Scheduling for Today’s Computer Systems:
Bridging Theory and Practice

Adam Wierman

2007
CMU-CS-07-126

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Mor Harchol-Balter, chair
John Lafferty
Bruce Maggs
Alan Scheller-Wolf
Ward Whitt

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

(© 2007 Adam Wierman

This research was supported, in part, by an NSF Graduate Research Fellowship and a Siebel Scholar award. Additional funding
was provided by a grant from the Pittsburgh Digital Greenhouse and NSF grants CCR-0133077, CCR-0311383, and CCR-9457766.

The views and conclusions contained in this document are those of the author, and should not be interpreted as represent-
ing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government, or any other entity.

Keywords: scheduling; queueing; fairness; tail behavior; response time; classification; multiserver; SRPT;
LAS; FB; PS; FSP; PSJF; PLCFS; SJF; SMART,; FOOLISH; protective; symmetric; closed system; M/G/1;
web servers; routers; wireless; access points; databases

This thesis is dedicated to

my wife Sonya,
who’s love and encouragement made this thesis possible,

and my parents,
who have always supported me in everything I've attempted.

Abstract

Scheduling is a fundamental technique for improving performance in computer systems. From web servers
to routers to operating systems, how the bottleneck device is scheduled has an enormous impact on the
performance of the system as a whole. Given the immense literature studying scheduling, it is easy to
think that we already understand enough about scheduling. But, modern computer system designs have
highlighted a number of disconnects between traditional analytic results and the needs of system designers.
In particular, the idealized policies, metrics, and models used by analytic researchers do not match the
policies, metrics, and scenarios that appear in real systems.

The goal of this thesis is to take a step towards modernizing the theory of scheduling in order to provide
results that apply to today’s computer systems, and thus ease the burden on system designers. To accom-
plish this goal, we provide new results that help to bridge each of the disconnects mentioned above. We will
move beyond the study of idealized policies by introducing a new analytic framework where the focus is on
scheduling heuristics and techniques rather than individual policies. By moving beyond the study of individ-
ual policies, our results apply to the complex hybrid policies that are often used in practice. For example, our
results enable designers to understand how the policies that favor small job sizes are affected by the fact that
real systems only have estimates of job sizes. In addition, we move beyond the study of mean response time
and provide results characterizing the distribution of response time and the fairness of scheduling policies.
These results allow us to understand how scheduling affects QoS guarantees and whether favoring small
job sizes results in large job sizes being treated unfairly. Finally, we move beyond the simplified models
traditionally used in scheduling research and provide results characterizing the effectiveness of scheduling
in multiserver systems and when users are interactive. These results allow us to answer questions about the
how to design multiserver systems and how to choose a workload generator when evaluating new scheduling
designs.

Thesis Committee

Mor Harchol-Balter (Chair)
Computer Science Department
Carnegie Mellon University

John Lafferty
Computer Science Department and Machine Learning Department
Carnegie Mellon University

Bruce Maggs
Computer Science Department
Carnegie Mellon University

Alan Scheller-Wolf
Tepper School of Business
Carnegie Mellon University

Ward Whitt

Department of Industrial Engineering and Operations Research
Columbia University

Vii

Acknowledgements

| have spent nearly ten years at Carnegie Mellon, working through the undergraduate and graduate programs,
and | consider myself extremely lucky to have had the opportunity to interact with such an amazing group of
scholars and students. Carnegie Mellon is an exceptional environment and | can only hope that | will serve
as a worthy representative of my alma matter throughout my future career.

Computer Science at Carnegie Mellon provides an amazingly supportive environment for its students,
so | have many people that | wish to thank. First, | would like to thank my advisor, Mor Harchol-Balter.
There is no aspect of research in which she did not provide excellent guidance. She has taught me how to
take stock of the big picture, not only when presenting my work, but also as a guide for new directions.
Her advice also extended beyond research to career planning and teaching, and | am extremely grateful for
the time she spent working with me on these areas. Finally, Mor’s boundless and infective energy is an
enormous inspiration. There were many times during my graduate career when | came into a meeting with
Mor frustrated about a problem or stuck on a proof, but | had a new excitement about the work by the end
of the meeting (even when we had not actually made any concrete progress).

Next, | would like to thank Alan Scheller-Wolf, who in many ways acted as an advisor for the operations
research half of my work. His guidance, both about research and beyond, has always been thoughtful and
insightful. | also want to thank the other members of my thesis committee: John Lafferty, Bruce Maggs,
and Ward Whitt, who each provided valuable feedback that helped me look at aspects of the thesis in a new
light. In the same breath, | would like to thank Anupam Gupta for his advice over the years on research,
teaching, and life.

I have had a amazing group of coauthors over my graduate career, and each of them deserves my grati-
tude. I would especially like to express my gratitude to Takayuki Osogami. Through research collaborations,
presentation critiques, career advice, and more, Taka played a key role in my graduate career. And, equally
importantly, grad school just would not have been as fun without him around. Bianca Schroeder also de-
serves a big thank you, not only for her role in our research collaborations, but also for her critiques of
my presentations and for her help with my job search. Collaborations with Misja Nuyens, Bert Zwart, and
Jorgen Olsen were amazingly fruitful given that we hardly ever were on the same continent. Thank you
for taking the extra effort to collaborate via email. Onno Boxma and Ivo Adan gave me the opportunity to
spend half a year working at the EURANDOM institute in Eindhoven, which not only led to a number of
interesting collaborations, but also provided me a wonderful opportunity to experience a different culture
first hand, in a way that a vacation can never provide. Also, thank you to the many graduate students and
post-docs at EURANDOM who welcomed me and made me feel at home, especially Erik Winands, Marcel
van Vuuren, and Maak Holmes.

| have been lucky to have the support of many generous people throughout my graduate career. | would
like to give a special thank you everyone who attended SQUALL over the years, especially Varun Gupta,
Paul Enders, and David McWherter. | would also like to thank the support staff in the department, which
smoothly took care of all the administrative issues so that | could focus on my research, especially Charlotte
Yano, Sharon Burks, and Catherine Copetas.

Of course, life did not end at the walls of Wean Hall, and | would like to acknowledge Brian Knudsen,
Helen Lafferty, Mike Rossi, and Rob Reeder, who have been great friends and have kept me sane over the
years. Also, I'd like to thank everyone who has helped with the Random Distance Run, especially the new
RDR guru, Gaurav Veda.

Finally, | would like to thank my family. | would not be where | am today without the support and
love of my parents, and this thesis would not be what it is without the encouragement and patience of my
wife Sonya. She has truly been a partner in my research and writing, letting me vent my complaints and
frustrations and keeping me on task (and off the golf course) when there was nothing | wanted to do less
than work on writing the thesis. She is my inspiration in research and life, and | am excited to find out what
lies ahead for us.

Table of Contents

Abstract %
Thesis Committee Vii
Acknowledgements iX
Table of Contents XV
List of Figures Xviii
List of Tables XiX
Motivation and Background 1
1 Introduction 3
1.1 Scheduling success Stories. o e e 4
1.2 The essence of a scheduling successstory. 6
1.3 Choosing aschedulingpolicy. 7
1.3.1 Whattraditionaltheorysays. e 7

1.3.2 Whathappensinpractice. e 9

1.3.3 Gapsbetweentheoryandpractice, 12

1.4 Bridging the gaps between theory and practice. 13
1.5 Anoverviewofthethesis 16
1.5.1 Synopsis of Part I: Motivation and Background 16

1.5.2 Synopsis of Part Il: Moving beyond idealized policies. 16

1.5.3 Synopsis of Part lll: Moving beyond mean responsetime 18

1.5.4 Synopsis of Part IV: Moving beyondthe M/GI/L 20

1.5.5 Synopsis of Part V: Further discussion and conclusion. 23

Xi

Xii TABLE OF CONTENTS
2 The basic model of the thesis 25
2.1 Anoverviewofthemodel. 26
2.2 Performance metrics ofinterest L L L 28
2.3 Commonlyusednotation 28
2.3.1 Basic mathematical notation. L 29

2.3.2 Queueing-specific notatian. 30

2.4 Commonly used distributions. 31
2.4.1 Phase-typedistributions 32

2.4.2 Heavy-tailed distributions. 35

3 Anintroduction to common policies 43
3.1 Simplepolicies. e 44
3.1.1 First-Come-First-Served (FCFS) and the stationary worklaad 44

3.1.2 Preemptive-Last-Come-First-Served (PLCFS) and busy periods 46

3.1.3 Non-preemptive blind scheduling 49

3.1.4 Processor-Sharing (PS) e 51

3.2 Priority-based policies. e 56
3.2.1 Notation for priority-based policies L oL, 56

3.2.2 Non-preemptive priority qUEUES 57

3.2.3 Preemptive priority qUEUES. L 63

3.2.4 Shortest-Remaining-Processing-Time-First (SRPT). 70

3.2.5 Foreground-Background scheduling(FB) 83

3.2.6 Other priority based policies. 0. 92

3.3 Concludingremarks. e e 93
Scheduling Classifications: Moving Beyond Idealized Policies 95
4 Classification via scheduling heuristics 99
4.1 Theclassof SMART policies. i e e 101
4.1.1 Defining SMART scheduling. 101

4.1.2 Examples of SMART policies 103

4.1.3 Policies excluded from SMART 105

4.1.4 Bounding response times for SMART policies. 105

4.2 Generalizingthe SMART class. 113
4.2.1 Defining SMART 114

4.2.2 Examples of SMARTpolicies. e 115

4.2.3 Bounding response times for SMARJolicies 116

4.3 Theclassof FOOLISH policies. 121
4.3.1 Defining FOOLISH scheduling. 122

4.3.2 Examplesof FOOLISHpolicies 123

4.3.3 Bounding response times for FOOLISH policies. 123

4.4 Theclass of SYMMETRIC policies. 125

4.4.1 Defining SYMMETRIC scheduling 126

TABLE OF CONTENTS Xiii

4.4.2 Examples of SYMMETRIC scheduling. 126

4.4.3 Bounding response times for SYMMETRIC policies 127

4.5 Theclass of PROTECTIVE scheduling 129
4.5.1 Fair-Sojourn-Protocol (FSP) e 129

4.5.2 Defining PROTECTIVE scheduling. 132

4.5.3 Bounding response times for PROTECTIVE policies 133

4.6 Concludingremarks. e e e 135

5 Classification via scheduling techniques 139
5.1 The class of preemptive size based policies 141
5.1.1 Defining a class of preemptive size based policies 141

5.1.2 Bounding response times for preemptive size based policies 141

5.2 The class of remaining size based policies 143
5.2.1 Defining a class remaining size based policies. 143

5.2.2 Bounding response times for remaining size based policies. 143

5.3 Theclassofage basedpolicies 145
5.3.1 Definingaclass ofage basedpolicies 145

5.3.2 Bounding response times for age based policies 146

5.4 The class of non-preemptive policies 147
5.4.1 Defining classes of non-preemptive policies. 147

5.4.2 Bounding response times for non-preemptive policies 148

55 Concludingremarks. e 149
Diverse Metrics: Moving Beyond Mean Response Time 153
6 The distribution of response time 157
6.1 Preliminaries. e 159
6.2 The response time tail under individual policies 161
6.2.1 FCFS. e 161

6.2.2 SRPT. e 164

6.2.3 PS. . . s 167

6.2.4 FB. 168

6.2.5 LCFS. e 169

6.3 The response time tail under scheduling classifications. 170
6.3.1 Theclass of non-preemptive policies. 170

6.3.2 TheSMARTClass. 171

6.3.3 TheFOOLISHclass. e e e 179

6.4 Concludingremarks. e 181

7 Fairness 183
7.1 Proportional fairnessinexpectation 0 185
7.1.1 Defining proportional fairness in expectatian. 186

7.1.2 The proportional fairness of individual policies. 187

Xiv TABLE OF CONTENTS
7.1.3 The proportional fairness of scheduling classificatians 194

7.2 Proportional fairnesstolargejobs 200
7.2.1 Asymptotic behavior of slowdown. L. 201

7.2.2 Scalingresponsetimes. e e 205

7.3 Aunified framework for proportional fairness. oL 209
7.4 Predictability e 211
7.4.1 Defining predictability. 212

7.4.2 The predictability of individual policies 213

7.4.3 The predictability of scheduling classifications. 223

7.5 Temporal Fairness. e e e 230
7.5.1 Definingpoliteness 231

7.5.2 The politeness of individual policies. 232

7.5.3 The politeness of scheduling classifications 236

7.6 Hybridfairnessmetrics e e e e e 241
7.6.1 OrderFairness. e 241

7.6.2 RAQFM 243

7.6.3 Discrimination Frequency. e e e e 243

7.7 Concludingremarks. e e e 244
Broader Models: Moving Beyond the M/GI/1 247
8 The impact of interactive users 251
8.1 Defining closed, open, and partly-opensystems. 253
8.2 Comparison methodology. e 255
8.3 Real-worldcasestudies. e 256
8.3.1 Staticwebcontent 256

8.3.2 E-commercesite e 260

8.3.3 Auctioningwebsite. e 261

8.3.4 Supercomputingcenter. 262

8.3.5 Studyof WANeffects. 264

8.4 Openversusclosed systems. 264
8.4.1 FCFS. . . . 265

8.4.2 Theimpactofscheduling. 267

8.5 Partly-opensystems. e e 269
8.6 Choosingasystemmodel. e 271
8.7 Concludingremarks. e 273

9 The impact of multiserver architectures 275
9.1 Prior work analyzing multiserver priority queues 277
9.2 Analyzing the M/PH/k with m priority classes. 278
9.2.1 Exponential job sizes and two priorityclasses. 278

9.2.2 Exponential job sizes amad priority classes, oL 282

9.2.3 The M/PHk with m priorityclasses. 285

TABLE OF CONTENTS XV

9.2.4 Computing higher moments of responsetime. 286

9.2.5 A computationally efficient approximation 287

9.3 Numerical validationandresults. Lo 287
9.4 The impact of prioritizationinan M/PH/K, 288
9.4.1 Theeffectofthe numberofservers. 289

9.4.2 The effect of “smart” prioritization., 292

9.4.3 The effect of priority aggregation 293

9.5 Designing multiserver systems. 294
9.5.1 Priorwork e 294

9.5.2 How many servers are bestina FCFSsystem. 295

9.5.3 How many servers are best in a dual priority system 296

9.6 Concludingremarks. e e 304
Impact and future directions 307
10 Conclusion 309
10.1 Lessons and SUMPFISES. . . . v v v v v e i e e e e e e e e e e e e e e e e 311
10.2 Theimpact for systemdesign 313
10.3 The impact for theoretical schedulingresearch. 315
10.4 Furtherdirections e e 316
Bibliography 319
Afterward 335

About the Author 337

XVi TABLE OF CONTENTS

List of Figures

1.1 Anillustration of asingle serverqueue. e 7
1.2 Anillustration of the impact of scheduling on mean response time. 8
1.3 An overview of the classifications studied in thisthesis.. 17
1.4 A comparison of the proportional fairness and temporal fairness classifications 21
1.5 lllustrations of the closed and partly-open systemmodels. 22
2.1 Simple examples of phase-type distributions.. 33
3.1 Anillustration of how to viewPS as a branching process. 53
3.2 Anillustration of the near insensitivity ®SJF. 68
3.3 Anillustration of the mean response timeund8dJF. 69
3.4 Anillustration of the near insensitivity &RPT. 74
3.5 Aniillustration of the mean response time un8BPT. 78
3.6 Anillustration of the effect of job size variability on the mean response tink@®of. 86
3.7 Anillustration of the mean response timeuneBr 89
3.8 A summary of the mean response time under common scheduling palicies. 94
4.1 Anoverview of the classifications studied in thisthesis.. 100
4.2 Anillustration of the priority structure enforced by tBMART Bias Property. 102
4.3 An example illustrating that tH@MART definition only enforces a partial ordering. . . . 103
4.4 An illustration of bounds on response times urB¥ART policies 106
4.5 An illustration of the priority structure enforced by #8MART. Bias Property 114
4.6 The tradeoff between the accuracy of job sizes estimates and mean response time. . 121
4.7 Anillustration of the priority structure enforced by th®@OLISH Bias Property 122
4.8 Anillustration of bounds on response times ure@OLISH policies 123
4.9 An illustration of the response time und&MMETRIC policies 127
4.10 A comparison of the mean response timeS®i®, PS, andSRPT. 132
4.11 Anillustration of bounds on response times urRROTECTIVE policies. 134

4.12 Anillustration of bounds on conditional mean response time under scheduling heuristit36
4.13 Anillustration of bounds on the overall response time under scheduling heuristics . . 136

5.1 Anoverview of the classifications studied in thisthesis.. 140
5.2 Anillustration of bounds response times under preemptive size based policies142

XVii

Xviii LIST OF FIGURES

5.3 Aniillustration of bounds on response times under remaining size based policies . . . 144
5.4 Anillustration of bounds on response times under age based palicies. 146
5.5 Aniillustration of bounds on response times under non-preemptive palicies. 148

5.6 lllustration of bounds on conditional mean response time under scheduling techniques 50
5.7 lllustration of bounds on overall mean response time under scheduling techniques . . 150

7.1 A detail of the proportional fairness classification. 188
7.2 Anillustration of he behavior of both common policies with respect to proportional fairri€3&
7.3 A detail of the predictability classification 214
7.4 The behavior of both preemptive and non-preemptive policies with respect to predictaliliey
7.5 Anillustration of the politeness of common policies 233
7.6 Adetail of the politeness classification. 237

7.7 A comparison of the proportional fairness, predictability, and politeness classifications245

8.1 lllustrations of the closed, open, and partly-open systemmodels. 252
8.2 Implementation results comparing open, closed, and partly-open models. 257
8.3 Flow of data in Linux wittSRPT-like scheduling. 259
8.4 The effect of WAN conditions on open and closed systems. 263
8.5 A comparison of open and closed systems uR@¥S. 265
8.6 The effect of job size variability, MPL, and think time on load in a closed system. . . . 266
8.7 Simulation results showing the effectiveness of scheduling in closed and open system268
8.8 Model and implementation-based results for the partly-open system.. 270

8.9 Statistics for 3 representative web traces illustrating the effect of varying the timeout thr2gBold.

9.1 An overview of Dimentionality Reduction in the case of an M/M/2 dual priority queue.. 279

9.2 The Markov chain resulting from applying DR to an M/M/3 dual priority queue.. 281
9.3 An overview of applying RDR in the case of 3 priority classes.. 283
9.4 Anillustration of how to calculate the busy period distributions used by RDR. 286
9.5 Numerical validation of RDR and RDR-A in the M/M/2 and M/PH/2 queues. 289
9.6 Numerical validation of RDR-A inthe M/PH/2queue. 290
9.7 A contrast of per-class mean response times under 1, 2, and 4 server systems.. . . .291
9.8 Errorin predicting mean delay using the BB approximatian. 291

9.9 Anillustration of the effect of “smart” and “foolish” scheduling in multiserver systems.. 292
9.10 Anillustration of the impact of aggregating priority classes in multiserver systems. . . 293
9.11 How many servers are bestina M/IRFICFS queue. 295
9.12 How many servers are best when the two priority classes have the same mean job siz297
9.13 How many servers are best when the high priority jobs have a smaller mean joh size?299
9.14 How many servers are best when the high priority class has a larger mean joh size? . 301
9.15 Mean response time as a function of the number of servers, which range from 1 to 10.303

List of Tables

2.1
2.2
2.3

3.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7

An introduction to the most common scheduling disciplines discussed in the thesis.. . 27

An overview of common notation used inthethesis.. 29
An overview of common performance metricsinthethesis.. 30
A summary of the busy period variations studied in thisthesis 57
A summary of the system models underlying web related workload generatars.. . . . 254
Summary statistics for the trace used in the staticweb case study. 259
Summary statistics for the trace used in the e-commerce case study.. 260
Summary statistics for the trace used in the auctioningcasestudy. 261
Summary statistics for the trace used in the supercomputing case study.. 262
Asummary of webtraces. 272
A summary of the expected number of visits per sessioninwebtraces.. 273

XiX

XX

LIST OF TABLES

PART I

Motivation and Background

CHAPTER 1

Introduction

Scheduling policies are implicitly (or explicitly) used everywhere that a resource needs to be allocated.
Whenever there is contention for a limited resource, a queue builds, and a scheduling policy is used to
determine the order in which the resource is allocated to satisfy requests.

This happens almost everywhere we venture in our daily lives. From restaurants and supermarkets, to
banks and amusement parks, we queue for service in a variety of ways. In many convenience stores there is
a single cash register where people line up, and are then served in First Come First BERS8Hdrder. In
large supermarkets, there are many registers and some are dedicated to serving only customers with a small
number of items. On the other hand, in restaurants everyone gets a little bit of service all of the time, which
can be viewed as a form of Processor Shari8)(In fact, even deciding what order you will do the things
on your to-do list can be thought of as a scheduling policy. Do you want to finish the most urgent tasks first,
i.e. use Earliest Deadline FirdEDF), or work on the tasks that you can finish the quickest, i.e. use Shortest
Remaining Processing TIM8RPT)?

In addition to these everyday examples, scheduling policies are fundamental components of a variety of
modern computer systems. Applications such as web servers, routers, operating systems, supercomputers,
databases, and disks all face a constant barrage of requests and need to determine how best to allocate
resources to users. In all these cases, queues of service requests build and a scheduling policy (discipline) is
used to decide the order of service.

Wherever scheduling policies are used, they can have a dramatic impact on system “performance.” In
particular, at a high level, requests experience delay as a result of waiting in queues for service at a limited
resource; thus how requests are scheduled at this resource is a fundamental determinant of delay. In fact, the
delay experienced by requests can differ by orders of magnitude across scheduling policies.

This means that scheduling is especially important in computer systems, because users of computer
systems are extremely demanding and unforgiving. In our daily lives, we are willing to accept some delay
while we queue for service, but, in computer systems, users demand service that is both instantaneous and
predictable. For example, web users become dissatisfied if response times for requests exceed 5 seconds and
view delays of greater than 10 seconds as intoler&ie Further, meeting the high expectations of users in
computer systems is crucial because it is often effortless for users to switch to a competitor’s product. If we
again consider the example of a web user, the competition is always “just a click away.” Thus, a fundamental

3

4 CHAPTER 1: INTRODUCTION

design goal of computer systems today is to minimizerésponse timesf users, i.e. the time between the
moment a user makes a request and the moment the request is completed.

Scheduling is a fundamental tool for minimizing response times (reducing delays) and, as a result, the
study of scheduling policies has a long history including a vast literature of analytic results. However, in
recent years, the field has been going through a resurgence. This resurgence is a result of a variety of
“scheduling success stories” in computer systems. In particular, at all levels of computer systems, designers
have dramatically reduced user response times by making small changes to the scheduling policy used at
the bottleneck resource. We will provide an overview of a few examples of success stories in $dction
where we will see that the essence of these scheduling success stories is very simple (S3ctibm
particular, in all the examples, system designers identify the bottleneck resource in a system, determine how
it is scheduled, and then design a new scheduling policy in order to improve performance. This third step is
really the defining aspect of the success story, and is the focus of this thesis.

In Section1.3we will begin to explore the issues involved in designing a new scheduling policy for a
computer system. This task is not easy — there is an enormous variety of scheduling policies from which
to choose. As a result, computer system designers are often guided by analytical results about scheduling
policies, and we discuss what traditional analytical results about scheduling suggest for computer system
design in Sectior.3.1 However, we will see in Sectioris3.2and1.3.3that there are many gaps between
the analytical results and what happens in practice. Because of these disconnects between theory and prac-
tice, traditional analytic results do not apply for the policies that system designers use in practice. This fact
is problematic because analytic results can be an important tool for system design.

The goal of this thesis is to develop a modernized theory of scheduling that can provide analytic results
that apply to today’s computer systeresising the burden on system designers. To accomplish this goal,
we will provide new results that help to bridge the disconnect between the analytical results and the needs
of practitioners. We detail our approach for bridging these disconnects in Séctiand then we conclude
the introduction by providing an overview of the thesis in Secfidn

1.1 Scheduling success stories

Across applications, computer system designers have been suggesting new designs for the scheduling poli-
cies at the core of systems. This increasing focus has lesthieduling success storias all levels of
computer systems. In web serve®$,[187, routers, [L79, 180, wireless networks]02, 136, peer-to-peer
systems 17§, operating systems/f], databasesl38 139, and beyond, researchers have made simple
changes to the scheduling policies used at the bottleneck resources in computer systems that have led to
dramatic improvements in user response times. Not only do these new designs result in improved response
times, they do so without requiring the purchase of additional resources.

Example: Static Web Servers

The scheduling success story that is perhaps the easiest to explain is that of web servers. If we
consider a web server that serves primarily static requests, its operation is very simple at a high
level. Static requests are typically of the form “get me a file”” In order to fulfill such a request, the
web server must retrieve the file and then send the file over the outgoing link. Typically the amount of
bandwidth at the web server is the bottleneck device since purchasing more bandwidth is much more
expensive than upgrading the disks or CPUs at the web seitvi&¥ $9]. Even a modest web server

1.1: SCHEDULING SUCCESS STORIES 5

can saturate a T3 or 100Mbps Ethernet connection. Thus, much of the delay experienced by requests
for files is a result of queueing for bandwidth.

In standard web server designs, such as Apa@2&j[and Flash [L6§ servers, the bandwidth is
allocated by cycling through the queued files, giving each a small slice of service. Specifically, each
connection between a client and the web server has a corresponding socket buffer into which the web
server writes the contents of the requested file. The sockets are then drained in a cyclic manner where
a handful of packets from each socket are sent before moving to the next socket. This behavior is
typically modeled using the Processor ShariR&] scheduling policy, which gives an equal share of
the service capacity to each job in the queue at all times.

Now comes the success story. Harchol-Balter et @8] have recently achieved dramatic re-
ductions in user response times at static web servers by adjusting the scheduling policy used in web
servers. They modified the way sockets are drained in order to implement a ver§&Paofand
found that not only were response times much smadéy, put also the performance in periods of
overload was improved?D3 and the response times of large files did not suffer as a result of the
bias towards small files25]. Further, following the initial work of Harchol-Balter et al., other re-
searchers have gone on to design improvements to the scheduling policy, thus providing even more
dramatic improvements over standard web server desigi&3 31, 130 88]. We will talk in more
detail about the actual policies in these designs later in the chapter.

O

Example: Network Edge Routers

From a user-level perspective, a user is sending a sequence of packets, i.e. a flow, on a path through a
number of routers in the network. Thus, a router must share resources between a number of competing
flows. Typically, one of these routers is the bottleneck link along the path and contributes the majority
of the network delay. Often times, this bottleneck router is the edge router, i.e. the router on the edge
of the core of the network. Further, the bottleneck resource of the bottleneck router is the most fre-
guently the outgoing bandwidth of the routd7d], since it is much more expensive to overprovision
bandwidth than it is to overprovision other resources. (Though, the complexity of scheduling policies
used at routers is limited due to the fact that routers must make scheduling decisions very quickly so
as to operate at line speed.) Thus, a key determinant of the delay experienced on a network path is
how the bandwidth at the bottleneck router in the network is scheduled.

In standard router designs, variants of fair queueing are commonly used to allocate bandwidth
to packets from competing flows at a router. These policies guarantee that the average bandwidth
given to each flow through the router is approximately equal. This mean®&and variants such
as GeneralizedPS (GPS) and DiscriminatoryPS (DPS) serve as a good model of the scheduling
policy at the router 50, 35, 36].

Many technigues have been applied to try to reduce the delay in routers, including admission
control, active queue management, and others. However, recently, Rai df78].\jere able to
dramatically reduce response times of flows by implementing a simple scheduling change in routers
—they implement a policy that gives priority to flows with the least attained service, i.e. the flow that
has had the fewest packets sent so far. With only this small change to the way flows are scheduled Rai
et al. were able to reduce response times by an order of magnifiksz 180. We will provide more
details about the policy they implement later in the chapter.

O

6 CHAPTER 1: INTRODUCTION

Example: Wireless Access Points

Wireless networks offer a number of interesting challenges when compared with traditional wired
networks. One of the key challenges is that the wireless channel is a shared resource among all the
users of a given access point. In order to achieve reliable transfers, users must reserve exclusive
access to the shared channel. As a result of this and other concerns, wireless networks are severely
bandwidth-limited, and the wireless link itself is the bottleneck resource. Thus, a key determinant of
user response times is how the wireless channel is scheduled.

Allocation of the shared channel is performed in a centralized manner by the network access
point. Typically, the access point polls clients to give them channel access grants, traditionally grant-
ing access in a round-robin manner so as to guarantee fairness among competing users. So, again,
PS is a good model of the scheduling policy being used at a standard wireless access point.

But, there are many reasons why this allocation strategy is inefficient and many recent designs
have dramatically reduced response times in wireless networks using simple changes to the scheduling
policies used in wireless access point®2, 136. These recent designs again apply variants of the
SRPT policy to schedule user requests. We will provide more details about the specific variants they
implement later in the chapter.

O

We could easily continue to list other recent scheduling success stories in applications such as operating
systems T4], databases138 139, peer-to-peer system4 T8, and beyond; however from these examples
we can already see that changing the scheduling policy at the bottleneck device in computer systems can lead
to dramatic performance gains at the system-level. Further, from these examples, we can already observe
that there are many similarities between these success stories.

1.2 The essence of a scheduling success story

Though every system is different and each of the scheduling success stories we just described has its own
nuances, the essence of these scheduling success stories is the same across systems. There is a consistent
three-step design process that is followed.

1. The first step is to determine the bottleneck resource of the system. Identifying the bottleneck resource
is one of the fundamental steps in system design. Knowing what resource is the bottleneck allows
designers to focus on the part of the system responsible for the majority of delay in the system.
This resource is exactly where scheduling changes will have the most dramatic effect on system-level
performance. We saw that in static web servers the bottleneck is typically the limited bandwidth
that the server has bought from its ISRIR, 59]. Similarly, in network routers and wireless access
points bandwidth is again typically the bottlenedk 9, 250. In operating system scheduling, the
bottleneck is typically the CPUrH], while in databases the bottleneck can either be the CPU or the
database locks depending on the worklohgd.

2. Once the bottleneck device is known, the next step is to understand how the bottleneck device is cur-
rently scheduled. This knowledge helps to determine what performance improvements are possible.
It turns out that, across computer systems, the status-quo is typically to use a very simple scheduling

1.3: CHOOSING A SCHEDULING POLICY 7

FEF g

a2
New Arrivals Queue Server

J——

Figure 1.1: Anillustration of a single server queue.

policy to schedule the bottleneck device, often either First Come First Sef@fS) or Processor
Sharing PS). In particular, as we saw in our examples, it is most common that the bottleneck device
is scheduled using a form &S. This happens because most systems time-share, giving each request
a small slice of service and cycling through the requests in a round robin fashion. For exaBple,

is a good approximation of the way web servers and routers (at a flow level) allocate ban®gjdth [
Additionally, operating systems tend to use variant®8fto schedule jobs at the CPU.

3. After the bottleneck has been identified and it has been determined how the bottleneck is being sched-
uled, the last step in a “scheduling success story” is to design and implement an improved scheduling
discipline for the bottleneck resource. However, the details of the improved policy are very much
application dependent. This step is the defining aspect of the scheduling success story. After the first
two steps, system designers know which resource is the bottleneck and how it is being allocated, but
the question is thenyhat is the best, or at least an improved, design for a new scheduling policy?

1.3 Choosing a scheduling policy

The defining aspect in recent scheduling success stories is the decision of which scheduling policy to im-
plement at the bottleneck resource. This is not an easy decision — there are an infinite variety of possible
scheduling disciplines to choose from. As a result, though it is possible to develop a hew design through an
ad hoc process of tuning and testing new proposals, performance modeling is often a key tool in developing
a new scheduling discipline for the bottleneck device. In particular, by considering a single server queue (as
illustrated in Figurel.1) as a model of the bottleneck resource, designers can make use of a vast literature of
analytic results about scheduling in order to better predict the performance of new design proposals. So, all
a system designer needs to do after determining which scheduling discipline is used by the bottleneck device
is to pick up one of the many books on schedulig, [L19, 120, 176 and look for an improved policy.

Well, at least it seems that easin reality, there are many gaps between what the traditional analytic
results provide and what system designers need in practice. These gaps mean that the results proven in
theory do not end up applying to the systems that are built in practice.

1.3.1 What traditional theory says

The study of scheduling has a long history, including an extremely diverse set of application areas and
models. The classical case of minimizing response times at a single server with a single queue is the case
that is most relevant to our scheduling success stories. In any scheduling book, one of the first results that

8 CHAPTER 1: INTRODUCTION

15 ; 15 ; 15
FCFS, SRPT ; -FCFS, PS ; ~FCFS
-PS : SRPT : F-PS
; ;
! !

10 10
:

E[T]
E[T]
E[T]

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
P P p

(a) Deterministic (b) Exponential (c) Weibull

Figure 1.2: Mean response timdy[T], is shown as a function of loa@g, underSRPT, PS, andFCFS
in an M/GI/1 queue. The service distribution has mean 1 and is (a) Deterministic, (b) Exponential, and (c)
Weibull with a variance of 10.

is presented is that a simple, greedy policy is optimal in the single server model. In particular, Shortest
Remaining Processing TIM&SRPT) minimizes both the mean queue length and the mean response time
regardless of the arrival sequence or job si282[201]. SRPT works by devoting the full service capacity

to the job with the smallest remaining size. Thus, it greedily works on the job that can be completed the
quickest.

However, simply knowing thaBRPT minimizes the mean response time tells us nothing about how
much improvement can be gained from usBRPT instead of other common policies lik&S or FCFS.
Therefore, we also need to understand the quantitative comparison of response tim&RROdPS, and
FCFS under practical workload assumptions.

To provide such a comparison, the traditional model that is used is a single server queue with an infinite
buffer (see Figuré.l) where the interarrival times of requests are assumed to be independent and identically
distributed (i.i.d.) random variables, the single server works at a constant speed, and the service times
(processing times, job sizes) of arrivals are assumed to be i.i.d. Moreover, the sequences of interarrival times
and service times are assumed to be independent. This model is one of the most basic queueing models,
and is referred to as the GI/GI/1 queue. The first Gl indicates that the arrival process is a sequence of
generally-distributed, independent random variables; the second Gl indicates that the service requirements
are generally-distributed, independent random variables; and the 1 indicates that there is 1 server. Most
typically, scheduling policies are studied in the simpler M/GI/1 model, where the M stands for “Markovian”
and indicates that the arrival process is Poisson, i.e. has exponentially distributed interarrival times.

A huge variety of scheduling policies have been studied in the M/GI/1 setting, and there are a number
of excellent books that summarize the important res@élis 119, 120, 176. We will survey many of the
results in ChapteB. However, let us now provide a simple comparisors&PT, PS, andFCFS in order
to illustrate the performance gains that are possible.

To provide this comparison we will use an M/GI/1 queue with three different service distributions. In
Figure 1.2, we show a comparison betwe8RPT, PS, andFCFS under (a) a deterministic distribution
where all jobs have size 1, (b) an exponential distribution, which is a common distribution because it is
analytically tractable, and (c) a high-variance Weibull distribution. Figuedlustrates thaSRPT provides
an enormous improvement in mean response time in some settings; however the improvement depends very

1.3: CHOOSING A SCHEDULING POLICY 9

much on properties of the workload. In particular, the improvement depends very strongly on the variability
of service demands (job sizes) and the system load (utilization). &RQT instead ofPS or FCFS
provides only limited improvement in mean response time when job sizes are not very variable or if the
system load is low. However, the improvement is dramatic if job sizes are highly variable or the system is
moderate or highly loaded. The reason for this is simple. First, if the system is lightly loaded, then the queue
lengths are small regardless of the scheduling policy used, so reordering jobs in the queue can only have
a limited impact on response times. However, if the system is moderate or heavily loaded, queue lengths
can be very large, and reordering jobs in the queue can have a big impact. Second, variability is important
because when job sizes are highly variable, one large job can wreak havod-@teerin particular, under

FCFS, many small jobs can get stuck behind a large job in the queue. Further, one large job can have a
negative effect oS because a large job will stay in the system for a long time and, thus, limit the service
capacity devoted to other jobs. In contrast, unBBPT, small jobs are unaffected by large jobs because
they bypass larger jobs in the queue.

To summarize, the key observation from Figr2is that, SRPT can provide enormous improvements,
but only under certain system loads and job size distributions. Thus, in order to understand BR&fer
will provide significant improvements for a given application, it is important to first understand the system
load the application will experience and the distribution of service demands.

Let us start with the system load. Though it is not uncommon for designers to try to overprovision com-
puter systems, the unpredictability and burstiness of computer system workloads means that itis common to
experience extended periods of moderate-to-heavy load. For example, in web applications, surges in traffic
as a result of special promotions, an abrupt increase in a site’s popularity, or many other reasons, result in
extended periods of high load. As a result, even well-provisioned systems spend a significant amount of
time running in moderate or high-load, and maybe even in overload. These periods of high load are typi-
cally some of the most important times to provide users responsive service, and so scheduling policies for
computer applications need to be designed with the high load periods in mind.

Next, let us consider the service demand distributions experienced by computer applications. Over the
last decade, there has been an explosion of workload characterization research in the computer system com-
munity. This research has led to the growing realization that heavy-tailed and highly variable distributions,
such as the Weibull and Pareto, are everywhere in computer system workl@gade,[208 172, 174).
Examples can be found in UNIX process lifetim&d,[68], web file sizes 173 62], and the number of
embedded files in web siteq, 28].

So, in designing scheduling policies for computer applications, the most important workload setting
to consider is a highly loaded server with highly variable job sizes. This is exactly the setting where the
performance improvements 8RPT are most dramatic, S&RPT is the clear choice for use in computer
systems according to traditional theoretic results.

1.3.2 What happens in practice

We just saw that theoretical results motivate the us8RIPT in computer systems SRPT minimizes the
mean response time and provides dramatic improvements over common policiB$likeder practical
workloads. Thus, it would seem that one should alwaysSRBT scheduling, regardless of the application
that is being considered.

But, the picture painted by the theoretical results is a bit deceiving. In particular, the reality of computer

10 CHAPTER 1: INTRODUCTION

systems is far more complex than the simple models and idealized scheduling policies one finds in the books
on scheduling.

To illustrate this briefly, notice the setting that was used in Figubdo analyze the performance im-
provements obtained BYRPT: Figurel.2shows the mean response time in an M/GI/1 queue SRIBT
scheduling. Though we have seen that the assumption of highly variable Weibull service demands is fairly
realistic, it is easy to find fault with each of the other assumptions. Real systems cannot implement pure
SRPT; real arrival processes are not Poisson; real systems care about more than mean response time; and
real systems do not always use a single server. To drive this point home, let us consider a few applications
in detail.

Example: Static Web Servers

We saw earlier that the bandwidth purchased from the ISP is typically the bottleneck in web servers
that serve primarily static content. Further, we saw that bandwidth is allocated to requests according
to PS scheduling. Additionally, the workload in web applications is typically highly variable and
web applications must be designed with high load periods in mind. Thus, web servers seem to be a
perfect place to us8RPT.

SRPT is indeed the motivation for a number of recent web server des@fihd 82 131, 130, 87,

88]. However, many complications of the real systems prohibit these new designs from using pure
SRPT. In particular, the proposed designs use the remaining sizes of the files being served in order
to prioritize. However, these remaining sizes are only estimates of the remaining service demand of a
request because the network delays, which are are not known exactly, also affect the service demands.
As aresult, many proposals do not use only the remaining sizes of the files, but also attempt to estimate
the propagation delay to the users making the requesig [131, 13(. Another complication is the

fact that implementations have tended to use only 5-10 priority levels instead of using a continuum
possible priority levels (as pul@RPT does) as a result of the overheads associated with maintaining
priorities and switching between job8¢, 187. As a result of these, and other, adjustmentSRPT,

the policies that are actually implemented may perform significantly worse thar§RPa, and the
magnitude of the differences is not understood.

Not only are there many reasons why p@BPT cannot be implemented in web servers, there
are a humber of reasons why designers do not want to use PREET. A primary reason is that
mean response time, although important, is not the only performance measure of interest. Designers
also need to provide fairness and QoS guarantees. Further, it is often important to provide service
differentiation between high priority customers (who have paid for improved service) and standard
customers. As a result of these competing performance metrics, many design suggestions for web
servers have used hybrids®RPT and variants oPS [87, 88].

In addition to adjustments to the policy that is implemented, there are many complexities of the
practical workloads that are not accounted for by the traditional M/GI/1 queue. First of all, web
users are interactive. When using a web site a user will click on a link and then wait for the response
before clicking on the next link. Therefore, the arrival process is dependent on the departure process,
unlike in the M/GI/1. Further, users are impatient, and will click on the refresh button if the response
time for a certain page is too long. The effect of this is to abandon requests that are in the queue and
have already received service, thus wasting bandwidth. This is an issue that is ignored by the M/GI/1
model.

O

1.3: CHOOSING A SCHEDULING POLICY 11

Example: Network Edge Routers

We saw that the bandwidth is typically the bottleneck in edge routers and that the way a standard
router allocates bandwidth can be viewed, at a flow leveR &sLike the case of web servers, routers

are typically highly loaded and flow sizes tend to be highly variable. Thus, routers again seem like a
perfect place to appl$RPT scheduling.

However, it is impossible to app§RPT in routers because the sizes/lengths of flows (i.e. the
number of packets in the flows) are unknown a priori. It is not even possible to estimate the lengths
of flows accurately; all that is known about a flow is how much service it has received so far. But, it
turns out that the amount of service received so far provides some indication of the remaining length
of the flow. In particular, if a flow has received a large amount of service already, it is likely to require
an even larger amount of service in order to compl&eq. Using this information, designers have
proposed policies that give priority to the flows that have received the least service so far, e.g. variants
of the Foreground-Backgroun&B) policy [179, 180 and the Multi-level Processor SharinyiLPS)
policy [6, 5]. However, such proposals have been shown to starve large flows, e.g. streaming videos,
of service in addition to increasing jitter when compared with standard router desikf®. [Thus,
hybrid designs combining aspectsRi with FB andMLPS have been proposed $Q.

Not only is it impossible to appI$RPT in routers, it is obvious that the M/GI/1 queue is an
overly simplistic model of router workloads. Like in web servers, users of routers are interactive and
impatient. When using a web site a user will click on a link and then wait for the response before
clicking on the next link. Further, if a request is delayed too long a user will abandon the request,
e.g. by hitting the refresh button in her browser. The effect of these abandonments is actually quite
dramatic: 20% of network traffic has been shown to correspond to aborted trangfelis Rnother
important aspect of network traffic that is ignored in the M/GI/1 model is the fact that workload
characteristics tend to be time-varying, e.g. time of day effects.

O

Example: Wireless Access Points
We saw that the wireless link is the bottleneck resource in wireless networks areitsatrves as
a good model of the way a traditional access point typically allocates the wireless link bandwidth.
Further, we described that recently suggested designs have been able to dramatically improve perfor-
mance using variants @RPT scheduling. But, for many reasons, these variants are far from pure
SRPT.

The main reason that pu®RPT is not implemented is that the channel conditions are variable.
In a multiuser wireless network, at any given point there are likely to be users that have “good”
channel conditions, which allow data to be sent at a high rate, and users that have “bad” channel
conditions, which limit data transfer speeds. If one ignores the channel conditions and uses pure
SRPT, the throughput of the network as a whole will be much lower than if one is opportunistic when
scheduling requests. As a result, the designs that are implemented tend to be hyBR#STofvhere
both the channel conditions and the remaining size of requests are taken into act6@nt3q.
However, note that the fact that channel conditions vary over time means that the remaining sizes
used to schedule are not exact.

In addition to variable channel conditions, wireless networks are subject to a number of other
complexities that are not accounted for in traditional theoretical models. In particular, power man-
agement is a fundamental design constraint and needs to play a role in wireless link scheduling.

12 CHAPTER 1: INTRODUCTION

Further, multi-channel network designs are increasingly being used, and these networks are better
modeled with a multiserver queue than with a single server queue. Finally, many of the complexities
of network traffic that we have discussed for web servers and network routers also play a role in
wireless networks, e.g. interactive and impatient users.

O

We could have easily continued to list other examples such as disks, databases, and supercomputing
centers, however the above examples are enough to make the point that there are many aspects of real
systems that differ from the traditional theoretical models. Further, the result of these differences is that
pureSRPT, the “optimal” policy according to traditional theoretical results, is never used in practice. Thus,
the theoretical results we just described do not immediately apply to real system designs.

1.3.3 Gaps between theory and practice

The previous two sections have illustrated a mismatch between the traditional theoretical research on schedul-
ing and the use of scheduling in modern computer system designs. To summarize a few of the differences
that we saw, notice that we repeatedly observed that real computer systems can never implement the pure,
idealizedSRPT policy that is optimal in theory. Two of the reasons for this are that (i) it is rare that real
implementations know exact remaining sizes and (ii) real implementations must be adjusted to account for
the overheads associated with preemption. Not only is it unrealistic to consideBR&E, it is unrealis-

tic to assume a Poisson arrival process since, in reality, users are interactive: users typically must wait to
receive one request before making another, thus the arrival process is dependent on the completion process.
Similarly, it is increasingly unrealistic to consider only a single server queue — server farm and multi-core
architectures are increasingly prevalent. Finally, considering mean response time as the only performance
metric is also unrealistic. In real systems, mean response time is definitely important, but it is also important
to be “fair” and to provide QoS guarantees (among a long list of other metrics).

This laundry list of differences is really only the tip of the iceberg. However, from this list and the
applications we looked at in detail, three different themes are emerging. Though these three themes are not
all inclusive, they cover a wide range of gaps between traditional theoretic results and the needs of system
designers.

e The idealized policies studied traditionally in theory cannot be used in practice.
For example, pur8RPT is never implemented in practice. Instead, the policies that are implemented
use estimates of remaining size, use only 5-10 priority levels, or are hybrgRPT andPS-type
policies. Each of these variants 8RPT will not provide response times that are as small as under
pure SRPT, however traditional theoretic results do not provide any information about how much
performance will suffer.

e Many performance measures that are important in practice are not studied in theory.
Mean response time is typically the focus of theoretical scheduling research, however in practice QoS
and fairness metrics are also important. Additionally, power management, reliability, and many other
performance measures are important. Once these other measures are cor@8iRigfeid, no longer
the clear choice. Worries pervade tisRPT is unfair to large job sizes due to its bias towards small
jobs pervade. Similarly, worries about providing good QoS guarantees for large job sizes are common.
Traditional theoretical results cannot be used to address such worries.

1.4: BRIDGING THE GAPS BETWEEN THEORY AND PRACTICE 13

e The traditional, simplified theoretical models include many unrealistic assumptions.
The M/GI/1 model is at the heart of a majority of research studying the performance of scheduling
policies, but both the M (Markovian arrivals) and the 1 (single server) are often unrealistc.
example, real arrival processes tend to be bursty and real users tend to be interactive and impatient.
Further, many modern system designs make use of multiserver architectures, e.g. server farms and
multi-core processers. Thou@RPT is optimal in the M/GI/1 setting, once one considers interactive,
impatient users and multiserver settin@&RPT is no longer the optimal policy for mean response
time. Further, the performance S8RPT in these more complex settings has not been studied in the
traditional theoretical literature.

Each of these themes brings into question the usefulness of traditional theoretical results to modern
computer system design. Traditional results suggest3RRT is optimal and can provide dramatic im-
provements in response time, but these results apply only in simplified settings tSRBAe Once real-
istic settings and policies are considered, the performance improvements that come fro@RRhwiill
be much less dramatic, and the exact degree of improvement is not understood. Further, results about how
SRPT performs for other metrics of interest are simply not available; thus it is not easy to dismiss worries
about, for example, providing QoS guarantees and fairness @RIRT. The bottom line is that the tradi-
tional analytic results about scheduling provide limited help for system designers because of the may gaps
between theoretical models and real system designs.

1.4 Bridging the gaps between theory and practice

The fact that traditional analytic results do not apply to real system designs is a problem because analytic
results can (and should) be invaluable to system designers during the development process. Without analytic
results, designers need to test every every new design proposal using extensive experiments over a wide array
of settings, which can be prohibitive during early stages of design. Further, even after such testing, designers
are left without performancguaranteedor the new designs.

However, analytic results could potentially provide provable guarantees to guide the design process. For
example, if (as in the case of web servers) estimates of remaining sizes must be used instead of the true
values, itis important to know how the accuracy of the estimates will affect response times under the policy.
Understanding the impact of the accuracy of the estimates is key because there is often an overhead involved
with making estimates and the amount of overhead is dependent on the accuracy needed for the estimates.
A good example of this tradeoff is the task of estimating network delays for files being sent by a web server.
This is one example of how analytic results can aid the design process, but there are many others. Analytic
results are also important when deciding what level of QoS guarantees can be provided. Analytic results can
help in determining the appropriate number of priority levels to use in order to balance between minimizing
the overheads and maximizing performance. Analytic results are also fundamental to capacity planning of
computer systems. We could list many other examples here, but the main point is simple: without analytic
results, the task of a system designer is made much more difficult. Further, this difficulty is magnified by
the enormous variety of possible scheduling policies from which to choose.

10f course, one could argue that the Gl (generally distributed, independent job sizes) is also unrealistic, but we feel this is less
of an issue than either the M or the 1.

14 CHAPTER 1: INTRODUCTION

The goal of this thesis provide analytic results that apply to today’s computer systems. Our results will
bridge most (but not all) of the gaps between theory and practice that we have described so far. In particular,
we will take steps towards resolving the issues in each of the three themes we described in the previous
section.

e Moving beyond idealized policies
We have seen that the idealized policies studied in theory are not used in practice and, instead, a
wide variety of variants of these policies are used. Thus, traditional analytic results are inadequate
for system designers. One natural approach to remedy this situation is to study each of the variants
that are used in practice directly. However, using such an approach, it would be impossible to keep up
with the new designs being developed across all levels of computer systems. So, we need a different
approach.

The approach we propose in this thesis is to move beyond the study of individual, idealized
policies. Instead, we will formalize many common scheduling heuristics and techniques into classi-
fications of scheduling policies, and then prove bounds on the performance of scheduling policies in
each of these classifications. For examBIRPT is characterized by the fact that it uses the schedul-
ing technique of “prioritizing based on remaining sizes” to apply the heuristic of “prioritizing small
jobs.” So, instead of studyin§RPT, we will define and analyze a class of policies that prioritizes
based on remaining sizes and a class of policies that prioritizes small jobs.

This new style of scheduling research is motivated by the fact that, though the idealized policies
studied in theory are not used in practice, the policies that are implemented in practice tend to be
motivated by the theoretical policies. Thus, real system designs tend to apply the same heuristics
and techniques found in the idealized policies. As a result, this new style of scheduling research
has both practical and theoretical benefits. On the practical side, the scheduling classifications we
define include, not only idealized policies liERPT, but also the variants of these idealized policies
that are actually used in practice. Thus, by providing results about scheduling classifications we
are eliminating the need to analyze, one-by-one, each individual policy implemented in computer
systems. On the theoretical side, analyzing scheduling techniques and heuristics adds structure to the
space of scheduling policies that cannot be attained through the analysis of individual policies alone.

e Moving beyond mean response time
Though mean response time is an important metric for computer systems, system designs must do
more than simply provide small response times. We have seen that there are a wide variety of other
performance measures that are also important. It is not enough if a new design provides improved
mean response times, it must also guarantee fairness, provide QoS guarantees, and do many other
things. But, unfortunately, the performance of scheduling policies with respect to many of these
measures is not understood. In order to begin to bridge this gap, in this thesis we will focus on two
measures of broad importance: the distribution of response time and fairness.

Extending our understanding of scheduling policies beyond the mean response time to the dis-
tribution of response times is essential for applicability in modern computer systems because users
can become even more frustrated by highly variable service than by having large response times on
average$5, 255. For example, reducing the jitter in streaming applications is at least as important as
reducing the response time of the flow. Further, as we have discussed, it is increasingly important to

1.4: BRIDGING THE GAPS BETWEEN THEORY AND PRACTICE 15

provide QoS guarantees, and knowledge about the response time distribution of scheduling policies
is fundamental to this task. In this thesis, we not only provide many new results characterizing the

response time distribution under scheduling policies; we also provide the first analytic results studying

the response time distribution under scheduling classifications.

In addition, extending our discussion beyond mean response time to the fairness of scheduling
policies is essential to the applicability of our results in real systems. One of the fundamental worries
about designs that are motivated ®RPT is that large job sizes will have unfairly large and variable
response times as a result of the priority given to small job sB@<2[L0, 215 223. Such worries are
difficult to address because of the amorphous nature of “fairness,” and thus there is no analytic work
characterizing the fairness of scheduling policies. In this thesis, we introduce a variety of novel mea-
sures of fairness that are motivated by computer applications. In addition, we provide the first analysis
of the fairness of scheduling policies. Not only that, we extend our analysis to handle classifications
of scheduling policies as well.

e Moving beyond the M/GI/1
Due to the difficulty of the analysis of scheduling policies, traditionally they have been analyzed
only in fairly simple models, primarily the M/GI/1 queue. Though this model allows for general job
sizes, as we have discussed, the assumptions of Poisson arrivals and a single server are often overly
restrictive. We will move beyond these restrictive assumptions and study scheduling in settings where
the arrivals are generated by interactive users and in settings where the system uses a multiserver
architecture.

One fundamental difference between arrivals to real systems and Poisson arrivals is that real users
are interactive. That is, they must wait for their previous request to complete before submitting a
new request. This interactivity introduces dependencies between the arrival and completion processes
which is not present in the M/GI/1 model. We will characterize the impact of these dependencies on
the performance of scheduling policies. We will illustrate that if the dependencies are strong enough,
the effectiveness of scheduling can be limited, but that in many practical settings scheduling is still
very beneficial.

Another important difference between real systems and the M/GI/1 is that real systems are in-
creasingly using multiserver architectures. The reason for this is that buying a single fast server is
much more expensive than buying a large number of slower servers. The use of multiserver architec-
tures has a huge effect on the impact of scheduling. For instance, in multiserver archit8&Bfes
is not optimal (in general) for mean response time. Further, while in a single server a single large job
can block the server if small jobs are not given priority, in a multiserver system small jobs can by-
pass a single large job even without being given high priority. This intuition suggests that scheduling
may not be as effective in multiserver settings. However, we will illustrate that clever scheduling in
multiserver systems can still be very beneficial. Further, we will present results about how schedul-
ing affects the design of multiserver systems, i.e. how scheduling impacts the number of servers that
should be used.

16 CHAPTER 1: INTRODUCTION

1.5 An overview of the thesis

The thesis is organized into five parts. In Part |, we provide the motivation and background for the thesis.
In Parts II-1V, we focus on bridging each of the three major disconnects we have described in this chapter.
In Part Il we focus on moving beyond individual policies to scheduling classifications; in Part Il we move
beyond mean response time and focus on a diverse set of other metrics; and in Part IV we focus on moving
beyond the M/GI/1 model to understand the effect of more realistic assumptions on the performance of
scheduling policies. Finally, in Part V, we will conclude the thesis by discussing the impact of the results
in the thesis for system design and by discussing a number of future research directions motivated by the
thesis.

When reading the thesis, the five parts need not be read in their entirety or in order. A reader familiar
with stochastic scheduling can easily skim the majority of the remainder of Part I. Further, Parts II, Ill, and
IV are largely independent of one another. The scheduling classifications introduced in Part Il appear in
Parts Il and IV, however an informal understanding of the classifications should be all that is necessary
when reading these parts. In addition, each of the chapters in Parts Il, lll, and IV can be read independently
of one another.

1.5.1 Synopsis of Part I: Motivation and Background

In Part | of the thesis (which you are currently reading) we provide the motivation for the thesis (Chapter
1), as well as an overview of the analytic model at the heart of the thesis (Ctmead the common,
idealized policies studied in the literature (Cha@erChapter3 is especially important for the remainder

of the thesis because it includes a survey of classical results and analytic techniques for studying common
scheduling policies. Additionally, Chapt@rincludes a number of new results characterizing the mean
response time of policies in heavy traffic.

1.5.2 Synopsis of Part Il: Moving beyond idealized policies

After attaining the necessary background on the model and on classical results for common scheduling poli-
cies, we move to the heart of the thesis. In Part I, our focus is on bridging the gap between the policies
studied in theory and the policies implemented in practice. For example, though many recent designs have
been motivated by the optimality &RPT for mean response time, none have implemented S&ReT.

Thus, the analytic results abo8RPT do not apply to the resulting system designs. Perhaps the most
straightforward approach for bridging this disconnect would be to model the details of the policies that are
actually implemented in practice and then study these, more realistic policies, analytically. However, the
wide variety of applications and, thus, policies used in practice, means that such an approach is unmanage-
able. So, instead we will develop a new approach: we define scheduling classifications that formalize the
scheduling heuristics and techniques applied by system designers. For example, instead of studying pure
SRPT, we will study classifications that formalize the heuristic of “prioritizing small jobs” and the tech-
nigue of “prioritizing based on remaining size.” By studying these scheduling classifications we can attain
results for the policies that are used in a wide variety of different applications at once and eliminate the need
to analyze these policies one-by-one. For example, th&@RRT is not implemented in practice, many
variations of policies that “prioritize small jobs” are implemented.

1.5: AN OVERVIEW OF THE THESIS

17

/ 7T SMART, T T ~

7 P i .0 -7 FOOLISH ~~«_
T SMART T A— N
¢ e - Ny / /’,’ 2Tl N
! ; . SMART* SN I FOOLISH N
| S e e L S e 9 (!
‘\\ :\ / . E <Xpr Remaining size based 1RPT | ‘,' 1
A ‘\ RS ::__:__::__::1:’:'_:__—_:__:__—_:___________________________.l ” ’

\ ,) ’

‘\\:‘\ . ' PSIF Preemptive size based E

T N
—————————————————————————— —. / @ k,
1 Non-preemptive - ___ ' __:‘ PROTECTIVE | _______________
' 4 \ it 5 k
. 1 RN PS, L o Blind
' Non-preemptive | ROS o (e PLCES'Y '
" I i X , |
: i size based E i \‘\‘SWMETR"C e E
P e '
[SlFe 1| |
= L 1
v il i
FCFS

E :\ LIFg ,: :\ e Age based o B :’:
... e,

Figure 1.3: Aniillustration of the scheduling classifications studied in this thesis. The heuristic-based clas-
sifications introduced in Chaptdrare shown in ovals and the technique-based classifications introduced in
Chapter5 are shown in rectangles. An overview of the acronyms for scheduling policies in this figure can
be found in Tabl@.1

1.5.2.1 A wide variety of classifications

We will study scheduling classifications that formalize a wide variety of scheduling heuristics and tech-
niques. The heuristic of “prioritizing small job sizes” is perhaps the most common scheduling heuristic,
but many other heuristics are also used. We introduce and study classifications of scheduling policies that
formalize four common scheduling heuristics:

() TheSMART classification formalizes the heuristic of prioritizing small jobs

(il The FOOLISH classification formalizes the heuristic of prioritizing large jobs
(i) TheSYMMETRIC classification is a broad generalization of the clasgt&bpolicy
(iv) ThePROTECTIVE class formalizes a notion of fairness.

Further, there are a wide variety of scheduling techniques that are used. We will formalize four technique-
based classifications:

(i) Preemptive size based policies
(i) Remaining size based policies
(iii) Age based policies
(iv) Non-preemptive policies

These eight classifications are illustrated in Figir& which also includes a number of variants of
these classifications that we will discuss in Part Il. These classifications cover a wide variety of schedul-
ing heuristics and techniques that have been applied across a range of applications including web servers,
routers, disks, operating systems, and others. SMART class was introduced by Wierman et &41[;

18 CHAPTER 1: INTRODUCTION

the FOOLISH class is novel to this thesis; tl &Y MMETRIC class was introduced by KellyL.13; and the
PROTECTIVE class was introduced by Henderson and Friedn7@h [Further, the classes of remaining

size based policies, preemptive size based policies, and age based policies were introduced by Wierman et
al. in [238 240, while the class of non-preemptive policies has been studied often in the literature, see for
example 119 120, 247.

In Part Il, we will focus on proving bounds on the response times under each of these classifications.
For example, we will prove that aBMART policies have mean response time within a factor of 2 of
optimal (SRPT) in the M/GI/1 model. These classifications will then serve as building blocks throughout
the remainder of the thesis, and we will return to them in Part Ill to discuss their performance with respect
to other performance metrics and in Part IV to discuss their performance in more general models than the
M/GI/1. For example, in Part 11, we will prove that &iIMART policies have a response time distribution
that is asymptotically equivalent to that8RPT in the GI/GI/1 model.

1.5.2.2 The benefits of studying scheduling classifications

By studying these scheduling classifications instead of studying individual, idealized policies, we attain
many important benefits, both of theoretical and practical interest.

From a theoretical point of view, the analysis of classifications exposes the performance impact of
scheduling techniques and heuristics, providing a deeper understanding of scheduling than the analysis of
only idealized policies. For example, we will prove that$IldART policy can be fair under all workloads,
which provides an interesting impossibility result: in order to provide near optimal mean response times (by
giving priority to small jobs) a policy must sacrifice fairness.

From a practical point of view, the analysis of classifications provides analytic results for the policies
that are actually implemented in real system designs. In particular, though real designs cannot implement
the idealized policies studied in theory, the idealized policies serve as motivation for the policies the designs
used in practice. Thus, the practical designs are based on the same scheduling heuristics and techniques as
the idealized policies. So, by defining classifications that formalize these heuristics, practical system designs
can be included within the classifications; and thus results proven about the classifications can apply to the
designs used in practice.

Further, these classifications themselves can provide results that aid in the design process. For example,
we will define a class of policies call&@MART, that includes all policies that “prioritize small jobs” using
inexact job size information. The performance bounds we prove foBMART. class will be in terms of
the accuracy of the job size estimates. Thus, we will illustrate the tradeoff between the accuracy of estimates
used to prioritize and the response times that result. As we saw in our web server example, this tradeoff can
be a key design criteria.

1.5.3 Synopsis of Part Ill: Moving beyond mean response time

Throughout Part Il of the thesis, we focus almost entirely on mean response time. This focus allows us to
move beyond the study of idealized scheduling policies to study scheduling classifications, and thus provide
result for the policies that are actually used in practice. Our focus on mean response time is not unusual:
traditionally, in the stochastic scheduling community mean response time is the primary metric of interest.
However, it is not enough for system designs to provide improved mean response times, there are a wide
variety of other important metrics as well. For example, fairness and QoS guarantees are often important, as

1.5: AN OVERVIEW OF THE THESIS 19

is minimizing power and maximizing availability.

In Part 11l of the thesis we will move beyond mean response time and consider a wide variety of other
metrics that are important across computer systems. Clearly, we cannot hope to provide results for every
important metric, so we will focus on two measures that have broad applicability: the distribution of response
time and “fairness.” Our goal in studying these measures is not only to provide results for traditional,
idealized policies, but also to provide results for the scheduling classifications introduced in Part I1.

1.5.3.1 The distribution of response time

Extending our discussion beyond mean response time to the distribution of response time is essential for
applicability in modern computer systems. Computer users demand not only response times that are fast on
average, but also response times that are predictable. In fact, they become even more frustrated by highly
variable service times than by having large response times on average. Another motivation for studying the
distribution of response times is that QoS guarantees are increasingly important in computer systems, and
providing QoS guarantees requires an understanding of the distribution of response times.

Unfortunately, understanding the distribution of response time is known to be a difficult task. In partic-
ular, exact derivations of the response time distribution are only possible in very specialized settings such
as the M/M/1 and only under very simple scheduling policies, su¢tCAsS. Due to the difficulty of exact
analysis, a common approach to studying the distribution of response times is to study an asymptotic scaling
of the distribution. In particular, the most common scaling is to study the tail behavior of the distribution
of response timeT’, i.e. Pr(T > z) asx — oo. This is a natural scaling to consider because it provides
bounds on the likelihood of large delays, which are exactly what is necessary in QoS and capacity planning
applications. Further, this scaling is useful for system design because it often provides an understanding
of the most likely way for a large delay to occur, i.e. the “critical event” in large deviations parlance. This
knowledge can then be used to limit the occurrence of such events.

Our goal in Chapte6 will be to characterize the response time distribution under both common indi-
vidual policies and scheduling classifications. The study of the response time distribution is not new to
this thesis, so there are is already a large literature analyzing the tail behavior of response time under many
common policies. We will extend this literature by generalizing the results for some common policies from
the M/GI/1 queue to the GI/GI/1 queue, e®B. But, our primary goal is to analyze the tail behavior under
scheduling classifications, and to this end we will provide results foSMART, FOOLISH, PROTEC-

TIVE, and non-preemptive classifications. These results provide a number of interesting contrasts. For
instance, we will show thaBMART policies provide an asymptotically optimal response time tail when

the service distribution is heavy-tailed, but provide a response time tail that is as heavy as possible under
light-tailed service distributions. In contraBtQOLISH policies have response time tails that are as heavy

as possible, i.ePr(T > x) decays as slowly as possible, under both light-tailed and heavy-tailed service
distributions. Similarly, non-preemptive policies have as heavy a response time tail as possible under heavy-
tailed service distributions, but can have an asymptotically optimal response time tail under light-tailed
service distributions.

These results have an immediate impact for system design. In particular, they highlight the need for
understanding the tail behavior of job sizes before making design decisions about which scheduling policy
to use. Further, the derivations of the results provide insight into the causes of large delays under different
policies. For example, under non-preemptive policies, the analysis formalizes the idea that when a tagged
job experiences a long delay, it is likely due to a large job being at the server when the tagged job arrives. In

20 CHAPTER 1: INTRODUCTION

contrast, undeEMART policies, the analysis illustrates that when a tagged job experiences a long delay it
is likely the result of a burst of arrivals (having smaller sizes) arriving just after the arrival of the tagged job.

1.5.3.2 Fairness

Extending our discussion beyond mean response time to consider fairness metrics is also important for the
applicability of our results in practice. Fairness metrics are important in any system where there are human
users. Although typically not the primary metric of interest, it is important that low priority users are not
starved of service. This is a particular concern for designs that try to improve response times by giving
priority to small jobs at the expense of large jobs. Large jobs are typically some of the more important tasks,
for instance the large jobs at e-commerce sites are the shopping cart transactions, and thus it is important
that these jobs are not starved of service. In fact, worries about fairness to large jobs have plagued designs
suggesting the use &RPT-like policies in web servers and wireless networks.

Though itis clear that fairness is important, fairness is an amorphous concept and thus difficult to define.
Further, fairness can take on many different meanings depending on the application being considered. As a
result, there is almost no work studying the fairness of scheduling policies.

In Chapter7, we develop a two notions of fairness, each motivated by different application requirements.
First, we develop a framework for studyiqgoportional fairnessand then we develop a framework for
studyingtemporal fairnessProportional fairness refers to the idea that all job sizes should receive equitable
service, i.e. no job size should have disproportionately large response times. Temporal fairness refers to the
idea that it is fair (polite) to respect the seniority of jobs, i.e. it is in some sense unfair for a job that just
arrived to jump in front of a job waiting in the queue.

When studying both proportional and temporal fairness our approach is similar. We will start by pro-
viding both intuitive and mathematical motivation for our proposed frameworks. Then, we will investigate
how common, individual policies perform. And, finally, we will build on the results for individual policies
and study the fairness of scheduling classifications.

A brief overview of some of the results that we will obtain is shown in Figude This figure illustrates
a wide array of interesting results. For example, notice SR T is Sometimes Fair and Sometimes Polite.

This means that under some loads and service distribut8RB;T provides both proportional fairness and
temporal fairness while optimizing mean response time. These results are counter to the intuitive worries that
SRPT will be unfair to large job sizes as a result of its bias towards small jobs. FUBR&T is not alone

in this behavior. Figurd.4 illustrates that all policies that prioritize towards small job sizes §MART

policies) have similar behavior. Further, this fairness behavior is superior to that of many other common
scheduling heuristics and techniques. Thus, these results indicate that the conflict between providing small
mean response times and being fair is not as severe as many people have worried.

1.5.4 Synopsis of Part IV: Moving beyond the M/GI/1

Throughout Parts Il and lll, the model underlying our analysis is primarily the M/GI/1 queue. Limiting
our focus to this model allows us to consider general classifications of scheduling policies and a broad
range of performance metrics; however, as we have discussed, there are many ways in which the M/GI/1
model is an unrealistic model for computer systems. While the assumption of general, independent job
sizes is fairly broad, both the assumption that the arrival process is Poisson and the assumption of a single
server can be unrealistic in many settings. Thus, it is important that we understand how the effectiveness of

1.5: AN OVERVIEW OF THE THESIS 21

S S) D N e o B ——— N\
Always Yy .3 Remaining ;o 0 Always i o - Remaining /
A 4 \ | size based ! LRPT - ! AN ;
Fair g | Unfair ' sRpT < Sebased i gpr
[P I FOOLISH
" oPLCFS ™, SMART tecsncncnsst opoccccos T T S 1 -
; k b] \FOOLISH \
! SYMMETRIC) |) /. Preemptive ", PLTF / ; A|W_a ys . \ | \
1 I RN =53 size based -] Polite R S k ™
%\ |] Sometimes™--_|_ _,'P . |
AP, /\/ e B . ITF . [reemptive o !
Ao k. “""Z(FB"{ """""""""""""""" i ° Polite : size based i
\PROTECTIVE! == Agebased | | | ST ITTTTTTTTTTTTTY v]
4 3 -~ SIFe LCES R R 2
N Fsp)/ s ! e .
NC) e R Prrr e -~ s v 1o3= [Non-preemptive
Sometimes | | ¢ ssa, PO 1 L LIFy | PLCFS
H i Non-preemptive ~~~<! 1 =i T ittt ’ .
Fair | non-size based ~ Alwa_ys
T STTTTIEES Imaaa————— { Preemptive age based Bt Im po lite
: LIF, ' : ofB e
{ SIFe °] T o = N
b Non-preemptive size based 1 PS
| e Nttt)L . Y,
(a) Proportional fairness (b) Politeness

Figure 1.4: An illustration of the classifications of common prioritization techniques and heuristics with
respect to proportional and temporal fairness (politeness). Much more detail on these classifications will be
provided in Chapter.

scheduling changes under generalizations of this model. Providing this understanding is the focus of Part
IV. Specifically, we will generalize both the M and the 1. We will consider a model where the arrival process
is governed by interactive users and we will consider multiserver architectures.

1.5.4.1 Interactive users

In real computer systems, the arrival process is far from Poisson. One fundamental difference we have
discussed is that users of computer systems are interactive: they must wait for their previous request to
complete before submitting a new request. This interactive behavior introduces a dependency between job
completions and job arrivals that is missing entirely from the M/GI/1 model.

Intuitively, these dependencies will lessen the effectiveness of scheduling. In the M/GI/1 model, schedul-
ing is the only way to avoid having large queues build when a large job is at the server; however in systems
with interactive users, users cannot submit a new request until their previous request has completed, so there
is an inherent limit on how quickly queues can build. As a result, one might make the intuitively appealing
claim that scheduling is not beneficial when users are interactive.

In Chapter8, we will investigate the validity of this claim using the closed and partly-open system
models (see Figuré.5for an illustration of these models). We will find that, it is true thas@mesettings
scheduling is ineffective. When systems have a small population of simultaneous users and they tend to have
long interactive sessions-(10 requests per session), scheduling does not lead to significant performance
gains. Howeverwe will show that such settings are the exception rather than the Mle.investigate
a number of workloads from real systems and find that in a majority of the workloads, users have short
to moderate length sessions (1-7 requests per session), and thus scheduling can still provide significant
performance gains.

These results provide an important cautionary tale for system designers: it is important to understand
user behavior both when designing new systems and when evaluating new systems. When designing a

22 CHAPTER 1: INTRODUCTION

Send/ ' \Reoeive
<

Think With probability
F‘ F F p submit again

@

]]:l E’l : Sa With probability
=57 New Arrivals Queue (1 - p) leave system
Quete Saver Server
(b) Closed system (c) Partly-open system

Figure 1.5: lllustrations of the closed and partly-open system models.

system, scheduling is an effective design choice in settings where users interact with systems for moderate

length sessions, but if user session lengths are long, designers should use other techniques. In addition,
when evaluating new systems, designers need to be careful to choose a workload generator based on a
system model with the appropriate user model.

1.5.4.2 Multiserver architectures

There is a growing trend in computer systems to use multiple, slower, cheaper servers instead of a sin-
gle, faster, more expensive server. For instance, in web servers, server farm architectures are increasingly
prevalent and in wireless networks multi-channel designs are becoming commonplace. Further, multi-core
processors are beginning to reach home users. Given the growing adoption of multiserver architectures,
it is important to understand how the benefits of scheduling in the M/GI/1 model translate to multiserver
systems. To this end, we will investigate the effectiveness of scheduling in theA/Gl/

Intuitively, scheduling will be less effective in multiserver settings than in single server settings. In
single server settings, scheduling is the only mechanism for preventing many small jobs from queueing
behind a single large job. However, in multiserver systems this is no longer the case — if a large job is
gueued at one server smaller jobs may bypass this job by using other servers. As a result, one might claim
that using multiserver designs is a replacement for using scheduling-based designs. We will show that this is
not necessarily the case, i.e. that scheduling still can provide significant performance benefits in multiserver
settings, even if these performance gains are not as dramatic as in the M/GI/1 setting.

Our goal in Chapte® is to provide analytic results relating the effectiveness of scheduling in multiserver
architectures to that in single server settings. However, the analysis of multiserver systems is a notoriously
difficult problem in queueing theory. Outside BCFS scheduling little is understood analytically, and
even when studyingrCFS researchers typically result to approximate techniques. Thus, we will not be
able to provide results in the same generality as we do for the rest of the thesis. Instead, our results in
this chapter will focus on one important aspect of scheduling: prioritization. In particular, we will focus
on systems where there are a finite number of priority levels and jobs are served preemptively according
to their priority. Such schemes are commonly used in practice in order to provide service differentiations,
e.g. certain customers pay more in order to receive high-priority service at some high demand resource.
Further, understanding priority queues is the first step towards understanding more complicated priority
based policies such &RPT.

1.5: AN OVERVIEW OF THE THESIS 23

In Chapter9, we will develop a new analytical approach that provides the first near-exact analysis of
priority queues in multiserver settings. Our new analytic technique allows us to obtain many insights about
the effectiveness of prioritization in multiserver settings. For example, we will contrast the performance of
systems withk servers each having speed: with the performance of systems with a single server of speed
one. Further, among a long list of other topics, we will study the effectiveness of prioritizing small jobs in a
multiserver environment and how best to design a multiserver system given a fixed total service rate, i.e. we
will determine “how many servers are best?”

1.5.5 Synopsis of Part V: Further discussion and conclusion

Finally, we will conclude the thesis in Part V. Our goal in this part is to summarize the contributions of
the thesis and discuss the implications of the results in the thesis for both computer system designers and
scheduling researchers. To this end, we will review a number of specific examples of the impact the results
in the thesis have for system design and theoretical scheduling research. Then, we will end the thesis by
highlighting a number specific future research directions that are motivated by the results in the thesis.

24

CHAPTER 1: INTRODUCTION

CHAPTER 2

The basic model of the thesis

The study of scheduling has a long history, including an extremely diverse set of application areas from
manufacturing, to computer systems, to call centers, to airport gate and flight scheduling, and beyond. The
wide ranging applications of scheduling has led to an enormous analytic literature studying a wide variety
of models and performance metrics. Models range from simple single server setups where the job sizes are
independent of the order they are served and the arrival times and job sizes are known in advance, to complex
job shop models where jobs must receive service in a specific order from different stations in the system,
have precedence constraints governing the order in which they can be served at each station, and have sizes
that depend on the order they are served. In addition to the wide range of models that have been studied,
there are a metrics that are used to quantify the performance of different scheduling policies. In some cases
minimizing response times and queue lengths is important, while in others minimizing the makespan (the
time until the last job completes) is the goal. In others, jobs have due dates that they must complete before.

As a result of the wide range of models and performance measures that are of interest, a wide range of
analytic techniques have been used to analyze these scheduling policies. A large community of researchers
approaches scheduling from a deterministic perspective, where there are a finite number of arrivals to be
scheduled and the goal is to understand the worst case performance of scheduling disciplines. In the deter-
ministic scheduling world, no assumptions are made about the job sizes or arrival sequence, and thus results
characterize the worst case performance of scheduling policies. The goal is to prove results such as: the
mean response time of polidy is never more tha®(logn) away from optimal, where: is the number
of jobs that were scheduled. In contrast, a separate community of researchers approaches scheduling using
stochastic techniques. Here, distributional assumptions are made about the job sizes and arrival sequence
and then the performance of policies is analyzed under these assumptions. The goal here is to prove results
that provide formulas for the mean response time as a function of the distributional assumptions about the
arrival process and the job sizes.

In this thesis, we will use primarily stochastic techniques. The reason for this choice is that our goal is to
understand how the policies used in real implementations perform in practice. Thus, we are less interested
in providing worst case guarantees and more interested in understanding the performance of scheduling
policies under realistic workloads.

However, even within the stochastic scheduling community there is a huge variety of “standard” model-
ing assumptions and techniques that are adopted by different subfields. While queueing theory researchers

25

26 CHAPTER 2: THE BASIC MODEL OF THE THESIS

can often provide beautiful and simple formulas to analyze scheduling policies under simple model as-
sumptions, for more complex models obtaining such formulas is often impossible. As a result, researchers
often either apply computational techniques (e.g. matrix analytic methods) or study asymptotic scalings of
the systems. Further, there are a wide variety of asymptotic scalings of the systems that researchers have
considered, from fluid and diffusion scalings to large buffer and many-sources large deviations scalings.
With this cacophony of possible models, it is required that we begin by spending some time introducing
the model, notation, and probability distributions that we will use throughout the thesis. That is the purpose
of the remainder of this chapter. We will start by providing an overview of the model we consider (Section
2.1). Then, we will summarize the key performance metrics that we will study (Se2t@)n Next, we
provide a summary of the notation that is most commonly used in the thesis (S2@jorFinally, we
provide an overview of the probability distributions that appear frequently in the thesis (S2ehion

2.1 An overview of the model

In this thesis, we are interested in evaluating the performance impact of scheduling changes at the (single)
bottleneck resource in computer systems. Thus, we consider primarily single server queues, though we
will also extend our discussion to multiserver queues in ChaptéiVe apply primarilystochastic tech-
niquesto analyze scheduling policies in these queues. In particular, we will be considering single and
multiserver queues where the interarrival times and service demands (a.k.a. processing times or job sizes) of
jobs/customers are assumed to be independent and identically distributed (i.i.d.) random variables. More-
over the sequences of interarrival times and service demands are assumed to be independent of one another.

To specify the distributional assumptions made about the interarrival and service demands, we make use
of Kendall's notation 115. A queue is referred to by an expression of the fotrhB /k C whereA and B
stand for the distributions of the interarrival times and service demands respedétiselpds for the number
of servers in the system, alddenotes the scheduling policy that governs the queue. We will primarily be
considering single server queues kswill typically be 1. Further,A will either take the shape dif, which
stands for memoryless (exponential) interarrival times (i.e. a Poisson arrival procésg)which denotes
general i.i.d. interarrival times. Similarly? will primarily take the shape ol or GI. However, we will
also consider deterministic service times, which we deratphase-type service, which we dendtéf,
and a variety of heavy-tailed distributions such as the Weibull and Pareto. Background and notation for each
of these distributions can be found in Sectib4.

Since our focus in this thesis is on understanding the effects of schedilind, take a wide variety of
forms. Table2.1provides a brief overview of some of the most common scheduling disciplines, however itis
far from a complete list of the policies we will discuss in the thesis. We will provide much more background
about these policies in Chapt&rwhere we will survey known performance results and analytic techniques.
However, for now, let us just note that Talddl includes both scheduling policies that &tand, i.e. that do
not use job size information to schedule, and policies that prioritize based on job size information. Further,
Table 2.1 includes both policies that areemptivei.e. allow the job at the server to be interrupted and
restarted later, and policies that a@n-preemptivei.e. never interrupt a job that has begun service.

Two important assumptions we make about the policies we consider are the following. We assume the
preempt-resummodel, thus we allow any preempted job to be resumed from where it was left off without
penalty. Further, the scheduling policies we consider will almost exclusivelydsk conservingwhich

2.1: AN OVERVIEW OF THE MODEL 27

Policy | Description
FB Foreground-Background preemptively serves those jobs that have regeived
the least amount of service so far. For details, see Se8tibh
FCFS || First Come First Served serves jobs in the order they arrive. For defails,
see Sectio3.1.1
FSP Fair Sojourn Protocol preemptively serves the job in the system that wpuld
have the smallest remaining size if the system were UBBigFor details,
see Sectiod.5.
LCFS || Last Come First Served non-preemptively serves the job that arrived the
most recently. For details, see sectihf.3
LIF Longest Job First non-preemptively serves the job in the system with the
largest original size. For details, see Secon.6.3
LRPT || Longest Remaining Processing Time preemptively serves the job in the
system with the largest remaining processing time. For details, see S@ction
3.2.6.1
PLCFS || Preemptive Last Come First Served preemptively serves the most recent
arrival. For details, see Secti@nil.2
PLJF | Preemptive Longest Job First preemptively serves the job in the system
with the largest original size. For details, see Sec8#(h6.2
PS Processor Sharing serves all customers simultaneously, at the same rate.
For details, see Sectidhl.4
PSJF || Preemptive Shortest Job First preemptively serves the job in the system
with the smallest original size. For details, see SecBan3
ROS | Random Order of Server non-preemptively chooses a random job from the
gqueue to serve. For details, see Sec8dn3
RS RS preemptively serves the job in the system with the smallest product of
remaining size and original size. For details, see Seé&ian
SJF Shortest Job First non-preemptively serves the job in the system with the
smallest original size. For details, see SecBdh?2
SRPT || Shortest Remaining Processing Time preemptively serves the job with the
shortest remaining service requirement. For details, see S&cah

Table 2.1: A brief introduction to some of the most common scheduling disciplines in the thesis. This list
is far from complete, but provides an indication of the variety of policies we will study.

means that the server is always serving with its full capacity whenever there is at least one job in the system.
In other words, the server never idles while there is work in the queue.

28 CHAPTER 2: THE BASIC MODEL OF THE THESIS

2.2 Performance metrics of interest

We will study a wide range of performance metrics in the thesis, but the primary metric of interest will be
theresponse timef a customer, which is defined as the time between when a job arrives and when the job
completes service. Response times are of primary importance across computer applications because users
of computer systems are extremely demanding and unforgiving. While in our daily lives we are usually
willing to accept some delay while we queue for service, in computer systems users demand service that is
both instantaneous and predictable. For instance, if an online shopping site is loading very slowly (i.e. has
large response times for pages), customers will become frustrated and take their business elsewhere since
the competition is always “just a click away.” Similarly, providing small response times is fundamental to
routers, operating systems, disks, etc. User studies have consistently found that web users become dissatis-
fied if response times for requests exceed 5 seconds and view delays of greater than 10 seconds as intolerable
[65].

We will denote the response time of a job under pokcpy 7. Note that response time is referred
to by a variety of names in different communities. In particular, the teyopsurn timeandflow timeare
sometimes used instead of response time. When studying the response time unddt, pedioyill often
be content to derive the mean response tifg;]”. However, in some cases, we will also study higher
moments of response tinfg[7?]", as well as the distribution of response tiREr” >).

In addition toT ™", it will many times be of interest to consider the conditional response time experienced
by a job of sizex under policyP, which we denote byl'(z)"and refer to as the “conditional response
time.” One can think ofl'(x)Pas the response time experienced by a tagged job ofrsilaat arrives to a
stationary queue. This is quantity is often used as a first step in defifinge., often in order to derive
TPit is necessary to first condition on the size of the job that is arriving. However, beyond its use as a
stepping stonel’(x)Pwill be of fundamental importance when we study the fairness of scheduling policies
in Chapter7.

Beyond response time, we will also also be interested in a number of other metrics that we will introduce
later in the thesis. But, one other metric worth mentioning here islth@downor stretch The slowdown
of a job is a weighted response time measure defined as the response time of the job divided by the size of
the job. Thus, the slowdown experienced by a job of sizdenotedS(z), is equal tol'(z)/z. Again, we
will consider both the overall slowdown, denot&8, and the conditional slowdows;(x).

In order to analyze the response time and slowdown of scheduling policies, it will typically be useful to
decompose the response time into two pieces: (iwhiting timeand the (ii)residence timeThe waiting
time of a job under policy, denotediV’?, is the time between when the job arrives and when the job first
receives service. The residence time of a job under p#liaenotedrF, is the time between when the job
first receives service and when the job completes service. Notice that the residence time may include time
that the job is not receiving service, e.g. un@&PT a large job may begin to receive service but then be
interrupted by the arrival of a small job. Similarly #(z)P, the conditional waiting timel¥/ (x)Pand the
conditional residence time?(z)Pwill also be of interest.

2.3 Commonly used notation

Our discussion so far has already resulted in a lot of notation, and we have only skimmed the surface.
Further complicating things is the fact that many different researchers use very different “standard” notation

2.3: COMMONLY USED NOTATION 29

for the same quantities. For the remainder of this chapter, we will try to summarize the notation that is used
commonly in this thesis. Our hope is that by summarizing all this information in one place, there will be a
single point of reference for the reader in the event of notation overload.

2.3.1 Basic mathematical notation

Let us first introduce our notation for some common mathematical functions:

E[Y] the expectation oY’
Var[Y] the variance ot”
Ly (s) = Ele=*Y] || the Laplace transform af
[es¥] || the moment generating function Bf
[z¥] || the z-transform ot

Table 2.2: A brief overview of some of the most notation used in the thesis.

Next, let us introduce some asymptotic notation that will show up frequently in the thesis. We use
the notationf(z) ~ g(z) to indicate thatim, ., f(z)/g(z) = 1. Further, we use the notatiof{z) =
O(g(z)) asz — a to indicate thalimsup,_,, f(z)/g9(z) < oco. Similarly we use the notatiofi(x) =
Q(g(x)) asz — atoindicate thatiminf, ., f(x)/g(x) > 0. If f(x) = O(g(z)) and f(x) = Q(g(x)) we
say thatf(z) = ©(g(z)). Finally, we say thaf (x) = o(g(x)) if lim,_,~ f(x)/g(x) = 0.

In addition to these standard quantities, there are a few less commonly used quantities that will appear
frequently. We will often use the squared coefficient of variation to quantify the variability of a distribution

VarlY]

M= Evp

the squared coefficient of variation Bf

The squared coefficient of variability is a normalized measure of variability under WHigh] = 1 whenY

is an exponential random variable. Thus, all distributions With< 1 are less variable than the exponential
and all distributions witiC? > 1 are more variable than the exponential.

Another less common distributional statistic that we will use are the cumulant moments. Cumulants
have appeared only sporadically in queueifd, [85, 137], tending to be used in large deviation limits.
Cumulants are a descriptive statistic similar to moments. Formally, the cumulant moments of a random
variableX, ;[X]i = 1,2,..., are defined in terms of the momentsXf £[X ‘], as follows:

ro[X]t2

EX2 2

SR (2.1)

From this definition it follows that the cumulants &f can be generated from the cumulant generating
function,

Kx(s) =log(Lx(s)).

That is,(—1)i/c§?(0) = k;|X]. Further, it follows that the cumulants of any distribution can be found from

30 CHAPTER 2: THE BASIC MODEL OF THE THESIS

the raw momentsy,,, as follows

n—1

Kn = Hn — Z (n ; 1> Hjhn—j (2.2)

j=1

wherex; = p [116. Immediately from R.2), we can see that the cumulants capture many of the standard
descriptive statistics. The first cumulant is the mean; the second cumulant is the variance; the third cumulant
is the third central moment and thus measures the skewness of the distribution; and the fourth cumulant
measures the kurtosis of the distribution. Sg&q for tables of the relationships between higher order
cumulants, raw moments, and central moments.

Although not immediately evident from the definition, cumulants have many properties that both raw
and central moments lack. For instance, lettinge a constants;[X + ¢] = k1[X] + ¢ but fori > 2,
ki[X 4+ ¢] = k;[X]. Thus, the first cumulant is shift-equivariant, but all others are shift-invariant. Other nice
properties of cumulants include homogeneity and additivity. Homogeneity states; sl = c'x;[X].
Additivity states that for independent random variabteandY’, ;[X +Y| = x;[X]+£;[Y]. We will see in
Chapter7 that these properties make cumulant moments very convenient for characterizing the distribution
of T'(x).

2.3.2 Queueing-specific notation

Probably the most fundamental pieces of the queueing model are the interarrival distribution and the service
distribution. We will use the following notation to describe these distributions. We will denote a generic
service time (job size) aX'. The cumulative distribution function (c.d.f.) of will be denoted byF'(x),
with F(x) = 1 — F(x). Further, the probability density function (p.d.f.) &f will be denoted byf (z). It
will turn out that thefailure rate (hazard rate) of job sizes will play an important role in the performance of
a number of scheduling policies. We denote the failure raf€ bf (z) = %i?) Moving to the interarrival
times, we will letA denote a generic interarrival time, and we will denote the average arrival rate by

Another fundamental quantity is the system load (utilization), which we define as AE[X]| =
E[X]/E[A]. We will aimost exclusively be discussing stationary queues, thus we will requirg thdt

Beyond the above quantities, there are many other random variables that are of interest. In fact, we have
already defined a number of important performance metrics. We summarize these below for easy reference:

T a generic response time

T(x) the response time for a job of size
S the slowdown (stretch)

S(x) =T (x)/z || the slowdown for a job of size

W the waiting time
W (z) the waiting time for a job of size
R the residence time
R(x) the residence time for a job of size

Table 2.3: A brief overview of some of the most common performance metrics in the thesis.

2.4: COMMONLY USED DISTRIBUTIONS 31

It is worth spending a moment discussing these measures. First of all, notice that the response time of

a job is simply the sum of the residence time and the waiting time of the job, thus we haﬂé(ﬁ)a%

R(z) + W (z). Further, though we will most commonly be interested in stud{ingve will also usel’(z)

to understand how the response time of a job depends on the size of a jobZGinagrows linearly with

x, since the response time of a job includes (at minimum) the job size, we will often use figures showing
E[T(z)]/x in order to contrast the behavior of conditional response time across different job sizes. This is

a useful measure because, in many cases, it is appropriate for response times to be proportional to job size
(i.e. small jobs should have small response times and large jobs should have large response times). We will
discuss this in much more detail in Chapter

There are also a number of other important system measures that will appear throughout the thesis. In
particular, we will denote thevork in the systeraeen by an arrival a9, thenumber of jobs in systeseen
by an arrival asV, and thenumber of jobs in the quelseen by an arrival ay,.

One quantity, above all others, will prove to be fundamental to the analysis of many scheduling policies:
the length of a busy period. Busy periods simply the time between when a server switches from idle to
busy and the time when the server next becomes idle. We will denote the length of a generic busy period as
B, and we will denote the length of a busy period started by a job ofis&=3 (). In addition to these two
types of busy periods, we will find that a number of other types of busy periods are useful in the analysis
of priority-based scheduling disciplines. But, we will wait until a bit later (Sec8dh]) to introduce these
other types of busy periods.

In addition to busy periods, two other quantities that are fundamental to the analysis of scheduling
policies are theage and excesqa.k.a. residual life) of the service distribution. These quantities are best
defined by considering a job in service as seen by an arriving job to a sSkgH#HS queue. The age of
the job in service is the amount of service it has received so far, and the excess of the job in service is the
remaining size of the job. To define age and excess more formally, let us consider a renewal process where
the distribution of renewal times follows the service distribution. Now consider a random point im,time
which corresponds to the job that arrived to #@FS queue. The age at timeis the time since the last
renewal (the attained service) and the excess attisithe time until the next renewal (the remaining size).

A fundamental result in renewal theory is that the age and excess follow the same distribution. We will
denote the age byl and the excess b§. The moments, the p.d.f., and the transfornt afre well known
and will occur frequently in this thesis:

; _ E[Xi—I—l]
Bl = (i +1)E[X]
fe(z) = Jg[(;()]
Le(s) = Z_E)[;(]S)

2.4 Commonly used distributions

At the core of our queueing model are the distributions that the interarrival times and service times of the
gueue follow. Since many of these distributions are not common across computer science, we will spend

32 CHAPTER 2: THE BASIC MODEL OF THE THESIS

a significant amount of time here introducing the distributions that are most commonly used in the thesis.

By summarizing the notation here, we can avoid introducing this notation repeatedly throughout the thesis.

Further, this section can serve as a single point of reference for the reader while working through the thesis.
Our discussion in this section will focus on two classes of distributiphase type distributionsvhich

include exponential, Coxian, hyperexponential, and Erlang distributionsheady-tailed distributions

which include Pareto, Weibull, subexponential, and regularly varying distributions. For each class, we

will discuss properties of the class as a whole in addition to providing background on the most common

individual distributions in the class. We will start with a discussion of phase-type distributions and then

move to heavy-tailed distributions.

