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Abstract
Reinforcement learning (RL) has the potential to significantly improve the efficiency of many
real-world control problems, including Tokomak control for nuclear fusion and power grid
optimization. However, practitioners in these problem areas remain weary of applying RL to
these problems. From my experience working with practitioners in Tokomak control, power
grid optimization, and autonomous manufacturing, the primary concerns for applying RL to
these domains are safety concerns: How do we maintain safety throughout training and during
deployment of RL algorithms? In this thesis, we will discuss work we have done to address the
challenges of ensuring safety of RL algorithms at training and deployment.

We start by with the problem of ensuring safety and robustness during deployment. In real world
systems, external disturbances or other small changes to the system dynamics are inevitable
and, thus, there is a need for controllers that are robust to these disturbances. When designing
controllers for safety-critical systems, practitioners often face a challenging tradeoff between
robustness and performance. While robust control methods provide rigorous guarantees on system
stability under certain worst-case disturbances, they often yield simple controllers that perform
poorly in the average (non-worst) case. In contrast, nonlinear control methods trained using
deep learning have achieved state-of-the-art performance on many control tasks, but often lack
robustness guarantees. We introduce a novel method to provide robustness guarantees to any deep
neural-network-based controller trained using RL. We demonstrate our technique empirically
improves average-case performance over other robust controllers while maintaining robustness to
even worst-case disturbances.

Next, we discuss ensuring safety at training time. Traditionally, online RL algorithms require
significant exploration to construct high-performing policies. These exploration strategies often
do not take safety into account. Although a growing line of work in reinforcement learning has
investigated this area of “safe exploration,” most existing techniques either 1) do not guarantee
safety during the actual exploration process; and/or 2) limit the problem to a priori known and/or
deterministic transition dynamics with strong smoothness assumptions. Addressing this gap, we
propose Analogous Safe-state Exploration (ASE), an algorithm for provably safe exploration in
Markov Decision Processes (MDPs) with unknown, stochastic dynamics. Our method exploits
analogies between state-action pairs to safely learn a near-optimal policy in a PAC-MDP (Probably
Approximately Correct-MDP) sense. Additionally, ASE also guides exploration towards the most
task-relevant states, which empirically results in significant improvements in terms of sample
efficiency, when compared to existing methods.

Alternatively, RL can applied to offline datasets to safely learn control policies without ever taking
a potentially dangerous action on the real system. A key problem in offline RL is the mismatch,
or distribution shift, between the dataset and the distribution over states and actions visited by the
learned policy. The main approach to correct this shift has been through importance sampling,
which leads to high-variance gradients. Other approaches, such as conservatism or behavior-
regularization, regularize the policy at the cost of performance. We propose a new approach
for stable off-policy Q-Learning that builds on a theoretical result by Kolter [64]. Our method,
Projected Off-Policy Q-Learning (POP-QL), is a novel actor-critic algorithm that simultaneously
reweights off-policy samples and constrains the policy to prevent divergence and reduce value-
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approximation error. In our experiments, POP-QL not only shows competitive performance on
standard benchmarks, but also out-performs competing methods in tasks where the data-collection
policy is significantly sub-optimal.

Another approach to offline RL is to used Model-Based methods. A unique challenge to Model-
Based methods in the offline setting is the need to predict epistemic uncertainty – uncertainty
deriving from lack of data samples. However, standard deep learning methods are unable to capture
this type of uncertainty. We propose a new method, Generative Posterior Networks (GPNs), that
uses unlabeled data to estimate epistemic uncertainty in high-dimensional problems. A GPN
is a generative model that, given a prior distribution over functions, approximates the posterior
distribution directly by regularizing the network towards samples from the prior. We prove
theoretically that our method indeed approximates the Bayesian posterior and show empirically
that it improves epistemic uncertainty estimation and scalability over competing methods.
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Chapter 1

Introduction

Reinforcement Learning (RL) is a sub-field of Machine Learning (ML) that has the potential
to massively improve efficiency of autonomous systems, including autonomous manufacturing
and power grid optimization. Throughout my Ph.D. work, I have been particularly motivated by
RL applications in environmental sustainability, specifically the problem of Tokomak control for
nuclear fusion. A Tokomak reactor is a specific type of nuclear fusion reactor that magnetically
suspends hydrogen atoms in a toroidal chamber. When these hydrogen atoms are accelerated
around the torus at high enough speeds, they can fuse, forming helium, along with an large
amount of energy [33]. While enormous progress has been made in Tokomak design, there
is still a fundamental unsolved problem that stands in the way of these systems being viable
power generators: How do we control the hydrogen atoms inside the chamber? The collection
of hydrogen atoms, or “plasma,” must maintain a specific helical structure in order for them to
be accelerated to high enough speeds. Unfortunately, as the plasma heats up, it becomes more
challenging to keep the plasma in the specific structure; in other words, the system becomes more
unstable. When this structure of the plasma is broken, the resulting event is called a “disruption”,
where suddenly all the energy of the high-temperature plasma is very suddenly released into the
walls of the Tokomak enclosure, potentially causing significant damage. On top of that, at higher
temperatures, the physical properties of plasma are not well understood and, thus, we cannot
simulate the dynamics of the system. This is a real problem for Tokomak reactors. For example,
ITER, a Tokomak reactor under construction in France, would only be able to withstand a small
number of unmitigated full-power disruptions before it would need significant repairs.

ML has already been applied to this problem with remarkable success. Kates-Harbeck et al.
[60], for example, used a deep learning system to predict when a disruption event was going to
occur with a couple hundred miliseconds warning. This tool allows the system to significantly
mitigate the costs of a disruption event by quickly injecting particles into the chamber and, thus,
cooling the plasma down before the disruption occurs. This tool, however, still does not have
100% success rate, meaning inevitably there will be unmitigated disruptions. Moreover, even if
the disruptions are mitigated, they still cause the power-generating reaction to stop and Tokomak
would need to restart the power-intensive process of heating up the plasma. These disruptions
would significantly reduce the efficiency of these reactors. Ideally, we could use ML to control

1



the plasma in real-time and avoid these disruption events.

This Tokomak control problem seems to be a perfect application for RL. RL is a subfield of ML
focused on learning an optimal control policy for a control system. We can use RL to learn to
actuate the magnets in a Tokomak in order to control the plasma. In fact, Degrave et al. [28]
illustrated that a controller for a Tokomak reactor trained using RL can out-performed controllers
made by humans. Like most RL algorithms, this controller was trained using a simulator.
However, as we discussed earlier, the physical dynamics of high-temperature plasmas are not well
understood and, thus, these methods only work for relatively low-temperature plasmas.1 Moreover,
the physics behind what causes most types of disruption events is also not well understood, so
these controllers are just as vulnerable to these types of disruptions.

An alternative approach to using a simulator would be to run an RL algorithm on the Tokomak
reactor itself. This would allow the algorithm to learn from its mistakes and, potentially, perform
well even when the physics is not perfectly understood. However, allowing an RL algorithm to
explore on the Tokomak reactor introduces serious safety concerns: a high-temperature disruption
could significantly damage the Tokomak enclosure. So how can we safely learn a controller to
operate a Tokomak?

This challenge of safety when applying RL to real-world problems is not unique to Tokomak
control. Throughout my Ph.D., I have collaborated with people working in Tokomak control,
electrical power grid optimization, autonomous manufacturing, and autonomous driving. While
more optimized controllers could vastly improve the efficiency of each of these areas, practitioners
are very weary to apply RL to these safety-critical domains due to safety concerns. And for good
reason. RL is notoriously brittle to small changes in the environment during deployment and
most often randomly explores the environment at training time. In order for RL to be successfully
applied on these real-world challenges, these safety concerns need to be addressed.

In this thesis we introduce various methods to improve the safety of RL algorithms both at
training time and during deployment. We start with the deployment stage. At mentioned before,
policies learned using RL are notoriously brittle to small changes in the environment. However,
in real-world settings, small disturbances are inevitable and, thus, practitioners are reluctant to
employ RL. To address this concern, we introduce a new method to provably guarantee robustness
for deep neural network policies trained using RL. To the best of our knowledge, this is the first
technique to make robust control guanantees on non-linear, neural-network policies.

Next, we discuss various techniques for ensuring safety at training time, both online and offline.
In the online setting, we need to ensure the agent never takes an unsafe action during exploration.
To achieve this, we introduce a new safe exploration method called Analogous Safe Exploration
(ASE), which is uniquely able to handle the more realistic setting of stochastic dynamics while
maintaining safety and optimality. In the offline setting, we can ensure safety by never taking
potentially dangerous actions on the real system, but instead using a fixed dataset collected a
priori. We propose a new method for improving offline RL performance for TD methods and an

1These RL controllers have not been tested on high-temperature plasmas, so we do not know for sure if they
would work or not at higher temperatures. But, since the dynamics change at those temperatures, we would not
expect these controllers to perform well at higher temperatures.
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epistemic uncertainty approximation method for improving offline RL performance for offline
Model-Based methods. Finally, we discuss the benefits and drawbacks of each of these approaches
and for which real-world environments they are best suited.

1.1 Contributions
1. Chapter 3 introduces a method for providing robust control guarantees to any RL algorithm.

Using Lyaponov analysis, we construct the set of all possible robustly stabalizable linear
controllers. This provides us with the set of all possible actions at every step that are
guaranteed to result in a robustly stable policy. By projecting a non-linear control policy
onto this set, we can guarantee the robustness of the resulting policy. We prove that this
process does indeed result in a robustly stabalizable control policy. We evaluate this method
against standard robust control techniques and non-robust RL algorithms on a simulated
quadrotor and microgrid domain. Through these experiments, we show that this method
improves the average-case performance over the other robust control techniques and remains
stable even under worst-case disturbances. This technique opens the door for RL techniques
to be applied in real-world, safety-critical control systems.

2. Chapter 4 introduces Analogous Safe-state Exploration (ASE), a novel safe exploration
algorithm that is uniquely able to capture three properties simultaneously: (1) ASE can be
applied on domains with stochastic dynamics, (2) ASE is provably safe and optimal, and
(3) ASE is a guided exploration algorithm, improving sample-efficiency over more naive
exploration algorithms. We prove that ASE never takes an unsafe action throughout the
training process with high probablity and is optimal in the PAC-MDP sense. We compare
our method against both unsafe and exploration algorithms on a safety-critical grid-world
domain and platformer domain. We shows ASE improves sample efficiency over more
naive safe exploration algorithms while maintaining safety throughout training.

3. Chapter 5 presents a new method for performing off-policy TD learning. We consider the
contraction mapping condition, first proposed in Kolter [64], that guarantees convergence
and bounded error of TD learning. We propose a new sampling projection that allows for
a much more computationally efficient algorithm, allowing us to apply this algorithm on
high-dimensional, deep RL domains. Secondly, we extend this projection to additionally
consider policy optimization. We propose a new offline Q-Learning algorithm that jointly
projects the policy and sampling distribution onto the contraction mapping set. This new
algorithm significantly reduces Q-approximation error and improves policy performance
over standard offline Q-learning. We evaluate this method on the a standard offline RL
benchmarks, the D4RL tasks [35]. While our approach does not out-perform the state of the
art methods in all tasks, we illustrate our method outperforms all other methods when the
dataset is severely sub-optimal. Our results illustrates the power of the contraction mapping
condition and the potential of this new class of RL techniques.

4. Chapter 6 introduces Gaussian Posterior Networks (GPNs) that uses unlabeled data to
estimate epistemic uncertainty in high-dimensional problems. A GPN is a generative

3



model that, given a prior distribution over functions, approximates the posterior distribution
directly by regularizing the network towards samples from the prior. We prove theoretically
that our method indeed approximates the Bayesian posterior under mild assumptions. We
evaluate out-of-distribution detection performance of our method and baseline methods on
classification and regression tasks. Our experiments show that GPNs improves epistemic
uncertainty estimation and scalability over competing methods.

1.2 Summary of Publications

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. “Enforcing
Robust Control Guarantees within Neural Network Policies.” International Conference
on Learning Representations. 2021.

Melrose Roderick, Vaishnavh Nagarajan, and Zico Kolter. “Provably safe PAC-MDP
exploration using analogies.” International Conference on Artificial Intelligence and
Statistics. 2021.

Melrose Roderick, Gaurav Manek, Felix Berkenkamp, and J. Zico Kolter. “Projected
Off-Policy Q-Learning (POP-QL) For Stabilizing Offline Reinforcement Learning.”
Under Review.
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Chapter 2

Background and Preliminaries

2.1 Reinforcement Learning (RL)
Reinforcement Learning (RL) is a sub-field of machine learning concerned with learning an opti-
mal (or approximately optimal) behavior, or ”policy”, for a specific control problem. Concretely,
a policy is a function that maps a “state” of the world to an action to take in that state. A control
problem is any type of problem where an “agent” can take actions that change the dynamics of
the environment. For example, in an Atari video, the agent is the player, the states are the images
on the screen, and the actions are the inputs to the gaming controller. There are many different
examples of control problems in the real world, from autonomously stabalizing a quadrotor drone
to controlling a Tokomak fusion reactor.

A key aspect of RL that sets it apart from traditional “planning” is the assumption that the
dynamics of the system are unknown. If the dynamics of the system are perfectly known a-priori,
it is much easier to construct an optimal policy using a control planning algorithm1 Instead, in
RL, we usually assume the dynamics of the environment are unknown.

2.1.1 The Markov Decision Process (MDP)
RL problems are most commonly formalized using a Markov Decision Process (MDP). An
MDP is defined as a 5-tuple (S,A, p, r, γ), where S and A are the state and action spaces,
p : S ×A× S 7→ [0, 1] is the transition dynamics, signifying the probability of taking an action
and transitioning between two states, and r : S ×A 7→ R is the reward function, how good is a
specific state-action pair, and γ ∈ [0, 1) is the discount factor. The goal in this formulation is to
find a probabilistic policy, π : S ×A 7→ [0, 1], that maximizes the expected discounted return

Ep,π

[
∞∑
t=0

γtr(st, at) | s0
]

(2.1)

1There are cases where RL is still useful in settings where the dynamics are known a-priori, such as when
state-action space is very large, so exhaustive search is intractable.
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This formulation takes use of what is often referred to as the “Markov Assumption”, which is the
assumption that the dynamics are conditionally independent of the history given the current state
and action,

p(st+1 | (st, at), (st−1, at−1), . . . , (s0, a0)) = p(st+1 | st, at) (2.2)

While this assumption is often violated in practice, for example when the state is not fully
observable, this assumption is very useful for finding tractable RL algorithms. Additionally,
the algorithms that take advantage of this assumption often find useful policies even when the
assumption is violated.

Markov Reward Process For some of the theory discussed in this thesis, we assume a fixed
policy. Under a fixed policy, an MDP reduces to a much simpler Markov Reward Process (MRP).
An MRP is defined as the 4-tuple (S, p, r, γ), where S is the state space, p : S × S → R+ and
r : S → R are the transition and reward functions, and γ ∈ (0, 1) is the discount factor.

In cases where the state space is discrete and finite, we can use the MRP matrix notation. In this
setting, the state-space can be indexed as S = {1, . . . , n}. In matrix notation, we use matrices P
and R, to represent the functions p and r, where each row corresponds to a state.

2.1.2 Categories of RL Algorithms
RL algorithms fall into three main categories (or a mixture these categories): Policy Gradient
(PG), Temporal Difference (TD), and Model-Based (MB) methods. Each of these categories of
algorithms have their benefits and drawbacks.

Policy Gradient PG methods involve performing Markov “rollouts” of a parameterized policy
to estimate the expected policy return, then performing gradient updates to maximize the return.
Concretely, let πθ be a parameterized policy. The policy gradient can be written as:

∇θEp,π

[
T∑
t=0

γtr(st, at)

]
= Ep,π

[
T∑
t=0

γtr(st, at)∇θ log πθ(at|st)
]

(2.3)

where T is the trajectory length.

Given enough samples, policy gradient methods tend to have the highest asymptotic performance
compared to TD and Model-Based methods. However, there are two key downsides to PG
approaches. Firstly, in order to compute the policy gradient new trajectories need to be sampled
every gradient step. For these reason PG methods are significantly less sample efficient compared
to TD and Model-Based methods. Secondly, the variance of the gradient updates grows with the
trajectory length T , which can be a problem for longer-horizon problems.

The variance of the PG updates can be reduced by introducing an advantage function [103]. This
advantage function, often trained using a TD approach, estimates how much higher the return
is over taking some action a, over following the current policy. This advantage function is then
added to the reward. Most modern PG gradient make use an advantage function.
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To address the sample challenge, some approaches, such as Trust Region Policy Optimization
(TRPO) [96] and Proximal Policy Optimization (PPO) [97], make conservative estimates of the
PG in order to make multiple gradient steps with a single set of rollouts. This can significantly
reduce sample efficiency.

Temporal Difference TD methods make use of Markov assumption to estimate “cost-to-go”
of a given policy, the expected discounted return starting a specified state (or state-action pair).
Recall that, under the Markov assumption, the expected discounted of a given state (or state-action
pair) is conditionally independent of the state history given the current state (or state-action pair).
Thus, the action-value function, or Q-function, given by:

Qπ(s, a) = Ep,π

[
∞∑
t=0

γtr(st, at) | s0 = s, a0 = a

]
(2.4)

is the fixed point of the following equation,

Qπ(s, a) = r(s, a) + γEs′∼p(· | s,a),a′∼π(· | s′) [Q
π(s′, a′)] (2.5)

This equation is known as the Bellman equation.

Now, if we can compute the Q-function, the optimal policy can be computed by finding the action
that maximizes the Q-function at every step:

π∗ = argmax
π

Ea∼π(· | s)Q
π(s, a) (2.6)

This algorithm is known as Q-learning.

In simple MDPs with small, discrete state-action spaces, we can simply solve the Q-function
using dynamic programming. However, when the state-action space is large and continuous, we
need to approximate the Q-function. This can be done with a variety of methods [46, 81, 114].

While TD methods significantly improve sample efficiency over PG methods primarily due off-
policy learning. Off-policy involves using samples from a different policy to update the Q-function
of the current policy. This allows TD methods to re-use samples many times. However, as the
distribution of samples gets further from the distribution of state and actions the current policy
will see, this leads to significant problems, which we describe later in Section 2.3.2.

Model-Based Methods The final category of methods is Model-Based methods. With Model-
Based methods, the goal is to approximate the transition dynamic function, p, directly. Once an
accurate approximation of p is obtained, we can take advantage of the large body of planning
algorithms to compute an optimal policy.

Because model updates are independent of the data-collection policy, model-based methods tend
to be the most sample efficient methods. However, they come with a significant drawback –
modeling error. Unlike traditional regression, errors in model learning have a compounding effect
on the value estimation error. This is because the model is called at every step of planning.

7



2.1.3 Exploration

Another critical challenge for RL is exploration. As the state-action space grows, how can
the agent gather enough data to find the optimal policy? This process of gathering data of the
state-action space is known as exploration.

One of the most common exploration techniques is random exploration. Notable examples of
random exploration are ϵ-greedy, where the agent takes actions greedy actions 1− ϵ proportion of
the time and takes a random action ϵ proportion of the time, and entropy-maximizing techniques,
such as Soft Actor-Critic [46], which augment the reward with an policy entropy term to encourage
exploration.

However, in environments with sparse rewards, random exploration tends to perform poorly.
An alternative approach, often referred to as optimistic exploration or “optimism in the face of
uncertainty”, is to assume a given state-action pair has high return until it has been sufficiently
explored. One of the first of these approaches is R-Max [22], which exhaustively explores the state-
action space by assuming every state has maximum reward until it has been explored some number
n times. Other optimistic exploration algorithms are able to improve sample efficiency over R-Max.
Model-Based Interval Estimation (MBIE) [99], for example, maintains uses Hoefding bounds
to maintain confidence intervals over the transition dynamics. With these confidence intervals,
MBIE can maximize over both the policy and transition dynamics to maximize discounted return,
resulting in a policy that receives high return over the best-case dynamics. However, as the
state-action space grows, exhaustive exploration becomes impractical. Using the idea that similar
states exhibit similar behavior, some approaches [13] get around this issue by approximating how
often a given state or similar states have been explored.

2.1.4 Provably Efficient and Optimal RL

How can we prove that an RL algorithm will result in an optimal policy? Most commonly, this
is done using sample efficiency bounds. Sample efficiency bounds for RL fall into two main
categories: 1) regret [56] and 2) PAC (Probably Approximately Correct) bounds [31, 101]. Regret
bounds bound the total regret, or the difference in reward the agent received versus what the
optimal policy would have received. The longer the algorithm takes to converge to the optimal
policy, the higher the regret bounds. PAC bounds are slightly different. While there are multiple
formulations of the PAC bounds for RL, in this thesis we focus on the PAC-MDP [101] framework.
PAC-MDP bounds bound the number of ϵ-suboptimal steps taken by the learning agent.

In this thesis, we use the PAC formulation for our analyses. PAC-MDP bounds have been
shown for many popular exploration techniques, including R-Max [22] and a slightly modified
Q-Learning [100]. As mentioned above, while R-Max is PAC-MDP, it explores the state-action
space exhaustively, which can be inefficient in large domains. MBIE [99], on the other hand, is
also PAC-MDP optimal and outperforms the sample efficiency of R-Max.
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2.2 RL for Safety-Critical Applications
RL has been applied very successfully in simulated problems, such as video games [15, 81, 117] or
controlled robotics settings [1, 48]. However, there has been a surprising lack of RL applications
on real-world control environments, such as autonomous driving, autonomous manufacturing,
or control of Tokamak fusion reactors. One of the key reasons for this lack of applicability is
concerns related to safety. Many real-world control problems are “safety-critical” systems, where
a single action, either during training or deployment, can result in significant harm. RL exploration
algorithms generally do not take safety considerations into account and policies learned using
RL algorithms are notoriously brittle to changes to the environment. Thus, in order to apply
RL in safety-critical environments, we need to be able to safely learn policies and improve the
robustness of the learned policies.

2.2.1 At Training Time – Safe RL
Safe RL is the a subfield of RL concerned with learning control policies while maintaining
some notion of safety throughout the training process. The two most common notions of safety
are predefined unsafe state-action pairs that should be avoided or “returnability”, which marks
state-action pairs as safe if there exists a path to return the agent back to the starting location.

Many safe RL techniques require sufficient prior knowledge to guarantee safety a priori. Risk-
aware control methods [17, 32, 87], for example, can compute safe control policies even in
situations where the state is not known exactly, but require the dynamics to be known a priori.
Similar works [52, 91] allow for learning unknown dynamics, but assume sufficient prior knowl-
edge to determine safety information before exploring. In domains where safety barriers are
easy to construct, for example in slow-moving robotics domains, these methods work very well.
However, as the system dynamics become more complex, the prior knowledge required for these
approaches is challenging to construct a priori.

If we wish to preserve safety while exploring an environment with unknown dynamics, we must
have a way to infer the safety of unexplored, potentially dangerous state-action pairs. To do
this, assumptions must be made on the environment. Moldovan and Abbeel [82], for example,
assume that the agent knows a priori a function that can compute the transition dynamics given
observable attributes of nearby state-action pairs. However, the most common approach is to
make some regularity assumption about the dynamics in order to transfer knowledge between
“similar” state-action pairs.

State-action similarities have been used outside of the safety literature in order to improve
computation time of planning and sample complexity of exploration. Bisimulation seeks to
aggregate states into groupings of states that have similar dynamics or similar Q-values [2, 43, 59,
111]. These state aggregations allow for more efficient planning and exploration [59]. Other work
has used pseudo-counts to learn approximate state aggregations [108]. However, these methods
are not amenable to environments where similarities cannot easily partition the state space, such
as situations where the similarity between two states is proportional to their distance.

Other works make assumptions about the regularity of the transition or safety functions of the
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environment, which allows them to model the uncertainty in these functions using Gaussian
Processes (GPs) [6, 14, 115, 118]. Then, by examining the worst-case estimate of this model, they
guarantee safety on continuous environments by examining the worst-case estimate of the model.
However, there are two key downsides to these approaches. First, (with the exception of [118]),
these approaches are not reward-directed, and instead focus on only exploring the state-action
space as much as possible. Second, although the GP-based methods [6, 14, 115, 118] help capture
uncertainty, they do not model inherent stochasticity in the environment and instead assume the
true transition function to be deterministic.

2.2.2 At Deployment Time – Robust Control

Robust control is concerned with the design of feedback controllers for dynamical systems
with modeling uncertainties and/or external disturbances [11, 130], specifically controllers with
guaranteed performance under worst-case conditions. Many classes of robust control problems in
both the time and frequency domains can be formulated using linear matrix inequalities (LMIs)
[21, 65]; for reasonably-sized problems, these LMIs can be solved using off-the-shelf numerical
solvers based on interior-point or first-order (gradient-based) methods. However, providing
stability guarantees often requires the use of simple (linear) controllers, which greatly limits
average-case performance.

In contrast, RL (and specifically, deep RL) is not restricted to simple controllers or problems with
uncertainty bounds on the dynamics. Instead, deep RL seeks to learn an optimal control policy,
represented by a neural network, by directly interacting with an unknown environment. These
methods have shown impressive results in a variety of complex control tasks (e.g., [7, 81]); see
[25] for a survey. However, due to its lack of safety guarantees, deep RL has been predominantly
applied to simulated environments or highly-controlled real-world problems, where system failures
are either not costly or not possible.

Efforts to address the lack of safety and stability in RL fall into two main categories. The first
tries to combine control-theoretic ideas, predominantly robust control, with the nonlinear control
policy benefits of RL (e.g., [3, 26, 30, 34, 51, 58, 75, 78, 83, 92, 122, 128]). For example, RL
has been used to address stochastic stability in H∞ control synthesis settings by jointly learning
Lyapunov functions and policies in these settings [51]. As another example, RL has been used to
address H∞ control for continuous-time systems via min-max differential games, in which the
controller and disturbance are the “minimizer” and “maximizer” [83]. Previous work, however,
has not been applied to the broad class of class of robust control settings outside the H∞ setting.

The second category of methods uses Constrained Markov Decision Processes (C-MDPs). These
methods seek to maximize a discounted reward while bounding some discounted cost function
[4, 8, 109, 124]. While these methods do not require knowledge of the cost functions a-priori, they
only guarantee the cost constraints hold during test time. Additionally, using C-MDPs can yield
other complications, such as optimal policies being stochastic and the constraints only holding for
a subset of states.
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2.3 Offline RL
An alternative approach to safely learning a control policy in a safety-critical system is to never
interact with the system itself. Offline RL considers the problem of learning a control policy from
a fixed offline dataset. There are many real-world environments, such as autonomous driving
and autonomous manufacturing, where there exists a large amount of sub-optimal control data.
Can this data be used to learn an optimal policy, or a policy that out-performs the data-collection
policy?

There are some key advantages to offline RL over online RL. The first is safety. Since the dataset
is fixed, the agent never needs to take potentially dangerous actions in the environment to explore
and gather data. The second is cost. Real world data collection on control system is a costly
process, both in terms of time and money. Since all the data is assumed to be already collected,
there is no need to perform this costly process. However, there are challenges to offline RL that
are not present in standard online RL.

In offline RL, if we wish to learn a policy that improves performance over the data-collection
policy, we will need to learn a policy that differs from the data-collection policy. The difference
between the learned policy and data-collection policy will result in a distribution shift between
the dataset and the visitation distribution of the policy. Thus, to update the learned policy, we will
need to perform off-policy learning, using data collected with a different policy than the learned
policy.

Each of the three categories is able to perform off-policy learning to different degrees. As alluded
to earlier, PG methods are on-policy algorithms. Thus, the policy must remain very close to the
data-collection policy to avoid divergence. TD methods and Model-Based methods, on the other
hand, are both able to perform updates off-policy; however, not without their own challenges.

The main challenges to performing off-policy RL are support mismatch and projected-TD in-
stability, a problem unique to TD methods. Support mismatch refers to the problem where the
support of the data distribution does not the visitation distribution of the learned policy. If there
is no training data in a given area of the state-action space, the errors in the model or policy
can be arbitrarily large. This results in very poor performing policy. Projected-TD instability
describes the instability inherent to off-policy TD learning with function approximation, known
as the deadly triad.

2.3.1 Support Mismatch and Epistemic Uncertainty
When the support of the data distribution and the policy visitation distribution do not match,
there is not enough data to accurately predict the performance of the policy, whether using TD or
Model-Based methods. Uncertainty deriving from lack of data samples is known as epistemic
uncertainty. Accurately estimating epistemic uncertainty can help construct policies that either
avoid areas of high epistemic uncertainty or act conservatively in the face of uncertainty. However,
standard deep networks are not able to predict epistemic uncertainty.

There are two primary methods of formalizing epistemic uncertainty: (1) as a Gaussian Process
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(GP) or (2) as a Bayesian Inference problem. The GP framework is often used in practice,
specifically in low-dimensional, low-data settings where the problem can be solved exactly
[55, 113]. Many GP approximation methods have been proposed to improve scalability [120, 121],
but each have their drawbacks. We highlight Spectral-normalized Neural Gaussian Processes
(SNGP) [76] as one of the best GP approximation methods for high dimensional problems. While
SNGP shows impressive out of distribution prediction performance, we show in our experiments
that the learned posterior does not adequately capture the true posterior.

The Bayesian Inference formulation, considers a different problem: given a prior distribution over
functions and some labeled data, the goal is to construct a posterior distribution in the Bayesian
sense. Because this posterior distribution is usually intractable to compute exactly, approximate
sampling methods are used instead [18, 110]. For high-dimensional problems, Bayesian Neural
Networks (BNNs) [19] and Bayesian Dropout [19] are alternative methods for approximating
Bayesian Inference on neural networks.

Neural network ensembling is a method that predicts out-of-distribution data well in practice,
requires very little fine-tuning and, under the right regularization, approximates samples from
the Bayesian posterior He et al. [54], Pearce et al. [90]. However, these methods have one main
drawback, namely that each new sample from the posterior requires training a new network from
scratch. Our method, on the other hand, seeks to construct a generative posterior model using
similar regularization techniques to Pearce et al. [90], allowing for quick sampling from the
posterior. Epistemic Neural Networks Osband et al. [88] are a concurrent work to ours that, while
not motivated by the Bayesian Inference problem, arrived at a very similar technique to ours.
The key difference between our method and Epistemic NNs is in the regularization: our method
requires unlabeled data from the test-distribution for our regularization, but results in improved
posterior sampling.

2.3.2 The Deadly Triad: Off-Policy TD-Learning with Function Approxi-
mation

First described by Tsitsiklis and Van Roy [114], the use of TD learning, function approximation,
and off-policy sampling together, known as the deadly triad [102, p. 264], can cause severe
instability or divergence. This instability is caused by projecting TD-updates onto our linear
basis,2 which can result in TD-updates that increase value error and, in some cases, diverge.

Recall that using TD-learning to solve for the state-value function, V , requires finding the fixed
point to the Bellman equation. In matrix form, this can be written as

V = R + γPV. (2.7)

If the state-action space is continuous (or simply very large), we will not be able to exactly
compute the value function. Instead, we approximate the value function as V (s) ≈ w⊤ϕ(s),
where ϕ : S → {x ∈ Rk : ∥x∥2 = 1} is a fixed normalized basis function and we estimate
parameters w ∈ Rk. In matrix notation, we write this as V ≈ Φw. In the off-policy setting, the

2This challenge remains present in the deep RL setting.
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1Figure 2.1: The three-state MRP by Manek and Kolter [80] (top-left), a plot of Q-function
approximation error over different sampling distributions using Iterative TD and TD traces for at
three different evaluation sampling distributions. We can see that performing off-policy, projected
TD updates off-policy can lead to divergence.

sampling distribution µ differs from the stationary distribution ν. In this setting, the temporal
difference (TD) solution is the fixed point of the projected Bellman equation:

Φw⋆ = Πµ(R + γPΦw⋆), (2.8)

where Πµ = Φ(Φ⊤DµΦ)
−1Φ⊤Dµ is the projection onto the column space of Φ weighted by the

data distribution µ through the matrix Dµ = diag(µ). This projection may be arbitrarily far from
the true solution so that the error may be correspondingly large. Moreover, the fixed point of the
projected Bellman equation does not equal the optimal approximation, argminw ∥Φw − V ∥µ.

To illustrate how the deadly triad can lead to divergence of TD updates, we use the simple three-
state MRP introduced in Manek and Kolter [80] (Figure 2.1). In this example, the value function
is given by V = [1, 1, 1.05]⊤, with discount factor γ = 0.99, reward function R = (I − γP )V ,
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and basis Φ where

Φ =

 1 0
0 −1.

1/2(1.05 + ϵ) −1/2(1.05 + ϵ)

 (2.9)

The basis includes the representation error term ϵ = 10−4.

For illustration purposes, we select the family of distributions µ = (p/2, p/2, 1− h) parameterized
by p ∈ [0, 1]. This characterizes the possible distributions of data that we will use for the TD
updates. The on-policy distribution corresponds to p = 0.5 and the approximation error is
minimized where p ≈ 0.55. However, when p > 0.55, the TD updates begin to increase in
approximation error and, eventually, diverge. Figure 2.1 also plots TD-Learning traces for three
different sampling distributions. We can see when p = 0.8 (right), the TD updates point away
from the fixed point solution.

2.3.3 Current Approaches to Offline RL
There are many methods that address the challenges of off-policy RL, most of which fall into two
main categories. The first is importance sampling (IS). First proposed by Precup et al. [93], IS
methods for RL approximate the on-policy distribution by reweighting samples with the ratio of
the on-policy and data distribution densities. The challenge with this approach is the high variance
in the updates of the re-weighting terms, which grows exponentially with the trajectory length.
Many approaches have looked at methods for reducing this variance [41, 49, 74, 77, 84, 85].
Emphatic-TD [57, 106, 129] and Gradient-TD [105] are other importance sampling approaches
that are provably stable in the full-support linear case. One critical challenge with IS methods
is that they do not address support mismatch and, thus, tend to perform poorly on larger scale
problems.

The second category of methods involves regularizing the policy towards the data-policy. This
policy regularization can be done explicitly by ensuring the learned policy remains “close” to the
data collection policy or implicitly through conservative methods. Explicit policy regularization
can be achieved by penalizing KL-divergence between the learned policy and data policy [37, 123]
or by regularizing the policy parameters [79]. However, even in small-scale settings, policy-
regularization methods can be shown to diverge [80]. Conservative methods, on the other hand,
involve making a conservative estimate of the value function, thus creating policies that avoid
low-support regions of the state-action space. In the online learning setting, one of the most
common conservative methods is Trust Region Policy Optimization (TRPO) [96]. However,
TRPO does not extend well to the fully offline setting since the value estimates tend to be overly
conservative as the learned policy diverges from the data policy. One of the most successful
algorithms for offline RL is Conservative Q-Learning (CQL, Kumar et al. [69]), which adds a cost
to out-of-distribution actions. Other methods use conservative value estimates with ensembles [67]
or model-based approaches [63, 127]. One downside to policy regularized methods (explicit or
implicit) is that regularization can reduce policy performance when the data policy is sub-optimal,
which we demonstrate in our experiments.
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There are a few notable approaches that do not fit into either of these categories. Kumar et al. [68]
present DisCor, which reweights the sampling distribution such that the TD fixed point solution
minimizes Q-approximation error. However, approximations are needed to make this approach
tractable. Additionally, this algorithm does address the support mismatch problem.

Another approach is TD Distribution Optimization (TD-DO) [64], which seeks to reweight the
sampling distribution such that the TD updates satisfy the contraction mapping condition, thereby
ensuring that TD updates converge. Unfortunately, the use of this approach has been limited
because it does not scale to modern RL tasks. This is due to the need to run a batch SDP solver to
solve the associated distributional optimization task for each batch update.
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Chapter 3

Enforcing robust control guarantees within
neural network policies

Policies learned using RL techniques are notoriously brittle to small changes in the dynamics
at deployment time. This lack of robustness is a key barrier to RL methods being deployed in
real-world, safety-critical systems. However, compared to current robust control methods, control
policies learned using RL techniques tend to have significantly better performance in the average
case.

In this chapter, we introduce a new method to augment RL algorithms to provide robustness
guarantees to the resulting policies. While our method slightly reduces average-case performance
compared to the vanilla RL methods, our method is robust to worst-case disturbances, while RL
methods are not and quickly diverge in the presence of disturbances. Additionally, our methods
out-perform other robust control techniques in the average case. This technique could allow
traditionally brittle RL techniques to be applied in safety-critical systems.

3.1 Introduction
The field of robust control, dating back many decades, has been able to provide rigorous guarantees
on when controllers will succeed or fail in controlling a system of interest. In particular, if the
uncertainties in the underlying dynamics can be bounded in specific ways, these techniques can
produce controllers that are provably robust even under worst-case conditions. However, as the
resulting policies tend to be simple (i.e., often linear), this can limit their performance in typical
(rather than worst-case) scenarios. In contrast, recent high-profile advances in deep reinforcement
learning have yielded state-of-the-art performance on many control tasks, due to their ability
to capture complex, nonlinear policies. However, due to a lack of robustness guarantees, these
techniques have still found limited application in safety-critical domains where an incorrect action
(either during training or at runtime) can substantially impact the controlled system.

In this chapter, we propose a method that combines the guarantees of robust control with the
flexibility of deep reinforcement learning (RL). Specifically, we consider the setting of nonlinear,
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time-varying systems with unknown dynamics, but where (as common in robust control) the
uncertainty on these dynamics can be bounded in ways amenable to obtaining provable perfor-
mance guarantees. Building upon specifications provided by traditional robust control methods
in these settings, we construct a new class of nonlinear policies that are parameterized by neural
networks, but that are nonetheless provably robust. In particular, we project the outputs of a
nominal (deep neural network-based) controller onto a space of stabilizing actions characterized
by the robust control specifications. The resulting nonlinear control policies are trainable using
standard approaches in deep RL, yet are guaranteed to be stable under the same worst-case
conditions as the original robust controller.

We describe our proposed deep nonlinear control policy class and derive efficient, differentiable
projections for this class under various models of system uncertainty common in robust control.
We demonstrate our approach on several different domains, including synthetic linear differential
inclusion (LDI) settings, the cart-pole task, a quadrotor domain, and a microgrid domain. Although
these domains are simple by modern RL standards, we show that purely RL-based methods often
produce unstable policies in the presence of system disturbances, both during and after training. In
contrast, we show that our method remains stable even when worst-case disturbances are present,
while improving upon the performance of traditional robust control methods.

3.2 Background on LQR and robust control specifications
In this chapter, our aim is to control nonlinear (continuous-time) dynamical systems of the form

ẋ(t) ∈ A(t)x(t) +B(t)u(t) +G(t)w(t), (3.1)

where x(t) ∈ Rs denotes the state at time t; u(t) ∈ Ra is the control input; w(t) ∈ Rd captures
both external (possibly stochastic) disturbances and any modeling discrepancies; ẋ(t) denotes the
time derivative of the state x at time t; and A(t) ∈ Rs×s, B(t) ∈ Rs×a, G(t) ∈ Rs×d. This class
of models is referred to as linear differential inclusions (LDIs); however, we note that despite the
name, this class does indeed characterize nonlinear systems, as, e.g., w(t) can depend arbitrarily
on x(t) and u(t) (though we omit this dependence in the notation for brevity). Within this class of
models, it is often possible to construct robust control specifications certifying system stability.
Given such specifications, our proposal is to learn nonlinear (deep neural network-based) policies
that provably satisfy these specifications while optimizing some objective of interest. We start by
giving background on the robust control specifications and objectives considered in this work.

3.2.1 Robust control specifications
In the continuous-time, infinite-horizon settings we consider here, the goal of robust control is
often to construct a time-invariant control policy u(t) = π(x(t)), alongside some certification
that guarantees that the controlled system will be stable (i.e., that trajectories of the system
will converge to an equilibrium state, usually x = 0 by convention; see [47] for a more formal
definition). For many classes of systems,1 this certification is typically in the form of a positive

1In this work, we consider sub-classes of system equation 3.1 that may indeed be stochastic (e.g., due to a
stochastic external disturbance w(t)), but that can be bounded so as to be amenable to deterministic stability analysis.
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definite Lyapunov function V : Rs → R, with V (0) = 0 and V (x) > 0 for all x ̸= 0, such that
the function is decreasing along trajectories – for instance,

V̇ (x(t)) ≤ −αV (x(t)) (3.2)

for some design parameter α > 0. (This particular condition implies exponential stability with a
rate of convergence α.2) For certain classes of bounded dynamical systems, time-invariant linear
control policies u(t) = Kx(t), and quadratic Lyapunov functions V (x) = xTPx, it is possible to
construct such guarantees using semidefinite programming. For instance, consider the class of
norm-bounded LDIs (NLDIs)

ẋ = Ax(t) +Bu(t) +Gw(t), ∥w(t)∥2 ≤ ∥Cx(t) +Du(t)∥2, (3.3)

where A ∈ Rs×s, B ∈ Rs×a, G ∈ Rs×d, C ∈ Rk×s, and D ∈ Rk×a are time-invariant and known,
and the disturbance w(t) is arbitrary (and unknown) but obeys the norm bounds above.3 For these
systems, it is possible to specify a set of stabilizing policies via a set of linear matrix inequalities
(LMIs, [21]):[

AS + SAT + µGGT +BY + Y TBT + αS SCT + Y TDT

CS +DY −µI

]
⪯ 0, S ≻ 0, µ > 0, (3.4)

where S ∈ Rs×s and Y ∈ Ra×s. For matrices S and Y satisfying equation 3.4, K = Y S−1

and P = S−1 are then a stabilizing linear controller gain and Lyapunov matrix, respectively.
While the LMI above is specific to NLDI systems, this general paradigm of constructing stability
specifications using LMIs applies to many settings commonly considered in robust control (e.g.,
settings with norm-bounded disturbances or polytopic uncertainty, or H∞ control settings). More
details about these types of formulations are given in, e.g., Boyd et al. [21]; in addition, we provide
the relevant LMI constraints for the settings we consider in this work in Section 3.3.

