
Optimized Compilation of Multiset Rewriting with
Comprehensions

Edmund S. L. Lam and Iliano Cervesato
June 2014

CMU-CS-14-119
CMU-CS-QTR-122

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Carnegie Mellon University, Qatar campus.
The author can be reached at sllam@qatar.cmu.edu or iliano@cmu.edu.

Abstract

We extend the rule-based, multiset rewriting language CHR with multiset comprehension patterns. Multiset compre-
hension provides the programmer with the ability to write multiset rewriting rules that can match a variable number of
entities in the state. This enables implementing algorithms that coordinate large amounts of data or require aggregate
operations in a declarative way, and results in code that is more concise and readable than with pure CHR. We call this
extension CHRcp . In this paper, we formalize the operational semantics of CHRcp and define a low-level optimizing
compilation scheme based on join ordering for the efficient execution of programs. We provide preliminary empirical
results that demonstrate the scalability and effectiveness of this approach.

∗ This paper was made possible by grant NPRP 09-667-1-100, Effective Programming for Large Distributed Ensembles, from
the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of
the authors.

mailto:sllam@qatar.cmu.edu
mailto:iliano@cmu.edu

Keywords: Multiset Rewriting, Logic Programming, Comprehension, Compilation

Contents

1 Introduction 1

2 Motivating Examples 1
2.1 Pivoted Swapping . 1
2.2 Computing Aggregates from Multisets of Constraints . 2
2.3 Hyper-Quicksort . 3
2.4 Distributed Minimal Spanning Tree . 4

3 Syntax and Notation 5

4 Operational Semantics of CHRcp 6
4.1 Semantics of Matching of CHRcp . 7
4.2 Rule Body Application and Monotonicity . 8
4.3 Operational Semantics . 8

5 Compiling CHRcp Rules 9
5.1 Introducing CHRcp Join Ordering . 10
5.2 Bootstrapping for Active Comprehension Head Constraints . 12
5.3 Uniqueness Enforcement . 12

6 Representing CHRcp Join Orderings 13

7 Building CHRcp Join Orderings 15

8 Executing Join Orderings 16
8.1 Abstract Machine Execution . 17
8.2 Example of Join Ordering Compilation . 19

9 Correctness of the CHRcp Abstract Matching Machine 22
9.1 Valid Matching Contexts and States . 22
9.2 Termination . 24
9.3 Soundness . 25
9.4 Completeness . 26

10 Operational Semantics with Join Ordering Execution 27

11 Prototype and Preliminary Empirical Results 28

12 Related Work 30

13 Conclusion and Future Works 30

A Proofs 31

B Experiment Program Code 35
B.1 Pivot Swap . 35

1

B.2 Distributed Minimal Spanning Tree . 36
B.3 Hyper-Quicksort . 36

2

List of Figures

2.1 Hyper-Quicksort . 3
2.2 GHS Algorithm (Distributed Minimal Spanning Tree) . 4
3.1 Abstract Syntax of CHRcp . 5
4.1 Semantics of Matching in CHRcp : C̄ ,lhs St C ,lhs St 6
4.2 Rule Body Application and Unifiability of Comprehension Patterns 7
4.3 Execution States and Auxiliary Meta-operations . 9
4.4 Operational Semantics of CHRcp . 10
5.1 Optimal Join Ordering for p1 (E ,Z) : 1 . 11
5.2 Optimal Join Ordering for *p2 (Y ,C ,D) | D ∈̇Ws,C > D+(C ,D)∈Ds : 2 12
5.3 Uniqueness Checks: Optimal Join Ordering for p(D0) : 1 . 13
6.1 Indexing Directives . 14
7.1 Building Join Ordering from CHRcp Head Constraints . 16
7.2 Measuring Cost of Join Ordering . 17
8.1 LHS Matching States and Auxiliary Operations . 18
8.2 Execution of CHRcp Join Ordering . 19
8.3 Join Ordering Comparison for GHS Algorithm, mrg rule . 20
9.1 More Auxiliary Operations . 22
9.2 State Progress Ranking Function . 25
9.3 Example of Incompleteness of Matching . 26
10.1 Operational Semantics of CHRcp with Join Ordering Execution . 28
11.1 Preliminary Experimental Results . 29
B.1 Pivot Swap . 36
B.2 GHS Algorithm (Distributed Minimal Spanning Tree) . 37
B.3 Hyper-Quicksort with Comprehensions . 38
B.4 Hyper-Quicksort with Standard Rules . 39

1

1 Introduction

CHR is a logic constraint programming language based on forward-chaining and committed choice multiset rewriting.
This provides the user with a highly expressive programming model to implement complex programs in a concise and
declarative manner. Yet, programming in a pure forward-chaining model is not without its shortfalls. Expressive as
it is, when faced with algorithms that operate over a dynamic number of constraints (e.g., finding the minimum value
satisfying a property or finding all constraints in the store matching a particular pattern), a programmer is forced to
decompose his/her code over several rules, as a CHR rule can only match a fixed number of constraints. Such an
approach is tedious, error-prone and leads to repeated instances of boilerplate code, suggesting the opportunity for a
higher form of abstraction. This paper develops an extension of CHR with multiset comprehension patterns [2, 9].
These patterns allow the programmer to write multiset rewriting rules that can match dynamically-sized constraint sets
in the store. They enable writing more readable, concise and declarative programs that coordinate large amount of
data or use aggregate operations. We call this extension CHRcp .

In previous work [6], we presented an abstract semantics for CHRcp and concretized it into an operational seman-
tics. This paper defines a compilation scheme for CHRcp rules that enables an optimized execution for this operational
semantics. This compilation scheme, based on join ordering [5], determines an optimal sequence of operations to carry
out the matching of constraints and guards. This ordering is optimal in that it utilizes the most effective supported in-
dexing methodologies (e.g., hash map indexing, binary tree search) for each constraint pattern and schedules guard
condition eagerly, thereby saving potentially large amounts of computation by pruning unsatisfiable branches as early
as possible. The key challenge of this approach is to determine such an optimal ordering and to infer the set of lookup
indices required to execute the given CHRcp program with the best possible asymptotic time complexity. Our work
augments the approach from [5] to handle comprehension patterns, and we provide a formal definition of this com-
pilation scheme and an abstract machine that implements the resulting compiled CHRcp programs. Altogether, this
report makes the following contributions:

• We define a scheme that compiles CHRcp rules into optimal join orderings.

• We formalize the corresponding CHRcp abstract matching machine.

• We prove the soundness of this abstract machine with respect to the operational semantics.

• We provide preliminary empirical results to show that a practical implementation of CHRcp is possible.

The rest of the report is organized as follows: Section 2 introduces CHRcp by examples and Section 3 gives its
syntax. In Section 4, we describe an operational semantics for CHRcp . In Section 5, we highlight examples of our
compilation scheme, and Section 6 introduces the target of compilation: Join orderings. Section 7 builds optimal join
orderings of CHRcp rules. Section 8 defines the abstract state machine and Section 9 establishes correctness results.
Section 10 combines join ordering compilation into the operational semantics. In Section 11 we present preliminary
empirical results. Section 12 situates CHRcp in the literature and Section 13 outlines directions of future work.

2 Motivating Examples

In this section, we illustrate the benefits of comprehension patterns in multiset rewriting with some examples. A
comprehension pattern *p(~t) | g+~x∈t represents a multiset of constraints that match the atomic constraint p(~t) and
satisfy guard g under the bindings of variables ~x that range over the elements of the comprehension domain t.

2.1 Pivoted Swapping

Consider the problem of two agents wanting to swap data based on a pivot value. We express an integer datum D
belonging to agent X by the constraint data(X ,D). The state of this dynamic system is represented by a multiset of
constraints, the constraint store. Given agents X and Y and pivot value P , we want all of X’s data with value greater

1

than or equal to P to be transferred to Y and all of Y ’s data less than P to be transferred to X . The following CHRcp

rule implements this pivot swap procedure:

pivotSwap @
swap(X ,Y ,P)
*data(X ,D) | D ≥ P+D∈Xs

*data(Y ,D) | D < P+D∈Ys

⇐⇒ *data(Y ,D)+D∈Xs

*data(X ,D)+D∈Ys

The swap is triggered by the constraint swap(X ,Y ,P) in the rule head on the left of ⇐⇒. All of X’s data that
are greater than or equal to the pivot P are identified by the comprehension pattern *data(X ,D) | D ≥ P+D∈Xs .
Similarly, all of Y ’s data less than P are identified by *data(Y ,D) | D < P+D∈Ys . The instances of D matched by
each comprehension pattern are accumulated in the comprehension domains Xs and Ys , respectively. Finally, these
collected bindings are used in the rule body on the right of ⇐⇒ to complete the rewriting by redistributing all of
X’s selected data to Y and vice versa. The CHRcp semantics enforces the property that each comprehension pattern
captures a maximal multiset of constraints in the store, thus guaranteeing that no data that is to be swapped is left
behind.

Comprehension patterns allow the programmer to easily write rules that manipulate dynamic numbers of con-
straints. To this point, consider how the above program would be written in pure CHR (without comprehension
patterns). To do this, we are forced to explicitly implement the operation of collecting a multiset of data constraints
over several rules. We also need to introduce an accumulator to store bindings for the matched facts as we retrieve
them. A possible implementation of this nature is as follows:

init @ swap(X ,Y ,P) ⇐⇒ grabGE(X ,P ,Y , []), grabLT (Y ,P ,X , [])

ge1 @ grabGE(X ,P ,Y ,Ds), data(X ,D)⇐⇒ D ≥ P | grabGE(X ,P ,Y , [D | Ds])
ge2 @ grabGE(X ,P ,Y ,Ds) ⇐⇒ unrollData(Y ,Ds)
lt1 @ grabLT (Y ,P ,X ,Ds), data(Y ,D) ⇐⇒ D < P | grabLT (Y ,P ,X , [D | Ds])
lt2 @ grabLT (Y ,P ,X ,Ds) ⇐⇒ unrollData(X ,Ds)

unroll1 @ unrollData(L, [D | Ds]) ⇐⇒ unrollData(L,Ds), data(L,D)
unroll2 @ unrollData(L, []) ⇐⇒ true

In a CHR program with several subroutines of this nature, such boilerplate code gets repeated over and over, making
the program verbose. Furthermore, the use of list accumulators and auxiliary constraints (e.g., grabGE , unrollData)
makes the code less readable and more prone to errors. Most importantly, the swap operation as written in CHRcp is
atomic while the above CHR code involves many rewrites, which could be interspersed by applications of other rules
that operate on data constraints.

2.2 Computing Aggregates from Multisets of Constraints

Comprehension patterns also promote a concise way of coding term-level aggregate computations: using a compre-
hension pattern’s ability to retrieve a dynamic number of constraints, we can compute aggregates with term-level map
and reduce operations over multisets of terms. Consider the following CHRcp rule:

removeNonMin @
remove(Gs), *edge(X ,Y ,W) | X ∈ Gs+(X ,Y ,W)∈Es

⇐⇒

Es 6= ∅
Ws = *W +(X ,Y ,W)∈Es

Wm = R min∞Ws
Rs = *(X ,Y ,W) | Wm < W +(X ,Y ,W)∈Es

*edge(X ,Y ,W)+(X ,Y ,W)∈Rs

where min = λx. λy. if x ≤ y then x else y

This CHRcp rule identifies the minimum weight Wm from a group Gs of edges in a directed graph and deletes all
edges in that group with weight Wm. Note that there could be several such minimal edges. We represent an edge of
weightW between nodesX and Y with the constraint edge(X ,Y ,W). The fact remove(Gs) identifies the group Gs
whose outgoing edges are the subject of the removal. The minimum weight Wm is computed by collecting all edges

2

find median @
*data(X,D)+D∈Ds
findMedian(X)

⇐⇒ median(X , computeMedian(Ds))

leader reduce @ leaderLinks(G) ⇐⇒ count(G) ≤ 1 | true

leader expand @
median(X ,M)
leaderLinks(X ,G)

⇐⇒ (Gl ,Gg) = split(G)
Gg = * ,Z +

*partnerLink(Y ,W ,M ,X)+(Y ,W)∈zip(Gl,Gg)

spawnLeaders(X ,Z ,Gl ,Gg , count(Gl))

swap @
partnerLink(X ,Y ,M ,L)
*data(X ,D) | D ≥ M +D∈Xs

*data(Y ,D) | D < M +D∈Ys

⇐⇒
spawnCounter(L, 1)
*data(X ,D)+D∈Ys

*data(Y ,D)+D∈Xs

spawn @
spawnLeaders(X ,Z ,Gl ,Gg ,L)
*spawnCounter(I)+I∈Cs

⇐⇒ count(Cs) = L
findMedian(X), leaderLinks(X ,Gl)
findMedian(Z), leaderLinks(Z ,Gg)

Figure 2.1: Hyper-Quicksort

with origin in a node in Gs (constraint *edge(X ,Y ,W) | X ∈ Gs+(X ,Y ,W)∈Es), extracting their weight into the
term-level multiset Ws (with Ws = *W +(X ,Y ,W)∈Es) and folding the binary function min over all of Ws by means
of the term-level reduce operator R (constraint Wm = R min∞Ws). The term-level multiset Rs collects the edges
with weight strictly greater than Wm (constraint Rs = *(X ,Y ,W) | Wm < W +(X ,Y ,W)∈Es).

2.3 Hyper-Quicksort

Figure 2.1 shows an implementation of the distributed sorting algorithm, Hyper-Quicksort, in CHRcp . Given that the
constraint data(X ,D) represents an integer value D located at node X , the Hyper-Quicksort algorithm sorts values
D across all nodes such that given any two nodes X and Y can be globally ordered. By globally ordered, we mean
that values in X are either strictly all less than equal, or strictly more than values in Y . We assume that initially,
there are 2n nodes where n is an integer. Initially, one node (say X) is arbitrarily chosen as the leader with all nodes
in the program in G, represented by the constraint leaderLinks(X ,G). It is also accompanied by the constraint
find median(X). The first rule median implements the sub-routine of finding the median of all values within a
node X . We rely on the function computemedian to compute the actual median value, while the rule itself defines
the values Ds to be included in this median. The rule leader reduce implements the terminal case when a node
X is the leader of a singleton group (i.e., count(G) == 1). Note that count(G) returns the size of the collection
G. The rule leader expand implements the recursive case of this algorithm. Given we have leader X of group G
(i.e., leaderLink(X ,G)) and the median value median(X ,M), this rule does the following: (1) splitting G into two
halves (i.e., Gl and Gg), establish swapping links between unique pairs Y and W , across the groups Gl and Gg . This
is implemented and represented by constraint swapLink(Y ,W ,M ,X)). MedianM and the current leaderX are kept
as auxiliary data whose purpose is discussed later. (2) arbitrarily selecting a node Z in Gg (line 10, via the function
pickone), seeds a future procedure that spawns nodes X and Z as new leaders of groups Gl and Gg respectively (
represented by spawnLeaders(X ,Z ,Gl ,Gg , count(Gl))). The rule swap implements the actual swapping of data
between two nodes X and Y . This rule is similar to the comprehension-version of the pivot swap code in Figure B.1
with the exception that it adds an auxiliary counter spawnCounter(L). The final rule spawn implements the spawning
of new leaders X and Z of groups Gl and Gg , each of size L (spawnLeaders(X ,Z ,Gl ,Gg ,L)). This rule stages the
spawning of the leaders only after all swaps have been executed, by means of counting spawnCounter constraints.
Once execution of this program terminates, data(X ,D) constraints are swapped to a configuration that satisfies the
required global sorting order of nodes.

3

find @
level(X ,L)
findMWOE (X , Is)
*edge(I ,O ,V) | I ∈̇ Is+(I ,O,V)∈Is

⇐⇒
Es 6= ∅
(Im ,Om ,Vm) = R min (⊥,⊥,∞) Es
Rs = *(I ,O ,V) | Vm 6= V +(I ,O,V)∈Es

foundMWOE (X , Is)
*edge(I ,O ,V)+(I ,O,V)∈Rs

combine(Om ,X ,L, Im ,Om ,Vm)

cmb1 @

combine(X ,Y ,L,O , I ,V)
combine(Y ,X ,L, I ,O ,V)
level(X ,L)
level(Y ,L)

⇐⇒ merge(X ,Y , I ,O ,V)
level(X ,L + 1)

cmb2 @
level(X ,L1)
combine(X ,Y ,L2 , I ,O ,V)

⇐⇒ L1 > L2
level(X ,L1)
merge(X ,Y , I ,O ,V)

mrg @

merge(X ,Y , Im ,Om ,Vm)
foundMWOE (X , Is1)
foundMWOE (Y , Is2)
*edge(I ,O ,V) | I ∈̇ Is1 ,O ∈̇ Is2 +(I ,O,V)∈Es1

*edge(I ,O ,V) | I ∈̇ Is2 ,O ∈̇ Is1 +(I ,O,V)∈Es2

⇐⇒

findMWOE (X , *Is1 , Is2 +)
forward(Y ,X)
mstEdge(Im ,Om ,Vm)
mstEdge(Om , Im ,Vm)

fwd @
forward(O1 ,O2)
combine(O1 ,X ,L, I ,O ,V)

⇐⇒ forward(O1 ,O2)
combine(O2 ,X ,L, I ,O ,V)

Figure 2.2: GHS Algorithm (Distributed Minimal Spanning Tree)

2.4 Distributed Minimal Spanning Tree

Next, we consider a slightly more engaging CHRcp program which faithfully implements the GHS algorithm, a
distributed algorithm to compute a minimal spanning tree [4]. An edge of the graph between nodes I and O of weight
V is represented by the constraint edge(I,O, V). We assume an undirected weighted graph where all edges have a
unique weight, hence we maintain the invariant that each occurrence of edge(I,O, V) must be accompanied by an
occurrence of edge(O, I, V).

We begin with a brief and informal description of the GHS algorithm: the algorithm begins with the undirected
graph (edge(O, I, V)) fully constructed. Each node X is assigned a level initially set to zero (level(X, 0)). Each node
X is also the set as the leader of the singleton component that consists of itself, represented by findMWOE(X, *X+).

The algorithm proceeds by having each component X find its minimum weighted outgoing edge (MWOE) that
connects it to another component Y . NodeX will then send a request to combine with Y (combine(X,Y, L,O, I, V)),
with O, I and V the edge that links X and Y , and L the level of X . If both X and Y send the combine request to
each other and are at the same level, X and Y are combined into a new component, X is (arbitrarily) chosen as the
new leader, and the level of the new component is incremented by one. If instead, component X receives a combine
request from a component Y with a lower level, X will combine with Y with its level retained. In either case, the
edge (MWOE) in which the combine request traveled along is marked as an edge of the minimum spanning tree and
the new combined component will repeat the steps above. If the original graph is connected, the algorithm reaches
quiescence once we have a single component, during which we have assembled the minimal spanning tree.

