
Learning and Planning Towards

AI for Social Good

Zheyuan Ryan Shi

CMU-S3D-23-105

June 2023

Software and Societal Systems Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Fei Fang (Chair)
Rayid Ghani
Jason Hong

Milind Tambe (Harvard University)

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Societal Computing.

Copyright © 2023 Zheyuan Ryan Shi

This work was supported in part by the National Science Foundation (NSF) under grants 1850477 and 2046640, the
Siebel Foundation, the Army Research Laboratory Cyber Security Aliliance (CRA), and the Defense Advanced Re-
search Projects Agency (DARPA). The views and conclusions are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the funding agencies.

Keywords: AI for social good, machine learning, game theory, bandit

To my parents, who always support me for who I am.

iv

Abstract

AI for Social Good (AI4SG) is a research theme that uses and advances AI to im-
prove the well-being of society. We introduce three lines of work that center around
learning and planning to address real-world challenges in cybersecurity, food waste
and security, and environmental conservation. For cybersecurity, we provide a
learning and planning pipeline for generic cyber deception and an algorithm to
counter watering-hole attacks. In food waste and food security, we develop a pre-
dictive model for the rescue claim status and an online learning and planning algo-
rithm for volunteer engagement through push notifications. We also ran a random-
ized controlled trial for our algorithm to show significant improvement in the real
world. For environmental conservation, we develop a natural language processing-
based media content monitoring system to provide early warning of infrastructure
projects that might pose harm to conservation efforts. The system leverages ac-
tive learning and learning with noisy labels algorithms to address challenges in
applied learning and planning applications. The tool has been deployed in multi-
ple places around the world, monitoring over 60,000 conservation sites worldwide
since February 2022. Distilling lessons learned from these projects, we propose ban-
dit data-driven optimization, the first iterative learning and planning framework to
rigorously address the pain points in practical prediction-prescription workflows
in lots of social good projects across application domains.

vi

Acknowledgments

I would like to thank my advisor, Fei Fang, for everything throughout this jour-
ney. The past five years working with Fei was once in a lifetime. Her guidance,
professionalism, and patience have been pivotal as we built stuff from zero to one.
I am always grateful to her for encouraging me to stay true to my values, to ex-
plore unorthodox approaches, and for her dedication to my growth as a researcher.
When I first met Fei years before this PhD, I could not expect going so far together,
but apparently, even now is not the end.

I am very grateful to my thesis committee members: Rayid Ghani, Jason Hong,
and Milind Tambe. Rayid has been my role model throughout these years. I have
learned from Rayid about not just research, but also practical experience and career
development, as well as his kindness and generosity. I will make sure to pay it
forward. I thank Jason Hong and Milind Tambe for the insightful questions raised
during both my proposal and defense. I enjoyed thinking through these questions
and discovering new perspectives.

The work in this thesis was made possible by the continued support from our
non-profit partners. I would like to thank Leah Lizarondo, Ameesh Kapoor, An-
thony Levin-Decanini, Sean Hudson, Jake Tepperman, and everyone else at 412
Food Rescue for our joint effort on food rescue. I would like to thank David J. Pat-
terson, Nirmal Bhagabati, Karun Dewan, Areendran Gopala, Pablo Izquierdo, De-
bojyoti Mallick, Ambika Sharma, Pooja Shrestha, Johanna Prussmann Uribe, and
everyone else at World Wildlife Fund for our project on NewsPanda. I also thank
everyone at all the other organizations that we have partnered with.

In the past five years, I have had the privilege of collaborating with many excel-
lent researchers: Steven Wu, Ariel Procaccia, Hemank Lamba, Sridhar Venkatesan,
and Aaron Schlenker. I appreciate all their insights and guidance throughout the
collaborations. I would also like to thank Kush Varshney, Amulya Yadav, and Bistra
Dilkina. I have not directly worked with them, but they have been there at multiple
points of my career, and gave me the support that I needed so much. In addition, I
want to thank Linda Moreci and Connie Herold for their tireless hard work making
life easier for me and many other students at ISR.

I would like to also thank the precious friendships that lightened up these occa-
sionally dark and often chaotic years. Many thanks to my lab mates: Chun Kai Ling,
Stephanie Milani, Steven Jecmen, Rex Chen, Zhicheng Zhang, and Yinuo Du; and
office mates: Melrose Roderick, Nimo Ni, Daye Nam, Morgan Evans, and Joshua
Uyheng. I also thank Junzhi Yan, Xinyuan Ma, Violet Chen, Savannah Tang, Ziye
Tang, and Yuyan Wang for sharing the time and laughter together.

Last but not least, I am immensely indebted to my family. My parents, Jing Luo
and Wei Shi, have always loved me, believed in me, and supported me uncondition-
ally. None of this would have been possible without you. Thank you so much.

viii

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Thesis Outline and Contributions . 3
1.3 A Note on Real-World Impact . 4

I Learning and Planning for Cybersecurity 5

2 Learning and Planning in the Feature Deception Problem 7

2.1 Introduction . 7
2.2 Related Work . 9
2.3 The Feature Deception Problem . 10
2.4 Learning the Adversary’s Preferences . 12
2.5 Computing the Optimal Feature Configuration 16
2.6 Experiments . 20

2.6.1 Learning . 20
2.6.2 Planning . 21
2.6.3 Combining Learning and Planning . 22
2.6.4 Case Study: Credit Bureau Network . 22

2.7 Discussion . 24

3 Draining the Water Hole: Mitigating Social Engineering Attacks with Cyber-

TWEAK 27

3.1 Introduction . 27
3.2 Related Work . 28
3.3 Watering Hole Attacks . 29
3.4 Social Engineering Deception Game . 30
3.5 Computing Optimal Defender Strategy . 31

3.5.1 Tractable Classes . 32
3.5.2 CyberTWEAK . 34

3.6 Experiments . 37
3.7 Deployment . 39

ix

II Learning and Planning for Food Waste and Security 41

4 Improving Efficiency of Volunteer-Based Food Rescue Operations 43

4.1 Introduction . 43
4.2 Related Work . 45
4.3 Predicting the Claim of Rescues . 45

4.3.1 Feature engineering . 46
4.3.2 Stacking Model . 47

4.4 Optimizing Intervention and Notification . 48
4.4.1 Counterfactual claim time (CCT) estimation 50
4.4.2 Solving the optimization problem . 51

4.5 Results . 52
4.5.1 Prediction . 52
4.5.2 Optimization . 53

4.6 Discussion . 55
4.7 Conclusion . 56

5 A Recommender System for Crowdsourcing Food Rescue Platforms 59

5.1 Introduction . 59
5.2 Related Work . 61
5.3 Anatomy of Food Rescue Operations . 63
5.4 Data . 63

5.4.1 Positive Labels . 63
5.4.2 Negative Labels . 64
5.4.3 Feature Engineering . 64

5.5 Recommender System . 66
5.5.1 Negative Sampling . 67
5.5.2 Diversity and Online Planning . 67

5.6 Experiments . 69
5.6.1 Recommender System . 70
5.6.2 Diversity and Online Planning . 70

5.7 Conclusion and Future Directions . 73

6 The Field Deployment of Food Rescue Algorithms 75

6.1 Deployment of the Generic Notification Scheme 75
6.2 Rescue-Specific Notification Scheme . 76

6.2.1 Setting up the RCT . 76
6.2.2 RCT Results . 76
6.2.3 A Note on Interference . 81

6.3 Permanent Deployment . 82
6.4 Lessons Learned . 82

x

III Machine Learning for Conservation 85

7 NewsPanda: Media Text Monitoring for Timely Conservation Actions 87

7.1 Introduction . 87
7.2 Related Work . 88
7.3 NewsPanda Overview . 89
7.4 Dataset . 90

7.4.1 WHS-Corp Dataset . 90
7.4.2 InfraCorp Dataset . 91

7.5 Relevance Classification Module . 91
7.5.1 Classification Model . 91
7.5.2 Active Learning . 92
7.5.3 Noisy Label Correction . 93

7.6 Article Postprocessing Module . 93
7.6.1 Keyword Extractor . 93
7.6.2 Event Extractor . 94
7.6.3 Geolocation . 94

7.7 Experiments and Results . 95
7.7.1 Experiment Settings . 95
7.7.2 Results and Analysis . 96
7.7.3 Ablation Study . 97

7.8 Deployment and Impact . 98
7.8.1 Pilot Study . 98
7.8.2 Deployment Results . 99
7.8.3 Qualitative and Quantitative Comparison with Current Practice 99
7.8.4 Sustainable Deployment and Broader Impact 100
7.8.5 Lessons Learned . 101

7.9 Conclusion . 102

IV Learning and Planning Towards AI for Social Good 103

8 Bandit Data-driven Optimization: AI for Social Good and Beyond 105

8.1 Introduction . 105
8.2 Related Work . 107
8.3 Bandit Data-driven Optimization . 107
8.4 Algorithms and Regret Analysis . 110

8.4.1 With Exactly Known Objectives . 110
8.4.2 PROOF: Predict-then-Optimize with Optimism in Face of Uncertainty . 113
8.4.3 When Interventions Affect the Label Distribution 115
8.4.4 PROOF Is a Modular Algorithm . 119

8.5 Experiment Results . 119
8.5.1 Numerical Simulations . 119
8.5.2 Food Rescue Volunteer Recommendation 122

xi

8.6 Conclusion . 123

9 Conclusion 125

9.1 Future Directions . 126
9.2 Discussion . 127

A Appendix to Chapter 2 131

A.1 Deferred Algorithms . 131
A.2 Exact Algorithms for Special Cases . 132

A.2.1 Deception cost on discrete features . 132
A.2.2 No budget and feasibility constraints . 134

A.3 Additional Experiments . 135
A.3.1 Experiments in the main text . 135
A.3.2 Experiments for the special cases . 136

A.4 Experiment Parameters and Hyper-parameters 137

B Appendix to Chapter 3 139

B.1 Deferred Algorithms . 139
B.1.1 Attacker’s Better Response Heuristic . 139
B.1.2 Baseline Algorithm for 1 . 139

B.2 Deferred Experiments . 140
B.3 Experiment Parameters . 141
B.4 Discussion . 142

C Appendix to Chapter 8 143

C.1 Regret Bounds Using Sample Complexity Characterization 143
C.2 Details of the Food Rescue Experiment . 145

C.2.1 Recommender System Model . 145
C.2.2 Training . 146

Bibliography 149

xii

List of Figures

2.1 Experimental results . 21

3.1 Anatomy of a watering hole attack. We introduce uncertainty in step 3 of the
attack, so that the attacker gets false information about the user and sends in-
compatible exploits. 29

3.2 Experiment results . 38
3.3 The CyberTWEAK browser extension collects and gives qualitative feedback to

the user, helping the user decide on deception strategies for each website. 40

4.1 Volunteers for 412 Food Rescue receive push notifications about new rescue
opportunities, get detailed information about the rescue on the app, and then
head out to complete the rescue. 44

4.2 Data analysis results. The temperature range 𝑖 represents (10.5𝑖 − 11.5, 10.5𝑖 − 1]◦F. 46
4.3 The stacking model. 48
4.4 Construction of the CCT for INS (𝑥, 𝑦, 𝑧) based on default INS (�̂� , �̂�, 𝑧). 𝑎 is the

rescue’s actual claim time. 𝑑 is the distance from the rescue’s volunteer to the
donor. 51

4.5 The ROC curves of the models . 54
4.6 Experiment results of the data-driven optimization 56

5.1 The workflow of a food rescue operation from the volunteer’s perspective. . . . 62
5.2 We divide the Pittsburgh area into 16 grid cells, with cells 0–14 covering down-

town Pittsburgh and its neighborhoods, and cell 15 containing the rest of the
region. 65

5.3 Rescues are often claimed by volunteers who are nearby. New volunteers are
often the most active. Rainy days see more rescues in downtown than dry days. 66

5.4 Histograms of the number of push notifications received by each volunteer over
all the 1373 rescues in the test set. The online planning algorithm has a budget
of 6 notifications per day. 71

5.5 Histograms of the number of push notifications received by each volunteer over
all the 1373 rescues in the test set, compared across different budget values.
Higher budget leads to some approximately 500 volunteers receiving more no-
tifications. 72

5.6 Hit ratio of the online planing algorithm. Price of online planning, computed
as 1 − 𝐻𝑅online

𝐻𝑅offline
, is shown on the right axis. 73

xiii

6.1 The hit rate and claim rate for all treatment groups as time progressed. Each
day’s data represent the hit/claim rate for all rescues up to that day. 78

7.1 Top: Current costly and time-consuming information gathering pipeline at NGOs.
Bottom: NewsPanda automates multiple steps in the pipeline, enabling humans
to perform the more critical tasks (analysis and action). 88

7.2 NewsPanda pipeline (7.2a) and model diagram for conservation and infrastruc-
ture relevance classifiers (7.2b). 89

7.3 Example of events selected by the Event Extractor (Section 7.6.2) by date. The
progression of the project is highlighted by the phrases in red underline. 94

7.4 Left: The highlighted red areas indicate clusters of articles found by our model.
Right: The WWF GIS system, where each relevant article is shown on the map
with its corresponding key details. 98

7.5 Sample tweet of WildlifeNewsIndia . 101

8.1 Paradigms of how ML systems are used in realistic settings. 105
8.2 Numerical simulation results of PROOF compared against vanilla linear ban-

dit. All results are averaged over 10 runs with shaded areas representing the
standard deviation. 120

8.3 The experiment results on the real-world food rescue data of PROOF compared
against vanilla linear bandit. All results are averaged over 10 runs with shaded
areas representing the standard deviation. 121

A.1 Additional experimental results . 136

xiv

List of Tables

2.1 Example features in cybersecurity . 8
2.2 Feature configuration of a typical credit bureau computer network. 23
2.3 Learning + planning results for 2 types of attackers. 23

3.1 Solution quality of RelaxedLP, with the number of instances whereRelaxedLP
solves the problem exactly. 39

4.1 Two example data points for the predictive model. 47
4.2 GP parameters. Alpha is the dual coefficient of training data points in kernel

space. DP means dot product. 48
4.3 Notations for the optimization problem. 49
4.4 Replace (unspecified) variables in each term with the extreme values to get a

lower bound. 52
4.5 Performance of selected models, GB: Gradient Boosting Classifier, RF: Random

Forest; GP: Gaussian Process; SM: Stacking Model. * We run the experiments
for SM for 3 times. The precisions are 1.0, 1.0, 0.9969. 53

4.6 Running time and the number of INSs for which the CCTs are generated. 54
4.7 The projected change in the probability of interventions and number of noti-

fications of the proposed INSs. The numbers in parentheses are the absolute
change. 55

5.1 Neural network architecture . 66
5.2 Neural network based recommender system achieves better hit ratio and NDCG

than several baselines. All experiments are repeated five times with the mean
and standard deviation shown in the table. 71

6.1 Food rescue metrics before and after the adoption of the recommended INS. . . 75
6.2 Results from the pilot study. Numbers in the parentheses represent the two-

tailed p-value from two-independent-sample proportion z-test (hit rate and claim
rate) or two-independent-sample t-test (claim time, notifications sent), with re-
spect to the control group. 77

6.3 Results from the pilot study for specific regions. Numbers in the parentheses
represent the two-tailed p-value from two-independent-sample proportion z-
test, with respect to the control group. 79

xv

6.4 Results from the pilot study for specific regions. Numbers in the parentheses
represent the two-tailed p-value from two-independent-sample t-test, with re-
spect to the control group. 80

6.5 Changes in user notification preferences before and after the RCT, compared to
a previous period. 80

7.1 Average scores for Conservation Relevance, taken over 10 random seeds. 96
7.2 Average scores for Infrastructure Relevance, taken over 10 random seeds. 96
7.3 Evaluation scores for Conservation Relevance for InfraCorp-A compared with

InfraCorp-R, averaged over 10 random seeds. 97
7.4 Evaluation scores for Conservation Relevance for two noise correction methods,

over 10 random seeds. 97
7.5 Aggregated scores of NewsPanda on weekly articles from March 2022 to July

2022. 100

8.1 A comparison of different models with respect to the desired properties in AI4SG
applications. 108

A.1 FDP parameter distributions for experiments on classical attacker score func-
tion. Used in Fig. 2.1c, A.1c, 2.1f, 2.1g . 137

A.2 FDP parameter distributions for experiments on NN-3 attacker score function.
Used in Fig. 2.1d,2.1e, A.1d, A.1e,2.1h, A.1f . 138

A.3 Hyper-parameters for the experiments. The values between the braces are the
ones we tested. The values after the arrows are the ones we used in generating
the results. 138

B.1 Solution gaps of different greedy heuristics for the adversary best response
problem. Results are averaged over 5 runs on different problem sizes |𝑊 | =
100, 200,… , 500. 141

B.2 Parameter distribution . 141
B.3 Parameter distributions for the experiment on large instances. 142

C.1 Neural network architecture . 146
C.2 Hyperparameters tuning . 147

xvi

Chapter 1

Introduction

Artificial intelligence (AI) is in many ways an important source of change in people’s lives
in the 21st century. Its impact is drastic and real: Youtube’s AI-driven recommendation sys-
tem would present sports videos for days if one happens to watch a live baseball game on
the platform [37]; email writing becomes much faster with machine learning (ML) based auto-
completion [26]; many businesses have adopted natural language processing based chatbots as
part of their customer services [155]. AI has also greatly advanced human capabilities in com-
plex decision-making processes ranging from determining how to allocate security resources to
protect airports [122] to games such as poker [22] and Go [144]. All such tangible and stunning
progress suggests that an “AI summer” is happening. As some put it, “AI is the new electric-
ity” [96].

Meanwhile, in the past decade, an emerging theme in the AI research community is the
so-called “AI for social good” (AI4SG): researchers aim at developing AI methods and tools to
address problems at the societal level and improve the well-being of the society [140]. Over
the years, there have been several successful AI4SG projects, such as guiding municipal water
pipe replacement [3], protecting wildlife from poaching [46], and spreading HIV prevention in-
formation among homeless youth [163]. AI4SG has received recognition from both within and
outside the academic community. Major AI conferences have featured various special tracks
and workshops dedicated to AI4SG, with over 1000 papers on AI4SG topics formally published.
Large companies are expanding their investments on AI4SG initiatives. The need for collabora-
tion among researchers, governments, companies, and non-profit organizations to solve AI4SG
problems has never been more widely appreciated.

1.1 Motivation

In this thesis, we focus on learning and planning in three applications domains: cybersecurity,
food waste and security, and environmental sustainability. These various applications culminate
in an abstracted model on iterative learning and planning.

The world today poses more challenges to cybersecurity than ever before. Despite the ever-
improving security measures, malicious attackers work diligently and creatively to outstrip the
defense [123]. Against an attacker with previously unseen exploits and abundant resources,

1

the attempt to protect any target is almost surely a lost cause [69]. However, the defender
could induce the attacker to attack a less harmful, or even fake, target. This can be seen as a
case of deception. Deception has been extensively studied in cybersecurity [67, 71]. Security
researchers have proposed many deceptive measures to manipulate a machine’s response to
these probes [9, 72], which could confound and mislead an attempt to attack. However, there
lacks a general game-theoretic framework to rigorously reason about strategic deception. It
is also unclear how such game-theoretic cyber deception can be applied to a specific type of
cyber attacks. In Chapter 2, we propose a rigorous learning and planning pipeline to compute
the optimal cyber deception strategy. In Chapter 3, we study cyber deception in a concrete
watering-hole attack setting.

Food waste and food insecurity are two challenges that coexist in many communities. To
mitigate the problem, food rescue platforms match excess food with the communities in need,
and leverage external volunteers to transport the food. Relying on external volunteers to deliver
the food comes with inherent uncertainty. What if no volunteer will claim the rescue? This
uncertainty is prevalent in FR operations and it has serious consequences such as lost faith
in the program from the donor and recipient organizations. Therefore, it is crucial to the food
rescue organizations to be able to predict whether any volunteer is going to claim a given rescue
trip, as well as engage with volunteers to raise their claim rate. In Chapter 4, we develop such
a predictive model to help the food rescue dispatchers manage their outstanding rescues. In
Chapter 5, we develop an online learning and planning recommender system which selectively
sends push notifications to volunteers in order to improve volunteer engagement.

Early detection of built infrastructure projects such as roads and railways by conserva-
tion nonprofits could shift infrastructure planning towards more environmentally sustainable
outcomes. However, information about conservation-related events and infrastructure plans
threatening critical habitats is scattered across numerous sources and comes in different forms.
NGOs typically learn of such information through word-of-mouth or a handful of news out-
lets that they check manually. This process is both time-consuming and ineffective, and it can
potentially fail to capture critical information in a timely manner, leaving these NGOs out of
key conversations during early or ongoing stages of these developments. In Chapter 7, we
developed NewsPanda, an NLP toolkit to analyze news and documents describing emerging
infrastructure threats to conservation areas.

From our work in the application domains above and several other domains emerges a pain
point, which is common across many AI4SG applications. The success of ML often does not
translate directly into a satisfactory solution to a real-world AI4SG problem. One obvious rea-
son is supervised learning focuses on prediction, yet real-world problems, by and large, need
prescription. The common practice is a two-stage procedure, where after training an ML model,
the user makes prescriptive decisions based on some optimization problem parametrized by the
prediction output. However, in a typical workflow in many AI4SG projects, the process does
not stop here. Using the new data collected under the prescribed intervention, the researcher
updates the ML model and recommends a new intervention, so on and so forth, leading to an
iterative process. The principles of these steps are often not aligned. Without a rigorous, in-
tegrated framework to guide the procedure, this could lead to operation inefficiency, missed
expectations, dampened initiatives, and new barriers of mistrust which are not meant to be.
In Chapter 8, we propose the first iterative prediction-prescription framework to study this

2

process.

1.2 Thesis Outline and Contributions

• Part I contains our work on using learning and planning for strategic cyber deception. The
key question is how we interact with an unknown attacker by learning their behavioral
model and design strategies to counter them. While we ground our work in cybersecurity,
the same idea applies to public safety, environmental protection, etc.

In Chapter 2, to rigorously reason about strategic cyber deception, we propose the
Feature Deception Problem framework. We present the first learning and planning
pipeline to compute the optimal deception strategy against an unknown attacker
with optimality guarantee. This work has been published at GameSec 2020 [138].
In Chapter 3, for a specific type of cyberattacks called watering-hole attacks, we
propose the social engineering deception model. We devise the CyberTWEAK al-
gorithm to strategically manipulate network packets to mitigate such attacks. The
work in this and previous chapters is theoretical in nature. Yet, we also develop
a browser extension based on CyberTWEAK which is publicly available on the
Chrome Web Store. This work has been published at IAAI 2020 [139].

• Part II contains our work with 412 Food Rescue on using learning and planning to address
food waste and security. The key question is how to engage volunteers on such crowd-
sourcing platforms by learning their activity patterns and optimize for desired outcomes.
While we ground our work in food waste and security, the same idea applies to many
volunteer-based crowdsourcing platforms.

In Chapter 4, we develop a prediction model to predict whether any volunteer will
claim a given rescue within a predefined time frame. This model could help the food
rescue dispatchers manage their outstanding rescues. In this chapter, we also use
a data-driven approach to find the optimal dispatcher intervention and notification
scheme. 412 Food Rescue has adopted our recommendation since January 2020. This
work has been published at IAAI 2020 [142].
Chapter 5 advances from Chapter 4 in that we build a rescue-specific online algo-
rithm to selectively send push notifications to volunteers in order to improve volun-
teer engagement. The algorithm is based on a recommender system and leverages
historical data to control for unintended consequences. This work has been pub-
lished at WWW 2021 [143].
We have deployed the recommender system in Chapter 5 with 412 Food Rescue
and run a randomized controlled trial (RCT). The RCT showed that our algorithm
improved both the hit rate and the claim rate of the food rescue operation. This is
detailed in Chapter 6.

• Part III contains our work on using machine learning for environmental conservation.
Here, we emphasize two common issues in applied learning and planning pipelines: label
scarcity and label quality. We use techniques from active learning and noisy label learning

3

to address these challenges.
Chapter 7 details NewsPanda, a toolkit which automatically detects and analyzes on-
line articles related to environmental conservation and infrastructure construction
using a BERT-based model. For the identified articles, we perform further analysis,
extracting keywords and finding potentially related sources. This work has been
published at IAAI 2023 and won the IAAI deployed application award [76].

• In Part IV, going beyond the specific application domains in the previous parts, we dis-
till research problem that addresses the common pain points we observed these AI4SG
projects. In contrast to the one-shot learning and planning paradigm studied in previous
chapters, here we propose and study iterative learning and planning.

In Chapter 8, we introduce bandit data-driven optimization as the first iterative
prediction-prescription framework. We develop the PROOF algorithm and formally
show that it achieves sublinear regret. We then apply it to the food rescue problem
studied in Chapter 5. This work has been published at AAAI 2022 [141].

1.3 A Note on Real-World Impact

I believe AI4SG research that only stays on paper does not fulfill its purpose. This belief shaped
my journey, affected my selection of research problems and research paradigm, and ultimately,
manifested itself in the real-world impact that the work in this thesis has achieved.

The RCT in Chapter 6 was the first ever RCT on the food rescue platform. Thus, it involved a
significant amount of preparation, both technical and non-technical. It is currently being rolled
out to 16 different cities across North America. NewsPanda, as detailed in Chapter 7, has been
a cross-team collaboration from the very beginning, as a project involving WWF offices in the
UK, US, India, Nepal, Colombia, and Norway. It has been deployed since February 2022, and
further improvement of NewsPanda has been a continuing effort. Even the work in Part I has
resulted in a software publicly available online.

4

Part I

Learning and Planning for

Cybersecurity

5

Chapter 2

Learning and Planning in the Feature

Deception Problem

In many security domains, deception mitigates the defender’s loss by misleading the attacker to
make suboptimal decisions. In this chapter, we introduce the feature deception problem (FDP),
a domain-independent model to formally reason about deception. We present a learning and
planning framework for finding the optimal deception strategy, taking into account the adver-
sary’s preferences which are initially unknown to the defender. We ground our presentation in
the cybersecurity setting, but the model can be easily adapted to account for the learning and
planning paradigm in other domains such as wildlife conservation, public safety, and so on.

2.1 Introduction

The world today poses more challenges to security than ever before. Consider the cyberspace
or the financial world where a defender is protecting a collection of targets, e.g. servers or
accounts. Despite the ever-improving security measures, malicious attackers work diligently
and creatively to outstrip the defense [123]. Against an attacker with previously unseen exploits
and abundant resources, the attempt to protect any target is almost surely a lost cause [69].
However, the defender could induce the attacker to attack a less harmful, or even fake, target.
This can be seen as a case of deception.

Deception has been an important tactic in military operations for millenia [81]. More re-
cently, it has been extensively studied in cybersecurity [67, 71]. At the start of an attack cam-
paign, attackers typically perform reconnaissance to learn the configuration of the machines in
the network using tools such as Nmap [97]. Security researchers have proposed many deceptive
measures to manipulate a machine’s response to these probes [9, 72], which could confound and
mislead an attempt to attack. In addition, honey-X, such as honeypots, honey users, and honey
files have been developed to attract the attackers to attack these fake targets [146]. For example,
it is reported that country A once created encrypted but fake files with names of country B’s
military systems and marked them to be shared with country A’s intelligence agency [108]. Us-
ing sensitive filenames as bait, country A successfully lured country B’s hackers to these decoy
targets.

7

Feature Observed value Actual value

Operating system Windows 2016 RHEL 7
Service version v1.2 v1.4

IP address 10.0.1.2 10.0.2.1
Open ports 22, 445 22, 1433

Round trip time for probes [136] 16 ms 84 ms

Table 2.1: Example features in cybersecurity

Be it commanding an army or protecting a computer network, a common characteristic
is that the attacker gathers information about the defender’s system to make decisions, and
the defender can (partly) control how her system appears to the surveillance. We formalize
this view, abstract the collected information about the defender’s system that is relevant to at-
tacker’s decision-making as features, and propose the feature deception problem (FDP) to model
the strategic interaction between the defender and the attacker.

It is evident that the FDP model could be applied to many domains by appropriately defining
the relevant set of features. To be concrete, we will ground our discussion in cybersecurity,
where an attacker observes the features of each network node when attempting to fingerprint
the machines (example features shown in the left column of Table 2.1) and then chooses a
node to compromise. Attackers may have different preferences over feature value combinations
when choosing targets to attack. If an intruder has an exploit for Windows machines, a Linux
server might not be attractive. If the attacker is interested in exfiltration, he might choose a
machine running database services. If the defender knows the attacker’s preferences, she could
strategically configure important machines appear undesirable or configure the honeypots to
appear attractive to the attacker, by changing the observed value of the features, e.g. Table 2.1.
However, to make an informed decision, she needs to first learn the attacker’s preferences.

Our Contributions Based on our proposed FDP model, we provide a learning and plan-
ning framework and make three key contributions. First, we analyze the sample complexity of
learning attacker’s preferences. We prove that to learn a classical subclass of preferences that is
typically used in the inverse reinforcement learning and behavioral game theory literature, the
defender needs to gather only a polynomial number of data points on a linear number of feature
configurations. The proof leverages what we call the inverse feature difference matrix (IFD), and
shows that the complexity depends on the norm of this matrix. If the attacker is aware of the
learning, they may try to interfere with the learning process by launching the data-poisoning
attack, a typical threat model in adversarial machine learning. Using the IFD, we demonstrate
the robustness of learning in FDP against this kind of attack. Second, we study the planning
problem of finding the optimal deception strategy against learned attacker’s preferences. We
show that it is NP-hard and propose an approximation algorithm. In addition, we perform ex-
tensive experiments to validate our results. We also conduct a case study to illustrate how our
FDP framework implements deception on the network of a credit bureau.

8

2.2 Related Work

Deception Deception has been studied in many domains, and of immediate relevance is its
use in cybersecurity [131]. Studies have suggested that deceptively responding to an attacker’s
scanning and probing could be a useful defensive measure [9, 72]. Schlenker et al. [135] and
Wang and Zeng [156] propose game-theoretic models where the defender manipulates the
query response to a known attacker. Proposing a domain-independent model, we advance the
state of the art by (1) providing a unified learning and planning framework with theoretical
guarantee which can deal with unknown attackers, (2) extending the finite “type” space in both
papers, where “type” is defined by the combination of feature values, to an infinite feature space
that allows for both continuous and discrete features, and (3) incorporating a highly expressive
bounded rationality model whereas both papers assume perfectly rational attackers.

For the more general case, Horak et al. [67] study a defender that engages an attacker in a se-
quential interaction. A complementary view where the attacker aims at deceiving the defender
is provided in [50, 110]. Different from them, we assume no knowledge of the set of possible
attacker types. In [50, 60, 110, 166] deception is defined as deceptively allocating defensive re-
sources. We study feature deception where no effective tools can thwart an attack, which is
arguably more realistic in high-stakes interactions. When such tools exist, feature deception is
still valuable for strategic defense.

Learning in Stackelberg games Much work has been devoted to learning in Stackelberg
games. Our work is most directly related to that of Haghtalab et al. [61]. They show that three
defender strategies are sufficient to learn a SUQR-like adversary behavior model in Stackelberg
security games. The only decision variable in their model, the coverage probability, may be
viewed as a single feature in FDP. FDP allows for an arbitrary number of features, and this re-
alistic extension makes their key technique inapplicable for analyzing the sample complexity.
Our main learning result also removes the technical constraints on defender strategies present
in their work. Sinha et al. [145] study learning adversary’s preferences in a probably approxi-
mately correct (PAC) setting. However, their learning accuracy depends heavily on the quality
of distribution from which they sample the defender’s strategies. We provide a uniform guar-
antee in a distribution-free context. Other papers [20, 84, 99, 117] study the online learning
setting with rational attackers. As pointed out in [61], considering the more realistic bounded
rationality scenario allows us to make use of historical data and use our algorithm more easily
in practice.

Planning with boundedly rational attackers Yang et al. [164] propose a MILP-based so-
lution in security games. Our planning algorithm goes beyond the coverage probability and
determines the configuration of multiple features, and adopt a more expressive behavior model.
The subsequent papers that incorporate learning with such bounded rationality models do not
provide any theoretical guarantee [45, 165]. A recent work develops a learning and planning
pipeline in security games [118]. However, their algorithm requires the defender know a priori
some parameters in the attacker’s behavior model, and provides no global optimality guaran-
tee.

9

2.3 The Feature Deception Problem

In an FDP, a defender aims to protect a set 𝑁 of 𝑛 targets from an adversary. Each target 𝑖 ∈ 𝑁
has a set 𝑀 of 𝑚 features. The adversary observes these features and then chooses a target to
attack. The defender incurs a loss 𝑢𝑖 ∈ [−1, 1] if the adversary chooses to attack target 𝑖.1 The
defender’s objective is to minimize her expected loss. Now, we introduce several key elements
in FDP. We provide further discussions on some of the assumptions in FDP in the final section.

Features Features are the key element of the FDP model. Each feature has an observed value
and an actual value. The actual value is given and fixed, while the defender can manipulate
the observed value. Only the observed values are visible to the adversary. This ties into the
notion of deception, where one may think of the actual value as representing the “ground truth”
whereas the observed value is what the defender would like the attacker to see. Since deception
means manipulating the attacker’s perceived value of a target, not the actual value, changing
the observable values does not affect the defender’s loss 𝑢𝑖 at each target.

Table 2.1 shows an example in cybersecurity. In practice, there are many ways to imple-
ment deception. For example, a node running Windows (actual feature) manages to reply to
reconnaissance queries in Linux style using tools like OSfuscate. Then the attacker might think
the node is running Linux (observed feature). For IP deception, Jafarian et al. [70] and Chiang
et al. [30] demonstrate methods to present to the attacker a different IP from the actual one.
In addition, when we “fake open” a port with no real vulnerable service runs on it, an attack
on the underlying service will fail. This could be done with command line tools or existing
technologies like Honeyd [127].

Feature representation We represent the observed feature values of target 𝑖 by a vector
𝑥𝑖 = (𝑥𝑖𝑘)𝑘∈𝑀 ∈ [0, 1]𝑚. We denote their corresponding actual values as �̂�𝑖 ∈ [0, 1]𝑚. We allow for
both continuous and discrete features. In practice, we may have categorical features, such as
the type of operating system, and they can be represented using one-hot encoding with binary
features.

Feasibility constraints For a feature 𝑘 with actual value �̂�𝑖𝑘 , the defender can set its observed
value 𝑥𝑖𝑘 ∈ 𝐶(�̂�𝑖𝑘) ⊆ [0, 1], where the feasible set 𝐶(�̂�𝑖𝑘) is determined by the actual value. For
continuous features, we assume 𝐶(�̂�𝑖𝑘) takes the form [�̂�𝑖𝑘 −𝜏𝑖𝑘 , �̂�𝑖𝑘 +𝜏𝑖𝑘]∩[0, 1] where 𝜏𝑖𝑘 ∈ [0, 1].
This captures the feasibility constraint in setting up the observed value of a feature based on
its actual value. Take the round trip time (RTT) as an example. Shamsi et al. fingerprint the
OS using RTT of the SYN-ACK packets [136]. Typical RTTs are in the order of few seconds
(Fig. 4 [136]), while a typical TCP session is 3-5 minutes. Thus, perturbing RTT within a few
seconds is reasonable, but greater perturbation is dubious.

For binary features, 𝐶(�̂�𝑖𝑘) ⊆ {0, 1}. In addition to these feasibility constraints for individual
features, we also allow for linear constraints over multiple features, which could encode natural
constraints for categorical features with one-hot encoding, e.g. ∑𝑘∈𝑀 ′ 𝑥𝑖𝑘 = 1, with 𝑀 ′ ⊆ 𝑀

1Typically, the loss 𝑢𝑖 is non-negative, but it might be negative if, for example, the target is set up as a decoy
or honeypot, and allows the defender to gain information about the attacker.

10

being the subset of features that collectively represent one categorical feature. They may also
encode the realistic considerations when setting up the observed features. For example, 𝑥𝑖𝑘1 +
𝑥𝑖𝑘2 ≤ 1 could mean that a Linux machine (𝑥𝑖𝑘1 = 1) cannot possibly have ActiveX available
(𝑥𝑖𝑘2 = 1).

Budget constraint Deception comes at a cost. We assume the cost is additive across targets
and features: 𝑐 = ∑𝑖∈𝑁 ∑𝑘∈𝑀 𝑐𝑖𝑘 , where 𝑐𝑖𝑘 = 𝜂𝑖𝑘 |𝑥𝑖𝑘 − �̂�𝑖𝑘 |. For a continuous feature 𝑘, 𝜂𝑖𝑘
represents the cost associated with unit of change from the actual value to the observable value.
In the example of RTT deception, defender’s cost is the packet delay which can be considered
linear. If 𝑘 is binary, 𝜂𝑖𝑘 defines the cost of switching states. The defender has a budget 𝐵 to cover
these costs. We note that, though we introduce these explicit forms of feasibility constraints
and cost structure, our algorithms in the sequel are not specific to these forms.

Defender strategies The defender’s strategy is an observed feature configuration 𝑥 = {𝑥𝑖}𝑖∈𝑁 .
The defender uses only pure strategies.

Attacker strategies The attacker’s pure strategy is to choose a target 𝑖 ∈ 𝑁 to attack. Since
human behavior is not perfectly rational and the attacker may have preferences that are un-
known to the defender a priori, we reason about the adversary using a general class of bounded
rationality models. We assume the attacker’s utilities are characterized by a score function
𝑓 ∶ [0, 1]𝑚 → ℝ>0 over the observed feature values of a target. Given observed feature config-
uration 𝑥 = {𝑥𝑖}𝑖∈𝑁 , he attacks target 𝑖 with probability 𝑓 (𝑥𝑖)

∑𝑗∈𝑁 𝑓 (𝑥𝑗)
. 𝑓 may take any form and in

this thesis, we assume that it can be parameterized by or approximated with a neural network
with parameter 𝑤 . In some of the theoretical analyses, we focus on a subclass of functions

𝑓𝑤(𝑥𝑖) = exp(∑𝑘∈𝑀
𝑤𝑘𝑥𝑖𝑘) . (2.1)

We omit the subscript 𝑤 when there is no confusion. This functional form is commonly used
to approximate the agent’s reward or utility function in inverse reinforcement learning and be-
havioral game theory, and has been empirically shown to capture many attacker preferences in
cybersecurity [1]. For example, the tactics of advanced persistent threat group APT10 [128] are
driven by: (1) final goal: they aim at exfiltrating data from workstation machines; (2) expertise:
they employ exploits against Windows workstations; (3) services available: their exploits op-
erate against file sharing and remote desktop services. Thus, APT10 prefer to attack machines
with Windows OS running a file-sharing service on the default port. Each of these properties is
a “feature” in FDP and a score function 𝑓 in Eq (2.1) can assign a greater weight for each of these
features. It can also capture more complex preferences by using hand-crafted features based on
domain knowledge. For example, APT10 typically scan for NetBIOS services (i.e., ports 137 and
138), and Remote Desktop Protocol services (i.e., ports 445 and 3389) to identify systems that
they might get onto [128]. Instead of treating the availability of ports as features, we may de-
sign a binary feature indicating whether each of the service is available (representing an “OR”
relationship of the port availability features). We also show a more efficient way to approxi-
mately handle combinatorial preferences in Section 2.6.4. In addition, this score function also
captures fully rational attackers in the limit.

11

The ultimate goal of the defender is to find the optimal feature configuration against an
unknown attacker. This can be decomposed into two subtasks: learning the attacker’s behavior
model from attack data and planning how to manipulate the feature configuration to minimize
her expected loss based on the learned preferences. In the following sections, we first analyze
the sample complexity of the learning task and then propose algorithms for the planning task.

2.4 Learning the Adversary’s Preferences

The defender learns the adversary’s score function 𝑓 from a set of 𝑑 labeled data points each in
the format of (𝑁 , 𝑥, 𝑦) where 𝑁 is the set of targets and 𝑥 is the observed feature configuration
of all targets in 𝑁 . The label 𝑦 ∈ 𝑁 indicates that the adversary attacks target 𝑦.

In practice, there are two ways to carry out the learning stage. First, the defender can
learn from historical data. Second, the defender can also actively collect data points while
manipulating the observed features of the network. This is often done with honeynets [146],
i.e. a network of honeypots.

No matter which learning mode we use, it is often the case, e.g. in cybersecurity, that the
dataset contains multiple data points with the same 𝑥 , since changing the defender configura-
tion frequently leads to too much overhead. In addition, at the learning stage, only the observed
feature values 𝑥 matter because the attacker does not observe the actual feature values �̂� . The
feasibility constraints 𝐶(�̂�𝑖𝑘) on each feature still apply. Yet, they are irrelevant during learn-
ing because we use either historical data that satisfy these constraints, or honeypots for which
these constraints are vacuous.

To analyze the sample complexity of learning the adversary’s preferences, we focus on the
classical form score function 𝑓 in Eq (2.1). We show that, in an FDP with𝑚 features, the defender
can learn the attacker’s behavior model correctly with high probability, using only 𝑚 observed
feature configurations and a polynomial number of samples. We view this condition as very
mild, because even if the network admin’s historical dataset does not meet the requirement,
she could set up a honeynet to elicit attacks, where she can control the feature configurations
of each target [146]. It is still not free for the defender to change configurations, but attacks on
honeynet do not lead to actual loss since it runs in parallel with the production network.

To capture the multiple features in FDP, we introduce the inverse feature difference matrix

(𝐴𝑠𝑡)−1. Specifically, given observed feature configurations 𝑥1,… , 𝑥𝑚, for any two targets 𝑠, 𝑡 ∈
𝑁 , let 𝐴𝑠𝑡 be the 𝑚 × 𝑚 matrix whose (𝑖, 𝑗)-entry is 𝑎𝑠𝑡𝑖𝑗 = 𝑥 𝑖

𝑠𝑗 − 𝑥 𝑖
𝑡𝑗 . 𝐴𝑠𝑡 captures the matrix-

level correlation among feature configurations. We use the matrix norm of (𝐴𝑠𝑡)−1 to bound the
learning error.

For feature configuration 𝑥 , let 𝐷𝑥 (𝑡) = 𝑓 (𝑥𝑡)
∑𝑖∈𝑁 𝑓 (𝑥𝑖)

be the attack probability on target 𝑡 . We
assume 𝜌 ∶= min𝑥,𝑡 𝐷𝑥 (𝑡) > 0. Let 𝛼 = min𝑠≠𝑡 ||(𝐴𝑠𝑡)−1||, where || ⋅ || is the matrix norm induced by
the 𝐿1 vector norm, i.e. ||(𝐴𝑠𝑡)−1|| = sup𝑦≠0

|(𝐴𝑠𝑡)−1𝑦 |
|𝑦 | . Our result is stated as the following theorem.

Theorem2.4.1. Consider𝑚 observed feature configurations 𝑥1, 𝑥2,… , 𝑥𝑚 ∈ [0, 1]𝑚𝑛
. WithΩ(𝛼4𝑚4

𝜌𝜖2 log 𝑛𝑚
𝛿)

samples for each of the𝑚 feature configurations, with probability 1 − 𝛿 , we can learn a score func-
tion 𝑓 (⋅) with uniform multiplicative error 𝜖 of the true 𝑓 (⋅), i.e., 1

1+𝜖 ≤
𝑓 (𝑥𝑖)
𝑓 (𝑥𝑖)

≤ 1 + 𝜖, ∀𝑥𝑖 .

12

Proof. Let �̂�𝑥 (𝑡) = 𝑓 (𝑥𝑡)
∑𝑖∈𝑁 𝑓 (𝑥𝑖)

. We leverage a known result from behavioral game theory [61]. It
cannot be directly translated to sample complexity guarantee in FDP because of the correlation
among feature configurations, but we use it to reason about attack probabilities in proving
Theorem 2.4.1.
Lemma 2.4.2. [61] Given observable features 𝑥 ∈ [0, 1]𝑚𝑛

, and Ω(1
𝜌𝜖2 log

𝑛
𝛿) samples, we have

1
1+𝜖 ≤

�̂�𝑥 (𝑡)
𝐷𝑥 (𝑡) ≤ 1 + 𝜖 with probability 1 − 𝛿 , for all 𝑡 ∈ 𝑁 .

Fix 𝜖, 𝛿 > 0. From Eq. (2.1), for each 𝑥 𝑖 where 𝑖 = 1, 2,… , 𝑚, we have
𝑚

∑
𝑗=1

𝑤𝑗(𝑥 𝑖
𝑠𝑗 − 𝑥 𝑖

𝑡𝑗) = ln
𝐷𝑥 𝑖 (𝑠)
𝐷𝑥 𝑖 (𝑡)

, ∀𝑠, 𝑡 ∈ 𝑁 , 𝑠 ≠ 𝑡

Let
𝑏𝑠𝑡 = (ln

𝐷𝑥1(𝑠)
𝐷𝑥1(𝑡)

,… , ln
𝐷𝑥𝑚 (𝑠)
𝐷𝑥𝑚 (𝑡)

)𝑇 .

The system of equations above can be represented by 𝐴𝑠𝑡𝑤 = 𝑏𝑠𝑡 . It is known that ||𝐴𝑠𝑡 || =
max1≤𝑗≤𝑚 ∑𝑚

𝑖=1 |𝑎𝑠𝑡𝑖𝑗 |. In our case, the feature values are bounded in [0, 1] and thus |𝑎𝑠𝑡𝑖𝑗 | ≤ 1. This
yields ||𝐴𝑠𝑡 || ≤ 𝑚. Now, choose 𝑠, 𝑡 such that ||(𝐴𝑠𝑡)−1|| = 𝛼 . Suppose 𝐴𝑠𝑡 is invertible.

Let 𝜖′ = 𝜖
4𝛼2𝑚2 and 𝛿 ′ = 𝛿

𝑚 . Suppose we have Ω(1
𝜌𝜖′2 log

𝑛
𝛿 ′) samples. From Lemma 2.4.2, for

any node 𝑟 ∈ 𝑁 and any feature configuration 𝑥 𝑖 where 𝑖 = 1, 2,… , 𝑚, 1
1+𝜖′ ≤

�̂�𝑥𝑖 (𝑟)
𝐷𝑥𝑖 (𝑟)

≤ 1 + 𝜖′ with
probability 1 − 𝛿 ′. The bound holds for all strategies simultaneously with probability at least
1 −𝑚𝛿 ′ = 1 − 𝛿 , using a union bound argument. In particular, for our chosen nodes 𝑠 and 𝑡 , we
have

1
(1 + 𝜖′)2

≤
�̂�𝑥 𝑖 (𝑠)
�̂�𝑥 𝑖 (𝑡)

𝐷𝑥 𝑖 (𝑡)
𝐷𝑥 𝑖 (𝑠)

≤ (1 + 𝜖′)2, ∀𝑖 = 1,… , 𝑚

Define �̂�𝑠𝑡 similarly as 𝑏𝑠𝑡 but using empirical distribution �̂� instead of true distribution 𝐷.
Let 𝑒 = �̂�𝑠𝑡 − 𝑏𝑠𝑡 . Then, for each 𝑖 = 1,… , 𝑚, we have

−2𝜖′ ≤ 2 ln
1

1 + 𝜖′
≤ 𝑒𝑖 = ln

�̂�𝑥 𝑖 (𝑠)𝐷𝑥 𝑖 (𝑡)
�̂�𝑥 𝑖 (𝑡)𝐷𝑥 𝑖 (𝑠)

≤ 2 ln(1 + 𝜖′) ≤ 2𝜖′

Therefore, we have |𝑒| ≤ 2𝜖′𝑚. Let �̂� be such that 𝐴𝑠𝑡�̂� = �̂�𝑠𝑡 , i.e. �̂� −𝑤 = (𝐴𝑠𝑡)−1𝑒. Observe that
|(𝐴𝑠𝑡)−1𝑒|/|(𝐴𝑠𝑡)−1𝑏𝑠𝑡 |

|𝑒|/|𝑏𝑠𝑡 |
≤ max

𝑒,�̃�𝑠𝑡≠0

|(𝐴𝑠𝑡)−1𝑒|/|(𝐴𝑠𝑡)−1�̃�𝑠𝑡 |
|𝑒|/|�̃�𝑠𝑡 |

= max
𝑒≠0

|(𝐴𝑠𝑡)−1𝑒|
|𝑒|

max
�̃�𝑠𝑡≠0

|�̃�𝑠𝑡 |
|(𝐴𝑠𝑡)−1�̃�𝑠𝑡 |

= max
𝑒≠0

|(𝐴𝑠𝑡)−1𝑒|
|𝑒|

max
𝑦≠0

|𝐴𝑠𝑡𝑦 |
|𝑦 |

= ||(𝐴𝑠𝑡)−1|| ⋅ ||𝐴𝑠𝑡 ||

This leads to

|(𝐴𝑠𝑡)−1𝑒| ≤ ||(𝐴𝑠𝑡)−1|| ⋅ ||𝐴𝑠𝑡 || ⋅ |𝑒| ⋅
|(𝐴𝑠𝑡)−1𝑏𝑠𝑡 |

|𝑏𝑠𝑡 |

≤ ||(𝐴𝑠𝑡)−1|| ⋅ ||𝐴𝑠𝑡 || ⋅ |𝑒| ⋅max
�̃�𝑠𝑡≠0

|(𝐴𝑠𝑡)−1�̃�𝑠𝑡 |
|�̃�𝑠𝑡 |

= ||(𝐴𝑠𝑡)−1||2 ⋅ ||𝐴𝑠𝑡 || ⋅ |𝑒| ≤ 𝛼2𝑚(2𝜖′𝑚)

13

For any observable feature configuration 𝑥 ,

||||||(

𝑚

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗)
−
(

𝑚

∑
𝑗=1

�̂�𝑗𝑥𝑖𝑗)

||||||
≤

𝑚

∑
𝑗=1

|�̂�𝑗 − 𝑤𝑗 | = |(𝐴𝑠𝑡)−1𝑒| ≤ 𝛼2𝑚(2𝜖′𝑚) =
𝜖
2

Therefore,
1

1 + 𝜖
≤
𝑓 (𝑥𝑖)
𝑓 (𝑥𝑖)

≤ 1 + 𝜖.

It is easy to see that we do not have to use the same pair of targets (𝑠, 𝑡) for every feature
configuration. In fact, this result can be easily adapted to allow for each feature configuration
being implemented on a different system with a different set and number of targets. Instead of
defining 𝐴𝑠𝑡 and 𝑏𝑠𝑡 , we could define 𝐴 and 𝑏, where row 𝑖 of 𝐴 and 𝑖-th entry of 𝑏 correspond
to feature configuration 𝑥 𝑖 and targets (𝑠𝑖 , 𝑡 𝑖). If feature configuration 𝑥 𝑖 is implemented on a
system with 𝑛𝑖 targets, we need Ω(1

𝜌𝜖′2 log
𝑛𝑖
𝛿 ′) samples from this system, and then the argument

above still holds.
The 𝛼 in Theorem 2.4.1 need not be large, especially if the defender can select the feature

configurations to collect data and elicit preferences. Consider a sequence of 𝑚 feature config-
urations 𝑥1,… , 𝑥𝑚, and focus on targets 1 and 2. For each 𝑥 𝑗 , let the features on target 1 be
identical to target 2, except for the 𝑗-th feature, where 𝑥 𝑗

1𝑗 = 1 and 𝑥 𝑗
2𝑗 = 0. This leads to 𝐴12 = 𝐼 ,

and 𝛼 ≤ 1. This also shows that it is not hard to set up the configurations such that 𝐴𝑠𝑡 is
nonsingular.

An adversary who is aware of the defender’s learning procedure might sometimes intention-
ally attack without following his true score function 𝑓 , to mislead the defender. The following
theorem states that the defender can still learn an approximately correct 𝑓 even if the attacker
contaminates a 𝛾 fraction of the data.
Theorem 2.4.3. In the setting of Theorem 2.4.1, if the attacker modifies a 𝛾 ≤ 𝜖𝜌

4𝛼𝑚 fraction of the

data points for each feature configuration, the function 𝑓 can be learned within multiplicative error

3𝜖.

Proof. Fix two nodes 𝑠, 𝑡 . Recall that in Theorem 2.4.1, without data poisoning, we learned the
weights 𝑤 by solving the linear equations 𝐴𝑠𝑡�̃� = �̃�𝑠𝑡 based on the empirical distribution of
attacks, where �̃�𝑠𝑡 = (ln �̃�𝑥1 (𝑠)

�̃�𝑥1 (𝑡)
,… , ln �̃�𝑥𝑚 (𝑠)

�̃�𝑥𝑚 (𝑡)).
2 Denote a parallel system of equations 𝐴𝑠𝑡�̂� = �̂�𝑠𝑡

which uses the poisoned data. We are interested in bounding |�̂� − �̃� | = |(𝐴𝑠𝑡)−1(�̂�𝑠𝑡 − �̃�𝑠𝑡)|.
Consider the 𝑘-th entry in the vector �̂�𝑠𝑡 − �̃�𝑠𝑡 :

|(�̂�𝑠𝑡 − �̃�𝑠𝑡)𝑘 | =
|||||
ln

�̂�𝑥𝑘 (𝑠)
�̂�𝑥𝑘 (𝑡)

�̃�𝑥𝑘 (𝑡)
�̃�𝑥𝑘 (𝑠)

|||||

To simplify the notations, we denote �̃�𝑥𝑘 (𝑡) = 𝛾 𝑘
𝑡 and �̃�𝑥𝑘 (𝑠) = 𝛾 𝑘

𝑠 , and without loss of generality,
assume 𝛾 𝑘

𝑡 ≤ 𝛾 𝑘
𝑠 . To find an upper bound of RHS of the above equation, we define function

2Refer to the proof of Theorem 2.4.1 for the notations used.

