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Abstract

Protein subcellular location and compartmentalization play an important role in regulating
cellular processes. Protein mislocalization alters cell signaling and is observed in diverse
diseases (Hung and Link 2011). Drug resistance can occur when proteins are mislocalized
to the cytoplasm and nucleus, suggesting that the measurement of protein location can
help clinicians personalize therapies and diagnose disease. Here, two projects explore how
automatically quantitating subcellular location from pathology images can be used be in
diagnostics and for understanding disease. 1) We developed an automated pipeline to
compare the subcellular location of proteins between two sets of immunohistochemistry
images. We used the pipeline to compare images of healthy and tumor tissue from the
Human Protein Atlas, ranking hundreds of proteins in breast, liver, prostate and bladder
based on how much their location was estimated to have changed. The performance of the
system was evaluated by determining whether proteins previously known to change
location in tumors were ranked highly. We present a number of new candidate location
biomarkers for each tissue. Further we identified biochemical pathways that are enriched
in proteins that change location. We confirmed some previously implicated pathways and
we report new pathways previously unassociated with cancer to have changed. 2) We
extended the IHC pipeline to process full slide images. Using the pipeline we explored how
measuring changes in protein subcellular location can aid in identifying adult and pediatric
liver lesions. Our results indicate that most of the time single protein measurements are
poor markers for the lesions. Next we explored lesion.specific protein signatures for
identifying diseases. Given our dataset we found a signature set of proteins that can
successfully identify liver lesions in adult and pediatric populations with perfect accuracy.
Finally we report two new proteins that aid in classifying the lesions when used as part of a
signature protein set.
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Chapter 1

Introduction

The field of pathology is currently undergoing a revolutionary change and digital
pathology is quickly advancing field. The goal is to develop computational tools to
aid in more accurate and objective pathology diagnoses. Robust computational
methods are allowing for the discovery of new cancer markers that were previously
unappreciated. In classic biology and translational medicine protein subcellular
location is acknowledged to play an important role in cellular regulation.
Misregulation is reported to play a role in the development of disease. Protein
subcellular location has not been well studied in the context of disease; a system
wide quantitative study of differential location patterns is necessary to improve our
understanding. This thesis presents an automated computational pipeline for
analyzing protein subcellular location in immunohistochemistry images. The
pipeline is used to 1) identify potential location biomarkers from thousands of IHC
images, and 2) used to assess how protein location can be used to discriminate adult

and pediatric liver lesions.

Background

Challenges in cancer diagnoses: the need for cancer-specific markers

Cancer diagnosis is challenging due to the heterogeneity of the disease across the
population. Cancers arising from the same tissue may be driven by different
mutations and different types of aberrant signaling, effectively making each cancer a
unique disease. The presence of specific proteins and other biological
characteristics, called biomarkers, can indicate the types of mutations and

regulation patterns in the tissue and ultimately allow clinicians to make a diagnosis.

One of the most frequently used and reliable methods to diagnose cancer is to



perform a biopsy at the site of question. During a biopsy a physician collects a small
sample of the tissue. The tissue is prepared into an immunohistochemistry (IHC)
slide by a histologist, and finally a pathologist performs a differential diagnosis by
visually comparing and scoring the differences in growth patterns and the chemical

composition, compared to the normal tissue.

Immunohistochemistry

Histology is the study of microscopic anatomy of plants and animals on a cellular
and tissue level, while histopathology is the microscopic study of diseased tissue.
Immunohistochemistry (IHC) is the mounting of tissue on a glass slide where

antigens of interest are detected by protein-specific antibodies.

[HC is an excellent source of protein location in a tissue, and also in a cell. In IHC
images the tissue morphology, tissue architecture, protein expression and spatial
organization are preserved. Unlike other protein profiling experiments, IHC image
analysis samples are not homogenized giving the data an additional dimension,

location.

Tissue sections must be carefully prepared to retain the structure. First the tissue is
fixed with paraformaldehyde to preserve the structure. Next the tissue is sliced or
sectioned. Itis paraffin embedded so the specimen can be handled without
compromising the quality. The paraffin-tissue block is slice with a microtome at 4-
40um. The slices are mounted on a glass slide and dehydrated with alcohol. The
mounted tissue is dyed depending on the regions and proteins of interest.
Hematoxylin is used to dye the nuclei of the cells in the tissue. Specific proteins and
antigens are detected with antibodies. Next, the antibodies are detected with a
secondary Ab that binds the immunoglobulin of the primary. The secondary is
tagged with horseradish peroxidase (HRP), which reacts with diaminobenzidine
(DAB)to give a brown stain (Ramos-Vara and Miller 2014) (Coons AH Creech H]J
1941).
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Antibodies

Protein detecting antibodies are monospecific; they are designed to target the same
antigen. Monospecific antibodies can either be polyclonal or monoclonal.

Polyclonal antibodies are created by injecting a peptide fragment of interest into an
animal. A secondary immune response is triggered in the animal and antibodies can
be isolated from the animal serum. Monoclonal antibodies are formed from creating
a cell line from the spleen of the animal. The cell line is grown in culture and
monoclonal antibodies are harvested from the media. While monoclonal antibodies
are selected to be very specific and bind to a single epitope, polyclonal antibodies
are less expensive to manufacture and can be equally effective at detecting the

antigen, making them a good detection method for tissue samples.

The images used in this thesis, 1) Human Protein Atlas (HPA) and 2) UPMC liver
lesion data were produced from tissue sections stained with monospecific

antibodies.

Tissue microarrays

Tissue microarrays (TMAs) are a high throughput screening format based on tissue
sections (Fowler, Man et al. 2011). They are made up of small punches from
paraffin embedded tissue. A malignant breast tissue TMA contains punch biopsies
from hundreds of different breast cancer patients on a single controlled platform.
One of the biggest advantages of a TMA is a side-by-side controlled comparison of
sections of tissue from multiple sources. In addition the small punches require a
small amount of reagents, making the system cost effective. Tissue screens would
otherwise be unfeasible with single core slides. TMAs can be used for
immunofluorescence, immunohistochemistry, in situ hybridization, and
conventional histology staining. TMAs are particularly useful for screening

antibodies for diagnostic or research purposes.
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The HPA images used in Chapter 2 of this thesis were collected from TMAs. The
controlled platform allowed for consistent sample preparation and image collection.
This allowed us to do a simple cross analysis of tissue sections stained with different

antibodies and from different tissue sources.

Scoring immunohistochemistry

Once TMAs are processed using IHC they must be scored. Manual scoring of TMAs
by pathologists has been a bottleneck for tissue-based studies and drug screens.
Visual examination to assess changes is a difficult and time-consuming task. When
pathologists score TMAs multiple experts are usually involved and final scores are
decided by a consensus. Controversial cases are discussed to minimize subjectivity
and inter and intra observer variability (Arihiro, Umemura et al. 2007) (Scolyer,

Shaw et al. 2003).

There can be significant variation when experts quantitate from day to day and
facility to facility. This can lead to different scores for tissue sections in research
and diagnostic purposes (Ghaznavi, Evans et al. 2013) (Bauer, Schoenfield et al.
2013). Computationally aided diagnosis can provide an objective, quantitative

assessment of ambiguous slides (Gurcan, Boucheron et al. 2009).

Automated analysis of pathology images

With the advent of high throughput acquisition technologies like tissue microarrays
and automated slide scanners, the computerized analysis of tissue images have
made scoring and analysis feasible. In addition, computational analysis has been
used to create objective quantitative diagnostic and research tools for pathology

images.

One of the first reports on automated analysis for pathology was in 1969 by

Mawdesley-Thomas and Healey (Mawdesley-Thomas and Healey 1969) on a
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bioassay for the irritant effects of sulfur dioxide vapor by using image analysis to

quantitate globlet cells from rats.

Since then many automated methods have been developed to quantitate and score
TMAs. Some companies have reported quantitative software systems that measure
expression in cells (Mulrane, Rexhepaj et al. 2008), and some reports mention
automated quantitation of protein subcellular location and expression (Camp,
Chung et al. 2002). Automated protein profiling using cell microarrays has also
been reported (Stromberg, Bjorklund et al. 2007). Further automated methods have
been applied to tissue specific TMAs for evaluation (Amin, Srinivasan et al. 2014).
Similar methods have been used for molecular profiling of tumors (Kononen,
Bubendorf et al. 1998), (Kallioniemi, Wagner et al. 2001). Such systems have

increased the efficiency of screening by TMAs.

Automated analysis and quantitation have also been used in diagnostic and research
applications. For example automated analysis has been used to identify and
quantify macrovesicular steatosis in human livers (Nativ, Chen et al. 2014), for
scoring DDS-induced colitis in mice (Kozlowski, Jeet et al. 2013), to quantitate
kidney damage in rodent models (Klapczynski, Gagne et al. 2012), and for HER-2
status classification (Dobson, Conway et al. 2010). Reports include a variety of
approaches including fractal methods to identify colon cancer (Esgiar, Naguib et al.
2002). Studies have shown that quantitative software can detect changes in disease
states that are missed by visual inspection (Guillaud, Adler-Storthz et al.

2005) (Beck, Sangoi et al. 2011) supporting the development for accurate,

quantitative and unbiased image analysis methods.

Automated methods have been developed for research applications as well, for
example TMARKER that counts cells and quantitates stains (Schuffler, Fuchs et al.
2013), quality assurance tests (Webster, Simpson et al. 2011), and applications to
identify connectomes (Kleinfeld, Bharioke et al. 2011).
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Thus improving the state of the art in automated image analysis systems will
contribute to further developments in high throughput analysis, diagnostic and

research systems.

Protein subcellular location

The subcellular location of a protein defines its interacting partners and in turn
defines the role the protein can play in signaling cascades and the effect it can have
on the system. Subcellular location and translocation play an important role in the
regulation and timing of cellular processes. Reports have shown that protein
translocation activates cellular processes suggesting that compartmentalization is
an important aspect of cellular regulation (Htun, Barsony et al. 1996) (Edgington
and Futcher 2001) (O'Neill, Kaffman et al. 1996) (Andreadi, Noble et al. 2012) (Lau,
Parisien et al. 2000). Activation of a protein upon translocation is fast and efficient
and it provides the cell with an energy inexpensive method for controlling gene
function, as opposed to protein degradation and regeneration. An example, pho4p is
shuttled into and out of nucleus based on phosphate availability (Hung and Link
2011). Some steroid receptors are subject to a regulatory cycle involving

conditional nucleo-cytoplasmic shuttling (Pratt 1992).

Regulation by compartmentalization is complex and forcing translocation in the
absence of native stimuli will not necessarily activate function (Geda, Patury et al.
2008). Therefore a proteome-wide comparison to find differentially localized

proteins could reveal new disease mechanisms related to compartmentalization.

Some proteins are known to change function when transported to new locations.
For instance HMGB1, a chromatin protein gains cytokine function when it is
transported out of the nucleus (Muller, Ronfani et al. 2004). Nuclear EGFR is
observed in cancer and is associated with cell proliferation and drug resistance, and
when it translocates to the nucleus EGFR is involved in DNA repair (Hung and Link

2011).
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Some proteins have been found to mislocalize in disease states. Changes in protein
subcellular location have been linked to functions that drive disease and protein
mislocalization is known to occur in many diseases as diverse as Alzheimer's
disease, kidney stones and cancer. In cardiac muscle cells protein mislocalization
can be critical to the development of disease, specifically changes in location can
alter degradation processes and lead to aberrant cellular activity (Lyon, Lange et al.
2013). Many other diseases and processes are also regulated by changes in protein
location (Shelton, Chock et al. 2005) (Dai, Wei et al. 2007) (Hara, Agrawal et al.
2005) (Maulik, Engelman et al. 1999) (Maulik, Engelman et al. 1999) (Song and Lee
2003).

Location and cancer

In cancer reports show that the extent of localization in the nucleus can be used to
predict patient prognosis. For example tissue microarray analysis of beta-catenin in
colorectal cancer shows nuclear phospho-beta-catenin is associated with a better
prognosis (Chung, Provost et al. 2001). The nuclear expression levels of NFkB in
prostate lymph node metastases predict patient prognosis (Ismail, Lessard et al.
2004). Phospho-beta-catenin subcellular distribution in invasive breast carcinomas
predicts phenotype and the clinical outcome of patients (Nakopoulou, Mylona et al.
2006). The cytoplasmic FOX03a, p21, p27 and the nuclear EGFR are correlated with
poor prognosis across many cancers and their mislocalization has been correlated

with specific drug resistances (Hung and Link 2011).

The discovery of more proteins that undergo oncogenesis-associated changes in
subcellular location could potentially improve disease diagnosis in conjunction with
traditional protein expression markers. Further, discovering proteins that
mislocate in the disease state may give new insight into changes driving disease.

Such changes will go undetected by experiments measuring only expression levels.
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Here we investigate location biomarkers, proteins that undergo changes in
subcellular location that are indicative of disease. To discover such biomarkers, we
have developed an automated pipeline to compare the subcellular location of
proteins between sets of immunohistochemistry images. The pipeline also classifies

and learns protein signatures to distinguish disease states.

Our lab previously described an automated system for recognizing major
subcellular patterns in IHC images (Newberg and Murphy 2008). A set of 57 texture
and nuclear overlap features at different levels of resolution were selected to
distinguish eight subcellular location classes with high accuracy. Preliminary
results to identify proteins that change location in various cancers were presented
(Glory, Newberg et al. 2008, Newberg and Murphy 2008) however the performance
on a larger collection of proteins with mixed patterns and pattern variation was
found to be significantly lower compared to the 16 marker proteins used for

training.

Statement of the problem

The subcellular location of a protein is an important property and changes in
location are linked to changes in regulation and disease. One of the first steps in
understanding subcellular location change is to identify proteins that relocate and
under what conditions. An objective screening and measuring process would allow

us to identify changing candidates.

Here we will specifically address how subcellular location can be measured from
[HC images and we will perform a computational screening of location changes to
identify location markers for cancer. We will extend this work to begin to

understand how location changes can affect pathways and systems as a whole.