2.4.1 Phase-type distributions

Probably the most fundamental distribution in queueing is the exponential distribution. An exponential
distribution with rate\ is defined by

F(z) = e
f(z) = X @

and has momentB[X ‘] = ;—' The defining characteristic of an exponential distribution is the fact that it
has a constant failure ratg:(x) = \. This means that the exponential is “memoryless,” i.e. regardless of
how long an exponentially distributed task has been run, it's remaining size is identically distributed.

The prominence of the exponential distribution in queueing is a result of the fact that when one assumes
the interarrival times and service times of a queue both follow exponential distributions, the queue length of
the system can easily be modeled using a simple Markov chain. However, in most settings, job sizes are far
from exponential. In computer and telecommunication applications job sizes tend to be much more variable
than an exponential, and in manufacturing and inventory applications job sizes tend to be much less variable
than an exponential. Thus, this simple Markov chain is often unrealistic.

However, one would still like to be able to use a Markov chain to analyze systems with non-exponential
service and interarrival times. To do this, it is necessary to use some mixture of exponential distributions
to model a distribution with more/less variability than an exponential. The class of phase type distributions
(PH) captures many such mixtures.

At its most general, a PH distribution is simply the distribution of time until absorption into Giata
Markov chain. Thus, it can be viewed as an arbitrarily complex mixture of exponential random variables (the
lengths of the visits to each state). To characterize a PH distribution, we can use the infinitesimal generator
of its underlying Markov chain, denotéll, and a distribution of the starting point in the chain, denated
We will use the notationX ~ PH (7, T) to indicate thatX is distributed as the time until absorbtion into
state0 in a Markov chain on state®, 1, . .., n) with initial probability vector(1 — 71, 7) and infinitesimal

generator
0
T

&+ O©

wheret = —TT.

2.4: COMMONLY USED DISTRIBUTIONS 33

(a) Exponential

(c) 2-phase Erlang (d) 3-phase Coxian

Figure 2.1. Simple examples of phase-type distributions.

Given the definition of PH distributions, it is not hard to write the c.d.f. and p.d.f. of PH distributions:

F(z) = ?exp(Tx)f
f(x) = Texp(Tx)t
wherei'= —TT andexp(X) = 72, X"

Further, the moments of PH distributions can be written quite succinctly

E[XY] =i7(-THT

Obviously the class of PH distributions is quite broad. In fact, the set of PH distributions is dense in the
set of nonnegative, continuous distributiod4]. In practice though, using PH distributions that rely on
large complex Markov chains is computationally prohibative; thus it is common to use only a small portion
of the set of PH distributions for analysis.

We provide some examples of PH distributions in order to solidify the general definition we have just
stated. The simplest form of a PH distribution is the exponential distribution. The exponential distribution
is a PH distribution withl' = —\ and7 = 1. Specializing the formulas for the c.d.f. and p.d.f. then returns
the well-known formulas stated above.

Beyond the exponential distribution three of the most common classes of PH distributions are Erlang
distributions, hyperexponential distributions, and Coxian distributions. Before we define these classes, note
that these PH distributions are all defineddmyclicMarkov chains. That is, no state in the Markov chain is
visited more than once. Further, these PH distributions are typically indexed by the number of non-absorbing
states in the Markov chain. For exampleraphase Erlang distribution is an Erlang distribution where the
Markov chain defining the distribution hasnon-absorbing states.

34 CHAPTER 2: THE BASIC MODEL OF THE THESIS

2.4.1.1 The Erlang distribution

The Erlang distribution was developed by Agner K. Erlang to examine the number of telephone calls oc-
curring at the same time at switching stations. s#xphase Erlang distribution is simply the sunmvof.i.d.
exponential distributions. Thus, the Markov chain hason-absorbing states labeléd. .., n and state
transitions only to staté— 1. To illustrate this, consider the example of a two phase Erlang where the both
phases have rate(see Figure.1). In this case, we have that= (0, 1) and

r=(35)

In general, we can write the c.c.d.f. and p.d.f. of the Erlang as follows:
n—1 (Ax)i
nl _ -z
F(x) = Z e
=0

Anxnflefo
(n—1)!

Further, it is easy to see that the mean of an Erlang/isand the variance is/\2. Thus, Erlang distribu-
tions are all less variable (i.e. have a smaller coefficient of variation) than an exponential distribution with
the same mean. Specifically?[X] = 1/n < 1 for Erlang distributions.

2.4.1.2 The hyperexponential distribution

An n-phase hyperexponential distribution is simply the mixture: @xponential distributions. Thus, the
Markov chains consist of. non-absorbing states, all of which transition only to the absorbing state. To
illustrate this, consider the example of a two phase hyperexponential where the two phases hayerates

A2 and the probability of beginning in phase Irigsee Figure.1). In this case, we have thét= (7, 1—7)

and
(=X 0
T= (0 —X)

In general, if we consider am-phase hyperexponential with ratesand corresponding initial probabilities
; fori =1,...,n, we have that

f(z) = Z e M
i=1

Thus, the mean of a hyperexponentiabiy’ , f\— and the second moment)s;’ 2{2 Clearly, hyperex-
ponential distributions are always more variable than an exponential distribution with the same mean, i.e.

C?[X] > 1 for all hyperexponential distributions.

2.4.1.3 The Coxian distribution

Unlike the Erlang and hyperexponential distributions that we just discussed, the class of Coxian distributions
includes both low variability distributions and highly variable distributions. Thus, they are useful in a variety
of settings. We define a PH distribution as a Coxian distribution when the Markov chain used to define

2.4: COMMONLY USED DISTRIBUTIONS 35

the distribution is acyclic and maintains the property that every state has at most one transition to a non-
absorbing state. A simple example of this is the three phase Coxian distribution diagramed ir2Figure
Formally, this Coxian distribution is defined by= (1, 72, 73) and

—A10 — A2 A12 0
T = 0 —A20 — 23 A23
0 0 —A30

2.4.2 Heavy-tailed distributions

Over the past decade there has been growing empirical support for the assertion that the service time dis-
tributions in computer systems should be modeled by distributions with power-tails and infinite variance.
Examples where power-tails and infinite variance have emerged are numkspa [L72 174; for exam-

ple, Crovella and Bestavro87] find that the file sizes and transmission times of files in the Internet are well
modeled by power-tail distributions with infinite variance.

The emergence of these “heavy-tailed” distributions has had a huge impact on the design of scheduling
policies for computer systems; thus an important focus for queueing theorists has been to study this impact
theoretically. Unfortunately though, the class of PH distributions is not appropriate for such a study. Despite
the fact that the class of PH distributions is dense in the set of all non-negative distributions, in practice PH
distributions cannot model distributions with power-tails and infinite variance because, for any finite sized
Markov chain, the tail of a PH distribution will decay with an exponential rate and all the moments of the
distribution will be finite. However, there is no shortage of heavy-tailed distributions for queueing theorists
to use, though none have proven to be as useful for computational queueing theory as PH distributions have
proven to be. Instead, heavy-tailed results tend to be asymptotic in nature, characterizing only the asymptotic
tail behavior of distributions.

Formally, the class of heavy-tailed distributions is defined as follows.

Definition 2.1 We say that a distributio’ is heavy-tailedf for all s > 0
Ele*X] = o,
or equivalently if for alle > 0,

lim F(a:)

r—o0 e~

= Q.
In contrast, we say a distribution lght-tailed if E[e**] < oo for somes > 0.

Clearly, many distributions are heavy-tailed, e.g. the Weibull, Pareto, and Lognormal distributions. How-
ever, the breadth of the class of heavy-tailed distributions typically makes it difficult to use for analysis.
Instead, individual heavy-tailed distributions or subclasses of heavy-tailed distributions are often used. In
this section, we will introduce two of the most common heavy-tailed distributions: the Weibull and the
Pareto distributions. These two distributions will be used to provide illustrative examples throughout the
thesis. In addition, in this section we introduce two large classes of heavy-tailed distributions that have
properties which facilitate their use in analysis: the class of regularly varying distributions and the class of
subexponential distributions.

36 CHAPTER 2: THE BASIC MODEL OF THE THESIS

2.4.2.1 The Weibull distribution

Introduced by Waloddi Weibull, the Weibull distribution is often used in the field of data analysis due to
its flexibility. Depending on parameters, the Weibull can behave as a Normal distribution, an exponential
distribution, or a heavy-tailed distribution. Similarly, its usefulness in queueing stems from its flexibility.
Depending on parameters it can have a decreasing, increasing, or even a constant failure rate. Further, the
Weibull has recently emerged as a good model of empirical distributions in many computer applications.
See for example 2B, 69, 127, 174 and the references therein.

A Weibull distribution is summarized by two parameters: a shape parametand a scale parameter,
A. We will write X ~ Wei(a, A) to indicate thatX follows a Weibull distribution. The c.d.f. and p.d.f. of
the Weibull distribution are defined as follows:

It is relatively straightforward to calculate the moments of a Weibull from the c.d.f. In particular, we can
write the moments as follows: _
E[XT] = AT (1 + l)
«
wherel'(a) = [;° 2* ‘e “daz and can be thought of as a continuous version of the factorial function. In
particular,'(n) = (n — 1)! for any positive integen.
Further, the failure rate of the Weibull is as follows:

pla) = —g
Notice thatiVei(a = 1, \) is equivalently an exponential distribution with rdté\. Thus, the failure

rate of a Weibull is constant it = 1. In addition, we can see that the failure rate is decreasing whern

and increasing whea > 1. Further, it is easy to see th@?[X] > 1 whena < 1 andC?[X] < 1 when

a > 1. To get a feeling for the how variable a Weibull with< 1 can be, notice that fax = 1/n wheren

is limited to positive integer values, we have th&] X] = (27?) — 1. Thus, asy decreases the distribution

becomes more variable very quickly. Typical observed valuea farcomputer applications range between

1/3 and 2/3 which correspond &?[X] values in the range of 3 to 19.

2.4.2.2 The Pareto distribution

The Pareto distribution, named after Italian economist Vilfredo Pareto, is a power-law distribution that
arises across an amazing variety of real-world situations. Pareto originally used the distribution to describe
the wealth of individuals, since it models the property that a large portion of the wealth is owned by a tiny
fraction of the population. More simply, the Pareto distribution captures the “Pareto principle,” a.k.a. the
“80-20 rule,” which states that 80% of the population owns 20% of the wealth. However, following its use

in economics, the Pareto distribution has been found to be broadly applicable. It has been used to describe
the frequency of words, the populations of cities, the sizes of sand particles, the size of areas burnt by forest
fires, and many other phenomenon. Even within computer systems, the Pareto distribution serves as a good
model of many phenomenon including, but not limited to, UNIX process lifetifi&sg8g], web file sizes

2.4: COMMONLY USED DISTRIBUTIONS 37

[173 62], number of embedded files in web sitd$]28].

A Pareto distribution is summarized by 2 parameters. A shape paramatet a scale parametey..
We will write X ~ Pareto(a, x1) to indicate that the r.vX follows a Pareto distribution. The distribution
of a Pareto is as follows (far > x):

o - (2)
fla) = %%

From the above, it is easy to see that tith moment of a Pareto distribution will only be finitedf > .
Specifically, we can write moments of the Pareto as follows:

)
axr

EX]=—"L fori<a
o —1
Thus, the variance of the Pareto (assuming 2) is
2
ax
X] = L
e VO
which gives
1
2 X =
¢ ala—2)

Note however that it is quite typical for the variance and squared coefficient of variation to be infinite in
real world situations: the Pareto distributions that emerge in computer system applications typically have
€ (0.9,1.3).
Another important statistic of the Pareto distribution is the failure rate, which can be written as

The key observation about the above is that the Pareto has a decreasing failure rate (DFR) for all

In many computer systems where Pareto distributions arise there is some natural upper bound on the
maximum size in the distribution. For instance, in measuring the distribution of file sizes, the size of the
disk they reside on serves as an upper bound on the size. Thus, often times, a bounded Pareto distribution
is used instead of the unbounded Pareto, €8. 92, 25]. The only difference between a bounded and
an unbounded Pareto is that the bounded Pareto is defined on a finite range. In particular, one additional
parameter is needed to define a bounded Pareto distributiopmhich is the upper bound on the distribution.
We will write X ~ BP(«,zr,zy) to indicate thatX follows a bounded Pareto distribution. The c.d.f. and
p.d.f. of a bounded Pareto are:

F(z) = J:Ll_ E§‘>
flx) = $a+1(1—af£L/wU)

38 CHAPTER 2: THE BASIC MODEL OF THE THESIS

Clearly, the range of the bounded Paretduig, z,,]. Thus, the bounded Paretorist a heavy-tailed dis-
tribution, though it is highly variable and maintains the so called “heavy-tailed property” mentioned in
[93, 92, 25 whereby more than one half of the load is made up by the largest 1% of the jobs.

There are a few key differences between the bounded Pareto and the unbounded Pareto. First, it is
important to notice that all moments of the bounded Pareto are finite regardless\vef can write them as

follows: v ‘
L (eyl B for a > i;
axi U

E[X’]: Wlog (%)7 fOra:Z,

o a—i__ oa—1
OZZEL I'U x

Further, the failure rate of the bounded Pareto is not strictly decreasing — it increases unboundegly near

M) = S @)

2.4.2.3 Regularly varying distributions

The class ofegularly varying distributionss a generalization of the Pareto distributions that we just dis-
cussed. Intuitively, a distribution is regularly varying if its tail asymptotically decays according to a power-
tail. Formally, we have the following:

Definition 2.2 We say thaf' is aregularly varying distributionwith indexa, denotedr” € RV («), if

whereL(x) is aslowly varying function i.e. L(x) is such that for ally > 0

lim Liyz)

=1
s L(a)

Regular variation is a topic of research in its own right, with broad ranging applications in fields such
as complex analysis and number theory in addition to its uses in probability theory. Even within probability
theory, regular variation has found application in a number of areas, of which queueing is only one.

To begin developing an understanding of the properties of regularly varying distributions. It is useful
to start by discussing slowly varying functions. Examples of slowly varying functions are constants and
logarithms. In general, slowly varying functions are exactly those functions that can be treated as a constant
in the asymptotic evaluation of integrals of power functions. In particularfor1,

(0.9]
—aL dy ~ ——— l—aL
/I y *Lly)dy ~ — 2" L(z)
Building on this characterization of slowly varying functions, we obtain a number of nice properties of
regularly varying distributions. In particular, it is easy to see that regularly varying functions asymptotically
behave likel /= with respect to integration and differentiation. This is typically referred to as Karamata’s

Theorem B3]. Formally, it states that

2.4: COMMONLY USED DISTRIBUTIONS 39

Theorem 2.1
IfF € RV(«) with o > 1 then G(z) = [° F(t)dt € RV(a — 1) and further

rF(x) ~ (o — 1)G(z)

A number of interesting properties of regularly varying distributions follow easily from Karamata’s
Theorem. In particular, it is straightforward to see that

EX]<oo & a>i

Further, if X € RV(a;) andY € RV(az) thenX +Y € RV(min(ay,az)). Similarly, if X € RV(«a)
andY hasE[Y*"¢] < oo for somee > 0 thenXY € RV («).

Though the above properties of regularly varying distributions are important, probably the most useful
tool for studying queues with regularly varying service distributions is the following Tauberian theorem,
which relates the asymptotic behavior of a regularly varying distribution function with the behavior of its
transform. Before stating the theorem, let us defipés) as the following function of the transform:

- (—s)’
!

n(s) = (=1)"" | Lx(s) =) EIX'] 7

=0
whereE[X"] < oo.

Theorem 2.2
Letn be an integer such thatn < o < n+1, L be a slowly varying function, and C > 0. Then the following
are equivalent

¢n(s) ~ (C+o(1))s*L(1/s) s 10

Fal (71)71 —«
F(z) ~ (C+ 0(1))mx L(t)

The proof of this theorem was provided by Bingham and Dor8 for the case ofC > 0 and by
Boxma and Dumasip] for the case whed' = 0. Whena is integer, things become more complex and we
refer the reader tad3().

The power of Theorerf.2in queueing settings comes from the fact that it is typically possible to derive
explicit expressions for the transforms of various performance metrics, but inverting these transforms is
often impossible. In such cases, Theo2@provides a simple way to obtain asymptotic information about
the distribution from the transform.

There are many extensions of regularly varying distributions that have arisen in queueing applications.
Two of these generalizations, introduced originally by CIliBé][will appear in this thesis: the class of
intermediate regular variatiomnd the class aD-regular variation These extensions appear in many ways
to be superficial generalizations of the class of regularly varying distributions; however they often turn out
to provide precisely the characterization of the distribution necessary for proofs.

40 CHAPTER 2: THE BASIC MODEL OF THE THESIS

Definition 2.3 We say thaf'(z) is ofintermediate regular variationdenotedr” € 'R, if

lim liminf M =
€l0 z—00 F(x)

Definition 2.4 We say thaf’(z) is O-regularly varying denotedi’ € OR, if for someA > 1,
F(\t) . F(\t)

0 < liminf T) < limsup ———= < oo forall A € [1, A]

t—oo F'(t t—o0 F()

It is easy to see that iIK € RV thenX € IR, and further, ifX € ZR thenX € OR. In addition,
Cline [56] shows thatZ’R and OR both have Karamata Theorems that parallel Theaeehior regularly
varying distributions.

2.4.2.4 Subexponential distributions

We now move to a class of heavy-tailed distributions that generalizes all the heavy-tailed distributions we
have studied so far: the classsafbexponential distributiong he class of subexponential distributions was
introduced independently by Chistyakd] and Chover et al.g5] in order to study the asymptotic prop-
erties of branching processes. However, the class has proven useful far beyond the domain of branching
processes. The reason for the usefulness of subexponential distributions is that, intuitively, subexponential
distributions are the class of distributions where a large sum is most likely the result of a single large sum-
mand — other summands make only a negligible contribution to the sum. This “catastrophe principle” has
led to subexponentiality becoming a common paradigm for insurance mathematics and queueing.

Let us now state the formal definition of the class of subexponential distributions. To do so, we will
denote the:-fold convolution of a distribution functiodt’ by F™*(x).

Definition 2.5 We say thaf" is subexponentialdenotedF < S, if for somen > 2

TNk

F7 () ~nF(x) (2.3)
Equivalently,F is subexponential if for some > 2
P(X1+...+ X > 2) ~ P(max(X1, ..., X,) >) (2.4)

In many cases the relatio.6) is more appealing thar2(3); however both are useful in practice. To
intuitively see why the two are equivalent notice that the distributiomat(X1, ..., X,,) satisfies

Pmax(X1,...,X,) >2)=1— (1 — F(2))" ~nF(z)

Clearly, the class of subexponential distributions is very broad. We have already commented that the
class includes Pareto, Weibull, and regularly varying distributions. In addition, the class includes an array of
other common heavy-tailed distributions. For example, Lognormal distributions are subexponential. (Recall
that Lognormal distributions havB(X > z) = P(e**N > z) whereN is a standard normal random
variable.)

2.4: COMMONLY USED DISTRIBUTIONS 41

It is important to point out that the class of subexponential distributions has a number of counterintu-
itive properties. For example, the classist closed under convolution: iX andY follow independent
subexponential distributionsy + Y is not necessarily subexponential. Similarly, the prodXiaf is not
necessarily subexponential. However, results from LedRk&[and Cline & Samorodnitskyq7] prove that
if Y is sufficiently well-behaved then bofki + Y and X'Y" will be subexponential.

42

CHAPTER 2: THE BASIC MODEL OF THE THESIS

CHAPTER 3

An introduction to common policies

Our goal in this thesis is to develop a new style of scheduling research that can bridge the gaps between
the needs of practitioners and the analytic results proven by theoreticians. As we have described in Chapter
1, there are many ways in which traditional theoretical results do not match the needs of system designers.
To list a few, traditional results focus on idealized policies, focus on a limited set of metrics, and focus on
simplistic models. However, before we can move forward and describe how to bridge these gaps, we need
to understand both the traditional analytic results about common policies and the techniques used to derive
these results. Providing this background is the goal of this chapter.

In particular, our goal in this chapter is threefold. First and foremost, our goaingoaucethe policies
that form the basis of scheduling research in queueing. The scheduling community has studied a wide variety
of policies, and we must first understand these idealized policies if we are to move beyond them to more
practical policies. For instance, we must first understand B&RPT performs before we can study the
impact of using only estimates of remaining sizes.

Secondly, our goal is to provide insight into tperformanceof these policies by summarizing and
contrasting the results characterizing response times under these policies. In order to do this we will both
() survey the existing literature deriving the moments and transform of response time under a variety of
scheduling policies, and (ii) derive new results characterizing the behavioral properties of response time as
a function of system load and job size variability under a variety of scheduling policies.

Finally, our third goal is to provide background into tieehniquesised to analyze response times under
these policies. Thus, we will provide insight into which analytic techniques are most appropriate for which
policies. This will be important for our analysis of scheduling classifications later in the thesis.

We will start the chapter in SectioB.1 by discussing a group of the simplest and most common
policies: First-Come-First-Serve&CFS), Preemptive-Last-Come-First-servé®LCFS), non-preemptive
blind policies, and Processor-ShariigS). These policies are some of the most commonly used policies
both in computer systems and beyoRCFS is used at a packet level in routers, as well as in lock queues
in databases and at supercomputing centers. Further, of c6@ES, is used whenever you wait in a line
in your everyday life PLCFS is also quite common in computer systems — the operation of a stack is gov-
erned usindPLCFS. But, PS is perhaps the most common scheduling policy in computer systems. From
web servers to operating systems to flow scheduling at rolR&ris at the core of time-sharing applications
at all levels of computer systems.

43

44 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

Though simple policies lik&CFS andPS are traditionally the most common policies used in com-
puter systems, more recently, there has been a growing trend towards using designs based on priority-based
policies. There are a number of different flavors of priority-based policies. In Sexttome will discuss
policies that prioritize based on many different criteria including job sizes, job remaining sizes, or job ages
(the attained service of the job). As we discussed in Chdptepplications of priority based policies have
recently been suggested in web servé§ [L82, routers [L79 180, wireless networks]0Z, operating
systems T4], databases13g and beyond. Priority-based policies are being suggested primarily for two
reasons. First, by giving priority to jobs with small sizes, it is possible to provide dramatic improvements in
mean response time when compared with simple policies&kandFCFS. For exampleSRPT is known
to optimize the mean response time. Second, it is often desirable to provide service differentiation in com-
puter applications. For example, it is common to provide customers different levels of service depending on
how much they pay.

Finally, we conclude this introduction with a small note to the reader. This chapter is meant primarily to
provide an up-to-date background of results and techniques in stochastic scheduling, thus much of it may be
familiar to readers who are experts in the field. However, be aware that there are a large number of results
in this chapter that have only appeared in the past few years. In addition, there are many results that are new
to this thesis. In particular, over the last three years a new understanding of the effects of variability and
load on priority-based policies has begun to emerge. Specifically, there are a number of new results in this
chapter characterizing the “near insensitivity” and the “heavy-traffic growth rate” of mean response time
under policies that prioritize small jobs.

3.1 Simple policies

We will start our overview of common scheduling policies with the simplest and most common policies:
First-Come-First-ServedrCFS), Preemptive-Last-Come-First-servé&LCFS), non-preemptive blind poli-

cies, and Processor-ShariigS). As we have already mentioned, these policies are some of the most com-
mon policies both in computer systems and beyond. Further, the analysis of these policies will provide
an excellent overview of the building blocks necessary for analyzing more complex policies. However, be
aware that the fact that these policies are governed by simple scheduling rules does not mean that the anal-
ysis of these policies is always simple! In particular, the last policy we dis@8sjs one of the more

difficult scheduling policies to study analytically.

3.1.1 First-Come-First-Served (FCFS) and the stationary workload

FCFS is the natural starting point for a discussion of scheduling in queues because in many practical settings
FCFS (a.k.a. First-In-First-Outi-IFO) is the most natural scheduling discipline. Further, in thebGEFS
is probably the most commonly studied policy.

UnderFCFS when a jobj arrives to the system, it must wait behind all of the jobs that are already in
the system; however, no later arrivals will receive service befam@mpletes. Thus, it is easy to see that the

3.1: SIMPLE POLICIES 45

stationary response time BCFS is simply the size of plus the stationary workload):

TFCFs 4 X+0Q
T(2)7°FS & ¢+ Q

As a result, we can focus on providing results characteriéiflg S < QFCFS . This is nice, because not
only are results abo@’“ ¥ useful in analyzing-CFS, results about the behavior @ “*"S are useful far
beyondFCFS. In particular, we will focus almost exclusively in this thesiswark conservingcheduling
policies, and under work conserving disciplines the stationary workipedalways the same regardless of
the policy, i.e.Q = QF“FS. This fact means that the results provided in this section will be of great use in
our analysis of other policies in this chapter.

The formula forE[Q)], the Pollaczek-Khinchin (P-K) mean value formula, is probably the most well-
known result for the M/GI/1 queue:

AE[X?]

Q)= 35, (3.1)
This simple expression already is quite illustrative about the behaviB{Bf “S. In particular, we can
see thatt[T]FCFS < oo only whenE[X?] < oo andp < 1. Further, we can see tha{T]7¢FS s linearly
dependent on the second moment of the service distribution, thus for highly variable service distributions,
such as the ones that appear in many computer systgf#i$!"“#S can be quite large. Further, the P-K
mean value formula characterizes the behavioE@F] 7“5 as a function of load. We can see that the
mean response time undeCFS explodes ap — 1 atarate o®(1/(1 — p)).

The derivation of the P-K mean value formula is actually quite straightforward. It also serves as a
nice illustration of thaagged jobtechnique, which analyzes response time by tracking the experience of a
“tagged” arrival. In particular, let us consider what a tagged arrival sees when arriving to a stafiGfe8y
queue. First, the arrival seé§g, jobs in the queue, each having i.i.d. siXe distributed according to the
service distribution. Further, the tagged arrival sees the server busy with probalaitity, when the server
is busy, the job at the server has remaining size distributed as the excess of the service dis¢ibitias,
we have that

— BIN,JEIX] + pEl€]
— AE[QIEX.) + pEIE]

whereE[N,] = AE[Q)] via Little’s Law. Next, it follows that

_ PE[]
EQl = T

AE[X?]

2(1=p)

46 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

Note that this means
AE[X 2]

2(1=p)
Beyond the mean a@, it is also important to have information about higher moments and the distribu-
tion of). The P-K transform equation provides this information for the M/GI/1 queue:

B s(1—p) I
Fals) = SN NI () T pLe(s)

E[T]FOFS = BIX] +

(3.2)

This transform provides an enormous amount of information aljoufirst and foremost, it allows the
derivation of higher moments @j. For instance, it is easy to calcula#Q?], and thus/ ar[Q]:

3 21\2
3
VarlQ) = ?f(]f [f(p]) B[

Further, it facilitates the derivation of a recursive formula for higher moments. This is commonly referred
to as the Takacs recurrence formula:

k i+1
p@1= 2,30 () S e

pe=\1 141

In addition to its use in deriving the moments@®@f (3.2) also provides a useful new interpretation(pf
In particular, we can rewrit€q(s) as

1-p
Lq(s) = pLe(s)
= (1=p))_p"Le(s)" (3.3)
n=0

This form of the transform is quite intriguing becaude- p)p™ is the distribution ofV, in the M/M/1 and

thus @.3) is saying that the work in this system can be viewed as coming N%{Mﬂ i.i.d. jobs with
Al/Al/l
sizes distributed as the excess of the service distributiorQie. ZZ o & Itisnot at all obvious why

this should be true unde¥CFS, but we will see an explanation for this behavior later when we discuss
Processor-Sharingg).

3.1.2 Preemptive-Last-Come-First-Served (PLCFS) and busy periods

Like FCFS, PLCFS is a very natural scheduling discipline for many applications. URIECFS, the
server is always working on the most recent arrival to the system. So, upon arrival the job at the server is
preempted, and may only resume service once the system is empty of newer arrival®L 1S, acts as
astackwhere new jobs are placed on the top of the stack and the server is always working on the job at the

3.1: SIMPLE POLICIES 47

top of the stack.

The natural way to view the response time unBeCFS is in terms of thebusy periodstarted by an
arriving job. A busy period is just the time from when a job arrives into an idle system until the system again
becomes idle. To vieW "¢ ¥ as a busy period, first consider that if a tagged job arrives to an idle system,
then when the tagged job completes unde€FS the system will again become idle, i.e. the response time
is the same as the length of the busy period. Now, to see that this is true even when the tagged arrival does
not arrive to an idle system; notice that the jobs in the system at the arrival of the tagged job are irrelevant
to the response time of the tagged job. Thus, we can view the system as idle at the arrival of the tagged job
without loss of generality. So, letting be the length of a standard busy period &d) be the length of a
busy period started by a job of sizewe have that

TPLCFS 4
T(l,)PLCFS g B(l‘)
Thus, in this section, we will focus on the behavior of busy periods. Beyond their importaRtEs, the
behavior of busy periods will be fundamental to the analysis of many other scheduling policies. In particular,
we will see that busy periods are the building blocks used to study many priority based policies.

Analyzing the mean behavior of busy periods turns out to be quite straightforward. We will consider the
experience of a tagged arrivaunderPLCFS. As soon as the job arrives it begins service. However, that
service is interrupted by any arriving job. In particular, each job that arrives widlén service causes an
interruption that consists of the arriving jgb, and all arriving jobs untij, completes. Thus, the interruption
is of length equal to that of a busy period. Noting that the average number of arrivalsjuethe server
is AE[X] we have

E[B] = E[X]+ \E[X]E[B]

which gives

o

EB] = —&

—_
|
AS)

This result can also be derived using renewal-reward techniques. The sequence of idle and busy periods
in an M/GI/1 queue is clearly a renewal process. Suppose, we assign reward at a constant rate whenever the
system is busy. Then the time average award earngdsisice this is the utilization of the queue. Further,
the award earned in one idle-busy cycle is simply the length of the busy period. Finally, we know (because
of the Poisson arrival process) that the expected idle tirrie TEhis gives:

E[B]

_ElB Blx]
E[B] +

= E[B]:l—p

p _=
The analysis of3(z) proceeds much like the derivation Bf B]. We will again consider the experience
of a tagged job of size. While z is at the server, other jobs arrive with rateand whenever a new job

arrives, it causes an interruption of service to the tagged job of length equal in distribution to a busy period.
Thus, lettingA,. be the number of arrivals while the tagged job is at the serveizaet i.i.d. standard busy

48 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

periods, we have

Bx) Sz +Y B (3.4)

from which it follows that

1—p

At this point, let us take a moment to contrast the behavior of the mean response timLG&& and
FCFS. We will start by contrasting the behavior 8f7'] under the two policies. First of all, notice that both
E[T)PLOFS and E[T]FCFS grow asO(1/(1 — p)) asp — 1. So the behavior of mean response time as a
function of load is similar under these policies. However, the effect of the second moment of the service dis-
tribution on E[T’] under these two policies is completely different. In particulglf’]”>“ 'S is not affected
by E[X?] while E[T]F“FS grows linearly withE[X?]. Thus, in settings where the service distribution is
highly variableE[T]"*CFS is much smaller thaf[T]FCFS. At the extreme, notice tha[T]PFCFS < oo
wheneverE[X] < oo andp < 1, while E[T]F¢FS = 0o whenE[X?] = oo even ifp < 1. On the flip side
however,E[T|PLCFS can be larger thai[T])FCFS if the service distribution is not variable. For instance,
if the service distribution is deterministic, we hakél|"“ "> = (1 — p/2)E[T|PXCFS | which shows that
PLCFS can have response times as much as twice thoBEBS. Interestingly, it turns out that crossover
point for E[T] happens whe?2[X] = 1, i.e. when the service distribution is exponential. In particular,

This should be intuitive because in the case of an M/M/1, preempting or not does not affect the distribution
of the remaining service time of the job in service or the job being sent to the queue.

The conditional mean response timesRfCFS and FCFS also provide an interesting contrast. In
both cased’[T'(x)] grows linearly withz, however it is clear that small job sizes preRirCFS to FCFS
since ast — 0, B[T(z)]PLCFS — 0 while E[T(x)]FCFS /x — E[Q]. In contrast, large job sizes prefer
FCFS sinceE[T (z)]F¢FS /2 — 1 while E[T(x)]PXCFS Jz — 1/(1 — p). Interestingly, the cutoff point is
determined by the mean excess of the service distribution:

_ BIX?]
- 2B[X]

E[T(x)|PXCFS < BT (2)]F¢FY o z < E[€]

Thus, in the M/M/1 the cutoff point is simply'[X] and as the service distribution becomes more highly
variable the cutoff point increases.

Let us now move beyond the mean behavioPofCFS and discuss the distributional behavior Bf
Deriving the transform of3 is not too much more complicated than deriving the mean behavié. dh
particular, we can make use &.4), which characterizes the distributional behaviofifr). We use 8.4)
to derive the transform aB(z), which we can then use to derive the transfornBoBeginning withB(x),
we have

Low(s) = e P

3.1: SIMPLE POLICIES 49

Next, we can decondition to obtain the transform of a standard busy period:

EB(S) _ / €_x(s+>_>\£B(s))f(.’I})d(I)
0

= Lx(s+A—ALp(s))

Notice thatL g (z) has a recursive form. However, it is still possible to use the transform in order to obtain
higher moments oB. In particular, we have:

2
BB = (f[—Xp)]?’
Var[B] = X“_T[;l BB
Similarly, for B(x) we have:
z \? zE[X2
BBy = (1—p> (1—{0)3]
T 2
Var[B(z)] = m

Before moving on, it is again worth taking a moment to contrast the behavidradf’)”“¢#> and
Var[T)FCFS, Similarly to what we saw in the case of the me&iur[7]72¢FS does not depend on the
third moment of the service distribution, whitéar[T)7“FS does. Thus, in settings whef{ X 3] is large,
Var[T)PECFS is much smaller thal ar[T]7CFS. However, we can also notice thitr[7]77¢F grows
asO(1/(1 — p)?) asp — 1 while Var[T]FCFS = ©(1/(1 — p)?). Thus, for high load$ ar[T]FCFS is
much lower tharV ar[T]PLCFS,

3.1.3 Non-preemptive blind scheduling

FCFS is one example of a policy that is both non-preemptive, i.e. never interrupts a job receiving service,
and blind, i.e. schedules without knowledge of job size information. However, there are many other common
non-preemptive, blind scheduling policies. Two of the most common are Non-preemptive Last-Come-First-
Served (CFS), which serves the most recent arrival to the queue after each completion, and Random-Order-
of-Service ROS), which chooses a job to serve uniformly at random from the queue after each completion.
Though the operation of these non-preemptive blind policies seems very different, with a little thought it
is easy to see that all non-preemptive blind policies behave equivalently with respect to the number of jobs in
the systemV. In particular, no matter how the choice of the next job to service is made after a completion,
the distribution of the size of the job is the same because the decision is made without knowledge of the
sizes of the job in the queue. Thus, the time until the next completion is equivalent under all of the policies.
The fact that the distribution of the number of jobs in the system is the same also implies that the mean
response time of all non-preemptive blind policies is the same using Little’s Law.

50 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

Proposition 3.1
In an M/GI/1 queue any non-preemptive blind policy P has N* 4 NFCFS and thus

AE[X?]
2(1-p)

Though all non-preemptive blind policies have the same distribution on the number of jobs in the system
and the same mean response time, it is important to point out the the distribution of response times can be
very different. To illustrate this, let us consider the behavior of the variance of the waitingitim¢l1/],
underFCFS, ROS, andLCFS.

We have already seen that

E[T)F = E[T)FOFS = BIX] +

AE[X3] A2E[X?)?
31-p) 401 -p)?

UnderLCFS, one expects that very long response times are more likely than EQi#S3, and thus the
variance of the waiting time should be higher. We will derive the transform for waiting time W@ S in
order to illustrate how much higher the variance actually is.

To derive the waiting time unddrCFS consider the experience of a tagged arrival to the system. An
arriving job that finds the server idle experiences no waiting time. On the other hand, an arrivipdhab
finds the server busy takes precedence over all jobs waiting in the queue, but must wait for the job at the
serverj, to complete. Furtherj, must wait for the busy period of arrivals started by the remaining size of
js to complete since all later arrivals befgiecompletes will receive priority ovef,. Thus, we have that

Var[Ww]Fers =

WLCFS = B(gﬂ[busﬁ
From the above, the transform and all moments of waiting time can be easily derived.

EXS 2EX22 FCFS
Verwiiors _ MY REXCP Varl7)

3(1=p) 4(1-p)? L—p
_ A1 - Lp(s))
Ly (s)F = (1_’0)+s+/\—)\£3(s)

Thus, while the mean waiting times BCFS andLCFS are the same, the variances differ by a factor of
1/(1 — p). This indicates a strong preference KEFS overLCFS.

It turns out that all other non-preemptive blind policies htive:[1V'] somewhere betwedriar[IW]F¢FS
andVar[W]ECFS, (See p47] page 282 for a simple proof.) For example, though the analysRQS is
much more difficult than that for eithéfCFS or LCFS, Var[W]7°5 has been derived in a few special
cases. One such case is the M/MI2(], where we have that

ros _ Var[W]Fers

Var[W] Ty

3.1: SIMPLE POLICIES 51

3.1.4 Processor-Sharing (PS)

PS is probably the scheduling discipline most often used to model scheduling in computer systems. Unlike
the policies we have discussed so f§ is atime-sharingpolicy, i.e. the server is shared among multiple
jobs at once instead of being devoted to a single job. In particular, every job in the system receives an equal
share of the service capacity at all instants u®ter Thus, if the total service rate is 1 and there Argobs
in the system, then every job is being served at t#f€. The observation th&S shares the server evenly
at all times leads t®S being viewed as a “fair” policy in some sense. Another way to vil®vis as an
analytically tractable version of Round RobRR), which is a good approximation of what is done in many
computer systems. Und&R, the job at the front of the queue receives a quaniushservice and is then
moved to the back of the queue. Thusjas 0, RR becomesS.

Though the workings olPS are very easy to state and understand, unlike the other simple policies we
have discussed in this section, the analysis of the response tiRt isfnot straightforward.

Intuitively, we can understand the response tim@8fas follows. Consider the experience of a tagged
arrival j, of sizex. Sincej, arrives into astationarysystem,j, will share the server wittiZ[N "] other
jobs, on average, until it completes. Thus,

E[T(x))"® = (E[NPS] + 1) = \E[T]FS + 1)z (3.5)
Integrating over:, we obtain
or equivalently
E[T)FS = BlX] (3.6)

Returning to 8.5) also gives

(3.7)

The weak point in this argument is the assumption that a tagged arrival will share the system with a
constant mean number of other jobs throughout its response time. Though, this assumption is by no means
obvious, the expressions i8.6) and @.7) are correct and Mitrani points out the assumption can be made
rigorous fL47).

Amazingly, the expressions fdf[T]"° and E[T'(x)]"¥ exactly match the corresponding expressions
for PLCFS that we derived earlier. Thus, as we discussed in Seétipri, E[T]7* is independent of the
variability of the service distribution and grows like(1/(1 — p)) asp — 1. Further, we can see that
E[T(x)]"% is strictly linear inz. Thus, a job that is twice as long as another job will have twice as long a
response time on average. This is a very appealing property with respect to “fairness,” and we will return to
it in Chapter7.

So far, we have only discussed the mean response tirR& ofVe would obviously like to learn more
about thePS queue, but to do so, we need to take a different view ofRBesystem. The derivation of
E[T]"* that we have discussed so far relies on viewing the mean number of jobs RStlsgstem as
constant throughout the response time of an arrival, but this is insufficient for studying other aspects of the

52 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

PS queue.

A more powerful viewpoint of thé®S queue comes from “reversibility.” This approach is detailed by
Kelly [113 and Ross 193, among others. The idea is to show that the forward process #3hgueue is
equivalent to the reverse process of Bfe¢ queue, and then to use this equivalence to analyze the system.
Using this approach, we can derive the entire distributio?Wéf. Let# = (21, z2,...,z,) be the queue
state where;; is the attained service (age) of tfth job in the queue.

Theorem 3.2
In an M/GIl/1 queue

P(N"$ =n) = p"(1-p)

Further, given there are n jobs in the queue, the age (excess) of each job is i.i.d. and follows the equilibrium
distribution. Thus,

n

P(:f:(xl,xg,..., ‘N_n :H
i=1

"11 |

EX

This characterization of the system state Bf&queue is quite intriguing. It is amazing that the distribu-
tion of the number in the queue depends only on the system load, and is thus independent of anything but the
mean of the service distribution. This property is termed “insensitivity” and is an appealing property beyond
PS (see B5, 36, 37] for other practical examples of insensitive policies and queueing networks). Theorem
3.2 has many other consequences. For instar&é) follows from Theoren3.2 almost immediately by
applying Little’s Law:

E[T]PS _ XE[NPS]

1,
= XZ”P (1-p)
n=0

E[X]

L—p

Further, with a little more work we can also deri&7) for E[T(z)]”° using a special case of Little's Law
applied only to jobs of size betweerandz + ¢ for e — 0.

Beyond the uses of Theored2in deriving E[T]7 and E[T'(x)]"®, it is also important outside ¢¥S.
In particular, Theoren3.2 provides an extremely useful view of the total work in the syst@min fact, it
provides an explanation for the mysterious formZef(s) that we derived ing.3). Using Theoren8.2, we

have that
NPS

Q=>_&
i=1

where&; are independent excesses @il has distributionP(N"% = n) = p(1 — p). As we already
mentioned, this form of) is very useful for calculating moments and other statistics of of the stationary
workload.

We now understand both the system statB®fand the mean response timeR$. However, even with

3.1: SIMPLE POLICIES 53

—_—
—
—_— —_—
H — ——l
jx -ﬁ
J, arrives Jj, complefes

Figure 3.1: An illustration of how to viewPS as a branching process. In this diagram there are two jobs in
the queue when the tagged jgbarrives. The response time §f is the sum of the lengths of the branches
between the arrival and completion instantsjof

this information, it is impossible to calculate higher moments and the transform of the responseRige of
In order to calculate these, we will need yet another vieR $f

Probably the most powerful view &S is as a branching process. This view, first introduced by Yashkov
[252, 253, has led to the derivation of the transformb(f:c)PS in the M/G1/1 queue, from which formulas
for the variance and higher moments@fz) have emerged. The idea behind viewid§ as a branching
process is illustrated in Figui&1.4 We view the response time for a tagged jgbof sizex as the sum
of the lengths of branches in a random tree. Corresponding to each job, there is a branch of length equal
to the size of the job. Let, be the number of branches at timeThus, wheny, arrives (at timg = 0) it
seesyy = NS existing branches, each having remaining lerfgtind it starts a branch of lengih The
process evolves asgrows by having the total arrival rate at each titrtee n; A\, split evenly among the;
branches in the system at timeThe arrivals each form new branches attached to the branch they occurred
during. One can see that this is equivalent S queue by scaling the time in the branching process by
n; at each timeg. Using this equivalence, it is clear that the response timg @ simply the sum of the
lengths of the branches in the system between Gimed timez. If we denote the sum of the lengths of the
branches of a tree started by a branch of lehgthheight) between timé and timea asL,(b), we can use
this view of PS to write 7'(z) " as follows:

NPS

T(2)75 & Lo(z) + Y La(€) (3.8)
=1

Though this view ofPS is not as simple as the others we have discussed, it has proven to be very
powerful. Let us illustrate how to use this view in the simple case of an M/D/1 queue.

Example
Our goal will be to rederive3.7) for E[T'(x)]"° in this simple case using the branching process.

CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

Before we begin, let us first define some notation. aLbe the job size in the M/D/1. Further,
note that the exces§, and age,A, of a deterministic distribution both follow a uniform distribution.
Thus, we will definé/ as a random variable that follows a uniform distribution @).

Now, we begin by taking the expectation 28}:

E[T(x)]"% £ E[Ly(x)] + E[NT5|E[L,(E)] (3.9)

Thus, in order to calculat&[T'(z)]”® we need to derivé&[L,(z)] and E[L,(£)].

We will derive E[L;(x)] first. In the M/D/1,E[L,(x)] is particularly easy to write since all
arrivals will create new branches that extend beyond timevhich is the end of the period being
studied. Thus, an arriving job at time— ¢ will start a new subtree that will contributg,(¢) to the
total tree length. Given the constant arrival ratewe have

ElL.(x)] = /0 (1 B (L))t

Taking the derivative of both sides, gives the following differential equation,

CZE[S;(”J)] 1 AB[L.(2)]
which has solution
D=2 (1) =T (er - :
BlLe(r)] = (M = 1) = (e = 1) (3.10)

Now, we move to calculating[L,.(£)]. Notice that in the M/D/1 it is easy to rewrit8[L,(&)]
in terms of E'[L,.(x)]. In particular, we have that

E[Ly(€)] = E[Le(x)] — E[LA(A)]

Now, we observe thaf[L 4(A)] is of the same form aB[L,(x)], SO we can calculate it by condi-
tioning on.A as follows:

%E[LA(A)] = BlLw(z—uw)|U =14
71 T—u 1
= [5 (e 1) a
= p12 (ef —p—1)

Moving back toF[L,(£)], we have that

ElLy(£)] = E[Ly(x)] — E[La(A)]
_ (pe? —e” + 1) (3.12)

3.1: SIMPLE POLICIES 55

Finally, we are ready to put everything together and calcula{g’(x)]” using @.9), (3.10, and
(3.1D.

ET(@)]S = BlLo(x)] + EINPS|E|L, ()]

o p z P _ P
(6 —1)+ <1_p>102(pe — € +1)
L@+ 1>)

|
—
|

eP

DIR DI DI

8 —~
—_
I =
e
N

L—p

Thus, we have arrived at the well-known result #&i" ()] 7.
O

Though this derivation is far more complex than our original derivatioR'[@f(z)|, and may seem like
overkill for such a simple model as the M/D/1, the power of this viewP8fcomes in the extensibility of
this argument. In particular, it is straightforward to mimic the above argument in order to derive the variance
of response time in the M/D/1, and with a bit more work it can be pushed through to derive explicit formulas
for the mean and variance in the M/M/1 model. Further, the branching process vie® isfat the heart
of the most elegant derivations of the transforn¥¢f)”°. In particular, Yashkov uses this view to derive
LT(I)(s)PS in [252, 253.

In addition to Yashkov’'s analysis, a number of other derivations of the transform have appeared, for
example 197, 167, 25¢. Probably the most useful form for the transform was provided by Zwart and
Boxma in R56. They write the transform as the following power series:

o) Sk -1
Ly ()7 = <Z k,ak(x)>
k=0

whereay(z) = 1, a1 (z) = z/(1 — p), and fork > 2

ap(z) = (1—kp)’“ /:0(3; — R RSV

with ng*(t) denoting the distribution of the-fold convolution of the work in the systery. Equivalently,

we could have written i
oo = (15) - o

where

.k MRV (SO
(5k(x)—7(17p)k /t:()(O TEG T (t)dt

The reason this form of the transform is so useful is that it is easy to use it to obtain formulas for all
higher moments of'(x)”®, which can be difficult using other forms of the transform. In particuse

56 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

finds that
k
@S = =3 (V) 0Ere 1w 3.12)
=1
from which we can deriv& ar[T'(z)]"*:
2 v —
Var[T(z)]7% = (e /O (x — t)Fo(t)dt (3.13)

3.2 Priority-based policies

Though simple policies like=CFS and PS are traditionally the most common policies used to model
scheduling in computer systems. More recently, there has been a growing trend towards using designs
based on priority-based policies.

There are many ways that priority-based policies can assign priorities. Commonly, users are willing to
pay money in order to receive high priority service and, thus, spend less time queueing. Other times, the
goal may be to assign priorities in a way that minimizes some cost function (such as mean response time)
of the queue. In the second scenario, it is often beneficial to give priority to small job sizes. In this section
we will introduce a wide variety of priority based policies. We will talk about both non-preemptive and
preemptive priority policies. Further, we will consider both policies that prioritize based on some external
priority structure (such as customer payments) and policies that prioritize based on statistics of arriving jobs
(such as the sizes of the jobs or the remaining sizes of the jobs).

The analysis of all priority based policies relies on using “transformations” of the service distribution
and busy periods. Thus, before we talk about specific policies, it is useful to spend some time introducing
the transformed service distributions and busy periods that will come up throughout the section.

3.2.1 Notation for priority-based policies

Under priority-based policies, the performance of the high priority jobs is often not impacted low priority

jobs. For example, und€&SJF the response time of a job with sizeis unaffected by any job with size

> x. Thus, as far as a job of sizeis concerned, the service distribution may as well be cut aff &t/e will

see behavior similar to this under a wide variety of policies that prioritize small jobsSRT andFB,

however the what happens to the probability mass in jobs ofsizewill vary depending on the scheduling

policy. As a result, it will be useful to have notation to describe various ways to cut off, or truncate, the

service distribution. In order to serve as a reference, we will summarize the notation for two of these here.
First, let us consider the case where all jobs with size are simply removed from the service distri-

bution:

Xo = Xlixen

mi(z) = E[X;}:/Oitif(t)dt
ple) = Nmi(z)

3.2: PRIORITY-BASED POLICIES 57

Herem;(x) is thei-th moment of the jobs with size z (ignoring all job with size> = andp(x) is the
load of a system with the same arrival process and a cut-off service distribution. Notigg¢ithaan also
be interpreted as the load made up by jobs with size

Next, let us consider the case where all jobs with size have their size reduced fo

X, = X Az =min(X,)
() — X, =i Y i
mi@) = E[X] /0 FYF(1)dt
= mi(z) +2'F(x)

pla) = Xi(x)

Againm;(x) is thei-th moment of the truncated distribution ap(:) is the load of a system with the same
arrival process and a truncated service distribution.

For each of these “transformed” service distributions, it will also be important to characterize how busy
periods behave. These “transformed” busy periods will be fundamental to the analysis of priority based
policies. For reference, TabB1summarizes the various types of busy periods that we will use.

notation | service distribution arrival rate
B, B(y) X A
B,, B.(y) | X, = XI(X <) A
By, Ba(y) | X, = min(X,z) A

Table 3.1: A summary of the busy period variations studied in this thesis

Clearly, the moments aB,,, B..(y), B,, andﬁx(y) are all easily calculated by writing the formulas for
B andB(y) using the appropriate service distribution. For reference purposes, we will list them here.

BB)] = 1=
VarlB) = P
BBW)] = 1=5
VarlB)] = T2

3.2.2 Non-preemptive priority queues

Non-preemptive priority queues are the simplest of the priority based policies we will discuss. In non-
preemptive priority queues jobs are assumed to arrive with some externally assigned priority structure. That
is, arriving jobs are tagged with a certain priority level= 1,2, ..., and then jobs of priority can only

move into service when the queue is empty of jobs of priotity. Further, jobs within the same class are
served inFCFS order. It is important to remember that we are in the non-preemptive setting, so once a job

58 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

is chosen for service, it cannot be interrupted.

The analysis of a non-preemptive priority queue is actually quite straightforward?VLeV;, X;, A;,
andp; be the waiting time, number in queue, job sizes, arrival rate, and load of the jobsdHitiltobass.
We will use a tagged job approach. Consider a tagged fobm priority classc > 1. The waiting time of
j consists of three pieces: (i) the remaining work in the job at the server, defgte(i) the work from
classed, ..., cinthe queue at the arrival gf and (iii) the work from classek . . ., ¢ — 1 that arrives while
jisin the queue. It is easy to see that the work in (i) is simiply = £1(busy). Using Little’s Law, we
can write (i) asy ;_, E[X;|\; E[W;]. Further, we can write (jii) aif;ll E[X;|\E[W,] since all arrivals
during the waiting time of from classeq, ..., c — 1 receive priority overj. Thus, we have that

c c—1
E[W,] = E[Wo] + Y E[X;NE[W;] + Y E[X;|\E[W,]
=1 =1
which gives
E[Wo] + Y521 piE[Wi]
1- Zz:l Pi

This set of equations can easily be solved recursively, from which we obtain

EW] =

AE[X?]
21— 321 pi) (1= 25 pi)

whereX is still the overall service distribution.

The form of this final equation is quite enlightening. We see a distinction between the effect of the jobs
that arepresentin the queue at the arrival of the tagged job (the >"7_, p; term) and the jobs thatrrive
while the tagged job is in the queue (the- Zz 1 pi term). Intuitively, we can view the formula as stating

that the expected work in the queue that finishes before the taggedjdb js= % and then the
i=1 Pi
waiting time is a busy period started by work including only arrivals from higher priority classes. This

viewpoint will be central to the analysis of many of the other priority based policies in this section.

There are a number of interesting observations that can be made aldaltFirst of all notice that it is
possible for high priority classes to remain stable at loads much larger than 1. Thus, prioritization provides
an insulation from overload for high priority jobs. Second, it is interesting to note the improvements over
E[T)FCFS that are possible from very simple priority schemes. For example, if we consider a 2-class
system, we can see that

E[W,] = (3.14)

A1 A2

BT = SEW)]+ T E[Wa
= E[wW]Fers (11_— ;‘115[[;((1]}) (3.15)

Examining the form of this equation, it becomes clear that whenB\&r | < E[X] prioritization provides
a smaller response time th&CFS. Further, the difference can be dramaticFifX;] is much less than
E[X]. This observation is a key motivation for the heuristic of “prioritizing small jobs.”

Note that both higher moments and the transform of the waiting time distribution of non-preemptive

3.2: PRIORITY-BASED POLICIES 59

priority queues have been derived in the literature. But since the derivations are involved and they are not
central to this thesis, we refer the interested reade o222 for the details.

There are many variations of the non-preemptive priority queue. Two of the most commoarare
preemptive threshold based policiaad non-preemptive Shortest-Job-Fir63JF). We will provide an
overview of each of these policies in the next two sections.

3.2.2.1 Non-preemptive threshold based policies

A non-preemptive threshold based policy is simply a non-preemptive priority queue where the priority
classes are determined using job size thresholds. In particular, given threBhsldg < ¢; < ... <
t, = oo an arriving job of sizer is assigned priority if « € [t;—1,t;).

The motivation for introducing threshold based policies follows immediately from our discussion in the
previous section. In particular, fror8.(L5 we see that the mean response time of a non-preemptive priority
gueue is lowest when the high priority queues have the smallest possible mean service demand. Thus, if we
hope to optimizeZ[T'], we need to minimize the mean service demands of the high priority class — which is
exactly what happens under threshold based policies.

The analysis of the waiting time under non-preemptive threshold based policies follows immediately
from our discussion of general non-preemptive priority queues. Thus, it is possible to obtain the transform
and the moments of waiting time for these policies. In particular, we have that underckss non-
preemptive threshold based policy, denoléf,, the mean waiting time of a claggob is as follows

AE[X?]

I1NP, _
BV = e o maa = st

wherep(t;) = A fgl sf(s)ds.
From the above, we can also calculate the overall response time for the system as follows:

n

E[T) = E[X] + Z(F(ti—l) — F(t;))E[W]
=1

Despite the fact that this formula is easy to write down, it is hard to completely understand. Though itis
easy to see thaf[T] < oo only whenE[X?] < oo, even understanding simple questions such asB#
behaves as a function of load and h&#'] changes as grows is difficult. We will spend the rest of this
section investigating these questions.

If the thresholds are constant as load grow$]] = O(1/(1 — p)) asp — 1, which is the same
behavior we have already seen f€FS, PS, and the other simple policies discussed so far. But, clearly
the thresholds should vary depending on load. In fact, by choosing the thresholds for each load optimally, it
is possible to provide dramatic improvementdiff’] overPS andFCFS for high loads.

In particular, Bansal and GamarniR4] have shown that using any number> 2 priority classes in an
M/M/1 queue is enough to guarantee ti2{f’]V " grows much more slowly tha®(1/(1 — p)) and thus
provides huge improvements [T in heavy traffic.

60 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

Theorem 3.3
In an M/M/1 for any n > 2

1

ﬂ—pﬂ%(ﬁy)

Further, non-preemptive threshold based policies can behave even better under other service distribu-
tions. In particular, we will prove a novel result that characterizes the growth ra#1gfunder Pareto
distributions. Before stating the theorem we need to introduce some notation. Rpéfinas follows:

E[TN =0

g-1(a) = 0
go(a) =
gila) = 14+ (a—1)gi—1(a)fori>1
Thus, note that
gi—1(a) _ gi—1(a) _ 1
gi(oz) 1+(a—1)gi_1(a) Oz—l—l-m

Now we are ready to state the theorem.

Theorem 3.4

Let the service distribution be Pareto(a) with a > 2 so E[X?] < oc. Consider a NP, 1 policy with
thresholds 0 = tg < t; < ... < t, < t,.1 = oo and define t; fori = 1,...,n such that F(t;) = (1 — p)%
with

Qn—i
o = gi(a)€n+1 - gzel(a)
where
_— In 1(04) N 1
n-+ —
9n(a) (@—1)+ g 711()
Then

NPn+1 _ 1
B =6 ()

Clearly, the growth rate aF'[T'] as a function op is much slower under a Pareto distribution (Theorem
Theorem3.4) than it is under an M/M/1 distribution (Theore®3). Further, Theoren.4 provides an
interesting contrast to Theore®3 in terms of the impact of the number of priority classes used by the
scheduler. While in the M/M/1 case, using more than 2 priority classes provided no improvement in the
growth rate ofE[T]; in the case of a Pareto service distribution, we see an improvement from each priority
class added, sineg increases with.

Proof of Theorem 3.4. We first write E[T]VF»+1 as follows:

n+1 2 -
NPui1)\EX ti—1) — F(t:))
BT X+ 2y ><1— o)

Now, we note that by choosing(t;) = (1 — p)% fori = 1,...,n we have thak/t; = (1 — p)%/®

3.2: PRIORITY-BASED POLICIES 61

(since we are considering a Pareto distribution), which gives that

L—p(ti) = 1—p+p<k>a1

t;
= 1—p+p(l—p)lotae
~ (1 o p)(a—l)ai/a asp — 1

Further,(1 — p(to)) = 1 and(1 — p(tp+1)) = (1 — p).
Continuing, we now see that as— 1

E[T]an+1

n+1 - -
— E[X] +Z+: AB[X?(F(ti-1) — F(t:))

= 21 = p(ti-1))(1 = p(ti))

ABX?] (1= (1= p)m
(1 _ p)(a—l)a1/a

—~
~

3

(1= p)eDa/a(l = p)aDafa | T (1= pjleDa/a(i — p)

(1 - p)ail(al)ail/a(al)ai/a> + (1 o p)anl(al)an/a>

(2

2
~)‘E[QX] ((1 _p)f(afl)al/a_’_ (

_)\E[ZX2] <(1_p)—(a—1)a1/a+ (

(L—p)"t = (1= p)™) (1 p))

2

3

(1 _ p)ai_l/a—(a—l)ai/a> + (1 _ p)—l—l-an/a)
2

Note that the best heavy traffic behavior occurs when all the exponefits-op) are equal (if they are
not balanced, a local improvement can be made). We will show that, when all of the exponents are equal,
they are equal te-1 + ¢,+1, from which the theorem will follow.

Plug 2=t = g;(a)en+1 — gi—1(cv) into each of the exponents ¢f — p) above. Note that by definition

of gi(a), we have(ar — 1)g; (o) — gi—1(a) = —1 for all i. We start with the constraints faf, i > 1.
ST = 1 go(@)entn — g-1()
= —l+e
a:1 — (o — 1)% = gi-1(@)ens1 — gi-2(a) — (@ — 1) (gi(@)ens1 — gi-1(a))
= [(@=1)gi-1(a) = gi2(a)] = [(a = 1)gi(e) — gi-1 ()] €nta
= —1+4+epqa

Next, we consider the final constraint en Here, we will need to use the fact that, 1 = g,,—1(a)/gn ().

—(a-1DZ = —(a—Dgn_1(a)ens1 + (& — 1)gn_a(a)

(6%
= —l+epm+[1+(@=1gn2(a)] = [1+ (a—1)gn-1(a)] €nt1
= —l+ep1+ gn—l(a) - gn(a)fn—H
—1+epp1

62 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

3.2.2.2 Non-preemptive Shortest-Job-First (SJF)

If our goal is truly to optimizeE[T'] using a non-preemptive threshold based policy, we have seen that we
want to have as many priority classes as possible. If we take non-preemptive threshold based policies to the
extreme and add thresholds until the thresholds become arbitrarily close, the resulting @JiEy ignder

SJF, the shortest job in the queue is given non-preemptive priority. Thus, at every completion instant, the
job in the queue with the smallest service time is given service, and this service is not interrupted until the
job completes.

SinceSJF can be viewed as the limiting case of a non-preemptive threshold based policy, it is clear that
the moments and transform of the response tim@Jé can be obtained by taking the appropriate limits of
NP,. Assuming the service distribution is continuous, this limit results in the following formulas for the
first few moments and transform of conditional response time uBdEr

G X
E[T(z)] = St S
Var[T(x))®'F = AE[X7] +)\2m2(:c)E[X2]_ A2E[X?)2

3(1—p(z))? (L=p()* 41 —p(x))*

L@ = X (1) (s 4 AR @) ~ AF(@)£3,(9)

+AF(2)(1 — Lx., (s+ AF(x)—)\F(:L’)EBw(s))))

whereX-., has c.d.fF(z)/F(x).

Before moving to the overall response time JF, let us take a second to contrast the conditional
response time o8JF with that of non-preemptive threshold based policies. Notice that the small jobs
in each class of the non-preemptive threshold based policy have larger mean response times than they do
underSJF while the large jobs sizes in each class have smaller response times than they d8Jdmder
Thus, E[T(z)]°”F is not uniformly better tha[T'(x)]V ™, thoughSJF provides a smaller overall mean
response time.

Let us now move forward and discuss the overall mean response tiB#FoiGiven E[T (z)]°/ it is
easy to calculat&[T]5/ 7"

As with non-preemptive threshold based policies, despite the ease with which this formula can be writ-
ten, it is difficult to understand the behavior®F as a function op. This is a trend we will see throughout
this chapter. However, very recently, a few results that characterize the growth 8iE af a function of
p under certain distributions have emerged. In particular, Bansal and Gamadhhale characterized the
behavior ofSJF under Pareto distributions and Bansal & Wierma#6] jhave characterized the behavior of
SJF under Exponential distributions. We summarize these results in the following proposition.

3.2: PRIORITY-BASED POLICIES 63

Proposition 3.5
In an M/M/1,

1
(1—p)log (%p)
Further, in an M/GI/1 where X ~ Pareto(a) with o > 2 so that E[X?] < oo,

E[T]SJF —0 (1 a2>
(1—p)et

It interesting to contrast TheoreBi5with Theorems3.3and3.4, which characterize the growth rate BT’

under non-preemptive threshold based policies. In the M/M/1 setting, we seg[that' " = o(E[T]V ™),

which is quite surprising since it says using two priority classes provides the same benefits as using an infinite
number of priority classes. However, the case of Pareto service distributions provides a different picture.
Under Pareto distributions we have that

s - o1)es(1)
(1—p)o=t (1—p)

E[T]an+1 = 0O 1 =0 _1+1

_ n—1()

(1—p)' @ (1—p)

— 6(11+1 asn — oo
(L—p) "ot

Thus, E[T)N"» approaches the growth rate BT/ asn — oo, but N P, does not achieve the growth
rate of SJF for any finiten.

E[T]?F =6

and

1
a—1+1/gy_1(a)

3.2.3 Preemptive priority queues

Preemptive priority queues are very similar to the non-preemptive priority queues we just discussed. Again,
jobs are assumed to arrive tagged with a priority ctass1, 2, . . ., and jobs within each class are served in
FCFS order. The difference is that a job of prioritycan only receive service when there are no jobs with
priority < ¢ in the system, i.e. a job of priorityin service is preempted whenever an arrival of priofity

occurs.

The analysis of preemptive priority queues can be performed in a manner parallel to the analysis of non-
preemptive priority queues (se&20, 222 for example). However, instead of mimicking the analysis of the
non-preemptive priority queues here, we will present a more intuitive analysis that is only possible in the
preemptive case. To accomplish this, let us break up the response time of a tagged customer witl priority
into the residence time and the waiting time of the job.

To analyze the residence time of a clas®b, denotedR,, notice that all arrivals with priority< ¢

64 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

receive preemptive priority over the tagged job. Thus, the residence time of the tagged job is simply a busy
period started by the tagged job including all arrivals of jobs in classes, ¢ — 1, which we will denote
Bgc—l(Xc)-

Similarly, we can view the waiting time as a busy period including all arrivals from cldsses, ¢ — 1
started by the work in the system from classes ., ¢, denotedB<._1(Q<.). All that remains is to deter-
mine the distribution of)<.. This can be accomplished by viewiG.. as the workload in a transformed
system where only arrivals from classks. ., ¢ are included. Noting that this transformed system is still
work conserving (by definition of a preemptive priority queue), we can se&Xhats the stationary work-
load in aFCFS queue with arrival rate<. = >_;_; A; and service distributioX <. = X; with probability
Ai/A<c for i < c. Thus, we can writé?[T;] as follows:

E[Tc} = E[Bécfl(XC) + Bgcfl(QSC)] (3-16)
EX) | Y, MEIXD)
1= 20— p)(1 =35 i)

Similarly, it is easy to calculate higher momentsigfand the transforrd’,. using this formulation.

Notice the contrasts between the form 8fl(7) for E[T,| in preemptive priority queues and.(4) for
E[W.] in non-preemptive priority queues. Clearly, the waiting time for clagsbs is larger in the non-
preemptive case because it includes the second moment of the full service distribution. However, under
non-preemptive priority queues a job cannot be interrupted once it begins service. Thus, the residence time
of classc jobs in the non-preemptive case is much lower than the residence time in the preemptive case.

As in the non-preemptive case, there are two common variations of the preemptive priority queue: pre-
emptive threshold based policies and Preemptive-Shortest-Job#83F). In the next two sections we
will provide an overview of each of these policies.

(3.17)

3.2.3.1 Preemptive threshold based policies

Paralleling the definition of non-preemptive threshold based policies, a preemptive threshold based policy
P, is simply a preemptive priority queue where theriority classes are determined using job size cutoffs.
That is, given thresholdg < ¢t; < ... < t, = oo an arriving job of sizer is assigned priority: if

x € [te—1,tc). Thus, applying the results from the previous section, it is easy to see that

s E[X] Ama(te)
B = 1t T 20 = st = pt))

Similarly, the transform and higher moments of response time follow immediately from the corresponding
results for preemptive priority queues.

It is interesting at this point to contrast the behavior of preemptive threshold based policies with the
behavior of the non-preemptive threshold based policies we previously introduced. In particular, it is natural
to think that response times under preemptive threshold based policies should be lower than response times
under non-preemptive threshold based policies. However, we can see from comparing the formulas for
E[T.] in each case that the waiting time is larger in the non-preemptive case, but the residence time is larger
in the preemptive case. To see how these two terms trade off, let us consider the special case of 2 class
disciplines where the thresholds are the same under both the preemptive and the non-preemptive policies.
Then, the increase i R| for class 2 jobs in moving from the non-preemptive policy to the preemptive

3.2: PRIORITY-BASED POLICIES 65

icv is LLE[Xz] i e AREX3]
policy is o In contrast, the decrease H\{IV/| experienced by class 1 jobs = po Thus, the

preemptive threshold based policy has small€r] only when

Aop1 E[X5) B MM E[X3]
1—m 2(1 - Pl)

<0

which gives that

E[X3)]

2B[X)]

This final condition is quite illustrative. Recall that the RHS of the equation is simply the mean excess of a

class 2 job. Thus, preemptive threshold based policies are better only when the expected remaining size of

a class 2 job that is being preempted is larger than the expected size of the class 1 job that is preempting it.
The above comparison provides a first step towards understanding the behavior of the mean response

time under preemptive threshold based policies. In particular, in the M/M/1 we havg[tiigé = E[T]V

which gives
E[T1?2 =0 !
&1mbg@$>>

Further, we can prove a novel result that shows i = ©(FE[T]V) in general.

E[T) < E[T)NP o E[X)] <

Theorem 3.6
In an M/GI/1 queue, E[T)"» = O(E[T)Nt) as p — 1.

Note that Theoren3.6 combined with Theorem3.3 and 3.4 immediately gives us the growth rate of
E[T]"» with p under the Exponential and Pareto service distributions.

Proof. Let us begin by observing that both preemptive and non-preemptive threshold based policies have
E[T] < oo only whenE[X?] < oo andp < 1 since in both cases the waiting time of thth class has an
E[X?] term. Thus, we need only consider service distributions whgpe?] < cc.

We continue by bounding[T;]"™ in terms of E[T;]| V™.

E[X;] Ama(t;)
1—p(ti-1) 201 = p(ti—1))(1 — p(t1))
L Ama(t) + E[X]p(ti-1)(1 — p(t1))
R S T a1 o)
BIX]+ (mz(ti) + E[Xi]E”E;((;]il)(l - P(Ci))) BW;| NP

E[T)™ =

E[X;] 4 2E[W;| NP
2E[’T1]an

IN A

Similarly, it is easy to see that

66 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

which gives that
ma(t1)
E[X?]

Thus, as long ag > e asp — 1, E[T]|N» andE[T]"» are always within a constant factor. Buttif— 0,
that would mean that(¢;) — 0 since the increase ih is bounded. Thus, the limiting policy would be an
n— 1 class policy, which is a contradiction sine#7')"» < E[T]»-! for the optimal choices of thresholds.
O

E[T)NPr < BT < 2B[T)N "

3.2.3.2 Preemptive-Shortest-Job-First (PSJF)

As in the non-preemptive case, increasing the number of priority classes in preemptive threshold based
policies decreaseB|[T]. If we take preemptive threshold based policies to the extreme and add thresholds
until they become arbitrarily close, the resulting policyPiSJF. UnderPSJF the job in the system with

the smallest original size is always receiving service. Thus, a job at the server is always interrupted when a
smaller job arrives. As in the non-preemptive case, taking the appropriate linisyélds [T (x)]75/F

when the service distribution is continuous:

x Ama(z)
1= o) T 21— pa))?

The first term in this equation is the residence tim@80F, R(z)”%/F, and the second term is the waiting
time of PSJF, W (z)P97F,

Though it is easy to obtain higher moments and the transforfi{ef”>/# by taking limits of threshold
based policies, it is perhaps more illustrative to derive the statisti@g:of>/F" directly. To this end, let
us first conside®?(x)5/F. Once a tagged job of sizg j., begins to receive service the only jobs that
can receive higher priority thajy, are new arrivals with size: x. Thus,j, will complete at the end of a
busy period started by work including only arrivals of size< x, denotedB,(z). Further, we can view
W (x)"5/F as a busy period started by the work in the system at the arrival leéving original size<
including only new arrivals with size 2. Thus,W (z)75/F = B,(QL5/F) whereQIS/F is the stationary
workload of a system where only arrivals sizer are considered. Combining all these statements and using
the linearity of busy periods, we obtain

E[T(l‘)]PSJF —

T(2)"57" £ By(w + Q%) £ Bula) + Ba(Q%")

from which the moments and transformPSJF follow directly. Let us just state th&ar[T(z)] and the
transform, since these will be of use later in the thesis.

arlT(2)1PSTF — Azma(x) Amz(x) 3 (Amg(x) 2
VarlT@) T sy ()

(
1 - x S
l:T(x)(S)PSJF — ;(1 _ p())(8 +)\F(w))\F()EBJ()) —z(s+AF(z)—AF(z)LB,(s))

So far, we have only discussed the conditional response time @&, T'(z)757F, but typically the
metric of interest is actually the overall response time, specifidali]”>’/F. Clearly E[T]"5/F can be

3.2: PRIORITY-BASED POLICIES 67

computed by deconditioning[T'(x)] as follows:

1 o0 z me(x
E[T]PSJF:/O E[T(x)]dF(:n):/o <1_p(x) +2(1A_2p((x))>2> f(z)dx

However, this form is difficult to work with. In particuladz[IW]77F typically needs to be calculated
numerically, and further the above equation provides little intuition about the behaviB{Idf >/ as

p — 1 or as job size variability grows. To provide such intuition, Wierman, Harchol-Balter, and Osogami
prove the following simple bounds di[7]75/F in [241].

Theorem 3.7
Consider an M/GI/1 PSJF queue. Let K satisfy Amo(z) < Kuzp(zr) and X, and X be ii.d. service
demands. Then

i) (PEORT L Doy (1)) < mnyrsir < i) (2 4 (A2) 1g (1))

Notice that TheorerB.7 is stated in terms of a paramet&r, whereK is such thatmg(z) < Kzp(z).
Clearly K < 1 for all service distributions, but it is not immediately clear héivbehaves under specific
distributions. In Theorerm3.8 we illustrate how this constant may be set under common distributions. For
example, we show that the constdfitmay be set a% when the service distribution is decreasing. Further,
in more generality, it define& in a way that is highly tied to the tail properties pfx).

Theorem 3.8
Let i be a positive integer. Define j such that x7 f(z) is decreasing and j < i + 1. Then,
t—j+1
i <|\— i
mina(o) < (200) o)

Since the proof of Theorer.8 is tangential to the current discussion, we defer it to the end of the
section.

Proof of Theorem 3.7. First, we calculateZ[R]75/F exactly. Note thatl p(z) = Az f(z).
* Az f(x)

pssr _ 1
L Y A

1
= log(1 — p)

dzx

Next, we can calculate an upper bound on the waiting tinfreSifF:

K [xef@pl)

PSJF LS
BV = X)y G- i)

Finally, to prove the lower bound on waiting time, recall that the p.d.fXefA Xy iS fiin(z) =

68 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

10

---PS
8 |-~ FCFS
~Bounds on PSJF
O L
0 2 4 6 8 10
c’Ix]

Figure 3.2: This figure shows the mean response tim&83JF, PS, and FCFS as a function of the
variability of the service distribution({>[X]). The load is 0.7 and the service distribution is a Weibull with
mean 1 in each case. The bounds shown are in TheBrém

2f(z)F(x). Thus

v

PSJF A [" o "
(W) . / f(x) / 2 £(t)dtd

- 2 /0 h 202 f(t)F(t)dt

= EE[(Xl A X2)?]

Though the bounds in Theore®7 do not completely characterize the behaviorEff'|”>/F, they
already provide some useful information. First and foremost, notice Afi&t” /" < oo even when
E[X?] = oo. This is a huge contrast with the behavior of the other preemptive and non-preemptive thresh-
old based policies we have studied, under whigif'] = oo if E[X?] = oco. Further, since the bounds on
E[T)PS7F in TheorenB.7 are completely independent 81 X 2], they indicate thaPSJF is “nearly” insen-
sitive to variability in the service distribution. In fact, the bounds characterize the degree to which variability
can affect[T]757F. In addition, the bounds are as tight as possible without making use of the variability
in the service distribution: we see that the upper bound becomes tight when the service distribution has low
variability and the lower bound becomes tight when the service distribution is highly variable (Theorem
3.9). ltis interesting to note that variability tends to improve mean response time B, This is a
result of the fact that having a big distinction between large and small jobs (as is true when variability is
high) is what allows the heuristic of “prioritizing small jobs” to be effective. This is in stark contrast to

3.2: PRIORITY-BASED POLICIES 69

2 2 2
---PS ---PS, FCFS| ---PS
—PSJF, FCFS —PSJF —PSJF

E[T] (1-p)
E[T] (1-p)
E[T] (1-p)

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
load, p load, p load, p
(a) Deterministic (b) Exponential (c) Pareto e = 1.2)

Figure 3.3: This figure illustrates the behavior of mean response time uR&JIF, FCFS, andPS as a
function of load: The mean response time is scaled by- p) in order to highlight differences between the
policies. In (a) job sizes are deterministic, in (b) job sizes are exponential, and in (c) job sizes are Pareto
with a = 1.2 (thus they havé?[X?] = o). In all cases,E[X] = 1. Note that=CFS is not included in (c)
because?[T)F“FS = o in this case.

FCFS, for which variability is extremely detrimental.

Beyond the new insights into the effect of variability Bfi")”/F, TheorenB.7 provides the beginnings
of an understanding of the behavior BfT')”5/F as a function of load. In particular, the upper bound is
©(1/(1 — p)) asp — 1, which matches the growth rate BS andFCFS, and the lower bound grows like
©(log(1/(1— p)), which is a huge improvement oves andFCFS. It is not immediately clear that the the
lower bound is ever achieved, but Figu#& hints that it is, and it has recently been proven by Bansal and
Gamarnik p4] that the growth rate oPSJF under a Pareto service distribution matches that in the lower
bound. Further, Wierman et. al. also characterize the growth r&8&F under an Exponential distribution

[26].

Theorem 3.9
In an M/M/1 queue

1
(1—p)log (1%,,)

Further in an M/GI/1 queue with X ~ Pareto(«) where o > 1 so that E[X] < oo,

E[T]PS‘]F -0

(C] 10g(ﬁ)), ifa <2
EIT)P57F = ! 0 (log? (fp)) ifa=2
) (l—p)_%), ifa > 2.

Contrasting Theorem3.9 with the parallel results foBJF, preemptive threshold based policies, and

non-preemptive threshold based policies is quite interesting. The first thing to notice is that the growth rate
of all of these policies is the same in the M/M/1 queue. Further, under a Pareto distribution, as long as

E[X?] < oo the growth rate oPSJF matches that o8JF, which is the limiting case of botk,, and N P,

70 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

asn — oo. However, the case when the service distribution is ParetddAd] = oo is when the growth
rate of E[T]797F is a huge improvement over the other priority based policies we have discussed so far.
Thus, the best case f®SJF corresponds to the worst case &iF and threshold based policies.

We end the section by providing a proof of Theorara

Proof of Theorem 3.8.
First, we observe the following equality:

/t;mi(t)dt = /t; /;Osif(s)dsdt
_ /Siosif(s) /t;dtds

= [e st

— emn(a) — men (@) (3.18)

We will now use this relation to bouna; 1 () in terms ofm;(x) by first bounding;” m;(t)dt. Re-
member, by assumption we know thdif (s) is decreasing for somgsuch thatj < i + 1.

/txomi(t)dt = /txo/:osif(s)dsdt
> /txotj f(®) /S to s I dsdt

1 r o
= — tF(E I gt
i—j—I—l/tO 1)
1
= —m; 3.19
i—j+1m+1(x) ()

In this chain of equalities, the inequality follows directly from the assumptionsthits) is decreasing.
Finally, combining Equatio.18and Equatior8.19 we can complete the proof.

1

xm;(x) — mia(z) > mmz‘ﬂ(?ﬁ)
i
(Hj_g) zmi(z) = mip1(x)

3.2.4 Shortest-Remaining-Processing-Time-First (SRPT)

We now move to probably the most well known priority based poli§RPT. Under SRPT, at every
instance, the job with the smallest remaining service time is schedule@&R&, differs from the priority

3.2: PRIORITY-BASED POLICIES 71

based policies we have discussed so far in that the priority of a job actually increases while the job is in
the system, i.e. as the remaining size of the job decreases. In thiSRRBY greedily tries to minimize
the number in system by always working on the job that can be finished the quickest. In the preempt-
resume setting, this greedy approach is good enough to minimize the number in the system, &fd[thus
regardless of the arrival and service processes because any scheduling decision can be reversed without
penalty if a more attractive (smaller) candidate arri&gsl]. Because of this optimalitGRPT has received
a large amount of attention in the literature.

As we have for previous priority based policies, we will begin our discussi@RHT by analyzing the
conditional response time and then we will exploit this analysis in order to study the overall mean response
time of SRPT.

3.2.4.1 Deriving the conditional response time of SRPT

Beginning as early as 1966, Schrage and Miller had already analyzed the moments and the transform of
T'(z) underSRPT [202. The resulting form off'(x) is quite complex, and best understood by breaking it
into pieces that correspond to the residence time and waiting time.

We start with the residence time. Recall that the residence time of a job is the time from when it first
receives service until it completes. Once a taggedjjbbgins to receive service, it has higher priority than
all other jobs in the system, and thus, only new arrivals with smaller original size than the remaining size of
j can preempj. Further, once one such job preempighen; has remaining sizg the job starts a period
where all arriving jobs with size< ¢ receive higher priority thar. This is clearly a busy period3;. So,
the time it takeg to move from having remaining sizeto having remaining size— dt is simply B;(dt).
Integrating ovet, we can obtain the moments and transfornikog)77

E[R(x)]S"T = / E[By(d)] = /0 at

1—p(t)
T dma(t)
Var[R(z)]"BPT = / Var|[By(dt)] / ERAULCACY
e : o (L= p(®)
ER(I)(S)SRPT = Jo (s+AF(y)— AF(y)Lp, (s s))dy

Moving to the analysis o ()P, there are two approaches that can be used for the analysis.

The first approach, which is what Schrage and Miller used in the original ana@&si to viewSRPT
as a particular case of a non-preemptive threshold based policy. In partiéilar> "7 is equivalent to
the waiting time of class 2 jobs in the following 3-class non-preemptive priority queue. Class 1 jobs are
those with size< x. Class 2 jobs are those of size Class 3 jobs are those of sizex, and only arrive at
the instant they achieve remaining sizén the SRPT system. Thus, the arrivals of class 1 and 2 jobs are
Poisson, but class 3 jobs do not have a Poisson arrival process. With a little work, it is easy to show that
the waiting time of class 2 jobs in the non-preemptive priority queue is equivaléfittg 7", and then
results forSRPT follow from those in Sectio3.2.2

However, instead of working through the details of this first approach, we will focus on a second ap-
proach for analyzing (z)°®"T that provides more intuition for the final results. We begin by noting that
W (x)SEPT can be viewed as a busy period as follows. First, denote the work with remaining sizeen
by a tagged job upon arrival k9327, Then, notice that the tagged job’s waiting time is exactly the time
until the system becomes idle of jobs with remaining size. Noting that a later arrival contributes to the

72 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

waiting time of the tagged job only when the size of the arrivatis gives: W (z) 4 B, (Q3RPTY, Thus,
determining the moments and transformitf(z)> %7 reduces to the problem of understandipg’’” .
Deriving the moments of)57"7 is typically not too difficult becaus@3 %" is simply the workload of a
work conserving queue in a transformed systém, where jobs arrive the instant their remaining size is
< z. Thus, in the transformed system jobs with original sizer arrive according to a Poisson process
with rate \F'(z) and jobs with original siz&> z arrive to an idle server when they obtain remaining size
< z in the original queue. As an example, let us dedvg)>%"T). First, notice tha)” is simply the
stationary workload of a work conserving queue, so we can view the scheduling polisgFRS. Next
notice that the load in the transformed syster(is) and the mean of the excess of the job at the server is

E[X,’]/(2E[X,)). Thus, we have that

EX,’]

T _
ElQ;] = Pm2E[)’é]+E[Nq]E[XZ]
_ g@@)w[@f}p(m)
which results in
po_ ()
Bl = 50—,y
Thus, we have that
EW (@) = E[B@Q})]
_ Xin(a)
2(1 = p())?

Using either of these techniques, it is possible to derive higher moments and the transform of the
W (x)SEPT We summarize these formulas below.

Ams(x) Ama(x) Ama(z)
3(1=p(x))? (1—plx)*
%(1 — p(2)) (s + AF(z) — AF ()L, (s)) + AF(z) (1 - e—r<S+AF<I>—AF<w>ﬁBz<S>>)

E[W(I)Q]SRPT —
EW(w) (S)SRPT —

Combining the results for the waiting time and the residence tin®R# T gives the following formulas
for the mean, variance, and transform of conditional response time GfI&T:

pr [T dt Ama ()
E[T(x))**T = /0 1 p(t) 200 p@))?

Az (z) A (z) Az (z) 1()\mg () \?

JERAET SRt 7y L SR) ER

)
T e Az (z) 3(Mmg(z) \? xmg(:c)F(x
- / <1—pt>3dt+3<1—p<x>>3+4((1— <>>2> (1= p(a))*

l‘ 2

Var[T(2)]*""" = /Ox (1m2

3.2: PRIORITY-BASED POLICIES 73

At this point, it is illustrative to compare the response timeS&PT with those ofPSJF and SJF.
Intuitively, SRPT provides a middle ground betwe®%$JF andSJF in the sense th&8RPT allows small
arrivals to preempt a large job in service only if the remaining size of the large job is still large. For this
reasonSRPT is sometimes termedsemi-preemptivpolicy [120. The conditional response time 8RPT
provides a formalization of this intuition. In particular, if we compare the residence tinfeRBT, PSJF,
andSJF we find that

R(x)SJF <g R(x)SRPT <q R(x)PSJF

Further, when we compare the waiting times of these three policies we find that
W(:L‘)PSJF Sst W(:L‘)SRPT Sst W(JU)SJF

3.2.4.2 The overall mean response time of SRPT

So far, we have only discussed the conditional response tingR&T. Though the conditional response
time is an important measure, typically the metric of interest for applications is the overall response time.
As we have in the past, we can easily write a formula for the mean response t8/#afusing the results

for ()T, In particular, we have that

E[T]SRPT — / E[T($)]SRPTdF(SL‘)
0

1
= U T m taaae) Se

Though this formula is easy to write, and can be evaluated numerically, it provides little information
about the behavior of [T]°%FPT, Further, the numerical calculations are quite time-consuming — in many
situations simulating the policy is faster than evaluating the formulas numerically in Mathematica — and
are numerically imprecise at high loads. As a result, it is important to provide simple bounds on the mean
response time dBRPT in order to characterize its behavior.

Bounding the mean response time of SRPT
In [241], Wierman, Harchol-Balter, and Osogami prove the first such bounds.

Theorem 3.10
Consider an M/GI/1 SRPT queue. Let K satisty Amgy(z) < Kxp(x). Then

2 () < < (2 (55 (L)

Like Theorem3.7 for PSJF, Theorem3.10is stated in terms of & such that\mg(x) < Kzp(z).
To understandy, note thatK < 1 for all distributions andx” < 2/3 for decreasing service distributions.
Further, Theorer3.8provides a characterization &f in terms of the tail behavior of the service distribution.
There are a number of interesting observations that follow from The8t&fh Though the bounds in
Theorem3.10do not completely characterize the behaviof T *F'7, they already provide some useful
information. First and foremost, notice th&{T]9#"T < oo even whenF[X?] = co. Further, since the
bounds onE[T]°FFT in Theorem3.7 are completely independent &fX 2], they indicate thaBRPT is

74 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

10

---PS
8 _4--FCFS
,-" | Bounds on SRPT
67
=) .
I
4 -
24]]]
O L
0 2 4 6 8 10
I

Figure 3.4: This figure shows the mean response tim&RPT, PS, and FCFS as a function of the
variability of the service distribution({?[X]). The load is 0.7 and the service distribution is a Weibull with
mean 1 in each case. The bounds shown are in The8rétn

“nearly” insensitive to variability in the service distribution, similarly to what we sawPBdF. In addition,
as illustrated in Figur&.4, the bounds are as tight as possible without making use of the variability in the
service distribution. To see that the upper bound is tight, consider a deterministic service distributions. Then,

E[T)SEPT — p[T]FOFS _ 11— png[X]

which is the same as the upper bound with= 1. Further, the lower bound becomes tight when the service
distribution is highly variable and load is high (as illustrated in Figairg.

The proof of Theoren3.10is a bit involved, so we will break up the proof into a number of lemmas that
will be of use later in the thesis.

In order to boundZ[T]5EFT, we start by characterizing the difference in the residence tim&RefT
andPSJF. It turns out that the difference in the residence timeSBPT andPSJF is very related to the
difference in the waiting times @RPT andPSJF. In particular, define

E[Ws] = E[W]SEPT _ plw]PSIF = /Oo >\$2f(x)F(x)dx

o 2(1—p(z))?

Lemma 3.11
In an M/GIl/1 queue,

2E[Wo] = E[R)PS/F — E[R)SEPT

3.2: PRIORITY-BASED POLICIES

Proof. We can prove this result by repeated interchanging of the integrals.

[T,
EW] = /0 1= p(a)e

- /OO £(t) /Ut(lgipl(()))dxdt

00 t 1
Rt ey R Ao
_ > _Fx)
= —)\log(l—p)—/0 1—p($)d$

— E[R]PSJF —E[R]SRPT

Next, we relateF[1W,] with the waiting time ofPSJF.

Lemma 3.12
In an M/GIl/1 queue

E[R]SRPT + 2E[W]PSJF
E[W]PSJF

E[RPS7F and thus
E[Ws]

AV,

Proof. We start by proving a conditional version of the lemma.

E[R()|S"T 1 2B[W ()] P5/F
e ple) =) Ams ()
e /0(1 e

—p(@))(1 = p(t)) (1—p(z))?
x [Tp(x) = p(t) Ama ()
S /0 0= @2 A= plo)?
_ z wp(z) —zp(z) + Ama(x)+ Ama(z)
1— p(z) (1 - p(x))? (1 —p(x))?
_ E[R(.%’)]PSJF

Now, we decondition.

E[R]SRPT—}—QE[W]PSJF > /oo E[R(aj)]PSJFf(x)dI
0

— E[R]PSJF

76 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

Further, combining the above with Lemr8dl], we have:

E[W]PSJF Z

(E[R]PSJF _ E[R]SRPT) _ E[WQ]

N |

Finally, we upper bound the sum of the residence tim8RPT and the waiting time oPSJF.

Lemma 3.13
Let K satisfy Ama(z) < Kzp(z).

1 [Kp?
E[RSEPT | og[W]PSIF < 3 (1 _pp +2Kp+ (2K —1)log(1 — p))

Proof. We start by proving a conditional version of the theorem.

E[R(a:)]SRPT + 2E[W($)]PSJF

B N p(x) — p(t) Amg(z)
-1 p(x) /0 =@ —p) " " T=p@)P?
e[pt) , Ama(a)

= 10 /0 (1= p(x)) e (1 = pla))?

_ r aplx) —xp(x) + Ama(z) | Ama(z)
1—p(x) (1 —p(z)) (1 = p(x))?

B LY PSIF Ama(x)p(z

- PR

E[R]SRPT + /Ooo)\L(x)?f(x)dm

A
o\
8
N
—
\
> |7
&
=y
| |
RS
N N—
SHR
~— |~
\EH
~
kﬁ
—
8
S~—
QL
)

= —ilog(l—p)Jr(

1 ([Kp?
- = 29K p+ (2K — 1) log(1 —
A<1 p+ p+() log(p))

3.2: PRIORITY-BASED POLICIES 77

Combining the above lemmas, we can now easily prove The8r&fh

Proof of Theorem 3.10. We first prove the upper bound using Lemn3akland3.13

1 1
E[T]SRPT — _5 lOg(l . p) o §E[R}SRPT
—|—E[W]PSJF+E[R]SRPT
1
< __— _
< —gylog(l—p)
1 [Kp?
— 2K 2K —1)log(1 —
+o3 ((1_p)+ p+() log(p))

= (k- Bv -0 () e - p)) Bl

Next, we prove the lower bound using Lem®42

1 1
E[T]SRPT — _2)\ lOg(l . p) o iE[R]SRPT + E[W]PSJF + E[R]SRPT
1 1
> —) — _
2 —5y log(l = p) — 55 log(1 - p)

The growth rate of the mean response time of SRPT

The bounds orZ[T]°7FT in Theorem3.10 provide a number of useful insights into the behavior of the
mean response time &RPT; however they also leave a number of questions unanswered. In particular,
the growth rate of2[T|°7F'T as a function of load under any specific service distribution cannot be inferred
from Theoren8.1Q This is unfortunate because understanding the growth raiéIdf *"7 is fundamental

to benchmarking the performance of other policies. For example, we have seen that a number of policies

including PSJF andSJF haveE[T]| = © ﬁ in the M/M/1. It is natural to wonder how this
—p)log(1=

growth rate compares to that 8777 Further, we have results characterizing the growth raRSJF
andSJF under Pareto service distributions, how do these growth rates compare with optimal?

Bansal recently proved the first result characterizing the growth red&&REefT under a specific service
distribution. In particular, Bansal derived the growth rateS&PT in the M/M/1 queue 23]. Soon after,
Bansal and Gamarnik derived the growth ratef']5#T under a Pareto service distributio?4]. Not
surprisingly, in both caseB[T]°/*F'T has far better behavior as— 1 than simple policies likd®S and
FCFS. Summarizing these two results, we have the following.

78 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

2 2
---PS ---PS, FCFS| ---PS
—SRPT, FCFS —SRPT —SRPT

E[T] (1-p)
E[T] (1-p)
E[T] (1-p)

0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
load, p load, p load, p
(a) Deterministic (b) Exponential (c) Pareto e = 1.2)

Figure 3.5: This figure illustrates the behavior of mean response time uS&#T, FCFS, andPS as a
function of load® The mean response time is scaled by- p) in order to highlight differences between the
policies. In (a) job sizes are deterministic, in (b) job sizes are exponential, and in (c) job sizes are Pareto
with o = 1.2 (thus they havé?[X?] = 0). In all cases,E[X] = 1. Note that-CFS is not included in (c)
because?[T)“FS = o in this case.

Theorem 3.14
In an M/M/1 queue

1
1
(1—p)log (ﬁ)
Further in an M/GI/1 queue with X ~ Pareto(«) where o > 1 so that E[X] < oo,
1 .
© log<m)>, ifa <2

E[TPS7F = ¢ 0 (log? <1%p>>, ifa =2
0 (1-;;)‘2%?), ifa> 2.

