
Comingle: Distributed Logic Programming for
Decentralized Android Applications

Edmund S. L. Lam and Iliano Cervesato
March 2015

CMU-CS-15-101
CMU-CS-QTR-125

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Carnegie Mellon University, Qatar campus.
The author can be reached at sllam@qatar.cmu.edu or iliano@cmu.edu.

Abstract

Comingle is a logic programming framework aimed at simplifying the development of applications distributed over
multiple mobile devices. Applications are written as a single declarative program (in a system-centric way) rather
than in the traditional node-centric manner, where separate communicating code is written for each participating node.
Comingle is based on committed-choice multiset rewriting and is founded on linear logic. We describe a prototype
targeting the Android operating system and illustrate how Comingle is used to program distributed mobile applications.
As a proof of concept, we discuss three distributed mobile games and one networking service orchestrated using
Comingle.

∗ This paper was made possible by grant JSREP 4-003-2-001, Effective Parallel and Distributed Programming via Join Pattern
with Guards, Propagation and More, from the Qatar National Research Fund (a member of the Qatar Foundation). The statements
made herein are solely the responsibility of the authors.

mailto:sllam@qatar.cmu.edu
mailto:iliano@cmu.edu

Keywords: Multiset Rewriting, Logic Programming, Android Mobile Programming

Contents

1 Introduction 1

2 A Motivating Example 1

3 Abstract Syntax and Semantics 3
3.1 Abstract Syntax . 3
3.2 Abstract Semantics . 4

4 Implementation 6
4.1 Compilation . 6
4.2 Runtime System . 7

5 Case Studies 8
5.1 Drag Racing . 8
5.2 Multiway Battleship . 15
5.3 WiFi-Direct Directory . 16
5.4 Swarbble . 19

6 Related Work 22

7 Future Developments and Conclusions 22

A Compiled Drag Racing Example 23

1

List of Figures

1 Pivot Swap, orchestrated by Comingle . 2
2 Abstract Syntax and Runtime Artifacts of Comingle . 3
3 Matching a Rule Head . 4
4 Processing a Rule Body . 5
5 Abstract Semantics of Comingle . 6
6 Runtime System of a Distributed Comingle Mobile Application . 7
7 Drag Racing, a Racing Game Inspired by Chrome Racer . 9
8 Creating an instance of the Drag Racing Runtime in an Android Activity 11
9 Associating Comingle Actuators to the Drag Racing Android Activity 12
10 Triggering Comingle Multiset Rewriting . 13
11 Housekeeping Code for the Comingle Runtime . 14
12 Battleship, Mid-play Screen Shot . 15
13 Multiway Battleship (Declarations) . 16
14 Multiway Battleship (Rules) . 17
15 WiFi-Direct Directory . 18
16 Swarbble, Mid-play Screen Shot . 19
17 Swarbble (Declarations) . 20
18 Swarbble (Rules) . 21
19 Drag Racing Compilation: Facts, Triggers and Actuators . 24
20 Drag Racing Compilation: Rule Compilation Example . 25

1

1 Introduction

Distributed computing, the coordination of independent computations to achieve a desired objective, has become one
of the defining technologies of modern society. We rely on it every time we use a search engine like Google, every time
we make a purchase on Amazon, in fact every time we use the Internet. In recent years, mobile distributed computing
has taken off thanks to advances in mobile technologies, from inexpensive sensors and low-energy wireless links to the
very smartphones we carry around: apps talk to each other both within a phone and across phones, connected devices
work together to make our homes safer and more comfortable, and personal health monitors combine sensor data
into a picture of our well-being. Each such system constitutes a decentralized mobile application which orchestrates
the computations of its various constituent nodes. As such applications gain in sophistication, it becomes harder to
ensure that they correctly and reliably deliver the desired behavior using traditional programming models. Specifically,
writing separate communicating programs for each participating node becomes more costly and error-prone as the need
for node-to-node coordination grows.

In this paper, we introduce Comingle, a framework aimed at simplifying the development of distributed applica-
tions over a decentralized ensemble of mobile devices. Comingle supports a system-centric style of programming,
where the distributed behavior of an application is expressed as a single program, rather than the traditional node-
centric style mentioned above. This system-centric view underlies popular frameworks such as Google Web Toolkit [2]
(for client-server web development) and Map Reduce [5] (for parallel distributed algorithms on large-scale computing
clusters). In earlier work [9, 11], we generalized this approach to a much broader class of distributed computations
by relying on a form of logic programming to orchestrate interactive distributed computations [9, 11]. Comingle
specializes this work to distributed applications running on mobile devices. Comingle is based on committed-choice
multiset rewriting extended with explicit locality [9] and multiset comprehension patterns [11]. This provides declar-
ative and concise means of implementing distributed computations, thus allowing the programmer to focus on what
computations to synchronize rather than how to synchronize them. The present work extends [9] by introducing trig-
gers and actuators to integrate the Comingle multiset rewriting runtime with traditional code from mainstream mobile
development frameworks (specifically Java and the Android SDK). This allows a developer to marry the best of both
programming paradigms, using Comingle to orchestrate distributed computations among devices and traditional native
code for computations within a device (e.g., user interface functionalities, local computations). The main contributions
of this paper are as follows:

• We detail the semantics of Comingle, in particular the use of triggers and actuators as an abstract interface
between Comingle and a device’s application runtime.

• We describe a prototype implementation of Comingle, a runtime system implemented in Java and integrated
with the Android SDK.

• As a proof of concept, we show three case-studies of distributed applications orchestrated by Comingle on the
Android SDK.

The rest of the paper is organized as follows: we illustrate Comingle by means of an example in Section 2. In
Section 3, we introduce its abstract syntax and its semantics, while Section 4 outlines our compiler and runtime
system for the Android SDK. In Section 5, we examine three case-study applications implemented in Comingle. We
discuss related works in Section 6 and make some concluding remarks in Section 7.

2 A Motivating Example

Figure 1 shows a simple Comingle program that lets two generic devices swap data that they each possess on the basis
of a pivot value P and displays on each of them the number of items swapped, all in one atomic step. This program
gives a bird eye’s view of the exchanges that need to take place — it is system-centric. Our prototype will then
compile it into the node-centric code that needs to run at each device to realize this behavior. The high-level Comingle
program in Figure 1 relies on a few functionalities expressed using the devices’ native programming support (Java
and the Android SDK in our case). Specifically, these functionalities are the two local functions, size and format,

1

1 module comingle.lib.ExtLib import {
2 size :: A -> int,
3 format :: (string,A) -> string
4 }
5

6 predicate swap :: (loc,int) -> trigger.
7 predicate item :: int -> fact.
8 predicate display :: string -> actuator.
9

10 rule pSwap :: [X]swap(Y,P),
11 { [X]item(I) | I -> Is. I <= P },
12 { [Y]item(J) | J -> Js. J >= P }
13 --o [X]display(format("Received %s items from %s", (size(Js),Y))),
14 [Y]display(format("Received %s items from %s", (size(Is),X))),
15 { [X]item(J) | J <- Js }, { [Y]item(I) | I <- Is }.

Figure 1: Pivot Swap, orchestrated by Comingle

imported in lines 1-4, and the code associated with triggers and actuators (see below). This low-level code (not
shown) implements purely local computations.

In Comingle, devices are identified by means of a location and a piece of information held at location l is repre-
sented as a located fact of the form [l]p(~t) where p is a predicate name and ~t are terms. The program in Figure 1
mentions two generic locations, X and Y, and uses the three predicates declared on lines 6-8. A located fact of the
form [l]swap(l′, P) represents l’s intent to swap data with device l′ based on the pivot value P , fact [l]item(I)
indicates that value I is held at location l, while [l]display(S) represents a message S to be shown on l’s screen.
From a system-centric perspective, the set of all located facts defines the rewriting state of the system. The rewriting
state evolves through the application of Comingle rules and indirectly by the effect of the local computation of each
device.

Lines 10-15 in Figure 1 define a Comingle rule called pSwap. We call the comma-separated expressions before
“--o” the rule heads, while the expressions after it are collectively called its body. Informally, applying a Comingle
rule to the current state rewrites an instance of its head into the corresponding instance of its body. Rule heads and body
can contain parametric facts such as [X]swap(Y,P), where X, Y and P are variables, and comprehension patterns
which stand for a multiset of facts in the rewriting state. In our example, the comprehension pattern {[X]item(I)
| I -> Is. I <= P} identifies all of X’s items I such that I <= P. Similarly, all of Y’s items J such that
J >= P are identified by {[Y]item(J) | J -> Js. J >= P}. The instances of I and J matched by each
comprehension pattern are accumulated in the variables Is and Js, respectively. Finally, these collected bindings are
used in the rule body to complete the rewriting by redistributing all of X’s selected data to Y and vice versa, as well as
invoking the appropriate display messages on X’s and Y’s screen.