Figure B.2 illustrates the CHRcp implementation of this algorithm. The find rule implements the task of lo-
cating the MWOE of a component. This is triggered by findMWOE(X, Is) where X is the leader of compo-
nent that consists of locations in Is , and results in the sending a combine request over the component’s MWOE

4

Variables: x Predicates: p Rule names: r Primitive terms: tα Occurrence index: i

Terms: t ::= tα | t̄ | *t | g+~x∈t
Guards: g ::= t = t | t ∈̇ t | t < t | t ≤ t | t > t | t ≥ t | g ∧ g

Atomic Constraints: A ::= p(~t)
Comprehensions: M ::= *A | g+~x∈t
Rule Constraints: C,B ::= A | M

Head Constraints: H ::= C : i
Rules: R ::= r @ H̄ ⇐⇒ g | B̄

Programs: P ::= R̄

Figure 3.1: Abstract Syntax of CHRcp

(combine(Om, X, Im, Om, Vm)). The MWOE of the component is selected by retrieving the minimal of the edges that
originate from nodes in Is . Specifically, from *edge(I ,O ,V) | I ∈̇ Is+(I ,O,V)∈Is , we choose Im, Om and Vm such
that (Im ,Om ,Vm) = R min (⊥,⊥,∞) Es and Rs = *(I ,O ,V) | Vm 6= V +(I ,O,V)∈Es . The rules cmb1 and
cmb2 each implement one of the combine subroutines of the GHS algorithm: cmb1 implements the case that compo-
nent leaders X and Y sent a combine request to each other (combine(X,Y, L,O, I, V), combine(Y,X,L, I,O, V))
and has the same level L (note that in this case, I , O and V is guaranteed to be the same on both end, since it is the
MWOE). X is arbitrarily chosen as the new leader, its level is incremented by one (level(L+ 1)) and its merging with
location Y ’s component is initiated (merge(X,Y, I,O, V)). Rule cmb2 implements the case that location X receives
a combine request (combine(X,Y, L, I,O, V)) from a component that has a lower level, during which X will absorb
Y ’s component into its own component (merge(X,Y, I,O, V)). Note that since weights are unique and edges are
bidirectional, by sending combine messages along MWOEs, the GHS algorithm guarantees progress (proven in [4]),
in that no deadlocking cycles of combine messages will occur.

The rule mrg implements the actual merging of Y ’s component intoX’s component (merge(X,Y, Im, Om, Vm)).
Note that the locations of each component are matched from foundMWOE(X, Is1) and foundMWOE(Y, Is2),
while the multiset of all edges that travel between these two components is captured by the two comprehension
patterns of the rule (we omitted the comprehension range binding, since they are not used in the rule). This re-
sults in the deletion of these non-outgoing edges of the component, in location X as leader of new component
(findMWOE(X, *Is1, Is2+)) and in a new minimal spanning tree edge (mstEdge(Im, Om, Vm) and
mstEdge(Om, Im, Vm)). Prior to the merging of a location Y into X , node Y may still have combine requests
from other components no visible to X . Hence, we have the rule fwd which implements a forwarding subroutine on
Y to X (forward(Y,X)) that forwards any combine requests from the previous leader of Y to the new leader of X
and Y .

3 Syntax and Notation

In this section, we define the abstract syntax of CHRcp and highlight the notations used throughout this paper. We
write ō for a multiset of syntactic objects o, with ∅ indicating the empty multiset. We write *ō1, ō2+ for the union of
multisets ō1 and ō2, omitting the brackets when no ambiguity arises. The extension of multiset ō with syntactic object
o is similarly denoted *ō, o+. Multiset comprehension at the meta-level is denoted by *o | Φ(o)+, where o a meta object
and Φ(o) is a logical statement on o. We write ~o for a comma-separated tuple of o’s. A list of objects o is also denoted
by ~o and given o, we write [o | ~o] for the list with head o tail ~o. The empty list is denoted by []. We will explicitly
disambiguate lists from tuples where necessary. Given a list ~o, we write ~o[i] for the ith element of ~o, with ~o[i] = ⊥
if i is not a valid index in ~o. We write o ∈ ~o if ~o[i] 6= ⊥ for some i. The set of valid indices of the list ~o is denoted
range(~o). The concatenation of list ~o1 with ~o2 is denoted ~o1++~o2 and given i, j ∈ range(~o), ~o[i . . . j] denotes
the sublist of ~o consisting of just the elements between i (inclusive) and j (exclusive). We abbreviate a singleton list

5

C̄ ,lhs St C ,lhs St ′

*C̄, C+ ,lhs *St ,St ′+
(lmset-1)

∅ ,lhs ∅
(lmset-2)

A ,lhs A
(latom)

[~t/~x]A ,lhs A
′ |= [~t/~x]g *A | g+~x∈ts ,lhs St

*A | g+~x∈*ts,~t+ ,lhs *St , A′+
(lcomp-1)

*A | g+~x∈∅ ,lhs ∅
(lcomp-2)

Residual Non-matching: C̄ ,¬lhs St C ,¬lhs St

C̄ ,¬lhs St C ,¬lhs St

*C̄, C+ ,¬lhs St
(l¬mset-1) ∅ ,¬lhs St

(l¬mset-2)

A ,¬lhs St
(l¬atom)

A 6vlhs M M ,¬lhs St

M ,¬lhs *St , A+
(l¬comp-1)

M ,¬lhs ∅
(l¬comp-2)

Subsumption: A vlhs *A′ | g+~x∈ts iff A = θA′ and |= θg for some θ = [~t/~x]

Figure 4.1: Semantics of Matching in CHRcp : C̄ ,lhs St C ,lhs St

containing o as [o]. Given a list ~o, we write *~o+ to denote the multiset containing all (and only) elements of ~o. The set
of the free variables in a syntactic object o is denoted FV (o). We write [~t/~x]o for the simultaneous replacement within
object o of all occurrences of variable xi in ~x with the corresponding term ti in ~t. When traversing a binding construct
(e.g., comprehension patterns), substitution implicitly α-renames variables to avoid capture. It will be convenient to
assume that terms get normalized during (or right after) substitution. Composition of substitutions θ and φ is denoted
θφ.

Figure 3.1 defines the abstract syntax of CHRcp . An atomic constraint p(~t) is a predicate symbol p applied to
a tuple ~t of terms. A comprehension pattern *A | g+~x∈t represents a multiset of constraints that match the atomic
constraint A and satisfy guard g under the bindings of variables ~x that range over t. We call ~x the binding variables
and t the comprehension domain. The variables ~x are locally bound with scopeA and g. We implicit α-rename binding
variables to avoid capture.

The development of CHRcp is largely agnostic to the language of terms [6]. In this paper however, we assume for
simplicity that tα are arithmetic terms (e.g., 10, x+ 4). We also include tuples and multisets of such terms. Term-level
multiset comprehension *t | g+x∈m filters multiset m according to g and maps the result as specified by t. An atomic
guard is either equality (t = t′), multiset membership (t ∈̇ t′) or order comparison (t op t′ where op ∈ {<,≤, >,≥}).

A CHR head constraint C : i is a constraint C paired with an occurrence index i. As in CHR, a CHRcp rule
r @ H̄ ⇐⇒ g | B̄ specifies the rewriting of the head constraints H̄ into the body B̄ under the conditions that guards g
are satisfied.1 If the guard g is always satisfied (i.e., true), we drop that rule component entirely. All free variables in
a CHRcp rule are implicitly universally quantified at the head of the rule. A CHR program is a set of CHR rules and
we require that each head constraint has a unique occurrence index i. We also require that a rule body be grounded by
the head constraints and that guards do not appear in the rule body.

4 Operational Semantics of CHRcp

This section recalls the operational semantics of CHRcp [6]. Without loss of generality, we assume that atomic con-
straints in a rule have the form p(~x), including in comprehension patterns. This simplified form pushes complex term

1CHR rules traditionally have a fourth component, the propagation head, which we omit in the interest of space as it does not fundamentally
impact the compilation process or our abstract machine. See [6] for a treatment of comprehension patterns in propagation heads.

6

Rule Body: C̄≫rhs St C≫rhs St

C̄≫rhs St C≫rhs St ′

*C̄, C+≫rhs *St ,St ′+
(rmset-1)

∅≫rhs ∅
(rmset-2)

A≫rhs A
(ratom)

|= [~t/~x]g [t/~x]A≫rhs A
′ *A | g+~x∈ts ≫rhs A

′

*A | g+~x∈*ts,~t+ ≫rhs *St , A′+
(rcomp-1)

6|= [~t/~x]g *A | g+~x∈ts ≫rhs St

*A | g+~x∈*ts,~t+ ≫rhs St
(rcomp-2)

*A | g+~x∈∅≫rhs ∅
(rcomp-3)

Residual Non-unifiability: P ,¬unf B̄ g B H̄ ,¬unf B̄

g B H̄ ,¬unf B̄ P ,¬unf B̄
P, (r @ H̄ ⇐⇒ g | C̄b) ,¬unf B̄

(u¬
prog-1) ∅ ,¬unf B̄

(u¬
prog-2)

g B H̄ ,¬unf B̄ g B C ,¬unf B̄

g B *H̄, C : i+ ,¬unf B̄
(u¬

mset-1)
g B∅ ,¬unf B̄

(u¬
mset-2)

g BA ,¬unf B̄
(u¬

atom)

g BB 6vunf M g BM ,¬unf B̄

g BM ,¬unf *B̄, B+
(u¬

comp-1)
g BM ,¬unf ∅

(u¬
comp-2)

g BA vunf *A′ | g′+~x∈ts iff θA ≡ θA′, |= θg′, |= θg for some θ

g′′ B *A | g+~x∈ts vunf *A′ | g′+~x′∈ts′ iff θA ≡ θA′, |= θg′′, |= θg′, |= θg for some θ

Figure 4.2: Rule Body Application and Unifiability of Comprehension Patterns

expressions and computations into the guard component of the rule or the comprehension pattern. The satisfiability of
a ground guard g is modeled by the judgment |= g; its negation is written 6|= g.

Similarly to [3], this operational semantics defines a goal-based execution of a CHRcp program P that incre-
mentally processes store constraints against rule instances in P . By “incrementally”, we mean that goal constraints
are added to the store one by one, as we process each for potential match with the head constraints of rules in P .
We present the operational semantics in three steps: Section 4.1 describes the processing of a rule’s left-hand side,
defining the CHRcp semantics of matching. Section 4.2 discusses the execution of its right-hand side, defining rule
body applications and the monotonicity property. Section 4.3 combines these components, giving CHRcp its overall
operational semantics. A more detailed treatment of the operational semantics of CHRcp can be found in [6].

4.1 Semantics of Matching of CHRcp

The semantics of matching, specified in Figure 4.1, identifies applicable rules in a CHRcp program by matching their
head with the constraint store. The matching judgment C̄ ,lhs St holds when the constraints in the store fragment St
match completely the multiset of constraint patterns C̄. It will always be the case that C̄ is closed (i.e., FV (C̄) = ∅).
Rules (lmset-∗) iterate rules (latom) and (lcomp-∗) on St , thereby partitioning it into fragments matched by these rules.
Rule (latom) matches an atomic constraint A to the singleton store A. Rules (lcomp-∗) match a comprehension pattern
*A | g+~x∈ts . If the comprehension domain is empty (x ∈ ∅), the store must be empty (rule lcomp-2). Otherwise, rule
(lcomp-1) binds ~x to an element ~t of the comprehension domain ts , matches the instance [~t/~x]A of the pattern A with
a constraint A′ in the store if the corresponding guard instance [~t/~x]g is satisfiable, and continues with the rest of the
comprehension domain.

7

To guarantee the maximality of comprehension patterns, we test a store for residual matchings. This relies on the
matching subsumption relation A vlhs *A′ | g+~x∈ts defined at the very bottom of Figure 4.1. This relation holds if A
can be absorbed into the comprehension pattern *A′ | g+~x∈ts . Note that it ignores the available bindings in ts: t need
not be an element of the comprehension domain. Its negation is denoted by A 6vlhs *A′ | g+~x∈ts . We test a store for
residual matchings using the residual non-matching judgment C̄ ,¬lhs St . Informally, for each comprehension pattern
*A′ | g+~x∈ts in C̄, this judgment checks that no constraints in St matches A′ satisfying g. This judgment is defined in
the middle section of Figure 4.1. Rules (l¬mset-∗) apply the remaining rules to each constraint patterns C in C̄. Observe
that each pattern C is ultimately matched against the entire store St . Rule (l¬atom) asserts that atoms have no residual
matches. Rules (l¬comp-∗) check that no constraints in St match the comprehension pattern M = *A′ | g+~x∈ts .

4.2 Rule Body Application and Monotonicity

Once a CHRcp rule instance has been identified, we need to unfold the comprehension patterns in its body into a
multiset of atomic constraints that will be added to the store. Defined in Figure 4.2, the judgment C̄ ≫rhs St does
this unfolding: given C̄, this judgment holds if and only if St is the multiset of all (and only) constraints found in C̄,
after comprehension patterns in C̄ have been unfolded. This judgment is similar to the matching judgment (Figure 4.1)
except that it skips any element in the comprehension domain that fails the guard (rule rcomp-2).

We showed in [6] that to guarantee the safe incremental goal-based execution of a CHRcp program P , we must
determine which rule body constraints are monotone (and which are not) and only delay the storage of monotone
constraints. A monotone constraint in program P is a constraint A that can never be matched by a comprehension
head constraint of any rule in P . Thus, to test that a comprehension pattern M has no match in a store Ls (i.e.,
M ,¬lhs Ls), it suffices to test M against the subset of Ls containing just its non-monotone constraints. We call
this property of CHRcp conditional monotonicity. We formalize this idea by generalizing the residual non-matching
judgment from Figure 4.1. The resulting residual non-unifiability judgment is defined in the bottom of Figure 4.2.
Given a program P and a multiset of constraint patterns B̄, the judgment P ,¬unf B̄ holds if no constraint that
matches any pattern in B̄ can be unified with any comprehension pattern in any rule heads of P . Rules (u¬prog-∗)

iterate over each CHRcp rule in P . For each rule, the judgment g B C̄ ,¬unf B̄ tests each rule pattern in C̄ against
all the patterns B̄ (rules u¬mset-∗). Rule (u¬atom) handles atomic facts, which are valid by default. Rules (u¬comp-∗)
check that no body pattern B̄ is unifiable with any rule head pattern C̄ under the guard g. It does so on the basis of the
relations at the bottom of Figure 4.2. Given a CHRcp program P , for each rule body constraint B in P , if for every
head constraint comprehension pattern M : j and rule guard g in P , B is not unifiable with M while satisfying g (i.e.,
g BM vunf B), then we say that B is monotone w.r.t. program P , denoted by P ,¬unf B. This relation is can be
statically computed to avoid runtime overhead.

4.3 Operational Semantics

In this section, we present the overall operational semantics of CHRcp . Execution states, defined in Figure 4.3, are
pairs σ = 〈Gs ; Ls〉 where Gs is the goal stack and Ls is the labeled store. Store labels n allow us to distinguish
between copies of the same constraint in the store and to uniquely associate a goal constraint with a specific stored
constraint. Each goal in a goal stack Gs represents a unit of execution and Gs itself is a list of goals to be executed.
Goal labels init, lazy, eager and act identifies the various types of goals.

Figure 4.3 defines several auxiliary operations that either retrieve or drop occurrence indices and store labels:
dropIdx (H) and getIdx (H) deal with indices, dropLabels() and getLabels() with labels. We inductively extend
getIdx () to multisets of head constraints and CHRcp rules, to return the set of all occurrence indices that appear
in them. We similarly extend dropLabels() and getLabels() to be applicable with labeled stores. As a means of
generating new labels, we also define the operation newLabels(Ls, A) that returns A#n such that n does not occur in
Ls . Given program P and occurrence index i, P[i] denotes the rule R ∈ P in which i occurs, or ⊥ if i does not occur
in any of P’s rules. We implicitly extend the matching judgment (,lhs) and residual non-matching judgment (,¬lhs)
to annotated entities.

The operational semantics of CHRcp is defined by the judgment PBσ 7→ω σ′, where P is a CHRcp program and

8

Goal Constraint G ::= init B̄ | lazy A | eager A#n | act A#n i

Goal Stack Gs ::= [] | [G | Gs]
Labeled Store Ls ::= ∅ | *Ls, A#n+
Execution State σ ::= 〈Gs ; Ls〉

dropIdx (C : i) ::= C getIdx (C : i) ::= {i} dropLabels(A#n) ::= A getLabels(A#n) ::= {n}

newLabels(Ls, A) ::= A#n such that n /∈ getLabels(Ls)

P[i] ::= if R ∈ P and i ∈ getIdx (R) then R else ⊥

dropIdx (H̄) ,lhs dropLabels(Ls)

H̄ ,lhs Ls

dropIdx (H̄) ,¬lhs dropLabels(Ls)

H̄ ,¬lhs Ls

Figure 4.3: Execution States and Auxiliary Meta-operations

σ, σ′ are execution states. It describes the goal-oriented execution of the CHRcp program P . Execution starts in an
initial execution state σ of the form 〈[init B̄] ; ∅〉 where B̄ is the initial multiset of constraints. Figure 4.4 shows
the transition rules for this judgment. Rule (init) applies when the leading goal has the form init B̄. It partitions
B̄ into B̄l and B̄e, both of which are unfolded into St l and Ste respectively (via rule body application, Section 4.2).
B̄l contains the multiset of constraints which are monotone w.r.t. to P (i.e., P ,¬unf B̄l). These constraints are not
added to the store immediately, rather we only add them into the goal as ‘lazy‘ goals (lazily stored). Constraints B̄e
are not monotone w.r.t. to P , hence they are immediately added to the store and added to the goals as ‘eager’ goals
(eagerly stored). Rule (lazy-act) handles goals of the form lazy A: we initiate active matching on A by adding it
to the store and adding the new goal act A#n 1. Rules (eager-act) and (eager-drop) deal with goals of the form
eager A#n. The former adds the goal ‘act A#n 1’ if A#n is still present in the store; the later simply drops the
leading goal otherwise. The last three rules deal with leading goals of the form act A#n i: rule (act-apply) handles
the case where the active constraint A#n matches the ith head constraint occurrence of P . If this match satisfies the
rule guard, matching partners exist in the store and the comprehension maximality condition is satisfied, we apply
the corresponding rule instance. These matching conditions are defined by the semantics of matching of CHRcp

(Figure 4.1). Note that the rule body instance θB̄ is added as the new goal init B̄. This is because it potentially
contains non-monotone constraints: we will employ rule (init) to determine the storage policy of each constraint. Rule
(act-next) applies when the previous two rules do not, hence we cannot apply any instance of the rule with A#n
matching the ith head constraint. Finally, rule (act-drop) drops the leading goal if occurrence index i does not exist
in P . The correctness of this operational semantics w.r.t. a more abstract semantics for CHRcp is proven in [6].

5 Compiling CHRcp Rules

While Figures 4.1–4.4 provide a formal operational description of the overall multiset rewriting semantics of CHRcp ,
they are high-level in that they keep multiset matching abstract. Specifically, the use of judgments,lhs and,¬lhs in rule
(act-apply) hides away crucial details of how a practical implementation is to conduct these expensive operations. In
this section, we describe a scheme that compiles CHRcp head constraints into a lower-level representation optimized
for efficient execution, without using ,lhs or ,¬lhs. This compilation focuses on CHRcp head constraints (left-hand
side), where the bulk of execution time (and thus most optimization opportunities) comes from.