3.2.2 LQR control objectives
In addition to designing for stability, it is often desirable to optimize some objective characterizing
controller performance. While our method can optimize performance with respect to any arbitrary
cost or reward function, to make comparisons with existing methods easier, for this chapter we
consider the well-known infinite-horizon “linear-quadratic regulator” (LQR) cost, defined as∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt, (3.5)

for some Q ∈ Ss×s ⪰ 0 and R ∈ Sa×a ≻ 0. If the control policy is assumed to be time-invariant
and linear as described above (i.e., u(t) = Kx(t)), minimizing the LQR cost subject to stability

However, other settings may require stochastic stability analysis; please see [10].
2See, e.g., [47] for a more rigorous definition of (local and global) exponential stability. Condition equation 3.2

comes from Lyapunov’s Theorem, which characterizes various notions of stability using Lyapunov functions.
3A slightly more complex formulation involves an additional term in the norm bound, i.e., Cx(t)+Du(t)+Hw(t),

which creates a quadratic inequality in w. The mechanics of obtaining robustness specifications in this setting are
largely the same as presented here, though with some additional terms in the equations. As such, as is often done, we
assume that H = 0 for simplicity.
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constraints can be cast as an SDP (see, e.g., [125]) and solved using off-the-shelf numerical
solvers – a fact that we exploit in our work. For example, to obtain an optimal linear time-invariant
controller for the NLDI systems described above, we can solve

minimize
S,Y

tr(QS) + tr(R1/2Y S−1Y TR1/2) s. t. Equation 3.4 holds. (3.6)

3.3 Details on robust control specifications
As described inthe previous section, for many dynamical systems of the form equation 3.1, it is
possible to specify a set of linear, time-invariant policies guaranteeing infinite-horizon exponential
stability via a set of LMIs. Here, we derive the LMI equation 3.4 provided in the main text
for the NLDI system equation 3.3, and additionally describe relevant LMI systems for systems
characterized by polytopic linear differential inclusions (PLDIs) and for H∞ control settings.

3.3.1 Exponential stability in NLDIs
Consider the general NLDI system equation 3.3. We seek to design a time-invariant control policy
u(t) = Kx(t) and a quadratic Lyapunov function V (x) = xTPx with P ≻ 0 for this system that
satisfy the exponential stability criterion V̇ (x) ≤ −αV (x), ∀t. We derive an LMI characterizing
such a controller and Lyapunov function, closely following and expanding upon the derivation
provided in [21].

Specifically, consider the NLDI system equation 3.3, reproduced below:

ẋ = Ax+Bu+Gw, ∥w∥2 ≤ ∥Cx+Du∥2. (3.7)

The time derivative of this Lyapunov function along the trajectories of the closed-loop system is

V̇ (x) = ẋTPx+ xTPẋ

= (Ax+Bu+Gw)TPx+ xTP (Ax+Bu+Gw)

= ((A+BK)x+Gw)TPx+ xTP ((A+BK)x+Gw)

=

[
x
w

]T [
(A+BK)TP + P (A+BK) PG

GTP 0

] [
x
w

]
.

(3.8)

The exponential stability condition V̇ (x) ≤ −αV (x) is thus implied by inequality[
x
w

]T
M1

[
x
w

]
:=

[
x
w

]T [
(A+BK)TP + P (A+BK) + αP PG

GTP 0

] [
x
w

]
≤ 0. (3.9)

Additionally, the norm bound on w can be equivalently expressed as[
x
w

]T
M2

[
x
w

]
:=

[
x
w

]T [
(C +DK)T (C +DK) 0

0 −I

] [
x
w

]
≥ 0. (3.10)
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Using the S-procedure, it follows that for some λ ≥ 0, the following matrix inequality is a
sufficient condition for exponential stability:

M1 + λM2 ⪯ 0. (3.11)

Using Schur Complements, this matrix inequality is equivalent to

(A+BK)TP + P (A+BK) + αP + λ(C +DK)T (C +DK) +
1

λ
PGGTP ⪯ 0. (3.12)

Left- and right-multiplying both sides by P−1, and making the change of variables S = P−1,
Y = KS, and µ = 1/λ, we obtain

SAT + AS + Y TBT +BY + αS +
1

µ

(
SCT + Y TDT

)
(CS +DY ) + µGGT ⪯ 0. (3.13)

Using Schur Complements again on this inequality, we obtain our final system of linear matrix
inequalities as[

AS + SAT + µGGT +BY + Y TBT + αS SCT + Y TDT

CS +DY −µI

]
⪯ 0, S ≻ 0, µ > 0, (3.14)

where then K = Y S−1 and P = S−1. Note that the first matrix inequality is homogeneous; we
can therefore assume µ = 1 (and therefore, λ = 1), without loss of generality.

3.3.2 Exponential stability in PLDIs

Consider the setting of polytopic linear differential inclusions (PLDIs), where the dynamics are of
the form

ẋ(t) = A(t)x(t) +B(t)u(t), (A(t), B(t)) ∈ Conv{(A1, B1), . . . , (AL, BL)}. (3.15)

Here, A(t) ∈ Rs×s and B(t) ∈ Rs×a can vary arbitrarily over time, as long as they lie in the convex
hull (denoted Conv) of the set of points above, where Ai ∈ Rs×s, Bi ∈ Rs×a for i = 1, . . . , L.

We seek to design a time-invariant control policy u(t) = Kx(t) and quadratic Lyapunov function
V (x) = xTPx with P ≻ 0 for this system that satisfy the exponential stability criterion V̇ (x) ≤
−αV (x), ∀t. Such a controller and Lyapunov function exist if there exist S ∈ Rs×s ≻ 0 and
Y ∈ Ra×s such that

AiS +BiY + SAT
i + Y TBT

i + αS ⪯ 0, ∀i = 1, . . . , L, (3.16)

where then K = Y S−1 and P = S−1. The derivation of this LMI follows similarly to that for
exponential stability in NLDIs, and is well-described in [21].
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3.3.3 H∞ control
Consider the following H∞ control setting with linear time-invariant dynamics

ẋ(t) = Ax(t) +Bu(t) +Gw(t), w ∈ L2, (3.17)

where A, B, and G are time-invariant as for the NLDI case, and where we define L2 as the set of
time-dependent signals with finite L2 norm.4

In cases such as these with larger or more unstructured disturbances, it may not be possible to
guarantee asymptotic convergence to an equilibrium. In these cases, our goal is to construct a
robust controller with bounds on the extent to which disturbances affect some performance output
(e.g., LQR cost), as characterized by the L2 gain of the disturbance-to-output map. Specifically,
we consider the stability requirement that this L2 gain be bounded by some parameter γ > 0 when
disturbances are present, and that the system be exponentially stable in the disturbance-free case.
This requirement can be characterized via the condition that for all t and some σ ≥ 0,

E(x, ẋ, u) := V̇ (x) + αV (x) + σ
(
xTQx+ uTRu− γ2∥w∥22

)
≤ 0. (3.18)

We note that when E(x(t), ẋ(t), u(t)) ≤ 0 for all t, both of our stability criteria are met. To see
this, note that integrating both sides of equation 3.18 from 0 to∞ and ignoring the non-negative
terms on the left hand side after integration yields∫ ∞

0

(x(t)TQx(t)+u(t)TRu(t))dt ≤ γ2

∫ ∞

0

∥w(t)∥22dt+ (1/σ)V (x(0)). (3.19)

This is precisely the desired bound on the L2 gain of the disturbance-to-output map (see [62]).
We also note that in the disturbance-free case, substituting w = 0 into equation 3.18 yields

V̇ (x) ≤ −αV (x)− σ
(
xTQx+ uTRu

)
≤ −αV (x), (3.20)

where the last inequality follows from the non-negativity of the LQR cost; this is precisely our
condition for exponential stability.

We now seek to design a time-invariant control policy u(t) = Kx(t) and quadratic Lyapunov
function V (x) = xTPx with P ≻ 0 that satisfies the above condition. In particular, we can write

E (x(t), (A+BK)x(t) +Gw(t), Kx(t))=

[
x(t)
w(t)

]T
M1

[
x(t)
w(t)

]
, (3.21)

where

M1 :=

[
(A+BK)TP + P (A+BK) + αP + σ(Q+KTRK) PG

GTP −γ2σI

]
. (3.22)

4The L2 norm of a time-dependent signal w(t) : [0,∞)→ Rd is defined as
√∫∞

0
∥w(t)∥22dt.
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Therefore, we seek to find a P ∈ Rs×s ≻ 0 and K ∈ Rs×a that satisfy M1 ⪯ 0, for some design
parameters α > 0 and σ > 0. Using Schur complements, the matrix inequality M1 ⪯ 0 is
equivalent to

(A+BK)TP + P (A+BK) + αP + σ(Q+KTRK) + PGGTP/(γ2σ) ⪯ 0. (3.23)

As in Section 3.3.1, we left- and right-multiply both sides by P−1, and make the change of
variables S = P−1, Y = KS, and µ = 1/σ to obtain

SAT +AS+Y TBT +BY +αS+
1

µ

(
(SQ1/2)(Q1/2S) + (Y TR1/2)(R1/2Y )

)
+µGGT/γ2 ⪯ 0.

Using Schur Complements again, we obtain the LMISAT + AS + Y TBT +BY + αS + µGGT/γ2
[
SQ1/2 Y TR1/2

][
Q1/2S
R1/2Y

]
−µI

 ⪯ 0, S ≻ 0, µ > 0,

(3.24)
where then K = Y S−1, P = S−1, and σ = 1/µ.

3.4 Enforcing robust control guarantees within neural net-
works

We now present the main contribution: A class of nonlinear control policies, potentially pa-
rameterized by deep neural networks, that is guaranteed to obey the same stability conditions
enforced by the robustness specifications described above. The key insight of our approach is
as follows: While it is difficult to derive specifications that globally characterize the stability of
a generic nonlinear controller, if we are given known robustness specifications, we can create a
sufficient condition for stability by simply enforcing that our policy satisfies these specifications
at all t. For instance, given a known Lyapunov function, we can enforce exponential stability by
ensuring that our policy sufficiently decreases this function (e.g., satisfies Equation 3.2) at any
given x(t).

In the following sections, we present our nonlinear policy class, as well as our general framework
for learning provably robust policies using this policy class. We then derive the instantiation of
this framework for various settings of interest. In particular, this involves constructing (custom)
differentiable projections that can be used to adjust the output of a nominal neural network
to satisfy desired robustness criteria. For simplicity of notation, we will often suppress the
t-dependence of x, u, and w, but we note that these are continuous-time quantities as before.

3.4.1 A provably robust nonlinear policy class
Given a dynamical system of the form equation 3.1 and a quadratic Lyapunov function V (x) =
xTPx, let

C(x) := {u ∈ Ra | V̇ (x) ≤ −αV (x) ∀ẋ ∈ A(t)x+B(t)u+G(t)w} (3.25)
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Algorithm 1 Learning provably robust controllers with deep RL
1: input performance objective ℓ // e.g., LQR cost
2: input stability requirement // e.g., V̇ (x) ≤ −αV (x)
3: input policy optimizer A // e.g., a planning or RL algorithm
4: compute P , K satisfying LMI constraints // e.g., by optimizing equation 3.6
5: construct specifications C(x) using P // as defined in Equation 3.25
6: construct robust policy class πθ using C // as defined in Equation 3.26
7: train πθ via A to optimize Equation 3.27
8: return πθ

denote a set of actions that, for a fixed state x ∈ Rs, are guaranteed to satisfy the exponential
stability condition equation 3.2 (even under worst-case realizations of the disturbance w). We
note that this “safe” set is non-empty if P satisfies the relevant LMI constraints (e.g., system equa-
tion 3.4 for NLDIs) characterizing robust linear time-invariant controllers, as there is then some
K corresponding to P such that Kx ∈ C(x) for all states x.

Using this set of actions, we then construct a robust nonlinear policy class that projects the output
of some neural network onto this set. More formally, consider an arbitrary nonlinear (neural
network-based) policy class π̂θ : Rs → Ra parameterized by θ, and let P(·) denote the projection
operator for some set (·). We then define our robust policy class as πθ : Rs → Ra, where

πθ(x) = PC(x)(π̂θ(x)). (3.26)

We note that this policy class is differentiable if the projections can be implemented in a dif-
ferentiable manner (e.g., using convex optimization layers [5], though we construct efficient
custom solvers for our purposes). Importantly, as all policies in this class satisfy the stability
condition equation 3.2 for all states x and at all times t, these policies are certifiably robust under
the same conditions as the original (linear) controller for which the Lyapunov function V (x) was
constructed.

Given this policy class and some performance objective ℓ (e.g., LQR cost), our goal is to then find
parameters θ such that the corresponding policy optimizes this objective – i.e., to solve

minimize
θ

∫ ∞

0

ℓ (x, πθ(x) ) dt s. t. ẋ ∈ A(t)x+B(t)πθ(x) +G(t)w. (3.27)

Since πθ is differentiable, we can solve this problem via a variety of approaches, e.g., a model-
based planning algorithm if the true dynamics are known, or virtually any (deep) RL algorithm if
the dynamics are unknown.5

This general procedure for constructing stabilizing controllers is summarized in Algorithm 1.
While seemingly simple, this formulation presents a powerful paradigm: by simply transforming
the output of a neural network, we can employ an expressive policy class to optimize an objective

5While this problem is infinite-horizon and continuous in time, in practice, one would optimize it in discrete time
over a large finite time horizon.
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of interest while ensuring the resultant policy will stabilize the system during both training and
testing.

We instantiate our framework by constructing “safe” sets C(x) and their associated (differentiable)
projections PC(x) for three settings of interest: NLDIs, polytopic linear differential inclusions
(PLDIs), and H∞ control settings.

3.4.2 Constructing the exponential stability set for NLDIs
In order to apply our framework to the NLDI setting equation 3.3, we first compute a quadratic
Lyapunov function V (x) = xTPx by solving the optimization problem equation 3.6 for the given
system via semidefinite programming. We then use the resultant Lyapunov function to compute
the system-specific “safe” set C(x), and then create a fast, custom differentiable solver to project
onto this set.

Computing sets of stabilizing actions

Given P , we compute CNLDI(x) as the set of actions u ∈ Ra that, for each state x ∈ Rs, satisfy the
stability condition equation 3.2 at that state under even a worst-case realization of the dynamics
(i.e., in this case, even under a worst-case disturbance w). The form of the resultant set is given
below.

Theorem 1. Consider the NLDI system equation 3.3, some stability parameter α > 0, and a
Lyapunov function V (x) = xTPx with P satisfying Equation 3.4. Assuming P exists, define

CNLDI(x) :=

{
u ∈ Ra | ∥Cx+Du∥2 ≤

−xTPB

∥GTPx∥2
u− xT (2PA+ αP )x

2∥GTPx∥2

}
for all states x ∈ Rs. For all x, CNLDI(x) is a non-empty set of actions that satisfy the exponential
stability condition equation 3.2. Further, CNLDI(x) is a convex set in u.
Proof. We seek to find a set of actions such that the condition equation 3.2 is satisfied along all
possible trajectories of equation 3.3. A set of actions satisfying this condition at a given x is given
by

CNLDI(x) :=

{
u ∈ Ra | sup

w:∥w∥2≤∥Cx+Du∥2
V̇ (x) ≤ −αV (x)

}
.

Let S := {w : ∥w∥2 ≤ ∥Cx+Du∥2}. We can then rewrite the left side of the above inequality
as

sup
w∈S

V̇ (x) = sup
w∈S

ẋTPx+ xTPẋ = 2xTP (Ax+Bu) + sup
w∈S

2xTPGw

= 2xTP (Ax+Bu) + 2∥GTPx∥2∥Cx+Du∥2,

by the definition of the NLDI dynamics and the closed-form minimization of a linear term over
an L2 ball. Rearranging yields an inequality of the desired form. We note that by definition
of the specifications equation 3.4, there is some K corresponding to P such that the policy
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u = Kx satisfies the exponential stability condition equation 3.2; thus, Kx ∈ CNLDI, and CNLDI is
non-empty. Further, as the above inequality represents a second-order cone constraint in u, this
set is convex in u.

We further consider the special case where D = 0, i.e., the norm bound on w does not depend on
the control action. This form of NLDI arises in many common settings (e.g., where w characterizes
linearization error in a nonlinear system but the dynamics depend only linearly on the action), and
is one for which we can compute the relevant projection in closed form (as described shortly).

Corollary 1. Consider the NLDI system equation 3.3 with D = 0, some stability parameter
α > 0, and Lyapunov function V (x) = xTPx with P satisfying Equation 3.4. Assuming P exists,
define

CNLDI-0(x) :=
{
u ∈ Ra | 2xTPBu ≤ −xT (2PA+ αP )x− 2∥GTPx∥2∥Cx∥2

}
for all states x ∈ Rs. For all x, CNLDI-0(x) is a non-empty set of actions that satisfy the exponential
stability condition equation 3.2. Further, CNLDI-0(x) is a convex set in u.

Proof. The result follows by setting D = 0 in Theorem 1 and rearranging terms. As the above
inequality represents a linear constraint in u, this set is convex in u.

Deriving efficient, differentiable projections

For the general NLDI setting equation 3.3, we note that the relevant projection PCNLDI(x) (see
Theorem 1) represents a projection onto a second-order cone constraint. As this projection does
not necessarily have a closed form, we must implement it using a differentiable optimization
solver (e.g., [5]). For computational efficiency purposes, we implement a custom solver that
employs an accelerated projected dual gradient method for the forward pass, and employs implicit
differentiation through the fixed point equations of this solution method to compute relevant
gradients for the backward pass. Derivations and additional details are provided in Section 3.5.

In the case where D = 0 (see Corollary 1), we note that the projection operation PCNLDI-0(x) does
have a closed form, and can in fact be implemented via a single ReLU operation. Specifically,
defining ηT := 2xTPB and ζ := −xT (2PA+ αP )x− 2∥GTPx∥2∥Cx∥2, we see that

PCNLDI-0(x) (π̂(x)) =

{
π̂(x) if ηT π̂(x) ≤ ζ

π̂(x)− ηT π̂(x)−ζ
ηT η

η otherwise
= π̂(x)− ReLU

(
ηT π̂(x)− ζ

ηTη

)
η.

(3.28)

3.4.3 Constructing the exponential stability set for PLDIs

For the general PLDI system equation 3.15, relevant sets of exponentially stabilizing actions CPLDI

are given by the following theorem.
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Theorem 2. Consider the PLDI system equation 3.15, some stability parameter α > 0, and a
Lyapunov function V (x) = xTPx with P satisfying equation 3.16. Assuming P exists, define

CPLDI(x) :=

u ∈ Ra |


2xTPB1

2xTPB2
...

2xTPBL

u ≤ −


xT (αP + 2PA1)x
xT (αP + 2PA2)x

...
xT (αP + 2PAL)x




for all states x ∈ Rs. For all x, CPLDI(x) is a non-empty set of actions that satisfy the exponential
stability condition equation 3.2. Further, CPLDI(x) is a convex set in u.

Proof. We seek to find a set of actions such that the condition equation 3.2 is satisfied along all
possible trajectories of equation 3.15, i.e., for any allowable instantiation of (A(t), B(t)). A set
of actions satisfying this condition at a given x is given by

CPLDI(x) := {u ∈ Ra | V̇ (x) ≤ −αV (x) ∀(A(t), B(t)) ∈ Conv{(A1, B1), . . . , (AL, BL)}.

Expanding the left side of the inequality above, we see that for some coefficients γi ∈ R ≥ 0, i =
1, . . . , L satisfying

∑L
i=1 γi(t) = 1,

V̇ (x) = ẋTPx+ xTPẋ = 2xTP (A(t)x+B(t)u)

= 2xTP

(
L∑
i=1

γi(t)Aix+ γi(t)Biu

)
=

L∑
i=1

γi
(
2xTP (Aix+Biu)

)
by definition of the PLDI dynamics and of the convex hull. Thus, if we can ensure

2xTP (Aix+Biu) ≤ −αV (x) = −αxTPx, ∀i = 1, . . . , L,

then we can ensure that exponential stability holds. Rearranging this condition and writing
it in matrix form yields an inequality of the desired form. We note that by definition of the
specifications equation 3.16, there is some K corresponding to P such that the policy u = Kx
satisfies all of the above inequalities; thus, Kx ∈ CPLDI(x), and CPLDI(x) is non-empty. Further, as
the above inequality represents a linear constraint in u, this set is convex in u.

We note that the relevant projection PCPLDI(x) represents a projection onto an intersection of
halfspaces, and can thus be implemented via differentiable quadratic programming [9].

3.4.4 Constructing the stability set for H∞ control
For the H∞ control system equation 3.17, relevant sets of actions satisfying the condition equa-
tion 3.18 are given by the following theorem.

Theorem 3. Consider the system equation 3.17, some stability parameter α > 0, and a Lyapunov
function V (x) = xTPx with P satisfying Equation 3.24. Assuming P exists, define

CH∞(x) :=
{
u ∈ Ra |uTRu+ (2BTPx)Tu+ xT

(
PA+ATP+αP+Q+γ−2PGGTP

)
x ≤ 0

}
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for all states x ∈ Rs. For all x, CH∞(x) is a non-empty set of actions that guarantee condi-
tion equation 3.18, i.e., that the L2 gain of the disturbance-to-output map is bounded by γ and
that the system is exponentially stable in the disturbance-free case. Further, CH∞(x) is convex in
u.

Proof. We seek to find a set of actions such that the condition E(x, ẋ, u) ≤ 0 is satisfied along all
possible trajectories of equation 3.17, where E is defined as in equation 3.18. A set of actions
satisfying this condition at a given x is given by

CH∞(x) := {u ∈ Ra | sup
w∈L2

E(x, ẋ, u) ≤ 0, ẋ = Ax+Bu+Gw}.

To begin, we note that

E(x,Ax+Bu+Gw, u) = xTP (Ax+Bu+Gw) + (Ax+Bu+Gw)TPx+ αxTPx

+ σ
(
xTQx+ uTRu− γ2∥w∥22

)
We then maximize E over w:

w⋆ = argmax
w
E(x,Ax+Bu+Gw, u) = GTPx/(σγ2). (3.29)

Therefore,

CH∞(x) = {u | E(x,Ax+Bu+Gw⋆, u, w⋆) ≤ 0}. (3.30)

Expanding and rearranging terms, this becomes

CH∞(x)={u |uT (σR)u+ (2BTPx)Tu+ xT
(
PA+ATP+αP+σQ+PGGTP/(σγ2)

)
x ≤ 0}.
(3.31)

We note that by definition of the specifications equation 3.24, there is some K corresponding to P
such that the policy u = Kx satisifies the conditions above (see equation 3.23); thus, Kx ∈ CH∞ ,
and CH∞ is non-empty. We note further that CH∞ is an ellipsoid in the control action space, and is
thus convex in u.

We rewrite the set CH∞(x) such that the projection PCH∞ (x) can be viewed as a second-order
cone projection, in order to leverage our fast custom solver (Section 3.5). In particular, defining
P̃ = σR, q̃ = BTPx, and r̃ = xT

(
PA+ATP+αP+σQ+PGGTP/(σγ2)

)
x, we can rewrite

the ellipsoid above as

CH∞(x) = {u |u⊤P̃ u+ 2q̃⊤u+ r̃ ≤ 0}. (3.32)

We note that as P̃ ≻ 0 and r̃ − q̃⊤P̃−1q̃ < 0, this ellipsoid is non-empty (see, e.g., section B.1 in
[20]). We can then rewrite the ellipsoid as

CH∞(x) = {u | ∥Ãu+ b̃∥2 ≤ 1} (3.33)

where Ã =
√

P̃
q̃⊤P̃−1q̃−r̃

and b̃ =
√

P
q⊤P−1q−r

P−1q. The constraint ∥Ãu + b̃∥2 ≤ 1 is then a
second-order cone constraint in u.
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3.5 Fast, differentiable solver for second-order cone projection
In order to construct the robust policy class described in Section 3.4 for the general NLDI
system equation 3.3 and the H∞ setting equation 3.17, we must project a nominal (neural
network-based) policy onto the second-order cone constraints describing the stability sets. As
this projection operation does not necessarily have a closed form, we implement it via a custom
differentiable optimization solver.

More generally, consider a set of the form

C = {x ∈ Rn | ∥Ax+ b∥2 ≤ cTx+ d} (3.34)

for some A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and d ∈ R. Given some input y ∈ Rn, we seek to compute
the second-order cone projection PC(y) by solving the problem

minimize
x∈Rn

1

2
∥x− y∥22

subject to ∥Ax+ b∥2 ≤ cTx+ d.
(3.35)

Let F denote the ℓ2 norm cone, i.e., F := {(w, t) | ∥w∥2 ≤ t}. Introducing the auxiliary variable
z ∈ Rm+1, we can then rewrite the above optimization problem equivalently as

minimize
x∈Rn, z∈Rm+1

1

2
∥x− y∥22 + 1F(z)

subject to z =

[
Ax+ b
cTx+ d

]
=: Gx+ h,

(3.36)

where for brevity we define G =

[
A
cT

]
and h =

[
b
d

]
, and where 1F denotes the indicator function

for membership in the set F .

We describe our fast solution technique for computing this projection, as well as our method for
obtaining gradients through the solution.

3.5.1 Computing the projection
We construct a fast solver for problem equation 3.36 using an accelerated projected dual gra-
dient method. Specifically, define µ = Rm+1 as the dual variable on the equality constraint in
Equation 3.36. The Lagrangian for this problem can then be written as

L (x, z, µ) =
1

2
∥x− y∥22 + 1F(z) + µT (z −Gx− h), (3.37)

and the dual problem is given by maxµminx,z L (x, z, µ). To form the dual problem, we minimize
the Lagrangian with respect to x and z as

inf
x,z

L (x, z, µ) = inf
x

1

2

{
∥x− y∥22 − µTGx

}
+ inf

z
{µT z + 1F(z)} − µTh. (3.38)
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We note that the first term on the right side is minimized at x⋆(µ) = y +GTµ. Thus, we see that

inf
x

1

2
{∥x− y∥22 − µTGx} = −1

2
µTGGTµ− µTGy. (3.39)

For the second term, denote µ = (µ̃, s) and z = (z̃, t). We can then rewrite this term as

inf
z
{µT z + 1F(z)}} = inf

t≥0
inf
z̃
{t · s+ µ̃T z̃ | ∥z̃∥2 ≤ t}. (3.40)

For a fixed t ≥ 0, the above objective is minimized at z̃ = −tµ̃/∥µ̃∥2. (The problem is infeasible
for t < 0.) Substituting this minimizer into equation 3.40 and minimizing the result over t ≥ 0
yields

inf
z
{µT z + 1F(z)} = inf

t≥0
t(s− ∥µ̃∥2) = −1F(µ) (3.41)

where the last identity follows from definition of the second-order cone F . Hence the negative
dual problem becomes

minimize
µ

1

2
µTGGTµ+ µT (Gy + h) + 1F(µ). (3.42)

We now solve this problem via Nesterov’s accelerated projected dual gradient method [86]. For
notational brevity, define f(µ) := 1

2
µTGGTµ + µT (Gy + h). Then, starting from arbitrary

µ(−1), µ(0) ∈ Rm+1 we perform the iterative updates

ν(k) = µ(k) + β(k)(µ(k) − µ(k−1))

µ(k+1) = PF

(
ν(k) − 1

Lf

∇f(ν(k))

)
,

(3.43)

where Lf = λmax(GGT ) is the Lipschitz constant of f , and PF is the projection operator onto
F (which has a closed form solution; see [12]). Letting mf = λmin(GGT ) denote the strong
convexity constant of f , the momentum parameter is then scheduled as [86]

βk =


k − 1

k + 2
if mf = 0√

Lf −√mf√
Lf +

√
mf

if mf > 0.

(3.44)

After computing the optimal dual variable µ⋆, i.e., the fixed point of equation 3.43, the optimal
primal variable can be recovered via the equation x⋆ = y +GTµ⋆ (as can be observed from the
first-order conditions of the Lagrangian equation 3.37).

3.5.2 Obtaining gradients
In order to incorporate the above projection into our neural network, we need to compute the
gradients of all problem variables (i.e., G, h, and y) through the solution x⋆. In particular, we note
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that x⋆ has a direct dependence on both G and y, and an indirect dependence on all of G, h, and y
through µ⋆.

To compute the relevant gradients through µ⋆, we apply the implicit function theorem to the fixed
point of the update equations equation 3.43. Specifically, as these updates imply that µ⋆ = ν⋆,
their fixed point can be written as

µ⋆ = PF

(
µ⋆ − 1

Lf

∇f(µ⋆)

)
. (3.45)

Define M := ∂PF (·)
∂(·)

∣∣
(·)=µ⋆− 1

Lf
∇f(µ⋆)

, and note that∇f(µ⋆) = GGTµ⋆ +Gy+ h. The differential

of the above fixed-point equation is then given by

dµ⋆ = M ×
(
dµ⋆ − 1

Lf

(
dGGTµ⋆ +GdGTµ⋆ +GGTdµ⋆ + dGy +Gdy + dh

))
. (3.46)

Rearranging terms to separate the differentials of problem outputs from problem variables, we see
that(

I −M +
1

Lf

MGGT

)
dµ⋆ = − 1

Lf

M
(
dGGTµ⋆ +GdGTµ⋆ + dGy +Gdy + dh

)
, (3.47)

where I is the identity matrix of appropriate size.

As described in e.g. [9], we can then use these equations to form the Jacobian of µ⋆ with respect
to any of the problem variables by setting the differential of the relevant problem variable to I and
of all other problem variables to 0; solving the resulting equation for dµ⋆ then yields the value of
the desired Jacobian. However, as these Jacobians can be large depending on problem size, we
rarely want to form them explicitly. Instead, given some backward pass vector ∂ℓ

∂µ⋆ ∈ R1×(m+1)

with respect to the optimal dual variable, we want to directly compute the gradient of the loss with
respect to the problem variables: e.g., for y, we want to directly form the result of the product
∂ℓ
∂µ⋆

∂µ⋆

∂y
∈ R1×n. We do this via a similar method as presented in [9], and refer the reader there for

a more in-depth explanation of the method described below.

Define J := I−M+ 1
Lf
MGGT to represent the coefficient of dµ⋆ on the left side of Equation 3.47.

Given ∂ℓ
∂µ⋆ , we then compute the intermediate term

dµ := −J−T

(
∂ℓ

∂µ⋆

)T

. (3.48)

We can then form the relevant gradient terms directly as(
∂ℓ

∂µ⋆

∂µ⋆

∂G

)T

=
1

Lf

M
(
dµ(G

Tµ⋆)T + µ⋆(GTdµ)
T + dµy

T
)

(
∂ℓ

∂µ⋆

∂µ⋆

∂h

)T

=
1

Lf

Mdµ(
∂ℓ

∂µ⋆

∂µ⋆

∂y

)T

=
1

Lf

GTMdµ.

(3.49)
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In these computations, we note that as our solver returns x⋆, the backward pass vector we are
given is actually ∂ℓ

∂x⋆ ∈ R1×n; thus, we compute ∂ℓ
∂µ⋆ = ∂ℓ

∂x⋆
∂x⋆

∂µ⋆ = ∂ℓ
∂x⋆G

T for use in Equation 3.48.

Accounting additionally for the direct dependence of some of the problem variables on x⋆

(recalling that x⋆ = y +GTu⋆), the desired gradients are then given by(
∂ℓ

∂G

)T

=

(
∂ℓ

∂x⋆

∂x⋆

∂G
+

∂ℓ

∂x⋆

∂x⋆

∂u⋆

∂u⋆

∂G

)T

= µ⋆ ∂ℓ

∂x⋆
+

1

Lf

M
(
dµ(G

Tµ⋆)T + µ⋆(GTdµ)
T + dµy

T
)

(
∂ℓ

∂h

)T

=


���

��*
0

∂ℓ

∂x⋆

∂x⋆

∂h
+

∂ℓ

∂x⋆

∂x⋆

∂u⋆

∂u⋆

∂h

T

=
1

Lf

Mdµ

(
∂ℓ

∂y

)T

=

(
∂ℓ

∂x⋆

∂x⋆

∂y
+

∂ℓ

∂x⋆

∂x⋆

∂u⋆

∂u⋆

∂y

)T

=

(
∂ℓ

∂x⋆

)T

+
1

Lf

GTMdµ.

(3.50)

3.6 Experiments
Having instantiated our general framework, we demonstrate the power of our approach on a
variety of simulated control domains.6 In particular, we evaluate performance on the following
metrics:

• Average-case performance: How well does the method optimize the performance objective
(i.e., LQR cost) under average (non-worst case) dynamics?

• Worst-case stability: Does the method remain stable even when subjected to adversarial
(worst-case) dynamics?

In all cases, we show that our method is able to improve performance over traditional robust
controllers under average conditions, while still guaranteeing stability under worst-case conditions.

3.6.1 Description of dynamics settings
We evaluate our approach on five NLDI settings: two synthetic NLDI domains, a synthetic PLDI
and H∞ domain, the cart-pole task, a quadrotor domain, and a microgrid domain. For each setting,
we choose a time discretization based on the speed at which the system evolves, and run each
episode for 200 steps over this discretization. In all cases except the microgrid setting, we use
a randomly generated LQR objective where the matrices Q1/2 and R1/2 are drawn i.i.d. from a
standard normal distribution.

Synthetic NLDI settings. We generate NLDIs of the form equation 3.3 with s = 5, a = 3,
and d = k = 2 by generating matrices A,B,G,C and D i.i.d. from normal distributions, and
producing the disturbance w(t) using a randomly-initialized neural network (with its output scaled

6Code for all experiments is available at https://github.com/locuslab/robust-nn-control
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to satisfy the norm-bound on the disturbance). We investigate settings both where D ̸= 0 and
where D = 0. In both cases, episodes are run for 2 seconds at a discretization of 0.01 seconds.

Synthetic PLDI setting. We generate PLDI instances equation 3.15 with s = 5, a = 3,
and L = 3. Specifically, we generate convex hull matrices (A1, B1), . . . , (A3, B3) i.i.d. from
normal distributions, and generate (A(t), B(t)) by using a randomly-initialized neural network
with softmax output to weight the convex hull matrices. Episodes were run for 2 seconds at a
discretization of 0.01 seconds.

Synthetic H∞ setting. We generate H∞ control instances equation 3.17 with s = 5, a = 3,
and d = 2 by generating matrices A,B and G i.i.d. from normal distributions. The disturbance
w(t) was produced using a randomly-initialized neural network, with its output scaled to satisfy
the L2 bound on the disturbance. Specifically, we scaled the output of the neural network to
satisfy an attenuating norm-bound on the disturbance; at time t, the norm-bound was given by
20×f(2×t/T ), where T is the time horizon and f is the standard normal PDF function. Episodes
were run for T = 2 seconds at a discretization of 0.01 seconds.

Cart-pole. In the cart-pole task, our goal is to balance an inverted pendulum resting on top of
a cart by exerting horizontal forces on the cart. For our experiments, we linearize this system
as an NLDI with D ̸= 0 (see Section 3.6.4), and add a small additional randomized disturbance
satisfying the NLDI bounds. Episodes are run for 10 seconds at a discretization of 0.05 seconds.

Planar quadrotor. In this setting, our goal is to stabilize a quadcopter in the two-dimensional
plane by controlling the amount of force provided by the quadcopter’s right and left thrusters. We
linearize this system as an NLDI with D = 0 (see Section 3.6.5), and add a small disturbance as
in the cart-pole setting. Episodes are run for 4 seconds at a discretization of 0.02 seconds.

Microgrid. In this final setting, we aim to stabilize a microgrid by controlling a storage device
and a solar inverter. We augment the system given in [72] with LQR matrices and NLDI bounds
(see Section 3.6.6). Episodes are run for 2 seconds at a discretization of 0.01 seconds.

3.6.2 Experimental setup
We demonstrate our approach by constructing a robust policy class equation 3.26 for each of these
settings, and optimizing this policy class via different approaches. Specifically, we construct a
nominal nonlinear control policy class as π̂θ(x) = Kx+ π̃θ(x), where K is obtained via robust
LQR optimization equation 3.6, and where π̃θ(x) is a feedforward neural network. To construct
the projections PC , we employ the value of P obtained when solving for K. For the purposes of
demonstration, we then optimize our robust policy class πθ(x) = PC(π̂θ(x)) using two different
methods:

• Robust MBP (ours): A model-based planner that assumes the true dynamics are known.

• Robust PPO (ours): An RL approach based on PPO [97] that does not assume known
dynamics (beyond the bounds used to construct the robust policy class).

Robust MBP is optimized using gradient descent for 1,000 updates, where each update samples
20 roll-outs. Robust PPO is trained for 50,000 updates, where each update samples 8 roll-outs;
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we choose the model that performs best on a hold-out set of initial conditions during training.
We note that while we use PPO for our demonstration, our approach is agnostic to the particular
method of training, and can be deployed with many different (deep) RL paradigms.

We compare our robust neural network-based method against the following baselines:

• Robust LQR: Robust (linear) LQR controller obtained via Equation 3.6.

• Robust MPC: A robust model-predictive control algorithm [65] based on state-dependent
LMIs. (As the relevant LMIs are not always guaranteed to solve, our implementation
temporarily reverts to the Robust LQR policy when that occurs.)

• RARL: The robust adversarial reinforcement learning algorithm [92], which trains an
RL agent in the presence of an adversary. (We note that unlike the other robust methods
considered here, this method is not provably robust.)

• LQR: A standard non-robust (linear) LQR controller.

• MBP and PPO: The non-robust neural network policy class π̂θ(x) optimized via a model-
based planner and the PPO algorithm, respectively.

In order to evaluate performance, we train all methods on the dynamical settings described in
Section 3.6.1, and evaluate them on two different variations of the dynamics:

• Original dynamics: The dynamical settings described above (“average case”).

• Adversarial dynamics: Modified dynamics with an adversarial test-time disturbance w(t)
generated to maximize loss (“worst case”). We generate this disturbance separately for each
method described above (see Section 3.6.3 for more details).

Initialization states are randomly generated for all experiments. For the synthetic NLDI and
microgrid settings, these are generated from a standard normal distribution. For both cart-pole and
quadrotor, because our NLDI bounds model linearization error, we must generate initial points
within a region where this linearization holds. In particular, the linearization bounds only hold for
a specified L∞ ball, BNLDI, around the equilibrium. We use a simple heuristic to construct this
ball and jointly find a smaller L∞ ball, Binit, such that there exists a level set L of the Robust LQR
Lyapunov function with Binit ⊆ L ⊆ BNLDI. Since Robust LQR (and by extension our methods)
are guaranteed to decrease the relevant Lyapunov function, this guarantees that these methods
will never leave BNLDI when initialized starting from any point inside Binit – i.e., that our NLDI
bounds will always hold throughout the trajectories produced by these methods.

Initial states. To pick initial states in our experiments, for the synthetic settings, we sample
each attribute of the state i.i.d. from a standard Gaussian distribution. For cart-pole and planar
quadrotor, we sample uniformly from bounds chosen such that the non-robust LQR algorithm
(under the original dynamics) did not go unstable. For cart-pole, these bounds were chosen
to be px ∈ [−1, 1], φ ∈ [−0.1, 0.1], ṗx = φ̇ = 0. For planar quadrotor, these bounds were
px, pz ∈ [−1, 1], φ ∈ [−0.05, 0.05], ṗx = ṗz = φ̇ = 0.

Constructing NLDI bounds. Given these initial states, for the cart-pole and quadrotor settings,
we needed to construct our NLDI disturbance bounds such that they would hold over the entire
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trajectory of the robust policy; if not, the robustness specification equation 3.14 would not hold,
and our agent might in fact increase the Lyapunov function. To ensure this approximately, we used
a simple heuristic: we ran the (non-robust) LQR agent for a full episode with 50 different starting
conditions, and constructed an L∞ ball around all states reached in any of these trajectories. We
then used these L∞ balls on the states to construct the matrices C and D for our disturbance
bounds, using the procedure described in Sections 3.6.4 and 3.6.5.

3.6.3 Generating an adversarial disturbance

In the NLDI settings explored in our experiments, we seek to construct an “adversarial” disturbance
w(t) that obeys the relevant norm bounds ∥w(t)∥2 ≤ ∥Cx(t) +Du(t)∥2 while maximizing the
loss. To do this, we use a model predictive control method where the actions taken are w(t).
Specifically, for each policy π, we model w(t) as a neural network specific to that policy. Every
10 steps of a roll-out, we optimize w(t) through gradient descent to maximize the loss over a
horizon of 40 steps, subject to the constraint ∥w(t)∥2 ≤ ∥Cx(t) +Du(t)∥2.

Trajectory plots. Figure 3.3 shows sample trajectories of different methods in the cart-pole
domain under adversarial dynamics. The non-robust LQR and model-based planning approaches
both diverge and the non-robust PPO doesn’t diverge, but doesn’t clearly converge after 10 seconds.
The robust methods, on the other hand, all clearly converge after 10 seconds.

Runtime comparison. Tables 3.2 and 3.3 show the evaluation and training time of our methods
and the baselines over 50 episodes run in parallel. In the NLDI cases where D = 0, i.e., Generic
NLDI (D = 0) and Quadrotor, our projection adds only a very small computational cost. In the
other cases, the additional computational cost is more significant, but our method is still far less
expensive than the Robust MPC method.