The initial hypothesis is that subcellular location changes occur across the proteome

and that these changes can be quantified with computer vision methods. We
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hypothesize that proteins do not change location independently but that parts of
pathways and protein complexes translocate and are linked to changes in cellular
regulation. Further, these location changes marker disease states and we can test

the accuracy of using these proteins as markers.

Our second hypothesis was by measuring the differences in protein subcellular
location and expression together we would be able to discriminate different disease

states and find the smallest optimal set of proteins that can classify tissues.

Summary

Changes in the expression of proteins are often associated with oncogenesis, and are
frequently used as cancer biomarkers. Changes in the subcellular localization of
proteins have been less frequently investigated. We present for the first time a
large-scale quantitative analysis of protein location across the proteome. The
analysis pipeline uses state of the art computer vision methods to provide

diagnostic applications and biological insight.

In chapter 2, we describe a robust pipeline for identifying proteins whose
subcellular location undergoes statistically significant changes in cancers of four
tissues: breast, liver, prostate and bladder. We used the pipeline to compare images
of healthy and tumor tissue from the Human Protein Atlas, ranking hundreds of
proteins in breast, liver, prostate and bladder based on how much their location is
estimated to have changed. The performance of the system was evaluated by
determining whether proteins previously known to change location in tumors were
ranked highly. We present a number of candidate location biomarkers for each
tissue, for some of which have been associated with cancer, and biochemical
pathways enriched for proteins that translocate. The analysis technology is
anticipated to be useful for discovering new location biomarkers and also for
enabling automated analysis of biomarker distributions as an aid to determining

diagnosis and prognosis.
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Chapter 3 presents a study on liver lesions. Hepatic lesions range in severity from
benign to malignant where the most malignant cases are fatal. Premalignant and
malignant liver lesions usually require a biopsy however diagnosis of the tissue can
be challenging because different lesions can have similar morphological
appearances (Isaacs 2007), however the best treatment for each lesion can be very
different (Isaacs 2007) (Litten and Tomlinson 2008). The need to improve liver
lesion characterization is immediate. Here we focus on classifying lesions in two age
groups, adult and pediatric. The pediatric analysis group consists of three liver
lesions: normal liver (nl), fetal hepatoblastoma (FHB) and well-differentiated
hepatocellular carcinoma (WDHCC). The adult analysis group consists of 5 lesions:
dysplastic nodules (DN), focal nodular hyperplasia (FNH), hepatocellular adenoma
(HCA), hepatocellular carcinoma (HCC), macroregenerative nodules (MRN). In this
chapter we extend our pipeline to process full slide images and we apply it to
quantitate protein subcellular location and expression in images. We construct a
series of classifiers to learn the optimal signature of proteins necessary to
discriminate lesion types. We show that some lesions can be distinguished with

proteins that are currently not used as markers in the clinic.
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Chapter 2

Automated Analysis of Inmunohistochemistry Images Identifies Candidate

Location Biomarkers for Cancers

This chapter describes joint work with Aparna Kumar, Arvind Rao, Santosh Bhavani,
Justin Y. Newberg, Robert F. Murphy and is modified from the published manuscript
entitled “Automated Analysis of Inmunohistochemistry Images Identifies Candidate
Location Biomarkers for Cancers” (Kumar, Rao et al. 2014). This chapter refers to

supplemental sections or datasets of the online paper.

Abstract

Molecular biomarkers are changes measured in biological samples that reflect
disease states. Such markers can help clinicians identify types of cancer or stages of
progression, and they can guide in tailoring specific therapies. Many efforts to
identify biomarkers consider genes that mutate between normal and cancerous
tissues or changes in protein or RNA expression levels. Here we define location
biomarkers, proteins that undergo changes in subcellular location that are indicative
of disease. To discover such biomarkers, we have developed an automated pipeline
to compare the subcellular location of proteins between two sets of
immunohistochemistry images. We used the pipeline to compare images of healthy
and tumor tissue from the Human Protein Atlas, ranking hundreds of proteins in
breast, liver, prostate and bladder based on how much their location was estimated
to have changed. The performance of the system was evaluated by determining
whether proteins previously known to change location in tumors were ranked
highly. We present a number of candidate location biomarkers for each tissue, and
identify biochemical pathways that are enriched in proteins that change location.
The analysis technology is anticipated to be useful not only for discovering new
location biomarkers but also for enabling automated analysis of biomarker

distributions as an aid to determining diagnosis.
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Significance Statement

Changes in the expression of proteins are often associated with oncogenesis, and are
frequently used as cancer biomarkers. Changes in the subcellular localization of
proteins have been less frequently investigated. In this paper, we describe a robust
pipeline for identifying those proteins whose subcellular location undergoes
statistically significant changes in cancers of four tissues, and also for identifying
biochemical pathways that are enriched for proteins that translocate. Future
investigation of these proteins and pathways may provide new insight into
oncogenesis. Further, the analysis pipeline is expected to be useful for assessing

disease type and severity in a clinical setting.

Introduction

Our understanding of the number and types of changes that occur in various cancers
is continuously growing. Previous work to discover proteins that vary significantly
between normal and cancer cells has used techniques such as microarray profiling,
next generation sequencing, antibody arrays and proteomic profiling (Kononen,
Bubendorf et al. 1998, Khan, Saal et al. 1999, Mardis and Wilson 2009, Leung,
Diamandis et al. 2012). These studies have led to the discovery of proteins (termed
expression biomarkers) whose expression levels mark different disease states.
However for some proteins, the extent of localization in the nucleus can be used to
predict patient prognosis; f-catenin (Chung, Provost et al. 2001) and NF«B (Lessard,
Karakiewicz et al. 2006) are examples. The discovery of more proteins that undergo
oncogenesis-associated changes in subcellular location (which we term location
biomarkers) could potentially improve disease diagnosis in conjunction with
traditional protein expression markers. Further, discovering proteins that relocate
in the disease state may give new insight into changes driving disease, and that

changes would go undetected by measuring only expression.
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Immunohistochemistry (IHC) studies are a major source of data on protein
expression and location. Most such studies use visual examination to assess
changes, a difficult and time-consuming task. With the advent of high throughput
acquisition technologies like tissue microarrays and automated slide scanners,
computerized analysis of tissue images is highly desirable and studies have shown
that quantitative software can detect changes in disease states that are missed by
visual inspection (Guillaud, Adler-Storthz et al. 2005). Methods for analyzing
changes in expression and pattern are well established in cultured cells (Shariff,
Kangas et al. 2010) but histological images are typically more difficult to analyze
because cellular heterogeneity and the closely packed organization of cells lead to
significant cell segmentation challenges. Several projects have been initiated to
build workflows that process IHC images (Lejeune, Jaen et al. 2008, Matos, Trufelli
et al. 2010). Most of this work has been focused on quantitating differences in
protein abundance between normal and cancer tissue. However, as discussed
above, differences in subcellular protein locations could also be critical both for
understanding and diagnosing disease. Thus there is a strong need for systems that

can analyze protein subcellular location in IHC images.

We have previously described an automated system for recognizing major
subcellular patterns in IHC images (Newberg and Murphy 2008), and presented
preliminary results on using that system to identify proteins that change location in
various cancers (Glory, Newberg et al. 2008). These studies used a subset of the
extensive collection of IHC images in the Human Protein Atlas (HPA) (Uhlen,
Bjorling et al. 2005). However, we have found that the performance on a larger
collection of proteins with more pattern variation was significantly lower compared
to the 16 marker proteins used in our previous study. We therefore sought to
develop a system that can identify potential location biomarkers using new
approaches without explicit classification. Using images from the HPA, we show
that our system can identify proteins with altered subcellular location directly from
tissue images and anticipate that approaches such as this may significantly

contribute to diagnosis, treatment and monitoring of cancers.
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Results

Our analysis pipeline (Fig. 1) consists of five steps.

The original IHC image with Unmix and Threshold
DAB and hematoxylin stain :

rotein éhannel
= T

Five regions are selected

DNA channel from the image.

[0.4,0.2,16,2.8,....0.6].
v<:| [0.3,0.1,16,2.9,....0.6]. €—
° [0.4,0.1,16,2.6,....0.7]. :
. [0.4,0.1,16,2.6,....0.7].
[0.4,0.2,16,2.8,....0.6].

Nonparametric

distribution testing

Classification

Fig. 1. Overview of the location biomarker discovery pipeline. Images with strong
or moderate antibody staining were selected. Linear unmixing was used to separate
each image into two composite images representing the DNA and protein stains as
previously described (11). Regions were selected by convolving the protein image
with a low pass filter and selecting the highest points as region centers. Fifty-seven
numerical features were calculated to describe the pattern in each region. The non-
parametric FR test was used to calculate a p-value and determine whether the null
hypothesis, that the features from the normal and cancer image come from the same
distribution, should be rejected. The non-parametric WW test was used to calculate
a p-value to measure how likely the two sets of images are to come from the same
expression distribution. A nearest neighbor classifier was also used to determine

the ability of each antibody to distinguish normal and cancer images.
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(i) Selecting a set of proteins for analysis guided by staining levels. For a given
tissue, we selected antibodies from the HPA whose staining intensity was annotated
as moderate or strong, and whose staining quantity was annotated as greater than
75%. Due to tissue specific expression and variations in staining, the proteins

identified (referred to as the analysis set) were different for each tissue.

(ii) Separating the DNA and protein components of each image by unmixing the
hematoxylin and diamino-benzidine stains. The HPA images are collected as RGB
images in which the two stains appear as purple and brown, respectively. The
intensity derived from each stain is therefore a combination of the intensities from
the three RGB channels. We unmixed the spectra to give separate images reflecting

mainly DNA and protein content (Newberg and Murphy 2008).

(iii) Selecting regions of each image with the highest protein expression, under the
assumption that the highest stained regions would be less likely to contain

connective tissue, stroma and other non-cellular regions.

iv) Calculating features to describe the localization patterns in each region

(Newberg and Murphy 2008).

(v) First, estimating the probability that a given protein’s localization pattern differs
between the two conditions. The nonparametric Friedman-Rafsky (FR) test was
used to calculate a p-value for the null hypothesis that the sets of regions from
normal images and from cancer images show the same pattern. Second, estimating
the probability that a given protein’s level of expression differs between the two
conditions. Expression p-values were calculated using the Wald Wolfowitz method
to test the null hypothesis that the level of expression in the regions from the
normal and cancer images came from the same distribution. These calculations

were done for 35 random samplings of images, giving very high repeatability of the
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results (see Methods). Finally, calculating a classification accuracy for separating

normal and cancer images by using protein location information.

We applied this pipeline to images from the HPA for four tissues: breast, liver,
prostate, and bladder (the results are contained in Dataset S1). After running the
pipeline for each tissue, the proteins were sorted by their location p-values to obtain
a ranking by extent of subcellular location change. Representative images of the top

three hits for each tissue are shown in Fig. 2.

Breast Liver Prostate Bladder
Normal Cancer Normal Cancer Normal Cancer
EY =3 7 . N e n

Thoos ‘

Sy

GaiA

HIST1H3H
TGOLN2

o
<
(=]
o
—
(7))

TMEM194A
FGFR10P2

wv
Oy"
o
-
L
<g
=3
0;

PNPLAS

Fig. 2. Example images from top ranked potential location biomarkers. The three
proteins with the lowest location p-values are shown for each tissue (without
considering expression level). The two regions closest to the two centroids found

from k-means clustering (k=2) for the normal and cancer feature distributions are
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displayed for each of the top hits. Note that some of the top hits may have been

detected due to expression changes.
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Fig. 3. Ability of the system to detect known location biomarkers. ROC curves were
constructed for each tissue by determining how many true positives and false
positives were found as a threshold on the p-value was varied. The validation set
for a given tissue consisted of those proteins from the analysis set that were
annotated as having a different location between the normal and cancer images.
Note that some of the false positives may actually be positives that were not present

in the validation set.
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Testing using known location biomarkers

We expected that proteins known to change location in cancer would be ranked high
on this list. To test this, we constructed validation sets using pathologists’
annotations of the gross subcellular location provided in HPA: 1) nuclear, 2)
cytoplasm and plasma membrane, 3) nuclear, cytoplasm and plasma membrane, 4)
none. The validation set for a given tissue consisted of those proteins from the
analysis set for that tissue that had different location annotations between the
normal and cancer images (see Materials and Methods). Treating these as true
positives, we constructed receiver-operating characteristic (ROC) curves in which a
threshold on the p-value at which a protein was considered positive was varied (Fig.
3). The area under these curves is a measure of how well our test finds the true
positives. If the validation markers were the only proteins expected to change
location, and if the system performed perfectly, the area under these curves should
be one. However, we expect some of the proteins ranked highly by p-value may be
actual location biomarkers even if they are not in the validation set. For example,
proteins may undergo a change in location that was not captured by the gross
location annotations used to define true positives. Thus we do not expect even a
very good discovery system to give values near one. The areas under the ROC
curves for breast, liver, prostate and bladder were 0.67, 0.59, 0.67, 0.68,
respectively. These are all significantly above 0.5, the area expected for random

performance.
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Fig. 4. Distinguishing between intensity and location changes. Each dot shows the
p-values for the hypotheses that location or expression are different between
normal and tumor tissue for a given protein. The correlation between location and
expression p-values is weak suggesting that proteins that change location in the
cancer state do not necessarily change expression, as seen in the top left corner.
The color indicates the classification accuracy for separating normal and cancer
images of that protein using subcellular location information alone. Proteins with
high classification accuracy for distinguishing normal and cancer images are
represented by a red dot. Red proteins closest to the top left corner are potential
location biomarkers and their discovery would have been missed by traditional

experiments that measure changes in protein expression.
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Distinguishing location and expression changes

The features we used are designed to minimize the effect of differences in protein
staining level. Even so, a major change in expression may cause a change in image
texture that would be detected by our features even if subcellular location remains
the same. This may cause proteins that do not change their location significantly but
do change their expression dramatically to rank highly on our lists. We therefore
used the expression p-values and location p-values together to analyze each

protein’s change.