As described in Section 4, an active constraint act A#n i is matched against an occurrence of a head constraint
Hi in a rule r, and all other head constraints Hk in r are matched against distinct constraints in the store. We call
Hi the active head constraint and the other Hk partner head constraints (or simply, active pattern and partners

9

(init)

P B 〈[init *B̄l, B̄e+ | Gs] ; Ls〉 7→ω 〈lazy(St l)++eager(Lse)++Gs ; *Ls,Lse+〉
such that P ,¬unf B̄l B̄e ≫rhs Ste B̄l ≫rhs St l Lse = newLabels(Ls,Ste)

where eager(*Ls, A#n+) ::= [eager A#n | eager(Ls)] eager(∅) ::= []

lazy(*Stm, A+) ::= [lazy A | lazy(Stm)] lazy(∅) ::= []

(lazy-act)
P B 〈[lazy A | Gs] ; Ls〉 7→ω 〈[act A#n 1 | Gs] ; *Ls, A#n+〉
such that *A#n+ = newLabels(Ls, *A+)

(eager-act) P B 〈[eager A#n | Gs] ; *Ls, A#n+〉 7→ω 〈[act A#n 1 | Gs] ; *Ls, A#n+〉
(eager-drop) P B 〈[eager A#n | Gs] ; Ls〉 7→ω 〈Gs ; Ls〉 if A#n /∈ Ls

(act-apply)

P B 〈[act A#n i | Gs] ; *Ls,Lsh,Lsa, A#n+〉 7→ω 〈[init θB̄ | Gs] ; Ls〉
if P[i] = (r @ *H̄h, C : i+⇐⇒ g | B̄), there exists some θ such that
|= θg θC ,lhs *Lsa, A#n+ θH̄h ,lhs Lsh θH̄h ,¬lhs Ls θC ,¬lhs Ls

(act-next)
P B 〈[act A#n i | Gs] ; Ls〉 7→ω 〈[act A#n (i+ 1) | Gs] ; Ls〉
if (act-apply) does not applies.

(act-drop) P B 〈[act A#n i | Gs] ; Ls〉 7→ω 〈Gs ; Ls〉 if P[i] = ⊥

Figure 4.4: Operational Semantics of CHRcp

respectively). Computing complete matches for the multiset of constraint patterns is a combinatorial search problem.
In general, any ordering of partners leads to the computation of intermediate data that may ultimately be discarded,
resulting in redundant storage and processing time. Therefore, we want to determine an optimal ordering of partners
that minimizes this intermediate data. Join ordering [5] leverages the dependencies among rule heads and rule guards
to do precisely this. This allows pruning search branches early and utilizing lookup methods (e.g., indexing on hash
maps and balanced trees) that provide the best possible asymptotic time complexity. Our work extends traditional
approaches to CHR compilation [5] to handle comprehension head constraints and augments them with optimizations
specific to them.

5.1 Introducing CHRcp Join Ordering

The top of Figure 5.1 shows an example rule with five head constraints. In this example, all predicates are different,
hence each head constraint will always match distinct constraints from the store (in Section 5.3, we discuss the case
where different rule heads match the same constraint). To better appreciate the benefits of join ordering, consider an
example constraint store Ls of the form:

p1(tE1, tZ1),

n2⊎
i=1

p2(tY i, tCi, tDi),

n3⊎
i=1

p3(tXi, tY i, tFi, tZi),

n4⊎
i=1

p4(tZi, tWsk),

n5⊎
i=1

p5(tXi, tPi)

where
⊎n
i=1p(~ti) denotes a store fragment containing n ground constraints of the form of p(~ti). Hence n2, n3, n4 and

n5 are the number of constraints in the store for the predicates p2, p3, p4 and p5, respectively. As we carry out this
analysis, we optimistically assume that each of the n2 instances of p2 has a different term tY i in its first argument, and
similarly for each argument position and predicate.

Consider a naive execution of the rule in Figure 5.1 in the textual order given active constraint act p1(tE1, tZ1)#n i
for some n and i, so that p1(E,Z) : 1 is the active pattern. This binds variables E and Z to terms tE1 and tZ1 respec-
tively. Next, we identify all constraints p2(tY i, tCi, tDi) such that C > D, and for each bindings tY i for Y , we build
the comprehension range Ds from the tCi’s and tDi’s. Since this pattern shares no common variables with the active
pattern and variable Ws is not ground, to build the above match we have no choice but examining all n2 constraints
for p2 in the store. Furthermore, the guard D ∈ Ws would have to be enforced at a later stage, after p4(Z,Ws) is
matched, as a post comprehension filter. We next seek a match for p3(X,Y, F, Z) : 3. Because it shares variables Y
and Z with patterns 1 and 2, we can find matching candidates in constant time, if we have the appropriate indexing
support (p3(, Y, , Z)). The next two patterns (p4(Z,Ws) : 4 and *p5(X,P) | P ∈̇Ws+P∈Ps : 5) are matched in

10

p1 (E ,Z) : 1
*p2 (Y ,C ,D) | D ∈̇Ws,C > D+(C ,D)∈Ds : 2
p3 (X ,Y ,F ,Z) : 3
p4 (Z ,Ws) : 4
*p5 (X ,P) | P ∈̇Ws+P∈Ps : 5

⇐⇒
E ≤ F

Ws 6= ∅
Ps 6= ∅

...

i. Active p1 (E ,Z) : 1
ii. LookupAtom 〈true; {Z}〉 p4 (Z ,Ws) : 4
iii. CheckGuard Ws 6= ∅
iv. LookupAtom 〈E ≤ F ; {Z}〉 p3 (X ,Y ,F ,Z) : 3
v. LookupAll 〈P ∈̇Ws; {X}〉 p5 (X ,P) : 5
vi. CompreDomain 5 P Ps
vii. CheckGuard Ps 6= ∅
viii. LookupAll 〈D ∈̇Ws; {Y }〉 p2 (Y ,C ,D) : 2
ix. FilterGuard 4 C ≥ D
x. CompreDomain 4 (C,D) Ds

Figure 5.1: Optimal Join Ordering for p1 (E ,Z) : 1

a similar manner and finally Ps 6= ∅ is checked at the very end. This naive execution has two main weaknesses:
first, scheduling partner 2 first forces the lower bound of the cost of processing this rule to be O(n2), even if we find
matches to partners 3 and 4 in constant time. Second, suppose we fail to find a match for partner 5 such that Ps 6= ∅,
then the execution time spent computing Ds of partner 2, including the time to search for candidates for partners 3 and
4, was wasted.

Now consider the join ordering for the active pattern p1(E,Z) : 1 shown in Figure 5.1. It is an optimal ordering
of the partner constraints in this instance: Task (i) announces that p1 (E ,Z) : 1 is the constraint pattern that the active
constraint must match. Task (ii) dictates that we look up the constraint p4(Z,Ws). This join task maintains a set of
possible constraints that match partner 4 and the search proceeds by exploring each constraint as a match to partner
4 until it finds a successful match or fails; the indexing directive I = 〈true; {Z}〉 mandates a hash multimap lookup
for p4 constraints with first argument value of Z (i.e., p4(Z,)). This allows the retrieval of all matching candidate
constraints from Ls in amortized constant time (as oppose to linear O(n4)). Task (iii) checks the guard condition
Ws 6= ∅: if no such p4(Z,Ws) exists, execution of this join ordering can terminate immediately at this point (a stark
improvement from the naive execution). Task (iv) triggers the search for p3(X,Y, F, Z) with the indexing directive
〈E ≤ F ; {Z}〉. This directive specifies that candidates of partner 3 are retrieved by utilizing a two-tiered indexing
structure: a hash table that maps p3 constraints in their fourth argument (i.e., p3 (, , ,Z)) to a binary balance tree
that stores constraints in sorted order of the third argument (i.e., p3 (, ,F ,), E ≤ F). The rule guard E ≤ F
can then be omitted from the join ordering, since its satisfiability is guaranteed by this indexing operation. Task (v)
initiates a lookup for constraints matching p5 (X ,P) : 5 which is a comprehension. It differs from Tasks (ii) and
(iv) in that rather than branching for each candidate match to p5 (X ,P) : 5 , we collect the set of all candidates as
matches for partner 5. The multiset of constraints matching this partner is efficiently retrieved by the indexing directive
〈P ∈̇Ws; {X}〉. Task (vi) computes the comprehension domain Ps by projecting the multiset of instances of P from
the candidates of partner 5. The guard Ps 6= ∅ is scheduled at Task (vii), pruning the current search immediately if Ps
is empty. Tasks (viii− x) represent the best execution option for partner 2, given that composite indexing (D ∈̇ Ws
and C ≤ D) is not yet supported in our implementation: Task (viii) retrieves candidates matching p2 (Y ,C ,D) : 2
via the indexing directive 〈D ∈̇ Ws; {Y }〉, which specifies that we retrieve candidates from a hash multimap that
indexes p2 constraints on the first and third argument (i.e., p2 (Y , ,D)); values of D are enumerated from Ws . Task
(ix) does a post-comprehension filter, removing candidates of partner 2 that do not satisfy C ≤ D. Finally, task
(x) computes the comprehension domain Ds . While we still conduct a post comprehension filtering (Task (ix)), this
filters from a small set of candidates (i.e., p2 (Y , ,D) where D ∈̇ Ws) and hence is likely more efficient than linear
enumeration and filtering on the store (i.e., O(|Ws|) vs O(n2)).

11

p1 (E ,Z) : 1
*p2 (Y ,C ,D) | D ∈̇Ws,C > D+(C ,D)∈Ds : 2
p3 (X ,Y ,F ,Z) : 3
p4 (Z ,Ws) : 4
*p5 (X ,P) | P ∈̇Ws+P∈Ps : 5

⇐⇒
E ≤ F

Ws 6= ∅
Ps 6= ∅

...

i. Active p2 (Y ,C ,D) : 2

ii. CheckGuard C > D
iii. LookupAtom 〈true; {Z}〉 p4 (Z ,Ws) : 4

iv. CheckGuard Ws 6= ∅, D ∈̇Ws
v. LookupAtom 〈E ≤ F ; {Z}〉 p3 (X ,Y ,F ,Z) : 3
vi. Bootstrap {C,D} 2
... (Similar to Tasks v − x of Figure 5.1)

Figure 5.2: Optimal Join Ordering for *p2 (Y ,C ,D) | D ∈̇Ws,C > D+(C ,D)∈Ds : 2

Such optimal join orderings are statically computed by our compiler and the constraint store is compiled to support
the set of all indexing directives that appears in the join orderings. In general, our implementation always produces
join orderings that schedule comprehension partners after all atom partners. This is because comprehension lookups
(LookupAll) never fail and hence do not offer any opportunity for early pruning. However, orderings within each
of the partner categories (atom or comprehension) are deliberate. For instance, p4(Z,Ws) : 4 was scheduled before
p3(X ,Y ,F ,Z) : 3 since it is more constrained: it has fewer free variables and Ws 6= ∅ restricts it. Comprehension
partner 5 was scheduled before 2 because of guard Ps 6= ∅ and also that 2 is considered more expensive because of
the post lookup filtering (Task (ix)). Cost heuristics are discussed in Section 7.

5.2 Bootstrapping for Active Comprehension Head Constraints

In the example in Figure 5.1, the active pattern is an atomic constraint. Our next example illustrates the case where
the active pattern Hi is a comprehension. In this case, the active constraint A#n must be part of a match with the
comprehension rule head Hi = *A′ | g+x∈xs : i. While the join ordering should allow early detection of failure to
matchAwithA′ or to satisfy comprehension guard g, it must also avoid scheduling comprehension rule headHi before
atomic partner constraints are identified. Our implementation uses bootstrapping to achieve this balance: Figure 5.2
illustrates this compilation for the comprehension head constraint *p2(Y,C,D) | D ∈̇Ws, C > D+(C,D)∈Ds : 2
from Figure 5.1 playing the role of the active pattern. The key components of bootstrapping are highlighted in boxes:
Task (i) identifies p2(Y,C,D) as the active pattern, treating it as an atom. The match for atom partners proceeds as
in the previous case (Section 5.1) with the difference that the comprehension guards of partner 2 (D ∈̇ Ws, C > D)
are included in the guard pool. This allows us to schedule them early (C > D in Task (ii) and D ∈̇Ws in Task (iv))
or even as part of an indexing directive to identify compatible partner atom constraints that support the current partial
match. Once all atomic partners are matched, at Task (vi), Bootstrap {C,D} 5, clears the bindings imposed by the
active constraint, while the rest of the join ordering executes the actual matching of the comprehension head constraint
similarly to Figure 5.1.

5.3 Uniqueness Enforcement

In general, a CHRcp rule r may have overlapping head constraints, i.e., there may be a store constraint A#n that
matches both Hj and Hk in r’s head. Matching two head constraints to the same object in the store is not valid in
CHRcp . We guard against this by providing two uniqueness enforcing join tasks: If Hj and Hk are atomic head
constraints, join task NeqHead j k (figure 6.1) checks that constraints A#m and A#p matching Hj and Hk respec-
tively are distinct (i.e., m 6= p). If either Hj or Hk (or both) is a comprehension, the join ordering must include a
FilterHead join task.

12

r @ p(D0) : 1 , q(P) : 2 , *p(D1) | D1 > P+D1∈Xs : 3 , *p(D2) | D2 ≤ P+D2∈Ys : 4 ⇐⇒ . . .

i. Active p(D0) : 1
ii. LookupAtom 〈true; ∅〉 q(P) : 2
iii. LookupAll 〈D1 > P ;∅〉 p(D1) : 3
iv. FilterHead 3 1
v. CompreDomain 3 D1 Xs
vi. LookupAll 〈D2 ≤ P ;∅〉 p(D2) : 4
vii. FilterHead 4 1

viii. FilterHead 4 3
ix. CompreDomain 4 D2 Ys

Figure 5.3: Uniqueness Checks: Optimal Join Ordering for p(D0) : 1

Figure 5.3 illustrates filtering for active pattern p(D0) : 1 . Task (iv) FilterHead 3 1 states that we must filter
constraint(s) matched by rule head 1 away from constraints matched by partner 3. For partner 4, we must filter from
1 and 3 (Tasks (vii − viii)). Notice that partner 2 does not participate in any such filtering, since its constraint
has a different predicate symbol and filtering is obviously not required. However, it is less obvious that task (viii),
highlighted, is in fact not required as well: because of the comprehension guards D1 > P and D2 ≤ P , partners 3 and
4 always match distinct sets of p constraints. Our implementation uses a more precise check for non-unifiability of
head constraints (vunf) to determine when uniqueness enforcement is required. For a given CHRcp rule, r @ H̄ ⇐⇒
g | B̄, which has two comprehension patterns in H̄ , *A1 | g1+~x1∈xs1 : j and *A2 | g2+~x2∈xs2 : k, a filtering join task
FilterHead j k will only be insert in the join ordering, if we have either g ∧ g1 B A1 vunf *A2 | g2+~x2∈xs2 or
g ∧ g2BA2 vunf *A1 | g1+~x1∈xs1 . We have implemented a conservative test for the relation vunf from our work on
reasoning about comprehension patterns in SMT [7].

6 Representing CHRcp Join Orderings

In this section, we formalize the notion of join ordering for CHRcp , as illustrated in the previous section. We first
construct a valid join ordering for a CHRcp rule r given a chosen sequencing of partners of r and later examine how to
chose this sequence of partners. Figure 6.1 defines the constituents of join orderings, join tasks and indexing directives.
A list of join tasks ~J forms a join ordering. A join context Σ is a set of variables. Atomic guards are as in figure 3.1,
however we omit equality guards and assume that equality constraints are enforced as non-linear variable patterns in
the head constraints. For simplicity, we assume that conjunctions of guards g1 ∧ g2 are unrolled into a multiset of
guards ḡ = *g1, g2+, with |= ḡ expressing the satisfiability of each guard in ḡ. We defer a detailed description of
indexing directives till later, but for now, note that an indexing directive is a tuple 〈g; ~x〉 such that g is an indexing
guard and ~x are hash variables. Each join task essentially defines a specific sub-routine of the overall multiset match
defined by the join-ordering. The following informally describes each type of join task:

• Active A : i defines A to be the constraint pattern in which the active constraint must match.

• LookupAtom I A : i Defines A to be an atomic head constraint pattern that should be matched. This means
that this join task is successfully executed if it is matched to exactly one candidate A′ in the store. Indexing
directive I is to be used to retrieve candidates in the store that match A.

• LookupAll I A : i defines A to be a comprehension head constraint pattern that should be matched. This
means that this join task is executed by matching it to all candidates A′ in the store that match A. Indexing
directive I is to be used to retrieve candidates in the store that match A.

• Bootstrap ~x i dictates that match to head constraint occurrence i and variable bindings to ~x are to be omitted
from this join task.

13

Join Context Σ ::= ~x
Index Directive I ::= 〈g; ~x〉
Join Task J ::= Active H | LookupAtom I H | LookupAll I H

| Bootstrap ~x i | CheckGuard ḡ | FilterGuard i ḡ
| NeqHead i i | FilterHead i i | CompreDomain i ~x x

Σ;AB t 7→ x iff t is a constant or t is a variable such that t ∈ Σ and x ∈ FV (A)

idxDir(Σ, A, gα) ::=



〈gα; Σ ∩ FV (A)〉

{
if gα = t1 op t2 and op ∈ {≤, <,≥, >}
and Σ;AB ti 7→ tj for {i, j} = {1, 2}

〈gα; Σ ∩ FV (A)〉 if gα = t1 ∈̇ t2 and Σ;AB t2 7→ t1

〈true; Σ ∩ FV (A)〉 otherwise

allIdxDirs(Σ, A, ḡ) ::= *idxDir(Σ, A, gα) | for all gα ∈ ḡ ∪ true+

Figure 6.1: Indexing Directives

• CheckGuard ḡ requires that guard conditions ḡ are to be tested in the substitution built by the current match.
This join task succeeds only if ḡ is satisfiable.

• FilterGuard i ḡ mandates that each candidate accumulated for occurrence i is to be tested on guard con-
ditions ḡ. Those which are not satisfiable are to be filtered away from the match. Occurrence i must be a
comprehension pattern head constraint.

• NeqHead i j dictates that constraints matching head constraint pattern occurrences i and j are to be compared
for referential equality. Indices i and j should be atomic head constraint patterns.

• FilterHead i j requires that all constraints that were matched to both occurrence i and j head constraints
are to be removed from i. Indices i must be a comprehension pattern constraint pattern, while j can be either a
comprehension or an atomic constraint.

• CompreDomain i ~x x dictates that we retrieve all constraints in i and project values of variables ~x onto the
multiset x that contains the set of all such bindings.

The bottom part of Figure 6.1 defines how valid index directives are constructed. The relation Σ;AB t 7→ x states
that from the join context Σ, term t connects to atomic constraint A via variable x. Term t must be either a constant
or a variable that appears in Σ and x ∈ FV (A). The operation idxDir(Σ, A, gα) returns a valid index directive
for a given constraint A, the join context Σ and the atomic guard gα. This operation requires that Σ be the set of all
variables that have appeared in a prefix of a join ordering. It is defined as follows: If gα is an instance of an order
relation and it acts as a connection between Σ and A (i.e., Σ;AB ti 7→ tj where ti and tj are its arguments), then the
operation returns gα as part of the index directive, together with the set of variables that appear in both Σ and A. If gα
is a membership relation t1 ∈̇ t2, the operation returns gα only if Σ;AB t2 7→ t1. Otherwise, gα cannot be used as an
index, hence the operation returns true . Finally, allIdxDirs(Σ, A, ḡ) defines the set of all such indexing directives
derivable from idxDir(Σ, A, gα) where gα ∈ ḡ.