Facts such as item(I) are meaningful only at the rewriting level. Facts are also used as an interface to a device’s
local computations. Specifically, facts like [l]swap(l′, P) are entered into the rewriting state by a local program
running at l and used to trigger rule applications. These trigger facts, which we underline as [l]swap(l′, P) for
emphasis, are only allowed in the heads of a rule. Dually, facts like [l]display(S) are generated by the rewriting
process for the purpose of starting a local computation at l, here displaying a message on l’s screen. This is an actuator
fact, which we underline with a dashed line, as in [l]display(S), for clarity. Each actuator predicate is associated
with a local function which is invoked when the rewriting engine deposits an instance in the state (actuators can
appear only in a rule body). For example, actuators of the form [l]display(S) are concretely implemented using
a Java callback operation (not shown here) that calls the Android SDK’s toast pop-up notification library to display
the message S on l’s screen. This callback is invoked at l every time the Comingle runtime produces an instance
[l]display(S).

By being system-centric, the code in Figure 1 lets the developer think in terms of overall behavior rather than

2

Locations: l Terms: t Guards: g Standard / trigger / actuator predicates: ps, pt, pa

Standard facts Fs ::= [l]ps(~t) Triggers Ft ::= [l]pt(~t) Actuators Fa ::= [l]pa(~t)

Facts f, F ::= Fs | Ft | Fa

Head atoms h ::= Fs | Ft

Head expressions H ::= h | *h | g+~x∈t
Comingle rule R ::= H \ H|g (B

Body atoms b ::= Fs | Fa

Body expressions B ::= b | *b | g+~x∈t
Comingle program P ::= R

Local state: [l]ψ

Rewriting state St ::= F Application state Ψ ::= [l]ψ Comingle state Θ ::= 〈St ; Ψ〉

Figure 2: Abstract Syntax and Runtime Artifacts of Comingle

reason from the point of view of each device, delegating to the compiler to deal with communication and synchroniza-
tion, two particularly error-prone aspects of distributed computing. This also enable global type-checking and other
forms of static validation, which are harder to achieve when writing separate programs. This code is also declarative,
which simplifies reasoning about its correctness and security. Finally, this code is concise: just 15 lines. A native
implementation of this example, while not difficult, is much longer.

3 Abstract Syntax and Semantics

In this section, we describe the abstract semantics of Comingle. We begin by first introducing the notations used
throughout this section. We write o for a multiset of syntactic objects o. We denote the extension of a multiset o
with an object o as “o, o”, with ∅ indicating the empty multiset. We also write “o1, o2” for the union of multisets o1
and o2. We write ~o for a tuple of o’s and [~t/~x]o for the simultaneous replacement within object o of all occurrences
of variable xi in ~x with the corresponding term ti in ~t. When traversing a binding construct (e.g., a comprehension
pattern), substitution implicitly α-renames variables as needed to avoid capture. It will be convenient to assume that
terms get normalized during substitution.

3.1 Abstract Syntax

The top part of Figure 2 defines the abstract syntax of Comingle. The concrete syntax used in the various examples
in this paper maps to this abstract syntax. Locations l are names that uniquely identify computing nodes, and the
set of all nodes participating in a Comingle computation is called an ensemble. At the Comingle level, computation
happens by rewriting located facts F of the form [l]p(~t). We categorize predicate names p into standard, trigger and
actuator, indicating them with ps, pr and pa, respectively. This induces a classification of facts into standard, trigger
and actuator facts, denoted Fs, Ft and Fa, respectively. Facts also carry a tuple ~t of terms. The abstract semantics of
Comingle is largely agnostic to the specific language of terms.

Computation in Comingle happens by applying rules of the formHp \Hs|g (B. We refer toHp andHs as the
propagated and the simplified head of the rule, to g as its guard and to B as its body. The heads and the body of a rule
consist of atoms f and of comprehension patterns of the form *f | g+~x∈t. An atom f is a located fact [l]p(~t) that
may contain variables in the terms ~t or even as the location l. Atoms in rule heads are either standard or trigger facts
(Fs or Ft), while atoms in a rule body are standard or actuator facts (Fs or Ft). Guards in rules and comprehensions
are Boolean-valued expressions constructed from terms and are used to constrain the values that the variables in a rule
can assume. Just like for terms we keep guards abstract, writing |= g to express that ground guard g is satisfiable. A
comprehension pattern *f | g+~x∈t represents a multiset of facts that match the atom f and satisfy guard g under the
bindings of variables ~x that range over t, a multiset of tuples called the comprehension range. The scope of ~x is the

3

Matching: H ,lhs St H ,lhs St

H ,lhs St H ,lhs St
′

H,H ,lhs St ,St
′

(lmset-1)

∅ ,lhs ∅
(lmset-2)

F ,lhs F
(lfact)

[~t/~x]f ,lhs F |= [~t/~x]g *f | g+~x∈ts ,lhs St

*f | g+~x∈~t,ts ,lhs St , F
(lcomp-1)

*f | g+~x∈∅ ,lhs ∅
(lcomp-2)

Residual Non-matching: H ,¬lhs St H ,¬lhs St

H ,¬lhs St H ,¬lhs St

H,H ,¬lhs St
(l¬mset-1)

∅ ,¬lhs St
(l¬mset-2)

F ,¬lhs St
(l¬fact)

F 6vlhs *f | g+~x∈ts *f | g+~x∈ts ,¬lhs St

*f | g+~x∈ts ,¬lhs St , F
(l¬comp-1)

*f | g+~x∈ts ,¬lhs ∅
(l¬comp-2)

Subsumption: F vlhs *f | g+~x∈ts iff F = θf and |= θg for some θ = [~t/~x]

Figure 3: Matching a Rule Head

atom f and the guard g. We implicitly α-rename bound variables to avoid capture. Abstractly, a Comingle program is
a collection of rules.

The concrete syntax of Comingle is significantly more liberal than what we just described. In particular, compo-
nents Hp and g can be omitted if empty. We concretely write a comprehension pattern *f | g+~x∈t as {f | ~x ->
t. g} in rule heads and {f | ~x <- t. g} in a rule body, where the direction of the arrow acts as a reminder
of the flow of information. Terms in the current prototype include standard base types such as integers and strings,
locations, term-level multisets, and lists. Its guards are relations over such terms (e.g., equality and x < y) and can
contain effect-free operations imported from the local application (e.g., size and format in Figure 1).

3.2 Abstract Semantics

We will describe the computation of a Comingle system by means of a small-step transition semantics. Its basic
judgment will have the form P B Θ 7→ Θ′ where P is a program, Θ is a state and Θ′ is a state that can be reached
in one (abstract) step of computation. A state Θ has the form 〈St ; Ψ〉. The first component St is a collection of
ground located facts [l]p(~t) and is called the rewriting state of the system. Comingle rules operate exclusively on
the rewriting state. The second component, the application state Ψ, is the collection of the local states [l]ψ of each
computing node l and captures the notion of state of the underlying computation model (the Java virtual machine in
our Android-based prototype) — it typically has nothing to do with facts. As we will see, a local computation step
transforms the application state Ψ but can also consume triggers from the rewriting state and add actuators into it.
These runtime artifacts are formally defined at the bottom of Figure 2.

We will now describe the two types of state transitions P B Θ 7→ Θ′ in Comingle: the application of a rule and a
local step — see Figure 5 for a preview.

Rewriting Steps The application of a Comingle rule Hp \ Hs | g (B involves two main operations: identifying
fragments of the rewriting state St that match the rule heads Hp and Hs, and extending the rewriting state with
the corresponding instance of the body B. We now review how these operations are formalized in the presence of
comprehension patterns and then describe how they are combined during a rewriting step (taking the guard g into

4

Unfolding Rule Body: B ≫rhs St B ≫rhs St

B ≫rhs St B ≫rhs St
′

B,B ≫rhs St ,St
′ (rmset-1)

∅ ≫rhs ∅
(rmset-2)

F ≫rhs F
(rfact)

|= [~t/~x]g [t/~x]b≫rhs F *b | g+~x∈ts ≫rhs St

*b | g+~x∈~t,ts ≫rhs F,St
(rcomp-1)

6|= [~t/~x]g *b | g+~x∈ts ≫rhs St

*b | g+~x∈~t,ts ≫rhs St
(rcomp-2)

*b | g+~x∈∅ ≫rhs ∅
(rcomp-3)

Figure 4: Processing a Rule Body

account). Further details can be found in [10].

Matching Rule Heads Let H be a (propagated or simplified) rule head without free variables — we will deal
with the more general case momentarily. Intuitively, matching H against a store St means splitting St into two parts,
St+ and St−, and checking that H matches St+ completely. The latter is achieved by the judgment H ,lhs St+

defined in the top part of Figure 3. Rules lmset-∗ partition St+ into fragments to be matched by each atom in H: plain
facts F must occur identically (rule lfact) while for comprehension atoms *f | g+~x∈ts the state fragment must contain
a distinct instance of f for every element of the comprehension range ts that satisfies the comprehension guard g (rules
lcomp-∗).