Fig. 4 shows the relationship between the expression change and location change
for proteins in various tissues. The first conclusion we can draw is that the two
values are not correlated, suggesting that proteins that change location do not
always change expression, and vice versa. Secondly, the points in the upper left
corner of each scatter plot represent proteins that have significantly changed
location (low p-values) but have not changed expression (high p-values). The color
of each point indicates how well that protein can be used to train a classifier to
distinguish images from normal and cancerous tissue (see Materials and Methods;
the accuracy values are listed in Dataset S1). Thus we expect proteins whose
symbols are dark red and in the upper left corner to be potential biomarkers useful
in a clinical setting for recognizing cancerous tissue by measuring differences in
subcellular location. These proteins would not have been identified as potential
markers by measuring expression changes alone. Dataset S1 is ranked for each
tissue using the Euclidian distance from the upper left corner, that is, proteins that
change location and do not change expression. The five top-ranked proteins for
each tissue using this criterion are shown in Table 1, and images of the top three

from each tissue are shown in Fig. 5.

Of course, we expected that classic biomarkers that are known to translocate in
cancer, such as E-cadherin, B-catenin and NFKB, would be ranked highly in this list.

These proteins were not part of our analysis sets because the HPA did not contain a
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sufficient number of images to meet the threshold of our pipeline. We therefore
separately calculated location p-values for those proteins using the images that
were available for breast and prostate cancers. The p-values for two E-cadherin
antibodies with high reliability, CABO00087 and HPA004812 were higher than 0.20.
The p-values for three B-catenin antibodies, CAB000108, HPA029159 and
HPA029160 were higher than 0.32. The two antibodies against NFKB in prostate
cancer are CAB004031 and HPA027305 with p-values greater than 0.22. Thus our
tests indicate that none of these are strong location biomarkers in these tissues,

contrary to expectation based on previous literature reports.

Breast Liver Prostate Bladder
Normal Cancer Normal Ca

e

SLC30A9
RASGRF2

METTL21A

FAM120A

Fig. 5. Example images from top location biomarker predictions with very small
mean intensity changes. For every protein the features from each disease state
were clustered using k-means (k=2) and the region closest to each centroid is

displayed.
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Fig. 6. Estimation of generalizability of identifying location biomarkers. For each
protein, classification accuracies (black) and location biomarker rankings (red) are
compared for estimates using one or two normal images. The correlation
coefficients were 0.90, 0.91, 0.90 0.90 for the accuracies and 0.95, 0.96, 0.96, 0.96
for the location biomarker rankings. The high correlations for the rankings suggest

that highly ranked proteins would also be highly ranked in new images.
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Loc Exp
pvalue pvalue.
Gene Name HPA Ab Acc.
Breast
SCRN2 HPA023434 0.24 0.95 0.69
BTNL2 HPA039844 0.24 0.95 0.59
PSTPIP2 HPA040944 0.28 0.95 0.58
USP10 HPA006749 0.27 0.90 0.58
NT5DC3 HPA041634 0.27 0.89 0.62
Liver
SLC30A9 HPA004014 0.15 0.96 0.81
METTL21A HPA034712 0.15 0.87 0.65
C4orf22 HPA043383 0.19 0.92 0.65
WDR24 HPA039506 0.16 0.85 0.67
PARP12 HPA003584 0.22 0.94 0.78
Prostate
RASGRF2 HPA018679 0.14 0.97 0.90
ECE1 HPA001490 0.17 0.99 0.77
FAM120A HPA019734 0.18 0.94 0.73
PLA2G4C HPA043083 0.19 0.95 0.69
TMEM194A  HPA014394 0.13 0.85 0.79
Bladder
TTC27 HPA031246 0.19 0.89 0.84
FGFR10P2 HPA038696 0.14 0.83 0.89
TARS?2 HPA028626 0.25 0.96 0.54
STAC HPA035143 0.19 0.83 0.71
- CAB009119 0.20 0.82 0.72

Table 1. Potential location biomarkers. The five proteins with the greatest location
change and the smallest expression change are shown (the full ranked list is in
Dataset S1). Classification accuracies for distinguishing normal and cancer are also

shown.
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Fig. 7. Ordering regions by location change progression. We selected one top
ranking protein from breast and liver: antibodies HPA017887 and HPA004701
respectively. The Euclidean distances between every pair of regions were
calculated using the features and clustered into a binary hierarchical tree. The
leaves were ordered to maximize the sum of similarities between adjacent leaves
across the tree. The tree was cut at 10 clusters and leaves contained in each cluster
are indicated by color. The region closest to the mean of each cluster is displayed
below the tree from left to right. Normal tiles are outlined in blue; cancer tiles are

outlined in red.
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Fig. 8. Ordering regions by location change progression. We performed a
hierarchical clustering of the features from the regions used in the analysis for
antibody HPA034715 against ARHGEF3 in bladder tissue. We calculated the
Euclidean distances between every pair of regions and then performed the binary
hierarchal clustering. The leaves are ordered to maximize the sum of similarities
between adjacent leaves across the tree. Regions are displayed vertically according

to the ordering in the tree. Normal tiles are outlined in blue; cancer tiles are

outlined in red.
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Fig. 9. Location biomarkers differ between high and low grade cancers. The
prostate and bladder cancer images were partitioned into high or low grade cancer
as annotated in the Protein Atlas. For each cancer, location and expression p-values
were calculated between the grades. The correlation between location and
expression p-values is weak suggesting that proteins with different locations
between the two grades will not necessarily have different expression levels. The
color of each dot indicates the accuracy of a three-class classifier trained to
distinguish the normal and the two grades while using location information alone.
Some proteins (marked in orange) have high classification accuracies, further they
showed a significant location change and do not show a significant change in
expression. These proteins are potential location biomarkers for the cancer

subtypes.

34



Prostate Bladder
Normal Typel Type2

¢ y Y

Normal Typel Type2

Fig. 10. Example images from top location biomarker predictions for classifying
normal tissue from different tumor grades. The proteins are ranked by the 3-class
classification accuracy for separating normal tissue, low grade tumors and high

grade tumors.

In addition, upon visual inspection of the HPA images, we did not observe a pattern
change; the pathologist annotations also did not indicate a location change. All of
the antibodies for these three proteins had identical location annotations in the two
disease states with the exception of HPA004812 which moved from nuclear and
cytoplasmic and membranous to mostly cytoplasmic membranous in the cancer

state. The basis for this difference in this dataset from previous results is unclear.

Given that we were evaluating a large number of antibodies, we were also interested
in estimating the generalizability of the relative performance of the antibodies. In
other words, how likely it is that proteins with low p-values or high classification
accuracies would show similar values in future experiments? To do this, we
calculated p-values and accuracies for a smaller number of images and compared it
to the values with the larger number (see Methods). Note that this is different than
the repeatability of the rankings using the same number of images. The results
shown in Fig. 6 indicate a high correlation in the two estimates of the rankings of the
p-values, and a slightly lower correlation of the two estimates of the rankings of the

classification accuracies. This suggests that the generalizability of p-value and
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classification rankings should be high (the generalizability to unseen images should

be even higher for the full set than for the subsets).

Features reveal visually distinguishable changes useful for distinguishing tumor from

healthy tissue

To determine whether the differences in location being identified by our pipeline
were visually distinguishable changes, we performed hierarchical clustering and
optimal leaf ordering to order the regions for a given antibody using our features
(see Methods). Fig. 7 shows ten representative regions ordered for two example
proteins from the top ranked proteins. In breast tissue stained for SLC36A4, the
normal regions clustered near each other on the left. Further, the regions appear
ordered by increasing nuclear localization suggesting our features can detect
incremental and possibly continuous changes in this location pattern. In liver,
GSTZ1 showed a decrease in nuclear localization from left to right, and also an
increase in cytoplasmic graininess. The clustering grouped the normal and cancer

regions separately

Location biomarkers can distinguish between cancer grades

Each cancer in the HPA has a specified grade or subtype. We partitioned the images
by grade and ran the pipeline to compare the two grades to each other for the
prostate and bladder cancer set (Dataset S2). We also asked how well each protein
could be used as a potential biomarker in a classifier trained to distinguish three
disease states: normal tissue, low grade and high grade tumors. Fig. 9 shows the
location p-value and the expression p-value for each protein when comparing the
two subtypes to each other. Points that fall in the upper left corner have different
subcellular locations between the two grades but similar expression levels. The

color of each point represents that protein’s 3-class classification accuracy.
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The points with warmer colors and close to the top left corner represent proteins
that have different locations but similar expression levels in the two subtypes.
These proteins can be used to distinguish the three disease states. Example images
for the proteins with the greatest 3-class classification accuracies are shown in Fig.
10. The best classification accuracy was obtained for S100A6 in bladder: it has a
classification accuracy of 83% (compared to 33% expected at random), a location p-
value of 0.081 and an expression p-value of 0.34. This protein is the best example of
a potential location biomarker (one that changes location but not expression) in
bladder. These results provide further support for the utility of our system for

identifying important location changes between disease states.

KEGG pathways and translocated proteins

Lastly, we were interested to find out whether our analysis could suggest entire
pathways, or major portions thereof, that might undergo translocation together in
cancer (the simplest example would be proteins that are part of a translocating
complex). To answer this, for each KEGG pathway we calculated the probability that
all of the proteins in it changed location or expression compared to a randomly
sampled background distribution (Fig. 11). (Note that this represents an
underestimate of the change in a pathway if it contains subcomponents that do not
translocate.) We calculated pathway changes using either our image processing
pipeline or pathologist annotations. Pathways with the largest change in either
location or expression are listed in Table 2. As discussed below, some of these
pathways have been previously implicated in cancer and some are novel

predictions.
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Fig. 11. Extent of expression and location change in the KEGG pathway components.
The left four panels show KEGG p-values using pipeline protein values, the right four
panels show pathway p-values derived from location and expression annotations.
Each point represents the expression and location p-value for a single pathway. The

points are colored by the number of nodes in the pathway.

Discussion

We have described a workflow to identify proteins that change their subcellular
location between normal and cancerous tissue without requiring classification. We
validated our ability to detect changes in location classes by using annotations

provided by the HPA database.

Upon visual inspection of top hits (Fig. 5), we noted that our system was able to find
texture changes between the two disease states, however these did not always
represent changes between distinct subcellular location classes. In some cases our

texture features were detecting changes in tissue structures and morphology.
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In Fig. 5, BTNLZ2 in breast showed a decrease in nuclear localization. SLC30A9 in
liver decreased in cytoplasmic graininess, and C4orf22 decreased in plasma
membrane and vesicle localization in the cancer state. In prostate cancer ECE1
decreased in plasma membrane accumulation. In bladder cancer FGFR10P2
changed from cytoplasmic and nuclear localization to mostly a grainy cytoplasmic
localization in cancer. TARS2 in bladder increased in nuclear membrane
localization in cancer. In some cases our texture features picked up changes in
tissue structure but not necessarily subcellular location, as was seen in SCRN2 in

breast and TTC27 in bladder.

[t was of interest to consider whether our top predictions had previously been
implicated as being altered in cancers, and which ones were new discoveries. In
breast cancer very few studies have reported on BTNL2, however there is strong
evidence that variants of this gene play a role in susceptibility to sporadic and
familial prostate cancer (Fitzgerald, Kumar et al. 2013). PSTPIP2 has not been
reported in breast cancer however it is implicated in the expansion of macrophage
progenitors leading to autoinflammatory disease (Chitu, Ferguson et al. 2009).
USP10 is translocated to the nucleus upon DNA damage and regulates p53 (Yuan,
Luo etal. 2010).

In liver cancer PARP12 has been reported to play a role in genome surveillance,
DNA repair pathways and it is rising as a new potential therapeutic target (Yelamos,

Farres et al. 2011).

In prostate cancer, four of our top findings have been linked to prostate cancer
development. Methylation of the RASGRF2 gene was found to be associated with
prostate cancer (Mahapatra, Klee et al.). ECE1 has been implicated in prostate
cancer cell invasion, where different isoforms of the protein were found to play
different roles (Lambert, Whyteside et al. 2008). PLA2G4C is regulated by EGR, a

gene that is rearranged in about 50% of prostate cancer (Massoner, Kugler et al.
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2013). In bladder cancer very few of the top findings have been published in

association with disease.

Pathway changes

Some of the top ranking pathways had location p-values that were about two orders
of magnitude smaller than the expression p-values based on the pipeline results
(Table 2 and Fig. 9). In the HTLV-1 infection pathway, the HTLV-I Tax oncoprotein
initiates malignancy development in leukemia by creating an environment to
facilitate DNA damage (Matsuoka and Jeang 2007). The molecular mechanism of
this pathway has not been studied in the contexts of breast or urothelial cancer. Our
results together with other literature reports indicate that subcellular location
changes in components of HTLV-I infection pathway could play a role in driving
cancer. Further, the high rank of this pathway across the four tissues indicates that
these changes may be important in identifying and understanding other cancers as

well.

The ‘one carbon pool by folate’ pathway was also found to change location in breast
cancer. Itis known to play an important role in DNA global hypomethylation, which
can lead to DNA strand breaks (Xu and Chen 2009). As expected, when changes in
expression are used to rank pathways, the ErbB pathway ranks near the top for

breast cancer (Howe and Brown 2011).

In liver cancer the axon guidance pathway was found to change location more than
it did expression. One of the genes contributing to the axon guidance pathway,
ROBO1 was found to be overexpressed in HCC (Ito, Funahashi et al. 2006). The axon
guidance pathway has not been implicated as a whole in liver cancers but it is
known to be altered in pancreatic cancers (Biankin, Waddell et al. 2012). Our
results with previous reports of ROBO1 suggest this pathway may play a role in liver
cancer. The importance of the top pathways seen to change expression in liver is

unclear.
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In prostate cancer HIF-1 signaling is known to play an important role in hypoxia
adaption of tumors and HIF-1alpha is known to be overexpressed in early tumors
(Kimbro and Simons 2006). Our findings suggest that the proteins in this pathway
undergo location changes, possibly contributing to the pathway’s dysregulation in
cancer. PPAR is a known prostate cancer marker [Collett, 2000 #3134], and its

pathway is identified as changing expression.

Lastly, in urothelial cancer the hippo signaling pathway was the top ranking
pathway to change location. Hippo signaling is responsible for tissue size and is
known to lead to uncontrolled cellular proliferation and blocking of apoptosis when
misregulated (Barron and Kagey 2014). When we ranked the pathways in
urothelial cancer by expression changes, a number of signaling pathways known to

be involved in cancers rank at the top.