An indexing directive 〈gα; ~x〉 for a constraint pattern p(~t) determines what type of indexing method can be ex-
ploited for the given constraint type. The set of candidates matching p(~t) is retrieved from the store by the following
means:

1. 〈true; ~x〉, ~x 6= ∅ : constraints p(~t) are stored in a hash multimap that indexes the constraints on argument
positions of ~t that variables ~x appear in. It supports amortized O(1) lookups.

14

2. 〈x ∈̇ ts; ~x〉, ~x 6= ∅: similar to (1), but constraints are indexed by argument position of x as well. But during
lookup, we enumerate values of x from ts . It supports amortized O(1 ∗m) lookups, where m is size of ts .

3. 〈x ∈̇ ts; ∅〉: similar to (2), but index keys are computed solely from argument position of x.

4. 〈x op y; ∅〉 where op ∈ {<,≤, >,≥}: constraints p(~t) are stored in a balanced binary tree, sorted by argument
position of either x or y (exclusive). Candidates are retrieved by a binary search. It supports O(log n) lookups,
where n is the number of p constraints.

5. 〈x op y; ~x〉, ~x 6= ∅ where op ∈ {<,≤, >,≥}: constraints p(~t) are stored in a hash map that indexes the
constraints on argument positions of ~t that variables ~x appear in. The contents of this hash map are balanced
binary tree that sorts its elements in a manner similar to (4). It supports O(log p) lookups, where p is the size of
the largest binary tree.

6. 〈true; ∅〉: constraints p(~t) are stored in a linear linked list. It supports O(n) lookups where n is the number of
n constraints.

7 Building CHRcp Join Orderings

In this section, we define the construction of valid join orderings from CHRcp rules.
Figure 7.1 defines the operation compileRuleHead(Hi, ~Ha, ~Hm, ḡ) which compiles an active pattern Hi, a par-

ticular sequencing of partners, and rule guards of a CHRcp rule r @ * ~Ha, ~Hm, Hi+ ⇐⇒ ḡ | B̄ into a valid join
ordering for this sequence. The topmost definition of compileRuleHead in Figure 7.1 defines the case when Hi

is an atomic constraint, while the second definition handles the case for a comprehension. The auxiliary operation
buildJoin(~H,Σ, ḡ, ~Hh) iteratively builds a list of join tasks from a list of head constraints ~H , the join context Σ
and a multiset of guards ḡ (the guard pool) with a list of head constraints ~Hh (the prefix head constraints). The join
context remembers the variables that appear in the prefix head constraints, while the guard pool contains guards g
that are available for either scheduling as tests or as indexing guards. The prefix head constraints contain the list of
atomic constraint patterns observed thus far in the computation. If the head of ~H is an atomic pattern A : j, the join
ordering is constructed as follows: the subset ḡ1 of ḡ that are grounded by Σ are scheduled at the front of the ordering
(CheckGuard ḡ1). This subset is computed by the operation scheduleGrds(Σ, ḡ)which returns the partition (ḡ1, ḡ2)
of ḡ such that ḡ1 contains guards grounded by Σ and ḡ2 contains all other guards. This is followed by the lookup join
task for atom A : j (i.e., LookupAtom 〈gi; ~x〉 A : j) and uniqueness enforcement join tasks neqHs(A : j, ~Hh)

which returns a join tasks NeqHead j k for each occurrence in ~Hh that has the same predicate symbol as A. The
rest of the join ordering ~J is computed from the tail of ~H . Note that the operation picks one indexing directive 〈gi; ~x〉
from the set of all available indexing directives (allIdxDirs(Σ, A, ḡ2)). Hence from a given sequence of partners,
compileRuleHead defines a family of join orderings for the same inputs, modulo indexing directives. If the head of
~H is a comprehension, the join ordering is constructed similarly, with the following differences: 1) a LookupAll
join task is created in the place of LookupAtom; 2) the comprehension guards ḡm are included as possible indexing
guards (allIdxDirs(Σ, A, ḡ2 ∪ ḡm)); 3) immediately after the lookup join task, we schedule the remaining of com-
prehension guards as filtering guards (i.e., FilterGuard ḡm − gi); 4) FilterHead uniqueness enforcement join
tasks are deployed (filterHs(C : j, C ′ : k)) as described in Section 5.3; 5) We conclude the comprehension partner
with CompreDomain ~x xs .

We briefly highlight the heuristic scoring function we have implemented to determine an optimal join ordering for
each rule occurrence Hi of a CHRcp program. This heuristic extends the approach in [5] to handle comprehensions.
Given a join ordering, we calculate a numeric score for the cost of executing ~J : a weighted sum value (n − 1)w1 +
(n−2)w2+ ...+wn for a join ordering with n partners, such thatwj is the join cost of the jth partnerHj . Since earlier
partners have higher weight, this scoring rewards join orderings with the least expensive partners scheduled early. The
join cost wj for a partner constraint C : j is a pair (vf , vl) where vf is the degree of freedom and vl is the indexing
score. The degree of freedom vf counts the number of new variables introduced by C, while the indexing score vl is
the negative of the number of common variables between C and all other partners matched before it. In general, we
want to minimize vf since a higher value indicates larger numbers of candidates matching C, hence larger branching

15

compileRuleHead(A : i, ~Ha, ~Hm, ḡ) ::= [Active A : i | Ja]++Jm++checkGrds(ḡ′′)

where (Ja,Σ, ḡ
′) = buildJoin(~Ha,FV (Ai), ḡ,[])

and (Jm,Σ
′, ḡ′′) = buildJoin(~Hm,Σ, ḡ

′, ~Ha)

compileRuleHead(*A | ḡm+~x∈xs : i, ~Ha, ~Hm, ḡ)
::= [Active A : i | Ja]++[Bootstrap FV (A)− FV (~x) i | Jm]++checkGrds(ḡ′′)

where (Ja,Σ, ḡ
′) = buildJoin(~Ha,FV (Ai), ḡ ∪ ḡm,[])

and (Jm,Σ
′, ḡ′′) = buildJoin([*Ai | ḡm+~x∈xs | ~Hm],Σ− ~x, ḡ′, ~Ha)

buildJoin([A : j | ~H],Σ, ḡ, ~Hh)
::= ([CheckGuard ḡ1,LookupAtom 〈gi; ~x〉 A : j]++neqHs(A : j, ~Hh)++~J ,Σ, ḡr)

where (ḡ1, ḡ2) = scheduleGrds(Σ, ḡ)
and 〈gi; ~x〉 ∈ allIdxDirs(Σ, A, ḡ2)

and (~J ,Σ′, ḡr) = buildJoin(~H,Σ ∪ FV (A), ḡ2 − gi, ~Hh++[A : j])

buildJoin([*A | ḡm+~x∈xs : j | ~H],Σ, ḡ, ~Hh)
:= ([CheckGuard ḡ1,LookupAll 〈gi; ~x′〉 A : j,FilterGuard (ḡm − {gi})]

++filterHs(*A | ḡm+~x∈xs : j, ~Hh)++[CompreDomain j ~x xs | ~J],Σ, ḡr)
where (ḡ1, ḡ2) = scheduleGrds(Σ, ḡ)

and 〈gi; ~x′〉 ∈ allIdxDirs(Σ, A, ḡ2 ∪ ḡm)
and (~J ,Σ′, ḡr) = buildJoin(H̄,Σ ∪ FV (A), ḡ2 − gi, ~Hh++[*A | ḡm+~x∈xs : j])

buildJoin([],Σ, ḡ, ~Hh) ::= ([],Σ, ḡ)

scheduleGrds(Σ, ḡ) ::= ({g | g ∈ ḡ,FV (g) ⊆ Σ}, {g | g ∈ ḡ,FV (g) 6⊆ Σ})

neqHs(p() : j, p′() : k) ::= if p = p′ then [NeqHead j k] else []

filterHs(C : j, C ′ : k) ::= if true B C ′ vunf C then [FilterHead j k] else []

Figure 7.1: Building Join Ordering from CHRcp Head Constraints

factor for LookupAtom join tasks, and larger comprehension multisets for LookupAll join tasks. Our heuristics
also accounts for indexing guards and early scheduled guards: a lookup join tasks for C : j receives a bonus modifier
to wj if it utilizes an indexing directive 〈gα; 〉 where gα 6= true and for each guard (CheckGuard g) scheduled
immediately after it. This rewards join orderings that heavily utilizes indexing guards and schedules guards earlier.
The filtering guards of comprehensions (FilterGuard) are treated as penalties instead, since they do not prune the
search tree. Figure 7.2 defines this heuristic scoring function, denoted by joScore(~J).

For each rule occurrence Hi and partner atomic constraints and comprehensions H̄a and H̄c and guards ḡ, we
compute join orderings from all permutations of sequences of H̄a and H̄c. For each such join ordering, we compute
the weighted sum score and select an optimal ordering based on this heuristic. Since CHRcp rules typically contain a
small number of head constraints, join ordering permutations can be practically computed.

8 Executing Join Orderings

In this section, we define the execution of join orderings by means of an abstract state machine. The CHRcp abstract
matching machine takes an active constraint A#n, the constraint store Ls and a valid join ordering ~J for a CHRcp

rule r, and computes an instance of a head constraint match for r in Ls .

16

joScore(~J) ::= joScoreInt(~J ,∅, (0, 0), (0, 0))

joScoreInt([Active A : i | ~J],Σ,Score,Sum)
::= joScoreInt(~J ,Σ ∪ FV (A),Score,Sum)

joScoreInt([LookupAtom 〈gα; ~xi〉 A : j | ~J],Σ,Score,Sum)
::= joScoreInt(~J ,Σ ∪ FV (A),Score + Sum + Wi ,Sum + Wi)

where Wi = (|FV (A)− Σ|+m,−|~xi|+m) and m = idxMod(gα)

joScoreInt([LookupAll 〈gα; ~xi〉 A : j | ~J],Σ,Score,Sum)
::= joScoreInt(~J ,Σ ∪ {xs},Score + Sum + Wi ,Sum + Wi)

where Wi = (|FV (A)− Σ|+m,−|~xi|+m) and m = idxMod(gα)

joScoreInt([CheckGuard ḡ | ~J],Σ, (s1, s2), (u1, u2))
::= joScoreInt(~J ,Σ, (s1 − |ḡ|, s2), (u1 − |ḡ|, u2))

joScoreInt([FilterGuard ~x xs ḡ | ~J],Σ, (s1, s2), (u1, u2))
::= joScoreInt(~J ,Σ, (s1 + |ḡ|, s2), (u1 + |ḡ|, u2))

joScoreInt([J | ~J],Σ,Score,Sum) ::= joScoreInt(~J ,Σ,Score,Sum)
if J is either a Bootstrap, NeqHead, FilterHead or CompreDomain join task.

joScoreInt([],Σ,Score,Sum) ::= Score

idxMod(gα) ::= if gα = true then 0 else − 1

Figure 7.2: Measuring Cost of Join Ordering

Figure 8.1 defines the constituents of this abstract machine. The input of the machine is a matching context
Θ = 〈A#n; ~J ; Ls〉, which consists of an active constraint A#n, of a join ordering ~J and of the constraint store Ls .
A matching stateM is a tuple 〈J ; pc; θ; ~Br; Pm〉 consisting of the current join task J , a program counter pc, a list
of backtracking branches ~Br, the current substitution θ and the current partial match Pm . A partial match is a map
from occurrence indices i to multisets of candidates U , which are pairs (θ,A#n). We denote the empty map as ∅
and the extension of Pm with i 7→ U as (Pm, i 7→ U). We extend the list indexing notation Pm[j] to retrieve the
candidates that Pm maps j to. We define two auxiliary meta-operations: match(A,A′) returns a substitution φ such
that φA = A′ if it exists and⊥ otherwise; lookupCands(Ls, A′, 〈g; ~x〉) abstractly retrieves the multiset of candidates
A#n in store Ls that match pattern A′ and satisfy g for indexing directive 〈g; ~x〉.

8.1 Abstract Machine Execution

Given an execution context Θ = 〈A#n; ~J ; Ls〉, the state transition operation, denoted Θ B M �lhs M′, defines a
transition step of this abstract machine. Figure 8.2 defines its behavior by means of several transition rules. Most of the
rules defines the positive (successful match) transitions that transforms a matching stateM, implementing a specific
subroutine of the overall multiset matching of a CHRcp rule. The exception are rules (backtrack) and (fail-match),
which implements the collective negative (failure) transitions. We will now describe each transition in detail.

• (active) implements the positive behavior of the join task Active occA′i. Active constraint A#n is matched
with A′ (i.e., φ = match(A, θA′)) and the search proceeds under the condition that this match is successful
(i.e., φ 6= ⊥).

• (lookup-atom) implements the positive behavior of the join task LookupAtom 〈g; ~x′〉 A′ : j. This join task
represents the task of searching the store Ls for a match with rule head constraint A′ : j. Constraints in Ls that
matches A′ under the conditions of the lookup directive 〈g; ~x′〉 are retrieved (lookupCands(Ls, θA′, 〈θg; ~x〉)).
If there is at least one such candidate (φ,A′′#m), the search proceeds with it as the match to partner j and all
other candidates as possible backtracking branches (Br ′). This is the only type of join task where the search
branches.

17

Matching Context Θ ::= 〈A#n; ~J ; Ls〉
Matching State M ::= 〈J ; pc; ~Br ; θ; Pm〉
Backtrack Branch Br ::= (pc, θ,Pm)
Candidate Match U ::= (θ,A#n)
Partial Match Pm ::= Pm, i 7→ Ū | ∅

match(A,A′) ::= if exists φ such that φA = A′ then φ else ⊥
lookupCands(Ls, A′, 〈g; ~x′〉) ::= *(φ,A#n) | for all A#n ∈ Ls s.t. match(A,A′) = φ and φ 6= ⊥ and |= g+

Figure 8.1: LHS Matching States and Auxiliary Operations

• (check-guard) implements the positive behavior of the join task CheckGuard ḡ. This join task represents
the task of enforcing rule guards ḡ. If ḡ is satisfiable under the substitution of the current state (i.e., |= θḡ), the
search proceeds.

• (lookup-all) implements the behavior of the join task LookupAll 〈g; ~x〉 A′ : j. It represents the matching of
a comprehension pattern that corresponds to head constraint j of the CHRcp rule. In particular, this comprehen-
sion pattern mentions the atomic constraint pattern A′. Similarly to (lookup-atom), this join task retrieves can-
didates in the store Ls , matchingA′ and satisfying the indexing directive (Ū = lookupCands(Ls, θA′, 〈θg; ~x〉)).
However, rather than branching, the search proceeds by extending the partial match with the set of all candidates
(i.e., j 7→ Ū). This effectively implements the maximal comprehension of constraints in Ls that matches with
A′. Also, unlike (lookup-atom), this join task never fails for well-defined join orderings. In fact, the search
proceeds even if no candidates are found (j 7→ ∅).

• (filter-guard) implements the behavior of the join task FilterGuard j ḡ. It represents the enforcement of
the guard conditions ḡ of the comprehension pattern head constraint j. This task proceeds by filtering from
Pm[j] candidates that do not satisfy the guard conditions ḡ. Hence Pm[j] of the successor state will only
contain candidates that satisfy the given guard condition. Like (lookup-all), this join task never fails for well-
defined join orderings.

• (neq-head) implements the positive behavior of the join task NeqHead j k. This join task enforces the unique-
ness of candidates matched with head constraints j and k. Specifically, if A#m and A#n are constraints in Ls
matched to j and k respectively, the search only proceeds if m 6= n.

• (filter-head) implements the behavior of the join task FilterHead j k. Similar to (neq-head), this join
task enforces the uniqueness of candidates matched with head constraints j and k. However, it differs from
it in that it enforces uniqueness by filtering from Pm[j] any candidates that appear also in Pm[k]. Unlike
(neq-head), this join task never fails for well-defined join orderings.

• (compre-dom) implements the behavior of the join task CompreDomain j ~x xs . This join task represents
the construction of comprehension domain xs of the comprehension pattern head constraint j. It is executed
by extracting projections of the variables ~x from each candidate of Pm[j]. The current substitution is then
extended with xs bounded to the multiset containing all such projections of ~x (i.e., *φ′~x | for all (φ′,) ∈ Ū+).
This join task never fails for well-defined join orderings.

• (bootstrap) implements the behavior of the join task Bootstrap ~x j. This join task represents the administra-
tive task of removing variable mappings and candidate bindings imposed by the active constraint. Specifically,
mappings of ~x from the current substitution and candidate binding (j 7→ (φ,A#n)) ∈ Pm are removed from
the current state to facilitate the boot strapping process (discussed in Section 5.2) of matching the active con-
straint to head constraint j which is a comprehension pattern. This join task never fails for well-defined join
orderings.

18

(active)
Θ B 〈Active A′ : i; pc; Br ; θ; Pm〉 �lhs 〈~J[pc]; pc+1; Br ; θφ; Pm, i 7→ (φ,A#n)〉
if φ = match(A, θA′) and φ 6= ⊥

(lookup-atom)

Θ B 〈LookupAtom 〈g; ~x〉 A′ : j; pc; Br ; θ; Pm〉
�lhs 〈~J[pc]; pc+1; Br ′++Br ; θφ; Pm, j 7→ (φ,A′′#m)〉

if *Ū ,(φ,A′′#m)+ = lookupCands(Ls, θA′, 〈θg; ~x〉)
Br ′ = *(pc, θφ,Pm, j 7→ (φ,A′′#m)) | for all (φ,A′′#m) ∈ Ū+

(check-guard) Θ B 〈CheckGuard ḡ; pc; Br ; θ; Pm〉 �lhs 〈~J[pc]; pc+1; Br ; θ; Pm〉 if |= θḡ

(lookup-all)
Θ B 〈LookupAll 〈g; ~x〉 A′ : j; pc; Br ; θ; Pm〉 �lhs 〈~J[pc]; pc+1; Br ; θ; Pm, j 7→ Ū〉
where Ū = lookupCands(Ls, θA′, 〈θg; ~x〉)

(filter-guard)
Θ B 〈FilterGuard j ḡ; pc; Br ; θ; Pm, j 7→ Ū〉 �lhs 〈~J[pc]; pc+1; Br ; θ; Pm, j 7→ Ū ′〉
where Ū ′ = *(φ′, C) | for all (φ′, C) ∈ Ū s.t. |= θφ′ḡ+

(neq-head)
Θ B 〈NeqHead j k; pc; Br ; θ; Pm〉 �lhs 〈~J[pc]; pc+1; Br ; θ; Pm〉
if Pm[j] = (, A′#m) and Pm[k] = (, A′#n) such that m 6= n

(filter-head)

Θ B 〈FilterHead j k; pc; Br ; θ; Pm, j 7→ Ū , k 7→ Ū ′〉
�lhs 〈~J[pc]; pc+1; Br ; θ; Pm, j 7→ Ū ′′, k 7→ Ū ′〉

where Ū ′′ = *(φ,A′′#m) | for all (φ,A′′#m) ∈ Ū s.t. ¬∃(, A′′#m) ∈ Ū ′+

(compre-dom)
Θ B 〈CompreDomain j ~x xs; pc; Br ; θ; Pm〉 �lhs 〈~J[pc]; pc+1; Br ; θφ; Pm〉
where Pm[j] and φ = [*φ′~x | for all (φ′,) ∈ Ū+/xs]

(bootstrap) Θ B 〈Bootstrap ~x j; pc; Br ; θ[/~x]; Pm, j 7→ 〉 �lhs 〈~J[pc]; pc+1; Br ; θ; Pm〉

(backtrack)
Θ B 〈 ; pc;[(pc′, θ′,Pm ′) | Br]; θ; Pm〉 �lhs 〈~J[pc′]; pc′+1; Br ; θ′; Pm ′〉
if neither (lookup-atom), (check-guard) nor (neq-head) applies.