E[T]SRPT -0

Interestingly, a consequence of Theor8r4is thatSRPT, PSJF, SJF, and threshold based policies
all have the same growth rate for mean response time in the M/M/1 setting. Further, under a Pareto service
distribution, SRPT andPSJF have equivalent growth rates f@7’]. In fact, the parallel behavior of the
growth rates o6RPT andPSJF observed under these two service distributions holds much more generally:

Wierman, Harchol-Balter, and Osogami have proven that:

Theorem 3.15
In an M/Gl/I queue, E[T|SRPT < E[T|PSTE < 3 p[T|SRPT,

Proof. First, let use show tha[s], which we have defined a&[W T — E[W]P9/F is also equal

3.2: PRIORITY-BASED POLICIES 79

to E[T]SRPT o E[T}PSJF:

E[T]SRPT — E[R]SRPT—I-E[W]PSJF—I-E[WQ]

1 1
— §E[R]PSJF+ iE[R]SRPT—f—E[W]PSJF

— E[T)PSIF - %E[R]PSJF 4 %E[R]SRPT
= B[~ B[]
Combining the above, with Lemnal2we can complete the proof.
E[TIPSTF = E[TISEPT 1 E[Ws)

— E[T]SRPT <1 + %E[WQ] + ;E[Wﬂ)

E [T] SRPT

EIW PSJF EW-
< E[T]SEPT <1 n [Q]E[T]SZPT[2])
< gE[T]SRPT

TheorenB.15is important for many reasons. First and foremost, it is of practical importance S,
which is easier to implement thé&RPT since it uses only static properties of jobs, always provides near
optimal mean response times. However, almost as importantly, another consequence of Bhtsietnat
when trying to characterize the behaviorfof'|* T it suffices to study the behavior &f[T]757F, which
is a much simpler task.

Using this observation, we can prove the following result summarizing the effect of an upper bound on
the service distribution on the growth rate Bf7]> "7,

Theorem 3.16
Consider an M/GI/1 queue. If the service distribution is bounded, then

1
E[T]?RFT = o <> :
I—p
However, if the service distribution is unbounded, then
SRPT 1
E[T] =0l —|.
1—p

Notice the huge impact an upper bound on the service distribution has on the beha¥ifF]odis
p — 1. If there is no upper bound, than, in heavy trafB&PT provides huge gains over standard policies
like PS andFCFS that haveE[T] = ©(1/(1 — p)). However, when there is an upper bound on the service

80

CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

distribution, no scheduling policy can have a heavy traffic growth rate better@k@kp), which can be

achieved under even the simplest policies.

Proof of Theorem 3.16. We will start by proving the result in the case of a bounded service distribution.
Clearly, the theorem holds for the deterministic service distribution (WB&1T is equivalent td-CFS),

so we letX be non-deterministic. Let;; be the upper bound of the service distribution gnd 0 be a
point such thap(y) < 1 — e for somee > 0. Then

E[T]SRPT

v

v

To prove the upper bound, we note that

E[T]SRPT < E[R]SRPT

PSJF fﬂi Yoo Nf(z)
< FI[R] +2/0 1= o2

I
=
=
T
nn
<
!
|

Thus, E[T]S*PT = © (fp .

+
<::\g.2

[i,
0

21— p(a)2™"
ma(y) (" Aaf(z) L.
2 / - pa)2z"

ma(y) [*

21, / = p)2 ™

) (11
<1—p 1—p(y)>

2z,

Let us now move to the proof of the result in the case of an unbounded service distribution. By Theorem
3.15 we can equivalently studySJF. Further, sincéZ[R]75/F = ©(log(1/(1 — p))), we need only study

the behavior of the waiting time undBSJF.

E[W]PSJF —

[it
o 21— pl@))?

1> Je) mala)
2/0 T p@P « ™

3.2: PRIORITY-BASED POLICIES 81

For any service distribution with a finite mean, we have thatfer oo,

ma(z) = /Ox 2F(t)dt = o(z).

Thus, for every > 0, there is ay(e) such that for alke > y(e) ma(z)/x < €. Further, note that

v pl@) ma(x) _ Ama(y(e))
L o e S Gty
which is simply©(1) asp — 1. Thus,
psqp 1 [% pa) ma(z)
E[W] 2/y<e el (3.20)
1 [_/A@)

= 2 /y(g) (1~ pla))?
S
- 21-—p

Sincee > 0 was arbitrary, this completes the proof of the unbounded case.

d

3.2.4.3 Competitive analysis in the M/GI/1

Now that we have characterized the optimal mean response time, it is interesting to go back and understand
“which scheduling polices provide near optimal mean response times for all loads and service distributions?”
In order to address this question, we will borrow the notionahpetitive analysiom the worst case style

of scheduling analysis, and adjust it to fit our stochastic setting. In particular, we introduce the following
definition:

Definition 3.1 A scheduling policyP is c-competitivewrt D if there exists a constamrtsuch that
E[T)F < cE[T)S*T vp < 1,andX € D. (3.21)

When no service distribution is specified, it is assumedTha the set of all distributions with finite
mean. Further, if there exists someuch thatP is c-competitive, then we say simply thiatis competitive

The important point in the above definition is that the constastes not depend on the loadr the
service distributionX . Thus, if an algorithm ig-competitive, it means that the response time is no more
thanc times worse under any load or service distribution. Note that becamsest hold across all loads, it
must hold ag — 1. Further, the interesting case is when the load is very high, since under low loads all
policies are within a constant factor. In fact, it is easy to see that a pBlisyc-competitive if and only if
E[T)" = (E[T]*'T) asp — 1 under all service distributions.

82 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

Guaranteeing that a polidy is competitive is an extremely strong guarantee about the performance of
P. In fact, in many ways it seems like an unreachable goal. However, we have already seen one policy that
is competitive:PSJF. In particular, Theoren3.15proves thate[T]75/F < 3 E[T|5RPT regardless of the
load and service distribution; thi®SJF is 3 /2-competitive.

However, outside oPSJF we have not discussed any other competitive policies in this chapter! Even
the preemptive threshold based policies from wHR&IF is obtained as a limiting case are not competitive
when E[X?] = oc. Further, it is immediate to see that no non-preemptive policies are competitive when
E[X?] = oo, E[T)*FPT < oo while all non-preemptive policies havg[T] = oc. In addition, no blind
policy is competitive since all blind policies hav{T] = E[X]/(1 — p) in the M/M/1 while E[T]5FPT =
o(1/(1 — p)) in this setting.

Despite the fact that non-preemptive and blind policies are not competitive across all service distri-
butions, they can be competitive for certain classes of service distributions. For instance, if the service
distribution is bounded, Theorefi6tells us thatE[T]°FT = ©(1/(1 — p)), which means thaECFS
andPS, in addition to many other non-preemptive and blind policies, are competitive under bounded distri-
butions. Even outside of bounded distributions, some non-preemptive and blind policies can be competitive.
In particular, it turns out tha8JF is competitive as long aB[X 2] < co. We will also see thaEB, the blind
policy we will discuss in the next chapter, can be competitive in some settings.

Theorem 3.17
Consider an M/Gl/1 SJF queue. Let X1 and X5 be i.i.d. service demands. IfE[XQ] < o0, then SJF is

3E[X?] titi
m -competitive.

Notice that, thouglsJF is competitive under service distributions with finite variance, it pays a price in
performance for not using preemption. This price in performance can be seen in the fact that the competitive
ratio of SJF is much larger than that of its preemptive counterpPSaF.

Proof. We start by comparing the waiting time 80F andPSJF.
L AE[X?]
E[WE = / —————dF(x
w o =))

_ PSJF f t2f(t
= BV S e

We will now apply the Chebyshev integral inequality. For details on the inequality,285% [Noting
that f;o t2 f(t)dt is monotonically decreasing a 172(1))2 is monotonically increasing, the Chebyshev
integral inequality gives

/01)\([tQJ;it) // t2f(t)dtdF()/ 2(1_)1‘0@))26”:’(33)

dF(x)

3.2: PRIORITY-BASED POLICIES 83

Thus,

1 [e’s) 1
EWSTT < /0 / 2 F(1)dtdF (x) /0 2(1_)\dF(x)

0 1 2
BV 4 gy [e 0r @ [52t)
1

ppey ([, o5 [2eroroa) e

< BW)PSIE 4 (1 L [m;%§$1)2]> E[W)S/F

IN

IN

E[W]PSJF +

from which it follows that

2E[X?]

SJF
EW] E[min(X, X1)?]

Finally, noting thatE[R]/F" < E[R]PS/F andE[T|PS/F < (3/2)E[T]°FFT, we have

SJF 2E[X?] PSJF
BT Elmin(x, X7 1)
3E[X?] E[T]SRPT

E[min(X, X1)?]

3.2.5 Foreground-Background scheduling (FB)

Throughout this chapter we have seen examples of policies that provide small response times by discrimi-
nating in favor of small jobs. In all of the policies we have studied, this discrimination is accomplished by
using job size or remaining size information to prioritize. However, in many applications job size informa-
tion is not available, thus some other job statistic must be used as a substitute for job size when scheduling.
One statistic that can help provide information about the remaining size of jobsagéf® k.a. the attained
service) of a job. To see this, consider the case when the service distribution has a decreasing failure rate
(DFR). In this setting, the larger the attained service the longer the remaining size of th8|jsldesigned

to perform well in exactly this setting.

FB is not as common a policy as many of the disciplines we have discussed in this chapter and as a re-
sult the literature oirB in different communities has developed somewhat independently. The policy itself
has been referred to by a number of different names, including Foreground-Background Processor-Sharing
(FBPS), Least-Attained-Service-Time first AS , or LAST), and Shortest-Elapsed-Time fir&ET). Cur-
rently though, it seems th#@&B is the commonly excepted name, thoughsS is still preferred in some
Computer Science communities.

This cacophony of names already provides a fairly complete description of the workiRgs.aInder

84 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

FB the server is shared evenly at all times among the cohort of jobs with the smallest age. Thus, when a
new job arrives it immediately receives service, and continues to reside at the server until its attained service
matches that of the cohort of jobs it preempted, at which point the server is shared evenly among the cohort
and the new job. In this way, when the service distribution has a [BIBRs sharing the server among the

jobs with the smallest expected remaining size. Thus, in some seBss,behaving like a “poor man'’s
SRPT.

ThoughFB behaves likesSRPT when the service distribution is DFR, this clearly will not always be the
case. For example, if the service distribution is IFR, then the jobs with the smallest remaining size are likely
to be the jobs with the largest age. ThES is doing completely the opposite thing, and using a policy that
favors jobs with the largest age (ifeCFS) is a much better idea.

The intuition behindFB that we just described can actually be formalized in a very natural way. In
particular, Righter and Shantikumatd8 189 have proven thaFB optimizes the queue length process
among blind policies when the service distribution has a DFR, but has the largest queue length among blind
policies when the service distribution has an IFR. Nét) be the queue length (in jobs) at time

Proposition 3.18
In the GI/GI/1, let P be a blind policy and the service distribution be DFR, then for all t > 0,

N(t)FB <q N(t)P <q N(t)FCFS

Further, if the service distribution is IFR the inequalities are reversed.

This proposition already indicates thBB has very interesting behavior with respectA¢T’]. For
instance, using Little's Law, it follows thaE[T]"? < E[T]"° for DFR distributions andg[T]"? >
E[T)?S for IFR distributions. Further, it is easy to see that all blind policies have equivAléntprocesses
in the M/M/1, thusE[T]¥"B = E[T]"? in this case.

To understand more about the behavior of mean response time kEBd&re need to first derive the
behavior of the conditional response tinf&z)" 2. After deriving the behavior of'(z)"? we will return
to a discussion of the behavior 8177 5.

3.2.5.1 The conditional response time of FB

Let us begin our analysis @f(x)"? by considering the experience of a tagged arrijalpf sizex. Notice

that no job with age> = will ever receive service while there is a job with agexr in the system. Thus,
we can transform the service distribution frakhto X, = X A z without affecting theT'(z). Further,
notice that the transformed system is still work conserving. Finally, noticg tHatishes exactly when this
transformed system goes idle. Thus, if we defifé” as the steady state work in transformed system and
Ev(y) as the length of a busy period startedipowork where arrivals occur at rafeand with size)A(;, we
have

T(2)TP £ B,(x + QL'P) (3.22)

3.2: PRIORITY-BASED POLICIES 85

From this equation it is easy to obtain the moments and the transfafitwof 2 in the M/GI/1 setting.

E[T(z)]FE = 1_%(x)+2(f7?25(2))2 (3.23)
pp _ Oam@) | N 3 (dm)’

Vet = G p 50 sy (5) (824

L (o) — (1= p())(s + A= AL (s)) o HAAL 5 (5)) (3.25)

S

wherep(z) = Amy(z) andm;(z) =i [t F(¢)dt = m;(x) + ' F(z).

Since a job immediately receives service unéBt the residence time d¥B is equal to the response
time of FB. However, the forn¥'(x) underFB parallels that oSRPT so closely, that it will be useful for
analytic purposes to break the formulas for the momenEBaoihto pseudo residence time and waiting time
pieces. Thus, we define

BRE)P = =5
VarlR(@)F? = (ff’iﬂ?g;g
and
W()P £ B(QLP)
E[W ()] m
Var[W (@)™ = m* i(%y

Clearly, the formulas for the moments BB appear to be quite similar to the corresponding results for
PSJF andSRPT that we derived in previous sections. This is an indication Eatruly is discriminating
in favor of small jobs, despite the fact that it is scheduling without any information about service demands.
To illustrate the parallels betwe&B and policies that prioritize small jobs, notice that by replacingz)
in the formulas folPSJF with m(x) we obtain the corresponding formulas feB. Thus,FB is equivalent
to runningPSJF on a transformed service distribution.

However, though=B mimics the behavior oPSJF, FB clearly pays a price for not using job size
information to prioritize. Sincen;(z) < m(z), we can see that the mean and varianc€ @f) are smaller
underPSJF than undeiFB. Similarly, it is easy to bound the first few momentsZafz) ST by those of
T(x)FB,

Theorem 3.19
In an M/GI/1 queue for P € {SRPT, PSJF}, E[T(x)]" < E[T(2)]¥® and Var[T(z)]¥ < Var[T(x)]FB.

Further, we can bound the distributional behavioff¢f)”>/*" by that of (). Comparing 8.22)

86 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

10

—FB
,1---PS

* |--FCFS
“““ Bounds on FB

Figure 3.6: This figure shows the mean response tinle&fPS, andFCFS as a function of the variability
of the service distribution{?[X]). The load is 0.7 and the service distribution is a Weibull with mean 1 in
each case.

with (3.18 immediately gives that in an M/GI/T (x)757F <, T(x)F5. In addition, with a lot more work
Nuyens, Wierman, and Zwart$1] recently proved the following stochastic bound comparing [ERPT
andPSJF to FB.

Theorem 3.20
In an M/GIl/1 queue,
R({L‘)PSJF + W(m)SRPT Sst T(x)FB

Notice that it follows from Theorerfi.20that bothT’ ()57 F <, T'(x)"B andT (z) T <, T(x)"B
since we have already observed tRit:)*F7 <., R(x)"S7F andW (2)P97/F < W (x)SEPT,

3.2.5.2 The overall response time of FB

Now that we understan@(z)'”, we can use that information to analyZé7’)" 2. Like we have done in
the past, we can calculafg{T)F'? as follows:

1
E[T)FB = /O E[T(z)]dF(z)

However, as in the cases BEJF andSRPT, the complicated form oF/[T'(x)] makes it difficult to under-
stand the behavior af[T'], so more work is necessary.

We have already seen some boundg##'] 5. In particular, from Propositio8.18we know that for
all blind policiesP, E[T]|F"? < E[T]" when the service distribution has a DFR, and that the reverse holds
when the service distribution has an IFR.

3.2: PRIORITY-BASED POLICIES 87

In addition, it follows from Theoren3.20that

It is not really surprising that usingB results in larger response times than using ei$iRPT or PSJF
sinceFB does not use job size information while b@RPT andPSJF do. However, what is surprising
is that, although the mean response timd-8f is larger than those dPSJF or SRPT, in some cases
E[T)FB still has the same growth rate RSJF andSRPT. In particular, Bansal and Gamarnik prove that
E[T)FB = o(E[T)°FPT) when the service distribution is Pare®].

Theorem 3.21
In an M/GI/1 queue with X ~ Pareto(a) where o > 1 so that E[X] < oo,

O (log (%p)) ifa <2
E[T)FB ={ © (log? (fp)), ifa=2
0 (1—p)*%>, ifa > 2.

Though the growth rate a£[T')7'? is optimal in the case of a Pareto service distribution, it is clear that
the growth rate oFB is not always so good. For instance, in the M/M/1,

1
E[T|MMVEE = (1 - p) .

Even worse, in the M/D/1EB finishes every job at the end of the busy period into which it arrives. Thus,

B =0 ().

which is as bad as possible under any work conserving policy. Even distributions that are not deterministic
can cause the heavy traffic growth rateFd to be quite bad. In particular, Nuyens has illustrated that

E[T)¥B has a faster growth rate th&$ for a large class of distributions that generalize uniform distribu-
tions [159. We strengthen the result of Nuyens here.

Theorem 3.22 B
Consider an M/GI/1 with a service distribution of the form F(z) ~ a(xy — x)” for some o, 3 > 0 and
ry <ocoasx — xy. Thenasp — 1,

1
E[T]FB = 0 <(1 - p)1+1/(,6+1)>

Note that as3 — 0, we again get behavior matching the worst possible behavior under any work-
conserving policy. Further, @ — oo the growth rate converges 19 (1 — p), which is the same growth
rate ofPS.

Proof. First, note thatt[R(z)]'8 < 7=, SO it will not dominate the behavior as— 1 in this setting

88 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

and we can focus on the waiting time. Lettingr) = f(z)/F () be the failure rate, we have (as— 1),

EW"E = /xUde
0

2(1 — p())?
= 0O (/ ' ﬂp,s’:()))?“(x)dgg) for arbitrary constany
Yy X

where the second step follows from (i) noting that the contribution of sizes fréony is asymptotically
negligible asp — 1 since the load these jobs experience is bounded(py, and (ii) boundingmz(z)
betweenmns(y) and E[X2].

Thus, what remains is to understand the behavigr(ef. Using the behavior of'(z) in the statement
of the theorem, we have that as— z,

af(zy —)P~ 5

oy —2)f " (ay —2)

p(z) ~

Further, ap — 1,
TU

1—p(z) ~p—pla) =)\/ a(zy —t)Pdt ~ Ma(zy —)13

xT

Thus, choosing large enough and then letting— 1, we have

EW]FP = G)(/ZIIU%M(w)dw)

= o[a=mpre)

1
- o (o)

where the interchange of the integral and the limit in the second step is justified using the bounded conver-
gence theorem.
O

The results we have seen so far illustrate a trend that is common in resultsFihdhe heavy traffic
growth rate ofFB is better than that oPS and FCFS when the service distribution is “highly variable”,
and worse when the service distribution is “lightly variable.” However, the results we have seen so far only
consider a few specific classes of distributions, so it has not been determinepregetiesof the service
distribution lead to good/bad heavy-traffic growth rates uidirAs a step towards answering this question,
Nuyens and WiermarilpQ prove the following result. The theorem shows that a key determining factor as
to whether the heavy traffic growth ratefeB is better or worse th&®S andFCFS is whether or not there
is an upper bound on the service distribution.

3.2: PRIORITY-BASED POLICIES 89

2 2 2
—FB —FB, PS, FCFS —FB
-PS SRPT ---PS
15 SRPT, FCFS| 15 15 SRPT|
5 R 5
2 YT e 2. 2
E E =
w w (i}
0.5 0.5
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
load, p load, p load, p
(a) Deterministic (b) Exponential (c) Pareto e = 1.2)

Figure 3.7. This figure illustrates the behavior of mean response time uRBerSRPT, FCFS, andPS

as a function of load. The mean response time is scaled by- p) in order to highlight differences between

the policies. In (a) job sizes are deterministic, in (b) job sizes are exponential, and in (c) job sizes are Pareto
with a = 1.2 (thus they havé?[X?] = o). In all cases,E[X] = 1. Note that=CFS is not included in (c)
because?[T)F“FS = o in this case.

Theorem 3.23
Consider an M/GI/1 queue with a continuous service distribution with failure rate ji(z).

(i) If the service distribution is bounded, then E[T|F'B = Q(1/(1 —p)) as p — 1.

(ii) If the service distribution is unbounded and mz(z)u(z) = O(1), then E[T]¥B = O(1/(1 — p)) as
p— L

Note that the conditionii() holds for most well-behaved unbounded distributions. For instance, if
E[X?] < oo, then it simply requires that(x) is bounded, which occurs under all common unbounded distri-
butions (though itis possible to construct examples where this is not the casg(e)g= > .~ ; Lnng2-n)(2))-

On the other hand, iZ[X?] = oo, thenu(x)ma(x) = O(1) requires a tradeoff between the growth of the
second moment and the rate of decrease of the hazard rate. However, this tradeoff is met under most com-

mon distributions. For example, under regularly varying distributjofag = ©(1/z) andms(z) = O(x).

Proof. ~ We will start by proving the result in the case of a bounded service distributionzL&e the
upper bound of the service distribution. Note that) > p(x) andp’(z) = Az f(x). Then, we have for all
y =0,

FB U mg(x) f(z) .
EIT] —/o 21— p(a))?"
) [Auf@) 1
S e

v
3
»>e
S
@\H
S|
b\
&
Q
Il
7N
N—
Q
wn
e
l
=

90 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

To prove the result in the case of an unbounded service distribution, nof&that= \F(x). Then for all
z >0,

[z dma(z) f(x)
A P Wd

BIX] [P) o[P
STt | aa @+ [m@nesg e @29

Sincema(z)u(x) = O(1), there exists am and anN such thatma(z)u(z) < N for z > xy. Taking
z = xg in (3.26) yields that

E[X] Az :1:2F (x P (z)
E[T]FB < o , 2(0 O 0 / m2 (1 ﬁ(;]j))de
E[X] N
= 1—p+0(1)+1*p: <1p> asp— b

3.2.5.3 When is FB competitive?

Now that we have spent some time analyzing the mean response timeRBydet us contrast the behavior
of FB with that of SRPT. In particular, let us move to a discussion of the competitive ratiBBf Since
FB does not use job size information to schedule, it is clear that it cannot be competitive across all service
distributions — we have already discussed a number of distributions ViAieiis worse than evei®S.
However, when the service distribution has a DFR, we have seeRBhatanages to “prioritize small jobs”
in a certain sense. That BB prioritizes jobs with small ages, and jobs with small ages are more likely to
have small remaining sizes under DFR distributions. Thus, under DFR distributions, one expe€B that
provides smallE[T1], though the response times will certainly be larger than in policies suBt$aE that
do not time-share.

Becausd-B optimizesE[T'] among blind policies when the service distribution is DFR, we know that
for all DFR distributions,E[T]F? = O (flp) However, since?[T)F'? = E[X]/(1 — p) in the MIM/1,
it is clear that=B is not competitive for all DFR distributions. But, if the failure rate is decreasing strongly
enoughFB is competitive. In particular, we will show that for distributions where the failure rate, denoted
wu(x), is such thawu(x) = ©(1/z), FB is competitive. This property holds for a large class of practical
distributions: O-regularly varyingdistributions. The class of O-regularly varying distributions generalizes
regularly varying distributions, and thus includes a wide array of practical distributions such as Pareto dis-
tributions. For some background on these distributions, see Se&ctich3

Theorem 3.24 B
In an M/GI/1 queue with F' € OR, FB is competitive with respect to E[T].

Proof. Let us begin by deriving a sufficient condition for proving tk& is competitive. In particular, we

3.2: PRIORITY-BASED POLICIES 91

will argue thatFB is competitive when

1 _
sup p()

P <y <00 (3.27)

To prove this, we calculate as follows. Noting thgt?(x)]'5 is exactlytggg E[R(x)]PSTF andE[W (2)])F'8
is exactly(1 — p(z))?/(1 — p(x))2E[W (2)]°FFT we have

rB _ 1—p))| PSIF 1-p(x)\’)|SRPT
BT = (SO BRI+ (1255) B

1-p(x)\’ PSJF SRPT
(1245 (BR@IP" + B @)

< Y (E[R@)F + BW (2))5RFT) (3.28)

Further, we have that

PSJF SRPT x vod
EIR())"S" ~ B[R() | =
_ /:” (p(x) — p(t))dt
o (L—=p@)(1—p))

/:” (p(x) — p(t))dt

o (1—p(2))?

A5t (E)dt

(1= p(2))?
< 2B[W (x)]P T (3.29)

Combining B.28 and @3.29 we have that
E[T(2)]"P < 3y*B[T (2)*"

Thus, after proving that3(27) holds for the class of O-regularly varying distributions, it follows that
E[T]FB < 3’)/2E[T]SRPT.

To prove that 8.27) holds, begin by noting that for all bounded away from 1,3(27) holds trivially.
Next, noticep — p(z) = X [* tdF(t) and, from partial integration we have that

/ h tdF(t) = — / h tdF(t) = —tF ()52, + / h F(t)dt = xF(t) + / b F(t)dt

x

It then follows that

— CtdF(t F
lim Tim ~— 28 iy M ~ 14 gim 2@
z—00 p—1 1 — p(x) T—00 fac F(t)dt T—00 fa: F(t)dt

Now, we complete the proof by applying Karamata's TheorenI® distributions from §6)].

92 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

3.2.6 Other priority based policies

To this point, we have focused almost entirely on “smart” priority based policies, i.e. policies that prioritize
small jobs. It is natural to focus on such policies since prioritizing small job sizes typically results in
policies that provide small mean response times. However, it is important to at least mention policies that
use a contrasting heuristic — policies that prioritize large job sizes.

We have seen that there are a wide variety of different policies that prioritize small jobs, similarly
there are a number of different policies that prioritize large job sizes. The three most common poli-
cies are Longest-Remaining-Processing-Time fifRRT), Preemptive-Longest-Job-Fir§l(JF), and non-
preemptive Longest-Job-FirdtJF). Though, for the most part, these policies are not of practical interest,
they provide an interesting contrast in behavior when compared with policies that favor small jobs. Further,
we will find them useful as upper bounds on a number of occasions in the thesis.

Our goal in this section is simply to provide some background introducing eacR®T, PLJF, and
LJF.

3.2.6.1 Longest-Remaining-Processing-Time (LRPT)

UnderLRPT, the job in the system with the longest remaining size is given preemptive priority. Thus,
underLRPT no job can finish service before the end of a busy period because if it were to do so it would
have smaller remaining size than another job in the system. As a leR&T finishes every job at the last
moment possible under any work conserving policy.

Using the above observation, the analysi&€ BPT is fairly straightforward. In particular, a tagged job
of sizex will finish at the end of the residual busy period into which it arrives. That is, it will finish at the
end of a busy period started g+ x work. Thus,

T(z)" T = B(z 4 Q)

The moments and transform bRPT follow immediately from the above formula.

oz AE[X?
B[T ()" = =, T2)
LRPT _ Aa?E[XQ])\E[Xg] §)‘E[XZ] ?
Var[T(x)] = o ptapta <(1 - p)2>
Loy (s)HHT = (1 —p)(s+A = ALp(s)) o~ 2(sHA=AL (5))

S

It is important to notice thak[T]*#FT = ©(1/(1 — p)?) asp — 1, which provides an upper bound on the
heavy traffic growth rate of any work conserving policy.

3.3: CONCLUDING REMARKS 93

3.2.6.2 Preemptive-Longest-Job-First (PLJF)

The second policy that favors long jobs which we will introducBligF. UnderPLJF the job in the system
with the largest original size receives preemptive priority. Thus, a job ofssizan only receive service
when there are no jobs of sizez in the system.

As with PSJF, PLJF can be viewed as the limiting case of a preemptive priority queue. Thus, we can
obtain the moments and transform of response time directly from the results in S&etidri-or example,
we can write the mean and varianceTdfr) as follows:

PLJF T /\(E[} ma(x))

Bl @) l-ptple) 21— p+p(a))?
prir Az(BIX? = ma(x) | MEIX?] = ms(x) | 3 (ME[X?] - ma(x)))
Varll@I = =, = my T a—p+p<»3'+4< u—p+pu»2>

3.2.6.3 Non-preemptive Longest-Job-First (LJF)

The last policy we will discuss in this section idF. UnderLJF the job in the system with the largest
original size receives non-preemptive service. That is, at completion instants, the largest job in the queue is
chosen for service, and the service of this job is not interrupted, even if a larger job arrives.

As with SJF, LJF can be viewed as the limiting case of a non-preemptive priority queue. So, the
moments and transform of the response timeJ# follow from taking the appropriate limits of the results
in Section3.2.2 In the case of the first and second moment#'@f), this results in:

LJF __)\E[Xﬂ
BE@IT = o o e
E[W($)2}LJF AE[XB] + Azmg(l')E[XQ]

(I—=p+p@)? (1—p+p(x))!

3.3 Concluding remarks

In this chapter we have provided an overview of the common scheduling policies and analytic techniques
that are the basis of the theoretic study of scheduling in queueing. We have covered a range of simple
common policies, such &CFS, PLCFS, andPS, in addition to a range of priority based policies, such
asPSJF, SRPT, andFB. For each of these policies we have discussed primarily the mean response time
metric, though we often presented the Laplace transform of response time as well. In addition, we pre-
sented a number of different techniques that are used to analyze scheduling policies in the M/GI/1 setting.
These techniques have ranged from tagged job techniques and branching process methods, to asymptotic
approaches and renewal arguments.

Figure3.8illustrates the comparison between a number of the policies we have discussed. We have seen
thatFCFS, probably the simplest and most common policy, actually performs very well when job sizes are
not variable. For instance, under deterministic job sZ€ES is optimal for E[T]. But, when job sizes are
highly variable FCFS is a disaster because many small jobs are forced to queue up behind largeSobs.
another simple and common policy, time-shares the server in order to allow small jobs to bypass large jobs
in the queue. This is effective when variability is high, @18 outperformd=CFS if C? [X] > 1, but when

94 CHAPTER 3: AN INTRODUCTION TO COMMON POLICIES

2 : 2 2
---FB ;. —FB, PS, FCFS —FPS
—PS o --PSJF ---FB
1.5/ FCFS, SRPT, PSJH 1.5l SRPT 1.5] - PSJIF
- SRPT]
5 R 5
2 2 e .
E E E | T
w u - w
05 05 Tl 0.5
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
load, p load, p load, p
(a) Deterministic (b) Exponential (c) Pareto e = 1.2)

Figure 3.8: This figure illustrates the behavior of mean response time as a function of load under a range
of common policies. The mean response time is scalédl byp) in order to highlight differences between

the policies. In (a) job sizes are deterministic, in (b) job sizes are exponential, and in (c) job sizes are Pareto
with o = 1.2 (thus they havé?[X?] = 0). In all cases,E[X] = 1. Note that-CFS is not included in (c)
because?[T)F“FS = o in this case.

job sizes are not variabl®S can give up as much as a factor of 2 when compared W@RS. However,
beyond these simple policies, we have seen that policies that prioritize small jobs can provide dramatic
improvements in mean response tinBRPT andPSJF perform well across all service distributions, and
provide orders-of-magnitude improvements in mean response time when job size variability is high. Further,
even without knowing job size&B is able to almost match the performances&®&PT andPSJF when job

sizes are highly variable.

In this chapter we have primarily presented classical results about scheduling policies. However, apart
from the simplest policies, classical results provide very complex formulas characterizing the behavior of
mean response time. For example, the in order to calchlgte’ 77 it is necessary to numerically evaluate
a triply-nested integral. Typically, it is faster to simulate the result than it is to evaluate it numerically. The
complexity of the results have hidden many behavioral properties of these policies for many years. To
remedy this, we have provided a number of new results characterizing the behavioral properties of priority-
based policies such &PT, PSJF, andFB. In particular, we have provide new results showing 8RPT
andPSJF are “nearly insensitive” to job size variability (Theore®§ and3.10 and we have proven a
number of new results characterizing the growth ratéZ§f] as a function of load under priority based
policies (e.g. Theorem3.16and3.23. Surprisingly, we have found that the growth rate under policies that
prioritize small jobs is strongly tied to properties of the service distribution, as illustrated in Adure

Let us end this chapter by reminding the reader that there are many gaps between the traditional theo-
retical results that we have summarized in this chapter and the needs of system designers. As we discussed
in Chapterl, the idealized policies traditionally studied in theory are not implemented in practice. Further,
many other metrics besides mean response time are important in practice. Finally, the M/GI/1 model that
we have focused on in this chapter ignores many factors that are important in practice. Bridging these gaps
will be the focus of the remainder of the thesis.

parT Il

Scheduling Classifications: Moving
Beyond Idealized Policies

95

Theoretical research studying the scheduling of queues has traditionally focused on
a limited range of idealized scheduling policies, however these idealized policies
are hardly ever implemented in their pure form in computer systems. For example,
though many recent systems have been designed using the heuristic of “prioritizing
small jobs” none have implemented p@BRBPT. There are many reasons for this.
One reason is that, in many cases, job sizes and remaining sizes are not known
exactly, and must be estimated. Another reason is that metrics beyond mean re-
sponse time are also important. For instance, if one wants to provide “fair” service
or QoS guarantees, then hybrids®RPT will outperform the pure version. In
addition, one can easily list many other reasons why the idealized policies that are
traditionally studied in theory are not used in practice.

To provide theoretical results that are applicable to the policies implemented in
practice, it is important to move beyond the study of individual scheduling poli-
cies. In Part Il of this thesis, we develop a new theory for scheduling based on
studying scheduling heuristics and techniques instead of individual policies. For
example, though pur8RPT is not implemented in practice, the policies that are
implemented still obey the same general heuristic of “prioritizing small jobs.” So,
by characterizing the performance of all policies that “prioritize small jobs,” we
can provide theoretical results for the policies that are implemented in practice.
Further, the analysis of scheduling classifications exposes the performance impact
of scheduling techniques and heuristics, which provides a deeper theoretical under-
standing of scheduling than the analysis of individual policies.

Part 1l is divided into two chapters. In Chapt#mve introduce classifications of
scheduling policies based @theduling heuristicg¢e.g. we introduce classes of
policies that prioritize small/large jobs); and then in Chaptese introduce classi-
fications of scheduling policies based secheduling techniqudg.g. we formalize

the class of age based policies, the class of remaining size based policies, and oth-
ers). Throughout these chapters, in addition to defining the classifications, we prove
bounds on the mean response time of each class.

The classifications we introduce in Part Il of the thesis serve as building blocks for
the remainder of the thesis. We will return to these classes throughout the thesis in
order to discuss their performance with respect to other performance metrics such
as fairness and predictability.

CHAPTER 4

Classification via scheduling heuristics

Many recent designs of computer systems have been motivated by the optim&iRPdf for mean re-
sponse time, but none have implemented [®IRPT. For example, in web servers, the versiorS&tPT
that was implemented uses only 5-10 priority levels and prioritizes based on estimates of the remaining
service demands of jobs. However, the policies that are implemented, though n@RRTe still obey
the heuristic of “prioritizing small jobs.” Thus, to provide theoretical results that are applicable to the poli-
cies implemented in practice, it is important to move beyond the study of individual scheduling policies
and study scheduling heuristics instead. By proving results about a class of policies that “prioritizes small
jobs” instead of just proving results abdBRPT, we can provide results for the policies that are actually
implemented in practice.

The heuristic of “prioritizing small jobs” is probably the most common scheduling heuristic, but many
others are also used. In this chapter, we introduce and study classifications of scheduling policies that
formalize four common scheduling heuristics:

() TheSMART classification formalizes the heuristic of prioritizing small jobs

(il The FOOLISH classification formalizes the heuristic of prioritizing large jobs
(i) TheSYMMETRIC classification is a broad generalization of the class®&policy
(iv) ThePROTECTIVE class formalizes a notion of fairness

These classes are illustrated in Figdrd The SMART class was introduced by Wierman et. &4[]; the
FOOLISH class is novel to this thesis; ti &Y MMETRIC class was introduced by Kell{t1 3 in the context
of queueing networks; and tiRROTECTIVE class was introduced by Henderson and Friedri&h [

The range of scheduling heuristics spanned by these four classes is broad enough to allow us to charac-
terize the impact of disparate scheduling heuristics. These four heuristics represent the type of scheduling
used in a wide range of computer applications. The heuristic of biasing towards small jobs sizes has been
applied to a range of applications, including both web seni&s96, 187 and databased 88 139. While
FOOLISH policies are not practical in many settings, in some cases it is necessary for large user tasks
to receive precedence over smaller background t&5¥KMMETRIC disciplines, such aBS, are primarily
used to model the behavior of scheduling policies in network applications, such as rddta&. Finally,

99

100 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

DR, S .- FOOLISH "™+

/ oo SMART, L R \

- ~~ \

N 7 7 FOOLISH* s\

{ Non-preemptive .----- 3o i PROTECTIVE |ooooeeoeeeo o
U / M. pS. T s~ Blind
' [Non-preemptive i ROS P P PLEFS b 1

u . (] 1 |
i size based P . SYMMETRIC :
o i | LCES e i . :
[SlFe . 1
| g SOy PSSy S Sy Sy S SpSp 1
1 [: :
s LIFg i i ; FCFS Age based ofB 11

Figure 4.1: An illustration of the common policies that fall into each of the classifications studied in
this thesis. The scheduling heuristic classifications introduced in this chapter are shown in ovals and the
scheduling technique classifications introduced in Chaptare shown in rectangles.

PROTECTIVE policies have recently been suggested for use in applications where concerns about fairness
are prevalent, such as web servers.

For each of the four scheduling heuristics described above, this chapter provides an introduction to the
classification that includes examples of policies in the class and bounds orEfbtl)| and E[T] for
policies in the class. The bounds é1T'] help to characterize the overall efficiency of each heuristic and
the bounds o [T'(x)] illustrate the effect of scheduling heuristics on the response times of individual job
sizes, which is important when contrasting the impact of the heuristics.

The chapter is organized as follows. We begin with 8ART class in Sectiosd.1 Because of the
practical importance of “prioritizing small jobs,” we will also discuss the tradeoff between breadth of the
class and the tightness of results provable about the class in Séiosing a generalization SMART
calledSMART.. The SMART. classification will allow us to include policies that “prioritize small jobs”
without exact size information. Next, we move to a discussion oFHOE®LISH classification in Section
4.3 which is followed by discussions of tt @Y MMETRIC class in Sectio®.4 and thePROTECTIVE
class in Sectiod.5. Finally, we conclude the chapter in Sectib® by contrasting the bounds dii7’] and
E[T'(z)] under the four scheduling heuristics discussed in the chapter.

Though we will discuss a number of scheduling heuristics in this chapter, one heuristic in particular is by
far the most interesting from a practical perspective: that of prioritizing small jobs. Thus, the definitions of
SMART andSMART. represent an important contribution both theoretically and practically. We will prove
that all SMART policies are within a factor of 2 of optimal with respect to mean response time. Further,
we will show that even when policies prioritize small jobs using only estimates of job sizes, they are still
within a constant factor of optimal with respect to mean response time, where the constant depends on the

4.1: THE CLASS OF SMART POLICIES 101

accuracy of the estimates. These results provide a theoretical validation of recent designs for web servers,
wireless networks, etc. that apply the heuristic of “prioritizing small jobs” but do not implemen§RPa&

[182 131, 130 102 13¢. Further, these results aid system designers in determining how good job size
estimates must be to provide a desired level of performance.

4.1 The class of SMART policies

Itis well known that policies that “prioritize small jobs” perform well with respect to mean response time. As
we have already discussed, this idea has been fundamental to many computer systems applications ranging
from web servers and routers to supercomputing centers and operating systems. However, despite the fact
that the same heuristic guides all these implementations, the policies that result differ due to (i) implemen-
tation restrictions and (ii) concerns about metrics other than mean response time (e.g. avoiding starvation
of large jobs). In particular, hybrid policies are used instead of the idealized policies that prioritize small
jobs that are studied in the theoretical literature, sucBRBT andPSJF. The SMART class formalizes
the heuristic of “prioritizing small jobs” in order to provide “SMAIl Response Tifiassing three simple
properties described below. These three properties are broad enough to allow the class to include practical
hybrid policies and simple enough to be easy to understand and maintain.

In this section, we will define the class8MART policies and then validate the heuristic of “prioritizing
small jobs” by deriving simple bounds on the mean response time of any policy 8BMART class. Our
bounds illustrate thadll policies in theSMART class have near optimal mean response times. In fact, all
SMART policies have mean response time within a factor of two of optimal across all loads and all service
distributions. In addition to bounding the overall mean response time @MART policies, we also prove
stochastic bounds on the conditional response tifife), underSMART policies.

Though we only bound the response timeSMART policies in this section, th&MART class will
serve as a fundamental part of the thesis, and so we will return ®NHERT class throughout the thesis in
order to discuss hoBMART policies perform with respect to many other important performance metrics,
e.g. we will discuss the response time distribution urBMART policies in Chapte6 and we will discuss
the fairness oBMART policies in Chapter.

4.1.1 Defining SMART scheduling

We will now formally define theSMART class. Jobs will typically be denoted hyb, or c. Joba will have
remaining size-,, original sizes,, and arrival time,. The original sizes, remaining sizes, and arrival times
of b andc are defined similarly. Throughout, we defijod o to have priority over jolb if job b can never
run while joba is in the system.

We now defineSMART as follows.

Definition 4.1 A work conserving policf? belongs to th6MART class, denote& € SMART, if it obeys
the following properties.

Bias Property: If r, > s,, then joba has priority over jobb.

We thank Hanoch Levy for his suggestion of this acronym.

102 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

lower
priority

lower

tagged arrival priority

\

tagged job
remaining
size

remaining
size

could be higher
or lower priority

could be higher
or lower priority

higher
priority

higher
priority

0 —mow— original sizé¢ ————— 0 — 48— original size

Figure 4.2: These diagrams illustrate the priority structure induced by the Bias Property in the definition of
SMART (Definition4.1). Furthermore, the Consistency and Transitivity properties irSNART definition
guarantee that a job will find at most one job with higher priority in the white region upon arrival.

Consistency Property: If job a ever receives service while jdbis in the system, thereafter jabhas
priority over jobb.

Transitivity Property: If an arriving job b preempts jole at timet; thereafter, until jobc receives service,
every arrival,a, with sizes, < s; is given priority over joh:.?

This definition has been crafted to mimic the heuristic of biasing towards jobs that are (originally) short
or have small remaining service requirements. Each of the three properties formalizes a notion of “smart”
scheduling. The Bias Property guarantees that the job being run at the server has remaining size smaller
than the original size of all jobs in the system. In particular, this implies that the server will never work on
anew arrivalof size greater tham while a previous arrival of original size is in the system. The priority
structure enforced by the Bias Property is illustrated in Figluge

The Consistency and Transitivity Properties ensure coherency in the priority structure enforced by the
Bias Property. In particular, the Consistency Property prevents time-sharing by guaranteeing that after job
is chosen to run ahead of job b will never run ahead of jol. Said a different way, this means that once
job a is given priority over jokb, job a will forever have priority oveb. This makes intuitive sense because
our priority function is based on the heuristic of giving priority to small jobs, and as jateives service,
it can only get smaller. Finally, the Transitivity Property guarantees3MART policies do not second
guess themselves: if an arrivals estimated to be “smaller” than jél(and hence is given priority over job
b), future arrivals smaller thasm are also considered “smaller” thamntil b receives service.

It is important to point out that the definition &VART has been constructed so as not to enforce a
total ordering on the priorities of jobs in the system. Instead, orpardial orderingis forced, and thus
SMART policies can, for instance, change how the policy makes decisions at arrival and departure instants.
See Figure4.3 for an example. This is an important point to bring out because traditional analysis of

Note that every such jobwould have had priority over jobat timet due to the Bias Property sineg < s, = r4(t), where
rp(t) is the remaining size df at timet.

4.1: THE CLASS OF SMART POLICIES 103

Time 0 Time 1 Time 8 Time 9
job a arrives job b arrives job ¢ arrives job d arrives
S
= joba oba jobe jobe
2 [s,=10,r,=10] | 5,=10,r,=9] | s =3,r.=3 s,=3,r,=2
2 | | N
2 job b job a job a job d
il s, =11, r,=11 s, =10,r =12 s,=10,r,=2 §;=5 ;=
=
- ‘ \/
job b job b
s, =11, r, =11 s, =11, r, =11

Figure 4.3: This example illustrates that tf@MART definition only enforces a partial ordering on the
priorities of jobs in the system. ThusSMART policy may change its priority rule over time, e.g. from
PSJF to SRPT at time 9 in the example. In the diagram, an arrow fraro b indicates that has priority
overb. Up until time 9, jobs have been scheduled accordin@&JF . However, after time 9, iIPSJF
scheduling is continued, jol will receive service before job, and if SRPT is used instead, jol will
receive service before jolh Both of these choices are possible regardless of the priority rule used up to
time 9.

scheduling policies assumes that policies obey one fixed priority rule, 8MIBRT policies may change
their prioritization rule over time. This fact complicates much of the analysis cBMART class, but (as
we will see) is important for the applicability of the classification to practical settings.

4.1.2 Examples of SMART policies

Many common policies are part of tf®MART class — Figurel.1 provides an overview. Of course, the
SMART class includeSRPT andPSJF. Further, it is easy to prove that tIBMART class includes the

RS policy, which assigns to each job the product of its remaining size and its original size and then gives
highest priority to the job with lowest product. Likewise, tBMART class includes many generalizations

of these policies. SpecificallBMART includes all policies of the fornk*S7, wherei, j > 0 and a job is
assigned the product of its remaining size raised tatthpower and its original size raised to tfth power

(where again the job with highest priority is the one with lowest product). IMART class also includes

a range of policies having more complicated priority schemes. To illustrate this breadth, we introduce the
SMART classification, a subset 8ART including a range of static priority policies.

Definition 4.2 A policy P € SMARTx if, at any given timeP schedules the job with the highest priority
and gives each job of sizeand remaining size a priority using a fixed priority functiop(s,) such that
for s; < sgpandry < ro, p(s1,71) > p(s2,r2).

104 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

Note thatSMART x includes all commorBsMART policies (e.g.SRPT, PSJF, andRS), but that there
are still manySMART policies that are not iISMARTx.

Theorem 4.1
SMARTx* C SMART

Proof. Suppose policy® € SMARTx*. To see that the Bias Property is maintainedsleandr; be the
original size and current remaining size of a tagged job in the queue. Suppasdr, correspond to the
the original size and current remaining size of another job in the queue such tvat, . It follows that
sg > 1y > s1 > 1. Thus,p(sa,m2) < p(s1,71), SO job 2 will not be served.

To see thaBMART x policies obey the Consistency Property observephatr) > p(s,r2) forry < ro
under allSMART* policies. Thus, while serving, a job can only increase its priority, which is already the
highest in the system.

To see thaBMART x policies obey the Transitivity Property, assume that an arrival withssipeeempts
ajob in service with size; and remaining size;. Thusp(si,71) < p(s2, s2). Under anySMARTx policy,

a future arrival of sizes < so, must haven(ss, s3) > p(sa, s2) > p(s1,71), which completes the argument.

Finally, notice thaSMART is strictly larger tharbMART«. We can see this by giving an example of a
policy in SMART that is not iSMART«. One such example is a poli¢ythat simply alternates the priority
function across busy periods, i.e. uses priority functiofs,) for odd numbered busy periods and priority
functionpsy(s, r) for even numbered busy periods whetie# p, are both iI'SMART x.

O

Given the range of performance metrics used in modern computer systems, it is of practical importance
that SMART includes such a wide range of static priority policies. In particular, systems typically need to
perform well for a combination of metrics, e.g., mean response time, mean slowdown, and response-time
tail. For many of these metrics, the optinBMART policy is notSRPT or PSJF, it depends on the service
distribution. For instance, no singBMART policy can optimize the mean slowdown across all service
distributions, thus the best choice for optimizing a combination of mean response time and mean slowdown
depends on the service distribution. A key motivation for characterizing the class as a whole instead of
studying the individual policies in the class is that no sirf§MART policy is optimal for all applications.

Apart from static priority policiesSMART also includegime-varying policiesi.e. policies that can
change their priority rules over time based on system-state information or randomization. These generaliza-
tions are possible because BRIART definition enforces only partial orderingon priorities of jobs in the
system. It is of enormous practical importance that time-varying policies are inclu@dART because
it allows system designers to use BMART class in order to perforronline multi-objective optimiza-
tion. Specifically, suppose a system designer wants to optimize a secondary objective while still providing
small mean response times. In order to accomplish this, the system designer can implement a parameter-
ized version ofSMART, such as prioritizing based ai(s,r) = s~‘ 7, and then use machine learning
techniques to search the spdcgj) online for theSMART policy that optimizes the secondary objective.
(Note thati andj can be chosen to achie®RPT, PSJF, RS, and many other policies.) This technique can
be extremely useful in web applications where the service distribution is time-varying and thus the optimal
scheduling policy is not static. BecauS®ART includes time-varying policies, the bounds on the mean
response time from prior work and on the tail of response time proven here will hold even as the priority

4.1: THE CLASS OF SMART POLICIES 105

function varies. The inclusion of online optimization policies is another key benefit of studyiSMART
class as a whole, as analysis of such policies is absent from the literature.

4.1.3 Policies excluded from SMART

To this point we have only discussed the breadtBMART; however it is also important to note that many
policies are excluded froBMART. Clearly, SMART does not include policies that give priority to large
jobs such ad.JF, PLJF, andLRPT. In addition, SMART does not include policies that only “weakly”
prioritize small jobs. For exampl&MART does not include any non-preemptive policies, not even ones
like SJF that prioritize small jobs; nor does it include policies that do not use knowledge about the job sizes
(blind policies), not evelrB.

The exclusion of these policies is a result of the tension betwednéhdthof the class and thiightness
of the results provable about the class. In particular, excluding policies si&HandFB that bias weakly
towards small job sizes is necessary in order to show3MART policies provide a near optimal mean
response time across all service distributions and all loads. For example, t83kgtan provide good
mean response time when the second moment of the service distribufi%A} is small, the mean response
time of SJF is arbitrarily larger than the optimal ds[X2] — oo. Similarly, thoughFB can provide near
optimal mean response time under service distributions having decreasing failure rates, when the service
distribution has an increasing failure rakB is one of the worst disciplines to use. In particular, when the
service distribution is deterministic, the quotidiitl’]™8 / E[T]°RPT can be arbitrarily large.

The tension between the breadth and tightness of the class also leads to the exclusion of policies that
use only job size estimates and that use only a finite number of priority levels (such policies violate the Bias
Property). Itis particularly unfortunate to exclude these policies because in many cases system designers are
forced to use job size estimates and simplify implementations by using only 5-10 priority levels without sac-
rificing too much performance in practice, see for exam®g 180, 131]. We will discuss a generalization
of SMART that includes such policies in Sectidr®.

4.1.4 Bounding response times for SMART policies

The strength of th&MART classification comes from the fact that we can show tha®BsIART policies
have near optimal[T']. Thus, allSMART policies, even practical hybrid policies, provide provably “SMAII
Response Times” by “doing the SMART thing.”

Theorem 4.2
In an M/GI/1 queue, for P € SMART:

We defer details of the proof of TheoreftiRto Sectiord.1.4.2

Theorem4.2 serves as a validation of tH®MART class. It proves that aBMART policies behave
like SRPT in a very strong sense. Further, this result is of practical importance because it guarantees that
all SMART policies, even ones with strange time-varying priority schemes, provide near optimal mean
response times regardless of the load and regardless of the service distribution. Thus,evenland
E[X? — cothe E[T]F for all P € SMART will stay within a factor of two of optimal. In contrast, in this

106 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

---PSJF ---PSJF
-~ SRPT -~ SRPT

o
=
&

E[T(X)]/x
E[T](1-p)

o
&)

0 5 10 15 20 b 02 04 05 08
@) E[T(z)]/x (b) E[T](1 - p)

Figure 4.4: This figure illustrates the bounds di7T'(x)] and E[T] under the class cBMART policies
in Theoremgl.4and4.3. The shaded area indicates the response times attainable 88##RT policies.
In addition, the behaviors of the two most comnSMART policies,SRPT andPSJF , are illustrated. In
both plots the service distribution is taken to be Exponential with mean 1, and the load in (a) is 0.7.

settingE[T]"CFS and E[T]"° may be arbitrarily larger than the optima[T).

Remark 4.1 1t is important to note that Theorerh.2 is tight. Clearly, the lower bound is tight since
SRPT € SMART and E[T|*FFT is optimal. To see that the upper bound is tight, we consider the M/D/1
setting where all jobs have sizeln this setting SRPT is actually doing=CFS, thus

2(1-p) 1—p

Further, in this settingPLCFS € SMART (this only holds in the M/D/1 setting). Singg7]/DP/1/PLCFS —
b/(1 — p), we can see that

2
E[T]M/D/l/SRPT —b Ab b1 —p/2)

E[T]PLCFS

M ESRPT T T

This observation provides a nice intuitive understanding of why the factor of 2 arises in Thé&enit
comes from the freedom in how jobs of very similar sizes are scheduled.

Though Theoremt.2 is simple and tight, it provides little intuition about how parameters such as
load and job size variability influence the mean response tim&WART policies. The problem is that
E[T)SRPT is quite complicated to express, as we discussed in Segta Though we have proven sim-
ple bounds on the behavior 8RPT in Theorem3.1Q naively combining these bounds with Theordr
results in bounds that are very loose in many cases, thus it is important to approach bounding the response
times of SMART policies directly.

4.1: THE CLASS OF SMART POLICIES 107

Theorem 4.3
Consider an M/GI/1 queue with P € SMART. Let X; and X5 be independent random job sizes. Let K

satisfy Amao(z) < Kzp(x) and h(p) = (%) log <ﬁ> Then,

2
rE] < BT < (5 + 4 (14 2o) + (5) 1) Elx)
We defer the proof of Theorem.3 to Section4.1.4.3 however we provide a simple illustration of the
bounds in Figuret.4. Further, it is important to point out that the lower bound in Theorefis the
same as the lower bound we proved 8RPT in Theorem3.1Q thus it becomes tight when we consider
Pareto distributions. Further, the upper bound in Theoteilbecomes tight as the distribution approaches
a deterministic distribution.

Though we defer the details of the proofs of Theoreih®sand4.3to Sectionst.1.4.2and4.1.4.3 the
method we use to prove these theorems is the following. We first bound the conditional response time,
T'(z), using the next theorem (Theoreh¥) and then decondition to obtain bounds on the overall response
time. Thus, Theorem.4 acts as a stepping stone toward obtaining TheatgnHowever, Theorem.4is
important in its own right as well: it will be of primary importance when studying fairness later in Chapter
7.

Theorem 4.4
In an M/GI/1 queue, for all x and all P € SMART,

R(IL’)SRPT—I-W(.’L’)PSJF <q T(x)P <q R(ZE)PSJF—I-W(ZL’)SRPT

Further,

roodt Ama(x) p x Ama(x)
L m sty S @) S s s

The proof of this theorem is deferred to Sectibth.4.1

Remark 4.2 It follows from combining Theored.4 and Theoren8.20that T'(z)" <y T'(x)F® for all
P € SMART.

Observe that the bounds in Theordm are a combination of the response times of the two most com-
mMonSMART policies,SRPT andPSJF. Intuitively, this is not surprisingPSJF maximizes residence time
amongSMART policies because it allows the greatest number of arrivals to preempt service, and minimizes
the waiting time because it does not allow any jobs with larger original size and smaller remaining size to
obtain higher priority. FurtheSRPT minimizes the residence time amo8YART policies because only
arriving jobs with original size smaller than the tagged jobs remaining size are given higher priority, and
maximizes waiting time amon§MART policies because it allows the greatest amount of work already in
the system to finish before an arriving job. This observation illustrates the tightness of the bounds, and
the proof of the theorem formalizes these ideas. Note that, though the proof of Thédreon SMART
presented here is quite involved, a much simpler proof is possible if Thebreisiproven instead for only
for P € SMART .

108 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

It is important to note that, thougBMART policies all have quite similar response time behavior,
SMART policies can differ significantly in their performance on other metrics. For instance, in ClTapter
we will see that differenEMART policies can behave differently with respect to fairness and predictability
measures. Thus, one way to view BBART class is as a starting point for picking a scheduling policy
when you want to optimize both[T'] and some other secondary metric of interest.

4.1.4.1 Proofof Theorem 4.4

In this section we will prove Theored.4. We start with two lemmas. Leb!’ denote the time average
portion of work in the system at the Poisson arrival of a tagged job ofssidet will complete undeiP
before the tagged job does. Note that un8BIART policies, DL’ may in general depend on the behavior
of the system after. arrives.

Lemma 4.5
In an M/GI/1 queue, for all x and all P € SMART,

PSJF P SRPT
Dx SSt D;(; SSt D;U .

Proof. For the lower bound, lef) be the work in the queue made up by jobs with original size.
SincePSJF devotes the full server to jobs of sizex (when such jobs exist), we have

DESIE = QESIT < QF.

The Bias Property implies th&! <,; DL, and the result follows.

The proof of the upper bound is much more involved. Consider a taggefl. jobsize x arriving to
the steady state system at time. In order to analyzed?’, we track “contributing” work. Attime;, , the
“contributing” work will be equal taD?.

We define “Small Contributors” as all jobs of original sizer. ForSMART policies, all Small Contrib-
utors in the system at timg, serve ahead of, and thus add their remaining size at timgeto the response
time of job j,. We say a Small Contributor is “contributing” the whole time that it is in the system and its
“contribution” at any time is its remaining size. Thus, at titpe every Small Contributor in the system is
“contributing” the amount of work it adds to the response timg,of

We define “Large Jobs” as all jobs of original sizex. For all SMART policies, at mosbne Large
Job,c, in the system at time;, can add to the response time of jph call job c a “Large Contributor.” The
unigueness of is proven in Lemmat.6. We say that Large Jobbecomes a Large Contributor when
becomese. The amount jolz adds to the response time ff is the remaining size of at timet;_, which
can be at most. We considek to be “contributing”r. at all times when. < x. Thus, attime;_, c is
“contributing” the amount it adds to the response timg,of

We now limit our discussion to timese [to, ¢;,] wheret, is the last moment beforg, arrives that no
job is “contributing.” So, atg either a Large Job becomes a Large Contributor, a Small Contributor arrives,
or j, arrives (o = t;,). Further, fort € (t,t;,), there is always either a Large or Small Contributor in the
system. We refer tg as the beginning of the “contribution period” into whigharrives.

We defineD? (¢) as the total work being contributed by Small and Large Contributors in the system at
timet underP, where, as usual, the definition of Contributors is relative tojjohrriving at timet;, . Itis

4.1: THE CLASS OF SMART POLICIES 109

important to point out thaDX'(¢;,) = DL, i.e. the work contributing whe, arrives is exactly the work
that will serve ahead of,.
There are three types of periods into whighcan arrive:

Type (a) A period idle of contributing jobs (i.et;, = to). Thus, jobj, seesDZ(ty) = 0 forall P €
SMART.

Type (b) A contribution period started by a Small Contributoarriving and contributings, < x. Thus,
DP(ty) = s, under allP € SMART.

Type (c) A contribution period started by a Large Joebecoming a Large Contributor and contributing
i.e. 7. becomes: at timetq. Thus,V,’(to) = z under allP € SMART.

Let p?, plf’, andp? be the time-average probability gf arriving into a contribution period of type
(@), (b), and (c) respectively under poli¢y € SMART. Recall thatj, is a Poisson arrival, so PASTA
applies. Notice that these are the only legal possibilities for what can occur afytene that there is zero
probability of more than one event happening.

Claim (1) pf’ > piRFT, pl’ > pRFT, and thugp! < pSRPT.

a

CLAIM (1): We divide the proof of claim (1) into two parts.

Part (a): We will first show thatp?” is minimized undeiSRPT. Under SRPT, the system is idle of
Small and Large Contributors exactly when there are no jobs in the system having remainirg size
Using PASTA and the fact that, is a Poisson arrival, this gives thai®"" = 1 — p(x), i.e. the time-
average idle time in a system having arrival ratand job sizesX, = min(z, X). All P € SMART
are also guaranteed to be idle of Small and Large Contributors when there are no jobs in the system with
remaining size< x; however they may also be idle of Contributors when thexistjobs in the system with
remaining size< z if these jobs will not receive priority ovei, whenj, arrives. Thusp? > pSiPT,

Part (b): We now prove thap?” > pi P, A type (b) period is started when a Small Contributor arrives
into a system idle of contributors. Small Contributors arrive independently atcording to a Poisson
process with rate F'(z). Thus,p!” > py#PT becauseSRPT is the least likelyP? € SMART to be idle of
contributing jobs (from part (a)). It follows thaf” < pSFT sincep? > pSPT andpl > py#PT. We can
also see thap?” < pSTPT directly by noting thatll Large Jobs can become Large Contributors and thus
start type (c) periods und&RPT. We are now finished with the proof of claim (1).

Consider whajj, sees when it arrives into the system. With probabpffy> pS7F7, j, sees a type (a)
period, and with probability?” + pf’ = 1 — pl’ < 1 — pIBPT = pPRFT 4 pSRPT 5 sees a contribution
period. Thus, in provind? <., DSEFT it suffices analyze th®? (¢;,) in a contribution period, i.e. given
j arrives into a type (a) or (b) period.

We will complete the proof of the theorem by showing that

Claim (2) DF(ty) <4 D3%FPT(ty), i.e. the initial jump of the contribution period is smaller undethan
underSRPT.

Claim (3) Fort € (to,t;,), DX (t) is always reduced at the full service rate and increases only at the Poisson
arrivals of Small Contributors under @l € SMART.

Claim (4) DP(t;,) <« DSEFPT(t;,) for Poisson arrivaj, during a contribution period.

110 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

CLAIM (2): Note that the initial contribution in a type (b) period is at most the initial contribution in a
type (c) period. The claim then follows becayge> py#F7 andpl’ < pSFPT.

CLAIM (3): To prove claim (3), notice that, under @l € SMART, Large Jobs that are not Large
Contributors cannot receive service givea (to,t;,) (Lemma4.6). Thus, allP € SMART reduceD? (t)
at the maximal rate for alf, i.e. the full service rate is devoted to contributing jobs. Further, under all
P € SMART, arriving Large Jobs cannot become Large Contributors afterfinieemmad4.6). Thus, the
only arrivals that affecD?Z’(¢) are Small Contributors, which arrive according to a Poisson process of rate
AF'(z) under allP € SMART, includingSRPT.

CLAIM (4): To prove claim (4) we will analyze the contributing work thiatsees upon arrival into a
contribution period undeP € SMART andSRPT . Note thatj, arriving into a contribution period under
P seesDZ|(D > 0) contributing work. By claim (2),DF (tg) <s D3%FT(ty). Thus, there is some

random timet* > t, whenDP (ty) < DSEPT (¢*) for the first time. Ift;, > t* > t, underSRPT then
DE(t;,) = DFEPT(¢;,) (by claim (3) and the definition af). If to < t;, < t*, thenj, sees a stochastically
larger amount of contributing work (by the definition#y. So, D (t;,) <s DSEFT(t;,).

O

We now prove a lemma used in the above proof in order to characterize the effect of the Consistency
and Transitivity properties.

Lemma 4.6

There is at most one Large Contributor in the system at any time, where a Large Contributor is defined with
respect to job j,. Further, no Large Jobs that are not Large Contributors can receive service while a Large
or Small Contributor is in the system.

Proof. Supposé becomes a Large Contributor at tirheand is the only Large Contributor in the system
att,. We will show that no other Large Jobs can become Large Contributors tisiie the system.

Note that a Large Job must be receiving service when it becomes a Large Contributor, and thus a Large
Job can only become a Large Contributor when the system is idle of Small Contributors due to the Bias
Property.

We first show that a Large Jab# b, in the system at timg, cannot become a Large Contributor. Note
that ¢, by definition, is not a Large Contributor &t, and thus must receive service in order to become a
Large Contributor. Furthee,is in the queue at; andb is at the server. Secan never receive service while
b is in the system because of the Consistency Property.

To complete the proof, we will show that a Large Jothat arrives aftet; cannot become a Large
Contributor. Againge must receive service before timg in order to become a Large Contributor. Further,

c must be in the system at tintg, to be a Large Contributor. However, upon arrival= r. > x, so if jobc
runs ahead of job, the Consistency Property gives jobriority over jobb. Further, since is in the system
at timet;,, b cannot receive service until then, and thus the Transitivity Property will giyeiority overb
whenj, arrives. This contradicts the fact thaits a Large Contributor. Thuscan never run ahead 6f and
¢ can never become a Large Contributor.

O

We can now prove Theoret4.

4.1: THE CLASS OF SMART POLICIES 111

Proof of Theorem 4.4. Let P € SMART. We break up the response time for a taggedjjobf sizex
arriving to the steady state system into: i}, the portion of the work in the system whgnarrives that
will complete underP beforej, completes, (ii)x work made up byj,, and (iii) the work done by’ on jobs
that arrive afterj, arrives.

Notice that the Bias property guarantees that (iii) includes, at most, all arriving jobs of size less than
Thus, we can stochastically upper boufi@:)? with the length of a busy period that is startedaby- DY
work and made up only of arrivals having size smaller than

d
T@)P <st Be(w + D:Iej) =

By (w) + By(Dy). (4.2)
The upper bound now follows from Lemmzband the facts that/ (z)S#FT £ B, (DSEPT) andR(z)PS/F &
B, (z).

For the lower bound, note that due to the Consistency Propertyp fherork must be completed before
j= receives service. Thus, by the Bias Property, all jobs of sizethat arrive during the time thB% work
is being completed are guaranteed to be served bgfor€o, the waiting time of,. is B,(DZ’). Further,
oncej, begins service, the Bias property implies that, at minimum, all arrivals having size smaller than the
remaining size ofj,, have priority overj,.. Since the residence time und&RPT consists exactly of these
jobs, we have

T(x)" >4 R(x)FFT + B, (DD).

Applying Lemmad.5and the fact thatV’ (z)PS’F £ B, (DPS/F) completes the proof.
l

4.1.4.2 Proof of Theorem 4.2

In this section, we will prove that aBMART policies are&-competitive and tha?SJF, a commorSMART
policy, is 3/2-competitive. Remember that the lower boundSRPT serves as a lower bound on the mean
response time of any policy in tt&®MART class sinc&RPT is known to be optimal with respect to overall
mean response time. Also, recall the definitiorfdf1;] from Section3.2.4

E[Ws] = E[W]SRPT — E[W)PSIF — / * A2 f(@)F()

o 2(1—p(z))?

Proof of Theorem 4.2. lItis clear thatE[T]F*"T < E[T]" becauseSRPT is optimal with respect to
mean response time. Thus we need only show the upper bound.

We will start the proof of the upper bound by studyif@is]. Although we cannot evaluaté[1Vs] ex-
actly, we can show that the mean response tinfefF is exactlyE[W5] away from optimal. In particular,

112 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

using Lemma&3.11, we have:

E[T]SRPT — E[R]SRPT—I-E[W]PSJF—I-E[WQ]

1 1
— §E[R]PSJF+ iE[R]SRPT—f—E[W]PSJF

— E[T)PSIF - %E[R]PSJF 4 %E[R]SRPT
— E[T)"S7F — E[Wa]
Now, combining the above with Lemn8allgives that
E[T)Y < E[T)°EFT 4 oE[Ws)]
Finally, using Lemm&.12 we have
E[T" < ETSEET 4 2B[W,]

_ E[T]SRPT (1 n 2%&?;;;}%}5[”@])

E[W]PSJF 4 E[WQ]
E[T]SEPT >

IN
=
e
n
o)
v
N
7 N
—
+

IA
[\
=
e
n
=
5
S

O

4.1.4.3 Proof of Theorem 4.3

In this section, we derive the bounds éi7"] underSMART policies in Theorem#.3. Since the lower
bound onSRPT in Theorem3.10serves as a lower bound on the mean response time of any policy in the
SMART class, we need only prove the upper bound in the theorem.

Proof of Theorem 4.3.
To begin, we will prove a lower bound on the residence timeSBPT. Recall that the p.d.f. of
min(X1, X2) iS fnin(z) = 2f(2)F(x). Thus

E[R]SRPT = /O) (:c+ /0 ' 1f(2)(t)dt> dz

/0) (:c + / ' p(t)dt> d

0
= E[X]+ % /OOO o (2)p(x)dx — A/OOO t2f(t)F(t)dt

Y

4.2: GENERALIZING THE SMART CLASS 113

Using Theoren8.7, Lemma3.1], and the above, we have:

E[TF < E[TPF + E[Wy)

- K omps _ 1 oimsker
< _ - _Z
< oy los(l—p) + S E[T] 5 EIR

- K imps
< _ -
= o log(1 — p) + 5 E[T)

1 pPrA . 2

—3 (E[X} toy T §E[m1n(X1,X2) })

_ (p K-1_ pj B AE[min(X71, X3)?]
- (4 T ;=0 AE[X]

(552) (52

This final form is equivalent to the form in TheorehB, which completes the proof.
O

4.2 Generalizing the SMART class

Implicit in the definition of theSMART class is a tension between theeadthof the class and thigghtness

of the results provable about the class. In particular, there is a tension between the strength of bias towards
small jobs required in the Bias Property and the goal of showing that all policies are within a constant factor
of the optimal mean response time, i.e. apenpetitivewith respect to mean response time. In this section,

we will explore this question further by developing an understanding of how weakening the bias towards
small jobs affects theompetitive raticof the class with respect to mean response time, i.ek thech that

E[T] < kE[T)SRPT,

This tension between the breadth of tBMART class and the tightness of results provable about
SMART policies is of huge practical importance since one fundamental goal of studying classifications
is to bridge the gap between the results provided by theoreticians and the needs of practitioners. This gap
results from (i) implementation restrictions and (ii) concerns about metrics other than mean sojourn time
(e.g. avoiding starvation of large jobs). As defined so$MART does a nice job of bridging (ii), but does
little to help bridge (i). In particular, two key implementation restrictions tBRART does not bridge
are the following. First, the overhead involved in distinguishing between an infinite number of different
priority classes typically causes system designers to discretize policies s@&kPadsand PSJF so that
they use only a small number (5-10) of priority class#®; 18(. Second, in many cases information about
the service demands (sizes) of jobs is inexact. For instance, when serving static content, web servers have
exact knowledge of the sizes of the files being served, but have inexact knowledge of network conditions.
Thus, the web server only has an estimate of the true service dema81d487. In this section we will
explore how to broadeBMART to handle these implementation restrictions while still keeping the class
tight enough to guarantee that it is competitive with respect to mean response time.

114 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

lower
priority
tagged arrival tagged job

remaining
size

could be higher
or lower priority

lower
priority

remaining
size

could be higher
or lower priority

higher
priority

0 ——rno— original siz¢ ——————— 0 — original size

Figure 4.5: This diagram illustrates the priority structure induced by the Bias Property in the definition of
SMART, (Definition4.3).

4.2.0.4 The tension between breadth and tightness

To begin our exploration, let us consider the case of non-preemptive policies. Is it possible to include non-
preemptive policies that bias towards small job sizes, 8J, in a generalize@ MART class and still
provide a competitive guarantee under all service distributions and all loads? It is easy to see that that
answer is no: any non-preemptive policy must have infifif] if £[X?] is infinite, while E[T]57F7 is

finite wheneveZ[X] < co. Thus, a generalizeg8MART class cannot both include non-preemptive policies

and provide a competitive guarantee on mean response time.

Similarly, the SMART class cannot be generalized to include policies blind to job sizes while still
providing a competitive guarantee on mean response time. To see this, recall that for the M/M/1 queue all
blind scheduling policies have the same mean response Hifti§, = E[X]/(1 — p). But, in this setting
E[T]RPT(1 — p) — 0 asp — 1 (see Theoren8.14). Thus, there is n& < oo such thatE[T]" <
EE[T)SRPT under all service distributions and all loads for any blind polity

Summarizing the discussion so far, we can conclude that, in an M/GI/1 queue, for a policy to be competi-
tive with respect to mean response time it must (i) use job size information to schedule and (ii) be preemptive.
Thus, in studying the tradeoff between the breadth (in terms of policies) and the tightness (in terms of mean
response time) within thEMART class, we can limit ourselves to discussing preemptive policies that use
job size information. We capture a wide range of such policies in the definitiSMa&fRT., a generalization
of the SMART class.

4.2.1 Defining SMART .

We now formally define the class 8MART. policies.

Definition 4.3 For all x € [0, c0), definez. = €(x) for some non-decreasing functiemwheree(z) > z.
A work conserving policy’ eSMART. if it obeys the following properties at all times.

Bias Property: If s, = x andr, > z, then joba has priority over jobb.

4.2: GENERALIZING THE SMART CLASS 115

Consistency Property:If job a ever receives service while jolis in the system, then at all times thereafter
job a has priority over jobb.

Transitivity Property: If an arriving job b preempts johk, then thereafter, until jolz receives service,
every arrivala with sizes, = = such thate. < s; is given priority over johx.

The SMART, class is defined in an almost parallel way to 8ART class. In particular, thEMART
class is a subclass @MART. that can be obtained by setting = x. The parametet. provides a
formal way to capture the effect of “weakening the bias towards small jobs.’ If, for example, we think of
e(z) = (1 + o)z, aso grows the bias towards small jobs sizes requireSMIART, policies decreases.
Thus, by varying, we can study the impact of broadening the class on the competitive ratio of the class.
Refer to Figuret.5for an illustration of theSMART. Bias Property.

As with the definition of the originaBMART class, each of the three properties in the definition of
SMART. formalizes a notion of “smart” scheduling. The Weak Bias Property guarantees that the job being
run at the server has remaining size not too much larger than the original size of every job in the system,
which formalizes the idea of “prioritizing small jobs.” The Consistency and Transitivity Properties ensure
coherency in the priority structure enforced by the Bias Property. In particular, the Consistency Property
prevents time-sharing by guaranteeing that afterqdb chosen to run ahead éf job b will never run
ahead of joba. This makes intuitive sense because SMART. policies are based on the heuristic of
giving priority to small jobs, and as jobreceives service, it can only get smaller. Finally, the Transitivity
Property guarantees thBMART. policies do not second guess themselves: if an argivaldetermined to
be “smaller” than jokb in some sense (i.e. is given priority over jof future arrivals with smaller size than
a should also considered “smaller” thamintil b receives service.

4.2.2 Examples of SMART . policies

Of course, thesMART, class includes aBMART policies. Thus, it includeSRPT andPSJF in addition
to a wide range of hybrids of these policies, including policies with time-varying behavior. As we have
already discussed, the inclusion of these time-varying policies is particularly important because it allows
system designers to use the class in order to perform online multi-objective optimization, which is extremely
useful in web applications where the service distribution is time-varying and thus the optimal scheduling
policy often is not static.

In addition to SMART policies, SMART. includes many practical policies that are excluded from
SMART because of the rigidity of the original Bias Property. First, notice 88ART, can include poli-
cies that have only a finite number of priority levels. In particular, it can include preemptive threshold based
policies where there are a finite number of threshélds ¢4, ...,t, = oo and a job of sizes is assigned
priority p(s,r) = i if pi(s,7) € [t;,tiy1) fOr some static priority functiomp;(s,r) € SMART such as
pi(s,r) = s (i.e. PSJF). The inclusion of these policies is of particular practical importance because in
many cases system designers simplify implementations by using only 5-10 priority levels.

In addition to including threshold based polici&MART. includesSMART policies that are being
run using inexact job size information. The inclusion of these policies is again of practical interest. For
many applications information about the service demands of jobs is inexact. For instance, when serving
static content, web servers have exact knowledge of the sizes of the files being served, but have inexact
knowledge of network conditions. Thus, web servers have only an estimate of the true service demands.

116 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

When one performSRPT or some otheBEMART policy on job size estimates, the resulting policy is not

in SMART and is difficult to study directly; however the resulting situation does fall 8WART. for a
suitablee(z). As an example, if the inexact job sizes are a result of a time-varying service capacity (such
as a web server with only an estimate of network conditions), taking= (1 +)« models the situation
where the maximum change in service rate.isNotice, that this does not assume any distribution on the
job size estimates; thus the estimates may be adversarial.

4.2.3 Bounding response times for SMART . policies

Our goal in the remainder of this section is to characterize the relationship between the br&dtRr,
(i.e. x.) and the tightness of the bounds on mean response time (i.e. the competitive r&aNbAST.
policies with respect to mean response time).

As with the analysis oSMART policies, we approach the analysis of mean response time by first
analyzing the behavior of the conditional response time. Thus, we start by extending the stochastic bounds
on SMART in Theoremé4.4to SMART..

Theorem 4.7
In an M/GI/1 queue, for all P eSMART, ,

T(x)" <g By, (x+ DIRPT)

Thus,

P T)\T?L/Z(xE)
E[T(z)]" < 1—p(xe) 2(1 — p(xe))?

Proof. Let P € SMART.. We break up the response time for a tagged;jpbf sizex arriving to the
steady state system into: @ !, the portion of the work in the system whgnarrives that will complete
underP beforej, completes, (i) work made up byj,., and (iii) the work done byP on jobs that arrive
after j, arrives.

Notice that the Bias Property guarantees that (iii) includes, at most, all arriving jobs of size less.than
Thus, we can stochastically upper bouig:)” with the length of a busy period that is startedaby- DF
work and made up only of arrivals having size smaller than

T(z)” <s By, (z+ DY), (4.2)

The upper bound now follows from the observation thdt <,, D37FT, which follows from an argument
that parallels the proof of Lemm&a5for the SMART class.
Il

Using these stochastic bounds on the conditional response time, we can decondition to obtain bounds on
the overall mean response time. These bounds on the overall mean response time characterize the relation-
ship betweern:. and the competitive ratio SMART..

4.2: GENERALIZING THE SMART CLASS 117

Theorem 4.8
Consider an M/GI/1 queue with P ¢ SMART, . If there exists an ¢ > 0 such that z. < (1 + o)x for all x
and a0 < v < 1 such that p(z.) — p(x) < v(p — p(z)), then

2
E[T)SFFT < E[T)P < 2 l+o E[T)SRPT
1—x

2
That is, P is 2 (if—i) -competitive with respect to mean response time.

Note that if we takey = 0 = 0 we get back Theorer.2, which says that alBEMART policies are 2-
competitive with respect to mean response time. Before proving Thebi&me first prove the following
two simple lemmas.

Lemma 4.9
If there exists a0 < v < 1 such that p(z¢) — p(z) < v(p — p(x.)), then

1—p(z) 1
1—M%)§1—7

Proof.
L=p@) _ , _pled = plz)
1 —p(zc) L—p+p—pze)
o1 M)~ pla)
p— p(ze)
= 4 p—p(z) 1
plze)—p(z)
1
< 1+
11
5
_ 1
= 1
O
Lemma 4.10

If there exists a o > 0 such that x. < (1 + o)x for all x, then

ma(ze) 2
75 (2) <(1+4o0)

118 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

Proof.

ma(xe)]_(ﬁ%F@Mt
ma(x) Jo tF(t)dt
F(x) [tdt
F(x) [tdt

IN

IN
—
+

IA
—
+
)
e

We now prove Theorem.8 using the above two lemmas.
Proof of Theorem 4.8. By Theoremd.7, we have that
1 —p(z) PSJF (1 —p(z))2 <ff72($e)> SRPT
E[T(x))" < — %~ FE[R(x + —= E[W (x :
T(@))" < 3 S FIRG)) o) Uy) EV@)
We now apply Lemmag.9and4.10 Thus, we have that

E[T(x)]"

E[R(z)]"S/F (1 t+o
< +
1—7 1—7

(1 i j)Q (E[R())7S'F + E[W (2))S7FT)

)2 E[W(x)]SRPT

Noting thatE[R(z)]7S7F + E[W (z)]9FFT is the upper bound used in the proof of Theoe@completes
the proof.
O

Theorem4.8 presents two properties that must maintain in order foBMART, to be competitive
with respect to mean response time. The first of these conditions i thet (1 + o)z for all z. This
condition bounds how large a job can be and still get priority over a job ofisiZéne second condition in
Theoremd.8is thatp(z¢) — p(z) < v(p — p(x)). This condition bounds the percentage of the load made
up by jobs larger than size that can have priority over a job of size Thus, the two conditions present
complementary formulations of how much the Bias Property can be weakened: you can let significantly
larger jobs have priority without paying a price in mean response time as long as the larger jobs do not make
up too much load. The tradeoff between these two conditions will vary depending on the service distribution,
but under the practical case of a Pareto distribution, the two conditions are actually equivalent, i.e. only the
ze < (1+ o)z constraint is necessary. Recall that a Pareto distribution is definédby= (x, /z)%.

Corollary 4.11
Consider an M/GIl/1 queue with P eSMART, and X ~ Pareto(a, x 1) having finite mean. If there exists

4.2: GENERALIZING THE SMART CLASS 119

an o > 0 such that . < (1 + o)x then

E[T)Y <2014 o)*E[T)5RFT,

Proof. Assume that:. < (1 4 o)z. We will show that this guarantees that
pze) = pla) < (1= (1+0) ") (p — p(2)).
This bound gives g for Theorem4.8 such that
(1= <(1+0)77,

which in combination with Theorem.8 completes the proof.
In order to prove thab(z.) — p(x) < (1 — (1 +)2 1)(p — p(z)), we calculate as follows:

ple) — p(x) Jo tf(@)dt

p—p(x) [tf(t)dt
1 1

In addition to characterizing the effect of the rigidity of the bias towards small jobs in a policy, Theorem
4.8and Corollary4.11can also be used to characterize the effect of inexact knowledge of job size informa-
tion. Most prior work in this regard has used simulation experiments, E3d], [howeverSMART. allows
easy back-of-the-envelope calculations. For example, if we have a Pareto service distribution=with
and job sizes can be estimated to within a factor of 50%, 3MWRT. policy (which includes running
SRPT or PSJF on the job size estimates) still provides a mean response time within a fact@8obf
the optimal regardless of the load. This factor is quite small given that the variance is infinite, the bound
holds forp arbitrarily close to 1, and adversarial errors in the estimates are allowed. As a comparison no
finite constant bound is possible for many common policies, incluB@BS andPS. Beyond this simple
example, Figurel.6illustrates the effect of inexact job size information. Figdr6é (a) illustrates that the
competitive ratio increases quickly as the worst case accuracy of the job size estimates increases6Figure
(b) illustrates thaSMART, policies may perform worse than non-size based policies RSgunder low
load, but at high load they can significantly outperform non-size based policies. Further, the penalty they
pay at low load is exaggerated due to the fact that adversarial error sequences are allowed. In reality, the
performance under low load of policies that use inexact estimates is not nearly as bad as the upper bound in
Figure4.6 (b) suggests.

Finally, we can also view Theoredh8 and Corollary4.11 as a strong statement about the behavior

120 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

of policies with a finite number of priority classes. Though there has been a lot of work analyzing such
policies b1, 12Q, it is still difficult to understand how far from optimal the mean response times of these
policies are due to the fact that determining the optimal threshold values is typically not tractab&l]see [
for a discussion). Howeve6EMART, again provides a simple way to understand how close the mean
response times of policies with only a finite number of priority classes are to optimal. In particular, the
condition ofz. < (1 + o)z provides a direct relation between the spacing of thresholds (i.e. the range of
job sizes included in each priority level) and the guarantee on mean response time. Interestingly, there is
a stark contrast between the behavior of policies that use only a finite number of priority classes under (i)
unbounded service distributions and (ii) bounded service distributions.

First, let us consider the case of an unbounded service distribution, e.g. the Pareto. Clearly, no finite
number of thresholds can satisfy < (1 + o)z for all x; thus, we cannot apply Theoref8 or Corollary
4.11 This may seem like a restriction, but it turns out that under many unbounded distributions for any finite
number of classed;[T7] is not within a constant of[T]°"FT asp — 1. For instance, from Theoren3s4
and3.6we can conclude that under a Pareto distribution no finite number of classes is enoughA@Igive
within a constant of2[T]°7FT for all loads.

Next, let us consider the case of bounded service distributions:;Lbe the upper bound on the service
distribution. Clearly in this case policies with a finite number of priority levels HajE| within a constant
factor of E[T]FFT since we have already proven that both@fé /(1 — p)) in this setting. Unfortunately
though, we cannot directly apply TheorefrB to determine the constant. Choosing a finite number of
thresholds such that, < (1 + o)z is satisfied is no problem since the range of the distribution is finite.
However, choosing & such thap(z.) — p(x) < v(p — p(z)) is a problem since fat in the highest priority
class, we have. = zy Thus,p(z.) = p for suchz and thusy = 1, which means that Theoret8 does
not apply. This turns out to be easily remedied though. In particular, we need only adjust the requirements
for z such thatee = xy. Lett = inf,{z. > xy }. Then, we have the following.

Corollary 4.12

Consider an M/Gl/1 queue with P ¢ SMART, and a bounded service distribution. Let ¢ > 0 such that
ze < (1 + o)z forall z and 0 < ~ < 1 such that p(x.) — p(z) < v(p — p(z)). Ift is such that
1= p(t) < (1= p)/(1) and E[X?] /(1) < (1 + 0)? then

1 2
E[T)SEPT < BT]P < 2 <1 + a) B[T)SEPT
-

This corollary gives a simple bound on the behavior of threshold based policies in terms of (i) the spacing
between the priority thresholds and (ii) the load in the lowest priority class. Thus, it provides back-of-the-
envelope calculations determining how many classes are necessary in order to A¢hiewéhin a certain
constant of optimal.

Proof. To prove the result, we need only make minor adjustments to Lerdr®amnd4.10in order to
handle the case whern. = xy. To adjust Lemmat.10we simply note that for such thatr, = xy,
ma(z.) = E[X?] and, by assumption, for suahwe have

E[X?]

< —= <7
ma(t)

ma(ze)

my(x)

4.3: THE CLASS OF FOOLISH POLICIES 121

2
20 PS
. —SRPT
o
%_‘ 15} 1.5
|l
m a
- o
— Z
c L
o
2 gl
>
[]
m
0 : : : 0
0 50 100 150 200 0 02 04 06 08
Accuracy of estimates (%) p
(a) Accuracy of estimates | vs. competitive (b) pvs E[T)

ratio

Figure 4.6: An illustration of the impact of the accuracy of the estimates us&MART. policies. Plot

(a) shows the relationship between the accuracy of the estimates and the worst case competitive ratio of the
resulting policy. Plot (b) shows the attainable response times UBMRT. policies as a function of load.
SMART. policies all have response time within the shaded region. Notice that the benefit of using job size
estimates is very dependent on the load. The accuracy assumed in (b) is 50%. In both cases, the service
distribution is Pareto with mean 1 and= 1.2.

We will now adjust Lemma.9. Note that forz such thate, = x¢;, we have thap(z.) = p. Thus

1—p(z) _ p(xe) — p(x)
e 1o,
< 140721
1—p
_ 1=
L—p
1
<
< 15

Now, we complete the proof by combining the above with Lemh8snd4.10 and boundingZ[T] as
in the proof of Theorerd.8.
O

4.3 The class of FOOLISH policies

Now that we have formalized the common heuristic of “prioritizing small jobs,” and proved that all such
policies are near-optimal for mean response time, it is natural to ask how policies that bias towards large

122 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

tagged job
higher remaining
priority size

could be higher

lower or lower priority

priority

0 — 8+ — original size

Figure 4.7: This diagram illustrates the priority structure guaranteed by the Bias Property in the definition
of theFOOLISH class. Note that the Bias Property unde®OLISH is more strict than the Bias Property
under SMART , and was chosen in this way so tHaltJF could serve as a lower bound f&iOOLISH
policies.

job sizes compare. In this section, we will introduce the clasB@OLISH policies, which are policies

that bias towards jobs with either large sizes or large remaining sizes. TR@@hISH policies may not

be practical in settings where providing small response times is the goal, policies that prioritize large jobs
are known to perform well when minimizing the makespan (time until the last job completes) is the goal.
See, for example 17§ for more details. In addition, it is interesting to study them in order to contrast the
behavior of policies that bias towards large jobs with the behavior of policies using other heuristics, such as
those that bias towards small jobs.

4.3.1 Defining FOOLISH scheduling

We now formally define th&OOLISH class. Recall that jobs will typically be denoted dbyb, or ¢. Job
a will have remaining size,, original sizes,, and arrival time,,. The original sizes, remaining sizes, and
arrival times ofb andc are defined similarly.

Definition 4.4 A work conserving policy’ € FOOLISH if it obeys the following property:
Bias Propertyif r, > r, ands, > s,, then jobb has priority over joba.

Notice that Definitiord.4 parallels Definitiord.1 of SMART policies. In particular, the Bias Properties
in these definitions are similar in form. The relationship between the Bias PropertiesSWithBT and
FOOLISH definitions can be seen by comparing Figudedand4.7. However, an important difference
between the two definitions is that the definitionFdOLISH policies does not include a Consistency or
Transitivity Property like theSMART definition does. This is because these properties are used by the
SMART definition to avoid time-sharing and other such behaviors that increase response times. However,
all FOOLISH policies will have large response times, so there is no need to exclude these behaviors from
the FOOLISH class.

4.3: THE CLASS OF FOOLISH POLICIES 123

=
&

E[T(X)]/x
N
E[T](1-p)

N
o
&)

% 5 10 15 20 ® 02 o4 , 06 08
@) E[T(z)]/x (b) E[T](1 - p)

Figure 4.8: This figure illustrates the bounds di{7'(x)] and E[T’] under the class dFOOLISH policies
in Theorems4.14 and 4.15 The shaded area indicates the response times attainable &)@LISH
policies. In addition, the behaviors of the two most commB@OLISH policies, PLJF and LRPT , are
illustrated. The service distribution is taken to be Exponential with mean 1, and the load in (a) is 0.7.

4.3.2 Examples of FOOLISH policies

Many common policies are part of ti&OLISH class — Figuret.1 provides an overview. Of course, the
FOOLISH class includes RPT andPLJF. Further, it is easy to prove that tli®OLISH class includes

a range of policies having more complicated priority schemes. To illustrate this breadth, we introduce the
FOOLISHx classification, a subset 6OOLISH including a range of static priority policies.

Definition 4.5 A policy P € FOOLISHx if, at any given timeP schedules the job with the highest priority
and gives each job of sizeand remaining size a priority using a fixed priority functiop(s, r) such that
for s; < sgandry < ro, p(s1,71) < p(s2,1r2).

Theorem 4.13
FOOLISHx C FOOLISH

Note thatFOOLISHx* includes all commoirOOLISH policies (e.gLRPT andPLJF), but that there are
still many FOOLISH policies that are not ifOOLISHx*. In particular, as wittSMART, the definition of
the FOOLISH class induces only a partial priority ordering on jobs in the queue. THE®Q@LISH policy
may use time-varying prioritization where the priority function changes over time based on system-state
information or randomization.

4.3.3 Bounding response times for FOOLISH policies

Now that we understand the definition and breadth ofRE®OLISH class, we can move to bounding re-
sponse times und&OOLISH policies. We will first derive bounds dfi(z) for P € FOOLISH and then
we will use the bounds ofi(x)* in order to derive bounds ofi[T]”.

124 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

Theorem 4.14
In a GI/GI/1 queue, for P € FOOLISH,

T(IE)PLJF Sst T(x)P Sst T(.%’)LRPT
Thus, for the M/GI/1,

x ME[X?] — ma(z))

N T AE[X?]
L—p+p(x) 2(1—p+p(r))?

+
1= 21— p)p

E[T(x)]" <

Proof. Consider the response time of tagged jobof sizex underP € FOOLISH. First, notice that
underLRPT every job finishes at the last moment of the residual busy period they arrive into and this is the
last possible moment under any work conserving policy. THiis)” <, T'(z)-7P7,

To prove the lower bound, note that the moment bejormompletes, every job with size x (regardless
of their remaining size) will have higher priority thgp. Thus, the response time ¢f must include, at
minimum, the time to complete every job of sizer that is in the system at the arrival ff and that arrives
while j,. is in the system. The arriving work of size x is exactly the arriving work that is completed under
PLJF. Further, sincePLJF always devotes the full server to jobs with sizex when they existPLIF
minimizes the work in the system made up of jobs with size. Thus, T (x)"t7F <, T(x)P.

The bounds o2[T'(z)]” can now be derived from the stochastic bounds.

O

The bounds in Theorem.14 are pictured in Figurél.8 and show a stark contrast in behavior when
compared with the bounds dd € SMART. UnderFOOLISH policies E[T(z)]/x has a decreasing trend
as compared with an increasing trend un88ART policies. Further,E[T(x)]/z is unbounded under
FOOLISH policies and bounded und8MART policies.

We will now use the bounds on the conditional mean response tirf®GfLISH policies in order to
derive bounds on the overall mean response timle@DLISH policies.

Theorem 4.15
In an M/GIl/1 queue with P € FOOLISH,

E[T]PLJF < E[T]P < E[T]LRPT

P (i a1,)) s BmP < T (1 amle L)

I—=p »p —p
Note that the bounds oB[T]? for P € FOOLISH in terms of E[T|PL/F and E[T|*FFT follow im-
mediately from Theorem.14 however, though they are simple and elegant, they provide little information
about the behavior af[T'] as a function of the load or the job size variability unB&OLISH policies due
to the complexity of the formula for mean response time uilel+ (LRPT has a simple mean response
time). Thus, we provide a simple lower bound Bfi")"/F" that provides intuitive understanding of it's
behavior.