3.6.4 Writing the cart-pole problem as an NLDI

In the cart-pole task, our goal is to balance an inverted pendulum resting on top of a cart by exerting
horizontal forces on the cart. Specifically, the state of this system is defined as x =

[
px, ṗx, φ, φ̇

]T ,
where px is the cart position and φ is the angular displacement of the pendulum from its vertical
position; we seek to stabilize the system at x = 0⃗ by exerting horizontal forces u ∈ R on the cart.
For a pendulum of length ℓ and mass mp, and for a cart of mass mc, the dynamics of the system
are (as described in [112]):

ẋ =



ṗx
u+mp sinφ(ℓφ̇2−g cosφ)

mc+mp sin2 φ

φ̇

(mc+mp)g sinφ−u cosφ−mpℓφ̇2 cosφ sinφ

l(mc+mp sin2 φ)


, (3.51)
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where g = 9.81 m/s2 is the acceleration due to gravity. We rewrite this system as an NLDI by
defining ẋ = f(x, u) and then linearizing the system about its equilibrium point as

ẋ = Jf (0, 0)

[
x
u

]
+ Inw, ∥w∥ ≤ ∥Cx+Du∥, (3.52)

where Jf is the Jacobian of the dynamics, w = f(x, u)−Jf (0, 0)
[
x u

]T is the linearization error,
and In is the n×n identity matrix. We bound this linearization error by numerically obtaining the
matrices C and D, assuming that x and u are within a neighborhood of the origin. We describe
this process in more detail below. As a note, while we employ an NLDI here to characterize
the linearization error, it is also possible to characterize this error via polytopic uncertainty (see
Section 3.6.7); we choose to use an NLDI here as it yields a much smaller problem description
than a PLDI in this case.

Deriving Jf (0, 0) For ẋ = f(x, u), we see that

Jf (x, u) =


0 1 0 0 0
0 0 ∂p̈x/∂φ ∂p̈x/∂φ̇ ∂p̈x/∂u
0 0 0 1 0
0 0 ∂φ̈/∂φ ∂φ̈/∂φ̇ ∂φ̈/∂u,

 , (3.53)

where

∂p̈x
∂φ

=
mp cosφ

(
φ̇2l − g cosφ

)
+ gmp sin

2 φ

mc +mp sin
2 φ

− 2mp sinφ cosφ
(
mp sinφ

(
φ̇2l − g cosφ

)
+ u
)(

mc +mp sin
2 φ
)2 ,

∂p̈x
∂φ̇

=
2φ̇lmp sinφ

mc +mp sin
2 φ

,

∂p̈x
∂u

=
1

mc +mp sin
2 φ

,

∂φ̈

∂φ
=

g(mc +mp) cosφ+ φ̇2lmp sin
2 φ

−φ̇2lmp cos
2 φ+ u sinφ

l
(
mc +mp sin

2 φ
) −

2mp sinφ cosφ(g(mc +mp) sinφ
−φ̇2lmp sinφ cosφ− u cosφ

l
(
mc +mp sin

2 φ
)2 ,

∂φ̈

∂φ̇
=
−2φ̇mp sinφ cosφ

mc +mp sin
2 φ

,

∂φ̈

∂u
=

− cosφ

l(mc +mp sin
2 φ)

.

We thus see that

Jf (0, 0) =


0 1 0 0 0
0 0 −mpg/mc 0 1/mc

0 0 0 1 0
0 0 g(mc+mp)/lmc 0 −1/mc

 . (3.54)

36



Obtaining C and D We then seek to construct matrices C and D that bound the linearization

error w between the true dynamics ẋ and our first-order linear approximation Jf (0, 0)

[
x
u

]
. To do

so, we bound the error of this approximation entry-wise: that is, for each entry i = 1, . . . , s, we
want to find Fi such that for all x in some region x ≤ x ≤ x̄, and all u in some region u ≤ u ≤ ū,

w2
i =

(
∇fi(0)

[
x
u

]
− ẋi

)2

≤
[
x
u

]T
Fi

[
x
u

]
. (3.55)

Then, given the matrix

M =
[
F

T/2
1 F

T/2
2 F

T/2
3 F

T/2
4 F

T/2
5 F

T/2
6

]T
(3.56)

we can then obtain C = M1:s and D = Ms:s+m (where the subscripts indicate column-wise
indexing).

We solve separately for each Fi to minimize the difference between the right and left sides of
Equation 3.55 (while enforcing that the right side is larger than the left side) over a discrete grid
of points within x ≤ x ≤ x̄ and u ≤ u ≤ ū. By assuming that Fi is symmetric, we are able to
cast this as a linear program in the upper triangular entries of Fi.

To obtain the matrices C and D used for the cart-pole experiments in the main paper, we let
x̄ =

[
1.5 2 0.2 1.5

]T , ū = 10, x = −x̄, and u = −ū. As each entry-wise difference in
Equation 3.55 contained exactly three variables (i.e., a total of three entries from x and u), we
solved each entry-wise linear program over a mesh grid of 50 points per variable.

3.6.5 Writing quadrotor as an NLDI
In the planar quadrotor setting, our goal is to stabilize a quadcopter in the two-dimensional
plane by controlling the amount of force provided by the quadcopter’s right and left thrusters.
Specifically, the state of this system is defined as x =

[
px pz φ ṗx ṗz φ̇

]T , where (px, pz)
is the position of the quadcopter in the vertical plane and φ is its roll (i.e., angle from the
horizontal position); we seek to stabilize the system at x = 0⃗ by controlling the amount of force
u =

[
ur, ul

]T from right and left thrusters. We assume that our action u is additional to a baseline
force of

[
mg/2 mg/2

]T provided by the thrusters by default to prevent the quadcopter from
falling. For a quadrotor with mass m, moment-arm ℓ for the thrusters, and moment of inertia J
about the roll axis, the dynamics of this system are then given by (as modified from [98]):

ẋ =


ṗx cosφ− ṗz sinφ
ṗx sinφ+ ṗz cosφ

φ̇
ṗzφ̇− g sinφ

−ṗxφ̇− g cosφ+ g
0

+


0 0
0 0
0 0
0 0

1/m 1/m
ℓ/J −ℓ/J

u, (3.57)
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where g = 9.81 m/s2. We linearize this system via a similar method as for the cart-pole setting,
i.e., as in Equation 3.52. We describe this process in more detail below. We note that since the
dependence of the dynamics on u is linear, we have that D = 0 for our resultant NLDI. As for
cart-pole, while we employ an NLDI here to characterize the linearization error, it is also possible
to characterize this error via polytopic uncertainty (see Section 3.6.7); we choose to use an NLDI
here as it yields a much smaller problem description than a PLDI in this case.

Deriving Jf (0, 0) For ẋ = f(x, u), we see that

Jf (x, u) =


0 0 −ṗx sinφ− ṗz cosφ cosφ − sinφ 0 0
0 0 ṗx cosφ− ṗz sinφ sinφ cosφ 0 0
0 0 0 0 0 1 0
0 0 −g cosφ 0 φ̇ ṗz 0
0 0 g sinφ −φ̇ 0 −ṗx 0
0 0 0 0 0 0 0

 , (3.58)

and thus

Jf (0, 0) =


0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 −g 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 . (3.59)

Obtaining C and D We obtain the matrices C and D via a similar method as described
in Section 3.6.4, though in practice we only consider the linearization error with respect to
x (i.e., since the dynamics are linear with respect to u, we have D = 0). We let x̄ =[
1 1 0.15 0.6 0.6 1.3

]
and x = −x̄. As for cart-pole, each entry wise difference in the

equivalent of Equation 3.55 contained exactly three variables (i.e., a total of three entries from x
and u), and each entry-wise linear program was solved over a mesh grid of 50 points per variable.

3.6.6 Details on the microgrid setting
For our experiments, we build upon the microgrid setting given in [72]. In this system, the state
x ∈ R3 captures voltage deviations, frequency deviations, and the amount of power generated
by a diesel generator connected to the grid; the action u ∈ R2 describes the current associated
with a storage device and a solar PV inverter; and the disturbance w ∈ R describes the difference
between the amount of power demanded and the amount of power produced by solar panels on the
grid. The authors also define a performance index y ∈ R2 which captures voltage and frequency
deviations (i.e., two of the entries of the state x).

To construct an NLDI of the form equation 3.3 for this system, we directly use the A, B, and G
matrices given in [72]. We generate C i.i.d. from a normal distribution and let D = 0, to represent
the fact that the disturbance w and the entries of the state x are correlated, but that w is likely not
correlated with the actions u. Finally, we let Q and R be diagonal matrices with 1 in the entries
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corresponding to quantities represented in the performance index y, and with 0.1 in the rest of
the diagonal entries, to emphasize that the variables in y are the most important in describing the
performance of the system.

3.6.7 Notes on linearization via PLDIs and NLDIs
While we linearize the cart-pole and quadrotor dynamics via NLDIs in our experiments, we note
that these dynamics can also be characterized via PLDIs. More generally, in this section, we show
how we can use the framework of PLDIs to model linearization errors arising in the analysis of
nonlinear systems.

Consider the nonlinear dynamical system

ẋ = f (x, u) with f(0, 0) = 0. (3.60)

for x ∈ Rs and u ∈ Ra. Define ξ = (x, u). We would like to represent the above system as a
PLDI in the region R := {ξ | ξ ≤ ξ ≤ ξ̄} including the origin. The mean value theorem states
that for each component of f , we can write

fi(ξ) = fi(0) +∇fi(z)T ξ, (3.61)

for some z = tξ, where t ∈ [0, 1]. Now, let p = s+ a. Defining the Jacobian of f as

Jf (z) =

∇f1(z)
T

...
∇fp(z)T

 , (3.62)

and recalling that f(0) = 0, we can rewrite equation 3.61 as

f(ξ) = Jf (z)ξ. (3.63)

Now, suppose we can find component-wise bounds on the matrix Jf (z) overR, i.e,

M ≤ Jf (z) ≤ M̄ for all z ∈ R. (3.64)

We can then write

Jf (z) =
∑

1≤i,j≤p

mij(t)Eij with mij(t) ∈ [mij, m̄ij], (3.65)

where Eij = eie
T
j and ei is the i-th unit vector in Rp.

We now seek to bound the Jacobian using polytopic bounds. To do this, note that we can write

Jf (z) =
2p

2∑
κ=1

γκAκ γκ ≥ 0,
∑
κ

γκ = 1, (3.66)
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where Aκ’s are the vertices of the polytope in equation 3.65, i.e.,

Aκ ∈ V =

{ ∑
1≤i,j≤p

mijEij |mij ∈ {mij, m̄ij}
}
. (3.67)

Together, Equations equation 3.61, equation 3.63, equation 3.66, and equation 3.67 characterize
the original nonlinear dynamics as a PLDI.

We note that this PLDI description is potentially very large; in particular, the size of V is
exponential in the square of the number of non-constant entries in the Jacobian Jf (z), which
could be as large as 2p2 = 2(s+a)2 . This problem size may therefore become intractable for larger
control settings.

We note, however, that we can in fact express this PLDI more concisely as an NLDI. More
precisely, we would like to find matrices A,B,C parameterizing the form of NLDI below, which
is equivalent to that presented in Equation 3.3 (see Chapter 4 of [21]):

Df(z) ∈ {A+B∆C | ∥∆∥2 ≤ 1} for all z ∈ R. (3.68)

It can shown that the solution to the SDP

minimize tr(V +W )

subject to W ≻ 0[
V (Aκ − A)T

Aκ − A W

]
⪰ 0, ∀Aκ ∈ V

(3.69)

yields the matrices A, B, and C with V = CTC and W = BBT , which can be used to construct
NLDI equation 3.68. While the NLDI here is more concise than the PLDI, the trade-off is that the
NLDI norm bounds obtained via this method may be rather loose. As such, for our settings, we
obtain NLDI bounds numerically (see Section 3.6.4 and Section 3.6.5), as these are tighter than
NLDI specifications obtained via the above method (though they are potentially slightly inexact).
An alternative approach would be to examine how to tighten the conversion from PLDIs to NLDIs,
which has been explored in other work (e.g. [66]).

3.6.8 Additional experimental details
Computing infrastructure and runtime. All experiments were run on an XPS 13 laptop with an
Intel i7 processor. The planar quadrotor and synthetic NLDI experiment with D = 0 took about 1
day to run (since the projections were simple half-space projections), while all the other synthetic
domains and cart-pole took about 3 days to run. The majority of the run-time was in computing
the adversarial disturbances for test-time evaluations.

Hyperparameter selection. For our experiments, we did not perform large parameter searches.
The learning rate we chose for our model-based planner, (both robust and non-robust) remained
constant for the different domains; we tried learning rates of 1× 10−3, 1× 10−4, 1× 10−5 and
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found 1× 10−3 worked best for the non-robust version and 1× 10−4 worked best for the robust
version. For our PPO hyperparameters, we simply used those used in the original PPO paper.

One parameter we had to tune for each environment was the time step. In particular, we had to pick
a time step high enough that we could run episodes for a reasonable total length of time (within
which the non-robust agents would go unstable), but low enough to reasonably approximate a
continuous-time setting (since, for our robustness guarantees, we assume the agent’s actions
evolve in continuous time). Our search space was small, however, consisting of 0.05, 0.02, 0.01,
and 0.005 seconds.

3.6.9 Results
Table 3.1 shows the performance of the above methods. We report the integral of the quadratic loss
over the prescribed time horizon on a test set of states, or indicate cases where the relevant method
became unstable (i.e., the loss became orders of magnitude larger than for other approaches).

These results illustrate the basic advantage of our approach. In particular, both our Robust MBP
and Robust PPO methods show improved “average-case” performance over the other provably
robust methods (namely, Robust LQR and Robust MPC). As expected, however, the non-robust
LQR, MBP, and PPO methods often perform better within the original nominal dynamics, as they
are optimizing for expected performance but do not need to consider robustness under worst-case
scenarios. However, when we apply allowable adversarial perturbations (that still respect our
disturbance bounds), the non-robust LQR, MBP, and PPO approaches diverge or perform very
poorly. Similarly, the RARL agent performs well under the original dynamics, but diverges
under adversarial perturbations in the generic NLDI settings. In contrast, both of our provably
robust approaches (as well as Robust LQR) remain stable under even “worst-case” adversarial
dynamics. (We note that the baseline Robust MPC method goes unstable in one instance, though
this is due to numerical instability issues, rather than issues with theoretical guarantees.)

Figure 3.1 additionally shows the performance of all neural network-based methods on the test set
over training epochs. While the robust and non-robust MBP and PPO approaches both converge
quickly to their final performance levels, both non-robust versions become unstable under the
adversarial dynamics very early in the process. The RARL method also frequently destabilizes
during training. Our Robust MBP and PPO policies, on the other hand, remain stable throughout
the entire optimization process, i.e., do not destabilize during either training or testing. Overall,
these results show that our method is able to learn policies that are more expressive than traditional
robust methods, while guaranteeing these policies will be stable under the same conditions as
Robust LQR.

3.7 Conclusion
In this chapter, we have presented a class of nonlinear control policies that combines the expres-
siveness of neural networks with the provable stability guarantees of traditional robust control.
This policy class entails projecting the output of a neural network onto a set of stabilizing actions,
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Environment LQR MBP PPO Robust
LQR

Robust
MPC RARL Robust

MBP∗
Robust
PPO∗

Generic NLDI
(D = 0)

O 373 16 21 253 253 27 69 33
A ——— unstable ——— 1009 873 unstable 1111 2321

Generic NLDI
(D ̸= 0)

O 278 15 82 199 199 147 69 80
A ——— unstable ——— 1900 1667 unstable 1855 1669

Generic PLDI
O 96.3 3.3 8.0 19.2 19.2 15.8 18.6 10.2
A ——— unstable ——— 43.3 44.1 unstable 21.9 16.1

Generic H∞
O 181 88 114 165 N/A 115 116 125
A 219 112 143 206 N/A 145 147 158

Cart-pole
O 36.3 3.6 7.2 10.2 10.2 8.3 9.7 8.4
A — unstable — 172.1 42.2 47.8 41.2 50.0 16.3

Quadrotor
O 5.4 2.5 7.7 13.8 13.8 12.2 11.0 8.3
A unstable 545.7 137.6 64.8 unstable† 63.1 25.7 26.5

Microgrid
O 4.59 0.60 0.61 0.73 0.73 0.67 0.61 0.61
A ——— unstable ——— 0.99 0.92 2.17 7.68 8.91

Table 3.1: Performance of various approaches, both robust (right) and non-robust (left). We report
average quadratic loss over 50 episodes under the original dynamics (O) and under an adversarial
disturbance (A). For the original dynamics (O), the best performance for both non-robust methods
and robust methods is in bold (lower loss is better). Under the adversarial dynamics (A), we seek
to observe whether or not methods remain stable; we use “unstable” to indicate cases where the
relevant method becomes unstable (and † to denote any instabilities due to numerical, rather than
theoretical, issues). Our robust methods (denoted by ∗) improve performance over Robust LQR
and Robust MPC in the average case while remaining stable under adversarial dynamics, whereas
the non-robust methods and RARL either go unstable or receive much larger losses.

Environment LQR MBP PPO Robust
LQR

Robust
MPC RARL Robust

MBP∗
Robust
PPO∗

Generic NLDI (D = 0) 0.63 0.61 0.84 0.57 718.06 0.71 0.73 0.94
Generic NLDI (D ̸= 0) 0.64 0.62 0.83 0.58 824.86 0.81 15.13 25.38

Cart-pole 0.55 0.67 0.84 0.53 646.90 0.84 10.12 13.37
Quadrotor 0.95 0.98 1.19 0.88 3348.68 1.14 1.15 1.30
Microgrid 0.58 0.61 0.79 0.57 601.90 0.74 8.14 10.25

Generic PLDI 0.57 0.54 0.76 0.51 819.24 0.73 69.35 64.03
Generic H∞ 0.84 0.80 1.03 0.76 N/A 1.00 47.81 63.67

Table 3.2: Time (in seconds) taken to run each method on the test set of every environment for 50
episodes run in parallel.
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Environment MBP PPO RARL Robust
MBP∗

Robust
PPO∗

Generic NLDI (D = 0) 26.36 101.77 102.37 30.78 114.60
Generic NLDI (D ̸= 0) 26.46 100.79 82.53 221.35 1158.28

Cart-pole 25.49 87.04 98.90 146.34 689.93
Quadrotor 41.24 131.48 112.95 46.13 159.06
Microgrid 23.03 112.52 87.71 113.61 436.64

Table 3.3: Time (in minutes) taken to train each method in every environment.

parameterized via robustness specifications from the robust control literature, and can be optimized
using a model-based planning algorithm if the dynamics are known or virtually any RL algorithm
if the dynamics are unknown. We instantiate our general framework for dynamical systems
characterized by several classes of linear differential inclusions that capture many common robust
control settings. In particular, this entails deriving efficient, differentiable projections for each
setting, via implicit differentiation techniques. We show over a variety of simulated domains that
our method improves upon traditional robust LQR techniques while, unlike non-robust LQR and
neural network methods, remaining stable even under worst-case allowable perturbations of the
underlying dynamics.

We believe that our approach highlights the possible connections between traditional control
methods and (deep) RL methods. Specifically, by enforcing more structure in the classes of
deep networks we consider, it is possible to produce networks that provably satisfy many of the
constraints that have typically been thought of as outside the realm of RL. We hope that this work
paves the way for future approaches that can combine more structured uncertainty or robustness
guarantees with RL, in order to improve performance in settings traditionally dominated by
classical robust control.
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Figure 3.1: Test performance over training epochs for all learning methods employed in our
experiments. For each training epoch (10 updates for the MBP model and 18 for PPO), we report
average quadratic loss over 50 episodes, and use “X” to indicate cases where the relevant method
became unstable. (Lower loss is better.) Our robust methods (denoted by ∗), unlike the non-robust
methods and RARL, remain stable under adversarial dynamics throughout training.

44



100

Lo
ss

PL
D

I

Non-robust Methods Robust Methods

0 250 500 750 1000
Training epochs

101

Lo
ss

H

0 250 500 750 1000
Training epochs

Setting:
MBP PPO RARL Robust MBP * Robust PPO *

Original Adversarial
Figure 3.2: Representative results for our experimental settings. For each training epoch (10
updates for the MBP model and 18 for PPO), we report average quadratic loss over 50 episodes,
and use “X” to indicate cases where the relevant method became unstable. (Lower loss is better.)
Our robust methods (denoted by ∗) improve performance over Robust LQR in the average case,
while (unlike the non-robust methods) remaining stable under adversarial dynamics throughout
the training process.
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Figure 3.3: Trajectories of 6 different methods on the cart-pole domain under adversarial dynamics.
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Chapter 4

Provably Safe PAC-MDP Exploration Using
Analogies

The previous chapter discussed how we can provide robustness guarantees on policies learned
through RL. However, this method assumes we have enough prior knowledge to stabalize the
control system. In domains where we do not have this prior knowledge, we need to explore
the state-action space in order to aquire the requisite knowledge. But how do we do so on
safety-critical systems?

In this chapter, we present Analogous Safe-state Exploration (ASE), a new method for performing
provably and optimal safe exploration on safety-critical domains with stochastic dynamics. To
the best of our knowledge this is the first provably safe and optimal exploration algorithm that
is able to be applied on system with stochastic dynamics. While requiring significant additional
assumptions, we argue all assumptions are needed to guarantee this strong notion of safety. In our
experiments, ASE maintains safety throughout the training process and significantly improves
sample efficiency over other safe exploration techniques.

4.1 Introduction
Imagine you are Phillipe Petit in 1974, about to make a tight-rope walk between two thousand-
foot-tall buildings. There is no room for error. You would want to be certain that you could
successfully walk across without falling. And to do so, you would naturally want to practice
walking a tightrope on a similar length of wire, but only a few feet off the ground, where there is
no real danger.

This example illustrates one of the key challenges in applying reinforcement learning (RL) to
safety-critical domains, such as autonomous driving or healthcare, where a single mistake could
cause significant harm or even death. While RL algorithms have been able to significantly improve
over human performance on some tasks in the average case, most of these algorithms do not
provide any guarantees of safety either during or after training, making them too risky to be used
in real-world, safety-critical domains.
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True MDP M = ⟨S,A, T,R, γ⟩
True safe, optimal goal policy π∗

safe

Empirical transition probability T̂
Empirical L1 confidence interval width ϵ̂T

Arbitrary MDP M † = ⟨S,A, T †, R†, γ†⟩
Optimal Q-function on the optimistic MDP M goal Qgoal

Optimal Q-function on the optimistic MDP M explore Qexplore

Optimal Q-function on the optimistic MDP M switch Qswitch

Optimistic goal policy (defined by Qgoal) πgoal

Optimistic explore policy (defined by Qgoal) πexplore

Optimistic switching policy (defined by Qswitch) πswitch

Analogy-based empirical probabilities and confidence intervals
∆

T ,
∆
ϵT

Optimal value function for some MDP M † V ∗
M†

Table 4.1: Here we provide a useful reference for some of the notation used throughout the proofs.

Taking inspiration from the tight-rope example, we propose a new approach to safe exploration in
reinforcement learning. Our approach, Analogous Safe-state Exploration (ASE), seeks to explore
state-action pairs that are analogous to those along the path to the goal, but are guaranteed to be
safe. Our work fits broadly into the context of a great deal of recent work in safe reinforcement
learning, but compared with past work, our approach is novel in that 1) it guarantees safety
during exploration in a stochastic, unknown environment (with high probability), 2) it finds a
near-optimal policy in a PAC-MDP (Probably Approximately Correct-MDP) sense, and 3) it
guides exploration to focus only on state-action pairs that provide necessary information for
learning the optimal policy. Specifically, in our setting we assume our agent has access to a set of
initial state-action pairs that are guaranteed to be safe and a function that indicates the similarity
between state-action pairs. Our agent constructs an optimistic policy, following this policy only
when it can establish that this policy won’t lead to a dangerous state-action pair. Otherwise, the
agent explores state-action pairs that inform the safety of the optimistic path.

In conjunction with proposing this new approach, we make two main contributions. First, we
prove that ASE guarantees PAC-MDP optimality, and also safety of the entire training trajectory,
with high probability. To the best of our knowledge, this is the first algorithm with this two-fold
guarantee in stochastic environments. Second, we evaluate ASE on two illustrative MDPs, and
show empirically that our proposed approach substantially improves upon existing PAC-MDP
methods, either in safety or sample efficiency, as well as existing methods modified to guarantee
safety.

4.2 Problem Setup
We model the environment as a Markov Decision Process (MDP), a 5-tuple ⟨S,A,R, T, γ⟩
with discrete, finite sets of states S and actions A, a known, deterministic reward function
R : S × A → R, an unknown, stochastic dynamics function T : S × A → PS which maps a
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state-action pair to a probability distribution over next states, and discount factor γ ∈ (0, 1). We
assume the environment has a fixed initial state and denote it by sinit. We also assume that the
rewards are known a-priori and bounded between −1 and 1; the rewards that are negative denote
dangerous state-actions.1 This of course means that the agent knows a priori what state-actions are
“immediately” dangerous; but we must emphasize that the agent is still faced with the non-trivial
challenge of learning about other a priori unknown state-actions that can be dangerous in the
long-term – we elaborate on this in the “Safety” section below. Also note that while most RL
literature does not assume the reward function is known, we think this is a reasonable assumption
for many real-world problems where reward functions are constructed by engineers. Moreover,
this assumption is not uncommon in RL theory [73, 107].

Analogies. As highlighted in Turchetta et al. [115], some prior knowledge about the environment
is required for ensuring the agent never reaches a catastrophic state. In prior work, this knowledge
is often provided as some notion of similarity between state-action pairs; for example, kernel
functions used in previous work employing GPs to model dynamics or Lipschitz continuity
assumptions placed on the dynamics. Intuitively, such notions of similarity can be exploited to
learn about unknown (and potentially dangerous) state-action pairs, by exploring a “proxy” state-
action pair that is sufficiently similar and known to be safe. Below, we define a notion of similarity,
but the key difference between this and previous formulations is that ours also applies to stochastic
environments. Specifically, we introduce the notation of analogies between state-action pairs.
More concretely, the agent is given an analogous state function α : (S ×A× S)× (S ×A)→ S
and a pairwise state-action distance mapping ∆ : (S × A)× (S × A)→ [0, 2] such that, for any
(s, a, s̃, ã) ∈ (S × A)× (S × A)∑

s′∈S

|T (s, a, s′)− T (s̃, ã, α(· · · , s′))| ≤ ∆((s, a), (s̃, ã))

where α(· · · , s′) = α(s, a, s′, s̃, ã) represents, intuitively, the next state that is “equivalent” to s′

for (s̃, ã).2 In other words, for any two state-action pairs, we are given a bound on the L1 distance
between their dynamics: one that is based on a mapping between analogous next states. The hope
is that α can provide a much more useful analogy than a naive identity mapping between the
respective next states.

To provide some intuition, recall the tight-rope walker example mentioned in the introduction:
The tight-rope walker agent must cross a dangerous tight-rope, but wants to guarantee it can do so
safely. In this situation, the agent has a “practice” tight-rope (that’s only a few feet off the ground)
and a “real” tight-rope. In this example, if the agent is in a particular position and takes a particular
action on either tight-rope, the change in its position will be the same regardless of what rope it
was on.3 This analogy between the two ropes can be mathematically captured as follows. Consider
representing the agent’s state as a tuple of the form (prac, x) or (real, x) where the first element

1Note that our work can be easily extended to have a separate safety and reward function, but we have combined
them in this work for convenience.

2Note that although α is defined for every (s, a, s′, s̃, ã) tuple, not all such pairs of state-actions need be analogous
to each other. In such cases, we can imagine that α(s, a, s′, s̃, ã) maps to a dummy state and ∆((s, a), (s̃, ã)) = 1.

3For this example, we assume the dynamics of the agent on the practice and real tight-ropes are identical, but
small differences could be captured by making the ∆(·, ·, ·, ·) function non-zero.
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denotes which of the two ropes the agent is on, and the second element denotes the position within
that rope. Then for any action a, we can say that α((prac, x), a, (prac, x′), (real, x), a) = (real, x′)
and ∆(((prac, x), a), ((real, x), a) = 0. This would thus imply that by learning a model of the
dynamics in the practice setting, and the corresponding optimal policy, an agent would still be
able to learn a policy that guaranteed safety even in the real setting.

State-action sets. For simplicity, for any set of state-action pairs Z ⊂ S×A, we say that s ∈ Z if
there exists any a ∈ A such that (s, a) ∈ Z. Also, we say that (s, a) is an edge of Z if (s, a) /∈ Z
but s ∈ Z. We use P[·|π] to denote the probability of an event occurring while following a policy
π.

Definition 1. We say that Z ⊂ S × A is closed if for every (s, a) ∈ Z and for every next s′ for
which T (s, a, s′) > 0, there exists a′ such that (s′, a′) ∈ Z.

Intuitively, if a set Z is closed, then we know that if the agent starts at a state in Z and follows a
policy π such that for all s ∈ Z, (s, π(s)) ∈ Z, then we can guarantee that the agent never exits Z
(see Fact 1). We will use π ∈ Π(Z) to denote that, for all s ∈ Z, (s, π(s)) ∈ Z.

Definition 2. A subset of state-action pairs, Z ⊂ S×A is said to be communicating if Z is closed
and for any s′ ∈ Z, there exists a policy πs ∈ Π(Z) such that ∀s, P[∃t, st = s′ |πs′ , s0 = s] = 1.

In other words, every two states in Z must be reachable through a policy that never exits the
subset Z. Note that this definition is equivalent to the standard definition of communicating when
Z is the set of all state-action pairs in the MDP (see Fact 2).

Safe-PAC-MDP. One of the main objectives of this work is to design an agent that, with high
probability (over all possible trajectories the agent takes), learns an optimal policy (in the PAC-
MDP sense) while also never taking dangerous actions (i.e. actions with negative rewards)
at any point along its arbitrarily long, trajectory. This is a very strong notion of safety, but
critical for assuring safety for long trajectories. Such a strong notion is necessary in many real-
world applications such as health and self-driving cars where a dangerous action spells complete
catastrophe.

We formally state this notion of Safe-PAC-MDP below. The main difference between this
definition and that of standard PAC-MDP is (a) the safety requirement on all timesteps and (b)
instead of competing against an optimal policy (which could potentially be unsafe), the agent now
competes with a “safe-optimal policy” (that we will define later). To state this formally, as in
Strehl et al. [100], let the trajectory of the agent until time t be denoted by pt and let the value of
the algorithm A be denoted by V A(pt) – this equals the cumulative sum of rewards in expectation
over all future trajectories (see Def 5).

Definition 3. We say that an algorithm A is Safe-PAC-MDP if, for any ϵ, δ ∈ (0, 1], with
probability at least 1− δ, R(st, at) ≥ 0 for all timesteps t and additionally, the sample complexity
of exploration i.e., the number of timesteps t for which V A(pt) > V π∗

safe(pt) − ϵ, is bounded by
a polynomial in the relevant quantities, (|S|, |A|, 1/ϵ, 1/δ, 1/(1 − γ), 1/τ,Hcom). Here, π∗

safe is
the safe-optimal policy defined in Def. 8, τ is the minimum non-zero transition probability (see
Assumption 4) and Hcom is “communication time” (see Assumption 3).
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We must emphasize that this notion of safety must not be confused with the weaker notion where
one simply guarantees safety with high probability at every step of the learning process. In such a
case, for sufficiently long training trajectories, the agent is guaranteed to take a dangerous action
i.e., with probability 1, the trajectory taken by the agent will lead it to a dangerous action as
t→∞.

Safety. Since our agent is provided the reward mapping, the agent knows a priori which state-
action pairs are “immediately” dangerous (namely, those with negative rewards). However, the
agent is still faced with the challenge of determining which actions may be dangerous in the
long run: an action may momentarily yield a non-negative reward, but by taking that action, the
agent may be doomed to a next state (or a future state) where all possible actions have negative
rewards. For example, at the instant when a tight-rope walker loses balance, they may experience
a zero reward, only to eventually fall down and receive a negative reward. In order to avoid such
“delayed danger”, below we define a natural notion of a safe set: a closed set of non-negative
reward state-action pairs; as long as the agent takes actions within such a safe set, it will never
find itself in a position where its only option is to take a dangerous action. Our agent will then aim
to learn such a safe set; note that accomplishing this is non-trivial despite knowing the rewards,
because of the unknown stochastic dynamics.

Definition 4. We say that Z ⊂ S×A is a safe set if Z is closed and for all (s, a) ∈ Z, R(s, a) ≥ 0.
Informally, we also call every (s, a) ∈ Z as a safe state-action pair.

Policy of an algorithm. In PAC-MDP models, an algorithm is considered to be a non-stationary
policy A which, at any instant t, takes as input the path taken so far pt := s0, a0, . . . , at−1, st and
outputs an action. More formally, A : {S × A}∗ × S → A. Note that since the algorithm is
already given the true reward function, we do not provide rewards as input to this non-stationary
policy. Then the value of the policy is formally defined as given below.

Definition 5. For any pt, we define the value of the non-stationary policy A of our algorithm on
the MDP M as:

V A
M (pt) = E

[
∞∑
t′=t

R(st′ , at′)

∣∣∣∣∣ pt,A
]
.

For any H > 0, we denote the truncated value function of A as:

V A
M (pt, H) = E

[
t+H∑
t′=t

R(st′ , at′)

∣∣∣∣∣ pt,A
]
.

Following π ∈ Π(Z). Below we state the fact that for a closed set Z, by following π ∈ Π(Z),
the agent always remains in Z with probability 1.

Fact 1. For any closed set of state-action pairs Z, and for any policy π ∈ Π(Z) and for any
initial state s0 ∈ Z:

P[∀t, st ∈ Z | π, s0 ∈ Z] = 1
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Proof. For any t, if st ∈ Z (and this is true for t = 0), we have that (st, π(st)) ∈ Z since
π ∈ Π(Z). Since Z is closed, this means that st+1 ∈ Z. Hence, by induction the above claim is
true.

Communicatingness. We now discuss the standard notion of communicating and argue that
it is equivalent to the notion defined in the paper (Definition 2). Recall that the standard notion
of communicatingness of an MDP [94] is that, for any pair of states in the MDP, there exists a
stationary policy that takes the agent from one to the other with positive probability in finite steps.
This can be easily generalized to a subset of closed states as follows:

Definition 6. A closed subset of state-action pairs, Z ⊂ S ×A is said to be communicating if for
any two states, s, s′ ∈ Z, there exists a stationary policy πs→s′ ∈ Π(Z) such that for some n ≥ 1

P[sn = s′ |πs→s′ , s0 = s] > 0

There are two key differences between this definition and Definition 2. (1) Recall that in Defini-
tion 2, we defined communicating to mean that for a particular destination state, there exists a
single stationary policy that can take the agent from any state inside Z to that destination state,
whereas in Definition 6 there is a specific policy for every pair of states. (2) Definition 6 only
requires the probability of reaching s′ to be positive as opposed to 1. Below, we note why these
definitions are equivalent:

Fact 2. Definition 2 and Definition 6 are equivalent.

Proof. Informally, we need to show that “for any pair of states in Z, there exists a policy that
takes the agent from one to the other with positive probability” if and only if “there exists a single
policy that reaches a destination state from anywhere in Z with probability 1”.

The sufficient direction is clearly true: if such a πs′ and t from Definition 2 exist, then we know that
for any s ∈ S, we can set πs→s′ and n in Definition 6 to be πs′ and t to prove communicatingness
(since if it holds with probability 1, it also holds with positive probability).

For the necessary direction, we will show that for a communicating Z = S × A, for any s′ ∈ Z,
the optimal policy of another MDP satisfies the requirements of πs′ . For a communicating Z
with Definition 6, we know that for any s, s′ ∈ S, there exists a policy πs→s′ and n ≥ 1 such that
P[sn = s′|πs→s′ , s0 = s] > 0.

Now we construct the MDP. For a given s′, define an MDP Ms′ = ⟨S,A, T,Rs′ , γs′⟩where γs′ = 1,
R(s) = 1{s = s′}, and s′ is terminal. Note that, since R(s′) = 1 and is zero everywhere else and
s′ is terminal, for any policy π, the state value function V π

Ms′
(s) = P[∃ t, s.t. st = s′|π, s0 = s].

Now define πs′ to be the optimal policy of this MDP, i.e. the policy that maximizes this value
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function. This implies that for any s, V πs′
Ms′

(s) ≥ V
πs,s′

Ms′
(s). Then,

P[∃ t, s.t. st = s′|πs′ , s0 = s] = V
πs′
Ms′

(s)

≥ V
πs,s′

Ms′
(s)

= P[∃ t, s.t. st = s′|πs,s′ , s0 = s]

≥ P[sn = s′|πs,s′ , s0 = s]

> 0.

Thus, P[∃ t, s.t. st = s′|πs′ , s0 = s] > 0. Since this condition is satisfied for all starting
states s ∈ S and since we know that Z is closed, we can use Lemma 5 to show that in fact
P[∃ t, s.t. st = s′|πs′ , s0 = s] = 1, proving the existence of πs′ as claimed.

Zsafe is safe. Below, we prove that the set Zsafe defined in Definition 7 is indeed a safe set.

Fact 3. Zsafe is a safe set.

Proof. For any (s, a) ∈ Zsafe, we have by definition that R(s, a) ≥ 0. Now, if for some s′ for
which T (s, a, s′) > 0, consider a′ = πreturn(s

′). Then, by definition, if the agent were to start at
(s′, a′) and continue following πreturn, with probability 1, it would reach Z0 while experiencing
only positive rewards. Hence, (s′, a′) ∈ Zsafe. Thus, Zsafe is closed.

4.2.1 Assumptions
We will dedicate a fairly large part of our discussion below detailing the assumptions we make.
Some of these are strong and we will explain why they are in fact required to guarantee PAC-
MDP optimality in conjunction with the strong form of safety that we care about (being safe
on all actions taken in an infinitely long trajectory) in an environment with unknown stochastic
dynamics.

First, in order to gain any knowledge of the world safely, the agent must be provided some prior
knowledge about the safety of the environment. Without any such knowledge (either in the form
of a safe set, prior knowledge of the dynamics, etc) it is impossible to make safety guarantees
about the first and subsequent steps of learning. We provide this to the agent in the form of an
initial safe set of state-action pairs, Z0, that is also communicating. We note that this kind of
assumption is common in safe RL literature [14, 16]. Additionally, we chose to make this set
communicating so that the agent has the freedom to roam and try out actions inside Z0 without
getting stuck.

Assumption 1 (Initial safe set). The agent is initially given a safe, communicating set Z0 ⊂ S×A
such that sinit ∈ Z0.

In the PAC-MDP setting, we care about how well the agent’s policy compares to an optimal policy
over the whole MDP. However, in our setting, that would be an unfair benchmark since such an
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optimal policy might potentially travel through unsafe state-actions. To this end, we will first
suitably characterize a safe set Zsafe and then set our benchmark to be the optimal policy confined
to Zsafe.

We begin by defining Zsafe to be the set of state-action pairs from which there exists some (non-
negative-reward) return path to Z0. Indeed, returnability is a key aspect in safe reinforcement
learning – it has been similarly assumed in previous work [82, 115] and is also very similar to
the notion of stability used to define safety in other works [6, 14]. Defining Zsafe in terms of
returnability ensures that Zsafe does not contain any “safe islands” i.e., are safe regions that the
agent can venture into, but without a safe way to exit. At a high-level, this criterion helps prevent
the agent from getting stuck in a safe island and acting sub-optimally forever. The reasoning for
why we need this assumption and traditional PAC-MDP algorithm do not is a bit nuanced and we
discuss this in detail in Section 4.3.4.

Definition 7. We define Zsafe to be the set of state-action pairs (s, a) such that ∃πreturn for which:

P
[

∃t≥0 s.t.(st,at)∈Z0

& ∀t,R(st,at)≥0 |πreturn, (s0, a0) = (s, a)
]
= 1

Note that it follows that Zsafe is a safe set (see Fact 3). Additionally, we will assume that Zsafe is
communicating; note that given that all actions in Zsafe satisfy returnability to Z0, this assumption
is equivalent to assuming that all actions in Zsafe are also reachable from Z0. This is reasonable
since we care only about the space of trajectories beginning from the initial state, which lies in Z0.
Having characterized Zsafe this way, we then define the safe optimal policy using Zsafe.

Assumption 2 (Communicatingness of safe set). We assume Zsafe ⊂ S × A is communicating.

Definition 8. π∗
safe is a safe-optimal policy in that

π∗
safe ∈ arg max

π∈Π(Zsafe)
E

[
∞∑
t=0

γtR(st, at)|π, s0 = sinit

]
.

Besides returnability, another important aspect in the safe PAC-MDP setting turns out to be the
time it takes to travel between states. In normal (unsafe) reinforcement learning settings, the agent
can gather information from any state-action by experiencing it directly. In this setting, on the
other hand, not all state-actions can be experienced safely so the agent must indirectly gather
information on a state-action pair of interest by experiencing an analogous state-action. Thus,
the agent must be able to visit the informative state-action and return to that state-action pair of
interest in polynomial time.

To formalize this, we will assume that within any communicating subset of state-action pairs, we
can ensure polynomial-time reachability between states, with non-negligible probability. While
this assumption is not made in the normal (unsafe) PAC-MDP setting, we emphasize that this
assumption applies to a wide variety of real-world problems and is only violated in contrived
examples, such as in a random-walk setting. Specifically, to violate this assumption, there must
be two state-action pairs in the safe set where the expected number of steps to move from one
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to the next is exponential in the state-action size. This can only happen in random-walk-like
scenarios where moving backwards has an equal (or higher) probability than moving forward,
which occur very rarely in the real-world. To make this last statement concrete, imagine a 1D grid
where any action the agent takes leads it to either of the adjacent states with equal probability of
1/2. Then, to reach a state that is n steps away with probability 1/2, it would take the agent, in
expectation, an exponential number of steps in n, thus not satisfying Assumption 3. However, if
the probabilities of moving forward was 3/4 for one action and moving backward was 1/4 for the
other action, then the agent could reach a state that is n steps away with probability 1/2 in less
than 2n steps, satisfying Assumption 3.