In Comingle, comprehension patterns must match maximal fragments of the rewriting state. Therefore, no com-
prehension pattern should match any fact in St−. This check is captured by the judgment H ,¬lhs St− in the bottom
part of Figure 3. Rules l¬mset-∗ tests each individual atom and rule l¬fact ignore facts. Rules l¬comp-∗ deal with com-
prehensions *f | g+~x∈ts : they check that no fact in St− matches any instance of f while satisfying g — note that the
comprehension range ts is not taken into account.

Processing Rule Bodies Applying a Comingle rule involves extending the rewriting state with the facts corre-
sponding to its body. This operation is specified in Figure 4 for a closed body B. Rules rmset-∗ go through B. Atomic
facts F are added immediately (rule rfact). Instead, comprehension atoms *f | g+~x∈ts need to be unfolded (rules
rcomp-∗): for every item ~t in ts that satisfies the guard g, the corresponding instance [~t/~x]f is added to the rewriting
state; instances that do not satisfy g are discarded.

Rule Application Rule rw ens in Figure 5 brings these ingredients together and describes a step of computation
that applies a rule Hp \ Hs | g (B. This involves identifying a closed instance of the rule obtained by means
of a substitution θ. The instantiated guard must be satisfiable (|= θg) and we must be able to partition the rewriting
state into three parts Stp, Sts and St . The instances of the propagated and simplified heads must match fragments Stp
and Sts respectively (θHp ,lhs Stp and θHs ,lhs Sts), while the remaining fragment St must be free of residual
matchings (θ(Hp, Hs) ,¬lhs St). The rule body instance θB is then unfolded (θB ≫rhs Stb) into Stb which replaces
Sts in the rewriting state.

Rule rw ens embodies a system-centric abstraction of the rewriting semantics of Comingle as it atomically accesses
facts at arbitrary locations. Indeed, it views the facts of all participating locations in the ensemble as one virtual
collection. Our prototype, discussed in Section 4, is instead based on a concurrent, node-centric model of computation,
where each node manipulates its local facts and exchanges message with other nodes. We achieve this by compiling
Comingle rules into the code that runs at each participating node. A description of this process is beyond the scope of
the present paper but can be found in [9].

5

Local transitions: 〈A;ψ〉 7→l 〈T ;ψ′〉

Comingle transitions: P B 〈St ; Ψ〉 7→ 〈St ; Ψ〉

(Hp \ Hs | g (B) ∈ P |= θg

θHp ,lhs Stp θHs ,lhs Sts θ(Hp, Hs) ,¬lhs St θB ≫rhs Stb

P B 〈Stp,Sts,St ; Ψ〉 7→ 〈Stp,Stb,St ; Ψ〉
(rw ens)

〈A;ψ〉 7→l 〈T ;ψ′〉
P B 〈St , [l]A; Ψ, [l]ψ〉 7→ 〈St , [l]T ; Ψ, [l]ψ′〉

(rw loc)

Figure 5: Abstract Semantics of Comingle

Local Steps Global rewriting steps can be interleaved by local computations at any node l. From the point of view
of Comingle, such local computations are viewed as an abstract transition 〈A;ψ〉 7→l 〈ψ′; T 〉 that consumes some
actuators A located at l, modifies l’s internal application state ψ into ψ′, and produces some triggers T . Note that
an abstract transition of this kind can (and generally will) correspond to a large number of steps of the underlying
model of computation of node l. Rule rw loc in Figure 5 incorporate local computation into the abstract semantics of
Comingle. Here, we write [l]A for a portion of the actuators located at l in the current rewriting state — there may be
others. We similarly write [l]T for the action of locating each trigger in T at l.

Rule rw loc enforces locality by drawing actuators strictly from l and putting back triggers at l. In particular,
local computations at a node cannot interact with other nodes. Hence, communication and orchestration can only
occur through rewriting steps, defined by rule rw ens. Note also that, since local transitions are kept abstract and are
parametrized by a location, rule rw loc accommodates ensembles that comprise devices based on different underlying
models of computation.

4 Implementation

We now describe our Comingle prototype. In Section 4.1, we highlight the compilation phase, while Section 4.2
discusses the runtime system. Source code and examples are available for download at https://github.com/
sllam/comingle.

4.1 Compilation

The Comingle front-end compiler consists of a typical lexer and parser, type-checker, an intermediate language pre-
processor and a code generator, all implemented in Python. The type-checker enforces basic static typing of Comingle
programs via a constraint solving approach adapted from [15] that allows for concise syntax highlight of type error
sites. This is achieved by having the type-checker generate typing constraints with additional bookkeeping data to
pinpoint the syntax fragments responsible for each error. Satisfiability of these typing constraints are determined by
an SMT solver library built on top of Microsoft’s Z3 [4]. Our SMT solver library includes an extension to reason
about set comprehensions [13] which we use for optimizations involving comprehension patterns. An example is the
selection of the indexing structures used by the Comingle runtime to carry out multiset matching with the best possible
asymptotic time complexity [11]. Once a program has been statically checked, the compiler first applies a high-level
source-to-source transformation [9] that converts a class of system-centric Comingle programs into node-centric rules.
In addition to preserving soundness, the resulting node-centric program explicitly implements the communications
and synchronizations that are required to correctly orchestrate the distributed execution of multi-party Comingle rules
among a group of participating devices. Details of this choreographic transformation are out of the scope of this paper,
but can be found in [9]. Finally, the code generator produces Java code that implements multiset matching as specified
by the node-centric encodings. This generated matching code uses a compilation scheme formalized in [11] that first

6

https://github.com/sllam/comingle
https://github.com/sllam/comingle

Figure 6: Runtime System of a Distributed Comingle Mobile Application

compiles node-centric code into a sequence of procedural operations, each of which implements a part of the matching
and unfolding operations described in Section 3.2. Details of this compilation scheme can be found in [11].

4.2 Runtime System

Figure 6 illustrates the organization of a running Comingle ensemble. Within each mobile device, the Comingle
runtime has three components: a rewriting runtime that executes compiled rewrite rules, an application runtime that
performs all local operations on the mobile device, and a network middleware that provides the basic communication
primitives between the mobile devices. In the rest of this section, we highlight the important features of each of these
components.

Rewriting Runtime The rewriting runtime implements an operational semantics [10] which is sound with respect to
the abstract semantics highlighted in Section 3. This operational semantics implements rule rw ens on the node-centric
rewriting rules resulting from the compilation process. In particular, it performs matching by incrementally processing
atoms in a rule head on the basis of newly added facts. This execution model is highly compatible with our setup, where
multiset rewriting is driven by external triggers generated by the local application runtime. This operational semantics
also exploits the committed-choice nature of the abstract semantics and selects an optimal execution orderings. Facts
are matched to rule heads in top-down, left-to-right order, while facts in a rule body are processed left to right. The
actions associated with actuators are executed in order of rule application. Each instance of the rewriting runtime is
single-threaded, which entails that actuations invoked on the same device are guaranteed to be sequentially consistent
with respect to the local ordering of rule application.

The rewriting runtime is implemented as a set of Java libraries. During compilation, the code generator produces
Java code sprinkled with calls to functions from these libraries. Matching, for instance, is realized through various

7

library functions that manipulate the data structures that implement the rewriting state St , supporting multi-index
storage for efficiently querying facts. Communication is realized by other library calls that interface with the network
middleware to send and receive facts to and from other participating instances of Comingle. Other library functions
allows the rewriting runtime to call actuators that affects the local application runtime. Furthermore, the rewriting
runtime exposes interface functions to the local application to carry out administrative commands (e.g., start or stop
rewriting) as well as interfaces to add user-defined triggering facts to the rewriting runtime. These interface functions,
called by the rewriting runtime, are engineered to be abstract and they make no assumptions about the local application
calling them, and hence can be customized for various platforms.

Application Runtime The application runtime is the Android application that implements rule rw loc, performing
all the local operations on the mobile device, from screen rendering to managing callback routines invoked by user
input (e.g., keystrokes, taps on the display). It is implemented in Java with the Android SDK, but also uses a library
(distributed as part of Comingle) that concretizes the interface functions that the rewriting runtime invokes. Its purpose
is to allow the application developer to integrate locally-defined functions into Comingle rewriting rules (as shown in
Figure 1). Specifically, it includes a set of predefined actuation callback methods for the Android SDK. The current
prototype only supports three built-in primitive actuators (display a toast message, cause a delay in milliseconds, play
a note), but interfaces to the Comingle runtime allow the application developer to implement his/her own domain-
specific actuators. The application runtime also include libraries that implement boilerplate routines that help the
developer integrate the Comingle rewriting runtime to an Activity of the Android SDK.

Network Middleware As shown in Figure 6, the network middleware provides the underlying communication sup-
port between devices running Comingle. We have implemented a concrete instance that utilizes Android’s WiFi-Direct
network protocol to establish connections and send and receive facts between mobile devices. It includes libraries that
implement an asynchronous first-in-first-out message sending and receiving service on top of basic network sockets,
and libraries that maintains, on each participating location, an active IP address directory of the local ad-hoc network.
This allows a group of mobile devices to setup an ad-hoc WiFi-Direct network, and supports peer-to-peer communi-
cation between any two devices of the group.