Further,

—_

4.4: THE CLASS OF SYMMETRIC POLICIES 125

Proof. The upper bound follows immediately from the observation #HgE]” < E[T]LRPT for all
work conserving policies. To prove the lower bound,dét) = p — p(z) and thusy’(z) = —p/(z) in the
following:

R
0

2(1 = p+ p(x))?
L[> p'(x)(p—p(x))
/0 dx

T 26—0+M@V
iy

_ _Ez[f] <1 Z(x) —i—log(l—g(x)):o
_ Ez[f)q<1i_1+10g(1_p))

= 2£%%+3Mbgﬂ—m

Noting that

P 1~ o
L R e

= —%bﬁl—m

completes the proof.
O

The bounds orE[T] under FOOLISH policies are illustrated in Figuré.8 It is again interesting
to compare the bounds afi[7] underFOOLISH and SMART policies. The mean response time under
SMART policies is significantly smaller than the mean response time Ud@LISH policies, and in fact,
under many service distributions (for instance the Exponential used in @l SMART policies have
smaller mean response time thanRMOLISH policies under all loads.

4.4 The class of SYMMETRIC policies

We now move to the study @YMMETRIC scheduling policies. The class 8if MMETRIC policies was
introduced by Kelly nearly 30 years agbl[3 and has proved fundamental to the study of queueing net-
works. SYMMETRIC disciplines have the important property that the departure process is stochastically
identical to the arrival process when time is reversed. Gihasi-reversibilityproperty allows the decompo-
sition of queueing networks where each server uses a symmetric discipline, and has led to the importance of
the SYMMETRIC class to queueing networks.

However, in this thesis, we consider the clasSB¥MMETRIC disciplines not because of their behavior

126 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

in queueing networks, but because they provide an interesting generalization of clBSswetheduling,

which is one of the most common models of scheduling in computer systems. In ad8iBMMETRIC

policies provide “fairness” in the sense that they do not schedule based on any job traits — all arrivals are
treated equivalently. This fact will have strong implications when we discuss fairness in Chapter

4.4.1 Defining SYMMETRIC scheduling

We will now formally define thesYMMETRIC class. Consider a queue containing customers in positions

1,2,...,n where upon the completion of thh job the jobs in positions + 1,...,n move to positions
i,...,n — 1 and upon an arrival to thé&h position the jobs in position, ...,n move to positions +
1,...,n+1.

Definition 4.6 A scheduling policy is &YMMETRIC discipline if whenn jobs are in the queue, the
service rate isy(n), a proportiond(i,n) of the server is directed to the¢h customer in the queue, and
an arrival enters positiort with probability §(i,n). Of course,Y ;" 6(¢,n) = 1 for all n. Further, a
scheduling policy is aM/GI/1 SYMMETRIC disciplinewheny(n) = 1 for all n. Unless otherwise stated,
we will only be considering M/GI/SYMMETRIC disciplines in this thesis.

Intuitively, SYMMETRIC policies are policies where the arrival and service rates for each position in
the queue are “symmetric.” Thus, the symmetry between the arrival rate and the service rate leads to the
nameSYMMETRIC.

The class o5YMMETRIC policies presents a nice counterpoint to 88dART andFOOLISH classes
becaus&YMMETRIC policies treat all jobs equivalently as opposed to making scheduling decisions based
on the size of arriving jobs. Thus, it is interesting to contrast the behavior of response timesSy¥hdler
METRIC policies with the behavior of response times un8BTART andFOOLISH policies.

4.4.2 Examples of SYMMETRIC scheduling

Figure4.1provides an overview of policies in tt&Y MMETRIC class. It may not be immediately apparent,
but the class o6YMMETRIC policies is actually quite broad, even in the case whém) = 1 (i.e. the
M/GI/1 setting). For instance, by takingi,n) = 1/n, we obtainPS. Further, we can obtaiRLCFS by
takingd(i,n) = 1fori = nandd(i,n) = 0 otherwise. In fact, we can obtain a wide variety of other hybrids
betweernPLCFS andPS. For example, th&YMMETRIC policy with §(i,n) = 1/(k A n) for i < k and
d(i,m) = 0 otherwise perform®S among the last jobs to arrive.

Though, we will primarily be concerned with M/GIBYMMETRIC policies, it is worthwhile to point
out the increased generality of tiB®'MMETRIC class in the case when(n) is allowed to vary. For
instance, we can obtain an M/GY queue as follows:

y(n) = n
é(i,m) = 1

Further, we can obtain a M/GI/k/k system (a system wittervers where jobs either receive service imme-

4.4: THE CLASS OF SYMMETRIC POLICIES 127

—PS —PS
—PLCFY —PLCFS

o
=
&

E[T(X)]/x
==
E[T](1-p)

N
o
&)

0 5 10 15 20 0 02 04 06 08

X p
@) E[T(x)]/x (b) E[T](1 - p)

Figure 4.9: This figure illustrates the behavior &[7'(x)] and E[T] under the class 08YMMETRIC
policies. Recall that alSYMMETRIC policies have equivalenE[T'(x)] and E[T]. In both plots the
service distribution is taken to be Exponential with mean 1, and the load in (a) is 0.7.

diately upon arrival or are rejected) as follows:

where¢ is very large?
Before moving on, it is important to also discuss the policies that are excluded froBYMMETRIC
class. Clearly any policy that prioritizes based on job size information is not iISYMMETRIC class.
Thus, theSYMMETRIC class is distinct from th&€ MART andFOOLISH classes. In addition, th&YM-
METRIC class excludes policies that prioritize based on the age of jobs sueBFES andFB. It may at
first seem surprising th&CFS is not in theSYMMETRIC class, but notice that und&CFS the arrival
rate is only positive for the last spot in the queue while the service rate is only positive for the first spot in
the queue.

4.4.3 Bounding response times for SYMMETRIC policies

Now that we have explored the policies in tS8¢ MMETRIC class, we are ready to bound the response
times of SYMMETRIC policies. We will start by presenting results characterizing the stationary queue
state undeBYMMETRIC policies, and then we will use these results in order to analyze the response times
underSYMMETRIC policies. All of the results in this section are adapted from Section 3.318 and

3For technical reasong,cannot be infinite, sed L3 for a discussion.

128 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

Section 5.7 of 197.

We need to begin by defining some notation. ket (x1,x9,...,x,) be the queue state whergis
the attained service (age) of thid job in the queue. Using this notation it is possible to characterize the
stationary system state 8ff MMETRIC policies as follows.

Theorem 4.16
In an M/GIl/1 queue with P € SYMMETRIC the probability that the queue contains n _jobs is

P(N=n) = p(1-p)

Further, given there are n jobs in the queue, the age (excess) of each job is i.i.d. and follows the equilibrium
distribution. Thus,

“ij \

P(Z = (x1,%2, ..., 2,)|N = n) :H
i=1

Amazingly, this theorem states that 8i¥MMETRIC policies have stochastically equivalent queue
states. The proof of this theorem is presented for the special cB®iofSection 5.7 0f192], and in com-
plete generality in Section 3.3 af13. This theorem is a direct consequence of the fact @ iMETRIC
policies are pseudo-reversible. It is important to point out that since ThetuEsis in the M/GI/1 setting,
it also characterizes the system state at arrival and departure instants.

Using Theorem. 16 it is easy to derive the mean conditional response tinf@YAIMETRIC policies,
from which the overall mean response time follows immediately.

Theorem 4.17
In an M/GI/1 queue with P € SYMMETRIC,

Thus,

—
|
S

It is quite interesting that the mean response time oSaIMMETRIC policies is the same. Not only
that, the mean response time (and queue length distributic®Y MMMETRIC policies is insensitive to the
service distribution beyond the mean. Further, the fact #{dt(x)] is purely linear inx is an important
property with many connotations for fairness that we will discuss in detail in Ché@pter

Interestingly, Figuret.9illustrates that the behavior d&f[7'(x)] underSYMMETRIC policies is quite
different from the behavior of[T'(z)] under theSMART and FOOLISH classes. WhileE [T (z)]/x is
a constant undeBYMMETRIC policies, which illustrates an even treatment of all job siZé§'(z)|/z
has an increasing (decreasing) trend acrosaderSMART(FOOLISH) policies, which indicates the bias
toward small (large) job sizes under these policies.

Beyond E[T'(x)] and E[T], little is known about the distribution of response time under the class of
SYMMETRIC disciplines as a whole. However, it is clear tiRMMETRIC policies are not equivalent
with respect to higher moments of response time. A few results have been obtained for individual policies
such asPS andPLCFS, but little has been proven about response times of @GM@AMETRIC policies.

4.5: THE CLASS OF PROTECTIVE SCHEDULING 129

Two rare exceptions are the work of Avi-ltzhak and Hal®h whereVar[T'(z)] underPLCFS, PS, and
one other less commoB8YMMETRIC policy are compared, and the work of Kella, Zwart, and Boxma
[112), where the tail behavior of some time-dependent propertisSYWIMETRIC policies are derived.
Since, the study of the behavior of higher moments of response time under the cB¥MMETRIC
policies is difficult, in this thesis we will typically limit our focus to the most common SYWMETRIC
policiesPS andPLCFS.

4.5 The class of PROTECTIVE scheduling

In designing scheduling policies there is always a tradeoff between providing small mean response times and
providing “fairness.” We have seen in Sectibri that it is possible to provide near optimal mean response
times by prioritizing small job sizes; however it is commonly suggested that such policiestamaglarge

jobs. In contrastPS is typically thought of as a “fair” policy since it shares the server evenly among all
jobs in the system, biRS has a mean response time that is far from optimal.

Despite the growing amount of research, the search for a fair policy with near optimal performance
proved elusive until the 2003 ACM Sigmetrics conference when Friedman and Henderson presented a new
policy called Fair-Sojourn-ProtocdFGP), which provides the first example of a fair policy that significantly
improves upon the performance of Processor-Shaf®) (78]. The idea behindFSP is that it computes
the times at which jobs would complete if the system were runRi@a@nd then prioritizes the jobs in terms
of their PS completion times. That id;SP devotes the full processor to the (uncompleted) job with the
earliestPS completion time. ThudzSP can be thought of as performir8RPT on the remaining times of
a virtual PS system. Using simulations, Friedman and Henderson showSRthas a very small mean
response time. In fact, in may cases the mean response tir&Hois quite close to that dBRPT [78].

Following the introduction oFSP, the ideas behin8SP have led to the development of a number of
other policies that also guarantee th#tjobs have smaller response times than they would have had under
PS on every sample path. THRROTECTIVE class, introduced by Friedman and Hurley, includes all such
policies [79].

In this section we will first present the detailskBP and then we will use the ideas from the discussion
of FSP in order to motivate and introduce the clas$®OTECTIVE policies.

4.5.1 Fair-Sojourn-Protocol (FSP)

FSP is motivated by one simple idea: at any given point, it is easy to tell what the next job to finishR@®der
is. Given this information, it is possible to avoid wasting time time-sharing among jobs, and thus improve
the response times &S dramatically.

The easiest way to understand th8P policy is to imagine that at any point in time you know the
full state of a virtualPS queue, with the same arrival process. (Note, this won't actually be needed for
the implementation below.) Under tiSP policy, the job being run is always the job that the virte&
gueue would have completed first. Observe thaRBP policy, like PS, is work-conserving; it just avoids
time-sharing by choosing to focus all attention on one job at a time.

To understand the power and efficiencyR8P, consider the simple scenario of 3 jobs of size ¢, 1,
1 + ¢ that all arrive at time) at the server. UnddPS, all jobs would time-share the server, slowing each

130 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

other down, and would all finish at about tirie UnderFSP, an ordering would be assigned to the jobs,
and consequently the first arrival would finish at tifine ¢, the second at tim2 — ¢, and the third at timé.

Remark 4.3 Observe that th&SP algorithm is related to Weighted-Fair-Queueing/FQ. Both policies
involve simulating?S, and FSP can be viewed as preemptiveversion ofWFQwhere each packet forms

its own stream. Note that this is askew from the WyQs used in practice, which is to evenly distribute
bandwidth among connections in a network while adhering to packetized constraints. In such a setting,
non-preemptive implementations are used. Further, due to the more general param&tQahalyses

do not provide bounds on performance any better than to staté&/k&ds not worse tharPS by the length

of the largest packetd6, 171]. The specific settings &VFQhat give rise td=SP have not been analyzed.

45.1.1 FSP in practice

The implementation oFSP is not very complex, in fact it is quite similar to the implementation of the
SRPT algorithm. As inSRPT, preemptions may only occur at moments when a new job arrives under
FSP or when a job departs undESP. Thus the total number of preemptions is at most twice the number
of arriving jobs, which in practice is far less than the number of preemptions under implementations of
PS (which involve time quantums). Aside from preemptions, aSRPT, there are also priority updates
needed undeFSP. These priority updates occur only at “event times,” where an event is an arrival or
departure undefSP or under the virtuaPS system. Again, the number of updates is clearly not great. It

is at most three times the number of outside arrivals.

We now explain the priority update needed at event points. H;aetenote the most recent prior event
and letE; ;; denote the current event. Observe that during the time between any two events there is only one
job, call it j, in service undeFSP. During the time betweet; and F; 1, call this timet, the remaining
size of jobj underFSP decreases by Further, at the moment df, 1, we need to decrease the remaining
time of every job under the virtu&®S system byt/n, wheren is the number of jobs iIPS. Observe that
our definition of events ensures that the number of jobs uR8etoes not change between two consecutive
events.

We have seen that the implementatior=&P is quite similar to that oERPT. The SRPT scheduling
policy has been implemented in many real-world applications, such as scheduling in web $2ve6s [

203. The implementation 0SRPT in [96] involves updating the priority of sockets in the Linux kernel,
based on the remaining processing time required, and then draining these sockets into the network in order
of their priority. An implementation oFSP would be equally simple, the only change would be that the
priority updates would occur at the event points described above.

4.5.1.2 Bounding response times for FSP

The power of=SP comes from the following property of the policiFSP finishes every job at least as early
PS would. Intuitively, this is simply because, by its definitidgt§P is only reordering the work that is being
done so as to be more efficient. This result was proven by Friedman and Henderggn b we include
it here because the ideas are provide an important viewpoint on the behakisPof

Let#"% and7™ST be vectors indicating the remaining work of each job urRigandFSP respectively.
The vectors are ordered in the same way suchitfat< r&5 < ... < 25, Thus,r> andrfST refer
to the remaining work of the same job RS andFSP respectively. Notice that (""" is not necessarily
ordered according to increasing remaining sizes and (ii) it is possible/fof = 0 while S > 0 for

4.5: THE CLASS OF PROTECTIVE SCHEDULING 131

several values of.

Proposition 4.18
At all arrival and completion instants, for all m < n,

m m

SRR Dl
=1

i=1
where n is the number of jobs in the system.

Notice that this result immediately implies that every job finishes no later Ukslerthan it would have
underPS.

Proof. We prove the result using induction on the sequence of events in a busy period. An event is
either a virtual service completion (a completiorP8), an arrival, or a service completion undesP. Let
75 > PSP indicate that for alln < n, >°7, rP9 > S +FSP We can see that the claim holds for the
first arrival of a busy period; thus the base case holds trivially.

Now, suppose”® > 'SP at the time of evenE,, e > 1. Let7"S and#"*F be the vectors at the time
of eventE, and lett be the time between the occurrence of evéntind event?, .. Let 75" and#"S*

be the updated vectors just before evBpt ;. Leti be the index of the first nonzero valueiifi*”. Then

PSP = pFSP = =1, i1
pESP PSPy

T]FSP/ = rfsp,j:i-i—l,...,n
Tfsl = TfS—t/n, Vg

Notice that, becauseis defined as the time between evéhtandE,, 1, t < /57 andt/n < rjPS for all

j. We can now see that’>" >> 7"’ is maintained immediately before evefit, |, which completes the
proof.
O

Apart from Propositiort.18 there exists very little work analyzing the performancé-8P. Thus, in
order to understand how mud¥SP improves response times ove6, researchers have been limited to
simulation studies such as those #8[87, 88]. Following the lines of these studies, we will now briefly
illustrate how the mean response timeR8P compares to that dPS and further, to the optimal mean
response timel [T]57P7,

Figure4.10illustrates a simple comparison of the response times Uf8Er PS, andSRPT. In Figure
4.10(a) the behavior of[T'(x)] under each of these policies is shown. We can see that tHesiglprovides
improvements ovePS in response times for all job sizes, the improvements are most dramatic for small
job sizes. But, the bias towards small job sizes is not as extreme EdReas it is undeiSRPT. Moving
to Figure4.10(b) and (c), we can see that the overall response timeSBfandSRPT are very similar as
long as the load is not too high. Only when— 1 doesSRPT provide dramatic gains ifv[7'] over FSP.
Further, we can see th&SP, like SRPT, has a mean response time that is nearly insensitive to service
demand variability.

132 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

8 5
- PS 2 ~ps PS
-—--ESP res . ---FSP
6 —SRPT| —srPT —SRPT
x =
= N
X4 =
B E
L T e N e AT T PPPFFPEE

0 5 10 15 20 0 0.2 0.4 0.6 0.8 >
X p C

@) E[T(z)]/x (b) E[T](1 — p) () E[T] vs. C?[X]

Figure 4.10: These plots show a comparison betw®&) FSP, andSRPT with respect to bottE[T'(z)]
and E[T]. The service distribution in (a) and (b) is Exponential with mean 1. In (c) the service distribution
is a 2-phase Coxian with mean 1 and varyifig[X]. The load in (a) and (c) is 0.7.

4.5.2 Defining PROTECTIVE scheduling

We will now generalize the ideas froRSP in order to present the class BROTECTIVE policies, which
were originally introduced by Friedman and Hurley #9].

Definition 4.7 A scheduling policyP is PROTECTIVE if for any input sequence, the response time of
any job underP is not greater than it would have been undis.

Clearly, FSP € PROTECTIVE while SRPT andPSJF are notPROTECTIVE policies. In fact, the
class ofPROTECTIVE policies is actually quite narrow, and includes only policies that behave very simi-

larly to FSP.
In order to characterize the classRROTECTIVE policies we will use the concept sfack The slack

of a job represents how tightly the “protectiveness” constraint binds each job. Formally, the slackuifithe
job under policyP, denoteds,,, is defined as

Sm = (irfsj +(n—m+1)rbS - <§:rlp>

i=1 =1

Further,s(t) = (s1, ..., sy) is the vector of the slacks of each job at tite
Though the formula for slack may seem complicated, this is a very intuitive concept. Consider the first
job in the virtualPS queue. If no further jobs arrive, the first job will complete at timg’ in the virtual
PS queue. If the o uPROTECTIVE policy P works on this job it will finish at time-{". Thus, the slack of
this job isnrf> — r’. Similarly, the second job will complete at tim¢* + (m — 1)rd in the virtualPS
queue and at timel” + r2” under policyP. Thus, the slack isy = 7% + (m — 1)rfS — P + 1P

Proposition 4.19
A scheduling policy P is PROTECTIVE if and only if s(t) is always non-negative.

4.5: THE CLASS OF PROTECTIVE SCHEDULING 133

Using this proposition, we can now easily develop a large numbBR@TECTIVE policies. Clearly,
FSP always maintains a positivgt), however in addition two other policies are of interest: OptimiB&¢
(OFSP) and PessimistiESP (PFSP). In describing these policies the following definitions are useful:

Definition 4.8 A job isservableat timet if a PROTECTIVE policy can serve it at time, independent of
future arrivals. Further, a job icompletableat timet if a PROTECTIVE policy can serve it to completion
starting at timet, independent of future arrivals.

It follows immediately from the above definition that jeb is servable if and only if for ali < m,
s; > 0, and jobm is completable if and only if for al < m, s; > r2.
These two concepts provide a nice description the three most coRROAECTIVE policies:

FSP FSP serves the lowest indexed uncompleted, servable job.
OFSP OptimisticFSP serves the servable job with the smallest remaining processing time.
PFSP Pessimistid-SP serves the completable job with the smallest remaining processing time.

By definition, all three of these policies have smaller mean response tim@gander all service dis-
tributions and arrival processes. Further, Friedman & Hurley showPlRSP has a smaller mean response
time thanFSP under all service distributions and all load®]. Interestingly thoughQFSP andPFSP
have the property that BROTECTIVE policy can have smaller mean response times across all loads and
all service distributions. Additional results on the worst case behavior of these three policies can be found
in [79]; however, no queueing results exist for ZAROTECTIVE policies.

4.5.3 Bounding response times for PROTECTIVE policies

We will now present simple bounds on the response times of protective policies. As we have seen, the
description ofPROTECTIVE policies relies heavily on decisions based on the current sté®&ofThus,
a tight analysis of the class ®#ROTECTIVE policies is extremely difficult. We can obtain some simple
bounds on the class that provide some indication on the behavior of response times.

We begin by noting that the definition of tHRROTECTIVE class immediately gives the following
bounds on overall mean response time. Note that the upper bound is tighPSnsea PROTECTIVE
policy, but the lower bound is simply the lower bound®RPT proven in Theoren3.10and is thus loose
asp — 1.

Theorem 4.20
In an M/GI/1 system, for P € PROTECTIVE, For all P € PROTECTIVE,

E[X] 1 BlX]
Tlog <1> < E[T)°RPT < B[T)" < T

It turns out that it is hard to obtain a better lower bound on the overall mean response RROOEC-
TIVE policies than the above because the tagged job approach is not feasible. That is, you cannot obtain a
tight lower bound on the overall mean response time by analyzing the mean response time of a tagged job
because EROTECTIVE policy can be designed so as to perform very well for any particular job size at the
expense of other job sizes. In particular, imagine a policy where a job of sizeeives service whenever it
is servable.

134 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

—PS —PS
---FSH ---FSP

o
=
&

E[T(X)]/x
==
E[T](1-p)

N
o
&)

0 5 10 15 20 b 02 04 05 08
@) E[T(z)]/x (b) E[T](1 - p)

Figure 4.11: This figure illustrates the behavior @f[T'(x)] and E[T] under the class dPROTECTIVE
policies. The shaded area indicates the response times attainable RROFECTIVE policies. Recall
that PS provides an upper bound on boffi7'(x)] and E[T] underPROTECTIVE policies. We do not
have a lower bound o' [7'(x)] underPROTECTIVE policies, so none is shown; however, we have proven
that E[T(z)]/x — 1/(1 — p) asz — oo and E[T'(z)]/x — 1 asxz — oco. Thus any lower bound on the
PROTECTIVE class will have a similar behavior to that BSP , which is illustrated in the figure. In both
plots the service distribution is taken to be Exponential with mean 1, and the load in (a) is 0.7.

However, we can get a feel for the behavioRROTECTIVE policies by studying the behavior of the
conditional response time undeROTECTIVE policies,T'(x). Again, deriving tight bounds ofi(z) for
all z is difficult, so we focus on the limiting cases of— 0 andx — oo. Interestingly, PROTECTIVE
policies can behave very differently with respect to small job silies, .o T'(z)"%/z = 1/(1 — p) a.s.
while lim, o T'(z)"" /z = 1 a.s. However, alPROTECTIVE policies treat large jobs equivalently:

Theorem 4.21
Consider a GI/GI/1 system with P € PROTECTIVE. For all x we have

| BT@) _ 1
- z “1-—-p
Further, as x — oo,
T
lim (z) = 1
T—00 I 1-— p

The proof of the bounds oR'[T'(z)]/x is immediate from the definition ?PROTECTIVE policies and
the . The proof of the limit ag — oo is also straightforward, but requires techniques that we introduce in
Section7.2.1where we study the limiting behavior &f(z) /x asz — oo under a range of common policies,
so we will omit it.

It is interesting to contrast the results in TheorefrZdand4.21with the corresponding results for the

4.6: CONCLUDING REMARKS 135

SMART, FOOLISH, andSYMMETRIC classes. Figurd.11 provides an illustration of the behavior of
PROTECTIVE policies. Upon comparison with Figurds4, 4.8 and4.9, it seems thaPROTECTIVE
policies are obtaining the best of both worlds. They guaranteeRfiifz)] < E[T(x)]" for all 2 and

all P € SYMMETRIC, but still provide mean response times that are far lower than thoB®0GILISH
policies, and are even comparable with thos&BART policies. However, analysis has not yet yielded
tight lower bounds on the performance PROTECTIVE policies, thus it is difficult to make any defini-
tive conclusions about the comparison betwé&g#| underSMART policies andPROTECTIVE policies.
Simulations seem to indicate that in many cases, especially under higlSIlBRT policies can signifi-
cantly outperforrPROTECTIVE policies with respect t@&[T']. However, this is exactly the setting where
starvation becomes an issueSMART policies, which is an indication of the inherent tradeoff scheduling
policies must make between efficiency and fairness.

4.6 Concluding remarks

The work in this chapter develops a new style of research that attempts to bridge the gap between theo-
reticians and practitioners by studying classifications of scheduling policies instead of individual idealized
policies. The goal is to formalize a scheduling heuristic such as “prioritizing small jobs” and then study
the impact of thieuristicinstead of studying one specific policy that obeys the heuristic. The hope is that
the analysis of these heuristic classifications provides both practical and theoretical benefits. Theoretically,
such results add structure to the space of scheduling policies that cannot be obtained by analyzing individual
policies, and practically, such results provide analyses of the policies that are implemented in practice.

In particular, we presented four heuristic classes: the claS&#RT policies (and its generalization
— the SMART. class), the class dfFOOLISH policies, the class c8YMMETRIC policies, and the class
of PROTECTIVE policies. In addition to defining the four classifications, we began to analyze the perfor-
mance of each heuristic by proving bounds on the overall and conditional mean response times of policies
in each class. These bounds illustrate the enormous impact that the underlying scheduling heuristic used in
a policy has on determining the performance of the policy. Figdrggand4.13illustrate the contrasting
response time behavior under the four heuristic classes studied in this chapter. There are many interesting
comparisons that can be made using these figures.

First of all, notice the contrast between the behavi@MART andFOOLISH policies: whileE[T'(x)]/x
has an increasing trend undeMART policies, it has a decreasing trend un&€OLISH policies. This
is indicative of the bias towards small jobs un@MART policies and the bias towards large jobs under
FOOLISH policies. Interestingly though, there are soR@OLISH policies that have largeE [T (x)]/x
for large job sizes than aryMART policy does. With respect t&/[T’], the comparison betweesMART
andFOOLISH policies is as expected?[T'] for all SMART policies is lower thar[T'] for any FOOLISH
policy.

It is also interesting to observe the similar behaviorS¥MMETRIC and PROTECTIVE policies.
Policies in both cases provide fair response times, in the sense that no job size receives “unfairly” large
E[T(z)]/z, butPROTECTIVE policies can provide strictly bettéf[T'(x)]/x andE[T| thatSYMMETRIC
policies.

Finally, it is important to notice the contrast between the size based cle&S8¥ESRT and FOOL-
ISH) and the fairness based class8¥ IMETRIC andPROTECTIVE). Under the fairness based classes

136 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

8 8 8 8
s hrerd e
6 6 6 6
2 2 2 4
OO 5 10 15 20 00 5 10 15 20 C'0 5 10 15 20 OO 5 10 15 20
(2) SMART policies (b) FOOLISH policies (c) SYMMETRIC (c) PROTECTIVE
policies policies

Figure 4.12: These figures illustrate the bounds &H7'(x)|/x under scheduling heuristics. The ser-
vice distribution is taken to be Exponential with mean 1, and the load is 0.7. Note that no bounds are
shown forPROTECTIVE policies because, though|[T'(z)]/z < 1/(1 — p) underPROTECTIVE poli-

cies, we have no good lower bound #6{7(z)]” /z for P € PROTECTIVE. However, we have proven that
E[T(z)]/x — 1/(1 — p)asz — cc and E[T(x)]/x — 1 asx — oc.

2 2 2
e “roerd i
1.5 1.5 1.5
0.5] 0.5]
00 0.2 04 0.6 0.8 00 0.2 0.4 0.6 0.8 C0 0.2 04 0.6 0.8 0O 0.2 0.4 0.6 0.8
p P P P
(a) SMART policies (b) FOOLISH policies (c) SYMMETRIC (d) PROTECTIVE

policies policies

Figure 4.13: These figures illustrate the bounds Bifil’] under scheduling heuristics. The service distri-
bution is taken to be Exponential with mean 1.

E[T(x)]/z is fairly constant or moderately increasing, while under the size based classes, the bias towards
particular job sizes shows up strongly in the behavioE@f' (x)]/z. This observation will have ramifica-
tions later in the thesis when we discuss the fairness of these heuristic classifications.

Let us end this chapter with one final note. Though we have discussed a number of scheduling heuristics
in this chapter, one heuristic in particular is by far the most interesting from a practical perspective: that of
prioritizing small jobs. Thus, the definitions BMART andSMART. represent an important contribution
both theoretically and practically. In this chapter, we have proven th&MART policies have mean
response time within a factor of 2 of optimal. This result can be seen as a theoretical validation of recent
designs suggesting the use of variantSBPT in web servers and wireless networks. Further, we have seen
that even when policies prioritize based on estimated job sBERART.), they are still within a constant
of the optimal E[T]. This is especially important since, in many applications, exact job size information

4.6: CONCLUDING REMARKS 137

is not known. For example, in web servers and wireless networks, designs that prioritize the job with the
smallestestimatedemaining size have been propos&83 131, 130, 102 13€. But, in such designs a key
guestion is “how good must job size estimates be to provide improvements in response time?” The reason
this question is so important is that there are overheads involved in estimating the job sizes. For example, in a
web server, estimating the network delay a request will experience requires using packet probing techniques.
The SMART. classification allows us to provide simple bounds that illustrate the tradeoff between the
accuracy of job size estimates and the performance of the resulting policy. Further, our results illustrate how
the underlying true job size distribution affects this tradeoff.

Due to their importance, we will return to tiBMART andSMART. classifications often throughout the
remainder of the thesis. For example, we will show thaBMIART policies are asymptotically equivalent
with respect to the response time distribution (Chaf}emd have similar fairness properties (Chafer

138 CHAPTER 4: CLASSIFICATION VIA SCHEDULING HEURISTICS

CHAPTER D

Classification via scheduling
techniques

Thescheduling heuristiapplied in a scheduling policy is only one defining aspect of the policy, another is
thescheduling techniquesed by the policy. For instanc8RPT is defined both by the fact that it prioritizes

small jobs (the scheduling heuristic) and the fact that it uses remaining sizes to prioritize (the scheduling
technique). While the scheduling heuristic used in a policy is typically determined by the system designer,
the scheduling technique used is often determined by the application itself. For example, a designer may
wish to applySRPT, since it optimizes mean response time, but the application itself may prevent the use
of SRPT, thus forcing the use of a policy that prioritizes small jobs using a different scheduling technique.

There are many factors in applications that limit the use of certain scheduling techniques. Consider the
case ofSRPT. If an application does not have knowledge of the remaining sizes of jobs (e.g. an operating
system deciding which process to run or a router deciding which flow to schedule) schedulirf@RIiTh
is impossible. SRPT is also not feasible for applications where preemption is not possible, e.g. in systems
such as supercomputers and databases where preemption is too computationally expensive to use. Finally,
SRPT is not an option when the system cannot distinguish between an infinite number of classes of jobs.
UnderSRPT the system must distinguish between every possible remaining size, but in cases such as web
servers this infinite precision requires too much overhead.

The limitations applications place on the scheduling techniques that are available to system designers
have a huge impact on the performance attainable for that application. Consider the availability of pre-
emption. In an application such as databases, where preemption is too computationally expensive and the
scheduler does not have job size information, one cannot hope to obtain the same performance as in web
server scheduling where preemption is possible and job sizes can be estimated accurately.

Our focus in this chapter is on formalizing classes of policies based on scheduling techniques. We will
then use these classes throughout the thesis to illustrate the impact of scheduling techniques on the efficiency
and fairness of policies. In particular, we formalize four classifications of scheduling policies based on the
technique used:

(i) Preemptive size based policies
(i) Remaining size based policies

139

140 CHAPTER 5: CLASSIFICATION VIA SCHEDULING TECHNIQUES

Preemptive size based PLIF, .- 2
o~

, . N

l" PROTECTIVE | _

b ps. /s Blind
' [Non-preemptive i ROS {7 Peag Qoo PLLIRSN, 1
b . [3 ;!)
i E size based E i ~ SYMMETRIC .- I
b vy LCBy T
b e 1]
] T T [
E : LIF, i 11 FCFS Age based ofB 11
1 1 ’l I L

Figure 5.1: An illustration of the common policies that fall into each of the classifications studied in
this thesis. The scheduling heuristic classifications introduced in Chdpaee shown in ovals and the
scheduling technique classifications introduced in this chapter are shown in rectangles.

(i) Age based policies
(iv) Non-preemptive policies

These classes are illustrated in Figargéand cover a wide variety of scheduling techniques that have been
applied across a range of applications including web servers, routers, disks, operating systems, and others.
The classes of remaining size based policies, preemptive size based policies, and age based policies were
introduced by Wierman et al. ireB8 240, while the class of non-preemptive policies has been studied
often in the literature, see for examplelp, 120, 247).

We begin our discussion of scheduling techniques by discussing the class of preemptive size based
policies in Sectiorb.1 Then, in Sectio®.2, we move to the class of remaining size based policies. Next, in
Section5.3, we consider age based scheduling, which uses no job size information. And finally, we consider
non-preemptive policies in Secti@¥. For each scheduling technigue, we will introduce a formal definition
of the class, discuss examples of policies in the class, and derive bounds on the attainable response times of
policies in the class.

The bounds on the attainable response times help to characterize the overall efficiency of each of these
techniques and also illustrate the effect of scheduling techniques on the response times of individual job
sizes. Since these classes are defined only by the scheduling technique and allow arbitrary scheduling
heuristics to be applied, the bounds are often quite broad and seem to provide little information about the
behavior of scheduling policies in the class. However, these bounds will be of great use later when discussing
the fairness of scheduling techniques.

5.1: THE CLASS OF PREEMPTIVE SIZE BASED POLICIES 141

5.1 The class of preemptive size based policies

We have seen many times in this thesis already that when applications know the sizes of the jobs in the queue,
using this information to schedule can provide substantial gains in mean response time. In this section, we
study the class of all policies that prioritize according to some bijection of (original) job sizes. Thus, the
results apply t&®SJF , which prioritizes jobs with small original size, aRdLJF, which prioritizes jobs with

large original size, in addition to hybrid policies having more complex priority assignments, e.g. policies
that prioritize both small and large job sizes to ease fairness concerns.

5.1.1 Defining a class of preemptive size based policies

Formally, we define the class of preemptive size based policies as follows.

Definition 5.1 Under apreemptive size based policthe priority of a job is assigned based on a fixed
priority function that is a bounded bijection from job sizes to priorities. Priorities are assigned upon arrival
and cannot be adjusted. The job with the highest priority is run at all instants, and if two jobs of the same
size (and thus priority) are in the system, then the job that arrived first is given higher priority.

It is important to point out the breadth of this definition. Cled?$JF andPLJF are both preemptive
size based policies. Thus, the class of preemptive size based policies includeSkamRe policies that
prioritize small job sizes as well as solR®OLISH policies that prioritize large job sizes. In addition, the
class of preemptive size based policies includes many hybrid policies that are BMART or FOOLISH.

For example, the class of preemptive size based policies includes policies where both jobs with small sizes
and some large job sizes receive elevated priority in order to curb unfairness.

Despite the breadth of this definition, it also has some limitations that would be interesting to address in
future work. Two important extensions of this group would be (i) to include the possibility that ranges of job
sizes all receive the same priority and (ii) to include policies where the priority function can depend on the
service distribution and load. However, such extensions would make the class significantly more difficult to
study analytically.

5.1.2 Bounding response times for preemptive size based policies

As with all of the classifications based on scheduling techniques, the class of preemptive size based policies
includes policies that use a wide range of scheduling heuristics, and so, policies in the class have a a wide
range of attainable response times. For example, the class in&@d&s which hask[T] within a constant
factor of optimal, and°LJF, which hasE[T] nearly as large as possible. However, it is still possible to
obtain bounds that are useful for analyzing the fairness of policies in the class.

We begin the analysis by boundidg[T'(x)].

Proposition 5.1
For any preemptive size based policy P,

z < E[T(zx)F <

142 CHAPTER 5: CLASSIFICATION VIA SCHEDULING TECHNIQUES

---PLJF

-- PSJF

E[T(X)]/x
E[T](1-p)

0 5 10 15 20 b 02 04 05 08
@) E[T(z)]/x (b) E[T](1 - p)

Figure 5.2: This figure illustrates the bounds @{7'(x)] and E[T] under the class of preemptive size based
policies. The shaded area indicates the response times attainable using preemptive size based policies. In
addition, the behaviors of the two most common preemptive size based pd¥igi#s,and PLJF, are
illustrated. In both plots the service distribution is taken to be Exponential with mean 1, and the load in (a)
is0.7.

Further,
E[T]PSJF < E[T}P < E[T]PLJF.

Proof. The optimality ofPSJF (among preemptive size based policies) '] follows immediately
from Phipps 175 or similar arguments in Aczell{)], and the fact thalPLJF maximizesE[T'] follows from
parallel arguments. Thus, we restrict our focus to proving the bound&B)]. The lower bound follows
from the fact that?[T'(x)]” must at least be long enough to serve the job itself. The upper bound follows
from the fact that a job must complete by the end of the residual busy period it arrive& [0y + Q)],
where(is the steady-state work in the system.

O

The bounds in Propositidh. 1 are pictured in Figuré.2

Note that Propositiorb.1 is tight. Clearly the bounds o&/[T] are tight sincePSJF and PLJF are
both preemptive size based policies. To see that the boun@i§®fx)| are tight consider a policy, that
gives highest priority to a job of size. Under any service distribution where jobs of sizenake up zero
probability massE[T'(x)]"» = x since any arriving job of size receives preemptive priority. Similarly
if a policy P, gives jobs of size: lowest priority then under any service distribution where jobs of size
make up zero mass, an arriving job of sizevill finish at the end of the busy period into which it arrives,
which matches the upper bound. Thus, foraglthere is some preemptive size based policy that achieves
the bounds in Propositidb 1

However, though the bounds are tight, they convey little information about the behavior of any individual
size based policy: the lower bounds &i7'(x)] and E[T] are (near) optimal and the upper bounds are

5.2: THE CLASS OF REMAINING SIZE BASED POLICIES 143

(nearly) as large as possible under work conserving policies. We will remedy this in Cliaphere we
will show that any individual size based policy must have samsuch thatE[T'(z1)] matches the lower
bound in Propositios.1and somer; such thatF[T'(z2)] matches the upper bound in Propositiof This
improved result will be fundamental to understanding the fairness of preemptive size based policies.

5.2 The class of remaining size based policies

In applications where the remaining size of a job is known, it is an invaluable resource for use in scheduling.
We have already seen tHaRPT is optimal with respect to mean response time, but many hybri8RefT

also maintain near optimal mean response times. In this section, we study the class of all policies that
prioritize using only the remaining size of jobs. Thus, the results appBRBT as well as.RPT, which
prioritizes jobs with large remaining sizes. In addition, the results apply to a wide range of other disciplines
having more complex priority schemes in order to curb fairness concerns, e.g. those suggested by Gong and
Williamson [87, 88].

5.2.1 Defining a class remaining size based policies

Formally, we define the class of remaining size based policies as follows.

Definition 5.2 Under aremaining size based poligythe priority of a job is assigned based on a fixed
priority function that is a bounded bijection from remaining sizes to priorities. The priority of a job is
updated as the remaining size of the job changes, and the job with the highest priority is preemptively given
service. If two jobs have the same remaining size, the job that attained that remaining size first is given
higher priority.

It is important to point out the breadth of this definition. ClegBRPT andLRPT are both remaining
size based policies. Thus, the class of remaining size based policies includeSNERE policies that
prioritize small job sizes as well as soFR®OLISH policies that prioritize large job sizes. In addition, the
class of remaining size based policies includes many hybrid policies that are I8MA&T or FOOLISH.

For example, the class of remaining size based policies includes policies where small remaining sizes receive
high priority and some large remaining sizes also receive high priority in order to curb unfairness.

As with the class of preemptive size based policies, there are some limitations to the definition of pre-
emptive size based policies that hopefully can be addressed in future research. The class of remaining size
based policies does not include policies where jobs with different remaining sizes have equivalent priorities.
Further, the results in this section do not include randomized policies.

5.2.2 Bounding response times for remaining size based policies

We now move to bounding response times under remaining size based policies. Clearly, sirge@®oth
andLRPT are remaining size based policies, there are a wide ran@df that are possible within this
class. For instanc&RPT optimizesE[T] while LRPT has the largest possiblg[7] among work conserv-
ing policies. Thus, no non-trivial bounds are possibleAg¥'] under remaining size based policies.

144 CHAPTER 5: CLASSIFICATION VIA SCHEDULING TECHNIQUES

2 :
--- LRPT
-= SRPT
1.5+
= g
x)
5 e
L
0.5
% 5 10 15 20 % 02 04 06 08
X p
(@) E[T(x)]/z (b) E[T](1 - p)

Figure 5.3: This figure illustrates the bounds @17’ (x)] and E[T’] under the class of remaining size based
policies. The shaded area indicates the response times attainable using remaining size based policies. In
addition, the behaviors of the two most common remaining size based poB&&s[and LRPT, are
illustrated. In both plots the service distribution is taken to be Exponential with mean 1, and the load in (a)
is0.7.

However, it is possible to obtain useful bounds on the behavi@[®fx)] under remaining size based
policies. Recall thaf>*"'7 is the stationary work in thERPT queue made up by jobs with remaining size
< .

Proposition 5.2

For any remaining size based policy P,
)\ﬁlQ(%)

2(1— pl@))

T+ < E[T(2)]F < -2 AB[X)

< +
1—p 2(1-p)
Further,

Proof. We have already discussed the bound:gfi], so we need only prove the bounds Bfi'(x)].
The upper bound follows from the fact that every job must finish before the end of the residual busy period
into which it arrives, i.e E[B(z + Q)]. Note that this bound is achieved for alunderLRPT.

The lower bound follows from the fact that all work in the system having remaining size less than
will complete before an arriving tagged job of size Further,SRPT always devotes the full processor to
completing such work when it exists and this quantity of work makes up the same average load under all
scheduling policies. ThuSRPT minimizes the time average quantity of such work and tf(u? result follows

Ama(z

using PASTA and the fact that the work having remaining size lessitharerSRPT is ST—p(2)) "

0

5.3: THE CLASS OF AGE BASED POLICIES 145

The bounds in Propositioh.2 are illustrated in Figur®.3. Clearly, the upper bound in PropositiéiR is
tight sinceLRPT is a remaining size based policy. However, it seems that the lower bound is likely loose.
In particular, it is unclear how to optimizB[T'(x)] for a fixedz because giving jobs with remaining size
highest priority (as we did for preemptive size based policies) is far from optimal! FurtherSBRRA and
LRPT haveE[T(z)]/x — 1/(1 — p) asx — oo SO it seems that this is likely true for all remaining size
based policies, but the lower bound Ha¥'(x)]/x — 1. Thus, an interesting question for future work is to
derive a tight lower bound.

Though the bounds oR/[T] and E[T'(x)] seem to indicate that the behavior of policies in the class is
too disparate to allow non-trivial analysis, we will be able to make strong conclusions about the fairness and
predictability of response times under remaining size based policies in CRapter

5.3 The class of age based policies

In many modern computer systems, scheduling decisions must be made without knowledge of the service
requirements of jobs. For example, in routers, the length of the current flow being scheduled is completely
unknown and in operating systems the service demand of any process being executed is unknown. In these
settings, the age (i.e. attained service) of a job can serve as an indication of the remaining size of a job.
For instance, when the service distribution has a decreasing (increasing) failure rate, jobs with large ages
likely have larger (smaller) remaining sizes. Two of the most common age based policlkeSF®eand

FB. FCFS prioritizes according to an increasing function of the age of a job (the larger the age, the higher
the priority); wherea$B prioritizes according to a decreasing function of the age of a job (the larger the
age, the lower the priority).

In this section, we study all policies that prioritize according to some bijection of the ages of jobs. Thus,
the results apply t&-CFS andFB as well as hybrid policies having more complex priority curves. Such
hybrid policies have been suggested by a number of researcherd,88]Jgak a way to curb the unfairness
to large job sizes undé¢iB.

5.3.1 Defining a class of age based policies

Formally, we define age based policies as follows.

Definition 5.3 Under anage based poligythe priority of a job is assigned based on a fixed priority
function that is a bounded bijection from ages to priorities. The priority of a job is updated as the age
(attained service) of the job changes. The job with the highest priority is preemptively given service, and if
two jobs have the same age (and thus priority), the job that attained that age first is given higher priority.

Clearly, FCFS obeys this definition. To see th&B obeys this definition, observe that undes ,
priority is strictly decreasing with age. Thus, a new arrival will run alone until it achieves the agiethe
youngest job in the system; and then those jobs ofeagél timeshare. This timesharing is caused by the
fact that if one job starts to run, its priority will drop, causing a different job to immediately run, and so on.
In addition to these two common policies, a wide range of other disciplines fall into the class of age
based policies. For instance, one can imagine a priority curve that assigns high priority to jobs having both
small and large ages in order to relieve fairness concerns.

146 CHAPTER 5: CLASSIFICATION VIA SCHEDULING TECHNIQUES

2
—FCFS
—FB
15/
= =
x)
5 ol
L
0.5/
% 5 10 15 20 % 02 04 06 08
X p
@ FE[T(x)]/z (b) E[T](1 - p)

Figure 5.4: This figure illustrates the bounds di7’(z)] and E[T"] under the class of age based policies.

The shaded area indicates the response times attainable using age based policies. In addition, the behaviors
of the two most common age based polickSFS and FB, are illustrated In both plots the service distri-

bution is taken to be Exponential with mean 1, and the load in (a) is 0.7. Recall that all blind policies, which
includes all age based policies, have equivalBfif] when the service distribution is Exponential; however

the response times of these policies differ under any distribution that does not have a constant failure rate.

We will find when studying the behavior of higher moments/@f:) under age based policies that the
age based policies which are non-preemptive (and thus equivalEQR8) behave quite differently from
the rest of the age based policies. In order to separate such policies from the rest of the class of age based
policies, we define the following subclass of age based policies.

Definition 5.4 The class opreemptive age based policiessa subclass of age based policies where there
exists some finite agesuch that the priority of jobs with ageis lower than the priority of jobs with ag
i.e. the age based policy is not equivalent to a non-preemptive policy.

5.3.2 Bounding response times for age based policies

We now move to the task of bounding the response times of age based policies. The behavior of age based
policies is quite interesting. For example, in the special case of an Exponential service distribution, all age
based policies have the sai€l’], despite the fact that [T (x)] can behave very differently under different
policies in this setting.

Though age based policies have not been studied prior to this work, the more general class of blind
scheduling policies (policies “blind” to job size information) has been studied, so many of the results here
are special cases of results proven for the class of blind policies.

We begin by presenting a bound &i7'(z)] under age based policies proven by KleinrotR]].

5.4: THE CLASS OF NON-PREEMPTIVE POLICIES 147

Proposition 5.3
For any age based policy P,

x+ 7)\%9) < E[T(x)]F < s+)\~E[X2]
2(1 - p(x)) 1—p(x) 201 —p(x))(1—p)

The bounds in Propositiofi3 are illustrated in Figuré.4.

Note that for alkz, there is some age based poleyghat hast[T'(z)]” equal to the bounds in Proposition
5.3 However, despite the fact that these bounds are tight, they do little to identify the behakidr(af)| /=
under age-based policies. For instance, the bounds seem to allow the possibility that a pdiif¥ (ha¥/ =
significantly lower tharl /(1 — p) for all z. However, in Chaptef we will be prove that that all age based
policies have some peak whekgT'(z)]/x > 1/(1 — p).

Further, despite the fact that the boundsii’(z)]/x are tight, they provide little information about
the behavior of age based policies with respedf'{d]. In many cases it is possible to obtain much better
bounds on¥[T] using other techniques. For example, if the service distribution has a decreasing failure rate,
we know thatE[T] is minimized undeFB and maximized unddfCFS (among blind scheduling polices)
[188 189. And if the service distribution has an increasing failure rate the opposite is true. However, under
distributions that do not have monotonic failure rates, it is not clear how to derive tight bounBl T on
under age based policies.

We will wrap up this section by contrasting the behavio#df'(x)] and E[T"] under age based policies
with the behaviors we have already observed for remaining size based and preemptive size based policies.
Though the bounds oR[7(x)] under age based policies are quite broad, similarly to thode/6ix:)] under
preemptive size based and remaining size based policies, the boutl’oander age based policies are
much more restrictive than the bounds B{"] under either preemptive size based or remaining size based
policies. In particular, all age based policies are equivalent when the service distribution is Exponential.
Further, though differences do appear when the service distribution is non-Exponential, the differences only
become severe under service distributions with high variability and the differences are never as severe as in
cases of either remaining size based or preemptive size based policies.

5.4 The class of non-preemptive policies

So far, all the scheduling techniques we have discussed are preemptive, they allow jobs to be interrupted and
restarted without penalty. However, in many applications preemption is costly and thus only non-preemptive
polices are appropriate, e.g. databases and supercomputers.

In this section, we study the class of non-preemptive policies; thus the results apply to non-preemptive
blind policies such aBCFS andROS, as well as non-preemptive size based policies su§iksandLJF.

5.4.1 Defining classes of non-preemptive policies

Formally, the class of non-preemptive policies is defined as follows.

Definition 5.5 Under anon-preemptive policy job cannot be interrupted once it has begun service.

148 CHAPTER 5: CLASSIFICATION VIA SCHEDULING TECHNIQUES

8 ' T T . 2
: ---LJF L
E —Blind, FCFS —FCFS
; == SJF 150 SIF
£ 3
w o
0.5
O0 5 10 15 20 OO 0.2 0.4 0.6 0.8
X p
@ E[T(z)]/z (b) E[T](1 - p)

Figure 5.5: This figure illustrates the bounds dii[7'(z)] and E[T] under the class of non-preemptive
policies. The shaded area indicates the response times attainable using non-preemptive policies. In addition,
the behaviors of the three most common non-preemptive poli€®@ss, SJF, and LJF) are illustrated.

Recall that all blind non-preemptive policies hak€l’(x)] and E[T'] equal to that undeFCFS. The service
distribution is taken to be Exponential with mean 1, and the load in (a) is 0.7.

However, in some cases (especially when considering fairness metrics) it will be useful to divide up
non-preemptive policies into two subclasses: policies that are blind to job size information and policies that
schedule using job size information.

Definition 5.6 Under anon-preemptive blind policy job cannot be interrupted once it has begun service
and no job size information can be used to make scheduling decisions.

Definition 5.7 Under anon-preemptive size based poljajpe priority of a job is assigned based on a
fixed priority function that is a bounded bijection from job sizes to priorities. Priorities are assigned upon
arrival and cannot be adjusted. The job with the highest priority is run non-preemptively, and if two jobs of
the same size (and thus priority) are in the queue, then the job that arrived first is given higher priority.

Thus, the class of non-preemptive blind policies includes, among di#g#S, ROS, andLCFS. In
contrast, the class of non-preemptive size based policies inciitlesLJF, and a range of policies with
more complex priority curves.

5.4.2 Bounding response times for non-preemptive policies

Unlike the scheduling techniques we have described so far in this chapter, all non-preemptive policies behave
very similarly with respect to botl’'[T'(x)] and E[T]. This is because, in many cases, response times of
non-preemptive policies are dominated by the excess of the job in service.

This factor is easily seen in the following bounds B[Y'(z)] under non-preemptive policies:

5.5: CONCLUDING REMARKS 149

Proposition 5.4
In an M/GI/1, for any non-preemptive policy P,

\ AE[X?]
z+ B S BI@]" < e+ g

Proof. The lower bound follows from the fact that, at minimum, at job must wait behind the excess of the
current job in service. Further, the upper bound follows from the fact that, at most, an arriving tagged job
must wait behindB(Q), where(Q is the steady-state work in the system.

U

These bounds are illustrated in Figlré.

Clearly, the fact that a policy is non-preemptive already provides a lot of information about the behavior
of T'(x), even without any information about how the policy prioritizes. In fact, using only these bounds,
we will be able to classify the fairness of non-preemptive policies in Chapter

Moving to the bounding the overall mean response tifif,], we can again obtain tight bounds. In
particular, Phipps has proven th89F minimizes E[T] [179, and it follows from a parallel argument
that LJF maximizesE[T]. Further, as we discussed in Chapdeall non-preemptive blind policies have
equivalentE[T]. Summarizing the above, we have

Proposition 5.5
In an M/GI/1 queue, for any non-preemptive policy P,

E[T]SJF < E[T}P < E[T]L']F.

Further, for any blind non-preemptive policy P, E[T|" = E[T]|FCFS,
These bounds are illustrated in Figlré.

The combination of the bounds in Propositibrdt and Propositiorb.5 present an enormous contrast
to the bounds we have proven on other scheduling techniques in this chapter. In particular, as illustrated
in Figure5.5the bounds orE[T'(x)]/x give an good idea of the behavior of all non-preemptive policies,
which has not been the case for the bounds on the other scheduling techniques discussed in this chapter, e.g.
preemptive size based and age based policies. Further, because of the dominant effect the excess of the job
at the server has on the overall mean response time of non-preemptive policies, even the belig{ibr of
is well characterized by the simple bounds in Proposifidh Again, this is a huge contrast to the bounds
on E[T] under remaining size based and preemptive size based policies, which are too disparate to provide
a useful understanding of any individual policy.

5.5 Concluding remarks

In this chapter, we have defined formal classifications of scheduling policies baseldextuling techniques
We focused on four particular techniques that span a wide range of applications: remaining size based
scheduling, preemptive size based scheduling, age based scheduling, and non-preemptive scheduling. In

150 CHAPTER 5: CLASSIFICATION VIA SCHEDULING TECHNIQUES

®

---LJF

—Blind, FCFS
--SJF

o
o

E[T(X)]/x
L
E[T(X)]/x
E
E[T()1/x
L
E[T()]/x

N
N
2
N

OO 5 10 15 20 G0 5 10 15 20 00 5 10 15 20 0O 5 10 15 20
X X X X

(a) Remaining size basdth) Preemptive size basedc) Age based policies (d) Non-preemptive
policies policies policies

Figure 5.6: These figures illustrate the bounds &7’ (x)] /= under scheduling techniques. The service
distribution is taken to be exponential with mean 1, and the load is 0.7.

2 2
—FCF ---LUF
—rB —FCFS

15 151~ SIF

E[T](1-p)
E[TI(1-p)
E[TI(1-p)

0.5 0.5

00 0.2 0.4 0.6 0.8 O0 0.2 0.4 0.6 0.8 00 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
p p p p

(a) Remaining size basdth) Preemptive size basedc) Age based policies (d) Non-preemptive
policies policies policies

Figure 5.7: These figures illustrate the bounds &ifil’] under scheduling techniques. The service distri-
bution is taken to be exponential with mean 1.

addition to defining the four classifications, we began our analysis of each class by proving simple bounds
on the overall and conditional mean response times attainable by policies in each class. These bounds go a
long ways towards illustrating the impact of the scheduling technique used by a policy on its performance.

Figures5.6 and5.7 illustrate the bounds on the attainable response times under each scheduling tech-
nique. There are a few notable contrasts that are worth expanding on.

The most obvious contrast in Figuke6 is how different the bounds on non-preemptive polices are
from the bounds on the other technique classifications. In particular, under preemptive size based policies,
remaining size based policies, and age based policies the behavigi'¢f)] can be quite varied; while
all non-preemptive policies have a strongly decreasing trend. To isolate the impact of preemption, it is
interesting to contrast the behavior of preemptive size based policies and non-preemptive size based policies.
Though both classes include size based policies, the the impact of preemption is dramatic. In particular,
looking at the behavior of/[T'(z)]/z we see that all non-preemptive policies give very large job sizes
approximately the samg&[T'(x)]/x while preemptive size based policies can differ significantly in terms
of the response times of large jobs. Further, notice that non-preemptive policies treat large job sizes nearly

5.5: CONCLUDING REMARKS 151

optimally. Thus, even when a non-preemptive policy biases against large job sizes, large jobs have near
optimal response times, while under preemptive size based policies biasing against large job sizes leads to a
significant increase in the response time of large job sizes.

Another interesting comparison across scheduling techniques is the comparis@h| afustrated by
Figure5.7. Under many of the scheduling heuristiE$7’] can be quite disparate. For instance, remaining
size based policies can achieve both the optimal and worst poggible Similarly, preemptive size based
policies can be both near optimal and very far from optimal. In contrast, other scheduling techniques guar-
antee very similar mean response times in certain settings. For instance, when job sizes are exponentially
distributed, all age based policies are equivalent and non-preemptive policies all have very similar response
times. However, the bounds dfi[7"] under these scheduling techniques can also become quite disparate
when the job size distribution has high variability.

The scheduling technique based classifications discussed in this chapter are complementary to the
heuristic classifications introduced in Chapfier By comparing the two types of classifications we can
develop a new understanding of the differing impacts of scheduling techniques and heuristics. Understand-
ing these different impacts will be a key theme throughout the thesis; however we can already begin to make
a few observations by recalling Figurés.2and4.13and comparing them to Figuréss and5.7.

The biggest contrast in these figures is that the scheduling heuristic used plays a more defining role in
determiningE[T’] than the scheduling technique. Some scheduling techniques guaranteeBjffjlander
certain distributions (e.g. the age based and non-preemptive techniques under the exponential distribution);
however to a large extent the scheduling technique used provides little information about the behavior of
E[T]. For instance, under service distributions with large variance, all four scheduling techniques contain
policies with disparateZ[T]. In contrast, all of the scheduling heuristics isol&g| across all service
distributions. Prioritizing small jobs always leads to near optifd@| while prioritizing large jobs always
leads to very largé[T]. Further,PROTECTIVE and SYMMETRIC scheduling always lead to similar
E[T].

Similarly, when comparing the behavior &[7'(z)]/x under scheduling heuristics with that under
scheduling techniques, we see that the scheduling heuristic used plays a much larger role in determining
the behavior ofE[T'(x)]/x. Under the scheduling heuristics, all the policies in each class have similar
functional behavior: they are all increasing/decreasing/constant acrddswever, under the scheduling
technique classifications, each class has policies with a range of behaviors. For instance, the class of re-
maining size based policies includes both policies that & x)]/x increasing withz and policies that
haveE[T'(x)]/x decreasing withr.

The trend of the scheduling heuristic playing a defining role in the performance of the policy will extend
throughout the thesis under both fairness and efficiency measures. However, we will see in Ctisgiter
with respect to fairness measures, the scheduling technique used provides a more useful way of understand-
ing performance. Further, some scheduling techniques, especially the class of non-preemptive policies, will
play a strong role in determining the performance of policies under other efficiency measures such as the
behavior of the tail of the response-time distribution.

Let us end this chapter with one final note. Chapteand5 have introduced a wide variety of classifi-
cations. These classifications are in many cases novel, e §MART, SMART,, FOOLISH, preemptive
size based, remaining size based, and age based classifications. Other classifications have been studied for
many years, but are viewed in a new light in by this thesis, e.gSHRIMETRIC and non-preemptive
classifications. Another, theROTECTIVE classification, is an example of a new classification that was

152 CHAPTER 5: CLASSIFICATION VIA SCHEDULING TECHNIQUES

introduced by the new focus on classifications provided by this thesis. Furthé?ROEECTIVE clas-
sification is not the only example of other researchers developing new classifications, motivated by the
work of this thesis. In particular, following the work of Wierman & Harchol-Balt28§ there has been a
growing focus of research introducing and analyzing scheduling classifications. For example, many other
researchers also became interested iIrSfMART class, and this led to a collaboration with Bert Zwart and
Misja Nuyens analyzing the distribution of response time uSi#¢ART policies in the large buffer large de-
viations regime (see Chapt@f161]. In addition, it led to a collaboration with Sanjay Shakkottai and Chang
Woo Yang on the analysis @MART policies in the many sources large deviations regig#d. Further,

other researchers have started to introduce their own scheduling classifications. In additioRR©Dthe
TECTIVE class that we discussed in ChapteFeng, Misra, & RubensteirYfl], Nunez-Queija & Kherani

[118, and Kherani 117] have all introduced interesting classifications of other scheduling techniques and
heuristics.

parT Il

Diverse Metrics: Moving Beyond Mean
Response Time

153

Until this point in the thesis, we have focused almost entirely on characterizing the
mean response time under a range of individual policies and scheduling classifi-
cations. However, in practice, many other metrics are also important to computer
systems. It is not enough for a new design to provide an improved mean response
time, it must also guarantee fairness, provide quality of service (Qo0S) guarantees,
limit buffer overflows, limit power usage, etc. In Part Il of the thesis, we move be-
yond the study of mean response time and consider a variety of other metrics that
are important across applications. In Chajieve study the distributional behav-

ior of response time and in Chaptéme introduce and study a variety of fairness
metrics.

Extending our discussion beyond mean response time to the distribution of re-
sponse time is essential for applicability in modern computer applications because
users can become even more frustrated by highly variable service times than by
having large response times on average. Further, providing QoS guarantees under
scheduling policies depends on knowledge of the distribution of response times.
Unfortunately, studying the distribution of response times under scheduling poli-
cies directly is known to be an extremely difficult task. As a result, in Chapter
6, we study only the tail behavior of the distribution, i.e. we stueiyf’ > z) as

x — oo. By limiting ourselves to this asymptotic regime we are able to derive new
results characterizing the response time distribution under both common individual
scheduling policies and scheduling classifications.

Extending our discussion to consider fairness metrics is also essential to the ap-
plicability of our results to real systems. Fairness metrics are important in any
computer system where there are human users. Although typically not the primary
metric of interest, it is important that low priority users, which are in many cases
the users with large service demands, are not starved of service in order to obtain
efficiency gains. However, fairness is an amorphous concept, and thus is difficult to
define. This difficulty has traditionally stifled research into the fairness of schedul-
ing policies. In Chapter, we introduce a variety of novel measures of fairness
that are motivated by computer applications such as routers and web servers. In
addition, we analyze both common individual scheduling policies and scheduling
classifications with respect to these new fairness metrics.

CHAPTER 6

The distribution of response time

Until this point in the thesis we have focused almost entirely on the mean response time of scheduling poli-
cies. Though, providing small mean response times is typically the primary goal for computer applications,
extending our discussion beyond the mean response time to the distribution of response time is essential for
real world applicability. In fact, users have been shown to prefer response times that are larger on average if
the response times are less variable, and thus more predicdabRop. Further, understanding the distri-
butional behavior of response time is fundamental when considering QoS, admission control, and capacity
planning applications where guarantees of the form “90% of the time the response tifié &sedesired.

Clearly, the study of the distribution of response times is important, and as a result understanding it is a
classical problem in queueing. However, it is a problem that has proven to be extremely difficult, especially
in the case of complex scheduling policies. In particular, exact derivatioR$ Bf> x) are only possible in
very specialized settings, such as the M/M/1, and under only very simple policies, skClrSs Instead,
the traditional approach for understandiR¢l” > =) has been to derive the Laplace transform of response
time. However, though obtaining the Laplace transform of response time is useful in characterizing the
moments of response time, the “Laplace curtain” hides the behavioral properties of the distribution — other
techniques are necessary to “see through the curtain.”

Due to the difficulty of exact analysis, modern studies of the response time distribution tend to either
use (i) numerical techniques or (ii) asymptotic techniques. Numerical approaches typically to rely on either
using transform inversion techniques, eg.§], or using phase type (PH) service and arrival distributions
combined with matrix analytic techniques, e.fi2p, 163. We will apply these matrix analytic techniques
in Chapter© when we analyze multiserver systems. However, such an approach is not ideal because sit can
only be applied for light-tailed service distributions, and heavy-tailed service distributions are prevalent in
computer application®2B, 69, 127, 174]. Asymptotic approaches to studying the distribution4fl" > z)
have no such limitations — they can be applied to both light-tailed and heavy-tailed service distributions.

This chapter will focus on one particular asymptotic regime for studyti@ > x): thelarge buffer
large deviationgegime. Under the large buffer regime, the asymptotic tail of response time is studied, i.e.
the behavior ofP(T' > x) asz — oo is characterized. This is a natural asymptotic regime to study since it
provides bounds on the likelihood of large delays, which are exactly what QoS and buffer provisioning ap-
plications require. Results in the large buffer framework provide an understanding of what “critical events”

157

158 CHAPTER 6: THE DISTRIBUTION OF RESPONSE TIME

lead to large response times, and thus, how scheduling can and priority mechanisms can limit the likelihood
of large delays.

The large buffer framework has received an enormous amount of attention over the last decade. Moti-
vated by the emergence of measurements indicating heavy-tailed file size distributions in many computer
applications 28, 69, 127, 174, there has been an explosion of results analyzing the tail behavior of a vari-
ety of scheduling policies in the heavy-tailed setting. Beginning with results@S [40, 60, 169, and
eventually leading to the analysis a a wide range of policies sudtajgtl, 90|, PLCFS [141], SRPT
[158, LCFS [4Q], FB [158 159, and others. The results for these individual policies are quite illustra-
tive. In particular, two common behaviors have emerged: common policies either (i) have a response time
tail proportional to the tail of the service distribution (€3RPT andPS) or (ii) have a response time tail
proportional to the tail of the residual of the service distribution, i.e. the tail of the excess of the service
distribution (e.gFCFS andLCFS).

In the process of this explosion of work, four general analytic approaches emerged. Results were ob-
tained either from (i) an analytical approach relying on Tauberian theorems relating the tail behavior of a
distribution to the Laplace transform of the distribution; (ii) a probabilistic approach using Markov'’s in-
equality to relate the occurrence of a large response time to the occurrence of a large service demand; (iii) a
sample path approach that directly characterizes the critical event; or (iv) a probabilistic approach based on
an explicit random walk representation of the waiting time distribution. We will provide an illustration of
each of these techniques in this chapter, however the interested reader can also refer to the excellent survey
paper by Borst et al4[0].

Following the explosion of results in the heavy-tailed setting, in the past few years, there has been a
growth in work studying the tail behavior of response time in the light-tailed setting. Many of the same
proof techniques apply to both the heavy and light-tailed settings; thus analyses of many common policies
have quickly emerged=CFS [181], PS [135 41, 72], SRPT [167, PLCFS [170Q, FB [134, 161], ROS
[135, and others. As in the heavy-tailed setting, it seems that two types of tails are emerging: policies either
() have a response time tail proportional to the stationary workload in the queu€&QE) or (ii) have
a response time tail proportional to the length of a busy period 8RPT andPS). Interestingly, these
two behaviors, in a sense, parallel what happens in the heavy-tailed setting: in the heavy-tailed setting a
busy period has the same tail as the service distribution and the stationary workload has the same tail as the
residual of the service distribution. The difference is that, in the light-tailed setting, the tail of a busy period
is heavier than the tail of the workload, while the opposite is true in the heavy-tailed setting. Thus, there is
a general trend indicating that policies which behave well under heavy-tailed service distributions behave
poorly under light-tailed service distributions. This contrast between the behavior of scheduling policies
under light and heavy-tailed service distributions has spurred research in this area.

Our goal in this chapter is to shed light on the contrast between the behavior of scheduling policies in
the light and heavy-tailed settings by taking a new approach to the study of response time tails: analyzing
the behavior oscheduling classificatiorigstead of focusing on individual policies. By characterizing the
behaviors of scheduling classifications we hope to develop an understanding of the scheduling heuristics
and techniques that underly the contrast between the light-tailed and heavy-tailed settings.

However, before we can study scheduling classifications, we must begin by understanding the behavior
of individual policies. Thus, in Sectiof.2we will provide an overview of results about individual schedul-
ing policies. This section will include results abdt€FS, SRPT, PS, FB, andLCFS. Note that some of
these results are new to this thesis. For example, we extend the analyBintiISRPT from the M/GI/1

6.1: PRELIMINARIES 159

setting to the GI/GI/1 setting. In addition, this section will include a number of proof sketches illustrating
the common techniques used in this area.

After taking a thorough look at the behavior of individual policies, in Sec@idhwe will move to the
analysis of scheduling classifications. In this section, we will derive results characterizing the response time
tail under the class of non-preemptive policies, 88ART class, and thE#OOLISH class. These results
represent a departure from the standard results in the field because of the fotassemf policies instead
of individual policies. The benefits this of this new focus are that (i) it provides a deeper understanding
of what in a policy determines the behavior of the response time distribution, and (ii) it allows the results
to be applied not only to the idealized policies studied in theory, but also to the policies that are actually
implemented in practice.

The analyses of the tail behavior of response time under these scheduling classifications illustrates a
number of important contrasts between scheduling heuristics/techniques. For instance, we will show that
SMART policies provide an asymptotically optimal response time tail when the service distribution is
heavy-tailed, but provide a response time tail that is as heavy as possibly under light-tailed service dis-
tributions. In contrastiOOLISH policies have response time tails that are as heavy as possible under both
light-tailed and heavy-tailed service distributions. Similarly, non-preemptive policies have as heavy a re-
sponse time tail as possible under heavy-tailed service distributions, but can have an asymptotically optimal
response time tail under light-tailed service distributions. These results shed new light on the reasons for the
contrasting behavior of individual policies under light-tailed and heavy-tailed service times. Further, these
results have a clear impact for system design. In particular, they highlight the need for understanding the
tail behavior of job sizes before making design decisions about which scheduling policy to use. Further, the
derivations of the results provide insight into the causes of large delays under different policies. For exam-
ple, under non-preemptive policies, the analysis formalizes the idea that when a tagged job experiences a
long delay it is likely due to a large job being at the server when the tagged job arrives. In contrast, under
SMART policies, the analysis illustrates that when a tagged job experiences a long delay it is likely the
result of a burst of arrivals (having smaller sizes) arriving just after the arrival of the tagged job.

6.1 Preliminaries

Before proceeding, it is important that we spend some time introducing the notation and distributions that
we will be using in this chapter. We will be considering two classes of service distributions, one heavy-tailed
and one light-tailed.

The class otheavy-taileddistributions that we will focus on are those of intermediate regular varia-
tion, ZR, see SectiorR.4.2.3for an introduction to these distributions. This class generalizes the class of
regularly varying distributions, and thus includes Pareto distributions. In addition it includes policies that
“dominate” a Pareto tail. In addition tbR distributions, we will occasionally discuss the broader class of
subexponential distributions, Refer to Sectior2.4.2.4for an introduction to these distributions.

The class ofight-tailed distributions we study obeys the following assumptions:

Assumption 6.1 M x(s) < oo for somes > 0.

Assumption 6.2 P(X =zp) =0.

160 CHAPTER 6: THE DISTRIBUTION OF RESPONSE TIME

Note that the distributions that satisfy both of these assumptions include light-tailed distributions with
infinite endpoints (e.g., exponential, gamma, and certain Weibull distributions), as well as all continuous
distributions with finite support (e.g., uniform and beta distributions).

When studying light-tailed distributions, we will describe the logarithmic behavior of the tail of the
response time distribution using tbecay rate

Definition 6.1 The(asymptotic) decay rate(Y') of a random variablé” is defined by

—log P(Y
A (Y) = tim —BPY > 1)

T—00 €T

given that the limit exists.

Informally, for largez, one may writeP(Y > x) ~ e~ 7))z |t should be noted that a smaller decay rate
corresponds to a larger tail of the distribution.

In both the light and heavy tailed case, our analysis will depend heavily on the use of busy pBjiods (
Thus, it is important to recall the wide variety of busy periods that we introduced in S&Hdn Further,
it is important to understand the tail behavior of the busy period in both the light-tailed and heavy-tailed
settings.

In the heavy-tailed setting, De Meyer and Teugé&kl] have proven

P(B>z)~P(X >(1—-p)z) asr— o (6.1)

in an M/GI/1 queue with regularly varying job sizes. Furthér1) has been shown to hold in a GI/GI/1
gueue under the more general class of subexponential distributions if the distribution $jadse-root
insensitivei.e. if P(X > z) ~ P(X > x — \/z) asz — oo [21, 105. Note that, for example, the Pareto
distribution is always square-root insensitive but the Weibull distribution is not.

In the light-tailed setting, the decay rate of the busy period can be expressed in terms of the moment
generating functions of the interarrival times, and the service timesg [162. We state the result here in
a form that will be of use later in our analysis®MART policies.

Lemma 6.1
For0 < z < o0,

[1
By) = sup | s + M7 ()]
7(Be) = | A \ Mxrx<n)(5)

7(Ba) = sup :S My </V1Xi(3)>}

=gl ()|

Note that the expressions fo(B), v(B,) andvy(B;) can in general be solved numerically. However, if
the arrival process is Poisson with ratewe can obtain a more explicit formula:

v(B) = sup [s = A(Mx(s) —1)]

6.2: THE RESPONSE TIME TAIL UNDER INDIVIDUAL POLICIES 161

Further, specializing this to th&//M /1 queue, where the service times have an exponential distribution
with rateu, we get the expression

1(B) = u(1 = \/p)

6.2 The response time tail under individual policies

With the preliminaries out of the way, we are now ready to study the tail behavior of response time under
common individual scheduling policies. Our goal here is twofold. First, and foremost, we hope to provide an
overview of the known results about tail behavior for the common policies studied in the queueing literature
so that the results we will later prove about classes of policies can be placed in the greater context of the
field. However, just as importantly, we also hope to provide an overview of the common analytic techniques
used in the literature so that a non-expert can more easily understand the arguments we will use to analyze
scheduling classifications.

We will organize this subsection as follows. We will have subsections for each of the common individual
policies. In each case, we will survey results characterizing the tail behavior of response time under both
light-tailed and heavy-tailed service distributions. In addition, for many policies we will provide an overview
of the derivation of the results, and in some cases we will provide multiple derivations for the same policy
in order to contrast the intuition provided by each argument.

6.2.1 FCFS

As you might expectFCFS was one of the first policies for which the tail behavior of response time
was studied. Initially, the behavior 8iCFS was studied under light-tailed service distributions in simple
models such as the M/M/1. Then, as empirical observations provided increasing support for the importance
of heavy-tailed distributions in practice, the focus of analysis shifted to the heavy-tailed setting. Thus, we
will start by providing a brief summary of results abd€FS in the light-tailed setting, and then we will
survey the results and techniques for study#@FS in the heavy-tailed setting.

Light-tailed service times

The first results about the tail behaviorl®€FS emerged in simple queueing models and are part of most
introductory queueing theory texts, e.@1p, 247, 227). For instance, itis quite straight forward to study the
tail behavior ofFCFS in simple models such as the M/M/1. Specializing the Pollaczek-Khinchin transform
formula to the case of the M/M/1 yields

§\FCFS _ p(1 = p)
er(e) ~s+u(l-p)

wherep is the service rate. This is clearly the transform of an exponential distribution, thus we can invert
the transform to obtain the following p.d.f. of the response time

Fr(@)FOFS = (1 — p)er=r)

162 CHAPTER 6: THE DISTRIBUTION OF RESPONSE TIME

However, the analysis of the GI/GI/1 tail behavior BEFS under light tailed service times did not
emerge until much later. Itis easy to see that the decay r&€lBE matches the decay rate of the workload,;
however, deriving an explicit form for the decay rate of the workload is more difficult. We defer the details
of the proof to L7, 167 and simply state the result here. In particular, we have that (under Assungpijon

log P(Q >) ~ —y(Q)xr asr — oo

where
Y(Q) = sup{s : Ma(—s)Mx(s) <1}
To understand this decay rate, it is useful to contrast it with the decay rate of a busy period. It is easy to
see thaty(B) < (1 — p)y(Q) for all p < 1 (see [L62 for the details). Thus, the tail of the busy period is

always heavier than that of the workload. In fact, Ramanan and Stolyar have shown that the decay rate of
the workload is as large as possible (thus the tail is as light as posdiBi&) [

Heavy-tailed service times
The first analysis oFCFS in the heavy-tailed setting was provided by Coh&®|[who showed that

PWFCFS 5) %pp(s > 1), asz — oo (6.2)
in the GI/GI/1 queue when the service distribution is regularly varying. However, many other authors have
since studied the tail behavior BICFS, and 6.2) has been shown to hold in much more general settings.
In particular, Pakes proved thdt.p) holds whenever the excess of the service distribution is subexponential
[169. In addition, Korshunov12Z established a converse result for the GI/GI/1 which shows&hatS
is not only sufficient, but is also necessary. That is

£eS & WFrScs o PpWFOFS s gy~ %p(s >)

The importance of subexponentiality in this setting should not be too surprising given the background

we have provided on the composition of the workload infi#=S queue. In particular, we can recall from
(3.3 that the waiting time unddfCFS has a random sum decomposition. In particular, we have that

P(W>x):(1—p)§:pnP(51—l—...+5n>x)
n=0

From the definition of subexponential distributions in Secfiah?2.4it is clear that subexponential distribu-

6.2: THE RESPONSE TIME TAIL UNDER INDIVIDUAL POLICIES 163

tions are extremely well-suited to analyze such a random sum. In particlfag, &, we have

PW>zx) = (1—p)§:p”P(51+...+5n>x)

n=0

~ (1=p) 3 P mP(E >)

n=0

P
= EP(g > x)

Note that the interchange of the summation and the limit can be justified using the dominated convergence

theorem in combination with an upper bound such as the onE8jnfhich says that i€ € S, ande > 0,

then there exists & suchthatP(&; + ...+ &,) > z) < K(1+4¢€¢)"P(E > x).

Clearly, subexponential distributions provide a useful class for studying the tail behaR@HS in
the heavy-tailed setting. However, due to its simplidi¢FS provides a venue for illustrating some other
common analytic techniques. Thus, we will also sketch two other derivatio@sayf gne using a transform
approach and one using a sample path argument.

We will start by illustrating the transform approach. Whenever the transform of the quantity being
studied is known, a simple way to derive the tail asymptotics of the transform is to apply a Tauberian
theorem, such as Theore2 for regularly varying distributions. Combining Theoreh® with the P-K
transform formula (se€3(2)) we can easily derive the asymptotic tail behavio#f “#'S in the M/GI/1
setting with a regularly varying service distribution. For illustrative purposes, let us assunie¢hRf) ()
for 1 < a < 2, however this can easily be extended. To begin, recall that WhisrmRV(«), £ iIsRV(a—1).

Thus, applying Theorer®.2, we have that

B 1—-Lx(s) Il -a) o
1—Le(s)=1-— T)ﬁs =— (E[X] —|—0(1)> s*1L(1/s), ass|O,

whereL(-) is a slowly varying function. Further, we have that

_ 1-p p Tl—-a)
L) = @ Y T, B S /)

Another application of Theore.2 gives 6.2).

The the transform argument that we just worked through is simple and direct, but it provides little
intuition for why (6.2) holds. The sample-path approach we will describe now is a technique for formalizing
intuition about thecauseof a large delay. In particular, undECFS the cause of a large delay is intuitively
the arrival of one very large job (when the service distribution is heavy-tailed). Amazingly, it turns out that
it is possible to formalize this simple heuristic into an argument for obtaining tail asymptotics by simply
computing the probability of this scenario occurring and then showing that all other scenarios happen with
negligible probability.

To illustrate how such a derivation is performed, let us focus on the workload in the system at some time
t = 0. Our intuition tells us that a large workloadtat= 0 is likely due to the arrival of a large job at some
prior time,t = —y. Following timet = —y, the workload in the queue decreases roughly linearly at rate
1 — p (sincep work arrives and the server works at rade Thus, in order for the workload to exceedat

164 CHAPTER 6: THE DISTRIBUTION OF RESPONSE TIME

t = 0, the large job that arrived must be larger thas y(1 — p). Now, in the M/GI/1 setting we have an
arrival rate of\, so we have

P(WFCES 5) ~ / P(X >z +y(1 —p))Ady
y=0
_ AT P(X > z)dz
B 1- P Jz=x
p
= —P
T, (€ >)
Note that the second step follows from the change of variablest + y(1 — p) and the final step follows
from recalling thatfs (x) = P(X > z)/E[X].
Obviously the above is only a sketch of the argument, however this sketch can be made into a rigorous
lower bound onP(WFCFS >) with only a little additional effort. But, deriving a matching upper bound
turns out to be much more difficult, and we refer the readed@ ¢r [257] for a more comprehensive

description.

6.2.2 SRPT

The analysis of the tail 0SRPT requires a much different approach than those that we just illustrated
for FCFS. Results about the tail behavior of response time usdRIPT first emerged in the heavy-tailed
setting, so we will begin there and then move to the light-tailed setting.

Heavy-tailed service times

Analyzing the tail behavior o SRPT was an open problem until Nunez-Queijebf proved that, in the
M/GI/1 with RV service timesSRPT is (what he termed) a “tail-equivalent” policy, i.e. the tail of response
times are the tail of service times are equally heavy:

P(T9EPT >) ~ P(X > (1 — p)z) asz — oo (6.3)

This tail behavior is an enormous improvement over the behavior we saw E@de3, where the tail of
response times was as heavy as the tail of the excess of the service times. FuBltustrates thaBRPT

has an asymptotically optimal response time tail in this setting since it is impossible to have a response time
tail that is lighter than the tail of the service distribution.

In order to prove §.3) Nunez-Queija introduced a new technique that reduces results about the tail
behavior response time und®RV job sizes to the study of the conditional response time distribution. In
particular, Nunez-Queija proved that the following three conditions are enough to characterize the tail-
behavior of a scheduling policy any poli¢y[15§].

Condition 6.1 There existy > 0, E[T'(x)]’ /z — gasz — o.

Condition 6.2 LetF € RV(«). There exists: > « such that

h(z)
t:‘f

P(T(2)" - B[T(2))" >) <

6.2: THE RESPONSE TIME TAIL UNDER INDIVIDUAL POLICIES 165

with 2(z) = o(z*~°) for somes > 0.
Condition 6.3 T'(x)* is stochastically increasing im > 0.

Theorem 6.2
If F € RV(«) and Conditions 6.1-6.3 hold, then

P(T(x)F > gz) ~ P(X >z) asz — oo

Using Theoren®.2, it is very straightforward to proves(3). In fact Condition6.3is immediate and Condi-
tion 6.1 follows from the following:

r—00 X X

) E[T(a:)]SRPT_l roodt Ama ()
i - /o 1= p(t) 201 = p(z))?

.1 /”C dt
= lim — —
e—oox Jo 1= p(t)

= lim o (by L'Hopital’s rule)
z—o0 1 — p(x)

1

I—p

Finally, to illustrate the verification of Conditiof2, we will limit ourselves tol < « < 2 and use Cheby-
shev’s inequality to reduce the condition to the form

Var[T(z))"

P(T(z)" — E[T(z)]" >t) < "

Thus, we need only study the limiting behavior Bt [T'(x)]°FPT. We will start with the analysis of
Var[R(x)]SEPT. Lete > 0, then

Var[R(x)]*"T = /Om (finzégp
A Y o= =
e REAORE0
= oz’ *T9asr — oo

Similarly, it is easy to verify that
Var[W (z)]9BPT = o(a372F¢)

Finally, we can complete the proof d.Q) by applying Theorens.2

The strength of this technique for analyzing the tail behavioBBPT is that it does not require the
availability of the transform of response time, which is difficult to work with un8BPT and many other
policies. Further, the technique studies only the behavi@i(ef), which is easy to understand under priority
based policies such &RPT. However, the technique is limited by the fact that typically verifying Condition
6.2 involves using Markov’s or Chebyshev’s inequalities on higher momeni¥ej. Thus, in situations

166 CHAPTER 6: THE DISTRIBUTION OF RESPONSE TIME

where moments of (xz) cannot be expressed easily (such as outside the M/GI/1 model) Thé&oPam

difficult to apply. To remedy this, Guillemin et. al. introduced complementary conditiond0jn [These

conditions were later applied by Nuyens, Wierman, and Zwart to show @t@tglso holds in the more
general GI/GI/ISRPT queue withZ R service times161].

Condition 6.4 For someg > 0, T'(z)/z — g a.s. ast — oc.
Condition 6.5 There exists a constaktsuch that
P(T(x) > kx) = o(F(z)).

Theorem 6.3
If Conditions 6.4 and 6.5 hold, F € TR, and E[X?] < oo for some p > 1, then

P(T > gz) ~ P(X > x)asx — oo.

Notice that Conditiorb.4is a strengthened version of Conditiéri; however, as we saw, Conditi@n2
is typically the easiest to verify, so strengthening this condition is not typically problematic. Further, the
form of Condition6.5 makes it applicable in situations where Condit@8& s difficult to apply (though the
reverse is also true). Note that we will illustrate the use of Thed&m our analysis of th&MART class
later in the thesis.

Light-tailed service times

The analysis of the tail behavior of the response tim8RPT in the light-tailed setting has only emerged
very recently. In particular, Zwart and Nuyens were the first to present an andlggs The analysis they
present consists of first analyzing the behavior of a 2 class priority queue and then relating the behavior of
the low priority class to the behavior of the largest job size iSBR®T queue using sample path arguments.
We will not include the analysis here because many of the arguments are generalized later in this section
when we derive the tail behavior of t8VART classification. Instead, we will simply state the results.

First, in the case when both Assumptidh&and6.2hold (i.e. the service distribution is light-tailed and
has no mass at the right endpoint), we have that

log P(TOFPT >) ~ —y(B)z asz — oo

Thus, in this case the tail @RPT behaves like the tail of a busy period, which we have already seen is
the heaviest possible tail among all work conserving policies. This is quite a contrast to the tail behavior of
SRPT in the heavy-tailed setting.

If the service distribution has mass in its right endpoint, then the t&SR®T can be better. For instance,
in the M/D/1 queueSRPT is equivalent toFCFS, thus the tail is equivalent to that of the workload. In
other cases, when the right endpoint has mass, the tail behav@RPT falls in between the tail of the
workload and the tail of the busy period. Defig such thatP(X; < z) = P(X < z|X < zy). Then,
under Assumptio®.1, we have that if) < P(X = zy) < 1,

log P(TSFPT > 1) ~ —~(T)SEPTy

6.2: THE RESPONSE TIME TAIL UNDER INDIVIDUAL POLICIES 167

where

1
~(T)BFT = sup [s + MG <)]
s€07(Q) 4 \Mx, (s)
Thus, the tail of the response time un@&RPT decays like the tail of a busy period including only the jobs
smaller than the right endpoint of the service distribution (SBR&T serves jobs with the same remaining
size according t&-CFS order).

6.2.3 PS

The analysis of the tail behavior BfS can be approached with a wide variety of techniques. The first results
for PS were obtained in the heavy-tailed setting, so we will start by surveying heavy-tailed results and then
move to the light-tailed setting.

Heavy-tailed service times

The first derivation of the tail behavior &S used the same transform approach that we described for
FCFS. In particular, Zwart and Boxm&p€| use the Tauberian theorem for regularly varying distributions
(Theorem2.2) in concert with the transform of S (see Sectior.1.4) in order to obtain the asymptotics

of the response time distribution of the M/GFE queue. They prove that

P(TPS > 2) ~ P(X > (1 —p)z) asz — oo (6.4)

Interestingly, this indicates that the tail behavioRR8 is asymptotically equivalent to that &RPT under
regularly varying service distributions, and both are optimal (up to a constant factor).

Following the initial derivation of §.4) using a transform approach, a number of other analys@sof
in the heavy-tailed setting have emerged. In particular, Nunez-Quéigh $hows that Condition6.1- 6.3
hold in the case of the M/GI/RS queue, which provided a far simpler derivation®4). Further, Guillemin
et. al. PQ] verified Conditions5.4-6.5in the case of the GI/GI/PS queue, guaranteeing th&t4) holds in
this more general setting. Finally, Jelenkovic and Momcilowi@q use a sample path approach to show
that 6.4) holds even under subexponential service distributions that have the additional property that they
aresquare-root insensitive.e.

P(X>z)~P(X >x—+/x) asz—

Note that this condition is always met in the case of regularly varying distributions. The necessity of this
condition can be understood intuitively using the central limit theorem as follows. We already know that
underPS, the rare even{ 779 > x} is determined by the evedifX > z(1 — p)}. If we defineS(t) to be
the inverse of(z)"° so thatS(t) = = means thaf(z)"° = t, we know thatS(¢)/z — 1 — p asz — oo.
Further, can be shown using the central limit theorem $i{at = (1 — p)x + O(y/x). Thus, we have that

P(TTS >) = P(X > S(z)) = P(X > (1 — p)x + O(\/x))

which illustrates the importance of having a service distribution that is square-root insensitive.

168 CHAPTER 6: THE DISTRIBUTION OF RESPONSE TIME

Light-tailed service times

The tail behavior oPS under light-tailed service distributions is far more complex than in the heavy-tailed
setting. In fact, until very recently only asymptotics f® in the M/M/1 setting were known. In particular,

by relating the behavior of an M/M/BS queue to that of an M/M/ROS queue, Borst et. al.3p] were

able to apply the results of Flatto f&OS [76] in order to prove the following ‘exact asymptotics’ for the
response time of the M/M/RS queue:

P(TPS > z) ~ cx5/6em0ox P gym
for some constants «, .

However, in the more general GI/GI/1 model, only logarithmic asymptotics have been found. Mandjes
and Zwart [L35 have characterized the response time decay rate under a large class of light-tailed service

distributions. In particular, the class of service distributions that satisfy the following assumption:

Assumption 6.3 For each constant > 0, we have

1
lim —log P(X > clogz) =0
T—00 I
Note that this assumption equivalently requires thais heavy-tailed. This is satisfied by most common
light-tailed service distributions, e.g. phase-type and Gamma distributions, but rules out distributions having
extremely light tails such as distributions with c.d.f. of the farmnf".
The result that Mandjes and Zwart prove about the tal fis that under Assumptior1and6.3

log P(TP® > x) ~log P(B > z) asx — oo

Thus, in this setting the tail behavior BfS matches that of a busy period, which is the heaviest possible
tail. However, likeSRPT, there are other settings whd?& can have a lighter tail than a busy period. For
example, Egorova, Zwart, and BoxméZ] have shown that in the M/D/1 setting the decay rat®8ffalls
between that oF CFS and a busy period.

6.2.4 FB

The analysis of the tail behavior 8B can be approached in much the same way as th@R&fT. In fact,
the results foFFB nearly parallel to those f@RPT.

Heavy-tailed service times

The analysis of the tail of response time uné@® was first approached in the heavy-tailed setting. In
particular, Nunez-Queija proved that Conditigh& - 6.3 hold for FB in the M/GI/1 queue when the service
distribution is regularly varying antl < o« < 2 [15§. Thus, it follows from Theoren®.2 that

P(TPS >)~ P(X > (1 - p)z) asz — oo (6.5)

This result was then generalized by Nuyeh§9, where it was shown to hold for att > 1. Even more
recently, Nuyens, Wierman, and Zwat§l] proved that §.5) holds in the GI/GI/1 queue for allR service

6.2: THE RESPONSE TIME TAIL UNDER INDIVIDUAL POLICIES 169

distributions. This last result was obtained using Conditi®dsand6.5 in combination with Theorers.3
in a way that is general enough to accommodatS®IART policies in addition to jusEB. Thus, we defer
the proof to Sectio%.3.

Light-tailed service times

In the light-tailed setting, the first analysis BB was performed by Mandjes and Nuyeds4], where it
was proven that in the M/GI/1 queue under Assumpti®risand6.2

log P(TTP > z) ~log P(B > x) asz — oo (6.6)

that is+(7T)F? = ~(B). This result was later generalized by Nuyens, Wierman, and Z\4&fi,[who
showed that the same relation holds for the GI/GI/1 queue under Assungption

Clearly, the behavior oFB is very similar to that oSRPT in this setting; however it is important to
point out that=B performs slightly worse thaBRPT with respect to the tail of response time. In particular,
if the service distribution has mass in the right endpoint, the decay r&8®BT is larger than that of the
busy period, while the decay rate BB is the same as that of the busy period. This difference results from
the fact thatSRPT finishes jobs of the same size RCFS order whileFB finishes all jobs in the system
with the same size at the same moment.

6.2.5 LCFS

The last scheduling policy we discussLi€FS. The tail behavior of response time undeLFS has not
received much attention in the literature, but it was used as an example in a recent survey by Borst et. al.
[40]. In particular, they show that the tail behavior of response time ub@€eiS can be derived in a number

of different ways. It is easy to analyze using a transform approach, either set of sufficient conditions, or
sample path analyses. ThoughQjonly presents the analyses in the M/GI/1, it is clear that the analysis can
be translated to the GI/GI/1 setting with little difficulty by recalling thet-C""S = B(£)1pusy. Thus, we

have that, in a GI/GI/1 queue wiffiR service,

P(TECES 5 2y ~ pP(E > (1 — p)z) asz — oo

Further, in a GI/GI/1 queue with a light-tailed service distribution it is clear that the tail behavior of
LCFS will match that of a busy period, so we have that

log P(TTCFS > z) ~log P(B > z) asz — oo

under any distribution that satisfies Assumptth Thus,LCFS is an example of a policy that performs
badly (with respect to the response time tail) under both light-tailed and heavy-tailed service distributions.

170 CHAPTER 6: THE DISTRIBUTION OF RESPONSE TIME

6.3 The response time tail under scheduling classifica-
tions

Now that we have surveyed the results characterizing the tail behavior of response time under a wide range
of individual policies, we can move to a discussion of how scheduling heuristics and techniques affect the
tail of response time. Recall that by broadening our focus from individual, idealized policies to scheduling
classifications based on heuristics and techniques we are accomplishing two important goals. First, we are
deriving results that apply to the hybrid policies that are actually implemented in real systems, and second
we are providing structural results that serve to organize and explain many of the results for individual
scheduling policies that we have just surveyed.