14

𝑔(𝛾1, 𝛾2) = 𝛾 𝑘𝑡 (𝛾 𝑘𝑠 +𝛾1)
𝛾 𝑘𝑠 (𝛾 𝑘𝑡 −𝛾2)

, and define function ℎ(𝛾1, 𝛾2) = | ln 𝑔(𝛾1, 𝛾2)|. The constraint that the attacker
can only change 𝛾 fraction of the points translates into |𝛾1|, |𝛾2|, |𝛾1−𝛾2| ≤ 𝛾 . Since 𝑔 is increasing
in 𝛾1 and 𝛾2, 𝑔 attains maximum at (𝛾1, 𝛾2) = (𝛾 , 𝛾) and minimum at (𝛾1, 𝛾2) = (−𝛾 , −𝛾), which are
the only two possible maxima of ℎ. Observe that 𝑔(𝛾 , 𝛾) ≥ 1 and 𝑔(−𝛾 , −𝛾) ≤ 1. It then suffices
to compare 𝑔(𝛾 , 𝛾) with 1/𝑔(−𝛾 , −𝛾):

1/𝑔(−𝛾 , −𝛾)
𝑔(𝛾 , 𝛾)

=
𝛾𝑠(𝛾𝑡 + 𝛾)
𝛾𝑡(𝛾𝑠 − 𝛾)

𝛾𝑠(𝛾𝑡 − 𝛾)
𝛾𝑡(𝛾𝑠 + 𝛾)

=
𝛾 2
𝑠 𝛾 2

𝑡 − 𝛾 2
𝑠 𝛾 2

𝛾 2
𝑡 𝛾 2

𝑠 − 𝛾 2
𝑡 𝛾 2 ≤ 1

Therefore, ℎ(𝛾1, 𝛾2) is maximized at (𝛾1, 𝛾2) = (𝛾 , 𝛾). From here, we obtain

|(�̂�𝑠𝑡 − �̃�𝑠𝑡)𝑘 | ≤ ln
(𝛾 𝑘

𝑠 + 𝛾)𝛾 𝑘
𝑡

(𝛾 𝑘
𝑡 − 𝛾)𝛾 𝑘

𝑠
= ln((1 +

𝛾
𝛾 𝑘
𝑠)(1 +

𝛾
𝛾 𝑘
𝑡 − 𝛾))

≤
𝛾
𝛾 𝑘
𝑠
+

𝛾
𝛾 𝑘
𝑡 − 𝛾

.

Recall that
|||(𝐴

𝑠𝑡)−1(�̂�𝑠𝑡 − �̃�𝑠𝑡)|||
|||�̂�

𝑠𝑡 − �̃�𝑠𝑡 |||
≤ sup

𝑦≠0

||(𝐴
𝑠𝑡)−1𝑦 ||
|𝑦 |

= ||(𝐴𝑠𝑡)−1|| = 𝛼

Thus, we get

|�̂� − �̃� | = |(𝐴𝑠𝑡)−1(�̂�𝑠𝑡 − �̃�𝑠𝑡)| ≤ 𝛼 |||�̂�
𝑠𝑡 − �̃�𝑠𝑡 ||| ≤ 𝛼

𝑚

∑
𝑘=1

(
𝛾
𝛾 𝑘
𝑠
+

𝛾
𝛾 𝑘
𝑡 − 𝛾)

Note that by Lemma 2.4.2, we have 𝛾 𝑘
𝑡 ≥ 𝜌

1+𝜖′ ≥ 𝜌
2 . Since we assumed that 𝛾 ≤ 𝜖𝜌

4𝛼𝑚 ≤ 𝜖𝜌
4 , we

know that 𝛾 ≤ 𝛾𝑡/2. Thus, we get

|�̂� − �̃� | ≤ 𝛼
𝑚

∑
𝑘=1

(
𝛾
𝛾 𝑘
𝑠
+
2𝛾
𝛾 𝑘
𝑡)

≤
3𝜖(1 + 𝜖′)

4
≤
3
4
𝜖 (1 +

1
4
𝜖)

From here, using the triangle inequality, we have

|�̂� − 𝑤 | ≤ |�̂� − �̃� | + |�̃� − 𝑤 | ≤
3
4
𝜖 (1 +

1
4
𝜖) +

𝜖
2
≤
3
2
𝜖

Thus, in the end, we get
1

1 + 3𝜖
≤
𝑓 (𝑥𝑖)
𝑓 (𝑥𝑖)

≤ 1 + 3𝜖.

For a general score function 𝑓𝑤 , gradient-based optimizer, e.g. RMSProp [63] can be applied
to learn 𝑤 through maximum-likelihood estimation.

𝑤 = argmax
𝑤′

∑
𝑗∈[𝑑] [𝐿

𝑗
𝑤′(𝑁 𝑗 , 𝑥 𝑗 , 𝑦 𝑗)]

𝐿𝑗𝑤′(𝑁 𝑗 , 𝑥 𝑗 , 𝑦 𝑗) = log(𝑓𝑤′(𝑥 𝑗
𝑦 𝑗)) − log(∑

𝑖∈𝑁 𝑗 𝑓𝑤′(𝑥 𝑗
𝑖))

However, it is not guaranteed to find the optimal solution given the non-convexity of 𝐿.

15

2.5 Computing the Optimal Feature Configuration

We now embark on our second task: assuming the (learned) adversary’s behavior model, com-
pute the optimal observed feature configuration to minimize the defender’s expected loss. For
any score function, the problem can be formulated as the following mathematical program
(MP).

min
𝑥

∑𝑖∈𝑁 𝑓 (𝑥𝑖)𝑢𝑖
∑𝑖∈𝑁 𝑓 (𝑥𝑖)

(2.2)

𝑠.𝑡. ∑
𝑖∈𝑁

∑
𝑘∈𝑀

𝜂𝑖𝑘 |𝑥𝑖𝑘 − �̂�𝑖𝑘 | ≤ 𝐵 (2.3)

Categorical feature constraints (2.4)
𝑥𝑖𝑘 ∈ 𝐶(�̂�𝑖𝑘) ∀𝑖 ∈ 𝑁 , 𝑘 ∈ 𝑀 (2.5)

This MP is typically non-convex and very difficult to solve. We show that the decision version
of FDP is NP-complete. Hence, finding the optimal feature configuration is NP-hard. In fact,
this holds even when there is only a single binary feature and the score function 𝑓 takes the
form in Eq. (2.1).
Theorem 2.5.1. FDP is NP-complete.

Proof. We reduce from the Knapsack problem: given 𝑣 ∈ [0, 1]𝑛, 𝜔 ∈ ℝ𝑛
+,Ω, 𝑉 ∈ ℝ+, decide

whether there exists 𝑦 ∈ {0, 1}𝑛 such that ∑𝑛
𝑖=1 𝑣𝑖𝑦𝑖 ≥ 𝑉 and ∑𝑛

𝑖=1 𝜔𝑖𝑦𝑖 ≤ Ω.
We construct an instance of FDP. Let the set of targets be 𝑁 = {1,… , 𝑛 + 1}, and let there

be a single binary feature, i.e. 𝑀 = {1} and 𝑥𝑖1 ∈ {0, 1} for each 𝑖 ∈ 𝑁 . Since there is only
one feature, we abuse the notation by using 𝑥𝑖 = 𝑥𝑖1. Suppose each target’s actual value of the
feature is �̂�𝑖 = 0. Consider a score function 𝑓 with 𝑓 (0) = 1 and 𝑓 (1) = 2. For each 𝑖 ∈ 𝑁 , let
𝑢𝑖 = (1 − 𝑣𝑖)/𝛿 if 𝑖 ≠ 𝑛 + 1, and 𝑢𝑛+1 = (1 + 𝑉 +∑𝑛

𝑖=1 𝑣𝑖)/𝛿 . Choose a large enough 𝛿 ≥ 1 so that
𝑢𝑛+1 ≤ 1. For each 𝑖 ∈ 𝑁 , let 𝜂𝑖 = 𝜔𝑖 if 𝑖 ≠ 𝑛 + 1, and 𝜂𝑛+1 = 0. Finally, let the budget 𝐵 = Ω.

For a solution 𝑦 to a Knapsack instance, we construct a solution 𝑥 to the above FDP where
𝑥𝑖 = 𝑦𝑖 for 𝑖 ≠ 𝑛 + 1, and 𝑥𝑛+1 = 0. We know ∑𝑖∈𝑁 𝜂𝑖 |𝑥𝑖 − �̂�𝑖 | = ∑𝑖∈𝑁 𝜂𝑖𝑥𝑖 ≤ 𝐵 if and only if
∑𝑛

𝑖=1 𝜔𝑖𝑦𝑖 ≤ Ω. Since 𝑓 (𝑥𝑖) > 0 for all 𝑥𝑖 , ∑𝑖∈𝑁 𝑓 (𝑥𝑖)𝑢𝑖
∑𝑖∈𝑁 𝑓 (𝑥𝑖)

≤ 1/𝛿 if and only if ∑𝑖∈𝑁 (1 − 𝛿𝑢𝑖)𝑓 (𝑥𝑖) ≥ 0. Note
that ∑𝑖∈𝑁 (1 − 𝛿𝑢𝑖) = ∑𝑛

𝑖=1 𝑣𝑖(𝑦𝑖 + 1) −∑
𝑛
𝑖=1 𝑣𝑖 − 𝑉 . Thus, 𝑦 is a certificate of Knapsack if and only

if 𝑥 is feasible for FDP and the defender’s expected loss is at most 1/𝛿 .

Despite the negative results for the general case, we design an approximation algorithm
for the classical score function in Eq. (2.1) based on mixed integer linear programming (MILP)
enhanced with binary search. As shown in Sec 2.6, it can solve medium sized problems (up to
200 targets) efficiently. Given 𝑓 (𝑥𝑖) = exp(∑𝑘∈𝑀 𝑤𝑘𝑥𝑖𝑘), scaling the score by a factor of 𝑒−𝑊 does
not affect the attack probability, where 𝑊 = |𝑤 | is the 𝐿1 norm of 𝑤 = (𝑤1,… , 𝑤𝑚). Thus, we
treat the score function as 𝑓 (𝑥𝑖) = exp(∑𝑘∈𝑀 𝑤𝑘𝑥𝑖𝑘 −𝑊).

With slight abuse of notation, we denote the score of target 𝑖 as 𝑓𝑖 . Let 𝑧𝑖 = ∑𝑘∈𝑀 𝑤𝑘𝑥𝑖𝑘 −
𝑊 ∈ [−2𝑊, 0]. We divide the interval [−2𝑊, 0] into 2𝑊 /𝜖 subintervals, each of length 𝜖. On
interval [−𝑙𝜖, −(𝑙 − 1)𝜖] with 𝑙 = 0, 1,… , 2𝑊 /𝜖, we approximate the function 𝑒𝑧𝑖 with the line
segment of slope 𝛾𝑙 connecting the points (−𝑙𝜖, 𝑒−𝑙𝜖) and (−(𝑙 − 1)𝜖, 𝑒−(𝑙−1)𝜖). We use this method
to approximate 𝑓𝑖 in the following mathematical program 1. We represent 𝑧𝑖 = −∑𝑙 𝑧𝑖𝑙 ,

16

where each variable 𝑧𝑖𝑙 indicates the quantity 𝑧𝑖 takes up on the interval [−𝑙𝜖, −(𝑙 − 1)𝜖]. The
constraints in Eq. (2.9)-(2.10) ensure that 𝑧𝑖(𝑙+1) > 0 only if 𝑧𝑖𝑙 = 𝜖. While 1 is not technically
a MILP, we can linearize the objective and the constraint involving absolute value following a
standard procedure [147]. The full MILP formulation can be found in Appendix A.1.

(1) min
𝑓 ,𝑧,𝑥,𝑦

∑𝑖 𝑓𝑖𝑢𝑖
∑𝑖 𝑓𝑖

(2.6)

𝑠.𝑡. 𝑓𝑖 = 𝑒−2𝑊 +∑
𝑙
𝛾𝑙(𝜖 − 𝑧𝑖𝑙), ∀𝑖 ∈ 𝑁 (2.7)

∑
𝑘∈𝑀

𝑤𝑘𝑥𝑖𝑘 −𝑊 = −∑
𝑙
𝑧𝑖𝑙 , ∀𝑖 ∈ 𝑁 (2.8)

𝜖𝑦𝑖𝑙 ≤ 𝑧𝑖𝑙 , 𝑧𝑖(𝑙+1) ≤ 𝜖𝑦𝑖𝑙 , ∀𝑙, ∀𝑖 ∈ 𝑁 (2.9)
𝑧𝑖𝑙 ∈ [0, 𝜖], 𝑦𝑖𝑙 ∈ {0, 1}, ∀𝑙, ∀𝑖 ∈ 𝑁 (2.10)
Constraints (2.3)-(2.5)

We can now establish the following bound.
Theorem 2.5.2. Given 𝜖 < 1, the MILP is a 2𝜖2-approximation to the original problem.

Proof. To analyze the approximation bound of this MILP, we first need to analyze the tightness
of the linear approximation. Consider two points 𝑠1, 𝑠2 where 𝑠2 − 𝑠1 = 𝜖. The line segment is
𝑡(𝑠) = 1

𝜖 (𝑒
𝑠2 − 𝑒𝑠1)𝑠 − 1

𝜖 (𝑒
𝑠2 − 𝑒𝑠1)𝑠1 + 𝑒𝑠1 . Let Δ(𝑠) be the ratio between the line and 𝑒𝑠 on the interval

[𝑠1, 𝑠2]. It is easy to find that Δ(𝑠) is maximized at

𝑠∗ = 1 + 𝑠1 −
𝜖

𝑒𝜖 − 1
, with Δ(𝑠∗) =

𝑒𝜖−1
𝜖

exp{1 − 𝜖
𝑒𝜖−1}

.

Now, let 𝑣 = 𝑒𝜖−1
𝜖 . It is known that 𝑣 ∈ [1, 1 + 𝜖] when 𝜖 < 1.7. Note that 𝛿(𝑥 ∗) = 𝑣 exp{ 1

𝑣 − 1} ≤
1 + (𝑣 − 1)2/2, which holds for all 𝑣 ≥ 1. Let 𝑓 (⋅) be the piecewise linear approximation. For any
target 𝑖 and observable feature configuration 𝑥𝑖 , we have

𝑓 (𝑥𝑖)
𝑓 (𝑥𝑖)

≤ 𝑣 ≤ 1 +
𝜖2

2
.

Let 𝑥 ∗ be the optimal observable features against the true score function 𝑓 , and let 𝑥 ′ be the
optimal observable features to the above MILP. Let 𝑈 (⋅) be the defender’s expected loss, and
�̂� (⋅) be the approximate defender’s expected loss. For any observable feature configuration 𝑥 ,
we have

|�̂� (𝑥) − 𝑈 (𝑥)| =
|||||

∑𝑖 𝑓 (𝑥𝑖)𝑢𝑖
∑𝑖 𝑓 (𝑥𝑖)

−
∑𝑖 𝑓 (𝑥𝑖)𝑢𝑖
∑𝑖 𝑓 (𝑥𝑖)

|||||

=
|||||

∑𝑖 𝑓 (𝑥𝑖)𝑢𝑖
∑𝑖 𝑓 (𝑥𝑖)

−
∑𝑖 𝑓 (𝑥𝑖)𝑢𝑖
∑𝑖 𝑓 (𝑥𝑖)

+
∑𝑖 𝑓 (𝑥𝑖)𝑢𝑖
∑𝑖 𝑓 (𝑥𝑖)

−
∑𝑖 𝑓 (𝑥𝑖)𝑢𝑖
∑𝑖 𝑓 (𝑥𝑖)

|||||

≤
2

∑𝑖 𝑓 (𝑥𝑖)

|||||
∑
𝑖
𝑓 (𝑥𝑖) −∑

𝑖
𝑓 (𝑥𝑖)

|||||
= 2

(
∑𝑖 𝑓 (𝑥𝑖)
∑𝑖 𝑓 (𝑥𝑖)

− 1
)

≤ 𝜖2

17

Therefore, we obtain

𝑈 (𝑥 ′) − 𝑈 (𝑥 ∗) = 𝑈 (𝑥 ′) − �̂� (𝑥 ′) + �̂� (𝑥 ′) − 𝑈 (𝑥 ∗)

≤ 𝑈 (𝑥 ′) − �̂� (𝑥 ′) + �̂� (𝑥 ∗) − 𝑈 (𝑥 ∗) ≤ 2𝜖2

Algorithm 1: Milp-bs
1 Initialize 𝐿 = −1, 𝑈 = 1, 𝛿 = 0, 𝜖𝑏𝑠
2 while 𝑈 − 𝐿 > 𝜖𝑏𝑠 do
3 Solve the MILP 1 with objective in Eq. (2.11).
4 if objective value < 0 then
5 Let 𝑈 = 𝛿
6 else

7 Let 𝐿 = 𝛿

8 return 𝑈 , the MILP solution when 𝑈 was last updated.

While 1 could be transformed into a MILP, the necessary linearization introduces many
additional variables, increasing the size of the problem. To improve scalability, we perform
binary search on the objective value 𝛿 . Specifically, the objective at each iteration of the binary
search becomes

min
𝑓 ,𝑧,𝑥,𝑦

∑
𝑖
𝑓𝑖𝑢𝑖 − 𝛿 ∑

𝑖
𝑓𝑖 . (2.11)

At each iteration, if the objective value of Eq. (2.11) is negative, we update the binary search
upper bound, and update the lower bound if positive. We proceed to the next iteration until the
gap between the bounds is smaller than tolerance 𝜖𝑏𝑠 and then we output the solution 𝑥𝑏𝑠 when
the upper bound was last updated. The complete procedure is given as Alg. 1. Since Eq. (2.11)
is linear itself, we no longer need to perform linearization on it to obtain a MILP. This leads to
significant speedup as we show later. We also preserve the approximation bound using triangle
inequalities.
Theorem 2.5.3. Given 𝜖 < 1 and tolerance 𝜖bs, binary search gives a (2𝜖2 + 𝜖bs)-approximation.

Proof. Suppose binary search terminates with interval of length 𝑈 − 𝐿 ≤ 𝜖𝑏𝑠 , and observable
features 𝑥𝑏𝑠 . Both 𝑥𝑏𝑠 and the optimal observable features 𝑥 ′ to the MILP lie in this interval.
This means 𝑈 (𝑥𝑏𝑠 , 𝑓) − 𝑈 (𝑥 ′, 𝑓) ≤ 𝜖𝑏𝑠 . Recall that 𝑥 ∗ is the optimal observable features against
the true score function 𝑓 . Therefore, we have

𝑈 (𝑥𝑏𝑠 , 𝑓) − 𝑈 (𝑥 ∗, 𝑓) = 𝑈 (𝑥𝑏𝑠 , 𝑓) − 𝑈 (𝑥𝑏𝑠 , 𝑓) + 𝑈 (𝑥𝑏𝑠 , 𝑓) − 𝑈 (𝑥 ∗, 𝑓)

≤ 𝑈 (𝑥𝑏𝑠 , 𝑓) − 𝑈 (𝑥𝑏𝑠 , 𝑓) + 𝑈 (𝑥 ′, 𝑓) + 𝜖𝑏𝑠 − 𝑈 (𝑥 ∗, 𝑓)

≤ 𝑈 (𝑥𝑏𝑠 , 𝑓) − 𝑈 (𝑥𝑏𝑠 , 𝑓) + 𝑈 (𝑥 ∗, 𝑓) + 𝜖𝑏𝑠 − 𝑈 (𝑥 ∗, 𝑓)
≤ 2𝜖2 + 𝜖𝑏𝑠

18

Now, we connect the learning and planning results together. Suppose we learned an ap-
proximate score function 𝑓 (Theorem 2.4.1), and we find an approximately optimal feature con-
figuration (Theorem 2.5.2) assuming 𝑓 . The following result shows that we can still guarantee
end-to-end approximate optimality.
Theorem 2.5.4. Suppose for some 𝜖 ≤ 1/4, 1

1+𝜖 <
𝑓 (𝑥𝑖)
𝑓 (𝑥𝑖)

< 1 + 𝜖 for all 𝑥𝑖 . Then, |𝑈 (𝑥, 𝑓) − 𝑈 (𝑥, 𝑓)| ≤
4𝜖 for all 𝑥 . Let 𝑥 ∗ = argmin𝑥 𝑈 (𝑥, 𝑓) and 𝑥 ′′

be such that 𝑈 (𝑥 ′′, 𝑓) ≤ min𝑥 𝑈 (𝑥, 𝑓) + 𝜂, then
𝑈 (𝑥 ′′, 𝑓) − 𝑈 (𝑥 ∗, 𝑓) ≤ 8𝜖 + 𝜂.

Proof. Let 𝑓 (𝑥𝑖) = exp(∑𝑘 �̂�𝑘𝑥𝑖𝑘) and 𝑓 (𝑥𝑖) = exp(∑𝑘 𝑤𝑘𝑥𝑖𝑘). Since

1
1 + 𝜖

<
𝑓 (𝑥𝑖)
𝑓 (𝑥𝑖)

< 1 + 𝜖,

we get

− 𝜖 ≤ − ln(1 + 𝜖) < ∑
𝑘
(�̂�𝑘 − 𝑤𝑘)𝑥𝑖𝑘 = ln

𝑓 (𝑥𝑖)
𝑓 (𝑥𝑖)

< ln(1 + 𝜖) ≤ 𝜖.

That is, | ∑𝑘(�̂�𝑘 − 𝑤𝑘)𝑥𝑖𝑘 | < 𝜖. The proof of Theorem 3.7 in [61] now follows to prove the first
part of Theorem 2.5.4 if we redefine their 𝑢𝑖(𝑝𝑖) as ∑𝑘∈𝑀 𝑤𝑘𝑥𝑖𝑘 and �̂�𝑖(𝑝𝑖) as ∑𝑘∈𝑀 �̂�𝑘𝑥𝑖𝑘 . For
completeness, we adapt their proof below using our notations.

As defined in Section 2.4, 𝐷𝑥 (𝑡) = 𝑓 (𝑥𝑡)
∑𝑖 𝑓 (𝑥𝑖)

and �̂�𝑥 (𝑡) = 𝑓 (𝑥𝑡)
∑𝑖 𝑓 (𝑥𝑖)

. We have

|||||
ln

�̂�𝑥 (𝑡)
𝐷𝑥 (𝑡)

|||||
=
||||||(

∑
𝑘
(�̂�𝑘 − 𝑤𝑘)𝑥𝑡𝑘)

− ln
∑𝑖 exp{∑𝑘 �̂�𝑘𝑥𝑖𝑘}
∑𝑖 exp{∑𝑘 𝑤𝑘𝑥𝑖𝑘}

||||||

≤
|||||
∑
𝑘
(�̂�𝑘 − 𝑤𝑘)𝑥𝑡𝑘

|||||
+
||||
ln

∑𝑖 exp{∑𝑘 𝑤𝑘𝑥𝑖𝑘} exp{∑𝑘(�̂�𝑘 − 𝑤𝑘)𝑥𝑖𝑘}
∑𝑖 exp{∑𝑘 𝑤𝑘𝑥𝑖𝑘}

||||

< 𝜖 + max
𝑖

|||||
ln exp{∑

𝑘
(�̂�𝑘 − 𝑤𝑘)𝑥𝑖𝑘}

|||||
< 2𝜖

Using a few inequalities we can bound |||
�̂�𝑥 (𝑡)
𝐷𝑥 (𝑡) − 1||| ≤ 4𝜖. This leads to, for all 𝑥 ,

|𝑈 (𝑥, 𝑓) − 𝑈 (𝑥, 𝑓)| =
|||||
∑
𝑖∈𝑁

(�̂�𝑥 (𝑖) − 𝐷𝑥 (𝑖))𝑢𝑖
|||||
≤ ∑

𝑖∈𝑁

|||�̂�
𝑥 (𝑖) − 𝐷𝑥 (𝑖)||| |𝑢𝑖 |

= ∑
𝑖∈𝑁

|||||

�̂�𝑥 (𝑖)
𝐷𝑥 (𝑖)

− 1
|||||
|𝑢𝑖 |𝐷𝑥 (𝑖) ≤ 4𝜖∑

𝑖∈𝑁
|𝑢𝑖 |𝐷𝑥 (𝑖) ≤ 4𝜖max

𝑖∈𝑁
|𝑢𝑖 | ≤ 4𝜖

Let 𝑥 ∗ = argmin𝑥 𝑈 (𝑥, 𝑓) be the true optimal feature configuration, 𝑥 ′ = argmin𝑥 𝑈 (𝑥, 𝑓) be the
optimal configuration using the learned score function 𝑓 , and 𝑥 ′′ be an approximate optimal
configuration against 𝑓 , i.e., 𝑈 (𝑥 ′′, 𝑓) ≤ 𝑈 (𝑥 ′, 𝑓) + 𝜂. We have

𝑈 (𝑥 ′′, 𝑓) ≤ 𝑈 (𝑥 ′′, 𝑓) + 4𝜖 ≤ 𝑈 (𝑥 ′, 𝑓) + 4𝜖 + 𝜂 ≤ 𝑈 (𝑥 ∗, 𝑓) + 4𝜖 + 𝜂 ≤ 𝑈 (𝑥 ∗, 𝑓) + 8𝜖 + 𝜂.

19

In addition, we propose two exact algorithms for special cases of FDP, which can be found
in Appendix A.2. When the deception cost is associated with discrete features only, we provide
an exact MILP formulation. When there is no budget and feasibility constraints, we can find
the optimal defender strategy in 𝑂(𝑛 log 𝑛 + 𝑚) time using a greedy algorithm. Inspired by
this greedy algorithm, we introduce a greedy heuristic for the general case. Greedy (Alg.2 in
Appendix A.1) finds the feature vectors that maximize and minimize the score, respectively,
using gradient descent-based algorithm. It then greedily applies these features to targets of
extreme losses. We show its performance in the following section as well.

2.6 Experiments

We present the experimental results for our learning and planning algorithms separately, and
then combine them to demonstrate the effectiveness of our learning and planning framework.
All experiments are carried out on a 3.8GHz Intel Core i5 CPU with 32GB RAM. We use Ipopt
as our non-convex solver and CPLEX 12.8 as the MILP solver. All results are averaged over
20 instances; error bars represent standard deviations. Details about hyper-parameters can be
found in Appendix A.4.

2.6.1 Learning

Classical score function First, we assume the adversary uses the classical score function
in Eq (2.1). The defender learns this score function using the closed-form estimation (CF) in
Theorem 2.4.1. We study how the learning accuracy changes with the size of training sample
𝑑 . We sample the parameters of the true score function 𝑓 uniformly at random from [−0.5, 0.5].
We then generate 𝑚 feature configurations uniformly at random. For each of them, we sample
the attacked target 𝑑/𝑚 times according to 𝑓 , obtaining a training set of 𝑑 samples. We generate
a test set �̃� of 5 × 105 configurations sampled uniformly at random. We measure the learning
error as the mean total variation distance between the attack distribution from the learned 𝑓
and that of the true model 𝑓 :

1
|�̃�|

|�̃�|

∑
𝑗=1

𝑑𝑇𝑉 ((
𝑓 (𝑥 𝑗

𝑖)
∑𝑡∈𝑁 𝑓 (𝑥 𝑗

𝑡))𝑖∈𝑁
,
(

𝑓 (𝑥 𝑗
𝑖)

∑𝑡∈𝑁 𝑓 (𝑥 𝑗
𝑡))𝑖∈𝑁

)
.

Figure 2.1a shows that the learning error decreases as we increase the number of samples. The-
orem 2.4.1 provides a sample complexity bound, which we annotate in Figure 2.1a as well. The
experiment shows that we need much fewer samples to learn a relatively good score function,
and smaller games exhibit smaller learning error.

3-layer NN represented (NN-3) score function We assume the adversary uses a 3-layer
neural network score function, whose details are in Appendix A.4. We use the gradient descent-
based (GD) learning algorithm RMSProp as described in Section 2.4, with learning rate 0.1. For
each sample size 𝑑 , we generate 𝑑 feature configurations and sample an attacked target for
each of them in the training set. Fig. 2.1b shows GD can minimize the learning error to below

20

500 1000 1500 2000
Size of Training Dataset

0.2

0.3

0.4

0.5

0.6

0.7

0.8
At

ta
ck

 P
ro

ba
bi

lit
y

Er
ro

r

Samples required: O(125
2 log60)

Samples required: O(125
2 log120)

Samples required: O(245
2 log60)

n = 5, m = 12
n = 10, m = 12
n = 5, m = 24

(a) Learning classical score
function in Eq. (2.1)

500 1000 1500 2000
Size of Training Dataset

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

At
ta

ck
 P

ro
ba

bi
lit

y
Er

ro
r

n = 5, m = 12
n = 10, m = 12
n = 5, m = 24

(b) Learning NN-3 score
function

2 4 6 8 10 20 50 100 150 200
Number of Targets

10 1

100

101

102

Ru
nn

in
g

Ti
m

e
(s

)

MILP
MILPBS

(c) Planning with classical
score function in Eq. (2.1),
𝑚 = 12

5 10 15 20 25 30
Number of Targets

100

101

102

Ru
nn

in
g

Ti
m

e
(s

)

GD
Ipopt
Greedy

(d) Planning with NN-3
score function, 𝑚 = 12

5 10 15 20 25 30
Number of Targets

0.0

0.1

0.2

0.3

0.4

0.5

0.6

So
lu

ti
on

 G
ap

GD
Ipopt
Greedy

(e) Planning with NN-3
score function, 𝑚 = 12

500 1000 1500 2000
Size of Training Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

So
lu

ti
on

 G
ap

MILP
MILPBS

(f) Learning + planning,
classical score function, 𝑛 =
5, 𝑚 = 12

2 4 6 8 10 20 50 100 150 200
Number of Targets

10 5

10 4

10 3

10 2

10 1

100

So
lu

ti
on

 G
ap

MILP MILPBS

(g) Learning + Planning,
classical score function, 𝑚 =
12

120 1080 2040 10000 100000 1000000
Size of Training Dataset

0.0

0.2

0.4

0.6

0.8

1.0

So
lu

ti
on

 G
ap

GD
Ipopt
Greedy

(h) Learning + Planning,
NN-3 score function, 𝑛 =
5, 𝑚 = 12

Figure 2.1: Experimental results

0.15. Note that the training data are different in Fig. 2.1a and 2.1b, thus the two figures are not
directly comparable.

We also measured |𝜃−𝜃 |, the 𝐿1 error in the score function parameter 𝜃 , which directly relates
to the sample complexity bound in Theorem 2.4.1. We include the results in Appendix A.3.

2.6.2 Planning

We test our algorithms on finding the optimal feature configuration against a known attacker
model. The FDP parameter distributions are included in Appendix A.4.

Classical score function Fig. 2.1c shows that the binary search version of the MILP based on
1 (MILPBS) runs faster than that without binary search on most instances. MILPBS scales
up to problems with 200 targets, which is already at the scale of many real-world problems.
MILP does not scale beyond problems with 20 targets. In Appendix A.3, we show that MILPBS
also scales better in terms of the number of features. We set the MILP’s error bound at 0.005
and 𝜖bs = 1𝑒 − 4; the difference in the two algorithms’ results is negligible.

NN-3 score function When the features are continuous without feasibility constraints, plan-
ning becomes a non-convex optimization problem. We can apply the gradient-based optimizer
or non-convex solver. Recall that 𝑈 (𝑥) is the defender’s expected loss using feature configura-
tion 𝑥 . We measure the solution gap of alg ∈ {Ipopt, GD, Greedy} as 𝑈 (𝑥alg)−𝑈 (𝑥GD)

𝑈 (𝑥GD) , where 𝑥alg is
the solution from the corresponding algorithm.

21

Fig. 2.1d and 2.1e show the running time and solution gap fixing 𝑚 = 12. The running time
of GD and Greedy does not change much across different problem sizes, yet Ipopt runs slower
than the former two on most problem instances. GD also has smaller solution gap than Ipopt
and Greedy. In Appendix A.3 we show the number of features affect these metrics in a similar
way.

2.6.3 Combining Learning and Planning

We integrate the learning and planning algorithms to examine our full framework. The defender
learns a score function 𝑓 using algorithm L. Then, she uses planning algorithm P to find an
optimal configuration 𝑥L,P assuming 𝑓 . We measure the solution gap as 𝑈 (𝑥L,P)−𝑈 (𝑥 ∗)

𝑈 (𝑥 ∗) , where 𝑥 ∗ is
the optimal feature configuration against the true attacker model, computed using MILPBS or
GD.

Classical score function We test learning algorithm CF and planning algorithms P ∈ {MILP, MILPBS}.
Fig. 2.1f shows how the solution gap changes with the size of the training dataset. With 𝑛 ≤ 20
targets, all algorithms yield solution gaps below 0.1 (Fig. 2.1g). The reader might note the over-
lapping error bars, which are expected since MILP and MILPBS should not differ much in so-
lution quality. Indeed, the difference is negligible as the smallest p-value of the 6 paired t-tests
(fixing the number of targets for which they are tested) is 0.16.

NN-3 score function We test learning algorithm GD and planning algorithms P ∈ {GD, Ipopt, Greedy}.
Fig. 2.1h shows how the solution gap changes with the size of training dataset 𝑑 . Paired t-tests
suggest that GD has significantly smaller solution gap than Greedy (𝑝 < 0.03) at each size
of training dataset except 1080. Ipopt also has significantly smaller solution gap than Greedy
(𝑝 < 0.01) when on large datasets with 𝑑 ≥ 105 samples. On the largest dataset 𝑑 = 106, GD also
performs significantly better than Ipopt (𝑝 = 0.04).

Compared to the case with classical score functions, more data are required here to achieve
a small solution gap. Since learning error is small for both cases (Fig. 2.1a,2.1b), this suggests
planning is more sensitive to NN-3 score functions than classical score functions.

2.6.4 Case Study: Credit Bureau Network

The financial sector is a major victim of cyber attacks due to its large amount of valuable in-
formation and relatively low level of security measures. In this case study, we ground our FDP
model in a credit bureau’s network. We show how feature deception improves the network
security when the attacker follows a domain-specific rule-based behavioral model.

We note that the purpose of this case study is not to show the scalability of our algorithm:
all previous experiments fulfill that purpose. Instead, here we demonstrate why deception is
useful, how our algorithm yields deception strategies reasonable in the real world, and how our
algorithm capably handles an attacker which does not conform to our assumed score function.

As shown in Table 2.2, we consider a network of 10 nodes (i.e. targets) with 6 binary features:
operating system (Windows/Linux) and the availability of SMTP, NetBIOS, HTTP, SQL, and

22

Node type Node ID Actual features �̂�𝑖 Loss 𝑢𝑖
Mail server 0, 1 Windows, SMTP, NetBIOS 0.1
Web server 2 Windows, HTTP 0.2
App server 3, 4 Windows, SQL, NetBIOS 0.3

Database server 5,6,7 Linux, SQL, SMTP, Samba 0.4
Database server 8,9 Linux, SQL, SMTP, Samba 0.8

Table 2.2: Feature configuration of a typical credit bureau computer network.

Attacker Solution 𝑥𝑖 Attacked nodes Loss

APT
Node 1: Windows → Linux

Node 1: SQL off → on
Node 1: NetBIOS on → off
Node 8, 9: SMTP on → off

5,6,7,8,9
→1 ,5, 6, 7

0.56 →
0.325

Botnet Node 3: NetBIOS on → off
Node 4: NetBIOS on → off

0,1,3,4
→0,1

0.2 →
0.1

Table 2.3: Learning + planning results for 2 types of attackers.

Samba services. Each node has a type of server running on it, which determines the features
available on that node. Some nodes would incur a high loss if attacked, like the database servers,
because for a credit bureau the safety of users’ credit information is of utmost importance.
Others might incur a low loss, such as the mail servers and the web server. Nodes of the same
type might lead to different losses. For example, some database servers might have access to
more information than others. Each feature has different switching cost 𝑐𝑘 . For the operating
system, the cost is 𝑐𝑘 = 5. For SQL, Samba, and HTTP services, the cost is 2. The cost is 1 for
others. The defender has a budget of 10. There is no constraint on switching each individual
feature, i.e. 𝐶(�̂�𝑖𝑘) = {0, 1}. However, we impose that Windows + Samba and Linux + NetBIOS
cannot be present on the same node, as it is technically impossible to do so.

We demonstrate the entire learning and planning pipeline. We use an attacker’s behavior
model common in the security analysis. The attacker cares about a subset 𝑀 ′ ⊆ 𝑀 of the fea-
tures, and we call each such feature 𝑘 ∈ 𝑀 ′ a requirement. The attack is uniformly randomized
among the targets that satisfy the most number of requirements. Although this decision rule
does not fit our classical score functions, we can approximate it by giving large weights 𝑤𝑘 to
the requirement features, and 0 to the rest.

First, we consider an APT-like attacker, who wants to exfiltrate data by exploiting the SMTP
service. They have expertise in Linux systems and want to maintain a high degree of stealth.
Thus, their decision rule is based on the three requirement features: Linux, SMTP, and SQL.
Without deception, the attacker would randomize attack over nodes 5-9, because these nodes
satisfy 3 requirements and other nodes satisfy at most 2. As shown in Table 2.3, the optimal
solution for the learning and planning problem leads to an expected defender’s loss of 0.325,
which is a 42% decrease from the loss with no deception. With limited budget, the defender
makes the least harmful target, node 1, very attractive and the most harmful targets, nodes 8
and 9, less attractive.

23

We also consider a botnet attacker, who wants to create a bot by exploiting the NetBIOS
service. They have expertise in Windows and want to maintain a moderate degree of stealth.
Thus, their decision rule is based on two requirement features: Windows and NetBIOS. The
results in Table 2.3 shows that the defender should set the NetBIOS observed value to be off for
nodes 3 and 4, attracting the attacker to the least harmful nodes. This decreases the defender’s
expected loss by 50% compared to not using deception.

2.7 Discussion

We conclude this chapter with a few remarks regarding the generality and limitations of our
work. First, our model allows the attacker to have knowledge of deception if the knowledge is
built into their behavior. For example, the attacker avoids attacking a target because it is “too
good to be true”. This can be captured by a score function that assigns a low score for such a
target.

Second, our model can handle sophisticated attackers who can outstrip deception. A single-
ton feasible set 𝐶(�̂�𝑖𝑘) implies the defender knows the attacker can find out the actual value of
a feature. As an important next step, we will study the change of attacker’s belief of deception
over repeated interactions.

Third, typically, actual features on functional targets are environmental parameters beyond
the defender’s control, or at least have high cost of manipulation. Altering them and defender’s
losses 𝑢𝑖 does not align conceptually with deception. Thus, we treat them as fixed. For a target
with no fixed actual values, e.g., a honeypot, the defender’s cost is just the cost of configuring
the feature, e.g., installing Windows. For consistency, we can set �̂�𝑖𝑘 as the feature value with
the lowest configuration cost, and 𝜂𝑖𝑘 is the additional cost for a different feature value.

Fourth, the attacker’s preference might shift when there is a major change in security land-
scape, e.g. a new vulnerability disclosed. In such case, a proactive defender will recalibrate
the system: recompute the attacker’s model and reconfigure the features. Moreover, exactly
because the defender has learned the preferences before the change using our algorithms, the
defender now knows better what qualifies as a major change. Our algorithms are fast enough
for a proactive defender to run regularly.

Fifth, when faced with a group of attackers, in FDP we learn an average behavioral model of
the population. To handle multiple attacker types, one could refer to the literature on Bayesian
Stackelberg games [115].

Finally, in FDP the defender uses only pure strategies. In many domains such as cybersecu-
rity, frequent system reconfiguration is often too costly. Thus, the system appears static to the
attacker. We leave to future work to explore mixed strategies in applications where they are
appropriate.

Ethical implications The intended use case of feature deception problem is in defending the
network of some entity against cyber attackers. In such scenario, if the network node is used
by some individual, as opposed to organizational use, then feature deception might put certain
individuals under bigger threats of cyber attack than others. Our model allows for technical

24

way to address this by modifying the node’s loss 𝑢𝑖 . In practice, a more holistic approach is
needed to protect the security of all users on the network.

25

26

Chapter 3

Draining the Water Hole: Mitigating

Social Engineering Attacks with

CyberTWEAK

Whereas the previous chapter contains a relatively general-purpose framework to reason about
strategic deception, in this chapter, we dive into a particular type of cyber attacks, i.e. the
watering hole attacks, which is a major threat to businesses and individuals alike. We present
the Social Engineering Deception (SED) game model and the CyberTWEAK algorithm. The
algorithm alters the environment information in web traffic to deceive the attackers. Based on
our algorithms, we built a browser extension which is publicly available online.

3.1 Introduction

Social engineering attacks are a scourge for the well-being of today’s online user and the current
threat landscape only continues to become more dangerous [102]. Social engineering attacks
manipulate people to give up confidential information through the use of phishing campaigns,
spear phishing whaling or watering hole attacks. For example, in watering hole attacks, the at-
tacker compromises a legitimate website and redirects visitors to a malicious domain where the
attacker can intrude the user’s network. The number of social engineering attacks is growing
at a catastrophic rate. In a recent survey, 60% organizations were or may have been victim of
at least one attack [5]. Such cybercrime poses an enormous threat to the security at all levels –
national, business, and individual.

To mitigate these attacks, organizations take countermeasures from employee awareness
training to technology-based defenses. Unfortunately, existing defenses are inadequate. Wa-
tering hole attackers typically use zero-day exploits, rendering patching and updating almost
useless [148]. Sand-boxing potential attacks by VM requires high-end hardware, which hin-
ders its wide adoption [47]. White/blacklisting websites is of limited use, since the adversary is
strategically infecting trustworthy websites.

We propose a game-theoretic deception framework to mitigate social engineering attacks,
and, in particular, the watering hole attacks. Deception is to delay and misdirect an adversary

27

by incorporating ambiguity. Watering hole attackers rely on the identification of a visitor’s
system environment to deliver the correct malware to compromise a victim. Towards this end,
the defender can manipulate the identifying information in the network packets, such as the
user-agent string, IP address, and time-to-live. Consequently, the attacker might receive false
or confusing information about the environment and send incompatible exploits. Thus, de-
ceptively manipulating employees’ network packets provides a promising countermeasure to
social engineering attacks.

OurContributions We provide the first game-theoretic framework for autonomous coun-
termeasures to social engineering attacks. We propose the Social Engineering Deception (SED)
game, in which an organization (defender) strategically alters its network packets. The attacker
selects websites to compromise, and captures the organization’s traffic to launch an attack. We
model it as a zero-sum game and consider the minimax strategy for the defender.

Second, we analyze the structure and properties of the SED game, based on which we iden-
tify real-world scenarios where the optimal protection policy can be found efficiently.

Third, we propose the CyberTWEAK (Thwart WatEring hole AttacK) algorithm to solve
the SED game. CyberTWEAK exploits theoretical properties of SED, linear program relaxation
of the attacker’s best response problem, and the column generation method, and is enhanced
with dominated website elimination. We show that our algorithm can handle corporate-scale
instances involving over 105 websites.

Finally, we have developed a browser extension based on our algorithm. The software is
now publicly available on the Chrome Web Store.1 The extension is able to manipulate the
user-agent string in the network packets. We take additional steps to improve the its usability
and explain the output of CyberTWEAK intuitively. We believe it will be vital to the continued
development of social engineering defenses.

3.2 Related Work

Deception is one of the most effective ways to thwart cyberattacks. Recent papers have con-
sidered deception techniques for protecting an enterprise network from an attack by sending
altered system environment information in response to scans performed during the reconnais-
sance phase of an attack [9, 72]. There is a rising interest in building game-theoretic models for
deception [135], in particular in the use of honeypots [42, 121] in the enterprise network.

However, there is a fundamental difference between enterprise network defense and so-
cial engineering defense. In the former, an adversary targets an organization by compromising
computers in the network while in watering hole attacks the attacker targets the user and com-
promises external websites. A website in SED cannot be properly modeled as a honeypot target,
because the defender has no control over it. Neither can the user, because the attack depends on
an external task – compromising a website. Instead of actively querying the network, watering
hole attackers passively monitor the users’ traffic. This necessitates the continuous action space
for the attacker in SED, which is also different from most previous works on enterprise network
defense.

1http://bit.ly/CyberTWEAK

28

http://bit.ly/CyberTWEAK

1. Adversary targets

organization

2. Compromise

legitimate

website

3(a). Users visit

website

3(b). Redirects

user and identifies

vulnerabilities

4. Sends the exploit

to compromise

system

Figure 3.1: Anatomy of a watering hole attack. We introduce uncertainty in step 3 of the attack,
so that the attacker gets false information about the user and sends incompatible exploits.

Laszka et al. [80] study spear phishing, another form of social engineering attacks. The
nature of watering hole attacks leads to additional complications. For example, watering hole
attackers need to compromise a website and then scan the traffic. Thus, in SED the attacker
has two layers of decision making: one continuous and one discrete. This leads to a different
problem formulation and solution techniques than those in spear phishing.

3.3 Watering Hole Attacks

Watering hole attacks are a prominent type of social engineering used by sophisticated attack-
ers. Before we describe our modeling decisions, it is useful to highlight the primary steps in
executing a watering hole attack, as illustrated in Fig. 3.1. In step 1, the attacker identifies a
target organization. They use surveys and external information like specialized technical sites
to understand the browsing habits of its employees. This allows the adversary to determine the
most lucrative websites to compromise for maximum exposure to employees from the targeted
organization. In step 2, the adversary compromises a set of legitimate websites. Not only do
these websites need to be lucrative, but the attacker also has to be strategic in this choice. For
example, compromising Google.com is nearly impossible while the Polish Financial Authority,
victim of the 2017 Ratankba malware attacks [150], cannot invest the same security resources.
Indeed, in previous attacks the attacker was not observed to compromise all websites [114].
In step 3, employees visit the compromised website and are redirected to a malicious website
which scans their system environment and the present vulnerabilities. To gather this informa-
tion, attackers use techniques such as analyzing the user-agent string, operating system fin-
gerprinting, etc. In Step 4, the attacker delivers an exploit for an identified vulnerability. After
these steps, the attacker can navigate the target network and access the sensitive information.

Our algorithm and browser extension introduce uncertainty in step 3 of a watering hole
attack. Identifying the vulnerabilities in a visitor relies on the information gathered from re-

29

connaissance. The extension modifies the network packets so that the attacker gets false in-
formation about the visitor. Deception is not free, though. Altering the network packet can
degrade the webpage rendered, e.g., displaying for Android on a Windows desktop. Thus, the
defender needs to carefully trade off security and the quality of service.

In reality, sophisticated attackers typically do not send all exploits without tailoring to the
packet information, as defense would become easier after seeing more such unknown exploits.
Also, sending all exploits would be flagged as suspicious and get blocked. The attacker would
need to get a new zero-day – a costly proposition. Thus, the attacker prefers scanning the
system environment of the incoming traffic.

3.4 Social Engineering Deception Game

We model the strategic interaction between the organization (defender) and an adversary as
a two-player zero-sum game, where the defender chooses an alteration policy and the adver-
sary chooses which websites to compromise and decides the effort spent on scanning traffic.
In everyday activities employees of a target organization 𝑂 visit a set of websites 𝑊 which
includes legitimate sites and potential watering holes set up by an adversary. Let 𝑡𝑎𝑙𝑙𝑤 denote
the total amount of traffic to 𝑤 ∈ 𝑊 from all visitors and 𝑡𝑤 the total traffic to 𝑤 from 𝑂. The
defender’s alteration policy is represented by 𝑥 ∈ [0, 1]|𝑊 | where 𝑥𝑤 is the proportion of 𝑂’s
traffic to website 𝑤 ∈ 𝑊 for which the network packet will be altered. We assume a drive-by
download attack will be unsuccessful if, and only if an employee’s packet is altered. However,
it is easy to account for different levels of adversary and defender sophistication by adding an
additional factor in Eq. (3.1) below. We consider a cost 𝑐𝑤 to alter a single unit of traffic to 𝑤 .
The defender is limited to a budget 𝐵𝑑 on the allowable cost.

The adversary first chooses which websites to compromise, represented by a binary vector
𝑦 ∈ {0, 1}|𝑊 |. If 𝑦𝑤 = 1, i.e., they turn website 𝑤 into a watering hole, they must pay a cost 𝜋𝑤 .
The attacker has a budget 𝐵𝑎 for compromising websites (w.l.o.g. we assume 𝜋𝑤 ≤ 𝐵𝑎 ∀𝑤 ∈ 𝑊).
The adversary then decides the scanning effort for each compromised website which can enable
them to send exploits tailored to the packet information. We use 𝑒𝑤 to denote how much traffic
the attacker decides to scan per week for 𝑤 , and refer to 𝑒 as the effort vector. The discreet
attacker has a budget 𝐵𝑒 for scanning the incoming traffic. In the special case where the scanning
effort is negligible (𝐵𝑒 = ∞), all our complexity and algorithmic results to be introduced still
hold.

We consider an attacker who aims to maximize the expected amount of unaltered flow from
target organization𝑂 that is scanned by them, as each unit of scanned unaltered flow can lead to
a potential success in the social engineering attack, i.e., compromise an employee and discover
critical information about 𝑂. We model it as a zero-sum game, and therefore the defender’s
goal is to minimize this amount.

Social engineering is a complex domain which we cannot fully model. However, we build
our model and assumptions so that we can formally reason about deception, and even when
our assumptions are not met, our work provides a sensible solution. For example, cyber at-
tackers may have tools to circumvent existing deception techniques. Nonetheless, our solution
increases the attacker’s uncertainty about the environment as they cannot easily obtain or trust

30

the information in the network packets. In Appendix B.4, we provide a detailed discussion of
the generality and limitations of our work.

3.5 Computing Optimal Defender Strategy

In this section, we present complexity analysis and algorithms for finding the optimal defender
strategy 𝑥 ∗ in this game, which is essentially the minimax strategy, i.e., a strategy that minmizes
the attacker’s maximum possible expected amount of scanned unaltered flow. 𝑥 ∗ should be the
solution of the following bi-level optimization problem 1.

1 ∶ min𝑥 max𝑦,𝑒 ∑
𝑤∈𝑊

𝜅𝑤(1 − 𝑥𝑤)𝑒𝑤 (3.1)

s.t. ∑
𝑤∈𝑊

𝑒𝑤 ≤ 𝐵𝑒 (3.2)

∑
𝑤∈𝑊

𝜋𝑤𝑦𝑤 ≤ 𝐵𝑎 (3.3)
𝑒𝑤 ≤ 𝑡𝑎𝑙𝑙𝑤 ⋅ 𝑦𝑤 , ∀𝑤 ∈ 𝑊 (3.4)
𝑦𝑤 ∈ {0, 1}, ∀𝑤 ∈ 𝑊 (3.5)
𝑒𝑤 ∈ [0,∞), ∀𝑤 ∈ 𝑊 (3.6)
∑

𝑤∈𝑊
𝑐𝑤𝑡𝑤𝑥𝑤 ≤ 𝐵𝑑 (3.7)

𝑥𝑤 ∈ [0, 1], ∀𝑤 ∈ 𝑊 (3.8)

In objective function 3.1, 𝜅𝑤 = 𝑡𝑤/𝑡𝑎𝑙𝑙𝑤 . Since 𝑡𝑤(1 − 𝑥𝑤) is the total amount of unaltered flow
from the defender organization 𝑂 and 𝑒𝑤/𝑡𝑎𝑙𝑙𝑤 is the percentage of incoming traffic that will be
scanned, 𝜅𝑤(1−𝑥𝑤)𝑒𝑤 is the total scanned unaltered traffic to 𝑤 . Constraint 3.2-3.3 describes the
budget constraint for the attacker, and Constraint 3.4 requires that the attacker can only scan
traffic for the compromised websites. Constraint 3.7 is the budget constraint for the defender.

Unfortunately, solving1 is challenging. It cannot be solved using any of the existing solvers
directly due to the bi-level optimization structure, the mix of real-valued and binary variables
and the bilinear terms in the objective function (𝑥𝑤𝑒𝑤). In fact, even the adversary’s best re-
sponse problem 2(𝑥), represented as a mixed integer linear program (MILP) below, is NP-hard
as stated in Thm 3.5.1.

2(𝑥) ∶ max
𝑦,𝑒

∑
𝑤∈𝑊

𝜅𝑤(1 − 𝑥𝑤)𝑒𝑤 (3.9)

s.t. Constraints (3.2) ∼ (3.6) (3.10)

Theorem 3.5.1. Finding adversary’s best response is NP-hard.