5 Case Studies

In this section, we describe four mobile applications we have implemented using the Comingle framework on the
Android SDK. Three of them are multi-player games whose game logic and distributed behavior are orchestrated by the
Comingle runtime, while the user interfaces are implemented locally using traditional Android SDK libraries. A fourth
is a lower-level networking service that we provides support to other Comingle applications. For the first example
(Drag Racing), we show the Comingle program that orchestrates the distributed computations of the application, as
well as the details of how the Drag Racing Comingle runtime is integrated into the Android application that implements
local computations.

5.1 Drag Racing

Drag Racing is a simple multi-player game inspired by a Google Chrome experiment called Chrome Racer [7]. A
number of players compete to reach the finish line of a linear racing track. The device of each player shows a distinct
segment of the track, and the players advance their car by tapping on their screen. The initial configuration for a three-
player instance is shown in Figure 7.1 In Chrome Racer, the devices interact via a dedicated server. By contrast, the
devices in our Drag Racing game communicate with each other directly, without the need of a third party to manage
coordination.

1In Chrome Racer, the track loops around so that each device shows two segments. While we could easily achieve this effect, our linear “drag”
racing variant suffices to demonstrate Comingle’s ability to orchestrate distributed computations.

8

1 module comingle.lib.ExtLib import {
2 mset :: [A] -> A.
3 }
4

5 module comingle.dragracing.RacerLib import {
6 makeChain :: (A,[A]) -> ({(A,A)},A).
7 }
8

9 predicate initRace :: [loc] -> trigger.
10 predicate startRace :: trigger.
11 predicate sendTap :: trigger.
12 predicate exiting :: loc -> trigger.

13 predicate at :: loc -> fact.
14 predicate rmAt :: loc -> fact.
15 predicate next :: loc -> fact.
16 predicate last :: fact.
17 predicate all :: loc -> fact.

18 predicate renderTrack :: [loc] -> actuator.
19 predicate release :: actuator.
20 predicate recvTap :: loc -> actuator.
21 predicate has :: loc -> actuator.
22 predicate decWinner :: loc -> actuator.
23

24 rule init :: [I]initRace(Ls)
25 --o {[A]next(B)|(A,B)<-Cs}, [E]last(),
26 {[I]has(P), [P]all(Ps), [P]at(I), [P]renderTrack(Ls) | P<-Ps}
27 where (Cs,E) = makeChain(I,Ls), Ps = list2mset(Ls).
28

29 rule start :: [X]all(Ps) \ [X]startRace() --o {[P]release()|P<-Ps}.
30

31 rule tap :: [X]at(Y) \ [X]sendTap() --o [Y]recvTap(X).
32

33 rule trans :: [X]next(Z) \ [X]exiting(Y), [Y]at(X)
34 --o [Z]has(Y), [Y]at(Z).
35

36 rule win :: [X]last() \ [X]all(Ps), [X]exiting(Y)
37 --o {[P]decWinner(Y) | P <- Ps}.

Figure 7: Drag Racing, a Racing Game Inspired by Chrome Racer

9

The Comingle Program An initial configuration such as the one in Figure 7 is generated when rule init is exe-
cuted. Its head is the trigger fact [I]initRace(Ls), where node I will hold the initial segment of the track and
Ls lists all locations participating in the game (including I). Several actions need to take place at initialization time,
all implemented by the body of init. First, the participating locations need to be arranged into a linear chain starting
at I. This is achieved by the local function makeChain in the guard (Cs,E) = makeChain(I,Ls) where Cs
is instantiated to a multiset of logically adjacent pairs of locations and E to the end of the chain. The guard Ps =
list2mset(Ls) converts the list Ls into a multiset Ps. Second, each node other than E needs to be informed of
which location holds the segment of the track after it, while E needs to be told that it has the finishing segment: this
is achieved by the atoms {[A]next(B) | (A,B) <- Cs} and [E]last(), respectively. Third, each location
(P<-Ps) needs to be informed of who the players are ([P]all(Ps)) and of the fact that its car is currently at I
([P]at(I)), and it needs to be instructed to render the lane of all players ([P]renderTrack(Ls)). Fourth,
location I needs to be instructed to draw the car of all the players ([I]has(P)). The facts renderTrack and
has are actuators since they cause a local computation in the form of screen display. Because the instances of the
last four predicate forms are determined by the same multiset (Ps), Comingle allows combining them into a single
comprehension pattern.

At this point the game has been initialized, but it has not started yet. The race starts the first time a player X taps
his/her screen. This has the effect of depositing the trigger [X]startRace() in the rewriting state, which enables
rule start. Its body broadcasts the actuator [P]release() to every node P, which has the effect of informing P’s
local runtime that subsequent taps will cause its car to move forward. This behavior is achieved by rule tap, which
is triggered at any node X by the fact [X]sendTap(), generated by the application runtime every time X’s player
taps his/her screen. The trigger [X]exiting(Y) is generated when the car of player Y reaches the right-hand side
of the track segment on X’s device. If the track continues on player Z’s screen ([X]next(Z)), rule trans hands
Y’s car over to Z by ordering Z to draw it on his/her screen ([Z]has(Y)) and by informing X of the new location of
his/her car ([Y]at(Z)). Notice that, because fact [Y]at(X) is in the simplified head of the rule, it gets consumed.
If instead X holds the final segment of the track ([X]last()) when the trigger [X]exiting(Y) materializes,
Y’s victory is broadcast to all participating locations ({[P]decWinner(Y) | P <- Ps}). Besides displaying a
banner, it disables moving one’s car by tapping the screen.

Integration with Java and Android SDK We now show the details of how the the Drag racing Comingle code
in Figure 7 is integrated into the actual Android application, implemented in Java and the Android SDK library, that
runs on a user’s mobile device. The full code for this Android project (including the other examples shown in this
section) are available on the Comingle Github repository at https://github.com/sllam/comingle/tree/
master/android_apps

Each Comingle program is compiled into a Java class that extends RewriteMachine of the Comingle runtime
library. This super class provides the basic functionality and general interfaces that allows Comingle programs to be
executed as background daemon routines (e.g., start and stop administrative operations, generic query interfaces
to retrieve intermediate states of the fact stores). Each generated instance of this class concretely implement multiset
matching routines, internally executed by the Comingle runtime. For the Drag Racing program, the compiler generates
Dragracing.java containing the class Dragracing that implements the multiset rewriting specified by the Drag
Racing Comingle program. The generated class is independent from the Android SDK library, hence can be easily
adapted to execute on any machine equipped with a Java virtual machine. Excerpts of the resulting code are displayed
in Appendix A.

Our Comingle runtime library includes APIs that allows developers to implement such simulated executions, to
facilitate unit testing of Comingle programs. To allow easy integration with the Android SDK library, our runtime li-
brary also includes APIs that specializes Comingle runtime instances for decentralized execution on Android devices.
The current implementation provides this support in the form of a wrapper class WifiDirectComingleRuntime,
that implements decentralized execution of Comingle programs over the WiFi-Direct network. As shown in Figure 8,
we first create an instance of the class WifiDirectComingleRuntime in the activity’s onCreate method (lines
6-7). As inputs, the developer provides (1) a reference to the host Android activity (this) in which the Comingle
runtime is running on, (2) the subclass of the RewriteMachine to create (Dragracing.class), (3) a string identifier
of the Drag Racing application ("comingle.example.dragracing") and (4) two port numbers for administra-

10

https://github.com/sllam/comingle/tree/master/android_apps
https://github.com/sllam/comingle/tree/master/android_apps

1 @Override
2 public void onCreate(Bundle savedInstanceState) {
3

4 ... // Other non-Comingle related initialization operations
5

6 dragracingRuntime =
7 new WifiDirectComingleRuntime<Dragracing>
8 (this, Dragracing.class, "comingle.example.dragracing",
9 DR_ADMIN_PORT, DR_FACT_PORT);

10 dragracingRuntime.initWifiDirectEnvironent();
11

12 dragracingRuntime.addLocalNodeInfoAvailableListener
13 (new LocalNodeInfoAvailableListener() {
14 public void doLocalNodeInfoAvailableAction
15 (NodeInfo local, final int role) {
16 startDragRacingRewriteMachine();
17 }
18 });
19 }

Figure 8: Creating an instance of the Drag Racing Runtime in an Android Activity

tive (DR ADMIN PORT) and fact data (DR FACT PORT) messages. Network sockets with these port numbers will be
opened during the execution of this Comingle runtime. The call to initWifiDirectEnvironment() at line 8
initializes the Comingle network middleware by subscribing to channels that listen on WiFi-Direct connection events
(via BroadcastReceiver of the Android SDK) and by opening network sockets that convey administrative mes-
sages between participating devices. This results in a background routine that maintains an active directory service (as
shown in Figure 15) for each participating device that runs this application, facilitating peer-to-peer IP socket commu-
nication between any participating device. Our library allows the programmer to choose between two implementations
of this directory service: one implemented purely in Java, while the other in Java and orchestrated by Comingle. See
Section 5.3 for a brief comparison. Lines 10-14 adds a listener routine onto the Comingle runtime that is triggered
when the mobile device has successfully connected to a WiFi-Direct group running the Drag Racing application.