In this section, we will show that the tail of response time is asymptotically equivalent under a number
of different scheduling techniques and heuristics. This is interesting because it shows that the performance
of a policy is dominated by the heuristic and technique it uses rather than the details of the policy itself.
In particular, we will prove that all non-preemptive policies have asymptotically equivalent response time
tails under heavy-tailed service distributions. FurtBMART andFOOLISH policies have asymptotically
equivalent response time tails under both light-tailed and heavy-tailed service distributions.

The bulk of the section will focus on the analysis of BRIART class, since this class formalizes the
heuristic of “prioritizing small jobs” and is thus the most practical of the scheduling classifications. For this
class, we prove that, regardless of how small jobs are given priority, the tail behavior of response time is
asymptotically equivalent to that &RPT. This can be viewed as a theoretical proof that the adjustments
made toSRPT in practical settings do not have a large effect on the response times of the resulting policies.

6.3.1 The class of non-preemptive policies

We start our analysis by considering the case of non-preemptive policies. We will first discuss the case of
heavy-tailed service demands and then move to the case of light tailed service demands.

In the heavy-tailed setting, the behavior of non-preemptive policies can be understood using one sim-
ple observation: all non-preemptive policies must wait behind, at minimum, the excess of the job at the
server. When the service distribution is heavy-tailed, this excess dominates the tail-behavior. Thus, all non-
preemptive policies are asymptotically equivalent (ignoring constansLtS with respect to the tail of
response time.

Theorem 6.4
Consider an M/GI/1 queue governed by a non-preemptive policy P with F € TR. Then

lim pP(€ > x) < liminf P(TY >) and limsup P(TF > z) < lim LP((‘J > (1—p)z)

Tr—00 r—0Q0 T—00 T— 00 [p

This theorem generalizes the results of Ananthararh4h fvhere the tail behavior of response time un-
der non-preemptive policies is first discussed. Interestingly, many non preemptive policies have tail behavior
similar in form to the bounds above. For instance

P(TFCFS > gy ~ %P(é’ >x), T — 00
—-p
P(TFCFS >) ~ pP(E>(1—plx), = —

6.3: THE RESPONSE TIME TAIL UNDER SCHEDULING CLASSIFICATIONS 171

We are now ready to prove Theordi

Proof of Theorem 6.4. The lower bound in the theorem is immediate from the observation that if a
tagged job arrives and finds the server busy, then the tagged job must wait at minimum job the job at the
server to complete, which is an excess. THRE" >) > pP(€ >).

To prove the upper bound, we use a similar tagged job argument. First, notid&(fiat> z) < (1 —
p)P(X > z)+pP(B(Q) > z) where(Q is the steady state workload. Noting that the second term dominates
the asymptotics, and can focus our attention3yd)). Recalling thatP(B(Q) > =) ~ P(Q > (1 — p)z)
andP(Q > x) ~ flpP(S > x) completes the proof.
O

Interestingly, though non-preemptive policies have asymptotically equivalent tails in the heavy-tailed
setting, they can have very different tails in the light tailed setting. In particular,

lim log P(TFCFS >) = lim log P(Q > x)
rT—00 T—00
lim log P(T*¢FS >) = lim log P(B > x)
T—00 rT—00

Where(is the steady-state workload aitlis a standard busy period. As we have already seen, these are
the largest and smallest decay rates possible in this setting.

6.3.2 The SMART class

We now move to the analysis of the tail behaviorSMART scheduling policies. We will show that all
SMART policies are asymptotically equivalent 8RPT in both the heavy-tailed and light-tailed settings.
These results were first proven in Nuyens, Wierman, and Zwi&i][The technique that we apply to
analyze theSMART class turns out to be quite general. It turns out that it can easily be generalized to
analyze a variety of other priority-based policies. In order to illustrate this fact, we will useéBtipelicy as

a running example throughout this section.

Heavy-tailed service times

In this section we derive the tail behavior of response timé&SMART policies undeZ’R service distribu-
tions. The main result that we prove is the following.

Theorem 6.5
In the GI/GI/1 queue with P € SMART, if F € TR, then

P(TP >) ~ P(X > (1 — p)z), asz — oo. (6.7)

To prove the above theorem, we will use Conditiénéand6.5in combination with Theorerf.3,

Note that we have prove that 8MART policies satisfy Conditio.4in Section7.2, thus we will only
prove thatSMART policies satisfy conditio.5in this section.

Before proving that Conditiol.5 holds forSMART policies, we prove an auxiliary result. A similar
result has been shown before for the workload in¥i&= /1 queue L05.

172 CHAPTER 6: THE DISTRIBUTION OF RESPONSE TIME

Lemma 6.6
Let X; be i.i.d. random variables with E[(X;")P] < oo for some p > 1. Let S,(y) = >_1_, (X; Ay). Define
M (y) = sup,, S, (y). Forevery 3 > 0, there exists a k > 0 such that P(M (z) > kz) = o(z 7).

A key ingredient to the proof of this auxiliary result is the following lemma, which is due to Resnick
and SamorodnitskylB6].

Lemma 6.7
Let S, = X1 + - + X, be a random walk with i.i.d. step sizes such that E[X;] < 0 and E[(X;")P] < oo
for some p > 1. Then, for any o < oo, there exist ¢, k* > 0 such that for any n,x and k > k*,

P(S, > kx| X;<zi<n)<cx *

Using Lemmab.7, we will now prove Lemmé.6.

Proof. Let(> 0. For fixedy > 1, we write the standard geometric random sum decomposition

4 N(y) |
M(y) =Y Hiy),
1=1

with N (y) the number of ladder heights, affl(y) the:th overshoot; for details see e.g. Chapter VI of [].
By a sample-path comparison, it follows that

st V()

M(y) < Y [Hi(o0) Ayl

i=1
Writing H; = H; (o), we have for any:, v > 0,

=7
P(M(z) > kz) < P(N(c0) > |27]) + P< > (Hina) > kac) (6.8)

where|z| is the largest integer smaller than or equat t&ince the number of overshoots is geometrically
distributed, the first term in6(8) behaves likexp(—c|z”|) for somec > 0. Since this decays faster than
any power tail for anyy > 0, it suffices to consider the second term.

Let0 < ¢ < min{1,p — 1}. Since the tail offf; is one degree heavier than that of tkig (see Theorem
2.1 in Chapter VIII of Asmussen (2003)), we halidl! < EH" ™" < co. Hence,H! — 2E[HY] satisfies

6.3: THE RESPONSE TIME TAIL UNDER SCHEDULING CLASSIFICATIONS 173

the assumption of Lemm&a7. Takey € (0, q). Sincey? is a concave function ip, we have

[z7] [z7]
P(Z(HZ Az) > kx) = P([Z(Hz Ax)]? > (kx)q>
i=1 i=1
[z7]
< P(S (Hinz)t > (k:z)q>
=1

|27
- P(S ((Hi A2)? — 2E[HY) > (ka)! — 2Lx7JE[Hf]).
=1

To apply Lemmab.7, we need conditioned, and not truncated random variables. Choose an integer
B/(q — ~v). Considering the event that at leastf the H; are larger tham;, and its complement, we find

=7
P(Y ((Hi Aa)? = 2B[H])) > (ka)? — 2|27 | E[H]))
=1
Ed S
< (z)P(Hi >)l + P(S (H! — 2E[H]]) > (kz)* — 2|2" | E[H]] ’ #{i: H; >z} < z)
i=1
27|~
<2'P(H; > z)l + P(N (H - 2B[H]) > (kz)! — 2t — 2|2 | E[H]]
=1

H; < 1:) (6.9)

We complete the proof by showing that both termsard)areo(z 7).

SinceE[H}] < oo, we know thatP(H; > =) = o(z~ 7). Hence, sinc® < v < ¢, andl > 3/(g —),
we havex"' P(H; > x)! = o(z"z~%") = o(2~"). Letk > 0. Sinceq > ~, for k large enough, the second
termin 6.9 is smaller than

lz7 |-
P(N (H! - 2E[H])) > F(«? - 2E[HY)) ‘ HY — 2E[HY) < 29 — 2E[H§]). (6.10)
=1

Applying Lemma6.7 with a suitable choice of, there exist > 0 andn > (3/¢ such that§.10 is smaller
than
c(x? —2B[H]]) " ~ c(2?) " = o(a™"), x — 00.

This completes the proof.
O

Consider now &1 /G1/1 queue with the same interarrival-time distribution as before, but with generic
service timeX A x. SetA,(t) = Zfi(f) (Xi A), with K (t) the number of arrivals iri0, ¢], S0 A, (¢) is
the work entering the queue in the time inter@@lt]. Furthermore, at the beginning of each busy period an
initial setup timezx is added. Le'ré;ﬁS be the residual busy period after the arrival of a customer ofsize

174 CHAPTER 6: THE DISTRIBUTION OF RESPONSE TIME

ThenE;s can be represented as follows:
B =inf{t : x + Q5 + Au(t) — t = 0},

with @;’; the steady-state workload upon customer arrivals in this queue, including the effect of the initial
set-up.

Furthermore, leDF (¢) be the stochastic processes of work under pdditigat would have priority over
an arriving job of sizer at timet.

Lemma 6.8
For P = FB and all P € SMART, we have

T(z)F <y B**.

Note that we design this so as to inclueB to illustrate that the same proof technique we are using for
SMART policies can be easily adjusted to handle many other priority based policies.

Proof. The bound holds foFB, since the residual busy period bourfds:)8 if the setup time were not
included.

To see that the residual busy period also boufifts)” for P € SMART, note that the process? (¢)
consists of two types of busy periods: (i) busy periods started by a job of originat-siz¢hat now has
remaining size< x and (ii) busy periods started by a job of original sizer. In both cases, the Bias Prop-
erty prevents any job with remaining sizex from receiving service during the busy period; thus only new
arrivals of size< x can contribute once the busy period is started. Since the initial job Ihde&SMART is
necessarily smaller than the setupf E;s, and the arrivals during the busy period are stochastically larger
in E;S, the residual length of both of these busy periods is stochastically smalleﬁ’g‘ﬁan
U

The following lemma implies that Conditioh5 holds forSMART policies.

Lemma 6.9
For every 3 > 0, there exists a constant k such that

P(T(z)P > kz) = o(z™7), T — 00 (6.11)

for all P € SMART. As a consequence, Condition 6.5 holds for P € SMART.

Proof. LetP € SMART. We will boundT (z)P using the residual busy peridﬁ;’;s as per Lemm®.8.
Furthermore, define
Us = sup[Az(t) — ct + 2] = x + sup[A,(t) — ct]. (6.12)

t>0 t>0

6.3: THE RESPONSE TIME TAIL UNDER SCHEDULING CLASSIFICATIONS 175

ThenU! = Q5. For(1 — p)/2 < 6 < 1/2 andk > 1/§, we have by Lemma.8,

P(T(x)? > kz) < P(B! > kx)

P(z+ U} + Ay(kx) — kz > 0)

P(U} + Ay(kz) — (1 — 20)kz + x> Ok)

P(U} > 6k /2) + P(Ay(kz) — (1 — 20)ka + 2 > dkz/2)
(

P(Uy ™ > 6ka/2) + P(sup[Ay(t) — (1 - 20)t + a] > dka/2)
t>0

VAN VAN VAN VANRR VAN

= 2P(UL"% > §kx/2).
By takingk = k&/2, ande = 1 — 26, it suffices to show that there existé¢a> 1 such that
P(US > kx) = P(US — x> (k — 1)z) = o(z™P). (6.13)

We complete the proof by viewing$ — z in terms of a random walk. Since the supremumarnip) is
attained at arrival instants, we may write

Ui —x=sup » (X;Az)—cA; <sup Z[(XZ — cA;) Nz,

"oi=1 "o=1

whereA; is the time between th@ — 1)st arrival and theth arrival. SinceE[X; — (1 — 2)A;] < E[X; —
pA;] = 0andE[((X; — (1 —20)A;)")?] < E[X?] < oo, we may apply Lemma&.6, and 6.13 follows.

To show thatP € SMART obey Conditior6.5, note that sincé” € TR, there exists @& > 0 such that
x7% = o(P(X > z)). Take this3 and choosé as in 6.11). Condition6.5now follows.
U

Light-tailed service times

We will now derive the tail behavior of response time 8&MART policies under service distributions for
which Assumption$.1and6.2hold. We prove the following two main theorems.

Theorem 6.10
In the GI/GI/1 queue with P € SMART, if Assumption 6.1 holds, then

Y(B) < A(T7) < A(T°F°T).
Furthermore, if both Assumptions 6.1 and 6.2 hold, then v(TF) = ~(T"8) = v(B). That is,
log P(T? > z) ~ log P(B >), asx — oc. (6.14)

Theorem 6.11
Suppose P € SMART. Let y be such that P(X = y) = 0. Then

YT (y)) = 7(By). (6.15)

176 CHAPTER 6: THE DISTRIBUTION OF RESPONSE TIME

Theorem6.10follows from Lemmas5.14, 6.15 and6.16 while Theorem6.11follows from Lemma
6.17
We start by upper bounding the tail f under all work-conserving disciplinésusing the observation

thatT® < B*, whereB* 4 B(Q + X) is the length of the busy period starting with the amount of work
Q + X, Q is the steady-state amount of work in the system (upon customer arrivalsX @d generic
service time. Furthermord3(-), Q and X are independent, i.eB* is a residual busy period.

It can be shown that the decay ratesi#if and B coincide. Moreover, we have the following upper
bound:

Lemma 6.12
For all work-conserving disciplines P,

1
limsup — log P(T? > z) < —y(B*) = —(B). (6.16)

r—00

Proof. The firstinequality follows from the above observation thét< B*. The equalityy(B*) = v(B)
is trivial in the M /G/1 queue, but for th&I/G1/1 queue we need additional arguments. {ebe the
steady-state virtual waiting time in th&/ /GI/1 queue. By Lemma 3.2 in [IB and B(R) have the same
decay rate. However, we are interested in the decay raf&(€f+ X). In the M/ /G/1 case, we could

apply PASTA. In the general case, we note thad (Q + X — A*)™, with A* a residual interarrival time.
ThereforeT is stochastically smaller tha@ + X. Consequentlyy(B*) = v(B(Q + X)) < ~v(B(T)) =
~(B). To prove the upper bound, let(¢) be the total amount of work fed into the system between time
andt. Using the Chernoff bound, we find

P(B(Q+ X) >1) < P(A(z) —z+Q+ X > 0) < E[e*?]E[e*X]E[esA@)—2)],

The proof is now completed by minimizing the last factor oyetand showing that for the optimizing
arguments*, we haveE[e* @] < oo and E[e®"X] < oco. Since this is exactly what is done in Proposition
3.1 of [162], refer to that work for the remaining supporting arguments.

U

The following lemma, which is Proposition 2.2 ihg2, will play a key role in our arguments.

Lemma 6.13 N
For a GI/GI/1 queue under Assumption A, v(B,) | v(B) and ~(By) | v(B) asz T zp.

After these two preliminary lemmas, we are now ready to prove TheoBeb@and6.11 We start by
analyzing the behavior @MART . We start by doing the analysis in the simplest case: both Assumptions
6.1and6.2hold, and the service distribution is unbounded.

Lemma 6.14
In the GI/GI/1 queue with P € SMART, if Assumptions 6.1 and 6.2 hold, and z = oo, then v(TP) =
~(B). That is,

log P(T? >) ~ log P(B > 1), as x — oc.

6.3: THE RESPONSE TIME TAIL UNDER SCHEDULING CLASSIFICATIONS 177

Proof. Let A; be the first arrival after that of a tagged customer with size Let a be such that
P(A <a) >0andy < g — a. Then for allP € SMART,

P(T? >z) > P(T(Xo)P > 2,41 <a,Xo>y+a)
= P(A1 < a,Xg> y+a)P(T(X0)P > $|A1 < a,Xp> y+a).

Conditional onXy > y + a and A; < a, the tagged job has remaining service time larger thamen the

new job arrives. The Bias Property implies that this new job has higher priority than the tagged job if its
service times is smaller than Furthermore, all jobs with service time smaller thathat arrive while the

new job is in the system will also have higher priority than the tagged job. Thus, conditiod&) ony + a

andA; < a, we havel'(X,)" >4 B,. Hence,

P(T? > 2) > P(A; < a,Xo >y +a)P(B, > z).

SinceP(A; < a, Xo >y +a) > 0, the existence of(B,) implies that

limin — log P(TF >) > liminf lP(By > z) = —y(B,). (6.17)
r—00 I T—00 I
To prove the lemma, it suffices to show that the liminf result corresponding 16) (holds. Lettingy go to
oo in (6.17), and applying Lemm&.13 yields

1
liminf — log P(T" > z) > —~(B).
T—00 I
This completes the proof.
U

We now relax the assumption that the service distribution is unbounded. This relaxation results in the
need for a more involved argument.

Lemma 6.15
In the GI/GI/1 queue with P € SMART, if Assumptions 6.1 and 6.2 hold, and xp < oo, then V(TP) =

v(B).

Proof. If P(A <a) > 0forall a > 0, then the result follows from6(17) and Lemma6.13 as in the
proof of Lemma6.14 However, this may not be the case, so we need a different construction.

By definition of xr, there exists a decreasing sequeteg} such thats,, — 0 asn — oo, and
P(xp —en < X <xp—e,/2) > 0forall n. SinceP(X > A) > 0, we can assume that is such that
P(A < zp —2e) > 0. Let Z, be the event that the lakt /<, | customers that arrived before the tagged
customer had a service time in the interiaf — ¢, zr — ¢,/2], and that the lastzr /<, | inter-arrival
times were smaller thany — 2¢,,. By definition ofe,,, we haveP(Z,,) > 0 for all n.

Furthermore, the Bias Property guarantees that, on the eygrthere is a customer with remaining
service time larger thake,, after thekth of the inter-arrival times. Hence, at the arrival of the tagged
customer (aftek = |z /e, | arrivals), there is a customer in the system with remaining service time in the

178 CHAPTER 6: THE DISTRIBUTION OF RESPONSE TIME

interval[zp — e,,, xp — £,,/2]. If the tagged customer has service tikig > = — ¢,,/2, his sojourn time
satisfiesT” > B, ... Consequently, for alk € N,

P(T" > z) > P(Z,)P(Xo > 2 — €n/2)P(Bap_c, >).

Thus, forP € SMART, we have

1
liminf — log P(T" > 2) > —(Byp_e,).
r—00 I
Asn — oo, and hence,, | 0, Lemma6.13implies thaty(B,,_.,) — v(B). Using Lemmé&5.12completes
the proof.
O

Finally, we relax Assumptios.2 In contrast toFB, the sojourn-time tail oSMART policies can
improve when there is mass in the endpoint of the service distribution. This is not surprising since many
SMART policies, e.g.SRPT, are equivalent t6 CFS in the GI/D/1 queue. HoweveBMART also includes
policies where, like=B, jobs of the same size are not served~DFS order. Thus, th&MART policies
have a range of possible sojourn-time tails in this setting.

Lemma 6.16
In the GI/GI/1 queue, under Assumption 6.1, for all P € SMART,

v(B) < y(TP) < y(T°RPT). (6.18)

Proof. By Theorem6.10, we only need to deal with the case that Assumptdhdoes not hold, i.e.,
P(X = zp) > 0. The first inequality follows from Lemm&.12 For the second inequality, note that
P(T? > z) > P(T(xr)? > 2)P(X = zp). Thus, sinceP(X = xr) > 0, y(T?) < ~(T(zFr)").
Furthermore, for alP € SMART, T'(zp)" >4 W (xp)P > Wa(zr), whereWs(zr) is the waiting time
of alow priority job in a 2-class priority queue where the high-priority class includes all jobs smallerthan
To complete the proof, we apply Theorems 3.1 and 4.26#] which state thaty(Ws(xr)) = v(T5RPT).

O

We end this section with the analysis of the conditional sojourn time UBBIEXRT policies.

Lemma 6.17
In the GI/GI/1 queue with P € SMART, if P(X = y) = 0, then

YT (W)F) =7(By). (6.19)

Proof. For the lower bound, we remark thaf' (y) > B;, for all P € SMART. By Lemma6.12 this
residual busy period has decay rates,).

For the upper bound, we use the fact that, at any point in time, at most one customer with original service
time larger thary has remaining service time smaller tharDenoting by, the stationary workload, upon

6.3: THE RESPONSE TIME TAIL UNDER SCHEDULING CLASSIFICATIONS 179

arrival instants, made up of customers with service time smallerithare can bound

Tp(y) Sst By(Qy +) + y)

Denoting the amount of work brought by customers (with size smaller ghamtering the queue in the
interval [0, 2] by A, (z), the Chernov bound yields that for al>> 0,

P(T"(y) > &) < P(By(Qy +2y) > @) < P(Qy + 2y + Ay(x) >)
= P(exp(s(Qy + 2y + Ay(2)) >) < 0—5% 0289 [5Qu FosAu(@)

Hence, for alls < v(@Q,), we have

1 1 1
limsup — log P(TF (y) > z) < —s + limsup — log Ee*A(®) = —s — &7 () ;
e T pooo T D xr(x<y)(5)

where the equality follows from Lemma 2.1 ihd5. Taking the infimum over alf € [0,~v(Q,)) yields

1

(I)XI(X<y)(3)> } =15y,

1
limsup —log P(TP(y) > z) < — sup

[s + oYy (
z—oo ¥ 0<s<v(Qy)

where the equality follows from equation (5.1) ib6J. Noting thatB, and B;, have the same decay rate
yields the desired upper bound, and completes the proof.
[

6.3.3 The FOOLISH class

We now move to the class 6FOOLISH policies. The tail behavior dFOOLISH policies provides a huge
contrast to the results for the classSMIART policies we just discussed. Not surprisingly, we will show that
the class oFOOLISH policies has the worst possible tail behavior under both light-tailed and heavy-tailed
service distributions.

Heavy-tailed service times

The main result we will prove abolBOOLISH policies under heavy-tailed service distributions is the
following.

Theorem 6.18
In an M/GI/1 queue governed by P € FOOLISH with F € TR,

lim LP((‘J > z) <liminf P(T* > z) and limsup P(T* > z) < lim LP((‘f > (1—p)z)

Though we prove this result in the M/GI/1 setting, it can be extended to the GI/GI/1 setting using
arguments parallel to those used in the analysSMART.

180 CHAPTER 6: THE DISTRIBUTION OF RESPONSE TIME

Proof. We will start by proving the lower bound oR(T” >) using a sample path argument. Recall
that 7FL/F <, TP, thus we can usPLJF to lower bound the tail of?. We will show that the critical
event leading to the large delay of a tagged jabthat arrives at time = 0 is the arrival of a big jobX, at
some point = —y before the arrival ofXy. Formally, defind/¢ = sup,~o{ct — A(0,t)} whereA(0,t) is
the amount of work arriving in a time intervéd, t). For anye > 0,5 > 0,

P(TY >2) > P(TPYE >)

> / AP(A(0,y) + Xp —y >) P(Xp > Xo)dy
y=0

Y

v [OOO P(A(0,y) — y(p — 6) > —ex) P(Xy > (1 +€) +y(1 — p+) P(X, > Xo)dy
y:
P(Xp > 2)P(X; > X0)1—dpz+5

v

AP(inf (A(0,9) — u(p —9))) / (14

> PUP < ex)l_iz_l_éP(E > (14 €))P(Xo < 2(1 +¢))

Note thatP(U*~° < ex) — 1asz — oo because of the law of large numbers. FurtirX < z(1+¢)) —
1 asxz — oo. Thus, the proof of the lower bound is complete.

To prove the upper bound, we recall tHat <, TL#PT, Thus, we need only analyze the tail behavior
of LRPT. But, in the M/GI/1 setting,

TLRPT & B(X + Q)

whereQ is the steady state work in system. Recalling thaB(X + Q) > z) ~ P(X + Q > (1 — p)x),

TFCFS & X 4 @, andP(TFCFS >) ~ 12, P(€ >) completes the proof of the upper bound.
(|

Light-tailed service times
We now characterize the response time talFGfOLISH policies under light-tailed service distributions.

Theorem 6.19
Consider a GI/Gl/1 queue governed by P € FOOLISH under Assumption 6.1 and the assumption that
P(X = z1) = 0 where x, = inf,(F(a) > 0). Then, v(T*) = v(B). That i,

log P(TY > z) ~ log P(B >), asx — oo.

The assumption tha® (X = z1) = 0 acts similarly to Assumptiof.2in the case oEMART policies.
Without this assumptioriF-OOLISH policies are not asymptotically equivalent. For exampleJF and
LRPT differ becausé.RPT will complete all jobs in the system of sizg, at the same time arédLJF will
complete jobs of size;, in FCFS order, which leads to a smaller decay rate when jobs of sjizbave
positive probability mass. For a simple example of this, think of the case of a GI/D/1 queue.

Proof. We have already seen thatB) is the smallest possible decay rate for work conserving policies,
thus we need only prove an upper bound on the decay rafe’di.e. a lower bound on the tail 6f").

6.4: CONCLUDING REMARKS 181

To accomplish this we will construct a critical event that leads to a large delay und&t il which is a
stochastic lower bound for alt € SMART.

To construct a critical event, consider the arrival of a big jof followed by the arrival of a small job
X, after an interarrival timedy. At the time when the small job arrives, the remaining size of the large job,
r, starts a busy period of jobs larger th&R, B~ x, (r), which are guaranteed to complete beféfg Let
the lower bound of the service distribution bg and the upper bound he;. For anye > 0,b > a > 0,

P(TY >2)>P(Xy>b+a,Xs <z +¢€ Ay < a)P(Bsg, 1c(b) >)

Finally, lettinge — 0 and recalling that a conditional busy period has the same decay rate as a standard busy
period completes the proof.
O

6.4 Concluding remarks

In this chapter, we have moved beyond mean response time and provided a number of results characterizing
the distribution of response time both under individual policies and scheduling classifications. Such a study
is essential to the applicability of scheduling in practice because users in computer systems demand both
response times that are fast on average and response times that are predictable. Further, distributional results
about response time are fundamental to QoS, admission control, and capacity planning applications.

But, unfortunately, studying the distribution of response time under scheduling policies is known to be a
difficult problem, and thus we cannot hope to attain exact results. Instead, our focus has been on studying the
tail behavior of response time in the large buffer large deviations regime. That is, we have characterized the
behavior of P(T > z) asz — oo. Such a regime is of practical importance because it provides bounds on
the likelihood of large delays, which are exactly what is needed for QoS and capacity planning applications.

In this chapter, we provided a thorough summary of recent results studying the tail behavior of response
time under a wide variety of scheduling policies. In addition, we added to the literature by deriving the tail
behavior of response time und8RPT andFB in a heavy-tailed GI/GI/1 queue for the first time, and by
deriving the tail behavior of response time in light-tailed GI/GtR queues for the first time. Further, our
main focus in this chapter was on characterizing the response time tail of scheduling classifications, and
we attain the first results for tf@MART andFOOLISH classifications. These results are essential for the
application of scheduling in real-world settings because the classifications include not only idealized policies
like SRPT, but also the variations of these policies that are actually implemented in practice. Not only are
our results about classifications of practical importance, they also add structure to the space of scheduling
policies. For example, all policies in tH®MART class have a response time tail that is asymptotically
optimal in the heavy-tailed setting but as heavy as possible in the light-tailed setting. This is a behavior
that has been observed under many common individual policies, but by showing that the behavior occurs
under all policies that “prioritize small jobs” we have provided a formalization of the reason this behavior
emerges.

To conclude this chapter, it is important to point out that the large buffer scaling that we used in this
chapter is only one scaling that can be used to study the response time distribution. It is the most commonly

182 CHAPTER 6: THE DISTRIBUTION OF RESPONSE TIME

used scaling for studying scheduling policies, but recentlypthry sourcekarge deviations regime has also
emerged as a useful tool for analyzing scheduling policies. In the many sources framework, the number of
arriving flows, the buffer size, and the service capacity are scaled up proportionally yielding a system with
a huge number of arriving flows and huge service capacity. In this asymptotic setting, it is then possible
to directly study the delay distribution. Practically speaking, this framework is motivated by applications
such as high traffic web servers and routers that have enormous available bandwidth and thousands of si-
multaneous flows. The analysis of scheduling (beyB6&S) in the many sources framework is much less
mature than the large buffer framework, and has only recently yielded results. In particular, until recently,
only results for a handful of individual policies have been able to be atta#tizd4, 209, 123 249. But,

very recently, we introduced a novel technique for the analysis of both individual scheduling policies and
classes of scheduling policies in the many sources regd@.[This technique, that we refer to as ttveo
dimensional queueing frameworkdds tie-break rules to policies in ways that do not alter the asymptotic
performance of the policies, but greatly simplify their analysis. The strength of this novel framework is that
it enables:(i) the study of policies that depend on the job state (age and/or remaining size), as opposed to
only the queue length; an@) the study of aclass of policiesas opposed to only the analysis of individ-

ual policies. In 4§, we illustrate the generality of this technique by analyzing beBhand theSMART
classification in the many sources regime.

Note that the many sources and large buffer regimes provide very different views of the response time
distribution. Each regime captures the impact of some practical factors that the other regime does not.
For instance, the large buffer scaling provides results that contrast the behavior of response time under
heavy-tailed service distributions with infinite support and light-tailed service distributions that may have
finite support and may be discrete. In contrast, the many sources regime requires the service distribution
to be discrete and have finite support, thus it can only provide results for a small set of light-tailed service
distributions. On the other hand, the many sources framework captures the impact of statistical multiplexing
between arrival flows and allows the estimation/4fl’'(k) > =) for all z, neither of which can be captured
in the large buffer setting.

As a result of these differences, the two regimes provide complementary descriptions of the “most likely
way” (thecritical eventin large deviations parlance) in which large response times occur. Under the large
buffer setting, especially when the service distribution is heavy-tailed, it is common that the critical event is
the arrival of a handful of very large jobs. In contrast, under the many sources setting, the critical event is
the arrival of a large burst of jobs (i.e. a moderate number of arrivals per flow from a large number of flows).
Practically, each of these critical events can be important depending on the system that is considered. For
instance, if one considers a low-to-moderate traffic web server or router, the arrival of a handful of very
large requests is likely to choke the system, and such an event is more likely than a large burst of arrivals.
Thus, in this setting the large buffer regime provides useful results. However, in a high traffic web server
or router, one with enormous bandwidth (typical large web-servers today handle multi-Gbps traffic) that is
accessed by a large number of flows, the arrival of handful of large requests from any single flow is unlikely
to choke the system; rather, the critical event is a burst of moderate sized (compared to the scale of the
server capacity) arrivals from a large number of flows, which matches the results from the many sources
framework.

CHAPTER

Fairness

Traditionally, and until this point in this thesis, the performance of scheduling policies has been measured
using the mean response time and the tail of response time. Under these measures, we have seen that policies
that give priority to small job sizes at the expense of larger job sizes perform quite well. For exaRPIE,
minimizes the mean response time. As a result, designs based on these policies have been suggested for a
variety of computer systems in recent years. However, the adoption of these new designs has been slow
due to fears about the fairness of these policies. Specifically, there are worries that large job sizes may be
“starved” of service under a policy that gives priority to small job sizes, which would result in large job sizes
having response times that are unfairly long and variad®e410 215, 223.

These worries have recurred nearly everywhere size based policies have been suggested. A first example
is the case of web servers, where recent designs have illustrated that giving priority to requests for small files
can significantly reduce response timé§,[182. However, it is important that this improvement does not
come at the expense of providing large job sizes unfairly large response times, which are typically associated
with the important requests. For example, at an online shopping site the large requests are often the shopping
cart transactions and at an online music site the large requests are the song and album downloads. The
same tradeoff has appeared across diverse application areas. For example, UNIX processes are assigned
decreasing priority based on their current age, i.e. CPU usage so far. The worry is that this may create
unfairness for old processe®4]. Similar tradeoffs can be found in recent designs for rout&v$,[18(,
wireless networks1[02, transport protocolsZb0, and beyond.

To address these worries, it is important to develop a theoretical framework for studying the fairness
of scheduling policies. However, fairness is an amorphous concept, and nearly impossible to define in a
universal way. The difficulty in defining the fairness of scheduling policies is best illustrated using a few
simple examples:

(i) Suppose joba andb are the same size, ancenters the queue slightly befae

(i) Suppose jobg andd are very large and very small respectively, and ¢adnters the queue slightly
before jobd.

Most people agree that it is fair to serve jolbefore jobb and to serve jold before jobe. Thus, there is a
common consensus that it is unfair for small jobs to queue behind larger ones and that it is unfair for a job

183

184 CHAPTER 7: FAIRNESS

that arrived later to bypass jobs that arrived earlier. However, these are clearly competing notions of fairness
—when a small job arrives some length of time after a large job, it is unclear which job it is most “fair” to
serve.

Further, notice how the fair service order changes depending on the setting being considered. If the
gueue in question is a ticket box office, then it is more fair to serve joéfore jobd because, since tickets
are a limited resource, it would be unfair for someone who arrived later to get a ticket if an earlier arrival
does not. If the setting is a grocery store however, it is quite acceptable to allow small jobs to bypass large
jobs (by using the “ten items or less lane”). If the setting is a hospital, however, things change completely.
In a hospital, it is more fair to serve the more urgent job, regardless of the sizes or arrival order.

These simple examples illustrate how difficult it is to formalize what is meant by “fairness.” As a result
of these difficulties, the topic of fairness has not been approached in the queueing literature until this work.
In this chapter we will provide an overview of our recent work introducing the first fairness metrics for the
M/GI/1 queue. Additionally, we will provide results characterizing the fairness of both individual policies
and scheduling classifications with respect to these new metrics. Finally, we will survey some of the newly
emerging fairness metrics that other researchers have developed following our work on fairness.

In order to develop a formal definition of fairness, it is important that we first have a clear idea of
what is meant by the term “fair” in the context of the applications in which we are interested. In computer
applications, there are two notions of fairness that appear quite commonly. We will refer to these two types
of fairness agproportional fairnessandtemporal fairness Both of these notions of fairness are illustrated
by the simple example that we considered at the opening of this chapter.

e Proportional fairness refers to the idea that all job sizes should receive equitable service, i.e. no job
size receives disproportionately large response times.

e Temporal fairness refers to the idea that it is fair to respect the seniority of jobs in the queue, i.e. itis
in some sense unfair for a small job that just arrived to the queue to jump in front of the large job.

Each of these notions of fairness is appropriate, to different degrees, in a variety of applications. For
instance, in web servers and routers, proportional fairness is important because it is necessary to make sure
that no class of jobs is “starved” of service, i.e. all jobs receive an equitable service rate. This is especially
relevant when considering priority-based designs. Temporal fairness is fundamental in e-commerce appli-
cations where it is important to guarantee that a item gets sold to the first person to request it. Similarly, in
databases and other applications where data consistency is important, temporal fairness is very relevant.

Though proportional and temporal fairness are relevant to a wide range of applications, both in computer
systems and other application areas, it is important to realize that these are only two possible meaning of
the term “fairness.” Fairness can take on entirely different meanings in other contexts. For instance, there
is a large literature studying the fairness of bandwidth allocations to flows at a network3évedp, 114].

But, we will limit ourselves to the notions of proportional and temporal fairness in this chapter.

We will start the chapter by focusing on proportional fairness measures. Over the course of Sections
7.1-7.4, we will develop a novel framework for studying proportional fairness. To begin, we will limit our
discussion to proportional fairness in expectation in Sectidnwhere we introduce a new definition of
fairness and study the behavior of both individual policies and scheduling classifications. Then, in Sections

Do not confuse this notion of “proportional fairness” with the one introduced 14][We are considering only single server
gueues in this chapter, whilé14] considers network resource allocation.

7.1: PROPORTIONAL FAIRNESS IN EXPECTATION 185

7.2-7.4we will extend the notion of proportional fairness we develop for the mean to a general framework
for studying distributional properties of proportional fairness. Again, we will study the behavior of both
individual scheduling policies and scheduling classifications using this new framework. In our exploration
of proportional fairness, we find many surprises. Perhaps the biggest surprise is that, for quite a few common
policies, proportional fairness is a function of load. That is, at moderate or low loads, these policies are fair
to all jobs; yet at higher loads these policies become unfaRPT is the most well-known policy that
exhibits this behavior. With respect to designing scheduling policies, we find that under high load, almost
all scheduling policies are unfair. However under low load one has the opportunity to make a policy fair
by sometimes increasing the priority of large jobs, S&88PT allows large jobs to increase their priority as

their remaining size drops.

Following our discussion of proportional fairness, we will move to a discussion of temporal fairness
in Section7.5. The metric we develop here is also new to this thesis. Again, we explore the behavior
of both common individual policies and scheduling classifications. Our exploration yields many surprises.
Probably the biggest surprise is that policies that “prioritize small jobs” are some of the most fair policies
in this setting. Further, we prove that no policy can simultaneously provide both temporal and proportional
fairness to all job sizes.

Finally, after exploring both proportional and temporal fairness individually, in Se@ti@rwe survey
a number of fairness metrics that emerged following our work on fairness. These proposals develop hybrid
measures that combine the notions of proportional and temporal fairness into one measure.

7.1 Proportional fairness in expectation

The first notion of “fairness” that we will discuss goportional fairness The concept of proportional
fairness derives intuitively from Aristotle’s notion of fairness: like cases should be treated alike; different
cases should be treated differently; and different cases should be treated differently in proportion to the
difference at stakel87]. In the context of scheduling queues, this matches the common intuition that: small
jobs should have small response times; large jobs should have large response times; and the differences
in response times of small and large jobs should be proportional to the differences between the job sizes.
Specifically, the response time for a job of siz€l'(x), should be proportional te.

Proportional fairness arises naturally in many computer applications due to the inherent tradeoff between
providing jobs of different sizes “fair” performance and providing “efficiency,” which requires biasing to-
wards small job sizes at the expense of large job sizes. This tradeoff between efficiency and fairness is
often an important design constraint. For example, in the case of web servers, it has been shown that by
giving priority to requests for small files, a Web server can significantly reduce response times; however it is
important that this improvement not come at the cost of unfairness to requests for larg@gfil@hg same
tradeoff applies to other application areas; for example, scheduling in supercomputing centers. Here too it
is desirable to get small jobs out quickly, while not penalizing the large jobs, which are typically associated
with the important customers. The tradeoff also occurs for age based policies. For example, UNIX processes
are assigned decreasing priority based on their current age — CPU usage so far. This can create unfairness
for old processes. To address the tension between minimizing mean response time and maintaining fairness,
hybrid scheduling policies have also been proposed; for example, policies that primarily bias towards young
jobs, but give sufficiently old jobs high priority as well.

186 CHAPTER 7: FAIRNESS

7.1.1 Defining proportional fairness in expectation

Defining a metric for studying proportional fairness is a difficult task due to the amorphous nature of “fair-
ness.” In the first half of this chapter, we will develop a a unified framework for studying the proportional
fairness of the entire distribution @f(x); but we begin in this section by studying proportional fairness in
expectation only. The following metric for fairness was introduced through a series of papers starting with
Bansal and Harchol-Baltef] and culminating with Wierman and Harchol-Balt@3f.>

Definition 7.1 Let0 < p < 1in an M/GI/1 system. A job sizeis treatedfairly under policyP, service
distribution X, and loadp if
BT(x))” _ =
<
T)
Otherwise, a job size is treatedunfairly. A scheduling policyP is fair if every job size is treated fairly.
OtherwiseP is unfair.

E[S(x))" =

Definition 7.1 consists of two pieces: a metri£[S(z)] = E[T'(x)]/z, and a criterion] /(1 — p). The
metric clearly relates to the intuition that the response time of a job should be proportional the size of the
job; however the criterion is less intuitive. There are two motivations for this choice of metric and criterion.

1. PS is typically thought of as a fair policy because at every instant every job in the system receives
an equal share of the server. This matches Rawls’ theory of social jus88e Further,PS satisfies
the idea thate'[T'(=)] should be proportional t@, since the slowdown und€tS is constant across
z: B[S(x)]P¥ = 1/(1 — p). In fact, among policies with constant slowdo®$ minimizes mean
response time (see Theoréh®). Thus, a scheduling polic} can intuitively be viewed as unfair if
jobs of some size haveE [T (z)|" > E[T(x)]"% = 2/(1 — p).

2. More formally, when comparind’[T'(x)]” acrossz, we want ametric that scalest[T'(x)]” ap-
propriately to allow for comparison of[T'(z)]” between small and large. For E[T(x)]", it
is clear thatl /x is an appropriate scaling factor becausf’(x)]” = ©(z) under all work con-
serving scheduling policie®7], and thus we need to normalize by the growth rate. Gtirion
1/(1 — p) stems from two formal motivations. First, it provides a min-max notion of fairness:
minp max, E[T(x)]"/xz = 1/(1 — p) (see Theoren7.9). Second,1/(1 — p) provides a criterion
that distinguishes between patterns of behavior of policies with respect to the mfiic)]” /.

With Definition 7.1in hand, it is now possible to classify scheduling policies based on whether they (i)
treat all job sizes fairly or (ii) treat some job sizes unfairly. Curiously, we find that some policies may fall
into either type (i) or type (ii) depending on the system load. We therefore dbfemclasses of unfairness

Definition 7.2 Let0 < p < 1in an M/GI/1 queue wher& is non-deterministié. A scheduling policy?
is: (i) Always Fairif P is fair for all suchp and X; (ii) Sometimes Faiif P is fair under some and X and
unfair under othep and X; or (iii) Always Unfairif P is unfair under all loads and service distributions.

2Note that throughout the remainder of this section we will refer to “proportional fairness” as simply “fairness” in order to
simplify the exposition. This also matches with the literature where the term fairness has been typicall25)S&8[/, 97, 179,
185 238. We will use the term “proportional fairness” only when it is necessary to distinguish it from the other notions of fairness
discussed in this chapter.

3We exclude deterministic distributions because the concept of proportional fairness is only interesting when there exist jobs of
different sizes.

7.1: PROPORTIONAL FAIRNESS IN EXPECTATION 187

Note that Definitior7.2is a generalization of the definition i238]. Initially, in [238, only distributions
with finite variance were considered. However, more recently Brehwas able to extend many of the
results to allow the consideration of distributions wiitfinite variance. The extension led to some counter-
intuitive results that we will discuss later in the thesis.

In this remainder of this section, we will study the fairness of both individual scheduling policies and
the fairness of scheduling classifications. Our goal will be to classify scheduling policies, techniques, and
heuristics as either Always Fair, Always Unfair, or Sometimes Fair. Further, we will characterize the degree
of unfairness under many common individual policies. The main results are summarized inFigWar
aim in providing this taxonomy is, first, to allow researchers to judge the unfairness of existing policies and,
second, to provide heuristics for the design of new scheduling policies. Since very little analytical prior work
exists on understanding the unfairness of scheduling policies, and what does exist is isolated to a handful
of individual policies P6, 179, this section represents the first broad study of the unfairness of scheduling
policies.

In our attempts to understand unfairness, we find many surprises. Perhaps the biggest surprise is that for
guite a few common policies, unfairness is a function of load and variability. In particular, some policies
are fair at moderate or low loads, but become unfair under higher loads. Further, some policies are fair
for highly variable service distributions (WitB[X?] = oc), but are unfair ifE[X?] < co. SRPT is a
well-known policy that exhibits both of these behaviors.

These surprises have a direct impact on designing scheduling policies for computer applications. In
particular, we find that under high load, almost all scheduling policies are unfair; but that under low load
one has the opportunity to make a policy fair by sometimes increasing the priority of large jobs. For example,
PSJF andSRPT have very similar behavior and delay characteristics, but be @RB& allows large jobs
to increase their priority it is more fair under low loads.

Since so many policies are Always Unfair, and so many others are Sometimes Fair, it is important to ask
whois being treated unfairly. We present a number of results characterizing who is being treated unfairly
and how unfairly they are treated. Initially it may seem that unfairness is an increasing function of job
size, with the largest job being treated the most unfairly. This is in fact the case for most bounded job
size distributions. However, for unbounded job size distributions, we find that this is usually not the case.
Instead, under many policies, unfairness is monotonically increasing with job size up to a particular point;
and later is monotonically decreasing with job size. Thus, the job being treated most unfairly is far from the
largest (see Figuré.2). Interestingly, the position of this “hump” changes as a function of load.

7.1.2 The proportional fairness of individual policies

To get a feel for Definitiory.], it is useful to begin by studying the behavior of common individual policies
with respect to fairness.

As a first step, it is easy to see that eaclr8P, PS, andPLCFS are Always Fair because

1
E[S(2))™ < B[S(x))"F"® = E[S(2)]"® = T,

Thus, there are a number of policies that are fair under all service distributions and all loads.

However, most common policies are not Always Fair. For example, we will sed-@&$§, and all
other non-preemptive blind policies, are Always Unfair (Secfioh 3.9 because the smallest job size in

188 CHAPTER 7: FAIRNESS

(O PP
s e s ’ ~
Always Ly O\ | Remaining /L 0 Always
1 .
H SRPT ° | size based | LRPT R .
Fair .] . Unfair
JU : N I \ FOOLISH \
/" @PLCFS ™, P A Y ool \
'.' “ [4 5 \\\ :I 1
! SYMMETRIC, | 1 /| Preemptive PLEF [:
1 o RN U size based Rt :
AP R A
/) b “--SFB :
\PROTECTIVE! =~L Age based :
[y ' e]
RN N P e L
Sometimes || | & e JOES
. 1 _ Y e |
Fair : Non p.reempttve 2]
it non-size based)
O]
1
: SIFe LIFq |
\ | Non-preemptive size based :/

Figure 7.1: An illustration of the classification of common prioritization techniques and heuristics with
respect to proportional fairness.

the service distribution will always be treated unfairly. Further, we will see that by giving priority to small
jobs, it is possible to be Sometimes Fair. In particular, we will seeSRRT andFB are Sometimes Fair.

FB is unfair when the service distribution has finite variance, but can be fair when the service distribution
has infinite variance an8RPT is unfair if load is high and the service distribution has finite variance, but

can be fair if the load is moderate or if the service distribution has infinite variance. Further, we will see that
even in the settings where these policies are unfair, the degree of unfairness to large job sizes is not as bad
as one might expect.

In this section, we will focus only oRB andSRPT due to their practical importance, however, we have
also analyzed the fairness of many other common policiez3f pnd we summarize these results in Figure
7.1and Figure7.2. We do not include the analyses here because they are similar in tone to the analyses of
SRPT andFB; thus it would have become to repetitive for the reader.

7.1.21 FB

Given the bias thaEB provides for small jobs (since they are always young), it is natural to ask about the
performance of the large jobs. Thus, understanding the growth of slowdown as a function of the jois size
important. It turns out that the performanceds is strongly related to that ?#SJF. The first results on the
fairness ofFB were published simultaneously by Wierman & Harchol-Bal&3q and Rai, Urvoy-Keller,

& Biersack [L79 under the assumption th#&[X?] < co. In this setting it was found th&B was always
unfair. However, recently Brown found, surprisingly, ti8 can be fair when the service distribution has
infinite variance 47]. We summarize the major results in the following theorem:

7.1: PROPORTIONAL FAIRNESS IN EXPECTATION

189

Preemptive Policies

Non-preemptive Policies

E[T(x)Vx

E[T(x)]/x

E[T(x)Vx

20 0 5 15 20

1/(1-p)
— SRPT — SRPT
--- PSJF oy --- PSJF
-~ LAS ol --- LAS

1/(1-p)
2.5

o)

ET0Olx

4
o

0 0

E[T()x

1/(1-p)
— FCFS
---- SJF

1/(1=p)
— FCFS
---- SJF

20t !

5}

E[T0))x

o] 0.2 0.4 0.6 0.8 1 o] 0.2 0.8 1
Fix)

() Low load p = 0.5)

0.4 0.6
F(x)

(b) High load p = 0.9)

o 0.2 0.8 1 o] 0.2

0.4 0.6
F(x)

(d) High load p = 0.9)

0.4 0.6
Fx)

(c) Low load p = 0.5)

Figure 7.2: The conditional mean is illustrated under a variety of both preemptive and non-preemptive
policies. The service distribution is exponential with mean 1. The dotted line shows the criteria for propor-

tional fairness.

Theorem 7.1

FB is Sometimes Fair. FB is unfair when E[X?] < co. However, FB is fair when the service distribution is

regularly varying with rate o« € (1,1.5).

Theorem?.lillustrates that, surprisingly, in many cadeB is fair to all job sizes. In fact-B is often
fair in practical settings since workloads in many computer applications are thought to be regularly varying

with o € (1,1.5).

Though Theoren7.1says thaFB can be fair in some situations, more often than Rékjs unfair. Thus,
it is important to understand which job sizZ€B is unfair to and how unfairly these job sizes are treated. To
provide an answer to this question, let us consider the caselof%f] < oo in more detail. We will limit
our discussion to unbounded service distribution, but case of bounded service distributions can be handled

similarly.

Theorem 7.2

In an M/GI/1 FB queue with E[X?] < oo there is some job size y such that for all x > y, E[S(x)]F'B >
1/(1 — p) under any unbounded service distribution, for all p. Furthermore, E[S(z)]* B is not monotonic in

x.

Proof.

Notice thatlim, ., E[S(z)]¥® = 1/(1 — p) since the service distribution is assumed to have

finite variance. As a result, to prove the theorem it is sufficient to showgﬁlﬁ{S(ar)] converges to zero

from below ast — oo.

190 CHAPTER 7: FAIRNESS

By observing that
i FB _ iE[T(x)]FB
de[S(:r)] - dx x
g B[T(x)]"P — E[T(x)]"”
= po ,
our goal reduces to showing thatas- oo
x%E[T(az)]FB — E[T(2)]"P <0 (7.1)
Let us begin by differentiating response time:
d 2\2F(z)x [T tF(t)dt 2\ F(x) x
t—E[T(x)]FB = 20 + = + —
2 7@ 05 A (e 5 el e

which gives us

xi LFB _ FB _ 2N°F (x)x [tF(t)dt 2\z%F(x) B Ay tE(t)dt
TE[T@)]"" - E[T(@))" = (1 72)°) + <(1 w2 —ﬁ(:@)?) (7.2)

Recall from {.1) that the above gives us the sign $E[S(z)]F'E. There are two terms ir7(2). The
first term is clearly positive. Notice that farsuch thatF(z) > 1 we have:

9
dzx

v

E[T(z)]"B — E[T(x)]"P (1_2@))2 <2x2F(x) — ;3:2)
> 0

which shows thafZ[S(z)] ¥ is monotonically increasing far such that?'(z) < 3.

We now prove that the expected slowdown convergely/té — p) from above as: — oo. First, we
know thatlim, ... E[S(z)]8 = 1/(1 — p) [97]. Next, (7.2) gives us the sign oft E[S(z)]'E. Note that,
for any distribution with finite second moment, we know ti&tr) = o(x~2). Using this observation and
the fact thap(z) — p asz — oo,

_ TAEX7

) d
IlLIgox%E[T(x)]FB — E[T(2)]F? = 212 <0

Thus, there exists some job sizgsuch that for alle > z¢, E[S(z)]¥'? is monotonically decreasing in
O

The proof of this theorem shows us that all job sizes greater than a certain size have higher mean response
time underFB than undePS. Counter-intuitively however, the job that is treated the most unfairly is not
the largest job. Thus, the intuition that by helping the small pBsnust hurt the biggest jobs is not entirely
true.

7.1: PROPORTIONAL FAIRNESS IN EXPECTATION 191

Interestingly, this theorem is counter to the common portrayBBoih the literature. When investigating
E[S(z)]FB, previous literature has used percentile plots, which hide the behavior of the largest one percent
of the jobs. When looking at the same plots as a function of job size the presence of a hump becomes
evident. This contrast is illustrated in Figufe2. In fact, even under bounded distributions this hump exists,
regardless of the bound placeden

Having shown that some job sizes are treated unfairly uk@escheduling, it is next interesting to
understand exactly which job sizes are seeing poor performance. The following theorem places a lower
bound on the size of jobs that can be treated unfairly.

Theorem 7.3
In an M/GI/1 queue, for = such that p(x) < 1 — /T — p, E[T(z)]*2 <1/(1 — p)

Proof. The proof will proceed by simply manipulating[T'(z)]*5.

FB A S tE(t)dt x
R (e L)
Az [F(t)dt x
R G 5) R e
) x(—F@) |«
T-2@)? T 10— @)

- (1= p())?

Letting p(x) < 1 — /1 — p we complete the proof of the theorem.
O

It is important to notice that gsincreases, so does the lower bound /1 — p on p(x). In fact, this
bound converges to 1 as— 1, which signifies that the size of the smallest job that might be treated unfairly
is increasing unboundedly asncreases.

7.1.2.2 SRPT

SRPT has long been known to optimiZe{7"]. However, its use in practice has been hindered by the fear that
large job sizes experience unfairly long response times. The fairn&RRT was first studied by Bansal

& Harchol-Balter p5] under the assumption th&[X?] < oco. These initial results were later extended
by Wierman & Harchol-Balter438, and then by Brown47], who was the first to consider fairness when
E[X?] = co. We summarize the major results in the following theorem:

Theorem 7.4

SRPT is Sometimes Fair. SRPT is fair when p < 0.5 or when the service distribution is regularly varying
with rate o € (1,1.5). However, when E[X?] < oo, under all service distributions there exists a p. < 1
such that for all p > p. SRPT is unfair.

Theorem? .4 illustrates that, surprisingly, in many caseRPT is fair to all job sizes. Thus, in many
cases it is possible to optimizg|[T"] while still providing fair response times to all job sizes. In particular,
when the system load is small enough or the tail of the service distribution is heavy eSétgh,is fair.

192 CHAPTER 7: FAIRNESS

In fact, SRPT is often fair in practical settings since workloads in many computer applications are thought
to be regularly varying witly € (1,1.5).

Though Theoren7.4says thaBRPT can be fair in many situations, in many caS#PT is unfair, e.g.
under high load. We illustrate this behavior in Figdt& Thus, it is important to understand which job
sizesSRPT is unfair to and how unfairly these job sizes are treated. To provide an answer to this question,
let us consider the case of 68X ?] < co in more detail.

Theorem 7.5
In an M/GI/1 queue with E[X?] < oo, for z such that p(z) < 1, E[S(x)]°®F'" is monotonically increasing
inzx.

Proof. The proof will follow the same technique that we used in proving Theoreé&and7.1 Begin by
noting that

ma(z) = / t2f(t) =2 / tE(t)dt — 22°F ()
0 0
Then we can derive

a sppr 2N f(z)2? [t (t A2 F () T
E[T(z)] - (1 — p(x))3 + (1 — p(x))? + 1—p(z)

dx

which gives us

. a SRPT _ LVSRPT _ 202 f(x)a® [tF(t A?F(x) A Jy tF(t)dt
4 B0t - BT ((1_p(= >+ <<1—p<w>>2 (1_[)@))2)

i (1 o) / i —df)(t))

_ 2N f(x)a? [tF(t)dt Ama ()

- ((1- p(@))?)) (2(1 —p(x»?)
(=)

This expression provides us with the sign of the derivative of slowdown. There are 3 terms in the above
expression. The first of these terms is clearly positive. The third of these terms is also clearly positive. We
will complete the proof by showing that the third term is of larger magnitude than the second term.

To obtain a bound on the third term, we can quickly show that

o at (=) — (1 p(a)
[~ () /0 T o) /0 1)@ —p(x) " (7.3)
(

o [)= st

7.1: PROPORTIONAL FAIRNESS IN EXPECTATION 193

To further specify this bound we can compute

/Omp(t)dt =)\/Oxfotsf(s)dsdt
=)\/Ox/:sf(s)dtds

=)\/O sf(s)(x — s)ds
= p(z)r — Ima(x) (7.4)

Finally, putting all three terms back together we see that wiieh < %

o oo - (PIOSIEO) - (i)
(=hw w) 7o
= <2<1A Ti@))?) i <1A Tz})(é)))
> 0
Ol
Corollary 7.6

In an M/GI/1 queue with E[X?] < oo, if p <
Furthermore E[S(x)]5®FT < 1/(1 — p) for all .

3. E[S(2)]°RPT is monotonically increasing for all x.

Proof. This follows immediately from the above theorem and Theore?, which gives that: for any
work conserving scheduling polidg, lim, ., E[S(z)]F < 1/(1 — p).
O

Having seen thad®RPT is Sometimes Fair, it is interesting to consider which job sizes are being treated
fairly/unfairly. The following theorem shows that asncreases, the number of jobs being treated fairly also
increases.

Theorem 7.7
In an M/GI/1 queue with E[X?] < oo, for z such that p(z) < max{1 — /T — p, 3}, E[T(z)]°*FT <
1/(1 = p).

The proof follows immediately from Theorem3, Theorem?7.5, and Theoren3.19 which bounds the
performance oERPT by that of FB.

194 CHAPTER 7: FAIRNESS

7.1.3 The proportional fairness of scheduling classifications

The power of definitiong.1 and 7.2 are that they are simple enough to be tractable for the analysis of
the fairness of scheduling classifications, not just individual scheduling policies. For the remainder of this
section, we will focus on understanding the impact of common scheduling heuristics and techniques on the
fairness of the resulting policies. We will start by studying the techniques and heuristics that lead to Always
Fair policies, then we will move through the techniques that are Always Unfair, and finally we will study
the techniques and heuristics that are Sometimes Fair.

We provide an overview of the known results in Figuré. However, to avoid repetition, we will not
provide the proofs for all the classifications listed in Figdr& since many of the proofs are very similar
to one another. Instead, we will illustrate the important proof techniques using a handful of classifications
here, and refer the reader @3 for the proofs not provided.

7.1.3.1 Always Fair

We start our study of scheduling classifications by studying heuristics and techniques that are Always Fair,
i.e. policies that are fair to all job sizes under all loads and all service distributions.

Two of our heuristic-based classifications are Always Fair:S¥&IMETRIC and thePROTECTIVE
classes. This is not surprising. Clearly, &l € SYMMETRIC are Always Fair since they all have
E[S(x)]F = E[S(z)]"® = 1/(1 — p). Further, since alPROTECTIVE policies guarantee that no job
finishes later than it would und@&s, all PROTECTIVE policies are also Always Fair.

Proposition 7.8
In an M/GI/1 queue, all SYMMETRIC policies are Always Fair. In addition, all PROTECTIVE policies

are Always Fair.

Outside of these two classes, we are not aware of any Always Fair policies. However, we can prove
a necessary condition for Always Fair policies, which will be useful when showing that policigstre
Always Fair.

Theorem 7.9
In an M/GI/1 queue with E[X?] < oo,

m}in max E[S(x))" = i,

Further, if scheduling policy P is Always Fair, then

lim E[S(z)]” =1/(1~p)
Note that in addition to providing a necessary condition for the Always Fair class, Th&@d®eearves as
a key justification for the notion of proportional fairness defined in Definifidn Once we take”[S(z)] as
a metric for fairness, the fact that (1 — p) is the min-max value of[S(z)| provides a crucial justification
for usingl/(1 — p) as a fairness criterion.

Proof. First, becaus® is Always Fair,E[S(z)]¥ < 1/(1—p) for all z, and thereforéim,. .., E[S(z)]F <
1/(1— p). Thus, we need only show thiin, .., E[S(x)]” > 1/(1 — p). We accomplish this by bounding

7.1: PROPORTIONAL FAIRNESS IN EXPECTATION 195

the expected slowdown for a job of sizdrom below, and then showing that the lower bound converges to
1/(1 —p) as we letr — oc.

To lower bound the expected slowdown, we consider a modified p@licythat throws away all arrivals
whose response time undBris greater than or equal toand also throws away arrivals with size greater
thanz. Further,Q, , works on the remaining jobs at the exact moments thatrks on these jobs. We will
begin by calculating the load made up of jobs of size less th@vherey < a < x) under@, ,, p(y)Qea.

By Markov’s Inequality we obtaidP (T ()" < a) > 1 — ﬁ. Thus, we see that

o = A [(1—a(1t_p)> (1)t

_)P = 2m2y)
= p(y) (= p)

wherep(y)? = A foy tf(t)dt is the load made up by jobs of size less than or equalitoP andms(y) =
J¢ 2 f(t)dt. The intuition behind the remainder of the proof is thatag, andz get very largep(y)@=e
approachep which tells us that the load of jobs thaustcomplete before: underP goes top.

We now derive a lower bound on the response time of a job of simader policy P. We will be
interested in large:, with a < z. We divideT(a:)P into two parts7; andT, wherel} represents the
time from whenx starts service until it has remaining sizend T, represents the time from whanhas
remaining sizex until it completes service. We first note th&t > a. To lower boundl’; consider the set of
jobs, S, with size less thap and whose response time undeis less tham. The jobs inS, are worked on
at the same moments und@r, , and P, and they comprise loaa(y)“==. During timeT}, job z receives
service undel” at most during the time the system is idle of jobsSin which is1 — p(y)Q=a fraction of
the time. Thus

r—a
BTy > T
It follows that
E[T()’ = BN +ED]>—2% 44
= ply)2
r—a a

=
=
B
=
v

+ —
x (1 — ()" + 2{'{2’_%)) v

Now, we must sefy anda as functions ofr such that, as we let — oo, we converge as desired.

Notice that as: — oo, we would likep(y)” — p, 2’(7}2_(5)) — 0, and? — 0. Thus, we must have < z

such thaty — oo anda — oo. We can accomplish this by setting= 4,/x andy = /z. Notice that

196 CHAPTER 7: FAIRNESS

ma(v/z) — E[X?] < 0o asz — oo. Now, looking at expected slowdown we see that as oo:

T —4/x 4\/x
BlS@) > T
e (1-0tv®) + 155
L 14E 4
L= p(VE) + ety VT
1
.
1—p

7.1.3.2 Always Unfair

We will now prove that a large number of common scheduling technigques and heuristics are Always Unfair,
i.e. are guaranteed to treat some job size unfairly under all system loads and service distributions. For
an overview of scheduling techniques that are Always Unfair, see FigdreThe policies in the Always

Unfair class exhibit fundamentally different behavior with respedf{§(z)] than those in the Always Fair

class. While policies in the Always Fair class have either monotonically increasing or col§tdm], the

policies we study here typically exhibit decreasing behavior (see Fig@re

Non-preemptive blind policies

The analysis in this section is based on the simple observation that any policy where a small job cannot
preempt the job in service will be unfair to small jobs. In fact, the analysis holds for all non-preemptive
policies as long as the service distribution includes jobs of arbitrarily small sizes.

Lemma 7.10
In an M/GI/1 queue with E[X?] < oo* any non-preemptive policy P is unfair for all loads under any
service distribution defined on a neighborhood of zero.

Proof. We can bound the performance Bfby noticing that, at a minimum, an arriving job of size

must taker time plus the excess of the job that is serving. ThEE(z)]” > = + %. Notice that

lim, o E[S(z)]F = co. Thus, there exists some job sigeuch thatZ[S(y)] > 1/(1 — p), forall p < 1.
[

Under service distributions with non zero lower bounds on the smallest job size, not all non-preemptive
policies are Always Unfair. However, all non-preemptive blind policies can be classified as Always Unfair.
(Note that the remainder of the possible non-preemptive policies are explored in SettR3)

Theorem 7.11
In an M/GI/1 queue with E[X?] < oo, all non-preemptive blind policies P are Always Unfair.

“Note that non-preemptive policies require titX] < oo in order forE[T] < co

7.1: PROPORTIONAL FAIRNESS IN EXPECTATION 197

Proof. Assume that the service time distribution has lower botind 0 (we have already dealt with the
case ofC = 0). We will show that jobs of siz€ are treated unfairly. Recall that all non-preemptive, blind
based policies have the same expected response time for a job of size

AE[X?]

2(1-p)

C(l—p)+ X[(t+C)F(t+ C)dt
L—p

C—Cp+Cp+ X\ [PtF(t+ C)dt

I—p

ETO)) = C+

N
L—p
where the last inequality follows since the service distribution is required to be non-deterministic.
U

FOOLISH scheduling

We now analyze the class 8{OOLISH policies (i.e. policies that prioritize large job sizes). The two
most common examples of such policies are Preemptive-Longest-JobPEidgt)(and Longest-Remaining-
Time-First LRPT). Itis not surprising thaEOOLISH policies will always be unfair to small job sizes, since
large job sizes have preemptive priority.

Theorem 7.12
In an M/GI/1 queue with E[X?] < 00®, all FOOLISH policies are Always Unfair.

Proof. Let x;, be the lower bound of the service distribution. Thengass xp, E[T(z)]"/F —
E[B(zy, + W)] since the service distribution is continuous. Thus, undePadt FOOLISH, asz — xj,
E[T(x)]" — E[B(zy+W)]. So, allP € FOOLISH are Always Unfair sincé[B(xy, +W)] > E[B(zr)]
for p > 0.

O

7.1.3.3 Sometimes Fair

We now move to the class of Sometimes Fair policies — policies that for goared X treat all job sizes
fairly, but for otherp and X treat some job size unfairly. For an overview of scheduling techniques that
are Sometimes Fair, see Figutd. The policies that are Sometimes Fair have more complicated behavior
with respect taE'[S(z)] than we observed in the cases of the Always Fair and Always Unfair classes. For
instance SRPT maintains monotonid/[S(z)] for low loads similarly to policies in the Always Fair class,

but SRPT exhibits non-monotonic behavior under high enough load. This behavior is illustrated in Figure
7.2

®Note thatFOOLISH policies require thaFs[X?] < oo in order for E[T] < oo

198 CHAPTER 7: FAIRNESS

Non-preemptive, size-based policies

This section completes the analysis of non-preemptive policies begun in S&cti@®2 It is based on

the observation that if there is a lower bound on the smallest job size in the service distribution, then it is
possible for a non-preemptive policy to avoid being Always Unfair.

Theorem 7.13
In an M/GI/1 queue with E[X?] < oo, any non-preemptive, size-based policy P is either Sometimes Fair
or Always Unfair.

Proof. We will prove in Sectior7.2thatlim, .., E[S(x)]” = 1 for all non-preemptive policie®. Thus,
we can apply Theorem.9to conclude that a non-preemptive poliBycannot attain Always Fair, sB must
be either Always Unfair or Sometimes Fair.

Further, observe there are examples of size based, non-preemptive policies in each of the two classes.
For instance, it can easily be shown that the Longest-Job-Eid§t)(policy is Always Unfair. However,
Shortest-Job-First3JF) is only Sometimes Fair — that is, there exist service distributions and loads such
that B[S (x)]°/F < 1/(1 — p) for all z. One example of such a distribution and loadis — 2) ~ Exp(1)
with p = 0.2.

O

SMART Scheduling

The fairness oBMART policies is of particular interest due to the intrinsic bias against large job sizes under
these policies. It is well known that policies that bias towards small job sizes or jobs with small remaining
service times perform well with respect to mean response time and mean slowdown, but the concerns about
fairness of such policies has led to their limited acceptance in computer applications.

We have already seen one example &MART policy that is Always Unfair. However, it is possible
for SMART policies to be fair. In fact we find that marMART policies (e.g.SRPT) can be fair un-
der low loads regardless of the service distribution. Further, if the service distribution is highly variable,
SMART policies can be fair at even high loads. However, under eS8&HART policy, under every service
distribution with E[X?] < oo, there exists some load that is high enough to cause the policy to be unfair.
Interestingly though, as we sawR8JF, it is not the largest job size that is treated the most unfairly.

Theorem 7.14
In an M/GI/1 queue, all SMART policies are Sometimes Fair.

In the remainder of this section, we will prove the above result for the claSM#RT policies. Then,
we will focus on the specific case B8RPT in the next section.

Before we can prove Theoreml4, we first need to develop a few technical lemmas about the behavior
of E[T(x)]5FPT.

Lemma 7.15
Let h(x) > 0 be a continuous, increasing function of x such that [} h(z) = H(z).

v h(@) H{(z)
/0 (1- p(t))idt - (1= p(x) + Ama(z) /)’

7.1: PROPORTIONAL FAIRNESS IN EXPECTATION 199

Proof. We prove this using Chebyshev’s Integral Inequal@g][The following holds for alli > 1.

([r=e0a) ([pmm) = = =i

Thus,
/x LN H(x)
o (1=p(t)) (J&1—p(t)at)"
_ H(x)
(1= p(x) + Ama(z)/x)
O
Lemma 7.16

Define 6, = Ama(x)/x and let e > 0. Then

z(l+e) /x dt < Ama(x)(1+€) + (1 — p(z))xe
L=p(x) Jo 1=p(t) = (1=p(@)+0)(1—px))

Proof. We will use the bound in Lemma 15in the first step, and then calculate directly.

z(l+e [T dt z(l+e) x
1—p(x) /ol—p(t) = 1=p(x) 1-=p(x)+ rIme(z)/z

B T] 1—p(x)+ 9, B
- s (e Y
x0:(1+¢€)+ (1 — p(x))ze

(1= p(x))(X = p(x) + 62)

Now, we are now ready to prove the main result.

Proof of Theorem 7.14. Note that it follows immediately from Brown'’s results f6B andSRPT [47]
that all SMART policies are fair if job sizes are regularly varying withe (1, 1.5). Thus, we need only
show that allSMART policies are unfair ifE[X 2] < oo for large enoughp to complete the proof.
Let P € SMART andé, = Ama(z)/z. We will start by proving the result in the case of an unbounded
service distribution. Let
p—p(x)
L—p
such thafl + ¢, = (1 — p(x))/(1 — p). Note thatz(p — p(x)) = Az [tf(t)dt < X [° 2 f(t)dt = o(1)
sinceE[X?] < co. Thus,e, = o(1/x).

€r —

200 CHAPTER 7: FAIRNESS

Now, we can calculate using Lemriigl6

C Bl = S g
(1l +e;) Toodt Ama(z)
< 0| T T
< Ama(2)(1+ €:) + (1 — px))zes Amo(z)
- (1= p(z))(1 = p(x) + 62) 2(1 - p(x))?
_ Ama () <1 +é+ (1= p(x))es /0 1)
1 —p(x) 1—p(x) + 6z 2(1 = p(x))

Thus, P is unfair tox when the following equivalent statements hold

2(1 = p(2)) (1 + €& + (1 = p(2))er /0z) = (1 = p(z) +02) < O (7.6)
(1= p(x)) (1 + 26, +2(1 = p(x))€2/02) =6 < 0
(1—p(@))(1+o0(1)) —b < 0

(1=p) A +0(1) +(p—px))(1+0(1)) =6 < 0 (7.7)

We now show that4.7) holds for large enough andp. Note thatp — p(x) = o(1/z). Lety > 0 such
that there exists an, large enough that botti + o(1)) < 2 and(p — p(x))2 — §, < —v. We can find such
a~ sinced, = Ama(x)/x. Choosep, < 1 large enough tha(1 — p,) — v < 0. Thus,P treatsz., unfairly
under loadp,, which completes the proof in the case of an unbounded service distribution.

Note that in the case of a service distribution with upper batgdwe can pluge = x into (7.6) and
obtain
AE[X?]

Ty

20=p) =1 =p+bz)=1—p+ <0
which holds for large enough
O

7.2 Proportional fairness to large jobs

In the previous section, we began our study of proportional fairness by studying proportional fairness in
expectatioracrossall job sizes We now move from a discussion of proportional fairness with respect to

all jobs sizes to a discussion about otdyge job sizes By focusing on only the behavior of large job

sizes, we will be able to study thistributional behavioof proportional unfairness instead of being limited

to studying proportional fairness in expectation. Characterizing the distribution of proportional fairness
experienced by large job sizes is especially important because it has often been cited that the superior
performance of scheduling policies that bias towards small jobs may come at the cost of starving large jobs,
resulting in both larger anohore variableresponse times3p, 215 223 210. In addition to characterizing

the fairness experienced karge job sizesthe results in this section are a necessary building block towards
developing a framework for studying the distributional behavior of proportional fairness atrfugssizes

7.2: PROPORTIONAL FAIRNESS TO LARGE JOBS 201

In fact, the results in this section provide theoretical justification for the generalized framework for studying
proportional fairness presented in Sectib

In order to study the distributional behavior of proportional unfairness we need to understand how to
generalize the metric in Definition1, E[S(z)] = E[T(x)]/z. There are many different possibilities, each
with there own strengths and weaknesses. The most natural generalization of Defidiioto study the
behavior ofS(x) = T'(x)/x. This matches the motivation for proportional fairness that response times
should be proportional to job sizes. We study the behavids (af) for large job sizes in detail in Section
7.2.1, where we prove thas(z)” converges almost surely as— oo under a wide range of common
policies. In fact, we show that all work conserving scheduling policies have slowdown no worse than that of
PS with respect to large jobs. In particular, we prove that the slowdown as job size tends to infinity under
any work conserving policy is a.s. boundedhl(1 — p); even under policies that clearly bias against large
jobs.

Though usingS(z) to characterize the distributional behavior of proportional fairness is natural, the
fact thatS(z) converges almost surely as— oo hints that other metrics with weaker scaling factors may
provide more information about the distribution of proportional fairness. Specifically, the normalization
factorl/x in S(z) hides information about the variability of the response times of large job sizes; thus it is
important to consider other scaling factors. In Secfich2 we illustrate that cumulant momehtsrovide
a useful characterization of the the limiting response times of large job sizes. Further, we prove results that
parallel the results attained when study\@) asx — oo: we show that all work conserving policies have
smaller asymptotic cumulant moments th®.

7.2.1 Asymptotic behavior of slowdown

In order to study the distributional behavior of proportional fairness, the most natural metric to begin with
is the slowdown for a job of size, S(z) = T'(z)/x. Slowdown clearly captures the idea that the response
time of a job should be proportional to the size of the job, in addition it is a simple enough metric to allow
the analysis of a wide range of scheduling policies. Further, as we saw in CBaghieasymptotic behavior

of slowdown is important for the study of the tail behaviorZofn addition to its importance as a fairness
metric.

In this section, we will show that many preemptiverk conservingcheduling policies have the same
performance aPS with respect to large jobs. In particular, we show that the slowdown as job size tends
to infinity under any work conserving policy is at quit;; even for policies that clearly bias against large
jobs and that this limit is attained under many common preemptive policies. We will first prove the bound
on all work conserving policies, and then we will analyze the performance of a range of individual policies,
scheduling techniques, and scheduling heuristics.

Theorem 7.17
In a M/GI/1 with E[X?] < oo, under any work conserving policy P it holds a.s. (assuming the limit exists)

that 1
lim S(z)” < ——.

T—00 1—p

If the policy is also non-preemptive, then the limit does exists and S(z)” — 1 a.s. as — oo.

SFor a brief overview of cumulants see SectbA.1

202 CHAPTER 7: FAIRNESS

Proof. The proof fornon-preemptivework conserving policies is quick. Start with the observation that
P(S(z)Y'>1) =1 Va,V policiesP
This follows simply by definition of slowdown. Thus, by taking limits, a.s. it holds that

liminf S(z)¥ > 1,V policies P

T—00

Further, we can upper bound the response flifie) under any non-preemptive policy with
T(z)" <u 2+ B(Q)
where(is the work in the system. Thus, we have a.s. that

B(Q)

X

S < 1+

YV, Vwork conserving, non-preemptive policiés

Taking limits we have a.s. that

limsup S(x)P < 1, Vwork conserving, non-preemptive policies P

Tr—00
It follows that for all work conserving, non-preemptive policigghe limit does exists and
S(x)f — 1as. as — 0.

The remainder of the proof will concentrate on work conserving policies that allow preemption. We
know that a.s.
T(x) < B(z+ Q).

Thus B
lim T'(z)/z < lim M
T—00 T—00 X
We will complete the proof by showing that
lim Bz+Q) = L a.s. (7.8)
T—00 X 1-— P

If we let{B; : i > 1} denote an i.i.d. sequence of regular busy periods (non-exceptional)3thercan be
expressed as

N(z)
Blz)=xz+ Y B
=1

where{N(x) : x > 1} is a Poisson process of rateéndependent of B; : i > 1}. We conclude that this
version of{ B(x) : x > 0} is a compound Poisson process with a lineéerm added on, so it has stationary

7.2: PROPORTIONAL FAIRNESS TO LARGE JOBS 203

and independent increments. Thus, almost surely,

lim 20 _ E[B(1)] (byS.LL.N)

T—00 I
1

L—p

Finally, notice that replacing by = + @ does not change this limit.
[

Remark 7.1 Theoreni.17can be easily extended to the GI/GI/1 setting. However, Thedréfdoes not
extend to policies that are not work conserving. In fact, for evegy[1, co) there is a non work conserving
policy such thatim, ., S(x) = z. To see this, consider the policy that makes each job (wait 1)x time
before it is allowed to enter the queue of a non-preemptive, work conserving system.

We now prove that the upper bound 8(:) asx — oo under all work conserving policies matches the
limit under PS. Thus, no work conserving policy can treat large job sizes too much worséhaloes.
SincePS is typically taken as a benchmark for fairness, this means that one never need to worry too much
about the behavior of very large jobs. However, as we saw in Settipthere is often some range of large
(but not the largest) jobs that are treated unfairly under policies that bias towards small jobs.

Theorem 7.18
In a GI/GI/1 queue, S(z)"® — 1/(1 — p) a.s. as x — oo.

Proof. DefineG(t) to be the service given in timeo a permanent customer arriving to a stationary queue
at time zero. Note thaP(G(t) > x) = P(T'(z) > t). Because th®S queue is stationary, we know that
(t — G(t))/t converges tp a.s. ag — oo. That is, the amount of fraction service given to non-permanent
customers must convergeppotherwise the system would not be stable. Thus, we havétttaft — 1—p
almost surely, or equivalentlg(z) = T'(z)/z — 1/(1 — p) a.s.

O

We complete this section by proving that many other preemptive policies${avethat converges to
1/(1 — p) asz — oo. In fact, almost all common preemptive policies have the same performance with
respect to limiting slowdown.

Theorem 7.19
In a GI/GI/1 queue, for P € {SMART, FB, PLCFS}, S(z)" — 1/(1 — p) a.s. as x — oo.

Proof. Note that Theorend.17gives an upper bound, so all we need to show is a lower bound.
To prove the lower bound, we first derive a stochastic lower bound for the sojourn tilhe-dfB and
P € SMART in terms of a single busy period. FBEB we have

T(z)™® > Eg(ﬁﬂ) > By(z) >5t Bex((1 —€)), 0<e<l. (7.9)

204 CHAPTER 7: FAIRNESS

Furthermore, foP € SMART, the Bias property guarantees that until the tagged job has reqdived)x
units of service, all arriving jobs smaller than receive priority. Hence,

T(@)P >4 Ba((1—e)z), 0<e<l. (7.10)

To understand the length of this busy period, we will analyZd €FS system. Defing7,(t) to be
the service given in timéto a permanent customer arriving in an empty queue at time 0 when the generic
service time isX I|x ;. Denoting the inverse aB, by By*1, we have for allz andt,

P(Gy(t) >) = P(By(z) <t) = P(B,;'(t) > x).

Hence G, is stochastically equal tBy_l, so that

B
lim M = lim _31; = lim —> a.s.
T—00 T T—00 By (g;) T—00 Gy(x)

Note that this also holds if is a function ofz. Furthermore, defin€'(t) = lim,_.o Gy(t). Then

lim Git) =1-pa.s. (7.11)

t—o00

Setz = (1 — €)z. From (7.9), (7.10 and (7.11), it follows that for all0 < € < 1,

tim L) lim Pzl =9))

T—00 T T—00 T

_ (1 —6) lim Bsz/(l—s)(z)

2Z—00 z

AV

= (1—¢) lim
()z—>oo Gez/(l—a)(z)
1—¢

= a.s.
I—p

The final equality follows because for any constarhere exists a(c) such thatfor alk > z(c), G.(2) <s
Geo/(1-0(2) <st G(2). This completes the proof of the lower bound.
O

Before we move away from studying the convergence of slowdown, it is important to point out that for
everyz € [1, ilp] there is a work conserving policy such th#tr) — z,a.s. asc — oo.

To see this, consider the Jump-To-FraJik) policy. JTF is linear combination oF CFS andPLCFS.
More specifically, undedTF, with probability ¢ an arriving job preempts the job being serviced and with
probability 1 — ¢ an arriving job is placed at the back oF&€FS queue to await service.

We can quickly analyze this policy to fingl(x)”. Consider an arrival that gets placed at the front of
the queue. This arrival can only be bothered by other jobs that are allowed to preempt. Thus, for this job
T(x) = B(x)|x, whereX = g\ for g € [0, 1]. Thatis,T(z) is the length of a busy period started by a job
of sizex where the arrival rate i&'.

7.2: PROPORTIONAL FAIRNESS TO LARGE JOBS 205

Now consider a job that gets placed in the back of the queue. If the system is idle when the job arrives,
we again see thaf'(z) = B(z)|y. However, if the system is busy at the time of the arriVal) =
B(xz + Qlbusy))|x, whereQ is the amount of work in system seen by an arbitrary arrival, @ftdsy is
the work seen by an arrival which finds the system busy. As in the analysis above, the effetisappears
in the limit.
Let o’ = N E[X]. Then, putting these three pieces together, we seesthgt” — 1_#%), a.s. Since' is
an arbitrary number if0, p], we can makq_l—p, any number i1, 1%,;]-

7.2.2 Scaling response times

The fact thatS(z) converges almost surely as— oo provides an interesting perspective on the unfairness
experienced by large job sizes, but it provides very little information about the variabilitizgfasz — oo.

In order to characterize the variability of response times experienced by large job sizes, we need to consider
weaker scalings of (z) thanS(z) = T'(x)/z. In this section we will contrast the behavior of common
scalings ofl'(x) asxz — oo in order to illustrate that cumulant moments are unique in the sense that they
have a scaling factor that retains information about the variability of the limiting distributidfy(.of as

xr — OQ.

In order to illustrate the issues in finding an appropriate scaling factor for the limitasco, we will
begin by looking at the asymptotic behavior of a busy period started by a job of si€r). Busy periods
are fundamental to the analysis of many size based scheduling policies, and we will find that the correct
scaling factor forB(z) will match the scaling necessary for response times under many policies. Recall that
the Laplace transform dB(z), Lp()(s), is:

£B(;r)(5) _ e—ac(s—i-/\—/\LB(s))
whereLp(s) is the Laplace transform of a standard M/GI/1 busy period.

The most natural possibility for an appropriate metric for studyitig) asz — oo is to scale the raw
moments ofB(x). We can calculate the moments B{x) usingh(s) = —z(s + A — ALp(s)). Thus,
W(0) = —1%; andr(®(0) = (—1)!\zE[B] fori > 1. It is important to notice that in each of these terms,
x has degree one sindg[B‘] does not depend an. Thus, we can determine the growth BfT'(x)‘] as
xTr — OQ.

BB@)] =
E[B(x)Y] = < 1f >2+)\xE[B’]
E[B(z)]] = <1fp>i+o(gﬂ)

So, we must scale thigh raw moment by:? in order to obtain a limit. This is equivalent to considering the
slowdown of B(z) as done in Sectioi.2.1, and thus is too heavy handed for the current purpose since it
hides the behavior of the higher momentsRYfr). Specifically, normalizing by’ leads to a degenerate
limiting distribution: lim, ., Var[B(z)]/z* = 0.

206 CHAPTER 7: FAIRNESS

Another natural suggestion for an appropriate scaling factor is to consider the central moniefts, of
E[(B(z)— E[B(x)])!]. Up until the third central moment, it seems that central moments can be scaled using
a linear factor:

E[(B(z) - E[B(«)])’] = \E[B?
E[(B(z) - E[B(«)])’] = \E[B)
However, beyond the third central moment the scaling becomes more convoluted and it becomes apparent

that there is no simple scaling factor for the central moments that will capture the complete behavior of the
higher moments. That is, any scaling factor will hide the effect of lower order variability terms, e.g.

E[(B(X) - E[B(X))*] = Mz (E[B"]) + 3(\2E[B%))*

The observation that the first three central moments are well behaved is important however. It hints
that cumulants might provide the correct asymptotic metric. DefifiE]| as theith cumulant ofX and
Kx(s) = log(Lx(s)) as the cumulant generating function &f For a brief overview of cumulants see
Section2.3.1

In contrast to raw and central moments, the cumulant3(af) have a very simple form.

Kp@)(s) =108(Lp()(s)) = —x(s + A = ALp(s))

Calculating the cumulant moments through differentiation:

z/(1—p) fori=1
Ki[B(z)] = {/\xE[Bi[]) fori > 1

Thus, usings;/x, it is possible to capture all the variability in the limiting distribution of response time. In
fact, x;[T'(x)]/x is an appropriate metric across a wide range of scheduling policies.

Theorem 7.20
In an M/GI/1 queue, let E[X*!] < co. Under any work conserving policy P,

lim
T—00 x

[T ()7 1/(1—p) fori=1
= { AE[BZ’]'O fori > 1 (7.12)

Equality holds for P € {SM ART,FB, PLCFS}. Further, under any non-preemptive work conserving
policy P,
: P -
lim ki[T(x)] _J1 forz' =1
—00 T 0 fori>1
Proof. Let P be a work conserving policy an@ be the time average work in system. Th@iiz)” <
B(z + Q) becauseB(x + Q) = B(z) + B(Q) corresponds to the time it would take to finish all the work

7.2: PROPORTIONAL FAIRNESS TO LARGE JOBS 207

in the system when arrived in addition to all the arriving work while is in the system. Thus, as— oo

Kpatq)(s)/z = 10g(Lpuiq)(s))/z
= 10g(Lp)(s))/x +log(Lpq)(s))/x
— s+ A—ALpg(s)

which yieldslim, .o, k1[B(z + Q)]/z = 12 andlim, .. #[B(z + Q)]/z = AE[B] for i > 1; from
which the result follows.

To prove that equality holds foP € {SMART, FB, PLCFS}, we can use a sequence of straight-
forward calculations using the cumulant generating functions (c.g.f.) for each policy and the bounds for
SMART. Normalizing the c.g.f. by: and lettingz — oo shows that the c.g.f. converges to the c.g.Bgk)
in each case.

Finally, to prove the limit in the non-preemptive case, we note That)” < = + B(Q) for any non-
preemptive policy”. Thus, ast — oo

KiiBQ)/a(s) = s+log(Lp(s))/z — s

which yieldslim, ., x1[B(z + Q)]/z < 1. We can observe that, by definition, we also have that
limy—oo #1[T(x)F]/x > 1. Further, fori > 1 differentiation yielddim, .. #;[T(x)"]/z = 0.
O

Now that we understand the behavior«fT'(x)] under a range of policies, it is important to compare
this behavior to that oPS. In [24Q it was conjectured that equality holds for the limit iA.{2 under
PS. However, known asymptotics are only tight enough to show the convergence of the first and second

cumulants. In particular, it is known tha§6]: E[T(xz){]"S = (lfip)i Axi;ﬂf;]j'(f_l) + o(z~1), which
proves the result fok, [T(x)]7% andks[T(x)]7. However, information about higher cumulants is lost in
theo(x~1) term.

We now present an algorithm for computing the asymptidticumulant undePS and show that equal-
ity holds in (7.12) for at least the first 10 cumulants BS.

Theorem 7.21
Consider an M/GI/1 queue. For positive integeri < 10, let E[X"T!] < co. Then, r;[T(x)]" /2 — \E[B’]
asr — oo.

The moments of response time in an M/GR® queue have a complex form. Let(z) = 1, do(z) =
d1(z) = 0,and fori > 1

ai(z) = (z)i—di(:r) (7.13)

5i(z) = (1_7’[)) /0 (@ — BV (1)t (7.14)

whereR"" (t) is then-fold convolution of the waiting time distribution in the M/GIACFS queue ¥ FCFS =

208 CHAPTER 7: FAIRNESS

. Then, we can write the momentsBfz)" recursively as followsZ56]

k

k A ,
@S = -3 (V)BT 1w (7.15)
i=1
where theE [T (z)] = 1/(1 — p).
To calculate the moments of the convolution of waiting timg}V"*| we will make use of the additivity
of the cumulants and then usg?) to calculate the moments of the convolution in terms of the moments of

w:

W™ = nm [W]
n* _) — 1 —1 . nk, .
) = n(m[W]jl(st m][m) (7.16)
SW] = W]
— (i1
wl] =)= 3 (7)l 7] (7.17)
j=1

Finally, we can use Takécs recursive formula for the momentg ¢ finish the calculationg21]:

poW] = 1 A

i j+1
i) = 23 ()P (718
j=1

Proof of Theorem 7.21.

We will present an algorithm for the computationlofy, ., ;[T (x)]7* /= and illustrate the computa-
tion fori < 4. We have carried out the calculations fox 10 using Mathematica.

We begin by using7.13, (7.14), (7.15, and @.2) to derive formulas fok;[T(z)]”° in terms ofs,, (x).

T

ri[T(2)]7% = = (7.19)
ko[T(x)]F5 = &a() (7.20)
k[T (2)]7% = 39165_2(;”)—53@) (7.21)

62252 (z) _ dads(z)
(I=p2 1-p

To see that;[T(x)]"" /2 — AE[B'] asz — oo, we need to understand the asymptotic behavior of

ke T ()PS5 = + 389()? + 4() (7.22)

7.3: A UNIFIED FRAMEWORK FOR PROPORTIONAL FAIRNESS 209

dn(z). Note that we can rewrit&,(x) as

n = (n-1 net—i i [m—1—ipn—1=
Su(z) = w;(Z, >(—1) 1 :1;/0 1= (1 a (7.23)

Further, [/ t"*lﬂ'ﬁ("—l)*(t) = i [WE" "/ (n — i) whereW, = min(W, z).
We now combine{.23 with (7.19 - (7.22 and note thatV, — W asz — oo to obtain the limit of
wi[T(2)]7 /2 in terms ofk;[IW].

oy BT@ 1
i wa[T(@)]" 64k [W]? + 48k [W]ko[W] + 4ri[W]
7= (1-p)*

To complete the proof, we calculate the cumulantd$16fusing (7.17) and (.18 and derive the final
expressions for the limits.

i TGS
i F2AT@I7_ AB[X?]

o TS ABX] | 3XE[XCP

T—00 X - (1 — p)4 (1 — p)5

LmlT@IPS ABXY | 10VEXIBEXY) | 150 EX)
N Cal N 0 TP

Then, noting that the busy period moments can be derived from the Laplace traﬂ%ﬁ@}m:)~((s +
A — AB(s)) or more efficiently using an algorithm such &€, we can verify that the limits indeed match
\E[BY].
O

7.3 A unified framework for proportional fairness

As we have seen, providing proportional fairness is an important design constraint under a variety of appli-
cations where users desire small mean response times, but also want to be treated “fairly,” e.g. web servers
and routers. In many of these settings, system designers are hesitant to use policies that provide small mean

210 CHAPTER 7: FAIRNESS

response times by prioritizing small job sizes (at the expense of large job sizes) due to worries that large
job sizes will be starved of service. Specifically, there are worries that large job sizes will receive dispro-
portionately large response times and that large job sizes will receive disproportionately variable response
times. Thus, itis important to study both proportional fairness in expectation and the distributional behavior
of proportional fairness.

In this section, we will extend the approach used to study proportional fairness in expectation (Section
7.1) using the results characterizing the distributional behavior of the response times of large jobs (Section
7.2) in order to motivate a framework of metrics for studying the distributional behavior of proportional
fairness. We will accomplish this by generalizing Definitiérl to higher moments using the cumulant
moments ofl'(z) as follows. For a brief overview of cumulants see Secidhl Recall thatB is the
length of a busy period.

Definition 7.3 Let0 < p < 1 and E[X?] < oo in an M/GI/1. A job sizer is treatedfairly under policyP,
service distributionX, and loadp if

kil ()]

T

< 1jj—y) + AE[B']

Otherwise a job size is treatedunfairly. A scheduling policyP is fair if every job size is treated fairly.
OtherwiseP is unfair.

The above definition was first introduced by Wierman and Harchol-Balt&4€] [It is worth pointing out

that, though the ;_;; may appear strange at first, it is a fundamental result of the fact that the first cumulant
is shift-equivariant while all others are shift-invariant: lettinige a constant;; [Y + ¢] = x1[Y] + ¢ but for

7 > 2, Hz‘[Y + C] = /il[Y]

Notice that there are many parallels between Definifidnfor studying proportional fairness in expec-
tation, and Definitior7.3. Both definitions have two pieces: a metric and a criterion. Further, the metric
and criterion in Definition7.1 match the metric and criterion far= 1 in Definition 7.3 k[T (z)]/x =
E[T(z)]/x andl + AE[B] = 1/(1 — p). Additionally, the motivation for the metric and criterion parallel
the motivations for the metri&’[T'(x)]/x and the criteriori /(1 — p) in Definition 7.1

In both Definition7.1and Definition7.3, themetricis motivated by the behavior of jobs of size— ~c.
Specifically, the metric must scale moments/@f:) appropriately to allow for comparison of moments of
T(x) between small and large For E[T(z)]?, itis clear thatl /x is an appropriate scaling factor because
E[T(z)]¥ = ©(x) under all work conserving scheduling policies, and thus we need to normalize by the
growth rate. For higher moments @f(x), the correct scaling factor is not obvious; however in Section
7.2we illustrated thak;[T'(x)] is ©(x) for common preemptive policies ar@(z) for all work conserving
policies (Theorem§.20and7.21). Hence, scaling by /2 makes sense; whereas using a stronger scaling
would hide the variability in the distribution &f (z) asz — co.