We also calculated the product of the p-values for each pathway across all four
tissues to find those pathways changing in all four cancers (Dataset S3). Three of
the top ranking pathways for location changes were already identified in individual
tissues. In addition, the p53 signaling pathway (which is known to involve location
changes), was also identified. For expression changes, five pathways previously
associated with cancers were highly ranked (which is encouraging with respect to

the accuracy of our automated methods).
Our analyses suggest that location changes of these pathways may be important for

understanding their role in disease. In addition our results link previously

implicated pathways to new cancers for further investigation.
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Breast HTLV I infection
One carbon pool by folate
- - Proteasome

- - ErbB signaling pathway

+ + |9 =
’-U..
>
> T

+ +

Liver +

Axon guidance
Glycosylphosphatidylinositol GPI anchor
biosynthesis

- + - - Hypertrophic cardiomyopathy HCM

- + - - Dilated cardiomyopathy

1
+
1
1

Prostat
e + - - - Fatty acid elongation
+ - - - HIF 1 signaling pathway
- - Oxidative phosphorylation
PPAR signaling pathway
- - Viral myocarditis

1
+ + +

1

1

Bladder +

1
+
1

Hippo signaling pathway

- - NF kappa B signaling pathway

- - p53 signaling pathway

- - Transcriptional misregulation in cancer
Apoptosis

- - Cell cycle

- - mRNA surveillance pathway

- - Ribosome biogenesis in eukaryotes

1

+ 4+ + + + + +
1
1

Table 2 - Pathways with the largest location or expression changes. Pathway p-
values were calculated using individual protein location (L) or expression (E) p-
values from the pipeline (L:P,E:P) and using p-values from pathologist annotations
(L:A, E:A). + indicates pathway p-values less than 0.01. The values for all pathways

are in Dataset S3.
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Conclusion

Using staining patterns of proteins in four tissues, we have identified proteins that
show altered subcellular location in cancer and/or whose patterns can be used to
distinguish normal and cancerous tissue or different cancer subtypes. Many of these
proteins do not have significant expression level changes and would not have been
found as biomarkers if we had considered expression level changes alone. Further,
some proteins have high classification accuracies but visually similar location
patterns. The subtle changes that are being detected may nonetheless be useful for
distinguishing disease states. Extended analysis with more images of the potential
markers we have identified will be necessary to assess their utility or significance.
We note that the analysis pipeline we have described is not only useful for
identifying cancer biomarkers, but should also be valuable for automating the
process of analyzing IHC images to assess disease state. We are currently carrying
out collaborative translational studies to determine whether our technology
combined with any of the potential biomarkers is useful for distinguishing lesions

with various diagnoses or prognoses.

Materials and Methods

Data

We used images from the HPA (www.proteinatlas.org) that appeared online on

September 24, 2013. Proteins were placed in the analysis set for each tissue if they
met three criteria: (i) the staining annotation was strong or moderate, (ii) if the
quantity field was annotated as greater than 75%, (iii) at least three images of that
protein were available for the normal tissue. Approximately 500 proteins per tissue
passed this filtering procedure (see Dataset S1 for the list of proteins in the full

analysis set for each tissue).
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Identification of validation sets

A validation set of proteins whose location was known to change (which we define
as true positives) was created for each tissue. These were found using HPA
annotations. We identified the set of true positives for a given tissue by finding those
proteins for which the set of location annotations for all normal images did not
intersect the set of location annotations for all cancer images. In the data set for

breast, liver, prostate and bladder there were 5, 3, 7, 13 true positives, respectively.

Selecting regions

For each image, we selected regions that showed significant staining. First a low
pass filter was applied to the protein mask of each image. We selected regions
centered on the peaks of the filtered image. This was done under the assumption
that the cellular regions of the tissue would have the highest staining levels, as
opposed to the connective tissue, stroma and other non-cellular regions which
would have much lower levels of staining primarily due to non-specific antibody

binding.

Removing outlier images

Next we removed outlier regions and images based on DNA and protein intensity.
For each tissue we calculated the mean and standard deviation of the protein and
DNA stains for all images. This same process was repeated for all of the regions
from each tissue. We removed images and regions from the dataset that were

farther than 4 standard deviations from the mean.

Pipeline for testing changes in location or expression
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Our pipeline calculates p-values for the hypotheses that the location or expression
of each protein are the same between normal and cancer images. The pipeline
requires inputs for the number of images to use, the number of regions to select per
image, the region size, and the number of estimates to average when reporting p-

values and accuracies (choice of these parameters is discussed below).

For location testing, a set of features that do not require segmentation of the image
into individual cell regions was extracted from each region as described previously
(Newberg and Murphy 2008), with the modification that horizontal and vertical
features were combined to produce a set of 592 rotation invariant features. These
include texture features at many different levels of resolution and nuclear overlap
features. We used the 57 feature subset that was previously selected to be able to
distinguish eight subcellular location classes with high accuracy (Newberg and
Murphy 2008). The equivalence of the distributions of these features for normal
and cancer regions was evaluated by the Friedman-Rafsky (FR) test. Because the
test is non-parametric and does not make assumptions about the distributions from
which the samples are drawn, it is suitable for small numbers of regions and large

numbers of features.

Expression p-values were calculated by normalizing the mean protein intensity level
across each region used in the location analysis by the respective mean nuclear
intensity level. This results in a one-dimensional set of points corresponding to the
regions for normal protein expression, and cancer protein expression. We
calculated a p-value that the points in the two sets were drawn from the same
distribution using the Wald Wolfowitz test, the one dimensional version of the FR

test.
The reported p-values and accuracies for each protein were calculated by taking the

average of 35 estimates which we found produced consistent ranked lists (see

estimation of generalizability).
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Selecting image sets, number of regions and region size

The database has up to 3 images for each normal tissue and up to 30 images for each
cancer tissue. In order to have the same null distribution for the nonparametric p-
values, we needed to use the same number of normal and cancer images for each
antibody. To identify the optimal number of each, we randomly selected 200
antibodies for each tissue, selected 2 regions from each image, and assessed the
extent to which the validation markers were ranked highly by location p-values
(using the area under ROC curves, AUC). The number of normal images was varied
from 1 to 3 and the number of cancer images from 3 to 24. We found that the best
AUC average over all 200 antibodies resulted from using 2 normal images and 17

cancer images.

Next, the optimal number of regions was found by using the same 200 antibody
training set, and 2 normal and 17 cancer images. We varied the region count from 2
to 5 from each of the images. The best performance as measured by AUC resulted
from using 5, 3, 3 and 4 regions per image for breast, liver, prostate and bladder
tissues respectively, and we therefore used these values for the full analysis sets.
Differences in the optimal number of regions for different tissues presumably reflect
tissue-specific variations across the normal and cancer states. Limiting the number

of regions per image prevents the sampling of non-cellular regions in each tissue.

The optimal region size was chosen by assessing the performance of 100 randomly
chosen proteins in ROC curves for each tissue. Ideally the region should be small
enough so as to only capture cellular areas from a tissue image, since capturing non-
cellular regions introduces new textures to the analysis that would affect the
subcellular location features. The optimal radius was selected to be 75 pixels with

an average AUC of 0.67 for the four tissues.
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Classification

We used nearest neighbor classifiers with the 57 z-scored features and used cross-
validation to estimate of the ability of a given protein to distinguish normal from
cancer images, or to distinguish low-grade from high-grade cancer images. Images

were assigned the majority class of their regions.

Distinguishing cancer grades

The prostate and bladders cancers are identified as high or low grade in the HPA,
with approximately equal numbers of each. We partitioned the cancer images by
grade and ran the pipeline to compare them. We also randomly selected 3 images
from each set and calculated the 3-class classification accuracy for a nearest
neighbor classifier (using leave-one-out cross-validation). This was repeated 35
times (producing a consistent ranking, as explained above) for different sets of
randomly selected images and the average of the 35 accuracies is reported. Proteins
that did not have at least 3 images from each disease state were excluded. The

results are contained in Dataset S2.
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Fig. 12. Protein rank correlations using location p-values and classification
accuracies when averaging different numbers of estimates. The number of
estimates used to calculate the location p-value and accuracy was varied from 1 to
50. The Spearman correlation coefficient was used to measure the consistency of
the ranked protein lists when different numbers of estimates were used.

Rank Consistency

Proteins are ranked by their p-values to find location biomarker candidates. Each p-
value and accuracy is calculated by sampling 2 normal and 17 cancer images from
the respective image sets for each protein. This list would presumably be different
if we picked a different set of 2 normal and 17 cancer images. A solution would be
to average the p-values from many random samplings of 2 and 17 images.
Therefore, we determined how many p-value estimates we would need to average

to produce a consistently ranked list.

To do this, we created ranked lists from protein p-values that had been averaged

from different numbers of random samplings (from 1 to 50). We did this 10 times
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for each number of samplings, and calculated the Spearman correlation between all
pairwise combinations of the resulting 10 lists (the Spearman correlation coefficient
is a nonparametric measure of how well two variables monotonically increase

together).

The left panels of Fig. 12 show the p-value ranking consistency (measured by the
average Spearman correlation coefficients) for the four tissues as a function of the
number of estimates. The plots show that the rank becomes highly consistent
(correlation close to 1) as the number of estimates increases. This process was
repeated for classification accuracy (right panels Fig. 12) and a similar trend was
observed. Therefore, we chose to use the average of 35 estimates for all of the p-

values and accuracies reported in Datasets S1 and S2.

Estimation of generalizability

For each antibody, a classifier was trained using regions from one normal image and
regions from one cancer image, where the number of regions was determined
independently for each tissue (see methods). One held out normal image and one
held out cancer image were then classified. A second classifier was trained with two
normal images and two cancer images. The third normal image and a third cancer
image were then classified. These steps were repeated for 35 samplings of training
and testing images for each antibody and the mean accuracy for each level of cross-
validation was calculated (i.e., the average accuracy when training with one image of

each class and the average accuracy when training with two images of each class).

We then calculated the correlation between the two accuracies for each tissue (Fig.
6), and found them to range from 0.90 to 0.91. While this is much higher than the
zero correlation that would occur at random, it indicates (as might be expected) that

one image of each class is not sufficient to train a highly generalizable classifier.
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We performed a similar test of the generalizability of p-value estimates from the FR
test. In this case, the first estimate was made by sampling 2 normal and 17 cancer
images, a second estimate was made by sampling a subset from the 2 and 17 images
(1 image and 16 images respectively), the average of 35 samplings are reported for
each estimate (Fig. 6). We found the correlations between the two p-values to be
greater than 0.94 for all tissues, indicating that our reported p-values are likely good

estimates of performance on new images.

Displaying regions

For each antibody, we performed hierarchical clustering using the features for each
region and applied optimal leaf ordering to the leaves. For visualization purposes,
we cut the tree to give 10 clusters. For each of these, we found the region closest to
the mean feature value for the leaves in that cluster. We selected one representative

antibody for breast and liver.

To illustrate how the features reflect the patterns for the full set of regions, the full
hierarchical clustering tree and the ordered regions are shown in Fig. 8 for one
antibody in bladder (HPA034715 against ARHGEF3). For this antibody, pathologist
annotations indicated a subcellular location in every cancer sample from
nuclear/cytoplasmic/membranous to nuclear (it was thus one of the true positives
used in measuring performance of our system). The clustering shows a progressive
change in the location pattern and most normal and cancer regions cluster with
each other, as expected. Upon close inspection it can be seen that while annotations
indicate that normal and cancer images have distinct non-overlapping location
distributions, our method organizes the regions to show a progression of location
change, highlighting the visually overlapping distributions for the two disease

states.
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Family wise-error calculation

We calculated expression and location p-values for each pathway, and we ranked
the pathways by the extent of expression and location changes (Dataset S3). To
determine whether any of the pathways had statistically significant changes we
calculated a Bonferroni-Holm (BH) correction, which controls the Familywise error
rate when making multiple comparisons. The correction keeps the effective
Familywise error rate at alpha when there is more than one comparison. Given a set
of hypotheses of size m the corrected significance threshold for all hypothesis (H)
(pathways) is a function of its rank position (k) and the naiive significance level (a),
in our case 0.05. Null hypotheses Hi to Hk can be rejected by finding the smallest k

that satisfies the inequality : Pgy > o / (m+1-k).

KEGG Pathways and translocated proteins

Biochemical pathway networks were downloaded from the KEGG database

(http://www.genome.jp/kegg/pathway.html) as KGML files. The files were parsed

to directed graphs where nodes represent proteins referenced by Entrez ID
numbers and edges represented interactions. The parsing into a graph structure

was done in R using KEGGgraph package available from Bioconductor

(http://www.bioconductor.org/). In some cases the original pathways in KEGG
have nodes that represent metabolites or gene products, or for some metabolic
pathways the edges represent proteins and the nodes are reactions. The default
KEGGgraph package parses the graphs to a consistent format of protein at the nodes
and interactions at the edges. We selected the option to list all paralogs for each

protein to account for the possibility of multiple names for the same protein.
Next we mapped the Ensemble ID numbers for the proteins in the analysis set to the

respective Entrez ID numbers and labeled the nodes in each graph with the

respective location and expression scores from our analysis. This resulted in 268
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KEGG pathways where each pathway i has n;i nodes, and m; nodes in the network

have pipeline or annotation values assigned, where m; <= n;.

To determine whether a pathway significantly changed location we calculated a
network score from the location p-values of the m; known proteins. Network scores
were calculated by taking the sum of logs of the protein node p-values. We tested
the hypothesis that the pathway score was drawn from a background distribution of
100 random networks scores of size m;. For example a pathway with 30 known
proteins was tested against a background distribution of 100 random networks,
where each random network had 30 known proteins, while a pathway of 500 known
proteins was tested against a background distribution containing random networks
of 500 known proteins. Random networks were created by sampling m; proteins
from all of the known protein p-values in the 268 KEGG pathways. The score of
pathway i was compared to its background distribution in a t-test to determine the
probability that the pathway changed location. The significance threshold on the p-
values was corrected using the Bonferroni-Holm multiple hypothesis correction to
control for Familywise-error rate. We then repeated the same analysis using the

expression p-values from the pipeline.