Proof. We reduce from the knapsack problem. In the knapsack problem, we have a set 𝑊 of
items each with a weight 𝜔𝑤 and value 𝑝𝑤 ∀𝑤 ∈ 𝑁 , and aim to pick items of maximum possible
value subject to a capacity 𝐵. We now create an instance of the SED problem. Create a website
for each item 𝑤 ∈ 𝑊 with organization traffic and total traffic 𝑡𝑤 = 𝑡𝑎𝑙𝑙𝑤 = 𝑝𝑤 and attack cost 𝜔𝑤 .
Assume that 𝑥 = 𝟎𝑇 . Next, set 𝐵𝑎 = 𝐵 and 𝐵𝑒 = ∞. Notice that the objective function becomes

31

∑𝑤∈𝑊 𝑒𝑤 where ∑𝑤∈𝑊 𝑒𝑤 ≤ ∞ and 𝑒𝑤 ≤ 𝑝𝑤𝑦𝑤 . Hence, 𝑒𝑤 = 𝑝𝑤 whenever 𝑦𝑤 = 1. Then, the
adversary’s best response problem is given by:

max
𝑦

∑
𝑤∈𝑊

𝑝𝑤𝑦𝑤 (3.11)

s.t. ∑
𝑤∈𝑊

𝜔𝑤𝑦𝑤 ≤ 𝐵 (3.12)

𝑦𝑤 ∈ {0, 1} ∀𝑤 ∈ 𝑊 (3.13)

This is exactly the knapsack problem described above.

Therefore, we exploit the structure and properties of SED and 1 and design several novel
algorithms to solve it. We first identify two tractable special classes of SED games which can
be solved in polynomial time and discuss their real world implications. Then we present Cy-
berTWEAK, our algorithm for general SED games.

3.5.1 Tractable Classes

The first tractable class is identified based on the key observation stated in Thm 3.5.2: the opti-
mal solutions of SED games exhibit a greedy allocation of the attacker’s effort budget. That is,
for at most one website 𝑤 will the attacker spend scanning effort neither zero nor 𝑡𝑎𝑙𝑙𝑤 .
Theorem 3.5.2. Let (𝑥 ∗, 𝑦∗, 𝑒∗) be an optimal solution to 1, 𝑊𝐹 = {𝑤 ∶ 𝑒∗𝑤 = 𝑡𝑎𝑙𝑙𝑤 },𝑊𝑍 = {𝑤 ∶
𝑒∗𝑤 = 0},𝑊𝐵 = {𝑤 ∶ 𝑒∗𝑤 ∈ (0, 𝑡𝑎𝑙𝑙𝑤)}. There is an optimal solution with |𝑊𝐵| ≤ 1.

Proof. For each 𝑤 ∈ 𝑊 , let 𝑘𝑤 = 𝑡𝑤(1 − 𝑥 ∗
𝑤)/𝑡𝑎𝑙𝑙𝑤 . Suppose there exist some 𝑤1, 𝑤2 ∈ 𝑊𝐵, and

w.l.o.g assume 𝑘𝑤1 ≥ 𝑘𝑤2 . Let Δ𝑒 = min{𝑒∗𝑤2
, 𝑡𝑎𝑙𝑙𝑤1

− 𝑒∗𝑤1
}. Consider the solution (𝑥 ∗, 𝑦∗, 𝑒) where

𝑒𝑤1 = 𝑒∗𝑤1
+ Δ𝑒, 𝑒𝑤2 = 𝑒∗𝑤2

− Δ𝑒, and 𝑒𝑤 = 𝑒∗𝑤 for all other websites 𝑤 ∈ 𝑊 . This is a feasible
solution, and the objective increases by (𝑘𝑤1 − 𝑘𝑤2)Δ𝑒 ≥ 0 compared to (𝑥 ∗, 𝑦∗, 𝑒∗). Furthermore,
at least one of 𝑤1 and 𝑤2 is removed from 𝑊𝐵. We can apply this argument repeatedly until
|𝑊𝐵| ≤ 1.

As a result, if the attacker’s scanning budget is so limited that he cannot even scan through
the traffic of any website, he will use all the scanning effort on one website in the optimal
solution. Thus, the optimal defender strategy can be found by enumerating the websites.
Corollary 3.5.3. (Small Effort Budget) If 0 < 𝐵𝑒 ≤ 𝑡𝑎𝑙𝑙𝑤 , ∀𝑤 , the optimal solution can be found in

polynomial time.

Proof. Since 𝐵𝑒 ≤ 𝑡𝑎𝑙𝑙𝑤 ∀𝑤 ∈ 𝑊 , we know |𝑊𝐹 | ≤ 1 for any feasible solution. If |𝑊𝐹 | = 1,
then we have |𝑊𝑍 | = 𝑛 − 1 and |𝑊𝐵| = 0. If |𝑊𝐹 | = 0, by Theorem 3.5.2, we have |𝑊𝐵| = 1
and |𝑊𝑍 | = 𝑛 − 1. In either case, there is only website 𝑤∗ such that 𝑒𝑤∗ > 0. It follows that
𝑤∗ ∈ argmax𝑤∈𝑊

𝑡𝑤 (1−𝑥𝑤)𝐵𝑒
𝑡𝑎𝑙𝑙𝑤

given a defender strategy 𝑥 . The optimal defender strategy can be

32

found by solving the following LP.

min
𝑥,𝑣

𝑣 (3.14)

s.t. 𝑣 ≥
𝑡𝑤(1 − 𝑥𝑤)𝐵𝑒

𝑡𝑎𝑙𝑙𝑤
∀𝑤 ∈ 𝑊 (3.15)

∑
𝑤∈𝑊

𝑐𝑤𝑡𝑤𝑥𝑤 ≤ 𝐵𝑑 (3.16)

𝑥𝑤 ∈ [0, 1] ∀𝑤 ∈ 𝑊 (3.17)

The second tractable class roots in the fact that if the scanning effort is negligible (or equiva-
lently, 𝐵𝑒 = ∞) the attacker only needs to reason about which websites to compromise. Further,
if the attacker has a systematic way of compromising a website which makes the cost 𝜋𝑤 uni-
form across websites, then the attacker only needs to greedily choose the websites with the
highest unaltered incoming traffic and the defender can greedily alter traffic in the top web-
sites. We provide details about these algorithms in the appendix.
Theorem 3.5.4. (Uniform Cost + Unlimited Effort) If 𝜋𝑤 = 1, ∀𝑤 ∈ 𝑊 and 𝐵𝑒 = ∞, the defender’s

optimal strategy can be found in polynomial time.

Proof. Under these assumptions, the problem 1 becomes

min
𝑥

max
𝑦,𝑒

∑
𝑤∈𝑊

𝑡𝑤(1 − 𝑥𝑤)𝑦𝑤 (3.18)

s.t. ∑
𝑤∈𝑊

𝑦𝑤 ≤ 𝐵𝑎 (3.19)

∑
𝑤∈𝑊

𝑐𝑤𝑡𝑤𝑥𝑤 ≤ 𝐵𝑑 (3.20)

𝑥𝑤 ∈ [0, 1], 𝑦𝑤 ∈ {0, 1} ∀𝑤 ∈ 𝑊 (3.21)

The constraint ∑𝑤∈𝑊 𝑦𝑤 ≤ 𝐵𝑎 must be satisfied with equality because 𝑡𝑤(1 − 𝑥𝑤) ≥ 0 for all
𝑤 ∈ 𝑊 . The defender’s problem is to minimize the sum of 𝐵𝑎 largest linear functions 𝑡𝑤 − 𝑡𝑤𝑥𝑤
among the 𝑛 = |𝑊 | of them, subject to the polyhedral constraints on 𝑥𝑤 . This problem can be
solved as a single LP [112] as follows.

min
𝑑+,𝑥,𝑧

𝐵𝑎𝑧 + ∑
𝑤∈𝑊

𝑑+
𝑤 (3.22)

s.t. 𝑑+
𝑤 ≥ 𝑡𝑤 − 𝑡𝑤𝑥𝑤 − 𝑧 ∀𝑤 ∈ 𝑊 (3.23)
∑
𝑤∈𝑊

𝑐𝑤𝑡𝑤𝑥𝑤 ≤ 𝐵𝑑 (3.24)

𝑥𝑤 ∈ [0, 1], 𝑑+
𝑤 ≥ 0 ∀𝑤 ∈ 𝑊 (3.25)

33

Algorithm 2: CyberTWEAK
1 Remove 𝐷 ←Find-dominated-websites() from 𝑊 .
2 Get heuristic defender strategy �̂� ∗ by solving ̂1.
3 if 𝑂𝑃𝑇 (2(�̂� ∗)) ≤ 𝑂𝑃𝑇 (̃3(�̂� ∗)) then return �̂� ∗ ;
4 Initialize max effort vector set 𝑒 = 𝑒2(�̂� ∗).
5 while new max effort vector was added to 𝑒 do

6 𝑥 ← solution of 𝑃LP
1 (𝑒).

7 𝑒 ← solution of 2(𝑥).
8 Add 𝑒 to 𝑒.

3.5.2 CyberTWEAK

For the general SED games, we propose a novel algorithm CyberTWEAK (Alg 2). It first com-
putes an upper bound for 1 leveraging the dual problem of the linear program (LP) relaxation
of 2(𝑥). As a byproduct, the computation provides a heuristic defender strategy �̂� ∗ (Line 2).
It then runs an optimality check (Line 3) to see if �̂� ∗ is optimal for 1. When optimality can-
not be verified, it solves the original problem 1 by converting 1 to an equivalent LP and
applying column generation [54], an iterative approach to compute the optimal strategy (Line
5-8). We further improve the scalability by identifying and eliminating dominated website as
pre-processing (Line 1). Next we provide details about these steps.

Upper Bound for 1 Let ̂2(𝑥) be the LP relaxation of 2(𝑥) and denote the dual vari-
ables of the (relaxed) constraints (3.2) ∼ (3.5) as 𝜆1, 𝜆2, 𝜈, 𝜂. We then include the variable 𝑥 for
the defender strategy along with the dual problem, and obtain the minimization problem ̂1.

̂1 ∶ min
𝑥,𝜆,𝜈,𝜂

𝐵𝑒𝜆1 + 𝐵𝑎𝜆2 +∑
𝑤∈𝑊

𝜂𝑤 (3.26)

s.t. 𝜅𝑤(1 − 𝑥𝑤) ≤ 𝜆1 + 𝜈𝑤 , ∀𝑤 ∈ 𝑊 (3.27)
𝜋𝑤𝜆2 − 𝑡𝑎𝑙𝑙𝑤 𝜈𝑤 + 𝜂𝑤 ≥ 0, ∀𝑤 ∈ 𝑊 (3.28)
∑

𝑤∈𝑊
𝑐𝑤𝑡𝑤𝑥𝑤 ≤ 𝐵𝑑 (3.29)

𝑥𝑤 ∈ [0, 1], 𝜆1, 𝜆2, 𝜈𝑤 , 𝜂𝑤 ≥ 0, ∀𝑤 ∈ 𝑊 (3.30)

̂1 is an LP which can be solved efficiently. In addition, �̂� ∗ in the optimal solution for ̂1 is a
feasible defender strategy in the original problem 1. Therefore, solving ̂1 leads to a heuristic
defender strategy as well as bounds for the optimal value of 1. Denote the optimal value of a
problem as OPT(). We formalize the bounds below.
Theorem 3.5.5. If 𝐵𝑒 ≥ max𝑤 𝑡𝑎𝑙𝑙𝑤 , 𝑂𝑃𝑇 (̂1) ≤ 3𝑂𝑃𝑇 (1).

Proof. Let 𝑥 ∗ be the optimal solution to 1. Consider the problem ̂2(𝑥 ∗). At optimal solution,
the inequality 𝑒𝑤 ≤ 𝑡𝑎𝑙𝑙𝑤 ⋅ 𝑦𝑤 in ̂2(𝑥 ∗) is satisfied with equality, as if 𝑒𝑤 < 𝑡𝑎𝑙𝑙𝑤 ⋅ 𝑦𝑤 , then we can
decrease 𝑦𝑤 without changing the objective value and violating any constraints. Then, we can
eliminate the variables 𝑒𝑤 and ̂2(𝑥 ∗) becomes a standard two-dimensional fractional knapsack
problem ̂4(𝑥 ∗). It is well-known that there exists an optimal solution to ̂4(𝑥 ∗) which has at

34

most 2 fractional values 𝑦𝑤1 and 𝑦𝑤2 [77]. We have

𝑂𝑃𝑇 (̂1) ≤ 𝑂𝑃𝑇 (̂2(𝑥 ∗)) = 𝑂𝑃𝑇 (̂4(𝑥 ∗))
≤ 𝑂𝑃𝑇 (2(𝑥 ∗)) + 𝑡𝑤1(1 − 𝑥 ∗

𝑤1
) + 𝑡𝑤2(1 − 𝑥 ∗

𝑤2
)

≤ 3𝑂𝑃𝑇 (2(𝑥 ∗)) = 3𝑂𝑃𝑇 (1)

Note that if 𝐵𝑒 = ∞, ̂1 is a 2-approximation.

Theorem 3.5.6. Let 𝑥 ∗
, �̂� ∗

be an optimal solution to 1, ̂1.

OPT(1) ≤ OPT(2(�̂� ∗)) ≤ OPT(̂1) ≤ OPT(̂2(𝑥 ∗)).

Proof. Since �̂� ∗ and its best response calculated by 2(�̂� ∗) form a feasible solution to 1, the
first inequality holds. For any defender strategy 𝑥 , OPT(2(𝑥)) ≤ OPT(̂2(𝑥)) as adversary can
choose fractional 𝑦𝑤 ’s in ̂2(𝑥). For �̂� ∗ specifically, we have OPT(̂2(�̂� ∗)) = OPT(̂1), since ̂1 is,
by strong duality, equivalent to1 except that the adversary is allowed to choose fractional 𝑦𝑤 ’s.
This establishes the second inequality. The last inequality holds because 𝑥 ∗ and its fractional
best response calculated by ̂2(𝑥 ∗) form a feasible solution to ̂1.

Optimality Conditions for �̂� ∗ We present a sufficient condition for optimality, which
leverages the solution of the following LP ̃3(�̂� ∗).

̃3(�̂� ∗) ∶ min
𝑥,𝑣

𝑣 (3.31)

s.t. 𝑣 ≥ ∑
𝑤∈𝑊

𝜅𝑤(1 − 𝑥𝑤)𝑒𝑤 , ∀𝑒 ∈ 𝑒2(�̂� ∗) (3.32)

∑
𝑤∈𝑊

|𝑥𝑤 − �̂� ∗| ≤ 𝜖 (3.33)
Constraints (3.7) ∼ (3.8)

𝜖 is an arbitrary positive number and 𝑒2(�̂� ∗) denotes the set of optimal effort vectors in 2(�̂� ∗).
The following claim shows the optimality condition.
Claim3.5.7. Given �̂� ∗

, an optimal solution to ̂1, �̂� ∗
is optimal for1 if𝑂𝑃𝑇 (2(�̂� ∗)) ≤ 𝑂𝑃𝑇 (̃3(�̂� ∗)).

Proof. Suppose (�̂� ∗, 𝑂𝑃𝑇 (𝑃2(�̂� ∗))) is not an optimal solution for the LP LP
1 (𝑒) which is equiv-

alent to 1. Thus, equivalently �̂� ∗ not optimal for 1. Any of its neighborhood with radius
𝜖 contains some (�̂� ′, 𝑣′) as a better solution, meaning 𝑣′ < 𝑂𝑃𝑇 (𝑃2(�̂� ∗)). This solution (�̂� ′, 𝑣′)
satisfies constraint (3.35), which is strictly stronger than constraint (3.32). Therefore (�̂� ′, 𝑣′) is
feasible for 𝑃3(�̂� ∗); this contradicts 𝑂𝑃𝑇 (𝑃3(�̂� ∗)) ≥ 𝑂𝑃𝑇 (𝑃2(�̂� ∗)).

Clearly, when 𝜖 is large, 𝑂𝑃𝑇 (̃3(�̂� ∗)) is lower and it is harder to satisfy the condition, so in
CyberTWEAK, we use a small enough 𝜖 in ̃3(�̂� ∗).

ColumnGeneration Define 𝑒 as the set of all max effort vectors which satisfy ∑𝑤 𝑒𝑤 =
𝐵𝑒 and |𝑊𝐵| ≤ 1. According to Thm 3.5.2, restricting the attacker to only choose strategies from

35

𝑒 will not impact the optimal solution for the defender. As a result, 1 is equivalent to the
following LP, denoted as LP

1 (𝑒), when 𝑒 = 𝑒.

LP
1 (𝑒) ∶ min

𝑥,𝑣
𝑣 (3.34)

s.t. 𝑣 ≥ ∑
𝑤∈𝑊

𝜅𝑤(1 − 𝑥𝑤)𝑒𝑤 ∀𝑒 ∈ 𝑒 (3.35)
Constraints (3.7) ∼ (3.8)

Although existing LP solvers can solve LP
1 (𝑒), the order of 𝑒 is prohibitively high, lead-

ing to poor scalability. Therefore, CyberTWEAK instead uses an iterative algorithm based on
the column generation framework to incrementally generate constraints of the LP. Instead of
enumerating all of 𝑒, we keep a running subset 𝑒 ⊆ 𝑒 of max effort vectors and alternate be-
tween solving LP

1 (𝑒) (referred to as the master problem) and finding a new max effort vector
to be added to 𝑒 (slave problem). In the slave problem, we solve the adversary’s best response
problem 2(𝑥) where 𝑥 is the latest defender strategy found. This process repeats until no new
effort vectors are found for the adversary. Recall that we get �̂� ∗ and 𝑒2(�̂� ∗) when finding upper
bound and verifying optimality of �̂� ∗, which can serve as the initial set of strategies for column
generation.

DominatedWebsites Not all websites are equally valuable for an organization as some
are especially lucrative for an adversary to target. In a Polish bank, many employees may visit
the Polish Financial Authority website daily, while perhaps a CS conference website is rarely
visited by a banker. Intuitively, attackers will not compromise the conference website and thus,
the bank may not need to alter traffic to it. Identifying such websites in pre-processing could
greatly reduce the size of our problem. A website 𝑤 is dominated by another website 𝑢 if the
attacker would not attack 𝑤 unless they have used the maximum effort on 𝑢, i.e. 𝑒𝑢 = 𝑡𝑎𝑙𝑙𝑢 ,
regardless of the defender’s strategy. Thm 3.5.8 presents sufficient conditions for a website to
be dominated and leads to an algorithm (Alg. 6) to find dominated website to be eliminated.
Theorem 3.5.8. Consider websites 𝑢, 𝑤 ∈ 𝑊 . If the following conditions hold, the website 𝑤 is

dominated by 𝑢:

𝑥𝑚𝑎𝑥
𝑢 ∶= 𝐵𝑑/(𝑐𝑢𝑡𝑢) ≤ 1, 𝜅𝑤 ≤ 𝜅𝑢(1 − 𝑥𝑚𝑎𝑥

𝑢),
𝜋𝑤 ≥ 𝜋𝑢, 𝑡𝑎𝑙𝑙𝑤 ≤ 𝑡𝑎𝑙𝑙𝑢 .

Proof. From conditions (1) and (2), we know that for the same amount of effort, the attacker
will be better off attacking website 𝑢 than 𝑤 , regardless of the defender’s strategy.

Suppose 𝑒𝑤 > 0 and 𝑒𝑢 = 0 (consequently 𝑦𝑤 = 1, 𝑦𝑢 = 0). Then we could let 𝑒′𝑤 = 0 and
𝑒′𝑢 = 𝑒𝑤 . This is possible because from condition (4), 𝑒𝑤 ≤ 𝑡𝑎𝑙𝑙𝑤 ≤ 𝑡𝑎𝑙𝑙𝑢 so we have 𝑒′𝑢 ≤ 𝑡𝑎𝑙𝑙𝑢 . Doing
this does not increase the attack cost because now 𝑦′

𝑤 = 0 and 𝑦′
𝑢 = 1 and 𝜋𝑤 ≥ 𝜋𝑢 from condition

(3).
Suppose 𝑒𝑤 > 0 and 𝑒𝑢 > 0 (consequently 𝑦𝑤 = 𝑦𝑢 = 1). Let 𝑒′𝑤 = 𝑒𝑤 − min{𝑒𝑤 , 𝑡𝑎𝑙𝑙𝑢 − 𝑒𝑢} and

𝑒′𝑢 = 𝑒𝑢 + min{𝑒𝑤 , 𝑡𝑎𝑙𝑙𝑢 − 𝑒𝑢}. We know that if 𝑒′𝑤 > 0, then 𝑒′𝑢 = 𝑡𝑎𝑙𝑙𝑢 . Of course, the attack cost
does not increase as well.

We conclude the section with the following claim.
Claim 3.5.9. CyberTWEAK terminates with optimal solution.

36

Algorithm 3: Find-dominated-websites
1 Define 𝑈 = {𝑤 ∈ 𝑊 ∶ 𝑐𝑤𝑡𝑤 ≥ 𝐵𝑑}. Let 𝐷 = ∅.
2 Calculate 𝑥𝑚𝑎𝑥

𝑢 = 𝐵𝑑/𝑐𝑢𝑡𝑢, ∀𝑢 ∈ 𝑈
3 foreach website 𝑤 ∈ 𝑊 do

4 Set 𝑈𝑤 = {𝑢 ∈ 𝑈 ∶ 𝜅𝑤 ≤ 𝜅𝑢(1 − 𝑥𝑚𝑎𝑥
𝑢)}

5 if exists 𝑈 ∗
𝑤 ⊆ 𝑈𝑤 such that

6 (1)∑𝑢∈𝑈 ∗
𝑤
𝜋𝑢 ≤ 𝜋𝑤 , (2)∑𝑢∈𝑈 ∗

𝑤
𝑡𝑎𝑙𝑙𝑢 ≥ 𝑡𝑎𝑙𝑙𝑤 , and (3)∑𝑢∈𝑈 ∗

𝑤
𝑡𝑎𝑙𝑙𝑢 ≥ 𝐵𝑒 then 𝐷 = 𝐷 ∪ {𝑤} ;

7 return set of dominated websites 𝐷

Proof. Claim 3.5.7 has covered the case where CyberTWEAK terminates after the optimality
check on Line 3, Alg. 2. In the other case, CyberTWEAK terminates when no new effort vectors
are found for the adversary. Suppose 𝑥 is the optimal solution to the defender’s optimization
problem (Line 6, Alg. 2), and suppose now2(𝑥) does not find a new effort vector (Line 7, Alg. 2).
This implies 𝑥 would still be feasible for the LP LP

1 (𝑒) even if 𝑒 is replaced by the set of all
max effort vectors 𝑒. Thus, 𝑥 is an optimal solution. Indeed, at this point the optimal values
of LP

1 (𝑒) and 2(𝑥) are equal.

In light of the hardness of the attacker’s best response problem (Thm 3.5.1), we also design
a variant of CyberTWEAK, which uses a greedy heuristic to find a new max effort vector to
be added in each iteration of column generation (denoted as GreedyTWEAK). The algorithm
allocates the adversary’s budget to websites in decreasing order of 𝑟𝑤 = 𝜅𝑤(1 − 𝑥𝑤)𝛼𝑤 , where
𝛼𝑤 is a tuning parameter. Another variant uses an exact dynamic programming algorithm for
the slave problem. Details about these variants can be found in Appendix B.1. Also, we note
that the SED problem is related to the recent work on bi-level knapsack with interdiction [24].
However, our outer problem of 1 is continuous rather than discrete, and the added dimension
of adversary’s effort makes the inner problem 2(𝑥) more complicated than that being studied
in this work.

3.6 Experiments

We introduce the experiment results in this section. Our goal is to evaluate the efficiency of
CyberTWEAK on a variety of problem instances, including very large ones. We evaluate the
algorithms on these simulated problem instances. Unless otherwise noted, problem parameters
are described in detail in Appendix B.3. All results are averaged over 20 instances; error bars
represent standard deviations of the mean.

First, we run experiments on the polynomial time tractable cases (Corollary 3.5.3 and The-
orem 3.5.4). Fig. 3.2a shows that in both cases, our solution can easily handle 105 websites,
applicable to real-world corporate-scale problems.

Moving on to the general SED games, we test 3 algorithms (CyberTWEAK,GreedyTWEAK,
and RelaxedLP) with two other baselines, MaxEffort and AllActions. RelaxedLP refers
to solving ̂1. MaxEffort solves LP

1 (𝑒) directly without column generation. AllActions

37

2 4 6 8 10
Number of Websites (×104)

0

2

4

6

8

10

12
Ru

nn
in

g
Ti

m
e

(s
)

Small Effort Budget
Uniform Cost + Unlimited Effort

(a) Tractable cases

4 5 6 7 8 9 10 11 12
Number of Websites

10 3

10 2

10 1

100

101

102

Ru
nn

in
g

Ti
m

e
(s

)

CyberTWEAK
GreedyTWEAK
All Actions
Max Effort
Relaxed LP

(b) Small instances

50 100 150 200 250 300 350
Number of Websites

10 2

10 1

100

101

102

Ru
nn

in
g

Ti
m

e
(s

)

CyberTWEAK
GreedyTWEAK
Relaxed LP

(c) Medium instances running time

50 100 150 200 250 300 350
Number of Websites

0

1000

2000

3000

4000

5000

6000

St
ra

te
gi

es
 G

en
er

at
ed

CyberTWEAK
GreedyTWEAK

(d) Medium instances #strategies

2 3 4 5 6 7 8 9 10
Number of Websites (×104)

100

101

102

103

Ru
nn

in
g

Ti
m

e
(s

)

CyberTWEAK
w/o OC
w/o DWE or OC
Relaxed LP
Relaxed LP w/ DWE

(e) Large instances

0.0 0.2 0.4 0.6 0.8 1.0
Budget Ratio

0.0

0.2

0.4

0.6

0.8

1.0

U
ti

lit
y

Ra
ti

o

|W| = 10
|W| = 30
|W| = 100

(f) Trade-off

Figure 3.2: Experiment results

decomposes SED into subproblems, each assuming some adversary’s effort vector is a best re-
sponse. Its details can be found in Appendix B.1. We test the algorithms with different problem
scales. In small and medium sized instances, we skip dominated website eliminateion (DWE)
step (Line 6) and optimality check (OC) step (Line 3) in Alg. 2 as the problem size is small
enough, making these steps unnecessary. We use solid lines to represent methods with opti-
mality guarantee and dotted lines for others (RelaxedLP based methods).

For small instances (Fig. 3.2b), both baselines become impractical even on problems with less
than 12websites. However,CyberTWEAK is able to find the optimal solutions rather efficiently.
GreedyTWEAK slightly improves over CyberTWEAK. RelaxedLP yields the fastest running
time, despite a solution gap above 6% as shown in Table 3.1.

For medium-sized instances (Fig. 3.2c), baseline algorithms cannot run and GreedyTWEAK
stops being helpful, mainly because the “better” effort vectors generated in GreedyTWEAK far
outnumbers the “best” effort vectors in CyberTWEAK (Fig. 3.2d) despite the saved time in
each iteration. Relaxed LP has negligible running time and often solves the problem optimally
(Table 3.1).

For large instances (Fig. 3.2e), CyberTWEAK with both DWE and OC steps is able to han-
dles 105 websites in 10 seconds. When we remove (denoted as “w\o”) DWE and/or OC step,
runtime increases significantly, showing the efficacy of these steps2 Compared to RelaxedLP

2The impact of DWE varies significantly across instances and relies heavily on the distribution of traffic. In
less than 4 of the 20 instances DWE did not reduce the problem size by much. We report in Fig. 3.2e the majority
group where DWE eliminated a significant number of websites. We provide further discussion in Appendix B.3.

38

|𝑊 | Gap # Exact |𝑊 | Gap # Exact
4 13.19% 2/20 150 7e-8 16/20
8 8.11% 5/20 200 8e-10 19/20
12 6.63% 8/20 250 0 20/20
50 2e-6 18/20 300 2e-3 17/20
100 8e-9 19/20 350 2e-8 18/20

Table 3.1: Solution quality of RelaxedLP, with the number of instances where RelaxedLP
solves the problem exactly.

or RelaxedLP enhanced with DWE step, which can also efficiently handles 105 websites, Cy-
berTWEAK has optimality guarantee.

Finally, we consider the trade-off between the risk exposure and degradation in rendering
websites, represented by the objective 𝑂𝑃𝑇 (1) and defender’s budget 𝐵𝑑 , respectively. With
budget �̄�𝑑 = ∑𝑤∈𝑊 𝑐𝑤𝑡𝑤 , the attacker would have zero utility. With zero defender budget, the
attacker would get maximum utility �̄� . Fig. 3.2f shows how the utility ratio𝑂𝑃𝑇 (1)/�̄� changes
with the budget ratio 𝐵𝑑/�̄�𝑑 . As the organization increases the tolerance for service degradation,
its risk exposure drops at a decreasing rate.

3.7 Deployment

Based on CyberTWEAK, we developed a browser extension (available on the Google Chrome
Web Storefootnote 1). It can modify the user-agent string sent to websites automatically dur-
ing browsing which contains information such as the operating system, browser, and services
running on the user’s machine. The extension receives from the user the websites visited 𝑊 ,
number of visits per week 𝑡𝑤 , the cost to alter the user-agent string 𝑐𝑤 and budget 𝐵𝑑 . The total
traffic 𝑡𝑎𝑙𝑙𝑤 and attack cost 𝜋𝑤 are estimated from the Cisco Umbrella 1 Million list [33]. The at-
tacker’s budgets are set in scale with the previously mentioned parameters. The extension runs
CyberTWEAK to set the probability of altering the user-agent string for each website. Note
that it is the relative magnitudes, rather than the exact values, that matter.

The extension takes additional steps to make our algorithm more usable and interpretable.
First, some users may find it hard to specify the cost of altering user-agent string 𝑐𝑤 and budget
𝐵𝑑 . Our extension will adjust the values based on the qualitative feedback provided by users
about whether the degradation of the website’s rendering is acceptable when they visit a web-
site using the modified user-agent, as shown in Fig. 3.3. Second, in addition to showing the
computed altering probabilities, the extension also displays a personalized “risk level” for each
website, to help the user understand the algorithm’s output. Less popular websites frequented
more often by the user have higher risk, as shown in Fig. 3.3.

As mentioned in Section 3.4, advanced cyber attackers might sometimes circumvent the
existing deception methods. Future versions of the extension will leverage the latest advances
in anti-fingerprinting techniques, which entail manipulating more than the user-agent string.

We believe this CyberTWEAK extension is vital to the continued study and development
of the countermeasure we develop for this domain and large scale deployments.

39

Figure 3.3: The CyberTWEAK browser extension collects and gives qualitative feedback to the
user, helping the user decide on deception strategies for each website.

Ethical implications The intended use case of CyberTWEAK is in defending the network
of some entity against watering hole attackers. CyberTWEAK involves visibility into the user’s
web browsing history. In a workplace context, this is of limited concern as it is reasonable to
expect that all employees’ network traffic is already monitored on corporate network regardless
of CyberTWEAK. As for mass use of CyberTWEAK in public, the user should give informed
consent prior to use, and the software should keep all activities involving user information
locally.

40

Part II

Learning and Planning for Food Waste

and Security

41

Chapter 4

Improving Efficiency of Volunteer-Based

Food Rescue Operations

This chapter includes the work from our very first collaboration with 412 Food Rescue to tackle
the challenges of food waste and food insecurity. The volunteering nature of food rescues brings
significant uncertainty. We predict whether a rescue will be claimed to help the dispatcher bet-
ter plan for backup options and alleviate their uncertainty. We develop a data-driven optimiza-
tion algorithm to compute the optimal intervention and notification scheme. The learning and
planning, albeit rather detached in this work, lay the foundation for subsequent chapters.

4.1 Introduction

In the US, over 25% of the food is wasted, with an average American wasting about one pound
of food per day [36]. Meanwhile, 11.8% of American households struggle to secure enough food
at some point [34]. Among the several responses to this inefficient food distribution, food res-
cue organizations are emerging in many cities. They receive edible food from restaurants and
groceries (“donors”) and send it to organizations serving low-resource communities (“recipi-
ents”). These food rescue organizations are an important force to fight against food waste and
food insecurity, both included in the United Nations’ Sustainable Development Goals.

A food rescue organization functions as a platform between the donors and the recipients.
Upon receiving the notice from a donor, the organization matches the food to a recipient. Typi-
cally, it transports the food from the donor to the recipient, or stores the food at its own facility
if necessary. This incurs cost and there are existing works on optimizing the matching process
to minimize this cost [107], and some attempt to create a market [126]. However, many of these
organizations operate under tight budget and human resource constraints. As a result, some
outsource the transportation of food to local volunteers, which brings in a new dimension to
the problem.

We collaborate with 412 Food Rescue (412FR), a food rescue organization serving over 1000
donors and recipient organizations in Pittsburgh, US. The dispatcher at 412FR matches the food
by calling each recipient till some recipient accepts. The dispatcher determines the order of
these calls based on numerous factors such as the proximity between the donor and recipient

43

(a) Screenshot of a rescue task (b) Donation picked up at a cafe (c) App notification

Figure 4.1: Volunteers for 412 Food Rescue receive push notifications about new rescue oppor-
tunities, get detailed information about the rescue on the app, and then head out to complete
the rescue.

and the estimated recipient’s willingness to accept the food. This decision is not hard-coded
but depends on the dispatcher’s rich experience. After the matching, they post the rescue on
412FR’s smartphone apps. 412FR’s over 7000 volunteers can see the rescue’s start and end
location as well as the weight and type of food (Fig. 4.1a). A volunteer can claim the rescue on
the app and then complete the rescue by picking up the food from the donor within its pickup
window (Fig. 4.1b) and delivering it to the recipient.

Relying on volunteers saves cost for the organization, but there is a high degree of uncer-
tainty in whether a rescue will be claimed and completed. Over the years, 412FR has used many
methods to get more rescues claimed and completed. First, after a rescue request is posted, the
app will push notification to volunteers within 5 miles (Fig. 4.1c). After 15 minutes, if no one has
claimed the rescue, the app will push notification to all available volunteers. Second, dispatcher
monitors all rescues to be claimed or to be completed. If no one has claimed a rescue by the
last hour of its pickup window, the dispatcher calls regular volunteers they are familiar with
to help with the rescue. For the ones claimed and to be completed, dispatcher needs to answer
volunteers’ inquiries about delivery details in real-time. As such, the dispatcher has a heavy
workload. However, while it is helpful to engage with the volunteers, too many notifications
might drive them away [48].

Our contribution In this chapter, we aim to reduce the dispatcher’s workload and the re-
dundant notifications sent to the volunteers, without decreasing the claim rate of the rescues.
We make two main contributions. 1) We train a stacking model to predict whether a rescue will
be claimed. Our stacking model achieves an AUC of 0.81, serving as a reliable reference of the
risk of a rescue. The model informs the dispatcher how likely a rescue is going to be claimed,

44

thus helping the dispatcher better plan for backup options. (2) We perform data-driven opti-
mization to find the optimal Intervention and Notification Scheme (INS), i.e., when the dispatcher
should intervene and seek help from regular volunteers and when and to whom the notifica-
tions should be sent. We estimate the counterfactual rescue outcomes and use a branch and
bound method to improve computational efficiency. The resulting INS can improve over the
current practice by reducing the number of notifications sent and the dispatcher interventions,
while keeping the rescues’ expected claim rates. Our analysis suggests to the platform some
changes in their current INS, which can save the most valuable resources to food rescue: the
dispatcher’s attention and volunteers’ interest.

We are working with 412FR to deploy our results. In fact, such organizations are not rare at
all. In the US alone, similar organizations are already operating in over 55 cities, helping over
11 million people, and the numbers will only keep growing. Thus, our work could potentially
improve the dispatching decisions at a large scale, not to mention the similar volunteer-based
community services other than food rescue.

4.2 Related Work

The operational challenges of food rescue organizations have received much attention. Nair
et al. [107] and Gunes et al. [59] study matching the donor and recipient with a routing problem.
This is related to the more general problem of online matching [75, 101]. Prendergast [126]
and Lundy et al. [95] consider the incentive of the agencies and design a market for the food
rescue platform. Phillips et al. [120] explore predicting the future donations. However, all these
works assume the organization manages the donations without the participation of volunteers,
and thus they are not applicable to our problem. In addition, the well-studied task allocation
problem [64] does not perfectly fit our scenario, as 412FR has no control over the volunteers.
The only work which assumes similar operation is [83]. It studies the stakeholders’ perception
of fairness and democracy on the food matching decisions, while we focus on improving the
efficiency of food rescue operations.

Our prescriptive analysis uses counterfactual estimation of rescue outcomes under various
dispatching schemes. This relates to the extensive literature on causal inference with observa-
tional data [39]. However, 412FR has always used the same dispatching scheme for all rescues,
and it is currently impossible to contact volunteers for pre- and post-intervention tests [125].
Thus, existing work is not applicable and we develop a new way of constructing counterfactual
datasets.

4.3 Predicting the Claim of Rescues

Our first task is to predict whether a rescue would be claimed. We use the operational dataset
of 412FR which contains rescues from March 2018 to May 2019. The dataset records the time
log of each step in the rescue: posting, claimed by volunteer, and completion, along with the ID
of the volunteer who claimed the rescue. We treat a rescue as unclaimed and assign a negative
label if it was never claimed or if it was claimed within the last hour of the pickup window by

45

(a) Claim rate vs. temperature. (b) Percentage of unclaimed rescues by zip code dis-
trict.

Figure 4.2: Data analysis results. The temperature range 𝑖 represents (10.5𝑖 − 11.5, 10.5𝑖 − 1]◦F.

a selected group of volunteers who had done more than 10 rescues within the last two months.
We assume the latter ones had gone through dispatcher’s intervention and would not have been
claimed otherwise. The dataset contains 4574 rescues with 749 negative ones among which 672
were not claimed by anyone and 77 were claimed within the last hour of the pick up window
by the selected group.

4.3.1 Feature engineering

We use a number of features for the prediction. The first group of features are directly related to
the rescue, such as the travel time and distance between the donor and the recipient generated
by Google Maps Platform, the weight of the food, time of day, and which time slot the rescue
belongs to.

We also used the weather information on the day of rescue from Climate Data Online,
including the average temperature, precipitation and snowfall, as data analysis suggests that
weather is correlated with the rescue outcome (Fig. 4.2a).

The third group of features involve the number of available volunteers near the donor and
recipient’s locations. Instead of using zip code, we evenly divide the area of operation of 412FR
into a grid with 300 cells because the zip code districts vary a lot in size (Fig. 4.2b) and the grid
allows for better specificity. Each volunteer could set in their app the time slots they do not
want to receive any notifications, which can also be interpreted as their availability. An active

volunteer (AV) in a grid cell for a rescue is one who had done a rescue in the cell and marked
themselves as available for the rescue’s pick-up time slot in the app. We use as feature the
number of AVs in the donor’s and recipient’s cells and the number of them averaged over the
cells adjacent to the donor’s. The number of AVs who indicate they have vehicles is helpful as
well, as those without vehicles might be more constrained in their choice of rescues.

We also tested some other features such as average household income and vehicles. How-
ever, they do not improve the performance of the model. An example of the features we use for
the training the machine learning model is shown in Table 4.1. These two data points are for

46

Features Rescue 1 Rescue 2
Fastest travel time of rescue 8 min 28 min
Travel distance of rescue 2.4 miles 18 miles
Weight of the food 5 lb 20 lb
Time of day 1pm 2pm
Time Slot Weekday

Afternoon
Weekend
Afternoon

Precipitation 0 0.12 inch
Snowfall 0 0
Average temperature 62 ◦𝐹 76 ◦𝐹
AVs in donor’s cell 20 91
Average AVs in
donor’s neighboring cells

40 250

AVs in recipient’s cell 30 300
AVs in donor and recipient’s
cells with vehicle

21 116

Table 4.1: Two example data points for the predictive model.

illustration purpose and are not real rescues, as per our agreement with 412FR.

4.3.2 Stacking Model

We first attempted a few baseline models including Gaussian Process (GP) and Random Forest
(RF) with different parameters but got unsatisfying performance, especially with the false pos-
itives, i.e. when the rescue is unclaimed but we predict it as claimed. In the context of food
rescue, we want to inform human dispatchers which rescues will be unclaimed without human
intervention and need extra attention. Thus, false positives can be costly because it may lead
to the ignorance of a rescue in need of intervention and the waste of donated food, while false
negatives are less concerning because it only leads to unnecessary extra attention from the hu-
man dispatcher. To deal with weak learners, we use a stacking approach inspired by [159],
whose structure is shown in Fig. 4.3. First, we split the training data into two sets, 𝐷𝐴 and 𝐷𝐵.
We use 𝐷𝐴 to train various base models (Fig. 4.3, 1⃝) and then we use these trained models to
make predictions on 𝐷𝐵 (Fig. 4.3, 2⃝). Finally, we train a meta learner using the base models’
predictions on 𝐷𝐵 to determine the stacking model’s estimate (Fig. 4.3, 3⃝). In our case, we use
5 GP regressors and 1 RF classifier as the base model. The 5 GPs have different kernels and pa-
rameters for length scales. The parameters for GPs are shown in Table 4.2. The Random Forest
Classifier has 100 estimators and the max-depth for any decision tree is 9.

All the six models are trained on the same data 𝐷𝐴. We use the mean values of the GPs’
predictions and the binary label of the RF classifier, on 𝐷𝐵, as the input to the neural network
meta learner. We report the results in Sec. 4.5.

47

GP 1 2 3 4 5
Kernel DP DP Matern RBF RBF
Alpha 0.5 0.01 0.3 0.1 0.03

Table 4.2: GP parameters. Alpha is the dual coefficient of training data points in kernel space.
DP means dot product.

Figure 4.3: The stacking model.

4.4 Optimizing Intervention and Notification

We also perform prescriptive analysis to optimize the INS of 412FR, determining the guideline
for dispatcher intervention and the rules for sending notifications. Our goal is to reduce the
frequency that the dispatcher intervenes to “save” a rescue, or the mobile app notifications sent,
ideally both.

We formalize the problem by defining an INS as a tuple (𝑥, 𝑦, 𝑧), with 𝑥 , 𝑦, 𝑧 described
below. When a rescue is posted, the mobile app first sends notifications to the volunteers who
are within 𝑦 miles from the donor. If no volunteer claims the rescue within the first 𝑥 minutes,
the app then sends the notification again to all volunteers who have indicated availability in the
corresponding time slot. The dispatcher monitors the rescue after it is posted. If a rescue has
not been claimed by 𝑧 minutes before its pickup deadline, the dispatcher intervenes by directly
contacting a group of regular volunteers and asking them if they are willing to claim it. If 𝑤𝑟
is the duration from the posting time to the pickup deadline of rescue 𝑟 , then the dispatcher
intervenes 𝑤𝑟 − 𝑧 minutes after the rescue is posted. We assume that upon the dispatcher’s
intervention, with probability 𝜇 the rescue immediately gets claimed, otherwise it has no effect.

412FR has always used a default INS: �̂� = 15 (minutes), �̂� = 5 (miles), and 𝑧 = 60 (minutes).
We look for the optimal INS in a finite set 𝑆 of candidate INSs which minimizes

𝜆𝔼𝑟∼𝑅[𝑐1(𝑥, 𝑦, 𝑧, 𝑟)] + 𝔼𝑟∼𝑅[𝑐2(𝑥, 𝑦, 𝑧, 𝑟)] (4.1)

where 𝑅 is the distribution of rescues, and 𝜆 controls the trade-off between two quantities: the
expected number of dispatcher interventions and the expected number of notifications sent to
volunteers. 𝑐1 is the average number of dispatcher intervention for rescue 𝑟 , 𝑐2 is the average

48

Notation Meaning
𝑥 Second round notification time, default �̂�
𝑦 First round notification radius, default �̂�
𝑧 Intervention time from deadline, default 𝑧
𝜇 Dispatcher intervention success probability
𝑟 r.v.: a rescue, following distribution 𝑅.
𝑤𝑟 Duration from 𝑟 being posted to deadline
𝜆 Trade-off of intervention and notification.
𝑠(⋅) Average number of dispatcher interventions
𝑣(⋅) Average number of 1st round notifications
𝑞(⋅) Average number of 2nd round notifications
𝑝(𝑎, ⋅) Proportion of rescues claimed in 𝑎 minutes
𝑆 Domain of optimization variables (𝑥, 𝑦, 𝑧)
𝑏𝑖 Claim rate lower bound

Table 4.3: Notations for the optimization problem.

number of notifications sent for 𝑟 given the INS. We also want to maintain a high claim rate,
i.e., 𝐸𝑟∼𝑅[𝑐3(𝑎𝑖 , 𝑥, 𝑦, 𝑧, 𝑟)] ≥ 𝑏𝑖 for a given set of 𝑎𝑖 , 𝑏𝑖 where 𝑐3 is the probability that rescue 𝑟 is
claimed within first 𝑎𝑖 minutes.

Without knowing the exact distribution 𝑅, we can only estimate these expected values
through data. Given a dataset 𝐷 of rescues under INS (𝑥, 𝑦, 𝑧), we define 𝑝(𝑎, 𝑥, 𝑦, 𝑧) as the
proportion of rescues in 𝐷 that are claimed in 𝑎 minutes; 𝑠(𝑥, 𝑦, 𝑧) as the proportion of rescues
in 𝐷 that are not claimed by volunteers before the dispatcher intervenes; 𝑣(𝑦) as the average
number of available volunteers who are within 𝑦 miles of the donor who receive the first round
notifications; 𝑞(𝑥, 𝑦, 𝑧) as the average number of available volunteers who receive the second
round notifications. Formally,

𝑝(𝑎, 𝑥, 𝑦, 𝑧) =
1
|𝐷|

∑
𝑟∈𝐷

𝕀 (rescue 𝑟 claimed in 𝑎 min) ,

𝑠(𝑥, 𝑦, 𝑧) =
1
|𝐷|

∑
𝑟∈𝐷

𝕀 (𝑟 not claimed in 𝑤𝑟 − 𝑧 min) ,

𝑣(𝑦) =
1
|𝐷|

∑
𝑟∈𝐷

available volunteers within 𝑦 miles of 𝑟

𝑞(𝑥, 𝑦, 𝑧) =
1
|𝐷|

∑
𝑟∈𝐷

𝕀(
𝑟 not claimed
in 𝑥 min) × # available

volunteers for 𝑟

Assuming data points in 𝐷 are sampled from 𝑅, we have

𝔼𝑟∼𝑅[𝑐1(𝑥, 𝑦, 𝑧, 𝑟)] ≈ 𝑠(𝑥, 𝑦, 𝑧)
𝔼𝑟∼𝑅[𝑐2(𝑥, 𝑦, 𝑧, 𝑟)] ≈ 𝑣(𝑦) + 𝑞(𝑥, 𝑦, 𝑧)
𝔼𝑟∼𝑅[𝑐3(𝑎, 𝑥, 𝑦, 𝑧, 𝑟)] ≈ 𝑝(𝑎, 𝑥, 𝑦, 𝑧)

49

Our final optimization problem is as follows.

min
𝑥,𝑦,𝑧

𝐶(𝑥, 𝑦, 𝑧) = 𝜆𝑠(𝑥, 𝑦, 𝑧) + 𝑣(𝑦) + 𝑞(𝑥, 𝑦, 𝑧) (4.2)

𝑠.𝑡. 𝑝(𝑎𝑖 , 𝑥, 𝑦, 𝑧) ≥ 𝑏𝑖 , ∀𝑖 ∈ 𝐼 (4.3)
(𝑥, 𝑦, 𝑧) ∈ 𝑆

From the historical data and dispatcher’s advice, we could estimate 𝜇, 𝑉𝑦 , 𝑎𝑖 , 𝑏𝑖 , 𝑆. However,
estimating 𝑠(⋅), 𝑞(⋅), 𝑝(⋅) poses significant difficulty. We need to estimate the counterfactual
claim time (CCT) for all INSs (𝑥, 𝑦, 𝑧) ≠ (�̂� , �̂�, 𝑧).

4.4.1 Counterfactual claim time (CCT) estimation

Given a rescue happened under the default INS (�̂� , �̂�, 𝑧), we estimate its CCT under some other
INS (𝑥, 𝑦, 𝑧). We make the following assumptions.

• No matter when a volunteer receives the notification, upon receiving it they take the
same amount of time to respond, and the effect of human intervention is independent of
the app notification.

• The intervention outcome is not affected by the INS.
• Given a list of regular volunteers (provided by dispatchers or derived from data), if a res-

cue is recorded in the historical data as claimed by a regular volunteer after the dispatcher
intervention time, i.e., 𝑤 − 𝑧 minutes after the rescue is posted, we give the credit to dis-
patcher intervention. If a rescue was claimed after the dispatcher intervention time by
anyone else, we assume that the dispatcher’s intervention have failed.

Suppose the rescue was claimed by volunteer 𝑖 located 𝑑 miles from the donor in the his-
torical data. At a high level, in most cases we compute the claim time of volunteer 𝑖 in the new
INS (𝑥, 𝑦, 𝑧) and take that as our CCT estimate. For example, suppose 𝑖 is within the first round
notification radius, i.e. 𝑑 ≤ �̂� and claims the rescue in 7 minutes under (�̂� , �̂�, 𝑧). This rescue
would have a CCT of 12 minutes when 𝑥 = 5, 𝑧 = 𝑧 = 60 and 𝑦 < 𝑑 ≤ �̂� , i.e., 𝑖 is now outside
the first round notification radius. This is because the volunteer 𝑖 needs 7 minutes to respond
after getting notification, but now they only receive the notification 5 minutes after the res-
cue is available. We also factor in the effect of dispatcher intervention when the intervention
happens before the CCT 𝑘, i.e. 𝑤𝑟 − 𝑧 < 𝑘. For rescue 𝑟 , we report the expected claim time
𝑚𝑧(𝑘) = 𝜇min{𝑤𝑟 − 𝑧, 𝑘} + (1 − 𝜇)𝑘. In another scenario, if in the historical data, volunteer 𝑖
who is not in the first round notification radius claims the rescue before the second round noti-
fication, we assume the volunteer’s action is due to actively checking the available rescues and
is not affected by the notification. Thus, the CCT remains the same for all INS. The complete
computation is shown in Fig. 4.4.

We claim that our estimation is conservative, i.e., we will never underestimate the claim
time. This is important in practice, because overestimation may merely lead to unnecessary
resource spent but underestimation may cause a rescue to fail. Our estimation is accurate when
𝑖 is within the first round notification radius in the counterfactual INS but not in the default INS
and intervention happens after the claim time, as 𝑖 would still be the first volunteer to claim

50

Figure 4.4: Construction of the CCT for INS (𝑥, 𝑦, 𝑧) based on default INS (�̂� , �̂�, 𝑧). 𝑎 is the
rescue’s actual claim time. 𝑑 is the distance from the rescue’s volunteer to the donor.

the rescue under the counterfactual INS. In some other cases, there exists the unobservable
possibility that some other volunteer might claim the rescue before 𝑖 in the counterfactual INS,
and hence we might overestimate the claim time.

4.4.2 Solving the optimization problem

Given the CCT estimate for each rescue, we can estimate the functions 𝑠(⋅), 𝑞(⋅), 𝑝(⋅) using the
counterfactual dataset. However, there is no closed-form expression for them. Computing their
values at every point in a brute force way is obviously inefficient. We propose a branch-and-
bound algorithm and a feasibility check to find optimal INS more efficiently.

First, we note that the CCT, as detailed in Fig. 4.4, is increasing in 𝑥 and decreasing in 𝑦 and
𝑧. Since 𝑝(⋅) is the empirical estimate based on the claim time, if some infeasible INS (𝑥, 𝑦, 𝑧)
does not satisfy claim rate constraint (4.3), any INS (𝑥, �̃�, 𝑧) with 𝑥 ≥ 𝑥, �̃� ≤ 𝑦, 𝑧 ≤ 𝑧 is also
infeasible. Thus, we need not generate CCT for (𝑥, �̃�, 𝑧).

Using a similar observation, we devise our main algorithm, Alg. 5. Note that 𝑠(𝑥, 𝑦, 𝑧) de-
creases as 𝑥 , 𝑧 decreases and 𝑦 increases, 𝑣(𝑦) decreases as 𝑦 decreases, 𝑞(𝑥, 𝑦, 𝑧) decreases as
𝑥 , 𝑦 , 𝑧 increases. Therefore, if we replace all the variables in all terms with the extreme val-
ues in domain 𝑆 that can minimize 𝐶(𝑥, 𝑦, 𝑧) (as shown in Table 4.4), we get a lower bound of
𝐶(𝑥, 𝑦, 𝑧). We define a subproblem as the original optimization problem with 𝑘 of the variables

51

𝑠(𝑥, 𝑦, 𝑧) 𝑥𝑚𝑖𝑛 𝑦𝑚𝑎𝑥 𝑧𝑚𝑖𝑛
𝑣(𝑦) 𝑦𝑚𝑖𝑛

𝑞(𝑥, 𝑦, 𝑧) 𝑥𝑚𝑎𝑥 𝑦𝑚𝑎𝑥 𝑧𝑚𝑎𝑥

Table 4.4: Replace (unspecified) variables in each term with the extreme values to get a lower
bound.

