2012. OpenStack has a time-based

release cycle every six months and the latest version as of the time of writing this report is Kilo (released on

2015 May).

OpenStack is a cloud operating system that controls large pools of compute, storage, and networking

resources throughout a datacenter, all managed through a dashboard that gives administrators control. It has
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Figure 5: OpenStack Dashboard Example

a modular architecture with code names for its components. The major modules and their description are

listed in Figure 4.

As of 2015, more than 500 companies have joined the project, including AT&T, AMD, Canonical

(Ubuntu), Cisco, Citrix, Dell, EMC, HP, Huawei, IBM, Intel, Red hat, and Yahoo [4]. In every single

business category, the top three vendors support or participate in OpenStack. As this large number of par-

ticipants indicates, OpenStack is becoming the de facto standard in open-source cloud computing platform.

3 Design

OpenStack has a 6-month time-based release cycle, which is a fairly short period, and a new release in-

troduces significant changes in internal APIs. Therefore, in order to keep track of their release cycle with

minimal effort on the cloudlet binding code, I am taking a modular approach for the OpenStack integration

by extending the original code rather than modifying the code directly. In addition, I maintain a standalone

cloudlet executable, which runs without an OpenStack cluster along with OpenStack++, as explained in

Section 3.2. A standalone executable and an OpenStack++ cluster share a cloudlet library for the core

functionality.
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Figure 6: OpenStack API call hierarchy

3.1 Modular Approach using OpenStack Extension

OpenStack provides an extension mechanism to add new features to support innovative approaches. This

allows developers to experiment and develop new features without worrying about the implications to the

standard APIs. Since the extension is queryable, a user can first send a query to a particular OpenStack clus-

ter to check the availability of the cloudlet features. Figure 6 shows the OpenStack API call hierarchy. APIs

for extensions are provided to the users by implementing an Extension class. An API request from the user

will arrive at the extension class and a set of internal APIs will be called to accomplish desired functionality.

Some of the internal API calls will be passed to a corresponding compute node via the messaging layer if

necessary. Then, the API manager at the compute node will receive the message and handle it by sending

commands to the hypervisor via a driver. Finally, the driver class will return the result and pass it to the user

following the reverse call sequence.

The cloudlet extensions follow the same call hierarchy. Once a user sends a request via a RESTful in-

terface, the message will be propagated to the matching compute node. Then the hypervisor driver performs

the given task. Here’s an example command flow for creating a VM overlay. The command is applied to a

running virtual machine and generates a VM overlay which extracts the difference between the running VM

and the base VM. To define a new action for creating a VM overlay, a cloudlet extension class is declared

following the OpenStack extension rule. The user-issued API request first arrives at the extension class, and

then is passed to a corresponding compute node via API and message layer. At the compute node, the mes-

sage is then handled by a cloudlet hypervisor driver, which interacts with a target virtual machine. Finally,

the cloudlet hypervisor driver will create a VM overlay using the VM snapshot.
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Figure 7: Classes/Files for Cloudlet API call hierarchy

To support a specific API, the API manager (manager.py) and hypervisor driver (driver.py) should be

able to handle the message in addition to the cloudlet extension. This requires modifications to the original

files/classes of OpenStack (Figure 7). Modifying original OpenStack code, however, will cause significant

maintenance overhead, especially because OpenStack is frequently updated. Instead, I create a new class

for both the API manager and hypervisor driver inheriting a matching class in OpenStack and save each

of them as a new file. Fortunately, OpenStack provides a way to use a custom class for the API manager

and hypervisor driver via a configuration file. As shown in Figure 7, cloudlet specific code is placed in

separate files such as cloudlet api.py, cloudlet manager.py, and cloudlet driver.py. This makes management

overhead much lower because the cloudlet feature can be added by simply placing those files into OpenStack

directory and changing a configuration file.