Pathway p-values were also calculated using the pathologist annotations. Under the
assumption that the cancer images are independent, the annotation p-value for a
given protein was calculated as IN, where I is the empirical probability of change in
that tissue, and N is the number of cancer images with a different annotation label.
This was done by tissue for both location and expression. In breast cancer the
empirical probability for a subcellular location change was 0.27 and for expression
it was 0.50; in liver cancer it was 0.43 and 0.56; in prostate it was 0.26 and 0.49; in
bladder it was 0.30 and 0.56 for location and expression, respectively. All results for

pathway p-values are listed in Dataset S3, and presented in Fig. 11.
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Robustness to JPEG compression

The images in the Human Protein Atlas database are approximately 3000x3000
pixels and are stored as JPEG compressed files. JPEG compression is a lossy format
that aims to preserve visually distinguishable characteristics of an image while
downsampling parts of the image that are not visually distinguishable. Our texture
features quantify changes at varying levels of resolution. To investigate the
dependence of the performance of our system upon potential JPEG compression
artifacts, we compressed the original images from the Protein Atlas at varying JPEG
compression levels using the imwrite function in Matlab. We then assessed how
well the known location biomarkers were found by constructing ROC curves (as in
Fig. 3) for varying extents of additional compression. As shown in Fig. S7, the AUCs
were not extensively reduced in three tissues suggesting that the JPEG compressed
images in the Atlas may not have had much effect on our detection pipeline. Further

studies using uncompressed images will be needed to fully assess the impact of

compression.
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Fig. 13. The effect of JPEG compression on the performance of the pipeline. The
images were JPEG compressed at different levels and processed through the
pipeline. The performance for detecting known location biomarkers was measured

and reported as areas under ROC curves (AUCs) as was done for Fig. 3.
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Chapter 3

Differential protein subcellular location and protein signatures for classifying

adult and pediatric liver lesions

Abstract

Primary liver tumors occur in people of all ages from newborns to geriatric patients
as hepatic lesions. Hepatic lesions range in severity from benign to malignant where
the most malignant cases are fatal. Identifying premalignant and malignant liver
lesions usually requires a biopsy however diagnosis of the biopsy can be challenging
because different lesions can have similar morphological appearances (Ferrell
1995). Thus, various tests are run to help the clinician gather information about the
disease including measurements of well-studied markers include differential
protein expression levels, tissue architecture, and patient demographic and health
information. We extended the previously developed computational [HC image
analysis pipeline (Kumar, Rao et al. 2014) to investigate whether differential protein
subcellular location can help to identify different liver lesions. We extended the IHC
pipeline to process full slide images. Using the pipeline we explored how measuring
changes in protein subcellular location can aid in identifying adult and pediatric
liver lesions. Our results indicate that most of the time single protein measurements
are poor markers for the lesions. Next we explored lesion-specific protein
signatures for identifying diseases. Given our dataset we found a signature set of
proteins that can successfully identify liver lesions in adult and pediatric
populations with perfect accuracy. Finally we report two new proteins that aid in

classifying the lesions when used as part of a signature protein set.
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Introduction

Primary liver tumors occur in people of all ages from newborns to geriatric patients
as hepatic lesions. Hepatic lesions range in severity from benign to malignant where
the most malignant cases are fatal. Identifying premalignant and malignant liver
lesions usually requires a biopsy however diagnosis of the biopsy can be challenging
because different lesions can have similar morphological appearances (Ferrell

1995).

Pediatric lesions

Pediatric liver lesions are challenging to diagnose; the three states are: normal liver
(nl), fetal-type hepatoblastoma (FHB), and well-differentiated hepatocellular
carcinoma (WDHCC). The ability to differentiate a pure fetal-type hepatoblastoma
from normal liver or a WDHCC in a liver resection specimen where the entire tumor
is available for microscopic examination can be challenging let alone in a needle
biopsy sample where visual and architectural context may be not available. Fetal
hepatoblastoma (FHB) and well-differentiated hepatocellular carcinoma (WDHCC)
can have similar phenotypes but the treatments of FHB and WDHCC are very
different (Isaacs 2007) (Litten and Tomlinson 2008) making confident and accurate

diagnoses of these lesions very important.

In the clinic, biopsies are stained with protein-specific antibodies to detect
differential expression levels. Glypican-3, beta-catenin, Heppar-1 and other stains
are almost always used (Li, Liu et al. 2013) (Libbrecht, Severi et al. 2006) (Kandil,
Leiman et al. 2007) (Wang, Anatelli et al. 2008). Patient demographic information,
specifically age, can also help identify the disease because some diseases onset at
specific ages and stages of development or aging. For example, more than 90% of
patients who get FHB are under the age of 5, as opposed to WDHCC. While WDHCC,
has some architectural differences including three cell hepatocyte plate thickness

and greater nuclear atypia and mitoses than FHB (LV 2004), both can appear very
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similar. Some reports have shown that there are significant changes in transcription
and in the genome of patients with HCC and FHB, and FHB and normal liver

(Yamada, Ohira et al. 2004) (Luo, Ren et al. 2006).

Adult lesions

Adult liver lesion diagnosis is very challenging due to the number of lesions with
similar morphological appearances (Ferrell 1995): WDHCC, hepatocellular adenoma
(HCA), nodular regenerative hyperplasia (NRH), focal nodular hyperplasia (FNH),
macroregenerative nodules (MRN), and borderline dysplastic nodules (BN). Age
can be used to help identify FNH and HCA, as they occur as a single mass in a
younger age group than NRH and HCC which occurs in older patients and have
multiple masses. NRH is associated with other diseases and toxin and drug
exposure, vascular disorders and connective tissue disorders. HCC is associated
with cirrhotic liver disease. MRN, BH and HCC occur in damaged and cirrhotic

livers. MRN and BN can be found in the same nodule in the liver.

Light microscopy is used to assess the morphological characteristics of the lesions.
Distinctive qualities include single or multiple nodules, presence of central scar,
thickness of hepatocellular trabeculae, pattern of vascularization, presence of
Mallory’s hyaline, and small vascular thrombi. Structure and characteristics of the

nucleus have been shown to be unreliable (LV 2004).

Improving diagnostic methods

As clinicians collect information about patients from various clinical tests their
confidence in the initial disease diagnosis may change. That is, the clinician’s
confidence in the first diagnosis was low and new information allowed for a more
informed later diagnosis. Finding strong markers that can identify diseases will

significantly improve the diagnostic process and lead to improved patient care.
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Various tests are run to help the clinician gather information about the disease.
Measurements of well-studied markers include differential protein expression
levels, tissue architecture, and patient demographic and health information. The
need to improve liver lesion characterization is immediate and this area has
received a lot of attention from the medical community recently (Sukru Emre)

(Dolores Lopez-Terrada 2013) (Esmeralda Celia Marginean 2013).

Some subclasses of tumors can be identified by the expression levels of protein
(Sotiriou and Piccart 2007) (Reis-Filho, Weigelt et al. 2010). In some cases protein
subcellular location can predict patient outcome. For example in pediatric
hepatoblastomas nuclear localization of B-catenin is an indicator of patient survival
(Sang Park, Ra Oh et al. 2001). Subcellular location of proteins can predict patient
survival in other cancers as well (Hung and Link 2011). Here, we investigate
whether protein subcellular location measured from protein-specific IHC images
can aid and improve the identification of liver lesions in pediatric and adult

populations.

Computational quantitative pathology

Automatic protein quantitative systems can help to identify protein biomarkers and
signatures and in this case to improve the accuracy of liver lesion diagnosis. In
diagnostic research, computational pathology methods have identified predictive
features that were previously unknown (Hoque, Lippman et al. 2001), and in some
cases these methods were able to show the importance of features that had been
regarded as unimportant (Beck, Sangoi et al. 2011) (Guillaud, Adler-Storthz et al.
2005). Identifying discriminating features is valuable not only while making the

diagnosis but also they may provide insight into the development of the disease.

We extended the computational IHC image analysis pipeline from Chapter 2 to
investigate whether differential protein subcellular location can help to identify

different liver lesions. The image processing section was revised to handle full slide
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images. Our pipeline uses protein expression and subcellular location together to
make the classification. Next we construct a series of classifiers for the liver lesions
in pediatric populations, and in adult populations. Finally we report the best
classifier for the lesions and we make recommendations about the best markers and

measurements

Data

The dataset consists of full slide [HC images of liver lesions stained with 13 protein-
specific antibodies, H&E and Feulgen. The images were collected from Omnyx V4
scanner at the UPMC Shadyside Hospital in Pittsburgh, PA. The tissue sections came
from a collaboration with Dr. John Ozolek at the UPMC Children’s hospital.

Paraffin embedded tissue sections were prepared from the patient samples and
each section was stained with Hematoylin making the nuclei of basophilic cells
appear blue. Next, a protein-specific primary antibody was used to bind the protein
of interest, followed by a secondary horseradish peroxidase (HPR) -conjugated
antibody was used to bind the primary antibody. Finally DAB was added to the slide
which forms a brown precipitate when it reacts with HRP. RGB images of each

section are captured using the scanner.

The full tissue sections were scanned on the Omnyx scanner by collecting small
partially overlapping tiles. The tiles were stitched together and stored in JPEG 2000
format. The images are collected at 60x magnification, 0.1385 um/pixel. The size of

each image is approximately 1.4e5 x 3.0e5 pixels.

The dataset consists of 86 patients, where tissue sections from each patient are
individually stained with 13 protein-specific antibodies, H&E and Feulgen. The
distribution of patients referenced by ID numbers across diseases and age groups is

as follows:
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Pediatric cases:

* Fetal hepatoblastoma (FHB 6) : FHB1, FHB2, FHB3, FHB4, FHB5, FHB6.
* Hepatocellular adenoma (HCA 4) : HCA1, HCA2, HCA3, HCA4.

* Hepatocellular carcinoma (HCC 1) : HCC1.

* Macroregenerative nodules (MRN 1) : MRN1.

* Focal nodular hyperplasia (FNH 3) : FNH1, FNH2, FNH3.

Adult cases:

* Dysplastic nodules (DN 13) : DN1, DN2, DN3, DN4, DN5, DN6, DN7, DN8, DN9,
DN10,DN11,DN12, DN13.

* Focal nodular hyperplasia (FNH 23) : FNH4, FNH5, FNH6, FNH7, FNH8, FNHO,
FNH10, FNH11, FNH12, FNH13, FNH14, FNH15, FNH16, FNH17, FNH18, FNH19,
FNH20, FNH21, FNH22, FNH23, FNH24, FNH25, FNH26.

* Hepatocellular adenoma (HCA 5) : HCA5, HCA6, HCA7, HCAS8, HCAO9.

e Hepatocellular carcinoma (HCC 16) : HCC2, HCC3, HCC4, HCC6, HCC7, HCCS,
HCC9, HCC10, HCC11, HCC12, HCC13, HCC14, HCC15, HCC16, HCC18, HCC19.

* Macroregenerative nodules (MRN 14) : MRN2, MRN3, MRN4, MRN5, MRN®6,
MRN7, MRN8, MRN9, MRN10, MRN11, MRN12, MRN13, MRN14, MRN15.
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Stains:

H&E - Hematoxylin binds DNA/RNA. Eosin binds proteins.

Feulgen - binds chromosomal material or DNA in cells.

13 protein-specific antibodies:

Antibody Protein name Gene ID | Entrez
name Gene
1 | B-catenin Catenin (Cadherin-Associated Protein), | CTNNB1 | 1499
Beta 1
2 | CRP C-Reactive Protein, Pentraxin-Related CRP 1401
3 | Glutamine Glutamate-Ammonia Ligase GLUL 2752
Synthase
4 | Glypican-3 Glypican-3 GPC3 2719
5 | HSP70 HSPA (Heat Shock 70kDa) Binding HSPBP1 | 23640
Protein, Cytoplasmic Cochaperone 1
6 | L-FABP fatty acid binding protein 1, liver FABP1 1268
7 | DEK DEK Oncogene DEK 7913
8 | DKC1 dyskeratosis congenita 1, dyskerin DKC1 1736
9 | IRX6 Iroquois homeobox 6 IRX6 79190
10 | KI67 Marker of proliferation Ki-67 MKI67 4288
11 | NDUFAF1 NADH dehydrogenase (ubiquinone) NDUFAF1 | 51103
complex I, assembly factor 1
12 | NPM1 nucleophosmin (nucleolar NPM1 4869
phosphoprotein B23, numatrin)
13 | TIP1 Tax1 (Human T-Cell Leukemia Virus TAX1BP3 | 30851

Type I) Binding Protein 3

61




B-catenin

DEK CRP

DKC

L-FABP K167 IRX6 HSP70 H&E Gly-3 GlutSyn FEULGEN

NDUFAF1

NPM1

TIP1

Fig. 1: Pediatric liver lesions. Sections from each patient were stained with 14 antibodies and H&E
stains. There were three pediatric liver lesion groups used in the analysis: FHB, HCA, FNH. Each
disease-antibody panel shows regions from three different patients.
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Fig. 2: Adult liver lesions. Sections from each patient were stained with 14 antibodies and H&E stains. Five adult liver lesion groups were used
in the analysis: DN, FNH, HCA, HCC, MRN. Each disease-antibody panel shows regions from five different patients.
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Classification

Fig 3. The automatic IHC image analysis pipeline was extended to process full slide
images of multiple proteins and to perform multiclass classification using the sets of
input proteins. The tissue object was segmented and regions were selected with
high Brenner scores to select in-focus tiles. Regions were unmixed and features
were calculated including original features, and new local features. Finally three
types of classifiers were trained using the features, where each classifier was
designed to model a diagnostic scenario using single proteins as markers, or a
signature of proteins. Single class and multiclass classifiers were trained. The new
pipeline outputs the best classifier and the optimal protein marker signatures for

distinguishing the input disease states.
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The IHC image analysis pipeline was extended to include new image processing

steps, classification and feature selection. The pipeline is as follows:

Image processing:

1. Tissue object detection:

The tissue object was segmented from the full slide image so that background was
not processed during region selection. The tissue object corresponded to the
regions of the image that had the highest chromaticity and greatest frequency

together.