Algorithm 4: Solve-Relaxation
1 Optional input arguments: 𝑥, 𝑦, 𝑧
2 if all of 𝑥, 𝑦, 𝑧 specified then

3 Generate CCTs with (𝑥, 𝑦, 𝑧).
4 if feasible then

5 Compute cost �̄� = 𝐶(𝑥, 𝑦, 𝑧)
6 return subproblem (�̄�, (𝑥, 𝑦, 𝑧))

7 else

8 Generate CCTs with unspecified parameter replaced by extreme values in Table 4.4.
9 Compute lower bound �̄�

10 return subproblem (�̄�, (𝑥, 𝑦, 𝑧))

in the INS specified and the remaining ones unspecified for 𝑘 = 0, 1, 2, 3. To compute a lower
bound for each subproblem, we replace the unspecified variables in each term with the extreme
values according to Table 4.4. For example, if 𝑧 is specified, and 𝑥 , 𝑦 are unspecified, we get a
lower bound

�̄� = 𝜆𝑠(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 , 𝑧) + 𝑣(𝑦𝑚𝑖𝑛) + 𝑞(𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 , 𝑧)

In Alg. 5, we start with the original problem where none of the variables are specified (𝑘 = 0).
We branch to lower level subproblems in the order of 𝑧 → 𝑦 → 𝑥 , as this order tends to prune
the fastest. For each subproblem, we either compute a lower bound, or when all variables are
specified, compute the exact cost. We generate one counterfactual dataset for computing the
exact cost (Line 3, Alg. 4), and at most two datasets when computing the lower bound (Line 8,
Alg. 4), since 𝑠(⋅) and 𝑧(⋅) are minimized at two different INSs and 𝑣(⋅) does not depend on the
CCT. The implicit pruning on Line 3 guarantees Alg. 5 finds the optimal solution.

4.5 Results

4.5.1 Prediction

We “predict the future with the past”. As mentioned in Section 4.3, we treat rescues done by
volunteers who have done over 10 rescues in the last two months in the last hour of the pick-up
window as unclaimed. Thus, we exclude the rescues in the first two months from our prediction
task as we do not have the volunteer history for these early entries. As a result, the training
data consist of rescues from May 2018 to December 2018 and testing data consist of rescues

52

Algorithm 5: Branch-and-Bound
1 Push Solve-Relaxation({}) to Frontier.
2 while Frontier set is not empty do

3 Get subproblem with lowest �̄� from Frontier.
4 if subproblem has all parameters specified then

5 return (�̄�, (𝑥, 𝑦, 𝑧)) #(optimal solution)
6 else

7 Follow the order 𝑧 → 𝑦 → 𝑥 to expand the node, i.e., if the first 𝑘 variables are
already specified, create a subproblem for each possible value of the (𝑘 + 1)𝑡ℎ
variable in 𝑆.

8 Add all subproblems Solve-Relaxation(𝑥, 𝑦, 𝑧) to Frontier.

Model Accuracy Precision Recall F1 AUC
GB 0.73 0.86 0.82 0.84 0.51
RF 0.71 0.87 0.78 0.82 0.54
GP 0.56 0.88 0.54 0.67 0.60
SM 0.69 1.00* 0.64 0.78 0.81

Table 4.5: Performance of selected models, GB: Gradient Boosting Classifier, RF: Random Forest;
GP: Gaussian Process; SM: Stacking Model. * We run the experiments for SM for 3 times. The
precisions are 1.0, 1.0, 0.9969.

from January 2019 to May 2019. In addition, since the dataset is imbalanced on the number
of claimed and unclaimed rescues, we oversample the unclaimed rescues so that the ratio of
claimed and unclaimed rescues is 1:1. The oversampling is applied to only the training dataset
for the predictive model.

Table 4.5 shows the stacking model outperforms all baseline models. Moreover, it yields
almost no false positive errors. This is especially important in the food rescue operation, as the
cost of not taking actions to a rescue which turns out unclaimed due to a false positive is much
higher than that of an unnecessary dispatcher intervention due to a false negative.

4.5.2 Optimization

After consulting the dispatcher, we take 𝜇 = 0.4 as the probability that dispatcher intervention
is effective. We require that the optimal INS’s claim rate be no worse than default INS. That
is, we use 𝑎𝑖 = 1, 2,…120 and 𝑏𝑖 being the empirical claim rate at the 𝑎𝑖-th minute under the
default INS.

First, we demonstrate the effectiveness of the branch and bound algorithm (Alg. 5). We
set the domain 𝑆 as 𝑥, 𝑦 ∈ {2, 4, 6, 8} and 𝑧 ∈ {30, 40, 50, 60}. As shown in Table 4.6, branch
and bound needs to generate CCTs on much less INSs than the brute force approach, although
advantage is less significant for smaller 𝜆. In the sequel, we use Alg. 5 and set the domain 𝑆 as
𝑥 ∈ {1, 1.5, 2,… , 25}, 𝑦 ∈ {1, 1.5, 2,… , 10}, 𝑧 ∈ {30, 32.5, 35,… , 90}.

53

Figure 4.5: The ROC curves of the models

Brute force search Branch and bound
𝜆 INSs Time (s) INSs Time (s)
107 64 192.6 18 65.5
106 64 183.7 18 64.9
105 64 185.1 16 56.4
104 64 190.9 34 125.0
103 64 187.1 35 129.3

Table 4.6: Running time and the number of INSs for which the CCTs are generated.

Similar as above, we use the earlier data 𝐷𝑝𝑎𝑠𝑡 to predict the more recent data 𝐷𝑓 𝑢𝑡𝑢𝑟𝑒 . First,
we focus on computing the optimal INS on 𝐷𝑝𝑎𝑠𝑡 in Fig. 4.6a. Both the 2nd round notification
time and the dispatcher intervention time decrease as 𝜆 grows, i.e. the dispatcher’s intervention
matters more in the dispatching cost. This is aligned with the results in Table 4.4. When the
app notification is the primary concern, the default INS is almost desirable, yet if we would like
to minimize the interventions, the 2nd round notification needs to go out sooner. Fig. 4.6b, we
show the Pareto frontier (in red) of optimizing on 𝐷𝑝𝑎𝑠𝑡 . The optimal INSs in Fig. 4.6a are now
shown in blue. The default INS lies within the frontier, suggesting that the numbers of both
interventions and notifications can be improved. The orange rectangle indicates the INS region
that is strictly superior to the default INS.

Of course, we would like to examine the quality of the optimization solutions on unseen
data. Thus, in Fig. 4.6c, we show the projected number of interventions and notifications on
𝐷𝑓 𝑢𝑡𝑢𝑟𝑒 of the optimal INSs on 𝐷𝑝𝑎𝑠𝑡 . For the same INS, the performance is different between
Fig. 4.6b and Fig. 4.6c because the claim probabilities are estimated using the two datasets sepa-
rately. Despite this difference, some optimal INSs on 𝐷𝑝𝑎𝑠𝑡 still outperforms the current practice.
We therefore suggest two INSs (see Fig. 4.6c) to 412 Food Rescue, as shown in Table 4.7. INS
A is a strict improvement over the current practice, reducing the number of both intervention
and notification. Our second solution, INS B, drastically reduce the labor of dispatcher by 24%
at the expense of a mere 2% increase of notifications sent. Since 412FR handles 4574 rescues

54

INS Interventions Notifications
A: (16.5, 5.5, 45) −13% (−0.06) 0% (−1)

B: (15.5, 5.5, 32.5) −24% (−0.10) +2% (+46)

Table 4.7: The projected change in the probability of interventions and number of notifications
of the proposed INSs. The numbers in parentheses are the absolute change.

in a 430-day period, INS B can save the dispatcher over 390 times of intervention a year in ex-
pectation. An intervention takes the dispatcher at least the same amount of time as matching
a new food rescue, and often more. Thus, the dispatcher could handle at least 390 extra rescues
a year, which is over 7500 pounds of food by the average donation in our dataset. We choose
INS B over the rightmost INS on Fig. 4.6c because 412FR has relatively more shortage of dis-
patcher than volunteers. Finally, Fig. 4.6d shows our two INSs have competitive claim rates on
the unseen data. This suggests the promise of deploying our method in the future.

4.6 Discussion

As mentioned in Section 4.2, there are other facets of the food rescue problem that can be tackled
with a computational approach, including optimizing the matching between donors and recip-
ients, and directly incentivizing volunteers to be more active. We focus on predicting whether
a rescue can be claimed and optimizing INS as they are of higher priority to our partners at
412FR with a clearer path for future deployment. Specifically, the matching is currently done
manually at 412FR. Rather than a mechanical process, the dispatcher’s job requires a high level
of situational judgment, interpersonal skills, and the rapport developed over time. Through
our multiple conversations with 412FR and direct experience of shadowing the dispatcher, we
believe that currently, automating the matching would not benefit 412FR without a big change
of the overall workflow involving all the donors, recipients as well as 412FR. Motivating the
volunteers to boost claim rate would require 412FR to take new initiative that is not in place.
In contrast, the INS is a current practice and it is easier to test our solution. Nonetheless, we
will consider these directions as we continue to work with 412FR.

In addition, our optimization framework is already taking into account the volunteer reten-
tion problem implicitly as we try to reduce the notifications sent in the objective function. Our
framework can be extended to different objectives, and one may design an objective that ex-
plicitly focuses on volunteer retention. For example, a user’s probability of uninstalling an app
could be modeled as a function 𝑓 (⋅) of the number of notifications they receive in a week [53].
To minimize the number of volunteers lost, we could change the optimization objective from
Eq. (4.1) to

𝔼𝑛∼𝑁𝔼𝑟1,...,𝑟𝑛∼𝑅𝑛 ∑
𝑖∈𝑉

𝔼𝑛𝑖∼𝑁𝑖 ({𝑟𝑗},𝑥,𝑦,𝑧)𝑓 (𝑛𝑖)

where 𝑛 is the number of total rescues in a week following some distribution 𝑁 , 𝑉 is the set
of volunteers, and 𝑛𝑖 is the number of notifications volunteer 𝑖 receives in a week following
a distribution determined by the set of rescues and the INS. Similar to Eq. (4.1), this objective
value can be estimated through the counterfactual datasets.

55

(a) Optimal INSs on 𝐷𝑝𝑎𝑠𝑡 (b) Pareto frontier on 𝐷𝑝𝑎𝑠𝑡

(c) Performance of the optimal INSs for 𝐷𝑝𝑎𝑠𝑡 on 𝐷𝑓 𝑢𝑡𝑢𝑟𝑒 (d) Projected claim rate of two recommended INSs on
𝐷𝑓 𝑢𝑡𝑢𝑟𝑒

Figure 4.6: Experiment results of the data-driven optimization

Another promising direction is to combine our prediction model and the optimization al-
gorithm to optimize rescue-specific INS. We investigate this in the following chapter.

4.7 Conclusion

We provide the first predictive and prescriptive analysis of volunteer-based food rescue opera-
tions. Our stacking model predicts the claim status of rescues with AUC of 0.81. Such prediction
helps the dispatcher better prepare for interventions and alleviate their uncertainty. Our data-
driven optimization reduces the frequency of dispatcher intervention and push notifications
sent to volunteers, without harming the claim rate. The dispatcher can use the saved effort to
handle an extra 7500 pounds of food a year that would otherwise go to waste. By improving
the operation efficiency of inspiring organizations like 412FR, our research contribute to the

56

fight against food waste and insecurity. Please refer to Section 6.1 in Chapter 6 for deployment
results of the work in this chapter.

Ethical implications We centered the partner organization in this study, so that the work
is intended as a decision aid to the food rescue dispatchers rather than make decisions for
them. Meanwhile, it is important to study how the work could affect different regions, and
hence demographics, differently. For example, although the prescriptive model in Section 4.4
enforces a threshold that the overall claim rate should not drop, it is critical to investigate if the
claim rates in certain regions are improved at the expense of other regions. The use of human
subject data in this chapter has been approved by the IRB.

57

58

Chapter 5

A Recommender System for

Crowdsourcing Food Rescue Platforms

Following the work in the previous chapter, we realized that developing a rescue-specific vol-
unteer engagement system is both necessary and feasible. This naturally became our focus in
this chapter. We develop a recommender system to send push notifications to the most likely
volunteers for each given rescue. On top of this, we leverage a mathematical programming
based approach to diversify our recommendations, and propose an online algorithm to dynam-
ically select the volunteers to notify without the knowledge of future rescues. In this way, we
tightly integrate learning and planning in a single algorithm.

5.1 Introduction

Recall the last time you saw several full shelves of bread with an expiry date in two days at a
grocery store, or the last time you saw a homeless person downtown asking for a meal. It is
not a coincidence if both scenarios seem familiar to you. The simultaneous food waste and food
insecurity are a serious problem shared by many parts of the world [35, 58]. Unfortunately, the
ongoing COVID-19 pandemic is only making things worse [78]. Even after the pandemic hits
its peak, the increased struggle with basic food security will not subside quickly on our long
way back to normal. Thus, now more than ever, there is an urgent call for action to address the
food security and food waste problem. In this chapter, we leverage our AI expertise to answer
this call with our collaborators.

Food rescue organizations (FR) are a major non-profit force in fighting food waste and in-
security. They match fresh, unexpired food from donors to organizations serving low-resource
communities, thereby facilitating food redistribution.1 FRs rely on volunteers to transport the
food. To engage with the volunteers, FRs use a web-based application on cell phones to post
information of upcoming rescues. Please refer to Section 5.3 for a detailed description of the
food rescue operation. This “crowdsourcing” paradigm has proved to be successful in engaging
with the general public to address food waste and insecurity [158].

1We would like to emphasize that only fresh and unexpired food can be donated through FRs.

59

However, relying on external volunteers to deliver the food comes with inherent uncer-
tainty. What if no volunteer will claim the rescue? This uncertainty is prevalent in FR op-
erations and it has serious consequences such as lost faith in the program from the donor and
recipient organizations. Since the primary way in which FRs contact volunteers is through push
notifications, to improve the claim rate one would certainly want to send push notifications to
volunteers who are likely to claim the given rescue. Currently, when a rescue is published,
the mobile app sends notifications to volunteers who are within a certain radius of the donor.
Although being close to the donor is clearly a positive factor, this is far from a perfect solution
as its hit ratio is only 44%, which means it misses the “correct” volunteer more than half of the
time. On the other hand, we also want to avoid sending push notifications to every volunteer
all the time, because that would easily drive them away from the platform or prompt them to
disable notifications altogether [48]. A customized push notifications, with good justifications,
would better engage the user. Thus, it is crucial to send the push notifications to a selected set
of volunteers who are likely to claim the rescue.

Our contributions In this chapter, we propose the first machine learning based model to
select the right set of volunteers to notify in the food waste and security domain. By treating
each rescue trip as a “user” and each volunteer as an “item”, we study this problem from a
recommender system perspective. Recommender systems have received a lot of interest from
the research community in the past years [43, 62, 87, 170]. Our task is relevant to this literature
but also brings several new challenges. We state these challenges and our approaches to address
them as follows.

• First, since each rescue only happens once, we stay in the “cold start” phase of the rec-
ommender system forever, rendering collaborative filtering-based methods unsuitable.
We leverage a sophisticated set of contextual features, an adaptive under-sampling tech-
nique, and a neural architecture to develop a content-based recommender system. We
show that our model outperforms a number of baselines, and improves the hit ratio of
recommending the correct volunteer to 73%. This is a 66% improvement from the current
practice which has a 44% hit ratio.

• Second, not being able to recommend diverse items is a serious issue in the recommender
systems literature. It is particularly concerning in our application because the “items” are
human volunteers who contribute their time to the cause. We leverage a mathematical
programming based approach by imposing diversity constraints on the output of the rec-
ommender system. This ensures that each volunteer receives only a limited number of
push notifications every day.

• Third, most literature on recommender systems assumes an offline environment that has
a static dataset. However, food donations arrive sequentially and thus the FR must accord-
ingly make decisions without the knowledge of future rescues. We identify an important
arrival pattern of the food rescue trips based on our experience in the domain. Relying
on this insight, we develop an online planning algorithm which sequentially selects the
volunteers to notify, while still satisfying the diversity constraint we imposed earlier. We
show that our online algorithm achieves a hit ratio that is only 10% worse than the hy-
pothetical offline mode where we assume knowledge of all the rescues at the beginning

60

of the day.
Food rescue organizations have made their presence in most major cities in the US and be-

yond. In the US alone, there are already over 50 cities where FRs are providing basic necessities
to the communities, affecting over a million people. We are working with 412 Food Rescue
(412FR), a large food rescue organization in Pittsburgh. 2 Since its incorporation in 2015, 412FR
has served over 1,000 nonprofit partners and has grown a network of over 15,000 volunteers in
the Greater Pittsburgh Region as of 2020. In Chapter 6, we will introduce the deployment of
the work in this chapter. Furthermore, we believe that the problem we tackle is not limited to
this particular application: it can be adapted to many domains with a crowdsourcing type of
operation that relies on volunteers to perform the task.

5.2 Related Work

There is a growing literature on using AI or related tools to study the food rescue operation.
Some formulate a vehicle routing problem to match the donation with recipients [59, 106], while
others tackle the problem from a fair allocation and market design perspective [10, 95, 126].
Because the demand and supply or food are external to the FR, some works are focused on
forecasting the future food supply [105, 120]. While all these works provide useful insights into
the FR operation, the existing literature largely misses the volunteer side of the process. Among
the few pieces of work that explicitly consider the volunteer crowdsourcing aspect of food res-
cue, Lee et al. developed a participatory democracy framework to allow volunteers and other
stakeholders to decide on the matching of donations and recipients, which is orthogonal to our
work [83]. Shi et al. developed a machine learning model to predict whether a rescue trip will be
claimed and an optimization model to find the best intervention scheme [142]. Our work com-
plements theirs and both can be used simultaneously by FRs. Yet we advance from them in two
aspects. First, compared to their predictive model as a decision aid for downstream human inter-
ventions, our recommender system directly improves the upstream notification process which
can reduce the need for the costly human intervention. Second, compared to their prescriptive
model which sets system-level notification parameters, our recommender system is rescue-
specific, thereby leveraging more information to make better decisions. Finally, Manshadi and
Rodilitz design online volunteer notification algorithms in a similar setting [98]. Compared to
their work, we take a pure data-centric approach and make few modeling assumptions about
the volunteer and rescue patterns, with the sole purpose of finding the most likely volunteers
in the real-world use case of this system.

The literature on recommender systems is vast and we will only discuss two topics relevant
to our work – cold start and diversity. Cold start refers to the scenario where there is no previous
label on a new user or new item [134]. An active approach to deal with cold start would be to
interact with the user to request labels, which is often framed as a bandit problem [31, 57, 86, 132,
151, 168]. This is clearly not applicable to our setting, since each rescue is a one-shot business
and the stake is too high for real-world trials. Thus, we turn to passive approaches which make
do with the data we have. Content-based approaches are a natural candidate for this challenge.

2https://412foodrescue.org/

61

https://412foodrescue.org/

(2)	Claim	on	mobile	app (4)	Deliver	to	recipient (5)	Success!(1)	Receive	push	notification (3)	Pick	up	from	donor

Figure 5.1: The workflow of a food rescue operation from the volunteer’s perspective.

Collaborative filtering is not designed to perfectly handle cold start, though there have been
methods to enhance it with side information towards addressing this problem [27, 28, 51]. In
this chapter, we propose a content-based model for the following reasons. First, in our food
rescue setting, cold start is not just a short unpleasant period at the beginning which might
imply secondary concern. Instead, we stay in the cold start phase forever because every rescue
(user) is new. Thus, handling it perfectly with content-based models is of utmost consideration.
Second, we have identified a good set of interaction features based on our experience in the
food rescue operation. Third, there is no collaborative filtering-based system currently in place
that holds us back from using a content-based approach. Recent advances in leveraging neural
architecture in recommender systems serve as a starting point for us to build our model [62].

Our problem is also related to the diversity of recommender systems, which concerns both
individual diversity and aggregate diversity. Individual diversity refers to recommending di-
verse items within the recommended list for each user [167, 170]. Aggregate diversity refers to
recommending diverse items between the recommended lists for different users [4, 23, 49, 104,
111]. In our problem, we hope to avoid sending push notifications to a small subset of volun-
teers (items) all the time. Thus, our problems concerns the aggregate diversity. At the technical
level, our method of diversifying the recommendations can be considered as a variant of the
integer programming approach by Adomavicius and Kwon [4]. However, our problem has an
additional subtlety that makes it more challenging, as we discuss below.

In food rescue, each rescue trip arrives sequentially and thus we need to make the recom-
mendation decision in an online fashion. This brings additional challenge to our effort to diver-
sify the recommendations. This problem resembles the well-studied online adwords matching
problem [7, 55, 100], and could fit under the more general online linear programming frame-
work [8]. However, these works typically only guarantee asymptotic results or require prior
knowledge of the number of rescues on any given day, which makes them impractical in our
setting. There is also a literature on budget pacing in online advertisement [6, 82, 161]. Our
application domain and the central problem are different from online advertisement, but our
online planning for push notification budget can be considered as a novel way of pacing.

62

5.3 Anatomy of Food Rescue Operations

Food rescue organizations serve as an intermediary between the food donors and recipient
organizations. Donors, typically grocery stores and restaurants, would call the FR when they
have food items that they want to donate. After receiving the call, the FR dispatcher matches this
donation with some recipient organization, typically some non-profit organization that serves
a low-resource community. Once this matching is done, the dispatcher posts this matching on
the FR’s mobile app. Hereafter, the food rescue process becomes visible to the volunteers. As
shown in Figure 5.1, a volunteer, who has the FR’s mobile app installed on the phone, will then
receive a push notification about the rescue. If they choose to claim it on the app, the app would
provide them with the detailed information instructing them where to pick up the donation and
where to deliver. The volunteer then goes out to complete the rescue trip.

Of course, the workflow described above is an ideal scenario. In reality, occasionally, some
rescue trip stays unclaimed on the mobile app for a long time. FR dispatchers want to prevent
this situation as much as possible, since each rescue comes with a deadline which is bounded by
the nature of the food and the operation hours of the donor and recipient. Unclaimed rescues
discourage the donors and recipients from participating in the program in the future. FRs have
two ways to address this problem. First, it sends push notifications to possible volunteers to
advertise the rescue. Second, the dispatchers might individually call some regular volunteers
to ask for help. In a previous work, Shi et al. focus on the latter approach in order to help the
dispatcher’s decision-making [142]. We focus on the former by directly finding the best set of
volunteers to send push notifications to.

5.4 Data

To develop a recommender system, we need both positive and negative labeled examples. A
positive example means that a particular volunteer (item) claims a particular rescue (user); a
negative example means otherwise. In this section, we detail our data acquisition, labeling, and
feature engineering process.

5.4.1 Positive Labels

We obtained the rescue database from 412FR, covering the period from March 2018 to March
2020. The database keeps the log of each rescue. For most rescues, the database logs its times-
tamps from being drafted by the dispatcher, to being published on the mobile app, to being
claimed and completed by a volunteer. For these rescues, we simply take the rescue plus the
volunteer who claimed it as a positive data point. However, the food rescue operation is not
always so neat. Occasionally, the dispatcher knows ahead of time that some volunteer would
do the job, so they directly assign the volunteer for a particular rescue and bypass the app
notification stage. In this case, we take this direct assignment as a positive example as well.
Sometimes a volunteer might claim a rescue and then drop it, causing some rescue to have
multiple volunteers in the log. In this case, we create our labels based on the last volunteer.

63

5.4.2 Negative Labels

A negative example means that a particular volunteer did not claim a particular rescue. Since
almost all rescues have only one volunteer who claimed the rescue, obviously most of our data
points will have negative labels. However, not all of these negative data points are necessarily
true, because perhaps a volunteer would have claimed some rescue if someone else had not
claimed it 10 minutes in advance. Thus, we use the following ways to construct a selected
negative dataset. First, in the time period covered by our database, 412 Food Rescue used a
mobile app push notification scheme which notifies volunteers within 5 miles when the rescue
is first available and then notifies all volunteers 15 minutes later if the rescue has not been
claimed. Thus, if a rescue is claimed within 15 minutes, we only treat the volunteers who were
within 5 miles and did not opt out of push notifications as negative examples.

We also incorporate another data source to strengthen our negative sampling. In addition to
mobile app notifications, the dispatcher at 412FR also manually call some regular volunteers to
ask for help with a specific rescue. This usually happens when some rescue has been available
for over an hour yet nobody has claimed it. We obtained the call history from 412FR, from
which we identify the volunteers they reached out to within the time frame of each rescue.
If these volunteers did not claim the rescues in the end, we treat them as negative examples.
Compared to the negative examples derived from push notifications, we have more confidence
in this set of negative examples, since declining on a phone call is a stronger indicator than
ignoring a push notification.

5.4.3 Feature Engineering

Based on our extended collaboration with 412FR, we carefully identify a selected set of useful
features that are relevant in the food rescue operation.

First, the experience of food rescue dispatcher indicates that if a volunteer has completed
a rescue at or near a donor or recipient, they are more likely to do a rescue trip again in the
neighborhood. As shown in Figure 5.2, we divide the Greater Pittsburgh Region into 16 cells. We
evenly divide a central rectangular region into a 3×5 grid, and label them grid cells 0 through 14.
Then, we label the entire map outside the rectangular region cell 15. The rationale is that in the
outer suburbs there are fewer donors, recipients, and volunteers, and furthermore volunteers
who in suburbs are more willing to do long-distance, i.e. inter-cell, rescue than volunteers in
downtown. For each rescue trip and each volunteer, we calculate the number of rescues the
volunteer has done in the rescue donor’s cell, in the rescue recipient’s cell, and across all cells.
These counts are only up to the date of the given rescue, so that we could prevent data leakage.
We also tried to include as features the volunteer’s historical rescues in each cell, not just the
donor’s and recipient’s cell. However, they did not contribute any predictive power and thus
we leave them out of the final model.

Closely related to this is the distance between the volunteer and the donor. It is unlikely that
a volunteer would drive 30 miles to pick up a donation, as we show in Figure 5.3a. We measure
the distance using the straight line distance based on geographic coordinates. Although the
actual traveling distance might be a better indicator, we observe that the straight line distance
already serves our purpose.

64

0 1 2
3 4 5
6 7 8

10 119
12 13 14

15

(a) Distribution of donor organizations. Darker colors
mean more frequent donations. We plot the donor lo-
cations with random perturbations.

0 1 2
3 4 5
6 7 8

10 119
12 13 14

15

(b) Density of recipient organizations. Darker colors
mean more recipient organizations in the grid.

Figure 5.2: We divide the Pittsburgh area into 16 grid cells, with cells 0–14 covering downtown
Pittsburgh and its neighborhoods, and cell 15 containing the rest of the region.

Aside from the geographical information, the length of time between volunteer’s registra-
tion on the platform and the rescue is also an important factor, as suggested by our collaborators
at 412FR. We plot the histogram of this variable in Figure 5.3b. Immediately after registration,
the volunteer is eager to claim a rescue to get a feel of the food rescue experience. If a volunteer
has stuck with the program for an extended period and remains active, it is likely that they are
a regular and dependable one as well, which is substantiated with the upward trend and plateau
in Figure 5.3b around days 300–600. Thus, we include this feature in our prediction model.

Weather information is also an important factor in the prediction. Presumably rainy and
snowy days would see a lower volunteer activity in general. However, the impact of inclement
weather would fall disproportionately on volunteers who do not have a car or live in suburban
areas. We use the Climate Data Online (CDO) service provided by the National Oceanic and
Atmospheric Administration to access the weather information.3 The CDO dataset contains
weather information at the discretization level of days and weather station. There are multiple
weather stations in the Pittsburgh area and for each rescue we select the data for the date of
rescue and the station that is closest to the donor organization. As shown in Figure 5.3c, on wet
days, relatively more volunteers who claim the rescue reside in downtown Pittsburgh (cell 4
and 7). Whereas on dry days, a lot more volunteers who live in the outer suburbs of Pittsburgh
(cell 15) are active. In fact, we also saw a significant difference in the average distance between

3https://www.ncdc.noaa.gov/cdo-web/

65

https://www.ncdc.noaa.gov/cdo-web/

0 20 40 60
Distance between donor and volunteer (miles)

100

101

102

103
Co

un
t

(a) Histogram of rescues, based on
the distance between the donor and
the volunteer who claimed the res-
cue.

0 250 500 750 1000
Days from registration to rescue

101

102

103

Co
un

t

(b) Histogram of rescues, based on
the length of time between the res-
cue and the registration of the vol-
unteer who claimed the rescue.

0 1 2 3 4 5 6 7 8 9 101112131415
Volunteer grid cell

0.00

0.05

0.10

0.15

0.20

0.25

Pr
op

or
tio

n
of

 re
sc

ue
s Wet days

Dry days

(c) Histograms of rescues under wet
and dry weather, based on the loca-
tion of the volunteer who claimed
the rescue.

Figure 5.3: Rescues are often claimed by volunteers who are nearby. New volunteers are often
the most active. Rainy days see more rescues in downtown than dry days.

Layer Operation Hidden Units
1 Dense (ReLU) 384
2 Dense (ReLU) 2048
3 Dense (ReLU) 512
4 Dense (Logistic) 16

Table 5.1: Neural network architecture

volunteer and donor for dry days (5.94 miles) and rainy days (5.22 miles), with a t-test p-value
3 × 10−8.

We also explored a number of other features but did not incorporate them into our final
model. These features include the rescue’s time of day and day of week, the volunteer’s avail-
ability, whether the volunteer uploaded an avatar to their profile or not, whether the volunteer
is located in the same grid as the donor or recipient, and so on. Although these are intuitive
factors, we did not find them improve the predictive power of our model and hence left them
out.

5.5 Recommender System

We build a neural network-based recommender system. We first detail our network archi-
tecture, and then discuss our approaches to address the unique challenges in the food rescue
domain.

We show the neural network architecture in Table 5.1. The input to the neural network
is the feature vector of a rescue-volunteer pair. The feature vector passes through four dense
layers. Each layer is followed by a ReLU activation function, except for the last layer where we
output a single number which is then converted to a number between 0 and 1 by the logistic
function. This output represents the likelihood that this volunteer will claim this rescue trip.
We use the cross entropy loss to train the neural network. To output a list of 𝑘 volunteers to

66

whom we send push notifications for a particular rescue at prediction time, we pass the feature
vectors of the rescue-volunteer pairs for all volunteers on a fixed rescue through the network
and rank the output to take the top 𝑘 of them.

5.5.1 Negative Sampling

As mentioned earlier, there is an extremely high label imbalance in our dataset. From March
2018 to March 2020, there are 6757 rescues available for the training. Each rescue typically
has only one volunteer who claimed it, and there are 9212 registered active volunteers in the
Pittsburgh area. This means, theoretically, the ratio between negative and positive examples
is over 9000 ∶ 1. Using the method introduced in Section 5.4.2, we can obtain a selected set
of negative examples 𝐷𝑛 derived from push notifications and another set of negative examples
𝐷𝑐 derived from dispatcher calls. The set 𝐷𝑐 is slightly smaller than the positive examples 𝐷𝑝 ,
while |𝐷𝑛| ∶ |𝐷𝑝 | ≈ 700 ∶ 1. When training the neural network, we always use all the examples
from 𝐷𝑝 and 𝐷𝑐 . However, we randomly sample a subset of examples from 𝐷𝑛 at each episode of
the training. By doing this, we ensure that the negative examples from 𝐷𝑛 do not dominate the
training set, and at the same time the “more certain” negative examples from𝐷𝑐 gets emphasized
more than 𝐷𝑛. This whole procedure leads to an overall ratio between negative and positive
samples around 3 ∶ 1 in each single batch.

5.5.2 Diversity and Online Planning

Recommender systems in general suffer from the diversity issue, where “hot” items get recom-
mended to all the users. In commercial applications, this might lead to the “rich gets richer”
phenomenon on superstar items and the missed revenue opportunity on the less popular items.
All these are valid. However, as we have emphasized several times in this chapter, the “items”
on the other side of our recommender system are humans. The aforementioned consequences
of the lack of diversity is only going to be more problematic in our case. If a popular volunteer
received push notifications for every single rescue throughout the day, they would possibly get
annoyed and mute the notifications. On the other hand, for volunteers who are already not
very active, if our system never sent them push notifications, they would probably just forget
about the platform and would be unlikely to return. Therefore, it is crucial that we properly
handle the diversity issue.

We distinguish between two notions of diversity: individual diversity and aggregate di-
versity. The former means that each user (rescue) gets recommended a diverse set of items
(volunteers). The latter means that the recommended items (volunteers) across different users
(rescues) combined cover a large portion of the item space. Our human-centric approach deter-
mines that we focus on aggregate diversity here. In fact, we focus on a slightly different metric:
how many times each volunteer gets recommended for a rescue every day. We wish to put a
cap on this metric, which is directly linked to the user experience of each volunteer.

To this end, we can formulate the following mathematical program for a given day of food
rescue operation.

67

(Π) max
𝑥

∑
𝑖∈𝑅

∑
𝑗∈𝑉

𝑝𝑖𝑗𝑥𝑖𝑗

𝑠.𝑡. ∑
𝑗∈𝑉

𝑥𝑖𝑗 ≤ 𝑘, ∀𝑖 ∈ 𝑅

∑
𝑖∈𝑅

𝑥𝑖𝑗 ≤ 𝑏, ∀𝑗 ∈ 𝑉

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑅, ∀𝑗 ∈ 𝑉

Let𝑉 denote the set of volunteers. On a particular day, we have a set of rescues 𝑅. The binary
decision variable 𝑥𝑖𝑗 is equal to one if we decide to send push notification to volunteer 𝑗 about
rescue 𝑖. The first constraint indicates that for each rescue we will notify the top 𝑘 volunteers,
as introduced at the beginning of Section 5.5. The second constraint is our diversity constraint,
which makes sure that each volunteer receives at most 𝑏 push notifications a day. The 𝑝𝑖𝑗 in the
objective is the output from our trained neural network, representing the predicted likelihood
that volunteer 𝑗 is going to claim rescue 𝑖.

While this optimization problem Π is a valid method to improve diversity in generic rec-
ommender systems, it does not solve the problem in our setting. The reason is that donations,
and hence food rescue trips, arrive in our system sequentially throughout the day, and the
dispatcher must also act in real-time. It is unacceptable to wait till the end of the day, run the
optimization problem above, and then send the push notifications. Therefore, we need an online
algorithm.

An intuitive approach is to resort to the literature on online linear programming [4]. Indeed,
we could imaging solving 𝜋 where at each time step, a new rescue is revealed with a new column
in the 𝑥 matrix and 𝑝 matrix. However, we do not know how many rescues there will be at
the beginning of the day. This is a major obstacle in applying the established algorithms with
theoretical guarantees. Instead, the daily rescue pattern is hardly adversarial in nature and thus
we propose a simple heuristic, as shown in Algorithm 6.

In Algorithm 6, when a food rescue arrives in the system, we sample the historical rescue
data for trajectories. Typically, we would sample the rescues on the same weekday a week
ago, two weeks ago, and so on. The underlying idea is that the same weekdays might have
similar rescue patterns. This is because most donations that come to 412FR come from grocery
stores or large companies/universities. Grocery stores often perform inventory counts on a
weekly basis. Companies and universities often hold weekly events, with catered food. For
each sampled day, we only take the trajectory from the time of the current rescue to the end of
the day. Then, for each trajectory along with the current rescue, we obtain the neural network’s
predicted claim probabilities and solve the optimization problem Π𝑖 . Π𝑖 is similar to Π except
that each volunteer now has their own remaining budget of push notification. Note that now
everything in Π𝑖 is observed and known, whereas in Π the future rescues are unknown at the
decision-making time. We keep only the part of the optimal solution that concerns the current
rescue and discard the rest. Later, on Line 8 in Algorithm 6, for each volunteer, we sum over its
value in the optimal solution across all the sampled trajectories. We take the top 𝑘 volunteers
as voted by these solutions, who become the ones we will send push notifications to for this
current rescue.

68

Algorithm 6: Online Planning for Optimizing Push Notifications
input: A trained neural network predictor

1 while a new rescue 𝑖 arrives do
2 Flush 𝑋𝑖
3 for dayToSample = 1, 2,…𝐻 do

4 Sample the set of rescues 𝑅 on the dayToSample that occured from the time of
the current rescue 𝑖 till the end of the day.

5 Compute predicted claim probabilities 𝑝𝑖𝑗 and 𝑝𝑖′𝑗 for all 𝑖 ∈ 𝑅, for all 𝑗 ∈ 𝑉 .
6 Solve the following optimization problem:

(Π𝑖) max
𝑥

∑
𝑗∈𝑉 (

𝑝𝑖𝑗𝑥𝑖𝑗 +∑
𝑖′∈𝑅

𝑝𝑖′𝑗𝑥𝑖′𝑗)

𝑠.𝑡. ∑
𝑗∈𝑉

𝑥𝑖′𝑗 ≤ 𝑘, ∀𝑖′ ∈ 𝑅

∑
𝑗∈𝑉

𝑥𝑖𝑗 ≤ 𝑘

𝑥𝑖𝑗 +∑
𝑖′∈𝑅

𝑥𝑖′𝑗 ≤ 𝑏𝑗 , ∀𝑗 ∈ 𝑉

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑅, ∀𝑗 ∈ 𝑉

7 Keep in 𝑋𝑖 the optimal solution 𝑥 ∗
𝑖𝑗 for the current rescue only.

8 Sum 𝑋𝑖 over the sampled histories, find the top 𝑘 volunteers.
9 Send push notifications to them. Update the remaining budget 𝑏𝑗 for each

volunteer 𝑗.

We note that the optimization problem Π and Algorithm 6 are extremely flexible to account
for many additional considerations. For example, we could use personal budget 𝑏𝑗 in Π and add
additional constraints to represent the volunteer’s push notification preferences. We could also
add weights to the objective function to emphasize the importance of a particular rescue.

5.6 Experiments

We introduce the experiment results of our algorithms in this section. There are two desired
goals in using such a recommender system: we hope more rescues will be claimed by volun-
teers, and we hope volunteers will stay with the platform. Towards these two goals, we aim
to evaluate the efficiency and diversity of the models using historical data. The main efficiency
metric is the hit ratio, that is, for what proportion of all rescues does the model’s recommended
short list of volunteers contains the volunteer who actually claimed the rescue in the historical
data. To evaluate diversity, we look at the histogram of the number of times each volunteer is
selected in the short list.

69

5.6.1 Recommender System

We use a training set containing rescues from March 2018 to October 2019, which is 80% of the
entire dataset. We use the remaining 1373 rescues from November 2019 to March 2020 as the
test set. We conducted all of our experiments on an Intel i7-7700K 4.20GHz CPU with 64GB
RAM.

First, we only consider the prediction part of our algorithm. We compare our neural net-
work recommender system with several competitive baselines that are commonly used, in-
cluding random forest (RF), gradient boosted decision trees (GBDT), and stacking model (SM).
To determine the hyper-parameters of the baseline models and the neural network model, we
separate a validation set which consists of the last 1/8 of our training set and then run a grid
search according to the performance on the validation set. For experiments on the baselines,
we use the same negative sampling method on 𝐷𝑐 and 𝐷𝑝 as described in Section 5.5.1. As for
negative examples from the app notifications 𝐷𝑛, since the baselines are not gradient descent-
based methods, we sample them in two schemes such that the ratio between the positive and
negative examples is roughly 1 ∶ 1 and 1 ∶ 20, respectively. We consider the latter because
that is roughly the number of negative examples that the neural network approach has seen
throughout the training, in order to ensure a fair comparison.

We show the results of all these algorithms on the test set, averaged over 5 runs, in Table 5.2.
We consider the hit ratio at k (HR@k) and the normalized discounted cumulative gain at k
(NDCG@k) in Table 5.2. However, we note that our main metric of interest is the hit ratio,
because when sending push notifications, we do not care about the particular order in which
each volunteer ranks on the list. Also because of this, HR@k is our primary metric during the
grid search on hyper-parameters for all the predictive models. We choose the value of 𝑘 to be
964, since this is the average number of push notifications sent per rescue under the current
notification scheme. The current distance-based notification scheme has a hit ratio of 0.4392.
All baselines show better performance than the current method, with random forest and GBDT
being better than the stacking model. However, the neural network based prediction model
outperforms all the baselines.

The hit ratio of the neural network model is a 66% improvement over that of the current
distance-based method. This means that we would be able to reach the would-be volunteer in
approximately 900 more rescues every year. Each of these rescues has a donor and a recipient
organization that serves tens or hundreds of people behind it. A smooth food rescue experi-
ence would not only provide basic food necessities to these people, but also encourage these
organizations to keep up the engagement in a sustainable way.

5.6.2 Diversity and Online Planning

As mentioned in Section 5.5.2, recommender systems, in general, suffer from the diversity issue.
This problem also exists in our model. In Figure 5.4, we plot the histogram of the number of
push notifications received by each volunteer for the test set rescues. The notification budget in
the online planning algorithm is enforced by leveraging the date and time associated with each
rescue in the test set. This is doable because the train-test split is done in a temporal fashion,
as mentioned at the beginning of Section 5.6.1.

70

Model HR@k (SD) NDCG@k (SD)
NN 0.7269 (0.0310) 0.1898 (0.0147)

RF(1:1) 0.5989 (0.0395) 0.1319 (0.0303)
RF(1:20) 0.6035 (0.0511) 0.127 (0.0053)

GBDT(1:1) 0.6235 (0.0549) 0.1613 (0.0098)
GBDT(1:20) 0.5394 (0.0152) 0.1023 (0.0086)

SM(1:1) 0.4996 (0.0005) 0.1332 (0.0002)
SM(1:20) 0.5219 (0.0125) 0.0948 (0.0030)
Default 0.4392 (N/A) N/A (N/A)

Table 5.2: Neural network based recommender system achieves better hit ratio and NDCG than
several baselines. All experiments are repeated five times with the mean and standard deviation
shown in the table.

0 250 500 750 1000 1250
Push notifications received for 1373 rescues

102

103

Nu
m

be
r o

f v
ol

un
te

er
s

Recommender system
Online planning
Default

Figure 5.4: Histograms of the number of push notifications received by each volunteer over all
the 1373 rescues in the test set. The online planning algorithm has a budget of 6 notifications
per day.

The neural network based recommender system, shown in yellow in Figure 5.4, exhibits an
alarming bimodal distribution: most volunteers either receive almost no push notifications, or
receive push notifications for almost every single rescue. We remark that although the number
of volunteers in the rightmost bin (446 out of 9312) is much smaller than that in the leftmost
bin (7458 out of 9312), the former is much more concerning. This is because they are typically
the most “active” volunteers who have contributed the most to the food rescue program. In
fact, these 446 volunteers contain 39 of the top 50 most frequent volunteers, and 51 of the top
100. If they left the platform due to too many notifications, which is likely to happen should
the proposed recommender system get deployed, the loss to 412FR would be disproportionately
high. On the other hand, the default distance-based notification scheme does not suffer from
this issue, as shown in red in Figure 5.4. Although the majority of the volunteers still receive
few push notifications, the notification frequency for each volunteer is capped at roughly once
every two rescues.

71

0 250 500 750 1000 1250
Push notifications received for 1373 rescues

100

101

102

103

104

Nu
m

be
r o

f v
ol

un
te

er
s

Default
Recommender system
Online planning - max 4/day
Online planning - max 7/day
Online planning - max 10/day
Online planning - max 13/day

Figure 5.5: Histograms of the number of push notifications received by each volunteer over all
the 1373 rescues in the test set, compared across different budget values. Higher budget leads
to some approximately 500 volunteers receiving more notifications.

This phenomenon should not be too surprising, because we used the volunteers’ past activ-
ities as input features to the ML model, and it turns out that these features are very important.
In fact, if we select volunteers by directly ranking their past number of rescues in the neigh-
borhood, that would give us a hit ratio around 60%, and of course, that approach would make
this diversity issue even worse.

The bottom line is, figure 5.4 serves as a stern warning against the premature deployment
of machine learning algorithms in the real world. That a certain model outperforms the current
practice by 66% in some important metric (here, the hit ratio) does not mean it would not cause
other problems.

We use our Algorithm 6 to improve the diversity of volunteer recommendations. As a pre-
liminary and straightforward comparison, we ran our online planning Algorithm 6 with budget
𝑏 = 6 push notifications per day using the rescues seven days ago as the sampled history. We
plot its notification histogram in yellow in Figure 5.4. It is easy to see that the online planning
algorithm achieves a push notification distribution much more similar to the default scheme,
than the recommender system alone. It completely avoids sending push notifications about
every single rescue to any particular volunteer.

Indeed, the effect of Algorithm 6 on recommendation diversity depends on the budget pa-
rameter 𝑏. In Figure 5.5, we plot the notification distributions for different choices of the budget
value, and compare them against those of the recommender system and the default notification
scheme. As the budget increases, the distribution of push notifications from Algorithm 6 ap-
proaches that of the recommender system. We note that the position of the rightmost peak of
each histogram should not be interpreted as an indicator of the total number of push notifica-
tions sent. In all of these experiments, we limit the number of notifications for each rescue at
𝑘 = 964. Except for when the budget is extremely small, the algorithm always notifies exactly
964 volunteers for each rescue. The diversity goal here is to make the histogram occupy as little
space as possible on the right side of the figure.

72

2.5 5.0 7.5 10.0 12.5 15.0
Daily push notification budget

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Hi
t r

at
io

0.05

0.10

0.15

0.20

0.25

Pr
ice

 o
f o

nl
in

e
pl

an
ni

ng

Online planning
Offline planning
Recommender system
Default
Price of online planning

Figure 5.6: Hit ratio of the online planing algorithm. Price of online planning, computed as
1 − 𝐻𝑅online

𝐻𝑅offline
, is shown on the right axis.

Much as we demonstrate the improvement of recommendation diversity, we would also
like to ensure that the recommendation accuracy of our algorithm does not drop too much.
The budget parameter 𝑏 captures the inherent trade-off between diversity and accuracy. As
we show in Figure 5.6, the yellow curve represents the hit ratio of Algorithm 6. Algorithm 6
outperforms the existing notification scheme when the budget is more than four notifications
per day, which is a relatively trivial amount. When the budget rises to 10 notifications per day
or more, the hit ratio is very close to the bare bone recommender system.

In order to further evaluate the quality of online planning in Algorithm 6, we also solve
an offline version of the problem, where we solve the mathematical program Π separately for
each day, assuming full information about the rescues on that day. We show the hit ratio of
the recommendation decision from this offline version in blue in Figure 5.6. Since having full
information is always better, the blue curve always lies above the yellow curve representing
the online planning. However, the difference is not big. We term the difference as the “price of
online planning”, which is computed as 1 − 𝐻𝑅online

𝐻𝑅offline
. In fact, Figure 5.6 shows that the price of

online planning is decreasing as the budget grows, and is consistently smaller than 0.1 when
the algorithm is of potential deployment interest (performing better than the current practice).
This validates our earlier claim in Section 5.5.2 that the rescues on the same weekday of the
previous week are a reasonably good indicator of the rescues on the present day.

5.7 Conclusion and Future Directions

A critical goal in the food rescue operation is to be able to reach the “right” volunteers in
time. Working with 412 Food Rescue, we developed a machine learning model to recommend
the most probable volunteers to send push notifications to for each given rescue. Our machine
learning model improved the hit ratio of the current notification scheme by 66%. The food rescue
operation features two main challenges: the recommendation diversity is of utmost importance
to ensure volunteer experience, and the recommendation must be made in an online fashion.
We proposed a novel algorithm to dynamically recommend volunteers for rescues in real time,

73

while diversifying the recommendations and still managing to keep the hit ratio well above the
current practice.

The problem of low hit ratio is a real problem that needs to be addressed. This is also a
problem natural for a data-driven approach, and we do have the relevant data available. There
is an existing approach to this problem (distance-based notification), so our technological inter-
vention does not introduce new initiatives. Instead, we amplify the existing initiative. Lots of
previous endeavors have shown that this amplification approach is more likely to achieve de-
ployment and sustainable impact [153]. In fact, our technological intervention does not replace,
reduce, or attempt to dictate any human employee’s job at the FR.

There are two immediate future directions that are useful in the food rescue operation. First,
our Algorithm 6 features a classical predict-then-optimize framework where the learning objec-
tive and the optimization objective are not perfectly aligned. It would be interesting to consider
the recent literature on data-driven optimization [19, 44] to further improve the results shown
in Figure 5.6. Of course, the online nature of our problem brings an additional interesting chal-
lenge that has never been addressed in that literature. Second, recommendation is necessarily
limited by the counterfactuals. In Section 5.4.2, we proposed several approaches to select the
most credible negative examples. It would be interesting to identify credible positive examples
beyond the explicitly labeled ones, which are rather scarce in the dataset.

A pilot study of the model and algorithm described in this paper is detailed in Section 6.2
of the following chapter.

Ethical implications We addressed a main unintended consequences of our recommender
system as a key contribution of this work, that is, the over-concentration in recommendations.
In practice, there are more ways to ensure that volunteers are not harassed with too many no-
tifications. The food rescue mobile app allows each volunteer to specify the periods where they
do not want to receive any notifications ((morning, afternoon, evening) x (weekday, weekend)).
On the other hand, the recommender system might be ignoring certain volunteers more than
the status quo. While this is a less serious concern than the one we focused on in the work,
there are also ways to address it. For example, we can ensure that new volunteers always get all
notifications for all the rescues in their vicinity. The use of human subject data in this chapter
has been approved by the IRB.

74

Chapter 6

The Field Deployment of Food Rescue

Algorithms

As we mentioned at the beginning of this thesis, AI4SG research that only stays on paper does
not fulfill its purpose. In the previous two chapters, we evaluated our algorithms on historical
data. However, historical data could only tell us very limited information. In this chapter, we
took both our algorithms to the field. The first deployment of the work in Chapter 4 is a purely
observational study. The second deployment of the work in Chapter 5 is a randomized con-
trolled trial. Only by taking the algorithms to the field can we verify the implicit assumptions
we made when evaluating the algorithms on historical data.

6.1 Deployment of the Generic Notification Scheme

The intervention and notification scheme in Section 4.5.2 has been adopted by 412FR since
February 2020. Table 6.1 shows the key food rescue metrics before and after the adoption.
Because COVID-19 started to impact the life in the area in March 2020, we split the period after
adoption into before COVID and after COVID in order to provide a more objective picture of
the results. As shown in Table 6.1, after the adoption of our recommended INS, the rescue claim
rate went up, the rescues got claimed faster, and 412FR had to send fewer push notifications.
This indicates that all these three key metrics improved in the desirable direction. After COVID
hit the area, the improvement stuck around, and got even better in both the claim rate and the
claim speed. Nevertheless, we need to emphasize that this is not a controlled experiment. There
could be confounding factors.

Condition Claim Rate Average time from
publish to claim (min)

Average # push
notifications sent

Before 2/10/2020 (Previous scheme) 0.84 78.43 11499.45
2/10/2020 - 3/1/2020 (New scheme) 0.88 43.05 9167.52

After 3/1/2020 (After COVID) 0.92 39.73 9735.54

Table 6.1: Food rescue metrics before and after the adoption of the recommended INS.

75

6.2 Rescue-Specific Notification Scheme

The initial results from the deployment of the generic notification scheme encouraged us to also
test the recommender system notification scheme in the real world. It is also the limitations with
the previous observational study motivated us to run a randomized controlled trial (RCT).

6.2.1 Setting up the RCT

In contrast to the previous deployment, this deployment was much more involved, where we
had to integrate the ML model into 412FR’s food rescue management platform “FoodRescue-
Hero” (true name hidden for double-blind review). The platform is a web application built in
Ruby on Rails. When a rescue is published, the application will start a notification job on
Sidekiq. Prior to this work, the notification job would select a subset of available volunteers
based on distance (Chapter 4). The selected volunteer IDs would be sent to the push notification
service. With the recommender system we replace the distance-based selection with a python
script that runs the ML model and returns the selected volunteer IDs. A redis server keeps track
of each volunteer’s remaining push notification budget. We update the remaining budget after
each rescue and reset the budget at the beginning of the day.

To make the pilot study go through, we had to make one compromise. After we imple-
mented the ML system within the FoodRescueHero platform, we realized that it would take the
optimization part (Section 5.5.2) 40 seconds to run on 412FR’s server. Since they only had a sin-
gle server, this would block all other jobs. Therefore, we jointly decided to drop the optimiation
part from the RCT. While obviously we might be sending some users more push notifications,
it is also possible that those people who tend to be more frequent volunteers actually want
more notifications. The only way to find that out is through a field test. Meanwhile, volunteers
can always mute the notifications. Also, since this is just a short-term pilot study, negative
consequenses, if any, could be controlled to a minimum.

With this in mind, we designed our pilot study as follows. When each rescue is published,
it is uniformly randomly assigned to one of the three treatment groups: control, ML, and ML-
Random. The control group is the distance-based notification scheme that is currently in use.
The ML group is to run the ML model and greedily send notificaions to the top 𝑘 volunteers. The
ML-Random group is to select a uniform random 80% sample from the top 𝑘 ML predictions, and
20%𝑘 volunteers uniformly randomly. We include the ML-Random group as a way to explore
volunteers who would claim a rescue but would be ignored by the ML or distance-based model.
This is also, in spirit, compensating for the drop of the optimization part of the algorithm. In
the RCT, whichever group a rescue is assigned to, we use the distance-based criteria to get the
number of users to select (𝑘) in the case of either test groups.