The motivation for the criteria in Definitiong.1 and 7.3 is more involved. The criterion /(1 —

p) in Definition 7.1 stems from two formal motivations. First, it provides a min-max notion of fair-
ness: minp max, E[T(z)]Y/x = 1/(1 — p). Second, the criterion /(1 — p) has the property that
lim, . E[T(2)]"/z = 1/(1—p). This property is key to the derivation a broad classification of scheduling
policies as one of Always Fair, Sometimes Fair, or Always Unfair (see SettipnThe classification is per-
haps the strongest motivation for the criteriofi1 — p) because it illustrates that the criterion distinguishes
between patterns of behavior of policies with respect to the meffie z)|” /.

7.4: PREDICTABILITY 211

The motivation for the criterion in Definitioid.3 parallels that for the criterion in Definition.1; how-
ever it is not as cut-and-dry. Just as the criterlgiil — p) used in Definition7.1 has the property that
lim, oo E[T(2)]" /2 = 1/(1— p) under many common policies, Theorem20and7.21illustrate that the
criterion in Definition7.3also serves as the limit for;[7'(x)] /= under many common scheduling policies.
However, a priori, it is not clear whether this limiting behavior distinguishes between patterns of behaviors
with respect tos;[T'(z)] in the same way /(1 — p) did for E[T'(x)]/z. All we can do to provide this justifi-
cation is to illustrate that in the caseiof: 2, whenks[T(z)]/x = Var[T(x)]/z, the criterion\ E[B?] does
indeed differentiate between contrastivigr[T'(z)]¥ /= behaviors. This is what we will do in Sectigh4.
Specifically, we will illustrate that Definitior7.3 distinguishes between between non-monotonic “hump”
behaviors — where some mid-range job sizes are treated the most unfairly — and monotonically increasing
behaviors in the case of= 2 just as it does in the case ©f 1. Further, the classifications that result from
Definition 7.3 in the cases of = 1 andi = 2 parallel each other; and thus we conjecture that for 2
similar classifications will emerge. However, deriving classifications for these higher order moments will
be a difficult task.

7.4 Predictability

In this section, we will provide an illustration of the generalized framework for studying proportional fair-
ness presented in Definition3. We specifically consider the case of[T'(z)]/x = Var[T(z)]/x. In
studying the behavior of ar[T'(x)] acrosse, we are characterizing the “predictability” of response times,
which is an important metric in its own right. In fact, in many modern computer systems improving the
predictability of response times is of fundamental importance: it can be even more urgent than improving
the response times on average. This is because users expect certain response times based on past experience
and become frustrated if they must wait longer than expected. So, an important goal for a scheduling policy
is to provide identical jobs nearly identical response times.

Though there has been a significant amount of prior literatieréving Var[T' ()] and higher mo-
ments of7'(x) under many common policie®22, 253 119 120; little work has studied théehavior
of Var[T'(z)] and higher moments @ (x) acrosse, possibly due to the complicated nature of the derived
formulas. Understanding the behavior’Bfz) beyond the mean is key to many applications where users
know the size of the job they are submitting and would like to minimize the difference betweeaxpeir
riencedresponse time]'(z), and theirexpectedesponse timel'[T'(x)]; thus maximizing “predictability.”
Reducing “unpredictability” in response times can be more important to users than reducing the response
times themselves because waiting much longer than expected causes far more user frustration than simply
waiting longer on averagé, 255. Note that higher moments @f(x) provide a better measure of user-
perceived “predictability” than do higher momentsioin the situation where the size of the job is known by
the user. Further, many QoS guarantees are of the form “90% of the time a job ofwiltéave response
time < g(x),” for some functiony(-). Such guarantees can be phrased as bounding higher mométtts) of
by applying tail inequalities such as Chebyshev’s Inequality.

212 CHAPTER 7: FAIRNESS

7.4.1 Defining predictability

The notion of predictability that we define in this section is a special case of the framework for proportional
fairness in Definitiory.3that we have developed in this chapter; thus we have already provided motivation
for the metric and criteria in this definition in Secti@r8. Specifically, we consider the caseefT'(z)]/x =
Var|T(x)]/z and introduce the following definition:

Definition 7.4 Let0 < p < 1 and E[X?] < oo in an M/GI/1 system. A job sizeis treatedpredictably
under policyP, service distributionX’, and loadp if

Var[T(x)|" B
T SAEEI=

Otherwise a job size is treatedunpredictably A scheduling policyP is predictableif every job size is
treated predictably. OtherwisE is unpredictable

As with proportional fairness in expectation in Sectiord, we build on Definition7.4 to develop a
classification of predictability.

Definition 7.5 Let0 < p < 1 and E[X?] < oo in an M/GI/1 queue wher& is non-deterministi¢. A

scheduling policyP is: (i) Always Predictabldf P is predictable for all suctp and X; (i) Sometimes
Predictableif P is predictable under somgand X and unpredictable under otherand X; or (iii) Always

Unpredictableif P is unpredictable under all loads and service distributions.

The above definitions were introduced by Wierman and Harchol-Balt&ig.[

Remark 7.2 In addition to the fact that Definitio.4 is a special case of the generalized framework in
Definition 7.3, the definition of predictability is also motivated by the task of providing QoS guarantees.
Many QoS guarantees take the form “90% of the tifi{e) — E[T'(x)] < g(x),” or equivalently P(T'(x) —
E[T(z)] > g(x)) < 10%. Chebyshev’s Inequalitylp3 gives us a bound of the form

P(T(z)" — E[T(2)]" > g(x))) < W

(7.24)
Thus, we can provide the desired QoS guarantee by ensuring/thdi(x)]/g(x)? is not too large® Look-
ing more closely at{.24), to determine an appropriate metric for predictability, we need to ask “what is
the smallest value qf(z) that allowsVar[T(z)]/g(x)? to be bounded by a constant (10% in the above
example) for allz?”

Suppose thag(x) = ka' for somek independent of and some constarit Then, we need to choose
the smallest that allowsVar[T(z)]/g(z)? to be bounded by a constant. Notice that we can immediately
rule outi > 1 becausel’(z)” and E[T(x)]” grow linearly inz for all P; thus it does not make sense to

"We exclude deterministic distributions because the concept of proportional fairness is only interesting when there exist jobs of
different sizes.

8Note that a more complex bound including other information about the distributi@(:0f could be used to provide QoS
guarantees in practice. However, the simple calculatio7 @ provides intuition for an appropriate metric with which to study
Var[T(x)].

7.4: PREDICTABILITY 213

boundT (z)” — E[T(z)]” by something growing super-linearly. We can also ruleiout1/2 because for
suchi, Var[T(z)]* /2% — oo asz — oo under all P. This leaves ¢ [1/2, 1], wherei = 1/2 is the most
desirable because it provides the tightest bound’on) — E[T'(x)] asx grows.

Definition 7.4 uses the metrid’ar[T(z)]* /2, which corresponds to choosirig= 1/2. This choice
makes sense becauker [T (z)]” /x is O(1) under all work conserving policieB. Thus, any policy that
is predictable will allow a QoS bound that is constant acressNote that choosing € (1/2,1] is also
reasonable; however the results are less interesting.

In the remainder of this section we will classify individual policies, scheduling techniques, and schedul-
ing heuristics as one of Always Predictable (Secfiof.3.], Always Unpredictable (Section.4.3.3, or
Sometimes Predictable (Secti@m.3.3. This classification is illustrated in Figui€3. Interestingly, the
classification of predictability has many parallels to the classification of proportional fairness (see Figure
7.1). For instancePS andPLCFS are both Always Fair and Always Predictable. SimilaBRPT is both
Sometimes Fair and Sometimes Predictable and exhibits the same interesting non-monotonic (hump shaped)
behavior under both measures. In fact, the almost all technique-based and heuristic-based classifications re-
ceive exhibit parallel behavior under the two measures, the only exception being non-preemptive non-size
based policies.

In classifying scheduling policies with respect to predictability, we find that[T'(x)]” /= can exhibit
four different patterns of functional behavior (see Figti4. Some policies, e.PS, haveVar[T (z)|" /x
that grows monotonically and is bounded by a constant aarps$ereas other policies, e.§CFS, have
Var[T(x)]" that decreases monotonicallyinand is unbounded as— 0. Further, it seems that prioriti-
zation, be it age based, size based or remaining size based, leads to non-monotonic behavior in normalized
conditional response times. In particular, unB&JF, FB, andSRPT mid-range job sizes have the largest
Var[T(x)]F/x. Further,SJF has a similar hump behavior for mid-range jobs; however the smallest job
sizes still receive unboundddar [T (z)]* /z. Our work illustrates that the criteriohF[X?2]/(1 — p)3 in
Definition 7.4 for predictability distinguishes between these functional behaviors. If a policy has mono-
tonically increasing, boundedar[T(x)]* /= under some service distributions and loads then the policy is
Always or Sometimes Predictable; otherwise the policy is Always Unpredictable because under all service
distributions and loads eith&far[T'(x)]” /x is unbounded or some mid-range job sizes receive significantly
worseVar[T'(x)] /2 than other job sizes.

The parallels between the classifications of fairness and predictability beg the question of whether simi-
lar classifications exist for higher conditional moments. We conjecture that using the generalized framework
in Definition 7.3to study higher moments will lead to classifications that parallel the results presented here;
however the task of deriving such classifications seems difficult.

7.4.2 The predictability of individual policies

To get a feel for Definitiory.4, it is important to begin by studying the behavior of common individual
policies with respect to predictability.

°Fori € (1/2,1], Var[T(z)]F /z* — 0 asz — oo under allP. As a result, it can quickly be seen that policies fall into one
of two classes based the behavioriadr[T'(z)]” asz — 0, i.e whethedim,_o Var[T(z)]F /z* < oo. This makes intuitive
sense because the bound®fx)” — E[T'(x)]” is much looser as grows and thus the performance of the small jobs dominates
the QoS bound.

214 CHAPTER 7: FAIRNESS

(Always

4 *{“\\
Lo Lo 1
& !
| 1
’ 1

1

1

A 5 . Remaining y ~ -
Predictable “ sBpT \ size based /LRPT
F/ [1 Y
: s 3 FOOLISHY-’
sMarr L \
I 1 4 N [
I \ [/ \ [
- ’,' Preemptive N PLIF F o
i\ PSIF®/ size based AN
i OB | Age based’_-"/ Always
: Unpredictable
------ o T
v et o Non-preemptive 1
- LCFS non-size based i
Sometimes ! LIF :
: i ¢ :
Predictable ! SlFe Non-preemptive size based }/

Figure 7.3: An illustration of the classification of common prioritization techniques and heuristics with
respect to predictability.

As a first step, it is easy to see that

_ AE[X?]
E[T(SU)]PLCFS — (1 - p)3

Thus, PLCFS is Always Predictable. However, beyoLCFS, the only other common policy that is
Always Predictable i®S, which we will analyze in Sectior.4.2.1below. Most policies fall into the Some-
times Predictable or Always Predictable classifications. In fact, as is illustrated in Fig tbe behavior
of many policies with respect tgar[T(x)] /= mimics the behavior oF[T'(x)]/x. We will illustrate this in
this section using the examplesP$, PSJF, FB, andSRPT.

7421 PS
To analyze the behavior &far [T (2)]”°, we begin with the following useful representatioriafr[T'(z)] 7

Var[T(z)]PS = (1i:ﬁ2[f¢v—tﬂaﬂdt

whereR(t) = 1 — R(t) andR(t) = (1 — p) 3200 p"F*"(t) with F*(t) = [F*"=D(t — s)dF*1(s),

n=0

wligy 1 (e £0/ 0 1, >0
Frl(t) = o L0 F@WmaMF(w_{O’x<0.

The complexity of this formula has led to mainly asymptotic analysis of the conditional variaf& of
However, we can to exploit this asymptotic information in order to showRiSais predictable for alk.

7.4: PREDICTABILITY 215

Theorem 7.22
In an M/GI/1 queue with E[X?] < oo PS is Always Predictable. Further, Var[T(x)]"%/x is strictly
monotonically increasing in x.

Proof. We will prove the result by showing th% (Var[T(z)]"5 /z) > 0 for all z. In combination with
the fact that/ar [T (x)]" /2 — A\E[B?], this will complete the proof.

dVerlT@]™ _ 2 d </OxR(t)dt—1/ItR(t)dt>

dx x (1—p)2dx z Jo
2

= T (R(m) — R(z) + % /Ox tR(t)dt> >0

It is interesting that/ ar[T(x)]" /2 is monotonically increasing in under all service distributions
because this is different thai[T'(z)]”° /= = 1/(1 — p), which is constant across This illustrates why
Var[T(x)]P /x is not an appropriate criterion for a definition of predictability. It is important to point out
that the predictability oPS has been studied in much more detail by Ward and WBRS[While we
assume no knowledge of the system state in order to study how well response times will match with prior
user experience, Ward and Whitt study how wigfk:)” can be predicted given knowledge of the system
state (e.g. the number of jobs in the system upon arrival, They look at the question analytically as
N — oo andx — oo and prove that predictions can be made quite accurately when eitire¥ is large.

7.4.2.2 PSJF

We now move to another important individual policy, Preemptive-Shortest-Job-PBIH). PSJF is the
canonical example of a policy that prioritizes based on size, and it will serve as the building block for the
analysis of all size based policieBSJF significantly improves on the mean response time@$f and has
is near optimal with respect to mean response time as we saw in Thdd2em

In this section, we will first prove that under distributions wil{X3] < oo PSJF exhibits non-
monotonic behavior iV ar[T(x)]75/F /2, where mid-range job sizes are treated the most unpredictably.
Then, we will bound the position and size of this “hump.”

Theorem 7.23
In an M/GI/1 queue with E[X 3] < 00, PSJF is unpredictable. Further, there exists some L such that all
x > L are treated unpredictably.

Note that the above result only discusses the casefth&it] < co. No published work has appeared
for PSJF in the case thaF/[X 3] = oo, but Brown has an unpublished manuscript in which he proves that
PSJF can be predictable in this setting. Thus, we clasBBJF as Sometimes Predictable.

Proof. We will start by proving the result for the case when the service distribution has some finite upper
boundZ and then move to the case when the service distribution has no upper bound.

216

CHAPTER 7: FAIRNESS

Preemptive Policies

Non-preemptive Policies

g
n [}

E[T(x)Vx
P

o
133}

o

n
o

[

E[T(x))/x

E[T(x)Vx

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
X X X X
30 3 30
1/(1—p) 1/(1-p) 1/(1-p) 1/(1-p)
25 — SRPT 25| — SRPT 25 — FCFs 25 — FCFs
--- PSJF --- PSJF ---- SJF ! ---- SJUF
-~ LAS ol --- LAS 2 o0l !
= = ES i
=15 =15 S
E E £1'°
o o o
1 1 10
0.5 0.5 5
%% 02 04__ 06 038 1 % 02 0. 06 08 1 %5 02 04__ 06 08 1 % 0.2

() Low load p = 0.5)

4
F(x)

(b) High load p = 0.9)

(c) Low load p = 0.5)

(d) High load p = 0.9)

Figure 7.4: The conditional variance is illustrated under a variety of both preemptive and non-preemptive
policies. The service distribution is exponential with mean 1. The dotted line shows the criteria for pre-

dictability.

In the case where the service distribution has some finite upper dothelresult is immediate.

- ALE[X?] | AE[X®] 3 (AE[X?])?
Var[T(L)] (1-p)3 3(1—p)3 4 <(1 - P)2>
ALB[X?]
(1=p)?

The case of unbounded service distributions is more complicated. Obsergédhdt(x)]"57F /z is

increasing ine for smallz. Also, recall that from Theorem.20thatV ar[T'(x)|757F /2 — Az E[X?]/(1 —

p) asz — oo. Hence, if we can show that the limit is approached from above, rather than below, we
will have exhibited non-monotonic behavior. We accomplish this by showingh@ ar [T (z)]757F /z)
approaches 0 from below as— co. By observing that

d Var[T(z)]757F
dx

x%Var[T(az)]PS‘]F — VaT[T(J:)]PSJF
2

T xT

our goal reduces to showing thatas- oo

xiVar[T(z)]PSJF — Var[T(:c)]PSJF <0

e (7.25)

7.4: PREDICTABILITY 217

Computation yields that for any distribution with finite third moment:

(T(a))PSIF = 2220 ()

e T 1= (@)
So,
xiVar[()]PSJF o VaT’[T(x)}PSJF M + O($4f(£€)) _ VaT[T(l‘)]PSJF
da (1= p(x))?

< Qasx — o

Thus,PSJF is unpredictable for all loads and all unbounded service distributions.
O

Although there are always some sizes that are treated unpredictably R8dEr most sizes receive
predictable response times.

Theorem 7.24
In an M/GI/1 queue, let K be a constant such that ms(z) < Kjzmgo(x). Then

Var[T(:B)]PS‘]F < Var[B(x)]hl(p,:U)PS‘]F

o 8- (8-l
<

Further, noting that K; < 1 for all service distributions, we have that hy(p, x)

where

Proof. The proof follows from direct calculation.

Azma(z) Amg(x) 3NZmg(z)ma ()
S T=p@) T30 —p@P 41— p@)

5 m x
Var[B(z)}(a (P)))4 E[Q;(Q)] {(1 + I?;) (1—p(z)) + 73K14p() }

v@r[Bm)}%{(l + I?) + (51};1 - 1) e)}

Var[T(z)P57F

IN

IN

Notice that this bound guarantees that a large percentage of job sizes will be treated predictably. In

particular, all job sizes such thatz) < 1 — (3(1 — p)3)1/4. For example, if the load is 0.8, all job sizes
x such thatp(x) < 0.678 will be treated predictably. If the job size distribution is highly variable, this is
nearly all jobs (since a small percentage of the largest jobs make up half the load).

Example

218 CHAPTER 7: FAIRNESS

ConsiderX ~ Exp(l). Thus,f(z) = e ®. Then,p(z) = p(1—e® —xe ™). So,p(z) <

4 g\ 1/4 o Y 1-(4a-p2)"" . .
1—(3(1—p)%)"" whene™* +ze~* > 1 — —3———~—_ This says that whep = 0.8, PSJF will
be predictable for at least jobs of size< 3.3. Thus,PSJF will be predictable for at least 96.3% of
the jobs.

O

Further, an even larger percentage of job sizes can be shown to be treated predidtabybunded
below 1 using Theorer8.8 For instance, iff (x) is decreasingk’; can be set to 3/4.

Theorem7.24shows that small (and in fact most) job sizes receive predictable service, but the question
still remains as to how unpredictably the large jobs can be treated. The dependence of Th@dmmthe
boundms(z) < Kjzmsa(x) leads to an overestimate Blur[T'(z)]°/F for large job sizes. Thus, we must
take a different approach in order to obtain a tighter bound for the large jobs.

Define My [X] = % andM3[X] = #ﬁ&ﬂ

Theorem 7.25
In an M/GI/1 queue with E[X?3] < oo, for jobs of size x > Ky E[X]

Var[T(2)]"F < Var[B()]hz(p)

where

ha(p) = (1 + M?’[X]) R/ZCEIRY

3Ky 4K>(1 - p)
Proof. We again proceed with direct calculation Bar [T (z)]
M E[X?] AE[X3] 3\E[X??

(A—pp " 3—pp A1 p)

< VB3 20 - 2

Var[T(z)F57F

The combination of the Theoreri24and7.25provides a technique for determining both (i) which job
sizes are treated unpredictably and (ii) how unpredictably they can be treated. We illustrate this process in
the next example.

Example

Returning to the case oX ~ FExp(1) we can use our prior calculation to sét, = 3.3 in the
case wherep = 0.8 in our PSJF system. Now, noting that/3[X| = 3 and Mz[X] = 2 in the
case of the exponential, we haWer [T (z)]757/F < 3.1Var[B(z)]. Thus, althoughPSJF is Always
Unpredictable, even in the case of an exponential service distributionpnth0.8, PSJF is only
unpredictable for at most% of jobs and this small fraction of jobs only receives a factor of 3.1 higher
variance. This agrees with the behavior shown in Fighwé

O

7.4: PREDICTABILITY 219

7423 FB
We next turn to another important priority-based poliER. In this section, we will first prove thd&iB ex-
hibits non-monotonic behavior iWar[T(z)]F'? /z, where large, but not the largest, job sizes are treated

the most unpredictably. We will then bound the position and size of this “hump” through bounds on
Var[T(z)]FB.

Lemma 7.26
For all x, Var[T(x)|P57F < Var[T(z))FB

This Lemma is a special case of TheorghQ Combining Lemm&.26with Theorem7.23 we have:

Corollary 7.27
In an M/GI/1 with E[X3] < oo, FB is unpredictable. Further, there exists some L such that all z > L are
treated unpredictably.

Note that the above result only discusses the case Wh&H] < co. As with PSJF, no published work
has appeared fd¥B in the case thaf/[X 3] = oo, but Brown has an unpublished manuscript in which he
proves thafFB can be predictable in this setting. Thus, we clasBByas Sometimes Predictable.

Now, let us return to the case & X 3] < co. Although there are always some job sizes that are treated
unpredictably undeFB when E[X 3] < oo, most job sizes receive predictable response times.

Theorem 7.28
In an M/GI/1 queue, let K, be a constant such that ms(z) < Kjxmg(x). Then

Var(T(x)]"? < Var[B(z)hi(p,2)""

Further, noting that K1 < 1 for all service distributions we have that h; (p, x)FB < (1@%&))3)4 {% — %ﬁ(m)}

where

The proof follows using Lemmas.29and7.30which are stated below.
Lemma 7.29
Nig(x)? < %x\ﬁzg(a})ﬁ(x)

Proof.

Mig(z)? < 4N? < /Ox(tF(t)l/Z)th> (/OI(F(t)l/2)2dt>

= (i)

220 CHAPTER 7: FAIRNESS

Lemma 7.30
Let K1 be such that mz(z) < Kixma(z). Then mz(z) < K1xE[X?).

Proof.

ma(z) = mg(x)+ 23F(x)

IN

a? [f(t)dt)
ma(z)

s f(t)dt>
ma(z)

E[X?] — my(x)

ma(z)

Kizma(z) <1 +

IN

Kyoma(a) (1+

= Kijzmy(z) <1 + > = K12E[X?]

The bound in Theorerid.28guarantees that a large percentage of job sizes will be treated predictably.
In particular, all job sizes such thatz) < 1 — (%(1 - p)3)1/4. Thus, if p = 0.8, all jobs such that
p(x) < 0.678 will be treated predictably. However, the question still remains as to how unpredictably the
large jobs can be treated.

Theorem 7.31
In an M/GI/1 queue with E[X3] < oo, for jobs of size x > K2E[X],

Var[T(2)]"" < B[B(x)]ha2(p)

where

ha(p) = (1 L M [X]> 3pMs[X]

3K2 4K2(1 —p)

Note that this is the same bound on the hump size as up88F. The difference will come in the
application because the bound on the position of the hump is in tergig:blinderFB instead ofp(x) as
underPSJF, so K, will be smaller. We illustrate this using our running example.

Example
Again considertX ~ Ezp(1). Then,p(z) = p(1—e™*). So,p(z) < 1— (3(1- p)3)1/4 when

(4(1\3 1/4
et >1-— M. This says that whep = 0.8, FB will be predictable for at least jobs of

sizex < 1.8. Thus,FB will be predictable for at least 83.4% of the jobs. We can use this result to set
K, = 1.8 in the case wherp = 0.8, which gives/ ar[T(z)]7°/F < 4.9V ar[B(x)]. Thus, although

FB is Always Unpredictable, whem = 0.8, FB is only unpredictable for at modtr% of jobs and

this fraction of jobs only receives at most a factor of 5 higher variance. Note that although this is not
nearly as good as what we saw und®8JF, FB is operating without knowledge of job sizes. This
agrees with the behavior shown in Figu#fed.

U

7.4: PREDICTABILITY 221

7.4.24 SRPT

SRPT is perhaps the most important priority-based policy due to the fact that it has been shown to be optimal
with respect to mean response time. We will start the section by showinGRRT provides predictable
response times for all job sizes at low load, regardless of the service distribution. Then, we will show that,
even wherSRPT might not provide predictable response times for all job sizes, only a tiny percentage of
the jobs receive unpredictable response times, and this unpredictability is not too bad.

We will first prove one technical lemma.

Lemma 7.32
In an M/GI/1 queue,

arlR(2)1SEPT _ ©Amp(t) AeB[X?] Ning(x)
VarlR@) = [IR S e T T e
Proof.
| < Jg Mms(t)dt _ Aama(x) — Ams(x)
o (L—p)* = (1-p))? (1—p(x))?
A\rE[X?] B A3 F () _ Amg(z)
1—p)? A-p)® 1-p)?

_ MzE[X?] _ Amg(z)

(M =p(@)? (1-p)?
O

We can now prove th&RPT behaves predictably under low load.

Theorem 7.33

In an M/GI/1 queue, let K1 be a constant such that ms(x) < Kjxma(z). Under all service distributions
SRPT is predictable when p < 0.4. Further, all x such that p(xz) < 0.4 are treated predictably under all
service distributions, and for x such that p(x) > 0.4,

Var[T(2)]°#7T < Var[B(x)]h (p, z) T

mipy® T = (12) o (B o)

Noting that for all distributions ms(x) < xms(x), we can set K1 = 1 and obtain hy(p, x) < % {3+ 2p(2)}.

where

Note that the above result only discuss the casefliat’] < co. As with PSJF andFB, no published
work has appeared f@RPT in the case thab[X?3] = oo, but Brown has an unpublished manuscript in
which he proves tha&8RPT can be predictable in this setting.

222 CHAPTER 7: FAIRNESS

Proof. First, we upper bount ar [T (z)]°FT using Lemmag.29and7.32

SRPT /\J:E[XQ] Ams(z) Ams(z)
Varll@ < o A A L o
L3 I()) Ny P
4(P (- p)
| 2 () Nis()ol)
B30 p(e) (1 p(x))?
eEXY
7

1
(1 L ms(@)(5p() — 2))
(1= p(x) 3zE[X?](1 - p(x))
From this, we see thdtar [T ()T < Var[B(x)] for all 2 such thatp(z) — 2 < 0, i.e. p(z) < 0.4.
Then, we apply Lemm@.30in the case whep(x) > 0.4 to finish the proof.

(1= p(z)

e < (S
g = ((EORES

Using this theorem, we can see that most job sizes will be treated predictablySRBd@reven under
high load. Forz such thatp(z) > 0.4, Var[T(z)]*fPT < Var[B(x)] wheneverp(z) < 1 — (1 — p)3/4,
Notice that this gives a much better range thangfe) < 0.4 whenp is high. Whenp = 0.8, SRPT is
predictable for all job sizes that havep(x) < 0.7 regardless of the service distribution.

We now show that, thougBRPT can provide predictable response times for all job sizes under low
loads,SRPT will be unpredictable for some job size under high enough load. This result follows immedi-
ately from Theoremg.37 (which holds for the entir6 MART class) and’.33

Theorem 7.34
In an M/GI/1 queue with E[X3] < oo, SRPT is Sometimes Predictable. For every service distribution,
there exists some p.i; and L such that, for all p > pcrit, SRPT is unpredictable for all jobs of size x > L.

The prior theorems give bounds on the position and existence of the huiigril ()] /2; to
bound the height of the hump it turns out to be effective to use the same bound that we have B&:liFfor
andFB.

Lemma 7.35
In an M/GI/1 queue, for all z Var[T(z)]3%FT < Var[T ()8

This lemma is a special case of Theorarh9

Lemma7.35allows us to use the bound already derived F& in Theorem7.31 As in the cases of
PSJF andFB, the combination of the above theorems provides tight bounds on the position and size of the
hump inVar[T(z)]5EFT /.

7.4: PREDICTABILITY 223

Example

Again considetX ~ Ezp(1). p(x) < 1 — (1 — p)** whene™* + ze=% > 1 — M. This

says that whep = 0.8, SRPT will be predictable for at least jobs of size< 3.6, which is at least
97.2% of the jobs. We can use this result to Kgt= 3.6 in the case wherg = 0.8 which gives
Var[T(x)]3#T < 2.9Var[B(x)]. Thus, althougtSRPT can be unpredictable, in the case of an
exponential service distribution wigh= 0.8, SRPT is only unpredictable for at mo8&s6 of jobs and

this fraction of jobs only receives at most a factor of 3 higher variance. Note both of these bounds are
better than were obtained for eith®SJF or FB.

O

7.4.3 The predictability of scheduling classifications

The power of Definitiong.4and7.5is that they are simple enough to be tractable for the analysis of schedul-
ing classifications in addition to the analysis of individual policies. For the remainder of this section, we will
focus on understanding the impact of common scheduling heuristics and techniques on the predictability of
the resulting policies. We will start by discussing the Always Predictable classifications, and then we will
move to the Always Unpredictable and Sometimes Predictable classifications. We provide an overview of
all the known results in Figuré.3. However, to avoid repetition, we will not provide the proofs for all the
classifications listed in Figuré.3 since many of the proofs are very similar to one another and to the proofs
for the case of mean proportional fairness. Instead, we will limit our focus to a few of the most interesting
classifications.

7.4.3.1 Always Predictable

We begin by studying the class of Always Predictable policies, policies where every job size is treated pre-
dictably under all service distributions and system loads. One might expect thatPSrax@dPLCFS are
both Always Predictable, it might be possible to also show th&8 AMMETRIC policies are Always Pre-
dictable. Unfortunately, little has been proven about the variance of response times @YHMBRIETRIC
policies. A rare exception is the work of Avi-ltzhak and Half8j,[whereVar[T(z)] underPLCFS, PS,
and one other less comm&YMMETRIC policy are compared. However, intuitiveli,ar[T'(x)]" for all
SYMMETRIC policies should fall betweeWar[T(z)]7° andVar[T(x)]PXCFS, thus we conjecture that
in fact all P ¢ SYMMETRIC are Always Predictable.

Similarly, sincePS is Always Predictable, one might conjecture thatRIROTECTIVE policies are
Always Predictable. Again though, the analysisRROTECTIVE policies is difficult and no analytic
results have been obtained about the variance of response times of policies in this class. There have been
some simulation results studyingar[T'(x)]"S” [86], but it is intuitively unclear whethePROTECTIVE
policies will turn out to be Always Predictable because it seems possible that the variance of response times
may be larger than that &fS since E'[T'(x)] is guaranteed to be smaller.

7.4.3.2 Always Unpredictable

We now move to a discussion of Always Unpredictable policies, i.e. policies guaranteed under all system
loads and all service distributions to treat some job size unpredictably. The only scheduling classification
that turns out to be Always Unpredictable is #@OLISH classification (see Figuiz4).

224 CHAPTER 7: FAIRNESS

FOOLISH Scheduling

We start with the class dFOOLISH policies, i.e. policies that bias towards large job sizes. As one would
expect,FOOLISH policies will always be unpredictable for small job sizes, since the large job sizes are
allowed to preempt small ones upon arrival.

Theorem 7.36
In an M/GI/1 queue, all FOOLISH policies are Always Unfair.

Proof. Letz;, be the lower bound of the service distribution. Thenyas z 1, T(z)PX/F % B(w, +W)
since the service distribution is continuous. Furttgfz)?*PT £ B(z + W). Thus, under allP €

FOOLISH, asz — zr, T'(z)” 4 B(zr + W). Thus, allP € FOOLISH are Always Unpredictable since
forall i, k;[B(xr + W)] > k;[B(zr)] for p > 0.
U

7.4.3.3 Sometimes Predictable

We will now show that many classes of policies are neither Always Predictable or Always Unpredictable.
Instead, many classes have include policies that fall into the Sometimes Predictable class. That is many
policies can be predictable for all job sizes under some loads and service distributions and unpredictable
for some job size under other loads and service distributions. The policies that are Sometimes Predictable
have more complicated behavior with respeciiter[T'(x)] than we observed in the cases of the Always
Predictable and Always Unpredictable classes. These more complicated behaviors are illustrated in Figure
7.4

SMART scheduling

The predictability ofSMART policies is of particular interest due to the intrinsic bias against large job sizes
under these policies. We have already seen one exampl8MP&RT policy that is Always Unpredictable.
However, it is possible foBMART policies to be predictable. In fact, ma®MART policies (e.gSRPT)

can be predictable under low loads regardless of the service distribution. Further, if the service distribution
is highly variable SMART policies can be predictable at even high loads. However, under 8ART

policy, under every service distribution, there exists some load that is high enough to cause the policy to be
unpredictable.

Theorem 7.37
In an M/GI/1 queue with E[X3] < oo there exist p. < 1 such that all SMART policies are unpredictable

P> Pec-

By combining Theoren?.37 with the soon to be published work of Brown (which extendig]) that
shows thaBMART policies are predictable in under some distributions hain?] < oo, it follows that
all SMART policies are Sometimes Predictable

In proving Theorem7.37, we need to prove a tighter bound &fur[T(z)] than Theoremt.4 gives
directly. Thus, we first prove tighter bounds on the behaviot’af[R(z)]” for P € SMART in the
following corollary.

7.4: PREDICTABILITY 225

Corollary 7.38
In an M/GIl/1 queue, for P € SMART,

/090 : Ao (t) it Amg(x) n <(Ama(z))2 <2()‘fnv2(x))2)2 (7.26)

L=p)? 30— p(x))? 1—p(z))? 1—p(z)
< Var[T(x)]F <
Axma(z) Amg () Amg(z)ma(z) Ama(z) O\
M= o) 30— p@)? T (1~ p(a)? (2(1 - p<x>>2) (7:20)

Proof. Let P € SMART. To boundVar[W(z)]”, we use the bounds oR[W ()] and E[W (z)]?
provided by Theorem.4. However, to bound ar[T'(z)]¥ we need a better bound dfur|[R(x)]F than is
provided by the bounds ofi[R(x)?] and E[R(z)]?. We will obtain better bounds by deriving the cumulant
generating function oR(x)”.

View R(z)" as a special type of busy peridt}(z) started by the tagged jgh. We begin by partitioning
the job size intdk small intervals of lengtl\ = = /k. The partition defines a set &f+ 1 points0 = zy <
T < ... <mp = 2. We will be takingk — oo to obtainsx g, (,,)(s), as in R02.

While the remaining size of; is in [x;, 2;11) we will say j, is in classi. During B, (), j, must remain
in classi for a timeT; during whichA work is performed ory,. and all arriving work with higher priority is
served.

To see which arrivals will have higher priority, recall that the Consistency Property guarantees that once
a tagged joby, of sizex begins service, only newer arrivals can preempt Further, once a new arrival
Jy of sizey preemptsj,, the Transitivity Property guarantees that all new arrivals of sizg will have
priority over j, until j,. next receives service (which can only happen when all new arrivals ofsigkave
completed). Thus, the length of the interruptigrbegins is the same as the length of busy period including
all arrivals of size< y, i.e. B,. Note that if the remaining size gf is » whenj, arrives, then it must be
thatr <y < z.

Under anySMART policy (for large enouglt), there is some cutoff sizg for classi jobs withz; <
y; < x such that all arriving jobs of size y; have priority overj, while j, is in class. Thus,T; 4 By, (A)
which gives

kr,(s) = —A(s + AF(y:) — AF ()i, (5))

Note thaty; may depend on the current system state, past history, or even an external random choice.
However, though thg;s may be dependent, the length of the corresponding busy periods are conditionally
independent given the choice of thg. Thus we have

k

B (@) (@Y1, uk) = =Y A(s+AF(yi) — AF(yi)ks,, (s))
=0

Taking derivatives to obtain the variance, we have

k
Var[Bi«(x|y1, ... yk)] = Z A)\F(yi)E[Bi}
1=0

226 CHAPTER 7: FAIRNESS

Recalling that; < y; < x gives
Z ANF(z | < Var[Bp(z)] < Z ANF(z

Finally, lettingk — oo gives
/ AF(t)E[BHdt < Var[B.(z)] < \xF(z)E[B2]
0

which simplifies to

T Ama(t) wrlB.(x Axma(z)
[T < Vol < 12

O

Before starting the proof of Theorem37we need two other technical lemmas.

Lemma 7.39
Define 0,, = Amg(x)/x and let € > 0.

Ax(L+e)ma(z) [T Ima(t) Nmg(z)? . Ams(x)
(1 p(x))? | - p0RE ™ = T pwp™ T

where
3 30, 52

u—pu»+&»+<1—puy+aﬂ*‘u—pui+@w}

Proof. We will use the bound in Lemma 15in the first step, and then calculate directly.

hta) = { /0. +

Az(l+e)ma(z) T Ama(t)
e b a
< Az(1+ e)m2 (x) Azma(z) — Ams(z)
- (=p@)? (1—p(z) + 6,)°
_ /\l‘m2 (z) { (—p(2))° } Ams(z)
-) pla) +36:)3) (1= p(x) +0.)°
B)\:z:mg { 25 +3(1 — p(x))d2 + 62 } Amg(z)
N)? = p(x) + 02)° (1= p() +02)°
- 17))3 (1 —p(iﬂ) +62)> (1= plx) +6:)°
n /\mg(x)

(1 -p x) +5z)3

7.4: PREDICTABILITY 227

Lemma 7.40

3
Let E[X?] < oo and define €, = i[;((;; <1If(;)) . Then, €, = o(1/x). That is xe; — 0 as x — oo.

Proof.
Itis sufficient to prove thatl — p(z))3 2221 — (1 — p)3 = o(1/). First, note that

ma(x)

B L f(t)dt
ma(e) TRt

=1+o0(1/x)

Thus, we have

3

SR W W CCEREIEEE)

1=0

E[X?]

— o(x))3
(1))

Now, looking term by term, clearly the= 0 termiso(1/z). Fori > 1,

(3) 0 (@ ota/anpte =) < 3067 =)1+ o(1/2)

— 306" — pla)") + o(1/2)
< 3ilp - p(x)) + o(1/x) = o(1/2)

where the last inequality follows from the fact that foK a < b < 1 and positive integer

b —a'=(b—a)d Fabr+ .+ a P+ a) <i(b—a)

We are now ready to prove Theoreh87.

Proof of Theorem 7.37. The proof will mimic the proof of Theorem.14, with added complexity due to
the form of (7.26). Let P € SMART andé, = Ama(z)/x.

Definee, as
__ E[x? <1 - p<x>>3 L
T ma(x) 1—p

In Lemma7.40we show that, = o(1/x).
Now, we can calculate

ArE[X?] ar TP = Ama(@)z(l+e:) arT(a)P
A—pp Vel = TR Ve
A () (
(

o) Nt (o ;Ei))v()zg)

I
_
|
=
8
~—
~—

w

228 CHAPTER 7: FAIRNESS

3 . L= Aa(z))2 1 (Ama(x) 2
where we use the fact th#&[X3] < oo implies F(z) = o(z?) to bound i) < 2 \dopwe
for large enoughx in the final step.

Looking at the pieces in7(28 using Lemmas/.15 7.16 7.39 and the calculations in the proof of
Theorem7.14 we have

Ama@a(l+e) _ [* Ama) Amale) | Xmalaf
CEre el W e A e e Al e
whereh(z) = { &2/, + =y + T + T)
Plugging this bound into7(28 we obtain
xT 2 ms\xr msa\ T
T Vet < (e -)
Nma(x)? 2 1 A2ma(x)?
*((1—/)(9:))3“) 2 (1 p(x») (7:29)

We now show that for: and p large enough, each term .29 can be made negative. We will start
with the first term and then move to the second term.
Working with the first term, we have

Ams(z) ~ Amg(z) — sl 1 B 1
0 p@) 167 30— play)<<1—p<x>+5m>3 3(1—p<x>>3>

which is negative wheB(1 — p(z))® < (1 — p(x) + 6,)3. Noting thaty/3 < 2, we can simplify this
condition to

2(1=p(x)) = (A =p(z)+d) < 0
(L=p)+(p—p) -0 < 0 (7.30)

As in (7.7), this inequality holds for large enoughandp.
We now move to the second term in29. Simplifying, we have

N2ma(x)? 3 N 36, N 52 B 1
(1 —p(x))? (L—p(z)+6z) (L—plz)+d:)> (1—p(x)+d:)° 2(1—p(x))

We will compare each of the positive termsg _1,)(95)) in order to show thatq.31) is negative.

First, note that, /, = o(1), thereforee, /6, — m < 0 for large enougtx.
For the remainder of the positive terms ih31), we argue as follows. Let> 0 andi > 0 be constants.
The following are equivalent

<ex/6x N)(7.31)

ot - 1
(1= p(2) +62)"+ 8(1 = p(x))

80, (1 p(x)) < (1-p(a)+d8:)"™

7.4: PREDICTABILITY 229

Noting that(1 — p(z) + 6,)"™! > §i*, it is sufficient to show that
8¢(l — p(z)) < 0y (7.32)

which holds for large enough andx by a parallel argument to what was used for7/{ and (7.30. This
completes the proof for the case of an unbounded service distribution.

In the case of a service distribution with upper bound it is sufficient to look at the performance of
the largest job size. Thus, by noting that, = 1, 27 F(zy) = 0, and pluggings = zy into (7.30 and
(7.32), we obtain the result.

O

Non-preemptive policies
We now move to a discussion of the predictability under non-preemptive policies.

Non-preemptive policies have very different behavior than preemptive policies. We have seen in Section
7.2that large job sizes see nearly deterministic response times under non-preemptive policies, because once
they begin service they cannot be interrupted. However, one result of this bias towards large job sizes is that
small job sizes can receive extremely variable service because they may have to wait behind the excess of a
much larger job.

In fact, whenever the service distribution includes arbitrarily small jobs, these small jobs will receive
unpredictable response times under non-preemptive policies.

Theorem 7.41

In an M/GI/1 queue with E[X3] < 00,0 all non-preemptive policies are either Sometimes Predictable or
Always Unpredictable. All non-preemptive policies are unpredictable for all loads if the service distribution
includes arbitrarily small job sizes.

Proof. Let P be a work conserving non-preemptive policy. The response time of g, jalb size =
underP is the sum of the work in the system that will serve aheag,.o#V; , and all arrivals whilgj,, is
in the system that serve ahead;jof This second piece can be viewed as a busy pedygd(\V;,). We
can bound¥;, from below by the excess of the job at the server upon the arriva},of. Further, we
can boundV ar[B;, (W;,)] > Var[W;,] > Var[£]. Finally, we can complete the proof by observing that

Var[]z“(x)]P Va;‘[é'] — o0

lim,_.q > limg_.g

g

However, in many real world cases there is some lower bound that can be placed on the size of a service
request. In this case, non-preemptive policeas provide predictable service. We illustrate this using the

“Note that non-preemptive policies require thtX] < oo in order forVar[T(z)] < co.

230 CHAPTER 7: FAIRNESS

examples oFCFS and non-preemptive Shortest-Job-FiSIF). Note that P22

AE[X?] A2E[X?)?
3(1—p) 4(1-p)?
ar [T () STF AE[X?] Nmo(z)E[X? NE[X??
VarlT@)™™ = s mE T @ @)t A0 pa)?

Var[T(z))FCFS =

Theorem 7.42

In an M/GI/1 queue with E[X3] < oo, FCFS is Sometimes Predictable. (i) For all service distributions
with no non-zero lower bound, FCFS is unpredictable. (ii) For all service distributions with lower bound
L # 0, there exists a p¢i; such that for all p € (perit, 1) FCFS is predictable.

Theorem 7.43
In an M/GI/1 queue with E[X?] < oo, SJIF is Sometimes Predictable. (i) For all service distribution with
no non-zero lower bound, SJF is unpredictable. (ii) For service distributions with lower bound L # 0, SJF
Ms[X] | 3pMX] I

3 4

is predictable when iy < BN

The proofs of these theorems are straightforward manipulatioliofl’(x)], and are thus omitted.

These two examples illustrate the strange effects of size based prioritization. M@l and all blind
based non-preemptive policies haver[T'(x)]/x that is strictly decreasing in, size based non-preemptive
policies, such aSJF, exhibit non-monotonic behavior similar to that seen under preemptive policies such
asSRPT, FB, andPSJF. This contrast is illustrated in Figuig4.

7.5 Temporal Fairness

To this point, we have considered omdyoportional fairnessmeasures, which are motivated by the idea

that it is fair for jobs to receive response times proportional to their service times. Thus, under proportional
fairness measures, it is unfair to force a small job to queue behind a large job because the response time of
the small job will become unfairly large. However, proportional fairness is not the most appropriate form

of fairness for every application. For instance, if a large job has been waiting in the queue for a long time,

it is in some sense “unfair” for a small job that just arrived to the queue to jump in front of the large job.

In this section, we consider an alternative to the concept of proportional fairnessteafipdral fairness
Temporal fairness refers to the idea that it is “fair” to serve jobs in the order in which they arrive, i.e. the
order ofseniority.

Like proportional fairness, temporal fairness arises naturally in many computer applications due to the
inherent tradeoff between providing jobs of different sizes “fair” performance and providing a small overall
mean response time, which requires allowing small job sizes to violate the seniority of large job sizes. This
tradeoff between minimizing mean response time and maintaining temporal fairness is often an important
design constraint. For example, in applications such as scheduling flows in routers, there is a tension between
providing flows small overall mean response times and ensuring that streaming flows (which tend to be large)
do not experience jitter as a result of being interrupted by smaller flbvi& L80. Similarly, in designing
web servers there is a tension between prioritizing small files such as .html files over larger files such as

7.5: TEMPORAL FAIRNESS 231

image files in order to improve overall mean response time because if large files are always interrupted by
small files web sites (which depend on both large and small files) will load more sl6glg82.

The tradeoff between efficiency (e.g. mean response time) and temporal fairness is perhaps best illus-
trated by the fact that the onbtrictly temporally fair policy isFCFS, which serves jobs in the order they
arrive; howeverFCFS can have extremely large mean response times under highly variable service distri-
butions. Thus, in designing a policy for an application like web servers and routers where both temporal
fairness and mean response times are important, one must strike a balance between allowing small jobs to
preempt large jobs and respecting the seniority of large jobs.

In the remainder of this section, we introduce a measure of temporal fairnesspalitedesswhich
helps to characterize this tradeoff (Sectibb.l). Then, in Sectiory.5.2 we analyze the politeness indi-
vidual scheduling policies. Finally, in Sectiah5.3we study the politeness of scheduling techniques and
heuristics.

7.5.1 Defining politeness

Informally, the idea behind the notion of politeness is that a job is treated “politely” if the fraction of time
that the seniority of the job is violated is small. More formally, we have the following definition.

Definition 7.6 We denote thpoliteness experienced by a job of sizeinder policyP as Pol(x)" where
Pol(x)" is the fraction of the response time (of a job of sigeduring which the seniority of the job is
respected. Thampoliteness experienced by a job of sizeinder policyP is 1 — Pol(x)".

Clearly, the politeness &fCFS is Pol(z)F“FS = 1, which is the “most polite” a policy can be. To see
how “impolite” a policy can be, let us considBt. CFS. PLCFS is the worst case faPol(z) among work
conserving policies. To see this, notice that a work conserving policy can serve aB(apst ¢ work with
lower seniority for every work with higher seniority served, which is exactly what happens uRHEFS.

Proposition 7.44
In an M/GI/1 queue, E[Pol(x)]PFCFS =1 — p.

Proof. UnderPLCFS, the only time during which the seniority of the tagged job is not violated is when
the tagged job is being served. We can use renewal-reward to calétdéte) as follows. Consider a
sequence of response timBér)"LCFS where in each renewal, reward is earned with rate 1 whenever the
tagged job (of size) is being served. Thusg,reward is earned in each renewal. Further, the expected length
of each renewal i€ [T (z)]PXCFS = 2/(1 — p). Thus,

E[POZ(.’L‘)]PLCFS _

ofi=p

232 CHAPTER 7: FAIRNESS

7.5.2 The politeness of individual policies

We have already analyzed the politeness of two policies that provide upper an lower bounds on the politeness
of work conserving policiesFCFS andPLCFS. In this section, we will analyze a wide range of policies
with respect to politeness.

Though the politeness &fCFS and PLCFS are independent af, this is not always the case. For
example, consider the cases of Preemptive-Shortest-Job4F8B3F] and Non-preemptive Shortest-Job-
First (SJF).

Proposition 7.45
In an M/GI/1 queue with E[X?] < oo, we have that E[Pol(z)]"%/F = 1 — p(z) and E[Pol(z)]%’F =
1 — p(x)CJ7F where

CfJF* 1 1

L a1+ ZpRe-

Note that Propositioff.45immediately gives that
E[Pol(x)|PXCFS < E[Pol(z))7S'F < E[Pol(z)]°’F < E[Pol(x))F¢F,

which matches with intuition for how these four policies should be ordered. For an illustration of the
behavior ofE[Pol(z)] under these and other common policies, see FigLie

Proof. Let us begin witiPSJF . Consider a tagged job of sizeentering @ SJF system. The only times

the seniority of the tagged job is not being violated is while tagged job is being served and while the work
in the system seen by the tagged job upon arrival completes. This is exaﬁtgg% work. Thus, the

time when senioritys being violated is

PSJF AE[X?] x Amy () Am(z)
EE@I = e =500ty = Top@ " T2l p@? 201 - p(a))
zp(z) | Ama(e)pla)
T o) " 201~ plx))?
= (@) E[T()PSF

Using renewal-reward, as in Propositidr@l4, we obtain

p(a) E[T (x)]"57F
E[T(z)]PSJF

= p(x)

1 — E[Pol(z)]"57F =

from which the proposition follows.
Now consider a tagged job of sizeentering aSJF system. The only times when the seniority of the
tagged job is not being violated is while the tagged job is being served and while the work in the system

seen by the tagged job upon arrival is being served. This is exaetl (Ef(i])) work. Thus, the time when

7.5: TEMPORAL FAIRNESS

233

[— FcFs [— FeFs
L SJF PSJF
15 LCFS 15 FB
— PLCFS PS
—_ — — PLCFS
% 1 = 1
o o
L L
0.5¢ 0.5;"
0 ‘ ‘ 0 ‘ ‘ ‘
0 5 10 15 20 2 0 10 15 20 25
X
— FCFS —— FCFS
e | e e
—— PLCFS PS
—_ — —— PLCFS
= 1 = 1
a o
0.5 0.5t
0O 0.2 0.4 0.6 0.8 00 0. 0.6 0.8 1

F(x)

(a) Non-preemptive policies

(b) Preemptive policies

Figure 7.5: An illustration of the politeness of common preemptive and non-preemptive policies. The
service distribution is Exponential with mean 1 and the load is fixgd-at0.9. All plots showFCFS and
PLCFS, which act as upper and lower bounds on the possible valudsBbl(x)]. The top row shows
E[Pol(x)] as a function of jobs size, and the bottom row shows|Pol(x)] as a function of the percentile

of the job,F'(x).

seniority is being violated is

E[T(x))%7F — 2 —

AE[X?]

2(1 = p(x))

Again using renewal-reward, we obtain

1 — E[Pol(z)]%'F

from which the proposition follows.
O

Using arguments that parallel the above, we

p(x) E[W ()57

x + E[W (x)]5/F
= p(z)

can defiVBol(z)] under a wide range of common

234 CHAPTER 7: FAIRNESS

policies. Notice that the form af[Pol(z)] we saw undePSJF and SJF extends throughout many other
common policies, with a notable exception belS.

Theorem 7.46
In an M/GI/1 queue with E[X?] < oo,

E[Pol(x)[*CFS = 1— pcLtcts
E[Pol(x)]*FPT = 1 — p(z)CSRPT
E[Pol(x)|*FPT = 1—p
E[Pol(x)]FP = 1-p(x)
BPol@]™ = 1-p+ 20
where
COLCFS _ 1 _ 1
‘ 14 z/E[W (z)]FCFS 1 4 2/\%&51)
CSRPT _ 0 % 1—62‘/(@ + E[W (2)]5RPT
' BT @

Proof. We will only prove the result for the case B since the other arguments all mimic the proof of
Proposition7.45

To prove the result foPS, recall Theorendl.16 which characterizes the system state ur@ mMMET-
RIC policies. Consider the experience of a tagged job of gia#e can calculate the amount of work done
on jobs in the system when the tagged job arrived using the fact that all jobs in the system upon the arrival of
the tagged job have i.i.d. remaining sizes distributed as the equilibrium distribétiéurther, the number
of jobs in the systemiN"®, is geometric with meap/(1 — p). Thus, the work done on jobs in the system
when the tagged job arrived is

E

igf(g < g:)] = iz’E[EI(E < z)]P(NPS =)
=1

= ;[NPS]E[SI(é’ <)]

N lfp </ox g[’gdt)
()

Ao (z

2(1-p)

7.5: TEMPORAL FAIRNESS 235

Thus, we have that

Ama(x

T+ 2(12—(0))

z/(1—p)

A (x)
2x

E[Pol(:v)]PS

The politeness of the policies in Theorgm6and Propositior?.45is illustrated in Figure’ .5. Clearly,
many of these policies are polite to most job sizes; however, under all the policies so far (eKEeHt
there are cases where some particular job size is treated as impolite as possiblePoEx)] = 1 — p.
For instancePSJF, FB, andPS have E[Pol(x)] — 1 — p asx — oo for all p, andSJF will treat some
medium-large sized job as impolitely as possiblepas> 1. This is unsatisfactory, and so our goal now
is to present a family of policies that have “bounded impoliteness”. To formalize this concept, we use the
following definition.

Definition 7.7 Let0 < p < 1 and E[X?] < oo in an M/GI/1 system. A polick is k-polite if

inf E[Pol(x)]” > 1 — kp.

For k = 1, we simply say that scheduling poliéyis polite. If inf, E[Pol(z)]” = 1 — p, we say thatP is
impolite.

All the policies we have seen so far have some service distribution where some job size is treated
impolitely. However, the following simple family of policies provides “bounded impoliteness” in the sense
that the family provides a policy that ispolite for arbitraryk.

Definition 7.8 Under theJump-To-Front(q) (JTF(g)) policy an arriving job joins the back of the queue
with probability1 — ¢ and goes immediately into service (pushing every other job back one position in the
gueue) with probability;.

Before we can analyze the politenessJoF policies, we will first derive the mean response time of
these policies.

Proposition 7.47
In an M/GI/1 queue with E[X?] < oo,

A1—q) E[X?]
T+ —5a=
E[T(l‘)]JTF(q) _ - _(qpp)

Proof. Consider a tagged job of size With probability g the job will wait only behind other arriving
jobs that “jump to the front.” These jobs form a busy period with lgadWith probability1 — ¢ the job will

wait behind all the work in the queu ﬁ[f:)], and the busy period of arriving jobs that jump to the front.

236 CHAPTER 7: FAIRNESS

Again the load of the arriving jobs that jump to the fronyjs The proof is completed by noting that for
any random variabl®”, E[B(Y)] = E[Y]/(1 — v), wherey is the load of the arriving jobs:

T+ A\E[X?]
xT 2(1—

AM1—q)E[X?
I (=
1—gp

Using the Propositio.47, it is now straightforward to analyze the politenesg®©F(q) policies.

Theorem 7.48
In an M/GI/1 queue with E[X?] < oo, JTF(q) is g-polite.

Proof. Consider the politeness experienced by a tagged job ofcsi¥éth probabilityl — ¢ all the work
the tagged job sees upon arrival will complete before the tagged job. Otherwise, none of the work the tagged
job sees upon arrival will complete before the tagged job. Thus,
A\E[X?
r+(1—q) 2(1[7@}

A(1—q)E[X?]
2(1—p)
1—qp

= 1—gqp

E[Pol(x)]’TF@

T+

7.5.3 The politeness of scheduling classifications

Using the understanding of the politeness of individual policies that we developed in the previous section,
we now move to the task of classifying the politeness of scheduling techniques and heuristics. Parallel to
proportional fairness and predictability, we introduce the following classes.

Definition 7.9 Further, we say that a policy is Always Politeif P is polite under all loads and service
distributions. A policyP is Sometimes Politéf P is polite under some loads and service distributions and
impolite under other loads and service distributions. A politys Always Impoliteif P is impolite under

all loads and service distributions.

These three classes identify three distinct behaviors with respect to politeness, and are simple enough to
allow us to analyze the classes of scheduling techniques and mechanisms that are the focus of this thesis.

Using Theoren¥.46 we can already classify many common policies according to politeness. For ex-
ample,FCFS is Always Polite,PSJF is Always Impolite, andSJF is Sometimes Polite. In the remainder

7.5: TEMPORAL FAIRNESS 237

/E R - Remaining ,:’A\\\ E
! L e o size based ! - \\]
Y . SMART SO L b
Always N \FOOLISH \
Polite N B SRR Y '™

Sometimes™-.| A "
JTF . Tt reemptive i
. Polite : o L

size based

SlFe LCES
[]

3 Non-preemptive

Teel Always
Preemptive age based [T Im P0| ite

PS. /

Figure 7.6: An illustration of the classification of common prioritization techniques and heuristics with
respect to politeness.

of this section, we will extend the analyses of individual policies in order to classify the behavior of classes
of scheduling techniques and heuristics with respect to politeness. The results are summarized in Figure
7.6. Figure7.6illustrates that most common scheduling techniques and heuristics lead to policies that are
impolite in many situations. However, if we restrict our discussion to service distributions with finite upper
bounds, many of these techniques and heuristics can be polite. For ex®8med SRPT are polite in
such settings.

A useful tool in the analysis of scheduling techniques and heuristics is the following necessary condition

for an Always Polite policy. This theorem provides a simple technique for showing that a class of policies
is not Always Polite.

Theorem 7.49
In an M/GI/1 queue with E[X?] < oo, if a policy is Always Polite then
E[T(z)] 1

lim <
T—00 X 1- P

In particular, any policy P with E[T (z)]* /x — 1/(1 — p) as x — oo is impolite when the service distribu-
tion has no finite upper bound.

This theorem provides an interesting view of the tradeoff between temporal fairness and proportional
fairness. In particular, combining Theoreh#9with Theorem7.9yields the following corollary.

238 CHAPTER 7: FAIRNESS

Corollary 7.50
In an M/GI/1 queue, no policy can be Always Polite and Always Fair.

Now, let us prove Theorem.49

Proof of Theorem 7.49. Consider a the politeness experienced by a tagged job ofsiaé most, the
work done (before the tagged job completes) on jobs with higher seniority-i E[X)] Thus,

2(1-p)
()P

Now, consider a policy? such thate[T'(z)]* /z — 1/(1 — p) asz — co. Under such &P,

4 ABLX?]
E[Pol(x)]" BT

1+ AE[X?]

lim E[Pol(z)]” < lim —— 200

Jm BlPol(x)]” = i pr P,
= (1-p)

Thus, no suctP is Always Polite.
O

7.5.3.1 Scheduling techniques

We will start the analysis of the politeness of scheduling classes by analyzing the politeness of various
scheduling techniques.

Non-preemptive policies

Clearly, we expect non-preemptive policies to be polite since once a job gets to the server no one else can
violate job’s seniority. This turns out to be the case, even under policies s6dF avhere small jobs

can violate the seniority of large jobs until they begin to receive service. However, not all non-preemptive
policies are Always Polite, for instance as- 1, E[Pol(z)]°/¥ — 1 — p = 0 for somex.

Theorem 7.51
In an M/GI/1 queue, all non-preemptive policies are either Always Polite or Sometimes Polite

Note that we have already seen tlEFS is Always Polite andSJF is Sometimes Polite, so this
classification is as tight as possible.

Proof. Consider the politeness of a tagged job having sizé.et) be the amount of work that is in
the system upon the arrival of the tagged job that completes before the tagged job. Then, at worst, the
impoliteness experienced by the tagged job is

EB(Q)] - FlQ]
z + E[B(Q)]

— E[Pol(z)] <

7.5: TEMPORAL FAIRNESS 239

since at worst all later arrivals will violate the seniority of the tagged job. Now, we need only show that
1 — E[Pol(z)] < p for some some load and service distribution regardlegg. of

E[B(Q)] - EQ)]
z + B[B(Q)]
29 plQ)

ﬁU""%Ci]
EQIL—p

= p
x—i-]‘f[pr]

1— E[Pol(z)] <

So, clearlyE[Pol(x)] < 1 — p for all z under any distribution with non-zero lower bound.
O

Preemptive size based policies

As one would expect, all preemptive size based policies turn out to be Always Impolite. These policies must
give some job size the lowest priority, and this job size is then treated impolitely.

Theorem 7.52
In an M/GI/1 queue, all preemptive size based policies are Always Impolite.

Proof. First, consider the case when there is a gitleat receives the lowest priority. Then, since all other
job sizes have priority ovey, the response time gfis

o AE[X?]
S l=p 2(1-p)?

Further, all the work in the system wherarrives will complete beforg. Thus, the politeness gfis

E[T(y)]

. AE[X?]
2(1—-
BlPol(y)] = — i
T T 200

= (1-p)

So, the policy is impolite.

To handle the case when no finite sizeeceives the lowest priority, simply create an infinite sequence
of job sizes{y; } such that the mass of job sizes with lower priority th@monotonically converges to zero.
Then, using the same argument as ab@&/&ol(y;)] — (1 — p).

O

240 CHAPTER 7: FAIRNESS

7.5.3.2 Scheduling heuristics

We now move to the analysis of the politeness of various scheduling techniques. Unfortunately, we can
only present results for tteMART andFOOLISH classes. The analysis of tRROTECTIVE andSYM-
METRIC classes is more difficult, though we have already analyzed the politeness SMMMETRIC
policies:PS andPLCFS.

SMART policies
One might expect tha&8BMART policies are Always Impolite to large job sizes becaB88¢ART policies

prioritize small jobs at the expense of larger ones. However, it turns out that ®MART policies can be
polite under when the service distribution is upper bounded SR®T andRS.

Theorem 7.53
In an M/GI/1 queue, all SMART policies are Sometimes Polite or Always Impolite.

Proof. We will prove the result under the assumption tBak ?] < oo, but the same arguments can easily
be extended to the case wh&ifiX?] = co. Consider the experience of a job of sizeWe will show that
any job of sizer — oo must be treated impolitely. Using the bounds in Theodednwe have that Then

L AEIX?
. 2(1—
Jim B[Pol(e)] = — "
T T 21-p)2
= (1-»)

FOOLISH policies

As expected, it turns out that #OOLISH policies are Always Impolite because small job sizes are guaran-
teed to be biased against and have no hope of increasing their priority as the wait in the queue. This leads to
an interesting contrast betweBMART andFOOLISH policies. SMART policies can treat large job sizes
politely by allowing the priority of large job sizes to increase as they become smaller; whe@CidSH

policies force small jobs to be the lowest priority the whole time they are in the queue.

Theorem 7.54
In an M/GI/1 queue, all FOOLISH policies are Always Impolite.

Proof. Consider the experience of a job of sizeLet 2~ be the lower bound of the service distribution.
Using the bounds in Theorem14 we have that

x+M%ﬁFTSD

__l’_ x

E[Pol(x)] < - g&ﬂ
T T 20-p)2

— (1—p)asz — z~

7.6: HYBRID FAIRNESS METRICS 241

7.6 Hybrid fairness metrics

Until this point in the chapter, we have presented fairness metrics that study either proportional or temporal
fairness in isolation. Following our work, a number of other researchers have used a contrasting approach.
Motivated by our metrics, other researchers have begun developing fairness metrics that capture both pro-
portional and temporal fairness within one measure. These hybrid fairness metrics capture both the idea that
seniority should be respected and the idea that small jobs should not be forced to wait behind larger jobs.
In this section, we will survey the three most well developed metrics to emerge in the last two years: Order
Fairness (OF)19], Resource Allocation Queueing Fairness Measure (RAQRNY|| and Discrimination
Frequency (DF)195. We will introduce each of these measures and survey how common individual poli-
cies perform under each. Our goal is not to provide a detailed summary of these measures, but rather to alert
and excite the reader about ongoing work in the field.

7.6.1 Order Fairness

Order fairness, introduced by Avi-ltzhak and Levy 9] is defined as follows:

Definition 7.10 Consider a GI/GI/1 queue and a hon-preemptive polityheexpected order fairnesis
defined asw[OF]F = Var[W]F.

Order fairness is actually primarily motivated by the concept of temporal fairness. The authors develop
the measure by studying the behavior of non-preemptive policies in a GI/D/1 queue, where proportional fair-
ness is inconsequential because all jobs have the same size. In this setting they take an axiomatic approach
to developing a measure for temporal fairness in such a system: they present four axioms of fairness and
then categorize the metrics that satisfy these axioms. The four axioms they present each characterize how
the fairness measure should react when two jobs are interchanged by the scheduling policy (i.e. when the
positions of jobsi and in the service order are switched). Defifig; p to be the change in the fairness
measure after switching the positionsi@nd; under policyP and letP’ be the resulting policy.

e Monotonicity under job interchangef; ; p is strictly increasing in the seniority difference of jobs
andj.

¢ Reversibility under job interchangd; ; p = —f;.i.p'.

¢ Independence of position and timg ; p is independent of the positions 0&ind; in the queue and
of the time when the switch occurs.

¢ Independence of customers not interchangéd p is independent of all customers in the queue other
thani andj.

242 CHAPTER 7: FAIRNESS

In the GI/D/1 queue it can be proven that fairness measures that obey these axioms are of the form

CZ aidzp + (7.33)

wherec > 0 anda are constants and” is the displacement of thah job underP (i.e. the number of
positions jobi is pushed ahead or behind in the queue urerFurther, Definition7.10follows from the
(7.33 by taking expectation under the assumption thiatthe same across all busy periods ang 0. This
serves as a nice validation of Definiti@rl0in the GI/D/1 setting.

However, outside of the GI/D/1 setting, itis clear that the four axioms above are not achievable. Further,
the axioms above are only appropriate under non-preemptive scheduling policies (where the policy can
be viewed as an order on the jobs in the queue). The restriction to non-preemptive scheduling cannot be
avoided, but the authors do argue for the appropriateness of order fairness outside of the GI/D/1 setting.

Though Definition7.10does not satisfy the four axioms outside of the GI/D/1 setting, the authors extend
the applicability of order fairness by injecting the notion of proportional fairness into the measure. They
argue intuitively that it is unfair to force a small job to wait behind a large job unless the large job has been in
the system a long time before the small job arrives. Thus, the fairness of custojngnsuld be dependent
on the difference in the waiting times of these jobs,w;. In particular, it should be some functidii-)
that is increasing ifw; — w;|. Noting that

la; —aj — s;|, 7jis served ahead of
lw; — w;| = VR
J lai —aj + si|, else

it follows that running jobj with arrival timea; and service demang; ahead of joki is “more fair” than
runnings ahead ofj when
a; —a; > (Sj — Si)/2

Using pairwise comparisons, the order fairness of a sample path can be written as

) 1 n n
Jim 5z 32D Al —wi)

i=1 j=1

Finally, by takingh(z) = ¢/2x? this notion of fairness can be seen to be equivalent to comp&iingiV/|
as in Definition7.10. As noted by the authors, this generalization of order fairness to the GI/GI/1 queue
is less than ideal because many of the original axioms no longer hold. For instance, when interchanging
two jobs, the pairwise comparison of other jobs in the system is affected (i.e. the fourth axiom is violated).
However, the simplicity of the resulting measutéag:[W]") is appealing.

The simplicity of the order fairness measure allows the comparison of many non-preemptive policies. It
is immediately clear tha&CFS is more fair tharLCFS andSJF is more fair tharLJF under this measure.
Thus the measure is in some sense capturing both the notions of temporal and proportional fairness. Further,
it is interesting to note that the comparisornSdF andFCFS with respect to order fairness is dependent on
the service distribution. For instance, when the service distribution is lightly varigaBIleS can be more
fair thanSJF but when the service distribution is highly varial88@F can be more fair thaRCFS.

7.6: HYBRID FAIRNESS METRICS 243

7.6.2 RAQFM

Following the introduction of the Order Fairness measure, Avi-ltzhak and Levy in combination with Raz
present a second hybrid fairness measure that aims directly at accounting for both proportional and temporal
fairness [L85.

Definition 7.11 Consider a GI/GI/1 queue. Let the discrimination of a johD; be D, = fad?' si(t) —
1/N(t)dt wherea; andd; are the arrival and departure times of jab s;(¢) is the percent of the service
capacity given to job and N (¢) is the number of jobs in the system at titn&hen thefairness of policyP
under RAQFM is/ ar[D].

The basic philosophy behind this measure is that at all times, every job in the system is worthy of an
even share of the server capacity, i.e. at every timevery job in the system deserves a service rate of
1/N(t). Thus, the fairness of a policy is determined by looking at the variation from this service rate jobs
experiencé! In this sense, the measure is a generalization of the ide@ 8t the “most fair” policy. In
fact, PS is the only policy wherd ar[D] = 0.

It can easily be seen that RAQFM combines aspects of both proportional and temporal fairness. If we
consider a non-preemptive setting, it is easy to see that the impact switching the ordemljubg are
serviced has ofi¥ ar[D] is monotonically increasing in both (i) the difference in the arrival timesanid j
and (i) the difference in the service demandg ahd;j. Thus RAQFM represents one particular weighting
of temporal and proportional fairness, which is motivatedPl®; however the measure is not flexible in the
sense that the weighting of temporal and proportional fairness cannot be adjusted.

As one can guess from the form of Definitignll, deriving Var[D] under scheduling policies is a
difficult task. In fact, closed form analyses Wfir[D] under most scheduling policies have proven elusive.
However, it is possible to obtain numerical results for a few simple policies in the M/M/1 setting. In partic-
ular, FCFS, LCFS, ROS, andPLCFShave been compared85. These numerical comparisons indicate
that

Var[D)PLCYS > Var[DIFCFS > Var[DIROS > Var[DJFCFS > Var[D)P¥ = 0

Further, it seems thdtar[D]” — 0 asp — 0 and thatVar[D]" increases monotonically with under
all P. Unfortunately, no size based policies have been analyzed with resgéat-{®]. Though followup
work has looked at 2-class priority policies, the non-Markovian properties of exact size and remaining size
based policies make analysis more difficult.

It should be noted that Definition.11is quite easy to generalize beyond single server models. Raz,
Avi-ltzhak, and Levy have already begun work studying the fairness of multiserver and multiqueue systems
using variations of RAQFM184].

7.6.3 Discrimination Frequency

The final hybrid metric that we will discuss is Discrimination Frequency, which was introduced by Sand-
mann in L95. Unlike RAQFM, which implicitly captured the notions of proportional fairness and temporal
fairness, Discrimination Frequency is defined as an explicit combination of two measures, one for propor-
tional fairness and one for temporal fairness.

"The variation is of interest becaus#D] = 0 regardless of the work conserving policy being studied. To see this, note that
whenever the system is busy at timé _, s:(t) — 1/N(t) = 0 because _, s;(t) = 1.

244 CHAPTER 7: FAIRNESS

Definition 7.12 Letn; be the number of jobs that arrived no earlier than and completed no later than job
i. Letm; be the number of jobs with remaining size no smaller thanijaben jobi arrives that complete
no later than jobi. Then the Discrimination Frequency of jolis

. In an M/GI/1 queue, fairness is measured uskid F|.

Clearly,n; andm; provide measures of temporal and proportional fairness respectively. Thus, one can
easily adjust definition to balance the importance of proportional and temporal fairness as desired for any
particular application. This flexibility is a key benefit of Discrimination Frequency over RAQFM.

Another important property of Discrimination Frequency is that the analysiB[6fF]” is not too
difficult under many scheduling policies. In fact, the analysis techniques parallel the simple techniques used
to analyze Politeness is Secti@rb. Using these techniques it has been shown that, for example,

_ NE[X? :
E[DF]FCFS _ m + p — AE[min(X1, X5)]
_ A23E[X?] .
2 2 0 T
E[DF]SF = A EZ[X]/0 : f(p()x)dF(x) + p — AE[min(X71, X2)]

whereX; and X are i.i.d. service demand&46. Thus, E[DF]*/F < E[DF|FCFS < E[DF]LCFS for
the M/M/1 setting. Further, results for other more complicated scheduling disciplines are not too difficult to
obtain and are forthcoming.

7.7 Concluding remarks

In this chapter, we have moved beyond mean response time to considi@irtlessof scheduling policies.

This is an important task because policies that perform well for mean response time often give priority
to small jobs at the expense of large jobs, &BRPT, and thus create worries about whether large jobs
are treated fairly. Despite the ubiquitousness of such worries, the fairness of scheduling policies is largely
ignored in traditional scheduling research because of the difficulty in defining a measure of fairness.

In this chapter, we have presented, for the first time, a set of metrics for studying the fairness of schedul-
ing policies in M/GI/1 queues. We developed measures for studying the proportional and temporal fairness
of scheduling policies. We presented intuitive, philosophic, and mathematical motivation for our measures.
This work has served to jump-start a new focus on fairness in the scheduling community, which has led to a
number of other researchers introducing their own notions of fairness for use in a wide variety of application
settings (see Sectioh6).

In addition to presenting new fairness measures, we analyzed the fairness of both individual policies and
scheduling classifications, see Figuré We found that it is very difficult for scheduling policies to be fair.

In particular, there are very few common policies, techniques, or heuristics that lead to policies that are fair

7.7: CONCLUDING REMARKS 245

f R SR \ I \
! = 2.7 7 I . L)
Always L, | Remaining i Always y. .0 Heiarhitiity o U

A Y SRPT ° | size based ! LRPT - VoosRpr \ size based JLRPT N
Fair / 1 . . Unfair | . -
—mme 3 [e \ FOOLISH \, ! N 3 FOOLISHY -
o A r 4 b 4 Y L

WPLCES | SMART oaaaaaaaasas bemmommos \ R e \ ™
; \ ' f .9 !]] i . \ o
| SYMMETRIC: | 1\ 7 Preemptive \ PLTF / ' 1 i Preemptive \ PLEF [
| [PSIF®S size based Attt] \ psIF®/ oy |
N - ' b - '

\
A PS
PR

:‘PROTECTIVE\: E ®FB | Age base@‘,.—’/ AlWayS
| ; i Unpredictable
\ FSP .
et f N T S \
. | LCF oselle!] ! g Non-preemptive
Fair | Nou-preemptive) ! - LCFS non-size based
| non-size based) I
. LIF, i Som(.etlmes g L, .
\ Non-preemptive size based y Predictable 1 SlFe Non-preemptive size based 5/
(a) Proportional Fairness (b) Predictability
/E T - Remaining | - . E\
' / ° IS sizebased | e 1
1 \ SRPT NN y LRPT '
el R SMART Rommmees ‘\\ 5T
Always \FOOLISH
Polite RN PSIFg fomocoos \ ©
Sometimes™-|_ < i
ITF . [reemptive * !
’_: _____________ P_‘?!I_t_e_____ f size based “_ 4
SIFe LeEs b oo Rl
. 1
"> <se-.| Non-preemptive 1
EFC.FS T LiFe | PLCFS
-l it ‘ °
i Always
f Preemptive age based) T Impolite
I ofB "Tual |
\ PS j
L]

(c) Politeness

Figure 7.7: An illustration of the classifications of common prioritization techniques and heuristics with
respect to proportional fairness, predictability, and politeness. Note the many parallels between the propor-
tional fairness and predictability classifications, which indicates that policies have similar behaviors with
respect toF[T'(z)]/x andVar[T(x)]/x.

across all loads and service distributions with respect to either proportional or temporal fairness. Further,
these two fairness measures are conflicting: we proved that it is impossible for any policy to be both Always
Fair and Always Polite (Corollary.50. Not only do the two types of fairness conflict with each other,

they conflict with the goal of providing a small mean response time. In particular, there are no common
scheduling policies, techniques, or heuristics that are near optimal with respect to mean response time and
provide either temporal or proportional fairness.

However, we also found that, surprising§RPT can be fair under many common situations. Thus, in
some situations it is possible to minimize mean response time and still be fair. In particular, with respect to
proportional fairnessSRPT is fair when either the load is low enough or the tail of the service distribution is
heavy enough. In fact, beyol8RPT, all SMART policies provide a good balance of proportional fairness,

246 CHAPTER 7: FAIRNESS

temporal fairness, and mean response time (efficiency). By giving small jobs high priority, almost all job
sizes (and sometimedl job sizes) are treated fairly, and mean response time is near optimal.

The results in this chapter help to ease worries that giving priority to small jobs leads to large jobs
being treated unfairly. In fact, the results in this chapter have had a huge impact in this regard: since our
initial work on fairness, a number of new designs that prioritize small jobs have emerged for a wide variety
of applications. For example, in web serve®$,[187, routers, [L79 180, wireless networks]02, 136,
peer-to-peer system&{g, operating systemsf], databasesl|38 139, and security application£T.

parT IV

Broader Models: Moving Beyond the
M/GI/1

247

Until this point in the thesis, our analysis of scheduling policies has focused al-
most entirely on the M/GI/1 queue. Limiting our focus to this setting has allowed
us to consider general classifications of scheduling policies and a broad range of
performance metrics, thus gaining important insights. However, in order to further
bridge the gap between theoretical results and practical applications it is essential
to understand the impact of practical generalizations of these models. In particular,
there are many aspects of the M/GI/1 model that are unrealistic for computer sys-
tems. Though the model allows for general job sizes, assuming a Poisson arrival
process and a single server is often not realistic. In Part IV, we move beyond these
two assumptions and study (i) arrivals from interactive users and (ii) multiserver
architectures.

In real systems the arrival process of jobs is far from Poisson. One fundamental
difference is that users of computer systems are interactive. That s, a user must wait
for her previous request to complete before submitting a new request. In CBapter
we study the impact of these dependencies between arrivals and completions. We
will show that dependencies between the arrival and completion processes can limit
the benefits provided by scheduling with respect to mean response time. However,
we also illustrate that, in many practical settings, scheduling is still quite beneficial.

Next, in Chapte® we study scheduling in multiserver architectures. This is an
increasingly practical generalization to consider given the growing trend towards
server farm architectures and multi-core designs, which both employ multiple
cheaper, slower servers instead of a single fast, expensive server. In the single
server model we have discussed so far, one large job can swamp the system if the
scheduling discipline does not allow smaller jobs to bypass the larger job in the
gueue. However, in a multiserver system one large job cannot swamp the entire
system, thus the presence of multiple servers has a dramatic impact on the effec-
tiveness of scheduling. In addition, scheduling can have a dramatic impact on the
design of multiserver systems.

CHAPTER 8

The impact of interactive users

Until this point in the thesis, we have considered only systems where the arrival process is independent of
the completion process, as in Fig8d(a). Such a model is referred to as @pen system modahd is

a simplification of the behavior of real users. In practice, there are many cases where users need to wait
for a request to complete before making a second request. For instance, in the case of web servers, a user
must wait for a web page to load before clicking on the link to request a new page. Thus, a common
alternative to an open system model islased system modeihere new job arrivals are only triggered by

job completions (followed by think time), as in FiguBel(b). Again however, the closed system model is

often a simplification of the behavior of real users. For example, users do not permanently remain at a web
site. Instead, in many cases, users arrive to a system, behave as if they are in a closed system for a short
while, and then leave the system as in Fig8rc). Such a model is referred to agpartly-open system

mode| and behaves as a hybrid of the open and closed system models.

Given the feedback between the arrival and completion processes that occurs in computer systems, it is
important to understand how the benefits of scheduling that we have illustrated in the open system model
translate to the closed and partly-open system models. Intuitively, it is clear that scheduling will be less
effective in settings with feedback than it was in the open system model. This is because, for open systems,
scheduling is the only way to avoid having large queues build up while a large job is at the server in an
open system, while in systems with feedback this problem is avoided evenf@B& scheduling because
only a limited number of new arrivals can occur if there are no completions. However, we will show that
scheduling still provides performance benefits in systems with feedback between arrivals and completions
in many practical settings, just not the extreme gains we saw in open systems.

In addition to the importance of understanding the impact of the underlying system model (open, closed,
or partly-open) on the effectiveness of scheduling, understanding the differences between the models is an
important task in its own right due to the fact that a system model is at the heart of every workload generator
used by practitioners to evaluate design decisions. Tafilsurveys the system models in a variety of web
related workload generators used by systems researchers today. The table is by no means complete, but it
illustrates the wide range of workload generators and benchmarks available. There is a mixture of both open
and closed system models at the heart of these generators/benchmarks, though most assume a closed system
model. Interestingly, many generators/benchmarks for the same purpose rely on different system models.

251

252 CHAPTER 8: THE IMPACT OF INTERACTIVE USERS

Think

/ Send

Think With probability
A A y p submit again
g]
ii“é ‘“ ‘Lﬁ | ‘ ‘ ‘ oL -
m ‘ b —]]:l E— =a 2 With probability
V2

L New Arrivals Queue (1 - p) leave system
New Arrivals Quewe Server Queue Server Server

(a) Open system (b) Closed system (c) Partly-open system

Figure 8.1: lllustrations of the closed, open, and partly-open system models.

Further, for many of these workload generators, it was quite difficult to figure out which system model
was being assumed — the builders often do not seem to view this as an important factor worth mentioning
in the documentation. Thus, though every researcher is well aware of the importance of setting up one’s
experiment so that the system being modeled is “accurately represented,” researchers typically pay little
attention to whether the workload generator uses a closed, open, or partly-open system model.

In this chapter our goal is to illustrate the enormous impact of the underlying system model (open,
closed, or partly-open) in practical settings, particularly the impact of the system model on the effective-
ness of scheduling. However, the analysis of closed and partly-open system models is a difficult problem,
and outside of scheduling policies where product-form results holdR€gGS andPS) little is understood
analytically. Thus, we cannot hope to obtain results in the generality we have obtained in the open system
setting. Instead, we obtain our results primarily via real-world implementations. We consider a range of
real world case studies in this chapter, including: web servers receiving static HTTP requests, the back-end
database in e-commerce applications, an auctioning web site, and a supercomputing center. Our simulation
and implementation experiments in these case studies lead us to iggglifyprincipleshat summarize the
differences between open, closed, and partly-open system m@@é]s These principles may be catego-
rized by their area of impact.

The first set of principles (see SectioB8 and8.4.]) describe thalifference in mean response time
under open and closed system models and haxious parameters affect these difference¥ge find, for
example, that for a fixed load, the mean response time for an open system model can exceed that for a
closed system model by an order of magnitude or more. Even under a high Multi-Programming Level
(MPL), the closed system model still behaves “closed” with respect to mean response time, and there is still
a significant difference between mean response times in closed and open systems even for an MPL of 1000.
With respect to service demands (job sizes), while their variability has a huge impact on response times in
open systems, it has much less of an effect in closed models. The impact of these principles is that a system
designer needs to beware of taking results that were discovered under one system model and applying them
to a second system model. For example, if the workload generator being used creates a closed system model,
whereas the real world application is closer to an open system model, then the results obtained using the
workload generator may be far from those witnessed in practice.

The second set of principles (see Sectoh 2 deal with the contrastingnpact of schedulingn closed
and open systems. As we have seen throughout this thesis, scheduling is a common mechanism for improv-
ing mean response time without purchasing additional resources. When system designers seek to evaluate a

8.1: DEFINING CLOSED, OPEN, AND PARTLY-OPEN SYSTEMS 253

new scheduling policy, they often test its effectiveness using a workload generator and simulation test-bed.
We illustrate that one must be very careful to correctly model the application workload as closed or open,
since the impact of scheduling turns out to be very different under these two models. For example, our prin-
ciples show that favoring short jobs is highly effective in improving mean response time in open systems,
while this is far less true under a closed system model. We find that closed system models only benefit
from scheduling under a narrow range of parameters, when load is moderate and the MPL is very high. The
message for system designers is that understanding whether the workload is better modeled with an open or
closed system is essential in determining the effectiveness of scheduling.

The third set of principles (see Secti8rb) deal withpartly-open system®©ur principles specify those
parameter settings for which the partly-open model behaves more like a closed model or more like an open
model with respect to response time. We also find that, counter to intuition, parameters like think time
have almost no impact on the performance of a partly-open model. The principles describing the behavior
of partly-open system models are important because real-world applications often fit best into partly-open
models, and the performance of these models is not well understood. In particular, the effect of system
parameters and scheduling on performance in the partly open system — points which our principles address
— are not known. Our results motivate the importance of desigvémgatileworkload generators that are
able to support open, closed, and partly open system models. We create such versatile workload generators
for several common systems, including web servers and database systems, and use these throughout our
studies.

The third set of principles also provides system designers with guidelinde¥orto choose a system
modelwhen they are forced to pick a workload generator that is either purely closed or purely open, as are
almost all workload generators (see SecBd). We consider ten different workloads and use our principles
to determine for each workload which system model is most appropriate for that workload: closed, open,
or partly-open. To the best of our knowledge, no such guide exists for systems researchers. Yet given the
tremendous impact of the system model on performance, as described above, it is critical that one take care
to make this decision carefully.

The chapter is organized as follows. We begin by presenting more detailed introductions to the closed,
open, and partly-open system models in Sed@dnThen, in Sectio®.2we provide details on our method-
ology for comparing the closed, open, and partly-open models. Next, we provide details on the case studies
in Section8.3. We present some results contrasting the three system models in Se8fibat we provide
far more detailed studies of the open and closed models in Sexd@md of the partly-open model in Sec-
tion 8.5. Next, using the results in Sectio8gland8.5, we present a procedure for choosing the appropriate
system model for a given workload in Secti®®. Finally, we conclude in Sectid®.7.

8.1 Defining closed, open, and partly-open systems

Before we can begin our comparison of the open, closed, and partly-open systems, we will first provide a
more detailed description of the models.

The open model

Figure8.1(a) depicts an open system configuration. In an open system model there is a stream of arriving
users with average arrival rade Each user is assumed to submit one job to the system, wait to receive the

254 CHAPTER 8: THE IMPACT OF INTERACTIVE USERS

| Type of benchmark | Name | System model
Model-based web workload Surge R9], WaspClient L53, Geist [L06], WebStone 229, Closed
generator WebBench 231], MS Web Capacity Analysis Toolli3
SPECWeb96219, WAGON [129 Open
Playback mechanisms for HTTPMS Web Application Stress Toolf}4], Webjamma 1],
request streams HammerheadZ14], Deluge R13, Siege B(Q] Closed
httperf [151], Sclient 2] Open
Proxy server benchmarks Wisconsin Proxy Benchmarkl]], Web Polygraph 194, Closed
Inktomi Climate Lab 84]
Database benchmark for e-TPC-W 22§ Closed
commerce workloads
Auction web site benchmark | RUBIS[13] Closed
Online bulletin board bench- RUBBoS[L3] Closed
mark
Database benchmark for onlineTPC-C 27] Closed
transaction processing (OLTP)
Model-based packet level web | IPB (Internet Protocol Benchmark}32, GenSyn L01] Closed
traffic generators WebTraf [73], trafgen B3]
NS traffic generatorZ54 Open
Mail server benchmark SPECmail200141§ Open
Java Client/Server benchmark | SPECJ2EEZ17] Open
Web authentication and autho-AuthMark [146] Closed
rization
Network file servers NetBench R3Q Closed
SFS97_R1 (3.0)J14 Open
Streaming media service MediSyn P24 Open

Table 8.1: A summary table of the system models underlying standard web related workload generators.

response, and then leave. The number of users queued or running at the system at any time is unbounded.
The differentiating feature of an open system is thegaguest completion does not trigger a new request:

a new request is only triggered by a new user arrivAk before,response timeT’, is defined as the time

from when a request is submitted until it is completed. $@ever loads defined as the fraction of time that

the server is busy. Here loag, is the product of the mean arrival rate of requestand the mean service
demandE[X]. Note that the throughput in an open model is always equal to the arrival rate.

The closed model

Figure 8.1(b) depicts a closed system configuration. In a closed system model, it is assumed that there
is some fixed number of users, who use the system forever. This number of users is typically called the
multiprogramming levelMPL) and denoted byv. Each of theséV users repeats these 2 steps, indefinitely:

(a) submit a job, (b) receive the response and then “think” for some amount of time. In a closed system,
new request is only triggered by the completion of a previous reqééstll times there are some number

of users,N;pink, Who are thinking, and some number of us®ig.:.,, who are either running or queued to

run in the system, whem®,i,r. + Nsystem = IN. Theresponse timel’, in a closed system is defined to be

8.2: COMPARISON METHODOLOGY 255

the time from when a request is submitted until it is received. In the case where the system is a single server
(e.g. a web server), treerver load denoted byp, is defined as the fraction of time that the server is busy,
and is the product of the mean throughput and the mean service demand (processing requifexfjent)

The partly-open model

Neither the open system model nor the closed system model is entirely realistic for computer systems.
Consider for example a web site. On the one hand, a user is apt to make more than one request to a web site,
and the user will typically wait for the output of the first request before making the next. In these ways a
closed system model makes sense. On the other hand, the number of users at the site varies over time; there
is no sense of a fixed number of uséfs The point is that users visit to the web site, behave as if they are
in a closed system for a short while, and then leave the system.

Motivated by the example of a web site, we also study a more realistic alternative to the open and closed
system configurations: the partly-open system shown in Figui(e). Under the partly-open model, users
arrive according to some outside arrival process as in an open system. However, every time a user completes
a request at the system, with probabilityhe user stays and makes a followup request (possibly after some
think time), and with probabilitl — p the user simply leaves the system. Thus the expected number of
requests that a user makes to the system in a visit is Geometrically distributed withl fiféan p). We
refer to the collection of requests a user makes during a visit to the systeseasiarand we define the
length of a session to be the number of requests in the session/visit.sder loadis the fraction of
time that the server is busy equalling the product of the average outside arrival theemean number of
requests per visit, and the mean service demand. For a given loadpwsemall, the partly-open model is
more similar to an open model. For largethe partly-open model resembles a closed model.

8.2 Comparison methodology

Given the many differences between the closed, open, partly-open systems, it is important when comparing
the systems that we configure each model in a way that provides a “fair” comparison. In this section, we
discuss the relevant parameters and metrics for the three system models and discuss how we set parameters
in order to compare the system models fairly.

Throughout this chapter we choose the service demand distribution to be the same for the open , closed,
and partly-open systems. In the case studies the service demand distribution is either taken from a trace or
determined by the workload generator used in the experiments. In the model-based simulation experiments
later in the chapter, we use hyperexponential service demands, in order to capture the highly variable service
distributions in web applications. Throughout, we measure the variability in the service demand distribution
using the squared coefficient of variati@®. The think time in the closed system and partly-open systems,

7, follows an exponential distribution, and the arrival process in the open and partly-open systems is either
a Poisson arrival process with average rat@r provided by trace$. The results for all simulations and
experiments are presented in terms of mean response times and the systenWb#d we do not explicitly

report numbers for another important metric, mean throughput, the interested reader can directly infer those

'Note that we choose a Poisson arrival process (i.e. exponential inter-arrival times) and exponential think times in order to allow
the open, closed, and partly-open system configurations to be as parallel as possible. This setting underestimates the differences
between the systems when more bursty arrival processes are used.

256 CHAPTER 8: THE IMPACT OF INTERACTIVE USERS

numbers by interpreting load as a simple scaling of throughput in all three system models.

In order to fairly compare the open, closed, and partly-open systems, we will hold the systemidoad
the three systems equal, and study the effect of the system model on mean response time. The load in the
open system is specified By sincep = AE[X]. The load in the partly-open system is specified\®ndp.
Thus, for a fixedp, we adjust the load by adjusting Note that the think time in a partly-open system does
not affect the load. Fixing the load of a closed system is more complex, since the load is affected by many
parameters including the MPL, the think time, the service demand variability, and the scheduling policy. The
fact that system load is influenced by many more system parameters in a closed system than in an open or
partly-open system is an interesting difference between the systems. Throughout, we will achieve a desired
system load in a closed system by adjusting the think time (see R3gi(l®) since this parallels the notion
of varying the interarrival time that is used in the open and partly-open models.

8.3 Real-world case studies

We can now begin to compare the closed, open, and partly-open models. In this section, we compare the
three system models in the context of four different real-world applications. The applications include (a)
a web server delivering static content in a LAN environment, (b) the database back-end at an e-commerce
web site, (c) the application server at an auctioning web site, (d) scheduling at a supercomputing center, and
(e) a web server delivering static content in a WAN environment. These applications vary in many respects,
including the bottleneck resource, the workload properties (e.g. job size variability), network effects, and the
types of scheduling policies considered. We study applications (a), (b), and (e) through full implementation
in a real test-bed, while our study of applications (c) and (d) relies on trace-based simulation.

An integral part of these case studies is the development of a set of workload generators, simulators, and
trace analysis tools that facilitate experimentation with all three system models: open, closed, and partly-
open. For implementation-based case studies we extend the existing workload generator for each system
(which is based on only one system model) to enable all three system models. For the case studies based
on trace-driven simulation, we implement a versatile simulator that models open, closed, and partly-open
systems and takes traces as input. We also develop tools for analyzing web traces (in Common Lodfile
Format or Squid log format) to extract the data needed to parameterize workload generators and simulators.

SectionsB.3.1- 8.3.5provide the details of the case studies. The main results are shown in RigRires
and8.4. For each case study we first explain the tools developed for experimenting in open, closed, and
partly-open models. We then then describe the relevant scheduling policies and their implementation, and
finally we discuss the result$he discussions at the end of the case studies are meant only to highlight the
key points; we will discuss the differences between open, closed, and partly-open systems and the impact of
these differences in much more detail in Secti®dsand8.5.