This listener runs the operation startDragRacingRewriteMachine() defined in Figure 9 that initializes
the Drag Racing Comingle runtime. First (line 2) the call to initRewriteMachine() sets up the communication
sockets of the Comingle runtime. The next sequence of operations (lines 4-27) define the actuators of the Drag
Racing Comingle runtime by linking each to a concrete method of the Drag Racing Android activity. For instance,
actuator renderTrack is associated with a concrete Java method of the same name in lines 4-7, and this Java
method (code omitted) draws the track onto the an active canvas on the main view of the Android activity. Similarly,
each of the four other actuators of the Drag Racing runtime are mapped to Java methods that implement their respective
side-effects. The code for these methods is omitted as it implements routine visualization functionalities that are not
central to this report (e.g., rendering sprites on a canvas and other front-end user interface routines). Finally, the
Drag Racing Comingle runtime is started when the method startRewriteMachine() (line 29) is called. After
startDragRacingRewriteMachine() has successfully executed, the Comingle runtime instance is ready to
orchestrate the Drag Racing game with participating devices.

Figure 10 show the methods of the Drag Racing Android activity that calls the four triggers of the Drag Rac-
ing Comingle program. Lines 1-8 implements the onTouch operation embedded in the touch listener of the main
View of the activity. This operation simply sends a trigger fact sendTap() to the Comingle runtime by call-
ing the method addSendTap() of the Comingle runtime (line 4). Lines 10-24 implements a standard Android
application action bar options menu, which contains two buttons that are initially invisible: an ‘init’ button refer-
enced by R.id.action init that adds the trigger fact initRace (line 15), and a ‘go’ button referenced by

11

1 private void startDragRacingRewriteMachine() {
2 dragracingRuntime.initRewriteMachine();
3

4 ActuatorAction<LinkedList<Integer>> renderTrackAction =
5 new ActuatorAction<LinkedList<Integer>>() {
6 public void doAction(LinkedList<Integer> locs) {
7 renderTrack(locs);
8 }
9 };

10 dragracingRuntime.getRewriteMachine()
11 .setRenderTrackActuator(renderTrackAction);
12

13 ActuatorAction<Unit> releaseAction =
14 new ActuatorAction<Unit>() {
15 public void doAction(Unit arg0) { release(); }
16 };
17 dragracingRuntime.getRewriteMachine()
18 .setReleaseActuator(releaseAction);
19

20 ActuatorAction<Integer> recvTapAction =
21 new ActuatorAction<Integer>() {
22 public void doAction(Integer player_idx) {
23 tap(player_idx);
24 }
25 };
26 dragracingRuntime.getRewriteMachine()
27 .setRecvTapActuator(recvTapAction);
28

29 ActuatorAction<Integer> hasAction =
30 new ActuatorAction<Integer>() {
31 public void doAction(Integer player_idx) {
32 addPlayer(player_idx);
33 }
34 };
35 dragracingRuntime.getRewriteMachine().setHasActuator(hasAction);
36

37 ActuatorAction<Integer> decWinnerAction =
38 new ActuatorAction<Integer>() {
39 public void doAction(Integer winner) {
40 declareWinner(winner);
41 }
42 };
43 dragracingRuntime.getRewriteMachine()
44 .setDecWinnerActuator(decWinnerAction);
45

46 dragracingRuntime.startRewriteMachine();
47 }

Figure 9: Associating Comingle Actuators to the Drag Racing Android Activity

12

1 public boolean onTouch(View v, MotionEvent event) {
2 switch(event.getAction()) {
3 case MotionEvent.ACTION_DOWN:
4 if (!released()) {
5 dragracingRuntime.getRewriteMachine().addSendTap();
6 }
7 return true;
8 }
9 return true;

10 }
11

12 public boolean onOptionsItemSelected(MenuItem item) {
13 int id = item.getItemId();
14 switch (id) {
15 case R.id.action_init:
16 LinkedList<Integer> locs = dragracingRuntime.getDirectory()
17 .getLocations();
18 dragracingRuntime.getRewriteMachine().addInitRace(locs);
19 setMenuItemVisibility(R.id.action_go, true);
20 setMenuItemVisibility(R.id.action_start, false);
21 return true;
22 case R.id.action_go:
23 dragracingRuntime.getRewriteMachine().addStartRace();
24 return true;
25 }
26 return super.onOptionsItemSelected(item);
27 }
28

29 public void moveCar(Car car, int time_prev, int time_curr) {
30 Paint bg_paint = new Paint();
31 bg_paint.setColor(BG_COLOR);
32 track_canvas.drawRect(car.getSprite(), bg_paint);
33 int new_pos = RacerLib.newPos(car.getSprite().left,
34 time_prev, time_curr);
35 if (new_pos < TRACK_LENGTH) {
36 car.move(new_pos);
37 track_canvas.drawRect(car.getSprite(), car.getPaint());
38 } else {
39 removeCar(car.getOwner());
40 dragracingRuntime.getRewriteMachine()
41 .addExiting(car.getOwner());
42 }
43 }

Figure 10: Triggering Comingle Multiset Rewriting

13

1 protected void onResume() {
2 ... // Other non-Comingle related onResume operations
3 dragracingRuntime.registerReceiver();
4 }
5

6 protected void onPause() {
7 ... // Other non-Comingle related onPause operations
8 dragracingRuntime.unregisterReceiver();
9 }

10

11 protected void onDestroy() {
12 ... // Other non-Comingle related onDestroy operations
13 dragracingRuntime.close();
14 }
15

16 protected void setupNotifications() {
17 dragracingRuntime.addDirectoryChangedListener(
18 new DirectoryChangedListener() {
19 public void doDirectoryChangedAction
20 (final List<NodeInfo> new_peers, List<NodeInfo> added_nodes,
21 final List<NodeInfo> dropped_nodes, int role) {
22 if(dropped_nodes.size() > 0) {
23 postAlert("Player Dropped", "A player has dropped out!");
24 }
25 }
26 });
27 }

Figure 11: Housekeeping Code for the Comingle Runtime

R.id.action go that adds the trigger fact startRace (line 20). The ‘go’ button is only made visible after the
‘init’ button is clicked. The ‘init’ button is also initialized so that it is visible to the group owner only. Finally, on lines
26-38 we show the main sprite animation method of the activity, which adds a trigger fact exiting (line 36) to the
Comingle runtime, when a particular car has reached the end of a track.

Figure 11 shows the remaining fragments of code in the Drag Racing application that references the Comingle
runtime. The call to registerReceiver() (line 3) within the onResume method of the Android activity simply
registers the WifiDirectComingleRuntime instance to the Android event notification framework. This allows
the Comingle runtime to listen and watch for events like addition of a new device in the WiFi-Direct group. The call
to unRegisterReceiver() (line 8) unregisters the Comingle runtime when the Android application is inactive.
The call to close() (line 13) closes all network sockets of the Comingle runtime, in preparation for the termination
of the Android application. Finally, the method setupNotifications() adds a listener that subscribes to the
event where the Comingle peer-to-peer directory has changed. This listener posts an alert message to notify the user
in the event of a player dropping out from the game.

This concludes all that an Android developer needs to do to integrate the Comingle runtime to the Android applica-
tion: the problem of orchestrating and coordinating mobile devices to run the Drag Racing game is entirely specified in
the Comingle program (Figure 7). In fact, the only remaining Java code of the Android application are (1) the omitted
code containing local computations of the actuators shown in Figure 9 and (2) a library function RacerLib.newPos
that computes new positions of sprites used at line 30 of Figure 10. This local computation code constitute the bulk
of the Java code that implements the Android application.

14

Figure 12: Battleship, Mid-play Screen Shot

5.2 Multiway Battleship

Multiway Battleship extends the classic battleship game with support for more than just two players. Each player
begins with an equal assortment of battleships of varying sizes, randomly placed on a two-dimensional grid of cells.
The players then take turns selecting an opponent’s cell and firing at it. A battleship is sunk when each cell it resides
in is hit at least once. The winner of the game is the last player with at least one unsunk ship. Figure 12 shows the
screens of a two-player instance.

Figures 13 and 14 shows a Comingle program that that orchestrates this game. Rule init initializes an instance of
the game. Its head is the trigger [I]initGame(Ships,Ps), where node I is the player who will fire the first shot,
Ships lists the number of ships of each kind, and Ps is the multiset of device locations playing the game. Its body
informs I that it is its turn to play by means of the fact [I]turn() and inserts the actuator [I]notifyTurn()
which posts a notification on I’s display and enables touchscreen input. The body of init also constructs a round
robin sequence of facts [A]next(B), distributes the location of all participants ([P]all(Ps)), and deposits the
actuator [P]randomFleet(Ships) at each node P. The application layer of P will service this actuator by
generating a random placement of the fleet in Ships at node P and by installing triggers [P]empty(X,Y) and
[P]hull(S,X,Y) to indicate that cell (X,Y) is empty or contains a portion of ship S, respectively.