6.2.2 RCT Results

The pilot started on May 23, 2022 and ended on June 21, 2022. The results are shown in Table 6.2.
We measured four main food rescue metrics: hit rate, claim rate, claim time, and notifications
sent. Hit rate measures whether the push notifications cover the volunteer who claimed the
rescue. This is essentially the metric that the ML model is optimized for. As expected, we

76

Group Rescues Hit rate Claim rate Claim time (min) Notifications sent
Control 212 0.468 0.807 74.708 5752.240
ML 169 0.651 (0.001) 0.882 (0.047) 84.396 (0.537) 5647.107 (0.758)
ML-Random 211 0.489 (0.696) 0.844 (0.317) 70.556 (0.741) 6033.815 (0.373)

Table 6.2: Results from the pilot study. Numbers in the parentheses represent the two-
tailed p-value from two-independent-sample proportion z-test (hit rate and claim rate) or two-
independent-sample t-test (claim time, notifications sent), with respect to the control group.

see that the ML group significantly improved the hit rate over the control from 46% to 65%.
Claim rate refers to what proportion of rescues get claimed (by anyone). On this metric, the
ML notification system also significantly improved over the control from 80% to 88%. This is,
in a way, the most important result of this pilot study. The claim rate is not directly part of
the training signal for the ML model, yet the ML model was able to significantly improve this
arguably the most important indicator of rescue notification efficacy. While it is hard to find
out the exact reason for certain, we suspect it could be due to volunteers’ decision to claim a
rescue could also depend on the timing of receiving notifications. Getting notified for a “fresh”
rescue could make some likely volunteers cross their threshold to actually claim it.

The two positive results above are essentially all that we could hope for based on the work
in Chapter 5, and possibly a little bit more. Meanwhile, the other results also yielded interesting
insights.

ML-Random group

First, the ML-Random group showed better hit rate and claim rate than control, but the differ-
ence is not statistically significant. The hope was that randomness could discover some vol-
unteers who would not be notified otherwise and nudge them to participate. In practice, ML
contributed 83 hits while the random sampling contributed only 4 hits. It still remains as an
open question how to encourage more volunteers to claim the rescue trips.

Temporal analysis

Second, as shown in Figure 6.1a, the ML model’s hit rate appears to be decreasing over time.
The ML group had a hit rate of over 80% in the first week but gradually reduced to around 70% at
the end. The downward trend also shows up in the ML-Random group. It seems that the steep
decline in the first week could suggest more of the variance in the small number of data points
than the actual trend. That said, the decline in hit rate continued, albeit at a slower pace, for the
rest of the trial. This drop in hit rate could be explained by not updating the model throughout
the RCT, since the hit rate is precisely the signal that the ML model is trained to maximize. This
suggests that in permanent deployment, we need to have mechanism to automatically retrain
the model frequently to maintain the highest level of performance. Meanwhile, the claim rate
shows an almost opposite trend over time in Figure 6.1b. Both ML and ML-Random, after the
initial week of smaller number of data points, see their claim rate slightly improving over the
next 3 weeks. This might be because over time, the recommender notification scheme has led

77

(a) Hit rate (b) Claim rate

Figure 6.1: The hit rate and claim rate for all treatment groups as time progressed. Each day’s
data represent the hit/claim rate for all rescues up to that day.

to an increase in the intrinsic engagement level of some frequently notified volunteers. On the
other hand, the claim rate for control appears to decay over time.

Spatial analysis

Third, let us look at the spatial distribution of these key metrics. Recall that in the feature
engineering for the ML model, we divided the region into 16 grid cells (Figure 5.2). For each
treatment group, we further divide the rescues into 16 subgroups depending on in which grid
cell their donor is located. As shown in Table 6.3, for the hit rate and claim rate that we have
observed statistically significant results as a whole, we further observed that in grid cell 5, 7, and
15, the ML group and/or the ML-Random group significantly outperforms the control. However,
in grid cell 4, the results are too close to call. We chose these 4 regions because these are the 4
regions with the most rescue activities. Cell 4 captures most of the downtown urban area, while
cells 5 and 7 are near suburbs and cell 15 is all the outer suburbs combined. The results here
suggest that the ML tool is particularly useful outside downtown where volunteer resources
are not as abundant. For region 15 in particular, the control has a disastrous 12.5% hit rate and
45.7% claim rate, while the ML model improved them to 40.9% and 68.8%, respectively. The ML-
Random group also showed improvement in both metrics, albeit at a smaller scale. This spatial
difference is quite expected. In urban areas where volunteers are abundant and transportation is
easier, there could be less need to engage volunteers through push notifications, because enough
people would just open their app on their own and look for outstanding rescues. However, in
suburban areas, there are fewer people living around any given donor location, hence the band
performance of control and the need for the ML tool.

For claim time and number of notifications sent, we did not observe significant differences
between treatment groups overall. We did not expect any significant differences, because of
the huge variance in the historical data coupled with the limited sample size in the RCT. That
said, when we zoomed into each geographical region, there were some significant differences in

78

Group Rescues Hit rate Claim rate Donor Region
Control 68 0.541 0.897 4
ML 37 0.688 (0.172) 0.865 (0.620) 4
ML-Random 63 0.593 (0.577) 0.857 (0.486) 4
Control 12 0.4 0.417 5
ML 15 0.357 (0.865) 0.933 (0.003) 5
ML-Random 10 0.444 (0.872) 0.9 (0.019) 5
Control 38 0.568 0.974 7
ML 48 0.804 (0.019) 0.958 (0.700) 7
ML-Random 56 0.491 (0.472) 0.946 (0.521) 7
Control 35 0.125 0.457 15
ML 32 0.409 (0.057) 0.688 (0.057) 15
ML-Random 40 0.174 (0.677) 0.575 (0.308) 15

Table 6.3: Results from the pilot study for specific regions. Numbers in the parentheses rep-
resent the two-tailed p-value from two-independent-sample proportion z-test, with respect to
the control group.

certain regions as shown in Table 6.4. Overall, no significant differences are observed in densely
populated regions such as cells 4, 5, and 7. In regions 8 and 15, ML-Random reduced the claim
time; in regions 8 and 10, ML-Random and ML reduced the notifications sent, respectively.
In region 1, however, both ML and ML-Random increased the notifications sent over control.
Despite some successes and rare failure in the regions above, these two metrics have quite
big variances in general, and the ML push notification might not be the most direct way of
impacting them.

What did we lose by dropping the optimization component?

Lastly, before the start of this RCT, we made the compromise to drop the optimization com-
ponent from the trial. We would like to see if removing that part would lead to any negative
consequences that we had expected earlier. We compared each volunteer’s notification prefer-
ences before and after the trial and show the results in Table 6.5. For a comparison benchmark,
we used the data from the three months immediately before the RCT. For each period, we con-
sider two groups of volunteers. In the app, each volunteer could select whether they wish to
receive notifications during each of the 6 time slots ((weekday, weekend) × (morning, afternoon,
evening)). We look at volunteers who at the end of the time period, have at least unselected
one of their previous elections, and volunteers who at the end of the time period, have at least
selected one of their previous non-elections. During the RCT period, 30 volunteers tuned down
their notification elections among them one was among the 50 most frequent volunteers in the
past year. Meanwhile, 14 volunteers tuned up their notifications, and similarly one was among
the 50 most frequent volunteers. The pre-RCT period is 3 times as long as the RCT period. But
since the total number of volunteers and the seasonality and other circumstances are differ-
ent, we cannot directly compare these two groups. Rather, we assume that in each period, the
ratio between the metrics for volunteers who tuned up the notifications and the metrics for

79

Group Rescues Claim time (min) Notifications sent Donor region
Control 8 20.625 1729.5 1
ML 8 44.143 (0.471) 4928 (0.074) 1
ML-Random 3 47.333 (0.424) 6653.667 (0.032) 1
Control 9 130.833 7762.222 8
ML 7 154 (0.674) 6343.571 (0.123) 8
ML+Random 15 58.077 (0.038) 5887.2 (0.047) 8
Control 10 14.333 3733.5 10
ML 7 6 (0.269) 753.714 (0.035) 10
ML+Random 5 27 (0.358) 4283.2 (0.768) 10
Control 35 145 7447.4 15
ML 32 175.636 (0.618) 7115.531 (0.487) 15
ML+Random 40 65.826 (0.010) 6664.85 (0.148) 15

Table 6.4: Results from the pilot study for specific regions. Numbers in the parentheses rep-
resent the two-tailed p-value from two-independent-sample t-test, with respect to the control
group.

Time period Volunteers who… Total Top 100 Average rescues
in past year

Average
ranking

5/23/22 - 6/21/22
(RCT)

reduced notifications 30 2 11.13 555.3
increased notifications 14 1 15.86 790.6

2/25/22 - 5/23/22
(Pre-RCT)

reduced notifications 50 1 7.84 734.8
increased notifications 29 1 6.52 646.5

Table 6.5: Changes in user notification preferences before and after the RCT, compared to a
previous period.

volunteers who tuned down the notifications should be similar, if the ML model had no effects.
Then, we observed that during the RCT period, there has been relatively more volunteers who
tuned down their notifications, and more most frequent volunteers tuned down. In addition,
those who tuned down tend to rank higher in their past participation frequency, although the
number of rescue that they have done is smaller.

There are two caveats. First, there was not an RCT on this matter and all results in Table 6.5
are observational. Hence there could be potential confounders in the results. Second, sometimes
a user might enable or disable notifications not through the app but through their phone’s
settings, which we have no way to track. Based on the data that we do have, we believe there
is a weak signal that the removal of optimization component indeed led to more volunteer
disabling push notifications. The negative impact is not huge and hence the one month’s RCT
likely caused limited harm. However, the negative impact is likely real. Hence, in the permanent
deployment, we will bring back the optimization component to minimize this negative impact.
Furthermore, encouraged by the positive results from this RCT, 412FR will migrate all of its
data science plans to the ML platform of Amazon Web Service. This will enable more compute
and hence eliminate the compute bottleneck that prevented the inclusion of the optimization

80

component in the RCT.

6.2.3 A Note on Interference

We note that the RCT design above suffers from interference. Interference is when the treat-
ment received by one unit might affect the outcomes of other units. This is a violation of the
assumption commonly referred to as SUTVA: stable unit treatment value assumption. In our
RCT, interference is present because although we randomize on the rescue level, the outcomes
of all rescues are determined by the same group of (all the) volunteers. Specifically, interference
could come in at least the following three forms:

1. Suppose rescue 1 arrives (regardless of which treatment group we assign it to), we send
out notifications. Then, immediately after, another rescue 2 arrives, we send out notifi-
cations again. The volunteer who just claimed rescue 1 almost certainly will not claim
rescue 2.

2. Suppose rescue 1 arrives, and gets assigned to the ML (or ML-Random/control) treatment
group, we send out notifications. Then, a few hours later, another rescue 2 arrives, gets
assigned to the ML (or ML-Random/control) treatment group again, we send out another
round of notifications. Whether a volunteer got notification for rescue 1 might affect their
reaction to the notification for rescue 2.

3. Suppose rescue 1 arrives, and gets assigned to the ML (or ML-Random/control) treatment
group, we send out notifications. Then, a few hours later, another rescue 2 arrives, gets
assigned to the ML-Random or control group, we send out another round of notifica-
tions. Whether a volunteer got notification for rescue 1 might affect their reaction to the
notification for rescue 2.

The first form of interference is unavoidable. Luckily, this is a relatively rare case, and the
large number of volunteers relative to rescues help alleviate its impact. We will not focus on
this in the subsequent discussion.

The second and third forms of interference both concern how previous notifications might
impact volunteer’s reaction to current notification. We could get rid of these two sources of
interferences by making an assumption. The assumption is that all volunteers have no memory,
that is, they make decision immediately and purely based on the current notification. In this
sense, volunteers are essentially part of the fixed environment under which we treat the rescues
as the one and only subject of the study. Our results presented earlier would be valid under this

assumption.

If one hopes to (at least partially) lift this assumption, one might propose the following de-
sign: at the beginning of the experiment, randomly partition all volunteers into three groups,
each corresponding to a treatment group on the rescue trips. This might eliminate the third
form of interference but the second one still remains. And more seriously, this approach is
problematic for the following reason. This approach is similar to the graph cluster-based de-
sign method, which works well when the underlying user-item graph is sparse and is close to
having perfect clusters. This is not the case here. We have a well-connected graph - any rescue
could potentially be associated with any volunteer. If we partitioned the volunteers as proposed
above, we would be cutting off many edges. In the end, we would be testing our algorithms in

81

an environment different from the true environment. Here is a simple way to show that this
approach would not work. For simplicity, let’s take the ML-Random group out of the picture.
Suppose there is only one special volunteer who has 50% chance claiming a rescue under the
control notification scheme, and has 60% claiming a rescue under the ML notification scheme.
All other volunteers have 𝜖 ≈ 0 chance claiming a rescue under either notification scheme. This
is obviously an extreme case, but it is not too far from the reality: in reality, a very small group
of volunteers claim the majority of the rescues, and most volunteers never claim anything. If
we were to partition the volunteers into two groups, then with 1/2 chance we would conclude
that control is better than ML no matter how long we keep the experiment running. In practice,
this would greatly reduce the power of our experiment.

Of course, this is not to say we should give up. In fact, our problem is similar in flavor to test-
ing a recommender system on a two-sided market. This is an active and open area of research.
As explained above, clustering-based method [124, 154] is not applicable to our problem, at
least not until we roll out experiments in multiple different cities. In the advertising literature,
previous work consider splitting user’s “budget” over copies of universe, each corresponding to
a treatment group [17, 90]. This “budget” is in the same direction as our intent to consider the
effect of volunteers’ previous notifications’ on current decision-making. However, this effect
is far more complex in our setting than a straightforward “budget”, and one might have to go
down the undesirable path of explicit modeling. In addition, there has been some recent work
on designing the rank-ordering of recommender systems to compute the “producer” side of
the market [109]. However, it does not offer a direct characterization of the average treatment
effect estimate (only the rank-ordering) and our problem does not concern rank-ordering.

6.3 Permanent Deployment

Encouraged by the results from the trial, we are working together to deploy this push notifica-
tion recommender permanently. Rather than have the model as a static file living on the server,
we migrate the model to a separate AWS service. In this way, we could automatically update
the model on a regular basis. Not only is this separation more reliable and sustainable, but it
creates the compute to run the optimization component of the algorithm as well. This would
put a safety belt on the model’s potential negative impact on volunteers’ interest.

6.4 Lessons Learned

Collaboration between nonprofit organizations and academic researchers is challenging. In
what follows, we attempt to gather some lessons we learned in this collaboration that are ac-
tionable for academic researchers.

When developing AI in the nonprofits context, it is almost cliché that the design of algo-
rithms and models should fit within the often limited computational resources available at the
nonprofits. This is easier said than done. Some choices are obvious; for example, we used a
small neural network that does not require a huge memory or GPU access. However, it was
much harder to foresee that it would be undesirable for the optimization component to take

82

40 seconds to run because of how the system architecture was built. That realization would
only happen when one dove deep into the codebase of the entire system. That said, what we
learned is that although this saying has some truth to it, it should not be taken only at face
value. The computational infrastructure, although limited, is not fixed. When we demonstrated
the impact of the model and how the optimization component could make it even better, not
only through backtesting but also in real world trials, our collaborator could be convinced to
invest in the computational infrastructure. The trade-off between performance and resource
usage is not always inevitable. With time, effort, deliverables, and genuine collaboration, the
trade-off could be lifted.

Academic researchers come into these collaborations with a certain toolkit. They have every
incentive to drive the collaboration towards a direction that would best fit their research agenda.
However, this risks them ending up not working on something the nonprofit organization wants
the most. This is disrespectful to their nonprofit collaborators. And they would pay the price
eventually – because the nonprofit does not need it, they probably would not want to deploy
it. The simple and obvious way out, we believe, is real listening. At the beginning of our
collaboration with 412FR, we had a long list of research questions that would leverage our
technical expertise. However, the collaboration only took off when we really listened to their
needs and threw our own research agenda off the table, even if that meant we had to explore a
new research area.

After throwing our research agenda out of the room, we had to throw ourselves into the
problem setting. The several meetings with our food rescue partners gave us an initial under-
standing of the problem setting, but to really understand the problem, we had to be part of that
problem as well. We completed food rescue trips ourselves as volunteers, sat with the food res-
cue dispatchers in the office to observe how they work, and went on rides with the food rescue
truck drivers to meet the communities they serve. Such personal experience helped a lot in our
later problem formulation and research.

On problem formulation, it is nothing new, but probably worth reiterating, that technology
amplifies existing initiatives rather than create new ones [153]. Push notifications and dis-
patcher interventions are something that FRs had already been doing prior to our work. Thus,
our work simply suggests new parameters that FRs may reference in their standard procedure.
This made our work more easily accepted and deployed.

Ethical implications We have discussed the ethical implications of the algorithms being
deployed in previous chapters. Here, we will focus on ethical implications of the experiment
itself on both the volunteers and donor/recipient organizations. It is true that removing the
optimization component made our model more susceptible to over-concentrate on certain vol-
unteers. However, the experiment is also a chance to test that hypothesis. The experiment is
short enough to control the damage, if any at all, as we showed in the results. The experiment
design has been approved by IRB.

83

84

Part III

Machine Learning for Conservation

85

Chapter 7

NewsPanda: Media Text Monitoring for

Timely Conservation Actions

In my previous work, I have explored using game theory to design incentive structures for secu-
rity games [137], as well as using reinforcement learning to design patrol strategies for wildlife
conservation [157]. In this chapter, we continue this effort on environmental sustainability in
another application. Here, we develop a toolkit which automatically detects and analyzes online
articles related to environmental conservation and infrastructure construction using a BERT-
based model. We emphasize two common issues in applied learning and planning pipelines:
label scarcity and label quality. We use techniques from active learning and noisy label learn-
ing to address these challenges.

7.1 Introduction

Massive floods, poaching, waste pollution – every week, new threats impacting our environ-
ment come to light. Each of these can cause a long chain of negative impacts if not addressed. As
such, monitoring these conservation-related events is of great importance for non-governmental
organizations (NGOs) focused on environmental conservation such as the World Wide Fund for
Nature (WWF) to take timely action and participate in relevant conversations.

In addition to conservation as a whole, many NGOs are particularly interested in monitoring
news on certain subtopics. One such area is the ongoing or upcoming infrastructure projects
such as roads, railways, and pipelines. These are usually more long-term and actionable than
events like disasters or animal activity which occur in the past or present (hence limiting in-
tervention impact). Conservation NGOs such as WWF play a key role in advocating for more
sustainable infrastructure development. Early detection and engagement of these projects could
shift infrastructure planning towards more environmentally sustainable outcomes while bene-
fiting the people that the projects intend to serve.

However, information about conservation-related events and infrastructure plans threaten-
ing critical habitats is scattered across numerous sources and comes in different forms. NGOs
typically learn of such information through word-of-mouth or a handful of news outlets that
they check manually. This process is both time-consuming and ineffective, and it can poten-

87

Figure 7.1: Top: Current costly and time-consuming information gathering pipeline at NGOs.
Bottom: NewsPanda automates multiple steps in the pipeline, enabling humans to perform the
more critical tasks (analysis and action).

tially fail to capture critical information in a timely manner, leaving these NGOs out of key
conversations during early or ongoing stages of these developments.

To fill this gap, we develop NewsPanda, a natural language processing (NLP) toolkit to
automatically detect and analyze news and government articles describing threats to conserva-
tion areas. NewsPanda has five main components, which we detail in Section 7.3. At the core
of NewsPanda is a classification module built using a BERT-based language model, which we
fine-tune to classify whether articles are relevant to conservation and to infrastructure.

Developing such a tool in the conservation nonprofit setting poses several unique chal-
lenges. First, labeling data is expensive. We propose an active learning-based method to selec-
tively acquire labels on the most critical data points. Second, the data labels could be noisy since
labeling for relevance is ultimately a subjective judgement, even if we fix a labeling rubric. We
adopt a noise reduction algorithm [29] to improve our model’s performance.

NewsPanda was developed as a collaboration between WWF and Carnegie Mellon Uni-
versity (CMU). It has been successfully deployed since February 2022 and has been used by the
WWF teams in the UK, India, and Nepal to monitor developments in conservation sites. The
entire pipeline runs on a weekly basis, scraping and classifying relevant news articles regard-
ing conservation and infrastructure construction related events that occurred in the past week.
These articles are then visualized in WWF’s GIS systems for the field teams to investigate. We
also share some results through social media for the benefit of the broader civil society. Through
the deployment of NewsPanda, the WWF teams have been able to save over 30 hours weekly
on collecting news, which allows us at WWF to instead focus on analyzing the news and taking
actions (Figure 7.1) 1.

7.2 Related Work

News Monitoring Systems

Although there is a rich literature on news information extraction in general domains [113, 129]
as well as some specific applications [73, 103], there has been hardly any media monitoring tool
for environmental conservation and infrastructure construction. Directly using generic media
monitoring tools often lead to unsatisfactory results that are not localized enough to be action-
able for a specific conservation site or not relevant enough to be reliable. As a result, conserva-

1We are happy to work with interested researchers and nonprofits on sharing our code and data.

88

(a) Diagram of overall NewsPanda pipeline, with the five key modules in
orange boxes. Generated outputs of NewsPanda are in the white boxes.

(b) Conservation and infras-
tructure classification models.

Figure 7.2: NewsPanda pipeline (7.2a) and model diagram for conservation and infrastructure
relevance classifiers (7.2b).

tion NGOs still use a manual process to collect articles. The only work on conservation news
monitoring that we are aware of is a preliminary attempt by Hosseini and Coll Ardanuy [68]
that apply BERT to classify news articles. Compared to that, with NewsPanda we provide
a classification module with algorithmic contributions to address challenges in using the tool
in the nonprofit context, a full end-to-end information extraction and processing pipeline, and
most importantly, results and lessons learned from a large scale deployment of the tool. This is
the first comprehensive and actionable media monitoring tool for conservation and infrastruc-
ture.

NLP for Conservation & Infrastructure

Outside of news monitoring, NLP tools have been used for various applications in conservation
and infrastructure. Some analyze the relevant news articles for general insights on conserva-
tion reporting [133] or study their spread and impact [160]. These studies are descriptive in
nature and orthogonal to our work. The few studies that take the civil society stakeholder’s
perspective are focused on different links in the process from us. Luccioni et al. [94] use BERT-
based models to analyze corporate environment sustainability reports. Boutilier and Bahr [21]
explore mining-related texts to analyze the social license of a particular project. They target
different problems from us. They assume a relevant text is readily available and try to extract
meaningful insights from it. On the other hand, we work on identifying that relevant text from
thousands of irrelevant texts in the first place and leave the insight extraction to professional
organizations like WWF that have been doing that for years.

7.3 NewsPanda Overview

NewsPanda toolkit consists of five modules as illustrated below and in Figure 7.2a. During
pilot study and deployment (Section 7.8), this entire pipeline is run on a weekly basis.

89

1. Information Retrieval Module: We use the NewsAPI scraper [89] with the names of
conservation sites taken from a curated list of conservation areas.

2. Relevance Classification Module: We classify articles along two dimensions, namely
Conservation Relevance and Infrastructure Relevance, through a large pretrained language
model fine-tuned with our collected dataset. Details of this model are explained in Section
7.5.

3. Article Postprocessing Module: The article postprocessing module has 3 parts: a key-
word extractor which extracts keywords, an event extractor which extracts event trends,
and a geolocator which provides location coordinates. We discuss these features in Sec-
tion 7.6.

4. Visualization Module: After the relevant articles are identified, we visualize them in
our GIS system at WWF, which we can further analyze and act upon (Section 7.8).

5. Social Media Module: In parallel to the visualization module, another downstream ap-
plication for NewsPanda is WildlifeNewsIndia, 2 a Twitter bot we built from News-

Panda that shares weekly relevant conservation-related articles on social media (Section
7.8).

7.4 Dataset

We use two main datasets for developing NewsPanda. First, we use an existing corpus (WHS-
Corp) by Hosseini and Coll Ardanuy [68] consisting of articles scraped using World Heritage
Sites as keywords and labelled by domain experts. Second, we scrape and label our own corpus
(InfraCorp), which is a more focused, timely, and fine-grained upgrade over WHS-Corp. The
datasets differ in terms of the locations of the conservation sites used, as well as the time frame
of the articles.

7.4.1 WHS-Corp Dataset

WHS-Corp contains over 44,000 articles from 2,974 different sources covering 224 World Her-
itage Sites globally. Scraping was done using NewsAPI’s Python library from a list of curated
conservation sites of interest. Besides the title and content, it also contains metadata such as
the publication site, the author, and the date of publication. Articles in WHS-Corp span from
January 2018 to October 2019.

After these articles were gathered, a subset of 928 articles were sampled and manually an-
notated for Conservation Relevance by domain experts familiar with conservation. Conservation
Relevance denotes whether an article discusses threats or impacts to wildlife and environment
conservation in general, e.g. poaching, forest development, natural disasters. We use this la-
belled dataset for training our model.

2https://twitter.com/WildlifeNewsIND

90

7.4.2 InfraCorp Dataset

As opposed to WHS-Corp which focuses on global conservation sites, InfraCorp specifically
focuses on conservation sites in India and Nepal. The InfraCorp corpus contains 4,137 arti-
cles (150 for Nepal and 3,987 for India) from 1,074 conservation sites across the two countries.
All articles were taken in the two-year span from November 2019 to November 2021. We use
NewsAPI to search for the official names of the conservation sites, or alternative and/or local
names for the sites as recorded at WWF.

Given the data availability as well as the annotator capacity of the local domain experts
from India and Nepal, we labeled all 150 articles from Nepal and only 1,000 articles from India.
Annotation for InfraCorp was done along two dimensions: Conservation Relevance and In-

frastructure Relevance. Conservation Relevance is similar to the one described for WHS-Corp in
Section 7.4.1. Among the articles which were labelled as positive for Conservation Relevance, we
further categorize whether it is relevant to infrastructure. This covers issues such as new roads
in forested areas and construction projects near national parks. Each article was annotated by
two domain experts, one from WWF UK, and another from either WWF India or WWF Nepal.
We provided the annotators with a descriptive rubric for labeling in each dimension, as well as
concrete examples of edge cases. The following was one such example in our instructions:

Articles describing tourism or wildlife or natural beauty of a national park, but without
talking about environmental impacts or threats to wildlife and conservation, do not count
as positive for Conservation Relevance.

Where the two sets of labels disagree, the authors closely inspect the articles and decide on
the final labels.

7.5 Relevance Classification Module

We highlight the structure of our NewsPanda classification module and other key techniques
used during training.

7.5.1 Classification Model

The backbone of the NewsPanda classification model is a BERT model [40] with a linear clas-
sification head. BERT is a Transformer-based language model trained using masked language
modelling and next sentence prediction objectives on large-scale corpora of books and articles.
This large-scale pretraining, as well as its ability to effectively encode context, leads to supe-
rior performance on a wide variety of tasks. We adapt BERT to the domain of conservation
and infrastructure, and we fine-tune it to perform news article classification. In Section 7.7, we
explore different variants of the BERT model (such as RoBERTa).

One key change we make to the BERT model is that in the final linear head after the main
BERT layers, instead of only considering the BERT vector outputs, we also incorporate other
features, namely sentiment analysis and topic modelling, as shown in Figure 7.2b. We hypoth-
esize that including these additional features will provide the model with more useful informa-
tion that will help classify whether or not a particular article is relevant to infrastructure or

91

conservation. For instance, if an article has topic vectors that align with other articles covering
forest habitats, but it has an overwhelmingly positive sentiment, then we may suspect that it
could be a tourism-related feature article instead of a conservation-related news article (which
are often more neutral or negative in terms of sentiment).

For sentiment analysis, we extract the sentence polarity scores of the article title, its de-
scription, and its content, giving us three sentiment scores per article. This is done on a scale
of −1.0 to +1.0, with −1.0 representing the most negative score and +1.0 representing the most
positive score. Sentiment analysis was done using the textblob package [93]. Meanwhile,
for topic extraction, we consider the entire training corpora of WHS-Corp and InfraCorp, and
train a Latent Dirichlet Allocation (LDA) model to identify topic clusters. We use 50 topics for
the LDA model and implemented it using scikit-learn [116]. Lastly, for the main BERT
model, we concatenate the title, description, and content of each article, and we use this con-
catenated text as input to our classifier. For cases where the article is missing certain features
(e.g. no description), we simply supply an empty string for that feature. The vectors from the
three steps (i.e. BERT model, sentiment analysis, topic modelling) are then concatenated, and
this final vector is used as the input to the final classification head to generate a binary pre-
diction. Specific implementation settings and other hyperparameters can be found in Section
7.7.1.

7.5.2 Active Learning

Annotating a dataset is costly. In curating our InfraCorp dataset, we need to be mindful of
which specific articles to label in order for our model to learn most efficiently. For this selection
process, we first fine-tune a pretrained RoBERTa-base model on the existingWHS-Corp dataset,
based on the Classification Relevance. To make this preliminary model as close to our final
model as possible, we also incorporate the topic modelling and sentiment analysis features, as
shown in Figure 7.2b. Because this is only a preliminary model, we forego doing extensive
hyperparameter tuning and decided to just select a setting that worked decently well: with
a learning rate of 1e-5, batch size of 16, and training for 10 epochs, we were able to get an F-
score of 0.61 on WHS-Corp. Using this trained model, we then generate Classification Relevance
predictions for all articles in the InfraCorp corpus, together with the corresponding softmax
scores. We treat these softmax scores as a measure for the classification confidence of the
model: if the softmax is close to 0 or close to 1, then it means that the model is very certain
with its prediction, while if the softmax is close to 0.5, then it means the model is unsure with
its prediction.

We then select 300 articles which our model is least confident about. We hypothesize that
selecting these “difficult” rows will have the greatest impact on model performance. We call this
active learning-based dataset InfraCorp-A. To verify the effectiveness of active learning, we
also randomly sample 300 articles to label, which we call InfraCorp-R. We will later evaluate
how this compares with the actively selected dataset on a randomly selected test set of 400
samples in our ablation study (Section 7.7.3).

92

7.5.3 Noisy Label Correction

Our dataset is labelled by two sets of domain expert annotators from WWF. Although we pro-
vided detailed criteria for labelling each article, there is always room for some subjectivity in
the process. This resulted in the two sets of labels not agreeing with each other on over 10% of
the data points. Although, as mentioned in Section 7.4.2, we did manage to obtain the “ground
truth” label for a small subset of InfraCorp for model evaluation purposes, doing that for every
single article is prohibitively expensive – much more expensive than the (not cheap) process of
having either annotator providing a (noisy) label. Therefore, in order for NewsPanda to work
well once deployed, we need to be able to learn well from the potentially noisy labels only.

More formally, let 𝑥𝑛 be the embedding of an article along with its sentiment and topic
modeling vectors as described in Section 7.5.1. Let 𝑦𝑛 be the true label of this article. The task is
to make an accurate prediction on the dataset {(𝑥𝑛, 𝑦𝑛) ∶ 𝑛 = 1…𝑁} when we only have access
to the noisy data {(𝑥𝑛, �̃�𝑛) ∶ 𝑛 = 1…𝑁} where �̃�𝑛 is the label that we get from either of the two
annotators, and the true labels 𝑦𝑛 are the final labels that we decide on after resolving conflicts.

To address this challenge, we adapt the CORES2 loss [29] noise correction algorithm, which
is an extension of the earlier peer loss [91]. Peer loss frames the task of learning from noisy
labels as a peer prediction problem. In practice, the loss for each (𝑥𝑛, 𝑦𝑛) data point can be
calculated using the standard cross entropy loss with (𝑥𝑛, 𝑦𝑛), modified with a loss calculated
using a randomly sampled input 𝑥𝑛1 and an independently randomly sampled label 𝑦𝑛2 . That is,
we have

𝓁PEER(𝑓 (𝑥𝑛), �̃�𝑛) ∶= 𝓁 (𝑓 (𝑥𝑛), �̃�𝑛) − 𝛼 ⋅ 𝓁 (𝑓 (𝑥𝑛1), �̃�𝑛2)

where 𝛼 > 0 is a tunable parameter. Meanwhile, CORES2 replaces the random sampling from
peer loss with a confidence regularizer defined as follows:

𝓁CORES(𝑓 (𝑥𝑛), �̃�𝑛) ∶= 𝓁 (𝑓 (𝑥𝑛), �̃�𝑛) − 𝛽 ⋅ 𝔼�̃� |�̃�
[𝓁 (𝑓 (𝑥𝑛), �̃�)]

where �̃� is the dataset, �̃� is a noisy label, and 𝛽 > 0 is a tunable parameter. Following Cheng
et al. [29], we calculate this confidence regularizer term using an estimate of the noise prior
probability. We test both peer loss and CORES2 loss, and report results in our ablation study
(Section 7.7.3).

7.6 Article Postprocessing Module

Once the relevant articles are identified using the model, we then perform a few post-processing
steps to extract key information and make them easier to analyze and visualize.

7.6.1 Keyword Extractor

Keywords are important, as they allow the easy summarization, categorization, and grouping of
news articles. Furthermore, we also use these keywords as hashtags in our social media module
(Section 7.8). To extract keywords, we use an extensive list of conservation-related keywords
maintained at WWF. and search the article for exact matches. In addition, we also use Named
Entity Recognition systems to extract the salient words in each article. To perform this, we

93

Figure 7.3: Example of events selected by the Event Extractor (Section 7.6.2) by date. The pro-
gression of the project is highlighted by the phrases in red underline.

use a BERT-based model trained on the CoNLL 2003 Named Entity Recognition dataset [152].
The keywords extracted using these two methods are then concatenated to form the final set of
keywords.

7.6.2 Event Extractor

To track the progress of infrastructure projects, it is often not enough to just view a single article
in isolation. Rather, news regarding these projects often builds up over a period of weeks or
months. To help provide this context, we create an automated event extractor, which leverages
our InfraCorp dataset, including both the labelled articles as well as the unlabelled articles.
Given a new article 𝑎, our goal is to find past articles 𝑃𝑎 which are closely related to 𝑎. We first
gather all previous articles which are from the same conservation site. Next, we create a graph
𝐺𝑎, where each article is a node, and two nodes share an edge if the corresponding articles share
≥ 𝑘 common keywords (from Section 7.6.1). Here, 𝑘 is an adjustable parameter depending on
how loosely connected we want 𝐺𝑎 to be. For our data, we use 𝑘 = 3. Once the graph 𝐺𝑎 is
constructed, we then define an “event” to be the maximal clique containing 𝑎, and we report all
such events. A sample chain of events is shown in Figure 7.3.

7.6.3 Geolocation

To aid with visualization (Section 7.8), we perform geolocation on the classified news articles,
based on the search terms used to retrieve them. To extract latitude and longitude coordinates,
we leverage an extensive directory of conservation sites from WWF, and we use the directory to
map conservation sites to their corresponding coordinates. If the directory contains no match,
we geolocate using the geopy package.

94

7.7 Experiments and Results

Here, we discuss results of our in-lab experiments and ablation studies to verify our hypotheses.
Results from real-world deployment are discussed in the succeeding section.

7.7.1 Experiment Settings

Baselines

We compare the performance of our NewsPanda model with the following baselines:
1. Keyword model: We consider a naive model that checks for the count of certain key-

words. We curate two sets of “conservation-related keywords” and “infrastructure-related
keywords”. If an article contains more than 𝑘 “conservation-related keywords”, then it is
considered to be relevant to conservation (likewise for infrastructure).

2. RNN-basedmodels: We tokenize each article, then pass the embedding to RNN models,
where the hidden state of the last layer is used as input to the final classification layer.
We use two types of RNN models, namely GRUs [14] and LSTMs [66].

3. BERT-based models: We fine-tune a pretrained BERT-base [40] and RoBERTa-base
model [92], where we add a classification head after the final layer to perform relevance
classification.

Evaluation Metrics

Since our task is binary classification, we measure the accuracy, precision, recall, and F1-score.
For precision, recall, and F1, we consider only the scores of the positive class. All metrics are
calculated separately for Conservation Relevance and Infrastructure Relevance.

Data

For Conservation Relevance, we train on the InfraCorp dataset (consisting of both InfraCorp-
A and InfraCorp-R), as well as the WHS-Corp dataset. For Infrastructure Relevance, since
WHS-Corp does not contain infrastructure labels, we only train using InfraCorp. We split
the training data into an 80-20 training-validation split. For evaluation, we use the test split of
InfraCorp for both Conservation Relevance and Infrastructure Relevance.

Implementation Settings

For the GRU/LSTM, we use a batch size of 128, hidden size of 128, and dropout of 0.2. We
train for 10 epochs with a learning rate of 1e-4. Meanwhile, for BERT, RoBERTa, and News-

Panda, we train for 10 epochs with batch size 4 and learning rate 1e-5. We use RoBERTa for the
backbone model of NewsPanda. Model selection is done by considering the best validation
F1-score.

95

Model Acc. P R F1

Keyword 0.820 0.317 0.634 0.423
LSTM 0.711 0.495 0.511 0.504
GRU 0.729 0.422 0.505 0.475
BERT 0.860 0.708 0.704 0.706

RoBERTa 0.867 0.705 0.743 0.721
NewsPanda 0.877 0.729 0.801 0.744

Table 7.1: Average scores for Conservation Relevance, taken over 10 random seeds.

Model Acc. P R F1

Keyword 0.947 0.250 0.455 0.323
LSTM 0.908 0.566 0.537 0.554
GRU 0.895 0.544 0.557 0.553
BERT 0.922 0.840 0.745 0.771

RoBERTa 0.916 0.794 0.809 0.799
NewsPanda 0.941 0.880 0.821 0.850

Table 7.2: Average scores for Infrastructure Relevance, taken over 10 random seeds.

7.7.2 Results and Analysis

Experimental results are shown in Tables 7.1 and 7.2. We observe that indeed, adding the senti-
ment analysis and topic modelling features, as well as the CORES2 loss for noisy label correction,
aids in predictions for both Conservation Relevance and Infrastructure Relevance, providing an
improvement over both BERT-base and RoBERTa-base.

Our data is quite imbalanced: >80% of the articles are not relevant. This manifests itself
in the discrepancies between accuracy and F1-score. We observe, for example, that the naive
keyword model has very high accuracy scores but very low F1-scores, which indicates that it
predicts a lot of zeros (hence the high accuracy), but is not able to predict the relevant articles
well. The RNN-based models (LSTM and GRU) seem to perform relatively poorly, achieving
an F1-score of around 0.5. This could also be attributed to the data imbalance, since these
RNN-based models are generally not as robust to imbalanced datasets. In contrast, the BERT
and RoBERTa models perform quite well, with F1-scores >0.7 for conservation and >0.75 for
infrastructure, and precision/recall scores also around that range. This indicates that these
transformer-based models are able to generalize quite well and successfully capture the notions
of Conservation Relevance and Infrastructure Relevance. Lastly, NewsPanda offers significant
improvement over the RoBERTa-base model (F1 t-test 𝑝-value = 0.018 for conservation and
0.033 for infrastructure), showing the positive effects of incorporating information such as the
emotion and topics over simply considering the article text in isolation.

96

Dataset Acc. P R F1

WHS-Corp 0.911 0.585 0.585 0.586
WHS+Inf.Corp-A 0.921 0.600 0.774 0.670

WHS+Inf.Corp-R 0.916 0.586 0.696 0.637

Table 7.3: Evaluation scores for Conservation Relevance for InfraCorp-A compared with
InfraCorp-R, averaged over 10 random seeds.

Noisy Label

Correction

Acc. P R F1

None 0.907 0.566 0.441 0.497
Peer Loss 0.911 0.591 0.465 0.509
CORES2 0.908 0.584 0.551 0.553

Table 7.4: Evaluation scores for Conservation Relevance for two noise correction methods, over
10 random seeds.

7.7.3 Ablation Study

Active Learning

We compare the effect with training on actively-sampled data (InfraCorp-A) and randomly-
sampled data (InfraCorp-R). Each of these datasets contain 300 India articles, as detailed in
Section 7.5.2 and 7.4.2. We append these articles to the existing WHS-Corp to create the final
data for training. We use the RoBERTa model for these experiments. Results are shown in Table
7.3.

For both InfraCorp-A and InfraCorp-R, we see an improvement over just using WHS-
Corp. Indeed, training with more data will result in better performance, regardless of how the
data is sampled. We also observe that adding actively sampled data results in a larger improve-
ment than adding randomly sampled data across all metrics (F1 t-test 𝑝-value = 0.004). This
verifies the effectiveness of our hypothesized confidence-based data selection for annotation.

Noisy Label Correction

We examine the effect of the noise correction methods outlined in Section 7.5.3, by comparing
the effect of using peer loss, CORES2 loss, and standard cross entropy loss. Based on Infra-
Corp, we use the labels supplied by one of the two annotators for the training set, and the
final calibrated labels for the test set. Hyperparameter search was done for both peer loss and
CORES2 loss to find the optimal values of 𝛼 = 0.05 and 𝛽 = 0.05. We trained for 20 epochs with
a learning rate of 2e-5.

From Table 7.4, we observe that for accuracy and precision, all three losses perform very
similarly, with peer loss performing the highest by a small margin. For recall and F1, peer loss
and the standard loss perform at comparable levels, while CORES2 loss performs better than
both (F1 t-test 𝑝-value = 0.001). This is likely because the confidence regularizer used in CORES2

works better than the random sampling used by peer loss. Both peer and CORES2 loss might

97

Figure 7.4: Left: The highlighted red areas indicate clusters of articles found by our model. Right:
The WWF GIS system, where each relevant article is shown on the map with its corresponding
key details.

work even better if we had more training data than the current 600 in InfraCorp. In the end,
given the positive results of CORES2, we used it in our NewsPanda model.

7.8 Deployment and Impact

NewsPanda has been used at WWF since February 2022. We describe the deployment, results,
and lessons learned.

7.8.1 Pilot Study

The first stage of NewsPanda deployment, which is the pilot study, started in February 2022
and ran for around one month. Every week, the CMU team scraped the news articles and ran
the entire NewsPanda pipeline, forwarding the outputs to the WWF teams to examine and
provide feedback. During this pilot phase, the WWF and CMU teams identified a range of
operational and technical issues in the initial version of NewsPanda.

First, in order for NewsPanda to fit into the established workflow of WWF, it needs to be
integrated into its GIS system. During the pilot, we realized that it is crucial to add the geoloca-
tion of each article (Section 7.6.3) and format the model output according to the specifications
of the GIS platform used at WWF. Figure 7.4 shows how NewsPanda’s results get integrated
into the GIS system, with the red areas being the locations where we identify a relevant article.

We also discovered that while NewsAPI has a good collection of global news sources, it
fails to include some relevant sources in the local context. With the suggestions from the WWF
team, we incorporated additional sources that often yield relevant local articles. One such site
is Parivesh, which contains proposals of infrastructure projects in India.

Finally, we found that some conservation sites’ names often lead to 0 results, while other
terms were too general and yielded hundreds of results, almost all of which were irrelevant,
leading to inefficiencies. We set a lower and upper threshold, and filter out search terms outside
the thresholds.

98

7.8.2 Deployment Results

After we resolved the above issues, we proceeded with the actual deployment. The procedure
was similar to the pilot phase, except that at this phase, the focus is to evaluate the performance
of NewsPanda. The WWF teams closely inspected the model predictions each week and
provided ground truth labels for each article. The label feedback allowed the CMU team to
retrain the model regularly. This stage ran from March 2022 to July 2022. Table 7.5 shows the
aggregated results over 5 months of evaluation results from WWF India, Nepal, and UK. WWF
UK labeled the first half of the deployment for all locations and India/Nepal labeled the second
half for news articles in their respective countries.

Overall, NewsPanda continued to show great performance in Conservation Relevance dur-
ing real-world deployment. Across all evaluations, the precision scores are consistently high,
indicating that almost all of the articles reported by NewsPanda are indeed relevant. We in-
tentionally tuned the model towards this direction – when almost everything that the model
flagged is relevant, it would greatly help with establishing the trust in the model at the early
stage of deployment. As we continue developing the model, we aim to improve the model
towards achieving higher recall, to be able to capture more relevant articles.

On the other hand, on Infrastructure Relevance for India, the model’s performance was worse
than the offline experiments. Upon further inspection, we discovered that the majority of mis-
takes were in fact only 2-4 original pieces of news that were paraphrased by various news
sources into 20-40 articles. Since there are only a few Infrastructure Relevance positive articles
to start with, this had a big impact on the model performance. Meanwhile, such phenomenon
did not occur in our offline experiments because there we randomly sampled news from a large
corpus for labeling.

Aside from overall metrics, we also highlight individual success stories. Figure 7.4(right)
shows a concrete example whereNewsPandamade a difference. In early August, 2022,News-

Panda detected a new project of Ikhala Block Boundary Kishtwar to Lopara Road and high-
lighted it in the WWF GIS system. Upon further investigation by WWF staff, it is found that
the project would divert 5.9 hectares of forest land. More importantly, WWF found that the
project was still at its pre-proposal stage. This means WWF would be able to take early action
and possibly participate in relevant conversations. Such stories are happening frequently since
the deployment of NewsPanda. Using the tool’s outputs integrated into our internal GIS sys-
tems, the WWF staff are continuously coordinating with our field teams to examine the status
and report on relevant projects and areas.

7.8.3 Qualitative andQuantitative Comparison with Current Practice

Prior to NewsPanda, WWF had already been monitoring media for conservation-related ar-
ticles (Figure 7.1). However, most of these efforts were not very structured or logged. It is
thus difficult to draw head-to-head comparisons between NewsPanda and WWF’s existing
approach. That said, we still provide qualitative and quantitative evidence supporting the merit
of NewsPanda over the current practice.

Two months into the deployment, the CMU team carried out semi-structured interviews
with their WWF colleagues who have been using NewsPanda outputs in their work. The

99

Conservation Infrastructure

P R F1 P R F1
India 0.849 0.605 0.706 0.462 0.250 0.324
Nepal 0.895 0.917 0.906 0.923 0.308 0.462

UK 0.879 0.823 0.850 1.000 0.455 0.625

Table 7.5: Aggregated scores of NewsPanda on weekly articles from March 2022 to July 2022.

purpose was to understand how WWF teams liked the toolkit and to elicit possible suggestions
for improvement. Some quotes from the interviews are as follows.

“You’re giving us a bunch of articles… over 50 articles a week. We had two interns who
spend 2-3 days a week on this and would only give us seven to ten articles. So there is a
huge bump in efficiency right there in itself.”

“The data that you’re sharing give a global perspective. It is very useful to understand the
upcoming projects or mitigation measures that are being adopted on a global scale. So it
helps us be informed.”

This improvement in news collection also helped with the downstream task – infrastructure
impact assessment.

“It took us maybe a month to do analyses of three or four infrastructure projects. With
NewsPanda, we can send (stakeholders) 20 or 30 reports in a month.”

The micro-level improvement in this single task has also resulted in macro-level organiza-
tional change:

“It’s also a transition in their (WWF staff) job function. They will not just be doing data
hunting. They are qualifying themselves to be data analysts.”

The WWF Nepal team has been putting together weekly news digests for conservation sites
in Nepal. Although this dataset is small and has no negative labels, this is the only quantitative
comparison between NewsPanda and current practice we can make. We find that our model
is able to identify 62% of the articles in the news digest. This is a relatively good performance as
we had extremely limited articles (only 150) about Nepali conservation sites to train the model.

7.8.4 Sustainable Deployment and Broader Impact

Encouraged by the success of NewsPanda at the initial stages, we are working to scale it to
more sites and permanently deploy NewsPanda as part of the WWF computing infrastruc-
ture. We have been collecting news articles for over 60,000 sites globally and applying our
trained model to classify them on a weekly basis since April 2022. Because the main model
has already been trained, we no longer need extensive data labeling for evaluation. Instead, we
only need a small subset for model update and fine-tuning purposes. We are currently investi-
gating the ability NewsPanda to generalize to new locations and new languages given only
a few (or even zero) domain-specific training points. We are also shifting our system to a cloud

100

Figure 7.5: Sample tweet of WildlifeNewsIndia

server to be owned and maintained by the WWF team, rather than the CMU team, to ensure
sustainable deployment. The CMU team will continue to provide support and tutorials to help
WWF eventually grow in-house capability of sustaining the project.

Much as this project was a collaboration between WWF and CMU, NewsPanda could
also be valuable to the broader civil society. Thus, we also developed a social media module
in the form of a Twitter bot called WildlifeNewsIndia. The bot periodically tweets a se-
lected set of the identified relevant articles. In addition to tweeting links to articles, we also
use the keywords from NewsPanda’s keyword extractor (Section 7.6.1) to generate salient
hashtags. A sample tweet is shown in Figure 7.5. Currently, WildlifeNewsIndia is focused
on conservation-related articles in India. As we continue working on this project, we hope to
scale this to a global level, so that any organization or individual interested in conservation can
benefit from the tool.

7.8.5 Lessons Learned

This 1.5 year long and counting collaboration has yielded many valuable lessons for both WWF
and CMU. We have already mentioned some of those in earlier sections. We highlight two more
generalizable lessons below.

Problem identification is an iterative process and rapid prototyping helps surface unforeseen
needs. The event extractor in Section 7.6.2 was not initially part of the agenda: without a
prototype of the model readily available, it was difficult for WWF to realize what could be done
with it. However, after several iterations of communication and exploring results, the need to
track the development related to a single project/location became clear to us. This was made
possible by the rapid prototyping, where the CMU team used viable algorithms that may not
be optimal but are quick to implement to demonstrate the possibilities of the toolkit.

101

It is the various “not-so-AI” components that realize the promise of an AI for nonprofit
project on the ground. While the classification module in Section 7.5 is the engine of News-

Panda, the postprocessing module in Section 7.6 and the visualization module in Figure 7.4
are key in getting the information in a consumable format, and ultimately the buy-in at WWF.
Each of the latter two modules requires at least as much engineering effort and careful design
as the classification module. We call on future AI for nonprofit projects to pay enough attention
to all the infrastructure around the AI part, in order to deliver the real impact that we hoped
for.

7.9 Conclusion

In this chapter, we designed and deployed NewsPanda, a toolkit for extracting, classifying,
and analyzing articles related to conservation and infrastructure. We showed empirically that
ourNewsPandamodel classifies better than baseline methods for bothConservation Relevance

and Infrastructure Relevance. We also presented quantitative and qualitative evaluations of our
system in the real world as well as its impact on WWF teams in UK, India, and Nepal.

Currently NewsPanda mainly focuses on a few countries, and we are expanding it to a
global scale. However, incorporating additional conservation sites is just the beginning. To do
it right, we also need to cover more languages and more local media sources. This is especially
important for the global south, as many high-impact local developments might never reach
international news outlets. The ability to capture these local sources, especially if they are
not written in English, is something we are currently working on. We are currently starting
with articles written in the Nepali language. Initial experiments with a multilingual version
of NewsPanda have shown good generalization when given only a few Nepali articles for
training. With this multilingual model, we hope to further expand to cover a wider array of
languages.

Ethical implications NewsPanda is intended to help conservation organizations such as
WWF streamline their operations and advocate for environmental consideration in economic
development. In this process, it is important that the model does not ignore events in certain
regions or over-concentrate on events in other regions. While developing NewsPanda, we
routinely checked with our WWF collaborators whether they thought the model’s output was
balanced across geographies based on their domain expertise. More quantitative analysis could
be carried out in this regard. In the meantime, NewsPanda does automate some part of the
work at WWF. However, as commented in Section 7.8, the WWF staff who used to collect such
news articles are now qualifying themselves to be data analysts. In this sense, NewsPanda is
facilitating broader organizational change in a positive direction.

102

Part IV

Learning and Planning Towards AI for

Social Good

103

Chapter 8

Bandit Data-driven Optimization: AI for

Social Good and Beyond

AI for social good applications, and many other machine learning (ML)-based systems that
are deployed in the field, feature an iterative process which joins prediction, optimization, and
data acquisition. We introduce bandit data-driven optimization, the first iterative prediction-
prescription framework to formally analyze this practical routine. Bandit data-driven optimiza-
tion combines the advantages of online bandit learning and offline predictive analytics in an
integrated framework. It offers a flexible setup to reason about unmodeled optimization ob-
jectives and unforeseen consequences. We propose PROOF, a novel algorithm for this frame-
work and show that it achieves no-regret. Using numerical simulations, we show that PROOF
achieves superior performance than existing baseline. We also apply PROOF to a food rescue
task with real data, and show that PROOF as a framework works well with the intricacies of
ML models in real-world applications.

8.1 Introduction

The success of modern ML largely lies in supervised learning, where one predicts some label
𝑐 given input feature 𝑥 . Off-the-shelf predictive models have made their ways into numerous
commercial applications. Such tangible progress has motivated the community to address more
real-world societal challenges, as evidenced by the growing research theme of AI for social good
(AI4SG).

output
ML	Predictor

solution

Optimization

train

Data Implementation

output

ML	Predictor
objective

Optimization

Data Implementation

(a)	Two-stage	prediction-prescription

train solution
output

ML	Predictor

solution

Optimization

train

Data
collect

Implementation

(b)	One-shot	data-driven	optimization (c)	Bandit	data-driven	optimization

Figure 8.1: Paradigms of how ML systems are used in realistic settings.

105

Unfortunately, the success of ML often does not translate directly into a satisfactory solution
to a real-world AI4SG problem. One obvious reason is supervised learning focuses on predic-
tion, yet real-world problems, by and large, need prescription. For example, rather than predict
which households’ water pipes are contaminated (labels) using construction data (features),
municipal officials need to schedule inspections (interventions) [3]. The common practice is
a two-stage procedure, as shown in Figure 8.1a. After training an ML model, the user makes
prescriptive decisions based on some optimization problem parameterized by the prediction
output. In an emerging line of work on (one-shot) data-driven optimization, the learning prob-
lem is made aware of the downstream optimization objective through its loss function, gluing
the two stages together [19, 44]. We illustrate this in Figure 8.1b.