Assumption 3. (Poly-time communicating) There exists Hcom = poly(|S|, |A|) such that, for any
communicating set Z ⊂ S × A, and ∀s′ ∈ Z, there exists a policy πs′ ∈ Π(Z) for which

∀s, PM [∃t ≤ Hcom, st = s′|πs′ , s0 = s] ≥ 1/2.

Our next assumption is about the transition dynamics: we assume that we know a constant
such that any transition either has zero probability or is larger than that known constant. This
assumption is necessary to perform learning under our strict safety constraints in unknown,
stochastic dynamics. Specifically, given this assumption, we can use finitely many samples to
determine the support of a particular state-action pair’s next state distribution. This is critical
since the agent cannot take an action unless it knows every possible next state that it could land in.
Note that, in a finite MDP, such a τ always exists, we simply assume we have a lower-bound on it.

Assumption 4 (Minimum transition probability). There exists a known τ > 0 such that ∀s, s′ ∈ S
and a ∈ A, T (s, a, s′) ∈ [0] ∪ [τ, 1].

Finally, we make an assumption that will help the agent expand its current estimate of the safe-set
along its edges. Specifically, note that to establish safety of an edge state-action pair, it is necessary
to establish a return path from it to the current safe-set (see Section 4.3.4 for a more in-depth
reasoning behind this). Motivated by this we assume the following. Consider any safe subset
of state-actions Z and a state-action (s, a) at the edge of Z that also belongs to Zsafe. Then, we
assume that for every state-action pair that is on the path that starts from this edge and returns to
Z, there exists an element in Z that is sufficiently similar to that pair. In other words, for any safe
subset Z of Zsafe, this assumption provides us hope that Z can be expanded by exploring suitable
state-actions inside Z.

The fact that this allows expansion of any safe subset Z might seem like a stringent assumption.
But we must emphasize this is required to show PAC-MDP optimality: to learn a policy is near-
optimal with respect to π∗

safe, intuitively, our algorithm must necessarily establish the safety of
the set of state-actions that π∗

safe could visit. Now, depending on what the (unknown) π∗
safe looks

like, this set could be as large as (the unknown set) Zsafe itself. To take this into account, our
assumption essentially allows the agent to use analogies to expand its safe set to a set as large
as Zsafe if the need arises. Without this assumption, the agent might at some point not be able to
expand the safe set and end up acting sub-optimally forever. We note earlier works [6, 14, 115]
do not make this assumption because they crucially didn’t need to establish PAC-MDP optimality.
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Algorithm 2 Analogous Safe-state Exploration (α,∆,m, δT , R, γ, γexplore, γswitch, τ)

Initialize: Ẑsafe ← Z0; n(s, a), n(s, a, s′)← 0; Zgoal ← S × A; s0 ← sinit.
Initialize: Ẑunsafe ← {(s, a) ∈ S × A : R(s, a) < 0}.
Compute confidence intervals,

∆

T and ∆
ϵT , using Alg 7 with

state-action-state counts n, parameter δT , and analogy function α,∆.
Compute πgoal, Zgoal, Zexplore, Ẑunsafe using Alg 4 and 5 with parameters γ, τ

and reward function R.
Compute πexplore, πswitch using value iteration (Section 4.3.3) with parameters γexplore, γswitch.
for t = 1, 2, 3, . . . do

at ←


πgoal(st) if st ∈ Zgoal & Zgoal ⊂ Ẑsafe

πexplore(st) if Zgoal ̸⊂ Ẑsafe

πswitch(st) otherwise.
Take action at and observe next state st+1.
if n(st, at) < m then

n(st, at) += 1, n(st, at, st+1) += 1.
Recompute confidence intervals, then expand Ẑsafe using Alg 3 with parameter τ .
Recompute πgoal, Zgoal, Zexplore, Ẑunsafe, πexplore, πswitch as above.

Assumption 5 (Similarity of return paths). For any safe set Z such that Z0 ⊂ Z and for any
(s̃, ã) ∈ Zsafe such that s̃ ∈ Z and (s̃, ã) /∈ Z, we know from Assumption 2 that the agent can
return to Z0 (and by extension, to Z) from (s̃, ã) through at least one πreturn ∈ Π(Zsafe). Let Z̃
denote the set of state-action pairs (s, a) visited by πreturn before reaching Z, in that,

PM

[
∃t ≥ 0 (st,at)=(s,a)

∀t′<t st′ /∈Z

∣∣∣ (s0, a0) = (s̃, ã), πreturn

]
> 0.

We assume that for all (s, a) ∈ Z̃ \ Z, there exists (s′, a′) ∈ Z such that ∆((s, a), (s′, a′)) ≤ τ/4.

To provide some intuition behind this assumption, consider again the tight-rope walker example.
For this assumption to be satisfied, the agent must be able to safely learn how to return from any
point along the real tight-rope. Since the agent has access to a similar practice tight-rope, the
agent can learn to safely cross the practice tight-rope, turn around, and return safely. Once the
agent has learned this policy, it has established a safe return path from any point along the real
tight-rope. Thus, this assumption is satisfied.

4.3 Analogous Safe-state Exploration
Given these assumptions, we now detail the main algorithmic contribution of the chapter, the
Analogous Safe-state Exploration (ASE) algorithm, which we later prove is Safe-PAC-MDP. In
addition to safety and optimality, we also do not want to exhaustively explore the state-action
space, like R-Max [22], as that can be prohibitively expensive in large domains. We want to guide
our exploration, like MBIE [99], to explore only the state-action pairs that are needed to find
the safe-optimal policy. MBIE does this by maintaining confidence intervals of the dynamics
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Algorithm 3 Compute Safe Set (R, τ)

Require: Estimated safe set Ẑsafe and confidence intervals
∆

T , ∆
ϵT .

Zcandidate ← {(s, a) ∈ (S × A) \ Ẑsafe s.t.
∆
ϵT (s, a) < τ/2, R(s, a) ≥ 0}.

while Zcandidate ̸= Zclosed in the last iteration do
Zreachable ← {(s, a) ∈ Zcandidate : s ∈ Ẑsafe}.
while Zreachable changed in the last iteration do

for (s, a) ∈ Zreachable ∪ Ẑsafe do
Add {(s′, a′) ∈ Zcandidate s.t.

∆

T (s, a, s′) > 0} to Zreachable.
Zreturnable ← ∅.
while Zreturnable changed in the last iteration do

for (s, a) ∈ Zreachable do
if ∃ (s′, a′) ∈ Zreturnable ∪ Ẑsafe s.t.

∆

T (s, a, s′) > 0 then
Add (s, a) to Zreturnable.

Zclosed ← Zreturnable.
while Zclosed changed in the last iteration do

for (s, a) ∈ Zclosed do
if ∃ s′ ∈ S s.t.

∆

T (s, a, s′) > 0 and ∀ a′ ∈ A, (s′, a′) ̸∈ Zclosed ∪ Ẑsafe then
Remove (s, a) from Zclosed.

Zcandidate ← Zclosed.
Ẑsafe ← Zclosed ∪ Ẑsafe.

of the MDP, and then by following an “optimistic policy” computed using the most optimistic
model of the MDP that falls within the computed confidence intervals. We build on this standard
MBIE approach and equip it with a significant amount of machinery to meet our three objectives
simultaneously: safety, guided exploration, and optimality in the PAC-MDP sense.

Policies maintained by ASE. ASE maintains and updates three different policies: (a) an optimistic
policy πgoal that seeks to maximize reward – this is the same as the optimistic policy as in
standard MBIE computed on M (except some minor differences), (b) an exploration policy πexplore

that guides the agent towards states in a set called Zexplore (described shortly) and finally (c) a
“switching” policy πswitch that can be thought of as a policy that aids the agent in switching from
πexplore to πgoal (by carrying it from Zexplore to Zgoal as explained shortly) See Section 4.3.3 for
details on these policies.

Sets maintained by ASE. ASE also maintains and updates three major subsets of state-action
pairs. 1) a safe set Ẑsafe which is initialized to Z0 and gradually expanded over time (using Alg 3).
2) an “optimistic trajectory” set Zgoal (computed in Alg 4), which contains all state-action pairs
that we expect the agent would visit if it were to follow πgoal from sinit under optimistic transitions.
3) an “exploration set” Zexplore (computed using Algs 4 and 5) which contains state-action pairs
that, when explored, will provide information critical to expand the safe set. Besides these state-
action sets, the algorithm also maintains a set of L1 confidence intervals as detailed in Algorithm 7
and Section 4.3.1. The key detail here is that the interval for a given state-action pair is not only
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Algorithm 4 Compute πgoal, Zgoal and Zexplore (α,∆, τ)

Require: Estimated safe and unsafe sets Ẑsafe, Ẑunsafe and confidence intervals
∆

T , ∆
ϵT .

Initialize: Zexplore ← ∅.
for i = 1, 2, . . . do

Compute πgoal using Eq 4.5.
Compute Zgoal using Alg 6.
if Zgoal ⊂ Ẑsafe then

Break.
Zedge ← {(s, a) ∈ Zgoal \ Ẑsafe |s ∈ Ẑsafe}.
Compute Zexplore using Alg 5.
if Zexplore = ∅ then

Add Zedge to Ẑunsafe.
else

Break.

Algorithm 5 Compute Zexplore (α,∆, τ)

Require: Sets of state-action pairs on the edge of the safe set, Zedge, and on the goal path, Zgoal,
along with Ẑsafe, Ẑunsafe and

∆

T , ∆
ϵT .

Initialize: Zexplore, Zreturn ← ∅, Zcandidate ← {(s, a) ∈ Zgoal : s ∈ Ẑsafe}, L← 0, Z0
next ← Zedge.

while Zexplore = ∅ and ZL
next ̸= ∅ do

ZL+1
next ← ∅ .

for (s, a) ∈ ZL
next do

Add (s, a) to Zreturn

if ∆
ϵT (s, a) > τ/2 then

Add {s̃, ã ∈ Ẑsafe : ∆((s, a), (s̃, ã)) < τ/4} to Zexplore.
else

Add {s′, a′ ∈ S × A :
∆

T (s, a, s′) > 0} \ (Zreturn ∪ Ẑsafe ∪ Ẑunsafe) to ZL+1
next .

L← L+ 1.

updated using its samples, but also by exploiting the samples seen at any other well-explored
state-action pair that is sufficiently similar to the given pair, according to the given analogies.

How ASE schedules the policies. We discuss how, at any timestep, the agent chooses between
one of the above three policies to take an action. First, the agent follows πgoal whenever it can
establish that doing so would be safe. Specifically, whenever (a) Zgoal ⊂ Ẑsafe and (b) the current
state st belongs to Zgoal, it is easy to argue that following πgoal is safe (see proof of safety in
Theorem 4). On the other hand, when (a) does not hold, the agent follows πexplore. In doing so, the
hope is that, it can explore Zexplore well and use analogies to expand Ẑsafe until it is large enough
to subsume Zgoal (which means (a) would hold then). As a final case, assume (a) holds, but (b)
does not i.e., st /∈ Zgoal. This could happen if the agent has just explored a state-action pair far
away from Zgoal, which subsequently helped establish (a) i.e., Zgoal ⊂ Ẑsafe. Here, we use πswitch

to carry the agent back to Zgoal. Once carried there, both (a) and (b) hold, so it can switch to
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Algorithm 6 Compute Zgoal (α,∆, τ)

Require: Confidence intervals
∆

T , ∆
ϵT .

For convenience, denote ρ
Mgoal
πgoal,sinit

as ρgoal.
Initialize: Zgoal ← ∅, ρgoal(·, ·, 0) as in Eq 4.3.
Using dynamic programming, compute ρgoal(·, ·, t) as in Eq 4.4 for t = 1, 2, . . . , |S| .
Add all s, a ∈ S × A where ρgoal(s, a, |S|) > 0 to Zgoal

following πgoal.

Guided exploration. We would like the agent to explore only relevant states by using the
optimistic policy as a guide, like in MBIE. This is automatically the case whenever the agent
explores using the optimistic goal policy πgoal. As a key addition to this, we use the optimistic
policy to also guide the exploration policy πexplore. As explained below, we do this by only
conservatively populating Zexplore based on the optimistic trajectory set Zgoal. Recall that the hope
from exploring Zexplore is that it can help Ẑsafe expand in a way that it is large enough to satisfy
Zgoal ⊂ Ẑsafe. Keeping this in mind, the naive way to set Zexplore would be to add all of Ẑsafe to it;
this will force us to do a brute-force exploration of the safe set, and consequently aggressively
expand the safe set in all directions. Instead of doing so, roughly speaking, we compute Zexplore in
a way that it can help establish the safety of only those actions that (a) are on the edge of Ẑsafe and
(b) also belong to Zgoal. This will help us conservatively expand the safe set in “the direction of
the optimistic goal policy”. (Note that all this entails non-trivial algorithmic challenges since we
operate in an unknown stochastic environment. Due to lack of space we discuss these challenges
in Section 4.5.2)

Algorithm 3 details how the agent computes the current estimate of the safe set while ensuring
reachability, returnability, and closedness. The correctness and efficiency of this algorithm is
proven in Section 4.6.1. Algorithms 4, 5, and 6 together provide an overview of how ASE
computes the goal and explore policies.

4.3.1 Confidence intervals
We let T̂ denote the empirical transition probabilities. We then let ϵ̂T (s, a) denote the width of the
L1 confidence interval for the empirical transition probability T̂ (s, a). As shown in Strehl and
Littman [99], by using the Hoeffding bound, we can ensure that if

ϵ̂T (s, a) =

√
2[ln (2|S| − 2)− ln (δT )]

n(s, a)
(4.1)

where n(s, a) is the number of times we have experienced state-action (s, a), our L1 confidence
interval hold with probability δT . Using the given analogies, we can then derive tighter confidence
intervals of width ∆

ϵT (centered around an estimated
∆

T ), especially for state-action pairs we have
not experienced, as in Algorithm 7. The algorithm essentially transfers the confidence interval
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Algorithm 7 Compute Analogy-based Confidence Intervals (α,∆)

Require: State-action and state-action-state counts n(·, ·), n(·, ·, ·).
Construct T̂ (the empirical transition probabilities) using n(·, ·), n(·, ·, ·).
Compute ϵ̂T (s, a) with Eq 4.1 using δT .
for (s, a) ∈ S × A do

(s̃, ã)← argmin{ϵ̂T (s, a), mins̃,ã ϵT (s̃, ã) + ∆((s, a), (s̃, ã))}.
∆
ϵT (s, a) := ϵ̂T (s̃, ã).
for s′ ∈ S do

s̃′ ← α((s, a, s′), (s̃, ã)).
∆

T (s, a, s′) := T̂ (s̃, ã, s̃′).

from a sufficiently similar, well-explored state-action pair to the under-explored state-action pair,
using analogies.

Given these analogy-based L1 confidence intervals, we now define a slightly narrower space of
candidate transition probabilities than the space defined by these confidence intervals in order to
fully establish the support of certain transitions. Specifically, we take into account Assumption 4,
to rule out candidates which do not have sufficiently large transition probabilities. We also
make sure that a transition probability is a candidate only if Z0 is closed under it, as assumed in
Assumption 1.

Definition 9. Given the transition probabilities
∆

T and confidence interval widths
∆
ϵT : S×A→ R,

we say that T † is a candidate transition if it satisfies the following for all (s, a) ∈ S × A:

1. ∥T †(s, a)− ∆

T (s, a)∥1 ≤∆
ϵT (s, a).

2. if for some s′,
∆

T (s, a, s′) = 0 and
∆
ϵT (s, a) < τ , then T †(s, a, s′) = 0.

3. if (s, a) ∈ Z0, then ∀s′ /∈ Z0, T †(s, a, s′) = 0

Furthermore, we let CI(
∆

T ) denote the space of all candidate transition probabilities.

4.3.2 Discounted future state distribution.
Below we define the notion of a discounted future state distribution (originally defined in Sutton
et al. [104]), and then describe how we compute it in practice. We will need this notion in order
to compute Zgoal (discussed in the section titled “Goal MDP”).

Given an MDP M †, policy π, and state s, the discounted future state distribution is defined as
follows:

ρM
†

π,s (s
′, a′) = (1− γ)

∞∑
t=0

γtP (st = s′, at = a′|π, s0 = s) (4.2)

In words, for any state action pair (s′, a′), ρπ,s(s′, a′) denotes the sum of discounted probabilities
that (s′, a′) is taken at any t ≥ 0 following policy π from s in M †.
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Computing discounted future state distributions. We use a dynamic programming approach
to approximate the discounted future state distribution. Note that we are assuming that the policy
π is deterministic.

First, for all s̃ ∈ S and ã ∈ A, we set:

ρM
†

π,s (s̃, ã, 0) =

{
1− γ s̃ = s and ã = π(s)

0 otherwise
(4.3)

Then, at each step, t+ 1, we will set:

ρM
†

π,s (s̃, ã, t+ 1) = ρM
†

π,s (s̃, ã, t) + γ
∑
s̃′∈S

T (s̃′, π(s̃′), s̃)ρM
†

π,s (s̃
′, π(s̃′), t) (4.4)

4.3.3 Computing optimistic policies
πgoal, πexplore, and πswitch are the optimisitc policies for three different MDPs, Mgoal, Mexplore, and
Mswitch (described below). For the theory, we assume that these policies are the true optimistic
policy, but in practice this is computed using finite-horizon optimistic form of value iteration
introduced in Strehl and Littman [99]. Here we describe this optimistic value iteration procedure.

Optimistic Value Iteration Let M † be an MDP that is the same as M but with an arbitrary
reward function R† and discount factor γ†. Then, the optimistic state-action value function is
computed as follows.

Q
†
(s, a, 0) = 0

Q
†
(s, a, 1) = R†(s, a)

Q
†
(s, a, t) = R†(s, a) + γ† max

T †∈CI(
∆
T )

∑
s′∈S

T †(s, a, s′)max
a′∈A

Q
†
(s′, a′, t− 1), ∀t > 0. (4.5)

As t → ∞, Q
†
(s, a, t) converges to a value Q

†
(s, a) since the above mapping is a contraction

mapping. For our theoretical discussion, we assume that we compute these values for an infinite
horizon i.e., we compute Q

†
(s, a).

We then let T
†

denote the transition probability from CI(
∆

T ) that corresponds to the optimistic
transitions that maximize Q

†
in Equation 4.5. Also, we let M

†
denote the ‘optimistic’ MDP,

⟨S,A, T †
, R†, γ†⟩.

Goal MDP. We define Mgoal to be an MDP that is the same as M , but without the state-action
pairs from Ẑunsafe (which is a set of state-action pairs that we will mark as unsafe). More concretely,
Mgoal = ⟨S,A, T,Rgoal, γgoal⟩, where:

Rgoal(s, a) =

{
−∞ (s, a) ∈ Ẑunsafe

R(s, a) otherwise.
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We then define Qgoal to be the finite-horizon optimistic Q-value computed on Mgoal, and πgoal the
policy dictated by the estimate of Qgoal. Also, let T goal denote the optimistic transition probability
and M goal the optimistic MDP.

Using the above quantities, we now describe how to compute Zgoal (which we also summarize in
Alg 6). Recall that we want Zgoal to be the set of all state-actions that would be visited with some
non-zero probability by following πgoal under the optimistic MDP M goal. More concretely, for

convenience, first define ρgoal := ρ
Mgoal
πgoal,sinit

, where ρ
Mgoal
πgoal,sinit

is as defined in Equation 4.2. Then, we
would like Zgoal to be the set {(s, a) ∈ S × A : ρgoal(s, a) > 0}.

However, directly computing this infinite-horizon estimate in practice is impractical. Instead, here
we make use of Lemma 11 and Corollary 4, which allow us to exactly compute Zgoal through
a finite-horizon estimate of ρgoal. Specifically, consider the finite-horizon estimate of ρgoal (i.e.,

the finite horizon estimate of ρMgoal
πgoal,sinit

as defined in Equation 4.3 and Equation 4.4) which can
be computed using dynamic programming. In Lemma 11, we show that if we set the horizon
H ≥ |S|, then ρgoal(s, a,H) > 0 if and only if ρgoal(s, a) > 0. Hence, we fix H to be any value
greater than or equal to |S| and then compute

Zgoal := {(s, a) ∈ S × A : ρgoal(s, a,H) > 0.} (4.6)

As stated in Corollary 4, this will guarantee what we need, namely that Zgoal = {(s, a) ∈ S × A :
ρgoal(s, a) > 0}. We summarize this algorithm in Algorithm 6

Explore MDP. We define Mexplore = ⟨S,A, T,Rexplore, γexplore⟩ to be an MDP with the same
states, actions, and transition function as M , but with a different reward function, Rexplore (com-
puted in Algorithm 5), and discount factor, γexplore. Rexplore is defined as follows:

Rexplore(s, a) =


1 (s, a) ∈ Zexplore

0 (s, a) ∈ Ẑsafe \ Zexplore

−∞ otherwise.

Switch MDP. We define Mswitch = ⟨S,A, T,Rswitch, γswitch⟩ to be an MDP with the same states,
actions, and transition function as M , but with a different reward function, Rswitch, and discount
factor, γswitch. More specifically, Rswitch is defined as follows:

Rswitch(s, a) =


1 (s, a) ∈ Zgoal

0 (s, a) ∈ Ẑsafe \ Zgoal

−∞ otherwise.
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4.3.4 Regarding Safe Islands
Here, we elaborate on the motivation behind involving the notion of returnability (a) in Assump-
tion 5 and (b) in the definition of Zsafe in Definition 7.

Returnability in Assumption 5. Recall that a key motivation behind Assumption 5 was that in
order to add a safe subset of state-actions to the current safe set, it is necessary for the agent to
establish that subset’s returnability i.e., establish a return path from the to-be-added subset to the
current safe set. Here we explain why this is necessary. Consider a hypothetical agent that tries to
expand its safe set without ensuring that whatever it adds to the safe set is returnable. Such an
agent might venture into a safe island: although the agent knows that the subset of state-action
pairs it has entered into is safe, the agent does not know of any safe path from that subset back to
the original safe set. There are two distinct kinds of such safe islands. The first is where there is
truly no safe return path; the second is where there does, in fact, exist some safe return path, but
the agent has not yet established that this path is indeed safe. We will refer to these islands as
True Safe Islands and False Safe Islands.

Although entering into a True Safe Island is not a problem for ensuring optimality in the PAC-MDP
sense, entering into a False Safe Island creates trouble. More concretely, in a True Safe Island,
since there is no safe way to leave such an island, even the safe-optimal policy must remain on this
True Safe Island. Thus, the agent that has ventured into a True Safe Island, can potentially find
the ϵ-optimal policy, even though it may be forever stuck in this island. However, in a False Safe
Island, since there is indeed a safe path to leave this island, it can be the case that the safe-optimal
policy from this island will leave the island (and then achieve far higher future reward, than a
policy confined to the False Safe Island). Hence, for the agent to be PAC-MDP optimal, it must
first establish safety of this path. However, for an agent stuck inside this island, there may be no
means to establish safety of that path simply by exploring that island – unless the island is rich
enough with analogous states like Z0 is (which may not be the case if this happens to be a tiny
island). Thus, the agent could be forever stuck in the False Safe Island and even worse, it might
act ϵ-sub-optimally forever (by choosing to remain instead of exiting). Hence, it’s necessary for
the agent to establish returnability of any state-action pair before adding it (and Assumption 5
enables us to do this).

Returnability in Definition 7. Next, we explain the motivation behind defining Zsafe in Defini-
tion 7 to be a “returnable” set. Specifically, recall that Zsafe is a safe subset of state-actions, and we
would like to compete against the optimal policy on this subset; more importantly, we defined this
in a way that any state-action pair in this set is returnable, meaning that it has a return path to Z0.

Consider the hypothetical scenario where Zsafe is defined to allow non-returnable state-actions.
Here, we argue that the agent will have to navigate some impractical complications. To begin
with, this alternative definition of Zsafe could mean that the safe-optimal policy may lead one
into True Safe Islands i.e., safe subsets of state-actions from which there is no safe path back to
Z0. This in turn could potentially require the agent to enter into a True Safe Island in order to
be PAC-MDP-optimal. Therefore, when the agent expands its safe set, it is necessary for it to
find True Safe Islands and add them to the safe set; while doing so, crucially, as discussed earlier,
the agent must also avoid adding False Safe Islands to the safe set. Then, in order to meet these
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two objectives, the agent should consider every possible safe island and consider all its possible
return paths, and establish their safety. If it can be established that no safe return paths exist for a
particular safe island, the agent can label the island as a True Safe Island and add it to its safe set.

Thus, in theory, the above fairly exhaustive algorithm can address the more liberal definition
of Zsafe; however, in many practical settings, it may be expensive to fully determine the safety
of every state-action pair. Hence, we choose to ignore this situation by enforcing that Zsafe is
returnable. With this framework, our algorithm can grow the safe set by establishing return paths
from the edges of the safe set (as against having to also look for safe islands and establish safety
of all their possible return paths).

4.4 Theoretical Results

Below we state our main theoretical result, that ASE is Safe-PAC-MDP. We must however
emphasize that this result does not intend to provide a tight sample complexity bound for ASE;
nor does it intend to compete with existing sample complexity results of other (unsafe) PAC-MDP
algorithms. In fact, our sample complexity result does not capture the benefits of our guided
exploration techniques – instead, we use practical experiments to demonstrate that these benefits
are significant (see Section 4.7). The goal of this theorem is to establish that ASE is indeed
PAC-MDP and safe, which in itself is highly non-trivial as ASE has much more machinery than
existing PAC-MDP algorithms like MBIE. In the interest of space we will give a brief overview
of the proof & algorithm. A more detailed proof outline can be found in Section 4.5. The full
(lengthy) proof is detailed in Section 4.6.

Theorem 4. For any constant c ∈ (0, 1/4], ϵ, δ ∈ (0, 1], MDP M = ⟨S,A, T,R, γ⟩, for δT =
δ/(2|S||A|m), γexplore = γswitch = c1/H , and m = O ((|S|/ϵ̃2) + (1/ϵ̃2) ln (|S||A|/ϵ̃)) where
ϵ̃ = min (τ, ϵ(1− γ)2, 1/H2) and H = O (max {Hcom logHcom, (1/(1− γ)) ln(1/ϵ(1− γ))})
ASE is Safe-PAC-MDP with a sample complexity bounded by O (Hm|S||A|(1/ϵ(1− γ)) ln(1/δ)).

To prove safety, we show in Lemma 3 that Alg 3, which computes Ẑsafe, always ensures that
Ẑsafe is a safe set. Then, in the main proof of Theorem 4, we argue that the agent always picks
state-actions inside Ẑsafe. So, it follows that the agent always experiences only positive rewards.
Next, in order to prove PAC-MDP-ness, while we build on the core ideas from the proof for
PAC-MDP-ness of MBIE [99], our proof is a lot more involved. This is because we need to show
that all the added machinery in ASE work in a way that (a) the agent never gets “stuck” and (b)
whenever the agent takes a series of sub-optimal actions (e.g., while following πexplore or πswitch),
it can “make progress” in some form. As an example of (a), Lemma 4 shows that Ẑsafe is always a
communicating set, so the agent can always freely move between the states in Ẑsafe. This is critical
to show that when the agent follows πexplore (or πswitch), it can reach Zexplore (or Zgoal) without
being stuck anywhere (see Lemma 12). As an example of (b), Lemma 9 and Lemma 10 together
show that only informative state-action pairs are added to Zexplore i.e., when explored, they will
help us expand Ẑsafe.
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4.5 Proof Outline
The following subsections describe the overall techniques and intuition, and serve as a rough
sketch of the proof of Theorem 4.

4.5.1 Establishing Safety
We now highlight the key algorithmic aspects which ensure provably safe learning, in other
words, that (w.h.p) the agent always experiences only non-negative rewards. Recall that our agent
maintains a safe set Ẑsafe, and in order to add new state-action pairs to Ẑsafe while ensuring that
Ẑsafe is closed, we must be able to determine a “safe return policy” to Ẑsafe. However, doing this in
a setting with unknown stochastic dynamics poses a significant challenge: we must be able to find
a return policy where, for every state-action pair in the return path, we know the exact support
of its next state; furthermore, all these state-action pairs should return to Ẑsafe with probability 1.
Below, we lay out the key aspects of our approach to tackling this.

“Transfer” of confidence intervals. As a first step, we start by establishing confidence intervals on
the transition distributions of all state-action pairs as described below. Let T̂ denote the empirical
transition probabilities. Just as in Strehl and Littman [99], we can compute L1 confidence
intervals of these estimates using the Hoeffding bound (details in Section 4.3.1). Let ϵ̂T (s, a)
denote the L1 confidence interval for the empirical transition probability T̂ (s, a). Using the
provided distance and analogy function ∆ and α, and using simple triangle inequalities, we can
then derive tighter confidence intervals ∆

ϵT (centered around an estimated
∆

T ) as in Alg 7. The idea
here is to “transfer” the confidence interval from a sufficiently similar, well-explored state-action
pair to an under-explored state-action pair, using analogies.

Learning the next-state support. Crucially, we can use these transferred confidence intervals to
infer the support of state-action pairs we have not experienced. More concretely, in Lemma 2 we
show that, when a confidence interval is sufficiently tight, specifically when ∆

ϵ (s, a) ≤ τ/2 for
some (s, a) (where τ is the smallest non-zero transition probability defined in Assumption 4), we
can exactly recover the support of the next state distribution of (s, a). This fact is then exploited
by Algorithm 3 to expand the safe set whenever the confidence intervals are updated.

Correctness of Ẑsafe. To expand Ẑsafe while ensuring that it is safe and communicating, Algo-
rithm 3 first creates a candidate set, Zcandidate, of all state-action pairs (s, a) with sufficiently tight
confidence intervals and non-negative rewards (and so, we know their next state supports). The
algorithm then executes three (inner) loops each of which prunes this candidate set. To ensure
communicatingness, the first loop eliminates candidates that have no probability of reachability
from Ẑsafe, and the second loop eliminates those from which there is no probability of return to
Ẑsafe. In order to ensure closedness, the third loop eliminates those that potentially lead us outside
of Ẑsafe or the remaining candidates. We repeat these three loops until convergence. We prove in
Lemmas 4 and 3 that Algorithm 3 correctly maintains the safety and communicatingness of Ẑsafe

and in Lemma 1 that the algorithm terminates in polynomial time. Note that in Theorem 4, we
prove that (w.h.p.) our agent always picks actions only from Ẑsafe.

Completeness of Ẑsafe. While the above aspects ensure correctness of Algorithm 3, these would
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be satisfied even by a trivial algorithm that always only returns Z0. Hence, it is important to
establish that for given set of confidence intervals, Ẑsafe is “as large as it can be”. More concretely,
consider any state on the edge of Ẑsafe for which there exists a return policy to Ẑsafe which passes
only through (non-negative reward) state-action pairs with confidence intervals at most τ/2; this
means that we know all possible trajectories in this policy, and all of these lead to Ẑsafe. In such
a case, we show in Lemma 6 that Algorithm 3 does indeed add this edge action and all of the
actions in every possible return trajectory to Ẑsafe.

4.5.2 Guided Exploration
To be able to add a state-action pair to our conservative estimate of the safe-set, Ẑsafe, we not only
need to tighten the confidence intervals of that state-action pair but also that of every state-action in
all its return trajectories to Ẑsafe. Observe that this can be accomplished by exploring state-action
pairs inside Ẑsafe that are similar to this return path, and using analogies to transfer their confidence
intervals. However, this raises two main algorithmic challenges.

Selecting unexplored actions for establishing safety. First, for which unexplored state-action
pairs outside Ẑsafe do we want to establish safety? Instead of expanding Ẑsafe arbitrarily, we will
keep in mind the objective mentioned in our outline of ASE: we want to expand Ẑsafe so that we
can get to a stage where every possible trajectory when following the optimistic goal policy, πgoal,
is guaranteed to be safe, allowing the agent to safely follow πgoal. By letting Zgoal denote the set
of all state-action pairs on any path following πgoal from the initial state sinit, this condition can be
equivalently stated as Zgoal ⊂ Ẑsafe.

So, to carefully select such unexplored state-action pairs, ASE calls Algorithm 4, which is an
iterative procedure: in each iteration, it first (re)computes the optimistic goal policy πgoal and the
set Zgoal. Using this, it then creates a set Zedge, which is the intersection of Zgoal and the set of all
edge state-action pairs of Ẑsafe. We then hope to establish safety of Zedge, so that, intuitively, we
can expand the frontier of our safe set only along the direction of the optimistic path. To this end,
Algorithm 4 calls Algorithm 5 to compute a corresponding Zexplore ⊂ Ẑsafe to explore (we will
describe Algorithm 5 shortly).

Now, in the case Zexplore is non-empty, Algorithm 4 returns control back to ASE, for it to pursue
πexplore – and Lemma 12 shows that πexplore indeed explores Zexplore in poly-time. But if Zexplore

is empty, Algorithm 4 adds all of Zedge to Ẑunsafe; in the next iteration, πgoal is updated to ignore
Ẑunsafe. In Lemma 9, we use Assumption 5, to prove that the elements added to Ẑunsafe are indeed
elements that do not belong to Zsafe (and so we can confidently ignore Ẑunsafe while computing
πgoal). In Lemma 10, we show that this iterative approach terminates in poly-time and either returns
a non-empty Zexplore that can be explored by πexplore, or updates πgoal in a way that Zgoal ⊂ Ẑsafe.
In the case that Zgoal ⊂ Ẑsafe, using Lemma 12, we show that the agent first takes πswitch to enter
into Zgoal in finite time, so that the agent can pursue πgoal.

Selecting safe actions for exploration. To establish safety of an unexplored (s, a) ∈ Zedge,
we must explore state-action pairs from Ẑsafe that are similar to state-actions along an unknown
return policy from (s, a) in order to learn that unknown policy. While such a policy does exist
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if (s, a) ∈ Zsafe (according to Assumption 5), the challenge is to resolve this circularity, without
exploring Ẑsafe exhaustively.

Instead, Algorithm 5 uses a breadth-first-search (BFS) from (s, a) which essentially enumerates a
superset of trajectories that contains the true return trajectories. Specifically, it first enumerates a
list of state-action pairs that are a 1-hop distance away and if any of them have a loose confidence
interval, it adds to Zexplore a corresponding similar state-action pair from Ẑsafe (if any exist). If
Zexplore is empty at this point, Algorithm 5 repeats this process for 2-hop distance, 3-hop distance
and so on, until either Zexplore is non-empty or the BFS tree cannot be grown any further. Lemma 9
argues that this procedure does populate Zexplore with all the state-action pairs necessary to establish
the required return paths; Lemma 7 demonstrates its polynomial run-time. Although we cannot
guarantee that this method does not explore all of Ẑsafe, we do see this empirically, as we show in
our experiments (see Section 4.7).

4.6 Proof of Theorem 4
This section details our proof of Theorem 4, that ASE is guaranteed to be safe with high probability
and is optimal in the PAC-MDP sense. We start by restating Theorem 4 and proving it. We then
examine proofs for the correctness and polynomial computation time of Algorithm 3. Specifically,
we show that the computed Ẑsafe is closed and communicating. Next we show that Algorithms 5
and 4 correctly compute the desired Zexplore and an estimate of Zgoal in polynomial time. The
following section shows that the computed estimate of Zgoal is in fact correct, under certain
conditions. Subsection 4.6.4 provides the key lemmas for proving PAC-MDP, namely that that
our agent, following πgoal, πexplore, or πswitch either performs the desired behavior (acting optimally
or reaching certain state-action pairs) or learns something new about the transition function.
By bounding the number of times our agent learns something new, we can show that the agent
follows the optimal after a polynomial number of steps. The final subsection provides and proves
additional supporting lemmas.

Proof.

Proof of admissibility. We first establish the probability with which our confidence intervals
remain admissible throughout the entire execution of the algorithm. Note that we only calculate
each confidence interval m times for every state-action pair. Thus, by the union bound and our
choice of δT , the confidence intervals defined by T̂ and ϵ̂T hold with probability 1− δ/2. Then, by
the triangle inequality, even the tighter confidence intervals computed by Algorithm 7 – defined
by

∆

T and ∆
ϵT – are admissible.

Proof of safety. Next we will show that, given that the confidence intervals are admissible, the
algorithm never takes a state-action pair outside of Zsafe. Corollary 3, Lemma 3 and 4 together
show that Ẑsafe is a safe (which also implies, closed), communicating subset of Zsafe. Using this,
we will inductively show that the agent is always safe under our algorithm. Specifically, assume
that at any time instant, starting from s0, the agent has so far only taken actions from Ẑsafe. Since
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Ẑsafe is closed and safe, this means that the agent has so far been safe, and is currently at st ∈ Ẑsafe.
We must establish that even now the agent takes an action at such that (st, at) ∈ Ẑsafe.

Now, at each step, recall that according to Algorithm 2, the agent follows either πexplore, πswitch, or
πgoal. Consider the case when the agent follows either πexplore or πswitch.

In this case, for all (s, a) /∈ Ẑsafe the rewards are set to be −∞, and for all (s, a) ∈ Ẑsafe the
rewards are set to be non-negative. To address both πexplore and πswitch together, let the assigned
rewards be R†.

Now, for any t ≥ 0, recall that Q
†
(s, a, t) denotes the estimate of Q

†
(s, a) after t iterations of

dynamic programming (not to be confused with the finite-horizon value of the optimistic policy).
We first claim that, for all (s, a) ∈ Ẑsafe and for all iterations t ≥ 1, the resulting optimistic
Q-values are such that Q

†
(s, a, t) ≥ 0 if (s, a) ∈ Ẑsafe and Q

†
(s, a, t) = −∞ otherwise.

We prove this claim by induction on t, assuming that Q
†
(s, a, t) is initialized to some non-negative

value for t = 0. For t = 1, our claim is satisfied because the Q-values equal to the sum of the
reward function and some positive quantity.

Consider any t > 1 and (s, a) ∈ Ẑsafe. We know from Equation 4.5 that the Q-value for this
horizon can be decomposed into a sum of the reward and the maximum Q-value of the next states
(with a positive, multiplicative discount factor). For (s, a) ∈ Ẑsafe, in Equation 4.5, we will have
that the first term, which is the reward function, is non-negative. The second term is an expectation
over the maximum Q-values (for a horizon of t− 1), where the expectation corresponds to the
probability distribution of T

†
(s, a, ·) over the next states. Since (s, a) ∈ Ẑsafe and since T

†
is

a candidate transition function, by Corollary 2, all the next states according to this transition
function, belong to Ẑsafe. Now, for any s′ ∈ Ẑsafe, there exists a′ such that (s′, a′) ∈ Ẑsafe. By
induction, we have Q

†
(s′, a′, t − 1) ≥ 0, and hence maxa′′ Q

†
(s′, a′′, t − 1) ≥ 0. Hence, even

the second term in the expansion of Q
†
(s, a, t) is non-negative, implying that Q

†
(s, a, t) ≥ 0.

Now, for any (s, a) /∈ Ẑsafe, it follows trivially from Equation 4.5 that Q
†
(s, a, t) = −∞ since the

reward is set to be −∞.

Thus, for any state s ∈ Ẑsafe, we have established that there exists a such that (s, a) ∈ Ẑsafe

and Q
†
(s, a) ≥ 0 . Furthermore, for any action a′ such that (s, a′) /∈ Ẑsafe, Q

†
(s, a′) = −∞.

Therefore, π†(s) must be an action a such that (s, a) ∈ Ẑsafe. This proves that π† ∈ Π(Ẑsafe). In
other words, this means that at s ∈ Ẑsafe the agent takes an action a such that (s, a) ∈ Ẑsafe. This
completes our argument for πexplore and πswitch.

As the final case, consider a time instant when the agent follows πgoal. By design of Algorithm 2,
we know that this happens only if Zgoal ⊂ Ẑsafe and s ∈ Zgoal. Now, by definition of Zgoal, since
s ∈ Zgoal, we know that (s, πgoal(s)) ∈ Zgoal. Then, since Zgoal ⊂ Ẑsafe, (s, πgoal(s)) ∈ Ẑsafe,
implying that the algorithm picks only safe actions, even when it follows πgoal.

Proof of PAC-MDP. Now we will show that ASE is PAC-MDP. To do this, we will show that at
any step of the algorithm, assuming our confidence intervals are admissible, the agent will either
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act ϵ-optimally or reach a state outside of the known set K = {(s, a) ∈ S × A : n(s, a) ≥ m} in
some polynomial number of steps with some positive polynomial probability. To prove this, recall
the agent follows either πexplore, πswitch, or πgoal in three mutually exclusive cases; let us examine
each of these three cases.

Case 1: Zgoal ̸⊂ Ẑsafe. If Zgoal ̸⊂ Ẑsafe, then the agent follows πexplore. In this case, we will
show that the agent will experience a state-action pair from Kc (the complement of K) in the first
H1 steps, where H1 = O(H2/c).

First note that the condition Zgoal ̸⊂ Ẑsafe can only change if Zgoal or Ẑsafe are modified, which can
only happen if the agent experiences a state action pair outside K; so, if before the agent takes
its H1th step, this condition changes, we know that the agent has experienced a state-action pair
outside K, and hence, we are done.

Consider the case when the agent does not experience any element of Kc in the first H1 − 1
steps; hence the agent follows a fixed πexplore for these steps. By Lemma 10, since Zgoal ̸⊂ Ẑsafe,
there must exist some element in Zexplore (where Zexplore ⊂ Ẑsafe by design of Algorithm 5). Now,
recall that πexplore is computed using rewards Rexplore, which are set to 1 on Zexplore, and either
0 or −∞ otherwise, depending on whether the state-action pair is in Ẑsafe or not. If we define
Mexplore = ⟨S,A, T,Rexplore, γexplore⟩, then we can invoke Lemma 12 for Mexplore to establish that
the agent reaches Zexplore or Kc.