2. Region selection

Regions were selected from the downsampled tissue object based on the maximum
pixel intensity that corresponded to the highest stained regions. Region coordinates
were mapped to the original image and selected. The top 200 regions with the
highest protein stain were selected with varying diameters from 62, 125, 312, 625,
1250, 2500 pixels.

3. Unmixing and Features
Next the average color basis matrix for the top 200 regions from each image was
calculated and the regions were linearly unmixed. For each region we calculated 1)

the Brenner score, 2) Murphy lab features. The top 150 regions with the highest

Brenner score were selected for the analysis.

Classification:
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4. Classifiers were trained to identify disease states using the subsets of input proteins.
The results from each classifier show the sets of proteins that may be potential

biomarkers.

Classifiers were trained through several rounds of cross validation on the training
set to find optimal parameters and finally the classifier was evaluated with the held

out test set.

In some cases a disease state was represented by as few as three patients across the
full dataset. To check whether the parameter estimation determined from single
patients was generalizable to the rest of the data set we trained one-vs-rest
classifiers with one data point, and two data points and cross-validated with a single
held out point. This was done for all disease states and all antibodies in the analysis
set. The results shown in Fig. 4 indicate a relatively good correlation between both
subsets of the data, suggesting our results are generalizable during the different
rounds of cross validation in the three classification scenarios we present below.
The classification accuracies were also calculated using one patient per disease to
train, and then two patients per disease. The generalizability results for accuracy

are on the right of Fig. 4.

4.1 Single lesion classification: Pairwise

We determined how accurately a patient’s disease can be identified when
considering one of two possible lesions. That is, we determined how well each
protein can discriminate pairwise lesions. We selected the disease states in
question and then divided the set of images into training and testing sets as
described above. The optimal model parameters, region count and region radius
were learned for each classifier. The classification results are shown in Fig. 5 and
Table 1. The left plot shows the pediatric pairwise classification accuracies for the

three lesion types, the right plot shows the accuracies for the adult lesions. The
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results are plotted in a square heatmap where the diagonal and the lower half of the

plots are omitted due to redundancy.

Fig. 4. The generalizability of the parameters (left) and classification accuracies
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Fig. 5: Pairwise classification accuracy for the pediatric (left) and adult (right)
lesions. The lesions were classified pairwise using a random forest classifier where
the number of regions, size the region and model parameters were learned jointly.
The order of the pediatric lesions are FHB, HCA, FNH from top the bottom, left to
right. The adult lesions are DN, HCA, HCC, MRN, FNH from top to bottom, left to
right. Accuracies are listed in Table 1.

In pediatric lesions NPM1 (90%) had the highest classification accuracy for
separating FHB and HCA, while all other proteins had a lower accuracy. L-FABP
(75%), HPS70 (73%) and B-catenin (70%) did not perform as well in FHB vs HCA.
The best separation for FHB and FNH was achieved by Feulgen (80%), DKC (73%)
and IRX6 (70%). The highest classification accuracy for HCA and FNH was achieved
by KI67 (80%). Some markers that are currently useful in the clinic for identifying
lesions were not useful in this system when we measured subcellular location
differences, such as glutamine synthase, glypican-3 and CRP which all performed

poorly as shown in Table 1.

In adult lesions glypican-3 had the highest pairwise classification accuracy (90%)
for separating DN and HCC, while NDUFAF1 (83%) and NPM1 (80%) had lower
performance. Glypican-3 had moderate performance for separating HCA and HCC
where the highest accuracy was (85%) and glutamine synthase had comparable
performance (83%). Glutamine synthase (80%) moderately separated DN and HCA.
MRN was poorly separated from the 4 other adult lesions where NDUFAF1 (75%)
performed the best against DN and lower against the other lesions. In FNH, DKC
(80%) separated DN with moderate power, while glutamine synthase (85%) and
glypican-3 (85%) performed slightly better against HCA. FNH and HCC were poorly

separated, where the best marker was glutamine synthase (70%).

68



Bcat. | HCA FNH Gl.Syn. | HCA FNH KI67 | HCA FNH
FHB | 0.7 | 0.47 FHB 0.48 | 0.5 FHB | 0.54 | 0.63
HCA 0.52 HCA 0.65 HCA 0.8
CRP | HCA FNH Gly-3 | HCA FNH LFABP | HCA FNH
FHB | 0.6 | 0.65 FHB 0.5 | 0.58 FHB | 0.75 | 0.53
HCA 0.4 HCA 0.43 HCA 0.5
DEK | HCA FNH H&E HCA FNH NDUF | HCA FNH
FHB | 0.58 | 0.5 FHB 0.45 | 0.57 FHB | 0.53 | 0.3
HCA 0.6 HCA 0.53 HCA 0.45
DKC | HCA FNH HSP70 | HCA FNH NPM1 | HCA FNH
FHB | 0.55 | 0.73 FHB 0.73 | 0.5 FHB 0.9 | 0.65
HCA 0.55 HCA 0.55 HCA 0.5
FLEU | HCA FNH IRX6é | HCA FNH TIP1 | HCA FNH
FHB | 0.6 0.8 FHB 053 | 0.7 FHB 0.5 | 0.53
HCA 0.55 HCA 0.58 HCA 0.53

Table 1a. Pairwise classification accuracy for the pediatric liver lesions by protein.
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B-cat. HCA HCC MRN FNH
DN 0.6 0.58 0.63 0.4
HCA 0.68 0.48 0.53
HCC 0.48 0.5
MRN 0.5
CRP HCA HCC MRN FNH
DN 0.33 0.5 0.5 0.55
HCA 0.55 0.6 0.4
HCC 0.5 0.5
MRN 0.5
DEK HCA HCC MRN FNH
DN 0.73 0.53 0.55 0.48
HCA 0.63 0.58 0.78
HCC 0.43 0.6
MRN 0.5
DKC HCA HCC MRN FNH
DN 0.68 0.78 0.7 0.8
HCA 0.58 0.6 0.65
HCC 0.37 0.48
MRN 0.5
FEUL HCA HCC MRN FNH
DN 0.63 0.65 0.43 0.4
HCA 0.68 0.58 0.58
HCC 0.55 0.58
MRN 0.58

GlL.Syn. | HCA HCC MRN FNH
DN 0.8 0.63 0.5 0.55
HCA 0.83 0.65 0.85
HCC 0.75 0.7
MRN 0.68

70

H&E HCA HCC MRN FNH
DN 0.5 0.58 0.53 0.5
HCA 0.43 0.53 0.58
HCC 0.5 0.45
MRN 0.5
HSP70 | HCA HCC MRN FNH
DN 0.53 0.58 0.38 0.53
HCA 0.5 0.48 0.63
HCC 0.4 0.48
MRN 0.55
IRX6 HCA HCC MRN FNH
DN 0.53 0.55 0.6 0.58
HCA 0.75 0.63 0.73
HCC 0.55 0.58
MRN 0.48
Ki67 HCA HCC MRN FNH
DN 0.48 0.53 0.43 0.53
HCA 0.5 0.5 0.45
HCC 0.48 0.48
MRN 0.38
LFABP | HCA HCC MRN FNH
DN 0.48 0.75 0.5 0.5
HCA 0.55 0.63 0.6
HCC 0.45 0.48
MRN 0.53
NDUF HCA HCC MRN FNH
DN 0.7 0.83 0.75 0.75
HCA 0.85 0.7 0.78
HCC 0.55 0.48
MRN 0.58




Gly-3 HCA HCC MRN FNH NPM1 | HCA HCC MRN FNH
DN 0.7 0.9 0.53 0.73 DN 0.55 0.8 0.73 0.63
HCA 0.85 0.73 0.85 HCA 0.35 0.58 0.5
HCC 0.5 0.65 HCC 0.53 0.4
MRN 0.5 MRN 0.45

TJP1 HCA HCC MRN FNH

DN 0.7 0.55 0.5 0.5

HCA 0.63 0.5 0.63
HCC 0.5 0.53
MRN 0.53

Table 1b. Pairwise classification accuracy for the adult liver lesions by protein.

4.2 Multi-class single protein classifier

Next, we determined which proteins can be used as markers to identify a patient’s
disease given that the patient could have any disease present in our dataset their
respective age group. Our approach was to find proteins that can act as markers to
identify multiple disease states simultaneously. In each age group we constructed a
multiclass random forest classifier for each protein. The number of trees, number of
regions and radius of the regions was optimized jointly and then a held out test set
was used to calculate the cross-validation accuracy. In almost all pediatric cases the
radius of the region was 1250 pixels, and 25 regions were used. In the adult cases

the radius size and count varied across the full range.
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Fig. 6. The multi-class confusion matrices for pediatric (left) and adult (right) liver
lesions. The three pediatric liver lesions in order on the confusion matrix are: FHB,
HCA, FNH. In order, the adult lesions are DN, HCA, HCC, MRN, FNH. For each age
group the lesions were classified using each protein independently in a random
forest classifier where the number of trees, the number of regions and the size of the
regions was learned at each round of testing. Each heatmap represents the cross-

validation accuracies for each protein.

Our results suggest that some proteins are potential markers for specific disease
states; they can identify specific lesions with high sensitivity in a multiclass system.
For example, CRP (95%), Feulgen (100%), and IRX6 (100%) were able to correctly
classify FHN however FHB and HCA were confused for FNH and the specificity was
65%, 42%, 78% in for CRP, Feulgen and IRX6, respectively. HSP70 (80%) could
identify FHB, and on average HCA and FNH were confused with a specificity of 65%.
Pediatric HCA was not easily identifiable with a single protein in a multiclass
system, however multiple proteins together allowed for improved accuracy as

discussed in the next section.
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Bcat. | FHB  HCA FNH Gl.Syn. | FHB  HCA FNH KI67 | FHB HCA FNH
FHB | 0.3 0.3 0.4 FHB 0.4 | 025 | 0.35 FHB | 0.35 | 0.3 | 0.35
HCA | 0.4 0.3 0.3 HCA | 0.65 | 0.2 | 0.15 HCA 0.3 | 045 | 0.25
FNH | 0.45 | 0.25 | 0.3 FNH 0.45 | 0.05 | 0.5 FNH 0.2 0.2 0.6
CRP | FHB  HCA FNH Gly-3 | FHB  HCA FNH LFABP | FHB HCA FNH
FHB | 0.45 | 0.2 | 0.35 FHB 04 | 035 | 0.25 FHB | 0.15 | 0.4 | 045
HCA | 0.3 | 0.35 | 0.35 HCA 0.1 | 0.35 | 0.55 HCA | 035 | 0.25 | 0.4
FNH 0 0.05 | 0.95 FNH 0.15 | 04 | 045 FNH | 0.25 | 0.4 | 0.35
DEK | FHB  HCA FNH H&E FHB HCA FNH NDUF | FHB HCA FNH
FHB | 0.6 0.1 0.3 FHB 0.65 | 0.05 | 0.3 FHB 0.4 0.3 0.3
HCA | 035 | 0.25 | 04 HCA 0.4 0.5 0.1 HCA 35 | 015 | 0.5
FNH | 0.35 | 0.25 | 04 FNH 0.3 0.5 0.2 FNH 0.6 0.1 0.3
DKC | FHB  HCA FNH HSP70 | FHB HCA FNH NPM1 | FHB HCA FNH
FHB | 0.7 | 0.05 | 0.25 FHB 0.8 | 0.15 | 0.05 FHB 0.7 0.1 0.2
HCA | 0.55 | 0.05 | 04 HCA | 015 | 04 | 0.45 HCA | 0.15 | 0.55 | 0.3
FNH | 0.45 | 0.1 | 045 FNH 0.55 | 0.25 | 0.2 FNH | 0.25 | 045 | 0.3
FLEU | FHB HCA FNH IRX6 FHB HCA FNH TIP1 | FHB HCA FNH
FHB | 0.35 | 0.05 | 0.6 FHB 0.45 | 035 | 0.2 FHB | 0.25 | 0.15 | 0.6
HCA | 0.45 0 0.55 HCA | 045 | 03 | 0.25 HCA 0.2 | 0.25 | 0.55
FNH 0 0 1 FNH 0 0 1 FNH 0.4 | 0.25 | 0.35

Table 2a. The multi-class confusion matrices for pediatric liver lesions.
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B-cat. DN HCA HCC MRN FNH
DN 0.4 0.1 0.15 0.1 0.25
HCA 0.25 0.4 0.2 0 0.15
HCC 0.3 0.05 0.35 0.15 0.15
MRN 0.35 0 0.4 0.2 0.05
FNH 0.55 0.1 0.1 0.1 0.15
CRP DN HCA HCC MRN FNH
DN 0.35 0.4 0.1 0.1 0.05
HCA 0.15 0.15 0.35 0.2 0.15
HCC 0.1 0.3 0.4 0.15 0.05
MRN 0 0.3 0.25 0.35 0.1
FNH 0.15 0.3 0.3 0.2 0.05
DEK DN HCA HCC MRN FNH
DN 0.35 0.35 0.1 0.15 0.05
HCA 0 1 0 0 0
HCC 0.15 0.1 0.2 0.1 0.45
MRN 0.2 0.35 0.2 0.15 0.1
FNH 0.05 0.15 0.35 0.1 0.35
DKC DN HCA HCC MRN FNH
DN 0.6 0.25 0.05 0 0.1
HCA 0.15 0.7 0.05 0 0.1
HCC 0.1 0.45 0.25 0.1 0.1
MRN 0.3 0.1 0.2 0.15 0.25
FNH 0.05 0.15 0.03 0.1 0.4
FEUL DN HCA HCC MRN FNH
DN 0.25 0.2 0.3 0.05 0.2
HCA 0.25 0.4 0.03 0.1 0.2
HCC 0.25 0.1 0.3 0.15 0.2
MRN 0.05 0.15 0.25 0.25 0.3
FNH 0.1 0.2 0.5 0.15 0.05
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H&E DN HCA HCC MRN FNH
DN 0.9 0 0.05 0.05 0
HCA 0.55 0 0.35 0.1 0
HCC 0.1 0.1 0.55 0.15 0.1
MRN 0.3 0 0.55 0.1 0.05
FNH 0.6 0 0.35 0.05 0
HSP70 DN HCA HCC MRN FNH
DN 0.55 0.2 0 0.14 0.1
HCA 0.3 0.25 0.15 0.2 0.1
HCC 0.15 0.05 0.45 0.15 0.2
MRN 0.25 0.05 0.2 0.25 0.25
FNH 0.2 0.1 0.2 0.15 0.35
IRX6 DN HCA HCC MRN FNH
DN 0.5 0.4 0 0 0.1
HCA 0.2 0.65 0.05 0.05 0.05
HCC 0.05 0.05 0.6 0.15 0.15
MRN 0.15 0.1 0.35 0.15 0.25
FNH 0.05 0 0.25 0.05 0.65
KI67 DN HCA HCC MRN FNH
DN 0.5 0.1 0.25 0 0.15
HCA 0.35 0.2 0.25 0.05 0.25
HCC 0.55 0.15 0.25 0 0.05
MRN 0.2 0.15 0.45 0.1 0.1
FNH 0.5 0.05 0.25 0.05 0.15
LFABP DN HCA HCC MRN FNH
DN 0.4 0.2 0.15 0.25 0
HCA 0.1 0.35 0.45 0.1 0
HCC 0.15 0.3 0.4 0.1 0.05
MRN 0.05 0.15 0.5 0.25 0.05
FNH 0.1 0.1 0.6 0.15 0.05




Gl.Syn. DN HCA HCC MRN FNH
DN 0.25 0.2 0.25 0.05 0.25
HCA 0.05 0.75 0.05 0.05 0.1
HCC 0.2 0.05 0.5 0.25 0.1
MRN 0.25 0.4 0.2 0.1 0.05
FNH 0.15 0.05 0.45 0.05 0.3

Gly-3 DN HCA HCC MRN FNH
DN 0.9 0.1 0 0 0
HCA 0.15 0.7 0.05 0 0.1
HCC 0.1 0.05 0.55 0 0.3
MRN 0.35 0.15 0.35 0 0.15
FNH 0.3 0.1 0.25 0.05 0.3

Table 2b. The multi-class confusion matrices for adult liver lesions.