However, this is still far from a complete picture. Figure 8.1c shows a typical workflow
in many AI4SG projects, such as the food rescue ones we introduced in Part II. After getting
data from the collaborating organization, the researcher trains an ML model and then, based
on it, recommends an intervention. Using the new data collected under the new intervention,
the researcher updates the ML model and recommends a new intervention, so on and so forth,
leading to an iterative process. The principles of these steps are often not aligned. Without a
rigorous, integrated framework to guide the procedure, this could lead to operation inefficiency,
missed expectations, dampened initiatives, and new barriers of mistrust which are not meant
to be.

Such an iterative process is necessary due to the following key features of AI4SG applica-
tions distilled from existing research under this theme [119]. First, there may not be enough data
to begin with. Many of these domains do not have the luxury of millions of training examples. A
small dataset at the beginning leads to inaccurate predictions and hence suboptimal decisions,
but they will improve as we collect more data, as seen in, e.g., predicting poaching threats from
patrol data and designing ranger patrols [52]. Second, too often the initial dataset has some
default intervention embedded, while the project’s goal is to find the optimal intervention. For
example, Shi et al. [142] design a smartphone notification scheme for a volunteer-based plat-
form but existing data are all collected under a default suboptimal scheme. If one expects the
data distribution to vary across interventions, one has to try out some interventions and col-
lect data under them. Third, we may not perfectly know the the correct objective function to
optimize. This is especially true considering the knowledge and communication gap between
AI researchers and domain practitioners. Fourth, the proposed interventions may have unex-
pected consequences. This hints at the inherent impossibility of fully modeling the problem in
one shot.

We propose the first iterative prediction-prescription framework, which we term as ban-

dit data-driven optimization. This framework combines the relative advantages of both online
bandit learning and offline predictive analytics. We achieve this with our algorithm PRedict-
then-Optimize with Optimism in Face of uncertainty (PROOF). PROOF is a modular algorithm
which can work with a variety of predictive models and optimization problems. Under specific
settings, we formally analyze its performance and show that PROOF achieves no-regret. In
addition, we propose a variant of PROOF which handles the scenario where the intervention
affects the data distribution and prove that it also enjoys no-regret. Using numerical simula-
tions, we show that PROOF achieves much better performance than a pure bandit baseline. We
also apply PROOF in a case study of a real-world AI4SG project on food rescue.

106

We emphasized AI4SG as the motivation for bandit data-driven optimization. That said,
many ML-based systems deployed in the field share similar pain points and can benefit from
this framework.

8.2 Related Work

To our knowledge, there is surprisingly no existing work that rigorously studies the procedure
as shown in Figure 8.1c. We introduce several lines of work with similar goals below and a
summary of the differences can be found in Table 8.1.

First, (one-shot) data-driven optimization is characterized by a dataset consisting of fea-
tures 𝑥1,… , 𝑥𝑛 and labels 𝑐1,… , 𝑐𝑛. The task is to find the action 𝑤∗ that maximizes the expected
value of objective function 𝑝(𝑐, 𝑤) given some feature 𝑥 , i.e. 𝑤∗ = argmax𝑤 𝔼𝑐|𝑥[𝑝(𝑐, 𝑤)]. The
first approach comes from the stochastic programming perspective [16, 19]. Another popular
approach is referred to as the predict-then-optimize framework [44, 65, 74]. There, one learns
an ML predictor 𝑓 from data and then optimize 𝑝(𝑐, 𝑤) with the predicted label 𝑐 = 𝑓 (𝑥). Com-
pared to our bandit data-driven optimization framework, this entire literature assumes that the
optimization objective is known a priori and does not consider multi-period settings.

More generally, our work touches on optimization under uncertainty. Zheng et al. [169]
and Chen et al. [25] provide sample complexity bounds for learning the parameters of an op-
timization problem. However, they do not learn the data distribution. Balkanski et al. [15]
consider optimizing a submodular function with samples. Yet, in all these works, there is no
clear way to leverage the feature/label dataset that is so common in real-world AI4SG tasks.

Contextual bandit (CB) is a well-studied online decision-making model very relevant to our
framework [13, 79]. At each time step 𝑡 of CB, one receives feature 𝑥𝑡 , picks an action 𝑤𝑡 , and
receives reward whose expectation is some unknown function of 𝑥𝑡 and 𝑤𝑡 . In fact, our ban-
dit data-driven optimization framework reduces to CB if we skip the training of a predictive
model and directly pick an action. However, by doing so, we effectively give up all the valuable
information in the historical data. Although CB algorithms achieve no-regret and have been
successful in high-frequency decision-making [85], they are often impractical in AI4SG appli-
cations. It would hardly be acceptable to any stakeholders that the algorithm only guarantees
good results after using it for, say, 10 years, while we choose not to use the dataset already
available. That said, bandit provides a proper setting for sequential decision making under un-
certainty [162] and algorithms like LinUCB [2, 32, 38] play a central role in designing PROOF.

Also related is offline policy learning [12, 41, 149]. Compared to CB, it does not need any
online trials, and hence is much easier to convince the stakeholder to adopt. However, it comes
with the assumption that the historical data has many different actions attempted, which often
fails to hold in the AI4SG problems. Furthermore, most of this literature focus on the binary
action setting and it, similar to CB, does not explicitly use the feature/label dataset.

8.3 Bandit Data-driven Optimization

We describe the formal setup of bandit data-driven optimization in Procedure 7. On Line 1,
we receive an initial dataset of size 𝑛0, with features 𝑥0

𝑖 and label 𝑐0𝑖 for data point 𝑖, and

107

Table 8.1: A comparison of different models with respect to the desired properties in AI4SG
applications.

Desired properties

in AI4SG

applications

Bandit

data-driven

optimization

Data-driven
optimization

Contextual
bandit

Offline
reinforcement
learning

No diverse past

data needed

Yes No Yes No

Explicit learning

and optimization

Yes Yes No No

No assumption on

policy objective

Yes No
Yes (but ignores
domain
knowledge)

Yes (but ignores
domain
knowledge)

Allows for

iterative process

Yes No Yes Yes

Finds optimal

policy quickly

Yes (compared

to bandit)

Yes (if diverse
data available) No Yes (if diverse

data available)

intervention in-place 𝑤0
𝑖 when the data point is collected. Each feature vector 𝑥0

𝑖 is drawn
i.i.d. from an unknown distribution 𝐷𝑥 . Each label 𝑐0𝑖 ∈ 𝐶 is independently drawn from an
unknown conditional distribution 𝐷(𝑤0

𝑖)𝑐|𝑥0𝑖 , which is parameterized by the intervention 𝑤0
𝑖 , as

different interventions could lead to different data distributions. In reality, 𝑤0
𝑖 is often identical

across all 𝑖. On Line 3, we use all the data collected so far to train an ML model 𝑓𝑡 , which
is a mapping from features 𝑋 to labels 𝐶 . On Line 4, we get a new set of feature samples
𝐱𝑡 = {𝑥 𝑡

𝑖 }𝑛𝑖=1. Then, we select an intervention 𝑤 𝑡
𝑖 ∈ 𝑊 for each individual 𝑖. On Line 5, we

commit to interventions 𝐰𝑡 = {𝑤 𝑡
𝑖 } and receive the labels 𝐜𝑡 = {𝑐𝑡𝑖 }. Each label is independently

drawn from the distribution 𝐷(𝑤 𝑡
𝑖)𝑐|𝑥 𝑡𝑖 . Subsequently, on Line 6, we incur a cost 𝑢𝑡 .

We assume that the cost 𝑢𝑡 is determined by a partially known function 𝑢(𝐜𝑡 ,𝐰𝑡). The func-
tion consists of three terms. The first term∑𝑖 𝑝(𝑐𝑡𝑖 , 𝑤 𝑡

𝑖) is the known loss. 𝑝(𝑐, 𝑤) is a fully known
function capturing the loss for choosing intervention 𝑤 and getting label 𝑐. It represents our
modeling effort and domain knowledge. The second term ∑𝑖 𝑞(𝑤 𝑡

𝑖) is the unknown loss. 𝑞(𝑤)
is an unknown function representing all the unmodeled objectives and the unintended conse-
quences of using the intervention 𝑤 . The third term is random noise 𝜂. This form of loss – a
known part 𝑝(⋅) and an unknown part 𝑞(⋅) – is a realistic compromise of two extremes. AI4SG
researchers spend a lot of time communicating with domain practitioners to understand the
problem. It would go against this honest effort to eliminate 𝑝(⋅) and model the process as a pure
bandit problem. On the other hand, there will be unmodeled objectives, however hard we try.
It would be too arrogant to eliminate 𝑞(⋅) and pretend that anything not going according to the
plan is noise. The unknown 𝑞(⋅) is our acknowledgement that any intervention recommended
by AI4SG projects may have unintended consequences. We leave to future work to consider
other interactions between 𝑝(⋅) and 𝑞(⋅).

108

Procedure 7: Bandit Data-driven Optimization
1 Receive initial dataset = {(𝑥0

𝑖 , 𝑐0𝑖 ;𝑤0
𝑖)𝑖=1,…,𝑛0} from distribution 𝐷 on (𝑋, 𝐶).

2 for 𝑡 = 1, 2,… , 𝑇 do

3 Using all the available data , train ML prediction model 𝑓𝑡 ∶ 𝑋 → 𝐶 .
4 Given 𝑛 feature samples {𝑥 𝑡

𝑖 } ∼ 𝐷𝑥 , choose interventions {𝑤 𝑡
𝑖 } for each individual 𝑖.

5 Receive 𝑛 labels {𝑐𝑡𝑖 } ∼ 𝐷(𝑤 𝑡
𝑖)𝑐|𝑥 𝑡𝑖 . Add {(𝑥 𝑡

𝑖 , 𝑐𝑡𝑖 ;𝑤 𝑡
𝑖)𝑖=1,…,𝑛} to the dataset .

6 Get cost 𝑢𝑡 = 𝑢(𝐜𝑡 ,𝐰𝑡) = ∑𝑖 𝑝(𝑐𝑡𝑖 , 𝑤 𝑡
𝑖) +∑𝑖 𝑞(𝑤 𝑡

𝑖) + 𝜂, where 𝜂 ∼ 𝑁 (0, 𝜎 2).

Given this procedure, the question is how to select the intervention 𝐰𝑡 . As is typical in the
bandit literature, we define the optimal policy to be that given feature 𝐱, pick action 𝜋 (𝐱) such
that

𝜋 (𝐱) = argmin
𝐰

𝔼𝐜,𝜂|𝐱[𝑢(𝐜,𝐰)],

where the expectation is taken over labels 𝐜 and noise 𝜂 conditioned on the features 𝐱. The goal
is to devise an algorithm to select interventions 𝐰𝑡 to minimize the regret

𝑅𝑇 = 𝔼𝑥,𝑐,𝜂 [

𝑇

∑
𝑡=1

(𝑢(𝐜𝑡 ,𝐰𝑡) − 𝑢(𝐜𝑡 , 𝜋 (𝐱𝑡)))]
.

The label 𝑐 can be a scalar or a vector. For the rest of the chapter, we assume 𝐶 ∈ ℝ𝑑 and
𝑊 ∈ ℝ𝑑 . 𝑊 may be discrete or continuous but it is assumed to be bounded.

Food rescue volunteer recommendation as bandit data-driven optimization We use
the food rescue volunteer engagement problem introduced in Chapter 5 to illustrate how bandit
data-driven optimization captures real-world AI4SG workflows. The following description is
based on the recommender system in Section 5.5. A food rescue (FR) organization receives food
donations from restaurants and grocery stores and connects them to low-resource community
organizations. FR dispatchers would post the donor and recipient information on their mobile
app, and some volunteer would claim the rescue and pick up and deliver the donations. This
creates a lot of uncertainty because some rescue trips will get no volunteer to claim it. To
prevent this, the dispatcher may recommend each rescue to a subset of volunteers through
push notifications, The selection of volunteers to notify is the intervention 𝑤 ∈ {0, 1}𝑑 (with
the 𝑗 𝑡ℎ dimension representing whether to send notification to the 𝑗 𝑡ℎ volunteer). This decision
is dependent on how likely a rescue will be claimed by each volunteer. Thus, we develop a
ML-based recommender system which uses the features of a rescue and the volunteers, e.g.
donor/recipient location, weather, the volunteer’s historical activities, etc. (feature 𝑥), to predict
the probabilities that each volunteer will claim the rescue. After we select 𝑤 for a rescue, we
observe which volunteer actually claim the rescue, that is, the label 𝑐 (with the 𝑗 𝑡ℎ dimension
representing whether the 𝑗 𝑡ℎ volunteer claims the rescue). This data point will be added to our
dataset and used for training in the future. The optimization objective 𝑝(𝑐, 𝑤) is that we want
to send notifications to the volunteers who will claim it, while still guaranteeing not a lot of
push notifications are sent. Obviously, whether or not the rescue gets claimed after these push
notifications matter to the FR. Yet, there is more to the cost to the FR, e.g. how each volunteer

109

reacts to push notifications (will they get annoyed and drop out?). The 𝑞(⋅) cost could capture
such factors.

In the US alone, there are already over 50 cities where FRs are providing basic necessities
and affecting over a million people. We have been working with a food rescue organization for
years. In Section 8.5.2, we include a case study of bandit data-driven optimization in the food
rescue setting.

8.4 Algorithms and Regret Analysis

We propose a flexible algorithm for bandit data-driven optimization and establish a formal re-
gret analysis of the algorithm under the specific settings as follows.

The data points are drawn from 𝑋 × 𝐶 ⊆ ℝ𝑚 × ℝ𝑑 . We assume all 𝑥 ∈ 𝑋 has 𝑙2-norm
bounded by constant 𝐾𝑋 , and the label space 𝐶 has 𝑙1-diameter 𝐾𝐶 . The action space 𝑊 could
be either discrete or continuous, but is bounded inside the unit 𝑙2-ball in ℝ𝑑 . We specify the
data distribution by an arbitrary marginal distribution 𝐷𝑥 on 𝑋 and a conditional distribution
such that 𝑐 = 𝑓 (𝑥) + 𝜖 where 𝜖 ∼ (0, 𝜎 2𝐼), for some unknown function 𝑓 . To begin with, we
assume 𝑓 ∈ comes from the class of all linear functions with 𝑓 (𝑥) = 𝐹𝑥 , and we use ordinary
least squares regression as the learning algorithm. We will relax this assumption towards the
end of Section 8.4.2. The known cost 𝑝(𝑐, 𝑤) = 𝑐†𝑤 is the inner product of label 𝑐 and action 𝑤 .1
The unknown cost is 𝑞(𝑤) = 𝜇†𝑤 , where 𝜇 is an unknown but fixed vector. Furthermore, for
exposition purpose we will start by assuming that the intervention 𝑤 does not affect the data
distribution. In Section 8.4.3, we will remove this assumption and present the algorithm for the
general case.

8.4.1 With Exactly Known Objectives

As a primer to our main results to be introduced in the following section, we first look into a
special case where we know the optimization objective exactly. That is, our cost only consists
of 𝑝(⋅), with 𝑞(⋅) = 0. This is not a very realistic setting, but by analyzing it we will get some
intuition into the general case.

At each iteration, this setting resembles the predict-then-optimize framework studied by El-
machtoub and Grigas [44]. Given a sample feature 𝑥 , we need to solve the linear program with
a known feasible region 𝑊 ⊆ ℝ𝑑 :

min
𝑤

𝔼𝑐∼𝐷𝑐|𝑥 [𝑝(𝑐, 𝑤)|𝑥] = 𝔼𝑐∼𝐷𝑐|𝑥 [𝑐|𝑥]
†𝑤

𝑠.𝑡. 𝑤 ∈ 𝑊

We hope to learn a predictor 𝑓 ∶ 𝑋 → 𝐶 from the given dataset, so that we can solve the
following problem instead.

𝑤∗(𝑐) ∶= argmin
𝑤

𝑐†𝑤 where 𝑐 = 𝑓 (𝑥)

𝑠.𝑡. 𝑤 ∈ 𝑊
1To avoid confusion, in this chapter we use superscript † to denote matrix and vector transpose.

110

In this chapter we assume that the problem has a unique optimal solution. Since the total cost
is the same as the known optimization objective, intuitively we should simply commit to the
action 𝑤∗(𝑐). By doing so, the expected regret we incur on this data point is 𝔼𝑥[𝑟(𝑥)], where

𝑟(𝑥) = 𝔼𝑐|𝑥[𝑐]†(𝑤∗(𝑐) − 𝑤∗(𝔼𝑐|𝑥[𝑐])).

Theorem 8.4.1 establishes that, indeed, this strategy leads to no-regret. This is not entirely
trivial, because the optimization is based on the learned predictor yet the cost is based on the
true distribution. The proof of Theorem 8.4.1 is instrumental to the subsequent results.
Theorem 8.4.1. When the total cost is fully modeled, i.e. 𝑞(⋅) = 0, simply following the predict-

then-optimize optimal solution leads to regret 𝑂(
√
𝑛𝑑𝑚𝑇).

Proof of Theorem 8.4.1. Let 𝑤 𝑡
𝑖∗ = argmin𝑤 𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐

𝑡
𝑖]†𝑤 and 𝑤 𝑡

𝑖 = argmin𝑤 𝑐𝑡†𝑖 𝑤 . The expected
regret at round 𝑡 on individual 𝑖 is 𝔼[𝑟 𝑡𝑖], where

𝑟 𝑡𝑖 = 𝔼 [𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖]

†(𝑤 𝑡
𝑖 − 𝑤 𝑡

𝑖∗)]
≤ 𝔼 [(𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐

𝑡
𝑖] − 𝑐𝑡𝑖)

†(𝑤 𝑡
𝑖 − 𝑤 𝑡

𝑖∗)]
= 𝑂 (𝔼 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐

𝑡
𝑖] − 𝑐𝑡𝑖 ‖‖2])

The first inequality above used the definition of 𝑤 𝑡
𝑖 and 𝑤 𝑡

𝑖∗. The second step used Cauchy-
Schwartz. Note that what remains to prove is simply an error bound on the OLS regression,
which we prove as Lemma 8.4.2. Using that result, we can conclude the total regret is

𝑅𝑇 = 𝔼[
𝑇

∑
𝑡=1

𝑛

∑
𝑖=1

𝑟 𝑡𝑖]

= 𝑂
(

𝑇

∑
𝑡=1

𝑛

∑
𝑖=1

𝔼 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] − 𝑐𝑡𝑖 ‖‖2])

= 𝑂
(

𝑇

∑
𝑡=1

𝑛

∑
𝑖=1

√
𝑑𝑚
𝑛𝑡)

= 𝑂 (
√
𝑛𝑑𝑚𝑇)

The last step (bounding ∑𝑇
𝑡=1 𝑡−1/2) is by an upper bound on the generalized harmonic numbers,

which can be found in Theorem 3.2 (b) in the text by Apostol [11].

Recall that is the class of all linear functions mapping 𝑋 to 𝐶 and 𝑐 = 𝐹𝑥 + 𝜖 where 𝐹 ∈
and 𝜖 ∼ (0, 𝜎 2𝐼𝑑). Assume that 𝑛 > 𝑚, that is, assume the number of data points we receive
each round is greater than the number of features. Let 𝐹𝑘 be the 𝑘-th row of 𝐹 . Fix 𝑘, we have
a linear regression problem 𝑐𝑘 = 𝐹†

𝑘 𝑥 + 𝜖𝑘 , where 𝜖𝑘 ∼ (0, 𝜎 2). At the 𝑡-th round, we have 𝑛𝑡
data points and we need to predict on 𝑛 new data points. Let 𝑋 𝑡 be the 𝑛 ×𝑚 matrix whose 𝑖-th
row is 𝑥 𝑡

𝑖 . Let �̃� 𝑡 be the 𝑛𝑡 ×𝑚 matrix consisting of all the training data points. Suppose we fun
an ordinary least wquares regression. Let 𝐹𝑘 be the OLS estimate of 𝐹𝑘 , and 𝑐𝑘 = 𝐹𝑘𝑥 .

111

Lemma 8.4.2. Suppose we use the ordinary least squares regression as the ML algorithm. The

prediction error is

𝔼𝑋,𝜖 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] − 𝑐𝑡𝑖 ‖‖2] = 𝑂

(

√
𝑑𝑚
𝑛𝑡)

,

assuming either (1) 𝑥 ∼ (0,Λ) follows a normal distribution, or (2) the eigenvalues of Σ = �̃� 𝑡† �̃� 𝑡

𝑛𝑡
are lower bounded by a positive number.

Proof. Consider the first case, since 𝑥 ∼ (0,Λ), we know 𝑋 𝑇†𝑋 𝑡 ∼ 𝑊 (Λ, 𝑛), a Wishart dis-
tribution with 𝑛 degrees of freedom, and �̃� 𝑇†�̃� 𝑡 ∼ 𝑊 (Λ−1, 𝑛𝑡), an inverse Wishart distribution
with 𝑛𝑡 degrees of freedom. Thus, 𝔼𝑋 [(𝑋 𝑡†𝑋 𝑡)−1] = 𝑛Λ and 𝔼𝑋 [(�̃� 𝑡†�̃� 𝑡)−1] = Λ−1/(𝑛𝑡 −𝑚 − 1).

𝔼
[

𝑛

∑
𝑖=1

(𝔼𝑐𝑡𝑖𝑘 |𝑥
𝑡
𝑖
[𝑐𝑡𝑖𝑘] − 𝑐𝑡𝑖𝑘)

2

]
= 𝔼 [||𝑋

𝑡(𝐹𝑘 − 𝐹𝑘)||22]

= 𝔼 [(𝐹𝑘 − 𝐹𝑘)†𝑋 𝑡†𝑋 𝑡(𝐹𝑘 − 𝐹𝑘)]

= 𝔼 [𝑡𝑟((𝐹𝑘 − 𝐹𝑘)†𝑋 𝑡†𝑋 𝑡(𝐹𝑘 − 𝐹𝑘))]

= 𝑡𝑟 (𝔼 [𝑋
𝑡†𝑋 𝑡

]𝔼𝑋 [(𝐹𝑘 − 𝐹𝑘)(𝐹𝑘 − 𝐹𝑘)†])

= 𝜎 2𝑡𝑟(𝔼 [𝑋
𝑡†𝑋 𝑡

]𝔼𝑋 [(�̃�
𝑡†�̃� 𝑡)−1])

= 𝜎 2𝑡𝑟 (
𝑛ΛΛ−1

𝑛𝑡 −𝑚 − 1)
=

𝑛𝑚𝜎 2

𝑛𝑡 −𝑚 − 1

The above derivation has appeared in previous literature, e.g. the work by Rosset and Tibshirani
[130]. The result holds for all 𝑘, we get

𝔼𝑋,𝜖 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] − 𝑐𝑡𝑖 ‖‖

2
2] =

𝑚𝑑𝜎 2

𝑛𝑡 −𝑚 − 1
.

That is,

𝔼𝑋,𝜖 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] − 𝑐𝑡𝑖 ‖‖2] = 𝑂

(

√
𝑑𝑚
𝑛𝑡)

.

In the second case, suppose the eigenvalues of Σ = �̃� 𝑡† �̃� 𝑡

𝑛𝑡 are lower bounded by a constant
𝐾Σ > 0.

𝔼𝑋,𝜖 [
|||𝔼𝑐𝑡𝑖𝑘 |𝑥

𝑡
𝑖
[𝑐𝑡𝑖𝑘] − 𝑐𝑡𝑖𝑘

|||] = 𝔼𝑋,𝜖 [
|||𝐹

†
𝑘 𝑥

𝑡
𝑖𝑘 − 𝐹†

𝑘 𝑥
𝑡
𝑖𝑘
|||]

≤ 𝔼𝑋 [
|||𝐹

†
𝑘 𝑥

𝑡
𝑖𝑘 − 𝐹†

𝑘 𝑥
𝑡
𝑖𝑘
|||] ≤ 𝔼𝑋 [

‖‖‖𝐹𝑘 − 𝐹𝑘
‖‖‖2
‖‖𝑥

𝑡
𝑖𝑘
‖‖2]

≤ 𝐾𝑋𝔼𝑋 [
‖‖‖𝐹𝑘 − 𝐹𝑘

‖‖‖
2

2]
1/2

= 𝐾𝑋𝔼𝑋 [𝑡𝑟(𝜎
2(�̃� 𝑡†�̃� 𝑡)−1)]

1/2

=
𝜎𝐾𝑋√
𝑛𝑡

𝔼𝑋 [𝑡𝑟 (Σ−1)]
1/2

112

Algorithm 8: PROOF: Predict-then-optimize with optimism in face of uncer-
tainty
1 Initialize:

2 Find a barycentric spanner 𝑏1,… , 𝑏𝑑 for 𝑊
3 Set 𝐴1

𝑖 = ∑𝑑
𝑗=1 𝑏𝑗𝑏

†
𝑗 and �̂�1𝑖 = 0 for 𝑖 = 1, 2,… , 𝑛.

4 Receive initial dataset = {(𝑥0
𝑖 , 𝑐0𝑖 ;𝑤0

𝑖)𝑖=1,…,𝑛0} from distribution 𝐷 on (𝑋, 𝐶).
5 for 𝑡 = 1, 2,… , 𝑇 do

6 Using all data in , train ML model 𝑓𝑡 ∶ 𝑋 → 𝐶 .
7 Given 𝑛 feature samples {𝑥 𝑡

𝑖 } ∼ 𝐷𝑥 , get predictions 𝑐𝑡𝑖 = 𝑓𝑡(𝑥 𝑡
𝑖).

8 Set 𝛽 𝑡 = max(128𝑑 log 𝑡 log
𝑛𝑡2
𝛾 ,(

8
3 log

𝑛𝑡2
𝛾)

2

)
9 for 𝑖 = 1, 2,… , 𝑛 do

10 Set Confidence ball 𝐵𝑡
𝑖 = {𝜈 ∶ ||𝜈 − �̂�𝑡𝑖 ||2,𝐴𝑡

𝑖
≤
√
𝛽 𝑡}.

11 Solve optimization problem 𝑤 𝑡
𝑖 = argmin𝑤∈𝑊 min𝜈∈𝐵𝑡𝑖 (𝑐

𝑡
𝑖 + 𝜈)†𝑤 . Choose

intervention 𝑤 𝑡
𝑖 .

12 Receive label 𝑐𝑡𝑖 ∼ 𝐷𝑐|𝑥 𝑡𝑖 . Add (𝑥 𝑡
𝑖 , 𝑐𝑡𝑖 ;𝑤 𝑡

𝑖) to .
13 Get cost 𝑢𝑡

𝑖 = 𝑢(𝑥 𝑡
𝑖 , 𝑐𝑡𝑖 , 𝑤 𝑡

𝑖) = (𝑐𝑡𝑖)†𝑤 𝑡
𝑖 +𝜇†𝑤 𝑡

𝑖 + 𝜂𝑖 , where 𝜂𝑖 ∼ 𝑁 (0, 𝜎 2). In particular,
let 𝑢𝑡

𝑜𝑖 be the first term and let 𝑢𝑡
𝑏𝑖 be the sum of the second and third term.

14 Update 𝐴𝑡+1
𝑖 = 𝐴𝑡

𝑖 + 𝑤 𝑡
𝑖 (𝑤 𝑡

𝑖)†
15 Update �̂�𝑡+1𝑖 = (𝐴𝑡+1

𝑖)−1∑𝑡
𝜏=1 𝑢𝑡

𝑏𝑖𝑤 𝑡
𝑖

Then the prediction error can be bounded by

𝔼𝑋,𝜖 [
|||𝔼𝑐𝑡𝑖𝑘 |𝑥

𝑡
𝑖
[𝑐𝑡𝑖𝑘] − 𝑐𝑡𝑖𝑘

|||] ≤ 𝑂(

√
𝑚
𝑛𝑡)

This holds for all 𝑘. Thus, we have

𝔼𝑋,𝜖 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] − 𝑐𝑡𝑖 ‖‖2] ≤ 𝑂

(

√
𝑚𝑑
𝑛𝑡)

8.4.2 PROOF: Predict-then-Optimize with Optimism in Face of Uncer-

tainty

When there is no bandit uncertainty, as we showed just now one can simply follow the predict-
then-optimize framework and no-regret is guaranteed. However, the unknown bandit cost is
crucial to real-world AI4SG applications. We now describe the first algorithm for bandit data-
driven optimization, PRedict-then-Optimize with Optimism in Face of uncertainty (PROOF),
shown in Algorithm 8.

113

PROOF is an integration of the celebrated Optimism in Face of Uncertainty (OFU) frame-
work and the predict-then-optimize framework. It is clear that the unknown cost component
𝑞(⋅) + 𝜂 forms a linear bandit. For this bandit component, we run an OFU algorithm for each
individual 𝑖 with the same unknown loss vector 𝜇. The OFU component for each individual 𝑖
maintains a confidence ball 𝐵𝑡

𝑖 which is independent of the predict-optimize framework. The
predict-then-optimize framework produces an estimated optimization objective 𝑐𝑡 independent
of OFU. The two components are integrated together on Line 11 of Algorithm 8, where we
compute the intervention for the current round taking into consideration the essence of both
frameworks.

Below, we justify why this algorithm achieves no-regret. First, we state a theorem by Dani
et al. [38], which states that the confidence ball captures the true loss vector 𝜇 with high prob-
ability. The result was proved for the original OFU algorithm. However, since the result itself
does not depend on the way we choose 𝑤 𝑡 , it still holds in bandit data-driven optimization. We
adapt it by adding a union bound so that the result holds for all the 𝑛 bandits simultaneously.
Lemma 8.4.3 (Adapted from Theorem 5 by Dani et al. [38]). Let 𝛾 > 0, then ℙ(∀𝑡, ∀𝑖, 𝜇 ∈ 𝐵𝑡

𝑖) ≥
1 − 𝛾 .

The following key lemma decomposes the regret of PROOF into two components: one in-
volving the online bandit loss, the other concerning the offline supervised learning loss.
Lemma 8.4.4. With probability 1 − 𝛿 , Algorithm 8 has regret

𝑂
(

√
8𝑚𝑇𝛽𝑇 log 𝑇 +

𝑇

∑
𝑡=1

𝑛

∑
𝑖=1

𝔼 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] − 𝑐𝑡𝑖 ‖‖2])

.

Proof of Lemma 8.4.4. Let𝑤 𝑡
𝑖∗ = argmin𝑤(𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐

𝑡
𝑖]+𝜇)†𝑤 . 𝑤 𝑡

𝑖∗ is the optimal action for individual
𝑖 at time 𝑡 , and is the benchmark in our regret computation.

Fix 𝑖, fix 𝑡 . Let 𝜈 = argmin𝜈∈𝐵𝑡𝑖 (𝑐
𝑡
𝑖 + 𝜈)†𝑤 𝑡

𝑖 . Because of Line 11, we have

(𝑐𝑡𝑖 + 𝜈)†𝑤 𝑡
𝑖 = min

𝜈∈𝐵𝑡𝑖 ,𝑤∈𝑊
(𝑐𝑡𝑖 + 𝜈)†𝑤

≤ (𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] + 𝜇)†𝑤 𝑡

𝑖∗ + (𝑐𝑡𝑖)
†𝑤 𝑡

𝑖∗ − 𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖]

†𝑤 𝑡
𝑖∗.

The inequality above used the fact that 𝜇 ∈ 𝐵𝑡
𝑖 , by Lemma 8.4.3. Thus, we get the per-round

regret

(𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] + 𝜇)†(𝑤 𝑡

𝑖 − 𝑤 𝑡
𝑖∗)

≤ (𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] + 𝜇)†𝑤 𝑡

𝑖 − (𝑐𝑡𝑖 + 𝜈)†𝑤 𝑡
𝑖 + (𝑐𝑡𝑖)

†𝑤 𝑡
𝑖∗

− 𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖]

†𝑤 𝑡
𝑖∗

= (𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] − 𝑐𝑡𝑖)

†(𝑤 𝑡
𝑖 − 𝑤 𝑡

𝑖∗) + (𝜇 − 𝜈)†𝑤 𝑡
𝑖

We can view the second term is the per-round regret for the bandit part. By Theorem 6 in [38],
we have

𝑇

∑
𝑡=1

((𝜇 − 𝜈)†𝑤 𝑡
𝑖)

2 ≤ 8𝑚𝛽𝑇 log 𝑇

114

Using the Cauchy-Schwarz, we get

𝑇

∑
𝑡=1

(𝜇 − 𝜈)†𝑤 𝑡
𝑖 ≤

√
8𝑚𝑇𝛽𝑇 log 𝑇

Thus, the regret of Algorithm 8 is

𝔼
[

𝑇

∑
𝑡=1

𝑛

∑
𝑖=1

(𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] + 𝜇)†(𝑤 𝑡

𝑖 − 𝑤 𝑡
𝑖∗)]

≤ 𝔼
[

𝑇

∑
𝑡=1

𝑛

∑
𝑖=1

(𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] − 𝑐𝑡𝑖)

†(𝑤 𝑡
𝑖 − 𝑤 𝑡

𝑖∗)]

+ 𝑛
√
8𝑚𝑇𝛽𝑇 log 𝑇

= 𝑂
(

𝑇

∑
𝑡=1

𝑛

∑
𝑖=1

𝔼 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] − 𝑐𝑡𝑖 ‖‖2] + 𝑛

√
8𝑚𝑇𝛽𝑇 log 𝑇)

The last step used Cauchy-Schwartz and the bounded action space assumption.

Clearly, to characterize the regret, we need to bound 𝔼 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] − 𝑐𝑡𝑖 ‖‖2]. In the case of

linear regression, we have the following theorem.
Theorem 8.4.5. Assuming we use ordinary least squares regression as the ML algorithm, Algo-

rithm 8 has regret �̃� (𝑛
√
𝑑𝑚𝑇) with probability 1 − 𝛿 .

Proof of Theorem 8.4.5. Combine Lemma 8.4.4 and Lemma 8.4.2.

Theorem 8.4.5 assumes a linear regression problem with a specific learning algorithm – or-
dinary least squares linear regression. If our intent is for Algorithm 8 to be modular where one
can use any learning algorithm, we could resort to sample complexity bounds. In Appendix C.1,
we include a derivation of the regret bound from the sample complexity perspective. This ap-
proach allows us to extend the result in Theorem 8.4.5 to a more general setting.

8.4.3 When Interventions Affect the Label Distribution

So far in this section, we have had the assumption that the action 𝑤 does not affect the distri-
bution 𝐷 from which as sample (𝑋, 𝐶). In many real-world scenarios this is not the case. For
example, if the wildlife patrollers change their patrol routes, the poachers’ poaching location
would change accordingly and hence its distribution would be very different. Thus, it is valuable
to study this more general setting where the intervention could affect the label distribution.

First, let us make the assumption that there are finitely many possible actions. We will
consider the continuous action space later. Since there are finitely many actions, an intuitive
idea is to train an ML predictor for each action separately. Because we do not impose any
assumption on our initial dataset, which might only have a single action embedded, we clearly
need to use exploration in the bandit algorithm and use the data points gathered along the
way to train the predictor. It might seem very natural to fit this directly into the framework of

115

PROOF as shown in Algorithm 8: simply maintain several predictors instead of one, and still
choose the best action on Line 11. However, to train the predictor corresponding to each action,
we need at least a certain number of data points to bound the prediction error. Yet, PROOF, and
UCB-type algorithms in general, do not give a lower bound on how many times each action
is tried. For example, Algorithm 8 might never try some action at all, and we would not be
able to train a predictor for that action. To resolve this philosophical contradiction, we add a
uniform exploration phase of length 𝑇 at the beginning, where at each round 1, 2,… , 𝑇 , each
action is taken on some examples. Other than this, we inherit all the setup for the analysis in
Section 8.4.2. We describe the detailed procedure as Algorithm 9.

We establish the following lemma which decomposes the regret into 3 parts: regret during
uniform exploration, regret in UCB bandit, and regret through supervised learning.
Lemma 8.4.6. With probability 1 − 𝛿 , Algorithm 9 has regret

𝑂(𝑛𝑇 + 𝑛
√
8𝑚𝑇𝛽𝑇 log 𝑇

+
𝑇

∑
𝑡=𝑇+1

𝑛

∑
𝑖=1

𝔼 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡
𝑖
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖)] − 𝑐𝑡𝑖 (𝑤

𝑡
𝑖)‖‖2]).

Proof of Lemma 8.4.6. In Algorithm 9, at each round 1, 2,… , 𝑇 in the exploration phase, each
action is sequentially taken on some examples. This means by the end of step 𝑇 , we have
�̃� = 𝑛𝑇 /|𝑊 | data points for training the predictor for each 𝑤𝑖 . Although in practice one can keep
updating (learning) the predictor during the exploitation phase, in the following theoretical
analysis it suffices to ignore this additional learning effect. We assume �̃� is an integer, but this
is not an issue in the general case.

Let us first analyze the regret in the exploitation phase.
Let 𝑤 𝑡

𝑖∗ = argmin𝑤(𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤[𝑐
𝑡
𝑖 (𝑤)] + 𝜇)†𝑤 . 𝑤 𝑡

𝑖∗ is the optimal action for individual 𝑖 at time 𝑡 ,
and is the benchmark in our regret computation.

Fix 𝑖, fix 𝑡 . Let 𝜈 = argmin𝜈∈𝐵𝑡𝑖 (𝑐
𝑡
𝑖 (𝑤 𝑡

𝑖) + 𝜈)†𝑤 𝑡
𝑖 . Because of Line 18, we have

(𝑐𝑡𝑖 (𝑤
𝑡
𝑖) + 𝜈)†𝑤 𝑡

𝑖 = min
𝜈∈𝐵𝑡𝑖 ,𝑤∈𝑊

(𝑐𝑡𝑖 (𝑤) + 𝜈)†𝑤

≤ (𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡
𝑖∗
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖∗)] + 𝜇)†𝑤 𝑡

𝑖∗ + (𝑐𝑡𝑖 (𝑤
𝑡
𝑖∗))

†𝑤 𝑡
𝑖∗

− 𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡
𝑖∗
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖∗)]

†𝑤 𝑡
𝑖∗.

The inequality above used the fact that 𝜇 ∈ 𝐵𝑡
𝑖 , by Lemma 8.4.3. Thus, we get the per-round

regret

(𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡
𝑖
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖)] + 𝜇)†𝑤 𝑡

𝑖 − (𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡
𝑖∗
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖∗)] + 𝜇)†𝑤 𝑡

𝑖∗

≤ (𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡
𝑖
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖)] + 𝜇)†𝑤 𝑡

𝑖 − (𝑐𝑡𝑖 (𝑤
𝑡
𝑖) + 𝜈)†𝑤 𝑡

𝑖

+ (𝑐𝑡𝑖 (𝑤
𝑡
𝑖∗))

†𝑤 𝑡
𝑖∗ − 𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡

𝑖∗
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖∗)]

†𝑤 𝑡
𝑖∗

= (𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡
𝑖
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖)] − 𝑐𝑡𝑖 (𝑤

𝑡
𝑖))

†𝑤 𝑡
𝑖

+ (𝑐𝑡𝑖 (𝑤
𝑡
𝑖∗) − 𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡

𝑖∗
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖∗)])

†𝑤 𝑡
𝑖∗ + (𝜇 − 𝜈)†𝑤 𝑡

𝑖

116

Algorithm 9: PROOF with action-specific label distribution
1 Initialize:

2 Find a barycentric spanner 𝑏1,… , 𝑏𝑛 for 𝑊
3 Set 𝐴1

𝑖 = ∑𝑑
𝑗=1 𝑏𝑗𝑏

†
𝑗 and �̂�1𝑖 = 0 for all 𝑖 = 1, 2,… , 𝑛

4 Receive initial dataset = {(𝑥0
𝑖 , 𝑐0𝑖 ;𝑤0

𝑖)𝑖=1,…,𝑛} from distribution 𝐷 on (𝑋, 𝐶).
// Uniform exploration phase

5 for 𝑡 = 1, 2,… , 𝑇 do

6 for 𝑖 = 1, 2,… , 𝑛 do

7 Given feature sample 𝑥 𝑡
𝑖 , choose intervention 𝑤 𝑡

𝑖 = 𝑤𝑛𝑡+𝑖 mod |𝑊 | where
𝑊 = {𝑤1,… , 𝑤|𝑊 |} is considered as an ordered set.

8 Receive label 𝑐𝑡𝑖 ∼ 𝐷(𝑤 𝑡
𝑖)𝑐|𝑥 𝑡𝑖 . Add (𝑥 𝑡

𝑖 , 𝑐𝑡𝑖 ;𝑤 𝑡
𝑖) to the dataset .

9 Get cost 𝑢𝑡
𝑖 = 𝑢(𝑥 𝑡

𝑖 , 𝑐𝑡𝑖 , 𝑤 𝑡
𝑖) = (𝑐𝑡𝑖 (𝑤 𝑡

𝑖))†𝑤 𝑡
𝑖 + 𝜇†𝑤 𝑡

𝑖 + 𝜂𝑖 , where 𝜂𝑖 ∼ 𝑁 (0, 𝜎 2). In
particular, let 𝑢𝑡

𝑜𝑖 be the first term and let 𝑢𝑡
𝑏𝑖 be the sum of the second and

third term.
10 Update 𝐴𝑡+1

𝑖 = 𝐴𝑡
𝑖 + 𝑤 𝑡

𝑖 (𝑤 𝑡
𝑖)†

11 Update �̂�𝑡+1𝑖 = (𝐴𝑡+1
𝑖)−1∑𝑡

𝜏=1 𝑢𝑡
𝑏𝑖𝑤 𝑡

𝑖

// UCB exploitation phase
12 for 𝑡 = 𝑇 + 1,… , 𝑇 do

13 For each 𝑤 , using all the available data that were collected under 𝑤 , train ML
prediction model 𝑓 𝑡𝑤 ∶ 𝑋 → 𝐶 .

14 Given 𝑛 feature samples {𝑥 𝑡
𝑖 } ∼ 𝐷𝑥 , get predictions 𝑐𝑡𝑖 (𝑤) = 𝑓𝑡(𝑥 𝑡

𝑖), for each 𝑤 .

15 Set CB radius 𝛽 𝑡 = max(128𝑑 log 𝑡 log(𝑛𝑡
2/𝛾),(

8
3 log(

𝑛𝑡2
𝛾))

2

)
16 for 𝑖 = 1, 2,… , 𝑛 do

17 Set confidence ball 𝐵𝑡
𝑖 = {𝜈 ∶ ||𝜈 − �̂�𝑡𝑖 ||2,𝐴𝑡

𝑖
≤
√
𝛽 𝑡}.

18 Solve optimization problem 𝑤 𝑡
𝑖 = argmin𝑤∈𝑊 min𝜈∈𝐵𝑡𝑖 (𝑐

𝑡
𝑖 (𝑤) + 𝜈)†𝑤 . Choose

intervention 𝑤 𝑡
𝑖 .

19 Receive label 𝑐𝑡𝑖 ∼ 𝐷(𝑤 𝑡
𝑖)𝑐|𝑥 𝑡𝑖 . Add (𝑥 𝑡

𝑖 , 𝑐𝑡𝑖 ;𝑤 𝑡
𝑖) to the dataset .

20 Get cost 𝑢𝑡
𝑖 = 𝑢(𝑥 𝑡

𝑖 , 𝑐𝑡𝑖 , 𝑤 𝑡
𝑖) = (𝑐𝑡𝑖 (𝑤 𝑡

𝑖))†𝑤 𝑡
𝑖 + 𝜇†𝑤 𝑡

𝑖 + 𝜂𝑖 , where 𝜂𝑖 ∼ 𝑁 (0, 𝜎 2). In
particular, let 𝑢𝑡

𝑜𝑖 be the first term and let 𝑢𝑡
𝑏𝑖 be the sum of the second and

third term.
21 Update 𝐴𝑡+1

𝑖 = 𝐴𝑡
𝑖 + 𝑤 𝑡

𝑖 (𝑤 𝑡
𝑖)†

22 Update �̂�𝑡+1𝑖 = (𝐴𝑡+1
𝑖)−1∑𝑡

𝜏=1 𝑢𝑡
𝑏𝑖𝑤 𝑡

𝑖

117

We can view the third term as the per-round regret for the bandit part. By Theorem 6 in Dani
et al. [38], we have

𝑇

∑
𝑡=1

((𝜇 − 𝜈)†𝑤 𝑡
𝑖)

2 ≤ 8𝑚𝛽𝑇 log 𝑇

Using the Cauchy-Schwarz, we get
𝑇

∑
𝑡=1

(𝜇 − 𝜈)†𝑤 𝑡
𝑖 ≤

√
8𝑚𝑇𝛽𝑇 log 𝑇

Thus, the regret of Algorithm 9 is upper bounded by

𝔼
[

𝑇

∑
𝑡=1

𝑛

∑
𝑖=1

(𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡
𝑖
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖)] + 𝜇)†𝑤 𝑡

𝑖 − (𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡
𝑖∗
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖∗)] + 𝜇)†𝑤 𝑡

𝑖∗]

≤ 𝐾𝑛𝑇 + 𝔼
[

𝑇

∑
𝑡=𝑇+1

𝑛

∑
𝑖=1

(𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡
𝑖
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖)] − 𝑐𝑡𝑖 (𝑤

𝑡
𝑖))

†𝑤 𝑡
𝑖

+ (𝑐𝑡𝑖 (𝑤
𝑡
𝑖∗) − 𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡

𝑖∗
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖∗)])

†𝑤 𝑡
𝑖∗]

+ 𝑛
√
8𝑚𝑇𝛽𝑇 log 𝑇

= 𝑂
(
𝑛𝑇 + 𝑛

√
8𝑚𝑇𝛽𝑇 log 𝑇

+
𝑇

∑
𝑡=𝑇+1

𝑛

∑
𝑖=1

𝔼 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡
𝑖
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖)] − 𝑐𝑡𝑖 (𝑤

𝑡
𝑖)‖‖2])

The last step used Cauchy-Schwartz, symmetry, and the bounded action space assumption.

By combining Lemma 8.4.6 with previous results, we arrive at the regret of PROOF in this
more general setting.
Theorem 8.4.7. With finitely many actions and OLS as the ML algorithm, Algorithm 9 has regret

�̃� (𝑛(𝑑 |𝑊 |)1/3𝑚1/2𝑇 2/3).

Proof of Theorem 8.4.7. Again, we prove by bounding the linear regret prediction error. The
proof follows identically as Theorem 8.4.5. We get, ∀𝑡 > 𝑇 , ∀𝑤, ∀𝑖,

𝔼𝑋,𝜖 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡
𝑖
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖)] − 𝑐𝑡𝑖 (𝑤

𝑡
𝑖)‖‖2] = 𝑂

(

√
𝑑𝑚|𝑊 |
𝑛𝑇)

.

Using Lemma 8.4.6, and taking 𝑇 = 𝑇 2/3(𝑑 |𝑊 |)1/3, we get

𝑂
(
𝑛𝑇 + 𝑛

√
8𝑚𝑇𝛽𝑇 log 𝑇 +

𝑇

∑
𝑡=𝑇+1

𝑛

∑
𝑖=1

√
𝑑𝑚|𝑊 |
𝑛𝑇)

= 𝑂
(
𝑛𝑇 + 𝑛

√
8𝑚𝑇𝛽𝑇 log 𝑇 + 𝑇

√
𝑛𝑑𝑚|𝑊 |

𝑇)

= �̃� ((𝑑 |𝑊 |)1/3𝑚1/2𝑛𝑇 2/3)

118

We now move on to the scenario where the action space 𝑊 is continuous. In this case, we
assume the true label of feature 𝑥 under action 𝑤 is 𝑐 = 𝐹𝑥 + 𝐺𝑤 + 𝜖 where 𝜖 ∼ (0, 𝜎 2𝐼).
A small modification of Algorithm 9 will work in this scenario: instead of rotating over each
action in the uniform exploration phase, we simply pick action 𝑤 uniformly at random for each
individual. Then, the regret of the algorithm is as follows.
Theorem 8.4.8. Suppose the action space is continuous and the label can be modeled as a linear

function of the feature and action. Assuming OLS as the ML algorithm, Algorithm 9 has regret

�̃� (𝑚1/3𝑑2/3𝑛𝑇 2/3).

Proof of Theorem 8.4.8. Using Lemma 8.4.2, we know that at the beginning of the exploitation
phase, the prediction error is

𝔼𝑋,𝜖 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡
𝑖
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖)] − 𝑐𝑡𝑖 (𝑤

𝑡
𝑖)‖‖2] = 𝑂

(

√
(𝑚 + 𝑑)𝑑

𝑛𝑇)
, ∀𝑡 > 𝑇 , ∀𝑤, ∀𝑖.

Thus, using Lemma 8.4.6, we know the regret is �̃� (𝑚1/3𝑑2/3𝑛𝑇 2/3), when we take 𝑇 = 𝑚1/3𝑑2/3𝑇 2/3.

8.4.4 PROOF Is a Modular Algorithm

In practice, PROOF can be applied beyond the setting under which we proved the previous
results. Rather than a fixed algorithm, it is designed to be modular so that we can plug in
different learning algorithms and optimization problems. First, instead of a linear hypothesis
class with linear regression algorithms, PROOF can accommodate any predictive model such as
tree-based methods and deep neural networks. Second, The nominal optimization problem need
not be a linear optimization problem. The optimization problem may be continuous or discrete,
convex or non-convex, as we do not concern ourselves with computational complexity in this
chapter. In Section 8.5.2, we demonstrate that even when we insert complex algorithms into
the PROOF framework, thereby going beyond the setting where we established formal regret
guarantees, PROOF still works well.

8.5 Experiment Results

In this section, we evaluate PROOF on both simulated dataset and real dataset. The evaluation
metric is the average regret, which is the total regret 𝑅𝑇 as introduced in Section 8.3 divided by
number of time steps 𝑇 . We compare PROOF with a vanilla bandit baseline.

8.5.1 Numerical Simulations

We implement PROOF in the setting described in Section 8.4.2 and show its performance on a
simulated dataset.

119

(a) Small scale base case (b) Data per step increased from 20 to 40(c) Linear mapping norm multiplied by
10.

(d) Large scale base case. (e) Linear mapping norm divided by 10. (f) Data noise multiplied by 5.

Figure 8.2: Numerical simulation results of PROOF compared against vanilla linear bandit. All
results are averaged over 10 runs with shaded areas representing the standard deviation.

We start with a small-scale experiment. Recall that we train an ML predictor 𝑓 ∶ 𝑋 → 𝐶
where 𝑋 ⊆ ℝ𝑚 and 𝐶 ⊆ ℝ𝑑 . We take feature dimension 𝑚 = 20 and label dimension 𝑑 = 5.
At every round we get 𝑛 = 20 data points. Following the tradition in the bandit literature, we
assume the bandit reward is bounded in [−1, 1] and the feasible region 𝑊 is the unit 𝑙2-ball,
as it is the relative magnitude between the bandit and the optimization rewards that matters.
For the true linear map 𝐹 where 𝑐 = 𝐹𝑥 + 𝜖, we upper bound its 𝑙1 matrix norm at 10. We
sample the noise 𝜖 ∼ (0, 𝜎 2𝐼𝑑) from a normal distribution where 𝜎 2 = 0.1. We take the bandit
noise 𝜂 ∼ 𝑁 (0, 10−4). We use ordinary least squares regression on all the data points collected
so far for the learning part at each time step. Line 11 in Algorithm 8 has a non-convex bilinear
program and we solve it with the non-convex solver IPOPT. To compute the regret we also
need to find the best action given the true reward parameters. This is a convex program and
we solve it with Gurobi. Algorithm 8 has an explicit expression for the confidence radius 𝛽 𝑡 .
That is for establishing the regret bound. However, in experiments, the radius would be too
large (∼ 104) for the algorithm to select meaningful actions early on even when the algorithm’s
reward estimate �̂� is already quite accurate. We set 𝛽 𝑡 = 1 so that the algorithm can quickly
concentrate on the correct region of interest. Setting 𝛽 𝑡 = 10 leads to similar performance.

The expected cost for a fixed action 𝑤 is 𝔼𝑐,𝜂[(𝑐+𝜇)†𝑤+𝜂] = 𝔼[𝑥†𝐹†𝑤]+𝜇†𝑤 = 𝜇†𝑤 , because
when we generated 𝑥 , the distribution has zero mean. This fits in the setting of [38] and thus
this problem in theory might be solved simply as a linear bandit by feeding the total cost in
bandit data-driven optimization to their OFU algorithm. Since the regret bound of vanilla OFU

120

(a) Base case (b) Known cost 𝑝(⋅) multiplied by 4 (c) Initial dataset size decreased to 20

Figure 8.3: The experiment results on the real-world food rescue data of PROOF compared
against vanilla linear bandit. All results are averaged over 10 runs with shaded areas represent-
ing the standard deviation.

is the same as our PROOF in the order of 𝑇 , this brings back the question that we have been
repeating since the beginning of this chapter: if linear (contextual) bandit is a more general
framework whose existing algorithms already solve our problem, why should we care about
bandit data-driven optimization at all?

In Sections 8.1 through 8.3, we have answered this question with the nature of real-world
AI4SG projects. Here, we can answer this question using numerical experiments. We show the
average regret of PROOF as the orange curve in Figure 8.2, and that of OFU in red. We can
decompose the average regret of PROOF into the regret of the optimization component and the
regret of the bandit component. The former is simply the algorithm’s optimization (known)
cost minus the best intervention’s optimization cost. The latter is defined similarly. Both of
them need not be positive, but they sum up to the average regret of PROOF. In this way we
show how PROOF makes progress on both ends.