To do this, we must establish that all requirements of Lemma 12 hold. In particular, we have
Zexplore ⊂ Ẑsafe by design of Algorithm 5. We also have Ẑsafe is communicating (Lemma 4) and
closed (Lemma 3) and that πexplore ∈ Π(Ẑsafe) (from our proof for safety of Algorithm 2). Finally,
since m is sufficiently large, by Lemma 12, the agent will reach Zexplore or Kc in H1 = O(H2/c)
steps with probability at least 1/2 as long as H ≥ Hcomlog

16Hcom
c

/log 1
c
. Note that although

Lemma 12 guarantees this for the behavior of the agent on Mexplore, the same would apply for M
as well, since both these MDPs share the same transition. Finally, note that since Zexplore /∈ K (by
Lemma 8), this means that the agent escapes K in H1 steps.

Case 2: Zgoal ⊂ Ẑsafe, st ̸∈ Zgoal. Now consider the next mutually exclusive case where
Zgoal ⊂ Ẑsafe but the current state s ̸∈ Zgoal. In this case our agent will attempt to return to Zgoal

by following πswitch. In this case, we argue that, in the next H2 = O(H2/c) steps, the agent
either does reach Zgoal or experiences a state-action pair in Kc. To see why, note that the current
condition can only change if Zgoal or Ẑsafe change or if the agent reaches a state s ∈ Zgoal. As
noted before, Zgoal or Ẑsafe are modified only if the agent experiences a state action pair outside
K; so, if before the agent takes its H2th step, this condition changes, we know that the agent has
either experienced a state-action pair outside K or has reached Zgoal, and hence, we are done.

Consider the case when the agent does not experience any element of Kc in the first H2 − 1 steps,
and hence follows a fixed πswitch for these steps. Since Zgoal ̸= ∅ (which is trivially true since
s0 ∈ Zgoal always), using the same reasoning as the previous case, we can again use Lemma 12 to
show that the agent will reach a state-action pair in Zgoal or outside of K in H2 = O(H2/c) steps
with probability at least 1/2, since m is sufficiently large and H ≥ Hcomlog

16Hcom
c

/log 1
c
.
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Case 3: Zgoal ⊂ Ẑsafe, st ∈ Zgoal. Finally, we consider the last case where Zgoal ⊂ Ẑsafe and
the current state s ∈ Zgoal. In this case, we argue that the agent either takes an action that is
near-optimal, or in the next H steps, it reaches Kc with sufficiently large probability.

Let P(AM) be the probability that starting at this step, the Algorithm 2 leads the agent out of K
in H steps, conditioned on the history pt. Now, if P(AM) ≥ ϵ(1− γ)/4, the agent will escape K
in H steps with sufficient probability. Hence, consider the case when P(AM) ≤ ϵ(1− γ)/4.

Then, assuming H ≥ O
(

1
1−γ

ln 1
ϵ(1−γ)

)
and sufficiently large m, we can use the above probability

bounds and Lemma 14 to show that in this case the state st that the agent currently is in satisfies:

V A
M (pt) ≥ V ∗

Mgoal
(st)− ϵ. (4.7)

To complete our discussion of this case, we need to lower bound the right hand side in terms of
the value of the safe-optimal policy π∗

safe on the true MDP M . Recall that π∗
safe is a policy that

maximizes V
π⋆

safe
M subject to the constraint that π∗

safe ∈ Π(Zsafe). Now, consider an MDP M∗
goal

with the same transitions as M . However it has rewards R∗
goal such that for all (s, a) /∈ Zsafe,

R∗
goal(s, a) = −∞ and everywhere else R∗

goal(s, a) = R(s, a). Now, since π∗
safe ∈ Π(Zsafe), from

Fact 1, we have that following π∗
safe from any s ∈ Zsafe, the agent would never exit Zsafe. Hence,

for any s ∈ Zsafe, V
π∗

safe
M∗

goal
(s) = V

π∗
safe

M (s). Note that this equality applies to the current state st since

it is inside Zgoal, and we know that Zgoal ⊂ Ẑsafe and Ẑsafe ⊂ Zsafe (by Corollary 3).

Now, let us compare M∗
goal and Mgoal. Recall that Mgoal has its rewards set to −∞ only on Ẑunsafe

(and everywhere else, it equals R(s, a)). By Lemma 9, we know that Ẑunsafe ∩ Zsafe = ∅, and
therefore Ẑunsafe ⊂ Zc

safe. Thus, both Mgoal and M⋆
goal have the same rewards as M , except Mgoal

has the rewards set to −∞ on a set Ẑunsafe, while M⋆
goal has rewards set to −∞ on a superset of

Ẑunsafe, Zc
safe. In other words, the rewards of Mgoal are greater than or equal to the rewards of M∗

goal.
Thus, the value of the optimal policy on Mgoal cannot be less than that of M∗

goal. Formally, for all

s, V ∗
Mgoal

(s) ≥ V
π∗

safe
M∗

goal
(s). Since we also have V

π∗
safe

M∗
goal
(st) = V

π∗
safe

M (st), we get:

V ∗
Mgoal

(st) ≥ V
π∗

safe
M (st). (4.8)

Thus, from Equations 4.7 and 4.8, we get that at this state, V A
Mgoal

(pt) ≥ V
π∗

safe
M (st)− ϵ.

In summary, the agent does at least one of the following at any timestep:

1. reach Kc in H1 steps (starting from Case 1) with probability at least 1/2

2. reach Kc in H2 steps (starting from Case 2), with probability at least 1/4

3. reach Kc in H steps (starting from Case 3) with probability at least Ω(ϵ(1− γ)).

4. reach Zgoal in H2 steps (starting from Case 2) with probability at least 1/4.
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5. take a nearly-optimal action (in Case 3).

Note that in the above list, we have slightly modified the guarantee from Case 2. In particular,
Case 2 guaranteed that with a probability of 1/2 the agent would reach either Kc or Zgoal; from
this we have concluded that at least one of these events would have a probability of at least 1/4.

We first upper bound the number of sub-optimal steps corresponding to the first three events.
Observe that the agent can only experience a state-action pair outside of K a total of m|S||A| times.
Now, by the Hoeffding bound, we have that it takes at most O

(
m|S||A| 1

ϵ(1−γ)
ln 1

δ

)
independent

trials to see m|S||A| heads in a coin that has a probability of at least Ω(min (1/4, ϵ(1− γ))) =
Ω(ϵ(1 − γ)) as turning out to be heads. Hence, these trajectories would correspond to at most
O
(
max(H1, H2, H) ·m|S||A| · 1

ϵ(1−γ)
ln 1

δ

)
many sub-optimal steps.

Next, we upper bound the number of sub-optimal steps corresponding to the fourth event. Consider
two successful occurrences of this event. That is, in both instances, the agent did indeed reach
Zgoal. In such a case, there must be at least one time instant between these two occurrences
when the agent experienced Kc; if not, after the first occurrence, by design of Algorithm 2,
the agent would have remained in Zgoal, thereby precluding the second occurrence of the event
from happening. Thus, there can be at most as many successful occurrences of this event as
m|S||A| + 1. Again, by a Hoeffding bound, this corresponds to O

(
H2 ×m|S||A| 1

ϵ(1−γ)
ln 1

δ

)
many sub-optimal steps, with probability 1− δ/2.

Combining the above two bounds and plugging in the bound on m gives our final bound on the
number of sub-optimal steps.

4.6.1 Proofs about Algorithm 3
Recall that Algorithm 3 expands the set of safe state-action pairs Ẑsafe (by making use of an
updated set of confidence intervals) by first creating a candidate set and then iteratively pruning
the set until it stops changing.

First, in Lemma 1, we establish this procedure terminates in polynomial time. In the lemmas that
follow after that, we prove soundness and completeness. In particular, in Lemma 3, we establish
that the updated Ẑsafe is indeed safe. In Lemma 4, we establish that Ẑsafe is communicating and as
a result of which in Corollary 3, we establish that Ẑsafe ⊂ Zsafe. Finally, in Lemma 6 we prove
completeness in that, if there exists a state-action pair on the edge of Ẑsafe, and if there exists
a return path from that edge that only takes state-action pairs whose confidence intervals are
sufficiently small, then that state-action pair and all of that return path is added to Ẑsafe.

Lemma 1. Algorithm 3 terminates in poly(|S|, |A|) time.

Proof. The algorithm begins with a set Zcandidate with |S| · |A| many elements. Now in each outer
iteration, Zcandidate either ends up losing some elements, or remains the same. If it does remain the
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same, then we break out of the outer loop. Thus, there can be at most O(|S| · |A|) many iterations
of the outer loop.

Next, consider the first inner while block. In each iteration of the while loop, we either add an
element to Zreachable or break out of the loop if Zreachable does not change. Thus, there can be at
most O(|S| · |A|) many iterations of this while loop. As for the time complexity of the inner
while loops, since Ẑsafe ∪ Zreachable is a finite set, it is easy to see that these iterations terminate in
polynomial time. A similar argument holds for the next while block too. For the third while block,
we must apply a slightly different version of this argument where we make use of the fact that in
each run of the while loop, we either remove a state-action pair from Zclosed or break out of the
loop. From the above arguments, it follows that the algorithm terminates in polynomial time.

Note: In the following discussions, unless otherwise specified, Zclosed denotes the set as it is in the
last step of Algorithm 3.

Before we prove our other lemmas about Algorithm 3, we first establish a result about Algorithm 7
that computes the tighter confidence intervals. Specifically we show that these confidence intervals
are computed in a way that if a particular interval is sufficiently tight, then every candidate
transition probability in that interval has the same support of next state-action pairs as the true
support.

Lemma 2. Assume the confidence intervals are admissible. Then, for any (s, a) such that
∆
ϵT (s, a) < τ/2, for all s′ ∈ S,

∆

T (s, a, s′) > 0 if and only if T (s, a, s′) > 0.

Proof. First consider the case when T (s, a, s′) = 0; we will show that
∆

T (s, a, s′) = 0. To see
why, consider the (s̃, ã) that contributed to this confidence interval as computed in the step of
Algorithm 7. Since ∆

ϵT (s, a) < τ/2, from Algorithm 7, we have that ∆((s, a), (s̃, ã)) ≤ τ/2.
This implies that if s̃′ := α((s, a, s′), (s̃, ã)), then |T (s̃, ã, s̃′) − T (s, a, s′)| ≤ τ/2. Since we
assumed T (s, a, s′) = 0, we have that |T (s̃, ã, s̃′)| ≤ τ/2. However, by Assumption 4, we have
that the range of T lies in [0] ∪ [τ, 1], therefore, to satisfy the above inequality, we must have that
T (s̃, ã, s̃′) = 0. This would imply that the empirical probability T̂ (s̃, ã, s̃′) too is zero, which then
is assigned to

∆

T (s, a, s′) in Algorithm 7. Thus,
∆

T (s, a, s′) = 0.

Now consider the case when T (s, a, s′) > 0. We will show that
∆

T (s, a, s′) > 0. First, since
T (s, a, s′) > 0, by Assumption 4, it means that T (s, a, s′) ≥ τ . As argued in the previous
case, since |T (s̃, ã, s̃′) − T (s, a, s′)| ≤ τ/2, we will also have T (s̃, ã, s̃′) > τ/2. Again, by
Assumption 4, this would imply T (s̃, ã, s̃′) ≥ τ . Note that, from Algorithm 7, we have that, since
∆
ϵT (s, a) < τ/2, ϵ̂T (s̃, ã) < τ/2. And since confidence intervals are admissible, this means that
|T (s̃, ã, s̃′) − T̂ (s̃, ã, s̃′)| ≤ τ/2. This, together with the fact that T (s̃, ã, s̃′) > τ/2, means that
T̂ (s̃, ã, s̃′) > τ/2. In Algorithm 7, we would assign this value to

∆

T (s̃, ã, s̃′), thus, resulting in
∆

T (s, a, s′) > 0.

This lemma allows us to compute the support of state-action pairs we have never experienced.
Algorithm 3 uses this idea to expand Ẑsafe in a way that retains closedness, thus, safety.
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Lemma 3. Assume our confidence intervals are admissible. Whenever Algorithm 2 calls Algorithm
3, in the final step of Algorithm 3, Ẑsafe ∪ Zclosed is a safe set.

Proof. We will prove this statement using induction. That is we assume that, before every call
to Algorithm 3, Ẑsafe is a safe set. As the base case, this is satisfied in the first call because then,
Ẑsafe = Z0 and we have assumed Z0 to be a safe set in Assumption 1.

Since we populate Zcandidate with only those state-action pairs with non-negative rewards, it follows
directly from the run of the algorithm that all state-action pairs that are eventually found in Zclosed

have non-negative rewards. Thus, to show that Zclosed ∪ Ẑsafe is safe, we only need to show that
Zclosed ∪ Ẑsafe is a closed set. That is, we need to show that for any (s, a) ∈ Zclosed ∪ Ẑsafe, every
possible next state has an action in Ẑsafe ∪ Zclosed i.e., for all s′ ∈ {s′ ∈ S : T (s, a, s′) > 0}, there
exists an a′ ∈ A where (s′, a′) ∈ Ẑsafe ∪ Zclosed. From the induction assumption (that Ẑsafe is
closed), this trivially holds for all (s, a) ∈ Ẑsafe.

Hence, consider any (s, a) ∈ Zclosed. From our choice of Zcandidate in the first step of the algorithm,
we know that ∆

ϵT (s, a) < τ/2. Then from Lemma 2, we know that the set
∆

S
′
= {s′ ∈ S :

∆

T
(s, a, s′) > 0} is identical to the true support of the next state-action pairs of (s, a). But from the
third inner while loop of our algorithm, we have that for all s′ ∈∆

S
′
, we ensure that there exists

an a′ ∈ A where (s′, a′) ∈ Zclosed ∪ Ẑsafe, implying that all possible next states of (s, a) have a
corresponding action in Zclosed ∪ Ẑsafe. Thus, Zclosed ∪ Ẑsafe is closed, and also, safe.

As a corollary of the above result, we can also show that Ẑsafe is closed even if we replaced the
true transitions by some candidate transition.

Corollary 2. Assume the confidence intervals are admissible. During the run of Algorithm 2, we
always have that, for any T † ∈ CI(

∆

T ) and for any (s, a) ∈ Ẑsafe, if there exists s′ ∈ S such that
T †(s, a, s′) > 0, then s′ ∈ Ẑsafe.

Proof. By design of Algorithm 3, we know that for any (s, a) ∈ Ẑsafe, either (s, a) ∈ Z0 or
∆
ϵ (s, a) < τ/2.

Consider the case where (s, a) ∈ Z0. Since the confidence intervals are admissible, by the
third requirement in the definition of the candidate transition set (Definition 9), we have that if
T †(s, a, s′) > 0, then s′ ∈ Z0. Since Z0 ⊂ Ẑsafe, s′ ∈ Ẑsafe.

Consider the case where ∆
ϵ (s, a) < τ/2. Since the confidence intervals are admissible, we

have from Lemma 2 that if T †(s, a, s′) > 0, then T (s, a, s′) > 0. Since we have established in
Lemma 3 that Ẑsafe is closed, this means that s′ ∈ Ẑsafe.

In order to make sure that our agent can continue exploring without ever getting stuck, we must
ensure that whenever Algorithm 3 expands Ẑsafe, it remains communicating.

Lemma 4. Assume our confidence intervals are admissible. Whenever Algorithm 2 calls Algorithm
3, in the final step of Algorithm 3, Ẑsafe ∪ Zclosed is communicating.
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Proof. We will prove this statement using induction. We first assume that, before every call to
Algorithm 3, Ẑsafe is an communicating set, and using this, prove that the updated safe set, namely
Ẑsafe ∪ Zclosed computed at the end of Algorithm 3, is also communicating. As the base case, this
is satisfied in the first call because Ẑsafe = Z0 and we have assumed Z0 to be an communicating
set in Assumption 1.

Informally, to show that Ẑsafe is communicating, we will first show that for every state in Ẑsafe, the
agent has a return policy which ensures that from anywhere in Ẑsafe ∪Zclosed, it can reach that state
with non-zero probability. As a second step, we will show that for every state in Zclosed, the agent
has a ‘reach’ policy which ensures that from anywhere in Ẑsafe ∪Zclosed it can reach that state with
non-zero probability. Finally, we will put these together to establish communicatingness.

Proof that Zclosed is returnable. As the first part of the proof, we will show that,

∀s̃ ∈ Ẑsafe ∃πreturn ∈ Π(Ẑsafe∪Zclosed), s.t. ∀s ∈ Ẑsafe∪Zclosed P [∃t, st = s̃| πreturn, s0 = s] > 0.
(4.9)

Fix an s̃ ∈ Ẑsafe. We will prove the existence of a suitable πreturn by induction. Consider the last
outer iteration of our algorithm during which we know that Zreturnable at the end of the second inner
while block is identical to Zclosed at the end of the third inner while block. In this round, consider
some (s, a) that is about to be added to Zreturnable. For the induction hypothesis, we will consider a
hypothesis that is stronger than the one above. In particular, assume that there exists πreturn such
that for every initial state s′ currently in Ẑsafe ∪Zreturnable, there is non-zero probability of returning
to s̃, while visiting only those states in Ẑsafe ∪ Zreturnable on the way to s̃. Formally, assume that
∃πreturn ∈ Π(Ẑsafe ∪ Zclosed) such that:

∀s′ ∈ Ẑsafe ∪ Zreturnable, P
[
∃t, st=s̃,

∀t′<t st′∈Ẑsafe∪Zreturnable

∣∣∣ πreturn, s0 = s′
]
> 0. (4.10)

This assumption is of course true initially when Ẑsafe ∪ Zreturnable = Ẑsafe, by communicatingness
of Ẑsafe.

Now, by the manner in which the second while block works, we know that there exists an s′

such that
∆

T (s, a, s′) > 0 and there exists a′ such that (s′, a′) ∈ Ẑsafe ∪ Zreturnable. Note that since
∆
ϵT (s, a) < τ/2 (by our initial choice of Zcandidate) and since

∆

T (s, a, s′) > 0, it follows from
Lemma 2 that T (s, a, s′) > 0.

Next, consider π′
return that is identical to π everywhere, except π′

return(s) = a. Note that since
(s, a) ∈ Ẑsafe ∪ Zclosed, π′

return ∈ Π(Ẑsafe ∪ Zclosed).

First, we have that the induction assumption still holds for every s′ ∈ Ẑsafe ∪Zreturnable. That is, for
every s′ ∈ Ẑsafe ∪ Zreturnable, with non-zero probability, π′

return starts from s′ to return to s̃, without
visiting any state outside Ẑsafe ∪ Zreturnable. This is because, for a given random seed, if the agent
were to follow πreturn from s to return to s′′, without visiting any states outside of Ẑsafe ∪ Zreturnable,
the agent would do the same under π′

return since the two policies would agree on all the visited
states.

74



Next, we have the following when starting from s:

P
[
∃t, st=s̃

∀t′<t st′∈Ẑsafe∪Zreturnable

∣∣∣ π′
return, s0 = s

]
≥ T (s, a, s′)P

[
∃t, st=s̃

∀t′<t st′∈Ẑsafe∪Zreturnable

∣∣∣ π′
return, s0 = s′

]
≥ T (s, a, s′)P

[
∃t, st=s̃

∀t′<t st′∈Ẑsafe∪Zreturnable

∣∣∣ πreturn, s0 = s′
]

> 0.

Here, the first inequality simply follows from the fact that one possible way to reach s̃ from s,
is by first taking a step to s′. In the second step, we were able to replace π′

return with πreturn by a
similar logic as before. Specifically, for a given random seed, if an agent starts from s′ to reach s̃
following πreturn without ever visiting s, it should do the same under π′

return too.

Finally, we have that both the above terms are strictly positive. Hence, we establish that π′
return,

with non-zero probability, allows the agent to return to s̃, while never visiting any state outside
Ẑsafe ∪ Zreturnable ∪ {(s, a)}.

Proof for Zclosed is reachable. For the second part of the proof, we will show that ∀s ∈ Zclosed,

∃πreach ∈ Π(Zclosed ∪ Ẑsafe), s.t.∀s̃ ∈ Ẑsafe ∪ Zclosed P[∃t, st = s|s0 = s̃, πreach] > 0. (4.11)

We will prove this by induction. Consider the last outer iteration of the algorithm and consider the
first inner while loop where we populate Zreachable. Note that since this is the last outer iteration,
at the end of this while block, Zreachable is exactly equal to Zclosed that is output at the end of the
algorithm. (Thus, during the run of this while loop, we always have that Zreachable ⊂ Zclosed.) In
this while loop, consider the instant at which some (s′, a′) is about to be added to Zreachable. We
will assume by induction that for all s̃ that are currently in Ẑsafe ∪ Zreachable, Equation 4.11 holds
i.e., ∃πreach such that from anywhere in Ẑsafe ∪ Zreachable, we can reach s with non-zero probability.

As the base case, because of how we have initialized Zreachable, we have that for all s ∈ Ẑsafe ∪
Zreachable, s ∈ Ẑsafe. Thus, for this case, the induction assumption holds from the fact that we have
proven returnability to Ẑsafe.

Now, let us turn to the point when the algorithm is about to add (s′, a′) to Zreachable. Then, note
that this means that there exists (s, a) ∈ Ẑsafe ∪ Zreachable such that

∆

T (s, a, s′) > 0. Since
∆
ϵT (s, a) < τ/2 (by our initial choice of Zcandidate) and since

∆

T (s, a, s′) > 0, by Lemma 2, we
have that T (s, a, s′) > 0.

Next, consider the policy πreach guaranteed by our induction assumption, to reach s from anywhere
in Ẑsafe ∪ Zclosed. Then, define a policy π′

reach which is identical to πreach on all states, except
that π′

reach(s) = a. Note that since (s, a) ∈ Ẑsafe ∪ Zreachable ⊂ Ẑsafe ∪ Zclosed, and since πreach ∈
Π(Ẑsafe ∪ Zclosed), we have π′

reach ∈ Π(Ẑsafe ∪ Zclosed).

Now, we can show that π′
reach reaches s′ from any s̃ ∈ Ẑsafe ∪ Zclosed because of the following:

P [∃t, st = s′| π′
reach, s0 = s̃] ≥ T (s, a, s′)Pr [∃t, st−1 = s| π′

reach, s0 = s̃]

≥ T (s, a, s′)Pr [∃t, st−1 = s| πreach, s0 = s̃]

> 0.
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Here, the first inequality comes from the fact that one way to reach s′ is by traveling to s and then
taking the action a. In the next inequality, we make use of the fact that, for a given random seed, if
the agent follows πreach from s̃ to visit s for the first time, it would follow the same steps to reach
s even under π′

reach, since the policies would agree until then. Finally, we have from our induction
assumption that the probability term in the penultimate line is strictly positive; since the transition
probability is strictly positive too, the last inequality holds.

This proves that π′
reach ∈ Π(Ẑsafe∪Zclosed) reaches s′ from anywhere in Ẑsafe∪Zclosed with non-zero

probability.

Proof for communicatingness. Finally, we will wrap the above results to establish communi-
catingness. From the above results, we have that ∀s′ ∈ Ẑsafe ∪ Zclosed:

∃πvisit ∈ Π(Ẑsafe ∪ Zclosed), s.t.∀s ∈ Ẑsafe ∪ Zclosed P [∃t, st = s′|πvisit, s0 = s] > 0.

To establish communicatingness, we need to show that this probability is in fact 1. To do this,
we will first note that πvisit ∈ Π(Ẑsafe ∪ Zclosed) and since Ẑsafe ∪ Zclosed is closed (as proven in
Lemma 3), then use Lemma 5 to establish communicatingness.

Corollary 3. Assume our confidence intervals are admissible. Whenever Algorithm 2 calls
Algorithm 3, in the final step of Algorithm 3, Ẑsafe ∪ Zclosed ⊂ Zsafe.

Proof. Note that Z0 ⊂ Ẑsafe ∪ Zclosed by construction. Then, since we have established commu-
nicatingness of Ẑsafe ∪ Zclosed in Lemma 4, for every (s, a) ∈ Ẑsafe ∪ Zclosed, there should exist a
policy πreturn that travels from (s, a) and goes to any states in Z0 with probability 1. Furthermore
since we established safety in Lemma 3, this also means that every state-action pair visited in this
path has non-negative reward. Thus, by definition of Zsafe, the claim follows.

Although our definition of communicating, Def 2, seems strict since its guarantee must hold with
probability 1, we show here that this is no stronger than having the guarantee simply hold with
positive probability. This lemma helps us prove that our definition of communicating is equivalent
to that of the standard definition (see Fact 2) as well as help prove that the safe set we construct is
indeed communicating (see Lemma 4).

Lemma 5. If there exists a closed set of state-action pairs Z such that ∀s′ ∈ Z:

∃ πvisit ∈ Π(Z), s.t.∀s ∈ Z P [∃t, st = s′|πvisit, s0 = s] > 0

then it must be the case that this probability is, in fact, equal to 1; specifically, ∀s′ ∈ Z:

∃ πvisit ∈ Π(Z), s.t.∀s ∈ Z P [∃t, st = s′|πvisit, s0 = s] = 1
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Proof. From the above, we have that for a given s′ ∈ Z, there must exists a constant H ≥ 0 and a
constant p > 0 such that:

∀s ∈ Z P [∃t ≤ H, st = s′| πvisit, s0 = s] ≥ p. (4.12)

We will start by equating the probability of never visiting s′ by decomposing the trajectory into a
prefix of H steps and the rest, and then applying the Markov property, as follows:

P[∀t, st ̸= s′ |πvisit, s0 = s] =
∑
s′′∈S

P[∀t, st ̸= s′ |πvisit, s0 = s′′]P
[
∀t≤H,st ̸=s′

sH=s′′

∣∣∣ πvisit, s0 = s
]
.

Note that since πvisit ∈ Π(Z) and since Z is closed, we have from Fact 1 that s′′, which is the
Hth state in the trajectory, satisfies s′′ ∈ Z. Therefore, we can restrict the summation to Z (the
remaining terms would zero out). Hence,

P[∀t, st ̸= s′ |πvisit, s0 = s]

=
∑
s′′∈Z

P[∀t, st ̸= s′ |πvisit, s0 = s′′]P
[
∀t≤H,st ̸=s′

sH=s′′

∣∣∣ πvisit, s0 = s
]

≤
(
max
s′′∈Z

P[∀t, st ̸= s′ |πvisit, s0 = s′′]

)(∑
s′′∈Z

P
[
∀t≤H,st ̸=s′

sH=s′′

∣∣∣ πvisit, s0 = s
])

=

(
max
s′′∈Z

P[∀t, st ̸= s′ |πvisit, s0 = s′′]

)
(P [∀t ≤ H, st ̸= s′ |πvisit, s0 = s])

≤
(
max
s′′∈Z

P[∀t, st ̸= s′ |πvisit, s0 = s′′]

)
(1− p)

Since the above inequality holds for any s ∈ Z, we can apply a maxs∈Z on the left hand side and
rearrange to get:

max
s′′∈Z

P[∀t, st ̸= s′ |πvisit, s0 = s′′] · p ≤ 0

Since p > 0 (see Equation 4.12), this means that the first term here is equal to zero. In other
words, with probability 1, ∃t such that st = s′ when the agent starts from any s and follows πvisit,
as claimed.

Finally, we want to show that Algorithm 3 computes the largest possible Ẑsafe that still retains
safety and communicatingness. This is necessary since, if this were not true, we could get into
a situation where we know enough to ensure we can perform the optimal policy, but our agent
remains trapped in Ẑsafe forever.

Lemma 6. Assume that the confidence intervals are admissible. Consider some call of Algorithm
3 while executing Algorithm 2. Consider (s̃, ã) /∈ Ẑsafe such that s̃ ∈ Ẑsafe. Let ∃πreturn such that
starting at (s̃, ã), πreturn reaches a state in Ẑsafe with probability 1. Let Z̃ be the set of state-action
pairs visited by the agent starting (s̃, ã) following πreturn before reaching Ẑsafe. Formally, let:

Z̃ = {(s, a) ∈ S × A : P
[
∃t ≥ 0

(st,at)=(s,a)

∀t′<t st′ /∈Ẑsafe

∣∣∣ (s0, a0) = (s̃, ã), πreturn

]
> 0}.
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In the final step of Algorithm 3, if ∀(s, a) ∈ Z̃ \ Ẑsafe,
∆
ϵT (s, a) < τ/2, then Z̃ ⊂ Ẑsafe ∪ Zclosed.

Proof. Informally, we will show that in each iteration of the algorithm, after the first inner while
block, we have Z̃ ⊂ Ẑsafe ∪ Zreachable; and using this, we will show that after the second inner
while block, we have Z̃ ⊂ Ẑsafe ∪ Zreturnable; and finally, because of this, after the third inner while
block, Z̃ ⊂ Ẑsafe ∪ Zclosed. Below, we prove these three statements, and finally wrap them up to
prove the main claim.

Proof for Z̃ ⊂ Ẑsafe ∪ Zreachable. Assume there exists (s̃, ã) as specified in the lemma statement.
Then, formally, we will show that if Z̃ ⊂ Ẑsafe ∪ Zcandidate before the beginning of the first inner
while loop, then Z̃ ⊂ Ẑsafe ∪ Zreachable at the end of the loop.

We will prove this by contradiction. Assume for the sake of contradiction that there exists a
non-empty Z̃bad ⊂ Z̃ such that Z̃bad has no intersection with Ẑsafe∪Zreachable. Let Z̃good = Z̃ \ Z̃bad.
First we note why Z̃good is non-empty. Since Z̃ \ Ẑsafe ⊂ Zcandidate (from our initial assumption),
since (s̃, ã) ∈ Z̃ \ Ẑsafe, and since s̃ ∈ Ẑsafe (from lemma statement), when initializing Zreachable

with {(s, a) ∈ Zcandidate : s ∈ Ẑsafe}, we would add (s̃, ã) to Zreachable. Thus, Z̃good must contain at
least (s̃, ã).

Next, we argue that there must exist some (s′, a′) ∈ Z̃bad such that there exists an (s, a) ∈ Z̃good

for which T (s, a, s′) > 0 and s /∈ Ẑsafe. If not, then starting from (s̃, ã) ∈ Z̃good, the agent can
never hope to reach Z̃bad before visiting a state Ẑsafe, contradicting the fact that Z̃bad is a subset of
state-action pairs that it visits before reaching Ẑsafe.

Now, consider such an (s′, a′) (which was not added to Zreachable) and its predecessor (s, a), which
belongs to Ẑsafe ∪ Zreachable because it belongs to Z̃good. In some iteration of this while loop,
we must have examined (s, a) ∈ Ẑsafe ∪ Zreachable. Since s /∈ Ẑsafe, we also have (s, a) /∈ Ẑsafe.
Since (s, a) ∈ Z̃good, and Z̃good ⊂ Z̃, this further means that (s, a) ∈ Z̃ \ Ẑsafe. From our
lemma statement, we then have that the confidence interval of (s, a) is less than τ/2. Hence
∆
ϵT (s, a) < τ/2. Then, from Lemma 2, since T (s, a, s′) > 0, we have that

∆

T (s, a, s′) > 0. Then,
since (s′, a′) ∈ Zcandidate, we would have added (s′, a′) to Zreachable in this iteration, contradicting
the fact that we never added it to Zreachable in the first place. Thus, Z̃bad must be empty, implying
that Z̃ ⊂ Ẑsafe ∪ Zreachable.

Proof for Z̃ ⊂ Ẑsafe ∪ Zreturnable. Formally, we will show that if Z̃ ⊂ Ẑsafe ∪ Zreachable before the
beginning of the second while block, then Z̃ ⊂ Ẑsafe ∪ Zreturnable at the end of the block.

At the end of the second block, let us define Z̃bad := Z̃ \ (Ẑsafe ∪ Zreturnable). We want to show
that Z̃bad is empty, but assume on the contrary it is not. First we argue that there must exist
(s, a) ∈ Z̃bad such that one of its next states belongs to Ẑsafe ∪ Zreturnable. If this was not the case,
then whenever the agent enters Z̃bad, it will never be able to return to Ẑsafe. This is however in
contradiction to the definition of Z̃.

For the rest of the discussion, consider such an (s, a) ∈ Z̃bad such that ∃(s′, a′) ∈ Ẑsafe ∪ Zreturnable

for which T (s, a, s′) > 0. Since (s, a) ∈ Z̃bad and Zbad ⊂ Z̃ \ Ẑsafe, it means that (s, a) ∈ Z̃ \ Ẑsafe.
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Then, from our lemma statement we have ∆
ϵT (s, a) ≤ τ/2. Now, from Lemma 2, we have

that since the confidence intervals are admissible and since T (s, a, s′) > 0, it must be the case
that

∆

T (s, a, s′) > 0. Then, in the iteration of the while loop during which (s′, a′) is present
in Ẑsafe ∪ Zreturnable, (s, a) would in fact be added to Zreturnable. This, however, contradicts our
assumption that (s, a) ∈ Z̃bad. Therefore, Z̃bad should in fact be empty. Thus, Z̃ ⊂ Ẑsafe∪Zreturnable

at the end of this while block.

Proof for Z̃ ⊂ Ẑsafe ∪ Zclosed. Formally, we will show that if Z̃ ⊂ Ẑsafe ∪ Zreturnable before the
beginning of the third while block, then Z̃ ⊂ Ẑsafe ∪ Zclosed at the end of the block.

Assume on the contrary that there exists (s, a) ∈ Z̃ such that (s, a) /∈ Ẑsafe ∪ Zclosed at the end of
the third block. Since Zclosed is initialized with all of Z̃ contained in it, consider the first such (s, a)
that is removed from Zclosed during the course of this second inner iteration. Now, just before the
moment at which (s, a) is removed, by design of the algorithm, we would have that there exists
s′ such that

∆

T (s, a, s′) > 0 and s′ /∈ Ẑsafe ∪ Zclosed. Note that at this point, we also still have
Z̃ ⊂ Ẑsafe∪Zclosed. Therefore, this means that s′ /∈ Z. Now, we have that (s, a) ∈ Z̃ \ Ẑsafe, which
means, by the lemma statement, ∆

ϵT (s, a) ≤ τ/2. Then, since
∆

T (s, a, s′) > 0, from Lemma 2,
we have T (s, a, s′) > 0. However, this contradicts the fact, if (s, a) ∈ Z̃, then every next state of
(s, a) must lie in Z̃. Thus, no (s, a) belonging to Z̃ must have been removed from Ẑsafe ∪ Zclosed

during this while block, implying that Z̃ ⊂ Ẑsafe ∪ Zclosed at the end of this block.

Proof of main claim. From the above arguments, we have that whenever the outer iteration
begins with Z̃ ⊂ Zcandidate ∪ Ẑsafe it ends with Z̃ ⊂ Zcandidate ∪ Zclosed. Now, at the beginning
of Algorithm 3, we must have Z̃ \ Ẑsafe ⊂ Zcandidate due to the fact that all elements of Z̃ have
confidence intervals at most τ/2. In other words, Z̃ ⊂ Zcandidate ∪ Ẑsafe. Then, from the above
arguments, we have that Z̃ ⊂ Ẑsafe ∪ Zclosed at the end of the first iteration. Since Zcandidate at
the beginning of the second outer iteration is equal to Zclosed from the end of the previous outer
iteration, we again have Z̃ ⊂ Zcandidate ∪ Ẑsafe at the beginning of the second iteration. Thus, by a
similar argument we have that the algorithm preserves the condition that Z̃ ⊂ Zclosed ∪ Ẑsafe at the
end of every outer iteration, proving our main claim.

4.6.2 Proofs about Algorithm 5 and Algorithm 4

In the next few lemmas, we prove results about Algorithm 5 and Algorithm 4. Recall that
Algorithm 5 takes as input a set of edge state-action pairs (which are state-action pairs that do not
belong to Ẑsafe but whose state belongs to Ẑsafe) and outputs a set of elements from Ẑsafe which
need to be explored in order to learn the return paths from the edges. Also recall that the idea of
Algorithm 4 is to return an updated Zgoal (the set of states in the optimistic goal path) and Zexplore

(by making a call to Algorithm 5).

In Lemma 7 we demonstrate that Algorithm 5 terminates in polynomial time.
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Lemma 8 helps establish that running Algorithm 5 allows the agent progress without getting stuck.
More concretely, in Lemma 8 we argue that the elements of Zexplore do not belong to K. That is,
the elements of Zexplore are those that have not already been explored (as otherwise, the agent may
be stuck perpetually in exploring what has already been explored).

In Lemma 9, we establish that Algorithm 5 works correctly (and hence, so does Algorithm 4). In
particular, we show that Algorithm 5 does not terminate with an empty Zexplore when some of the
edge state-action pairs of Ẑsafe are indeed safe. If we did not have this guarantee, then it’s possible
that even though there are some edge state-action pairs are safe, our agent may be stuck without
exploring any state-action pair within Ẑsafe. On the other hand, with this guarantee, we can be
confident that our agent will explore to learn the return path of such edge states, and then establish
their safety, using which it can then expand Ẑsafe in the future. As a corollary of this guarantee,
we show that Algorithm 4 always ensures that Ẑunsafe contains no element that actually belongs to
Zsafe.

Finally, in Lemma 10, we prove that Algorithm 4 terminates in polynomial time, guaranteeing
that either Zexplore is non-empty (which means the agent can explore Ẑsafe to learn a return path
and expand Ẑsafe) or that Zgoal has been updated in a way that Zgoal ⊂ Ẑsafe (which means that the
agent can stop exploring, and instead, start exploiting).

Below, we prove our result about the run-time complexity of Algorithm 5.

Lemma 7. Algorithm 5 terminates in poly(|S|, |A|) time.

Proof. Recall that Algorithm 5 executes an iteration of a while loop whenever ZL
next ̸= ∅ and

Zexplore = ∅. Also recall that inside the while loop, the algorithm executes a for loop that iterates
over all elements of ZL

next. Hence, during the while loop, since ZL
next is non-empty, we must also

execute at least one iteration of the inner for loop. Now, note that, by design of the algorithm,
ZL

next is populated only with elements that do not belong to Zreturn. Since the for loop adds all these
elements to Zreturn, every call to the for loop corresponds to increasing the cardinality of Zreturn by
at least one. Thus, there can be at most as many executions of the for loop as there are state-action
pairs, |S| × |A|. By extension, the while loop can be executed at most |S| × |A| times, after which
it should terminate.

Next, we show that the state-action pairs marked for exploration by Algorithm 5 have not already
been explored well before.

Lemma 8. Algorithm 5 returns Zexplore such that for every (s̃, ã) ∈ Zexplore, (s̃, ã) ∈ Kc where

K = {(s, a) ∈ S × A : n(s, a) ≥ m} when m ≥ O
(

|S|
τ2

+ 1
τ2

ln |S||A|
τ2δ

)
.

Proof. Assume on the contrary that there exists (s̃, ã) ∈ Zexplore such that (s̃, ã) ∈ K. By design
of Algorithm 5, we have that there exists (s, a) /∈ Ẑsafe which resulted in the addition of (s̃, ã)
to Zexplore. In particular, we would have that ∆

ϵT (s, a) > τ/2 and ∆((s, a), (s̃, ã)) < τ/2. Since
(s̃, ã) ∈ K, we also have ϵ̂T (s̃, ã) ≤ τ/4 (and this follows from Lemma 16). Then, we would
have ∆

ϵT (s, a) ≤ ϵ̂T (s̃, ã) + ∆((s, a), (s̃, ã)), implying ∆
ϵT (s, a) ≤ τ/4 which is a contradiction.

Thus, the above claim is correct.
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Below, we show that as long as there is a edge to Ẑsafe with a safe return path to Ẑsafe, Algorithm 5
will return with a non-empty Zexplore.

Lemma 9. Assume our confidence intervals are admissible. During a run of Algorithm 2, at the
end of every call to Algorithm 5, we will have Zexplore = ∅ only if ∀ (s̃, ã) ∈ Zedge, (s̃, ã) /∈ Zsafe.
As a corollary of this, we always have that Ẑunsafe ∩ Zsafe = ∅.

Proof. We will prove this by induction. Specifically, since Algorithm 4 is the only block where
we call Algorithm 5 and modify Ẑunsafe, we will consider a particular iteration of the while loop
in Algorithm 4. Then, we will assume that in all the previous iterations of this while loop, when
Algorithm 5 was called, it satisfied the above guarantee. Additionally, we will assume that Ẑunsafe

satisfies Ẑunsafe ∩ Zsafe = ∅ in the beginning of this loop. Then, we will show that the guarantee
about Algorithm 5 is satisfied even when we call it in this loop, and that, by the end of this loop,
Ẑunsafe continues to satisfy Ẑunsafe ∩ Zsafe = ∅.
As the base case, in the first iteration, since we have never called Algorithm 5 before, the induction
hypothesis about Algorithm 5 is trivially satisfied. Furthermore, since Ẑunsafe is initialized to be
empty set, we again trivially have Ẑunsafe ∩ Zsafe = ∅ in the beginning of this loop.

Now, consider any arbitrary iteration of the while loop of Algorithm 4. Through the next
few paragraphs below, we will argue why the call to Algorithm 5 in this loop, satisfies the
above specified guarantee. In the final paragraph, we provide a simple argument showing why
Ẑunsafe ∩ Zsafe = ∅ at the end of the loop.

Proof for claim about Algorithm 5. Assume that during this particular call to Algorithm 5,
there exists (s̃, ã) ∈ Zedge such that (s̃, ã) ∈ Zsafe. To prove the above claim, we only need to show
that in this case Algorithm 5 will result in a non-empty Zexplore. So, for the sake of contradiction,
we will assume that Zexplore is empty after the execution of Algorithm 5.