3.2 Support for both OpenStack and a Standalone Executable

It is important to support a standalone version of cloudlet execution in addition to the OpenStack extended

version. There are two rationales for maintaining a standalone executable along with OpenStack++. First,

OpenStack is designed for providing end-to-end cloud computing services, so it is not trivial to install and

maintain OpenStack itself. For those users who want to use only cloudlet features in a simple way, a

standalone executable will be a neat solution. Second, a standalone executable is much easier to debug and

simple to assess the performance. Since OpenStack is a complex system, the standalone version provides

a straightforward way to debug the system. To support both approaches effectively, I created a cloudlet
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Figure 8: Supporting both OpenStack and Standalone

library that both OpenStack and standalone code can use. This library is packaged as a python library

because OpenStack uses python. Figure 8 shows a high-level diagram of how the cloudlet library is used.

4 Implementation

OpenStack++ implements the following features.

1. Import Base VM: Import a Base VM from a file to the Glance image storage. I assumed that each

Cloudlet has a set of prepopulated Base VMs as explained in Section 2.1, and this is a function for

importing a Base VM.

2. Resume Base VM: Resume one of the base VMs to make a customized VM and to create a new VM

overlay for the customized VM.

3. Create VM overlay: Create a VM overlay from a running VM instance.

4. VM synthesis: Provisioning a VM instance at a OpenStack++ cluster using a VM overlay.

5. VM handoff: Migrating a VM instance to a different OpenStack++ cluster.

Among those features, Resuming Base VM and Creating VM overlay are off-line operations that the

developers use to create a VM overlay of the back-end server. That means those two operations will not be

used by mobile users, but used by the application developers. Importing Base VM is for pre-provisioning

the base VM and it is also an off-line operation which the administrator of the OpenStack++ cluster uses

after the installation of a new OpenStack. The remaining two features, VM synthesis and VM handoff, are

the run-time operations that are executed during the mobile application’s offloading. Figure 9 shows how

these operations are interpreted from the perspective of OpenStack. For example, resuming a base VM and

performing VM synthesis can be considered a process of instantiating a new virtual machine on OpenStack.

10



Cloudlet features OpenStack interpretation Output in OpenStack
Import Base VM Save VM snapshot to the Glance image

storage
New VM image

Resume Base VM Resume a VM from memory and disk
snapshot

New VM instance

Create a VM overlay Incremental snapshot of the VM 1) Disk incremental snapshot
2) Memory incremental snapshot

VM synthesis Recover the VM from the incremental
snapshot (a.k.a VM overlay)

New VM instance

VM handoff Migrate a running VM instance from
one OpenStack cluster to another

1) Terminate VM at source OpenStack
2) create new VM instance at destina-
tion OpenStack

Figure 9: Cloudlet features as an analogy for OpenStack

4.1 Import Base VM

We presume that every cloudlet caches a set of base VMs. The OpenStack++ administrator imports base

VMs after installing OpenStack++ at a cloudlet by using the import Base VM operation. Figure 10-(a) shows

a screenshot of the Cloudlet panel in the OpenStack dashboard. The first table shows a list of base VMs on

this OpenStack cluster. The second table displays a list of VM overlays saved in the Glance storage, where

OpenStack saves virtual machine images. The last table presents running VMs, each of which is either a

resumed base VM or a synthesized VM. The Import Base VM button is at the right corner of the first table,

which an administrator can use to import a new base VM. Figure 10-(b) shows the UI for import base VM.

(a) Dashboard (b) Import Base VM

Figure 10: Screenshot of Cloudlet Dashboard and Importing Base VM
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(a) Metadata for a Base VM’s memory snapshot file

(b) Metadata for a Base VM’s disk image file

Figure 11: Glance metadata of Base VM

Input file path for a base VM and base VM’s name are required.

From OpenStack’s viewpoint, importing a base VM is equivalent to saving new blobs at a Glance stor-

age. Hence, instead of creating a new API, I reuse existing Glance APIs to accomplish this operation. The

only difference is that multiple files should be saved to import a base VM because a single base VM is a

zipped file composed of four files internally; a base disk image, a base memory snapshot, a hash value list

for the disk image, a hash value list for the memory snapshot. A received base VM file is first decompressed

into four files, and then saved to the Glance storage one by one. To indicate that these are all related to the

Cloudlet’s base VM, I marked each file with a metadata using file type keyword as shown in Figure 11-(a).