Figure 8.2a shows that PROOF quickly reduces the average regret in both optimization and
bandit components. On the other hand, the performance of vanilla OFU is much more un-
derwhelming. A typical bandit regret bound ignores many constant factors. We think this
performance difference is primarily due to the large variance in the implicit context 𝑥 and 𝑐,
which an offline predictive model captures much better. In fact, PROOF also has much smaller
variance in its performance than vanilla OFU consistently.

We now tweak the problem parameters a bit and see how the performance changes. If we
increase the number of data points per iteration from 𝑛 = 20 to 40, Figure 8.2b shows that
the regret of the optimization component becomes very small even at the beginning, because
we have more data to learn from. If we increase the upper bound of the norm of the linear
mapping matrix 𝐹 from 10 to 100, Figure 8.2c shows that the optimization regret dominates the
total regret. This is also reasonable as the optimization cost is now much larger than the bandit
cost. Here, vanilla OFU suffers even more, because now its cost signal, the total cost for PROOF,
has even larger magnitude and variance.

In the second set of experiments, we scale up the experiments and show that PROOF still
performs better than OFU even when the problem parameters are not as friendly. Suppose
we receive 𝑛 = 500 data points at every time step, and each data point has 𝑚 = 50 features.
Keeping all other parameters unchanged, Fig. 8.2d shows that PROOF still outperforms OFU by

121

a lot. Here, we seem to have enough data points for the prediction task, and thus the bandit
regret dominates the total regret. In Fig. 8.2e, we change the norm of the linear mapping 𝐹
from 10 to 1, making the optimization cost less important than the bandit cost. Indeed, this
reduces the variance of OFU and thus it is doing much better than in previous experiments.
However, our PROOF still outperforms OFU. Finally, in Fig. 8.2f, we increase the noise in the
label distribution from 𝜖 ∼ (0, 0.1𝐼𝑑) to 𝜖 ∼ (0, 0.5𝐼𝑑). This poses more challenge to PROOF.
As the data become more noisy, the optimization regret does not stay close to zero as in the
previous two experiments. Nevertheless, PROOF still keeps its regret below OFU.

8.5.2 Food Rescue Volunteer Recommendation

Bandit data-driven optimization is motivated by the practical challenges in AI4SG projects. Af-
ter abstracting these challenges to a theoretical model, we now return to the real world. We
apply PROOF to one AI4SG project: food rescue volunteer recommendation. We have intro-
duced the background of food rescue operations in Section 8.3.

For this experiment, we assume 100 volunteers. 2 At each time step, we get a new rescue and
decide a subset of 10 volunteers to whom we send push notifications. We represent this action
with a binary vector 𝑤 ∈ {0, 1}100 such that 𝑤𝑖 = 1 if volunteer 𝑖 is notified and 0 otherwise.
Thus, the feasible action space 𝑊 is {0, 1}100 with the constraint of ∑100

𝑖=1 𝑤𝑖 ≤ 10.
The action 𝑤 we take at each time step is backed by a content-based ML recommender

system. The ML model receives a feature vector 𝑥 which describes a particular rescue-volunteer
pair, and outputs a label prediction 𝑐 as the likelihood of this volunteer claiming this rescue.3
This ML component has been studied in Chapter 5. The actual label 𝑐 is a one-hot vector in
{0, 1}100 indicating which volunteer actually claimed the rescue.

The known cost 𝑝(𝑐, 𝑤) = 𝑐†𝑤 is 1 if we notify a volunteer who eventually claimed a res-
cue and 0 otherwise. To minimize it, we could negate the label 𝑐 (and its prediction 𝑐). The
bandit cost 𝑞(⋅) is the same as before. We solve the optimization at each time step of PROOF
with Gurobi after applying a standard linearization trick [88]. We also gradually decrease the
confidence radius 𝛽 over time.

Unlike the case in Section 8.5.1, OFU algorithm does not work here in principle. This is
because, working with real-world data, we do not know the data distribution and it is almost
certainly not zero-mean. In fact, this experiment has also gone beyond the setting for which
we proved formal regret bound for PROOF, yet we would like to see how these two algorithms
perform in such a real-world use case.

We assume an initial dataset of 300 rescues and run the algorithms for 50 time steps, each
time step corresponding to one new rescue. As shown in Figure 8.3a, PROOF outperforms

2The reader might notice that in Chapters 4 and 5 we had more volunteers in the dataset. However, in this
chapter, the focus is on PROOF algorithm rather than food rescue recommendation itself. Thus, for each rescue,
we take the volunteer who actually claimed it plus 99 other volunteers in this experiment.

3In Sections 8.3 and 8.4, the label and action are of the same dimension but here the output label is 1-dimensional
while our action space is 100-dimensional. This is easy to resolve. Suppose each rescue-volunteer pair has 𝑚′

features. While in practice we have an ML model 𝑓 ′ ∶ ℝ𝑚′ → ℝ and pass 100 feature vectors to it serially (fixed
rescue, iterating over volunteers), one could think of a product model 𝑓 = ∏100

𝑖=1 𝑓 ′ which takes the concatenation
of 100 feature vectors and outputs a 100-dimensional vector.

122

vanilla OFU by roughly 15%. The performance gain by PROOF can be contributed to its effec-
tive use of the available data, as the progress on bandit made by PROOF and vanilla OFU are
quite similar. In Figure 8.3b, we scale up the known part of the cost by a factor of 4. Because
the optimization is more emphasized, it is unsurprising to see that most of PROOF’s progress
depends on the recommender system itself. In this case, it has a larger performance margin over
vanilla OFU. Finally, in Figure 8.3c we decrease the size of the initial dataset from 300 rescues to
20 rescues. We observe that PROOF still has an edge over vanilla OFU. The margin is minimal
at the initial time steps, because we have much less initial information here. Yet still, as time
goes by PROOF picks up more information in the feature/label dataset to expand its margin. In
actual AI4SG projects, the amount of initial data is typically more than this, more resembling
Figure 8.3a, but Figure 8.3c assures us that PROOF still works in this more extreme case.

8.6 Conclusion

Non-profit and public sectors have huge potential to benefit from the advancing machine learn-
ing research. However, plenty of experience shows that the machine learning model itself is
almost always not enough to address the real-world societal challenges. Motivated by four prac-
tical pain points in such applications, we proposed bandit data-driven optimization, designed
the PROOF algorithm, and showed that it has no-regret. Finally, we show its better performance
over bandit algorithm in simulations and the food rescue context. We view bandit data-driven
optimization as our first attempt to bridge the last-mile gap between static ML models and their
actual deployment in the real-world non-profit and public context. Future work could explore
its applications to other problem domains, as well as technical challenges such as confounded
costs and high dimensional covariates.

Ethical implications It is always a tricky balance between careful scoping prior to deploy-
ment and taking it to the field to uncover hidden objectives and rewards. At either extreme of
the spectrum the project would be unlikely to succeed. We proposed bandit data-driven opti-
mization as an initial effort assuming a well-intentioned user who tries to strike this balance.
The framework should not be understood by either end of the spectrum as advocating for the
other end.

123

124

Chapter 9

Conclusion

In this thesis, we studied how to use learning and planning to address concrete real-world chal-
lenges in three application domains: cybersecurity, food waste and security, and environmental
sustainability.

Our work on learning and planning in cybersecurity is rooted in game-theoretic deception
approaches to counter potentially unknown attackers. The main contribution is a learning and
planning pipeline with end-to-end optimality guarantee, where we first learn the preferences
of an unknown attacker and then compute the optimal configuration to counter such attacker.
While this model is relatively general, we also grounded the concept of deception in a specific
type of cyber attacks called the watering-hole attacks. There, we implement deception in the
network packets sent by the user’s browser to mislead the attacker. Hence, besides the problem
formulation, our contribution is an algorithm that can scalably compute the optimal deception
strategy. We have also implemented this algorithm as part of a browser extension, which is
publicly available online.

Our learning and planning work on food waste and security stems from a 4-year collabora-
tion with a nonprofit organization that spans problem scoping, algorithmic research, random-
ized controlled trial, deployment, and lessons learned. As the first step, we adopted a predictive
analysis and a data-driven optimization algorithm to compute the optimal generic intervention
and notification scheme applicable to all rescues. This work was easy to implement and built the
trust for further collaboration. Subsequently, our main contribution is a rescue-specific recom-
mender system to send push notifications to the most likely volunteers for each given rescue.
We leverage a mathematical programming based approach to diversify our recommendations,
and propose an online algorithm to dynamically select the volunteers to notify without the
knowledge of future rescues. Compared to our learning and planning work on cybersecurity,
here we extend the planning to a sequential planning setting. The highlight of this work is the
randomized controlled trial that we designed and ran for the recommender system. The trial
showed that the algorithm significantly improved the claim rate and hit rate. The deployment
of our algorithm inside a real-world production system is, in itself, an achievement.

While our work is grounded in the food rescue context, the techniques have general impli-
cations. Recommender systems are widely used in numerous commercial applications. While
diversifying recommendations has been studied in the previous literature, it was only studied in
a static setting. However, in applications such as food delivery and ridesharing, users (drivers)

125

and items (passengers, delivery routes) often arrive in an online fashion, rendering static diver-
sification approach inapplicable. Our algorithm in Chapter 5 offers a method for diversification
in such online problems.

The work on environmental sustainability takes on a different technical angle, but its suc-
cess is nevertheless grounded from the lessons learned from those previous projects. Also, we
paid attention to two common issues in applied learning and planning pipeline: label scarcity
and label noise. Working with multiple WWF teams in many corners of the world, we built
NewsPanda, a toolkit which automatically detects and analyzes online articles related to en-
vironmental conservation and infrastructure construction. We fine-tune a BERT-based model
using active learning methods and noise correction algorithms to identify articles that are rel-
evant to conservation and infrastructure construction. For the identified articles, we perform
further analysis, extracting keywords and finding potentially related sources. NewsPanda

has been successfully deployed by the World Wide Fund for Nature teams in the UK, India,
and Nepal since February 2022. We have now scaled it up to cover 60,000 conservation sites
globally.

As exciting as these applications are, they only make up half of the picture. Another half of
our effort is on technical AI research that goes beyond specific application domains, that takes
a step back from immediate applications and then attempts to propose methods to address the
pain points shared by all these applications.

Our work on bandit data-driven optimization is one such example. All of our previous works
are about one-shot learning and planning. However, in practice we do it in an iterative fashion.
Bandit data-driven optimization is the first iterative prediction-prescription framework to ad-
dress the four pain points in ML for nonprofit applications: small data, data collected only under
the default intervention, unmodeled policy objectives, and unforeseen consequences of the in-
tervention. It combines the advantages of online bandit learning and offline predictive analytics
in an integrated framework. We propose a novel algorithm for this framework and formally
prove that it has no-regret. We demonstrate its great performance on both simulated data and
real-world food rescue volunteer recommendation problem studied in previous chapters.

9.1 Future Directions

We proposed our game-theoretical model on cyber deception as a general framework in order
to handle various security scenarios. However, there are a few limitations which we believe
deserves future work. First, we assumed a single attacker, or a homogeneous attacker popu-
lation. Future work could investigate the case when we face heterogeneous attackers, how to
learn their diverse preferences and then compute optimal strategies against them. Second, our
framework is inherently single-shot. Advanced attackers could update their belief about the
system through repeated interactions. And hence, future work could consider the deception
in a sequential setting. Third, incidental to the sequential setting, attacker’s preferences could
shift over time. It would be an interesting direction to study how to detect attacker’s changing
preferences and plan optimally against them.

In our work on volunteer engagement in crowdsourcing food rescue, we took a data-centric
approach. That is, we used data to guide us to which volunteers we should send notifications.

126

This is an indirect approach as it made multiple implicit assumptions about volunteer behaviors.
This approach was partly justified by our RCT results, where our algorithm improved the claim
rate by a significant margin. However, a lot more research is needed to understand volunteers’
motivation in participating in such platform, and to understand how push notifications are
translated into volunteers’ behavioral change. Only by understanding these questions can we
design better algorithms for volunteer engagement in the future.

As for our work on NewsPanda, a key challenge when we scale it up to incorporate more
conservation sites worldwide is the need to support more languages and more local media
sources. This is especially important for the global south, as many high-impact local develop-
ments might never reach international news outlets, and commercial translation tools do not
yet have satisfactory performance on these low-resource languages. In order for this direction
to be practical, we need to train the model in few-shot, or even zero-shot setting, because ob-
taining labels from each WWF country team is very expensive, and hardly scalable. And hence,
this is one of the main future directions coming out of this work.

The bandit data-driven optimization framework has many future directions from both appli-
cation and technical perspectives. On the application side, one immediate next step is to apply
it to the feature deception problem introduced in Chapter 2. In this way, we will tie together the
materials in Chapter 2, 5, and 8 in a unified framework. And more generally, this application
will show that bandit data-driven optimization is applicable to other security game-like set-
tings as being used in anti-poaching and public safety. On the technical side, there are several
challenges. One example is about confounded cost, where instead of receiving the optimization
cost 𝑢𝑜 and the bandit cost 𝑢𝑏 separately, only a total cost is provided. High dimensional co-
variates were also a challenge as we observed in the practical performance of PROOF. Finally,
correlated bandits imposed by constraints covering all individuals are another challenge that
has very intuitive real-world motivation.

9.2 Discussion

In the end, let us take a step back to ponder what AI4SG really means. AI4SG is an ambigu-
ous concept, given that neither AI nor social good has a widely accepted definition. Some of
the recent efforts try to define AI4SG based on the realized or potential social impact and non-
profit nature. However, there is no consensus on such a definition. One can argue that “social
impact” is both too exclusive and inclusive: lots of AI4SG research has not (yet) achieved any
tangible social impact, and AI research that does have some social impact may not be doing

good. The “non-profit nature” is similarly debatable since for-profit industry companies ar-
guably contribute a lot to AI4SG, and the majority of research on AI and transportation, which
most people would count in AI4SG, is not always intended for non-profit applications. Cur-
rently, the most popular set of efforts is to describe AI4SG by listing the application domains of
AI technologies, or even simpler, referring to “societal challenges, which have not yet received
significant attention by the AI community”.1 As Berendt points out, social good (common good)
is referred to as a goal, but not defined [18].

1https://aaai.org/Symposia/Spring/sss17symposia.php

127

https://aaai.org/Symposia/Spring/sss17symposia.php

We did not attempt to propose any new definition of AI4SG. For most part of this thesis,
we implicitly adopted the widely used approach by categorizing by application domains and
technical areas of AI. In fact, we believe that the lack of precise definition might be more of a
feature than a bug. Just like the lack of common definition for AI helped the field to grow and
innovate beyond its boundary, we think an inclusive boundary of AI4SG could encourage more
researchers to contribute to this area.

Of course, this is not to pretend that the “bug” does not exist. There are undesirable con-
sequences of this approach. It inevitably leads to an awkward situation where AI4SG research
has become an umbrella term that is only a loose connection of disjoint research communities.
Yet, in fact, these seemingly disjoint communities have a lot in common beyond the general
desire to “do good”. The lack of systematic research on working on AI4SG has already led to
extreme inefficiency in the numerous AI4SG projects. AI4SG, as a research field about 15 years
of age, desperately calls for systematic research of its own to guide the community. To do this,
we need to go beyond any particular application domain or any particular technical area, but
focus on the entire workflow of working on AI in the social good setting, from problem scoping
to deployment. This would give us a chance to uncover the challenges in different stages and
aspects of AI4SG projects.

The work presented in this thesis represents our view of AI4SG. However, as much as a thesis
is often construed as a final deliverable, it is also a log of a journey. Throughout this journey,
we repeatedly questioned ourselves what is AI4SG research, what kind of AI4SG research is
valuable, what is the right way to do AI4SG research, and what are the limits of AI4SG research.
These are not easy questions. Not only are there no simple answers, but also it could be difficult
to face the answers because sometimes the answer means we have to dismiss our own past
work, and also it could be convenient to ignore the answers because following the answers
could mean sacrificing many short-term benefits. Nevertheless, this thesis is a log of us trying
to figure out these questions, and executing our answers through the work presented. If the
reader, while reading this thesis, could feel the struggle, the debate, and the choices we made,
please do not question your feelings, they are real.

128

Appendix

129

Appendix A

Appendix to Chapter 2

A.1 Deferred Algorithms

We show the MILP formulation for the mathematical program 1. We use 𝑀𝑐 ⊆ 𝑀 to denote
the set of continuous features, and 𝑀𝑑 = 𝑀 −𝑀𝑐 denotes the set of discrete features. For discrete
feature 𝑘 ∈ 𝑀𝑑 , we assume that 𝜂𝑖𝑘 and budget 𝐵 have been processed such that Constraint (2.3)
has been modified to

∑
𝑖∈𝑁 (

∑
𝑘∈𝑀𝑐

𝜂𝑖𝑘 |𝑥𝑖𝑘 − �̂�𝑖𝑘 | + ∑
𝑘∈𝑀𝑑

𝜂𝑖𝑘𝑥𝑖𝑘)
≤ 𝐵.

131

This transformation based on �̂�𝑖𝑘 ∈ {0, 1} simplifies our presentation below.

max
𝑏,𝑑,𝑔,ℎ,𝑞,𝑠,𝑡,𝑣,𝑦

∑
𝑖∈𝑁

𝑡𝑖 (A.1)

𝑠.𝑡. 𝑡𝑖 = 𝑣𝑒−2𝑊 +∑
𝑙
𝛾𝑙(𝑣𝜖 − 𝑠𝑖𝑙) (A.2)

∑
𝑘∈𝑀𝑐

𝑤𝑘𝑞𝑖𝑘 + ∑
𝑘∈𝑀𝑑

𝑤𝑘𝑏𝑖𝑘 −𝑊𝑣 = −∑
𝑙
𝑠𝑖𝑙 (A.3)

ℎ𝑖𝑘 ≥ 𝑞𝑖𝑘 − �̂�𝑖𝑘𝑣, ℎ𝑖𝑘 ≥ �̂�𝑖𝑘𝑣 − 𝑞𝑖𝑘 ∀𝑘 ∈ 𝑀𝑐 (A.4)

∑
𝑖∈𝑁 (

∑
𝑘∈𝑀𝑑

𝜂𝑖𝑘𝑏𝑖𝑘 + ∑
𝑘∈𝑀𝑐

𝜂𝑖𝑘ℎ𝑖𝑘)
≤ 𝐵𝑣 (A.5)

𝜖𝑔𝑖𝑙 ≤ 𝑠𝑖𝑙 , 𝑠𝑖(𝑙+1) ≤ 𝜖𝑔𝑖𝑙 ∀𝑙 (A.6)
𝑠𝑖𝑙 ≤ 𝑣𝜖 ∀𝑙 (A.7)
𝑔𝑖𝑙 ≤ 𝑣, 𝑔𝑖𝑙 ≤ 𝑍𝑦𝑖𝑙 , 𝑔𝑖𝑙 ≥ 𝑣 − 𝑍 (1 − 𝑦𝑖𝑙) ∀𝑙 (A.8)
𝑏𝑖𝑘 ≤ 𝑣, 𝑏𝑖𝑘 ≤ 𝑍𝑑𝑖𝑘 , 𝑏𝑖𝑙 ≥ 𝑣 − 𝑍 (1 − 𝑑𝑖𝑘) ∀𝑘 ∈ 𝑀𝑑 (A.9)
𝑞𝑖𝑘 ∈ [(�̂�𝑖𝑘 − 𝜏𝑖𝑘)𝑣, (�̂�𝑖𝑘 + 𝜏𝑖𝑘)𝑣] ∩ [0, 1] ∀𝑘 ∈ 𝑀𝑐 (A.10)
∑
𝑖∈𝑁

𝑢𝑖𝑡𝑖 = 1 (A.11)

Categorical constraints (A.12)
𝑡𝑖 , 𝑣, 𝑠𝑖𝑙 , 𝑞𝑖𝑘 , ℎ𝑖𝑘 , 𝑔𝑖𝑙 ≥ 0, 𝑦𝑖𝑙 ∈ {0, 1} ∀𝑘 ∈ 𝑀𝑐 , ∀𝑙 (A.13)
𝑏𝑖𝑘 ≥ 0, 𝑑𝑖𝑘 ∈ {0, 1} ∀𝑘 ∈ 𝑀𝑑 (A.14)

We establish the variables in the MILP above with the FDP variables as below.

𝑡𝑖 =
𝑓𝑖

∑𝑖∈𝑁 𝑓𝑖𝑢𝑖
, 𝑣 =

1
∑𝑖∈𝑁 𝑓𝑖𝑢𝑖

(A.15)

ℎ𝑖𝑘 =
|𝑥𝑖𝑘 − �̂�𝑖𝑘 |
∑𝑖∈𝑁 𝑓𝑖𝑢𝑖

, 𝑞𝑖𝑘 =
𝑥𝑖𝑘

∑𝑖∈𝑁 𝑓𝑖𝑢𝑖
, ∀𝑘 ∈ 𝑀𝑐 (A.16)

𝑑𝑖𝑘 = 𝑥𝑖𝑘 , 𝑏𝑖𝑘 =
𝑥𝑖𝑘

∑𝑖∈𝑁 𝑓𝑖𝑢𝑖
, ∀𝑘 ∈ 𝑀𝑑 (A.17)

𝑠𝑖𝑙 =
𝑧𝑖𝑙

∑𝑖∈𝑁 𝑓𝑖𝑢𝑖
, 𝑔𝑖𝑙 =

𝑦𝑖𝑙
∑𝑖∈𝑁 𝑓𝑖𝑢𝑖

, ∀𝑙 (A.18)

All equations above involving index 𝑖 without summation should be interpreted as applying to
all 𝑖 ∈ 𝑁 .

A.2 Exact Algorithms for Special Cases

A.2.1 Deception cost on discrete features

In our first attempt at exact algorithms, we assume the cost of deception is only associated with
discrete features, i.e. 𝜂𝑖𝑘 = 0 if 𝑘 is a continuous feature.

132

Algorithm 10: Greedy
1 Use gradient-based method to find 𝑥𝑚𝑎𝑥 ≈ argmax𝑥 𝑓 (𝑥) and 𝑥𝑚𝑖𝑛 ≈ argmin𝑥 𝑓 (𝑥).
2 Sort the targets such that 𝑢1 ≤ 𝑢2 ≤ ⋯ ≤ 𝑢𝑛.
3 Initialize 𝑖 = 1, 𝑗 = 𝑛.
4 while 𝑖 < 𝑗 and budget > 0 do
5 Let 𝑥𝑖 ← 𝑥𝑚𝑎𝑥 if
6 if Cost(𝑥𝑖 ← 𝑥𝑚𝑎𝑥) ≤ remaining budget then

7 𝑥𝑖 ← 𝑥𝑚𝑎𝑥 , decrease the budget, 𝑖 = 𝑖 + 1.
8 if Cost(𝑥𝑗 ← 𝑥𝑚𝑖𝑛) ≤ remaining budget then

9 𝑥𝑗 ← 𝑥𝑚𝑖𝑛, decrease the budget, 𝑗 = 𝑗 − 1.

10 return feature configuration 𝑥

Recall that we use𝑀𝑐 ⊆ 𝑀 to denote the set of continuous features, and𝑀𝑑 = 𝑀−𝑀𝑐 denotes
the set of discrete features. Suppose 𝑥𝑑

𝑖 = (𝑥𝑖𝑘)𝑘∈𝑀𝑑 and 𝑥 𝑐
𝑖 = (𝑥𝑖𝑘)𝑘∈𝑀𝑐 , and let 𝑥𝑖 = (𝑥𝑑

𝑖 , 𝑥 𝑐
𝑖) be

the observable features decomposed into discrete features and continuous features. Our score
function 𝑓 (𝑥𝑖) = exp{∑𝑘∈𝑀 𝑤𝑘𝑥𝑖𝑘} can be factorized into 𝑓 (𝑥𝑖) = 𝑓𝑑 (𝑥𝑑

𝑖)𝑓𝑐(𝑥 𝑐
𝑖), where 𝑓𝑑 , 𝑓𝑐 are

scores considering discrete and continuous features only, respectively.
Let 𝐴𝑑

𝑖 = {𝑥𝑑𝑗
𝑖 ∶ 𝑗 = 1,… , 𝑘} be the finite set of possible discrete observable feature combina-

tions at target 𝑖. Each 𝑥𝑑𝑗
𝑖 ∈ {0, 1}𝑚𝑑 is a 𝑚𝑑-dimensional vector, where 𝑚𝑑 = |𝑀𝑑 | is the number

of discrete features in FDP. Based on the hidden discrete features �̂�𝑑
𝑖 and the feasible regions

𝐴(�̂�𝑖𝑘), we can compute both 𝐴𝑑
𝑖 and all possible scores 𝑓 𝑑𝑖𝑗 = 𝑓𝑑 (𝑥

𝑑𝑗
𝑖). Similarly, we can compute

the interval [𝛼𝑖 , 𝛽𝑖] in which the continuous score 𝑓 𝑐𝑖 could possibly lie, since each continuous
feature 𝑥𝑖𝑘 can take value in an interval 𝐴(�̂�𝑖𝑘).

Subsequently, we formulate the following mathematical program. The binary variable 𝑦𝑖𝑗 =
1 if target 𝑖’s discrete observable features are the 𝑗-th combination in 𝐴𝑑

𝑖 , that is, 𝑥𝑑
𝑖 = 𝑥𝑑𝑗

𝑖 ∈ 𝐴𝑑
𝑖 .

The cost 𝑐𝑖𝑗 for setting the discrete observable features to 𝑥𝑑𝑗
𝑖 could be computed accordingly.

min
𝑦,𝑓 𝑐

∑𝑖∈𝑁 ∑𝑘
𝑗=1 𝑢𝑖𝑓 𝑑𝑖𝑗 𝑦𝑖𝑗𝑓 𝑐𝑖

∑𝑖∈𝑁 ∑𝑘
𝑗=1 𝑓 𝑑𝑖𝑗 𝑦𝑖𝑗𝑓 𝑐𝑖

𝑠.𝑡.
𝑘

∑
𝑗=1

𝑦𝑖𝑗 = 1 ∀𝑖 ∈ 𝑁

∑
𝑖∈𝑁

𝑘

∑
𝑗=1

𝑐𝑖𝑗𝑦𝑖𝑗 ≤ 𝐵

𝑓 𝑐𝑖 ∈ [𝛼𝑖 , 𝛽𝑖] ∀𝑖 ∈ 𝑁
𝑦𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝑁 , 𝑗 ∈ [𝑘]

We may apply the same linearization method as before to obtain a MILP.
Solving this MILP yields the optimal discrete feature configuration, as well as the optimal

scores 𝑓 𝑐𝑖 ’s of the continuous features. One may then solve the system of linear equations ln 𝑓 𝑐𝑖 =

133

∑𝑘∈𝑀 𝑤𝑘𝑥𝑖𝑘 for 𝑖 ∈ 𝑁 for the optimal continuous features. Since the feasible regions of the
continuous features are connected, there exists at least one solution to the system of equations.
We remark that when all features are continuous, the above approach finds the optimal feature
configuration in polynomial time.

A.2.2 No budget and feasibility constraints

We present an efficient algorithm when the defender has no budget and feasibility constraints.
[135] proposed a greedy algorithm in a similar setting (with feasibility constraints), whose com-
plexity is polynomial in the size of “type space”, which is still exponential in the representation
of FDP, not to mention that with a single continuous feature the size of our “type space” be-
comes infinite. Furthermore, the probabilistic behavior of the attacker in FDP makes their key
strategy inapplicable.

Since the defender aims at minimizing her expected loss, one intuitive idea is to give the
lowest score to the target with the highest loss 𝑢𝑖 . In fact, we show below that the defender
should configure the features at each target in only two possible ways: the ones which maxi-
mizes or minimizes the score. First, we assume that the defender’s losses have been sorted in
ascending order 𝑢1 ≤ 𝑢2 ≤ ⋯ ≤ 𝑢𝑛.
Lemma A.2.1. Let 𝑥 = (𝑥1,… , 𝑥𝑛) be an optimal observable feature configuration. There exists a

permutation 𝜎 on𝑁 where 𝑥𝜎 = (𝑥𝜎 (1),… , 𝑥𝜎 (𝑛)) is also an optimal observable feature configuration,

and

𝑓 (𝑥𝜎 (1)) ≥ 𝑓 (𝑥𝜎 (2)) ≥ ⋯ ≥ 𝑓 (𝑥𝜎 (𝑛)).

In particular, if 𝑢1 < 𝑢2 < ⋯ < 𝑢𝑛, 𝜎 can be the identity permutation.

Proof. We prove by contradiction. Suppose 𝑖 < 𝑗 and 𝑓 (𝑥𝑖) < 𝑓 (𝑥𝑗). We have

(𝑓 (𝑥𝑗)𝑢𝑖 + 𝑓 (𝑥𝑖)𝑢𝑗) − (𝑓 (𝑥𝑖)𝑢𝑖 + 𝑓 (𝑥𝑗)𝑢𝑗)
= (𝑓 (𝑥𝑗) − 𝑓 (𝑥𝑖))(𝑢𝑖 − 𝑢𝑗) ≤ 0

and the inequality is strict if 𝑢𝑖 < 𝑢𝑗 . Thus, when 𝑢𝑖 < 𝑢𝑗 , if we swap the features on target 𝑖 and
𝑗, we would strictly improve the solution, which contradicts 𝑥 being optimal. When 𝑢𝑖 = 𝑢𝑗 ,
we could swap the observed features on node 𝑖 and 𝑗, and strictly decrease the number of score
inversions.

Lemma A.2.2. There exists an optimal observable feature configuration 𝑥 = (𝑥1,… , 𝑥𝑛) such that,
for some 𝑗 ∈ 𝑁 − {𝑛}, if 𝑖 ≤ 𝑗, 𝑓 (𝑥𝑖) = max𝑥′𝑖 𝑓 (𝑥

′
𝑖); otherwise, 𝑓 (𝑥𝑖) = min𝑥′𝑖 𝑓 (𝑥

′
𝑖).

Proof. Let 𝑥 be an optimal observable feature configuration. Fix a target 𝑖 ∈ 𝑁 . Consider an
alternative configuration 𝑥𝑖 for target 𝑖, while keeping features of other targets unchanged. We
have

𝑓 (𝑥𝑖)𝑢𝑖 +∑𝑗≠𝑖 𝑓 (𝑥𝑗)𝑢𝑗
𝑓 (𝑥𝑖) +∑𝑗≠𝑖 𝑓 (𝑥𝑗)

−
𝑓 (𝑥𝑖)𝑢𝑖 +∑𝑗≠𝑖 𝑓 (𝑥𝑗)𝑢𝑗
𝑓 (𝑥𝑖) +∑𝑗≠𝑖 𝑓 (𝑥𝑗)

∝
(
(𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖))(

∑
𝑗≠𝑖

𝑓 (𝑥𝑗)(𝑢𝑖 − 𝑢𝑗)))

134

Depending on its sign, we could improve the solution 𝑥 by making 𝑓 (𝑥𝑖) greater or smaller
than 𝑓 (𝑥𝑖), and obviously we should take it to extreme by setting 𝑓 (𝑥𝑖) = max𝑥′𝑖 𝑓 (𝑥

′
𝑖) or 𝑓 (𝑥𝑖) =

min𝑥′𝑖 𝑓 (𝑥
′
𝑖). Since we assumed 𝑥 is optimal, then we know 𝑥 = (𝑥𝑖 , 𝑥−𝑖) is also optimal, with

𝑓 (�̂�𝑖) at an extreme value. By Lemma A.2.1, we could permute the features in 𝑥 so that the
scores are in decreasing order. After applying the above argument repeatedly, the score of each
target achieves either the maximum or minimum score possible. Therefore, there exists some
𝑗 ∈ 𝑁 − {𝑛}, such that

max
𝑥′𝑖

𝑓 (𝑥 ′
𝑖) = 𝑓 (𝑥1) = ⋯ = 𝑓 (𝑥𝑗)

≥ 𝑓 (𝑥𝑗+1) = ⋯ = 𝑓 (𝑥𝑛) = min
𝑥′𝑖

𝑓 (𝑥 ′
𝑖)

Theorem A.2.3. The optimal feature configuration can be found in 𝑂(𝑛 log 𝑛 +𝑚) time.

Proof. We can do an exhaustive search on the “cut-off” node 𝑗 in Lemma A.2.2. With book-
keeping, the search can be done in 𝑂(𝑛) time. Since 𝑓 is monotone in each observable feature,
the maximum and minimum score can be found in 𝑂(𝑚) time. Sorting the targets’ losses takes
𝑂(𝑛 log 𝑛) time.

A.3 Additional Experiments

A.3.1 Experiments in the main text

Learning In addition to the mean total variation distance reported in the main text, we
present another metric to measure the performance of learning. We consider |𝜃 − 𝜃 |, the 𝐿1
error in the score function parameter 𝜃 , which directly relates to the sample complexity bound
in Theorem 2.4.1. Since the dimension of 𝜃 depends on the number of features 𝑘 and other
factors, we consider the 𝐿1 error divided by the number of parameters and report this metric in
Fig. A.1a and Fig. A.1b.

In Fig A.1a, the 𝐿1 error of CF decreases as the sample size increases. The complexity bounds
in Theorem 2.4.1 are marked in Fig A.1a. We need much fewer samples in practice to achieve a
small learning error. For NN-3 score function, the learning error is larger as shown in Fig. A.1b,
even though Fig. 2.1b in the main text shows the total variation distance is small. This suggests
that the loss surface for the NN-3 score function is more complex. The solution gap in Fig. 2.1h
is much larger than that in Fig. 2.1f, which can partly be explained by the fact that at the same
level of TV error, the learned classical score function score function is closer to the ground truth
than the NN-3 score function, and thus performs better in the learning and planning pipeline.

Planning In the main text, we showed how the number of targets effect the running time and
solution gap. In In Fig. A.1c- A.1e, we show how the number of features affect these two metrics.
For the classical score function, Fig. A.1c shows that the running time for MILP increases with
the number of features, and MILPBS is much more scalable. Fig. A.1d and A.1e show the running

135

500 1000 1500 2000
Size of Training Dataset

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Pa

ra
m

et
er

 E
rr

or Samples required: O(125
2 log60)

Samples required: O(125
2 log120)

Samples required: O(245
2 log60)

n = 5, m = 12
n = 10, m = 12
n = 5, m = 24

(a) Learning, classical score
function

500 1000 1500 2000
Size of Training Dataset

1.25

1.30

1.35

1.40

1.45

1.50

1.55

Pa
ra

m
et

er
 E

rr
or

n = 5, m = 12
n = 10, m = 12
n = 5, m = 24

(b) Learning, NN-3 score
function

6 12 18 24 30
Number of Features

10 1

100

101

102

Ru
nn

in
g

Ti
m

e
(s

)

MILP
MILPBS

(c) Planning with classical
score function, 𝑛 = 10

6 12 18 24 30
Number of Features

100

101

Ru
nn

in
g

Ti
m

e
(s

)

GD
Ipopt
Greedy

(d) Planning with NN-3
score function, 𝑛 = 10

6 12 18 24 30
Number of Features

0.0

0.2

0.4

0.6

0.8

1.0

So
lu

ti
on

 G
ap

GD
Ipopt
Greedy

(e) Planning with NN-3
score function, 𝑛 = 10

2 4 6 8 10 20 50
Number of Targets

0.0

0.2

0.4

0.6

0.8

1.0

So
lu

ti
on

 G
ap

GD
Ipopt
Greedy

(f) Learning + Planning,
NN-3 score function,𝑚 = 12

2 4 6 8 10 20 50 100 150 200
Number of Targets

10 2

10 1

100

101

102

Ru
nn

in
g

Ti
m

e
(s

)

MILP
MILPBS
Ipopt
GD

(g) Continuous features

2 4 6 8 10 20 50 100 150 200
Number of Targets

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

So
lu

ti
on

 G
ap

MILP
MILPBS
Ipopt
GD

(h) Continuous features

2 4 6 8 10
Number of Targets

10 1

100

101

102

Ru
nn

in
g

Ti
m

e
(s

)

MILP
MILPBS
MILP-Exact

(i) Cost on discrete fea-
tures, classical score func-
tion, 𝑚 = 12

2 4 6 8 10 20 50 100 150 200
Number of Targets

10 4

10 3

10 2

10 1

100

101

102

Ru
nn

in
g

Ti
m

e
(s

)

MILP
MILPBS
Greedy Exact

(j) No budget and feasi-
bility constraints, classical
score function, 𝑚 = 12

Figure A.1: Additional experimental results

time and solution gap fixing 𝑛 = 10. The running time of GD and Greedy does not change much
across different problem sizes, yet Ipopt runs slower than the former two on most problem
instances. GD also has smaller solution gap than Ipopt and Greedy on most instances.

Combining learning andplanning Given enough data, Fig. A.1f shows that GD can achieve
a solution gap below 0.2 with as many as 50 targets.

A.3.2 Experiments for the special cases

We present the performance of our algorithms on some special cases of FDP, as studied in
Appendix A.2.

When all features are continuous, in addition to our MILP, we may use non-convex solver
or GD as a heuristic to find optimal feature configurations. Fig. A.1g shows that these two
heuristics scale better than the approximation algorithms. In Fig. 2.1e and Fig. A.1e, we showed

136

Discrete feature 𝑘 ∈ 𝑀𝑑 Continuous feature 𝑘 ∈ 𝑀𝑐
Variable Distribution Variable Distribution
|𝑀𝑑 | 2𝑚/3 |𝑀𝑐 | 𝑚/3
𝜂𝑖𝑘 𝑈 (−3, 3) 𝜂𝑖𝑘 𝑈 (0, 3)
𝜏𝑖𝑘 N/A 𝜏𝑖𝑘 𝑈 (0, 0.25)
�̂�𝑖𝑘 𝑈 {0, 1} �̂�𝑖𝑘 𝑈 (0, 1)
𝑢𝑖 𝑈 (0, 1)

Variable Distribution
𝐵 𝑈 (0, 0.2𝐶max)

𝐶max ∑
𝑖∈𝑁

∑
𝑘∈𝑀𝑐

𝜂𝑖𝑘 min(�̂�𝑖𝑘 , 1 − �̂�𝑖𝑘 , 𝜏𝑖𝑘) + ∑
𝑘∈𝑀𝑑

𝜂𝑖𝑘

Table A.1: FDP parameter distributions for experiments on classical attacker score function.
Used in Fig. 2.1c, A.1c, 2.1f, 2.1g

that GD demonstrates the best solution quality among the heuristics on NN-3 score functions.
A natural question to ask is if GD is in practice close to exact. In Fig. A.1h, we show that at
least when we have a single-layer score function, GD solution is not far from optimal, though
its solution deteriorates as the problem size grows. Non-convex solver yields a small solution
gap as well.

When deception cost is only associated with discrete features, we presented an exact MILP
formulation in Appendix A.2.1. Fig. A.1i shows that it is especially efficient on very small
problems. Yet as the problem size grows its efficiency decreases quickly.

Finally, in Appendix A.2.2, we proposed a 𝑂(𝑛 log 𝑛 + 𝑚) time algorithm for FDP without
budget and feasibility constraints. Indeed, as shown in Fig. A.1j, the algorithm’s running time
is several magnitudes less than the MILP-based approaches.

A.4 Experiment Parameters and Hyper-parameters

NN-3 score function architecture The NN-3 score function has input layer of size 𝑚 × 24,
second layer 24 × 12, and third layer 12 × 1. The first and second layers are followed by a
tanh activation, and the last layer is followed by an exponential function. The neural network
parameters are initialized uniformly at random in [−0.5, 0.5]. We use this network architecture
for all of our experiments.

FDP parameters for classical score function We detail in Table A.1 the parameter distri-
butions used in the planning and combined learning and planning experiments, when the ad-
versary assumes the single-layer score function. These distributions apply to the results shown
in Fig. 2.1c, A.1c, 2.1f, 2.1g.

FDP parameters for NN-3 score function We detail in Table A.2 the parameter distribu-
tions used in the planning and combined learning and planning experiments, when the ad-
versary assumes the NN-3 score function. These distributions apply to the results shown in

137

Variable Distribution
𝜂𝑖𝑘 𝑈 (0, 1)
𝜏𝑖𝑘 1
�̂�𝑖𝑘 𝑈 (0, 1)
𝑢𝑖 𝑈 (0, 1)
𝐵 𝑈 (0, 0.2𝑛𝑚)

Table A.2: FDP parameter distributions for experiments on NN-3 attacker score function. Used
in Fig. 2.1d,2.1e, A.1d, A.1e,2.1h, A.1f

Parameter Fig 2.1h (|𝐷𝑡𝑟𝑎𝑖𝑛| > 10000), A.1f Fig. 2.1g All other experiments
Learning rate {1e-3, 1e-2, 1e-1} → 1e-1 {1e-3, 1e-2, 1e-1} → 1e-1 {1e-3, 1e-2, 1e-1} → 1e-1
Number of epochs {20, 30, 60} → 30 {20, 30, 60} → 30 {10, 20, 40} → 20
Steps per epoch {20, 30, 40} → 30 12 {10, 20} → 10
Batch size {120, 600, 5000} → 5000 {120, 600, 5000} → 5000 |𝐷𝑡𝑟𝑎𝑖𝑛|/Number of epochs

Table A.3: Hyper-parameters for the experiments. The values between the braces are the ones
we tested. The values after the arrows are the ones we used in generating the results.

Fig. 2.1d,2.1e, A.1d, A.1e,2.1h, A.1f.

Hyper-parameters for learning Table A.3 shows the hyper-parameters we used in learning
the attacker’s score function 𝑓 .

138

Appendix B

Appendix to Chapter 3

B.1 Deferred Algorithms

B.1.1 Attacker’s Better Response Heuristic

In light of the hardness of finding the adversary’s best response, we consider a greedy heuris-
tic. Leveraging Theorem 3.5.2, Greedy (Alg. 11) allocates the adversary’s budget to websites
in decreasing order of the ratio 𝑟𝑤 = 𝑡𝑤 (1−𝑥𝑤)/𝑡𝑎𝑙𝑙𝑤

𝛼𝑤
, where 𝛼𝑤 is a tuning parameter. We replace

the MILP for 2(𝑥) in CyberTWEAK with Alg. 11 to find an adversary’s better response. If it
does not yield a new effort vector, the MILP is called. The column generation process termi-
nates if the MILP again does not find a new effort vector. We refer to this entire procedure
as GreedyTWEAK. Note that GreedyTWEAK also terminates with the optimal solution. Al-
though Greedy (Alg. 11) does not provide an approximation guarantee, it performs well in
practice. As we show in the experiment section, in practice the accuracy of its solution im-
proves as the size of the problem grows. We also considered a dynamic programming algo-
rithm which is exact and runs in pseudo-polynomial time. However, its practical performance
is unsatisfactory.

Algorithm 11: Greedy
1 Sort the websites in decreasing order of 𝑟𝑤 = 𝑡𝑤 (1−𝑥𝑤)/𝑡𝑎𝑙𝑙𝑤

𝛼𝑤
.

2 foreach website 𝑤 in the sorted order do

3 if remaining attack budget ≥ attack cost 𝜋𝑤 then

4 Attack this website 𝑤 with maximum effort allowed
5 if running out of budget then break ;

B.1.2 Baseline Algorithm for 1

We show the details of one of our baseline algorithms, All Actions, in Alg. 12. Let denote
the set of actions available to the adversary such that the budget constraint is satisfied. Each

139

Algorithm 12: All Actions
1 foreach (𝑎∗, 𝑤∗) ∈ ×𝑊 where 𝑤∗ ∈ 𝑎∗ do
2 foreach website 𝑤 ∈ 𝑊 do

3 if 𝑤 = 𝑤∗
then

4 Define 𝑧𝑤 = min{𝐵𝑒 −∑𝑤∈𝑎∗,𝑤≠𝑤∗ 𝑡𝑎𝑙𝑙𝑤 , 𝑡𝑎𝑙𝑙𝑤∗ }
5 else if 𝑤 ∈ 𝑎∗ then
6 Define 𝑧𝑤 = 𝑡𝑎𝑙𝑙𝑤
7 else

8 Define 𝑧𝑤 = 0
9 Define 𝑘𝑤 = 𝑡𝑤

𝑡𝑎𝑙𝑙𝑤
𝑧𝑤

10 foreach (�̂�, �̂�) ∈ ×𝑊 where �̂� ∈ �̂� do

11 Define 𝑘𝑤 similarly as above, for each 𝑤 ∈ 𝑊 .
12 Add to 𝐵𝑅(𝑎∗, 𝑤∗) the following linear constraint

∑𝑤∈𝑎∗ 𝑘𝑤(1 − 𝑥𝑤) ≥ ∑𝑤∈�̂� 𝑘𝑤(1 − 𝑥𝑤)

13 Solve the following LP

min
𝑥,𝑣

𝑣 (B.1)

s.t. 𝑣 ≥ ∑
𝑤∈𝑊

𝑘𝑤(1 − 𝑥𝑤) (B.2)

linear constraints in 𝐵𝑅(𝑎∗, 𝑤∗) (B.3)
∑
𝑤∈𝑊

𝑐𝑤𝑡𝑤𝑥𝑤 ≤ 𝐵𝑑 (B.4)

𝑥𝑤 ∈ [0, 1], ∀𝑤 ∈ 𝑊 (B.5)

14 Select the best solution out of all the LPs.

action 𝑎∗ ∈ is a set of websites being compromised. According to Theorem 3.5.2, among all
the websites 𝑤 compromised in 𝑎∗, the adversary puts “partial” effort 𝑒𝑤 ∈ (0, 𝑡𝑎𝑙𝑙𝑤 on at most one
website 𝑤∗. Therefore, the action-website pairs (𝑎∗, 𝑤∗) fully characterize the adversary’s strate-
gies. Alg. 12 works by finding the optimal defender strategy, assuming each action-website pair
is the optimal strategy for the adversary.

B.2 Deferred Experiments

We present additional experiments on the adversary’s best response problem. In the greedy
algorithm (Alg. 11), the adversary selects websites based on a decreasing order of 𝑟𝑤 = 𝑡𝑤 (1−𝑥𝑤)/𝑡𝑎𝑙𝑙𝑤

𝛼𝑤
.

Here, 𝛼𝑤 is the tuning parameter. With different choices of 𝛼𝑤 , we compare the output value
OPTGreedy of Greedy with the optimal value OPT obtained by solving the MILP 2(𝑥). Table B.1
shows the solution gap OPT−OPTGreedy

OPT . We observe that 𝛼𝑤 = 𝜋𝑤 yields the smallest solution gap.

140

𝛼𝑤
OPT−OPTGreedy

OPT
𝜋𝑤 0.0079

𝜋𝑤/𝐵𝑎 + 1/𝐵𝑒 0.0285
1 0.0082

Table B.1: Solution gaps of different greedy heuristics for the adversary best response problem.
Results are averaged over 5 runs on different problem sizes |𝑊 | = 100, 200,… , 500.

(a) Greedy running time (b) Greedy solution gap

We also tested other choices for 𝛼𝑤 such as (𝜋𝑤/𝐵𝑎)𝑝 + (1/𝐵𝑒)𝑞 for different powers 𝑝 and 𝑞,
yet they do not yield better optimization gaps. Hence we fix 𝑟𝑤 = 𝑡𝑤 (1−𝑥𝑤)/𝑡𝑎𝑙𝑙𝑤

𝜋𝑤
in subsequent

experiments.
Fig. B.1b shows Greedy’s solution gap decreases to near zero as the problem size grows. In

addition, Greedy typically runs within 1% of the time of the MILP.

B.3 Experiment Parameters

Table B.2 shows the distribution from which the parameters are generated in most of our ex-
periments. In Table B.3, we detail the parameters used in the experiment in Fig. 3.2e.

Variable Distribution
𝑡𝑎𝑙𝑙𝑤 𝑈 (350, 750)
𝑡𝑤 𝑈 (50, 100)
𝑐𝑤 𝑈 (1, 4)
𝜋𝑤 𝑈 (30, 54)
𝐵𝑑 𝑈 (0.11∑𝑤∈𝑊 𝑐𝑤𝑡𝑤 , 0.71∑𝑤∈𝑊 𝑐𝑤𝑡𝑤)
𝐵𝑎 𝑈 (0.1∑𝑤∈𝑊 𝜋𝑤 , 0.8∑𝑤∈𝑊 𝜋𝑤)
𝐵𝑒 𝑈 (0.2∑𝑤∈𝑊 𝑡𝑎𝑙𝑙𝑤 , 0.8∑𝑤∈𝑊 𝑡𝑎𝑙𝑙𝑤)

Table B.2: Parameter distribution

In addition, in the case of small effort budget, 𝐵𝑒 is generated uniformly between 1 and
min𝑤∈𝑊 𝑡𝑤𝑎𝑙𝑙 .

For large scale instances, we set different websites to have different importance, motivated
by the fact that people do not visit all websites with equal frequency. We split 𝑊 into 𝑊1,𝑊2
with |𝑊1| ∶ |𝑊2| = 1 ∶ 9. Websites in𝑊1 have a large portion of traffic from the organization and

141

For 𝑤 ∈ 𝑊1 For 𝑤 ∈ 𝑊2
Variable Distribution Variable Distribution

𝑡𝑎𝑙𝑙𝑤 𝑈 (60, 110) 𝑡𝑎𝑙𝑙𝑤 𝑈 (20, 70)
𝑡𝑤 𝑈 (45, 55) 𝑡𝑤 𝑈 (3, 8)
𝑐𝑤 𝑈 (2, 6) 𝑐𝑤 𝑈 (1, 3)
𝜋𝑤 3 𝜋𝑤 3
𝐵𝑑 𝑈 (0, 10∑𝑤∈𝑊 𝑐𝑤𝑡𝑤/|𝑊 |)
𝐵𝑎 𝑈 (0.1∑𝑤∈𝑊 𝜋𝑤 , 0.8∑𝑤∈𝑊 𝜋𝑤)
𝐵𝑒 𝑈 (0, 3∑𝑤∈𝑊 𝑡𝑎𝑙𝑙𝑤 /|𝑊 |)

Table B.3: Parameter distributions for the experiment on large instances.

those in 𝑊2 have a smaller portion. Thus, 𝑊1 and 𝑊2 follow different distributions (Table B.3).
The attacker has a uniform cost of attack. In less than 4 of the 20 instances DWE did not reduce
the problem size by much. We report in Fig. 3.2e the majority group where DWE eliminated a
significant number of websites. |𝑊1|/|𝑊 | could be a lot smaller in reality, and our algorithms
with DWE would run even faster.

B.4 Discussion

Assumptions and generality We assumed that the attack will succeed if and only if the net-
work packet is unaltered. If the attacker can obtain the true system information with probability
𝑝𝑤 even if the packet is altered, we may modify the objective in Eq. (3.1) to ∑𝑤 𝑡𝑤(1 − 𝑥𝑤(1 −
𝑝𝑤))𝑒𝑤/𝑡𝑎𝑙𝑙𝑤 . If the organization has other countermeasures (e.g. Bromium browser VMs), the
attack may fail with probability 𝑞𝑤 even if the packet is unaltered, the objective then becomes
∑𝑤 𝑡𝑤(1 − 𝑥𝑤)(1 − 𝑞𝑤)𝑒𝑤/𝑡𝑎𝑙𝑙𝑤 . Thus, our algorithm can account for different levels of adversary
and defender sophistication.

We do not attempt to claim that altering the network packets is a panacea to all watering
hole attacks. Cyber attackers have many tools to circumvent existing deception techniques.
Nonetheless, the proposed deception technique increases their uncertainty about the true na-
ture of the environment, which leads to more cost on them, e.g. technical complexity and in-
creased exposure. This uncertainty ties into our consideration of the attacker’s scanning effort
𝑒𝑤 and budget 𝐵𝑒 , as the attacker cannot easily obtain or trust the basic information in the
network packets.

Limitations The generality notwithstanding, We acknowledge a few limitations of our
work and potential problems in large-scale deployment. First, if an organization is the sole user
of our method and if the attacker has (possibly imperfect) clue about the source of traffic from
the start, randomizing network packet information might serve as an unintended signal to the
attacker, reducing the effort needed 𝑒𝑤 to identify traffic from the targeted organization. Sec-
ond, by manipulating the web traffic, the organization is effectively monitoring its employees’
internet activities. Although in many jurisdictions this is allowed when doing properly, the
potential ethical issues must be carefully addressed.

142

Appendix C

Appendix to Chapter 8

C.1 Regret Bounds Using Sample Complexity Characteri-

zation

Let us first introduce the multivariate Rademacher complexity and its associated generalization
bounds, which were introduced by Bertsimas and Kallus [19].
Definition C.1.1. Given a sample 𝑆𝑛 = {𝑠1,… , 𝑠𝑛}, the empirical multivariate Rademacher com-

plexity of a class of functions taking values in ℝ𝑑
is defined as

R̂𝑛(; 𝑆𝑛) = 𝔼𝜎 [
sup
𝑔∈

1
𝑛

𝑛

∑
𝑖=1

𝑑

∑
𝑘=1

𝜎𝑖𝑘𝑔𝑘(𝑠𝑖)]

where 𝜎𝑖𝑘’s are independent Rademacher random variables. The multivariate Rademacher com-

plexity is defined as R𝑛() = 𝔼𝑆𝑛[R̂𝑛(; 𝑆𝑛)]
Theorem C.1.1. [19] Suppose function 𝑐(𝑧; 𝑦) is bounded and equi-Lipschitz in 𝑧:

sup
𝑧∈𝑍,𝑦∈𝑌

𝑐(𝑧; 𝑦) ≤ 𝑐, and sup
𝑧≠𝑧′∈𝑍,𝑦∈𝑌

𝑐(𝑧; 𝑦) − 𝑐(𝑧′; 𝑦)
||𝑧 − 𝑧′||∞

≤ 𝐿 < ∞

For any 𝛿 > 0, each of the following events occurs with probability at least 1 − 𝛿 ,

𝔼[𝑐(𝑧(𝑋); 𝑌)] ≤
1
𝑛

𝑛

∑
𝑖=1

𝑐(𝑧(𝑥 𝑖); 𝑦 𝑖) + 𝐿R𝑛() + 𝑐

√
log(1/𝛿)

2𝑛

𝔼[𝑐(𝑧(𝑋); 𝑌)] ≤
1
𝑛

𝑛

∑
𝑖=1

𝑐(𝑧(𝑥 𝑖); 𝑦 𝑖) + 𝐿R̂𝑛(; 𝑆𝑛) + 3𝑐

√
log(2/𝛿)

2𝑛
.