The outline of our idea is to make use of the fact that by Assumption 5 we are guaranteed a
return path from (s̃, ã) that is sufficiently similar to state-action pairs in Ẑsafe. We will then show
that we can pick a particular trajectory from this return path which visits a ‘bad’ state-action
pair – a state-action pair whose counterpart in Ẑsafe has not been explored sufficiently. Then,
under the assumption that Zexplore remains empty, we will argue that Algorithm 5 will visit all the
state-action pairs in this trajectory, and finally, when it encounters the bad state-action pair, the
algorithm will add the counterpart of this bad pair to Zexplore, reaching a contradiction.

First, let us apply Assumption 5 to (s̃, ã) which guarantees a return path from (s̃, ã) because it
is an edge state-action i.e., s̃ ∈ Ẑsafe and (s̃, ã) /∈ Ẑsafe. But to apply this assumption, we must
establish that Z0 ⊂ Ẑsafe. This is indeed true as it follows from how Algorithm 2 initializes Ẑsafe

with Z0 and every call to Algorithm 3 only adds elements to Ẑsafe.

Now, consider the πreturn guaranteed by Assumption 5. Starting from (s, a), and following πreturn,
the agent returns to Z0 with probability 1. Furthermore, if we define the set of state-action pairs
visited by πreturn on its way to Ẑsafe as:

Z̃ = {(s, a) ∈ S × A : P
[
∃t ≥ 0

(st,at)=(s,a)

∀t′<t st′ /∈Ẑsafe

∣∣∣ (s0, a0) = (s̃, ã), πreturn

]
> 0},
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then we are given that every element of Z̃ \ Ẑsafe corresponds to an element (s′, a′) ∈ Ẑsafe such
that ∆((s, a), (s′, a′)) ≤ τ/4.

To make our discussion easier, let us partition the elements of Z̃ \ Ẑsafe into two sets Z̃good and Z̃bad

as follows, depending on whether or not the corresponding (s′, a′) has been explored sufficiently
well or not:

Z̃good = {(s, a) ∈ Z̃ \ Ẑsafe | ∃(s′, a′) ∈ S × A s.t. ∆((s, a), (s′, a′)) + ϵ̂T (s
′, a′) ≤ τ/2}

and

Z̃bad = {(s, a) ∈ Z̃ \ Ẑsafe | ∀(s′, a′) ∈ S × A s.t. ∆((s, a), (s′, a′)) + ϵ̂T (s
′, a′) > τ/2}.

Note that every element of Z̃ \ Ẑsafe belongs to exactly one of Z̃good and Z̃bad. Also note that for
all (s, a) ∈ Z̃good, ∆

ϵT (s, a) ≤ τ/2 since ∆((s, a), (s′, a′)) + ϵ̂T (s
′, a′) ≤ τ/2. However, for all

(s, a) ∈ Z̃bad, since there exists no sufficiently explored (s′, a′) that is also sufficiently smaller,
∆
ϵT (s, a) > τ/2.

Next, we argue that there must exist at least one element in Z̃bad. If this was not the case, then we
would have that all elements in Z̃ \ Ẑsafe belong to Z̃good and therefore have a confidence interval
at most τ/2. Then, from Lemma 6, we will have that when Algorithm 2 executed Algorithm 3
just before calling Algorithm 4, Ẑsafe is updated in a way that Z̃ ⊂ Ẑsafe, which would imply that
(s̃, ã) ∈ Ẑsafe. However, this contradicts our assumption in the beginning that that (s̃, ã) is an edge
state-action pair that does not belong to Ẑsafe.

Since Z̃bad is non-empty, and since Z̃bad ⊂ Z̃, there should exist a trajectory of πreturn starting from
(s̃, ã) that passes through an element of Z̃bad before visiting Ẑsafe. Let (s0, a0), (s1, a1), . . . , (sn, an)
be one such trajectory, where (s0, a0) = (s̃, ã). Let (sn, an) be the first element in this trajectory
that belongs to Z̃bad. Since all the elements in this trajectory preceding (sn, an) belong to Z̃ but
not Ẑsafe or Z̃bad, all these elements must belong to Z̃good.

We will now use the fact that, under our initial assumption, Algorithm 5 returns with an empty
Zexplore to argue by induction that, during that run of Algorithm 5, all state-action pairs in
this trajectory up until and including (sn, an) are added to Zreturn. (After this, we will reach
a contradiction).

For the base case, consider (s, a). When the while loop condition is executed the first time,
Zexplore = ∅ by initialization, and ZL

next ̸= ∅ because it is equal to Zedge which has at least one
state-action pair, namely (s, a). Thus, the while loop will be executed, and every element in ZL

next
will be added to Zreturn. Since ZL

next = Zedge at this point, this implies that (s, a) will be added to
Zreturn.

Next, for some i ∈ [1, n], assume by induction that all state-action pairs preceding (sk, ak), where
k < i, have been added to Zreturn; we must prove the same happens to (si, ai). Consider the loop
when (si−1, ai−1) is examined and added to Zreturn. Since (si−1, ai−1) ∈ Z̃good, its confidence
interval is at most as large as τ/2; thus, in this loop, we would execute the else branch of the
if-condition. As a result of this, we can argue that (si, ai) is added to ZL+1

next from the following
four observations.
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First, since the considered trajectory has non-zero probability, we have T (si−1, ai−1, si) > 0.
Furthermore, since ∆

ϵT (si−1, ai−1) ≤ τ/2, and since the confidence intervals are admissible, by
Lemma 2, we have

∆

T (si−1, ai−1, si) > 0. Second, if (si, ai) was part of Zreturn at this point,
we are already done; so let us consider the case that currently (si, ai) /∈ Zreturn. Thirdly, since
(si, ai) ∈ Z̃ \ Ẑsafe, (si, ai) /∈ Ẑsafe. Finally, from our induction assumption, we have that
Ẑunsafe ∩ Zsafe = ∅; and since πreturn is a safe policy, it follows that (si, ai) /∈ Ẑunsafe. As a result of
these four observations, in this else branch, we would add (si, ai) to ZL

next.

Now, consider the instant when the algorithm evaluates the while condition after exiting the for
loop that examined (si−1, ai−1). At this point, by our initial assumption, Zexplore is still empty
while ZL

next is not as it contains (si, ai). Thus the algorithm would proceed with executing this
while loop (as against exiting from it then). Now since (si, ai) ∈ ZL

next, inside the inner for loop,
there must be an iteration when (si, ai) is examined and added to Zreturn, proving our induction
statement.

Thus, consider the for loop iteration when (sn, an) is added to Zreturn. Since (sn, an) ∈ Z̃bad,
∆
ϵT (sn, an) > τ/2. Hence, we would enter the if-branch of the if-else condition. Again, since
(sn, an) ∈ Z̃ \ Ẑsafe, from Assumption 5, we know there must exist (s, a) ∈ Ẑsafe such that
∆((s, a), (sn, an)) ≤ τ/4. As a result, (s, a) will be added to Zexplore contradicting the fact
that Algorithm 5 exited the while loop without adding any element to Zexplore. Thus our initial
assumption must be wrong, proving the main claim about Algorithm 5.

Proof for Ẑunsafe ∩Zsafe = ∅. From the induction assumption, we have that Ẑunsafe ∩Zsafe = ∅ in
the beginning of this while loop. During this loop, Ẑunsafe is modified by Algorithm 4 only when
the call to Algorithm 5 returns with an empty Zexplore. In such a case, Ẑunsafe is modified by adding
Zedge to it. Fortunately, from the above discussion, we know that when Zexplore is empty, Zedge

contains no element from Zsafe. Thus, Ẑunsafe ∩ Zsafe = ∅ even at the end of the while loop.

Finally, we show that Algorithm 4 terminates in finite time ensuring that Zgoal has been updated
in a way that all of it has been established to be safe, or Zexplore is non-empty.

Lemma 10. Algorithm 4 terminates in poly(|S|, |A|) time, after which either Zgoal ⊂ Ẑsafe or
Zexplore ̸= ∅.

Proof. First, we show that, in Algorithm 4, whenever the condition Zgoal ⊂ Ẑsafe fails, the
subsequently computed Zedge is non-empty. Assume for the sake of contradiction that even though
Zgoal ̸⊂ Ẑsafe, Zedge is empty. Now, recall that Zgoal is the set of all state-action pairs visited
starting from s0 following πgoal in the MDP M goal, with transition probabilities T goal.

Then, consider any trajectory (s0, a0), (s1, a1), . . . of non-zero probability under this correspond-
ing policy and transition function. Since s0 ∈ Ẑsafe and Zedge is empty, (s0, a0) ∈ Ẑsafe. Then, since
T goal ∈ CI(

∆

T ), and since the confidence intervals are admissible, we have from Corollary 2 that
s1 ∈ Ẑsafe. Since Zedge is empty, by a similar argument, we can establish that (s1, a1) ∈ Ẑsafe, and
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so on for all (st, at). Since this holds for any trajectory under this policy and transition function,
it would mean that Zgoal ⊂ Ẑsafe, which is a contradiction. Thus, Zedge is indeed non-empty.

Next, we show that Algorithm 4 terminates in polynomial time. Whenever Algorithm 4 does
not break out of a loop, then by the design of the algorithm, Zgoal ̸⊂ Ẑsafe and Zexplore = ∅. In
addition to this, Zedge must have been added to Ẑunsafe. Furthermore, from the above argument,
since Zgoal ̸⊂ Ẑsafe, Zedge must be non-empty. In other words, in each loop that does not break, we
take a non-empty subset of Zgoal, namely Zedge and add it to Ẑunsafe. Note that since we computed
Zgoal in a way that it does not include any of Ẑunsafe, this also means that Zedge ∩ Ẑunsafe ̸= ∅. Thus,
by the end of this loop, we increase the cardinality of Ẑunsafe. Since Ẑunsafe cannot be any larger
than the finite quantity |S| × |A|, we are guaranteed that no more than O(|S| × |A|) for loops
are run when Algorithm 4 is executed. (In fact, we can say something stronger: no more than
O(|S| × |A|) for loops are run, across multiple calls to Algorithm 4 during the whole run of
Algorithm 2).

Finally, observe that, by design of the algorithm, whenever the algorithm terminates, it must have
broken out of the for loop. This is possible only if either Zgoal ⊂ Ẑsafe or Zexplore ̸= ∅, thus proving
all of our claim.

4.6.3 Proofs about computing the set of state-actions along the goal path

Recall that Zgoal is intended to be the set of state-action pairs visited by the optimistic goal policy
under optimistic transitions. To compute this set, we need to know which states have a positive
probability of being reached from sinit following πgoal, or equivalently the state-actions (s, a) for
which ρgoal(s, a) > 0. Formally, we must enumerate the set

{(s, a) ∈ S × A : ρgoal(s, a) > 0}.

However, computing this as defined is not feasible in finite time (as we must enumerate infinite
length trajectories). Instead, recall from Equation 4.6 that we can approximate the above set
by only computing the finite-horizon estimate ρgoal(·, ·, H) for some horizon H . Fortunately,
computing Zgoal does not require a good estimate of ρgoal(·, ·), but only requires knowing when
the ρgoal(·, ·) is positive or 0. Lemma 11 shows that as long as H ≥ |S|, ρgoal(·, ·, H) > 0 if and
only if ρgoal(s, a) > 0; as a corollary of which we have that Zgoal is exactly what we intend it to
be.

Lemma 11. For any policy π, starting state s ∈ S, and state-action pair (s′, a′) ∈ S × A,
ρMπ,s(s

′, a′, H) > 0 if and only if ρMπ,s(s
′, a′) > 0 as long as H ≥ |S|.

Proof. First we establish sufficiency. That is, if the finite-horizon estimate is positive, then, so is
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the infinite horizon estimate. Consider the following inequality relating these two quantities:

ρMπ,s(s
′, a′, H) = (1− γ)

H∑
t=0

γtP (st = s′, at = a′|π, s0 = s)

≤ lim
H→∞

(1− γ)
H∑
t=0

γtP (st = s′, at = a′|π, s0 = s)

= ρMπ,s(s
′, a′)

The second step uses the fact that γ > 0 and P (st = s′, at = a′|π, s0 = s) ≥ 0 for all t. Thus, if
ρMπ,s(s

′, a′, H) > 0, then ρMπ,s(s
′, a′) > 0, establishing sufficiency.

Now we will establish necessity i.e., if the infinite horizon estimate was positive, then the same
must hold for the finite-horizon estimate. If ρMπ,s(s

′, a′) > 0, then there exists at least one sequence
of states (s0, s1, . . . sn) where s0 = s, sn = s′, and T (si, π(si), si+1) > 0 for all 0 ≤ i < n.
Without loss of generality, consider the shortest such sequence. Now, for the sake of contradiction,
assume that n > |S|. By the pigeonhole principle, there exists at least one state that is repeated
at least twice. That is, for two indices j, k (j < k), we have sj = sk. Since sj = sk and
T (sk, π(sk), sk+1) > 0, then T (sj, π(sj), sk+1) > 0. Thus, we can construct a shorter sequence
by removing all indices i such that j < i ≤ k and this sequence still satisfies the fact that every
transition observed has non-zero probability. This contradicts our assertion that this is the shortest
such sequence. Thus, n ≤ |S|. Given H ≥ |S| ≥ n, we have ρMπ,s(s

′, a′, H) > 0, establishing
necessity.

As a straightforward corollary of the above, we have:

Corollary 4. Zgoal as computed in Equation 4.6 satisfies:

Zgoal = {(s, a) ∈ S × A : ρgoal(s, a) > 0}.

when H ≥ |S|.

4.6.4 Proofs about goal, explore, and switching policies
This subsection details the key lemmas for proving that ASE is PAC-MDP. The main idea is
to show that, under these policies, our agent either will perform the desired behavior, i.e. act
ϵ-optimally or reach a desired state-action set, or reach an insufficiently explored state-action pair
(i.e., not in K). Since a state-action pair that is experienced m times is added to K, we can bound
the number of times we reach a state-action pair outside of K. With this bound and the following
lemmas, we can bound the number of times the agent performs undesired behaviors, e.g. acting
sub-optimally. We start by proving this claim for πexplore and πswitch (Lemma 12), then for πgoal

(Lemma 13 and Lemma 14).

Recall that the πexplore is based on a reward system where the rewards are non-zero only on state-
action pairs that are in Ẑsafe and are not sufficiently explored (i.e., not in K). We first show that if
we were to follow the πexplore policy, in polynomially many steps, we are guaranteed to obtain a
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non-zero reward i.e., we are guaranteed to reach a state-action pair not in K. In other words, if
we were to follow πexplore, we will definitively obtain a useful sample and learn something new.
Similarly, if we were to follow πswitch, we will definitively return to Zgoal or learn something new.

Lemma 12. Assume that the confidence intervals are admissible. Consider an MDP M † =
⟨S,A, T,R†, γ†⟩, which is the same as the true MDP but with different rewards and discount
factor. Let Z be a closed, communicating subset of S × A and Z† a non-empty subset of Z. Let
R† be defined such that:

R†(s, a) =


1 (s, a) ∈ Z†

0 (s, a) ∈ Z \ Z†

−∞ (s, a) /∈ Z

Let H = Hcomlog
16Hcom

c
/log 1

c
and let γ† = c1/H where c ∈ (0, 1/4] is a constant. Let H̃ =

max
(
H 1√

8c
, 1√

τ

)
. Let Q

†
denote the optimistic value function of this MDP, and π† be the

optimistic policy i.e., π†(s, a) = argmaxa∈AQ
†
(s, a).

Then, for any δ > 0 and ϵ ∈ (0, c/8], starting from any state in Z and following π†, the agent
will reach a state-action pair either in Z† or outside of K = {(s, a) ∈ S × A : n(s, a) ≥ m},
where m ≥ O

(
H̃4|S|+ H̃4 ln |S||A|H̃2

δ

)
, in at most O(H

2

c
) time steps, with probability at least

1/2, provided π† ∈ Π(Z).

Proof. Consider any s ∈ Z. We will first upper bound the optimistic value V
†
(s) and then derive

a lower bound on it, and then relate these two bounds together to prove our claim. Note that if we
let M

†
be the same MDP as M †, but with the optimistic transitions (the transitions T

† ∈ CI(
∆

T )

which maximize the optimistic Q-values), then V
†
(·) = V

π†

M
†(·).

We will begin by upper bounding the finite-horizon value of π† on M † (and then relate it to its
value on M

†
). Let s0, s1, s2, . . . , denote the random sequence of states visited by the agent by

following π† from s0 = s on M †. Then, we have:

V π†

M†(s,H) = E

[
H∑
i=0

(γ†)iR†(si, π
†(si))

]

≤ E

[
H∑
i=0

R†(si, π
†(si))

]
≤ P(∃ i ≤ H : (si, π

†(si)) ∈ Z†) ·H

The first inequality follows from the fact that γ† < 1. The second inequality follows from the fact
that every trajectory of π† that experiences a positive cumulative reward, must experience some
state-action pair in Z†; and such a trajectory can at best experience a reward of 1 at each timestep.

In the next step we will upper bound the finite-horizon optmistic value of following π† in M
†
.

To do this, define M ′ to be an MDP that is identical to M † on (s, a) ∈ K, and identical to M
†
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everywhere else. Then,

V π†

M
†(s,H) ≤ V π†

M ′(s,H) +
c

8

≤ V π†

M† (s,H) +HP(∃ i ≤ H : (si, π
†(si)) ̸∈ K) +

c

8

≤ HP(∃ i ≤ H : (si, π
†(si)) ∈ Z†) +HP(∃ i ≤ H : (si, π

†(si)) ̸∈ K) +
c

8

≤ 2HP(∃ i ≤ H : (si, π
†(si)) ∈ Z† ∪Kc) +

c

8
.

Here, the first inequality follows from Lemma 15 and 16. Specifically, from Lemma 16, we have
when m ≥ O

(
H̃4|S|+ H̃4 ln |S||A|H̃2

δ

)
, the width of the confidence interval of (s, a) ∈ K is

at most 1/H̃2 ≤ c/(8H2). Then, Lemma 15 can be used to bound the difference in their value
functions by c/8.

Note that to apply Lemma 15 we must also ensure that for all (s, a) ∈ K, the support of the
next state distribution is the same under M ′ and M

†
. To see why this is true, observe that for all

(s, a) ∈ K, the confidence interval is at most 1/H̃2 ≤ τ/2. Then, since the transition probabilities
for (s, a) ∈ K in M

†
and M ′ correspond to T

† ∈ CI(
∆

T ) and T respectively, Lemma 2 implies
that the support of these state-action pairs are indeed the same for these two transition functions.
Also note that Lemma 15 implies that these value functions are either close to each other or both
equal to −∞; even in the latter case, the above inequalities would hold (although, we will show
in the remaining part of the proof that these quantities are lower bounded by some positive value).

The second inequality follows from Lemma 17. Note that in order to apply Lemma 17, we must
establish that, with probability 1, the agent experiences only non-negative rewards, when it starts
from s and follows π† for H steps. This is indeed true because we know that Z is closed and
π† ∈ Π(Z). Then, we know from Fact 1 that the agent always remains in Z, which means it
experiences only non-negative rewards.

The third inequality above uses the upper bound on V π
M†(s,H) that we derived previously.

Having established the above inequalities, we are now ready to upper bound the optimistic value
using Lemma 18 as follows:

V
π†

M
†(s) ≤ V

π†

M
†(s,H) +

(γ†)H+1

1− γ†

≤ 2HP(∃ i ≤ H : (si, π
†(si)) ∈ Z† ∪Kc) +

c

8
+

(γ†)H+1

1− γ† (4.13)

Next, as the second part of our proof, we will derive a lower bound on the optimistic value using
Assumption 3. Choose some (s′, a′) ∈ Z† (which is given to be non-empty). Since Z is given
to be communicating, by Assumption 3, we know that there exists a policy πcom which has a
probability of at least 1

2
of reaching s′ from s in Hcom steps, while visiting only state-action pairs

in Z. Without loss of generality, let us assume that πcom(s
′) = a′ (since, regardless of what the

action at s′ is, it guarantees reachability of s′ from everywhere else.).
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Let us lower bound the value of this policy. Let s0, s1, s2, . . . , denote the random sequence of
states visited by the agent by following πcom from s0 = s on M †. Then:

V πcom
M† (s) ≥ V πcom

M† (s,Hcom)

= E

[
Hcom∑
i=0

(γ†)iR†(si, πcom(si))

]

≥ (γ†)HcomE

[
Hcom∑
i=0

R†(si, πcom(si))

]
≥ (γ†)HcomP(∃ i : (si, πcom(si)) ∈ Z†)

≥ (γ†)Hcom
1

2
.

Here, the first step follows from Fact 1 which says that, since πcom ∈ Π(Z) and Z is closed, πcom

only visits state-action pairs in Z, all of which have non-negative R† reward; as a result, truncating
the value function to Hcom steps only maintains/decreases the value.

The third step follows from the fact that γ† < 1. The fourth step comes from the fact that, since
πcom takes only state-action pairs in Z, R†(si, πcom(si)) ∈ {0, 1}; then, every trajectory with a
total non-zero reward has a reward of at least 1. The last step follows from the guarantee of
Assumption 3.

Now, as the final step in our proof we note that if our confidence intervals are admissible, by
Lemma 19, we know that V π†

M
†(s) ≥ V ∗

M†(s). Furthermore, V ∗
M†(s) must be lower bounded by the

value of πcom on M †, which we just lower bounded. Now, equating this with the upper bound
from Equation 4.13, we get:

2HP(∃ i ≤ H : (si, π
†(si)) ∈ Z† ∪Kc) +

c

8
+

(γ†)H+1

1− γ† ≥ (γ†)Hcom
1

2

P(∃ i ≤ H : (si, π
†(si)) ∈ Z† ∪Kc) ≥ 1

2H

(
(γ†)Hcom

1

2
− c

8
− (γ†)H+1

1− γ†

)
≥ 1

2H

(
3c

8
− (γ†)H+1

1− γ†

)
(4.14)

Here, in the last step, we make use of the fact that γ† = c1/Hcom . Next, we will upper bound the
last term by making use of the inequality: if c < 1, then ∀x > 0, cx ≤ 1− x(1− c). Then, we get:

1

1− γ† =
1

1− c1/Hcom
≤ Hcom

1− c

Furthermore, since log(16Hcom/c) = (H/Hcom) log(1/c), by applying exp(·) on both sides, we
have:
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c

16Hcom
= cH/Hcom = (γ†)H

From the above two inequalities, we have:

(γ†)H+1

1− γ† ≤
(γ†)H

1− γ† ≤
c

16(1− c)
≤ c

8

In the first step above, we make use of γ† < 1 and in the second step, c < 1/2. Plugging this back
in Equation 4.14, we get:

P(∃ i ≤ H : (si, π
†(si)) ∈ Z† ∪Kc) ≥ c

8H

In other words, following policy π† for H steps in M †, the agent will reach a state-action pair
either in Z† or outside K with probability at least c/(8H). Then, by the Hoeffding bound applied
to multiple subsequent trajectories each of H timesteps, we would have that with probability at
least 1/2, following policy πgoal for O(H · H

c
) timesteps, the agent will reach an element either in

Z or outside K.

In Lemma 13, we show that once our algorithm begins following the optimistic goal policy πgoal,
it will continue to do so until it learns something new. (Since we can bound the number of times
the agent learns something new, observe that this also means that, eventually, the agent will follow
πgoal for all time.)

Lemma 13. Assume the confidence intervals are admissible. Then, during the run of Algorithm 2,
if the agent is currently following πgoal, then it will continue to do so until it experiences a

state-action pair outside K = {(s, a) ∈ S × A : n(s, a) ≥ m} when m ≥ O
(

|S|
τ2

+ 1
τ2

ln |S||A|
τ2δ

)
.

Proof. Assume that during a run of Algorithm 2, the agent is currently at s and takes the
action πgoal(s). By design of Algorithm 2, we have s ∈ Zgoal. Recall that Zgoal is the set
of all state-action pairs that can be visited by the agent if it were to following πgoal starting
from s0 under the optimistic transitions T goal. More formally, we have from Corollary 4 that
Zgoal = {(s, a) ∈ S × A : ρgoal(s, a) > 0}.
Now, to prove our claim, we only need to argue that if (s, πgoal(s)) ∈ K, then the next state
s′ belongs to Zgoal. Then, by design of Algorithm 2, the agent will take πgoal even in the
next state, proving our claim. To argue this, observe that since (s, πgoal(s)) ∈ K and m ≥
O
(

|S|
τ2

+ 1
τ2

ln |S||A|
τ2δ

)
, by Lemma 16, the confidence interval of (s, πgoal(s)) has width at most
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τ/2. Then, from Lemma 2, since T (s, πgoal(s), s
′) > 0 and since T goal ∈ CI(

∆

T ), we have
T goal(s, πgoal(s), s

′) > 0. Thus, since we know that s ∈ Zgoal, by definition of Zgoal, s′ should also
belong to Zgoal.

In the following lemma, we show that in the MDP Mgoal (which is the same as the original MDP
but with the unsafe state-action pairs set to −∞ rewards), when we follow the optimistic goal
policy πgoal, we either take a near-optimal action (with respect to Mgoal) or we experience an
action outside of K with sufficient probability in the next H steps.

Lemma 14. Assume the confidence intervals are admissible. Consider any instant when the
agent has taken a trajectory pt and is at state st, and the Algorithm 2 instructs the agent to
follow πgoal. Let P(AM) be the probability that starting at this step, the Algorithm 2 leads the
agent out of K = {(s, a) ∈ S × A : n(s, a) ≥ m} in H steps, conditioned on pt. Then, for any
ϵ, δ ∈ (0, 1), and for H = O

(
1

1−γ
ln 1

ϵ(1−γ)

)
and m ≥ O

(
1

ϵ2(1−γ)4

(
|S|
ϵ̃
+ 1

ϵ̃2
ln |S||A|

ϵ̃2δ

))
, where

ϵ̃ = O
(
min

(
τ
2
, ϵ(1−γ)2

3

))
, we have:

V A
M (pt) ≥ V ∗

Mgoal
(st)−

ϵ

2
− 2

P(AM)

1− γ
.

Proof. While we follow the general outline of the proof of Theorem 1 from Strehl and Littman
[99], we note that there are crucial differences for incorporating safety (such as dealing with
rewards of −∞).

At the outset, we establish two useful inequalities. First, since H = O
(

1
1−γ

ln 1
ϵ(1−γ)

)
, by Lemma

18, we have that:
V

πgoal

Mgoal
(st, H) ≥ V

πgoal

Mgoal
(st)−

ϵ

3
(4.15)

Secondly, let M ′
goal be an MDP that is equivalent to Mgoal for all state-action pairs in K and equal

to M goal otherwise. (Note that all these MDPs have the same reward function, namely Rgoal.) We
claim that for all a:

Q
πgoal

M ′
goal
(st, a,H) ≥ Q

πgoal

Mgoal
(st, a,H)− ϵ

3
(4.16)

Let us see why this inequality holds. From Lemma 16, we have when m ≥ O
(

1
ϵ2(1−γ)4

(
|S|
ϵ̃
+ 1

ϵ̃2
ln |S||A|

ϵ̃2δ

))
,

the width of the confidence interval of (s, a) ∈ K is at most O(ϵ̃) = ϵ
3
(1−γ)2

γ
. Then, Lemma 15

can be used to bound the difference in the value functions by ϵ/3 as above.

Note that to apply Lemma 15, we must also ensure that for all (s, a) ∈ K, the support of the next
state distribution is the same under M ′

goal and M goal. To see why this is true, observe that for all
(s, a) ∈ K, the width of the confidence interval is at most O(ϵ̃) = τ/2. Then, since the transition
probability for (s, a) ∈ K in M

†
and M ′ correspond to T

† ∈ CI(
∆

T ) and T respectively, Lemma 2
implies that the support of these state-action pairs are indeed the same for these two transition
functions. Also note that Lemma 15 implies that these value functions are either ϵ1-close to each
other or both equal to −∞; even in the latter case, the above inequality would hold (although,
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to be precise, this latter case does not really matter since Theorem 4 eventually shows that these
quantities are lower bounded by a positive quantity).

Having established the above inequalities, we now begin lower bounding the value of the algorithm.
First, since the rewards R(·, ·) are bounded below by −1, and since H = O

(
1

1−γ
ln 1

ϵ(1−γ)

)
, by

Lemma 18, we can lower bound the infinite-horizon value of the algorithm by its finite-horizon
value as

V A
M (pt) ≥ V A

M (pt, H)− ϵ

3
. (4.17)

Next, we claim to bound the value of following the algorithm for the next H steps as follows:

V A
M (pt, H) ≥ V

πgoal

M ′
goal
(s,H)− 2

P (AM)

1− γ
. (4.18)

In other words, we have lower bounded the value of following the algorithm on M , in terms of
following πgoal on M ′

goal. Let us see why this is true. For the sake of convenience, let us define
two cases corresponding to the above inequality: Case A, where the agent follows Algorithm 2
to take actions for H steps starting from st in MDP M and Case B, where the agent follows the
fixed policy πgoal to take actions for H steps starting from st in MDP M ′

goal.

Now, recall that we are considering a state st where Algorithm 2 currently follows πgoal, and will
continue to follow it until it takes an action in Kc. Then, consider a particular random seed for
which, in Case A, the agent does not reach Kc.

We argue that for this random seed, the agent will see the same cumulative discounted reward over
H steps in both Case A and Case B. To see why, recall that M ′

goal and M share the same transition
functions on K. Next, since in Case A, the agent does not escape K, by Lemma 13, we know
that the agent follows only πgoal for H steps. Thus in both these cases, the agent experiences the
same sequence of state-action pairs for H steps. It only remains to argue that these state-action
pairs have the same rewards in both cases. To see why, recall that by design of Algorithm 2, since
the agent does not escape K, all these state-action pairs would belong to Zgoal which in turn is a
subset of Ẑsafe. Now the MDP M and M ′

goal share the same rewards on Ẑsafe; this is because, their
rewards differ only in Ẑunsafe, and we know Ẑunsafe ∪ Zsafe = ∅ (Lemma 9). Thus, in both cases,
the agent experiences the same sequence of rewards.

As a result, the value functions in Case A and B differ only due to trajectories where the algorithm
either leads the agent to Kc in H steps or leads the agent to negative rewards any time in the
future. Hence, we can upper bound the difference V

πgoal

M ′
goal
(st, H)− V A

M (pt, H) in terms of P(AM)

multiplied by the maximum difference between the respective cumulative rewards. We know
that the cumulative reward in Case A is at least −1/(1 − γ), because the rewards R(·, ·) are
bounded below by −1. On the other hand, in Case B, the cumulative reward experienced is at
most 1/(1− γ), assuming the agent receives a reward of 1 for each step. From this, we establish
Equation 4.18.
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Subsequently, we further lower bound V
πgoal

M ′
goal
(st, H) as follows:

V
πgoal

M ′
goal
(st, H) ≥ V

πgoal

Mgoal
(st, H)− ϵ

3

≥ V
πgoal

Mgoal
(st)− 2

ϵ

3
≥ V ∗

Mgoal
(st)− ϵ

Here, the first inequality comes from Equation 4.16. The second inequality comes from Equa-
tion 4.15. The last step comes from Lemma 19 (given admissibility). Then, by combining the
above inequality with Equations 4.18 and 4.17, we get our final result.

4.6.5 Supporting lemmas for showing PAC-MDP
The following lemmas are necessary for proving our algorithm is PAC-MDP. Note that most
of these lemmas are similar to lemmas from Strehl and Littman [99]. However, because we
construct MDPs with infinitely negative rewards, additional care must be taken to ensure that
these properties still hold.

Here we provide a quick description of the lemmas detailed in this section. We start with
Lemma 15, which shows that if two MDPs have sufficiently similar transition functions, the
optimal Q-values on these two MDPs must also be similar. This, together with Lemma 16, allows
us to show that, if we have sufficiently explored the state-space, we can accurately estimate the
optimal policy on any MDP. Next we show, in Lemma 17, that the difference between the value
functions of the true and an estimated MDP for a given policy is proportional to the probability of
reaching an under-explored state-action pair, i.e. a state-action pair outside of K. This allows us
to claim that either the probability of reaching an element outside of K is sufficiently large, or
our estimated value function is sufficiently accurate. Lemma 18 bounds the difference between
the finite horizon and infinite horizon value functions, allowing us to consider only finite length
trajectories. Lemma 19 simply shows that our optimistic value function always over-estimates the
true value function (given that our confidence intervals are admissible).

Lemma 15. Let M1 = ⟨S,A, T1, R
†, γ†⟩ and M2 = ⟨S,A, T2, R

†, γ†⟩ be two MDPs with identical
rewards that either belong to [0, 1] or equal −∞ and γ† < 1. Let K be a subset of state-action
pairs such that

1. for all (s, a) /∈ K, T1(s, a, ·) = T2(s, a, ·),
2. for all (s, a) ∈ K, ∥T1(s, a, ·)− T2(s, a, ·)∥1 ≤ β and

3. for all (s, a) ∈ K, the next state distribution (s, a) has identical support under both T1 and
T2.

Then, for any (stationary, deterministic) policy π, and for any (s, a) and any H ≥ 0, we have that,
either: ∣∣Qπ

M1
(s, a,H)−Qπ

M2
(s, a,H)

∣∣ ≤ min

(
γ†β

(1− γ†)2
, βH2

)
.
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or
Qπ

M1
(s, a,H) = Qπ

M2
(s, a,H) = −∞.

Proof. First, we note that for any (s, a) such that R†(s, a) = −∞, Qπ
M1

(s, a,H) = Qπ
M2

(s, a,H) =
−∞ for all H . Hence, for the rest of the discussion, we will consider (s, a) such that R†(s, a) ̸=
−∞.

We prove our claim by induction on H . For H = 1, for all (s, a), Qπ
M1

(s, a,H) = Qπ
M2

(s, a,H) =
R†(s, a).

Consider any arbitrary H . First, we show that, if there exists a next state s′ in the support of
T1(s, a, ·) such that Qπ

M1
(s′, π(s′), H − 1) = −∞, then Qπ

M1
(s, a,H) = Qπ

M2
(s, a,H) = −∞.

Note that, by conditions 1 and 3 of the Lemma statement, we have that for all (s, a), regardless of
whether in K or not, the support of the next state distribution is identical between T1 and T2. Hence,
if there exists a next state s′ in the support of T1 such that Qπ

M1
(s′, π(s′), H − 1) = −∞, then s′

would belong even to the support of T2 and, thus, we would have that Qπ
M2

(s′, π(s′), H−1) = −∞.
Hence, by definition of Q-values, we would have Qπ

M1
(s, a,H) = Qπ

M2
(s, a,H) = −∞.

Now consider a case where none of the next states s′ in the support of T1 (and T2, without loss of
generality) have Q-value Qπ

M1
(s′, π(s′), H − 1) = −∞. We will prove by induction that in this

case, ∣∣Qπ
M1

(s, a,H)−Qπ
M2

(s, a,H)
∣∣ ≤ γ†β

1− γ† ·
1− γ†H

1− γ† .

Note that when H = 0, the right hand side above resolves to zero, which is indeed true.

Consider any H > 0. Now, observe that for all (s, a), regardless of whether in K or not, we
have ∥T1(s, a, ·) − T2(s, a, ·)∥1 ≤ β. Besides, since R†(s, a) ̸= −∞, we can upper bound the
difference in the Q values as follows:

|Qπ
M1

(s, a,H)−Qπ
M2

(s, a,H)|

= γ†

∣∣∣∣∣∑
s′

T1(s, π(s
′), s′)Qπ

M1
(s′, π(s′), H − 1)−

∑
s′

T2(s, π(s
′), s′)Qπ

M2
(s′, π(s′), H − 1)

∣∣∣∣∣
≤ γ†

∣∣∣∣∣∑
s′

T1(s, π(s
′), s′)

(
Qπ

M1
(s′, π(s′), H − 1)−Qπ

M2
(s′, π(s′), H − 1)

)∣∣∣∣∣
+ γ†

∣∣∣∣∣∑
s′

(T1(s, π(s
′), s′)− T2(s, π(s

′), s′))Qπ
M2

(s′, π(s′), H − 1)

∣∣∣∣∣
≤ γ†

(
γ†β

1− γ† ·
1− γ†H−1

1− γ†

)
+ γ† β

1− γ†

=
γ†β

1− γ†

(
γ†(1− γ†H−1)

1− γ† + 1

)
=

γ†β

1− γ† ·
1− γ†H

1− γ†
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Here, the second step follows by a simple algebraic rearrangement that decomposes the difference
in the Q-values, in terms of the difference in the transitions and the difference in the next-state
Q-values. In the third step, for the first term, we make use of the fact that in this case, the next
state s′ has a Q-value that is not−∞; this means that (s′, π(s′)) does not have any next states with
Q-value−∞ and therefore the induction assumption holds. By applying the induction assumption
for H − 1, we get the first term. For the second term, we make use of the fact that the total sum
of transition probabilities equals 1. Furthermore, we also make use of the fact the maximum
magnitude of the Q-value is at most 1

1−γ† if it is not −∞; this is because, if the Q-value is not
−∞, it is a discounted summation of expected rewards that lie between 0 and 1.

Hence, our induction hypothesis is true. Our main upper bound can then be established by noting
that 1− γ†H < 1.

To prove our other upper bound, we consider the induction hypothesis:∣∣Qπ
M1

(s, a,H)−Qπ
M2

(s, a,H)
∣∣ ≤ βH2.

Then, in the third step above, we would instead have:

|Qπ
M1

(s, a,H)−Qπ
M2

(s, a,H)| ≤ γ† (β(H − 1)2
)
+ γ†βH

≤ β(H − 1)2 + βH

≤ βH2.

To get the first term on the right hand side, we again make use of the induction assumption. For
the second term, we simply upper bound the sum of the maximum discounted rewards to be H .
Finally, we make use of the fact that γ† < 1 and H2− (H−1)2 ≥ 2H−1 ≥ H when H > 0.

Lemma 16. Suppose that as input to Algorithm 2, we set δT = δ/(2|S||A|m) and all confidence
intervals computed by our algorithm are admissible. Then, for any β > 0, there exists an
m = O

(
|S|
β2 + 1

β2 ln
|S||A|
βδ

)
such that ∥T̂ (s, a, ·) = T (s, a, ·)∥1 ≤ β holds for all state-action

pairs (s, a) that have been experienced at least m times.

Proof. See Lemma 5 from Strehl and Littman [99].

Lemma 17. Let M † = ⟨S,A,R†, T, γ†⟩ be an MDP that is the same as the true MDP M , but
with arbitrary rewards R† (bounded above by 1) and discount factor γ† < 1. Let K be some set
of state-action pairs. Let M ′ = ⟨S,A,R†, T ′, γ†⟩ be an MDP such that T ′ is identical to T on all
elements inside K. Consider a policy π. Let AM† be the event that a state-action pair not in K
is encountered in a trial generated by starting from state s1 and following π for H steps in M †

(where H is a positive constant). If, with probability 1, the agent starting at s1 and following π in
M † will receive only non-negative rewards then,

V π
M (s1, H) ≥ V π

M ′ (s1, H)−min

(
1

(1− γ†)
, H

)
P(AM).
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Proof. This proof is similar to that of Lemma 3 from Strehl and Littman [99]. The only aspect
we need to be careful about is the magnitude of the rewards.

The two MDPs M † and M ′ differ only in their transition functions, and moreover, only outside the
set K. Then, observe that, for a fixed random seed, if the agent were to follow π starting from s1, it
would receive the same cumulative reward for H steps in both M † and M ′, if it remained in K for
all those H steps. In other words, the value of π in these two MDPs differs only because of those
random seeds which led the agent out of K in M †. Thus, the difference V π

M ′ (s1, H)−V π
M† (s1, H)

cannot be any larger than the respective cumulative rewards. Our claim then follows by lower
bounding the cumulative reward in M † and upper bounding the cumulative reward in M ′. More
concretely, note that cumulative reward in M † can not be any lower than zero, since we assume
that the agent receives rewards bounded in [0, 1]. On the other hand, in M ′, the agent can receive
a reward of 1 in all H steps, so the value function can be upper bounded by min

(
1

(1−γ†)
, H
)

.

Lemma 18. Consider an MDP M † = ⟨S,A, T †, R†, γ†⟩ with rewards bounded above by 1, and a
stationary or non-stationary policy π and state s. Then, for any H ≥ 0, we have:

V π
M†(s,H) ≥ V π

M†(s)− (γ†)H+1

1− γ† .

As a corollary of this, for H ≥ 1
1−γ† ln

1
ϵ(1−γ†)

, we have:

V π
M†(s,H) ≥ V π

M†(s)− ϵ.

By the same argument, in the case that the rewards are bounded below by −1,

V π
M†(s,H) ≤ V π

M†(s) + ϵ.

Proof. This proof follows the proof of Lemma 2 from Kearns and Singh [61].

Observe that by truncating any trajectory to H steps, the cumulative discounted reward for this
trajectory can drop by a value of at most:

∞∑
t=H+1

(γ†)t =
(γ†)H+1

1− γ† ,

which happens when it receives a reward of 1 at every time step after H . Thus for any H such
that the above quantity is lesser than or equal to ϵ, we will have V π(s,H) ≥ V π(s)− ϵ. This is
indeed true for H ≥ 1

1−γ† ln
1

ϵ(1−γ†)
.

Lemma 19. Suppose that all confidence intervals are admissible. Let M † = ⟨S,A, T,R†, γ†⟩ be
the same MDP as M except with arbitrary rewards that are upper bounded by 1 and discount
factor γ† < 1. Let π† denote the optimal policy i.e., ∀s, π†(s) = argmaxa∈A Q

†
(s, a). Let M

†

denote the optimal MDP. Then, for all H ≥ 0 and for all (s, a), we have:

V π†

M
†(s) ≥ V ∗

M†(s)
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(b) Discrete Platformer

Figure 4.1: Number of ϵ-sub-optimal steps taken by each agent throughout training. Lines denote
averages over five trials and shaded regions mark the max and min.