Further, since OpenStack treats each glance image as an independent entity, the disk image saves the UUIDs

of all other associated files to connect all the participating files. In addition, I save VM’s libvirt configuration

as a part of the metadata of the Base VM’s disk image for the later use. Figure 11-(b) shows an example of

metadata of a disk image.
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(a) UI for resuming a Base VM (b) Finishing Base VM Resume

Figure 12: Screenshot of ‘Resume Base VM’

4.2 Resume Base VM

For a front-end mobile application, a developer prepares a back-end server that will run at a cloudlet. The in-

stallation process of the back-end server typically includes preparing dependent libraries, downloading/set-

ting executable binaries, and changing OS/system configurations. A developer can perform these operations

using a resumed base VM. Figure 12 shows a screenshot for resuming a base VM. At the first table of base

VM list, Resume Base VM button will resume the selected base VM. The resumed instance will be displayed

in the third table.

For OpenStack, resuming a base VM is analogous to instantiating a new VM instance using a VM

snapshot. Therefore, instead of devising a new API, I modified the original API for launching a new VM

instance. The original API will handle all error checking conditions such as permission, quota, and resource

availability. After passing all condition checking, the message will finally arrive at the compute node to

launch a new VM. At the code level, this message will arrive at the hypervisor driver class and be passed to

the underlying virtualization. To handle resuming a Base VM task at the hypervisor driver, I build a cloudlet

hypervisor driver class, CloudletDriver, that inherited the original LibvirtDriver. Upon a new message,

CloudletDriver examines the metadata of the associated virtual disk image. If the virtual disk image has a

cloudlet flag, then CloudletDriver resumes the selected base VM instead of starting a new VM instance from

booting. Resuming a Base VM is different from the existing VM resume mechanism of OpenStack in that a

user can resume multiple VM instances of the base VM simultaneously and the resumed VM is considered

as a new VM instance.
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(a) Start VM overlay creation (b) Finish VM overlay creation

Figure 13: Screenshots of ‘Creating VM overlay’

4.3 Create VM overlay

After resuming the selected base VM, a developer can install a desired back-end server on it. A developer is

supposed to start creating a VM overlay after finishing all the installation and after launching the back-end

server process. Overlay creation will start by simply clicking a Create VM overlay button next to the VM

instance row as shown in Figure 13-(a). This operation will apply optimizations to generate a minimal VM

overlay and finally save the VM overlay in Glance storage as listed in the second table in Figure 13-(b). One

can download the VM overlay using Download button.

For creating VM overlay operation, I introduce a new API. Creating VM overlay can be classified as the

same category of API call as reboot VM and resize VM, which applies a specific action to a running VM

instance. Therefore, I used the existing Action URL but declared a new action type using the OpenStack

Extensions mechanism. The extension defines a new Action for creating a VM overlay and passes this

command to the virtualization driver (a.k.a. CloudletDriver) via the internal API class. For the internal API,

a cloudlet API class, CloudletAPI, that inherits nova rpc.ComputeAPI was added. I avoid modifying the

original OpenStack code or files, by class inheritance and by using a new file.

At this point, OpenStack++ cluster is ready to serve mobile applications. OpenStack++ is installed and

Base VMs are imported by the service provider (Administrator) using Import Base VM. And the developers

prepare a VM overlay that contains the back-end server of the mobile application. This VM overlay file

or an URL of the VM overlay will be distributed to the mobile users. Then, the mobile applications can

dynamically provision the back-end server at an OpenStack++ cluster by either directly transmitting a VM
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(a) UI for VM provisioning (b) VM provisioning

Figure 14: Screenshot of ‘VM provisioning’

Figure 15: Example of VM provisioning request message

overlay file saved at the mobile device or by passing an URL of the VM overlay to the OpenStack++ cluster.