The trigger [A]fireAt(D,X,Y) is added to the rewriting state when player A fires at cell (X,Y) of player D.
It enables rule shoot, but only if it is A’s turn. This results in the fact [D]blast(A,X,Y) added at D’s. This rule
also passes the turn to the next player ([A]next(B)) by asserting the fact [B]turn() and causing a notification
on B’s display ([B]notifyTurn()).

The next three rules implement the possible outcomes of such a shot. Specifically, if cell (X,Y) is empty, rule
miss renders an appropriate animation on A’s and B’s display via the actuator missed(A,D,X,Y). If ship S
is (partially) in cell (X,Y), rule goodHit replaces the fact [D]hull(S,X,Y)) with [D]damage(S,X,Y) and
informs A and D of this event via the actuator hit(A,D,X,Y). If a damaged hull is hit again, rule dmgHit generates
the hit(A,D,X,Y) actuators once more.

Rule sunk handles the sinking of a ship S. It is enabled if there is at least one fact [D]damaged(S,X,Y) in the

15

1 module comingle.lib.ExtLib import {
2 union :: ({A},{A}) -> {A}.
3 size :: {A} -> int.
4 makeRRChain :: {A} -> {(A,A)}.
5 }
6

7 predicate initGame :: ((int,int,int),[loc]) -> trigger.
8 predicate fireAt :: (loc,int,int) -> trigger.
9 predicate empty :: (int,int) -> trigger.

10 predicate hull :: (string,int,int) -> trigger.
11

12 predicate blastAt :: (loc,int,int) -> fact.
13 predicate next :: loc -> fact.
14 predicate turn :: fact.
15 predicate all :: {loc} -> fact.
16 predicate damaged :: (string,int,int) -> fact.
17 predicate checkFleet :: fact.
18 predicate dead :: loc -> fact.
19

20 predicate randomFleet :: (int,int,int) -> actuator.
21 predicate notifyTurn :: actuator.
22 predicate missed :: (loc,loc,int,int) -> actuator.
23 predicate hit :: (loc,loc,int,int) -> actuator.
24 predicate sunk :: (loc,loc,string,{(int,int)}) -> actuator.
25 predicate notifyDead :: loc -> actuator.
26 predicate notifyWinner :: loc -> actuator.

Figure 13: Multiway Battleship (Declarations)

rewriting state. It then checks that S has no intact fragment ({[D]hull(S,W,V)|(W,V)->Hs} | size(Hs)=0),
collects the coordinates of the other hit fragments ({[D]damaged(S,X’,Y’)|(X’,Y’)->Ds’}), notifies each
player that S has sunk ({[P]sunk(D,S,Ds)|P<-Ps}), and issues the fact [D]checkFleet() to check if the
game is over for D. The function insert inserts an element in a multiset.

If at least one [D]checkFleet() fact is present, rule deadFleat similarly checks that no ship fragment is
intact ({[D]hull(S,W,V)|(S,W,V)->Hs} | size(Hs)=0) and if this is the case it informs all players of D’s
annihilation with {[P]notifyDead(D), [P]dead(D) | P<-Ps}. Finally, rule winner is executed by the
winning player D when it can ascertain that all other players are dead ([D]all(Ps) {[D]dead(O) | O->Os}
where Ps=insert(D,Os)).

5.3 WiFi-Direct Directory

WiFi-Direct Directory is an implementation of a networking service built on top of the Android SDK WiFi-Direct
library. In the WiFi-Direct protocol, one device is designated as the owner of a newly established group. The owner
can obtain the IP address of each device in the group from its network middleware, but the other members only know
the owner’s IP address and location. This means that, initially, the group owner can communicate with all members but
the members can only communicate with the owner. WiFi-Direct Directory disseminates and maintains an IP address
table on each node of the group in order to enable peer-to-peer IP socket communication.

Figure 15 shows the Comingle program that orchestrates this service. Once the group has been established, the
triggers [O]startOwner(C) and [M]startMember(C) are entered in the rewriting state of the owner and of
each other member M, respectively. The argument C identifies the application this group is for (e.g., one of the two

16

27 rule init :: [I]initGame(Ships,Ps)
28 --o [I]turn(), [I]notifyTurn(), {[A]next(B) | (A,B)<-Cs},
29 {[P]all(Ps), [P]randomFleet(Ships) | P <- Ps}
30 where Cs = makeRRchain(Ps).
31

32 rule shoot :: [A]next(B) \ [A]turn(), [A]fireAt(D,X,Y)
33 --o [D]blastAt(A,X,Y), [B]turn(), [B]notifyTurn().
34

35 rule miss :: [D]empty(X,Y) \ [D]blastAt(A,X,Y)
36 --o [D]missed(A,D,X,Y), [A]missed(A,D,X,Y).
37

38 rule goodHit :: [D]blastAt(A,X,Y), [D]hull(S,X,Y)
39 --o [D]damaged(S,X,Y), [D]hit(A,D,X,Y), [A]hit(A,D,X,Y).
40

41 rule dmgHit :: [D]damaged(S,X,Y) \ [D]blastAt(A,X,Y)
42 --o [D]hit(A,D,X,Y), [A]hit(A,D,X,Y).
43

44 rule sunk :: [D]all(Ps) \
45 [D]damaged(S,X,Y), {[D]damaged(S,X’,Y’)|(X’,Y’)->Ds’}
46 {[D]hull(S,W,V)|(W,V)->Hs} | size(Hs)=0
47 --o {[P]sunk(D,S,Ds)|P<-Ps}, [D]checkFleet()
48 where Ds = insert((X,Y), Ds’).
49

50 rule deadFleet :: [D]all(Ps), [D]checkFleet(), {[D]checkFleet()},
51 {[D]hull(S,W,V)|(S,W,V)->Hs} | size(Hs)=0
52 --o {[P]notifyDead(D), [P]dead(D) | P<-Ps}.
53

54 rule winner :: [D]all(Ps), {[D]dead(O) | O->Os} | Ps=insert(D,Os)
55 --o {[P]notifyWinner(D) | P<-Ps}.

Figure 14: Multiway Battleship (Rules)

games seen earlier) — the WiFi-Direct protocols allows a node to be part of at most one group at any time. Rule
owner initializes the owner by adding the facts [O]owner(C) that sets O’s role as the owner of the group for
application C and [O]joined(O) that identifies it as having joined the group. Rule member simply sets M’s role as
a group member ([M]member(C)).

The runtime of a member M also periodically generates triggers [M]connect(N) where N is the device’s screen
name — this is to protect against message losses while the group owner bootstraps. Rule connect turn this trigger
into the request [O]joinRequest(C,N,M) to be sent to the owner O — the library function ownerLoc retrieves
the owner of the current group, which is initially available to all members. This request is processed in rule join: the
owner O checks that a join request by the same member has not been serviced already ([O]joinRequest(C,N,M)
| notIn(M,Ms)), it then records M as having joined the group ([O]joined(M)), sends its location, IP address
and screen name (D = (M,IP,N)) to the active members ({[M’]added(D)|M’<-Ms}). This same information
is sent to M ([M]added(D)) as well as information about each active member ({[M]added(D’)|D’<-Ds}). The
actuator [X]added(D) updates node X’s internal routing table with entry D and the actuator [M]connected()
stops the issuance of the triggers [M]connect(N).

The last two rules handle a member M leaving the group, which is initiated by trigger [M]quit(). If this member
is the owner, rule quitO dismantles the group and send the actuator ownerQuit() to each active member. If M is a
regular member, rule quitM consumes M’s [O]joined(M) fact, notifies all other members to remove M’s entry from
their local directory ({[M’]removed(M)|M’<-Ms}) and instructs M’s runtime to delete its entire local directory

17

1 module comingle.lib.ExtLib import {
2 not :: bool -> bool
3 }
4

5 module p2pdirectory.WifiDirectComingleDirectory import {
6 ownerLoc :: int -> loc.
7 lookupIP :: loc -> string.
8 retrieveDir :: int -> {(loc,string,string)}.
9 }

10

11 predicate startOwner :: string -> trigger.
12 predicate startMember :: string -> trigger.
13 predicate quit :: trigger.
14 predicate connect :: string -> trigger.
15

16 predicate joined :: loc -> fact.
17 predicate member :: string -> fact.
18 predicate owner :: string -> fact.
19 predicate joinRequest :: (string,string,loc) -> fact.
20 predicate exit :: loc -> fact.
21

22 predicate added :: (loc,string,string) -> actuator.
23 predicate removed :: loc -> actuator.
24 predicate connected :: actuator.
25 predicate ownerQuit :: actuator.
26 predicate deleteDir :: actuator.
27

28 rule owner :: [O]startOwner(C) --o [O]owner(C), [O]joined(O).
29 rule member :: [M]startMember(C) --o [M]member(C).
30

31 rule connect :: [M]member(C) \ [M]connect(N)
32 --o [O]joinRequest(C,N,M) where O = ownerLoc().
33

34 rule join :: [O]owner(C), {[O]joined(M’)|M’->Ms},
35 \ [O]joinRequest(C,N,M) | notIn(M,Ms)
36 --o {[M’]added(D)|M’<-Ms}, {[M]added(D’)|D’<-Ds},
37 [M]added(D), [O]joined(M), [M]connected()
38 where IP = lookupIP(M), D = (M,IP,N), Ds = retrieveDir().
39

40 rule quitO :: [O]owner(C), [O]quit(), {[O]joined(M)|M->Ms}
41 --o {[M]ownerQuit()|M<-Ms} .
42

43 rule quitM :: {[O]joined(M’)|M’->Ms.not(M’ = M)}
44 \ [M]member(C), [M]quit(), [O]joined(M)
45 --o {[M’]removed(M)|M’<-Ms}, [M]deleteDir().