In the adult population many lesions could not be identified with high accuracy in a

multiclass system. One exception was DN which had high specificity when stained

NDUF | DN HCA  HCC MRN  FNH
DN | 095 | 0.05 0 0 0
HCA | 02 | 07 0 0 0.1
HCC | 005 | 01 | 06 | 015 | 0.1
MRN | 03 | 015 | 015 | 02 | 0.2
FNH | 0.15 | 025 | 035 | 01 | 0.15
NPM1 | DN  HCA HCC MRN  FNH
DN | 075 | 0.5 0 0 0.1
HCA | 045 | 04 | 005 | 0.05 | 0.05
HCC | 005 | 02 | 025 | 0.05 | 045
MRN | 02 | 02 | 02 | 005 | 035
FNH | 035 | 005 | 025 | 015 | 0.2
TIPL | DN HCA HCC MRN  FNH
DN 02 | 02 | 04 | 005 | 015
HCA 0 05 | 01 | 015 | 0.25
HCC | 025 | 01 | 01 | 015 | 04
MRN | 015 | 035 | 02 | 01 | 02
FNH | 005 | 04 | 03 | o1 | 015

with glypican-3 (90%), NDUFAF1 (95%) and H&E (90%), but lower sensitivity

(87%, 82.5, 76%, respectively). Itis interesting to note that while DEK performed

moderately in a pairwise system for all adult lesions its specificity for HCA was

100% and the sensitivity was 77% in a multiclass system. These results suggest that

glypican-3, NDUFAF1, DEK, H&E staining and other proteins may be useful for

discriminating lesions with similar morphological appearances and they may

provide additional information for clinicians when diagnosing a patient.
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4.3 Multi-protein voting classifier

We next determined whether a set of proteins could be used together to identify a
patient’s disease given any lesion in their age group. Using a subset of patients from
the training set multi-class single protein classifiers were trained as described in
4.2. For each population the held out set contained all proteins for one patient from
each disease group. Each patient was either entirely in the training set or the held
out set. The results from each classifier were used in a plurality voting scheme to

identify the disease of the patient, as described below.

For each disease, signature sets of proteins were found by classifying the held out
training set and for each disease selecting proteins that had a true positive rate
greater than the false positive rate. Next, the classifiers were re-trained using the
full training set. Finally, the held out test patients were classified by the plurality
vote of the signature proteins for any disease. The signature determines if the
patient had the disease, or not. The process was repeated 100 times by randomly
selecting different training and held out sets. This resulted in 100 protein

signatures for each disease and respective classification accuracies.

Fig. 7 shows that different signatures were found during different independent
rounds of the learning process. Some signatures were found with greater frequency
(as indicated by the colorbar) and consistently resulted in high classification
accuracy of the held out patients set. Each bar represents a protein signature and is
centered on the mean accuracy. The vertical length of the bar indicates two
standard deviations from the mean. The sets of proteins at the top right of the plots

are potential protein marker sets for identifying specific liver lesions.

We defined the optimal protein signature as the most frequent signature having a
mean classification accuracy = 1, and standard deviation = 0. That is, these
signatures were found repeatedly and always resulted in accurate classification.

The signatures for each disease are clustered in the clustergram in the lower panel
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of Fig. 7. The results show that the markers and disease fall roughly into dark

clusters in the top right and bottom left corners of the clustergram.

MRN and FNH in adult and pediatric cases were distinguished by proteins sets that
both included glypican-3, Feulgen and NDUFAF1. The remaining lesions were
mostly classified by H&E and the other proteins: B-catenin, DEK, TJP1, DKC, CRP and
HSP70. Interestingly adult and pediatric HCA were marked by different proteins, as
were adult and pediatric FNH. B-catenin was only used to mark HCC in adults, and
TJP1 and IRX6 were used to distinguish HCA in adult and pediatric groups. The

optimal protein signatures are presented in Table 3.

Within each age group the proteins in each signature are mutually exclusive with
the exception of glypican-3 and H&E in pediatric lesions, and FNH and MRN proteins
in adult lesions. Given the accuracy of the protein signatures a multiclass classifier
can be assembled where a patient is first classified to determine if they have the one
of the diseases. If they do not then the patient can be classified in the second
classifier, and if necessary finally in the third classifier to make the diagnosis. Given
our results and dataset we expect such a scheme using the signatures presented in

Table 3 for the adult and pediatric groups would provide perfect classification.
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multiclass class classifiers were selected to distinguish each lesion by the plurality vote.

The signatures were found by cross-validation 10 times on the training set and then

evaluating the performance of the signature on the held out test set. The process was

repeated 100 times to result in 100 protein signatures. In many cases the same signature

was found across the 100 runs. The mean accuracy and deviation in test accuracy is shown

in the top panels above. The sets of proteins that resulted in perfect performance

represent the optimal protein signatures. The clustergram is a binary representation of the

proteins that are in the best protein signatures for each lesion. The dark tiles indicate

when a protein was selected to identify a disease state. The x and y axes were clustered

using Euclidean distance and optimal leaf ordering.
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HCA -
FHB - ped
P adult
. Protein . Protein
multiclass . multiclass .
voting voting
Accuracy 0.80 1.00 Accuracy 1.00 1.00
. CRP,H&E,HS . CRP,DKC,IR
Protein HSP70 P70 Protein DEK X6,NDFAF1,
TJIP1
# feats 592 1776 # feats 592 2960
HCC -
HCA - ped
P adult
. Protein . Protein
multiclass ] multiclass .
voting voting
Accuracy 0.55 1.00 Accuracy 0.60 1.00
. DEK,Gly- .
Protein NPM1 Protein IRX6 B-cat, DEK
3,H&E,TIP1
# feats 592 2960 # feats 592 1184
MRN -
FNH - ped
P adult
. Protein . Protein
multiclass . multiclass .
voting voting
Accuracy 1.00 1.00 Accuracy 0.35 1.00
FEULGEN,
Gly- Gly-3, KI67,
Protein FEULGEN 3,IRX6,KI67 Protein CRP L_FABP,
NDUFAF1,
NPM1
# feats 592 1776 # feats 592 2960
FNH -
DN - adult
adult
. Protein . Protein
multiclass . multiclass .
voting voting
Accuracy 0.95 1.00 Accuracy 0.65 1.00
FEULGEN,
Protein NDUFAF1 H&E Protein IRX6 Gly-3, IRX6,
NDUFAF1
# feats 592 592 # feats 592 2368

Table 3. Comparison of the best performing proteins and protein signatures found

from the different classification schemes.
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Discussion

We have extended our image analysis IHC pipeline to process full slide images and
to classify multiple disease states using multiple potential protein markers. The
image processing portion of the pipeline was modified to segment the tissue object
and to select regions prior to unmixing. This was done to limit the search space for
regions and to make the unmixing problem computationally tractable. A range of
region sizes and counts were tested to make sure sufficient portions of the image
were sampled and used in the classification. Features included the set of 592 from

the Chapter 2 pipeline.

We constructed three different classifiers to investigate the diagnostic potential of
the set of tagged proteins in our dataset. Each classifier was designed to represent a
specific clinical scenario where a patient presents with a disease. The first two
classifiers involved using a single protein as a marker to identify the lesions
(classification using a single protein), the third classifier involved using a set of
signature proteins to identify the lesions (a subset of proteins that are potentially
more predictive than the proteins independently). The three classifiers we

constructed were built from the random forest classifier.

In the first two classifiers we assessed how well a single protein could perform at
classifying a disease. In the majority of cases a single protein gave performance
above chance, but not at the accuracy necessary to translate into a clinical setting.
Next we investigated how well combination of the proteins could perform. In
classifier 3 we tested different combinations of multiclass classifiers and we found
optimal protein signatures that consistently resulted in 100% classification

accuracy with different test points.

Thus, with our system we explored a set of current protein biomarkers, and a set of
new potential protein biomarkers. Our system was able to classify some of the

lesions with high accuracy using protein markers that are currently used in the
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clinic for lesion identification. For example: glypican.3 and NDUFAF1 were able to identify
adult DN in a multiclass system (90%, 95%); DEK was able to identify adult HCA in a
multiclass system (100%). When measuring protein subcellular location we found that
B.catenin was not useful for distinguishing any lesions in the pediatric population with
high accuracy, in contrast to the utility of B.catenin in the clinic (Yamaoka, Ohtsu et al.

2006).

Next, subsets of protein were selected as signatures to identify the lesions in a one. vs.rest
classifier. For each disease we were able to identify a signature that consistently resulted
in perfect classification. We found two new proteins that were previously not used in liver
lesion diagnosis, IRX6 and TJP1, were part of the protein signatures that separate lesions in
both age groups. TJP1 was an important protein in the signatures found for plurality
voting for HCA in adult and pediatric diseases. IRX6 was part of the signatures for adult

HCA and adult and pediatric FNH.

The one-vs-rest protein signatures were combined to form single multi-class voting
classification systems for liver lesions for each age group. We reported these signatures
and the classification structure as a potential approach for diagnosing liver lesions in the

clinic.

While these results are promising, the number of patients in our dataset is small and our
data comes from a single source. To show the study the utility and generalizability of our
results in a clinical setting further work on a larger dataset with more patients and from

different sources is necessary.
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Cross-referencing results

Glypican-3

We identified Glypican-3 as a top predictor in our system for adult liver lesions. This result
is in agreement with current clinical practices : Glypican-3, beta-catenin, Heppar-1 and
other stains are used to differentiate disease states based on expression levels (Li, Liu et al.
2013) (Libbrecht, Severi et al. 2006) (Kandil, Leiman et al. 2007) (Wang, Anatelli et al.
2008). More specifically Glypican-3 has been reported as a useful biomarker in

hepatocellular carcinoma (Shirakawa , Kuronuma et al. 2009).

Comparing results from chapters 2 and 3

NDUFAF1 was predictive of cancer in two independent liver cancer datasets. It was the
33rd out of 609 proteins in Chapter 2, and this protein was able to separate liver cancer
types in Chapter 3. We have not found any reports of this protein as a marker for liver
cancer. We suggest follow up studies to understand the utility of NDUFAF1 as a novel

protein biomarker.

NPM1 had relatively high classification accuracy in children’s cancer (90%) and adult
cancer (80%). In Chapter 2 this protein ranked at the 11th percentile : 67th out of 609
proteins. We have not found reports identifying NPM1 as a marker in the context of liver
cancer. Based on the agreements between our two studies we encourage further research

on NPM1 in liver cancer.

DEK has high specificity for hepatocellular adenoma (HCA). In Chapter 2 DEK ranked in the
lower 50th percentile as the 349th protein out of 609. We have not found literature reports
suggesting the utility of this protein in HCA liver cancer. These confounding results suggest
this protein may be a marker for a specific subtype of cancer and further investigation may

yield valuable insights.
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Glypican-3 (GPC3) was not part of our HPA analysis set.

Comparing chapter 2 staining patterns with HPA and Uniprot

We compared the subcellular location of the top 4 proteins from the analysis dataset
displayed in Figure 2 with two well known bioinformatics databases : Uniprot and Human
Protein Atlas (HPA). Uniprot subcellular locations are from unspecified tissues. HPA
subcellular annotations are from normal liver tissue. We compared the database
subcellular location information with the protein location from the dataset in Chapter 3,

Table 4.

The subcellular location of NPM1 in Chapter 3 dataset include nucleus, nuclear membrane,
and cytoplasmic organelles while NPM1 in HPA normal liver tissue is listed as nucleus. This
difference highlights the importance of considering subcellular locations of proteins to
understand, diagnose and develop cancer therapeutics. The location of NDUFAF1 and DEK

agree between Chapter 3 dataset and HPA normal tissue. Glypican-3 is not available in HPA.
We will not emphasize these differences between the Chapter 3 dataset and Uniprot since

the locations in Uniprot are from unspecified tissues. The differences may not be due to

tissue-dependent variations and not the diseases we are studying.
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Dataset
Protein Chapter 3 dataset | Uniprot (unspecified HPA (normal liver)
normal tissue)
NDUFAF1 | Cytoplasmic Organelle, membraneous, | Cytoplasmic,
organelle cytoplasm membraneous
NPM1 Nucleus, nuclear Nucleus, organelle Nuclear
membrane,
cytoplasmic
organelle
DEK Cytoplasmic, Nucleus Cytoplasmic,
nuclear membrane membraneous, nuclear
Glypican-3 | Organelle, nuclear | Cell membrane, Not available.
membrane membrane.