4.4 VM Provisioning

VM provisioning is a run-time operation for a rapid provisioning of an application’s back-end server to a

nearby Cloudlet. Using the VM provisioning, a mobile user can launch a back-end server at an arbitrary

cloudlet using a VM overlay. Figure 14-(a) shows the UI for the VM provisioning. A mobile user is asked

to input a URL for the VM overlay. Instance flavor will be automatically selected by reading the metadata

of the associated base VM. Once VM provisioning is finished, a new VM will launch and the relevant

information is displayed in the third table of Figure 14-(b).

Similar to the resuming base VM in Section 4.2, VM provisioning launches a new VM instance at the

OpenStack cluster. Therefore, I leverage OpenStack’s original VM creation API. In OpenStack, to create a
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Figure 16: Screenshots of ‘VM Handoff’ configuration

new VM instance, an OpenStack user sends a HTTP POST message to a specific URL, https://openstack-

addr/v2.1/servers typically using a client program. The detailed configurations for the new VM such as

name, disk image, and flavor are described in JSON payload of a HTTP message. To differentiate a VM

synthesis request from a regular VM creation request, I add a special keyword, ‘overlay url’, to the metadata

of the message. Figure 15 shows an example of a VM provisioning message. To specify a location of VM

overlay, an ‘overlay url’ is appended in the metadata.

This message is finally handled at cloudlet hypervisor driver, CloudletDriver, like the resuming base

VM operation. At the code level, CloudletDriver inherits the Libvirt hypervisor driver, LibvirtDriver, over-

riding the VM spawning method. At the VM spawning method, it checks the metadata to find a keyword

‘overlay url’. If the request has the overlay url metadata, it will perform VM synthesis using the given URL

of VM overlay.

4.5 VM Handoff

VM handoff will migrate a running VM instance from one OpenStack cluster to another. Since it involves

two independent OpenStack clusters, the operation starts from the assumption that a user has a permission

to access both clusters. In other words, the source OpenStack cluster needs permission to call the API of

the destination OpenStack cluster. To get the permission of the destination OpenStack cluster, the handoff
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Figure 17: Example of VM handoff request message

UI at the source OpenStack cluster asks a credential information of the destination as shown in Figure 16.

Although the Web UI does not save any credential information, one can use a client program that accepts

auth-token instead of account/password. In case where a mobile user uses an OpenStack++ cluster to run

a back-end server program, a client program will replace the role of UI to programmatically trigger VM

handoff.

Similar to creating the VM overlay in Section 4.3, VM handoff applies an action on a running VM

instance. Accordingly, I create a new API extending the Action URL using OpenStack Extension. In

the JSON payload of the HTTP POST message, https://openstack addr/v2.1/servers/server id/action, the

handoff command and detail descriptions are added as shown in Figure 17.

5 Challenges

While porting the cloudlet open source code to OpenStack, there have been many design and implementation

challenges. Some are related to complying with OpenStack practices and some are about implementation

issues such as library compatibility. Though not every challenge is tightly coupled to the research, it is worth

to report some of those challenges because they are relevant to cloudlet deployment.

5.1 Portability of the VM

The first challenge is about resuming a suspended virtual machine. Technically, VM provisioning resumes

a VM instance at the target OpenStack++ cluster, which is suspended at a different site. This causes several

portability issues in the VM. Since a VM has a relatively narrow interface to run on a hypervisor compared

to the high-level approach such as a process, it is known to be relatively easy to migrate from one place

to another. That is why VM migration is used and is stable in today’s data center. However, in our case,

different from the data center VM migration, host machines can be highly heterogeneous and the source

and destination machine can have a different networking environment. Those changes will introduce subtle

issues in the VM portability. There are two major portability problems in the OpenStack++ porting; 1) CPU

compatibility and 2) Stale networking state.
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(a) Success to Resume (b) Fail to Resume (Kernel Panic)

Figure 18: Challenges on CPU Flag Compatibility

CPU compatibility: To get full performance from a host machine, a virtual machine usually inherits

CPU flags from the host machine. That means if a source host machine, where VM is suspended, supports

a wider range of CPU features than a destination host machine, where VM is resumed, then a resumed OS

will crash when it tries to use a CPU feature that is not available at the destination. This happens because

1) suspend/resume is agnostic to the guest OS and 2) the guest OS checks CPU flags only once at the

boot-time. Unfortunately, QEMU/KVM does not strictly check CPU flags when resuming a VM, either.