(fail-match)
Θ B 〈 ; pc;∅; θ; Pm〉 �lhs ⊥
if neither (active), (lookup-atom), (check-guard), (neq-head) nor (backtrack) applies.

where Θ = 〈A#n; ~J ; Ls〉

Figure 8.2: Execution of CHRcp Join Ordering

• (backtrack) implements the backtracking of failed matching states. Specifically, it implements the negative
behavior of join tasks LookupAtom, CheckGuard and NeqHead, where backtracking may possibly occur
because the respective conditions of the rules (lookup-atom), (check-guard) or (neq-head) is not satisfiable.
Backtracking is achieved by accessing the head of the backtracking branches (pc′, θ′,Pm ′), and restoring the
execution state to that particular state: the current join task becomes ~J[pc′], the program counter pc′ + 1, the
current substitution θ′ and the partial matches Pm ′.

• (fail-match) implements the overall failure to find a match in the store Ls . Specifically, it implements the
negative behavior of (active) and (backtrack), during which there are no backtracking options available (i.e.,
~Br = ∅).

The execution of this abstract machine implicitly terminates when pc reaches an index outside the join ordering (i.e.,
~J[pc] = ⊥). Once this happens, the match Pm of the ending state contains a complete match for the CHRcp rule
represented by the join ordering. The failure case is modeled by rule (fail-match) which causes a reachable state to
transition to the failure state ⊥.

8.2 Example of Join Ordering Compilation

In this section, we consider a more complex example of join ordering compilation and execution. This example
demonstrates how performance is greatly affected by the ordering of join tasks, hence highlighting the importance of

19

mrg @

merge(X ,Y , Im ,Om ,Vm) : 1
foundMWOE (X , Is1) : 2
foundMWOE (Y , Is2) : 3
*edge(I ,O ,V) | I ∈̇ Is1 ,O ∈̇ Is2 +(I ,O,V)∈Es1 : 4
*edge(I ,O ,V) | I ∈̇ Is2 ,O ∈̇ Is1 +(I ,O,V)∈Es2 : 5

⇐⇒

findMWOE (X , *Is1 , Is2 +)
forward(Y ,X)
mstEdge(Im ,Om ,Vm)
mstEdge(Om , Im ,Vm)

A: Optimal Ordering and Indexing

Task No. Join Task # Comparisons/Operations
A.i Active merge(X ,Y , Im ,Om ,Vm) : 1 1
A.ii LookupAtom 〈true; {X}〉 foundMWOE (X , Is1) : 2 1
A.iii LookupAtom 〈true; {Y }〉 foundMWOE (Y , Is2) : 3 1
A.iv LookupAll 〈I ∈̇ Is1 ;∅〉 edge(I ,O ,V) : 4 |Is1|
A.v FilterGuard 4 O ∈̇ Is2 |Ū4| ∗ |Is2|
A.vi CompreDomain 4 (I,O, V) Es1 |Ū4|
A.vii LookupAll 〈I ∈̇ Is2 ;∅〉 edge(I ,O ,V) : 5 |Is2|
A.viii FilterGuard 5 O ∈̇ Is1 |Ū5| ∗ |Is1|
A.ix FilterHead 5 4 |Ū5| ∗ |Ū4|
A.x CompreDomain 5 (I,O, V) Es2 |Ū5|

B: Worst-case Ordering with no Indexing

Task No. Join Task # Comparisons/Operations
B.i Active merge(X ,Y , Im ,Om ,Vm) : 1 1
B.ii LookupAll 〈true;∅〉 edge(I ,O ,V) : 4 m
B.iii LookupAll 〈true;∅〉 edge(I ,O ,V) : 5 m
B.iv LookupAtom 〈true;∅〉 foundMWOE (X , Is1) : 2 n
B.v LookupAtom 〈true;∅〉 foundMWOE (Y , Is2) : 3 n
B.vi FilterGuard 4 I ∈̇ Is1 m ∗ |Is1|
B.vii FilterGuard 4 O ∈̇ Is2 |Ū4| ∗ |Is2|
B.viii CompreDomain 4 (I,O, V) Es1 |Ū4|
B.ix FilterGuard 5 I ∈̇ Is2 m ∗ |Is2|
B.x FilterGuard 5 O ∈̇ Is1 |Ū5| ∗ |Is1|
B.xi FilterHead 5 4 |Ū5| ∗ |Ū4|
B.xii CompreDomain 5 (I,O, V) Es2 |Ū5|

where m/n are numbers of edge/foundMWOE constraints and Ū4/Ū5 are candidates for head constraints 4/5.

Figure 8.3: Join Ordering Comparison for GHS Algorithm, mrg rule

20

the compilation techniques defined in Section 7. We consider the join ordering compilation of the mrg rule of the
CHRcp implementation of the GHS algorithm, introduced in Section 2.4. Figure 8.2 illustrates two join orderings
for the mrg rule, with merge(X ,Y , Im ,Om ,Vm) : 1 as the active head constraint pattern. These two join orderings
shows two distinct execution sequences for the multiset matching of this rule: Join ordering A is optimal and is com-
puted from the operations compileRuleHead and joScore defined in Section 7. Instead, join ordering B is the worst
possible ordering, which may emerge without preprocessing. Furthermore, to illustrate the importance of computing
sophisticated indexing (Figure 6.1), we have omitted the use of all but the most trivial indexing directives in join
ordering B.

Optimal join ordering A executes the multiset matching of the head constraints of rule mrg in the sequence 2–
3–4–5. This ordering schedules atomic head constraint patterns (2 and 3) before comprehension patterns (4 and 5),
and exploits hash map indexing directives (join tasks A.ii and A.iii) and membership guard indexing directives (join
tasks A.iv and A.vii). Note that since our current implementation does not support indexing directives with multiple
guards, for tasks A.iv and A.vii, we arbitrarily selected a possible membership guard indexing directive out of the
two membership guards of each comprehension pattern (I ∈̇ Is1 for A.iv and I ∈̇ Is2 for A.vii) while the remainder
are scheduled as post-comprehension guards (O ∈̇ Is2 in A.v and O ∈̇ Is1 in A.viii).

Join ordering B executes the multiset matching of the head constraints of rule mrg in the sequence 4–5–2–3.
Furthermore, the only form of indexing directive used is trivial linear iteration (i.e., 〈true;∅〉). Comprehension
patterns 4 and 5 are scheduled before the atomic constraint patterns, and all comprehension guards are enforced as
post-comprehension guards (i.e., join tasks B.vi, B.vii, B.ix and B.x).

For each join task, Figure 8.2 also presents an approximate count on the number of comparisons (or operations)
executed by the join task. For optimal join ordering A, tasks A.ii and A.iii execute in amortized constant time
because candidates are retrieved by using the hash map indexing directives 〈true; {X}〉 and 〈true; {Y }〉. Join task
A.iv, which retrieves candidates for the comprehension pattern 4, executes in time |Is1|, since it uses the indexing
directive 〈I ∈̇ Is1;∅〉 that does |Is1| queries on the hash map containing edge constraints. This produces Ū4, the
multiset of candidates containing all edge constraints retrieved as the match to head constraint pattern 4. Task A.v
costs |Ū4| ∗ |Is2| comparisons because for each candidate c in Ū4, in general we conduct |Is2| comparisons on c with
each candidate in Is2. For task A.vi, each candidate in Ū4 is projected onto Es1, hence requiring |Ū4| operations. The
cost of join tasks A.vii to A.x are largely similar to the join tasks for the comprehension pattern 4, with the exception
of task A.ix: it is executed in time proportional to |Ū5| ∗ |Ū4|, because, in general, we need to compare each candidate
in Ū5 with each candidate in Ū4.

Join ordering B, on the other hand, executes more operations: B.ii and B.iii executes in time proportional to
m, the number of edge constraints in the store. B.iv and B.v executes in time proportional to n, the number of
foundMWOE constraints in the store. Comparing these with the respective lookup for atomic head constraints 2 and
3 in the optimal join ordering (i.e., A.ii and A.iii), the optimal join ordering performs much better, since lookups take
amortized constant time. We next compare the optimal taskA.iv with join taskB.ii, both of which deal with the initial
enumeration of candidates for comprehension head constraint 2. For task A.iv, the cost of execution is proportional
to |Is1| (thanks to the lookup directive) while for B.ii executes in time proportional to m. Note that |Is1| is certainly
less than m, since Is1 is a subset of the m edge constraints in the store. Even though |Is1| and m are similar in terms
of asymptotic comparison, their difference imposes a significant impact on performances, especially given that it is
incurred in every application of the rule. The situation is similar for join tasksA.vii andB.iii: the performance of task
A.vii, which is |Is2|, dwarfs that of B.iii, that is m. Another handicap of join ordering B is its reliance on unbounded
post-comprehension filtering: the first post-comprehension filtering tasks for comprehension patterns 4 and 5 (B.vi
and B.ix respectively) filter from the multiset of all edge constraints in the store (each the size of m). Hence B.vi
and B.ix costs m ∗ |Is1| and m ∗ |Is2|. Comparing this against the first filtering of join-ordering A (A.v and A.viii)
whose cost is |Ū4| ∗ |Is2| and |Ū5| ∗ |Is1|, the latter values are guaranteed to be lower, since Ū4 and Ū5 are subsets of
m edge constraints in the store.

In terms of raw counts of comparison operations, the optimal join ordering A clearly performs better than join
ordering B (empirical results can be found in Section 11). Additionally, scheduling atomic constraint patterns (2 and
3) before comprehension patterns (4 and 5) has an important advantage: In optimal join ordering A, since atomic
constraints 2 and 3 are scheduled before comprehension patterns 4 and 5, we do not incur overheads of building

21

constr(Pm, i) ::=

{
*A#n | for all (, A#n) ∈ Ū+ if Pm[i] = Ū and Ū 6= ⊥
∅ otherwise

jtRuleHeads(J) ::=

{
*H+ if J = Active H, J = LookupAtom H or J = LookupAll H

∅ otherwise

jtGuards(J) ::=

 *g+

{
if J = LookupAtom 〈g; 〉 , J = CheckGuard g,

J = LookupAll 〈g; 〉 or J = FilterGuard g

∅ otherwise

jtOccs(J) ::=


*i+ if J = Bootstrap i or J = CompreDomain i

*i, j+ if J = NeqHead i j or J = FilterHead i j

∅ otherwise

Figure 9.1: More Auxiliary Operations

comprehensions 4 and 5 if we cannot find matches to either 2 or 3. For join ordering B however, note that if either
head constraints 2 or 3 fail to be matched (by B.iv and B.v respectively), join tasks B.ii and B.iii that costs m
operations each would effectively been wasted.

9 Correctness of the CHRcp Abstract Matching Machine

In this section, we highlight the correctness results of the CHRcp abstract matching machine. Specifically, we show
that our abstract machine always terminates for a valid matching context 〈A#n; ~J ; Ls〉. By valid, we mean that Ls is
finite, that A#n ∈ Ls , and that ~J is a join ordering constructed by compileRuleHead . We also show that it produces
sound results w.r.t. the CHRcp operational semantics. Finally, we show that it is complete for a class of CHRcp rules
that are not selective on comprehension patterns. We assume that matching (match(A,A′)) and guard satisfiability
tests (|= g) are decidable procedures. Refer to Appendix A for the proofs of the lemmas and theorems presented in
this section.

Figure 9.1 introduces a few more auxiliary operations we will use in this section. The operation constr(Pm, i)
returns the multiset of all constraints in partial match Pm mapped by i. We inductively extend constr(Pm,) to
sets of occurrence indices ī. Operations jtRuleHeads(J), jtGuards(J) and jtOccs(J) returns rule heads, guards
and occurrence indices that appear in J respectively, or the empty set if none exist. We inductively extend their
inputs to lists of join tasks ~J . We denote the exhaustive transition of the CHRcp abstract matching machine as
Θ B M �∗lhs M′ whereM′ is a terminal state of the form 〈⊥; ; ; ; 〉 with denoting an arbitrary value. The
program counter is ⊥ since it has gone past the last index of ~J . An initial state has the form 〈~J[0]; 1;∅; ·;∅〉, while
all other states in between (including initial and terminal) are called reachable states. Finally, we denote s transitions
of the CHRcp abstract matching machine (not necessary exhaustive) as Θ B M �s

lhs M′.

9.1 Valid Matching Contexts and States

We define a notion of validity for our abstract machine. Furthermore, we show that given valid inputs (matching
contexts and initial matching states), the abstract machine transition operation derives valid states.

A matching context Θ = 〈A#n; ~J ; Ls〉 is valid if and only if A#n ∈ Ls and ~J is a valid join ordering. A valid
join ordering ~J of a CHRcp rule r @ H̄ ⇐⇒ ḡ | B̄, have the following properties:

22

• Active Head: ~J[0] = Active H for some rule head H .

• Unique Rule Heads: For any A : j and A′ : k such that *A : j, A′ : k+ ⊆ jtRuleHeads(~J), we have j 6= k.

• Uniqueness Enforcement: For any p() : j, p′() : k ∈ jtRuleHeads(~J) such that j 6= k, then:

– for the case where j and k are both atomic head constraints, i.e., pj() : j, pk() : k ∈ H̄ , if pj = pk then
there exists some pc such that ~J[pc] = NeqHead j k

– for the case where j is a comprehension pattern, i.e., M : j, C : k ∈ H̄ , if true B C vunf M , then
~J[pc] = FilterHead j k

• Guard Representation: Guards in rule r are presented in ~J . Specifically, the ~J has the following properties:

– Rule Guards: ḡ ⊆ jtGuards(~J)

– Comprehension Guards: For each *A | ḡ′+~x∈xs : j ∈ H̄ , ḡ′ ⊆ jtGuards(~J)

• Guard Scope Coverage: For any pc ∈ range(~J) such that *g+ = jtGuards(~J[pc]), we have:

FV (g) ⊆ FV (jtRuleHeads(~J[0 . . . pc+1]))

• Rule Head Constraint Representation: For each head constraint C : i ∈ H̄ ,

– If C is an atomic constraint, then there exists some LookupAtom C : i ∈ ~J .

– If C is a comprehension pattern, i.e., C = *A | ḡ′+~x∈xs , then there exists some LookupAll A : i ∈ ~J ,
FilterGuard i ḡ′ ∈ ~J and CompreDomain i ~x xs ∈ ~J .

• Occurrence Scope Coverage: For any pc ∈ range(~J), we have:

jtOccs(~J[pc]) ⊆ *j | for all A : j ∈ jtRuleHeads(~J[0 . . . pc])+

Active head states that the leading join tasks must be of the form Active . Unique rule heads specifies that each
appearance of a rule head A : j is unique in ~J . Uniqueness Enforcement asserts that for any two rule heads i and j
with the same predicate symbol, there must be a join task in ~J that enforces uniqueness between i and j. Guard scope
coverage specifies that for each g that appears in ~J has its free variables appearing in rule heads that appear before
it in ~J . Finally, occurrence scope coverage states that every occurrence index j in ~J appears after rule head A : j.
Lemma 1 states that given any rule heads of a CHRcp rule, the operation compileRuleHead (Section 7) computes a
valid join ordering of that rule head. Hence this proves that the operation compileRuleHead provides us the means of
obtaining valid join orderings.

Lemma 1 (Building Valid Join Ordering) For any rule heads of a CHRcp rule, C : i, ~Ha, ~Hm and ḡ, if ~J =
compileRuleHead(C : i, ~Ha, ~Hm, ḡ), then ~J is valid.

We also define a notion of valid matching states: a matching state 〈J ; pc; ~Br ; θ; Pm〉 is valid with respect to a
matching context 〈A#n; ~J ; Ls〉 of a CHRcp rule r @ H̄ ⇐⇒ ḡ | B̄ if and only if we have the following:

• Valid Program Counter: if pc ∈ range(~J) then J = ~J[pc − 1], otherwise J = ⊥ and pc − 1 ∈ range(~J)

• Valid Partial Match: For each (i 7→ Ū) ∈ Pm , the following two properties are satisfied:

– Valid Indices: either

∗ there exists some LookupAtom A : j ∈ ~J[0 . . . pc] such that i = j and θA ,lhs

*A#n | for all (, A#n) ∈ Ū+, or

23

∗ there exists some LookupAll A : j ∈ ~J[0 . . . pc] such that i = j and θA ,lhs

*A#n | for all (, A#n) ∈ Ū+. Furthermore, for comprehension patterns (i.e., M : i ∈ H̄), we
have M ,¬lhs Ls − E such that E = *A#n | for all (j 7→ Ū) ∈ Pm s.t. (, A#n) ∈ Ū+, or

∗ if none of the above, then Active C : i, Bootstrap i ∈ ~J[0 . . . pc].
– Valid Candidates: For each (i 7→ Ū) ∈ Pm , we have *A#n | for all (, A#n) ∈ Ū+ ⊆ Ls .

• Valid Backtracking Branches: For each (pc′, θ′,Pm ′) ∈ ~Br , a backtracked state 〈~J[pc′]; pc′+ 1;∅; θ′; Pm ′〉
must also be a valid state, with respect to the matching context 〈A#n; ~J ; Ls〉.

Valid program counter asserts that the program counter pc of a valid state is always synchronized with the current
join task J of that state. In particular, J is the pcth element of the join ordering ~J . Valid partial match defines two
properties on the partial match Pm of a valid state: 1) Valid indices: Pm must contain mappings j 7→ Ū for all
head constraints j that appears before the current program counter (i.e., ~J[0 . . . pc]), unless j is a bootstrapped active
pattern (i.e., (Bootstrap i) ∈ ~J[0 . . . pc]). If j corresponds to a comprehension pattern, we additionally must
have the property that candidates Ū contains the maximal set of candidates from Ls . 2) Valid candidates: candidates
appearing in Pm (i.e., (7→ Ū) ∈ Pm) must contain only constraints that appear in the store Ls . Finally, valid
backtracking branches states that backtracking branches ~Br in a valid state only points to valid states.

Lemma 2 states that the transition operation Θ B M �lhs M′ preserves the validity of states: given that Θ and
M are valid, thenM′ is valid as well.