Figure 15: WiFi-Direct Directory

18

Figure 16: Swarbble, Mid-play Screen Shot

([M]deleteDir()).
In our current implementation, each Comingle runtime bootstraps an instance of this Comingle program, to main-

tain an active directory of the IP addresses of its peers. In all, this peer-to-peer directory Comingle application is
written in 53 lines of Comingle codes (shown in Figure 15) and 154 lines of Java codes (in one Java class). This
is a significant simplification from an earlier implementation written purely in Java (also available from our GitHub
repository), which is had 694 lines of Java codes (in 10 Java classes).

5.4 Swarbble

Swarbble is a distributed word game loosely inspired to Scrabble. The game is played by two-teams of smartphone-
toting players. A bird-eye view of a game of Swarbble is shown in Figure 16. Each player has a rack of randomly
generated letters at the bottom of his or her screen, and a series of words in the top part. During the game, a player
inserts letters from the rack at the beginning, end, or between any two letters of any of those words — he/she can also
make an entirely new word on an empty row. If a word extended in this way is valid, the player can throw it at an
opponent, thereby freeing a slot in his/her screen and filling a free slot on that opponent’s screen. The goal of the game
is to flood the screen of each player in the other team with words: a player is booted out of the game when every slot
in his/her screen has a word; a team wins when all the players on the other team are booted out. Players on the same
team can rely on one another to prevent a member from being booted out: a player overwhelmed with words can seek
help from his teammates, who can transfer one of his words, selected at random, to her own screen.

19

1 module comingle.lib.ExtLib import {
2 size :: {A} -> int.
3 }
4

5 predicate initGame :: ({loc},{loc},int) -> trigger.
6 predicate throwNew :: (loc,string) -> trigger.
7 predicate throwOld :: (loc,string,string) -> trigger.
8 predicate relief :: loc -> trigger.
9

10 predicate setup :: ({loc},{loc},int) -> fact.
11 predicate checkWords :: fact.
12 predicate checkWin :: fact.
13 predicate word :: string -> fact.
14 predicate max :: int -> fact.
15 predicate ally :: loc -> fact.
16 predicate opp :: loc -> fact.
17

18 predicate topUpRack :: actuator.
19 predicate helpMe :: loc -> actuator.
20 predicate refresh :: actuator.
21 predicate win :: actuator.
22 predicate booted :: actuator.

Figure 17: Swarbble (Declarations)

Figure 18 shows the Comingle program that orchestrates the distributed behavior of Swarbble. A node I initializes
the game by selecting the maximum number M of words that can appear on a player’s screen before he/she is booted
(this act as the level of the game) and the two teams Ps and Qs out (I may be in one of them, or may act as a dis-
interested third-party). This information is entered into I’s rewrite state as the trigger [I]initGame(Ps,Qs,M),
which enables rule init. This rule simply sends the facts [A]setup(As,Bs,M) to each player A in Ps and Qs,
where As are the other players on A’s team and Bs are the players on the other team. Notice the syntactic shortcut
Ps-{P} which computes the multiset obtained from Ps by removing element P (if present).

Each fact [X]setup(As,Os,M) is used in rule setup to initialize the device of player X. It adds the facts
[X]ally(A) and [X]opp(O) for each teammate A in As and for each opponent O in Os, respectively, and records
the word limit M in fact [X]max(M). The actuator [X]topoffRack() randomly selects letters to complete the
rack of player X (since this is the beginning of the game, this has the effect of generating X’s entire rack). The actuator
[X]refresh() invokes a screen refresh method that displays X’s current list of words (which is initially empty), its
teammates and its adversaries. When invoked, this method is able to notice changes in these lists, rendering them with
appropriate animations.2

The next rule, throwNew, is executed once a player X has generated a new word from the letters in his or
her rack and has performed the gesture to throw it at an opponent O. This has the effect of depositing the trigger
[X]throwNew(O,NewWd) in X’s rewriting state. The body of the rule inserts the facts [O]word(NewWd) and
[O]checkWords() and the actuator [O]refresh() into O’s rewriting state. The first fact makes the new word
NewWd available to O while the second is used to determine if O is to be booted out or can call for help (see below).
Rule throwOld is used similarly when a player X extends an existing word Wd and throws it to opponent O: the
trigger is now [X]throwOld(O,Wd,NewWd), word Wd needs to be consumed from X’s rewriting state, and the
actuator [X]refresh() is added to assess X’s state of play.

A fact [X]checkWords() is used by rules allGood, help and boot depending on the number w of words at
2The current implementation of Comingle allows the application runtime to access collections of facts maintained by the Comingle runtime.

These collections can be attached to UI display interfaces of the Android SDK for example by using ListFragment.

20

23 rule init :: [I]initGame(Ps,Qs,M)
24 --o {[P]setup(Ps-{P},Qs,M) | P <- Ps},
25 {[Q]setup(Qs-{Q},Ps,M) | Q <- Qs}.
26

27 rule setup :: [X]setup(As,Os,M)
28 --o {[X]opp(O) | O <- Os}, {[X]ally(A) | A <- As}, [X]max(M),
29 [X]topoffRack(), [X]refresh().
30

31 rule throwNew :: [X]opp(O) \ [X]throwNew(O,NewWd)
32 --o [O]word(NewWd), [O]checkWords(),
33 [X]topoffRack(), [O]refresh().
34

35 rule throwOld :: [X]opp(O) \ [X]throwOld(O,Wd,NewWd), [X]word(Wd)
36 --o [O]word(NewWd), [O]checkWords(), [X]checkWords(),
37 [X]topoffRack(), [X]refresh(), [O]refresh().
38

39 rule allGood :: {[X]word(Wd) | Wd -> Wds}, [X]max(M)
40 \ [X]checkWords() | size(Wds) < M-3
41 --o 1.
42

43 rule help :: {[X]ally(A) | A -> As}, {[X]word(Wd) | Wd -> Wds},
44 [X]max(M)
45 \ [X]checkWords() | M-3 <= size(Wds), size(Wds) < M
46 --o {[A]helpMe(X) | A <- As}.
47

48 rule relief :: [A]ally(X) \ [A]relief(X), [X]word(Wd)
49 --o [A]word(Wd), [X]checkWords(), [A]checkWords(),
50 [X]refresh(), [A]refresh().
51

52 rule boot :: {[X]ally(A) | A -> As}, {[X]opp(O) | O -> Os},
53 {[X]word(Wd) | Wd -> Wds}, [X]max(M),
54 [X]checkWords() | size(Wds) >= M
55 --o [X]booted(), {[A]refresh() | A <- As},
56 {[O]refresh(), [O]checkWin() | O <- Os}.
57

58 rule win :: [X]checkWin(), {[X]opp(O) | O -> Os} | size(Os) = 0
59 --o [X]win().

Figure 18: Swarbble (Rules)

21

X in relation to the maximum M held in fact [X]max(M). If w is less than M-3, rule allGood simply discards it. If
w is between M-3 and M, rule help to ask X’s teammates for help by depositing the actuator helpMe(X) in each of
their states. If a teammate A decides to help, the trigger [A]relief(X) will be deposited in its state. Rule relief
will pick a word Wd at random from X and transfer it to A’s state. Both players will be issued new checkWords()
facts and refresh() actuators.

If the number of words at X is greater or equal to the maximum allowed, rule boot arranges for X’s demise by
consuming all game facts at X, and issuing triggers [X]booted() at X and refresh() at each teammate A and
opponent O. The first actuator will display a notice telling X it has been booted from the game. This rule also deposits
a fact [O]checkWin() at each opponent.

The last rule, win, uses the fact [X]checkWin() to declare X’s team the winner whenever all the players in the
opposing team have been booted. The trigger [X]win() displays an appropriate animation.

6 Related Work

To the best of our knowledge, Comingle is the first framework to introduce the logic programming paradigm to the
development of applications on modern mobile devices. However, it draws from work on distributed and parallel
programming languages for decentralized micro-systems, which we now review.

Comingle is greatly influenced by Meld [1], a logic programming language initially designed for programming
distributed ensembles of communicating robots. It used the Blinky Blocks platform [8] as a proof of concept to
demonstrate simple ensemble programming behaviors. Meld was based on a variant of Datalog extended with sensing
and action facts. Recent refinements [3] extended Meld with comprehension patterns and linearity, but refocused it on
distributed programming of multicore architectures.