Proof. See Lemma 6 from Strehl and Littman [99]. Note that this proof also applies to MDPs
with negative rewards.

4.7 Experiments
Through experiments, we aim to show that (a) ASE effectively guides exploration, requiring
significantly less exploration than exhaustive exploration methods, and (b) the agent indeed never
reaches a dangerous state under realistic settings of the parameters (namely m and δT in Alg 2).
Below, we outline our experiments. For our experiments, we consider two environments. The first
is a stochastic grid world containing five islands of grid cells surrounded by “dangerous states”
(i.e., states where all actions result in a negative reward). The agent can take actions that allow it
to jump over dangerous states to transition between islands and reach the goal state. The second
is a stochastic platformer game where certain actions can doom the agent to eventually reaching
a dangerous state by jumping off the edge of a platform. In the grid world environment, two
state-actions are analogous if the actions are equivalent and the states are near each other (L∞
distance), and in the stochastic platformer game, if the actions and all attributes but the horizontal
position in the state are equivalent and the two states are on the same “surface type”.

We compare the behavior of our algorithm against both “unsafe” and “safe” approaches to
learning reward-based policies. For the unsafe baselines, we consider the original (unsafe) MBIE
algorithm [99], R-Max [22], and ϵ-greedy, all adapted to use the analogy function (without which,
exploring would take prohibitively long). For safe baselines, unfortunately, there is no existing
algorithm because no prior work has simultaneously addressed the two objectives of provably
safe exploration and learning a reward-based policy in environments with unknown stochastic
dynamics. To this end, we create safe versions of R-Max and ϵ-greedy (by restricting the allowable
set of actions the agent can take to Ẑsafe, and using analogies to expand Ẑsafe), and also consider
an “Undirected ASE,” which is a naïver version of ASE that expands Ẑsafe in all directions (not
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(a) ASE

(b) Safe R-Max

(c) MBIE (unsafe)

Figure 4.2: All trajectories of different agents on the Discrete Platformer domain. Unsafe
trajectories are drawn in red. The brown, white, and grey squares correspond to the different
surface types: sand, ice, and concrete, respectively. The agent starts in the center of the leftmost
island. The flag represents the goal state.

just along the goal policy).

Source code for the experiments is available at https://github.com/locuslab/ase.

4.7.1 Unsafe Grid World

The first domain we consider is a grid world domain with dangerous states, where the agent
receives a reward of −1 for any action and the episode terminates. The agent starts on a 7 × 7
island of safe states and is surrounded by four 5× 5 islands of safe states in all four directions,
separated from the center island by a one-state-thick line of dangerous states (see Figure 4.3). The
goal is placed on one of the surrounding islands. The agent can take actions up, down, left, or
right to move in those directions one step, or can take actions jump up, jump down, jump left,
or jump right to move two steps, allowing the agent to jump over dangerous states. There is a
slipping probability of 60%, which causes the agent to fall left or right of the intended target (30%
for either side).

The initial safe set provided to the agent is the whole center island (except for the corners) and all
actions that with probability 1 will keep the agent on the center island. The distance function ∆
provided to the agent is ∆((s, a), (s̃, ã)) = 0 if a = ã and s and s̃ are within 5 steps from each
other (in L∞ norm) and ∆((s, a), (s̃, ã)) = 1 otherwise. The analogous state function α is simply
α((s, ·, s′), (s̃, ·)) = (xs′ + (xs̃ − xs), ys′ + (ys̃ − ys)), where the subscripts denote the state to
which the attribute belongs.
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Figure 4.3: Full map of the Unsafe Grid World environment. The green circle marks the goal, the
blue triangle marks the initial location of the agent sinit, and red circles correspond to dangerous
states.
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4.7.2 Discrete Platformer
We also consider a more complicated discrete Platformer domain. The states space consists of
tuples (x, y, ẋ, ẏ) where x, y are the coordinates of the agent and ẋ, ẏ are the directional velocities
of the agent. The actions provided to the agent are the tuple (ẋdesired, j) where ẋdesired is the desired
ẋ and ranges from −2 to 2, and j is a boolean indicating whether or not the agent should jump.
While on the ground, at every step ẋ changes by at most 1 in the direction of ẋdesired and ẏ ∈ {1, 2}
if j = 1 (otherwise ẏ remains unchanged). While in the air, however, the agent’s actions have no
effect and gravity decreases ẏ by one at every step. When the agent returns to the ground, ẏ is set
to 0.

There are three types of surfaces in the environment: 1) concrete, 2) ice, and 3) sand. These
surfaces change how high the agent can jump. On concrete, when the agent jumps, ẏ = 2 with
probability 1; on ice ẏ = 2 with probability 0.5 and ẏ = 1 with probability 0.5; and on sand ẏ = 1
with probability 1.

The environment is arranged into three islands. The first island has all three surface materials
from left to right: sand, ice, then concrete. The next two islands are just concrete, with the last
one containing the goal state (where the reward is 1). The regions surrounding these island are
unsafe, meaning they produce rewards of −1 and are terminal. The islands are spaced apart such
that the agent must be on concrete to make the full jump to the next islands (and visa versa).

The initial safe set provided to the agent is the whole first island and all actions that with
probability 1 will keep the agent on the center island. The distance function ∆ provided to the
agent is ∆((s, a), (s̃, ã)) = 0 if a = ã and s and s̃ are either both in the air or both on the same
type of surface and ∆((s, a), (s̃, ã)) = 1 otherwise. The analogous state function α is simply
α((s, ·, s′), (s̃, ·)) = s̃′ where s̃′ has the same y, ẋ, and ẏ values as s′ with the x value shifted by
the x difference between s and s̃.

4.7.3 Baselines
Here we describe the details for the baselines we compare against. We note that all these baselines
make use of the distance metric and analogous state function to transfer information between
different states, just like our algorithm. For all of our “unsafe” algorithms, we set all negative
rewards to be very large to ensure that they converged to the safe-optimal policy. To improve the
runtime of the experiments, the value functions and safe sets are only re-computed every 100 time
steps.

MBIE MBIE [99] is a guided exploration algorithm that always follows a policy that maximizes
an optimistic estimate of the optimal value function. As noted above, one of the motivations of
our method was to construct a safe version of MBIE.

R-Max and Safe R-Max The next algorithm we compare against is R-Max [22]. This algorithm
sets the value function for all state-action pairs that have been seen fewer than m times (for some
integer m) to be equal to Vmax, the maximum value the agent can obtain. In order to ensure
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that all states are sufficiently explored and still make use of the analogous state function, we set
the value of any state-action pair, (s, a), to Vmax = 1 (since all goal states are terminal) only if
there is a state-action pair similar to (s, a) with a transferred confidence interval length greater
than some ϵ′ > 0. In mathematical terms, all state-action pairs in {(s, a) ∈ S × A : ∃(s̃, ã) ∈
S × A where ∆

ϵT (s, a) < ϵ′ and ∆((s, a), (s̃, ã)) < τ/2} are set to Vmax. Clearly, this requires
at most every state to be explored m times, but in most cases decreases the number of times each
state-action pair needs to be explored. In our experiments we set ϵ′ = τ/2 to give R-Max the most
generous comparison against ASE, since ASE requires that a state-action only have a confidence
interval of τ/2 before it can be marked as safe. However, note that in many problems τ/2 may be
much larger than the desired confidence interval.

Our safe modification of this algorithm, “Safe R-Max,” simply restricts the allowable set of actions
the agent can take to Ẑsafe.

ϵ-greedy and Safe ϵ-greedy Another classic algorithm we compare against is ϵ-greedy. This
algorithm acts according to the optimal policy over its internal model at every time step with
probability 1− ϵ and with probability ϵ the agent takes a random action. For our experiments we
anneal ϵ between 1 and 0.1 for the first N number of steps (N = 5,000 for the unsafe grid world
and N = 20,000 for the discrete platformer game). Our safe modification of this algorithm, “Safe
ϵ-greedy,” simply restricts the allowable set of actions the agent can take to Ẑsafe.

Undirected ASE We also compare against a modified version of our algorithm “Undirected
ASE.” This modification changes Algorithm 4 such that Zedge ← {(s, a) ∈ Ẑc

safe |s ∈ Ẑsafe},
removing the use of Zgoal. With this change, “Undirected ASE” simply tries to expand the safe set
in all directions, instead of only along the direction of the optimistic goal policy. This baseline is
to illustrate the efficacy of using our directed exploration method.

4.7.4 Results

To measure efficiency of exploration, we count the number of ϵ-sub-optimal steps taken by each
agent. To calculate this, we first compute the true safe-optimal Q-function, Qπ∗

safe
M . We then count

the number of ϵ-sub-optimal actions taken by the agent, namely the number of times the agent
is at a state st and takes an action at such that Qπ∗

safe
M (st, at) < maxa∈AQ

π∗
safe

M (st, a) − ϵ, where
ϵ = 0.01. Figure 4.1 shows our algorithm takes far fewer ϵ-sub-optimal actions before it converges
compared to all other safe algorithms. As for safety, during our experiments, we observe that, in
both domains, the safe algorithms do not reach any unsafe states. In the unsafe grid world domain,
the MBIE, R-Max, and ϵ-greedy algorithms encounter an average of 85, 5,016, and 915 unsafe
states, respectively, and in the discrete platformer game encounter 83, 542, and 768 unsafe states.

In the platformer domain, as we can see from Figure 4.2, our method explores only the necessary
parts of the initial safe-set, the right side, unlike the Safe R-Max algorithm. Although standard
MBIE also directs exploration, it has many trajectories that end in unsafe states, which ASE
avoids.
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4.8 Conclusion
We introduced Analogous Safe Exploration (ASE), an algorithm for safe and guided exploration
in unknown, stochastic environments using analogies. We proved that, with high probability, our
algorithm never reaches an unsafe state and converges to the optimal policy, in a PAC-MDP sense.
To the best of our knowledge, this is the first provably safe and optimal learning algorithm for
stochastic, unknown environments (specifically, safe during exploration). Finally, we illustrated
empirically that ASE explores more efficiently than other non-guided methods. Future directions
for the this line of work include extensions to continuous state-action spaces, combining the
handling of stochasticity we present here with common strategies in these domains such as
kernel-based nonlinear dynamics.
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Chapter 5

Projected Off-Policy Q-Learning (POP-QL)
for Stabilizing Offline Reinforcement
Learning

Safe exploration is a compelling method to safely learn control policies. However, while able to
provably provide safety, these methods all need significant prior knowledge of the state-action
space, which is often prohibitive in practice. An alternative method for safely learning a control
policy is to use offline RL. Many real world control system domains, including autonomous
manufacturing and autonomous driving, often have an enormous corpus of control data collected
either using human controllers or sub-optimal linear controllers. Could this data be used to
learn controllers that improve performance over the currently active controllers? Offline RL is a
subfield of RL concerned with learning the best possible policy given a fixed dataset. However, as
discussed in the Chapter 2, offline RL presents new challenges over traditional online RL.

Because Model-Based methods can learn completely independently of the data-collection policy,
they seem like the obvious choice for offline RL. However, because of the issue of compounding
errors, TD methods, such as Conservative Q-Learning (CQL) [69], tend to significantly outperform
model-based methods on standard offline RL benchmarks, especially in long-horizon tasks. Thus,
TD methods remain the state-of-the-art methods for high-performance in offline RL.

When applied offline, however, TD methods using function approximation are inherently unstable.
This is due to the deadly triad phenomenon, discussed in Chapter 2. To get around this issue,
most methods perform some sort of behavior regularization to keep the learned policy close to
the data-collection policy. Unfortunately, this regularization comes at the cost of performance,
especially when the data-collection policy is severely sub-optimal.

In this chapter, we propose our method Projected Off-Policy Q-Learning (POP-QL), that modifies
the sampling distribution and minimally regularizes the policy in order to stabilize off-policy
updates. This work allows us to apply safely apply RL techniques to real-world control problems
with severely suboptimal datasets.
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Figure 5.1: Off-policy evaluation on a simple grid environment, “Frozen Lake”. The goal
of this task is to evaluate a policy ( ) from a suboptimal data policy (� � �) that is ϵ-dithered
for sufficient coverage (ϵ = 0.2). The right plot shows approximation error from a linear Q-
function trained using Vanilla Q-Learning and POP-QL (our method) with a dataset interpolated
between off-policy and on-policy. Unlike Vanilla Q-Learning, POP-QL avoids divergence by
projecting the sampling distribution µ onto the convex constraint E(s,a)∼µ[F

π(s, a)] ⪰ 0, which
enforced that the contraction mapping condition holds. The shaded region ( ), indicates when
the dataset approximately satisfies this condition (without reweighting); specifically, where
λmin(E(s,a)∼µ[F

π(s, a)]) > −0.005.

5.1 Introduction
Temporal difference (TD) learning is one of the most common techniques for reinforcement
learning (RL). Compared to policy gradient methods, TD methods tend to be significantly more
data-efficient. One of the primary reasons for this data-efficiency is the ability to perform updates
off-policy, where policy updates are performed using a dataset that was collected using a different
policy. Unfortunately, due to the differences in distribution between the off-policy and on-policy
datasets, TD methods that employ function approximation may diverge or result in arbitrarily
poor value approximation when applied in the off-policy setting [102, p. 260]. This issue is
exacerbated in the fully offline RL setting, where the training dataset is fixed and the agent must
act off-policy in order to achieve high performance. Figure 5.1 illustrates this distribution shift
issue on the Frozen Lake toy problem. In this example, we perform Q-Learning with a linear
function approximate on a fixed dataset collected with one policy, the “data-collection” policy, to
evaluate another policy, the “evaluation” policy. We can see that vanilla Q-learning diverges as
the dataset shifts further off-policy.

Nearly all methods for addressing off-policy distribution shift fall into two categories: importance
sampling methods that reweight samples from the dataset to approximate the on-policy distribution,
or regularization methods that minimize the distribution shift directly or through penalizing the
value function in low-support areas. The former may lead to extremely high variance gradient
updates, and the latter only works well when the data-collection policy is close to optimal, which
is not the case in most real-world datasets.

An alternative approach has been suggested by Kolter [64], who provide a contraction mapping
condition that, when satisfied, guarantees convergence of TD-learning to a unique fixed point. They
propose to project the sampling distribution onto this convex condition and thereby significantly
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reduce approximation error. Figure 5.1 shows that when this contraction mapping condition is
(approximately) satisfied, Q-learning converges with low approximation error. However, this
approach does not scale to modern RL tasks, because it invokes a batch semi-definite programming
(SDP) solver to solve the projection for each batch update.

Contribution In this chapter, we build on Kolter [64]’s theoretical contribution and propose
Projected Off-Policy Q-Learning (POP-QL), which makes two significant improvements over
previous work. First, we consider a new sampling projection that allows for a more computation-
ally efficient algorithm, since a closed-form solution exists for the inner optimization of the dual
problem. This computational improvement allows us to extend the technique to high-dimensional
deep RL problems. Secondly, we extend this projection to the MDP setting and propose a new
Q-Learning algorithm that jointly projects the policy and sampling distribution. Our proposed
algorithm can plug into any Q-learning algorithm (such as Soft Actor Critic [46]), significantly
reducing the approximation error of the Q-function and improving policy performance. We
evaluate our method on a variety of offline RL tasks and compare its performance to other offline
RL approaches. Although, in its current iteration, our method struggles to reach state-of-the-art
performance on tasks with near-expert data-collection policies, POP-QL is able to outperform
many other methods when the data-collection policies are far from optimal (such as the “random”
D4RL tasks). Most importantly, our results illustrate the power of the contraction mapping
condition and the potential of this new class of offline RL techniques.

5.2 Preliminaries and Problem Setting
In this work, we consider learning a policy that maximizes the cumulative discounted reward
on a Markov Decision Process (MDP) defined as the tuple (S,A, p, r, γ), where S and A are
the state and action spaces, p(·|s, a) and r(s, a) represent the transition dynamics and reward
functions, and γ ∈ [0, 1) is the discount factor. We approximate the action-value function as
Q(s, a) ≈ w⊤ϕ(s, a), where ϕ : S × A → {x ∈ Rk : ∥x∥2 = 1} is a normalized basis function
and w ∈ Rk are the parameters of the final, linear layer.

In the off-policy setting, we assume the agent cannot directly interact with the environment
and instead only has access to samples of the form (s, a, r(s, a), s′), where s′ ∼ p(·|s, a) and
(s, a) ∼ µ for some arbitrary sampling distribution µ. Because we can assume a fixed policy for
much of our derivations and theory, we can simplify the math significantly by focusing on the
finite Markov Reward Process setting instead.

5.2.1 Simplified Setting – Finite Markov Reward Process (MRP)
Consider the finite n-state Markov Reward Process (MRP) (S, p, r, γ), where S is the state space,
p : S × S → R+ and r : S → R are the transition and reward functions, and γ ∈ (0, 1) is the
discount factor.1 Because the state-space is finite, it can be indexed as S = {1, . . . , n}, which
allows us to use matrix rather than operator notation. In operator notation, we use matrices P

1Note that, given a fixed policy, an MDP reduces to an MRP.
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and R, to represent the functions p and r, where each row corresponds to a state. The value
function associated with the MRP is the expected γ-discounted future reward of being in each state
V (s) := E

[∑∞
t=0 γ

⊤r(st)
∣∣ s0 = s

]
. The value function is consistent with Bellman’s equation in

matrix form,

V = R + γPV. (5.1)

We approximate the value function as V (s) ≈ w⊤ϕ(s), where ϕ : S → {x ∈ Rk : ∥x∥2 = 1}
is a fixed normalized basis function and we estimate parameters w ∈ Rk. In matrix notation,
we write this as V ≈ Φw. In the off-policy setting, the sampling distribution µ differs from the
stationary distribution ν. In this setting, the temporal difference (TD) solution is the fixed point of
the projected Bellman equation:

Φw⋆ = Πµ(R + γPΦw⋆), (5.2)

where Πµ = Φ(Φ⊤DµΦ)
−1Φ⊤Dµ is the projection onto the column space of Φ weighted by the

data distribution µ through the matrix Dµ = diag(µ). This projection may be arbitrarily far from
the true solution so that the error may be correspondingly large. In practice, w⋆ is often computed
using TD-learning, a process that starts from some point w0 ∈ Rk and iteratively applies Bellman
updates,

wt+1 = wt − λEµ

[(
ϕ(s)⊤wt − r − ϕ (s′)

⊤
wt

)
ϕ(s)

]
. (5.3)

Unfortunately, in the off-policy setting, TD-learning is not guaranteed to converge.

5.2.2 Contraction Mapping Condition
A γ-contraction mapping2 is any function, f : Rn → Rn, such that for some distribution µ and
any x1, x2 ∈ Rn:

∥f(x1)− f(x2)∥µ ≤ γ∥x1 − x2∥µ, (5.4)

where γ ∈ [0, 1) and ∥ · ∥µ is the weighted 2-norm. A key property of contraction mappings is
that iteratively applying this function to any starting point x0 ∈ Rn converges to a unique fixed
point x∗ = f(x∗). This principle is used to prove convergence of on-policy TD-learning.

Under on-policy sampling, µ = ν, the projected Bellman operator, ΠµB(x) = Πµ(R+ γPx), is a
contraction mapping.

∥ΠµB(Φw1)− ΠµB(Φw2)∥µ ≤ γ∥Φw1 − Φw2∥µ ∀ w1, w2 ∈ Rk. (5.5)

Tsitsiklis and Van Roy [114] use this property to both prove that on-policy TD Q-learning learning
converges to a unique point and bound the approximation error of the resulting fixed point [114,
Lemma 6]. However, in the off-policy setting with µ ̸= ν this property does not always hold. In
fact, this condition can be violated even in MRPs with very small state spaces (see Figure 5.3 for
an example. Thus, the TD updates are not guaranteed to converge and can diverge under some
off-policy sampling distributions.

2A contraction mapping can be defined for any metric space, but here we focus on the metric space defined by the
Euclidean space and weighted Euclidean metric.
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To get around this challenge, Kolter [64] proposed a new approach. First, they transformed the
contraction mapping condition into a linear matrix inequality (LMI) through algebraic manipula-
tion:

Es∼µ[F (s)] ⪰ 0, where F (s) = Es′∼p(·|s)

[[
ϕ(s)ϕ(s)⊤ ϕ(s)ϕ(s′)⊤

ϕ(s′)ϕ(s)⊤ ϕ(s)ϕ(s)⊤

]]
. (5.6)

We provide a derivation of this LMI in Section 5.2.3. Using this formulation, they present an
algorithm to find a new sampling distribution that satisfies this contraction mapping condition
and proves a bound on the approximation error of their approach. Unfortunately, this method
scales poorly because it requires solving an SDP problem alongside each batch update. Thus, the
method remains impractical for the deep RL tasks, and has seen virtually no practical usage in the
years since.

5.2.3 Derivation of Contraction Mapping LMI
For a finite MRP, the projected Bellman equation can be written in matrix notation as:

B(Φw) = Πµ(R + γPΦw), (5.7)

By the definition of a contraction mapping, the projected Bellman equation is a γ-contraction
mapping if and only if for all w1, w2 ∈ Rk:

∥B(Φw1)− B(Φw2)∥µ ≤ γ∥Φw1 − Φw2∥µ. (5.8)

Now, consider the left side of this equation. We can rewrite this as follows:

∥B(Φw1)− B(Φw2)∥µ = ∥ΠµB(Φw1)− ΠµB(Φw2)∥µ
= ∥Πµ(R + γPΦw1)− Πµ(R + γPΦw2)∥µ
= γ∥ΠµPΦw1 − ΠµPΦw2∥µ
= γ∥ΠµPΦw̃∥µ

where w̃ = w1 − w2. Thus, the projected Bellman equation is a contraction mapping if and only
if for all w ∈ Rk,

∥ΠµPΦw∥µ ≤ ∥Φw∥µ. (5.9)

Plugging in the closed form solution to the projection, we get,

wTΦTP TDµΦ
(
ΦTDµΦ

)−1
ΦTDµΦ

(
ΦTDµΦ

)−1
ΦDµPΦTw ≤ wTΦTDµΦw

⇔ wT
(
ΦTP TDµΦ

(
ΦTDµΦ

)−1
ΦDµPΦT − ΦTDµΦ

)
w ≤ 0

⇔ ΦTP TDµΦ
(
ΦTDµΦ

)−1
ΦDµPΦT − ΦTDµΦ ⪯ 0

Finally, using Schur Complements, we can convert this to an LMI,

Fµ ≡
[

ΦTDµΦ ΦTDµPΦ
ΦTP TDµΦ ΦTDµΦ

]
⪰ 0. (5.10)

Thus, as long as Fµ ⪰ 0, the projected Bellman equation is a contraction mapping.
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5.3 Projected Off-Policy Q-Learning (POP-QL)
Our method, Projected Off-Policy Q-Learning (POP-QL), is also centered on the contraction
mapping condition (Equation (5.6)). However, unlike previous work, we propose a new method
that significantly improves the computational cost of the projection, allowing POP-QL to scale
to large-scale domains. Additionally, we introduce a new policy optimization algorithm that
simultaneously projects the policy and sampling distribution in order to satisfy the contraction
mapping condition. This policy optimization algorithm allows POP-QL to address both the
support mismatch and projected-TD instability challenges of off-policy Q-learning.

We start by deriving the POP-QL reweighting procedure in the finite MRP setting under a fixed
policy and later extend our method to the MDP setting together with policy regularization.

5.3.1 POP-QL on Markov Reward Processes
In the MRP setting (or the fixed-policy setting), the goal of POP-QL is to compute a new sampling
distribution that satisfies the contraction mapping condition in Equation (5.6) and thus stabilizes
off-policy training. However, if the target distribution differs significantly from the source
distribution µ, this can result in large reweighting factors, which can decrease the stability of the
training process. Thus, we are looking for the “closest” distribution that satisfies Equation (5.6).
Unlike Kolter [64], we propose to use the I-projection instead of the M-projection, which allows
us to find an analytical solution to the inner part of the Lagrangian dual and thereby significantly
simplifies the problem.

The information (I-) projection and moment (M-) projection are defined as follows:

I-Projection: min
q

DKL(q∥µ) M-Projection: min
q

DKL(µ∥q) (5.11)

Since the KL-divergence is an asymmetric measure, these projections are usually not equivalent.
A key difference between the I- and M-projections is that the I-projection tends to under-estimate
the support of the fixed distribution µ, resulting in more density around the modes of µ, while the
M-projection tends to over-estimate the support of µ, resulting in a higher variance solution.

In the context of off-policy Q-learning, sampling states and actions with very low or zero support
under the sampling distribution, µ, can result in over-estimating the Q-function, which in-turn
results in a poor performing policy. For this reason, we argue the more conservative I-projection
is a better fit for off-policy Q-learning.

We first formulate the problem as minimizing the KL divergence between the data distribution µ
and a reweighted distribution q such that TD update is stable under q,

minimize
q

DKL(q ∥µ) s.t. Es∼q[F (s)] ⪰ 0. (5.12)

The corresponding unconstrained dual problem based on a Lagrange variable Z ∈ R2k is given by

maximize
Z⪰0

minimize
q

KL(q∥µ)− trZ⊤Eq[F (s)]. (5.13)
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The solution to this dual problem is equal to the primal problem under strong duality, which
holds in practice due to the fact that this corresponds to a convex optimization problem. Now,
consider the inner optimization problem over q in Equation (5.13). This optimization problem can
be rewritten as minimizeq −H(q)− Eq

[
log µ(s) + trZ⊤F (s)

]
, which has a simple analytical

solution:
q⋆(s) ∝ exp

(
log µ(s) + trZ⊤F (s)

)
= µ(s) exp

(
trZ⊤F (s)

)
. (5.14)

Notice that our target distribution q⋆ is simply a reweighting of the source distribution µ with
weights exp

(
trZ⊤F (s)

)
. To compute the weights, we need to solve for the Lagrange variable Z.

Plugging the analytical solution for q⋆ back into Equation (5.13) yields

minimize
Z⪰0

Eµ

[
exp

(
trZ⊤F (s)

)]
. (5.15)

In practice, we minimize over the set Z ⪰ 0 by re-parametrizing Z as

Z =

[
A
B

] [
A
B

]⊤
(5.16)

where A,B ∈ Rk×k. This formulation ensures that Z is positive semi-definite, Z ⪰ 0, for any
A and B. Thus, we can directly optimize over A and B and ignore the positive semi-definite
condition. With this formulation for Z and plugging the definition of F (Equation (5.6)) we can
rewrite the dual optimization problem (Equation (5.15)) as:

minimize
A,B

Eµ

[
exp

(
∥A⊤ϕ(s)∥22 + ∥B⊤ϕ(s)∥22 + 2Es′∼p(· | s)

[
⟨B⊤ϕ(s), A⊤ϕ(s′)⟩

])]
(5.17)

Solving for matrices A,B yields the I-projected sampling distribution q∗ according to Equa-
tion (5.14).

5.3.2 Extension to Markov Decision Processes
The theory presented in the previous section can be extended to the MDP setting through a simple
reduction to an MRP. In a MDP, we also have to consider the action space, A, and the policy, π.
In this setting, our contraction mapping LMI becomes

E(s,a)∼q[F
π(s, a)] ⪰ 0, (5.18)

where F π(s, a) = Es′∼p(·|s,a),a′∼π(s′)

[[
ϕ(s, a)ϕ(s, a)⊤ ϕ(s, a)ϕ(s′, a′)⊤

ϕ(s′, a′)ϕ(s, a)⊤ ϕ(s, a)ϕ(s, a)⊤

]]
. (5.19)

Using the idea that, given a fixed policy, any MDP reduces to an MRP, we extend Theorem 2
from Kolter [64] to show that the TD-updates converge to a unique fixed point with bounded
approximation error for any finite MDP where π and µ satisfy this condition.

Lemma 20. Let w⋆ be the least-squares solution to the Bellman equation for a fixed policy π:

w∗ = argmin
w

E(s,a)∼µ

[
(ϕ(s, a)⊤w − r(s, a)− γEs′∼p(· | s,a),a′∼π(s′)ϕ(s

′, a′)⊤w)2
]

(5.20)
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and let µ be some distribution satisfying the MDP contraction mapping condition (Equation (5.18)).
Then

Eµ

[
(ϕ(s, a)⊤w⋆ − V (s, a))2

]
≤ 1 + γ

√
δ(ν, µ)

1− γ
min
w

Eµ

[
(ϕ(s, a)⊤w − V (s, a))2

]
, (5.21)

where ν is the stationary distribution, δ(ν, µ) = maxs,a,s̃,ã
ν(s,a)
µ(s.a)

· µ(s̃,ã)
ν(s̃,ã)

Proof. To prove this, we will use a simple reduction to a Markov chain.

For a fixed policy, π, our MDP,M = (S,A, P, R, γ) reduces to a MRP. We can write this new
MRP asMπ = (X , P π, R, γ) where X = S ×A is the Cartesian product of the state and action
spaces of the MDP and P π : X × X 7→ R+ is defined as follows:

P π((s, a), (s′, a′)) := p(s′|s, a)π(a′|s′) ∀ (s, a), (s′, a′) ∈ X

We can see clearly that for all (s, a) ∈ X ,
∑

(s′,a′)∈X P π((s, a), (s′, a′)) = 1.

Since our MDP,M, is finite, we can define the feature matrix, Φ ∈ Rn,k, using the MDP feature
function, Φi = ϕ(si, π(si) for each si ∈ S.

Now, applying Theorem 20 to our MRP,Mπ, we have that:

∥Φw⋆ − V π∥µ ≤
1 + γ

√
δ(ν, µ)

1− γ
∥ΠµV

π − V π∥µ (5.22)

where w⋆ is the unique fixed point of Equation (5.2), V π is the unique fixed point of V π =
R + γP πV π, ν is the stationary distribution, and δ(ν, µ) = maxx,x̃

ν(x)
µ(x)
· µ(x̃)
ν(x̃)

.

Mapping this bound back onto the MDP,M, yields the stated bound.

As before, we are looking to project our sampling distribution to satisfy this condition. With
this reduction, we rewrite the analytical solution for the projected sampling distribution from
Equation (5.14) as

q⋆(s, a) ∝ µ(s, a) exp
(
∥yA∥22 + ∥yB∥22 + 2Es′∼p(· | s),a′∼π(· | s′ [⟨yB, y′A⟩]

)
(5.23)

where yA = A⊤ϕ(s, a), yB = B⊤ϕ(s, a), and y′A = A⊤ϕ(s′, a′) and A and B are the solutions to
the following optimization problem,

minimize
A,B

Eµ

[
exp

(
∥yA∥22 + ∥yB∥22 + 2Es′∼p(· | s) [⟨yB, y′A⟩]

)]
(5.24)

Now, by Lemma 20 and assuming strong duality holds, the fixed point of the projected Bellman
equation under the sampling q⋆ has bounded approximation error.
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Algorithm 8 Projected Off-Policy Q-Learning (POP-QL)
Initialize: feature function ϕθϕ , Q-function parameters w, policy πθπ ,

g-function gθg , and Lagrange matrices A and B.
for step t in 1, . . . , N do

(s, a, r, s′)1,...,m ∼ µ ▷ Sample minibatch from dataset

ã ∼ πθπ(s) ã
′ ∼ πθπ(s

′) ▷ Sample new actions from policy
qtarget := r + γw⊤ϕθϕ(s

′, ã′) ▷ Compute Q-function target value
yA, yB, y

′
A := A⊤ϕθϕ(s, a), B

⊤ϕθϕ(s, a), A
⊤ϕθϕ(s

′, a′) ▷ Compute dual values
u := exp (∥yA∥22 + ∥yB∥22 + 2gθg(s, a)) /ū ▷ Compute minibatch-normalized weight

A,B ← [A,B]− λA,Bu∇A,B (∥yA∥22 + ∥yB∥22 + 2⟨yB, y′A⟩) ▷ Update Lagrange matrices
θg ← θg − λg∇θg (gθg(s, a)− ⟨yB, y′A⟩)2 ▷ Update g-function parameters
[θQ, w]← θQ − λQu∇θQ,w

(
w⊤ϕθϕ(s, a)− qtarget

)2
▷ Update Q-function parameters

θπ ← θπ − λπ∇θπ (LQ + αLentropy − βu⟨yB, y′A⟩) ▷ Augment SAC policy loss

5.3.3 Practical Implementation
Two-Time-Scale Optimization Because there is an expectation inside an exponential, we must
perform a two time-scale optimization to be able to use sample-based gradient descent. We
introduce a new function approximator gθ to approximate the inner expectation:

gθ(s, a) ≈ Es′∼p(s′ | s),a′∼π(· | s′) [⟨yB, y′A⟩] , (5.25)

which can be optimized using gradient descent.

If we assume gθ(s) has sufficient expressive power and has converged, we can estimate the
gradient of our objective with respect to A and B, ∇A,BEµ

[
exp

(
trZ⊤F (s)

)]
, using samples

from our sampling distribution, µ:

Es,a∼µ,s′∼p(s′ | s),a′∼π(· | s′)
[
u(s, a) · ∇A,B

(
∥yA∥22 + ∥yB∥22 + 2⟨yB, yA⟩

)]
(5.26)

where u(s, a) are the sample reweighting terms defined as:

u(s, a) = exp
(
∥yA∥22 + ∥yB∥22 + 2gθ(s)

)
, q∗(s, a) = u(s, a)µ(s, a). (5.27)

With this approximation, we can perform two-time-scale gradient descent. The gradient updates
for gθ and the Lagrange matrices A and B become

θ ← θ − λθ∇θ

(
gθ(s, a)− Es′∼p(s′ | s,a),a′∼π(s′) [⟨yB, y′A⟩]

)2
,

A,B ← [A,B]− λA,BEµ,p

[
u(s, a) · ∇A,B

(
∥yA∥22 + ∥yB∥22 + 2⟨yB, y′A⟩

)]
,

(5.28)

g-function Normalization In practice, we found normalizing the g function by the spectral
norm of the A and B matrices improved learning stability. Specifically, we train the g network to
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approximate the following quantity:

gθ(s, a) ≈
1

∥A∥2∥B∥2
Es′∼p(s′ | s,a),a′∼π(s′)

[
⟨B⊤ϕ(s, a), A⊤ϕ(s′, a′)⟩

]
(5.29)

where ∥A∥2 represents the spectral norm of A. Note that, by definition of the spectral norm and
since ∥ϕ(s, a)∥2 = 1 for all s, this bounds the range of the g function, gθ(s, a) ∈ [−1, 1].

Low-Rank Approximation Empirically, we found the solution to our Lagrange dual optimiza-
tion problem is typically a low-rank matrix with rank r ≤ 4; this is not surprising in hindsight:
under the on-policy distribution the matrix E(s,a)∼q[F

π(s, a)] is already positive definite (a con-
sequence of the fact that TD will converge on-policy), and so it is intuitive that this bound
would only need to be enforced on a low-dimensional subspace, corresponding to a low-rank
dual solution. Thus, we can substantially reduce the computational cost of the method by using
Lagrange matrices A,B ∈ Rk×r, where r = 4. This is essentially akin to low-rank semi-definite
programming [24], which has proven to be an extremely competitive and scalable approach for
certain forms of semi-definite programs. Furthermore, while not a primary motivation for the
method, we found this low-rank optimization improves convergence of the dual matrices. In
total, this leads to a set of updates that are fully linear in the dimension of the final-layer features,
and which ultimately presents a relatively modest increase in computational cost over standard
Q-Learning.

Target Networks Just as in other actor-critic methods, we use a target network for the features
and Q-function weight w to stabilize the Q-learning updates.

We also tested using these target features for training Lagrange matrices A and B, but found this
reduced performance. So instead, we do not use any target networks in training the Lagrange
matrices.

5.3.4 Policy Optimization
So far, we have assumed a fixed policy in order to compute a sampling distribution and use that
sampling distribution to compute a Q-function with low approximation error. Next, we need to
find a policy that maximizes this Q-function. However, we want to avoid policies that result in very
large reweighting terms for a couple reasons: 1) state action pairs with large reweighting terms
correspond to low-support regions of the state-space, and 2) large reweighting terms increase the
variance of the gradient updates of our Lagrange matrices. To keep these reweighting terms small,
we jointly project π and the sampling distribution µ using a balancing term β ∈ R+:

maximize
π,q

Eµ[Q
π(s, a)]− βDKL(q ∥µ) s.t. E(s,a)∼q[F

π(s, a)] ⪰ 0 (5.30)

We can solve this optimization using the technique from the previous section. To start, we can
rewrite Equation (5.30) as:

maximize
π,q

1

β
Eµ[Q

π(s, a)]−DKL(q ∥µ) s.t. E(s,a)∼q[F
π(s, a)] ⪰ 0 (5.31)
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Figure 5.2: Heat-maps of three state distributions for the “Frozen Lake” environment. On the left
is the off-policy sampling distribution, on the right is the on-policy sampling distribution, and,
in the middle, is the projection of off-policy sampling distribution onto the contraction mapping
set (Equation (5.6)) computed by POP-QL. Note that only a minor change to the off-policy
sampling distribution is needed to satisfy the contraction mapping condition and, thus, guarantee
convergence of TD-learning.

Next, we introduce Lagrange variables to convert this into an unconstrained optimization problem:

maximize
q,π

minimize
Z⪰0

1

β
Eµ[Q

π(s, a)]−KL(q∥µ) + trZ⊤Eq[F
π(s, a)]

= maximize
π

(
1

β
Eµ[Q

π(s, a)] + maximize
q

minimize
Z⪰0

−KL(q∥µ) + trZ⊤Eq[F
π(s, a)]

)

Now, we focus on the inner optimization problem over q and Z. As in the MRP version, we
assume that strong duality holds in this inner optimization problem. Under this assumption, the
inner optimization problem can be equivalently written as:

minimize
Z⪰0

maximize
q

−KL(q∥µ) + trZ⊤Eq[F
π(s, a)] (5.32)

This problem can be solved as before. First, we solve for the analytical solution of q,

q⋆(s, a) ∝ µ(s, a) exp
(
trZπ⊤F (s, a)

)
. (5.33)

Next, we plug this solution back into our inner optimization problem:

minimize
Z⪰0

log
(
Eµ

[
exp

(
trZ⊤F π(s, a)

)])
(5.34)

Now, using the reparameterization of Z in Equation (5.16), the full optimization problem (Equa-
tion (5.31) becomes:

maximize
π

(
1

β
Eµ[Q

π(s, a)] + minimize
A,B

log
(
Eµ

[
exp

(
∥yA∥22 + ∥yB∥22 + 2Es′∼p(· | s,a),a′∼π(· | s′)⟨yB, y′A⟩

)]))
(5.35)
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where yA = A⊤ϕθϕ(s, a), yB = B⊤ϕθϕ(s, a), and y′A = A⊤ϕθϕ(s
′, a′).

Again, we need to perform a 2-timescale gradient descent for A,B since we are approximating
an expectation inside of a exponential. Thus, we also learn a parameterized function gθ to
approximate the following:

gθ(s, a) ≈ Es′∼p(s′ | s,a),a′∼π(s′) [⟨yB, y′A⟩] (5.36)

Using this approximation, the gradient of A and B can be expressed as:

Es,a∼µ,s′∼p(s′ | s,a),a′∼π(· | s′)

[
exp (∥yA∥22 + ∥yB∥22 + 2gθ(s, a))

·∇A,B (∥yA∥22 + ∥yB∥22 + 2⟨yB, y′A⟩)

]
(5.37)

Next, we derive the policy updates using both Lagrange variables.

∇π

(
Eµ[Q

π(s, a)] + β log
(
Eµ,π

[
exp

(
∥yA∥22 + ∥yB∥22 + 2⟨yB, y′A⟩

)]))
≈ ∇πEµ[Q

π(s, a)] + β exp
(
∥yA∥22 + ∥yB∥22 + 2gθ(s, a)

)
∇πEπ

[
∥yA∥22 + ∥yB∥22 + 2⟨yB, y′A⟩

]
= ∇πEµ[Q

π(s, a)] + 2β exp
(
∥yA∥22 + ∥yB∥22 + 2gθ(s, a)

)
∇πEπ [⟨yB, y′A⟩]

Finally, the Q-learning reweighting terms are simply:

u(s, a) ≈ exp
(
∥yA∥22 + ∥yB∥22 + 2gθ(s, a)

)
(5.38)

See Algorithm 8 for the pseudocode of our algorithm.

5.4 Experiments and Discussion
Toy Example – Three-State MRP Here we revisit the Three-State MRP discussed in Sec-
tion 2.3.2. Again, the value function is given by V = [1, 1, 1.05]⊤, with discount factor γ = 0.99,
reward function R = (I − γP )V , and basis Φ where

Φ =

 1 0
0 −1.

1/2(1.05 + ϵ) −1/2(1.05 + ϵ)

 (5.39)

The basis includes the representation error term ϵ = 10−4. For illustration purposes, we select the
family of distributions µ = (p/2, p/2, 1 − h) parameterized by p ∈ [0, 1]. This characterizes the
possible distributions of data that we will present to POP-QL and naive TD in this experiment. The
on-policy distribution corresponds to p = 0.5. The contraction mapping condition is satisfied for
the left subset of sampling distributions where p ≲ 0.51 and not satisfied for the right subset where
p ≲ 0.55. This is immediately apparent in Figure 5.3, where we plot the error at convergence from
running naive- and POP-QL above, and the effective distribution of TD updates after reweighing.
In the left subset, where the NEC holds, POP-QL does not reweight TD updates at all. Therefore,
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1Figure 5.3: The three-state Markov process by Manek and Kolter [80] (top-left), a plot of Q-
function approximation error over different sampling distributions using Iterative TD and POP-QL
(top-right), and TD traces for at three different evaluation sampling distributions. We can see that
when the contraction mapping condition is satisfied (p ≲ 0.55), the Iterative TD and POP-QL
solutions are identical. However, when this condition is violated (p > 0.55), Iterative TD diverges,
whereas POP-QL converges and retains a low approximation error.
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the error of POP-TD tracks that of naive TD, and the effective distribution of TD updates in
POP-TD and naive TD are the same as the data distribution.