Figure 18 shows an example of guest OS failure (kernel panic) when a VM is resumed at a host machine

with insufficient CPU features.

To handle this CPU incompatibility issue, I use a pre-defined CPU model for the base VM. Libvirt library

defines a set of CPU models for the virtual machine [2]. Among the wide range of CPU models including

pentiumpro, coreduo, n270, core2duo, qemu64, Conroe, Penryn, Nehalem, Westmere, SandyBridge, and

Haswell, I choose Core2duo because it covers a reasonable range of CPU flags (even more than qemu64),

but is common enough to support old machines. If one has a more managed environment where minimal

CPU features can be forced on all cloudlet machines, then a more decent CPU model like SandyBridge will

be helpful to maximize performance. In my implementation, I enforce the Core2duo CPU model and VM

provisioning and VM handoff will not start if the host machine does not support it rather than fail in run-time.

Staleness in networking configuration: A virtualized network interface card (NIC) is attached to

the virtual machine using emulated hardware interfaces like PCI. This virtual NIC has unique hardware

configurations such as the MAC address, and a guest OS loads those configurations at boot-time assuming
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Figure 19: Example of networking staleness in synthesized VM

that it won’t be changed until the next booting. Then the guest OS will setup networking via this NIC.

For example, the guest OS can have a private IP address with NAT or it can access the Internet directly

using a public IP address. Various network configurations are possible in OpenStack using Neutron [3].

However, the NIC and networking information configured at a source OpenStack cluster are not valid at

a destination OpenStack cluster where the VM is resumed. This is applied to 1) resuming a base VM, 2)

VM provisioning, and 3) VM handoff, because they are all technically resuming a memory state of the VM.

Figure 19 shows a diagram of broken networking when a VM is provisioned with the memory state. The

resumed VM originally has a NIC with MAC address 11-22-33-44-55, but OpenStack networking assigned

a new NIC card for this newly instantiated VM. This new NIC card has MAC address, aa-bb-cc-dd-ee, and

the underlying OpenStack network module uses this MAC address to configure networking. For example,

a router will forward a network packet designated to the VM using MAC aa-bb-cc-dd-ee, but it won’t be

delivered to the application because the guest OS thinks that its MAC is 11-22-33-44-55.

To overcome this inconsistency and to enable networking for the VM, we detach the old virtual NIC

and attach a new virtual NIC given by the new OpenStack via Hot PCI Plugin [15]. Since it is an industry

standard, most modern OSes support it. It is also supported by the KVM/QEMU hypervisor using VT-d

techniques [1]. After resuming the VM successfully (either resumed from VM provisioning or VM handoff

mechanism), I detach the old virtual NIC of the VM and attach a new NIC configured by the OpenStack

networking. This way, the operating system understands the reattachment of the PCI device, and accordingly

updates stale networking configurations. In theory, this won’t affect the applications’ networking because

applications are running on the TCP/IP layer and are agnostic to the underlying network level.

5.2 Modification on hypervisor (QEMU/KVM)

Figure 20 shows the layers of cloud computing software. At the bottom, a hypervisor is responsible for

creating and running virtual machines. Commercial products and open source projects including VMWare

ESX, Microsoft Hyper-V, and QEMU/KVM are the examples at this layer. One level above, Libvirt is an

open source management tool for managing virtual machines. It supports KVM, Xen, VMware ESX and

other virtualization hypervisors. Libvirt provides a set of APIs for the orchestration of hypervisors. This
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Figure 20: Layers in Cloud Computing software

is useful because each hypervisor has slightly different syntax for a similar function. Libvirt provides a

high-level abstraction hiding complexity and diversity of various hypervisors. At the top layer, OpenStack

tries to provide a complete end-to-end software system providing 1) resource management for computing

(e.g. virtual machines), networking, storage, 2) authentication and permission, and 3) high-level API for

easy use and so on.