Sifteo [14] is an interactive system that runs an array of puzzle games on Lego-like cubes. Each cube is equipped
with a small LCD screen and various means of interaction with the user (e.g., tilting, shaking) and is capable of
sensing alignments with neighboring cubes. Developers can implement new games in C/C++ via the Sifteo SDK.
Sifteo’s decentralized and interactive setup makes it a suitable target platform for Comingle.

The Comingle language is a descendant of CHR [6], a logic programming language targeting traditional constraint
solving problems. Comingle extends it with multiset comprehension, explicit locations, triggers and actuators.

7 Future Developments and Conclusions

In this paper, we introduced Comingle, a distributed logic programming language for orchestrating decentralized en-
sembles. It is designed to simplify the development of interactive applications and to provide a high-level programming
abstraction for coordinating distributed computations. As proof of concept, we described four distributed games or-
chestrated by Comingle and running on Android mobile devices. By segregating all communication and coordination
events in a few rules, it promotes a system-centric, declarative style of programming a distributed application, which
simplifies detecting errors and ensuring correctness.

In the immediate future, we intend to expand the language capabilities to capture recurrent synchronization patterns
and enrich the programming primitives available at the Comingle level. We will also extend the library support
for developing applications that integrate with the Comingle rewriting runtime, and possibly target platforms other
than Android. In particular, we want to explicitly support application rendering subroutines by maintaining dynamic
“views” that can be directly attached to user interface fragments (e.g., ListFragment of the Android SDK).

References

[1] M.P. Ashley-Rollman, P. Lee, S.C. Goldstein, P. Pillai, and J. D. Campbell. A Language for Large Ensembles of
Independently Executing Nodes. In ICLP ’09, July 2009.

22

[2] P. Chaganti. Google Web Toolkit GWT Java AJAX Programming: A Step-by-step to Google Web Toolkit for
Creating Ajax Applications Fast. Packt Publishing, 2007.

[3] F. Cruz, R. Rocha, S.C. Goldstein, and F. Pfenning. A linear logic programming language for concurrent pro-
gramming over graph structures. In ICLP’14, Vienna, Austria, 2014.

[4] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS’08/ETAPS’08, pages 337–340, Berlin,
Heidelberg, 2008. Springer.

[5] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. In OSDI04. USENIX
Association, 2004.

[6] T. Frühwirth. Constraint Handling Rules. In Constraint Prog., pages 90–107, 1994.

[7] New York Google. Chrome Racer, A Chrome Experiment. http://www.chrome.com/racer, 2013.

[8] B.T. Kirby, M. Ashley-Rollman, and S.C. Goldstein. Blinky blocks: A physical ensemble programming platform.
In CHI’11, pages 1111–1116, New York, NY, USA, 2011. ACM.

[9] E.S.L. Lam and I. Cervesato. Decentralized Execution of Constraint Handling Rules for Ensembles. In PPDP’13,
pages 205–216, Madrid, Spain, 2013.

[10] E.S.L. Lam and I. Cervesato. Constraint Handling Rules with Multiset Comprehension Patterns. In CHR’14,
2014.

[11] E.S.L. Lam and I. Cervesato. Optimized Compilation of Multiset Rewriting with Comprehensions. In APLAS’14,
pages 19–38. Springer LNCS 8858, 2014.

[12] E.S.L. Lam and I. Cervesato. Optimized Compilation of Multiset Rewriting with Comprehensions (Full-Version).
Technical Report CMU-CS-14-119, Carnegie Mellon, June 2014.

[13] E.S.L. Lam and I. Cervesato. Reasoning about Set Comprehension. In SMT’14, 2014.

[14] D. Merrill and J. Kalanithi. Sifteo, Interactive Game Cubes. https://www.sifteo.com/cubes, 2009.

[15] P.J. Stuckey, M. Sulzmann, and J. Wazny. Interactive Type Debugging in Haskell. In Haskell’03, pages 72–83,
New York, NY, USA, 2003. ACM.

A Compiled Drag Racing Example

In this appendix, we show some key fragments of the Java class generated by the compilation of the Drag Racing ex-
ample. This Java class, Dragracing extends the RewriteMachine class that implements the Comingle runtime.
The DragRacing class specializes this runtime to execute decentralized multiset rewriting as specified by the Drag
Racing Comingle program. The complete code generated by the compiler is available at https://github.com/
sllam/comingle/tree/master/android_apps/CoMingleDragRacing and consists of 1808 lines.

Figure 19 shows a fragment of the DragRacing Java class related to the representation of facts and the triggering
and actuation interfaces. Each predicate (standard, trigger or actuator) of the Drag racing Comingle program is repre-
sented as an inner Java class that extends the DragracingFact class. Figure 19 shows the inner classes InitRace
and StartRace that represents the predicates of the same name in the Comingle program. The application runtime
interacts with the Drag Racing rewriting machine by adding triggers by interface methods such as addInitRace
also shown in Figure 19. These methods add a new fact of the respective kind and its input parameters to an inter-
nal queue. When such a fact is processed, the compiled rules are used to determine the incremental changes to the
rewriting state it determines.

Figure 20 shows a fragment of such a compiled rule. The method execute startrace join ordering 1
implements a matching routine that is invoked by the addition of the trigger fact StartRace. This matching routine

23

http://www.chrome.com/racer
https://www.sifteo.com/cubes
https://github.com/sllam/comingle/tree/master/android_apps/CoMingleDragRacing
https://github.com/sllam/comingle/tree/master/android_apps/CoMingleDragRacing

1 public class Dragracing extends RewriteMachine {
2

3 abstract class DragracingFact extends Fact { ... }
4 public class InitRace extends DragracingFact { ... }
5 public class StartRace extends DragracingFact { ... }
6

7 ...
8

9 public void addInitRace(LinkedList<Integer> arg1) {
10 intro(new InitRace(myLocation,arg1));
11 }
12 public void addStartRace() {
13 intro(new Go(myLocation));
14 }
15 public void addSendTap() {
16 intro(new SendTap(myLocation));
17 }
18 public void addExiting(int arg1) {
19 intro(new Exiting(myLocation,arg1));
20 }
21

22 ...
23

24 public void setRenderTrackActuator
25 (ActuatorAction<LinkedList<Integer>> action) {
26 setActuator(Actuations.rendertrack, action);
27 }
28 public void setReleaseActuator(ActuatorAction<Unit> action) {
29 setActuator(Actuations.release, action);
30 }
31 public void setRecvTapActuator(ActuatorAction<Integer> action) {
32 setActuator(Actuations.recvtap, action);
33 }
34 public void setHasActuator(ActuatorAction<Integer> action) {
35 setActuator(Actuations.has, action);
36 }
37 public void setDecWinnerActuator(ActuatorAction<Integer> action) {
38 setActuator(Actuations.decwinner, action);
39 }
40

41 ...
42 }

Figure 19: Drag Racing Compilation: Facts, Triggers and Actuators

24

1 public class Dragracing extends RewriteMachine {
2 ...
3 // rule start :: [X]all(Ps) [X]startRace() --o {[P]release()|P<-Ps}.
4 ...
5 protected boolean execute_startrace_join_ordering_1(StartRace act) {
6 int x;
7 SimpMultiset<Integer> ls;
8 int l;
9 // Join Task: Active #H0 [X]startRace()

10 x = act.loc;
11 // Join Task: LookupAtom #H1 8:0:hash<[+]all(-)|.> X [X]all(Ls)
12 StoreIter<All> candidates_1 =
13 all_store_0.lookup_candidates(index0All(x));
14 All cand_1 = candidates_1.get_next_alive();
15 while(cand_1 != null) {
16 int x1;
17 x1 = cand_1.loc;
18 ls = cand_1.arg1;
19 if (true) {
20 // Join Task: DeleteHead #H0
21 // H0 is active and monotone, no delete required
22 // Join Task: IntroCompre Remote NoPrior Mono L Ls [L]release()
23 SimpMultiset<Integer> comp_0 = ls;
24 for(int idx=0; idx<comp_0.size(); idx++) {
25 l = comp_0.get(idx);
26 send(new Release(l));
27 }
28 startrace_rule_count++;
29 return false;
30 }
31 cand_1 = candidates_1.get_next_alive();
32 }
33 return true;
34 }
35 ...
36 }

Figure 20: Drag Racing Compilation: Rule Compilation Example

attempts to apply the start rule of the Drag Racing Comingle program by matching the StartRace fact to a
compatible all fact. A Comingle rule is compiled into a set of methods like this, each corresponding to one of the
rule’s head. Details of this compilation scheme is out of the scope of this technical report, but are available in [11, 12].

25

	Introduction
	A Motivating Example
	Abstract Syntax and Semantics
	Abstract Syntax
	Abstract Semantics

	Implementation
	Compilation
	Runtime System

	Case Studies
	Drag Racing
	Multiway Battleship
	WiFi-Direct Directory
	Swarbble

	Related Work
	Future Developments and Conclusions
	Compiled Drag Racing Example