Figure 5.3 also plots TD-Learning traces for three different sampling distributions using both
Iterivate TD and POP-QL. We can see when p = 0.8 (right), the contraction mapping condition is
violated Itertive TD diverges. However, POP-QL reweights the sampling distribution, yielding a
new sampling distribution that satisfies the contraction mapping condition. Thus, POP-QL still
converges in this toy problem.

Small Scale – Frozen Lake Frozen Lake is a small grid navigation task where the objective is
to reach the goal state while avoiding the holes in the ice, which are terminal states. Figure 5.1
shows a visualization of the Frozen Lake environment. For tabular Q-learning, this is a very
simple task. However, using function approximation with a linear function approximator can
cause offline Q-Learning to quickly diverge.

We illustrate this divergence first with a policy evaluation task. In this task, the goal is to
approximate the Q-function for an “evaluation” policy with data collected from a separate “data-
collection” policy. We use a random featurization for the state-action space with dimension
k = 60 (the true state-action space has a cardinality of 64). This featurization was sampled from a
uniform distribution U([0, 1]k) for each states, then normalized to have a unit norm. We train a
linear function approximator with both vanilla Q-learning and POP-QL as we linearly interpolate
the dataset between 100% offline (meaning collected entirely from the “data collection” policy)
and 100% (meaning collected entirely from the “evaluation” policy). Figure 5.1 shows a graph of
the results. When trained offline, vanilla Q-learning quickly diverges, whereas POP-QL remains
stable for all the datasets. We also note that the datasets for which vanilla Q-learning converges
with low approximation error correspond to those that roughly satisfy our contraction mapping
condition, exactly as our theory would predict. Figure 5.2 illustrates how the projection made by
POP-QL changes the sampling distribution only slightly compared to exactly projecting onto the
on-policy distribution (importance sampling).

We also perform a policy optimization task with the same datasets. In this task, the goal is to
compute the policy with the highest return using offline data. We compare our method against
online SAC, offline SAC, and CQL. Section 5.4.1 discusses the hyper-parameter tuning procedures
for these baseline methods. Figure 5.4 shows the expected normalized returns of the policies
computed using various methods.

D4RL Tasks D4RL [35] is a standardized collection of offline RL tasks. Each task consists of
an environment and dataset. The datasets for each task are collected by using rollouts of a single
policy or a mixture of policies. The goal of each task is to learn a policy exclusively from these
offline datasets that maximizes reward on each environment.

We compare our method against vanilla SAC [46] run on offline data, Behavior Cloning, and
CQL [69] (with the JaxCQL codebase [42]. For each of these methods, we run for 2.5 million
gradient steps. Using the JaxCQL codebase, we were not able to replicate the results of CQL
with the hyper-parameters presented in Kumar et al. [69]. Instead we performed our own small
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1Figure 5.4: Offline policy optimization performance on the Frozen Lake domain (Figure 5.1)
averaged over 5 random seeds (shaded area is standard error). As before, we varied the datasets
by interpolating between the dataset collected by the “data-collection policy” (���) and the dataset
collected by the “evaluation policy” ( ), both with ϵ-dithering for sufficient coverage (ϵ = 0.2).
Both our POP-QL (our method) and CQL are able to find a policy that outperforms behavior
cloning without diverging.

hyper-parameter sweep (details in Section 5.4.1). For further comparison, we also include results
for bootstrapping error reduction (BEAR) [67], batch-constrained Q-learning (BCQ) [37], and
AlgaeDICE [85] reported in Fu et al. [35]. We looked at 2 categories of environments: 1) The
OpenAI Gym [23] environments Hopper, Half Cheetah, and Walker2D, and 3) the Franka Kitchen
environments [45]. For each method, we used fixed hyper-parameters for environment category.

Tables 5.1 and 5.2 show the results on these tasks. We can see that our method is competitive or
outperforms all other methods on the “random” and “medium” datasets, but falls behind on the
“medium-expert” environments. This is because our method, unlike most other offline methods,
does not perform any regularization towards the data collection policy.3

5.4.1 Hyper-Parameter Search
Q-Function and Policy Learning Rates We looked at using λQ, λπ =, 3e-4, 1e-4, 3e-5, and 1e-
5. The lower learning rates for the policy seemed to significantly improve asymptotic performance
of our method. However, when setting λπ = 1e-5, we found it took too long to learn a decent
policy. Thus, for our experiments, we chose the middle-ground of λπ = 3e-5. We found λQ =
1e-4 worked the best for POP-QL.

Lagrange Matrices Learning Rate Since we want to learn the Lagrange matrices assuming a
fixed policy, we used an increased learning rate for the Lagrange matrices compared to the policy.
We tried

g-Function Learning Rate Once we normalized the g-function, we found the performance of
the algorithm seemed to be quite robust to the choice of g-function learning rate. We tried 1, 10,

3The data collection policy is often called the behavior policy.
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Table 5.1: Results on the D4RL MuJoCo offline RL tasks [35]. We ran offline SAC (SAC-off),
CQL, and POP-QL for 2.5M gradient steps. †Results reported from Fu et al. [35]. We can see our
method, POP-QL, outperforms other methods on the very suboptimal datasets (“random”), but
falls behind on the others.

SAC-off BEAR† BCQ† aDICE† CQL POP-QL
hopper-random 11.88 9.50 10.60 0.90 0.92 20.43
halfcheetah-random 27.97 25.50 2.20 -0.30 -1.12 29.93
walker2d-random 4.55 6.70 4.90 0.50 -0.02 -0.31
hopper-medium 2.32 47.60 54.50 1.20 44.71 24.97
halfcheetah-medium 57.28 38.60 40.70 -2.20 62.37 43.03
walker2d-medium 0.94 33.20 53.10 0.30 7.36 13.49
hopper-medium-replay 18.54 96.30 33.10 1.10 2.05 19.89
halfcheetah-medium-replay 43.34 38.60 38.20 -0.80 50.03 34.99
walker2d-medium-replay 5.05 19.20 15.00 0.60 63.97 11.61
hopper-medium-expert 2.31 4.00 110.90 1.10 45.72 10.09
halfcheetah-medium-expert 6.41 51.70 64.70 -0.80 82.76 51.21
walker2d-medium-expert 0.08 10.80 57.50 0.40 10.12 36.01

Table 5.2: Results on the D4RL kitchen offline RL tasks [35]. We ran offline SAC (SAC-off),
CQL, and POP-QL for 2.5M gradient steps. †Results reported by Fu et al. [35]. Our method,
POP-QL, out-performs offline SAC and CQL, but falls behind BEAR and BCQ.

SAC-off BEAR† BCQ† aDICE† CQL POP-QL
kitchen-complete 0.12 0.00 8.10 0.00 0.00 0.00
kitchen-partial 0.00 13.10 18.90 0.00 6.12 6.38
kitchen-mixed 0.00 47.20 8.10 0.00 0.62 1.56

and 20 times the learning rate of the Lagrange Matrices and all performed roughly equally. We
used λg = 10λ[A,B] for our experiments.

KL-Q-value weighting parameter β This β term weights how much POP-QL’s weights
policy performance versus the KL-divergence between the new sampling distribution and the
reweighted distribution. The larger β is, the more the policy is projected and the less significant
the reweighting terms become.

In the D4RL problems, we need a large β term to make sure the policy does not drive the agent
too far outside the data distribution. We tested β = 100, 30, 10, 3, 1, and 0.3. Since our choice of
β depends on the estimated Q-values, we chose a different β beta for each class of domains. For
both the Mujoco and Franka Kitchen domains, we chose β = 100.
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5.4.2 Target Networks
Just as in other actor-critic methods, we use a target network for the features and Q-function
weight w to stabilize the Q-learning updates.

We also tested using these target features for training Lagrange matrices A and B, but found this
reduced performance. So instead, we do not use any target networks in training the Lagrange
matrices.

5.5 Conclusion and Future Directions
In this chapter, we present Projected Off-Policy Q-Learning (POP-QL), a new method for reducing
approximation errors in off-policy and offline Q-learning. POP-QL performs an approximate
projection of both the policy and sampling distribution onto a convex set, which guarantees
convergence of TD updates and bounds the approximation error.

Unlike most other offline RL methods, POP-QL does not rely on pushing the learned policy
towards the data-collection policy. Instead POP-QL finds the smallest adjustment to the policy and
sampling distribution that ensures convergence. This property is exemplified in our experiments,
especially when the data-collection policies are significantly sub-optimal. In small-scale exper-
iments, we show that our method significantly reduces approximation error of the Q-function.
We also evaluate our method on standardized Deep RL benchmarks. POP-QL outperforms other
methods when the datasets are far from the optimal policy distribution, specifically the “random”
datasets, and is competitive but falls behind the other methods when the dataset distribution gets
closer to the on-policy distribution.

This chapter illustrates the power of the contraction mapping condition first introduced by Kolter
[64] for offline RL and introduces a new class of offline RL techniques. While, in its current
iteration, this method does not outperform the state-of-the-art methods on every domain, our
results suggest the exciting potential of this new technique. We think this reduced performance
on some the D4RL tasks is primarily due to training instabilities introduced by the min-max
optimization of the policy and Lagrange matrices. As with many other RL algorithms, finding
implementation tricks, such as target Q-networks [81] and double Q-networks [36, 53], is critical
to stabilizing learning. In future work, we hope to address the instability of the Lagrange matrix
optimization, thus providing a method that consistently out-performs competing methods.
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Chapter 6

Generative Posterior Networks for
Approximately Bayesian Epistemic
Uncertainty Estimation

The previous chapter discussed a new method for improving the performance of offline TD
methods. While TD methods tend to outperform Model-Based methods on long-horizon domains
with a diverse set of data, on shorter horizon domains with less data, Model-Based methods
tend to outperform TD methods. However, the challenge of support mismatch remains when
performing Model-Based RL offline. To mitigate the problems caused by support mismatch,
accurately predicting the epistemic uncertainty, uncertainty deriving from lack of data samples, is
critical. With this information, Model-Based planning algorithms can mitigate over-estimating the
value of a given policy by, for example, avoiding areas of high uncertainty or acting conservatively
in the face of uncertainty. However, estimating epistemic uncertainty remains a challenge for deep
learning models.

In this chapter, we introduce Generative Posterior Networks (GPNs), which use unlabeled data
to estimate epistemic uncertainty by approximating the Bayesian posterior. Many real-world
problems have a limited set of training data, but an abundance of unlabeled data. The use of GPNs
in such a domain could significantly improve performance of offline Model-Based RL algorithms.

6.1 Introduction
In supervised learning tasks, the distribution of labeled training data often does not match exactly
with the distribution of data the model will see at deployment. This distributional shift can cause
significant problems in safety-critical environments where mistakes can be catastrophic. Ideally,
we want our learned models to be able to estimate their epistemic uncertainty. Unfortunately,
deep learning models struggle to estimate this type of uncertainty. While there are many proposed
methods for addressing this problem, epistemic uncertainty estimation in deep learning remains
an open problem due to out of distribution (OOD) performance and scalability.
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(a) 2D embedding samples (b) Corresponding posterior samples

Figure 6.1: Samples from a GPN using a 2D embedding trained on a simple sine-function. On the
top are samples from the embedding with corresponding posterior samples underneath. Black ‘x’s
represent observed data points.

Concurrently, many recent works have shown incredible performance using unlabeled data [27, 95].
While labeled training data is expensive to collect, in many real-world problems, such as image
classification, there is an abundance of unlabeled data. Moreover, this unlabeled data is often
much more representative of the deployment distribution. In this work, we propose a new method
for estimating epistemic uncertainty that leverages this unlabeled data.

In many real-world tasks, labeled data is limited and expensive to obtain, while unlabeled data is
plentiful. Moreover, distribution of labeled data often does not match the desired test distribution.
This challenge has led to a growing literature in Domain Adaptation [29, 39, 89, 126] and Test-
Time Adaptation [119]. Both of these problem settings assume access to a set of unlabeled data
from the test distribution that is used to improve test performance. However, if the test distribution
is too far from the training distribution, DA and TTA approaches will still have high errors on the
test distribution. For such cases, understanding the model’s epistemic uncertainty is vital.

Our work builds off of the extensive ensembling literature. Neural network ensembling is a
method that predicts epistemic uncertainty by looking at the disagreement between the ensemble
members. Additionally, under the right regularization, ensembles approximate samples from
the Bayesian posterior He et al. [54], Pearce et al. [90]. However, these methods have one main
drawback, namely that each new sample from the posterior requires training a new network from
scratch.

To address this challenge, we introduce Generative Posterior Networks (GPNs), a generative
neural network model that directly approximates the posterior distribution by regularizing the
output of the network towards samples from the prior distribution. By learning a low-dimensional
latent representation of the posterior, our method can quickly sample from the posterior and
construct confidence intervals (CIs). We prove that our method approximates the Bayesian
posterior over functions and show empirically that our method can improve uncertainty estimation
over competing methods.
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MCMC - Ground Truth GP Bayesian Dropout Ensemble 10 GPN (Ours)

Figure 6.2: Predicted posterior distributions of different methods using the same observed data.

6.2 Generative Posterior Networks
Randomized MAP Sampling We consider a slight variation on the usual Bayesian Inference
problem: instead of finding the posterior of the parameters of a function, we will instead find
the posterior of the outputs of that function. Specifically, consider the transformed random
variable Ŷ = f(xsample;θ) for some function f parameterized by θ and some set of unlabeled
sample points xsample. We assume a known prior over parameters P (θ) ∼ N (µθ,Σθ) as well
as access to a noisy dataset (xobs,yobs) = {(x1

obs, y
1
obs) . . . , (x

N
obs, y

N
obs)}, where the observations

yiobs = f(xi
obs;θ) + ϵ depend on an unknown parameter θ and are corrupted by Gaussian noise

ϵ ∼ N (0, σϵ). The goal of this Bayesian Inference problem is to approximate samples from the
posterior,

P (Ŷ |yobs) ∝ P (yobs | Ŷ)P (Ŷ). (6.1)

Pearce et al. [90] showed how we can use a method called Randomized MAP Sampling (RMS) to
approximately sample from the posterior distribution. The idea behind RMS is to use the fact that
the parameters that minimize the regularized MSE loss are equal to the maximum a posteriori
(MAP) solution for the posterior. Thus, using optimization techniques, like gradient descent, we
can easily find MAP solutions. However, the challenge of sampling from the posterior remains.
Instead, RMS randomly samples shifted prior distributions such that the resulting MAP solutions
for each of these shifted distributions form samples from the desired posterior.

Unlike Pearce et al. [90], we consider using the RMS technique on our modified Bayesian
Inference problem, to estimate the posterior of the outputs Ŷ as opposed to the parameters
θ. Specifically, RMS in this setting samples “anchor points” Ŷanc from some distribution
Ŷanc ∼ N (µanc,Σanc). Each anchor point corresponds to the mean of a shifted prior distri-
bution Panc(Ŷ) = N (Ŷanc,ΣŶ). Now we define the MAP function which finds the MAP solution
using this shifted prior:

YMAP(Ŷanc) = argmax
Ŷ

P (yobs | Ŷ)Panc(Ŷ). (6.2)

By sampling different anchor points, we can then construct a probability distribution over MAP
solutions P (YMAP(Ŷanc)). If we assume that the prior over Ŷ is Gaussian, this distribution is
equivalent to the posterior distribution P (Ŷ |yobs) for a specific anchor distribution. While this
Gaussian prior assumption does not hold exactly in general, it will hold exactly when f is linear
or has an infinitely wide final layer.
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Theorem 5. Assume that the prior distribution of Ŷ is Gaussian, P (Ŷ) = N (µŶ,ΣŶ). If
we choose the distribution over Ŷanc to be P (Ŷanc) = N (µanc,Σanc), where µanc = µŶ and
Σanc = ΣŶ +ΣŶΣ

−1
likeΣŶ, then P (ŶMAP(Ŷanc)) = P (Ŷ |yobs).

Our proof follows a similar technique to Pearce et al. [90] and is provided in Section 6.3.1. Just
as in Pearce et al. [90], we use the approximation Σanc ≈ ΣŶ to make it tractable to sample
from the anchor distribution.1 With this assumption, the anchor point sampling distribution
Ŷanc ∼ N (µanc,Σanc) becomes approximately equal to the output prior distribution P (Ŷ).

Generative Model While RMS can be used to sample from the posterior, every new sample
requires solving a new optimization problem. Instead, we propose to learn a generative model to
approximate the MAP function itself. Let g be a neural network parameterized by some vector,
ϕ, that takes as input a sample from the anchor distribution, Ŷanc, and outputs the MAP solution
ŶMAP(Ŷanc). Since we are using the prior distribution as our anchor distribution, we can sample
anchor points using Ŷanc = f(xsample;θanc), where θanc ∼ N (µθ,Σθ). If we assume that g has
enough expressive power to represent the MAP function, then g(Ŷanc;ϕ) = ŶMAP(Ŷanc), if ϕ is
equal to:

argmin
ϕ

Eθanc

N∑
i=1

(
∥yiobs − g(xi

obs,θanc;ϕ)∥22 + σ2
ϵδ

TΣ−1

Ŷ
δ
)

(6.3)

where δj = g(xj
sample,θanc;ϕ)− f(xj

sample;θanc). See Section 6.3.2 for a step-by-step derivation.

Low-Dimensional Embedding In practice, of course, it is expensive to compute the regulariza-
tion term, σ2

ϵδ
TΣ−1

Ŷ
δ, for a large set of sample points xsample. Instead, we approximate this term

with β∥δ∥22 where β is a hyper-parameter. This assumes independence and uniform variance of the
prior, but we found it to work well in practice. Finally, optimizing the generative function g over
the the space of all anchor parameters θanc is impractical, as this space is too high dimensional.
Instead, we construct a low-dimensional embedding for θanc.

There are two key reasons why we would expect to be able to decrease the representational
power of the anchor distribution and maintain the same of fidelity in the posterior estimation. (1)
Because of the nature of neural networks, there are many settings of parameters θ that would
result in the same output vector Ŷ. Because we are focusing on the posterior of Ŷ, we need less
representational power to model Ŷ. (2) And, maybe more importantly, because the posterior
parameters are highly correlated, we would expect to need less expressive power to represent the
posterior distribution than the prior distribution.

Thus, we would like to construct a simpler estimate of the prior space using a low-dimensional
embedding vector, z. That is, we want our generative model to take as input the embedding vector
z ∼ N (0, I), instead of θanc, in order to estimate the MAP function. To do this, we need to learn
a mapping from anchor parameters θanc to embedding vectors z. For our experiments, we used a
1-1 embedding scheme where we sample k parameters from the true prior θ1, . . . ,θk ∼ Pprior(θ)

1Pearce et al. [90] argue that this approximation, in general, causes RMS to only over-estimate the posterior
variance.
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and k independent samples from our embedding z1, . . . , zk. We then jointly optimize over ϕ and
z1, . . . , zk as follows:

argmin
ϕ,z1,...,zk

Exsample

k∑
j=1

N∑
i=1

∥yiobs − g(xi
obs, zj + ϵ;ϕ)∥22 + β∥δ∥22 + Lreg(z1, . . . , zk), (6.4)

where δj = g(xj
sample, zj + ϵ;ϕ) − f(xj

sample;θj), x
j
sample ∼ Psample(x), ϵ ∼ N (0, I) is a noise

injection vector that improves the smoothness of interpolations between embedding vectors, and
Lreg(z1, . . . , zk) is a regularizer to keep z1, . . . , zk roughly normally distributed, which allows
us to easily sample from the embedding space. For our experiments we use the KL divergence
between z and the normal distribution, Lreg(z1, . . . , zk) = DKL(N (z̄, sz),N (0, 1)). Figure 6.1
illustrates how we can sample from this embedding space to construct posterior functions.

Classification Our method uses the assumption that the prior over Ŷ is approximately normally
distributed. Of course, this approximation is only exact when either the network is linear or
the final layer is infinitely wide and does not have an activation function (assuming the prior
parameters are normally distributed). Thus, in classification tasks, where it is beneficial to a
soft-max to the final output, this assumption is violated. To get around this, we add the anchor
loss to the pre-softmax outputs for classification tasks.

6.3 Proofs

6.3.1 Proof of Theorem 5
Proof. We will start by showing that P (yobs|Ŷ) is normally distributed.

Let Ŷi

′
= f(xi

obs;θ) be a transformation of the random variable θ corresponding to the outputs of
the function f parameterized by θ evaluated at observation points xobs. Note that by definition of
yobs, for each i ∈ 1, . . . , N :

yiobs = f(xi
obs;θ) + ϵi = Ŷi

′
+ ϵi

where ϵi ∼ N (0, σϵ).

By assumption: [Ŷ, Ŷ
′
]T is normally distributed. Since ϵ is normally distributed and independent

of [Ŷ, Ŷ
′
]T , then the joint distribution [Ŷ, Ŷ

′
, ϵ]T is also normally distributed.

Now, by applying a linear transformation, we obtain the joint variable

 Ŷ

Ŷ
′

yobs

 =

I 0 0
0 I 0
0 I I

ŶŶ′

ϵ

,

which is also normally distributed (as it is a linear transformation of a Gaussian random variable).

Now, since the conditional and marginal distributions of a Gaussian distribution are also Gaussian,
P (yobs, Ŷ

′|Ŷ) and P (yobs|Ŷ) are also Gaussian.
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Now, using Bayes’ rule, we can show P (Ŷ|yobs) is also normally distributed.

P (Ŷ |yobs) ∝ P (yobs | Ŷ)P (Ŷ)

= N (Ŷ|µlike,Σlike)N (Ŷ|µŶ,ΣŶ)

for some mean and covariance µlike,Σlike. Since the product of two multivariate Gaussians is a
Gaussian, we know that:

P (Ŷ |yobs) = N (µpost,Σpost) (6.5)

where
Σpost =

(
Σ−1

like +Σ−1

Ŷ

)−1

, µpost = ΣpostΣ
−1
likeµlike +ΣpostΣ

−1

Ŷ
µŶ. (6.6)

Now we consider at the distribution P (ŶMAP(Ŷanc)) where Ŷanc ∼ N (µanc,Σanc). We will show
that, when we set

µanc = µŶ, Σanc = ΣŶ +ΣŶΣ
−1
likeΣŶ

the distribution P (ŶMAP(Ŷanc)) becomes equal to the posterior distributionN (µpost,Σpost). There
are three steps needed to show equality between these distributions:

1. Show that P (ŶMAP(Ŷanc)) is normally distributed for some mean and variance, µRMS
post ,Σ

RMS
post .

2. Show that µRMS
post = µpost.

3. Show that ΣRMS
post = Σpost.

Using the same reasoning as above, in the limit as M →∞,

P (ŶMAP(Ŷanc)) = argmax
Ŷ

P (yobs|Ŷ)Panc(Ŷ)

= argmax
Ŷ

N (Ŷ|µlike,Σlike)N (Ŷ|µanc,Σanc)

Since the max of a Gaussian is the mean, then

FMAP(Ŷanc) = AŶanc + b (6.7)

where we define:

A = ΣpostΣ
−1

Ŷ
(6.8)

b = ΣpostΣ
−1
likeµlike (6.9)

We will now show that E[ŶMAP(Ŷanc)] = µpost. Because we set µanc = µŶ:

E[ŶMAP(Ŷanc)] = E[AŶanc + b]

= AE[Ŷanc] + b

= AµŶ + b

= ΣpostΣ
−1

Ŷ
µŶ +ΣpostΣ

−1
likeµlike

= µpost
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Finally, we will show that Var[ŶMAP(Ŷanc)] = Σpost.

Var[ŶMAP(Ŷanc)] = Var[AŶanc + b]

= AVar[Ŷanc]A
T

= (ΣpostΣ
−1

Ŷ
)(ΣŶ +ΣŶΣ

−1
likeΣŶ)(ΣpostΣ

−1

Ŷ
)T

= (Σpost +ΣpostΣ
−1
likeΣŶ)(Σ

−1

Ŷ
Σpost)

= ΣpostΣ
−1

Ŷ
Σpost +ΣpostΣ

−1
likeΣpost

= Σpost(Σ
−1

Ŷ
+Σ−1

like)Σpost

= Σpost

So, P (ŶMAP(Ŷanc)) ∼ N (µRMS
post ,Σ

RMS
post ) where µRMS

post = µpost and ΣRMS
post = Σpost.

Thus, in the limit as M →∞, P (ŶMAP(Ŷanc)) = P (Ŷ|yobs).

6.3.2 Derivation of loss function
We start with

ϕ = argmax
ϕ

Eθanc∼Pprior(θanc) logPlike(yobs | g(xsample,θanc;ϕ)) + logPanc(g(xsample,θanc;ϕ))

If we choose µanc = µŶ and Σanc = ΣŶ, we can simplify the logarithm of the likelihood and
anchor distributions as follows:

logPlike(yobs | g(xsample,θanc;ϕ)) =
∑
i

logN (yiobs|g(xi
sample,θanc;ϕ), σϵ)

= − 1

2σ2
ϵ

∑
i

∥yiobs − g(xi
sample,θanc;ϕ)∥22

logPanc(g(xsample,θanc;ϕ)) = logN (g(xsample,θanc;ϕ)|µŶ,ΣŶ)

= −1

2
δTΣ−1

Ŷ
δ

where δj = g(xj
sample,θanc;ϕ)− f(xj

sample;θanc).

Putting these together, we get:

ϕ = argmax
ϕ

Eθanc∼Pprior(θanc) −
1

2σ2
ϵ

∑
i

∥yiobs − g(xi
sample,θanc;ϕ)∥22 −

1

2
δTΣ−1

Ŷ
δ

= argmin
ϕ

Eθanc∼Pprior(θanc)
1

N

∑
i

∥yiobs − g(xi
sample,θanc;ϕ)∥22 +
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N
σ2
ϵδ

TΣ−1

Ŷ
δ
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Table 6.1: Superconductor regression [50] results.

Methods In Dist. Loss In Dist. CI-width OOD CI-correct OOD-detect. AUC

Dropout 0.10 0.32 17.7% 0.56
DKL GP 0.11 0.74 37.9% 0.52
SNGP 0.10 1.45 87.8% 0.82
Ensemble - PR 0.12 0.23 83.8% 0.93
Ensemble - OR 0.11 0.23 75.4% 0.95
Epistemic NN 0.12 1.07 95.3% 0.92
GPN (Ours) 0.11 0.31 86.2% 0.97

Table 6.2: CIFAR-10 results with Out of Distribution (OOD) evaluation on SVHN.

Methods In Dist. Accuracy In Dist. Entropy OOD Entropy OOD-detect. AUC

Dropout 80.7% 0.579 1.214 0.76
DKL GP 79.3% 0.027 0.372 0.76
SNGP 77.2% 0.386 0.794 0.77
Ensemble - PR 80.9% 0.882 1.344 0.68
Ensemble - OR 80.7% 0.706 2.018 0.98
Epistemic NN 77.9% 0.630 1.145 0.76
GPN (Ours) 79.4% 0.621 2.256 1.00

6.4 Experiments
The goal of our experiments is to illustrate the ability of our method to accurately model epistemic
uncertainty for OOD data while retaining high performance on in distribution data. To do so,
similar to related work [76, 116], we consider two separate datasets, “In Distribution” and “Out
of Distribution” (OOD). At training time, we provide labeled data from the In Distribution dataset
and unlabeled data from both datasets. We evaluate each model on a hold-out set of In Distribution
and OOD data.

6.4.1 Tasks
Small Scale Regression Our first experiment is a small 1-dimensional regression problem where
we can easily compute the ground truth. We provide each method with the same 6 observations.
We compute 100 samples from the approximate posterior for each method. For ground truth, we
use the Metropolis-Hastings MCMC algorithm.

High-Dimensional Regression For a high-dimensional regression task, we used a Superconduc-
tivity prediction dataset [50], the goal of which is to predict the critical temperature of different
superconductive materials based on 81 features. For the In Distribution and OOD datasets, we
split the full dataset based on the target values. Specifically, the In Distribution and OOD datasets
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Table 6.3: MNIST results with Out of Distribution (OOD) evaluation on Fashion MNIST.

Methods In Dist. Accuracy In Dist. Entropy OOD Entropy OOD-detect. AUC

Dropout 99.0% 0.018 0.581 0.96
DKL GP 98.9% 0.091 1.223 0.99
SNGP 98.5% 2.300 2.300 0.99
Ensemble - PR 98.1% 0.062 0.952 0.97
Ensemble - OR 99.1% 0.085 2.066 1.00
Epistemic NN 98.8% 0.024 0.833 0.99
GPN (Ours) 99.1% 0.272 2.076 1.00
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Figure 6.3: ROC curves for out of distribution prediction based on sample variance from 100
samples.

contained data with a target values in the intervals [13.9,+∞) and [0, 13.9), which is roughly
58% of the data in distribution and 42% out of distribution. The unlabeled dataset we provide
our method and the Output-Regularized ensemble method is the full training set. Regularization
hyper-parameters were chosen by running each method with 5 different settings, then choosing
the model with both a low validation loss and high CI-correct on a validation set.

Classification We run two different classification experiments: for one, we use the MNIST
as our In Distribution dataset and Fashion MNIST as the OOD dataset, and for the other, we
use the CIFAR-10 dataset as our In Distribution dataset and SVHN as the OOD dataset. The
unlabeled dataset we provide our method and the Output-Regularized ensemble method consists
of unlabeled data 50% from the In Distribution and 50% from the OOD datasets. As in the
regression experiments, we ran each method with 5 different regularization parameters, then chose
the model with both a high validation accuracy and OOD prediction performance on a validation
set.

Table 6.4 details the labeled and unlabeled data provided to the agent at training time and the In
Distribution and OOD data used for evaluation at test time.
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Figure 6.4: OOD detection AUC vs. training time on the Superconductor and CIFAR-10 datasets
for parameter and output-regularized ensembles and our method (GPN).

6.4.2 Baselines

We compare our method against 4 competing Bayesian methods: Bayesian Dropout [38], GPs,
and anchor-regularized neural-network ensembles [90] with 10 ensemble members. For the high-
dimensional problems, we need to use approximate GPs. Specifically, we use a grid-interpolated
GP with Deep Kernel Learning (DKL) [121] implemented with the GPyTorch library [40] and
the Spectral-normalized Neural Gaussian Process (SNGP) method [76]. For the ensembles, since
every member requires a unique set of parameters (and anchor points) the number of ensemble
members was limited by the memory capacity of our GPUs.

As described in Equation 6.3, our method a method to sample unlabeled data points. In low-
dimensional problems, this can simply be a uniform sample from the interval of interest, for
example [−2, 2] in Figure 6.2. However, in high-dimensional problems, this requires access to an
additional dataset of unlabeled training data. From a practical perspective, this is a reasonable
setup as many real-world datasets have far more unlabeled data than labeled data.

This additional data obviously favors our method over the baseline methods as our method is the
only method that is able to take advantage of this unlabeled data. To address this, we added an
additional ensemble regularized using the same regularization as Equation 6.3; in other words,
we regularize the outputs of the ensemble members towards outputs of sampled prior networks.
We denote this new method as an “Output-regularized (OR)” Ensemble to distinguish it from
the “Parameter-regularized” (PR) Ensemble. We show that despite having the access to the same
additional unlabeled data, our method outperforms and scales better than this OR Ensemble
method.

Each model uses the same 4-layer (Superconductor), 5-layer (MNIST), or 7-layer (CIFAR)
architecture, except the ensembles, which use slightly smaller networks for each ensemble
member (to fit on a single GPU).
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6.4.3 Metrics

Because we are interested in epistemic uncertainty estimation, we cannot use common aleatoric
uncertainty evaluation metrics, such as Expected Calibration Error (ECE) [44]. Instead, we
evaluate each methods ability to construct useful posterior estimates using the following metrics.

OOD Detection One desired property of an epistemic uncertainty estimators is in predicting
when a data point is outside the training distribution and, thus, any prediction made on such a
data point will likely be incorrect. For this reason, OOD detection is a common metric used in
epistemic uncertainty literature [76, 116]. For an ideal posterior distribution, we expect high
sample variance on OOD data and low sample variance from In Distribution data. Thus, in our
experiments, we use posterior sample variance to detect OOD data. Specifically, for each model,
we use posterior variance over 100 samples from each model as a score to construct ROC curves
and measure the measure the area under the curve (AUC).

Confidence Intervals / Entropy Another desired property of an epistemic uncertainty estimator
for a regression task is in constructing confidence intervals. We would expect such confidence
intervals (CIs) to contain the true class with high probability. We also expect that, on in distribution
examples, confidence intervals are narrow. To construct these intervals, we take 100 samples
from each model on every data point in the test data and compute the range of the middle 95%
of the samples. CI-correct refers to the percentage of true labels that fall in this interval. Note
that, unlike the other methods tested, ensembles are not a generative model. Thus, when trying to
sample from the ensemble method, we can only sample as many functions as there are members
of the ensemble; for our experiments this number is 10.

For classification, CIs are not as informative. Instead, we look at the posterior sample entropy.
For an ideal posterior distribution, we expect entropy to be low for data inside the training set
(data the model should have confidence on) and high for data outside the training set (which we
expect the model to be uncertain on). To measure this sample entropy, we take 100 samples from
each model on every data point and take the average of the post-softmax outputs. We then average
this sample entropy for both the In Distribution and OOD datasets.

Scalability One key benefit of a generative model over an ensemble is efficiency: every sample
from an ensemble method requires learning an entire new network from scratch. Generative
models, on the other hand, are able to produce new samples with a single pass through the
network. To illustrate the benefit of this efficiency in practice, we ran an experiment to measure
OOD detection AUC vs. computation time for both the Superconductor and CIFAR-10 tasks.
We trained 2 (Superconductor) and 5 (CIFAR) ensemble members at a time and computed the
OOD-detection performance of the cumulative combined ensembles (both parameter-regularized
and output-regularized). Each method is trained using an Nvidia 1080TI. Figure 6.4 shows our
method is able to achieve high out of distribution prediction performance in significantly less
computation time.

131



0 0.5 1
0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

Bayesian Dropout
In Dist.
Out Of Dist.

0 0.5 1

DKL GP

0 0.5 1

SNGP

0 0.5 1

Ensemble 10 - PR

0 0.5 1

Ensemble 10 - OR

0 0.5 1

GPN (Ours) In Dist. Out Of Dist.

0 0.5 1
airplane

automobile
bird
cat

deer
dog
frog

horse
ship

truck

airplane
automobile

bird
cat

deer
dog
frog

horse
ship

truck
Bayesian Dropout

0 0.5 1

DKL GP

0 0.5 1

SNGP

0 0.5 1

Ensemble 10 - PR

0 0.5 1

Ensemble 10 - OR

0 0.5 1

GPN (Ours) In Dist. Out Of Dist.

Figure 6.5: Boxplots of 100 posterior samples from every method for 2 test images, one from the
In Distribution dataset and one from the OOD dataset.

Table 6.4: Training and test datasets used for each experiment task.

Task
Training Testing

Labeled Unlabeled In Dist. OOD

Small Scale 6 points U [−2, 2] N/A U [−2, 2]

Superconductor
train set where
yi ∈ [13.9,+∞)

full train set
test set where

yi ∈ [13.9,+∞)
test set where
yi ∈ [0, 13.9)

MNIST MNIST train
50% MNIST train

50% F-MNIST train MNIST test F-MNIST test

CIFAR-10 CIFAR-10 train
50% CIFAR-10 train

50% SVHN train CIFAR-10 test SVHN test

6.4.4 Network Architectures

For the superconductor regression problem, we used a 4-layer network with 4 128-unit wide linear
layers for the ensemble methods and a 4-layer network with 4 512-unit wide linear layers for
the other methods. For the MNIST classification problem, we used a 5-layer network with 2
convolution layers and 3 128-unit wide linear layers for our the ensemble methods and a 5-layer
network with 2 convolution layers and 3 512-unit wide linear layers for our the other methods.
For the CIFAR classification problem, we used a 7-layer network with 3 convolution layers and 4
256-unit wide linear layers for our the ensemble methods and a 7-layer network with 3 convolution
layers and 4 512-unit wide linear layers for our the other methods.

6.4.5 Hyper parameters

The non-network architecture hyper-parameters we used for GPN were roughly consistent across
all experiments, except for the regularization coefficient, β. As stated in our experiments section,
we performed a small search over 5 values of β for each experiment. The full set of hyper-
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Table 6.5: GPN Hyper-parameters used for our experiments.

Hyper-parameter Value

# of sampled embeddings (k) 100
Embedding dimension 10
Regularization coefficient (β) 0.1
Bootstrap network (θ) 2-layer linear model
Prior variance (Σprior) 40 (layer 1), 10 (layer 2)
Bootstrap activation Tanh

parameters are shown in Table 6.5

6.5 Results and Discussion
Figure 6.2 shows the results of our small scale regression task. We can see our performs just as
well or better than the ensemble method at predicting the ground truth posterior distribution and
performs significantly better than dropout. The GP method seems to outperform our method in
this small scale setting. However, this trend does not extend to the higher dimensional problems.

Tables 6.1 to 6.3 show the results of our high-dimensional regression and classification tasks and
Figure 6.3 shows the full ROC curves for OOD prediction on these tasks. While all methods
are able to achieve high In Distribution performance (loss or accuracy), the GPN is able to
consistently achieve the highest OOD-detection AUC. The SNGP and OR-ensemble are also able
to achieve high OOD-detection AUC, but have other drawbacks. Specifically, SNGP has a very
high CI-width on In Distribution data for the regression task and a very small contrast in sample
entropy between the In Distribution and OOD data for the classification tasks. And, while the
OR-ensemble performs well, Figure 6.4 shows GPN scales much better.

Figure 6.5 shows two informative test images, one from the In Distribution dataset and one from
the OOD dataset, for both MNIST/Fashion MNIST and CIFAR-10/SVHN, along with box plots
of sampled PMFs from each of the learned models. While all methods predict the correct label
with high precision on the in distribution example, ours has a uniquely wide sample distribution
on the OOD example, suggesting high predicted epistemic uncertainty. This plot illustrates our
method’s ability to form credible posterior distributions.

6.6 Conclusion
In this chapter we introduce Generative Posterior Networks (GPNs), a method that uses unlabeled
data to learn a generative model of the Bayesian posterior distribution. We prove that under mild
assumptions, GPNs approximate samples from the true posterior. We then show empirically that
our method significantly outperforms competing epistemic uncertainty predictions techniques on
high-dimensional classification tasks and scales much better than ensembling methods, the closest

133



performing baseline.
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Chapter 7

Conclusions and Future Directions

In this thesis, we introduced novel methods for ensuring RL algorithms, both at training time and
deployment time. The goal of these approaches is facilitate the application of RL algorithms on
the real-world with high potential for positive societal impact, like Tokamak control for nuclear
fusion power.

In Chapter 3, we introduced a new technique for constructing non-linear, neural network policy
classes for which we can provide robustness guarantees. We do this by constructing a convex set
of all robustly stabalizable linear controllers and projecting the policy onto this set. We prove that
this projection does indeed produce policies that are robustly stabalizable to any disturbance in a
given disturbance class. Through various experiments on both synthetic domains and a simulated
quadrotor and microgrid domain, we shows empirically that our method is able to out-perform
other robust control methods in the average case and is robust to worst-case disturbances.

In Chapter 4, we propose Analogous Safe-state Exploration (ASE), a new safe exploration method
which is uniquely able to achieve three criteria simultaneously: (1) ASE is able account for
unknown, stochastic dynamics, (2) ASE provably maintains safety throughout the entire learning
process and is provably optimal (in the PAC-MDP sense), and (3) ASE guides exploration,
significantly improving the empirical sample efficiency. We test our method against both unsafe
and safe exploration methods on a grid-world and platformer game and show that ASE improves
sample efficiency over other safe methods never taking an unsafe action through the entire traing
process.

In Chapter 5, we dive into offline RL and introduce Projected Off-Policy Q-Learning (POP-QL),
a new method for improving performance of offline TD-based RL algorithms. By projecting
both the policy and sampling distribution onto the convex set defined by the Bellman contraction
mapping condition, POP-QL is able to prevent divergence of the approximate value function
caused by off-policy TD updates. In practice, we show that POP-QL significantly improves offline
performance over vanilla Soft Actor-Critic (SAC) and even out-performs the state-of-the-art
method, Conservative Q-Learning (CQL), on tasks where the dataset is severly sub-optimal.

Finally, in Chapter 6 we propose an new epistemic uncertainty estimation method for deep neural
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networks, Gaussian Posterior Networks (GPNs). Using unlabeled data, GPNs approximate sam-
ples from the Bayesian posterior distribution. Empirically, we find our method out-performs other
methods on out-of-distribution detection tasks without sacrificing in-distribution performance on
both regression and classification tasks. This type of epistemic uncertainty predictor could be very
helpful for use in offline Model-Based RL.

The ultimate goal of this thesis is to provide techniques and algorithms that allow RL to be applied
on highly impactful real-world problems. However, through my experience with these approaches,
I see some of these approaches to be more promising directions forward than others. In order
guarantee safety throughout the training process, safe RL techniques require significant prior
knowledge that are very challenging to construct in practice, especially on complex domains
such Tokamak control on power-grid optimization. For this reason I think offline RL approaches
(potentially with online fine-tuning) seem to be the most promising path forward for safely training
RL policies in practice. There have already been successful applications of offline RL [70, 71].
However, I think there is still significant room for improvement on performance in these domains.
Our approach, POP-QL, makes progress in moving this field forward. The more progress made in
this area of offline RL and robustness, the easier it becomes to take advantage of RL algorithms
for highly impactful real-world problems.
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