8.3.1 Static web content

Our first case study is an Apache web server running on Linux and serving static content, i.e. requests of
the form “Get me a file,” in a LAN environment. Our experimental setup involves six machines connected

by a 10/100 Ethernet switch. Each machine has an Intel Pentium 11l 700 MHz processor and 256 MB RAM,
and runs Linux. One of the machines is designated as the server and runs Apache. The others generate web

8.3: REAL-WORLD CASE STUDIES 257

Closed System Open System Partly-open System
300 300 300
3 8 g 3 SR
3 250! SRPT 3 250 SRPT 8 250 SRPT
= E E
2 200/ 2200 2200
3 150} 8 150 3 150
o o o
Q. o o
g 100f g 100 g 100
c c =
3 sor & 50 & 50
= b= =
_______M ________ SN moo oo
0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 5 10 15 20
Load Load Mean number of visits
(a) Static web — LAN
A1c PELJF A10 PELJF A1o PELJF
3 ---- PS S ---- PS 3 ---- PS
% 8f — PESJF £ 8 — PESJF 2 8 — PESJF
() [()
E E £
= = gl
[6 [6 : 6
(72} o0 n
= c c
o o o
2 4 S 4t S 4
[[()
o oc oc
c c c
0 se= - 0 0 -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 5 0 1 20
Load Load Mean number of visits
(b) E-commerce site
20 20 ; 20
. FCFS || _ FCFS : . FCFS
g ---- PS g |- Ps : 3 ---- PS
215 — PSUF || 2, | — PSJF 2l — PSJF
£ £ £ \
[- ['
[0 [[v
210 2101 2100 N -
(=} o o .
Q. o Q .
D D @ A
[[[} e
[o o S
= 5 = 5 < 5 R
< < S | Temmmmeel
() (5 L ..
= = = [
Ol 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 5 10 15 20
Load Load Mean number of visits
(c) Auctioning site
10° 10° 10°
LJF LJF LJF
= ---- FCF§ © - FCF§ . = - FCFS
E ot — SJF | E gsl— suF E — SJF
[[[
E = £
@ © P
210% 210 210 y
oS oS S b TTERweLL
o Q. | O PR
(7] w K7 T
2] 1] 1]
< g < 10° k
[(5] (5]
= = =
2| 2 2
1052 0.4 0.6 0.8 1 1053 0.4 0.6 0.8 1 10, 5 10 15 20
Load Load Mean number of visits

(d) Supercomputing

Figure 8.2: Implementation and simulation results for real-world case studies. Each row shows the results
for a real-world workload and each column shows the results for one of the system models. In all experiments
with the closed system model the MPL is 50. The partly-open system is run at fixéd9load

258 CHAPTER 8: THE IMPACT OF INTERACTIVE USERS

requests based on a web trace.

Workload generation

In this case study we generate static web workloads based on a trace. Below we first describe our workload
generator which generates web requests following an open, closed, or partly-open model. We then describe
the tool for analyzing web traces that produces input files needed by the workload generator. Finally we
briefly describe the actual trace that we are using in our work.

Our workload generator is built on top of the Scli@#[workload generator. The Sclient workload
generator uses a simple open system model, whereby a new requestifas filede exactly every msec.

Sclient is designed as a single process that manages all connections usietptite system call. After
each call tselect , Sclient checks whether the curraninsec interval has passed and if so initiates a new
request. We generalize Sclient in several ways.

For the open system, we change Sclient to make requests based on arrival times and filenames specified
in an input file. The entries in the input file are of the formt;, f; >, wheret; is a time andf; is a file
name.

For the closed system, the input file only specifies the names of the files to be requested. To implement
closed system arrivals in Sclient, we have Sclient maintain a list with the times when the next requests are
to be made. Entries to the list are generated during runtime as follows: Whenever a request completes, an
exponentially distributed think tim& is added to the current timg,,. and the resulf + ¢, is inserted
into the list of arrival times.

In the case of the partly-open system, each entry in the input file now defsessmnrather than an
individual request. An entry in the input file takes the fotnt;, f;, , ..., fi, > wheret; specifies the arrival
time of the session and f;,,..., fi, > is the list of files to be requested during the session. As before,

a list with arrival times is maintained according to which requests are made. The list is initialized with the
session arrival timeg from the input file. To generate the arrivals within a session, we use the same method
as described for the closed system above: after regfilestcompletes we arrange the arrival of requgst

by adding an entry containing the arrival tide+ ¢, to the list, where,,,,. is the current time and is

an exponentially distributed think time.

All the input files for the workload generator are created based on a web trace. We modify the Webalizer
tool [44] to parse a web trace and then extract the information needed to create the input files for the open,
closed, and partly-open system experiments. In the case of the open system, we simply output the arrival
times together with the names of the requested files. In the case of the closed system, we only extract the
sequence of file names. Creating the input file for the partly-open system is slightly more involved since it
requires identifying the sessions in a trace. A common approach for identifying sessions (and the one taken
by Webalizer) is to group all successive requests by the same client (i.e. same IP address) into one session,
unless the time between two requests exceeds some timeout threshold in which case a new session is started.
In our experiments, we use the timeout parameter to specify the desired average session length.

The trace we use consists of one day from the 1998 World Soccer Cup, obtained from the Internet Traffic
Archive [103. The details of the trace are summarized in Teh2 Note that virtually all requests in this
trace arestatic

8.3: REAL-WORLD CASE STUDIES 259

Number of Req.| Mean job size| Job size variability ¢'?) | Min job size | Max job size
4.5-10° 5KB 96 41 bytes 2MB

Table 8.2: Summary statistics for the trace used in the static web case study.

Socket 1 Ist Priority Queue
TCP __, IP

—>
proc. proc. M %’\jﬂlemet Card
Socket 2 N etwork

m _ » TCP _, IP 2nd Priority Queu/ ™ Wire
proc. proc.
feed
Socket 3 / second.
0 g

proc. proc.

Figure 8.3: Flow of data in Linux withSRPT-like scheduling (only 2 priority levels shown).

Scheduling

Standard scheduling of static requests in a web server is best modeled by processorBBaridgwever,
recent research suggests favoring requests for small files can improve mean response times at web servers
[9€]. In this section we therefore consider b&8 andSRPT policies.

We have modified the Linux kernel and the Apache Web server to impleB8RRT scheduling at the
server. For static HTTP requests, the network (access link out of the server) is typically the bottleneck
resource. Thus, our solution schedules the bandwidth on this access link by controlling the order in which
the server’s socket buffers are drained. Traditionally, the socket buffers are drained in Round-Robin fashion
(similar to PS); we instead give priority to sockets corresponding to connections where the remaining data
to be transferred is small. Figu83 shows the flow of data in Linux after our modifications.

There are multiple priority queues and queumay only drain if queue$ to i — 1 are empty. The
implementation is enabled by building the Linux kernel with support for the user/kernel Netlink Socket,
QOS and Fair Queuing, and the Prio Pseudoscheduler and by usitg [thg user space tool. We also
modify Apache to ussetsockopt calls to update the priority of the socket as the remaining size of the
transfer decreases. For more details on our implementatio®6e20f.

Synopsis of results

Figure 8.2(a) shows results from the the static web implementation under closed, open, and partly open
workloads in a LAN environment. Upon first glance, it is immediately clear that the closed system response
times are vastly different from the open response times. In fact, the response times in the two systems are
orders of magnitude different undBS given a common system load. Furtherm@&PT provides little
improvement in the closed system, while providing dramatic improvement in the open system.

The third column of Figuré.2(a) shows the results for the partly-open system. Notice that when the
mean number of requests is small, the partly-open system behaves very much like the open system. However,
as the mean number of requests grows, the partly-open system behaves more like a closed system. Thus, the
impact of scheduling (e.RPT overPS) is highly dependent on the number of requests in the partly-open

260 CHAPTER 8: THE IMPACT OF INTERACTIVE USERS

system.

8.3.2 E-commerce site

Our second case study considers the database back-end server of an e-commerce site, e.g. an online book-
store. We use a PostgreSQI[/] database server running on a 2.4-GHz Pentium 4 with 3GB RAM, running

Linux 2.4, with a buffer pool of 2GB. The machine is equipped with two 120GB IDE drives, one used for

the database log and the other for the data. The workload is generated by four client machines having similar
specifications to the database server connected via a network switch.

Workload generation

The workload for the e-commerce case study is based on the TPZ2&\wenchmark, which aims to model

an online bookstore such as Amazon.com. We build on the TPC-W kit provided by the Pharm gi€lject [

The kit models a closed system (in accordance with TPC-W guidelines) by creating one process for each
client in the closed system. Each process submits a request to the database, waits for the response, sleeps
for an exponentially distributed think time, and then makes the next request.

We extend the kit to also support an open system with Poisson arrivals, and a partly-open system. We
do so by creating a master process that signals a client whenever it is time to make a new request in the
open system or to start a new session in the partly-open system. The master process repeats the following
steps in a loop: it sleeps for an exponential interarrival time, signals a client, and draws the next inter-arrival
time. The clients block waiting for a signal from the master process. In the case of the open system, after
receiving the signal, the clients make one request before they go back to blocking for the next signal. In
the case of the partly-open system, after receiving a signal, the clients generate a session by executing the
following steps in a loop: (1) make one request; (2) flip a coin to decide whether to begin blocking for a
signal from the master process or to generate an exponential think time and sleep for that time.

TPC-W consists of 16 different transaction types including the “ShoppingCart” transaction, the “Pay-
ment” transaction, and others. Statistics of our configuration are as shown in8Table

Database size Mean job size| Job size variability ¢?) | Min job size | Max job size
3GB 101 ms 4 2ms 5s

Table 8.3: Summary statistics for the trace used in the e-commerce case study.

Scheduling

The bottleneck resource in our setup is the CPU, as observelB& [The default scheduling policy is
therefore best described BS, in accordance with Linux CPU scheduling. Note that in this application,
exact service demands are not knownS&PT cannot be implemented. Thus, we experiment WiHSJF

and PELJF policies where the expected service demand of a transaction is based on its type. The “Best-
seller” transaction, which makes up 10% of all requests, has on average the largest service demand. Thus,
we study 2-priorityPESJF and PELJF policies where the “Bestseller” transactions are “expected to be
long” and all other transactions are “expected to be short.”

8.3: REAL-WORLD CASE STUDIES 261

To implement the priorities needed for achieviigSJF andPELJF, we modify our PostgreSQL server
as follows. Simple CPU prioritization of a process using Linux “Nicing” will just increase the time quantum
of the prioritized process, but will not give absolute priority to it. We therefore base our implementation on
the real-time scheduler that Linux provides. We usesttteed_setscheduler() system call to set the
scheduling class of a PostgreSQL process working on a high priority transaction to “SCHED_RR,” which
marks a process as a Linux real-time process. We leave the scheduling class of a low priority process at the
standard “SCHED_OTHER.” Real-time processing in Linux always has absolute, preemptive priority over
standard processes. For more details on the implementatior],3&e04

Synopsis of results

Figure8.2(b) shows results from the e-commerce implementation described above. Again, the difference in
response times between the open and closed systems is immediately apparent — the response times of the
two systems differ by orders of magnitude. Interestingly, because the variability of the service demands is
much smaller in this workload than in the static web workload, the impact of scheduling in the open system

is much smaller. This also can be observed in the plot for the partly open system: even when the number of
requests is small, there is little difference between the response times of the different scheduling policies.

8.3.3 Auctioning web site

Our third case study investigates an auctioning web site. This case study uses simulation based on a trace
from one of the top-ten U.S. online auction sites.

Workload generation

For simulation-based case studies we implement a simulator that supports open, closed, and partly-open ar-
rival processes which are either created based on a trace or are generated from probability distributions. For
a trace-based arrival process the simulator expects the same input files as the workload generator described
in Section8.3.1 If no trace for the arrival process is available the simulator alternatively offers (1) open
system arrivals following a Poisson process; (2) closed system arrivals with exponential think times; (3)
partly-open arrivals with session arrivals following a Poisson process and think times within the sessions be-
ing exponentially distributed. The service demands can either be specified through a trace or one of several
probability distributions, including hyper-exponential distributions and more general distributions.

For our case study involving an auctioning web site we use the simulator and a trace containing the
service demands obtained from one of the top ten online auctioning sites in the US. No data on the request
arrival process is available. The characteristics of the service demands recorded in the trace are summarized
in Table8.4.

Number of jobs| Mean job size| Job size variability C?) | Min job size | Max job size
300000 0.09s 9.19 0.01s 50s

Table 8.4: Summary statistics for the trace used in the auctioning case study.

262 CHAPTER 8: THE IMPACT OF INTERACTIVE USERS

Scheduling

The policy used in a web site serving dynamic content, such as an auctioning web site, is best modeled by
PS. To study the effect of scheduling in this environment we additionally simiH&ES andPSJF.

Synopsis of results

Figure 8.2(c) shows results from the auctioning trace-based case study described above. The plots here
illustrate the same properties that we observed in the case of the static web implementation. In fact, the
difference between the open and closed response times is extreme, especialliFQR8erAs a result,

there is more than a factor of ten improvemen®P&JF over FCFS (for p > 0.7), whereas there is little
difference in the closed system.

This effect can also be observed in the partly-open system, where for a small number of requests per
session the response times are comparable to those in the open system and for a large number of requests
per session the response times are comparable to those in the closed system. The actual convergence rate
depends on the variability of the service demar@)(In particular, the e-commerce case study (I6%)
converges quickly, while the static web and auctioning case studies (ligfheonverge more slowly.

8.3.4 Supercomputing center

In this section we model the Cray J90 and Cray C90 machines at the Pittsburgh Supercomputing Center
(PSC)R]. These servers have between 4 and 16 processors and typically execute exactly one job at a time.
The jobs are run-to-completion, i.e. no preemption or timesharing.

Workload generation

To simulate the workload for the supercomputing case study we use our simulator described in&S@&ion

and two traces that we obtained from the PSC. The traces were collected from January through December
1997 and contain the service demands for a total of more than 50,000 jobs. The statistics of the traces are
summarized in Tabl8.5. Note the high variability in the workloads.

System| Number of jobs| Mean job size| Job size variability (%) | Min job size | Max job size
C90 54962 4562.6s 43.16 1s 2.22e6s
Joo 3582 9448.6s 10.02 4s 0.61e6s

Table 8.5: Summary statistics for the trace used in the supercomputing case study.

Scheduling

The Cray J90 and Cray C90 machines can only be scheduled in a non-preemptive fashion. In addition to
FCFS, which is the standard non-preemptive policy, we consider two size-based policies that are of interest
in this setting. The Non-preemptive-Shortest-Job-FigslH) policy gives preference to the job with the
smallest service demand, while the Non-preemptive-Longest-Job-First policy (LJF) favors the longest one.

8.3: REAL-WORLD CASE STUDIES 263

c)
B
a
o
o
-
a
o
o

---PS = ---PS
& —SRPT 5] —SRP
E E
g g
= 1000} £ 1000}
(] (5]
(72} (2]
o 1 [
o 1 o
& f g
&, 5001 ____,/ 1 & 5001
c = o mmm ===
[5+ [5+
[«5) [<5)
= =
8.4 0.6 0.8 1 8.4 0.6 0.8 1
Load Load

(a) Static web — Good WAN conditions

5 1500(--- PS < 1500f--- PS
3 —SRPT o —SRP
£ £
g g
= 1000} £ 1000}
[- 5]
2] —zo 177}
o j
o o
7 &
S:-’ 500¢ & 500°F
c =
@ ©
[<5) [}
= =
82 0.6 0.8 1 82 0.6 0.8 1
Load Load

(b) Static web — Poor WAN conditions

Figure 8.4: Effect of WAN conditions in the static web case study. The top row shows results for good WAN
conditions (average RTT=50ms, loss rate=1%) and the bottom row shows results for poor WAN conditions
(average RTT=100ms, loss rate=4%). In both cases the closed system has an MPL of 200. Note that, due
to network effects, the closed system cannot achieve a load of 1, even when think time is zero. Under the
settings we consider here, the max achievable load (s98.

Synopsis of results

Figure8.2(d) shows results from the super-computing trace-based case study for the PSC C90 workload. The
same trends we have observed in the first three case studies are again prominent here. The closed system
response times are orders of magnitude lower for the closed system than the open system. Furthermore,
scheduling is far less effective for the closed systems than the open ones. Looking more closely at the
closed systems, we see that scheduling is only significant in certain regions of moderate load, even under
this highly variable workload. By contrast, for open systems the high variability of the workload results in
orders of magnitude disparity between the scheduling policies.

In the partly open system, across all applications, when the mean number of requests per session is
small, the system behaves very much like the open system; as the mean number of requests per session
grows, the partly-open system behaves more like a closed system. The actual convergence rate depends on
the variability of the service demand§?). In particular, the e-commerce case study (I6%) converges
quickly, while the supercomputing case study (higH) converges slowly.

264 CHAPTER 8: THE IMPACT OF INTERACTIVE USERS

8.3.5 Study of WAN effects

To study the effect of network conditions, we return to the case of static web requests (8egtprbut
this time we include the emulation of network losses and delays in the experiments.

Workload generation

The setup and workload generation is identical to the case study of static web requests &8cljpn
except that we add functionality for emulating WAN effects as follows. We implement a separate module
for the Linux kernel that can drop or delay incoming and outgoing TCP packets (similarly to Dummynet
[19Q for FreeBSD). More precisely, we change fpercv() and theip_output() functions in the

Linux TCP-IP stack to intercept in- and out-going packets to create losses and delays. In order to delay
packets, we use tredd_timer() facility to schedule the transmission of delayed packets. We recompile
the kernel withHZ=1000 to get a finer-grained millisecond timer resolution. In order to drop packets, we
use an independent, uniform random loss model which can be configured to a specified probability, as in
Dummynet.

Synopsis of results

Figures8.4 compares the response times of the closed and the open systems under (a) relatively good WAN
conditions (50ms RTT and 1% loss rate) and under (b) poor WAN conditions (100ms RTT and 4% loss rate).
We find that under WAN conditions the differences between the open and closed systems are smaller
(proportionally) than in a LAN (Figure.2 (a)), however, they are still significant for high server loads
(load> 0.8). The reason that the differences are smaller in WAN conditions is that response times include
network overheads (network delays and losses) in addition to delays at the server. These overheads affect
the response times in the open and closed system in the same way, causing the proportional differences
between open and closed systems to shrink. For similar reasons, scheduling has less of an effect when WAN
effects are strong, even in the case of an open syss&R.T improves significantly ovePS only for high
loads, and even then the improvement is smaller than in a LAN. The reason is that scheduling changes only
the time spent at the server, not network delays and losses. Therefore, it is effective when server delays
dominate response time, which does not happen under low loads when WAN effects are strong.

8.4 Open versus closed systems

The case studies in the previous section have illustrated the dramatic impact of the system model in practice;
however, more experimentation is needed in order to understand the reasons for these differences. In this
section, we will develop principles that help explain both the differences between the open and closed
system and the impact of these differences with respect to scheduling. In addition to the case studies that we
have already discussed, we will use model-based simulations in order to provide more control over system
parameters, such as job size variability, that are fixed in the case studies. We start with the simple case of
FCFS scheduling and then move to more complicated scheduling policies.

8.4: OPEN VERSUS CLOSED SYSTEMS 265

10* 2000
“““ MPL 10 o MPL10
---. MPL 100 --- MPL 100
-- MPL 1000 g --+ MPL 1000
—— open . » 15007 — open

-
o
©

10001

-
o
N

a

o

o
T

Mean response time (sec)
Mean response time

0 10 20 30 40 50

0.4 0.
Load Job Size Variability (C?)
(a) Resp. time vs. load (b) Resp. time vsC?
s| — Open ‘ ‘ 10°
4 — O
?gw . mst]880 e MPL 1 000
g MPL 10 E ---- MPL 100
£ g
= —
3 - 8
& - &
g g
2 =
1053 0z 0% 08 1 992 o4 os o8 i
Load Load
(c) Auctioning site (d) Supercomputing

Figure 8.5: Model and trace-based simulation results showing mean response time as a function of load
and service demand variability undBCFS scheduling. (a) and (b) use model based simulation, while (c)

and (d) uses trace-based simulation. In all cases, the solid line represents an open system and the dashed
lines represent closed systems with different MPLs. The load is adjusted via the think time in the closed
system, and via the arrival rate in the open system. In the model-based simul#&tjdfis= 10. In (a) we

fix C? = 8 and in (b) we fixp = 0.9.

8.4.1 FCFS

Our study of the simple case BCFS scheduling will illustrate three principles that we will exploit when
studying more complex policies.

Principle (i): For a given load, mean response times are significantly lower in closed systems than in open
systems.

Principle (i) is maybe the most noticeable performance issue differentiating open and closed systems
in our case studies (Figu&2). We bring further attention to this principle in Figugeb due to its impor-
tance for the vast literature on capacity planning, which typically relies on closed models, and hence may
underestimate the resources needed when an open model is more appropriate.

For fixed high loads, the response time under the closed systemhess of magnitudéower than those
for the open system. While SchattE9B, 199 has proven that, undétCFS, the open system will always
serve as an upper bound for the response time of the closed system, the magnitude of the difference in

266 CHAPTER 8: THE IMPACT OF INTERACTIVE USERS

- MPL 1000
\ -, -+ MPL 100
osl ! .. | —_MPL10
)
0.6] e 1 _o6f

Load
Load

0.41

“““ MPL 1000

0.2r --- MPL 100
— MPL 10
% 0.5 1 15 2 % 10 20 30 20 50
Think time v 10* Job size variability (C?)
(a) Think time vs. load (b) Variability vs. load

Figure 8.6: Model-based simulation results illustrating how the service demand variability, the MPL, and
the think time can affect the system load in a closed system. These plét€lSescheduling, however
results are parallel under other scheduling policies.

practical settings has not previously been studied. Intuitively, this difference in mean response time between
open and closed systems is a consequence of the fixed MPIn, closed systems, which limits the queue
length seen in closed systemsXoeven under very high load. By contrast, no such limit exists for an open
system.

Principle (ii): As the MPL grows, closed systems become open, but convergence is slow for practical pur-
poses.

Principle (i) is illustrated by Figurd.5. We see that as the MPLY, increases from 10 to 100 to
1000, the curves for the closed system approach the curves for the open system. $8B8at&@9 proves
formally that asN grows to infinity, a closed~CFS queue converges to an open M/GHFTFS queue.

What is interesting however, is how slowly this convergence takes place. When the service demand has
high variability (C?), a closed system with an MPL of 1000 still has much lower response times then the
corresponding open system. Even when the job service demands are lightly variable, an MPL of 500 is
required for the closed system to achieve response times comparable to the corresponding open system.
Further, the differences are more dramatic in the case-study results than in the model-based simulations.

We can explain the convergence of a closed system to an open dvigats very large. In the open
M/GI/1 system, the arrival process is Poisson and thus has exponential interarrival times each having a
constant rate, which is independent of the completions at the server. In the closed system, the interarrival
times are governed by the exponential think times; however, the rate changes with each job completion.
When N is small, the rate can change drastically. Whéris large though, there will likely be many jobs
“thinking” at any given point in the closed system. So a completion, which increm¥épis;..», by one,
has very little effect on the arrival rate. A goes to infinity, the effect of a completion on the arrival rate
disappears completely and the closed arrival process matches the open arrival process.

This principle impacts the choice of whether an open or closed system model is appropriate. One might
think that an open system is a reasonable approximation for a closed system with a high MPL; however,
though this can be true in some cases, the closed and open system models may still behave significantly
differently if the service demands are highly variable.

8.4: OPEN VERSUS CLOSED SYSTEMS 267

Principle (iii): While variability has a large effect in open systems, the effect is much smaller in closed
systems.

This principle is difficult to see in the case-study figures (Figli2® since each trace has a fixed vari-
ability. However, it can be observed by comparing the magnitude of disparity between the e-commerce site
results (low variability) and the others (high variability). This principle is most significant for the supercom-
puting workload, wher€? can be very high.

Using simulations, we can study this effect directly. Fig8rgb) compares open and closed systems
under afixed loadp = 0.9, as a function of the service demand variability. For an open system, we
see thatC? directly affects mean response time. This is to be expected sinc&RigimderFCFS service,
results in short jobs being stuck behind long jobs, increasing mean response time. In contrast, for the closed
system with MPL 1002 has comparatively little effect on mean response time. This is counterintuitive,
but can be explained by observing that for lower MPL therdeanershort jobs stuck behind long jobs in a
closed system, since the number of jobs in the syst&yf..,) is bounded. As MPL is increase@? can
have more of an effect, sind€,, ., can be higher.

It is important to point out that by holding the load constant in Figlibb), we are actually performing
a conservative comparison of open and closed systems. If we didn’t hold the load fixed as we ¢¥anged
increasingC? would result in a slight drop in the load of the closed system as shown in FBgi(t®). This
slight drop in load, would cause a drop in response times for closed systems, whereas there is no such effect
in open systems.

8.4.2 The impact of scheduling

The value of scheduling in open systems is understood and cannot be overstated. In open systems, there
are order of magnitude differences between the performance of scheduling policies because scheduling can
prevent small jobs from queueing behind large jobs. In contrast, scheduling in closed systems is not well
understood.

Principle (iv): While open systems benefit significantly from scheduling with respect to response time, closed
systems improve much less.

Principle (v): Scheduling only significantly improves response time in closed systems under very specific
parameter settings: moderate load (think times) and high MPL.

Figure8.2illustrates the fundamentally different behavior of mean response time in the open and closed
systems in realistic settings. In Figuser, we further study this difference as a function of (a) load and (b)
variability using simulations. Under the open system, as load increases, the disparity between the response
times of the scheduling policies grows, eventually differing by orders of magnitude. In contrast, at both high
and low loads in the closed system, the scheduling policies all perform similarly; only at moderate loads is
there a significant difference between the policies — and even here the differences are only a factor of 2.5.
Another interesting point is that, whereas FZFS the mean response time of an open system bounded that
in the corresponding closed system from above, this does not hold for other policies EESHS where
the open system can result in lower response times than the closed system.

We can build intuition for the limited effects of scheduling in closed systems by first considering a
closed feedback loop with no think time. In such a system, surprisingly, the scheduling done at the queue

268 CHAPTER 8: THE IMPACT OF INTERACTIVE USERS

Closed System Open System

1000 1000

PELJF PELJF
---- FCFS --- FCFS

goof -~ PS 8oor - PS
— PESJF — PESJF

6001 6001

400f i 400F

Mean response time (sec)
Mean response time (sec)

2001 2001

0 =sooo et 0

0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 1
Load Load
(a) Response time vs. load
1500 ; ; ; 1500 ; — —
“““ PELJF B . PELJF
---. FCFS B L --- FCFS
< --- PS S] . --- PS
8 — PESJF 8 — PESJF
2 1000 2 1000¢ 1
(] [
2 2
o o
g g
2 so00f 2 500+
[5+] [+
[0} T OINAP RS E L D
= pmsmEEEEEEEEES =
e st . 'l-w --- b
0 10 20 30 40 50 0 10 20 30 40 50
Job Size Variabilitv (G?) Job Size Variability (G?)

(b) Response time vs. variability

Figure 8.7: Model-based simulation results illustrating the different effects of scheduling in closed and
open systems. In the closed system the MPL is 100, and in both systems the service demand distribution has
mean 10. For the two figures in (8)* was fixed at 8 and in the two figures in (b) the load was fixed at 0.9.

is inconsequential — all work conserving scheduling policies perform equivalently. To see why, note that in
a closed system Little’s Law states tistis the product of the mean throughput afifi’], whereN is the
constant MPL across policies. We will now explain why the mean throughput is constant across all work
conserving scheduling policies (when think time is 0), and hence it will follow #idt) is also constant

across scheduling policies. The mean throughput is the long-run average rate of completions. Since a new
jobis only created when a job completes, over a long period of time, all work conserving scheduling policies
will complete the same set of jobs plus or minus the initial SetAs time goes to infinity, the initial set

N becomes unimportant; hence the mean throughput is constant. This argument does not hold for open
systems because for open systems Little’s Law statedtfidt = AE[T], andE[N] is not constant across
scheduling policies.

Under closed systems with think time, we now allow a varying number of jobs in the queue, and thus
there is some difference between scheduling policies. However, as think time grows, load becomes small
and so scheduling has less effect.

Throughout Figure.7, the MPL is held constant at 100. Recall from Principle (ii) in Sec8ahlthat
the effect of MPL is to transition between open and closed systems. Thus, under smaller MPL, the effects
of scheduling are even less noticeable in the closed system; however, for larger MPL scheduling can have a
larger effect.

8.5: PARTLY-OPEN SYSTEMS 269

A very subtle effect, not yet mentioned, is that in a closed system the scheduling policy actually affects
the throughput, and hence the load. “Good” policies, F€SJIF, increase throughput, and hence load,
slightly (less than 10%). Had we captured this effect (rather than holding the load fixed), the scheduling
policies in the closed system would have appeared even closer, resulting in even starker differences between
the closed and open systems.

The impact of Principles (iv) and (v) is clear. For closed systems, scheduling provides small improve-
ment across all loads, but can only result in substantial improvement when load (think time) is moderate. In
contrast, scheduling always provides substantial improvements for open systems.

Principle (vi): Scheduling can limit the effect of variability in both open and closed systems.

For both the open and closed systems, better schedii8gpOd PESJF) helps combat the effect of
increasing variability, as seen in FiguB&’. The improvement; however, is less dramatic for closed systems
due to Principle (iii) in Sectio.4.1, which tells us that variability has less of an effect on closed systems
in general.

8.5 Partly-open systems

So far we have limited our comparisons primarily to the open and closed system models. We now begin our
discussion of the partly-open model. The partly-open model is of particular interest because it (a) serves as
a more realistic system model for many applications; and (b) helps illustrate when a “purely” open or closed
system is a good approximation of user behavior.

We focus on the effects of the mean number of requests per session and the think time because the other
parameters, e.g. load and job size variability, have similar effects to those observed in Skdtibard
8.4.2 Throughout the section, we fix the load of the partly-open system by adjusting the arrival.rate,
Note that, in contrast to the closed model, adjusting the think time of the partly-open model has no impact
on the load.

The partly-open model we discuss aims to mimic user behavior at a web site where, after making a
request, the user will stay and make another request with probahilifyhis model has been mentioned
both by prior theoreticall91, 77, 253 and implementationd6] research. Many other variations of partly-
open systems have also been proposed in the literature. For instance, Dowdy and Chopra create a hybrid
system by specifying the MPL of a closed system using a probability distribudidn Another proposed
hybrid model places upper and lower bounds on the number of jobs allowed into an open $&ferA |
differentiating feature of the partly-open model we discuss is its behavioral nature.

Principle (vii): A partly-open system behaves similarly to an open system when the expected number of
requests per session is small & as a rule-of-thumb) and similarly to a closed system when the expected
number of requests per session is largel(0 as a rule-of-thumb).

Principle (vii) is illustrated clearly in the case study results shown in Fi§uend in the simulation
results shown in Figur8.8(a). When the mean number of requests per session is 1 we have a significant
separation between the response time under the scheduling policies, as in open systems. However, when the
mean number of requests per session is large, we have comparatively little separation between the response
times of the scheduling policies; as in closed systems. FiguBend8.8(a) are just a few examples of the

270 CHAPTER 8: THE IMPACT OF INTERACTIVE USERS

Response Time vs. Requests per session

500 T

120

+ PELJF -+ PELJF
---- FCFS ---- FCFS
< 100p --- PS 1 <400 --- PS I
8 — PESJF k3 \ — PESJF
@ 80 102 :
£ £ 3000 \
) B ® \
2 60[. 2 *
o \ o
g,:— e g‘;zoof
e 40+ RN - =
- e P] N it e e
2 Ot OF RO ottt t=t=tetefeut=cs B Yo YOS pitypioplghyobefl
= oo 7= et
0 5 10 15 20 0 5 10 15 20
Mean number of Visits per session Mean number of visits per session
@p=0.6 (b)p=10.9

Response Time vs. Think time

90 T

“““ PELJF " [--=Ps
| ---- FCFs | 80" — SRPT

~
o

o]
o

)
(

IS
o

se time (m:
o
o

w
o
Spon:
N
o

Mean response time (sec)
N
o

-
[=]
T

o
(3

o
©

1 2 3

! 2 10

10 10 10 10 1 10
Think Time Think Time (sec)

(c) Model-based simulation (d) Static web impl.

Figure 8.8: Model and implementation-based results for the partly-open system. (a) and (b) are model-
based simulations showing mean response time as a function of the expected number of requests per session.
(c) and (d) show the mean response time as a function of the think time, for a fixed load. In &)X}

10 andC? = 8. In (c) and (d), we fiyp = 0.6 andp = 0.75, which yields and average of 4 requests per
session.

range of configurations we studied, and across a wide range of parameters, the point where the separation
between the performance of scheduling policies becomes small is, as a rule-of-thumb, around 10 requests
per session. Note however that this point can range anywhere between 5 and 20 requests per §&ssion as
ranges fromd to 49 respectively. We will demonstrate in SectiBré how to use this rule-of-thumb as a
guideline for determining whether a purely open or purely closed workload generator is most suitable, or
whether a partly-open generator is necessary.

Principle (viii): In a partly-open system, think time has little effect on mean response time.

Figure8.8illustrates Principle (viii). We find that the think time in the partly-open system does not affect
the mean response time or load of the system under any of these policies. This observation holds across all
partly-open systems we have investigated (regardless of the number of requests per session), including the
case-studies described in Sect®B.

8.6: CHOOSING A SYSTEM MODEL 271

Principle (viil) may seem surprising at first, but 86 andFCFS scheduling it can be shown formally
under product-form workload assumptions. Intuitively, we can observe that changing the think time in the
partly-open system has no effect on the load because the same amount of work must be processed. To
change the load, we must adjust either the number of requests per session or the arrival rate. The only effect
of think time is to add small correlations into the arrival stream.

8.6 Choosing a system model

The previous sections brought to light vast differences in system performance depending on whether the
workload generator follows an open or closed system model. A direct consequence is that the accuracy of
performance evaluation depends on accurately modeling the underlying system as either open, closed, or
partly-open.

A safe way out would be to always choose a partly-open system model, since it both matches the typical
user behavior in many applications and generalizes the open and closed system models — depending on the
parameters it can behave more like an open or more like a closed system. However, &sIlilibétrates,
available workload generators often support only either closed or open system models. This motivates
the following fundamental questions for workload modeliri@iven a particular workload, is a purely
open or purely closed system model more accurate for the workload? When is a partly-open system model
necessary?”

In the remainder of this section we illustrate how our eight principles might be used to answer this
guestion for various web workloads. Our basic method is as follows. For a given system we follow these
steps:

1. Collect traces from the system.

2. Construct a partly-open model for the system, since the partly-open model is the most general and

accurate. In particular, obtain the relevant parameters for the partly-open model.

3. Given the parameterized partly-open model, determine if an open/closed model is an appropriate

substitute for the partly-open model or if the partly-open model is necessary.

Table8.6summarizes the traces we collected as part of Step 1. Our trace collection spans many different
types of sites, including busy commercial sites, sites of major sporting events, sites of research institutes,
and an online gaming site.

We next model each site as a partly-open system. According to Principles (vii) and (viii) the most rel-
evant parameter of a partly-open system model is the number of requests issued in a user session. Other
parameters such as the think time between successive requests in a session are of lesser importance. Deter-
mining the average number of requests per user session for a web site requires identifying user sessions in
the corresponding web trace. While there is no 100% accurate way to do this, we employ some common
estimation techniqued b, 140.

First, each source IP address in a trace is taken to represent a different user. Second, session boundaries
are determined by a period of inactivity by the user, i.e. a period of time during which no requests from the
corresponding IP address are received. Typically, this is accomplished by ending a session whenever there
is a period of inactivity larger than timeout thresheldin some cases, web sites themselves enforce such a
threshold; however, more typicaltymust be estimated.

272 CHAPTER 8: THE IMPACT OF INTERACTIVE USERS

Type of site Date Total #Reg.

1 Large corporate web site Feb'01 1609799

2 CMU web server{] Nov'01 90570

3 Online department store June’00 891366

4 Science institute (USGS]) Nov'02 107078

5 Online gaming site437 May'04 45778

6 Financial service provider Aug’00 275786

7 Supercomputing web sit@]] May’04 82566

8 Kasparov-DeepBlue match May’'97 580068

9 Site seeing “slashdot effect” Feb’99 194968
10 Soccer world cupl03 Jul'o8 4606052

Table 8.6: A summary table of the web traces used to illustrate how to choose between the open and closed
system models.

We consider two different ways of estimatimg The first one is to use a defacto standard value-for
which is 1800s (30 min)J4(. The second method is to estimatérom the traces themselves by studying
the derivative of how affects the total number of sessions in the trace. We illustrate this latter method for
a few representative traces in Fig@¢é&a). Notice that as the threshold increases from 1-100s the number
of sessions decreases quickly; whereas from 1000s on, the decrease is much smaller. Furthermore, Figure
8.9(b) shows that with respect to the number of requests, stabilization is also reachedl@D0s. Hence
we adoptr = 1800s in what follows.

The mean number of requests per session when 1800s for all traces is summarized in Tal8er.

The table illustrates that the average number of requests for web sessions varies largely depending on the
site, ranging from less than 2 requests per session to almost 13. Interestingly, even for similar types of web
sites the number of requests can vary considerably. For example sites 8 and 10 are both web sites of sporting
events (a chess tournament and a soccer tournament), but the number of requests per session is quite low
(2.4) in one case, while quite high (11.6) in the other. Similarly, sites 2, 4, and 7 are all web sites of scientific
institutes but the number of requests per sessions varies from 1.8 to 6.

Using the rule of thumb in principle (vii), we can conclude that neither the open nor the closed system
model accurately represents all the sites. For sites 1, 2, 4, 6, 8, and 9 an open system model is accurate;
whereas a closed system model is accurate for the sites 5 and 10. Further, it is not clear whether an open or
closed model is appropriate for sites 3 and 7.

The impact of choosing between open and closed system models correctly is demonstrated by site 10, the
world cup dataset. This is the same dataset used in the static web case study, where we saw large differences
depending on whether we modeled the workload using an open or a closed system. We have just concluded
that a closed model is most appropriate for this workload, thus the magnitude of differences between the
open and closed results in FiguBe illustrates the impact of the choice of a system model.

8.7: CONCLUDING REMARKS 273

a
-
o)

2x10 . ~-- Site 3
i Site 3 6l ___ Site6
—— Site 6 _ .
- Site 10 af Site 10

_.
ol

[
N
T

o
T

Number of sessions

o
a —

Number of requests per session

N D O ®
=1 T

00 500 1000 _ 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

Timeout Timeout

OO

() Number of sessions vs Timeout leng(h) Number of requests vs Timeout length

Figure 8.9: Statistics for 3 representative web traces (sites 3, 6, and 10) illustrating (a) the number of
user sessions as a function of the timeout threshold and (b) the expected number of requests per session as
a function of the timeout threshold. The vertical line on each plot corresponds to a timeout of 1800s. From
these plots we can conclude that an open model is appropriate for site 6, a closed model is appropriate for
site 10, and neither an open or a closed is appropriate for site 3.

Site 1 2 3 4 5 6 7 8 9 10
Avg. Req. per session 2.4 1.8 54 36 12.9 14 6.0 24 1.2 116
Approp. Sys. Model | open open ? open closed open ? open open closed

Table 8.7: A summary table of the expected number of visits in the web traces used to illustrate how to
make a choice between the open and closed system models.

8.7 Concluding remarks

In this chapter we considered one particularly important practical extension of the M/GI/1 model: dependen-
cies between service completions and new arrivals. Throughout computer applications it is quite common
that users must wait for one request to complete before making a new request, and this factor is ignored
in traditional queueing models, such as the M/GI/1, that rely on open system models. We have seen that
dependencies between the arrival and completion processes in the closed and partly-open system models
limit the benefits provided by scheduling with respect to mean response time. However, we have also seen
that in many practical settings scheduling can still be quite beneficial.

This chapter presented eight simple principles that function to explain the differences in behavior of
closed, open, and partly-open system models. The more intuitive of these principles point out that response
times under closed systems are typically lower than in the corresponding open system with equal load, and
that as MPL increases, closed systems approach open ones. Less obviously, our principles point out that:
(a) the magnitude of the difference in response times between closed and open systems can be very large,
even under moderate load; (b) the convergence of closed to open as MPL grows is slow, especially when
service demand variability((?) is high; and (c) scheduling is far more beneficial in open systems than in
closed ones. We also compare the partly-open model with the open and closed models. We illustrate the

274 CHAPTER 8: THE IMPACT OF INTERACTIVE USERS

strong effect of the number of requests per sessionéndn the behavior of the partly-open model, and
the surprisingly weak effect of think time.

These principles underscore the importance of choosing a workload generator with the appropriate sys-
tem model when experimenting with system design changes. For example, in the context of web appli-
cations, the arrival process at a web site is best modeled by a partly-open system yet most web workload
generators are either strictly open or strictly closed. Our findings provide guidelines for choosing whether an
open or closed model is the better approximation based on characteristics of the workload. A high number
of simultaneous users (more than 1000) suggests an open model, but a high number of requests per session
(more than 10) suggests a closed model. Both these cutoffs are affected by service demand variability:
highly variable demands requires larger cutoffs. Contrary to popular belief, it turns out that think times are
irrelevant to the choice of an open or closed model since they only affect the load.

The work in this chapter highlights the fact that understanding the appropriate system model is essential
to understanding the impact of scheduling. In particular, once it has been determined whether a closed,
open, or partly-open model is a better approximation, that in turn provides a guideline for the effectiveness
of scheduling. Scheduling is most effective in open systems, but can still provide benefits in closed systems
when both the load is moderate and service demand variability is high. So, though there are some cases
when scheduling is not effective, it is possible to identify these cases easily, and in most practical settings
scheduling is valuable resource for improving system performance, even when there is feedback between
arrivals and completions.

CHAPTER 9

The impact of multiserver architectures

So far in this thesis, we have considered only single server systems. In practice there are many cases where
multiple, slower, cheaper servers are preferable to a single, faster, more expensive server. For instance, high
traffic web sites are increasingly moving towards server farm architectures and processors are increasingly
using multi-core designs. This trend towards multiserver designs is also prevalent across other applications
such as wireless networks, where multi-channel designs are becoming common.

Given the increased adoption of multiserver designs in computer applications, it is important to under-
stand how the benefits of scheduling that we have studied in single server systems translate to multiserver
settings. Intuitively, it is clear that scheduling will be less effective in multiserver settings than it was in sin-
gle server settings. This is because scheduling is the only way to avoid forcing small jobs to queue behind
larger jobs in a single server system, while in a multiserver system this happens eveRQR&eschedul-
ing. However, we will show that scheduling still provides performance benefits in multiserver systems, just
not the extreme gains we saw in single server systems.

In this chapter our goal is to characterize the impact of scheduling in multiserver systems. However, the
analysis of multiserver systems is a difficult problem, and outsideQ#®S scheduling little is understood
analytically. Thus, we cannot hope to obtain results in the generality that we obtained for the single server
queue. Instead, we will focus on understanding one important aspect of scheduling: prioritization.

Much of queueing theory is devoted to analyzing priority queues, where jobs are labeled and served
in accordance with a preemptive priority scheme: high-priority jobs preempt medium-priority jobs, which
in turn preempt low-priority jobs in the queue (see SecBoh3. These simple priority schemes occur
frequently in practice. For example, sometimes the priority of a job is determined by the job’s owner via
a Service Level Agreement (SLA), whereby certain customers have chosen to pay more so as to get high-
priority access to some high-demand resource. Other times, the priority of a job is artificially created, so as
to maximize a company’s profit or increase system utilization. For example, an online store may choose to
give high priority to the requests of big spenders, so that those customers are less likely to go elsewhere, see
[13§. In addition to the practical importance of priority queues, they serve as a theoretical building block
for the analysis of more complicated scheduling policies, 8RPT andPSJF, in the single server setting
(see Sectio.2). Thus, one can view the results in this chapter as a first step towards the ana§RBDf
in the multiserver setting.

275

276 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

Though analyzing the mean response time (and higher moments of response time) for different classes
of jobs is clearly an important problem, which has been well understood in the case of a single-server
M/GI/1 queue since the 1950'§§], the problem becomes much more difficult when considered in the
context of a multiserver M/Gk system. Even for an M/M/ system when jobs have different completion
rates little is known. The reason that priority queueing is difficult to analyze in a multiserver setting is
that jobs of different priorities may be in service (at different servers) at the same time, thus the Markov
chain representation of the multi-class, multiserver queue appears to require tracking the number of jobs of
each class. Hence one needs a Markov chain which is infinite dimensions, where: is the number of
priority classes. While the analysis of a 1-dimensionally infinite Markov chain is easy, the analysis of an
m-~dimensionally infinite Markov chaim{ > 1) is largely intractable.

In this chapter, we introduce a new analytical approach that provides the first near-exact analysis of
the M/PHE queue withm > 2 preemptive-resume priority classes. Our approach, which we refer to as
Recursive Dimensionality Reduction (RDR42 95|, is very different from prior approaches. RDR allows
us to recursively reduce the-dimensionally infinite state space created by trackingrth@iority classes to
a 1-dimensionally infinite state space, which is analytically tractable. The dimensionality reduction is done
without any truncation; rather, we reduce dimensionality by introducing “busy period transitions” within our
Markov chain, for various types of busy periods created by different job classes. The only approximation
in the RDR method stems from the fact that we need to approximate these busy periods using Markovian
(phase-type) PH distributions. We find that matching three moments of these busy periods is usually possible
using a 2-phase Coxian distribution, and provides sufficient accuracy, within a couple percent of simulation,
for all our experiments.

Our new analytic technique allows us to obtain many interesting insights about prioritization in mul-
tiserver settingsg5]. For instance, RDR allows us to compare the performance of priority queueing in a
multiserver system witt: servers each of speddk with the performance of a priority queue with single
server of speed. We find that the effect of priorities in a single server system can be very different than in
a multiserver system of equal capacity. In addition, RDR allows us to study the effect of priority policies
that favor short jobs (“smart prioritization”) versus priority policies that favor long jobs (“foolish prioritiza-
tion”) under systems with different numbers of servers. Understanding the effect of “smart” prioritization
is important because many common scheduling policies are designed to give priority to short jobs. Further,
RDR allows us to study how effective class aggregation (aggregating 2 priority classes into jus?
priority classes) is as an approximation for dealing with systems having more than two priority classes. We
evaluate two types of class aggregation in order to illustrate when class aggregation serves as a reasonable
approximation.

Our new analytic technique also allows us to address the question of system @dgjgin particular,
in we ask: given the choice @fslow servers of speeg) k or one fast server of speadwhich is preferable?

The question of “how many servers are best” has a long history in the literature, but this history is limited to
the FCFS setting. We will study this question in the setting of priority queues and then contrast the results
with the case oF CFS scheduling in order to develop an understanding of the effect of prioritization on the
design of multiserver systems.

9.1: PRIOR WORK ANALYZING MULTISERVER PRIORITY QUEUES 277

9.1 Prior work analyzing multiserver priority queues

The literature on multiserver priority queues is vast, however almost all results are restricted tavanly
priority classes Further, of the results for two priority classes, all ass@xgonential service timedhe

only papersotrestricted to two priority classes are approximations based on assuming that the multiserver
behavior parallels that of a single server syst88} pr approximations based on aggregating priority classes

in multi-class systems so that it becomes a dual priority quéd@ [L57].

Dual priority queues

We start by describing the papers restrictedwio priority classesand exponentially distributed service
demands Techniques for analyzing the M/¥/dual priority system can be organized into four types on
which we elaborate below: (i) approximations via aggregation or truncation; (ii) matrix analytic methods;
(iii) generating function methods; (iv) special cases where the priority classes have the same mean. Unless
otherwise mentioned, preemptive-resume priorities should be assumed.

Nearly all analysis of dual priority M/M{ systems involves the use of Markov chains, which with two
priority classes grows infinitely in two dimensions (one dimension for each priority class). In order to
overcome this, researchers have simplified the chain in various ways. Kao and Narayanan truncate the chain
by either limiting the number of high priority job407], or the number of low priority jobs10§. Nishida
aggregates states, yielding an often rough approximafiéi.] Kapadia, Kazmi and Mitchell explicitly
model a finite queue systerh](. Unfortunately, aggregation or truncation is unable, in general, to capture
the system performance as the traffic intensity grows large.

Although, in theory, matrix analytic methods can be used to directly analyze a 2D-infinite Markov chain
(see for exampledp]), matrix analytic methods are much simpler and more computationally efficient when
applied to a 1D-infinite Markov chain. Therefore, most papers that use the matrix analytic method to analyze
systems involving 2D-infinite Markov chains first reduce the 2D-infinite chain to a 1D-infinite chain by, for
example, truncating the state space by placing an upper bound on the number @DjGHOP 126, 156.

Miller [149 and Ngo and Leel56 partition the state space into blocks and then “super-blocks,” according
to the number of high priority customers in queue. Howevets] experiences numerical instability issues
whenp > 0.8.

A third stream of research capitalizes on the exponential job sizes by explicitly writing out the balance
equations and then finding roots via generating functions. In general these yield complicated mathematical
expressions susceptible to numerical instabilities at higher loads. See King and Mittg§n{Jail, Hantler,
and Taylor B1, 82]; Feng, Kowada, and Adachr§]; and Kao and Wilson09,.

Finally there are papers that consider the special case where the multiple priority classes all have the
same mean. These include Daws]| Kella and Yechiali L11] (for non-preemptive priorities), and Buzen
and Bondi §8].

The only work dealing with non-exponential service times is contained in a pair of very recent papers,
by Sleptchenko et. al2[l1, 217. Both papers consider a two-priority, multiserver system where within
each priority there may be a number of different classes, each with its own different exponential job size
distribution. This is equivalent to assumindhgper-exponential job size distributidar each of thewo
priority classes The problem is solved via a combination of generating functions and matrix analytic
methods. In theory, their technique may be generalizable to PH distributions, though they evaluate only
hyper-exponential distributions due to the increased complexity necessary when using more general PH
distributions.

278 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

More than two priority classes

For the case ofmore than two priority classeshere are only coarse approximations. The Bondi-Buzen
(BB) approximation B8] is beautiful in its simplicity and usability. It is based on an intuitive observation
that the “improvement” of priority scheduling over FCFS scheduling udservers is similar to that for
the case of one server with equal total capacity:

E[DM/GI/k/prio] E[DM/Gllllprio]

E[DWIGTHFCFY ™~ B[DMGITFCFY — scaling factor (9.1)

Here E[DMCVKIPo] i the overall mean delay under priority scheduling witeervers of speetl/k, and
E[DMGVKFCFS s defined similarly for FCFS, while M/GI/1 refers to a single server queue with speed 1.
This relation is exact when job sizes are exponential with the same rate for all classes; however what happens
when this is not the case is studied for the first time in this chapter.

The other approximation (which we denote by MK-N) that allows for more than two priority classes
and exponential job sizes is due to Mitrani and Kidg§, and also used by Nishidd$7] to extend the
latter author’s analysis of two priority classesto> 2 priority classes. The MK-N approximation analyzes
the mean delay of the lowest priority class in an Mk\jueue withim > 2 priority classes byaggregating
all the higher priority classes Thus, instead of aggregating all jobs into one class, as BB does, MK-N
aggregates into two classes. The job size distribution of the aggregated class is then approximated with an
exponential distribution by matching the first moment of the distribution.

9.2 Analyzing the M/PH/k with m priority classes

In this section we describe the RDR technique, dividing our explanation into three parts. As an introduction,
in Section9.2.1, we deal only with the simplest caseaf = 2 priority classes and exponential job sizes,
which we solve using the techniques t6p, 242. We then move to the difficult case @i > 2 priority
classes, but still with exponential service times, in Secli@2 Here the techniques from$5 242 do not
apply, so we introduce Recursive Dimensionality Reduction (RDR). The RDR approach uses the analysis
of them — 1 priority classes to analyze the-th priority class. This is a non-trivial procedure far > 2
since it involves evaluating many complex passage times (busy periods) in the chain representingithe
priority classes, as these passage times now form transitions within the chain represgmiiogty classes.
Finally in Section9.2.3 we show how RDR can be applied to the most general case of PH service times
with m > 2 priority classes.

All the analysis up to through Sectié2.3deals with how to derive mean per-class response times. In
Section9.2.4we illustrate how the RDR method can be extended to olmaiiance of response tinfer
each class. Finally, in Sectidh2.5 we introduce RDR-A, which is an approximation of RDR, allowing
very fast K 1 second) evaluation of high numbers of priority classes and servers, with sa@h) error.

9.2.1 Exponential job sizes and two priority classes

Consider the simplest case of two servers and two priority classes, high (H) and low (L), with exponentially
distributed sizes with ratgsy anduy, respectively. Figur®.1(a) illustrates a Markov chain of this system,

9.2: ANALYZING THE M/PH/K WITH M PRIORITY CLASSES 279

Figure 9.1: (a) Markov chain for an M/M/2 queue with two priority classes. This Markov chain is infinite

in two dimensions. Via the Dimensionality Reduction technique, we arrive at the chain in (b), which uses
busy period transitions, and is only infinite in one dimension. In (b), the busy period is represented by
a single transition. In (c), the busy period is represented by a two phase PH distribution (with Coxian
representation), yielding a 1D-infinite Markov chain.

whose states track the number of high priority and low priority jobs; hence this chain grows infinitely in
two dimensions. Observe that high priority jobs simply see an M/M/2 queue, and thus their mean response
time is well-known. Low priority jobs, however, have access to either an M/M/2, M/M/1, or no server at all,
depending on the number of high priority jobs. Thus their mean response time is more complicated, and this
is where we focus our efforts.

Figure9.1(b) illustrates the reduction of the 2D-infinite Markov chain to a 1D-infinite chain. The 1D-
infinite chain tracks the number of low priority jobs exactly. For the high priority jobs, the 1D-infinite chain
only differentiates between zero, one, and two-or-more high priority jobs. As soon as there are two-or-more
high priority jobs, ahigh priority busy periods started. During the high priority busy period, the system

280 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

only services high priority jobs, until the number of high priority jobs drops to’offée length of time
spent in this high priority busy period is exactly an M/M/1 busy period where the service ig isWe
denote the duration of this busy period by the transition labelgd, .

The busy periodB,,,,, is not exponentially-distributed. Hence it is not clear how it should fit into
a Markov model. We use a PH distribution (specifically a Coxian distribution) to match the first three
moments of the distribution aBy,,,,. Parameters of the PH distribution, whose first three moments match
those ofBy,,,, are calculated via the closed form solutions provided 64].

Figure 9.1(c) illustrates the same 1D-infinite chain as in Fig@é&(b), except that the busy period
transition is now replaced by a two phase PH distribution with parameters, andt,. The limiting
probabilities in this 1D-infinite chain can be analyzed using matrix analytic meti@dk [These in turn
yield the mean number of low priority jobs, which via Little’s law yields the mean response time for low
priority jobs. The only inaccuracy in the above approach is that only three moments of the high priority busy
period are matched. We will see later that this suffices to obtain very high accuracy across a wide range of
load and job size distributions.

More formally, the 1D-infinite Markov chain is modeled as a (nonhomogeneous) QBD process, where
level/ of the process denotes théh column, namely all states of the forit(/L) for each?. The generator
matrix, Q, of this process can be expressed as a block diagonal matrix:

L) F(0)
BM 1, A
Q= B® LO® F®

where submatrif(®) encodes (forward) transitions from level (colundrp level?+ 1 for ¢ > 0, submatrix

B encodes (backward) transitions from le¢éb level¢ — 1 for ¢ > 1, and submatriL() encodes (local)
transitions within level for ¢ > 0. Specifically, for the Markov Chain depicted in Fig@&é(c), we order the

4 states in level as: (0H,¢L), (1H, (L), (2T H,(L), (xH,¢L). The pair of state§(2* H, (L), (zH, (L)}

are the states used to represent the busy period, where thé2st#fe/L) denotes the start of the busy
period and(zH, (L) denotes the intermediate “bubble” state in the busy period. Given this ordering of
states, we have:

—01 AH
L _ | _#u —o2| Am
t1 | —o3 ti2
to —0y

whereo; = Z#i Q;;. The delineations of the matrik(©) are intended to highlight the busy period.

Throughout the paper a “higher priority busy period” is defined as the time from when the systénhigaer priority jobs
until there are onlyt — 1 higher priority jobs.

9.2: ANALYZING THE M/PH/K WITH M PRIORITY CLASSES 281

Figure 9.2: This chain illustrates the case of two priority classes and three servers. The busy period
transitions are replaced by a Coxian phase-type distribution matching three moments of the busy period
duration, as shown in Figur8.1

F® = \.I, for ¢ > 0, wherel is a4 x 4 identity matrix, and

min(2, ¢)
B =y

for¢ > 1.

The stationary probabilities of being in lewglr,, are then given recursively b§ = 7, - R, where
7 andR® are calculated as follows: Defireto be the level that the QBD process starts repeating (in
Figure9.1(c), / = 1), then for/ = 1,... ., ¢, we have thaR(®) is given recursively by:

FD L RO . LO L RO .RED . BED = 0,

where0 is a zero matrix of appropriate dimensionx 4). For¢ > 7 + 1, R = R, whereR is given by
the minimal solution to the following matrix quadratic equation:

FO 4+t R.LO L R2.BO — 0.

Vector 7, is given by a positive solution of, (L(® + R . BM) = 0, normalized by the equation
7o 32 [T-, R® . T = 1, where0 and T are column vectors with an appropriate number of elements
of 0 and 1, respectively. The mean response time can now be computed using the stationary distributions,
'S, given above, via Little’s law.

Figure9.2shows the generalization to a three server system. We simply add one row to the chain shown
in Figure 9.1, and now differentiate between 0, 1, 2, or 3-or-more high priority jobs. This can be easily
extended to the case bf> 3 servers.

282 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

9.2.2 Exponential job sizes and m priority classes,

We now turn to the more difficult case af > 2 priority classes. We illustrate this for the case of two
servers and three priority classes: high priority (H), medium-priority (M), and low priority (L). The mean
response time for class H jobs and that for class M jobs are easy to compute. Class H jobs simply see an
M/M/2 queue. Class M jobs see the same system that the low priority jobs see in an M/M/2 queue having
two priority classes. Replacing the L's by M’s in the chain in Figlrgyields the mean response time for

the M class jobs.

The analysis of the class L jobs is the difficult part. The obvious approach would be to aggregate the H
and M jobs into a single class, so that we have a 2-class system (H-M versus L jobs). Then we could apply
the technique of the previous section, tracking exactly the number of low priority jobs and maintaining
limited state information on the H-M class. This is the approach that we follow in Se&2o5in deriving
our RDR-A approximation. However, this approach is imprecise because the duration of the busy periods
in the H-M class depends on whether the busy period was started by 2H jobs, 1H and 1M job, or 2M jobs
in service. By ignoring the priorities among H’s and M’s, we are ignoring the fact that some types of busy
periods are more likely than others. Even given the information on who starts the busy period, this still does
not suffice to determine its duration, because the duration is also affected by the prioritization within the
aggregated H-M class.

Thus, a precise response time analysis of class L requires maintaining more information. As before,
we want to exactly track the number of class L jobs. Given that there are two servers, we need to further
differentiate between whether there are zero H and M jobs, one H or M job, or two or more H and M jobs.
Whenever there are two or more H and M jobs, we are in an H-M busy period. For an M/M/2 with three
priority classes, there asx types of busy periogsossible, depending on the state at the start of the busy
period —(2H,0M), (1H,1M), or (0H,2M) — and the state in which the busy period end8 H, 0M) or
(0H,1M). We derive the busy period duration by conditioning on who starts and ends the busy period.

Figure 9.3 (a) shows the level of the 1D-infinite chain in which the number of class L johs im
state {vH,vM,uL), v class M jobs andv class H jobs are in the systemuif+ w < 2; otherwise, the state
(wH,vM,uL) denotes that we are in a H-M busy period that was started tigass M jobs andv class H
jobs. Observe that there are six types of busy periods depicted, lalBglldsh, . .., Bg; the busy period is
determined by the state in which it was started and the state in which it ends. Notice, for example, that both
states in the fourth and fifth row are labelled (OH,2M), meaning that the busy period is started by two
class M jobs; but these two states differ in the class of the job that is left at the end of the H-M busy period.
In state (OH,2MyL) of the fourth row, the busy period ends leaving a class H job, whereas in state of the
fifth row, the busy period ends leaving a class M job. (Recall that the class of job left at the end of a busy
period is probabilistically determined at theginningof the busy period and the duration of the busy period
is conditioned on the class of the job left at the end.) Hefe x, for example, denotes the probability
that the busy period started by two class M jobs ends leaving one class H job, whgfgas denotes the
probability that the busy period started by one class H and one class M job, ends leaving one class M job.
The remaining probabilities are defined similarly.

It remains to derive the moments of the duration of busy periéds,Bo, ..., Bg, and probabilities
DP2M, M P2M,H» PHM,M> PHM,H, P2i,M, andpa g i in Figure9.3(a). The trick to deducing these quantities
is to observe that the six busy periods correspond to passage times between two “diagonal” (shaded) levels
in the chain shown in figur®.3(b), which is the 1D-infinite chain that we used to analyze the class M
performance. We refer to the right shaded diagonal level as lezetl the left shaded diagonal level as

9.2: ANALYZING THE M/PH/K WITH M PRIORITY CLASSES 283

. L Moo
GHomeoniy | fmewad VoM@
,,,,,,,,,,,,,, 2 possible states 3 possible states
SHIM@-DEY L EMaeL for end of H-M for start of H-M
T o busy periods busy periods

STt Tees Tl T
THOMu-DLY XM DD

T ot e 1T N S M w0
OH2M. -1 OH.2M, (1)L

e "X aM as DD
OH2M.u-1)E) OH.2M (1)L

P Rl PR G U NN T Sy I RV
THIM.u-DE) UHIM @+ DL

THIM,u-1)L) “(HIM@+ DD

FHOM, -1 >FHOM i

oD
() (b)

Figure 9.3: An overview of applying RDR in the case of 3 priority classes. (a) shows a level of the 1D-
infinite chain used to compute mean response time for low priority jobs in the case of three priority classes
and two servers, and all exponential service times. (b) shows the chain used to compute moments of the
durations of the six busy period transitions.

ZHOM,(u-DL

level ¢ — 1 (where/ = 3). Note that the 3 states in levélcorrespond to the three possible “start” states
for busy periods, and the two states in le¢el 1 correspond to the two possible “end” states for the busy
periods. Thus, for example, busy periBd in Figure9.3(a) corresponds to the first passage time from state
(0H,2M) to state(0H, 1M) in the chain in Figur®.3(b), given that(0H, 1M) is the first state reached

in level ¢ — 1, when starting in stat€0H, 2M/) of level £. Likewise, probabilitypsys 1, corresponds to
the probability that, in Figur®.3(b), state (OH,1M) is the first state of the two possible “end” states that is
reached in levef — 1, given that the “start” state i® H, 2M/). These conditional inter-level passage times
and ending probabilities within the chain in Figu@&(b) can be calculated using techniques developed by
Neuts in L55. We provide a precise description of this BF. Observe that these computations are greatly
facilitated by the fact that our chains are infinite in only one dimension.

More formally, the 1D-infinite Markov chain shown in Figu®e3(a) is modeled as a (nonhomogeneous)
QBD process, as in Sectich2.1 Here, levell of the QBD process denotes theh column, namely all
states of the formiH,jM, /L) for each?. The submatrices of the QBD proce&s?), F(©), andB®), have
sizelbs x 15. Specifically, the forward transitions ar?) =\, 1, for ¢ > 0, wherel is al5 x 15 identity
matrix. The backward transitions are

min(2, ¢)
BY =y, 1
0

for ¢ > 1, whereO is a zero matrix of sizé3 x 13. We again order the 15 states in le¥els: (0H,0M, (L),

284 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

(0H,1M,¢L), (1H,0M, (L), followed by the two states associated by busy peBpdori = 1,2, ...,6,
where, as before, the two states associated with each busy period are ordered by start state, intermediate
state. The local transitions are then given by:

01 AM AH
v —0)\]wﬁ(QJ\l,M))\]wﬁ(QJM,H))\Mﬁ(MH,M))\Mﬁ(MH,H)
e — o3 AgpMHEM) |)\ (MHH) |\ S(2H M) |y 5(2H H)
AD T
LO — A2 T®
73) T®)
7 T@
75) T®)
76) T©)
for ¢ > 0, where the lines delineate the six busy periods orderdsha®s, .. ., Bs, and where
) tgi) T — [—0242 tﬁQ do: —
= NON B 0 —09i+3 |’ andei = Z Qi
2 jF#i

75 = (pxy,0) whereX e {2H,HM,2M},Y € {H, M},

for 1 < i < 6, corresponding to busy periods$;, Bo, ..., Bg. Heretﬁl),tg)?tg are the rates of the PH
distribution used to represent busy perisd

Now, the stationary probability of this QBD process can be calculated via matrix analytic methods, as
in Section9.2.1 The mean response time in the priority system can then be computed using the stationary
distributions via Little’s law.

The extension of RDR ter > 3 classes is straightforward but increases in complexity. For example, for
the case ofn = 4 classes, we proceed as in Figdr8, where we first create a chain that tracks exactly the
number of jobs in class 4, and creates busy periods for the aggregation of the three higher priority classes.
Then, to derive the busy periods for the three higher priority classes, we make use of the existing chain
for three classes shown in Figu®e3(a), and compute the appropriate passage times for that chain. For an
M/M/ k with m priority classes, there af@ " ~2) (™" %) possible busy periods, where the first term in the
product represents the number of possible start states (all combinations afwp fopriority classes over
k servers) and the second term represents the number of possible end states (all combinations.ef up to
priority classes ovek — 1 servers). That is, the number of different types of busy periods is polynomial in
k if m is constant@(k™)), and it is polynomial inn if k is constant®(m*)); however, it is exponential in
k andm if neitherk norm is constant

2We note that in practice the number of busy periods can be reduced further, so that an WM priority classes has
(mljf;3)2 busy periods of class 1 to class — 1 jobs. An advantage of this reduction is that the number of busy periods of class
1 to classn — 1 jobs becomes independent of the type of PH distributions that is used to approximate the busy period of class 1
to classm — 2 jobs. The trick to reducing the number of busy periods is illustrated by considering the example of the M/M/2 with
three classes, shown in Figu®e3. Here, by taking the mixture of the six busy period,, B-, ..., Bs, we can approximate the
H-M busy period byfour PH distributions. These four distributions of the H-M busy period are differentiated by the state from
which weenterthe H-M busy period (either (1H,0M) or (OH,1M)) and by the state we return to after the H-M busy period (either
(1H,0M) or (OH,1M)). More details are provided ih§3.

9.2: ANALYZING THE M/PH/K WITH M PRIORITY CLASSES 285

Practically speaking, the RDR approach is fast for a small number of servers and a small number of
priority classes. In examples we ran with an M/M/2 and 10 priority classes, the RDR algorithm yielded
mean response times within tens of secohds.

9.2.3 The M/PH/k with m priority classes

In this section, we explicitly describe how RDR can be applied to analyze the case of PH job size distribu-
tions. We describe RDR for the case of two servérs=(2) and two priority classes{ = 2), high (H) and

low (L) , where the class H jobs have a particular 2-phase PH job size distribution with Coxian representa-
tion, shown in figuréd.4(a)* Generalization to highe's and higherm’s is straightforward by applying the
recursive algorithm introduced in SectiérR.2

Analyzing the performance of class H is trivial, since high priority jobs simply see the mean response
time in an M/PH/2 queue, which can be analyzed via standard matrix analytic methods. To analyze the
class L jobs, as before, we create a 1D-infinite Markov chain tracking the class L jobs, and use busy period
transitions to represent needed information regarding the class H jobs.

Observe that under the 2-phase Coxian job sizes distribution, we willfoeedifferent types of busy
periods for high priority jobs, depending on the phases of the two jobs starting the busy period (1 & 1, or
1 & 2) and the phase of the job left at the end of the busy period (1 or 2). To derive the durations of these
busy periods, we observe that the busy periods correspond to passage times from shaded khaded
level 2 in the Markov chain shown in Figur@4(b). Figure9.4(b) describes the behavior of class H jobs,
where states track the number of high priority jobs in the system and the phases of the jobs being processed.
Namely, at state (OH) there are no high priority jobs in the system; at staté (fli¢re is one high priority
job in phasei; at state ¢H,i, j) there aren high priority jobs in the system and the two jobs are being
processed are in phasandj, respectively (jobs in the queue are all in phase 1). The first passage times in
Figure9.4are computed again using Neuts’ method, as describeibjn [

Figure9.4(c) shows a level of the chain that tracks the number of low priority jobs, where the number of
low priority jobs isu. The low priority job sizes are assumed to be exponentially distributed, but this can be
generalized to PH distributions. In state (@H), no high priority jobs are in the system. An arrival of a high
priority job in state (OHyL) triggers a transition to state (1Hsi,). In state (1Hj,uL), one high priority job
in phasej is in service forj = 1,2. An arrival of a high priority job in state (1H,ul) triggers a transition
to state 27 H,1, j,uL) for j = 1,2. In state 27 H,1, j,uL), at least two high priority jobs are in the system,
and the two jobs that started the busy period were in phaselj, respectively, fo = 1, 2. The four types
of busy periods are labelled &5, B>, B3, andB,, and the duration of these busy periods is approximated
by PH distributions by matching the first three moments of the busy period distribution (note that the busy
period cannot start with two jobs in phase two). Finglly, ;) ; denotes the probability that a busy period
started by two jobs in phasésandj, ends with a single job in phasggfor j = 1,2, andi = 1, 2.

3Help with implementing the procedure described in this chapter is providd®3t [
“Under the Coxian job size distribution, a job starts in phase one where it is processed for a time exponentially distributed with
rateuf;), and then either completes (with probability = 1 — px) or moves to phase two (with probabilipyr).

286 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

DG
=1-pru
(@) -

(OH,u-1)L7" "~ ~0H,(u+1)L)

2 possible states 2 possible states L B o e

for end of for start f)f (IKH, 1 ,(u—l\)]\j - \jil\l'\{,l,(u+1')],_)

busy periods. busy periods. RSO - A
dH2e-Di HH2 @D
FHLLenT L@
GHLL@-E TR
Giowdr IR
G, L2nr IR X

(b)

Figure 9.4: (a) A 2-phase PH distribution with Coxian representation. (b) Markov chain which will be used
to compute the high priority job busy periods, in the case where high priority job size have a PH distribution
with Coxian representation shown in (a). (c) Chain for a system with two servers and two priority classes
where high priority jobs have Coxian service times.

9.2.4 Computing higher moments of response time

Throughout our discussion of RDR thus far, we have been concerned with computing the mean per-class
response time. It turns out that computing higher moments of per-class response time is not much more
difficult. Before we present our approach, we make two remarks. First, observe that it is trivial to derive all
moments of the steady-state per-clasmber of jobsn the system, directly from the steady-state probabil-
ities for the Markov chain, which we have already computed. Unfortunately, however, we cannot apply the
beautiful generalization of Little’s Law to higher moments (s2&4 31]) to immediately get the per-class
higher moments of response time, since jobs do not necessarily leave our system in the order in which they
arrive.

Below we sketch our approach for computing per-class variance in response time for the case of two
servers, two priority classes (H and L), and exponential service times. We will refer to Bid(reduring
our discussion. For class H jobs, it is easy to compute the variance of their response time, since they are
oblivious to class L jobs, and the variance of response time in an M/M/2/FCFS queue is well known (see
page 529 in104). Thus we will concentrate on class L jobs.

Consider the 1D-infinite Markov Chain shown in Figl@d(c) that tracks the number of class L jobs.
We use the limiting probabilities to condition on what a class L arrival sees. Specifically, by PASTA (Poisson
Arrivals See Time Averages) a class L arrival with probabitity; .1y will see stateiH, /L) when it arrives,
and will cause the system state to chang@ 6, (¢ + 1)L) at that moment.

To calculate the variance in response time seen by this “tagged” (€)amsival, we remove all the ;.

9.3: NUMERICAL VALIDATION AND RESULTS 287

arcs from the Markov chain in Figur@1(c), so that there are no more claksarrivals. This enables us

to view the response time for the tagged arrival as the first passage time of this modified chain from state
(iH, (¢ + 1)L) to the state where the tagged arrival departs. The only complexity is in figuring out exactly
in which state the tagged arrival departs.

The tagged arrival may depart the modified Markov chain the first time it(b#§ 1L) or (1H,1L),
depending on the sample path the chain follows. We will compute the passage time to go frqnistgte
1)L) to one of these states({H, 1L) or (1H,1L) }. It is important to observe that the first time we hit a
state with 1L, cannot be statg™ H, 1L), by virtue of the fact that the Markov chain does not have decreasing
arcs in its bottom rows.

If (1H,1L) is the first state that we hit with 1L, then we know that we must have gotten there from
(1H,2L), which means that the single L job remaining is in fact the tagged arrival. (We're assuming
preemption is done “youngest first to be preempted”). Thus we need to now add on the passage time to go
from (1H,1L) to (x,0L) to get the full response time for the tagged arrival.

If (0H,1L) is the first state that we hit with 1L, then we know that we got there from &idfe2L). In
this case, the remaining 1L is equally likely to be the tagged arrival or not. With probability half, the tagged
arrival is already gone, in which case we add nothing to the response time. With probability half, the tagged
arrival remains, in which case we now add on the passage time to gq@@ni L) to (x,0L) to get the full
response time for the tagged arrival.

Observe that computing the moments of the above passage times is straightforward, since aftise
have been removed.

9.2.5 A computationally efficient approximation

Clearly, the RDR method can become computationally intensive as the number of priority classes grows.
This motivates us to introduce an approximation based on RDR called RDR-A. RDR-A appties-t@
priority classes and PH job size distributions.

The key idea behind RDR-A is that the RDR computation is far simpler when there are only two priority
classes: H and L. In RDR-A, undet priority classes, we simply aggregate these classes into two priority
classes, where the — 1 higher priority classes become the new aggregate H class andthwiority class
becomes the L class. We define the H class to have a PH job size distribution that matches the first three
moments of the aggregation of the— 1 higher priority classes.

The RDR-A method is similar to the MK-N approximation. The difference is that in MK-N, both the
H and L classes have exponentially distributed service times. Thus under MK-N, the H class only matches
the first moment of the aggregaie — 1 classes, whereas under RDRi#f&eemoments are matched. The
reason that we are able to match the first three moments, rather than just the first, is that we have the
RDR technique, which allows the analysis of multiserver priority queuesm¥thjob size distributions, as
described in Sectiof.2.3

9.3 Numerical validation and results

We now present numerical results for per-class mean response times irk Mid/M/PHE queues with
m = 4 priority classes, derived using RDR and RDR-A, respectively. We will validate our results against

288 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

simulation and show that their relative error is small. Furthermore, the time required to generate our results
is short, typically less than a second for each data point.

Figure 9.5 (top row) shows our results for per-class mean response times in an M/M/2 queue (a) and
an M/PH/2 queue (b), both as a function of lgadThe PH distribution used has two phases @id= 8.
All job classes have the same distribution, and the load is distributed evenly between the four classes. The
left plot is derived using RDR and the right plot using RDR-A. Observe that the M/PH/2 queue (right plot)
results in higher mean response time than the M/M/2 queue (left plot), as expected. In both cases the mean
response time of the lower-priority classes dwarfs that of the higher-priority classes.

Figure 9.5 (bottom row) shows the relative per-class error for our results, when compared with sim-
ulation. Throughout the paper we always show errodétay (queueing time) rather than response time
(sojourn time), since the error in delay is proportionally greater. We define relative error as

(mean delay by RDR or RDR-AY} (mean delay by simulation)

error= 100 - .
% (mean delay by simulation)

(%).

We only show the error for classes 2, 3, and 4, since our analysis is virtually exact for class 1 (solved via
matrix-analytic methods). We see that the relative error in the mean delay of RDR and RDR-A compared
to simulation is within 2% for all classes and typically within 1%, for @ (the jaggedness of the figure

is due to the fact that error is only evaluated at discrete loads). This error increases only slightly when we
move to the case of priority classes with different means.

Figure9.6 (top row) again uses RDR-A to calculate per-class mean response time in the M/PH/2 queue
with four classes, but this time as a function @¢, the squared coefficient of variation of the job size
distribution. (Again, all classes have the same job size distribution). As we see from the figure, the per-class
mean response time increases nearly linearly with Figure9.6 (bottom row) shows the relative error in
mean delay when the results of the RDR-A analysis in the left plot are compared with simulation. Again
the error is under 2%. Again, this error increases only slightly when we move to the case of priority classes
with different means.

Finally, we note that in the above computations RDR is much more computationally efficient than sim-
ulation. Simulation requires tens of minutes to generate each figure, since the simulation is run 30 times,
and in each run 1,000,000 events are generated. By comparison our analysis takes only a few seconds for
each figure. Further, if we try to reduce the number of events in the simulation to 100,000 events, in order
to speed it up, we see five times as much variation in the simulation around our analytical values.

9.4 The impact of prioritization in an M/PH/k

Using RDR and RDR-A, we can now study the impact of prioritization in multiserver systems. We perform
three studies of the impact of prioritization. First, in Sectiod.1we study the interaction of the effect of
prioritization and the number of servers in the system. Thus, we characterize how the impact of prioritization
changes as the number of servers in the system grows. Then, in Seetigrnwe evaluate the effect of
prioritization schemes that favor short jobs (“smart” prioritization schemes) in multiserver systems. This is
an important interaction to study because multiserver systems inherently allow some small jobs to bypass
large jobs using alternate servers. Finally, in Secligh3we contrast the behavior of dual priority systems

with that of systems with more than two priority classes. This is an important study because it provides

9.4: THE IMPACT OF PRIORITIZATION IN AN M/PH/K 289

35

“““ - class 1 40— class 1
30l ~ class 2 |
--- class 3 1204
© — class 4
E® £ 100
5 =
2 20t § 80r
8 g
a @
£ 157 ® 60r
C C
© ©
g 10/ 2 40/
5+ 201
0 L L L L 0 - VTN
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
P p
3 : 3
2 2
1 1
5 O s Or
5 5
-1 1
_2 --- class 2 _2 --- class 2
-- class 3 ---- class 3
‘ ‘ ‘ —— class 4 ‘ ‘ ‘ — class 4
- 0.2 0.4 0.6 0.8 1 - 0.2 0.4 0.6 0.8 1
P P
(a) M/M/2 with four classes (b) M/PH/2 with four classes

Figure 9.5: The top row shows per-class mean response time for the M/M/2 (a) and the M/PH/2 (b) with
four priority classes. (a) is derived using RDR and (b) is derived using RDR-A. The bottom row shows the
error in our analytically-derived mean delay relative to simulation results, for the corresponding graphs in
the top row.

an understanding of the effect of aggregating multiple priority classes into just two classes, which is the
technique used in RDR-A to speed up the numerical evaluations.

9.4.1 The effect of the number of servers

We start by studying the interaction of prioritization and the number of servers in multiserver systems. Note
that throughout these comparisomse hold the total system capacity fixethat is, we compare a single
server of unit speed with a 2-server system, where each server has speed half, with a 4-server system, where
each server has speed one-fourth, etc.
Figure9.7 begins our study by considering an M/Rt#ystem with two priority classes whekds one,
two, and four. The total system capacity is held fixed and load is fixed=at0.8. The low priority jobs
are exponentially distributed. The high priority jobs follow a PH distribution where the squared coefficient
of variation for high priority jobs(#%, is varied. The means of the two classes are the same and the load is

290 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

600

(&)

o

o
T

IS

o

=}
;

mean response time
W
o
o

2001
100
0
0 150
3
2,
= | N
= i m e
5
_2} --- class 2 ||
---- class 3
3 — class 4
) 50 100 150
c?

Figure 9.6: The top row shows the per-class mean response times for the M/PH/2 with four priority classes
derived via RDR-A analysis. The bottom row shows the relative error in the analytically-derived mean delay
compared with simulation.

split evenly between the two classes. The plots show per-class mean response time as a fufigtionllof
results are computed using RDR.

The first thing to observe is that the response times in the case of one server appear very different from
the response times in the case of two servers or four servers. The effect of prioritization in a single server
system offers little (quantitative) insight into the effect of prioritization in a multiserver system, aside from
the fact that in all cases the response times appear to be a nearly linear funetifn of

Figure9.7 also illustrates some other interesting points. We see that as the number of servers increases,
underhigh C%, the performance of both high priority and low priority jobs improves. By contrast, under
low C?%,, the performance can get worse as we increase the number of servers (this fact is more visible in
Figure9.7 for the high priority jobs). To understand this phenomenon, observe that @hes high, short
jobs can get stuck behind long jobs, and increasing the number of servers can allow the short jobs a chance
to be served. By contrast whéif, is low, all jobs are similar in size, so we do not get the benefit of allowing
short jobs to jump ahead of long jobs when there are more servers. However we do get the negative effect
of increasing the number of servers, namely the under utilization of system resources when there are few
jobs in the system, since each of theervers only has speédk. The behavior under low?,, where more

9.4: THE IMPACT OF PRIORITIZATION IN AN M/PH/K 291

200/] — High Priority ‘ 200/] — High Priority ‘] 200l[— High Priority
Low Priority Low Priority Low Priority

50 50 1 50

/ /
00 50 2 100 150 G0 50 2 100 150 G0 50 2 100 150
CH CH CH
(a) 1 server (b) 2 servers (c) 4 servers

Figure 9.7: Contrasting per-class mean response time under (a) one server, (b) two server, and (c) four
server queues with two priority classes and PH service times. Total system capacity is fixed throughout, and
p = 0.8. Results are obtained using RDR.

40 " " " " 40 " " i Py ——
— class 2 —— class 2 PR P R
30 ---- class 3 1 30{ ---- class 3 ’ et
““““ class 4 o class 4 |

20¢ 20¢

101

(o]

error (%)
error (%)

—10f] _10f
—201 1 —20r
—-301 1 —-30r
—40 2 3 4 5 6 7 8 —49 2 3 4 5 6 7 8
number of servers number of servers
(@)C?=38 (b)C? =25

Figure 9.8: Error in predicting mean delay using the BB approximation (compared with simulation) for
an M/PH/2 with four classes whepe= 0.8 and (a)C? = 8 or (b) C? = 25.

servers lead to worse performance, is more prominent under lowepload

Figure9.7already implies that the effect of prioritization on mean response time in a multiserver system
may be quite different from that in a single server system. In Fi@uBave investigate this phenomena
more closely, by evaluating the accuracy of the BB approxima®@&h {vhich is based on this assumption
of similar behavior in single and multiserver priority queues. Looking at FiguBewe see that the error
in the BB approximation appears to increase for highér(right graph) and for more classes. With four
classes and two servers, the error is already 10% wHes 8 and higher for highe€?. By contrast, for
the same 4-class case as shown in figure 8, the error in RDR is alway$ independent o2 and the
number of servers. In the above graphs all classes were statistically identical. In the case where the classes
have different means, the error in BB can be much higher, whereas RDR-A is much less insensitive to this.

292 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

50 50 50
— SMART-E — SMART-E — SMART-E
FOOLISH-E FOOLISH-E FOOLISH-E
40 E 40 400
30 b 30 301
E E E
20 R 20 20r
10 1 10 10r
0 ; ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
P P P
(a) 1 server (b) 2 servers (c) 4 servers

Figure 9.9: Mean response time under SMART-E versus FOOLISH-E prioritization in a 2-class system,
where the classes are exponentially distributed with means one and ten respectively, for the case of one
server, two servers, and four servers.

9.4.2 The effect of “smart” prioritization

Until now, we have assumed that all job classes have the same means. In this section and the next section, we
remove this assumption. In particular, our goal in this section is to consider the effect of priority schemes
which favor short jobs in multiserver systems. As we have seen throughout this thesis, biasing towards
small jobs is a common method for improving mean response time. Here, we use RDR to understand how
the benefit of favoring short jobs in a single server system compares to that for a multiserver system.

Figure 9.9 considers a job size distribution comprised of an exponential of nesagpresenting jobs
which are “short” in expectation, and an exponential of m&anrepresenting jobs which are “long” in
expectation (where job sizes are measured in a single-server system). The probability of each type of job
is chosen to split load evenly between the short and long jobs (e.g.pwith2 classes% of the jobs are
short andﬁ of the jobs are long). The SMART-E scheduling policy assigns high priority to jobs that are
short in expectation, and the FOOLISH-E scheduling policy assigns high priority to the jobs that are long in
expectation. Figur®.9 shows the results for a (a) one server, (b) two server, and (c) four server system.

Looking at Figure9.9, the SMART-E and FOOLISH-E policies are the same when |o&llow. At
low load, the response time for both policies converges to simply the mean job size, which in these figures
is % for the single server syster%% for the 2-server system, ar?@ for the 4-server system (recall that in a
system withk servers, each server runsldtth the speed).

The most interesting observation is that more servers lead to less differentiation between SMART-E
and FOOLISH-E schemes. For example, at Ipag 0.6, there is a factor of five differentiation between
SMART-E and FOOLISH-E with one server and only a 25% difference between SMART-E and FOOLISH-E
with four servers. The effect appears more prominent under lighter load. This can be explained by recalling
our earlier observation that multiserver systems allow short jobs a chance to jump ahead of long jobs, hence
the negative effects of the FOOLISH-E scheme are mitigated.

9.4: THE IMPACT OF PRIORITIZATION IN AN M/PH/K 293

100

100

— RDR-A | ‘ — RDR-A
---- MK-N ---- MK-N
50t g 50t
5 O 5 9
5 ' 5
' L
—-50r\ -50f TTTTeee-ol .
~100, 50 100 - 150 —100, 0.2 0.4 0.6 0.8 1
c? P
(@p=0.38 (b)yC? =8

Figure 9.10: An illustration of the impact of aggregating priority classes in multiserver systems. The

graphs show error in mean delay of the 4th (lowest priority) class in the MK-N and RDR-A approximations
for an M/PH/2 with SMART-E prioritization, as compared with simulation. (a) shows mean delay as a
function ofC? wherep = 0.8, (b) shows mean delay as a functiorpofhereC? = 8. The classes all have

a 2-phase PH distribution with the same squared coefficient of variatiband different means: 1, 2, 4,

and 8.

9.4.3 The effect of priority aggregation

Aggregation of multiple priority classes into two priority classes is a common approximation technigue.
We have used this idea in RDR-A, and as early as the 80’s Mitrani and King (later followed by Nishida in
the early 90’s) proposed analyzing prioritization in a multiserver system via aggregation. The approach of
Mitrani and King was as follows: obtain the mean response time ofittfeclass by simply aggregating
classes 1 througim — 1 into a single high priority class and letting classrepresent the low priority

class. The above MK-N approximation required further approximating the single aggregate class by an
exponentiajob size distribution, since it was not known how to analyze even a two class multiserver system
with non-exponential job size distributions. Since RDR enables the analysis of multiserver priority queues
with general PH job size distributions, we can reapply the MK-N aggregation idea, but where now we are
able to capture the higher moments of the aggregated class. This approximation is what we have introduced
as RDR-A, since it combines the use of RDR together with aggregation.

In this section, we will study the effect of priority aggregation. To accomplish this, we consider a two
server system with four priority classes. All the classes have a two phase PH distribution, with varying
squared coefficient of variatiolf). The classes differ however in their mean, having means 1, 2, 4, and 8,
respectively, and are prioritized according to the SMART-E scheme; classes with lower means have higher
priority. (FOOLISH-E prioritization yields similar insights.) Figugel0examines the error in the mean
delay of the 4th class under RDR-A and under MK-N as a functiofi“ofind as a function gf.

We see that the error in RDR-A is never more than 5% regardle§€ of p. By contrast, the error in
MK-N is almost never less than 50%, and gets worse under higher load%antfe find experimentally that
when the classes are identical, RDR-A incurs only slightly more error than RDR. This makes sense since
aggregating identical classes does not incur additional variability. However when the classes are different,
as in the case of SMART scheduling in Fig@dQ the error can increase to 5% under RDR-AvasdC?
are varied, while it remains below 3% for RDR over the full range ahdC? depicted in Figur®.1Q

294 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

The bottom line is that “aggregation into two classes” is a good method for approximating prioritization
in multiserver systems where the number of classes is 2. However, the aggregation needs to be done
carefully — the distribution of the aggregate class must be modeled more closely than can be captured by an
exponential distribution. Thus another benefit of RDR is revealed; by allowing for PH job size distributions
it enables more accurate approximations of multi-class systems via aggregation.

9.5 Designing multiserver systems

We will now apply the understanding of prioritization in multiserver systems that we have developed so far
in order to approach the task of designing multiserver systems. In particular, one fundamental aspect of de-
signing multiserver systems is the task of deciding between using a few fast (but expensive) servers or many
slow (but cheaper) servers given a limited budget. By using fewer, faster servers one avoids underutilizing
the servers when there are only a small number of customers in the system; however by using many, slower
servers the variability of service demands has less of an impact.

In this section, we address this tradeoff by studying the following question:

Is it preferable to use a single fast server of speedr £ slow servers each of speed
s/k? What is the optimat?

Though this question uses a simplified cost model, it provides a clear view of the tradeoffs between
using many cheap, slow servers and a few fast, expensive servers. Further, this question has been the focus
of a stream of researci$0, 220, 133 200, 149 207 (which we discuss in detail in Sectiégh5.1). All of
this prior work considers the question und€2FS scheduling. We will address the question in BH@FS
setting and extend the discussion to the case of priority queues. Armed with our analysis of thé M/PH/
dual-priority queue, we focus directly on questions involving choosing the optimal resource configuration.

In particular we are interested in the following questions:

1. Under what conditions are multiple slow servers preferable to a single fast server? Is the optimal
number of servers sensitive to changes in the relative arrival rates of the priority classes and changes
in the variability of the service time distributions?

2. Does the answer to “how many servers are optimal” differ for the different priority classes? E.g., does
the lower priority class prefer more or fewer servers than that preferred by the higher priority class?

3. How does the optimal number of servers idwal priority system differ from the case when all jobs
have been aggregated intsiaglepriority class?

4. If one chooses a non-optimal number of servers, how does that affect the overall mean response time
and the per-class mean response time?

9.5.1 Prior work

The question of how many servers are best has a long history, all assuming a single priority class. Through-
out this section, we will assume that the performance metric of interest is mean response time rather than
mean delay (queueing time) since it is clear that to minimize mean queueing time one wants an infinite
number of servers, 51].

9.5: DESIGNING MULTISERVER SYSTEMS 295

— 21
35/ . : --- G4
30 6 or more | - C°=16
best o [C%=64
25/ 3
¥ E
O 201 T
2,
15-
10 1k
5,
1 1 1 1 O 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 2 4 6 8 10
p Number of Servers
(@) (b)

Figure 9.11: The case of a single priority class. (a) The optimal number of servers as a function of the
load, p, and the variability of the job size distributiod;. (b) Mean response timé;[T], as a function of
the number of servers at various job size variabiliti€® = 1, 4, 16, 64) for a fixedp = 0.6.

As early as 1958 Morse observed that for an MMy stem the optimal number of servers is oh&(.
This was formalized by Stidhan22(, who showed that under a general arrival process, and service times
that are exponential, Erlang, or deterministic, a single server minimizes the expected number in system.
Likewise, for a single server, Mandelbaum and ReimE8d] show that one server is best in the extreme
cases when traffic is very light, regardless of job size variability. So, not only is variability important, but
so too is traffic intensity. Scheller-Wol2D(characterizes the effect of traffic intensity. He shows that
under so-called power-law service times, moments of response time may move from infinite to finite as
a function of both the number of servers and the traffic intensity. Very recently, Molinero-Fernandez et
al. [149 consider the question of how many servers are best in an M/Hifgle priority system, where
HT denotes deavy-tailedservice distribution. To answer this question, they approximate a heavy-tailed
distribution with a bimodal distribution (BM), and then provide an approximate closed-form analysis of the
M/BM/ k queue, which they argue provides a reasonable approximation of the Méid€lUe. The question
of how many servers is best has also been considered via simulation in the context of angMéGé by
[207. None of the above work considers priorities.

9.5.2 How many servers are best in a FCFS system

To begin, we consider the simplified problem of determining the number of servers that minimizes the
mean response time under jastepriority class. The M/PH{/FCFS queue is easily analyzable via matrix
analytic methodsl25, as its Markov chain has a state space infinite in only one dimension.

Figure9.11(a) shows the optimal number of servers as a function of the load and the variability of the
job size. All of our results are expressed as a function of the variability of the job size distribution, and the
server load. While other factors, e.g., the exact form of the distribution might affect our results, we posit
that load and variability will be the most relevant factors.

296 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

Observe that under high job size variability and/or high load, the optimal number of servers is more
than 1; we prefek slow servers td fast server. For example, at load= 0.4 and the squared coefficient
of variationC? = 20, we see that 3 servers are best. Computations are only done for up to 6 servers —
the level curves shown will continue into the upper right portion of the plot if larger numbers of servers are
considered.