Lemma 2 (Preservation of Valid States) For any valid matching context Θ = 〈A#n; ~J ; Ls〉 and a valid state (w.r.t.
Θ)M, for any reachable stateM′ such that Θ B M �lhs M′,M′ must be valid.

9.2 Termination

For our CHRcp abstract matching machine to be effective, we need some guarantees that if we run it on a valid join
ordering ~J and a finite constraint store Ls , the execution either terminates with some terminal state (i.e., 〈⊥; ; ; ; 〉),
or returns ⊥. This means that for any valid context Θ and stateM, we must have either Θ B M �∗lhs M′ for some
terminal stateM′ or Θ B M �∗lhs ⊥.

To show this, we must first demonstrate that the transition operation�lhs provides some form of progress guar-
antees. To measure progress, we define the function progress(Θ,M): Given a valid context 〈 ; ~J ; 〉, a valid state
M = 〈 ; pc; ~Br ; ; 〉, this function returns an n + 1-tuple containing non-negative integers, known as the progress
ranking ofM. For the tuple positions 1 to n, known as the lookup progress values, indicates the number of backtrack-
ing branches in ~Br that are created by nth atomic partner constraint of ~J . Position 0 (leftmost), known as the active
progress value, indicates whether the current program counter pc has moved passed at least one LookupAtom join
task in ~J . Finally, the rightmost tuple position (n + 1), known as program counter progress, indicates the number of
join tasks between pc and the end of ~J . Figure 9.2 defines this function.

By using lexicographical order comparison between state progress (i.e., progress(Θ,M) > progress(Θ,M′)),
we show that the abstract matching machine transition operation monotonically decreases progress ranking of match-
ing states. Lemma 3 defines this progress guarantee.

Lemma 3 (Monotonic Progress of Abstract Matching Machine) For any valid context Θ and valid statesM,M′,
if Θ B M�lhs M′, then we have progress(Θ,M) > progress(Θ,M′).

Theorem 4 is the main termination result of the abstract matching machine. For any valid matching context
and matching state, the abstract matching machine, either evaluates to a terminal state (M = 〈⊥; ; ; θ; Pm〉) or
exhaustively searched the store, resulting to ⊥. The proof of this theorem relies on Lemma 3: because progress rank
of matching states monotonically decreases, exhaustive derivations of abstract matching transitions are finite and must
eventually terminate.

Theorem 4 (Termination of the CHRcp Abstract Matching Machine) For any valid Θ = 〈A#n; ~J ; Ls〉, we have
Θ B 〈~J[0]; 1;∅; ·;∅〉 �∗lhs M such that eitherM = 〈⊥; ; ; θ; Pm〉 orM = ⊥.

24

progress(~J , 〈 ; pc; ~Br ; ; 〉) ::= (act progress, lookup progress ′, pc progress)

where act progress = if not exists any LookupAtom ∈ ~J[0 . . . pc] then 1 else 0

lookup progress = btProgress(~Br , btIndices(~J , 0), 0)

lookup progress ′ = pcModifier(lookup progress, btIndices(~J , 0), pc, 1)

pc progress = |~J | − pc

btIndices([J | ~J], pc) ::=

{
btIndices(~J , pc+1)++[pc] if LookupAtom
btIndices(~J , pc+1) otherwise

btIndices([], pc) ::= []

btProgress([(pc, θ,Pm) | ~Br],[pc′ | ~pc], s) ::=

{
btProgress(~Br ,[pc′ | ~pc], s+1) if pc = pc′

(btProgress([(pc, θ,Pm) | ~Br], ~pc, 0), s) otherwise
btProgress([],[pc | ~pc],) ::= (btProgress([], ~pc, 0), 0)
btProgress(,[],) ::= 0

pcModifier((rest , curr),[pc | ~pc], pc′,mod) ::=

{
(pcModifier(rest , ~pc, pc′, 0), curr + mod) if pc < pc′

(pcModifier(rest , ~pc, pc′,mod), curr) otherwise
pcModifier(,[], ,mod) ::= mod

Figure 9.2: State Progress Ranking Function

9.3 Soundness

The CHRcp abstract matching machine is also sound w.r.t. the semantics of matching of CHRcp : in the final state of
a valid execution, θ and Pm correspond to head constraint match as specified by the semantics of matching of CHRcp

(Figure 4.1). The operation constr(Pm, i) returns the multiset of all constraints in partial match Pm mapped by i.
Lemma 5 states that each reachable state M of a abstract matching machine execution of the matching context

Θ = 〈A#n; ~J ; Ls〉 contains a partial match to rule head constraints and guards that appears in the prefix sequence of
join tasks of ~J up toM current program counter.

Lemma 5 (Soundness of Abstract Matching Machine Transition Step) For any CHRcp head constraints C : i,
~Ha, ~Hm and ḡ, such that ~J = compileRuleHead(C : i, ~Ha, ~Hm, ḡ), given a constraint store Ls and an active
constraint A#n, all reachable statesM = 〈J ; pc; ~Br ; θ; Pm〉, satisfies the following:

1. Satisfied Guards: |= θjtGuards(~J[0 . . . pc])

2. Partial Match: For each A : i ∈ jtRuleHeads(~J[0 . . . pc]), with corresponding rule head constraint C : i ∈
* ~Ha, ~Hm+, we have C : i ,lhs constr(Pm, i)

3. Maximality of Comprehension: For each A : i ∈ jtRuleHeads(~J[0 . . . pc]), such that there exists
LookupAll A : i ∈ ~J[0 . . . pc], with corresponding rule head constraint M : i ∈ ~Hm, we have
M ,¬lhs Ls − E such that E = *A#n | for all (j 7→ Ū) ∈ Pm[0 . . . pc] s.t. (, A#n) ∈ Ū+

Theorem 6 asserts the soundness result. Its proof relies on Lemma 1 to guarantee that any join ordering ~J con-
structed from compileRuleHead is valid, and on Lemma 2 and Lemma 5 to guarantee that reachable states are valid.
Hence substitutions θ and partial matches Pm of reachable states fulfill the soundness requirements with respect to
the semantics of matching of CHRcp .

Theorem 6 (Soundness of Abstract Matching Machine) For any CHRcp head constraints C : i, ~Ha, ~Hm and ḡ,
such that ~J = compileRuleHead(C : i, ~Ha, ~Hm, ḡ), given a constraint store Ls and an active constraint A#n,

25

r @
p(D0) : 1
*p(D1)+D1∈Xs : 2
*p(D2)+D2∈Ys : 3

⇐⇒ D0 ∈̇ Xs
D0 ∈̇ Ys

...

Optimal Join Ordering for Occurrence p(D0) : 1

Task No. Join Task
i. Active p(D0) : 1
ii. LookupAll 〈true; ∅〉 p(D1) : 2
iii. FilterHead 2 1
iv. CompreDomain 2 D1 Xs
v. CheckGuardD0 ∈̇ Xs
vi. LookupAll 〈true; ∅〉 p(D2) : 3
vii. FilterHead 3 1
viii. FilterHead 3 2
ix. CompreDomain 3 D2 Ys
x. CheckGuardD0 ∈̇ Ys

Figure 9.3: Example of Incompleteness of Matching

if 〈A#n; ~J ; Ls〉 B 〈~J[0]; 1;∅; ·;∅〉 �∗lhs 〈⊥; ; ; θ; Pm〉, then for some Lsact, Lspart, Lsrest such that Ls =

Lsact,Lspart,Lsrest+ and Lsact = constr(Pm, i) and Lspart = constr(Pm, getIdx (~Ha, ~Hm+)), we have:

1. Satisfied Guards: |= θg,

2. Active Pattern Match: C : i ,lhs Lsact,

3. Partners Match: θ* ~Ha, ~Hm+ ,lhs Lspart, and

4. Maximality of Comprehension: θ* ~Ha, ~Hm, C : i+ ,¬lhs Lsrest.

9.4 Completeness

We also wish to provide a completeness result for our abstract machine. Specifically, that for a CHRcp rule r with a
rule compilation ~J :

〈A#n; ~J ; Ls〉 B 〈~J[0]; 1; ∅; ·; ∅〉 �∗lhs ⊥

implies that no possible match of r with A#n as the active constraint exists in Ls .
However, the CHRcp abstract matching machine is not complete in general. Incompleteness stems from the

fact that it greedily matches comprehension patterns: comprehensions that are scheduled early consume all matching
constraints in the store Ls . This matching scheme is incomplete for CHRcp rules that are selective on comprehension
head constraints. A CHRcp rule r with head constraints H̄a, H̄m and ḡ is selective on its comprehension head
constraints if for any comprehension head constraint *A | ḡm+x∈xs : j ∈ H̄m, we have the following:

• There exists C : k ∈ *H̄a, H̄m+ and k 6= j such that ḡ B C 6,¬unf *A | ḡm+x∈xs

• There exists g ∈ ḡ such that xs ∈ FV (g)

The first condition implies that comprehension j possibly “competes” with head constraint k for constraints in the
store Ls (their atomic constraint patterns are unifiable). The second condition states that comprehension domain of j
(i.e., xs) appears as an argument of g. Hence satisfiability of g possible depends on a specific partitioning of constraints
between head constraints j and k.

Figure 9.3 shows an example of this incompleteness: Consider the execution of this join ordering with the con-
straint store Ls = *p(2)#n, p(2)#m, p(2)#h+ and the active constraint p(2)#n. Ls indeed contains a match to
this rule, namely Pm = 1 7→ p(2)#n, 2 7→ p(2)#m, 3 7→ p(2)#h, since we have Xs = *2+ and Ys = *2+, and

26

hence D0 ∈̇ Xs and D0 ∈̇ Ys . However, the abstract machine will not be able to compute this match because it
implements a greedy comprehension matching scheme: by task v, occurrence 2 has been computed and finalized with
Pm[2] = *p(2)#m, p(2)#h+, leaving none for occurrence 3 (i.e., Pm[3] = ∅) after task (viii), FilterHead 3 2
is executed. In general, if we insist on guaranteeing completeness, given a join ordering where a multiset of constraints
Ā can match with two unique comprehension patterns, Hj and Hk, our abstract machine must permute all possible
partitions on Ā that splits between i and j. Such an execution scheme would have severe impact on performance. The
abstract machine will not necessary be able to identify this partitioning: suppose that a join ordering executes j before
i, then the join task FilterHead i j always forces all constraints that can match either with i or j to be in j.

The greedy comprehension matching scheme implemented by the abstract matching machine is, however, complete
for a class of CHRcp rules that are not selective on comprehensions. Lemma 7 asserts that if the abstract machine
transition operation computes to⊥ (failure to find match), computation must have exhaustively backtracked and tested
all possible matchings to atomic head constraints.

Lemma 7 (Exhaustive Backtracking For Atomic Head Constraints) Let r be any CHRcp rule and its head con-
straints be C : i, ~Ha, ~Hm and ḡ with ~J = compileRuleHead(C : i, ~Ha, ~Hm, ḡ). Given a constraint store Ls and an
active constraint A#n, for any reachable stateM = 〈J ; pc; ~Br ; θ; Pm〉, we have:

• For someM′ = 〈J ′; pc′; ~Br
′
; θ′; Pm ′〉 such that 〈A#n; ~J ; Ls〉BM �lhs M′, if J = LookupAtom A : j,

then for all A′#n ∈ Ls such that match(A′, θA) = φ (φ 6= ⊥), either we have j 7→ (φ,A′#n) ∈ Pm ′ or
(pc, θφ, (Pm, j 7→ (φ,A′#n))) ∈ ~Br

′
.

• If 〈A#n; ~J ; Ls〉 B 〈J ; pc; ~Br ; θ; Pm〉 �∗lhs ⊥, then for each (pc′, θ′,Pm ′) ∈ ~Br , there exists someM′ =

〈J ′; pc′; ~Br
′
; θ′; Pm ′〉 such that 〈A#n; ~J ; Ls〉 B 〈J ; pc; ~Br ; θ; Pm〉 �s1

lhs 〈J ′; pc′; ~Br
′
; θ′; Pm ′〉 �s2

lhs ⊥

The first part of Lemma 7 asserts that the execution of an atomic head constraintA : j (i.e., LookupAtom A : j)
must result to one matching constraint in the store A′#n ∈ Ls extended as the partial match of the successor state
M′, while all other matching constraints in the store are included as possible backtracking points. The second part
asserts that if the overall exhaustive execution results in ⊥ from some reachable state 〈J ; pc; ~Br ; θ; Pm〉, then each
backtracking branch (pc′, θ′,Pm ′) ∈ ~Br must have been restored as an intermediate state at some point of the
exhaustive execution.

Theorem 8 expresses our completeness result for CHRcp rule that is non-selective on comprehension rule heads.

Theorem 8 (Completeness of Abstract Matching Machine) Let r be any CHRcp rule that is non-selective on com-
prehension rule heads. Let its head constraints be C : i, ~Ha, ~Hm and ḡ with ~J = compileRuleHead(C :
i, ~Ha, ~Hm, ḡ). Given a constraint store Ls and an active constraint A#n, if
〈A#n; ~J ; Ls〉 B 〈~J[0]; 1;∅; ·;∅〉 �∗lhs ⊥ then there exists no applicable rule instance of r from Ls .

10 Operational Semantics with Join Ordering Execution

In this section, we integrate the join ordering execution defined in Section 8 with the operational semantics of CHRcp .
Specifically, we redefine the operational semantics of CHRcp by means of the transition operation P B σ 7→ω+ σ

′.
This operation is similar to the transition operation 7→ω (Section 4.3) except that it defines the (act-apply) and
(act-next) transitions in terms of compiled join orderings and execution. The result is an operational semantics that
more closely resembles an actual implementation of the CHRcp runtime.

Figure 10.1 defines this operational semantics. Note that rules other than (act-apply) and (act-next) are similar
to those found in Figure 4.4. The rules (act-apply) defines a successful match and application of the CHRcp rule
instance with active constraintA#nmatching the ith head constraint of program P (P[i] = r @ * ~Ha, ~Hm, C : i+⇐⇒
ḡ | B̄). Rule (act-next) handles the unsuccessful case, where a match is not possible. Both transitions are defined in
terms of join ordering compilation and execution: the match to rule head constraints of CHRcp rule r is computed by
first compiling the relevant rule head constraints into the join ordering ~J (~J = compileRuleHead(C : i, ~Ha, ~Hm, ḡ)).

27

(init)

P B 〈[init *B̄l, B̄e+ | Gs] ; Ls〉 7→ω+ 〈lazy(St l)++eager(Lse)++Gs ; *Ls,Lse+〉
such that P ,¬unf B̄l B̄e ≫rhs Ste B̄l ≫rhs St l Lse = newLabels(Ls,Ste)

where eager(*Ls, A#n+) ::= [eager A#n | eager(Ls)] eager(∅) ::= []

lazy(*Stm, A+) ::= [lazy A | lazy(Stm)] lazy(∅) ::= []

(lazy-act)
P B 〈[lazy A | Gs] ; Ls〉 7→ω+ 〈[act A#n 1 | Gs] ; *Ls, A#n+〉
such that *A#n+ = newLabels(Ls, *A+)

(eager-act) P B 〈[eager A#n | Gs] ; *Ls, A#n+〉 7→ω+ 〈[act A#n 1 | Gs] ; *Ls, A#n+〉
(eager-drop) P B 〈[eager A#n | Gs] ; Ls〉 7→ω+ 〈Gs ; Ls〉 if A#n /∈ Ls

(act-apply)

P B 〈[act A#n i | Gs] ; *Ls,Lsh,Lsa, A#n+〉 7→ω+ 〈[init θB̄ | Gs] ; Ls〉
For P[i] = (r @ * ~Ha, ~Hm, C : i+⇐⇒ ḡ | B̄) and ~J = compileRuleHead(C : i, ~Ha, ~Hm, ḡ)

if 〈A#n; ~J ; *Ls,Lsh,Lsa, A#n+〉 B 〈~J[0]; 1;∅; ·;∅〉 �∗lhs 〈 ; ; ; θ; Pm〉 such that
constr(Pm, i) = *Lsa, A#n+ and constr(Pm, getIdx (* ~Ha, ~Hm+)) = Lsh

(act-next)

P B 〈[act A#n i | Gs] ; Ls〉 7→ω+ 〈[act A#n (i+ 1) | Gs] ; Ls〉
For P[i] = (r @ * ~Ha, ~Hm, C : i+⇐⇒ ḡ | B̄) and ~J = compileRuleHead(C : i, ~Ha, ~Hm, ḡ)

if 〈A#n; ~J ; *Ls,Lsh,Lsa, A#n+〉 B 〈~J[0]; 1;∅; ·;∅〉 �∗lhs ⊥
(act-drop) P B 〈[act A#n i | Gs] ; Ls〉 7→ω+ 〈Gs ; Ls〉 if P[i] = ⊥

Figure 10.1: Operational Semantics of CHRcp with Join Ordering Execution

This join ordering ~J , together with the active constraint A#n and the current store *Ls,Lsh,Lsa, A#n+ is used to
compute a rule instance via the abstract matching machine transition (Section 8). The transition rule (act-apply)

states that if 〈A#n; ~J ; *Ls,Lsh,Lsa, A#n+〉 B 〈~J[0]; 1;∅; ·;∅〉 �∗lhs 〈 ; ; ; θ; Pm〉, we have a successful
match such that θ corresponds to the matching substitution and matching constraints are extracted from Pm . Otherwise
(〈A#n; ~J ; *Ls,Lsh,Lsa, A#n+〉 B 〈~J[0]; 1;∅; ·;∅〉 �∗lhs ⊥) and we apply the rule (act-next) that iterates the
search to the next rule head constraint (i.e., act A#n (i+ 1)).

Corollary 9 defines the one-to-one correspondence between the two operational semantics. It directly follows from
our results in Section 9 (i.e., Theorem 4, 6 and 8).

Corollary 9 (Correctness of Join Ordering) Let P be a CHRcp program such that all rules in P are not selective
on comprehension head constraints. For any valid states σ and σ′, P B σ 7→∗ω σ′ if and only if P B σ 7→∗ω+ σ′.

11 Prototype and Preliminary Empirical Results

In this section, we report preliminary experimental results of our CHRcp implementation. We have implemented
a prototype (available for download at https://github.com/sllam/chrcp) that utilizes a source-to-source
compilation of CHRcp programs: our compiler is written in Python and translates CHRcp programs into a sequence
of join orderings. Then, it generates C++ code that implements multiset rewriting as specified by the operational
semantics of CHRcp . To support unifiability analysis for constraint monotonicity (Section 4.2) and uniqueness en-
forcement optimization (Section 5.3), we have deployed a conservative implementation of the relation test routine
vunf , discussed in [7].

We have conducted preliminary experiments aimed at assessing the performance of standard CHR programs (with-
out comprehension patterns), CHRcp programs with comprehension patterns and also to investigate the effects of the
optimizations described in this paper:

1. (OJO) Optimal Join Ordering (Section 7).

2. (Bt) Bootstrapping of active comprehension head constraints (Section 5.2).

3. (Mono) Incremental Storage for monotone constraints (Section 4.2).