In this hierarchy of the cloud computing software, OpenStack++ patches the original OpenStack to en-

able cloudlet features. However, to get the best performance for both provisioning and handoff, the cloudlet

code modifies the QEMU/KVM hypervisor, which can cause a problem for merging OpenStack upstream.

This is because OpenStack and QEMU/KVM are maintained by independent organizations. Therefore,

the modifications to the QEMU/KVM hypervisor can be an obstacle for OpenStack upstream merging be-

cause this modification is not an official release from the QEMU/KVM community. The right approach

is 1) first merge cloudlet’s modified QEMU/KVM to QEMU/KVM upstream, 2) wait for the new release

of cloudlet-enabled QEMU/KVM, 3) merge OpenStack++ to OpenStack upstream with the requirement of

cloudlet-enabled QEMU/KVM. This is not a research challenge or an implementation issue but matters in

practice when pursuing OpenStack upstream merging.

In order to have a better understanding, I list the necessity of modified QEMU/KVM in the cloudlet

implementation. For VM provisioning, the QEMU/KVM modification helps by improving the memory

snapshot format. Memory snapshot in QEMU/KVM is an internal data structure and its format is poorly

maintained in terms of compatibility. As a result, a QEMU memory snapshot saved using a certain version

of QEMU/KVM hypervisor might not be resumable at a different version of QEMU/KVM hypervisor. In

addition, the original QEMU/KVM compresses each memory page if possible, and that prevents the cloudlet

code from performing deduplication and randomly accessing a specific memory page. Further, cloudlets

modify QEMU/KVM to support early start optimization which allows a VM instance to start without a full

memory snapshot. Early start optimization uses on-demand fetching of the memory snapshot to speed up

VM provisioning.

For VM handoff, a behavior of the original VM live migration has been changed. While the VM handoff
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is proceeding, new dirty memory pages of the running VM are not sent to the network immediately but accu-

mulated under the control of VM handoff code. This is different from the original behavior of live migration

where dirty memory pages are immediately sent. This change is designed to save network bandwidth by

avoiding transmission of frequently modified memory pages (hot region) repeatedly. Also, the VM handoff

module will achieve adaptive VM handoff that balances computation speed and network transmission speed.

Modifications to QEMU/KVM are inevitable to speed up provisioning and handoff, but it can be an ob-

stacle for OpenStack upstream merging from a practical standpoint. To minimize the influence of modified

QEMU/KVM at OpenStack, I used it only for the cloudlet related tasks. That is, modified and unmodified

QEMU/KVM coexists at OpenStack++ and OpenStack’s original tasks use unmodified QEMU/KVM as

before. Details optimizations for provisioning and handoff are described at [11] and [9], respectively.

6 Conclusion

Cloudlets are becoming widely accepted from academia and industry. However, the development of cloudlets

face a classic bootstrapping problem. It needs practical applications to incentivize cloudlet deployment

while developers cannot heavily rely on cloudlet infrastructure until it is widely deployed. To provide a

systematic way to incentivise cloudlet deployment, I implemented OpenStack++ that extends OpenStack,

an open source ecosystem for cloud computing. With OpenStack++, any individual or any vendor who uses

OpenStack for their cloud computing can easily use the cloudlet structures. For this work, I designed and

implemented OpenStack++ APIs and ported the cloudlet open source project to OpenStack. In addition, I

provided a web interface and a client program for OpenStack users. The source code is distributed under the

Apache V2 license at the following links.

• Cloudlet Library: https://github.com/cmusatyalab/elijah-provisioning

• OpenStack++ binding: https://github.com/cmusatyalab/elijah-openstack
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