When the function 𝑐(𝑧; 𝑦) is nonnegative, we have

𝔼[𝑐(𝑧(𝑋); 𝑌)] ≤
1

1 − 𝛿
𝔼
[
1
𝑛

𝑛

∑
𝑖=1

𝑐(𝑧(𝑥 𝑖); 𝑦 𝑖)
]
+ 𝐿R𝑛() + 𝑐

√
log(1/𝛿)

2𝑛
(C.1)

Before we proceed, we make the following assumption.

143

AssumptionC.1.1. With 𝑛 training data points 𝑥1,… 𝑥𝑛, the learning algorithm learns a predictor

𝑓 such that 𝔼 [∑
𝑛
𝑖=1

‖‖‖𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖)
‖‖‖
2

2] is constant with respect to 𝑛.
Although this assumption might appear somewhat unintuitive, it is actually satisfied when,

for example, 𝑓 ∈ comes from the class of all linear functions, ordinary least squares regression
used as the learning algorithm satisfies this assumption. In that case, we have𝔼 [∑

𝑛
𝑖=1

‖‖‖𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖)
‖‖‖
2

2] =
𝑂(𝑚𝑑).
TheoremC.1.2. Suppose we use any learning algorithm that satisfies Assumption C.1.1, including

but not limited to OLS regression. The regret of Algorithm 8 is �̃� (𝑚𝑑
√
𝑛𝑇), with probability 1−𝛿 .

Proof. First, let’s compute the Rademacher complexity of the linear hypothesis class, for com-
pleteness and for our specific setting. Let 𝐹𝑘 be the 𝑘-th row of matrix 𝐹 . We have

R̂𝑛(;𝑋𝑛) = 𝔼𝜎 [
sup
𝐹∈

1
𝑛

𝑛

∑
𝑖=1

𝑑

∑
𝑘=1

𝜎𝑖𝑘𝐹†
𝑘 𝑥𝑖]

= 𝔼𝜎 [
sup
𝐹∈

1
𝑛

𝑑

∑
𝑘=1

𝐹†
𝑘 (

𝑛

∑
𝑖=1

𝜎𝑖𝑘𝑥𝑖)]

≤ 𝔼𝜎 [
sup
𝐹∈

1
𝑛

𝑑

∑
𝑘=1

||𝐹𝑘 ||1
‖‖‖‖‖

𝑛

∑
𝑖=1

𝜎𝑖𝑘𝑥𝑖
‖‖‖‖‖2]

(Cauchy-Schwartz)

≤ 𝔼𝜎 [
sup
𝐹∈

1
𝑛

𝑑

∑
𝑘=1

||𝐹 ||∞
‖‖‖‖‖

𝑛

∑
𝑖=1

𝜎𝑖𝑘𝑥𝑖
‖‖‖‖‖2]

≤
𝑑

∑
𝑘=1

𝑚𝐾𝐹𝔼𝜎 [

‖‖‖‖‖

1
𝑛

𝑛

∑
𝑖=1

𝜎𝑖𝑘𝑥𝑖
‖‖‖‖‖2]

≤
𝑑

∑
𝑘=1

𝑚𝐾𝐹 (
𝔼𝜎 [

‖‖‖‖‖

1
𝑛

𝑛

∑
𝑖=1

𝜎𝑖𝑘𝑥𝑖
‖‖‖‖‖

2

2])

1/2

(Jensen)

≤
𝑑

∑
𝑘=1

𝑚𝐾𝐹 (
𝔼𝜎 [

1
𝑛2

𝑛

∑
𝑖=1

||𝑥𝑖 ||22 +
2
𝑛2

∑
𝑖<𝑗

𝜎𝑖𝑘𝜎𝑗𝑘𝑥†
𝑖 𝑥𝑗])

1/2

=
𝑑

∑
𝑘=1

𝑚𝐾𝐹 (
𝔼𝜎 [

1
𝑛2

𝑛

∑
𝑖=1

||𝑥𝑖 ||22])

1/2

=
𝑑𝑚𝐾𝐹𝐾𝑋√

𝑛

Using Equation C.1, we have

𝔼𝑋,𝜖 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] − 𝑐𝑡𝑖 ‖‖2] ≤

1
(1 − 𝛿)𝑛𝑡

𝔼
[

𝑛

∑
𝑖=1

𝑡

∑
𝜏=1

‖‖‖𝑓 (𝑥
𝜏
𝑖) − 𝑓 (𝑥𝜏

𝑖)
‖‖‖2]

+ 𝐿R𝑛𝑡() + 𝑐

√
log(𝑇 /𝛿)

2𝑛𝑡

≤
1

(1 − 𝛿)𝑛𝑡
𝔼
[

√

𝑛𝑡
𝑛

∑
𝑖=1

𝑡

∑
𝜏=1

‖‖‖𝑓 (𝑥
𝜏
𝑖) − 𝑓 (𝑥𝜏

𝑖)
‖‖‖
2

2]
+ 𝐿R𝑛𝑡() + 𝑐

√
log(𝑇 /𝛿)

2𝑛𝑡

≤
1

(1 − 𝛿)
√
𝑛𝑡

√

𝔼
[

𝑛

∑
𝑖=1

𝑡

∑
𝜏=1

‖‖‖𝑓 (𝑥
𝜏
𝑖) − 𝑓 (𝑥𝜏

𝑖)
‖‖‖
2

2]
+ 𝐿R𝑛𝑡() + 𝑐

√
log(𝑇 /𝛿)

2𝑛𝑡

By Assumption C.1.1, the term under square root is constant w.r.t. 𝑛𝑡 , under regularity condi-
tions. Thus, we have

𝔼𝑋,𝜖 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 [𝑐
𝑡
𝑖] − 𝑐𝑡𝑖 ‖‖2] = �̃� (𝑚𝑑(𝑛𝑡)−1/2)

144

The rest of the proof follows from Lemma 8.4.4.

This result is almost identical as Theorem 8.4.5. However, the intent to work with Rademacher
complexity is that we hope to at least get some bound when we move beyond the linear regres-
sion scenario. Let us consider a feed-forward neural network with ReLU activation. There
are existing results which shows that the Rademacher complexity is 𝑂(1/√𝑛) [56]. Thus, if we
accept Assumption C.1.1, we would have the following result.
Theorem C.1.3. Supose the learning problem is fitting a neural network and we use any learning

algorithm that satisfies Assumption C.1.1. The regret of Algorithm 8 is �̃�(𝑛𝑇 1/2), with probability

1 − 𝛿 − 𝜆, ignoring the dependency on 𝑑 and 𝑚.

Finally, we extend the previous results to the more general case where interventions affect
the label distribution. Please refer to the setting described in Section 8.4.3 and Algorithm 9.
Theorem C.1.4. Suppose there are finitely many actions. Assuming we use any learning algo-

rithm that satisfies Assumption C.1.1, including but not limited to OLS regression, the regret of

Algorithm 8 is �̃� (|𝑊 |1/3(𝑚𝑑)2/3𝑛𝑇 2/3), with probability 1 − 𝛿 .

Proof. After the exploration phase, we have had �̃� = 𝑛𝑇 /|𝑊 | data points for training the pre-
dictor for each 𝑤𝑖 . Similar to our approach in Theorem C.1.2, we have

𝔼 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡
𝑖
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖)] − 𝑐𝑡𝑖 (𝑤

𝑡
𝑖)‖‖2]

≤
1

(1 − 𝛿)�̃�
𝔼
[

�̃�

∑
𝑖=1

‖‖‖𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖)
‖‖‖
2

2]

+ 𝐿R�̃�() + 𝑐

√
log(𝑇 /𝛿)

2�̃�
= �̃� (|𝑊 |1/2𝑚𝑑(𝑛𝑇)−1/2) , ∀𝑡 > 𝑇

Thus, the regret is

𝑂
(
𝑛𝑇 + 𝑛

√
8𝑚𝑇𝛽𝑇 log 𝑇

+
𝑇

∑
𝑡=𝑇+1

𝑛

∑
𝑖=1

𝔼 [‖‖𝔼𝑐𝑡𝑖 |𝑥 𝑡𝑖 ,𝑤𝑡
𝑖
[𝑐𝑡𝑖 (𝑤

𝑡
𝑖)] − 𝑐𝑡𝑖 (𝑤

𝑡
𝑖)‖‖2])

= �̃� (𝑛𝑇 + 𝑛
√
8𝑚𝑇𝛽𝑇 log 𝑇 + 𝑛𝑇 |𝑊 |1/2𝑑𝑚(𝑛𝑇)−1/2)

= �̃� (|𝑊 |1/3(𝑚𝑑)2/3𝑛𝑇 2/3)
where we let 𝑇 = 𝑇 2/3|𝑊 |1/3(𝑚𝑑)2/3.

C.2 Details of the Food Rescue Experiment

C.2.1 Recommender System Model

We build our recommender system using a neural network. We show the neural network archi-
tecture in Table C.1. The input to the neural network is the feature vector of a rescue-volunteer

145

Table C.1: Neural network architecture

Layer Operation Hidden Units
1 Dense (ReLU) 192
2 Dense (ReLU) 512
3 Dense (Logistic) 16

pair. The feature vector passes through three dense layers. Each layer is followed by a ReLU
activation function, except for the last layer where we output a single number which is then
converted to a number between 0 and 1 by the logistic function. This output represents the
likelihood that this volunteer will claim this rescue trip. We use the cross entropy loss to train
the neural network. At prediction time, for a given rescue, we pass the feature vectors of the
rescue-volunteer pairs for all volunteers on a fixed rescue through the network and obtain a
likelihood estimate for each volunteer.

C.2.2 Training

We performed all the experiments in this chapter on an Intel Core i5-7600K CPU and 32GB
RAM.

We use the data from March 2018 to October 2019 for feature preparation. Recall that some
of the features we use are related to the volunteer’s historical number of rescues. We use the
data from this period to generate such features. Then, we use the 556 rescues from November
2019 to March 2020 for learning and prediction in the actual experiment. In this way we avoid
the potential data leakage.

In these 556 rescues, we select the first 300 of them to be the initial dataset for the bandit
data-driven optimization (refer to Line 1 in Procedure 7, Section 8.3). From the remaining 256
rescues, we randomly sample and set aside 150 rescues as the validation dataset. Finally we
take the 50 earliest rescues from the remaining 106 rescues to run the PROOF algorithm for 50
iterations, each iteration corresponding to one rescue. At time step 𝑡 , our training set consists
of the 300 rescues in the initial dataset and all the rescues we have seen from time step 1 up to
time step 𝑡 − 1. When training the recommender system at each time step, we use the Adam
optimizer with learning rate 1 × 10−3. We stop the training when the 3-episode moving average
loss on the validation set stops decreasing. In the following paragraph, we discuss our way to
address a key challenge in the training dataset in more detail.

Negative Sampling As mentioned earlier, there is an extremely high label imbalance in our
dataset. Each rescue typically has only one volunteer who claimed it, which means, theoret-
ically, the ratio between negative and positive examples is about 100 ∶ 1. Using the method
introduced in Section 5.4.2, we can obtain a selected set of negative examples 𝐷𝑛 derived from
push notifications and another set of negative examples 𝐷𝑐 derived from dispatcher calls. The
set 𝐷𝑐 is about the same size as the positive examples 𝐷𝑝 , while |𝐷𝑛| ∶ |𝐷𝑝 | ≈ 11 ∶ 1. When
training the neural network, we always use all the examples from 𝐷𝑝 and 𝐷𝑐 . However, we
randomly sample a subset of examples from 𝐷𝑛 at each episode of the training. By doing this,

146

Table C.2: Hyperparameters tuning

Hyperparameter Values Attempted Value Chosen

Adam learning rate 10−5, 10−4, 10−3 10−3

L2 regularization
coefficient 10−6, 10−4, 10−3 10−4

Batch size 1024, 256 256

we ensure that the negative examples from 𝐷𝑛 do not dominate the training set, and at the same
time the “more certain” negative examples from 𝐷𝑐 gets emphasized more than 𝐷𝑛. This whole
procedure leads to an overall ratio between negative and positive samples around 3.5 ∶ 1 in
each single batch.

Hyperparameters We ran a grid search over the hyperparameters of the ML model on an
offline recommendation task. In the search process, we used the data from March 2018 to Octo-
ber 2019 (i.e. not including the data we test PROOF on), where the first 7/8 of the selected data
are used as the training set and the last 1/8 are used as the validation set. We show the search
result in Table C.2.

147

148

Bibliography

[1] Yasaman Abbasi, Debarun Kar, Nicole Sintov, Milind Tambe, Noam Ben-Asher, Don Mor-
rison, and Cleotilde Gonzalez. Know your adversary: Insights for a better adversarial
behavioral model. In CogSci, 2016. 2.3

[2] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear
stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312–
2320, 2011. 8.2

[3] Jacob Abernethy, Alex Chojnacki, Arya Farahi, Eric Schwartz, and Jared Webb. Activere-
mediation: The search for lead pipes in flint, michigan. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 5–14.
ACM, 2018. 1, 8.1

[4] Gediminas Adomavicius and YoungOk Kwon. Optimization-based approaches for max-
imizing aggregate recommendation diversity. INFORMS Journal on Computing, 26(2):
351–369, 2014. 5.2, 5.5.2

[5] Agari. Email Security: Social Engineering Report, 2016. 3.1
[6] Deepak Agarwal, Souvik Ghosh, Kai Wei, and Siyu You. Budget pacing for targeted

online advertisements at linkedin. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 1613–1619, 2014. 5.2
[7] Gagan Aggarwal, Ashish Goel, and Rajeev Motwani. Truthful auctions for pricing search

keywords. In Proceedings of the 7th ACM conference on Electronic commerce, pages 1–7,
2006. 5.2

[8] Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. A dynamic near-optimal algorithm for
online linear programming. Operations Research, 62(4):876–890, 2014. 5.2

[9] Massimiliano Albanese, Ermanno Battista, and Sushil Jajodia. Deceiving attackers by
creating a virtual attack surface. In Cyber Deception. 2016. 1.1, 2.1, 2.2, 3.2

[10] Martin Aleksandrov, Haris Aziz, Serge Gaspers, and Toby Walsh. Online fair division:
analysing a food bank problem. In Proceedings of the 24th International Conference on

Artificial Intelligence, pages 2540–2546, 2015. 5.2
[11] Tom M Apostol. Introduction to analytic number theory. 1966. 8.4.1
[12] Susan Athey and Stefan Wager. Efficient policy learning. arXiv preprint arXiv:1702.02896,

2017. 8.2
[13] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of

149

Machine Learning Research, 3(Nov):397–422, 2002. 8.2
[14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014. 2
[15] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. The power of optimization from

samples. In NIPS, pages 4017–4025, 2016. 8.2
[16] Gah-Yi Ban and Cynthia Rudin. The big data newsvendor: Practical insights from ma-

chine learning. Operations Research, 67(1):90–108, 2019. 8.2
[17] Guillaume W Basse, Hossein Azari Soufiani, and Diane Lambert. Randomization and the

pernicious effects of limited budgets on auction experiments. In Artificial Intelligence and

Statistics, pages 1412–1420. PMLR, 2016. 6.2.3
[18] Bettina Berendt. Ai for the common good?! pitfalls, challenges, and ethics pen-testing.

Paladyn, Journal of Behavioral Robotics, 10(1):44–65, 2019. 9.2
[19] Dimitris Bertsimas and Nathan Kallus. From predictive to prescriptive analytics. Man-

agement Science, 66(3):1025–1044, 2020. 5.7, 8.1, 8.2, C.1, C.1.1
[20] Avrim Blum, Nika Haghtalab, and Ariel D Procaccia. Learning optimal commitment to

overcome insecurity. In NIPS, 2014. 2.2
[21] Robert Boutilier and Kyle Bahr. A natural language processing approach to social license

management. Sustainability, 12, 10 2020. doi: 10.3390/su12208441. 7.2
[22] Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Li-

bratus beats top professionals. Science, 359(6374):418–424, 2018. 1
[23] Erik Brynjolfsson, Yu Hu, and Duncan Simester. Goodbye pareto principle, hello long tail:

The effect of search costs on the concentration of product sales. Management Science, 57
(8):1373–1386, 2011. 5.2

[24] Alberto Caprara, Margarida Carvalho, Andrea Lodi, and Gerhard J Woeginger. Bilevel
knapsack with interdiction constraints. INFORMS Journal on Computing, 2016. 7

[25] Lijie Chen, Anupam Gupta, Jian Li, Mingda Qiao, and Ruosong Wang. Nearly optimal
sampling algorithms for combinatorial pure exploration. In Conference on Learning The-

ory, pages 482–534. PMLR, 2017. 8.2
[26] Mia Xu Chen, Benjamin N. Lee, Gagan Bansal, Yuan Cao, Shuyuan Zhang, Justin Lu,

Jackie Tsay, Yinan Wang, Andrew M. Dai, Zhifeng Chen, and et al. Gmail smart com-
pose: Real-time assisted writing. In Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, KDD ’19, page 2287–2295, New York,
NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362016. doi: 10.1145/
3292500.3330723. URL https://doi.org/10.1145/3292500.3330723. 1

[27] T. Chen, Linpeng Tang, Q. Liu, Diyi Yang, Saining Xie, Xuezhi Cao, C. Wu, E. Yao,
Zhengyang Liu, Z. Jiang, C. Chen, Weihao Kong, and Yingrui Yu. Combining factor-
ization model and additive forest for collaborative followee recommendation. 2012. 5.2

[28] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong Yu. Svdfea-
ture: a toolkit for feature-based collaborative filtering. The Journal of Machine Learning

150

https://doi.org/10.1145/3292500.3330723

Research, 13(1):3619–3622, 2012. 5.2
[29] Hao Cheng, Zhaowei Zhu, Xingyu Li, Yifei Gong, Xing Sun, and Yang Liu. Learning

with instance-dependent label noise: A sample sieve approach. In ICLR, 2021. URL
https://openreview.net/forum?id=2VXyy9mIyU3. 7.1, 7.5.3

[30] Cho-Yu J Chiang, Yitzchak M Gottlieb, Shridatt James Sugrim, Ritu Chadha, Constantin
Serban, Alex Poylisher, Lisa M Marvel, and Jonathan Santos. Acyds: An adaptive cy-
ber deception system. In Military Communications Conference, MILCOM 2016-2016 IEEE,
pages 800–805. IEEE, 2016. 2.3

[31] Konstantina Christakopoulou, Filip Radlinski, and Katja Hofmann. Towards conversa-
tional recommender systems. In Proceedings of the 22nd ACM SIGKDD international con-

ference on knowledge discovery and data mining, pages 815–824, 2016. 5.2
[32] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear

payoff functions. In Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics, pages 208–214, 2011. 8.2
[33] Cisco. Cisco Umbrella Popularity List, 2019. 3.7
[34] Alisha Coleman-Jensen, Matthew P Rabbitt, Christian A Gregory, and Anita Singh.

Household food security in the united states in 2017. USDA-ERS Economic Research Re-

port, 2018. 4.1
[35] Alisha Coleman-Jensen, Matthew P Rabbitt, Christian A Gregory, and Anita Singh.

Household food security in the united states in 2019. USDA-ERS Economic Research Re-

port, 2020. 5.1
[36] Zach Conrad, Meredith T Niles, Deborah A Neher, Eric D Roy, Nicole E Tichenor, and Lisa

Jahns. Relationship between food waste, diet quality, and environmental sustainability.
PloS one, 13(4):e0195405, 2018. 4.1

[37] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recom-
mendations. In Proceedings of the 10th ACM conference on recommender systems, pages
191–198. ACM, 2016. 1

[38] Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under
bandit feedback. In Conference on Learning Theory, 2008. 8.2, 15, 8.4.3, 15, 22, 8.5.1

[39] Rajeev H Dehejia and Sadek Wahba. Propensity score-matching methods for nonexper-
imental causal studies. Review of Economics and statistics, 2002. 4.2

[40] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the

2019 Conference of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–
4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423. 7.5.1,
3

[41] Miroslav Dudı́k, John Langford, and Lihong Li. Doubly robust policy evaluation and
learning. arXiv preprint arXiv:1103.4601, 2011. 8.2

151

https://openreview.net/forum?id=2VXyy9mIyU3
https://aclanthology.org/N19-1423

[42] Karel Durkota, Viliam Lisỳ, Branislav Bosanskỳ, and Christopher Kiekintveld. Optimal
network security hardening using attack graph games. In IJCAI, 2015. 3.2

[43] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. A multi-view deep learning ap-
proach for cross domain user modeling in recommendation systems. In Proceedings of

the 24th International Conference on World Wide Web, pages 278–288, 2015. 5.1
[44] Adam N Elmachtoub and Paul Grigas. Smart” predict, then optimize”. arXiv preprint

arXiv:1710.08005, 2017. 5.7, 8.1, 8.2, 8.4.1
[45] Fei Fang, Peter Stone, and Milind Tambe. When security games go green: Designing

defender strategies to prevent poaching and illegal fishing. In IJCAI, 2015. 2.2
[46] Fei Fang, Thanh H Nguyen, Rob Pickles, Wai Y Lam, Gopalasamy R Clements, Bo An,

Amandeep Singh, Milind Tambe, and Andrew Lemieux. Deploying paws: Field optimiza-
tion of the protection assistant for wildlife security. In Twenty-Eighth IAAI Conference,
2016. 1

[47] David Farquhar. Watering hole attack prevention, 2017. 3.1
[48] Adrienne Porter Felt, Serge Egelman, and David Wagner. I’ve got 99 problems, but vi-

bration ain’t one: a survey of smartphone users’ concerns. In Proceedings of the second

ACM workshop on Security and privacy in smartphones and mobile devices, pages 33–44.
ACM, 2012. 4.1, 5.1

[49] Daniel Fleder and Kartik Hosanagar. Blockbuster culture’s next rise or fall: The impact of
recommender systems on sales diversity. Management science, 55(5):697–712, 2009. 5.2

[50] Jiarui Gan, Haifeng Xu, Qingyu Guo, Long Tran-Thanh, Zinovi Rabinovich, and Michael
Wooldridge. Imitative follower deception in stackelberg games. In EC, 2019. 2.2

[51] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Steffen Rendle, and Lars
Schmidt-Thieme. Learning attribute-to-feature mappings for cold-start recommenda-
tions. In 2010 IEEE International Conference on Data Mining, pages 176–185. IEEE, 2010.
5.2

[52] Shahrzad Gholami, Amulya Yadav, Long Tran-Thanh, Bistra Dilkina, and Milind Tambe.
Don’t put all your strategies in one basket: Playing green security games with im-
perfect prior knowledge. In Proceedings of the 18th International Conference on Au-

tonomous Agents and MultiAgent Systems, pages 395–403. International Foundation for
Autonomous Agents and Multiagent Systems, 2019. 8.1

[53] Robert Gibb. How consumers perceive push notification in 2018, 2018. 4.6
[54] Paul C Gilmore and Ralph E Gomory. A linear programming approach to the cutting-

stock problem. Operations research, 9(6):849–859, 1961. 3.5.2
[55] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models

with applications to adwords. In SODA, volume 8, pages 982–991, 2008. 5.2
[56] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample com-

plexity of neural networks. In Conference On Learning Theory, pages 297–299. PMLR,
2018. C.1

152

[57] Mark P Graus and Martijn C Willemsen. Improving the user experience during cold start
through choice-based preference elicitation. In Proceedings of the 9th ACM Conference on

Recommender Systems, pages 273–276, 2015. 5.2
[58] Dana Gunders and Jonathan Bloom. Wasted: How america is losing up to 40 percent of

its food from farm to fork to landfill. 2017. 5.1
[59] Canan Gunes, Willem-Jan van Hoeve, and Sridhar Tayur. Vehicle routing for food rescue

programs: A comparison of different approaches. In CPAIOR, 2010. 4.2, 5.2
[60] Qingyu Guo, Bo An, Branislav Bosanskỳ, and Christopher Kiekintveld. Comparing

strategic secrecy and stackelberg commitment in security games. In IJCAI, pages 3691–
3699, 2017. 2.2

[61] Nika Haghtalab, Fei Fang, Thanh H Nguyen, Arunesh Sinha, Ariel D Procaccia, and
Milind Tambe. Three strategies to success: Learning adversary models in security games.
In IJCAI, 2016. 2.2, 2.4, 2.4.2, 8

[62] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neu-
ral collaborative filtering. In Proceedings of the 26th international conference on world wide

web, pages 173–182, 2017. 5.1, 5.2
[63] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine

learning lecture 6a overview of mini-batch gradient descent. 2012. 2.4
[64] Chien-Ju Ho and Jennifer Wortman Vaughan. Online task assignment in crowdsourcing

markets. In AAAI, 2012. 4.2
[65] Nam Ho-Nguyen and Fatma Kılınç-Karzan. Risk guarantees for end-to-end prediction

and optimization processes. 2019. 8.2
[66] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computa-

tion, 9(8):1735–1780, 1997. 2
[67] Karel Horák, Quanyan Zhu, and Branislav Bošanskỳ. Manipulating adversary’s belief:

A dynamic game approach to deception by design for proactive network security. In
GameSec, 2017. 1.1, 2.1, 2.2

[68] Kasra Hosseini and Mariona Coll Ardanuy. Data study group final report: Wwf, June
2020. URL https://doi.org/10.5281/zenodo.3878457. 7.2, 7.4

[69] George Hurlburt. “good enough” security: The best we’ll ever have. Computer, 2016. 1.1,
2.1

[70] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. Openflow random host mutation:
transparent moving target defense using software defined networking. In Proceedings of

the first workshop on Hot topics in software defined networks. ACM, 2012. 2.3
[71] Sushil Jajodia, VS Subrahmanian, Vipin Swarup, and Cliff Wang. Cyber deception.

Springer, 2016. 1.1, 2.1
[72] Sushil Jajodia, Noseong Park, Fabio Pierazzi, Andrea Pugliese, Edoardo Serra, Gerardo I

Simari, and VS Subrahmanian. A probabilistic logic of cyber deception. IEEE Trans. Inf.

Forensics Secur., 12(11), 2017. 1.1, 2.1, 2.2, 3.2

153

https://doi.org/10.5281/zenodo.3878457

[73] Kalyani Joshi, Bharathi N, and Jyothi Rao. Stock trend prediction using news sentiment
analysis. International Journal of Computer Science and Information Technology, 8:67–76,
06 2016. doi: 10.5121/ijcsit.2016.8306. 7.2

[74] Yi-hao Kao, Benjamin V Roy, and Xiang Yan. Directed regression. In Advances in Neural

Information Processing Systems, pages 889–897, 2009. 8.2
[75] Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for

on-line bipartite matching. In STOC, 1990. 4.2
[76] Sedrick Scott Keh, Zheyuan Ryan Shi, David J Patterson, Nirmal Bhagabati, Karun De-

wan, Areendran Gopala, Pablo Izquierdo, Debojyoti Mallick, Ambika Sharma, Pooja
Shrestha, et al. Newspanda: Media monitoring for timely conservation action. In IAAI,
2023. 1.2

[77] H. Kellerer, H.K.U.P.D. Pisinger, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer
Nature Book Archives Millennium. Springer, 2004. ISBN 9783540402862. URL https:
//books.google.com/books?id=u5DB7gck08YC. 8

[78] David Laborde, Will Martin, Johan Swinnen, and Rob Vos. Covid-19 risks to global food
security. Science, 369(6503):500–502, 2020. 5.1

[79] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules.
Advances in applied mathematics, 6(1):4–22, 1985. 8.2

[80] Aron Laszka, Yevgeniy Vorobeychik, and Xenofon Koutsoukos. Optimal personalized
filtering against spear-phishing attacks. In AAAI, 2015. 3.2

[81] Jon Latimer. Deception in War. John Murray, 2001. 2.1
[82] Kuang-Chih Lee, Ali Jalali, and Ali Dasdan. Real time bid optimization with smooth

budget delivery in online advertising. In Proceedings of the Seventh InternationalWorkshop

on Data Mining for Online Advertising, pages 1–9, 2013. 5.2
[83] Min Kyung Lee, Daniel Kusbit, Anson Kahng, Ji Tae Kim, Xinran Yuan, Allissa Chan,

Daniel See, Ritesh Noothigattu, Siheon Lee, Alexandros Psomas, and Ariel D. Procac-
cia. Webuildai: Participatory framework for algorithmic governance. Proc. ACM Hum.-

Comput. Interact., 3(CSCW), November 2019. ISSN 2573-0142. doi: 10.1145/3359283. URL
http://doi.acm.org/10.1145/3359283. 4.2, 5.2

[84] Joshua Letchford, Vincent Conitzer, and Kamesh Munagala. Learning and approximating
the optimal strategy to commit to. In SAGT, 2009. 2.2

[85] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach
to personalized news article recommendation. In Proceedings of the 19th international

conference on World wide web, pages 661–670, 2010. 8.2
[86] Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. Collaborative filtering bandits. In

Proceedings of the 39th International ACM SIGIR conference on Research and Development

in Information Retrieval, pages 539–548, 2016. 5.2
[87] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. Variational

autoencoders for collaborative filtering. In Proceedings of the 2018 World Wide Web Con-

ference, pages 689–698, 2018. 5.1

154

https://books.google.com/books?id=u5DB7gck08YC
https://books.google.com/books?id=u5DB7gck08YC
http://doi.acm.org/10.1145/3359283

[88] Leo Liberti, Sonia Cafieri, and Fabien Tarissan. Reformulations in mathematical program-
ming: A computational approach. In Foundations of Computational Intelligence Volume 3,
pages 153–234. Springer, 2009. 8.5.2

[89] Matt Lisivick. Newsapi python library. https://github.com/mattlisiv/
newsapi-python, 2018. Accessed: 2022-12-12. 1

[90] Min Liu, Jialiang Mao, and Kang Kang. Trustworthy and powerful online marketplace
experimentation with budget-split design. In Proceedings of the 27th ACM SIGKDD

Conference on Knowledge Discovery & Data Mining, KDD ’21, page 3319–3329, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383325.
doi: 10.1145/3447548.3467193. URL https://doi.org/10.1145/3447548.
3467193. 6.2.3

[91] Yang Liu and Hongyi Guo. Peer loss functions: Learning from noisy labels without know-
ing noise rates. In Proceedings of the 37th International Conference on Machine Learning,
ICML’20. JMLR.org, 2020. 7.5.3

[92] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. ArXiv, abs/1907.11692, 2019. 3

[93] Steven Loria. textblob documentation. Release 0.15, 2, 2018. 7.5.1
[94] Sasha Luccioni, Emi Baylor, and Nicolas Duchene. Analyzing sustainability reports using

natural language processing. In NeurIPS 2020 Workshop on Tackling Climate Change with

Machine Learning, 2020. URL https://www.climatechange.ai/papers/
neurips2020/31. 7.2

[95] Taylor Lundy, Alexander Wei, Hu Fu, Scott Duke Kominers, and Kevin Leyton-Brown.
Allocation for social good: auditing mechanisms for utility maximization. In ACM EC,
2019. 4.2, 5.2

[96] Shana Lynch. Andrew ng: Why ai is the new electricity, 2017. https://www.gsb.
stanford.edu/insights/andrew-ng-why-ai-new-electricity. 1

[97] Gordon Fyodor Lyon. Nmap network scanning: The official Nmap project guide to network

discovery and security scanning. Insecure, 2009. 2.1
[98] Vahideh Manshadi and Scott Rodilitz. Online policies for efficient volunteer crowdsourc-

ing. arXiv preprint arXiv:2002.08474, 2020. 5.2
[99] Janusz Marecki, Gerry Tesauro, and Richard Segal. Playing repeated stackelberg games

with unknown opponents. In AAMAS, 2012. 2.2
[100] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and gener-

alized online matching. Journal of the ACM (JACM), 54(5):22–es, 2007. 5.2
[101] Aranyak Mehta, Bo Waggoner, and Morteza Zadimoghaddam. Online stochastic match-

ing with unequal probabilities. In Proceedings of the twenty-sixth ACM-SIAM symposium

on Discrete algorithms, 2015. 4.2
[102] Kevin D Mitnick and William L Simon. The art of deception. John Wiley & Sons, 2011. 3.1

155

https://github.com/mattlisiv/newsapi-python
https://github.com/mattlisiv/newsapi-python
https://doi.org/10.1145/3447548.3467193
https://doi.org/10.1145/3447548.3467193
https://www.climatechange.ai/papers/neurips2020/31
https://www.climatechange.ai/papers/neurips2020/31
https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity
https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity

[103] Laura Clark Murray, Nikhel Gupta, Joanne Burke, Rishika Rupam, and Zaheeda
Tshankie. Matching land conflict events to government policies via machine learn-
ing models. https://omdena.com/wp-content/uploads/2019/12/
Omdena-Land-Conflicts-Challenge-1.pdf, 2020. Accessed: 2022-12-12.
7.2

[104] Ibrahim Muter and Tevfik Aytekin. Incorporating aggregate diversity in recommender
systems using scalable optimization approaches. INFORMS Journal on Computing, 29(3):
405–421, 2017. 5.2

[105] Divya J Nair, Taha Hossein Rashidi, and Vinayak V Dixit. Estimating surplus food supply
for food rescue and delivery operations. 2017. 5.2

[106] Divya Jayakumar Nair, Hanna Grzybowska, David Rey, and Vinayak Dixit. Food res-
cue and delivery: Heuristic algorithm for periodic unpaired pickup and delivery vehicle
routing problem. Transportation Research Record, 2548(1):81–89, 2016. 5.2

[107] DJ Nair, H Grzybowska, Y Fu, and VV Dixit. Scheduling and routing models for food
rescue and delivery operations. Socio-Economic Planning Sciences, 63:18–32, 2018. 4.1, 4.2

[108] Ellen Nakashima. To thwart hackers, firms salting their servers with fake data,
2013. http://articles.washingtonpost.com/2013-01-02/world/
362116541hackers-servers-contract-negotiations. 2.1

[109] Preetam Nandy, Divya Venugopalan, Chun Lo, and Shaunak Chatterjee. A/b testing
for recommender systems in a two-sided marketplace. Advances in Neural Information

Processing Systems, 34:6466–6477, 2021. 6.2.3
[110] Thanh Hong Nguyen, Yongzhao Wang, Arunesh Sinha, and Michael P. Wellman. Decep-

tion in finitely repeated security games. In AAAI, 2019. 2.2
[111] Katja Niemann and Martin Wolpers. A new collaborative filtering approach for increas-

ing the aggregate diversity of recommender systems. In Proceedings of the 19th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 955–963,
2013. 5.2

[112] Wlodzimierz Ogryczak and Arie Tamir. Minimizing the sum of the k largest functions in
linear time. Information Processing Letters, 85(3):117–122, 2003. 3.5.1

[113] Bolanle Ojokoh. Automated online news content extraction. International Journal of

Computer Science Research and Application, 2:2–12, 01 2012. 7.2
[114] Parliament. Watering Hole Attacks, 2018. 3.3
[115] Praveen Paruchuri, Jonathan P Pearce, Janusz Marecki, Milind Tambe, Fernando Or-

donez, and Sarit Kraus. Playing games for security: An efficient exact algorithm for
solving bayesian stackelberg games. In AAMAS, 2008. 2.7

[116] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011. 7.5.1

[117] Binghui Peng, Weiran Shen, Pingzhong Tang, and Song Zuo. Learning optimal strategies

156

https://omdena.com/wp-content/uploads/2019/12/Omdena-Land-Conflicts-Challenge-1.pdf
https://omdena.com/wp-content/uploads/2019/12/Omdena-Land-Conflicts-Challenge-1.pdf
http://articles.washingtonpost.com/2013-01-02/world/36211654_1_hackers-servers-contract-negotiations
http://articles.washingtonpost.com/2013-01-02/world/36211654_1_hackers-servers-contract-negotiations

to commit to. In AAAI, 2019. 2.2
[118] Andrew Perrault, Bryan Wilder, Eric Ewing, Aditya Mate, Bistra Dilkina, and Milind

Tambe. Decision-focused learning of adversary behavior in security games. arXiv

preprint arXiv:1903.00958, 2019. 2.2
[119] Andrew Perrault, Fei Fang, Arunesh Sinha, and Milind Tambe. Ai for social impact:

Learning and planning in the data-to-deployment pipeline. AIMagazine, 41(4):3–16, 2020.
8.1

[120] Caleb Phillips, Rhonda Hoenigman, and Becky Higbee. Food redistribution as optimiza-
tion. arXiv preprint arXiv:1108.5768, 2011. 4.2, 5.2

[121] Radek Pı́bil, Viliam Lisỳ, Christopher Kiekintveld, Branislav Bošanskỳ, and Michal
Pěchouček. Game theoretic model of strategic honeypot selection in computer networks.
In GameSec. Springer, 2012. 3.2

[122] James Pita, Manish Jain, Janusz Marecki, Fernando Ordóñez, Christopher Portway,
Milind Tambe, Craig Western, Praveen Paruchuri, and Sarit Kraus. Deployed armor pro-
tection: the application of a game theoretic model for security at the los angeles inter-
national airport. In Proceedings of the 7th international joint conference on Autonomous

agents and multiagent systems: industrial track, pages 125–132. International Foundation
for Autonomous Agents and Multiagent Systems, 2008. 1

[123] Bruce Potter and Greg Day. The effectiveness of anti-malware tools. Computer Fraud &

Security, 2009. 1.1, 2.1
[124] Jean Pouget-Abadie, Kevin Aydin, Warren Schudy, Kay Brodersen, and Vahab Mirrokni.

Variance reduction in bipartite experiments through correlation clustering. Advances in
Neural Information Processing Systems, 32, 2019. 6.2.3

[125] Clara C Pratt, William M McGuigan, and Aphra R Katzev. Measuring program outcomes:
Using retrospective pretest methodology. American Journal of Evaluation, 21(3):341–349,
2000. 4.2

[126] Canice Prendergast. The allocation of food to food banks. EAI Endorsed Trans. Serious

Games, 3(10):e4, 2016. 4.1, 4.2, 5.2
[127] Niels Provos et al. A virtual honeypot framework. In USENIX Security Symposium, 2004.

2.3
[128] PwC. Operation Cloud Hopper Technical Annex, 2017. https://www.pwc.co.uk/

cyber-security/pdf/cloud-hopper-annex-b-final.pdf. 2.3
[129] D. C. Reis, P. B. Golgher, A. S. Silva, and A. F. Laender. Automatic web news ex-

traction using tree edit distance. In Proceedings of the 13th International Conference

on World Wide Web, WWW ’04, page 502–511, New York, NY, USA, 2004. Associa-
tion for Computing Machinery. ISBN 158113844X. doi: 10.1145/988672.988740. URL
https://doi.org/10.1145/988672.988740. 7.2

[130] Saharon Rosset and Ryan J Tibshirani. From fixed-x to random-x regression: Bias-
variance decompositions, covariance penalties, and prediction error estimation. Journal
of the American Statistical Association, 115(529):138–151, 2020. 8.4.1

157

https://www.pwc.co.uk/cyber-security/pdf/cloud-hopper-annex-b-final.pdf
https://www.pwc.co.uk/cyber-security/pdf/cloud-hopper-annex-b-final.pdf
https://doi.org/10.1145/988672.988740

[131] Neil C Rowe. Deception in defense of computer systems from cyber attack. In Cyber

Warfare and Cyber Terrorism. IGI Global, 2007. 2.2
[132] Neil Rubens, Mehdi Elahi, Masashi Sugiyama, and Dain Kaplan. Active learning in rec-

ommender systems. In Recommender systems handbook, pages 809–846. Springer, 2015.
5.2

[133] Bianca S Santos and Larry B Crowder. Online News Media Coverage of Sea Turtles and
Their Conservation. BioScience, 71(3):305–313, 02 2021. ISSN 0006-3568. doi: 10.1093/
biosci/biaa175. URL https://doi.org/10.1093/biosci/biaa175. 7.2

[134] Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pennock. Methods
and metrics for cold-start recommendations. In Proceedings of the 25th annual interna-

tional ACM SIGIR conference on Research and development in information retrieval, pages
253–260, 2002. 5.2

[135] Aaron Schlenker, Omkar Thakoor, Haifeng Xu, Fei Fang, Milind Tambe, Long Tran-
Thanh, Phebe Vayanos, and Yevgeniy Vorobeychik. Deceiving cyber adversaries: A game
theoretic approach. In AAMAS, 2018. 2.2, 3.2, A.2.2

[136] Zain Shamsi, Ankur Nandwani, Derek Leonard, and Dmitri Loguinov. Hershel: single-
packet os fingerprinting. In ACM SIGMETRICS Performance Evaluation Review, 2014. ??,
2.3

[137] Zheyuan Ryan Shi, Ziye Tang, Long Tran-Thanh, Rohit Singh, and Fei Fang. Designing
the game to play: optimizing payoff structure in security games. In Proceedings of the

27th International Joint Conference on Artificial Intelligence, pages 512–518. AAAI Press,
2018. 7

[138] Zheyuan Ryan Shi, Ariel D Procaccia, Kevin S Chan, Sridhar Venkatesan, Noam Ben-
Asher, Nandi O Leslie, Charles Kamhoua, and Fei Fang. Learning and planning in the
feature deception problem. In International Conference on Decision and Game Theory for

Security, pages 23–44. Springer, 2020. 1.2
[139] Zheyuan Ryan Shi, Aaron Schlenker, Brian Hay, Daniel Bittleston, Siyu Gao, Emily Pe-

terson, John Trezza, and Fei Fang. Draining the water hole: Mitigating social engineering
attacks with cybertweak. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 13363–13368, 2020. 1.2

[140] Zheyuan Ryan Shi, Claire Wang, and Fei Fang. Artificial intelligence for social good: A
survey. arXiv preprint arXiv:2001.01818, 2020. 1

[141] Zheyuan Ryan Shi, Zhiwei Steven Wu, Rayid Ghani, and Fei Fang. Bandit data-driven
optimization: Ai for social good and beyond. arXiv preprint arXiv:2008.11707, 2020. 1.2

[142] Zheyuan Ryan Shi, Yiwen Yuan, Kimberly Lo, Leah Lizarondo, and Fei Fang. Improving
efficiency of volunteer-based food rescue operations. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(8):13369–13375, 2020. 1.2, 5.2, 5.3, 8.1

[143] Zheyuan Ryan Shi, Leah Lizarondo, and Fei Fang. A recommender system for crowd-
sourcing food rescue platforms. In Proceedings of The Web Conference, 2021. 1.2

[144] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,

158

https://doi.org/10.1093/biosci/biaa175

Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A
general reinforcement learning algorithm that masters chess, shogi, and go through self-
play. Science, 362(6419):1140–1144, 2018. 1

[145] Arunesh Sinha, Debarun Kar, and Milind Tambe. Learning adversary behavior in security
games: A pac model perspective. In AAMAS, 2016. 2.2

[146] Lance Spitzner. The honeynet project: Trapping the hackers. IEEE Security & Privacy,
2003. 2.1, 2.4

[147] Ioan M Stancu-Minasian. Fractional programming: theory, methods and applications, vol-
ume 409. Springer Science & Business Media, 2012. 2.5

[148] Michael Sutton. How to protect against watering hole attacks, 2014. 3.1
[149] Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback

through counterfactual risk minimization. The Journal of Machine Learning Research, 16
(1):1731–1755, 2015. 8.2

[150] Symantec. Attackers target dozens of global banks with new malware, 2017. 3.3
[151] Liang Tang, Yexi Jiang, Lei Li, and Tao Li. Ensemble contextual bandits for personalized

recommendation. In Proceedings of the 8th ACM Conference on Recommender Systems,
pages 73–80, 2014. 5.2

[152] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition. In Proceedings of the Seventh

Conference on Natural Language Learning at HLT-NAACL 2003, pages 142–147, 2003. URL
https://aclanthology.org/W03-0419. 7.6.1

[153] Kentaro Toyama. Geek heresy: Rescuing social change from the cult of technology. Publi-
cAffairs, 2015. 5.7, 6.4

[154] Johan Ugander, Brian Karrer, Lars Backstrom, and Jon Kleinberg. Graph cluster random-
ization: Network exposure to multiple universes. In Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 329–337, 2013.
6.2.3

[155] Oriol Vinyals and Quoc Le. A neural conversational model. arXiv preprint

arXiv:1506.05869, 2015. 1
[156] Wei Wang and Bo Zeng. A two-stage deception game for network defense. In GameSec,

2018. 2.2
[157] Yufei Wang, Zheyuan Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa, and Fei

Fang. Deep reinforcement learning for green security games with real-time information.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 1401–
1408, 2019. 7

[158] Megan D Wolfson and Catherine Greeno. Savoring surplus: effects of food rescue on
recipients. Journal of Hunger & Environmental Nutrition, 2018. 5.1

[159] D.H. Wolpert. Stacked generalization. Neural networks, 1992. 4.3.2
[160] Yinglin Wu, Ling Xie, Shiang-Lin Huang, Ping Li, Zengwei Yuan, and Wenhua Liu. Using

159

https://aclanthology.org/W03-0419

social media to strengthen public awareness of wildlife conservation. Ocean & Coastal

Management, 153:76–83, 2018. 7.2
[161] Jian Xu, Kuang-chih Lee, Wentong Li, Hang Qi, and Quan Lu. Smart pacing for effective

online ad campaign optimization. In Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 2217–2226, 2015. 5.2
[162] Lily Xu, Elizabeth Bondi, Fei Fang, Andrew Perrault, Kai Wang, and Milind Tambe. Dual-

mandate patrols: Multi-armed bandits for green security. arXiv preprint arXiv:2009.06560,
2020. 8.2

[163] Amulya Yadav, Bryan Wilder, Eric Rice, Robin Petering, Jaih Craddock, Amanda
Yoshioka-Maxwell, Mary Hemler, Laura Onasch-Vera, Milind Tambe, and Darlene Woo.
Influence maximization in the field: The arduous journey from emerging to deployed
application. In Proceedings of the 16th conference on autonomous agents and multiagent

systems, pages 150–158. International Foundation for Autonomous Agents and Multia-
gent Systems, 2017. 1

[164] Rong Yang, Fernando Ordonez, and Milind Tambe. Computing optimal strategy against
quantal response in security games. In AAMAS, 2012. 2.2

[165] Rong Yang, Benjamin Ford, Milind Tambe, and Andrew Lemieux. Adaptive resource
allocation for wildlife protection against illegal poachers. In AAMAS, 2014. 2.2

[166] Yue Yin, Bo An, Yevgeniy Vorobeychik, and Jun Zhuang. Optimal deceptive strategies
in security games: A preliminary study. In AAAI Symposium on Applied Computational

Game Theory, 2014. 2.2
[167] Mi Zhang and Neil Hurley. Avoiding monotony: improving the diversity of recommen-

dation lists. In Proceedings of the 2008 ACM conference on Recommender systems, pages
123–130, 2008. 5.2

[168] Xiaoxue Zhao, Weinan Zhang, and Jun Wang. Interactive collaborative filtering. In
Proceedings of the 22nd ACM international conference on Information & Knowledge Man-

agement, pages 1411–1420, 2013. 5.2
[169] Shuran Zheng, Bo Waggoner, Yang Liu, and Yiling Chen. Active information acquisition

for linear optimization. In Uncertainty in artificial intelligence, 2018. 8.2
[170] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. Improving

recommendation lists through topic diversification. In Proceedings of the 14th interna-

tional conference on World Wide Web, pages 22–32, 2005. 5.1, 5.2

160

	1 Introduction
	1.1 Motivation
	1.2 Thesis Outline and Contributions
	1.3 A Note on Real-World Impact

	I Learning and Planning for Cybersecurity
	2 Learning and Planning in the Feature Deception Problem
	2.1 Introduction
	2.2 Related Work
	2.3 The Feature Deception Problem
	2.4 Learning the Adversary's Preferences
	2.5 Computing the Optimal Feature Configuration
	2.6 Experiments
	2.6.1 Learning
	2.6.2 Planning
	2.6.3 Combining Learning and Planning
	2.6.4 Case Study: Credit Bureau Network

	2.7 Discussion

	3 Draining the Water Hole: Mitigating Social Engineering Attacks with CyberTWEAK
	3.1 Introduction
	3.2 Related Work
	3.3 Watering Hole Attacks
	3.4 Social Engineering Deception Game
	3.5 Computing Optimal Defender Strategy
	3.5.1 Tractable Classes
	3.5.2 CyberTWEAK

	3.6 Experiments
	3.7 Deployment

	II Learning and Planning for Food Waste and Security
	4 Improving Efficiency of Volunteer-Based Food Rescue Operations
	4.1 Introduction
	4.2 Related Work
	4.3 Predicting the Claim of Rescues
	4.3.1 Feature engineering
	4.3.2 Stacking Model

	4.4 Optimizing Intervention and Notification
	4.4.1 Counterfactual claim time (CCT) estimation
	4.4.2 Solving the optimization problem

	4.5 Results
	4.5.1 Prediction
	4.5.2 Optimization

	4.6 Discussion
	4.7 Conclusion

	5 A Recommender System for Crowdsourcing Food Rescue Platforms
	5.1 Introduction
	5.2 Related Work
	5.3 Anatomy of Food Rescue Operations
	5.4 Data
	5.4.1 Positive Labels
	5.4.2 Negative Labels
	5.4.3 Feature Engineering

	5.5 Recommender System
	5.5.1 Negative Sampling
	5.5.2 Diversity and Online Planning

	5.6 Experiments
	5.6.1 Recommender System
	5.6.2 Diversity and Online Planning

	5.7 Conclusion and Future Directions

	6 The Field Deployment of Food Rescue Algorithms
	6.1 Deployment of the Generic Notification Scheme
	6.2 Rescue-Specific Notification Scheme
	6.2.1 Setting up the RCT
	6.2.2 RCT Results
	6.2.3 A Note on Interference

	6.3 Permanent Deployment
	6.4 Lessons Learned

	III Machine Learning for Conservation
	7 NewsPanda: Media Text Monitoring for Timely Conservation Actions
	7.1 Introduction
	7.2 Related Work
	7.3 NewsPanda Overview
	7.4 Dataset
	7.4.1 WHS-Corp Dataset
	7.4.2 InfraCorp Dataset

	7.5 Relevance Classification Module
	7.5.1 Classification Model
	7.5.2 Active Learning
	7.5.3 Noisy Label Correction

	7.6 Article Postprocessing Module
	7.6.1 Keyword Extractor
	7.6.2 Event Extractor
	7.6.3 Geolocation

	7.7 Experiments and Results
	7.7.1 Experiment Settings
	7.7.2 Results and Analysis
	7.7.3 Ablation Study

	7.8 Deployment and Impact
	7.8.1 Pilot Study
	7.8.2 Deployment Results
	7.8.3 Qualitative and Quantitative Comparison with Current Practice
	7.8.4 Sustainable Deployment and Broader Impact
	7.8.5 Lessons Learned

	7.9 Conclusion

	IV Learning and Planning Towards AI for Social Good
	8 Bandit Data-driven Optimization: AI for Social Good and Beyond
	8.1 Introduction
	8.2 Related Work
	8.3 Bandit Data-driven Optimization
	8.4 Algorithms and Regret Analysis
	8.4.1 With Exactly Known Objectives
	8.4.2 PROOF: Predict-then-Optimize with Optimism in Face of Uncertainty
	8.4.3 When Interventions Affect the Label Distribution
	8.4.4 PROOF Is a Modular Algorithm

	8.5 Experiment Results
	8.5.1 Numerical Simulations
	8.5.2 Food Rescue Volunteer Recommendation

	8.6 Conclusion

	9 Conclusion
	9.1 Future Directions
	9.2 Discussion

	A Appendix to Chapter 2
	A.1 Deferred Algorithms
	A.2 Exact Algorithms for Special Cases
	A.2.1 Deception cost on discrete features
	A.2.2 No budget and feasibility constraints

	A.3 Additional Experiments
	A.3.1 Experiments in the main text
	A.3.2 Experiments for the special cases

	A.4 Experiment Parameters and Hyper-parameters

	B Appendix to Chapter 3
	B.1 Deferred Algorithms
	B.1.1 Attacker's Better Response Heuristic
	B.1.2 Baseline Algorithm for P1

	B.2 Deferred Experiments
	B.3 Experiment Parameters
	B.4 Discussion

	C Appendix to Chapter 8
	C.1 Regret Bounds Using Sample Complexity Characterization
	C.2 Details of the Food Rescue Experiment
	C.2.1 Recommender System Model
	C.2.2 Training

	Bibliography