Table 4 : Proteins that discriminated liver cancer with subcellular location. Locations are

collected from Figure 2 and two bioinformatics databases : Uniprot' and Human Protein

Atlas?.

Conclusion

We have extended our image analysis pipeline to process full slide images. We applied our

pipeline to a dataset of pediatric and adult liver lesions to determine whether differential

protein subcellular location allows us to distinguish and classify liver lesions. Further, we

found a subset of proteins that can identify liver lesions perfectly given our dataset. The

generalizability of this subset of proteins needs to be investigated on a larger dataset, and

from images acquired from other imaging systems and institutions.

We found that some markers currently used in the clinic were highly predictive in our

system, such as glypican-3 and NDUFAF1 to identify adult DN in a multiclass system; DEK
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was able to identify adult HCA in a multiclass system. NPM1 was a good discriminator in
pediatric cancers. In addition we found two proteins that are currently not used in the
clinic to identify liver lesions: IRX6 and TJP1. Both proteins were important in the protein

signatures used to identify liver lesions.

Methods

Image processing

1.) Tissue object detection

The full slide image was loaded into memory after downsampling by a factor of 25s. To
segment the tissue object from the image the areas with the maximum overlapping
chromaticity and frequency were used to find the tissue regions in the image. A 300 pixel

border was removed from the segmented object to account for edge effects.

2.) Region selection

Regions were selected from the downsampled tissue object based on the maximum pixel
intensity that corresponds to the highest stained regions. A circular region of 10 pixels in
diameter was used to scan the image as a sliding window in 5 pixel increments. The top
200 regions with the highest protein stain were selected from each tissue object. Next,
regions from the original image with centers matching the 200 top downsampled regions
were selected. The diameter of the regions from the original image varied at 62, 125, 312,
625, 1250, 2500 pixels. Regions were ranked in ascending order by the Brenner score
(Brenner 1976). The Brenner score is a gradient.based measure of focus where larger
values correspond to higher frequencies in the image and indicate greater focus. The top

150 regions were selected for the analysis.
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3.) Unmixing and Features

For each region, the color basis matrix (W) was calculated and the region was linearly
unmixed into the protein and DNA masks, as previously described (Newberg and Murphy
2008). 592 Murphy lab features were calculated as first described by Boland et al. (Boland,
Markey et al. 1998).

Classification

4.) Training classifiers : region count, region size, model parameters, classification accuracy.

For each round of cross validation one patient from each disease group was held out, that
is all of the regions from the patient belonged to the same held out group. Each region was
classified independently and the patient label was assigned the plurality vote of the

regions.

For each classifier the optimal model parameters, region count and region size were
learned together by maximizing the training accuracy of the classifier. For example, every
combination of model parameter, region size and region count (count = 50, 100, 150) was
tested. The combination that gave the greatest cross.validation accuracy on the training set

was selected.
In each classifier the training points were assigned weights corresponding to the inverse

frequency of each class. The held out training and testing sets were always selected to have

one patient from each disease group.
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Random forest classifiers (Breiman 2001) were trained using Matlab’s TreeBagger
function. The model parameter, the number of trees in the ensemble, was learned through

cross.validation.

4.1.) Single lesion classification: pairwise

A binary random forest classifier was trained to distinguish every pairwise combination of
disease states within each age group. The reported accuracy is the mean of 10 rounds of

cross-validation.

4.2.) Multi class single protein classifier

A single protein multi.class random forest classifier was trained to identify different
disease states within each age group. The reported accuracy is the mean of 10 rounds of

cross-validation.

4.3.) Multi-protein voting classifier

For each patient, the disease was assigned the plurality vote from the multi.class single
protein classifiers trained on a portion of the training set as described in 4.2. Proteins
were selected to be in the signature set if the true positive rate was greater than the false
positive rate. The protein set was selected and the classifiers were retrained using the full
training set. Finally, the test set was classified using the plurality vote of the signature
proteins. The protein signatures and accuracies are reported from 100 rounds of

cross-validation.
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Chapter 4

Conclusions and future work

Summary of the chapters and significance

This thesis focused on developing an automated system to process IHC images to
quantitate protein subcellular location. Protein location labels were used to

discriminate cancers and to identify systems changes in the disease.

In Chapter 2, we described a robust pipeline for identifying proteins whose
subcellular location undergoes statistically significant changes. We quantified
changes in location for hundreds of proteins in four cancers and we presented a list
of proteins ranked by their extent of location change between the normal and
cancer states. Using those results we identified biochemical pathways that are
enriched for proteins that translocate. Future investigation of these proteins and
pathways may provide new insight into oncogenesis. Further, the analysis pipeline

is expected to be useful for assessing disease type and severity in a clinical setting.

In Chapter 3 we extended the pipeline from Chapter 2. The image processing
section of the pipeline was modified to process and extract features from full slide
images. We also added a series of classifiers to recreate situations for identifying a
patient’s disease, where any of the given cancer types could be stained with up to 15
different protein specific antibodies and stains. Three of the classifiers were
designed to find the optimal protein signatures for the liver lesions. We reported
the optimal protein signature and the classification accuracy of the protein set.
With further development, these protein signatures are expected to be useful in a
clinical setting for discriminating difficult to identify liver lesions in pediatric and

adult populations.
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Thesis contributions

Chapter 2

1. Previous work classified the subcellular location of proteins into one of 8
classes from IHC images (Newberg and Murphy 2008) however the system
did not estimate more diverse location patterns or mixtures of locations.
We extended the previous pipeline to measure the extent of protein
subcellular location change between two sets of images with more diverse
locations, without explicit classification. Given two input sets of images the
pipeline outputs 3 measurements of change: 1) a Freidman-Rafsky p-value
on the null hypothesis that the feature distributions in the two sets of images
are the same, 2) a Wald Wolfowitz p-value on the null that the expression
distributions between the two sets of images are the same, and 3) a
classification accuracy on how well the two sets of images can be

discriminated based on subcellular location features.

2. We improved the performance of the pipeline by selecting cellular regions of
interest from each IHC image for analysis. By selecting regions we were able
to isolate cellular regions of the tissue and omit stroma, connective tissue
and other non-cellular components that have minimal cross-reactivity with
the antibody. Thus features were calculated on cellular parts of the image

with moderate or strong protein levels.

3. We reported a ranked list of potential location biomarkers using the protein
location and expression results from the pipeline. We showed the
generalizability of the FR p-values and accuracies to unseen data. The list
ranks proteins by the largest changes in subcellular location and the
smallest changes in expression. These potential biomarkers would have

been missed by traditional experiments that measure expression alone.

4. We reported biochemical signaling pathways that we predict are altered in

the cancer state based on subcellular location changes of the individual
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proteins. Most pathways implicated in cancer are found by changes in
protein expression or mutations. We were able to identify new pathways

that are implicated in cancers based on changes in protein location.

Chapter 3

5. We reported optimal signatures of proteins for liver lesions for pediatric
and adult populations. The lesions within each population can be
challenging to identify in a clinical setting given the current markers for the
diseases. We explored different approaches for finding protein signatures
and reported the optimal proteins for each disease and the respective

accuracies.

6. We showed that two new proteins IRX6 and TJP1 are important for
identifying liver lesions that are difficult to distinguish in the clinic. The
analysis set contained sections of each disease stained with antibodies
against current biomarkers, and a set of new potential biomarkers. We
found that in addition to the current biomarkers IRX6 and TJP1 provided

valuable information for separating the lesions.
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Future work

Below we discuss a set of extensions to the projects in this thesis. The second part of

this section described new projects related to these findings.

Improved region selection to study of low staining proteins

Currently we are selecting regions of interest from IHC images by finding areas with
the highest levels of protein stain, under the assumption that cellular regions
expressing the protein will stain more strongly than other parts of the tissue.
However low staining levels may happen due to poor protein specificity, or low
abundance of the protein. Changes in subcellular location of proteins with low

staining levels are an unexplored part of this project.

To select regions from these types of images a more robust region selection
approach is necessary. One approach is to scan the DNA mask of the unmixed image
and find regions that have nuclei, as opposed to other types of tissue. Methods to
identify cellular regions of based on the presence of nuclei through the classification
of superpixels have been previously described (Schiiffler, Fuchs et al. 2010)
(Schuffler, Fuchs et al. 2013) (Beck, Sangoi et al. 2011) (Kong, Gurcan et al. 2011).
Such a change can improve the performance of the pipeline on the current dataset,
and also allow for the analysis of a much larger set of proteins across more diverse

tissues.

Extended unmixing for lighter and darker stains

In this work we unmix the [HC images by calculating the color basis matrix for each
antibody tissue combination. The matrix is found under the assumption that the

peaks of the DNA and protein stains will appear at comparable levels along the hue
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(H) dimension in HSV space. Further we assume that one peak will be greater than
0.3 and one will be less than 0.3 on the H axis when oriented from 0 to 1. While this
assumption holds for the images in our datasets, the assumption will break down
when we extend the pipeline to process lightly stained images or heavy stained

images.

Some reports have tried to improve upon these methods, particularly when the
staining is very weak or very strong (Tadrous 2010) (Onder, Zengin et al. 2014). It

would be interesting to test these methods on more diversely stained images.

Some additional improvements may result from learning a new smoothing
parameter for the hue component prior to identifying peaks, or setting a prior on
the peaks in HSV space. Further, constraining the sum of the unmixed stains of each
pixel to the original value can significantly improve unmixing of lightly stained

images that are currently unmixing roughly equal levels of both stains.

Improved features set that acts at resolution of cells

We are using image-level features during our analysis. While this feature set has
worked well in the past for distinguishing protein location (Glory, Newberg et al.
2008) (Newberg and Murphy 2008) in some cases the results from identifying
changes in protein location between normal and cancer in Chapter 2 showed
changes in tissue structure. It would be interesting and valuable to test the effect of
local features and image level features together. Local features (Bay 2008) (Lowe
1999) (Lowe 2004) have been used in the past to create robust systems in biological
and non-biological frameworks. In addition Coelho et al. (Coelho, Kangas et al.
2013) have used local features on cellular images and they have reported increased
performance compared to using image-level features alone. Testing local features
may improve our results and remove changes in tissue structure from ranking at the

top of our potential biomarker list.
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Separating cell types

In Chapter 2 we analyzed breast cancer that is a combination of ductal carcinomas
and lobular carcinomas; we also analyzed liver cancers that are a combination of
cholangiocarcinoma and hepatocellular carcinoma. We analyzed breast cancer and
liver cancer as single diseases arising from a single cell type, however both breast
cancers and liver cancers arise from different cells in their respective tissues. For
instance cholangiocarcinoma arises from bile duct cells and hepatocellular
carcinoma arises from hepatocytes. Currently our pipeline does not segment and
classify cell types. Segmentation and classification by cell types would allow us to
compare cancers directly to their respective cell types and would yield more

accurate results.

Graph based approaches to identify translocated protein complexes

We have reported KEGG pathways where a significant number of the members have
changed subcellular location in the cancer state. The results are an underestimate
of the changes taking place in each pathway since the pathway is analyzed as a
whole. It would be interesting to analyze how groups of proteins change together.

These groups may represent protein complexes that play a role in the diseased state.

Larger datasets

The analysis we have presented in Chapters 2 and 3 is based on images in the HPA,
and from our collaboration with UPMC. In both cases the datasets are limited and
the number of patients stained with each antibody in the HPA and the number of
patients representing each lesion-type in the UPMC data are limited. Further a
second independent dataset collected from a different source to test our methods is

not available at this time.
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More data should be collected from new patients to improve the generalizability of
the potential location biomarkers, and of the protein signatures for identifying liver
lesions. For example, in Chapter 2 we discussed a previous study on B-catenin that
reports nuclear translocation in the prostate cancer state. In our dataset none of the
prostate cancer images stained with B.catenin showed translocation into the
nucleus. This suggests that a subpopulation of prostate cancer patients undergo

translocation, and this subpopulation is missing from our data.

In Chapter 3 some diseases were represented with as few as 1 patient, other
diseases had 3 patients, and some had up to 26 patients. In the cases with few
patients the disease was either removed from our analysis if the count was smaller
than 3, or a very small training set was used if the number of patients was greater
than or equal to 3. To report a more robust discriminating protein signature the

analysis should be rerun on a large set of patients images.

Applications of deep learning

The Human Protein Atlas is a large database with patient information such as age
and cancer type, and their respective IHC images. The images have human
annotations for expression and subcellular location. Below are a set of
experiments that apply deep learning on this dataset to improve our

understanding of cancer.

1. Convolutional neural networks have properties to capture structure within
images (LeCun, Kavukcuoglu et al. 2010), and this has made them effective
and popular in computer vision. In this experiment a convolutional model
can be applied to the dataset. The images can be grouped by organ,
cancer-type or pooled as one large set to predict cancer and normal states.

We expect this model to outperform the classifiers described in this thesis.
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2. Deep learning multi-task multi-label (MTML) models are effective when
there are two types of labels on a dataset (Huang, Wang et al 2013). In NLP
MTMLs have been used to predict topic and sentiment from a single dataset
simultaneously (Huang, Peng, 2013). Since each label is predicted from a

common trunk, the labels promote and reinforce each other in the model.

In the proposed experiment an MTML can predict protein expression and
protein subcellular location as two distinct types of labels from IHC images.
The embedding layers can be used to explore relationships between the
tissues, cancer-types and patients. Information about patients can be used
as features in the model, or as labels to analyze the proximity of similar
aged patients in the embedding space. It is expected that this model will

outperform the classifiers described in these chapters.

Biology experiments

Cancer protein studies have typically focused on understanding changes in
expression. In this thesis we showed that changes in protein subcellular location

are important factors in understanding disease onset and development.

Cell based experiments can lead to insights about the applicability of these results.
A suitable experiment design will consist of a cell line that matches the cancer type
of the protein target we are testing. To understand the effect of the translocated
protein in cancer, an antibody can be used to bind to the protein and block its
function. Measurements of cell growth and similar proxies can be an early

indication of the validity of these protein targets.
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