28

https://github.com/sllam/chrcp

Program Standard rules only With comprehensions Code reduction (lines)
Swap 5 preds 7 rules 21 lines 2 preds 1 rule 10 lines 110%
GHS 13 preds 13 rules 47 lines 8 preds 5 rules 35 lines 34%

HQSort 10 preds 15 rules 53 lines 7 preds 5 rules 38 lines 39%

Program Input Size Orig +OJO
+OJO
+Bt

+OJO
+Mono

+OJO
+Uniq

All Speedup

(40, 100) 241 vs 290 121 vs 104 vs 104 vs 103 vs 92 vs 91 33%
Swap (200, 500) 1813 vs 2451 714 vs 681 vs 670 vs 685 vs 621 vs 597 20%

(1000, 2500) 8921 vs 10731 3272 vs 2810 vs 2651 vs 2789 vs 2554 vs 2502 31%

(100, 200) 814 vs 1124 452 vs 461 vs 443 vs 458 vs 437 vs 432 5%
GHS (500, 1000) 7725 vs 8122 3188 vs 3391 vs 3061 vs 3290 vs 3109 vs 3005 6%

(2500, 5000) 54763 vs 71650 15528 vs 16202 vs 15433 vs 16097 vs 15835 vs 15214 2%

(8, 50) 1275 vs 1332 1117 vs 1151 vs 1099 vs 1151 vs 1081 vs 1013 10%
HQSort (16, 100) 5783 vs 6211 3054 vs 2980 vs 2877 vs 2916 vs 2702 vs 2661 15%

(32, 150) 13579 vs 14228 9218 vs 8745 vs 8256 vs 8617 vs 8107 vs 8013 15%

Execution times (ms) for various optimizations on programs with increasing input size.

Figure 11.1: Preliminary Experimental Results

4. (Uniq) Non-unifiability test for uniqueness enforcement (Section 5.3).

Optimization OJO is not specific to comprehension patterns: we use it to investigate the performance gains for
programs with comprehension patterns relative to standard CHR variants. All other optimizations are specific to
comprehension patterns, and hence we do not anticipate any performance gains for standard CHR programs. We have
analyzed performance on three CHRcp programs of varying sizes (refer to Appendix B for actual code):

• Swap (Figure B.1): Swapping data, as describe in Section 2. Input size (s, d), where s is number of swaps and
d is number of data constraints.

• GHS (Figure B.2): Distributed GHS algorithm [4] for finding minimal spanning tree. Input sizes (v, e) where
v is number of vertices and e is number of edges.

• HQSort (Figures B.3 and B.4): Simulation of Hyper-Quicksort distributed sorting algorithm. Input sizes (n, i)
where n is number of nodes and i number of integers in each node.

Figure 11.1 displays our experimental results. The experiments were conducted on an Intel i7 quad-core processor
with 2.20 GHz CPUs and 4 Gb of memory. All execution times are averages over ten runs of the same experiments.
The column Orig contains results for runs with all optimizations turned off, while All contains results with all opti-
mizations. In between, we have results for runs with optimal join ordering and at least one optimization specific to
comprehension patterns. For Orig and +(OJO), we show two values, n vs m, where n is the execution time for the
program implemented with standard rules and m for code using comprehension patterns. Relative gains demonstrated
in Orig and +(OJO) come at no surprise: join ordering and indexing benefit both forms of programs. For the Swap
example, optimization +(Uniq) yields the largest gains, with +(Bt) for GHS . +(Mono) yields the least gains across
the board and we believe that this is because, for programs in this benchmark, constraints exclusively appear as atomic
constraint patterns or in comprehension patterns. The last column shows the speedup of the CHRcp code with all
optimizations turned on w.r.t. the standard CHR code with join ordering.

Our experiments, although preliminary, show very promising results: comprehensions not only provide a common
abstraction by reducing code size, but, maybe more surprisingly, we get significant performance gains over CHR. We
have not yet fully analyzed the reasons for this speedup.

29

12 Related Work

Compilation optimization for CHR has received a lot of attention. Efficient implementations are available in Prolog,
HAL [5], Java [11] and even in hardware (via FPGA) [10]. The multiset matching technique implemented in these
systems are based on the LEAPS algorithm [1]. Our work implements a variant of this algorithm, augmented to
handle matching of comprehension patterns. These systems utilize optimization techniques (e.g., join ordering, index
selection) that resemble query optimization in databases. The main difference is that in the multiset rewriting context
we are interested in finding one match, while relational queries return all matches.

Two related extensions to CHR have been proposed: negated head constraints allows encoding of a class of com-
prehension patterns[12], while an extension that allows computation of limited form of aggregates is discussed in [9].
Like the present work, both extensions introduce non-monotonicity into the semantics. By contrast, we directly address
the issue of incrementally processing of constraints in the presence of non-monotonicity introduced by comprehension
patterns.

The logic programming language Meld [2] offers rich features including aggregates and a limited form of compre-
hension patterns. To the best of our knowledge, a low-level semantics for an efficient implementation of Meld has not
yet been explored.

13 Conclusion and Future Works

In this report, we introduced CHRcp , an extension of CHR with multiset comprehension patterns. We highlighted
an operational semantics for CHRcp , followed by a lower-level compilation scheme into join orderings. We defined
an abstract machine that executes these join orderings, and proved its soundness with respect to the operational se-
mantics. We have implemented a prototype CHRcp system and have demonstrated promising results in preliminary
experimentation.

In future work, we intend to further develop our prototype implementation of CHRcp by investigating the pos-
sibility of adapting other orthogonal optimization techniques found in [5, 11, 10]. Next, we intend to expand on
our empirical results, testing our prototype with a larger benchmark and also testing its performance against other
programming frameworks. We also intend to extend CHRcp with some result form prior work in [8] and develop a
decentralized multiset rewriting language.

References

[1] D. Batory. The LEAPS Algorithm. Technical report, University of Texas at Austin, 1994.

[2] F. Cruz, M. P. Ashley-Rollman, S. C. Goldstein, Ricardo Rocha, and F. Pfenning. Bottom-Up Logic Programming
for Multicores. In DAMP’12, January 2012.

[3] G. J. Duck, P. J. Stuckey, M. Garcia de la Banda, and C. Holzbaur. The Refined Operational Semantics of
Constraint Handling Rules. In ICLP’04, pages 90–104. Springer, 2004.

[4] R. G. Gallager, P. A. Humblet, and P. M. Spira. A Distributed Algorithm for Minimum-Weight Spanning Trees.
ACM Trans. Program. Lang. Syst., 5(1):66–77, January 1983.

[5] C. Holzbaur, M. J. Garcı́a de la Banda, P. J. Stuckey, and G. J. Duck. Optimizing compilation of constraint
handling rules in HAL. CoRR, cs.PL/0408025, 2004.

[6] E. S. L. Lam and I. Cervesato. Constraint Handling Rules with Multiset Comprehension Patterns. In CHR’14,
2014.

[7] E. S. L. Lam and I. Cervesato. Reasoning about Set Comprehension. In SMT’14, 2014.

30

[8] E.S.L. Lam and I. Cervesato. Decentralized Execution of Constraint Handling Rules for Ensembles. In PPDP’13,
pages 205–216, Madrid, Spain, 2013.

[9] J. Sneyers, P. V. Weert, T. Schrijvers, and B. Demoen. Aggregates in Constraint Handling Rules. In ICLP’07,
pages 446–448, 2007.

[10] A. Triossi, S. Orlando, A. Raffaetà, and T. W. Frühwirth. Compiling CHR to parallel hardware. In PPDP’12,
pages 173–184, 2012.

[11] P. Van Weert, T. Schrijvers, and B. Demoen. K.U.Leuven JCHR: a user-friendly, flexible and efficient CHR
system for Java. In CHR’05, pages 47–62, 2005.

[12] P. V. Weert, J. Sneyers, T. Schrijvers, and B. Demoen. Extending CHR with Negation as Absence. In CHR’06,
pages 125–140, 2006.

A Proofs

Lemma 1 (Building Valid Join Ordering) For any rule heads of a CHRcp rule, C : i, ~Ha, ~Hm and ḡ, if ~J =
compileRuleHead(C : i, ~Ha, ~Hm, ḡ), then ~J is valid.

Proof: We proof for any output ~J , of the operation compileRuleHead(C : i, ~Ha, ~Hm, ḡ) (Figure 7.1), each of
the following properties:

• Active Head: Both cases of compileRuleHead constructs join ordering that begins with Active . Hence this
is proven.

• Unique Rule Head: The proof proceeds by structural induction on buildJoin(~H,Σ, ḡ, ~Hh) in compileRuleHead :
with base case such that ~H which outputs the empty list (i.e., ~J = []) hence by default proven. We show that
each inductive case exclusively constructs exactly one LookupAtom or LookupAll join task for each con-
straint in ~Ha and ~Hm. Since ~Ha and ~Hm are valid CHRcp rule head constraints, thus each must have unique
occurrence indices. Hence this is proven.

• Uniqueness Enforcement: The proof proceeds by structural induction on buildJoin(~H,Σ, ḡ, ~Hh), with base
case such that ~H which outputs the empty list (i.e., ~J = []), in which the property trivially holds. For inductive
cases, if current head constraint is an atom (i.e., buildJoin([A : j | ~H],Σ, ḡ, ~Hh)) output join ordering ~J con-
sist of neqHs(A : j, ~Hh) that constructs all NeqHead join tasks essential to enforce uniqueness of partner j.
Similarly, if current head constraint is a comprehension (i.e., buildJoin([*A | ḡm+~x∈xs : j | ~H],Σ, ḡ, ~Hh)),
output join ordering ~J consist of filterHs(*A | ḡm+~x∈xs : j, ~Hh) that constructs all FilterHead join tasks
essential for enforcing uniqueness of partner j. Hence this is proven.

• Guard Representation: Similar to the above, by definition of the buildJoin operation, each guard condition of
the rule is embedded in either a check guard join task (CheckGuard), filter guard join task (FilterGuard)
or as an indexing directive (i.e., LookupAtom and LookupAll).

• Guard Scope Coverage: Similarly, the proof proceeds by structural induction on buildJoin(~H,Σ, ḡ, ~Hh). For
inductive case, guards scheduled ḡ1 (i.e., CheckGuard ḡ1) are such that (ḡ1,) = scheduleGrds(Σ, ḡ).
Since Σ contains the set of variables that appear in rule heads before the current, hence this is proven.

• Rule Head Constraint Representation: Similar to the above, by definition of the buildJoin operation, each
atomic head constraint is represented as a LookupAtom join task, while each comprehension pattern is repre-
sented by a LookupAll join task, a series of FilterGuard join tasks and a CompreDomain join task.

31

• Occurrence Scope Coverage: For Bootstrap join task, we show that by definition of compileRuleHead for
comprehensions, a Bootstrap join task is only created for head constraint j such that active pattern is j, hence
Bootstrap j only appears after Active A : j. The rest of the proof, proves the other cases: it proceeds by
structural induction on buildJoin(~H,Σ, ḡ, ~Hh). For inductive case, join tasks NeqHead, FilterHead and
CompreDomain that contain current partner j appears after LookupAtom or LookupAll join task of j. For
NeqHead and FilterHead created in this manner, only extracts partner indices from ~Hh, which contains
partners that appear before the current. Hence this is proven.

�

Lemma 2 (Preservation of Valid States) For any valid matching context Θ = 〈A#n; ~J ; Ls〉 and a valid state
(w.r.t. Θ)M, for any reachable stateM′ such that Θ B M �lhs M′,M′ must be valid.

Proof: We show that given that Θ = 〈A#n; ~J ; Ls〉 and M = 〈J ; pc; ~Br ; θ; Pm〉 are valid matching context
and valid matching state, then we prove thatM′ = 〈J ′; pc′; ~Br

′
; θ′; Pm ′〉 satisfies each of properties of valid match-

ing states. The proof are as follows, each proceeding by structural induction on the all derivation rule (except for
(fail-match) rule, since it does not qualify in the premise) of the transition operation (Figure 8.2):

• Valid Program Counter: For each derivation rule, except for (backtrack), we increment program counter by one
(i.e., pc + 1), hence we have two cases: 1) if pc ∈ range(~J), then for each of the applicable rules (all except
(fail-match) and (backtrack)) J is defined as ~J[pc], hence this is proven. 2) if pc /∈ range(~J), then since
we only increment pc, then we have proven pc − 1 ∈ range(~J) and J = ~J[pc] = ⊥. For (backtrack) rule,
since previous stateM satisfies ‘valid backtracking branches’ property, backtracked state satisfies this property
by definition. Hence this is proven.

• Valid Partial Match: For rules (check-guard), (neq-head) and (compre-dom), Pm = Pm ′ hence this is
trivially proven for those cases. For (bootstrap) with the current join task Bootstrap j, since partial match
of M, i.e., ‘Pm, j 7→ ′, is valid, we can safely remove j 7→ from the partial match. Hence Pm is a valid
partial match inM′ and this is proven. (active) extends current partial match Pm with i 7→ (φ,A#n) and
increments pc by 1. Since A#n ∈ Ls and that current join task J = Active : i, hence this is proven. For
rules (lookup-atom) and (lookup-all) with current join task LookupAtom : i and LookupAll : i
respectively, extends the partial match Pm with i 7→ Ū such that Ū are candidates extracted from Ls , hence
this is proven. Rules (filter-guard) and (filter-head) only modifies partial match by filtering candidates
from an index i, hence resultant partial match is still valid. For i corresponding to a comprehension pattern
(i.e., LookupAll A : i and exists some M : i ∈ H̄), we additionally show that partial match i 7→ Ū ∈
Pm is maximal, with respect to the fragment of store Ls not appearing in Pm (i.e., Ls − E such that E =
*A#n | for all (j 7→ Ū) ∈ Pm s.t. (, A#n) ∈ Ū and i 6= j+): if current state is execution of a join task of
form LookupAll A : i, by definition of (lookup-all) rule, (i 7→ Ū) ∈ Pm and Ū will contain all constraints
in Ls that matches with A. (filter-guard) and (filter-head) are the only other rules that may modify (i 7→
Ū) ∈ Pm , however for (filter-guard), we only filter away matches that do not satisfy the comprehension
guard, while for (filter-head) we only filter away matches that appear else where in Pm , hence this is proven.
Finally for (backtrack), backtracked partial match Pm ′ must be valid, sinceM satisfies the valid backtracking
branches property, hence this is proven.

• Valid Backtracking Branches: For rules (active), (check-guard), (lookup-all), (filter-guard), (neq-head),
(filter-head), (compre-dom) and (bootstrap), backtrack branches ~Br are not modified, hence ~Br = ~Br

′

and this is trivially proven. (lookup-atom) extends the backtrack branches ~Br with ~Br
′
. For each branch

(pc, θφ,Pm, j 7→ (φ,A′′ : m)) ∈ ~Br , we show that 〈~J[pc]; pc + 1;∅; θφ; Pm, j 7→ (φ,A′′ : m)〉 is a
valid state: the proofs of these are instances of the proof for valid program counter and valid partial match for
the (lookup-atom) rule (valid backtracking branches is omitted, since backtrack branch is empty). Hence, this
is proven for (lookup-atom). For (backtrack), backtrack branches in M (i.e., [| ~Br]) is reduced to ~Br .
Since ~Br must be valid backtrack branches, hence this is proven.

32

�

Lemma 3 (Monotonic Progress of Abstract Matching Machine) For any valid context Θ and valid statesM,
M′, if Θ B M�lhs M′, then we have progress(Θ,M) > progress(Θ,M′).

Proof: The proof proceeds by structural induction on the types of transition rules of the abstract matching machine
transition operations: For valid context Θ = 〈A#n; ~J ; Ls〉 and valid stateM = 〈J ; pc; ~Br ; θ; Pm〉, we show that for
Θ B M�lhs M′, we have progress(Θ,M) > progress(Θ,M′) in each of the following inductive cases:

• Rules (active), (check-guard), (lookup-all), (filter-guard), (neq-head), (filter-head), (compre-dom)
and (bootstrap): Since for these cases, program counter is incremented, rightmost component of progress
ranking of progress(Θ,M′) is decremented by 1, relative to progress(Θ,M) (i.e., pc′ = pc + 1, hence
|~J | − pc > |~J | − pc′). Furthermore, since ~Br remains unchanged (i.e., ~Br = ~Br

′
), hence middle values of

progress rankings (i.e., lookup progress in Figure 9.2) must remain the same. For leftmost value (act progress),
that value for progress(Θ,M′) must be less than or equal to that of progress(Θ,M), by definition of the
progress ranking function. Therefore we must have progress(Θ,M) > progress(Θ,M′).

• (lookup-atom): Current join task J = LookupAtom A#j. Backtracking branch is expanded with ~Br
′

that
contains candidates in Ls that matched with A#j. Since ~Br

′
must be finite in size n, and each backtracking

branches points to pc (i.e., (pc, ,) ∈ ~Br
′
), progress rank value corresponding to pc of progress(Θ,M)

must be n less then successor state (progress(Θ,M′)) However, progress rank value left of pc in successor
state progress(Θ,M′) must be 1 less than progress(Θ,M), hence by lexicographical ordering, we still have
progress(Θ,M) > progress(Θ,M′).

• (backtrack): Backtrack branch (pc′, ,) is removed, hence progress rank value corresponding to pc′ of
progress(Θ,M) is 1 more than the successor state M′. Even though rightmost progress rank component
(i.e., pc progress) is relatively higher (i.e. |~J | − pc < |~J | − pc′), by lexicographical ordering, we still have
progress(Θ,M) > progress(Θ,M′).

• (fail-match): Not applicable, since premise of the lemma is not satisfied (i.e.,M′ 6= ⊥).

Hence we have proven this in all applicable cases. �

Theorem 4 (Termination of the CHRcp Abstract Matching Machine) For any valid Θ = 〈A#n; ~J ; Ls〉, we
have Θ B 〈~J[0]; 1;∅; ·;∅〉 �∗lhs M such that eitherM = 〈⊥; ; ; θ; Pm〉 orM = ⊥.