Figure 9.11(b) shows that for any particular job size variability? > 1, having a larger number of
slower servers may reduce the mean response time up to a point, after which further increasing the number
of servers increases the mean response time. To understand why, note that by increasing the number of
servers (while maintaining fixed total capacity), we are allowing short jobs to avoid queueing behind long
jobs — specifically, an arriving short job is more likely to find a server free. Thus increasing the number of
servers mitigates variability, hence improving performance. If the number of servers is too great however,
servers are more likely to be idle, under-utilizing the system resources.

This simple analysis of the single priority M/PHAueue motivates questions about how having two
priority classes changes the answer to the question of “how many servers?” and whether approximating the
more complicated two priority system with a single priority system is feasible. These questions are central
to the remainder of this chapter.

9.5.3 How many servers are best in a dual priority system

We set out to answer four questions about multiserver system design. We have already addressed the first
of these. In answer to Question 1, we have seen that in both the case of single priority class and in the
case of dual-priority classes multiple slow servers can be preferable to a single fast server. Further, we have
seen that the preference depends on service time variability and system load. The reason why multiple slow
servers are preferable under high variability job sizes is that they offer short jobs a chance to avoid queueing
behind long jobs, which in turn lowers mean response time.

We will now focus our investigation on the three remaining questions. (Question 2) How does the answer
the the question of “how many servers are optimal” differ among priority classes? (Question 3) How does
a dual-priority system differ from its corresponding aggregate single priority system in terms of the optimal
number of servers? (Question 4) How much improvement in mean response time can choosing the optimal
number of servers provide?

We find that the answers to these questions depend on the relative sizes and relative proportions (loads)
of the classes, as well as the variability of high priority jobs. The number of servers preferred by low priority
versus high priority jobs can vary widely. Moreover, the number of servers preferred in the dual priority
case when averaged over both classes typically differs substantially from the number preferred for the single
class aggregate case. Furthermore, the absolute effect on mean response time can be dramatic (ranging from
a factor of2 to 6) as the number of servers is varied. In all studied cases, there exists an “optimal” number
of servers where using fewer or more servers results in worse performance under highly-variable service
distributions.

9.5.3.1 Evaluation setup
We split up our evaluation into 3 cases, depending on the relative sizes of high and low priority jobs:

(i) The mean size of high priority jobs equals that of low priority joB$X 7] = 1, E[X] = 1.
(i) The mean size of high priority jobs is smaller than that of low priority jabsX ;7] = 1, E[X] = 10.

9.5: DESIGNING MULTISERVER SYSTEMS

297

40

High Priority

35

30

25

O 20

40

0.2 0.4 0.6 0.8 1
p

Low Priority

35

30

25

O 20

6 or more
best

0.2 0.4 0.6 0.8 1
p

Overall Mean

6 or more
best

40

0.2 0.4 0.6 0.8 1
p

1 Aggregate Class

35

30

25

O 20

6 or more
best

Figure 9.12:

0.2 0.4 0.6 0.8 1
p

(@) pr = pL

How many servers are best when the two priority classes have the same mean job size

(E[Xu] =1, E[X1] =1)?

40

High Priority

35r

30

251

O 20r

40

0.2 0.4 0.6 0.8 1
p

Low Priority

35-

301

251

O 20r

6 or more
best

0.2 0.4 0.6 0.8 1
p

Overall Mean

6 or more
best

40

0.2 0.4 0.6 0.8 1
p

1 Aggregate Class

35r

30

251

O 20r

6 or more
best

0.2 0.4 0.6 0.8 1
p

(b) 2pH = pr.

298 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

(i) The mean size of high priority jobs is larger than that of low priority job§X ;7] = 1, E[X] = 1/10.

Note that the mean service time changes depending on how many servers are in thelsfatesefver or

k slow servers) so that the systems are comparable. The values specified are the values for the maximum
number of servers used in each plot and the mean sizes for each of the other number of servers is scaled
appropriately.

Throughout our evaluations, we will consider a range of variability in the high priority job sizes, typically
shown on the y-axis, and a range of load typically shown on the x-axis. The variability of the low priority
job sizes is held constanf’® = 1). Observe that variability in the low priority jobs is less interesting since
the low priority jobs only affect each other under preemptive resume. Lastly we also vary the proportion of
the load made up by high priority and low priority jobs.

Some technicalities of the setup follow. In all the results shown, the high priority job sizes follow a
2-phase PH distribution with Coxian representation, allowing any varialgifity> 0.5. When varying the
proportion of load in each priority class, we vary the arrival rates of the classes only. In order to compare
our results for the dual-priority system to the same system having a single aggregate class, we use a mixture
of the two-phase PH high priority job size distribution and the exponential low priority job size distribution
to obtain the overall job size distribution aggregated across both classes.

9.5.3.2 Discussion

Figures9.12 9.13 and9.14illustrate the results of our analysis for the three cases described above: (i)
EXpg|=1,E[X] =1, (i) E[Xg] =1, E[X] = 10; and (iii) E[Xyg] = 1, E[X1] = 1/10 respectively.

For each figure column (a) shows the case where the load made up by high and low priority jobs is equal, and
column (b) shows the case wherg < pr. We also discuss, but omit showing, the case where> py..

For each figure we consider both the case of dual-priority classes and the case of a single aggregate class.

Figure 9.12: Equal mean sizes

Looking at the topmost plot in Figu@12column (a), we see that the high priority jobs do not always prefer
one server. In fact in the case of higher variability and/or load, they may prefer five or more servers. This is
to be expected based on our results in SeQ@iém2

Surprisingly however, the number of servers preferred by low priority jobs (shown in the second plot
in column (a)) is much greater than that preferred by high priority jobs. Although only up to six servers
are considered in these plots, we will see in later plots (Figut&b)) that the difference in the number of
servers preferred by low and high priority jobs can be more than 10 servers. Low priority jobs prefer more
servers because low priority jobs are preempted by high priority jobs and thus their mean response time
improves with more servers, which allows them to escape from the dominance of high priority jobs.

The preferred number of servers with respect to the overall mean response time (the average of all jobs,
including both low and high priority jobs) is shown in the third plot in column (a), where we see that the
number of servers preferred by the overall mean, as expected, is a hybrid of that preferred by low and high
priority jobs. Note though that this hybrid is more weighted toward the preference of low priority jobs
because adding extra servers only hurts high priority jobs a small amount; whereas adding extra servers
helps low priority jobs enormously. Interestingly, the number of servers preferred with respect to the overall
mean is nearly identical to that shown for a single aggregate class of high and low priority jobs, shown in the
bottom most plot in column (a). To understand why, observe that all jobs in this case have the same mean,
and thus prioritizing in favor of some of them over others does not affect the mean response time greatly.

9.5: DESIGNING MULTISERVER SYSTEMS 299

High Priority High Priority
40 T T T 40 T T T
35 35¢
30 30r
25 25¢
G- 20 G- 20t
15 15f
10 10F
5 5r
0 0.2 0.4 0 0.6 0.8 1 0 0.2 0.4 o 0.6 0.8 1
Low Priority Low Priority
40 \\2' 40
35 q 35
30 1 301
25 1 25r
G 20 1 best 1 G o0k 1 best
15 15
10 10
5 5
0 0:2 0:4 0 0:6 0:8 1 0 0:2 0:4 o 0:6 0:8 1
Overall Mean Overall Mean
40 40
35 350
30 301
25 25r
G20 G 20
15 15¢
10 101
5 5
0 0:2 0:4 0:6 0:8 1 0 0:2 0:4 0:6 0:8 1
P p
1 Aggregate Class 1 Aggregate Class
40 T T T T 40 T T T
35 sormore 35}
30 301
25 25¢
G 20 E* 20
15 15f
10 1 best 10r
5 51 1 best
0 0.2 0.4 0 0.6 0.8 1 0 0.2 0.4 o 0.6 0.8 1
(@) pu = pL (b) 2pH = p1

Figure 9.13: How many servers are best when the high priority jobs have a smaller mean job size
(E[Xg] =1, E[XL] = 10)?

300 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

Even though the classes have different variabilities, that is a smaller-order effect. This will not remain true
in general.

Moving to column (b) of the same figure, we see that the same trends are evident when the high priority
jobs make up a smaller fraction of the load. However, the specific numbers are quite different. For example,
in the topmost plot of column (b), we see that the number of servers preferred by high priority jobs is much
lower. An explanation of this is that the high priority jobs only interfere with each other and they are fewer
in number in column (b) than in column (a); thus they want fewer, faster servers.

Less obvious is the fact that the number of servers preferred by low priority jobs in column (b) is
also fewer than that in column (a). This follows from the same reasoning; the low priority jobs are most
strongly affected by preemptions from high priority jobs, and with fewer high priority jobs, there are fewer
interruptions and thus fewer servers are needed to avoid queueing behind high priority jobs.

Since both the high and low priority jobs in column (b) prefer fewer servers than in column (a), it
makes sense that their overall mean (shown in the third plot of column (b)) also indicates that fewer servers
are desired. This third plot also matches the bottom most plot in column (b) consisting of a single-class
aggregation of high and low priority jobs, for the same reason explained above — that jobs have the same
mean.

Not shown in Figure.12is the case where high priority jobs comprise more of the load. In this case,
both classes prefer more servers and, therefore, the mean of the two classes also prefers more servers. The
reason for this is the converse of the above situation — there are more high priority jobs, and therefore they
see more interference and want more servers. Further, the low priority jobs are preempted more frequently
by high priority jobs and therefore also want more servers to alleviate the effect. Again the single aggregate
class looks very similar to the two priority class overall mean.

Figure 9.13: High priority class has smaller mean

Moving to Figure9.13 we continue to hold the mean high priority job size at 1 and increase the low priority
job size to 10. Here, giving high priority jobs preference schedules the system more efficiently with respect
to minimizing the overall mean response time.

Notice that the preferred number of servers for the high priority jobs is identical to that in Fidiite
because the high priority job size distribution is unchanged. However, the number of servers preferred by
low priority jobs is now very different: they almost always prefer only one server. This follows from the
fact that there are very few low priority jobs; so there is unlikely to be more than one low priority job in the
system at a time. Thus, low priority jobs prefer a single fast server.

The overall preferred number of servers, averaged over the two priority classes, is again a hybrid of
the preferences of the two classes, but this time is biased toward the preferences of the high priority jobs
because they are in the majority, implying a preference for fewer servers than the corresponding graph in
Figure9.12 Recall that adding servers is a way to help small jobs avoid queuing behind larger jobs. Since
we are in the case where small jobs have priority already, we do not need the effect of multiple servers.
Thus, in this case, priority classes can be viewed as a substitute for adding more servers.

Comparing the overall preferred number of servers for the case of dual priorities with that preferred
under a single aggregate class, we see that this time there is a significant difference in preferences. The
single aggregate class prefers many more servers. This again is a consequence of the fact that in this case
prioritization is a substitute for increasing the number of servers.

Column (b) of Figured.13illustrates the same graphs for the case where the high priority jobs comprise

9.5: DESIGNING MULTISERVER SYSTEMS

301

High Priority

40

35

30

25

O 20

0 0.2 0.4 0.6 0.8 1
p

Low Priority
40

35

30

25
6 or more

ST 20 best

0 0.2 0.4 0.6 0.8 1
p

Overall Mean

6 or more
best

2 best

0 0.2 0.4 0.6 0.8 1
p

1 Aggregate Class

40

35

6 or more
best

30

25

O 20

2 best

0 0.2 0.4 0.6 0.8 1
p

(@) pr = pL

40
35¢
30
251
O 20r
150
10
2 be
5 4

High Priority

40

35r

30

251

20

0 0.2 0.4 0.6 0.8 1
p

Low Priority

6 or more
best
5
0.6
p

st
0 0.2 0.4 0.8 1

Overall Mean

6 or more
best

2 best

0 0.2 0.4 0.6 0.8 1
p

1 Aggregate Class

6 or more
best
5
0.6 0.8
4

(b) 2pH = pr.

40
35
30
25

20

1

2 best
0 0.2 0.4

Figure 9.14: How many servers are best when the high priority class has a larger mean jolE$i¥e | =

1, E[X1] = 1/10)?

302 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

less of the total load. The trends are the same as in column (a); however the preferred number of servers
is significantly smaller in all figures. This follows from the same argument as that given for column (b) of
Figure9.12 In the case (not shown) where high priority jobs make up a greater proportion of the total load,
the number of servers preferred is, as before, always higher than in column (a).

Figure 9.14: High priority class has larger mean

In Figure9.14column (a), we once again hold the mean high priority job size fixed at 1 and now assume the
low priority job sizes have a mean sizelof10. This case differs from the prior figure because now we are
giving priority to the larger job sizes: this reduces efficiency and, consequently, many more servers will be
needed in this case.

Once again, looking the topmost plot in column (a), we see that the preferred number of servers for
high priority jobs is unaffected, since the high priority mean job size distribution has not changed. The low
priority jobs, shown in the second plot of column (a), have vastly different preferences from the prior case.
Here the low priority jobs prefer a very large number of servers; whereas in FdLB¢hey almost always
preferred one server. Because the low priority jobs are very small compared to the high priority jobs, they
want more servers in order to avoid being blocked, and forced to queue behind the large, high priority jobs.

The preferred number of servers for the overall mean response time in the dual-priority system, shown
in the third plot of column (a), is again a hybrid of the preferences of the low and high priority jobs, but this
time is strongly biased toward the low priority jobs because there are more of them. Notice therefore, that
the number of servers preferred is much greater in this case. Comparing this with the single class aggregate,
we see that the single class prefers slightly fewer servers than the dual class overall mean. This is due to
the fact that the prioritization toward large jobs in the dual class system is inefficient. Note that because this
case of prioritization is inefficient, the multiple servers provide an even larger benefit than in the other cases.

Column (b) of Figure.14illustrates the same graphs for the case where the high priority jobs comprise
less of the total load. The trends are the same as in Column (a); however the preferred number of servers
is significantly smaller in all figures. This follows from the same argument as that given for column (b) of
Figure9.12 In the case (not shown) where high priority jobs make up a greater proportion of the total load,
more servers are preferable.

Figure 9.15: Response time as a function of the number of servers

In all the prior results figures, we were concerned with determining the optimal number of servers as a
function of system load and the variability of high priority jobs. Although we sometimes féwsetvers
to be better than 1 server, we never looked at the actual mean response time as a function of the number
of servers. In Figur®.15we do so, ranging the number of servers from 1 to 10. The key points made by
this figure are that: (i) the mean response time of both priority classes is sensitive to the number of servers
and (ii) increasing the number of servers may reduce mean response time up to a point; however making
the number of servers too large increases mean response time — thus forming a “U-shape.” This figure also
reinforces the prior message thia¢ greater the variability of the high priority jobs, the greater the number
of servers needed to mitigate this variability

Figure9.15is divided into two columns: column (a) considers the job size distribution shown in Figure
9.13and column (b) considers the distribution shown in Figudel In the previous figures, we have already
discussed the differences in the number of servers preferred by each class. This same information can be
read off of Figured.15by observing that each of the plots in the figure have a “U-shape” and the bottom of

9.5: DESIGNING MULTISERVER SYSTEMS 303

High Priority High Priority
1.5 T T T 1.5 T T T
1 1r
E E
w w
0.5 0.5
00 2 4 6 8 10 00 2 4 6 8 10
Number of Servers Number of Servers
Low Priority Low Priority
12 ‘ w w 35
__C°-1
3t . C§=4
10 .. Cye
2.5¢ CH=64
8 ol
E E
w w
6 1.5¢
1
4 N
0.5 R
2 ‘ : : 0O ‘.-2- ------ :t__ -_;3_--__-8 ----- 10
0 2 Nurr?ber of Se?vers 8 10 Number of Servers
Overall Mean Overall Mean
2 35 T T T
— C§=1
3 . 05:4
. Cy1e
15 2.5 C2-64
— 2
E LI'_T
- 1.5}
1t
0.5
0.5¢ S
O0 2 4 6 8 10 00 — -2 _______ 4 6 8 10
Number of Servers Number of Servers
1 Aggregate Class 1 Aggregate Class
3.5 T T T 25
—_ Ci=t S 05‘:
. Cla - Oy
8 . C§=16 2 . C5’=16
25 CH=64 CH=64
1.5¢
52 5
1
1.5
0.5
1
%% 2 4 6 8 10 % 2 4 6 8 10
Number of Servers Number of Servers
1
(a)E[XH]:l,E[XL]:lo (b)E[XH]:l,E[XL]:ﬁ

Figure 9.15: Mean response time as a function of the number of servers, which range from 1 to 10. The
system load in these plotsgs= 0.6, with p; = p;, = 0.3.

304 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

the “U” indicates the optimal number of servers.

Figure9.15however makes the following additional points. First, we see that, under high variability
(C? = 64), the difference in the overall mean response time between the case of 1 server and the optimal
number of servers is about a factor of 2 in column (a) and, even more, close to a factor of 6 in column
(b). Thus, variability does play a crucial role, imperfectly explored in prior research. Second, we see that,
whereas in column (a) the optimal number of servers is quickly reached, in column (b) the optimal number
of servers is in some cases greater than 10, not even appearing on the plot. Thus, how prioritization is
performed has a large impact on how the system should be designed.

9.6 Concluding remarks

Motivated by the growing adoption of multiserver designs in computer systems, our goal in this chapter
is to begin to understand the impact of scheduling in multiserver systems and to contrast this impact with
the results we have obtained in the single server setting. However, the analysis of multiserver queues is
known to be difficult even unddfCFS scheduling, so we could not study the multiserver scheduling in the
generality that we have studied single server scheduling. Instead, we focused on one important scheduling
mechanism, prioritization, and sought to understood its impact in multiserver systems. These results provide
a first step towards the analysis®RPT in the multiserver setting.

In order to study multiserver prioritization, we first developed a new analytic approach capable of study-
ing multiserver priority queues with non-exponential service demands: the RDR technique. RDR provides
the first near-exact analysis of an M/RHjueue withm > 2 priority classes. The RDR algorithm is effi-
cient (requiring only a second or two for each data point in the paper) and accurate (resutiagoierror
for all cases that we studied). Although the RDR algorithm is efficient when the number of priority classes
is small, it becomes less practical when the number of priority classes grows (e.g., for an M/M/2 with 10
priority classes, the running time can get as high as tens of seconds). Hence we also introduce the RDR-A
approximation, which works by aggregating the> 2 priority classes into only two priority classes.

This new analysis allows us to obtain insights about priority queueing in multiserver systems. We find
that the effect of prioritization in multiserver systems differs significantly from the effect of prioritization
in comparable single server systems. The reason is that adding servers creates complex effects not present
in a single server. For example, multiple servers provide a strong benefit in dealing with highly variable
job sizes, but they also hinder performance under lighter load. This is especially evident when studying the
effect of “smart” prioritization, where classes of jobs with smaller means are given priority over those with
larger means. We find that, though “smart” prioritization is beneficial in both multiserver and single server
systems, “smart” prioritization has a much stronger impact in a single-server system than in a multiserver
system of equal capacity. This can be explained in part by the observation that multiple servers inherently
aid short jobs by allowing them to jump ahead of long jobs.

Our analysis also allows us to approach the questiogyefem desigin the multiserver setting. In
particular, we illustrated that choosing the correct number of servers can improve mean response time dra-
matically, and we provided a number of guiding principles that can aid in determining the optimal number
of servers in both single and dual priority systems. Further, we illustrated how the optimal number of servers
is affected by the heuristic used to prioritize.

Aside from improving mean response time, choosing the number of servers carefully can also ease the

9.6: CONCLUDING REMARKS 305

pain experienced by low priority jobs. It is possible to mitigate the penalty to low priority jobs (particularly

the penalty caused by high variability of high priority job sizes), by choosing a server configuration which
is more favorable to low priority jobs, typically one with more servers. This can often substantially improve
the mean performance of low priority jobs without being significantly detrimental to high priority jobs; thus

it aids in limiting the “unfairness” experienced by low priority jobs. Intuitively, having more servers reduces
unfairness because low priority jobs are not forced to wait for all higher priority jobs to finish before being
served, they just need to wait for one (of many) servers to become available.

The work in this chapter highlights the interaction between prioritization and multiserver system design.
We illustrated that prioritization does indeed provide less dramatic improvements in mean response time
in multiserver systems than in single server systems. However, we illustrated that prioritization is still
beneficial in multiserver systems in practical settings. Further, we showed that prioritization in multiserver
systems is more “fair” than prioritization in single server systems. So, though prioritization in multiserver
systems does not provide the same efficiency gains as in single server systems, the gains provided generally
come with a lower degree of “unfairness.”

306 CHAPTER 9: THE IMPACT OF MULTISERVER ARCHITECTURES

PART V

Impact and future directions

307

chapTerR 10

Conclusion

Scheduling policies are at the heart of a wide array of computer systems. Whenever a resource is demanded
by a number of users, a scheduling policy determines the order in which the resource is allocated. The study
of scheduling policies has a long history including a vast literature of analytic results, but in recent years,
the field has been going through a resurgence. This resurgence is a result of a variety of scheduling success
stories in computer systems. In particular, at all levels of computer systems, designers dramatically reduced
user response times by making small changes to the scheduling policy used at the bottleneck resource. There
are examples of scheduling success stories in web seB&r$d7, routers, [L79 180, wireless networks
[102 136, peer-to-peer systemd 18, operating systems/f], databases138 139, and beyond. But,
these scheduling success stories have highlighted a number of disconnects between the theoretical research
studying scheduling policies and the needs of system designers, which we detailed in Chapt@result,
the traditional analytic results about scheduling policies often do not immediately apply to the scheduling
policies that are implemented in modern systenibe goal of this thesis has been to develop a modernized
theory of scheduling that can provide analytic results that apply to today’s computer systems.

In order to accomplish this goal, we have identified three categories of disconnects between the needs
of system designers and what is provided by traditional theoretical results:

e The idealized policies studied traditionally in theory cannot be used in practice.
For example, pur8RPT is never implemented in practice. Instead, the policies that are implemented
(i) use estimates of remaining size, (ii) use only 5-10 priority levels, or (iii) are hybri@R&T and
PS-type policies. Each of these variants®RPT will provide response times that are larger than
under pureSRPT, however traditional theoretic results do not provide any information about how
much performance will suffer.

e Many performance measures that are important in practice are not studied in theory.
Mean response time is typically the focus of theoretical scheduling researcBREill is optimal
with respect to mean response time. However, in practice, QoS and fairness metrics are also important.
Additionally, power management, reliability, and many other performance measures are important.
Once these other measures are considGRB&T is no longer the clear choice. Worries tISRPT is
unfair to large job sizes due to its bias towards small jobs pervade. Similarly, worries about providing

309

310 CHAPTER 10: CONCLUSION

good QoS guarantees for large job sizes are common. Traditional theoretical results cannot be used to
address such worries.

e The traditional, simplified theoretical models include many unrealistic assumptions.
The M/GI/1 model is at the heart of a majority of research studying the performance of scheduling
policies, but both the assumptions of a Poisson arrival process (the M) and a single server (the 1)
are often unrealistic. For example, real arrival processes tend to be bursty and real users tend to be
interactive and impatient. Further, many modern system designs make use of multiserver architec-
tures, e.g. server farms and multi-core processers. Th8&RIT is optimal in the M/GI/1 setting,
once one considers interactive, impatient users and multiserver se8RB3, may no longer be the
optimal policy for mean response time. Further, the traditional theoretical research does not study the
performance oERPT in these more complex settings.

In this thesis, we have provided a number of tools and results that allow us to begin to bridge each of these
categories of disconnects:

e Moving beyond idealized policies
We have seen that the idealized policies studied in theory are not used in practice and, instead, a
wide variety of variants of these policies are used. Thus, traditional analytic results are inadequate for
system designers. The approach we have developed is to move beyond the study of individual, ide-
alized policies and to study the impact of scheduling heuristics and techniques instead. In particular,
we have formalized many common scheduling heuristics and techniques as scheduling classifications
and, additionally, proven bounds which hold for the performance of all scheduling policies in each
of these classifications. For examp&RPT is characterized by the fact that it uses the scheduling
technique of “prioritizing based on remaining sizes” to apply the heuristic of “prioritizing small jobs.”
So, instead of studying all the variants 8RPT used in practice, we have defined and analyzed a
class of policies that prioritizes based on remaining sizes and a class of policies that prioritizes small
jobs. This new style of scheduling research is motivated by the fact that, though the idealized policies
studied in theory are not used in practice, real system designs tend to apply the same heuristics and
techniques found in the idealized policies. So, we can study these scheduling heuristics directly and
avoid studying a huge array of non-idealized policies individually.

e Moving beyond mean response time
Though mean response time is an important metric for computer systems, system designs must do
more than provide small response times. We have seen that there are a wide variety of other perfor-
mance measures that are also important. In this thesis we have focused on two performance measures
of importance: fairness and the distribution of response time. In both cases, we not only provide
new results for individual scheduling policies, we also provide the first analytic results for scheduling
classifications. Further, it is important to point out that we have provide@irdtdormal metrics for
studying the fairness of scheduling policies.

e Moving beyond the M/GI/1
Due to the difficulty in the analysis of scheduling policies, traditionally they have been analyzed
(primarily) in the M/GI/1 queue. Though this model allows for general job sizes, the assumptions
of Poisson arrivals and a single server are often overly restrictive. In this thesis, we have moved

10.1: LESSONS AND SURPRISES 311

beyond the M/GI/1 model and studied scheduling policies in settings where the arrivals are generated
by interactive users and in settings where the system uses a multiserver architecture. In both of these
settings, our work provides the first thorough study of the effectiveness of scheduling.

Obviously, we cannot provide a complete overview of the results from each chapter of the thesis, so we
will instead provide a summary of a number of important lessons and surprises from the thesis (®etjtion
Then, we will provide a few examples of the impact these lessons and surprises have had for both system
design (Sectiori0.2) and theoretical research on scheduling (Secti@:d. Finally, we will summarize a
number of future research directions motivated by the work in this thesis (Sé&€tidn

10.1 Lessons and surprises

We have covered a wide array of different topics in this thesis, and in each topic our results have provided
us with new, often surprising, lessons about the use of scheduling in computer systems. In this section,
our goal is to conclude the thesis by summarizing a number of these lessons to remind the reader of the
most important results in the thesis. Though we will only discuss the results at a high-level in order to keep
the exposition crisp, we will provide references to the main results that lead to each lesson/surprise. Then,
in Sections10.2and10.3 we will provide examples of the impact of these lessons and surprises both for
system designers and scheduling researchers.

All policies that give priority to small jobs perform well

Traditional theoretical results prove tHaRPT is optimal for mean response time and that the improvement
of SRPT over other policies is dramatic. However, as we have discu&RBET is not implemented in
practice. Instead there are many variantSBPT that have been suggested by system designers. However,
these variants are not analyzed by the theory community. In this thesis, we have defiS&AR& class

to formalize the heuristic of “prioritizing small jobs” in a way that broad enough to include many practical
variations ofSRPT and still simple enough to be easy to apply. Further, we proved thalBRT policies

have mean response time within a factor of 2 of optins®IPT), regardless of the load or service distribu-
tion (Theorenmd.2). Not only that, we proved that aBMART policies have an asymptotically equivalent
response time distribution (Theore®$and6.10. These results eliminate the need for researchers to ana-
lyze each individual variant RPT used in practice, since all such variants are captured by the results on
SMART policies.

Job size estimates are enough

Though theSMART class includes many practical variationsSRPT, it is limited by the fact that all
SMART policies must use exact job size information. This is a severe limitation because, in practice, it
is common that applications are forced to use estimates of job sizes, for instance this is true in wireless
networks and at web servers. To handle this case, we defined a generalizatioisbfART class called
SMART. that includes policies that prioritize small jobs using job size estimates. Further, we proved that all
SMART. policies have mean response time that is within a constant of optimal across all loads and service
distributions (Theorem.8). In addition, we characterized how this constant factor depends on the accuracy
of the job size estimates and properties of the true service distribution (Coréllky

312 CHAPTER 10: CONCLUSION

Using a finite number of priority levels may not be enough

In practice, system designs often cannot a continuum of priority levelSR&ST requires (every possible
remaining size is a different priority level). Instead, real designs often bin remaining sizes into 5-7 different
priority levels in order to approximateRPT. In this thesis we show that under some service distributions,
policies that use a finite number of priority levels can still provide mean response times within a constant
of optimal, for instance under Exponential (Theor8rf) or bounded (Corollary#.12 service time distri-
butions. However, this is not always the case. We also prove that under heavy-tailed distributions no finite
number of priority levels is enough to provide response times within a constant of optimal under heavy
traffic (Theorents.4).

If you're blind, pay attention to the workload

In some cases, computer systems do not even have estimates of job sizes. For instance, routers only know
how much service has been given to a flow; they know nothing about how much more service will be
required by the flow. In this case, we have seen that the optimal policy to use is strongly dependent on the
workload. In particular, it has long been known that when job sizes have an increasing failure rate it is best
to useFCFS and when job sizes have a decreasing failure rate it is best tBRisHowever, the question

of “which policy is best?” for intermediate distributions is unclear. We prove a number of new results that
help to answer this question. In particular, we show that a key determinant as to which is better for mean
response time is whether or not the service distribution is bounded (The&o2&n Further, we prove that

a key determinant as to which is better for the response time distribution is whether the service distribution
is light-tailed or heavy-tailed (Sectidh?2.4).

The tail behavior of the service distribution affects system design

In Chapteis, we focused on understanding the tail of the response time distribution, and we found that there
is a huge difference in the behavior of scheduling policies under light-tailed and heavy-tailed service distri-
butions. We saw that no common scheduling heuristics or techniques is successful under both heavy-tailed
and light-tailed service distributions. For example, SlMART policies minimize the response time talil
under heavy-tailed service distributions (Theor@®) but maximize under light-tailed service distributions
(Theoren6.10. In contrast, some non-preemptive policies minimize the response time tail under light-tailed
service distributions, but all non-preemptive policies maximize the response time tail under heavy-tailed ser-
vice distributions (Theorerfi.4). Thus, the tail behavior of the service distribution must play a key role in
determining the scheduling policy used in computer system designs.

There is no universal notion of fairness

In Chapter7, we provide the first formal definitions of fairness in the M/GI/1 queue. However, we illustrate
that fairness is an amorphous concept, whose meaning depends on the context in which it is considered. As
a result, we discuss and define two distinct notions of fairness: proportional fairness and temporal fairness.
Proportional fairness refers to the idea that all job sizes should receive equitable service, i.e. no job size
experiences response times disproportionate to its size (SécHpnTemporal fairness refers to the idea

that it is fair to respect the seniority of jobs in the queue, i.e. it is in some sense unfair for a small job that
just arrived to the queue to jump in front of the large job (Sectidih Though there are many other notions

of fairness as well, these two cover the needs of a wide range of computer applications.

10.2: THE IMPACT FOR SYSTEM DESIGN 313

Prioritizing small jobs can help large jobs

The acceptance of designs basedS&tPT and othelISMART policies has often been hindered by worries
that large jobs will be starved of service because of the priority given to small jobs. In other words, people
worry thatSRPT andSMART policies are unfair to large job sizes. Surprisingly, we prove in Segtian

that SMART policies can actually provide improved mean response time for all job sizes when compared
with PS, which is often the status-quo in computer systems. For example, Thaofeshows that when

the load< 0.5, all job sizes prefeBRPT overPS when it comes to mean response time. Further, for all
loads and service distributions, Theor@rm9shows that the largest job sizes are treated equivalently under
PS, SRPT, and allSMART policies.

Pay attention to the interactivity of users

In ChapteiB we discussed the impact of interactive users on the performance of scheduling policies. Interest-

ingly, we found that user behavior has an enormous impact on the effectiveness of scheduling. In particular,

if users have long interactive sessions with the server, then the scheduling policy used at the server has
very little impact on the system performance. However, if users have only short interactive sessions, then

the scheduling policy can have an enormous impact on system performance. This is a cautionary tale for
system designers, since the degree of user interaction is typically not viewed as an important workload

characteristic.

How many servers are best?

Our analysis in Chapted allows us to approach the questiongyfstem desigin the multiserver setting.

In particular, we illustrated that choosing the correct number of servers can improve mean response time
dramatically, and we provided a number of guiding principles that can aid in determining the optimal num-
ber of servers in both single and dual priority systems. Further, we characterized how prioritization affects
the optimal number of servers. Aside from improving mean response time, choosing the number of servers
carefully can also reduce the response times experienced by low priority jobs. It is possible to mitigate the
penalty to low priority jobs by choosing a server configuration with more servers. This can often substan-
tially improve the mean performance of low priority jobs without being significantly detrimental to high
priority jobs; thus it aids in limiting the “unfairness” experienced by low priority jobs.

10.2 The impact for system design

Though the thesis has included almost entirely analytic results, the goal of this analysis was to bring theory
closer to practice, and to provide results that apply more directly to real computer systems and, thus, can act
as tools for system design. To illustrate how the results in the thesis can be used for system design, let us
consider a few examples.

Example: Scheduling using job size estimates

In many applications, exact job size information is not known, but it is possible to estimate job sizes
using some system measurement. For example, in web servers and wireless networks, designs that
prioritize the job with the smallest estimated remaining size have been progs2d 81, 130, 102

136. But, in such designs a key question is “how much can response times be reduced by more

314 CHAPTER 10: CONCLUSION

accurately estimating job sizes?” The reason this question is so important is that there are overheads
involved in estimating the job sizes. For example, in a web server, estimating the network delay a
request will experience requires using packet probing techniques.

In Section4.2, we introduce thesMART. classification to capture the effect of using job size
estimates in order to prioritize. We provide simple bounds that provide an illustration of the tradeoff
between the accuracy of job size estimates and the performance of the resulting policy. Further, our
results expose the effect of the underlying job size distribution on this tradeoff.

O

Example: Choosing a workload generator

Workload generators are an invaluable resource when evaluating the performance of proposed system
designs. Most workload generators for web server and database workloads assume a closed system
model, where new job arrivals are only triggered by job completions (followed by a think time). In
contrast, whenever a trace is used to generate the workload, an open system model is implicitly
assumed, i.e. new jobs arrive independently of job completions. Though every systems researcher
is well aware of the importance of setting up one’s experiment so that the system being modeled
is “accurately represented;” system designers generally pay little attention to whether a workload
generator is closed or open.

The work in ChapteB illustrates that there is a vast difference in behavior between the open
and closed models in real-world settings. Not only is the measured response time different under
the two system models, but the two system models respond fundamentally differently to variations in
parameters and scheduling policies, e.g. the impact of scheduling is far more dramatic in the open
model than in the closed model. Further, the differences between these two system models are present
across a range of applications, including static and dynamic web servers, a database back-end, and
an auctioning web site. The differences between the open and closed models motivate the need for
system designers to be able to determine how to choose if an open or closed model is appropriate for
evaluating new designs. As a result, we also provide a simple recipe for how to make this choice in
Chapters8.

O

Example: Online adaptation to time-varying workloads
Not only do scheduling classifications provide a way to analyze existing policies used in practice,
they also provide a technique for improving existing designs. In particular, a defining aspect of
computer system workloads is that they are time-varying, e.g. time of day effects result in certain
periods being far busier than others at e-commerce web sites. As a result of time-varying workloads,
the best scheduling policy to use also changes over time. But, providing adaptive scheduling policies
is extremely difficult, and analyzing them is notoriously hard. Scheduling classifications provide a
way to do both.

To illustrate this, let us consider an example: BMART class. One can imagine a parame-
terized version of the class where poligy j) gives priority to the job with the lowestr, where
s is the original size of the job and is the remaining size of the job. Then, one could implement
the SMART class as a policy by using machine learning techniques to adaptively choose the best
(7,7). Not only will this approach lead to a policy that outperforms any st&8fMART policy, but
the resulting adaptive policy will still be in tfeMART class. Thus, all of the results we have proven

10.3: THE IMPACT FOR THEORETICAL SCHEDULING RESEARCH 315

about theSMART class will hold about the adaptive policy, even as it adapts itself online.
O

Example: Server farm design

An important question facing server farm designers is that of “how many servers are best?” In
particular, given a fixed budget, the question is whether to use a small number of fast, expensive
servers or to use a larger number of cheaper, slower servers.

Our results in Chapte® provide a number of guiding heuristics for designers. We illustrate that
systems with fewer servers have an advantage over larger systems with respect to utilization, but pay
a price when job sizes are highly variable. Specifically, when fewer servers are used is it more likely
that some servers will sit idle unnecessarily, but it is also more likely that small jobs will become
trapped behind larger jobs. Not only do our results provide these high-level heuristics for designers,
they also provide a technique for obtaining exact results for which server configuration is optimal. In
addition, they illustrate how the optimal configuration is affected by scheduling.

O

We could go on to list many other examples but, hopefully, these examples already make the point that the
results in the thesis begin to bridge the disconnects between the needs of system designers and traditional
analytic results.

10.3 The impact for theoretical scheduling research

Beyond the impact of the thesis for system design, the results in this thesis also present a number of new
directions for theoretical research on scheduling — both by defining new performance measures and clas-
sifications to study and by developing new analytic techniques. To illustrate the impact to the theoretical
community, let us consider a few examples.

Example: Studying Classifications

Following the introduction of th& MART classification at the Sigmetrics conference in 2028]],
many other researchers also became interested in scheduling classifications. This led to a collabora-
tion with Bert Zwart and Misja Nuyens analyzing the distribution of response times GMART
policies in the large buffer large deviations regime (see Chap}drl61]. In addition, it led to a
collaboration with Sanjay Shakkottai and Chang Woo Yang on the analySIMART policies in
the many sources large deviations regin2&d . Further, other researchers have started to intro-
duce their own scheduling classifications. For example RROTECTIVE class that we discuss in
this thesis was introduced by Friedman and Hurl@g][Further, Feng, Misra, & Rubenstein/f],
Nunez-Queija & Kherani118, and Kherani [L17] have all introduced interesting classifications of
other scheduling techniques and heuristics.

O

Example: Defining Fairness
Our initial work defining a metric for studying the fairness of scheduling policies appeared in the
Sigmetrics conference in 200338, where it won the Best Student Paper Award. It has since been

316 CHAPTER 10: CONCLUSION

cited over 50 times, has been used for many applications outside of web servers, and has served to
jump-start a new focus on fairness in the theoretical scheduling community. Many researchers, e.g.
Rai, Biersack, et al. 179, 180, Gong & Williamson B7, 88, 86], and Brown §7], have analyzed

a wide array of policies with respect to the fairness measure we introduced. Still others, including
Friedman & Hendersonq8], have invented new policies that perform well with respect to this fair-
ness measure. In addition, many researchers, such as Levy &18&z184, 20] and Sandmann

[195 196, have developed new fairness measures for use in other applications.

O

Example: Recursive Dimensionality Reduction

In Chapter9 we provided the first near-exact analysis of multiserver priority queue using a new
technique called Recursive Dimensionality Reduction (RDR), which serves to recursively use the
solution to amn — 1 dimensional Markov chain in order to solve ardimensional Markov chain. In
addition to its usefulness in studying multiserver systems, RDR has turned out to be useful in many
other application domains. For example, it has been applied to analyze dispatching algorithms in
multi-queue systems and affinity scheduling algorithms. In all, the technique has led to more than a
dozen papers from our research group at Carnegie Mellon, &8f3 94, 165, 242, 95].

O

Example: Large deviations analysis in the GI/GI/1

In Chapter6, we provided the first GI/GI/1 large buffer, large deviations analysis ofSMART

class using a novel probabilistic approach based on an explicit random walk decomposition. Before
this work, only the M/GI/1 analysis of an individuBMART policy, SRPT, was known. Further,

the M/GI/1 analysis oSRPT depended on an explicit characterization of the momeni%oj, and
therefore was infeasible for use in the GI/GI/1 setting. Our new approach relies on purely probabilis-
tic analysis and thus extends easily bey@MART policies toFB, FOOLISH policies, and beyond.

O

Again, we could go on to list many other examples, but hopefully, these examples already make the
point that the results in the thesis provide a number of new directions for theoretical scheduling research.
Specifically, these examples illustrate that the thesis has provided new models, new metrics, and new tools
that can help the theoretical scheduling research community provide results that are applicable to computer
system designs.

10.4 Further directions

The work in this thesis has begun to bridge the gaps between theoretical work on scheduling and the needs of
practitioners, however there is much work that remains on this topic. We have studied a number of common
scheduling heuristics and techniques, but there are other important heuristics to consider. We have studied
a diverse set of metrics, but there are many other performance measures that are important in computer
systems. In addition, we have studied two generalizations of the traditional M/GI/1 model, but there are
many other practical complexities that need to be studied. To end the thesis, we will summarize a few of the
open questions along each of these themes.

10.4: FURTHER DIRECTIONS 317

New classifications

One of the key contributions of this thesis is the introduction of “scheduling classifications” as a way to
move beyond the analysis of individual, idealized policies and include the policies that are implemented
in real system designs. To that end, we have introduced scheduling classifications that cover a wide range
of common scheduling heuristics and techniques. However, there are many other interesting scheduling
heuristics and techniques that one could formalize into scheduling classifications. For example, it would be
interesting to define a scheduling classification that incR8evariants such as Discriminatory Processor
Sharing DPS) or Generalized Processor Shari@HS).

More metrics

In this thesis we have gone beyond mean response time to study fairness and the distribution of response
time, but there are obviously many other performance measures that are important to study. Even among the
two metrics that we studied, there is much more interesting research to perform.

In particular, we studied one particular scaling of the distribution of response time, the large buffer large
deviations scaling, but there are many other ways to study the distribution of response time. For example,
as we described in Sectidh4, it is also interesting to study the distribution of response time in the many
sources large deviations regime. Further, it would be interesting to understand more about the contrast of
higher moments of response time, such as variance, across scheduling policies.

The story is similar with fairness. We introduced a number of new measures characterizing the fairness
of scheduling policies, but fairness is such an amorphous concept that there are many other interesting
aspects of fairness that are important to study. In fact, following our work on fairness a number of researchers
have gone on to introduce other definitions of fairness, many of which we discuss in Sgétidut, it
remains to find useful metrics for studying fairness of scheduling policies beyond the single server setting.

Beyond other measures of fairness and the distribution of response time, there are a wide variety of
weighted response time measures that are important in practice, e.g. slowdown. Under these weighted
response time measures many results about scheduling policies start to change. For iBRBRAceE
not optimal for mean slowdown, though it is still within a factor of two of optina®][As a result of
these differences, much is left to understand about the performance of scheduling policies under weighted
response time measures.

Other models

In this thesis we focused on two generalizations of the M/GI/1 queue — interactive users and multiserver
systems — but there are many other important generalizations to consider. Let us highlight two others that
are of particular interest: user impatience and stochastic service rates.

User impatience is an issue that affects almost every computer system. When users become frustrated by
delay they tend to abandon their requests, e.qg. hitting the refresh button in their browser or killing the process
that is hanging. This abandonment can be a major design issue. For example, nearly 20% of internet traffic
due to aborted service requests]]. This high level of user abandonment has a large, negative impact on
the behavior of the time-sharing policies liR&S that are used in many computer systems because resources
are wasted on users that later abandon due to impatience. However, since users with small requests tend
to become impatient quickly while users with large requests tend to be more patient, it seems that applying
the heuristic of prioritizing small jobs may limit the amount of wasted service. But, the benefits of such an
approach are not understood.

318 CHAPTER 10: CONCLUSION

Stochastic service rates are of fundamental importance for studying wireless networks and when study-
ing power management. In wireless networks, channel conditions change over time, and thus the bandwidth
available is stochastic. In such settings, scheduling policies that ignore the changes in service rates can pay a
significant price in terms of throughput. Thus, scheduling policies need to be opportunistic and choose jobs
that have high service rates when possible. Opportunistic scheduling is commonplace in wireless networks
[102 136, but the analysis of such policies is almost non-existent in the scheduling literature. In power
management, the issue is not that the environment affects the service rate. Instead, the goal is to adjust the
service rate in a way that conserves power. In particular, by scaling down or turning off the processor during
periods of light load, the system can achieve significant power savings. Such techniques are increasingly
important in CPU scheduling, data centers, and mobile devik&452, 226, but there is very little analytic
work studying these techniques.

Bibliography

[1] Webjamma world wide web (www) traffic analysis tools.
http://research.cs.vt.edu/chitra/webjamma.html.

[2] The PSC's Cray J90’s. http://www.psc.edu/machines/cray/j90/j90.html, 1998.
[3] The U.S. Geological Survey. http://www.usgs.gov, 2002.
[4] Carnegie Mellon School of Computer Science. http://www.cs.cmu.edu/, 2005.

[5] S. Aalto, U. Ayesta, and E. Nyberg-Oksanen. M/G/1 MLPS compared to M/G/1Msr. Res.
Letters 33:519-524, 2004.

[6] S. Aalto, U. Ayesta, and E. Nyberg-Oksanen. Two-level processor-sharing scheduling disciplines:
Mean delay analysis. IRroc. of ACM Sigmetrics-Performanc2004.

[7] J. Abate and W. Whitt. Numerical inversion of Laplace transforms of probability distributioRSA
J. on Computing7(1):36-43, 1995.

[8] J. Abate and W. Whitt. A unified framework for numerically inverting laplace transfolRISORMS
J. on Computing18(4):408—-421, 2006.

[9] B. Abi-ltzhak and A. Halfin. Server sharing with a limited number of service positions and symmetric
queues.J. Appl. Prob, 24:990-1000, 1987.

[10] M. A. Aczel. The effect of introducing prioritieper. Res.8:730-733, 1960.

[11] J. Almeida and P. Cao. Wisconsin proxy benchmark 1.0. http://www.cs.wisc.edu/cao/wpb1.0.html,
1998.

[12] W. Almesberger. Linux network traffic control — implementation overview. White paper available
at http://diffserv.sourceforge.net/, 1999.

[13] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite, K. Rajamani, and
W. Zwaenepoel. Specification and implementation of dynamic web site benchmaiérikshop
on Workload Characterizatiqr2002.

[14] V. Anantharam. How large delays build up in a GI/G/1 queQaeueuing Sys5:345-368, 1989.

319

320 BIBLIOGRAPHY

[15] M. Arlitt and T. Jin. A workload characterization study of the 1998 world cup web sitd EEE
Network 2000.

[16] M. Arlitt and C. Williamson. Web server workload characterization: the search for invariants. In
Proc. of ACM Sigmetrigsl996.

[17] S. AsmussenApplied Probability and QueuesSpringer, 2003.
[18] K. Athreya and P. NeyBranching processesSpringer, 1972.

[19] B. Avi-ltzhak and H. Levy. On measuring fairness in queudslv. of Appl. Proh.36(3):919-936,
2004.

[20] B. Avi-ltzhak, H. Levy, and D. Raz. Quantifying fairness in queueing systems: Principles, approaches
and applicability.Prob. in the Eng. and Info. Sciences press.

[21] A. Baltrunas, D. Daley, and C. Kluppelberg. Tail behaviour of the busy-period of a gi/g/1 queue with
subexponential servicélnder submissior2006.

[22] G. Banga and P. Druschel. Measuring the capacity of a Web server under realistid/Moaldis\Wide
Weh 2(1-2):69-83, 1999.

[23] N. Bansal. On the average sojourn time under M/M/1/SR®Pper. Res. Letters22(2):195-200,
2005.

[24] N. Bansal and D. Gamarnik. Handling load with less str€aseueing Systems4(1):45-54, 2006.

[25] N. Bansal and M. Harchol-Balter. Analysis of SRPT scheduling: Investigating unfairne®sodn
of ACM Sigmetrics2001.

[26] N. Bansal and A. Wierman. Competitive analysis of M/GI/1 queueing policies. Technical Report
CMU-CS-02-201, Carnegie Mellon University, December 2002.

[27] N. Bansal and A. Wierman. Competitive analysis of M/GI/1 queueing policies. Technical Report
CMU-CS-02-201, Carnegie Mellon University, 2002.

[28] P. Barford and M. Crovella. Generating representative web workloads for network and server perfor-
mance evaluation. IRroc. of ACM SigmetrigsL998.

[29] P. Barford and M. Crovella. The surge traffic generator: Generating representative web workloads for
network and server performance evaluation, 1998.

[30] M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for scheduling continous
job streams. IProc. of the 9th Annual ACM-SIAM Symposium on Discrete Algoritisas.

[31] D. Bertsimas and D. Nakazato. The distributional Little’s Law and its applicatidDgerations
Research43(2):298-310, 1995.

[32] N. Bingham and R. Doney. Asymptotic properties of supercritical branching processes i: the Galton-
Watson processAdyv. in App. Proh.6:711-731, 1974.

BIBLIOGRAPHY 321

[33] N. Bingham, C. Goldie, and J. TeugeRegular Variation Cambridge University Press, 1987.

[34] T. Bonald and L. Massoulie. Impact of fairness on internet performanderoln of ACM Sigmetrics
2001.

[35] T. Bonald and A. Proutiere. Insensitivity in processor-sharing netwoResformance Evaluatign
49(1-4):193-210, 2002.

[36] T. Bonald and A. Proutiere. Insensitive bandwidth sharing in data netwQusueing Sys44:69—
100, 2003.

[37] T.Bonald and A. Proutiere. On performance bounds for the integration of elastic and adaptive stream-
ing traffic. InProc. of ACM Sigmetrics-Performanc2004.

[38] A. Bondi and J. Buzen. The response times of priority classes under preemptive resume in M/G/m
gueues. IMACM Sigmetricspages 195-201, August 1984.

[39] S. Borst, O. Boxma, J. Morrison, and R. Nunez-Queija. The equivalence between processor sharing
and service in random orde@per. Res. Let31:254-262, 2003.

[40] S. Borst, O. Boxma, R. Nunez-Queija, and B. Zwart. The impact of the service discipline on delay
asymptotics Performance Evaluatiqrb4:175-206, 2003.

[41] S. Borst, R. Nunez-Queija, and B. Zwart. Sojourn time asymptotics in processor-sharing queues.
Queueing Sysb3(1-2), 2006.

[42] D. Botvich and N. Duffield. Large deviations, economies of scale, and the shape of the loss curve in
large multiplexersQueueing System20:293-320, 1995.

[43] O.Boxma and V. Dumas. The busy period in the fluid qudrezf. Eval. Rey.26:100-110, 1998.
[44] Bradford L. Barrett. The Webalizer. http://www.mrunix.net/webalizer, 2005.

[45] L. Bright and P. Taylor. Calculating the equilibrium distribution in level dependent quasi-birth-and-
death processeStochastic Modesl1:497-514, 1995.

[46] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. N. Kudva, A. Buyuktosunoglu, J. Wellman,
V. Zyuban, M. Gupta, and P. Cook. Power-aware microarchitecture: Design and modeling challenges
for next-generation microprocessotEEE Micro, 20(4):26—44, 2000.

[47] P. Brown. Comparing FB and PS scheduling policiestf. Eval. Rey.34(3):18-20, 2006.

[48] J. Buzen and A. Bondi. The response times of priority classes under preemptive resume in M/M/m
gueuesOperations Researcl31:456—-465, 1983.

[49] T. Cain, M. Martin, T. Heil, E. Weglarz, and T. Bezenek. Java TPC-W implementation.
http://www.ece.wisc.edu/ pharm/tpcw.shtml, 2000.

[50] J. Calabrese. Optimal workload allocation in open queueing networks in multiserver qléares.
agement Scien¢88:1792-1802, 1992.

322 BIBLIOGRAPHY

[51] X. Chao and C. Scott. Several results on the design of queueing systepesations Research
48:965-970, 2000.

[52] L. Cherkasova. Scheduling strategies to improve response time for web applicatiomighin
performance computing and networking: international conference and exhibjiages 305-314,
1998.

[53] R. Chinchilla, J. Hoag, D. Koonce, H. Kruse, S. Ostermann, and Y. Wang. The trafgen traffic gener-
ator, 2002.

[54] V. Chistyakov. A theorem on sums of independent, positive random variables and its applications to
branching processeshry. of Prob. and its App9:640-648, 1964.

[55] J. Chover, P. Ney, and S. Waigner. Functions of probability measdresAnalyse Mathématique
26:255-302, 1973.

[56] D. Cline. Intermediate regular andvariation. Proc. of the London Math. Sq&8:529-557, 1994.

[57] D. Cline and G. Samorodnitsky. Subexponentiality of the product of two random varightesh.
Proc. and their App.49:75-98, 1994.

[58] A. Cobham. Priority assignment in waiting line problerperations Resear¢l2:70—-76, 1954,
[59] A. Cockcroft. Watching your web server. http://www.theunixinsider.com, 1996.

[60] J. Cohen. Some results on regular variation for distributions in queueing and fluctuation theory.
Appl. Prob, 10:343-353, 1973.

[61] R. W. Conway, W. L. Maxwell, and L. W. MillerTheory of SchedulingAddison-Wesley Publishing
Company, 1967.

[62] M. Crovella and A. Bestavros. Self-similarity in world wide web traffic: Evidence and possible
causesTrans. on Networkings(6):835-846, 1997.

[63] R. Davis. Waiting-time distribution of a multi-server, priority queueing syst®perations Research
14:133-136, 1966.

[64] S. Delas, R. Mazumdar, and C. Rosenberg. Tail asymptotics for HOL priority queues handling a large
number of independent stationary sourd@sieue. Sys. Thry. and Apg0(2):183—-204, 2002.

[65] B. Dellart. How tolerable is delay? consumers evaluations of internet web sites after wditiofg.
Interactive Marketing13:41-54, 1999.

[66] A.Demers, S. Keshav, and S. Shenkar. Analysis and simulation of a fair queueing algdatirmal
of Internetworking 1:3-26, 1990.

[67] L. Dowdy and M. Chopra. On the applicability of using multiprogramming level distributions. In
Proc. of ACM Sigmetrigsl985.

BIBLIOGRAPHY 323

[68] A. B. Downey. A parallel workload model and its implications for processor allocatiordn. of
High Performance Distributed Computingages 112-123, August 1997.

[69] A. B. Downey. Evidence for long-tailed distributions in the internet.Phoc. of ACM SIGCOMM
Internet Measurment Workshap001.

[70] S. Drekic and J. E. Stafford. Symbolic computation of moments in priority quéues. Computing
14:261-277, 2002.

[71] N. Duffield, W. Massey, and W. Whitt. A nonstationary offered-load model for packet networks.
Telecommunication Systend8:271-296, 2001.

[72] R. Egorova, B. Zwart, and O. Boxma. Sojourn time tails in the M/D/1 processor sharing queue.
Probability in the engineering and informational sciencesappear, 2006.

[73] A. Feldmann, A. C. Gilbert, P. Huang, and W. Willinger. Dynamics of IP traffic: A study of the role
of variability and the impact of control, 1999.

[74] H. Feng, V. Misra, and D. Rubenstein. PBS: a unified priority-based cpu schedufRrodnof ACM
Sigmetrics2007.

[75] W. Feng, M. Kawada, and K. Adachi. Analysis of a multiserver queue with two priority classes
and (M,N)-threshold service schedule ii: preemptive priorifysia-Pacific Journal of Operations
Research18:101-124, 2001.

[76] L. Flatto. The waiting time distribution for the random order of service M/M/1 quéu. of App.
Prob., 7:382—-409, 1997.

[77] S. B. Fredj, T. Bonald, A. Proutiere, G. Regnie;, and J. W. Roberts. Statistical bandwidth sharing: a
study of congestion at flow leveSIGCOMM Comput. Commun. Re¥1(4):111-122, 2001.

[78] E. Friedman and S. Henderson. Fairness and efficiency in web server protoc@®sclrof ACM
Sigmetrics2003.

[79] E. Friedman and G. Hurley. Protective scheduling. Technical report, Cornell University, 2003.
[80] J. Fulmer. Siege. http://joedog.org/siege.

[81] H. Gall, S. Hantler, and B. Taylor. Analysis of a non-preemptive priority multiserver qiaw@ances
in Applied Probability 20:852—-879, 1988.

[82] H. Gail, S. Hantler, and B. Taylor. On a preemptive Markovian queues with multiple servers and two
priority classesMathematics of Operations Researdf7:365-391, 1992.

[83] J. Gehrke, S. Muthukrishnan, R. Rajaraman, and A. Shaheen. Scheduling to minimize average stretch
online. In40th Annual symposium on Foundation of Computer Scigrages 433-443, 1999.

[84] S. Gigandet, A. Sudarsanam, and A. Aggarwal. The inktomi climate lab: an integrated environment
for analyzing and simulating customer network traffic.Airoc. ACM SIGCOMM Workshop on Int.
Meas, pages 183-187, 2001.

324 BIBLIOGRAPHY

[85] G.L.Choudhury and W. Whitt. Heavy-traffic asymptotic expansions for the asymptotic decay rates in
the BMAP/G/1 queueStochastic Mode|s10:453-498, 1994.

[86] M. Gong. Quantifying Unfairness in Web SchedulirighD thesis, University of Calgary, 2003.

[87] M. Gong and C. Williamson. Quantifying the properties of SRPT schedulintEEE/ACM Sympo-
sium on Mod., Anal., and Sim. of Comp. and Telecomm. Sys. (MASCXDUS)

[88] M. Gong and C. Williamson. Simulation evaluation of hybrid SRPT scheduling policieBron of
IEEE MASCOTS2004.

[89] I. S. Gradshteyn and I. M. Ryzhikables of Integrals, Series, and Producégademic Press, 2000.

[90] F. Guillemin, P. Robert, and B. Zwart. Tail asymptotics for processor sharing quadesin Appl.
Prob,, 36:525-543, 2004.

[91] M. Harchol-Balter.Exploiting process lifetime distributions for dynamic load balanciRgD thesis,
University of California, Berkeley, 1996.

[92] M. Harchol-Balter. Task assignment with unknown duratidournal of the ACM49(2), 2002.

[93] M. Harchol-Balter, M. Crovella, and C. Murta. On choosing a task assignment policy for a distributed
server systemlEEE Journal of Parallel and Distributed Computin§9:204 — 228, 1999.

[94] M. Harchol-Balter, C. Li, T. Osogami, A. Scheller-Wolf, and M. Squillante. Task assignment with
cycle stealing under central queue. liternational Conference on Distributed Computing Systems
pages 628-637, 2003.

[95] M. Harchol-Balter, T. Osogami, A. Scheller-Wolf, and A. Wierman. Multiserver queueing systems
with multiple priority classesQueueing Sys51:331-360, 2005.

[96] M. Harchol-Balter, B. Schroeder, M. Agrawal, and N. Bansal. Size-based scheduling to improve web
performance ACM Transactions on Computer Syste@i2), May 2003.

[97] M. Harchol-Balter, K. Sigman, and A. Wierman. Asymptotic convergence of scheduling policies with
respect to slowdowrPerformance Evaluatigrd9(1-4):241-256, 2002.

[98] M. Harchol-Balter, K. Sigman, and A. Wierman. Asymptotic convergence of scheduling policies with
respect to slowdown. IRroc. ofPerformance '02, 2002.

[99] M. Harchol-Balter, K. Sigman, and A. Wierman. Understanding the slowdown of large jobs in an
M/GI/1 system.Performance Evaluation Revie®0(3):9-11, 2002.

[100] G.Hasegawa, T. Matsuo, M. Murata, and H. Miyahara. Comparisons of packet scheduling algorithms
for fair service among connections on the internetPfac. of IEEE INFOCOMM 2002000.

[101] P. E. Heegaard. Gensyn - generator of synthetic internet traffic.
http://www.item.ntnu.no/ poulh/GenSyn/gensyn.html.

BIBLIOGRAPHY 325

[102] M. Hu, J. Zhang, and J. Sadowsky. A size-aided opportunistic scheduling scheme in wireless net-
works. InGlobecom2003.

[103] ITA. The Internet traffic archives. Available &ttp://town.hall.org/Archives/pub -
/ITA/ ,2002.

[104] R. Jain.The Art of Computer Systems Performance Analysfitey & Sons, 1991.

[105] P. Jelenkovic and P. Momcilovic. Resource sharing with subexponential distributio&odnof
Infocom 2002.

[106] K. Kant, V. Tewari, and R. lyer. Geist: Generator of e-commerce and internet server traffic.
http://kkant.ccwebhost.com/geist/.

[107] E. Kao and K. Narayanan. Computing steady-state probabilities of a nonpreemptive priority multi-
server gueueJournal on Computing2:211-218, 1990.

[108] E. Kao and K. Narayanan. Modeling a multiprocessor system with preemptive prioNesage-
ment Science?2:185-97, 1991.

[109] E. Kao and S. Wilson. Analysis of nonpreemptive priority queues with multiple servers and two
priority classesEuropean Journal of Operational Researdii8:181-193, 1999.

[110] A. Kapadia, M. Kazumi, and A. Mitchell. Analysis of a finite capacity nonpreemptive priority queue.
Computers and Operations Researth:337-343, 1984.

[111] O. Kella and U. Yechiali. Waiting times in the non-preemptive priority m/m/c queBtchastic
Models 1:257 — 262, 1985.

[112] O. Kella, B. Zwart, and O. Boxma. Some time-dependent properties of symmetric M/G/1 queues.
Appl. Prob, 42:223-234, 2005.

[113] F. Kelly. Reversibility and Stochastic Networklkohn Wiley & Sons, 1979.

[114] F. Kelly, A. Maulloo, and D. Tan. Rate control for communication networks: shadow prices, propor-
tional fairness, and stabilityl. of the Op. Res. Sqel9, 1998.

[115] D. Kendall. Stochastic processes occurring in the theory of queues and their analysisi by the method
of the imbedded Markov chaiiAnnals of Math. Stat24:338-354, 1953.

[116] M. Kendall. The Advanced Theory of Statisticriffin, London, 1945.

[117] A. Kherani. Sojourn times in (discrete) time shared systems and their continuous time lirfitecin
of ValueTools2006.

[118] A. A. Kherani and R. Nunez-Queija. TCP as an implementation of age-based scheduling: fairness
and performancs. IlEEEE Infocom 2006.

[119] L. Kleinrock. Queueing Systengolume I. Theory. John Wiley & Sons, 1975.

326 BIBLIOGRAPHY

[120] L. Kleinrock. Queueing Systengolume II. Computer Applications. John Wiley & Sons, 1976.

[121] L. Kleinrock, R. R. Muntz, and J. Hsu. Tight bounds on average response time for processor-sharing
models of time-shared computer systetm$o. Processing71:50-58, 1971.

[122] D. Korshunov. On distribution tail of the maximum of a random wa&koch. Proc. Appl.72:97-103,
1997.

[123] C. Kotopoulos, N. Likhanov, and R. Mazumdar. Overflow asymptotics in GPS systems with hetero-
geneous longtailed inputs. Proc. of IEEE Infocom2001.

[124] V. Kumar, J. Kapur, and O. Hawaleshka. On the interrelationship between semi-open and closed
queueing network models for flexible manufacturing systemof. Information and Optimization
Sciences8:167-187, 1987.

[125] G. Latouche and V. Ramaswamitroduction to Matrix Analytic Methods in Stochastic Modeling
ASA-SIAM, 1999.

[126] H. Leemans.The Two-Class Two-Server Queue with Nonpreemptive Heterogeneous Priority Struc-
tures PhD thesis, K.U.Leuven, 1998.

[127] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the self-similar nature of ethernet traffic. In
Proc. of SIGCOMM '93pages 183-193, September 1993.

[128] J. Leslie. On the non-closure under convolution of the class of subexponential distributioofs.
App. Prob, 26:58-66, 1989.

[129] Z. Liu, N. Niclausse, and C. Jalpa-Villanueva. Traffic model and performance evaluation of web
servers.Performance Evaluatiqrd6(2-3):77—-100, 2001.

[130] D. Lu, P. Dinda, Y. Qiao, and H. Sheng. Effects and implications of file size/service time correlation
on web server scheduling policies. Pnoc. of IEEE Mascots2005.

[131] D. Lu, H. Sheng, and P. Dinda. Size-based scheduling policies with inaccurate scheduling informa-
tion. In Proc. of IEEE Mascots2004.

[132] B. A. Mah, P. E. Sholander, L. Martinez, and L. Tolendino. Ipb: An internet protocol benchmark
using simulated traffic, 1998.

[133] A. Mandelbaum and M. Reiman. On pooling in queueing netwokkanagement Sciencd4:971—
981, 1998.

[134] M. Mandjes and M. Nuyens. Sojourn times in the M/G/1 FB queue with light-tailed service times.
Prob. in the Eng. and Info. S¢il19:351-361, 2005.

[135] M. Mandjes and A. Zwart. Large deviations of sojourn times in processor sharing queodsr
submission2005.

BIBLIOGRAPHY 327

[136] R. Mangharam, M. Demirhan, R. Rajkumar, and D. Raychaudhuri. Size matters: Size-based schedul-
ing for MPEG-4 over wireless channels. $IE & ACM Proceedings in Multimedia Computing and
Networking pages 110-122, 2004.

[137] T. Matis and R. Feldman. Using cumulant functions in queueing th€augueing Sys40:341-353,
2002.

[138] D. McWherter, B. Schroeder, N. Ailamaki, and M. Harchol-Balter. Priority mechanisms for OLTP
and transactional web applications.lint. Conf on Data Engineerin@004.

[139] D. McWherter, B. Schroeder, N. Ailamaki, and M. Harchol-Balter. Improving preemptive prioritiza-
tion via statistical characterization of OLTP locking.lit. Conf on Data Engineerin@005.

[140] D. Menasce and V. Almeid&caling for E-Buisness: technologies, models, performance, and capac-
ity planning Prentice Hall, 2000.

[141] A. D. Meyer and J. Teugels. On the asymptotic behaviour of the distributions of the busy period and
the service time in M/G/1J. App. Prob, 17:802—-813, 1980.

[142] Microsoft. The arts and science of web server tuning and internet information servers 5.0. microsoft
technet - insights and answers for it professionals. http://www.microsoft.com/technet/, 2001.

[143] Microsoft IS 6.0 Resource Kit Tools. Microsoft web capacity analysis tool (wcat) version 5.2.

[144] Microsoft TechNet. Ms web application stress tool (wast).
http://www.microsoft.com/technet/itsolutions/intranet/ downloads/webstres.mspx.

[145] D. Miller. Steady-state algorithmic analysis of M/M/c two-priority queues with heterogeneous
servers. In R. L. Disney and T. J. Ott, editoAgplied probability - Computer science, The Inter-
face, volume lIpages 207-222. Birkhauser, 1992.

[146] Mindcraft. The authmark benchmark. http://www.mindcraft.com/authmark/.
[147] 1. Mitrani. Probabilistic Modeling Cambridge University Press, 1998.

[148] I. Mitrani and P. King. Multiprocessor systems with preemptive prioritRsrformance Evaluatign
1:118-125, 1981.

[149] P. Molinero-Fernandez, K. Psounis, and B. Prabhakar. Systems with multiple servers under heavy-
tailed workloads, 2003 — Manuscript.

[150] P. Morse.Queues, Inventories, and Maintenandehn Wiley and Sons, 1958.
[151] D. Mosberger and T. Jin. httperf: A tool for measuring web server performance, 1998.
[152] T. Mudge. Power: A first-class architectural design constr&@omputer 34(4):52-58, 2001.

[153] E. Nahum, M. Rosu, S. Seshan, and J. Almeida. The effects of wide-area conditions on WWW server
performance. IiProc of ACM SIGMETRICS, pages 257-267, 2001.

328 BIBLIOGRAPHY

[154] R. Nelson.Probability, Stochastic Processes, and Queueing The®pyinger-Verlag, 1995.

[155] M. Neuts. Moment formulas for the Markov renewal branching procadsances in Applied Prob-
abilities, 8:690-711, 1978.

[156] B. Ngo and H. Lee. Analysis of a pre-emptive priority M/M/c model with two types of customers and
restriction.Electronics Letters26:1190-1192, 1990.

[157] T. Nishida. Approximate analysis for heterogeneous multiprocessor systems with priorityPgbs.
formance Evaluationl5:77-88, 1992.

[158] R. Nunez-Queija. Queues with equally heavy sojourn time and service requirement distributions.
Ann. Oper. Res113:101-117, 2002.

[159] M. Nuyens.The Foreground-Background QueuehD thesis, University of Amsterdam, 2004.

[160] M. Nuyens and A. Wierman. The foreground-background queue: A suPezformance evaluatign
in press.

[161] M. Nuyens, A. Wierman, and B. Zwart. Preventing large sojourn times using SMART scheduling.
Operations Researcln press.

[162] M. Nuyens and B. Zwart. A large-deviations analysis of the GI/GI/1 SRPT quénger submissiogn
2005.

[163] T. Osogami.Analaysis of multi-server systems via dimensionality reduction of Markov Chairi3
thesis, Carnegie Mellon University, 2005.

[164] T. Osogami and M. Harchol-Balter. A closed-form solution for mapping general distributions to
minimal PH distributions. IrModelling Tools and Techniques for Comp. and Comm. System Perf.
Eval, 2003.

[165] T. Osogami, M. Harchol-Balter, and A. Scheller-Wolf. Analysis of cycle stealing with switching cost.
In ACM Sigmetrics 2003ages 184-195, 2003.

[166] T. Osogami, A. Wierman, M. Harchol-Balter, and A. Scheller-Wolf. A recursive analysis technique
for multi-dimensionally infinite Markov chaingerf. Eval. Rey.32(2):12-13, 2004.

[167] T. J. Ott. The sojourn-time distribution in the M/G/1 queue with processor shatirgd.App. Proh.
21:360-378, 1984.

[168] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and portable web seriPeoc!rof
USENIX 1999.

[169] A. Pakes. On the tails of waiting-time distributiorls.App. Prob, 12:555-564, 1975.

[170] Z. Palmowski and T. Rolski. On busy period asymptotics in the GI/GI/1 queneler submission
2004.

BIBLIOGRAPHY 329

[171] A. Parekh and R. Gallager. A generalized processor sharing approach to flow control in integrated
services networks: the single node ca&EE/ACM Transactions on Networking:344—-357, 1993.

[172] K. Park and W. Willinger. Self-similar network traffic and performance evaluatialohn Wiley &
Sons, 2000.

[173] V. Paxson and S. Floyd. Wide area traffic: The failure of Poisson modelirans. on Networking
pages 226-244, 1995.

[174] D. L. Peterson. Data center I/O patterns and power lawE€MG Proc, December 1996.
[175] T. E. Phipps. Machine repair as a priority waiting-line problédper. Res.4:76-85, 1956.
[176] M. Pinedo.Scheduling: Theory, algorithms, and systefgentice-Hall, Inc., 2002.

[177] PostgreSQLhttp://www.postgresql.org

[178] Y. Qiao, D. Lu, R. Bustamante, and P. Dinda. Looking at the server side of peer-to-peer systems.
Technical Report NWU-CS-04-37, Northwestern University, 2004.

[179] I. A. Rai, G. Urvoy-Keller, and E. Biersack. Analysis of LAS scheduling for job size distributions
with high variance. IrProc. of ACM Sigmetric2003.

[180] I. A. Rai, G. Urvoy-Keller, M. Vernon, and E. W. Biersack. Performance modeling of LAS based
scheduling in packet switched networks.Rroc. of ACM Sigmetrics-Performanc2004.

[181] K. Ramanan and A. Stolyar. Largest weighted delay first scheduling: large deviations and optimality.
Ann. of App. Proh.11:1-48, 2001.

[182] M. Rawat and A. Kshemkalyani. SWIFT: Scheduling in web servers for fast response tiSygnmn
on Net. Comp. and App2003.

[183] J. Rawls.A theory of social justiceHarvard University Press, 1971.

[184] D. Raz, B. Avi-ltzhak, and H. Levy. Fairness considerations in multi-server and multi-queue systems.
In Proc. of Valuetools2006.

[185] D. Raz, H. Levy, and B. Avi-ltzhak. A resource-allocation queueing fairness measuRrodnof
ACM Sigmetrics-Performanc2004.

[186] S. Resnik and G. Samorodnitsky. Activity periods of an infinite server queue and performance of
certain heavy tailed fluid queue®ueueing Sys33:43-71.

[187] R. Rhodes, M. P. Battin, and A. Silversledicine and social justiceDxford University Press, 2002.

[188] R. Righter and J. Shanthikumar. Scheduling multiclass single server queueing systems to stochas-
tically maximize the number of succesful departur@sob. in the Eng. and Info. S¢i3:967-978,
1989.

330 BIBLIOGRAPHY

[189] R. Righter, J. Shanthikumar, and G. Yamazaki. On external service disciplines in single stage queue-
ing systems.J. of Applied Probability27:409—-416, 1990.

[190] L. Rizzo. Dummynet: a simple approach to the evaluation of network proto@s¥v Computer
Communication Reviev7(1), 1997.

[191] J. W. Roberts. A survey on statistical bandwidth sharfdgmput. Network45(3):319-332, 2004.
[192] S. Ross.Stochastic Processedohn Wiley & Sons, 1996.
[193] S. RosslIntroduction to Probability ModelsAcademic Press, 1997.

[194] A. Rousskov and D. Wessels. High performance benchmarking with web polygiGpitware -
Practice and Experiengd:1-10, 2003.

[195] W. Sandmann. A discrimination frequency based queueing fairness measure with regard to job se-
niority and service requirement. Proc. of Euro NGI Conf. on Next Generation Int. Ne&2805.

[196] W. Sandmann. Analysis of a queueing fairness measufel/ING Conf. on Measurement, Modeling,
and Eval. of Comp. and Comm. SYZ006.

[197] R. Schassberger. A new approach to the M/G/1 processor sharing dubkue Appl. Proh.16:802—
813, 1984.

[198] P. Schatte. On conditional busy periods in n/M/GI/1 queldath. Operationsforsh. u. Statist. ser.
Optimization 14:455-465, 1983.

[199] P. Schatte. The M/GI/1 queue as limit of closed queueing systitah. Operationsforsh. u. Statist.
ser. Optimization15:161-165, 1984.

[200] A. Scheller-Wolf. Necessary and sufficient conditions for delay moments in FIFO multiserver queues
with an application comparing s slow servers with one fast @dgerations Resear¢tb1:748-758,
2003.

[201] L. E. Schrage. A proof of the optimality of the shortest remaining processing time discifljpes-
ations Researghl 6:678-690, 1968.

[202] L. E. Schrage and L. W. Miller. The queue M/G/1 with the shortest remaining processing time
discipline. Operations Researc¢ti4:670-684, 1966.

[203] B. Schroeder and M. Harchol-Balter. Web servers under overload: How scheduling can help. In
International Teletraffic Congress (ITC 2002003.

[204] B. Schroeder, M. Harchol-Balter, A. lyengar, E. Nahum, and A. Wierman. How to determine a good
multi-programming level for external scheduling. Pnoc. of IEEE ICDE 2006.

[205] B. Schroeder, M. Harchol-Balter, A. lyengar, E. Nahum, and A. Wierman. Providing QoS using
external scheduling. 2007.

BIBLIOGRAPHY 331

[206] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus closed: A cautionary t&lmcln
of NSDI 2006.

[207] G. Shahkar and H. Tareghian. Designing a production line through optimization of m/g/c using
simulation. Mathematical Engineering in Industr$:123-126, 2001.

[208] A. Shaikh, J. Rexford, and K. Shin. Load-sensitive routing of long-lived IP flow®réc. of ACM
SIGCOMM pages 215-226, 1999.

[209] S. Shakkottai and R. Srikant. Many-sources delay asymptotics with applications to priority queues.
Queueing Systems: Theory and Applicati@®183—-200, October 2001.

[210] A. Silberschatz and P. GalviDperating System Concepts, 5th Editidohn Wiley & Sons, 1998.

[211] A. Sleptchenko. Multi-class, multi-server queues with non-preemptive priorities. Technical Report
2003-016, EURANDOM, Eindhoven University of Technology, 2003.

[212] A. Sleptchenko, A. van Harten, and M. van der Heijden. An exact solution for the state probabilities
of the multi-class, multi-server queue with preemptive priorities, 2003 — Manuscript.

[213] sourceforge.net. Deluge - a web site stress test tool. http://deluge.sourceforge.net/.
[214] sourceforge.net. Hammerhead 2 - web testing tool. http://hammerhead.sourceforge.net/.
[215] W. Stallings.Operating Systems, 2nd EditioRrentice Hall, 1995.

[216] Standard Performance Evaluation Corporation (SPEC). SFS97_R1 (3.0) benchmark.
http://www.specbench.org/osg/web99/

[217] Standard Performance Evaluation Corporation (SPEC). SPECJ2EE benchmark.
http://www.specbench.org/osg/web99/

[218] Standard Performance Evaluation Corporation (SPEC). SPECmail2001 benchmark.
http://www.specbench.org/osg/web99/

[219] Standard Performance Evaluation Corporation (SPEC). SPECweb99 benchmark.
http://www.specbench.org/osg/web99/

[220] S. Stidham. On the optimality of single-server queueing syst@psrations Resear¢hi8:708-732,
1970.

[221] L. Takacs. A single-server queue with poisson infiper. Res.10:388-397, 1962.
[222] H. Takagi.Queueing Analysis: Volume 1: Vacation and Priority SysteNwth-Holland, 1991.
[223] A. TanenbaumModern Operating SystemBrentice Hall, 1992.

[224] W. Tang, Y. Fu, L. Cherkasova, and A. Vahdat. Medisyn: A synthetic streaming media service
workload generator. IRroc. of 13th NOSSDAR2003.

332 BIBLIOGRAPHY

[225] The Apache softward foundation. The Apache web server.

[226] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. Reducing power in high-
performance microprocessors. Pnoc. of Design Automation Conferengages 732—-737, 1998.

[227] Transaction Processing Performance Council. TPC benchmark C. Number Revision 5.1.0, December
2002.

[228] Transaction Processing Performance Council. TPC benchmark W (web commerce). Number Revi-
sion 1.8, February 2002.

[229] G. Trent and M. Sake. WebStone: the first generation in HTTP server benchmarking. Technical
report, MTS Silicon Graphics, February 1995.

[230] VeriTest. NetBench 7.0.3. http://www.etestinglabs.com/benchmarks/netbench/.
[231] VeriTest. WebBench 5.0. http://www.etestinglabs.com/benchmarks/webbench/.

[232] L. von Ahn and L. Dabbish. Labeling images with a computer gameCHih '04: Proc. of the
SIGCHI conference on Human factors in computing systeages 319-326, 2004.

[233] A. Ward and W. Whitt. Predicting response times in processor-sharing queuemclrof the Fields
Institute Conf. on Comm. Networkx000.

[234] W. Whitt. A review of L = AW and extensionQueueing System3:235—-268, 1991.

[235] A. Wierman. On the effect of inexact size information in size based poliPe$ormance Evaluation
Review 34(3):21-23, 2006.

[236] A. Wierman. Fairness and classificatioerformance Evaluation Reviewage in press, 2007.

[237] A. Wierman, N. Bansal, and M. Harchol-Balter. A note comparing response times in the M/GI/1/FB
and M/GI/1/PS queue®perations Research Letteid2:73-76, 2003.

[238] A. Wierman and M. Harchol-Balter. Classifying scheduling policies with respect to unfairness in an
M/GI/1. In Proc. of ACM Sigmetrig2003.

[239] A. Wierman and M. Harchol-Balter. Formalizing SMART schedulingWarkshop on MAthematical
performance Modeling and Analysis (MAMAZD04.

[240] A. Wierman and M. Harchol-Balter. Classifying scheduling policies with respect to higher moments
of response time. IRroc. of ACM Sigmetrig2005.

[241] A. Wierman, M. Harchol-Balter, and T. Osogami. Nearly insensitive bounds on SMART scheduling.
In Proc. of ACM Sigmetrig2005.

[242] A. Wierman, T. Osogami, M. Harchol-Balter, and A. Scheller-Wolf. How many servers are best in a
dual-priority M/PH/k systemPerformance Evaluatiqr63(12):1253-1272, 2006.

BIBLIOGRAPHY 333

[243] A. Wierman, T. Osogami, and J. Olsen. Modeling TCP-Vegas under on/off tr&#id. Eval. Rey.
31(2):6-8, 2003.

[244] A. Wierman, T. Osogami, and J. Olsen. A unified framework for modeling TCP-Vegas, TCP-SACK,
and TCP-Reno. IRroceedings of MASCOT3003.

[245] A. Wierman, J. Salzman, M. Jablonski, and A. Godbole. An upper bound for the pebbling threshold
of the path.Discrete Mathematic275:367-373, 2004.

[246] A. Wierman, E. Winands, and O. Boxma. Scheduling in polling systems. 2007.
[247] R. W. Wolff. Stochastic Modeling and the Theory of Queuesentice Hall, 1989.

[248] C. Yang, A. Wierman, S. Shakkottai, and M. Harchol-Balter. Tail asymptotics for policies favoring
short jobs in a many-flows regime. Rroc. of ACM Sigmetric2006.

[249] C. W. Yang and S. Shakkottai. Delay asymptote of the SRPT scheduleProm of the IEEE
Conference on Decision and Contr@lecember 2004.

[250] S. Yang and G. de Veciana. Enhancing both network and user performance for networks supporting
best effort traffic. Trans. on Networkingl2(2):349-360, 2004.

[251] S. Yang and G. de Vecianca. Bandwidth sharing: the role of user impatien&eodrof Globecom
2001.

[252] S. Yashkov. Processor sharing queues: Some progress in an@lysigeing Sys2:1-17, 1987.

[253] S. Yashkov. Mathematical problems in the theory of shared-processor systeaisSoviet Mathe-
matics 58:101-147, 1992.

[254] M. Yuksel, B. Sikdar, K. S. Vastola, and B. Szymanski. Workload generation for ns simulations of
wide area networks and the internet, 2000.

[255] M. Zhou and L. Zhou. How does waiting duration information influence customers’ reactions to
waiting for servicesJ. of Applied Social Psycholog26:1702—-1717, 1996.

[256] A. Zwart and O. Boxma. Sojourn time asymptotics in the M/G/1 processor sharing qQeaaeing
Sys, 35:141-166, 2000.

[257] B. Zwart. Queueing systems with heavy tai#hD thesis, Technische Universiteit Eindhoven, 2001.

334 BIBLIOGRAPHY

Afterward

| joined the Computer Science Department Ph.D. program at Carnegie Mellon University in the fall of 2001
and almost immediately began working with my advisor Mor Harchol-Balter.

The first piece of this thesis was actually the result of work from the winter of my first year. Together
with Mor and Karl Sigman, we proved that all common preemptive policies are “fair” to large job sizes and,
in fact, large job sizes are treated equivalently under most common scheduling policies (see BBction
This work appeared as a short abstract at the MAMA workshop in the summer of 2902nd then as
a full paper at the IFIP Performance conference in 2@&p, fwhere | gave my first conference talk. This
paper served as the starting point for an extended look at the fairness of scheduling policies that has lasted
the rest of my graduate career resulting in papers with Mor at Sigmetrics both in 2B834ee Section
7.1), which won the best paper award, and in 2085((see Sectiory.3and7.4). Recently, | was invited
to put together a survey of these, and other, recent papers studying fai8€ss [

In addition to studying the fairness of scheduling policies, the paper at Sigmetrics in 2003 also began
another branch of this thesis: the study of classifications. In the Sigmetrics 2003 paper we introduced the
technique-based classifications from ChapteBuilding from there, | developed and analyzed 8ART
classification with Mor and Takayuki Osogami (see Sectid). The SMART classification first appeared
as an extended abstract at the MAMA workshop in the summer of 2088 &nd then as a full paper at
Sigmetrics 2005341]. In the following year, | generalized tHf@&MART classification to obtain thEMART,
classification (see Secti@gh2). This work has so far only appeared in the MAMA workshop as an extended
abstract 235, but a full version of the paper is under preparation.

TheSMART classification has spurred collaborations with a number of fellow researchers. In particular,
it served as the beginning of my collaboration with the researchers at the EURANDOM institute in the
Netherlands. With Bert Zwart and Misja Nuyens, we were able to derive a number of results about the
response time distribution und8MART policies (see Sectiof.3). Our collaboration also extended to a
study of theFB policy. Many of these results are still forthcoming, but one paper has already been accepted
to Operations Researchgl] and another has been accepted to Performance Evaluatoh [n addition
to collaborations with Misja and Bert, tH®MART classification also led to a collaboration with Chang-
Woo Yang and Sanjay Shakkottai where we analyzed the distribution of response time in the many sources
regime. This work appeared in Sigmetrics 2008].

In parallel with work on theSMART classification, | was working with Mor, Takayuki, and Alan
Scheller-Wolf to develop techniques for analyzing priority scheduling in multiserver systems (C@apter
This collaboration was extremely fruitful and resulted in a paper at the MAMA workshef] pnd two
very interesting journal papers that have appeared in QUES3ahd Performance Evaluatio842.

335

Finally, over the last year | have worked with Mor and Bianca Schroeder to characterize the impact of
interactive users on the effectiveness of scheduling (Ch&ptédthis is an interesting case of “theory meets
practice,” and it resulted in the most applied piece of the thesis — a publication at NSDIZIH6 |

Though many of the pieces of the thesis have appeared already as workshop, conference, or journal
publications, a number of sections in the thesis include results that have not appeared outside of the thesis.
In particular, theFOOLISH classification is new to this thesis (Sectih3). In addition, the results charac-
terizing the tail behavior of response time unB&OTECTIVE policies are new to this thesis (Sectidh8
and7.2). Further, the notion of “politeness” introduced in Sectibb and the analysis of this quantity are
new to this thesis.

Apart from my thesis work, | also had the opportunity to take part in a number of other research projects
during my graduate career. While the majority of my graduate studies were devoted to analytic work, | also
spent some time on performance modeling for specific application domains, e.g. studying TCP dynamics
[244, 243 and database scheduling04, 205. Also, there were a number of other more theoretical side
projects that | worked on, including extending work from my undergrad years on graph pel@abiaupd
comparing=B andPS [27, 237]. In addition, over the last year | have spent time visiting the EURANDOM
institute and become in involved with a number of projects there. One project with Onno Boxma and Erik
Winands has already led to a paper studying the effect of scheduling in polling sy&4®hsahd a other
collaborations with Ivo Adan, Marcel van Vuuren, Pascal Etman, and Ad Kock are also proving to be quite
interesting.

About the Author

Adam Wierman received a BS with University Honors in Computer Science and Mathematics with minors in
Psychology and Statistics from Carnegie Mellon University in 2001. He then continued at Carnegie Mellon
University to receive his Masters degree in 2004 and his Ph.D. in 2007. For a brief period in 2004 and an
extended period in 2006, he served as a visiting researcher at the EURANDOM institute in the Netherlands.
He is a recipient of an NSF Graduate Research Fellowship, a Siebel Scholars Fellowship, and a best student
paper award at the ACM Sigmetrics conference. In addition, he has received the Carnegie Mellon University
Graduate Student Teaching Award and the Alan J. Perlis Student Teaching Award.

His research applies analytic models and tools that are traditionally used in the operations research
community, in particular stochastic modeling and queueing theory, in order to evaluate the impact of design
decisions for computer systems. His main focus is on understanding the impact of scheduling heuristics on
response time and fairness measures.

337

	Abstract
	Thesis Committee
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Motivation and Background
	1 Introduction
	1.1 Scheduling success stories
	1.2 The essence of a scheduling success story
	1.3 Choosing a scheduling policy
	1.3.1 What traditional theory says
	1.3.2 What happens in practice
	1.3.3 Gaps between theory and practice

	1.4 Bridging the gaps between theory and practice
	1.5 An overview of the thesis
	1.5.1 Synopsis of Part I: Motivation and Background
	1.5.2 Synopsis of Part II: Moving beyond idealized policies
	1.5.3 Synopsis of Part III: Moving beyond mean response time
	1.5.4 Synopsis of Part IV: Moving beyond the M/GI/1
	1.5.5 Synopsis of Part V: Further discussion and conclusion

	2 The basic model of the thesis
	2.1 An overview of the model
	2.2 Performance metrics of interest
	2.3 Commonly used notation
	2.3.1 Basic mathematical notation
	2.3.2 Queueing-specific notation

	2.4 Commonly used distributions
	2.4.1 Phase-type distributions
	2.4.2 Heavy-tailed distributions

	3 An introduction to common policies
	3.1 Simple policies
	3.1.1 First-Come-First-Served (FCFS) and the stationary workload
	3.1.2 Preemptive-Last-Come-First-Served (PLCFS) and busy periods
	3.1.3 Non-preemptive blind scheduling
	3.1.4 Processor-Sharing (PS)

	3.2 Priority-based policies
	3.2.1 Notation for priority-based policies
	3.2.2 Non-preemptive priority queues
	3.2.3 Preemptive priority queues
	3.2.4 Shortest-Remaining-Processing-Time-First (SRPT)
	3.2.5 Foreground-Background scheduling (FB)
	3.2.6 Other priority based policies

	3.3 Concluding remarks

	Scheduling Classifications: Moving Beyond Idealized Policies
	4 Classification via scheduling heuristics
	4.1 The class of SMART policies
	4.1.1 Defining SMART scheduling
	4.1.2 Examples of SMART policies
	4.1.3 Policies excluded from SMART
	4.1.4 Bounding response times for SMART policies

	4.2 Generalizing the SMART class
	4.2.1 Defining SMART
	4.2.2 Examples of SMART policies
	4.2.3 Bounding response times for SMART policies

	4.3 The class of FOOLISH policies
	4.3.1 Defining FOOLISH scheduling
	4.3.2 Examples of FOOLISH policies
	4.3.3 Bounding response times for FOOLISH policies

	4.4 The class of SYMMETRIC policies
	4.4.1 Defining SYMMETRIC scheduling
	4.4.2 Examples of SYMMETRIC scheduling
	4.4.3 Bounding response times for SYMMETRIC policies

	4.5 The class of PROTECTIVE scheduling
	4.5.1 Fair-Sojourn-Protocol (FSP)
	4.5.2 Defining PROTECTIVE scheduling
	4.5.3 Bounding response times for PROTECTIVE policies

	4.6 Concluding remarks

	5 Classification via scheduling techniques
	5.1 The class of preemptive size based policies
	5.1.1 Defining a class of preemptive size based policies
	5.1.2 Bounding response times for preemptive size based policies

	5.2 The class of remaining size based policies
	5.2.1 Defining a class remaining size based policies
	5.2.2 Bounding response times for remaining size based policies

	5.3 The class of age based policies
	5.3.1 Defining a class of age based policies
	5.3.2 Bounding response times for age based policies

	5.4 The class of non-preemptive policies
	5.4.1 Defining classes of non-preemptive policies
	5.4.2 Bounding response times for non-preemptive policies

	5.5 Concluding remarks

	Diverse Metrics: Moving Beyond Mean Response Time
	6 The distribution of response time
	6.1 Preliminaries
	6.2 The response time tail under individual policies
	6.2.1 FCFS
	6.2.2 SRPT
	6.2.3 PS
	6.2.4 FB
	6.2.5 LCFS

	6.3 The response time tail under scheduling classifications
	6.3.1 The class of non-preemptive policies
	6.3.2 The SMART class
	6.3.3 The FOOLISH class

	6.4 Concluding remarks

	7 Fairness
	7.1 Proportional fairness in expectation
	7.1.1 Defining proportional fairness in expectation
	7.1.2 The proportional fairness of individual policies
	7.1.3 The proportional fairness of scheduling classifications

	7.2 Proportional fairness to large jobs
	7.2.1 Asymptotic behavior of slowdown
	7.2.2 Scaling response times

	7.3 A unified framework for proportional fairness
	7.4 Predictability
	7.4.1 Defining predictability
	7.4.2 The predictability of individual policies
	7.4.3 The predictability of scheduling classifications

	7.5 Temporal Fairness
	7.5.1 Defining politeness
	7.5.2 The politeness of individual policies
	7.5.3 The politeness of scheduling classifications

	7.6 Hybrid fairness metrics
	7.6.1 Order Fairness
	7.6.2 RAQFM
	7.6.3 Discrimination Frequency

	7.7 Concluding remarks

	Broader Models: Moving Beyond the M/GI/1
	8 The impact of interactive users
	8.1 Defining closed, open, and partly-open systems
	8.2 Comparison methodology
	8.3 Real-world case studies
	8.3.1 Static web content
	8.3.2 E-commerce site
	8.3.3 Auctioning web site
	8.3.4 Supercomputing center
	8.3.5 Study of WAN effects

	8.4 Open versus closed systems
	8.4.1 FCFS
	8.4.2 The impact of scheduling

	8.5 Partly-open systems
	8.6 Choosing a system model
	8.7 Concluding remarks

	9 The impact of multiserver architectures
	9.1 Prior work analyzing multiserver priority queues
	9.2 Analyzing the M/PH/k with m priority classes
	9.2.1 Exponential job sizes and two priority classes
	9.2.2 Exponential job sizes and m priority classes,
	9.2.3 The M/PH/k with m priority classes
	9.2.4 Computing higher moments of response time
	9.2.5 A computationally efficient approximation

	9.3 Numerical validation and results
	9.4 The impact of prioritization in an M/PH/k
	9.4.1 The effect of the number of servers
	9.4.2 The effect of ``smart'' prioritization
	9.4.3 The effect of priority aggregation

	9.5 Designing multiserver systems
	9.5.1 Prior work
	9.5.2 How many servers are best in a FCFS system
	9.5.3 How many servers are best in a dual priority system

	9.6 Concluding remarks

	Impact and future directions
	10 Conclusion
	10.1 Lessons and surprises
	10.2 The impact for system design
	10.3 The impact for theoretical scheduling research
	10.4 Further directions

	Bibliography
	Afterward
	About the Author