Proof: The proof for this relies on Lemma 3: progress ranking of initial state is finite, and monotonicity decre-
mented as successor states are applied to the abstract matching machine transition operation. Since increments to
individual progress ranking component values (during application of rule (lookup-atom)) must be finite (bound by
size of store Ls), we can only decrement progress ranking by finite number of steps. Hence we must always eventually
reach a terminal stateM = 〈⊥; ; ; θ; Pm〉, or failed stateM = ⊥. �

Lemma 5 (Soundness of Abstract Matching Machine Transition Step) For any CHRcp head constraints C : i,
~Ha, ~Hm and ḡ, such that ~J = compileRuleHead(C : i, ~Ha, ~Hm, ḡ), given a constraint store Ls and an active
constraint A#n, all reachable statesM = 〈J ; pc; ~Br ; θ; Pm〉, satisfies the following:

1. Satisfied Guards: |= θjtGuards(~J[0 . . . pc])

2. Partial Match: For each A : i ∈ jtRuleHeads(~J[0 . . . pc]), with corresponding rule head constraint C : i ∈
* ~Ha, ~Hm+, we have C : i ,lhs constr(Pm, i)

33

3. Maximality of Comprehension: For eachA : i ∈ jtRuleHeads(~J[0 . . . pc]), such that exists LookupAll A :
i ∈ ~J[0 . . . pc], with corresponding rule head constraint M : i ∈ ~Hm, we have M ,¬lhs Ls − E such that
E = *A#n | for all (j 7→ Ū) ∈ Pm[0 . . . pc] s.t. (, A#n) ∈ Ū+

Proof: This Lemma is a rephrasing of Lemma 2 that focuses on the incremental construction of partial matches
by reachable states. Its proof subsumed by the proof of Lemma 2. Hence we omit its full details, but provide the
proof sketch: The proof proceeds by structural induction on the types of transition rules of the abstract matching ma-
chine transition operations. We show that the abstract machine transition operation preserves the required properties
of over partial matches Pm . These properties can be directly inferred from properties of reachable states, asserted by
Lemma 2. �

Theorem 6 (Soundness of Abstract Matching Machine) For any CHRcp head constraints C : i, ~Ha, ~Hm

and ḡ, such that ~J = compileRuleHead(C : i, ~Ha, ~Hm, ḡ), given a constraint store Ls and an active constraint
A#n, if 〈A#n; ~J ; Ls〉 B 〈~J[0]; 1;∅; ·;∅〉 �∗lhs 〈⊥; ; ; θ; Pm〉, then for some Lsact, Lspart, Lsrest such that
Ls = *Lsact,Lspart,Lsrest+ and Lsact = constr(Pm, i) and Lspart = constr(Pm, getIdx (* ~Ha, ~Hm+)), we
have:

1. Satisfied Guards: |= θg,

2. Active Pattern Match: C : i ,lhs Lsact,

3. Partners Match: θ* ~Ha, ~Hm+ ,lhs Lspart, and

4. Maximality of Comprehension: θ* ~Ha, ~Hm, C : i+ ,¬lhs Lsrest.

Proof: The proof relies on Lemma 1 which provides the guarantees that any join ordering ~J constructed by valid
inputs to compileRuleHead is valid, thus execution from such matching contexts are well behaved. Lemma 5 pro-
vides the property fulfilled by reachable states which incrementally computes substitutions θ and partial match Pm .
Finally, we show that terminal states 〈⊥; ; ; θ; Pm〉 are such that Pm contains all matches to the rule heads of rule
r, while satisfying guard constraints and maximality of comprehensions (thanks to Lemma 5). Hence is this proven. �

Lemma 7 (Exhaustive Backtracking For Atomic Head Constraints) Let r be any CHRcp rule and its head
constraints be C : i, ~Ha, ~Hm and ḡ with ~J = compileRuleHead(C : i, ~Ha, ~Hm, ḡ). Given a constraint store Ls and
an active constraint A#n, for any reachable stateM = 〈J ; pc; ~Br ; θ; Pm〉, we have:

• For someM′ = 〈J ′; pc′; ~Br
′
; θ′; Pm ′〉 such that 〈A#n; ~J ; Ls〉BM �lhs M′, if J = LookupAtom A : j,

then for all A′#n ∈ Ls such that match(A′, θA) = φ (φ 6= ⊥), either we have j 7→ (φ,A′#n) ∈ Pm ′ or
(pc, θφ, (Pm, j 7→ (φ,A′#n))) ∈ ~Br

′
.

• If 〈A#n; ~J ; Ls〉 B 〈J ; pc; ~Br ; θ; Pm〉 �∗lhs ⊥, then for each (pc′, θ′,Pm ′) ∈ ~Br , there exists someM′ =

〈J ′; pc′; ~Br
′
; θ′; Pm ′〉 such that 〈A#n; ~J ; Ls〉 B 〈J ; pc; ~Br ; θ; Pm〉 �s1

lhs 〈J ′; pc′; ~Br
′
; θ′; Pm ′〉 �s2

lhs ⊥

Proof: The proof proceeds as follows:

• The first property immediately follows by the definition of the (lookup-atom). Specifically, successor state
M′ = 〈J ′; pc′; ~Br

′
; θ′; Pm ′〉 must be such that partial matches Pm ′ is extended with one possible match to

A : j, while all others are included as backtracking branches in ~Br
′
. Hence this is proven.

• We proof the second property by negation, suppose that there exists some backtrack branch (pc′, θ′,Pm ′) ∈
~Br that was never restored, hence the execution never computes the intermediate state 〈J ′; pc′; ~Br

′
; θ′; Pm ′〉.

34

However, the abstract matching machine is defined such that the only transition rule that removes backtracking
branches is (backtrack) and 〈J ′; pc′; ~Br

′
; θ′; Pm ′〉 must inevitably be computed as an intermediate state in

order for execution to result to ⊥. This is because the only transition rule that results to ⊥ is (fail-match),
which requires backtracking branches to be empty (i.e., ∅) in order to qualify. Hence it must be the case that
(pc′, θ′,Pm ′) ∈ ~Br that was restored. Hence this is proven.

�

Theorem 8 (Completeness of Abstract Matching Machine) Let r be any CHRcp rule that is non-selective
on comprehension rule heads. Let its head constraints be C : i, ~Ha, ~Hm and ḡ with ~J = compileRuleHead(C :
i, ~Ha, ~Hm, ḡ). Given a constraint store Ls and an active constraint A#n, if
〈A#n; ~J ; Ls〉 B 〈~J[0]; 1;∅; ·;∅〉 �∗lhs ⊥ then there exists no applicable rule instance of r from Ls .

Proof: We proof by negation: Assume that we have 〈A#n; ~J ; Ls〉 B 〈~J[0]; 1;∅; ·;∅〉 �∗lhs ⊥, yet there
exists a rule instance of r that is applicable in Ls . Lemma 7 states that for all constraint A′#m ∈ Ls that can match
with some head constraint LookupAtom A′′ : j ∈ ~J , must at some intermediate stateM′ = 〈J ′; pc′; ~Br

′
; θ′; Pm ′〉

participated as in the partial match Pm ′ (i.e., θA′′ = A′ and j 7→ (, A′#m) ∈ Pm ′). Lemma 1 ensures that
join ordering ~J is valid with respect to the given CHRcp rule, hence all head constraints and rule guards must be
appropriately represented in ~J (Rule head constraint representation and Guard representation), and all combination
of atomic head constraint matches must have been tried. The only possibility that execution has reached failed state ⊥
is that all partial matched failed at one of the following: (active) if active constraint did not match the active pattern,
(check-guard) by failing guard test |= θḡ or (lookup-atom) if lookCands retrieves an empty set of candidates. This
means that all combinations of matches to atomic head constraints are not valid matches to rule r, deriving a contra-
diction to our original assumption. Hence it must be the case that there are no applicable rule instances of r. �

B Experiment Program Code

In this section, we show the code of the three experiment programs discussed in Section 11. Because we use their
concrete syntax in our prototype implementation, we first give an informal introduction to the concrete syntax of
CHRcp , highlighting the main difference with the abstract syntax. A comprehension *p(~t) | ḡ+~x∈t is written as {
p(~t) | ~x <- t. ḡ } in our concrete syntax. Comprehension guard (i.e., ḡ) is optional and will be omitted if
they are not required. A CHRcp rule r @ H̄ ⇐⇒ ḡ | B̄ is written as rule r :: H̄ | ḡ′ <==> B̄ where
ḡ′′, such that ḡ = *ḡ′, ḡ′′+. Specifically, ḡ′ and ḡ′′ represents a partition of ḡ such that ḡ′′ contains guards of the form
x = t such that x does not appear in H̄ , while ḡ′ contains all other guards of the rule. The intuition is that ḡ′′ are
essentially assignment bindings, akin to let bindings in functional programming languages. Both guard and ‘where’
components of a rule are optional. Our concrete syntax include propagation head constraints H̄p, which are an optional
component of CHRcp rules. For instance, written as rule r :: H̄p \H̄s <==> B̄, this syntax represents the
CHRcp rule r@*H̄p, H̄s+⇔ *H̄p, B̄+ (although they are treated slightly differently from an operational perspective).

B.1 Pivot Swap

Figure B.1 shows the concrete implementation of the pivot swap example from Section 2.1, with and without
comprehension rule head constraints. The program on top concisely implements pivot swap with a single CHRcp rule
that exploits comprehension patterns. The code at the bottom uses several rules that only references atomic constraint
patterns. This involves using auxiliary constraints to accumulate intermediate matches (i.e., grabGE, grabLT and
unrollData) and implementing these boilerplate variable-sized constraint matching patterns by means of several
rules.

35

Pivot Swap with Comprehensions:

1 rule pivotSwap :: swap(X,Y,P),
2 { data(X,D) | D <- Xs. D >= P },
3 { data(Y,D) | D <- Ys. D < P }
4 <==> { data(Y,D) | D <- Xs }, { data(Y,D) | D <- Ys }.

Pivot Swap with Standard Rules

1 rule ini :: swap(X,Y,P) <==> grabGE(X,P,Y,[]), grabLT(Y,P,X,[]).
2

3 rule ge1 :: grabGE(X,P,Y,Ds), data(X,D) | D >= P <==> grabGE(X,P,Y,[D|Ds]).
4 rule ge2 :: grabGE(X,P,Y,Ds) <==> unrollData(Y,Ds).
5

6 rule lt1 :: grabLT(Y,P,X,Ds), data(Y,D) | D < P <==> grabLT(Y,P,X,[D|Ds]).
7 rule lt2 :: grabLT(Y,P,X,Ds) <==> unrollData(X,Ds).
8

9 rule unroll1 :: unrollData(L,[D|Ds]) <==> unrollData(L,Ds),data(L,D).
10 rule unroll2 :: unrollData(L,[]) <==> 1.

Figure B.1: Pivot Swap

B.2 Distributed Minimal Spanning Tree

The top part of Figure B.2 shows the concrete syntax for the distributed minimal spanning tree implementation,
highlight in Section 2.4. This implementation relies on two auxiliary operations, namely reduce min (line 5) and
union (line 16), which are assumed to be side-effect free C++ functions: reduce min(Es) returns the minimum
value within Es while union(Is1,Is2) returns the union of the two collections Is1 and Is2.

The bottom portion of Figure B.2 shows the concrete syntax for distributed minimal spanning tree with stan-
dard CHRcp rules. Similar to the standard code in Figure B.1, this implementation uses auxiliary constraints (e.g.,
seekMWOE and deleteEdges) and multiset accumulator rules (e.g., del1, del2, etc..) in place of comprehension
patterns.

B.3 Hyper-Quicksort

Figure B.3 shows the concrete syntax of an implementation of Hyper-Quicksort in CHRcp (discussed in Sec-
tion 2.3). Figure B.4 illustrates the implementation of Hyper-Quicksort in CHRcp without the use of comprehension
patterns. Similarly to the standard CHR code in Figures B.1 and B.2, this implementation utilizes auxiliary constraints
and accumulator matching rules to implement the behavior of comprehension patterns.

36

GHS Algorithm with Comprehensions

1 rule find :: level(X,L) \ findMWOE(X,Is),
2 { edge(I,O,V) | (I,O,V) <- Es. I in Is }
3 | Es != {} <==> foundMWOE(X,Is), { edge(I,O,V) | (I,O,V) <- Rs },
4 combine(Om,X,L,Im,Om,Vm)
5 where (Im,Om,Vm) = reduce min(Es),
6 Rs = { (I,O,V) | (I,O,V) <- Es. V != Vm }.
7

8 rule cmb1 :: combine(X,Y,L,O,I,V), combine(Y,X,L,I,O,V), level(X,L), level(Y,L)
9 <==> merge(X,Y,I,O,V), level(X,L+1).

10

11 rule cmb2 :: level(X,L1) \ combine(X,Y,L2,I,O,V) | L1 > L2 <==> merge(X,Y,I,O,V).
12

13 rule mrg :: merge(X,Y,Im,Om,Vm), foundMWOE(X,Is1), foundMWOE(X,Is2),
14 { edge(I,O,V) | (I,O,V) <- Es1. I in Is1, O in Is2 },
15 { edge(I,O,V) | (I,O,V) <- Es2. I in Is2, O in Is1 }
16 <==> findMWOE(X,union(Is1,Is2)), forward(Y,X),
17 mstEdge(Im,Om,Vm), mstEdge(Om,Im,Vm).
18

19 rule fwd :: forward(O1,O2) \ combine(O1,X,L,I,O,V) <==> combine(O2,X,L,I,O,V).

GHS Algorithm with Standard Rules

1 rule start find :: level(X,L) \ findMWOE(X,Is), edge(I,O,V) | I in Is
2 <==> seekMWOE(X,Is,L,I,O,V,[]).
3 rule iter find1 :: seekMWOE(X,Is,L,I1,O1,V1,Hs), edge(I2,O2,V2) | I2 in Is, V2 < V1
4 <==> seekMWOE(X,Is,L,I2,O2,V2,[(I1,O1,V1)|Hs]).
5 rule iter find2 :: seekMWOE(X,Is,L,I1,O1,V1,Hs), edge(I2,O2,V2) | I2 in Is, V2 >= V1
6 <==> seekMWOE(X,Is,L,I1,O1,V1,[(I2,O2,V2)|Hs]).
7 rule end find :: seekMWOE(X,Is,L,Im,Om,Vm,Hs) <==> completeMWOE(X,Is,L,Im,Om,Vm,Hs).
8 rule comp find1 :: completeMWOE(X,Is,L,Im,Om,Vm,[(I,O,V)|Hs])
9 <==> edge(I,O,V),completeMWOE(X,Is,L,Im,Om,Vm,Hs).

10 rule comp find2 :: completeMWOE(X,Is,L,Im,Om,Vm,[])
11 <==> foundMWOE(X,Is), combine(Om,X,L,Im,Om,Vm).
12

13 rule cmb1 :: combine(X,Y,L,O,I,V), combine(Y,X,L,I,O,V), level(X,L), level(Y,L)
14 <==> merge(X,Y,I,O,V), level(X,L+1).
15

16 rule cmb2 :: level(X,L1) \ combine(X,Y,L2,I,O,V) | L1 > L2 <==> merge(X,Y,I,O,V).
17

18 rule mrg :: merge(X,Y,Im,Om,Vm), foundMWOE(X,Is1), foundMWOE(Y,Is2)
19 <==> deleteEdges(X,Y,Is1,Is2), mstEdge(Im,Om,Vm), mstEdge(Om,Im,Vm).
20 rule del1 :: deleteEdges(X,Y,Is1,Is2) \ edge(I,O,V) | I in Is1, O in Is2 <==> 1.
21 rule del2 :: deleteEdges(X,Y,Is1,Is2) \ edge(I,O,V) | I in Is2, O in Is1 <==> 1.
22 rule del3 :: deleteEdges(X,Y,Is1,Is2)
23 <==> [X]findMWOE(union(Is1,Is2)), [Y]forward(X).
24

25 rule fwd :: forward(O1,O2) \ combine(O1,X,L,I,O,V) <==> combine(O2,X,L,I,O,V).

Figure B.2: GHS Algorithm (Distributed Minimal Spanning Tree)

37

1 rule median :: { data(X,D) | D <- Ds } \ find median(X)
2 <==> median(X,computemedian(Ds)).
3

4 rule leader reduce :: leaderLinks(X,G) | (count(G)) <= 1 <==> 1.
5

6 rule leader expand :: median(X,M), leaderLinks(X,G)
7 <==> { swapLink(Y,W,M,X) | (Y,W) <- zip(Gl,Gg) },
8 spawnLeaders(X,Z,Gl,Gg,count(Gl))
9 where (Gl,Gg) = split(G),

10 Z = pickone(Gg).
11

12 rule swap :: swapLink(X,Y,M,L),
13 { data(X,D) | D <- Xs. D >= M },
14 { data(Y,D) | D <- Ys. D < M }
15 <==> { data(X,D) | D <- Ys }, { data(Y,D) | D <- Xs },
16 spawnCounter(L).
17

18 rule spawn :: spawnLeaders(X,Z,Gl,Gg,L), { spawnCounter(L) | 1 <- Cs }
19 | (count(Cs)) == L <==> find median(X), leaderLinks(X,Gl),
20 find median(Z), leaderLinks(Z,Gg).

Figure B.3: Hyper-Quicksort with Comprehensions

38

1 rule find median1 :: data(X,D), find median(X,Ds) <==> find median(X,[D|Ds]).
2 rule find median2 :: find median(X,Ds)
3 <==> ret data(X,Ds), median(X,computemedian(Ds)).
4

5 rule acc1 :: ret data(X,[D|Ds]) <==> ret data(X,Ds), data(X,D).
6 rule acc2 :: ret data(X,[]) <==> 1.
7

8 rule leader reduce :: leaderLinks(X,G) | (len(G)) <= 1 <==> 1.
9

10 rule leader expand :: median(X,M), leaderLinks(X,G)
11 <==> distPartnerLinks(X,M,zip(Gl,Gg)),
12 spawnLeaders(X,Z,Gl,Gg,len(Gl))
13 where (Gl,Gg) = split(G),
14 Z = pickone(Gg).
15

16 rule partner1 :: distPartnerLinks(X,M,[(Y,W)|Gs])
17 <==> distPartnerLinks(X,M,Gs), partnerLink(Y,W,M,X,[],[]).
18 rule partner2 :: distPartnerLinks(X,M,[]) <==> 1.
19

20 rule swap1 :: partnerLink(X,W,M,L,Xs,Ys), data(X,D) | D >= M
21 <==> partnerLink(X,W,M,L,[D|Xs],Ys).
22 rule swap2 :: partnerLink(X,W,M,L,Xs,Ys), data(Y,D) | D < M
23 <==> partnerLink(X,W,M,L,Xs,[D|Ys]).
24 rule swap3 :: partnerLink(X,W,M,L,Xs,Ys)
25 <==> ret data2(X,Ys), ret data2(W,Xs), spawnCounter(L,1).
26

27 rule acc3 :: ret data2(X,[D|Ds]) <==> ret data2(X,Ds), data(X,D).
28 rule acc4 :: ret data2(X,[]) <==> 1.
29

30 rule spawn1 :: spawnCounter(L,X), spawnCounter(L,Y) <==> spawnCounter(L,X+Y).
31 rule spawn2 :: spawnLeaders(X,Z,Gl,Gg,L), spawnCounter(X,I)
32 | I == L <==> find median(X,[]), leaderLinks(X,Gl),
33 find median(Z,[]), leaderLinks(Z,Gg).

Figure B.4: Hyper-Quicksort with Standard Rules

39

	Introduction
	Motivating Examples
	Pivoted Swapping
	Computing Aggregates from Multisets of Constraints
	Hyper-Quicksort
	Distributed Minimal Spanning Tree

	Syntax and Notation
	Operational Semantics of CHRcp
	Semantics of Matching of CHRcp
	Rule Body Application and Monotonicity
	Operational Semantics

	Compiling CHRcp Rules
	Introducing CHRcp Join Ordering
	Bootstrapping for Active Comprehension Head Constraints
	Uniqueness Enforcement

	Representing CHRcp Join Orderings
	Building CHRcp Join Orderings
	Executing Join Orderings
	Abstract Machine Execution
	Example of Join Ordering Compilation

	Correctness of the CHRcp Abstract Matching Machine
	Valid Matching Contexts and States
	Termination
	Soundness
	Completeness

	Operational Semantics with Join Ordering Execution
	Prototype and Preliminary Empirical Results
	Related Work
	Conclusion and Future Works
	Proofs
	Experiment Program Code
	Pivot Swap
	Distributed Minimal Spanning Tree
	Hyper-Quicksort

